
CENTER FOR RESEARCH AND ADVANCED STUDIES
OF THE NATIONAL POLYTECHNIC INSTITUTE OF MEXICO

COMPUTER SCIENCE DEPARTMENT

Use of Domain Information to Improve the
Performance of an Evolutionary Algorithm

By

Ricardo Landa Becerra

As the fulfilment of the requirement for the degree of

Doctor of Science

Specialization in

Electrical Engineering

Option: Computer Science

Advisor: Dr. Carlos A. Coello Coello

Mexico City, Mexico. June, 2007

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITÉCNICO NACIONAL

DEPARTAMENTO DE COMPUTACIÓN

Uso de Información del Dominio para Mejorar
el Desempeño de un Algoritmo Evolutivo

Tesis que presenta

Ricardo Landa Becerra

Para obtener el grado de

Doctor en Ciencias

En la especialidad de

Ingeniería Eléctrica

Opción Computación

Director de la Tesis: Dr. Carlos A. Coello Coello

México, D.F., junio de 2007

To Norma

To my family

In memoriam
Juan Landa Hernández

Acknowledgments

I wish to thank Dr. Carlos Coello, for his guidance and for sharing his
knowledge with me.

I thank my reviewers, whose comments greatly helped me to improve
this work: Dr. José Matías Alvarado Mentado, Dr. Luis Gerardo de la
Fraga, Dr. Arturo Hernández Aguirre and Dr. Carlos Eduardo Mariano
Romero. I also thank Dr. Francisco Rodríguez Henríquez, for his valuable
comments which also helped me to improve the contents of this thesis.

I thank my partners at the CINVESTAV, who shared with me some
memorable times.

I acknowledge support from CONACyT through a scholarship to pur-
sue graduate studies at the Computer Science Section of the Electrical En-
gineering Department at CINVESTAV-IPN. I also acknowledge support
granted to conclude this thesis through the CONACyT project “Artificial
Immune Systems for Multiobjective Optimization” (Ref. 42435-Y), whose
principal investigator is Dr. Carlos A. Coello Coello.

vii

viii

Abstract

In this thesis we explore the use of domain information incorporated dur-
ing the execution of an evolutionary algorithm, through the use of a cul-
tural algorithm. The cultural algorithms are evolutionary algorithms that
support an additional mechanism for information extraction during the
execution of the algorithm, avoiding the need to encode the information a
priori.

Firstly, a cultural algorithm to tackle constrained optimization prob-
lems was developed. Such algorithm adopts differential evolution as its
model for the population. Using the differential evolution operators as a
base, we designed four knowledge sources, each one with a particular in-
fluence over the operators. Since each knowledge source exhibits different
benefits in different phases of the search, a main mechanism to control the
application rate of the operators was developed, based on the success rate
each one.

This algorithm was tested using a well-known benchmark and a pair
of instances of engineering optimization problems, and compared with
other representative algorithms of the state-of-the-art. In both cases, equal
or better solutions were obtained, requiring a smaller number of objective
function evaluations.

In the next phase, a hybrid algorithm to tackle multiobjective optimiza-
tion problems was developed. Such algorithm is a hybrid between the
previous algorithm for constrained optimization, and a method of math-
ematical programming called ε-constraint. We obtained other advantages
with this algorithm, like obtaining good approaches of the Pareto front
in problems that have been very difficult to solve for other evolutionary
approaches.

As a last contribution, we introduced an approach to perform incor-

ix

x

poration of preferences to the previous algorithm, but such approach can
also be used in an wide set of techniques. This proposal is based on the
use of vectors of goals. With the addition this approach, is possible to re-
duce the computational cost needed when applying the hybrid algorithm
on problems with a large number of objectives, turning it applicable on
practice.

Resumen

En esta tesis se explora el uso de información del dominio incorporada
durante la ejecución de un algoritmo evolutivo mediante un algoritmo
cultural. Los algoritmos culturales son algoritmos evolutivos que sopor-
tan un mecanismo adicional para la extracción de información durante la
misma ejecución del algoritmo, eliminando de esta forma la necesidad de
codificar la informacion a priori.

Primeramente, se desarrolló un algoritmo cultural para atacar prob-
lemas de optimización con restricciones. Tal algoritmo utiliza evolución
diferencial como modelo para la población. Utilizando como base los op-
eradores de la evolución diferencial, se diseñaron cuatro fuentes de co-
nocimiento, cada una con una influencia particular sobre los operadores.
Debido a que cada fuente de conocimiento presenta diferentes beneficios
en diferentes fases de la búsqueda, se implementó un mecanismo maestro
para controlar la frecuencia de aplicación de los operadores, basandose en
la tasa de éxito de cada uno.

Este algoritmo fue probado con un conjunto de problemas de prueba
bien conocido y con un par de instancias de problemas de optimización
de ingeniería, y comparados con otros algoritmos representativos del es-
tado del arte. En ambos casos, se obtuvieron iguales o mejores soluciones,
requiriendo un número menor de evaluaciones de la función objetivo.

En la siguiente fase, se desarrolló un algoritmo híbrido para atacar
problemas de optimización multiobjetivo. Tal algoritmo es un híbrido en-
tre el algoritmo previo para optimización con restricciones, y un metodo
de programación matemática llamado restricción-ε. Con este algoritmo se
obtuvieron otras ventajas, como obtener buenas aproximaciones del frente
de Pareto en problemas que se han mostrado muy dificiles de resolver por
otras técnicas evolutivas.

xi

xii

Como un último aporte se presentó una propuesta para realizar incor-
poración de preferencias al algoritmo previo, pero que se puede utilizar
en un conjunto amplio de técnicas. Esta propuesta está basada en el uso
de vectores de metas. Con la incorporación de esta propuesta, es posible
reducir el costo computacional necesario al emplear el algoritmo híbrido
en problemas con un número elevado de funciones objetivo, volviéndolo
aplicable en la práctica.

Contents

Abstract ix

Resumen xi

List of Figures xvii

List of Tables xix

List of Algorithms xxi

1 Introduction 1

2 Background 5
2.1 Optimization . 5
2.2 Evolutionary computation . 7

2.2.1 Evolutionary programming 8
2.2.2 Evolution strategies 9
2.2.3 Genetic algorithms . 11

2.3 Knowledge incorporation in evolutionary computation . . . 12
2.4 Cultural algorithms . 13
2.5 Differential evolution . 17

3 Constraint-Handling Techniques used with Evolutionary Algo-
rithms 19
3.1 Constraint-handling techniques 19

3.1.1 Penalty functions . 19
3.1.2 Special representations and operators 22
3.1.3 Repair algorithms . 23

xiii

xiv Contents

3.1.4 Separation of objectives and constraints 24
3.1.5 Hybrid methods . 26

3.2 Cultural algorithms in constrained and Real-Valued opti-
mization problems . 28
3.2.1 CAEP . 29
3.2.2 Other search engines for cultural algorithms 31

3.3 Differential evolution in constrained optimization 32

4 Proposed Approach for Constrained Optimization 35
4.1 Constraint-handling mechanism 36
4.2 The belief space . 37

4.2.1 Situational knowledge 37
4.2.2 Normative knowledge 38
4.2.3 Topographical knowledge 40
4.2.4 History knowledge . 43

4.3 Acceptance function . 44
4.4 Main influence function . 45
4.5 Parameters of the technique 46

5 Results for the Constrained Optimization Approach 49
5.1 Standard problems . 49

5.1.1 Comparison of results 49
5.1.2 Statistical analysis . 62

5.2 Engineering optimization problems 65
5.2.1 Comparison of results 65

6 Evolutionary Multiobjective Techniques 69
6.1 The multiobjective optimization problem 69
6.2 Evolutionary algorithms for multiobjective problems 71
6.3 A priori techniques . 71

6.3.1 Lexicographic ordering 71
6.3.2 Linear aggregating functions 71
6.3.3 Nonlinear aggregating functions 72

6.4 Progressive techniques . 72
6.5 A posteriori techniques . 73

6.5.1 Criterion selection techniques 73
6.5.2 Aggregating selection techniques 74
6.5.3 Pareto sampling techniques 74

xv

6.5.4 Independent sampling techniques 78

7 A Proposal for Multiobjective Optimization using the Cultured
Differential Evolution 81
7.1 Estimating the nadir objective vector 83
7.2 The ε-constraint based approach: εCCDE 85
7.3 An additional technique for dispersion 87

7.3.1 Crossover operators 88
7.3.2 Mutation operator . 89

7.4 Parameters of the technique 89

8 Results for the Multiobjective Optimization Approach 91
8.1 εCCDE alone . 91

8.1.1 Test problems . 92
8.1.2 Experimental setup . 92
8.1.3 Performance measures 93

8.2 εCCDE plus dispersion technique 99
8.2.1 Test problems . 99
8.2.2 Experimental setup . 100
8.2.3 Performance measures 100

9 Incorporation of Preferences to εCCDE 109
9.1 Provide ranges for m− 1 objectives 110

9.1.1 Results . 110
9.2 Provide a vector of goals . 116

9.2.1 Results . 118

10 Final Remarks 125
10.1 Conclusions . 127
10.2 Future work . 129

A Single-objective Constrained Optimization Problems 131

B Multiobjective Optimization Problems 143

C Histograms of the Bootstrap Distributions for the Constrained
Optimization Problems 153

xvi Contents

D Proofs of Pareto Optimality for the Approach Based on a Vector
of Goals 159

Bibliography 160

List of Figures

2.1 Spaces of a cultural algorithm 16

4.1 Structure of the normative knowledge 39
4.2 Example of the partition of a two-dimensional space by a

k-d tree . 42
4.3 Structure of the history knowledge 43

5.1 Bootstrap distribution for the mean statistic for problem g05. 64

7.1 Example of the payoff table method 84

8.1 Results for the 2-objective WFG1 93
8.2 Results for the 2-objective WFG2 94
8.3 Results for the 2-objective WFG3 94
8.4 Results for the 2-objective WFG4 94
8.5 Results for the 2-objective WFG5 95
8.6 Results for the 2-objective WFG6 95
8.7 Results for the 2-objective WFG7 95
8.8 Results for the 2-objective WFG8 96
8.9 Results for the 2-objective WFG9 96
8.10 Results for the 3-objective WFG1 101
8.11 Results for the 3-objective WFG2 101
8.12 Results for the 3-objective WFG3 101
8.13 Results for the 3-objective WFG4 102
8.14 Results for the 3-objective WFG5 102
8.15 Results for the 3-objective WFG6 102
8.16 Results for the 3-objective WFG7 103
8.17 Results for the 3-objective WFG8 103

xvii

xviii List of Figures

8.18 Results for the 3-objective WFG9 103
8.19 Results for OKA1 . 104
8.20 Results for OKA2 . 104
8.21 Results for ZDT1 . 104
8.22 Results for ZDT2 . 105
8.23 Results for ZDT3 . 105
8.24 Results for ZDT4 . 105

9.1 The ε-constraint method with ranges 111
9.2 Results for WFG1 . 113
9.3 Results for WFG2 . 114
9.4 Results for WFG3 . 115
9.5 Use of a vector of goals after the Pareto front 117
9.6 Use of a vector of goals before the Pareto front 118
9.7 Results for the two-objective WFG1 120
9.8 Results form the two-objective WFG2 121
9.9 Results for the three-objective WFG1 121
9.10 Results for the three-objective WFG2 122

A.1 10-bar plane truss adopted for problem G14. 138
A.2 Cross-section used for the 10-bar plane truss from problem

G14. 138
A.3 200-bar plane truss used for problem G15. 141

C.1 Bootstrap distribution for the mean statistic for problem g01. 154
C.2 Bootstrap distribution for the mean statistic for problem g02. 154
C.3 Bootstrap distribution for the mean statistic for problem g03. 155
C.4 Bootstrap distribution for the mean statistic for problem g05. 155
C.5 Bootstrap distribution for the mean statistic for problem g07. 156
C.6 Bootstrap distribution for the mean statistic for problem g10. 156
C.7 Bootstrap distribution for the mean statistic for problem g11. 157
C.8 Bootstrap distribution for the mean statistic for problem g13. 157

List of Tables

5.1 Results obtained by our cultured differential evolution (CDE)
approach . 51

5.2 Comparison of the best results of CDE with respect to HM
[90], SR [153], ASCHEA [64], TS [38], and DE [94]. “-” means
no feasible solutions were found. NA = Not Available. A re-
sult in boldface means that our approach obtained the same
or a better value than any other of the techniques. 52

5.3 Comparison of the mean results of CDE with respect to HM
[90], SR [153], ASCHEA [64], TS [38], and DE [94]. “-” means
no feasible solutions were found. NA = Not Available. A re-
sult in boldface means that our approach obtained the same
or a better value than any other of the techniques. 53

5.4 Comparison of the worst results of CDE with respect to
HM [90], SR [153], ASCHEA [64], TS [38], and DE [94]. “-”
means no feasible solutions were found. NA = Not Avail-
able. A result in boldface means that our approach ob-
tained the same or a better value than any other of the tech-
niques. 54

5.5 Best result obtained by CDE for g01 55
5.6 Best result obtained by CDE for g02 56
5.7 Best result obtained by CDE for g03 57
5.8 Best result obtained by CDE for g04 58
5.9 Best result obtained by CDE for g05 58
5.10 Best result obtained by CDE for g06 59
5.11 Best result obtained by CDE for g07 60
5.12 Best result obtained by CDE for g08 60
5.13 Best result obtained by CDE for g09 61

xix

xx List of Tables

5.14 Best result obtained by CDE for g10 61
5.15 Best result obtained by CDE for g11 62
5.16 Best result obtained by CDE for g12 62
5.17 Best result obtained by CDE for g13 63
5.18 Confidence intervals for the mean statistic. 65
5.19 Results of several methods for the 10-bar plane truss (g14).

Our approach is labeled as CDE 66
5.20 Results of several methods for the 200-bar plane truss (g15).

Our approach is labeled as CDE 66
5.21 Statistics of the results obtained by our approach for the de-

sign of trusses . 67

7.1 Parameters for the εCCDE technique 90

8.1 Mean and standard deviation of the CS measure for the
εCCDE alone (a larger value is better for the first algorithm) 97

8.2 Mean and standard deviation of the Qc measure for the εCCDE
alone (a larger value is better for the first algorithm) 98

8.3 Mean and standard deviation of the CS measure for the
εCCDE+D (a larger value is better for the first algorithm) . . 106

8.4 Mean and standard deviation of the Qc measure for the εCCDE+D
(a larger value is better for the first algorithm) 107

9.1 Ranges adopted for the experiments 112
9.2 Mean and standard deviation of the GD measure for the in-

corporation of preferences through ranges (a smaller value
is better) . 112

9.3 Vectors of goals adopted for the experiments 119
9.4 Mean and standard deviation of the GD measure for the

incorporation of preferences through a vector of goals (a
smaller value is better) . 122

A.1 Group membership for the 200-bar plane truss from prob-
lem G15. 140

List of Algorithms

1 Evolutionary programming 9
2 Evolution strategies . 10
3 Genetic algorithm . 11
4 Cultural algorithm . 15
5 Differential evolution (DE/rand/1/bin version) 17
6 Cultural algorithm with evolutionary programming 29
7 Cultured differential evolution 36
8 ε-constraint with CDE . 86
9 Evolutionary algorithm for disperssion 88

xxi

xxii List of Algorithms

1
Introduction

Evolutionary Algorithms are a very important class of optimization meta-
heuristics, popular because of its innovative concepts, and its good results
in many problems. Another important characteristic of evolutionary al-
gorithms is the flexibility to be applied in a wide range of problems, with
little or no changes at all within the algorithm (except for the objective
function). However, as the range of applications increases, it increases
also the need for improving the convergence rates of the algorithm, even
sacrificing the flexibility of the algorithm.

Some authors have proposed the use of domain information to im-
prove the performance of the algorithms, obtaining very encouraging re-
sults. Some other researchers have proposed that the use of domain in-
formation is one of the alternatives to circumvent the limitations of the
no free lunch theorem [176]. The strategies to add domain information to
an evolutionary algorithm can be diverse. There exist proposals to add
information during the evaluation, during the application of evolutionay
operators, or during the selection mechanism, among others.

A particular strategy to add domain information to an evolutionary
algorithm is the use of cultural algorithms. This class of algorithms are
inspired in the cultural evolution of some social species, paricularly hu-
mans, which use their ability to and share their knowledge to perform a
faster adaptation to their environment. In cultural algorithms, the infor-
mation is acquired by the individuals (solution trials) generated during
the search process, and such information is share by the entire popula-

1

2 Introduction

tion (group of current solutions), in order to modify its characteristics for
a better adaptation (fitness, or solution quality).

In order to explore the capabilities of cultural algorithms, two partic-
ular classes of problems are tacked in this thesis work. They are the con-
strained single-objective optimization, and multiobjective optimization.

Constrained optimization is a class within global optimization prob-
lems, whose feasible region is restricted for a group of constraints. Solu-
tions that are infeasible, cannot be considered valid. These problems are
very common in some disciplines, as well as in practical situations which
involve optimization tasks. Because of that reason, these problems have
been tacked with many methods, including mathematical programming
as well as metaheuristics.

Multiobjective optimization is a generalization of global optimization
problems, where two or more objective functions are allowed. The objec-
tive functions are often in conflict, and thus a single optimum for all the
objective functions is not possible.

In both cases, the current research has been obtained very good re-
sults, and now one of the main concerns is to improve the convergence
capabilities of the algorithms, reducing the number of objective function
evaluations needed to obtain good results, or alternatively to provide bet-
ter approximations of the global optima for the most challenging problems
existing in the standard benchmarks. As stated previously, cultural algo-
rithms are a promising alternative when such goal is pursued.

In this thesis work, we try to validate the hypotesis of performance
improvement of cultural algorithms, for the specific cases of constrained
optimization and multiobjective optimization.

For the case of constrained optimization, a cultural algorithm will be
developed with the aim of increasing the convergence rates (more pre-
cisely, of decreasing the total number of objective function evaluations
needed to obtain an approximation of the global optimum) when com-
pared with other state-of-the-art algorithms, obtaining similar quality re-
sults.

For the case of multiobjective optimization, a hybrid algorithm of the
previous proposal with a mathematical programming method will be de-
veloped. In this case, we pretend to exploit the characteristics of a fast
approximation to the global optimum, together with a method which re-
quires several constrained single-objective optimizations. If the
constrained single-objective approach performs a good approximation, the

3

entire method will be able to well approximate the solution to the multiob-
jective problem, even in cases when other approaches that produce multi-
ple points at a time (as most evolutionary approaches) present difficulties.

The rest of the document is organized as follows:
In Chapter 2 are presented the basic concepts about optimization and

evolutionary computation, including the main paradigms within this area;
and the techniques in which this work is based.

Chapter 3 includes a brief review of the state-of-the-art in evolution-
ary approaches developed to solve constrained optimization problems. A
special emphasis is made for the approaches based on cultural algorithms,
and on differential evolution, because the relevance they have in this work.

In Chapter 4, the new approach for constrained optimization is pre-
sented, detailing its main mechanisms.

Chapter 5 contains the results obtained by our approach presented in
the previous chapter, and a comparison with other approaches.

Chapter 6 includes a brief review of the state-of-the-art in evolutionary
approaches developed to solve multiobjective optimization problems.

In Chapter 7 is presented the hybridization of a mathematical program-
ming method with our approach for constrained optimization, in order
to solve multiobjective problems. An additional mechanism is also intro-
duced with the aim of reducing the overall objective function evaluations.

In Chapter 8 are contained the results of our approach presented in
the previous chapter, for experiments performed with and without the ad-
ditional mechanism. In both cases, the results are compared with other
approach.

In Chapter 9 is introduced a methodology to incorporate preferences
of the decision maker into our proposed technique. The results of some
experiments are also included.

Finally, Chapter 10 includes our conclusion and some ideas of future
work in the topics related to this thesis.

4 Introduction

2
Background

2.1 Optimization

Optimization is an area from mathematics that has many applications in
real life. Optimization problems appear constantly in industrial processes,
engineering, finance, and other human activities.

An optimization problem consists of the following elements:

• Decision variables. These are the values that we modify in order to
solve the problem, and are denoted by the vector x = (x1, x2, . . . , xn).
In this thesis, we will only deal with problems in which the decision
variables are real numbers, x ∈ Rn.

• Objective functions. These are m functions of the independent vari-
able x, f(x) = (f1(x), f2(x), . . . , fm(x)), with m ≥ 1. The result of
their evaluations is what we want to optimize (find a minimum or
maximum). In this work we only deal with real valued functions,
fi : Rn 7→ R.
If m = 1, the problem is called a single objective optimization problem.
If m ≥ 2, the problem is a multiobjective optimization problem.

• Constraints. Equalities and/or inequalities containing some or all of
the decision variables, that must be satisfied by a solution, so that

5

6 Background

such solution is considered feasible, and therefore, a valid solution
of the problem.1

A solution is called infeasible if it violates at least one constraint. Otherwise,
it is called feasible.

Given its components, the problem is defined as follows: find the vec-
tor(s) x such that

minimize f(x)
subject to x ∈ S

where S ⊆ Rn is the feasible region defined by the constraints:

gi(x) ≤ 0, i = 1, . . . , `
hj(x) = 0, j = 1, . . . , k

where gi are the ` inequality constraints, and hj are the k equality con-
straints.

In the previous definition, only minimization problems are considered.
If a problem includes an objective function fi to be maximized, then we
can transform the problem into the minimization of −fi, without loss of
generality.

Another common practice is to transform the equality constraints of
the form

hj(x) = 0

into two inequality constraints:

g2j−1(x) ≤ 0

g2j(x) ≥ 0

or into a relaxed form, which facilitates finding feasible solutions:

g2j−1(x) ≤ ε

g2j(x) ≥ −ε

using a small value for ε (0.01 or less).

1This definition includes only hard constraints. There also exist the so called soft con-
straints, that are desirable to fulfill, but not mandatory. If a solution violates one or more
soft constraints, is still considered valid as long as it does not violate any of the hard
constraints. In this thesis, we only deal with hard constraints.

2.2 Evolutionary computation 7

The first optimization problems that were widely studied and solved,
were those of linear programming. Linear programming includes all the
problems in which all the objective functions and constraint functions are
linear. Currently, there exist several methods to solve linear programming
problems, in an efficient and effective manner. For example, the simplex
algorithm [34].

If an objective function and/or a constraint function is nonlinear, then
the problem is nonlinear. For that case, there are also mathematical pro-
gramming methods, but most of them require additional information about
the problem: for example, the first derivative is required for many meth-
ods. This information is not always available for the application we are
dealing with (the objective function may not be differentiable).

For the general case, a method to find the global optimum in polyno-
mial time is unavailable. In order to provide a solution for these types of
problems in practical times, the alternative is to develop metaheuristics,
and try to obtain the best possible performance [143].

With the help of modern digital computers, recent research in non-
linear and combinatorial optimization has been following that direction.
New algorithms are developed to perform a high number of operations,
and a high number of iterations are frequently executed, due to the avail-
ability of faster modern computers. This is done with the aim of improving
the quality of the solutions found at previous iterations.

Currently, there exist several paradigms developed in the area of meta-
heuristics, and each of them with several variants, to solve a variety of
problems. It is worth mentioning simulated annealing [85], and tabu search
[56], as important examples of metaheuristics.

A group of metaheuristics which is currently very popular, is evolu-
tionary computation (mainly genetic algorithms), mainly due to the re-
sults obtained by evolutionary computation methods in a variety prob-
lems, which are sometimes better than those of any other technique previ-
ously adopted to solve such problem.

2.2 Evolutionary computation

Evolutionary computation is based on the ideas of natural selection, and
its application on an artificial environment [50, 57]. Natural selection is
seen as an optimization process [10], in which the individuals of a popu-

8 Background

lation gradually adapt to their environment.
For evolutionary computation algorithms, an individual is a potential

solution to a problem, encoded according to the structure of the algorithm;
and the environment to which the individual belongs is the objective func-
tion(s) and the constraints; such an environment will determine the sur-
vival capability of an individual.

As in natural environments, evolutionary algorithms work with a pop-
ulation, i.e., with several solutions at a time, contrary to other metaheuris-
tics which work with a single solution. This feature gives evolutionary
algorithms the ability to escape from local optima more easily.

During the execution of an evolutionary algorithm, some (mainly prob-
abilistic) variation operators are applied to the population, in order to ob-
tain new solutions, which are preserved or discarded through a selection
mechanism. This process is repeated by a certain number of iterations,
that we call generations. This number of generations can be defined by
the user or obtained by the algorithm itself.

The most common variation operators incorporated into an evolution-
ary algorithm are crossover or recombination, and mutation. Crossover
consists of the combination of two or more individuals (parents), to obtain
one or more new individuals (children). Mutation consists of a (normally
small) alteration of an individual.

Such are the shared features among the three main paradigms of evo-
lutionary computation. A further description of these paradigms is pro-
vided in the following sections.

2.2.1 Evolutionary programming

It was initially proposed by Lawrence J. Fogel [51], with the aim to pro-
duce finite state machines. Later on, David Fogel proposed a version of
evolutionary programming for numeric optimization [49].

The evolutionary programming algorithm is shown in Algorithm 1.
The Initial population P is of size µ. The mutation operator obtains one
child from each individual in the population (µ children are obtained at
each generation, and they conform P ′), and it is based on a random vari-
able with normal distribution. The standard deviation of the random vari-
able can be defined a priori, but there are procedures to self-adapt its value
for each variable.

2.2 Evolutionary computation 9

Algorithm 1: Evolutionary programming
initialize(P = {x1, . . . ,xµ})
evaluate(P)
repeat

for j = 1 to µ do
for i = 1 to n do

x′i,j = N(xi,j, σ)
end for

end for
evaluate(P ′)
P = selection(P ∪ P ′)

until the termination condition is achieved

Crossover is not applied in this case, because evolutionary program-
ming simulates the evolutionary process at the species level, and different
species cannot recombine between them.

Selection is performed through stochastic tournaments, taking into ac-
count the µ parents and the µ children. The operator selects again µ indi-
viduals, which will conform the population for the next generation.

2.2.2 Evolution strategies

Developed by Ingo Rechenberg [142], who first proposed the (1 + 1) evo-
lution strategy (or (1+1)-ES), which works with a single individual. Later
on, appeared the (µ/ρ, λ)-ES and the (µ/ρ + λ)-ES, which adopt a popula-
tion. Usually, if ρ = 2, the letter ρ is omitted from the name.

The algorithm of evolution strategies is shown in Algorithm 2. The
initial population is of size µ, and the recombination operator randomly
selects a set Q of ρ parents to generate each child. A total of λ children
are generated. Then, each child is mutated through a normal distributed
random variable, whose standard deviation can be self-adapted.

If the strategy is a (µ/ρ, λ)-ES, then the selection operator will only con-
sider the λ children to obtain the new generation, while if the strategy is
a (µ/ρ + λ)-ES, then the selection operator will obtain the new generation
from both, parents and children.

The selection operator is deterministic (different from the evolutionary

10 Background

Algorithm 2: Evolution strategies
initialize(P = {x1, . . . ,xµ})
evaluate(P)
repeat

for j = 0 to λ do
Q = sel_parents(ρ, P)
x′j = crossover(Q)

end for
for j = 1 to λ do

for i = 1 to n do
x′i,j = N(x′i,j, σ)

end for
end for
evaluate(P ′)
if Strategy type is comma then

P = selection(P ′)
else if Strategy type is plus then

P = selection(P ∪ P ′)
end if

until the termination condition is achieved

2.2 Evolutionary computation 11

programming operator), and that means that the best µ individuals sur-
vive for the next generation. For that reason, the (µ/ρ+λ)-ES is frequently
called elitist strategy, which means that it never loses the best individual
found.

The mutation operator is based on a normal distributed random vari-
able, as the evolutionary programming operator. There exist several re-
combination operators for the evolution strategies, but this operator is a
secondary one, and is sometimes omitted.

2.2.3 Genetic algorithms

They were proposed by John Holland [66] with the aim to solve machine
learning problems. Genetic algorithms are the most popular paradigm
of evolutionary algorithms, perhaps because of their flexibility to solve a
wide variety of problems.

Algorithm 3: Genetic algorithm
initialize(P = {x1, . . . ,xµ})
evaluate(P)
repeat

Q = sel_parents(P)
P ′ = crossover(Q)
for j = 1 to µ do

x′j = mutation(x′j)
end for
evaluate(P ′)
P = P ′

until the termination condition is achieved

The genetic algorithm is shown in Algorithm 3. In genetic algorithms
is common to encode solutions using binary strings, in opposition to evo-
lution strategies and evolutionary programming, which normally use no
encoding.

However, there exist several proposals for representing solutions in ge-
netic algorithms, as well as a variety of selection, crossover and mutation
operators [2]. Because of this variety of options, we do not detail any of
these operators in Algorithm 3.

12 Background

A singular feature in genetic algorithms is that the crossover and muta-
tion operators are only applied a certain number of times (these are user-
defined parameters). This way, the probability of crossover (generally be-
tween 0.7-1.0) is used to determine if recombination is applied or not; and
the probability of mutation (commonly 0.1 or less) is used for the applica-
tion of the second operator. Considering the typical values used in normal
practice, is evident that crossover is the main operator of genetic algo-
rithms.

2.3 Knowledge incorporation in evolutionary com-
putation

Evolutionary algorithms were initially designed, and vastly applied, to
problems with very large (and possibly accidented) search spaces. Such
search spaces are normally too large (and therefore, untractable) for clas-
sical optimization methods, due to fact that there is no further knowl-
edge about the problem available, or it is too difficult to incorporate such
knowledge into the given method.

When designing a metaheuristic, the developer must choose a com-
promise between flexibility and speed. The techniques that favor speed
are, for example, knowledge-based systems, while on the other hand, the
extreme of flexibility is the exhaustive search.

Most evolutionary computation techniques emphasize flexibility, solv-
ing a wide variety of problems, but adding only a small amount of domain
knowledge: commonly the only knowledge exploited by an evolutionary
algorithm is the one contained in the fitness function [140].

One of the early attempts to add domain knowledge within evolution-
ary algorithms is the approach called EnGENEous, proposed by Powell et
al. [135], in which an expert system works together with a genetic algo-
rithm. Unfortunately, this approach was found to be inefficient for some
applications.

The same authors continued working with the integration of expert
systems and genetic algorithms, for example in the approach called Inter-
digitation [137], in which they also integrate some methods of numerical
optimization in order to better approximate the global optimum of a prob-
lem.

2.4 Cultural algorithms 13

Louis and Rawlins proposed to incorporate domain knowledge into
evolutionary algorithms for solving several design problems (logic circuits
design and design of trusses, among others). First, they added domain
knowledge only in the recombination operators [108, 109]. Later on, they
also incorporated knowledge to the initialization of the population, to the
encoding of solutions, and to the other evolutionary operators [110].

Another example of problem knowledge incorporation are the cultural
algorithms, proposed by Robert Reynolds [146]. These algorithms are a
particular type of evolutionary algorithms, in which the domain knowl-
edge is not encoded a priori to the technique, but is extracted during the
search process itself [146].

2.4 Cultural algorithms

Reynolds developed the cultural algorithms as a complement to the me-
taphor which inspired the evolutionary algorithms (natural selection and
genetic concepts) [146].

The cultural algorithms are based on some sociological and anthropo-
logical theories, which have tried to model the phenomenon called cul-
tural evolution. Such theories propose that the evolution of societies where
culture exists, is slightly more complicated than only genetic evolution,
and it can be seen as a process of inheritance at two levels: the micro-
evolutionary level, which consist on the genetic material inherited by par-
ents to their descendants; and the macro-evolutionary level, which is con-
formed by the knowledge acquired by the individuals through their expe-
riences, that once encoded and stored, is useful for guiding the behavior
of new individuals in a population (not only descendants in a genetic line)
[145, 44].

Culture, then, can be seen as a set of ideological phenomena shared
by a population, that influences the way an individual interprets its ex-
periences and decides its behavior. Culture affects the success and survival
of individuals and groups, leading to evolutionary processes that are every bit as
real and important as those that shape genetic variation [151].

In these models is easy to appreciate the component of the system that
is shared by the population: the knowledge, collected by the members of
a society, but encoded in a way that is potentially accessible for all the
population. Similarly, the individual components of the system are the

14 Background

experiences, and the way they can contribute to the shared knowledge,
for the other individuals to learn them indirectly.

Reynolds adopted this phenomenon of double inheritance, as inspira-
tion to create cultural algorithms [146]. The aim is to increase the conver-
gence or learning rates, and therefore, that the system responds better to a
variety of problems [54].

The components of cultural algorithms are the following:

The population space. As other evolutionary algorithms, this space main-
tains a set of individuals (potential solutions to the problem). Each
individual possesses characteristics independently from other indi-
viduals, and these characteristics define its fitness in the environ-
ment (the problem to solve). Through the generations, individuals
can be replaced by their descendants, obtained by means of the ap-
plication of operators that somehow affect the population.

The belief space. In this space is where the knowledge, acquired by the
individuals through the generations, will be stored. This knowledge
must be accessible to any individual in the population, and can be
used to influence its behavior (modify its characteristics and then
modify its fitness).

A communication protocol is necessary to link both spaces, defining rules
about the type of information that the spaces will interchange (i.e.,
which information will pass from the population space to the belief
space and vice versa).

The main steps of a cultural algorithm are shown in Algorithm 4.
Most of the steps of a cultural algorithm are similar to those of a stan-

dard evolutionary algorithm, and, as it can be seen, the differences are
found on the steps that include the belief space B. We will perform a re-
view of those steps to state the differences.

The third step is the initialization of the belief space. The details of
this procedure depend on the structure of the belief space, and may be
different in each case. In the next chapters is described the initialization of
the belief space for the particular case of the approach proposed here.

In the main loop is the update (also called adjust) function of the belief
space. In this step is when the algorithm incorporates new experiences
to the belief space, from a selected group of individuals. The function

2.4 Cultural algorithms 15

Algorithm 4: Cultural algorithm
initialize(P = {x1, . . . ,xµ})
evaluate(P)
initialize(B)
repeat
update(B, accept(P))
P ′ = influence(operators(P))
evaluate(P ′)
P = selection(P ′)

until the termination condition is achieved

accept selects the individuals of this group, which are chosen from the
population.

On the other hand, the variation operators of the algorithm (such as
the recombination and mutation) are modified by the function influence.
This function introduces a bias for the children resulting from the variation
operators so that they get closer to the desirable behaviors, and farther
away from the undesirable ones, according to the information stored in
the belief space.

The functions accept and influence are the components of the com-
munication protocol, because the information flows through them linking
the population and belief spaces. These interactions are graphically shown
in Figure 2.1 [147].

In [146], Reynolds adopted the population of a genetic algorithm (to-
gether with its operators) as the population space of his proposal, and the
version spaces [119] as the belief space. This cultural algorithm was called
Version Space guided Genetic Algorithm, (VGA), and was applied to solve
some instances of the Boole problem2 [175], with encouraging results.

In the same work, Reynolds tries to show the usefulness of cultural
algorithms with an adaptation of the schema theorem, taking advantage of
the genetic algorithm-based approach previously introduced. The schema
theorem is an expression that bounds the propagation of the best schemes
among the population of a genetic algorithm [67].

This modification indicates that a genetic algorithm, with the addition

2This problem consists of infering the characteristic function for an unknown boolean
multipliexer.

16 Background

Influence

Selection
Performance

Variation

Function

Acceptance

Adjust

Beliefs

Population

Figure 2.1: Spaces of a cultural algorithm

2.5 Differential evolution 17

of a belief space, can improve its performance, increasing its convergence
rates.

In this thesis we investigate this claim of performance improvement, in
another evolutionary algorithm. Also, we designed the new cultural ap-
proach to be applied in problems scarcely tackled with cultural techniques,
such as the constrained optimization problems. Finally, we hybridize a
cultural algorithm with a mathematical programming technique, to solve
the multiobjective optimization problems.

2.5 Differential evolution

Differential evolution is a recently developed evolutionary algorithm orig-
inally proposed by Price and Storn [138], whose main design emphasis is
real parameter optimization. Differential evolution is based on a mutation
operator, which adds an amount obtained by the difference of two indi-
viduals randomly chosen from the current population, in contrast with
most evolutionary algorithms, in which mutation is performed through a
random variable.

Algorithm 5: Differential evolution (DE/rand/1/bin version)
initialize(P = {x1, . . . ,xµ})
evaluate(P)
repeat

for j = 0 to µ do
Let r1, r2 and r3 be three random integers in [1, µ], with r1 6= r2 6= r3

Let irand be a random integer in (1, n)
for i = 1 to n do

x′i,j =

{
xi,r3 + F ∗ (xi,r1 − xi,r2) if U(0, 1) < CR or i = irand

xi,j otherwise
end for
evaluate(x′j)
if isbetter(x′j,xj) then

xj = x′j
end if

end for
until the termination condition is achieved

18 Background

The basic algorithm of differential evolution is shown in Algorithm 5;
F and CR are parameters given by the user, and U(a, b) is a realization of
a uniformly distributed random variable between a and b. The function
isbetter(xa,xb) returns true if xa is better than xb, considering a given
criterion (commonly, the value of the objective function).

The algorithm’s main component is the variation operator, which con-
sists of a weighted difference of the decision variables of two random indi-
viduals, added to the same variable of a third randomly chosen individual.
This operator is applied with a probability of CR (similarly to the proba-
bility of crossover of a genetic algorithm, user defined), but it is applied at
least once for each individual (this is controlled by the parameter irand in
Algorithm 5).

Another important part of differential evolution is the selection oper-
ator, which performs the selection progressively during the generation
of children, making only local comparisons. The function isbetter is
adopted to test the condition for replacement of the parent xj for the child
x′j . These local comparisons make the algorithm more efficient, avoiding
the need of sorting or ranking the population.

The authors of the differential evolution algorithm have suggested that
by computing the difference between two individuals randomly chosen
from the population, the algorithm is actually estimating the gradient in
that zone (rather than in a point). This approach also constitutes a rather
efficient way to self-adapt the mutation operator (as a matter of fact, the
differential evolution algorithm is also capable of self-adapting both the
step sizes and the step direction, since they both depend of the current so-
lutions in the population). Furthermore, when adopting CR = 1, the vari-
ation operator is rotationally invariant [138], which means that the differ-
ential evolution algorithm supports self-adaptation at the same level that
an evolution strategy with covariance matrices to self-adapt its standard
deviations (this is the most complete self-adaptation scheme available in
evolution strategies [159]).

The version of differential evolution shown in Algorithm 5, is called
DE/rand/1/bin, and is recommended to be the first choice when trying
to apply differential evolution to any given problem [138]. That is the rea-
son why we adopted it for the work reported here. However, there are
some other versions of the differential evolution algorithm, and the modi-
fications made here to the variation operator may have certain similarities
with some of those versions, as we will note later on.

3
Constraint-Handling Techniques used with
Evolutionary Algorithms

In this chapter, we will first briefly review the constraint handling tech-
niques adopted in evolutionary computation in general. Then, we will re-
view the constrained optimization proposals for cultural algorithms and
for differential evolution, which are the techniques on which this work is
based.

3.1 Constraint-handling techniques

3.1.1 Penalty functions

Historically, the most common way to deal with constrained optimization
problems in evolutionary computation has been, the penalty functions.
Such approach consist on modifying the objective function, adding or sub-
stracting it a penalty term, whose magnitude depends on the amount of
constraints violation. This way, the constrained problem is transformed
into an unconstrained one.

Penalty approaches can be classified into two categories: interior penal-
ties and exterior penalties [139].

• Interior penalties. They are designed to perform the search only inside
the feasible region. The function penalizes in a small amount the

19

20 Constraint-Handling Techniques used with Evolutionary Algorithms

solution that are far from the frontier of the feasible region, and the
penalty increases as the solution gets nearer to the frontier.

• Exterior penalties. The search can start from the infeasible region, and
the penalty decreases as the solution approaches the feasible region.

Interior penalties are not very common in evolutionary computation,
mainly because they have an important disadvantage: they require a start-
ing feasible solution. For that reason, we only analyze exterior penalties.

The modified objective function for its use with exterior penalties ap-
proaches is the following:

φ(x) = f(x)±
(

n∑
i=1

riGi(gi(x)) +

p∑
j=1

cjHj(hj(x))

)

where φ is the new objective function, Gi is a function for each inequality
constraint gi, Hj is a function for each equality constraint hj , and ri and cj

are the penalty factors for each constraint.
In [21], the author enumerates the most common functions adopted for

Gi and Hj :

Gi(gi(x)) = max(0, gi(x))β

Hj(hj(x)) = |hj(x)|γ

where the exponents β and γ are commonly 1 or 2 (β, γ ∈ {1, 2}).
Richardson et al. [149] studied the way the penalty functions must be

designed, searching for the most important issues to take into account.
From their work, we found the following conclusions:

1. The penalty functions that depend on the distance to the feasible re-
gion, have a better performance than those that only depend on the
number of violated constraints.

2. In problems with a small number of constraints and a small feasible
region, penalty functions that depend only on the number of violated
constraints, probably will not find feasible points.

3. Good penalty functions must consider the maximum completion cost
and the expected completion cost (completion cost is related to the
distance to the feasible region).

3.1 Constraint-handling techniques 21

4. Good penalty functions must be close to the expected completion
cost, but not fall often below it. Otherwise, it is possible that no
feasible solutions will be found.

It is possible to classify the penalty functions according to the informa-
tion that they use to adapt their value in time. The first type are the static
penalty functions, which maintain their level of penalty constant during
all the execution. These functions often require further parameters (as the
penalty factors) that are dependent of the problem we are dealing with.

On the other hand, the penalty function can take the number of current
generation as an argument, to adapt its value; if that is the case, then the
penalty function is dynamic. This type of functions regularly start the evo-
lutionary process with a low penalty, to diversify the search; but they in-
crease the penalty level during the search, to conclude with a high penalty,
in order to obtain a feasible solution. Kazarlis and Petridis [82] performed
a series of experiments on dynamic penalty functions, and they concluded
that the quadratic functions perform better than others.

A special case of dynamic functions are those based on simulated an-
nealing (e.g., [113]), which increment their level of penalty through the
evolutionary process according to a cooling schedule.

Dynamic penalty functions have the same problems of the static penalty
functions, since both require parameters that are problem dependent.

The last type of penalty functions are the adaptive functions, in which
the level of penalty adapts according to the situations of the current popu-
lation. Some examples of adaptive penalty function approaches are [4, 59],
where the penalty factor is increased if the best individual of the recent
generations was always feasible, it is decreased if such individual was al-
ways infeasible, and remains the same if the best individual was some-
times feasible and sometimes infeasible.

It is worth mentioning three more penalty approaches, that don’t fit
well into any of the above classifications. The first is the coevolutionary
penalty of Coello Coello [20], where two populations are maintained: one
with individuals encoding the decision variables of the problem; and the
other that encodes the penalty factors. This way, the solutions of the prob-
lem and the penalty factors are evolved at the same time. In this algorithm,
the penalty function depends on both the number of violated constraints,
and on the amount of constraints violation.

The second approach is the segregated genetic algorithm of Le Riche

22 Constraint-Handling Techniques used with Evolutionary Algorithms

et al. [150]. In this algorithm, the authors propose the use of two penalty
factors per each constraint, one high and one low, in two populations that
interact with each other. The aim of the use of two penalty factors is to
provide both strong and weak penalties.

Finally, the adaptive segregational constraint-handling evolutionary
algorithm (ASCHEA) by Hamida and Schoenauer [64], is based on three
components: (1) an adaptive penalty function, (2) a constraint-driven re-
combination, and (3) a segregational selection based on feasibility. In AS-
CHEA’s most recent version [64], the authors propose to use a penalty
factor for each constraint of the problem. Also, the authors added a nich-
ing mechanism [40] to improve the performance of the algorithm in mul-
timodal functions. Finally, the authors added a dynamic and an adap-
tive scheme to decrease the tolerance value used in the transformation of
equality constraints into two inequality constraints. The approach is based
on an evolution strategy with standard arithmetical recombination.

The rest of the review of constraint handling techniques is divided ac-
cording to the classification from [21].

3.1.2 Special representations and operators
Some problems may appear particularly difficult for evolutionary algo-
rithms with normal representations. In such cases, it may be useful to
design a special representation for the problem at hand, and, if necessary,
a set of special operators to work with such representation.

Davis [36], for example, introduces several special representations and
operators to deal with hard problems of the real world (robot path gener-
ation, scheduling optimization, synthesis of neural networks and analysis
of DNA).

The random keys, a special representation designed to solve combi-
natorial problems such as the job assignment on parallel machines, were
proposed by Bean [3]. With the use of random keys, it is possible to solve
combinatorial problems with real numbers encoding, because they always
produce feasible solutions, avoiding the need of special operators.

An important example of special operators for this work, is the first
version of GENOCOP [114]. This algorithm was designed to solve con-
strained problems, but only with linear constraints. It starts with at least
one feasible solution, and the operators produce new points that are linear
combinations of the parents. Later on, the authors proposed new versions

3.1 Constraint-handling techniques 23

of GENOCOP, to deal with nonlinear constraints, but they do not fit into
this classification of special operators.

Another proposal with special operators is the constraint consistent ge-
netic algorithm of Kowalczyk [88]. The operators, as well as a mechanism
to initialize the population, are used to keep the solutions consistent with
respect to the constraints. However, such mechanisms are very expensive,
computationally speaking.

Schoenauer and Michalewicz [157] developed some operators to ex-
plore the bounds between the feasible and the infeasible regions. The
oscillation between regions is convenient, because in many problems the
global optimum is found in the boundary of the feasible region. How-
ever, these operators are highly specialized, and must be designed for a
particular problem.

A group of techniques based on special representations are the de-
coders. The decoders consist of a transformation from a feasible solution
to an encoded solution, and the transformation must be designed in such
a way, that any possible solution in the algorithm can be mapped to a
feasible solution. The most relevant decoders-based technique, is the ho-
momorphous mappings (HM) of Koziel and Michalewicz [89, 90]. In this
proposal, the feasible region is mapped into an n-dimensional hypercube,
and is able to work with any type of constraints, convex and nonconvex
feasible regions, and even disjoint regions. The main idea of this approach
is to transform the original problem into another (topologically equiva-
lent) function that is easier to optimize by an evolutionary algorithm. This
approach uses a binary-coded GA with Gray codes, proportional selec-
tion without elitism and traditional crossover and mutation operators. In
the original source, this technique was tested with a test suite proposed
by Michalewicz and Schoenauer [116], which later became the standard
benchmark for evolutionary constrained optimization; in this benchmark,
the homomorphous mappings produced better results than any other evo-
lutionary algorithm, and because of that, the algorithm became a reference
for the constraint handling mechanisms designed for evolutionary algo-
rithms within the next few years after its publication.

3.1.3 Repair algorithms
This type of algorithm has been widely used for combinatorial optimiza-
tion problems, where invalid permutations are repaired in order to be-

24 Constraint-Handling Techniques used with Evolutionary Algorithms

come valid. Moreover, they have shown to be very good performers in
this type of problems [103, 104].

A mechanism of solutions repairing can be found in a more recent ver-
sion of GENOCOP (GENOCOP III [115]). This version works with two
sub-populations: the first one contains the points of the search, and, as in
the original GENOCOP, feasiblity is maintained with respect to the linear
constraints of the problem; the other sub-population keeps some reference
feasible points. Before the evaluation, the points of the first population are
repaired using the points on the second population, in order to make them
feasible with respect to the nonlinear constraints.

3.1.4 Separation of objectives and constraints

Some authors propose to make an explicit separation between objectives
and constraints. For instance, Paredis [129] proposed another coevolution-
ary algorithm with two sub-populations: the first sub-population main-
tains the generated solutions, and the second one contains one individual
for each constraint. The individuals of the second population are evalu-
ated according to the number of individuals on the first population that
violate the constraints it represents.

Superiority of feasible points is another form of separation of objectives
and constraints, and this concept has been applied by several authors. For
example, Powell and Skolnick [136] proposed a method where the feasible
points always have a fitness between −∞ and 1, and the infeasible points
always have a fitness between 1 and +∞.

A similar technique was proposed by Deb [38], where the infeasible
points always have a worst fitness than the feasible ones. This is done by
adding the amount of violation of an individual to the fitness of the worst
feasible individual in the population. Such fitness assignment is made
simpler with the use of binary tournaments, according to the following
rules:

1. If an individual is feasible, and the other is infeasible, the feasible
one always wins.

2. If both individuals are feasible, the winner is the one with a better
value of the objective function.

3.1 Constraint-handling techniques 25

3. If both individuals are infeasible, the winner is the one with a lower
amount of constraints violation.

This approach does not need any extra parameter for the constraint han-
dling mechanism, but it requires niching [40] to maintain diversity. From
here, we will refer to this technique as TS, because its key feature is its
tournament selection mechanism.

Hinterding and Michalewicz proposed a method with mate restrictions
[65]. Before the recombination, the parents are chosen in such a way that
they complement each other. The first parent is chosen considering only
its objective function value and its feasibility, while the second is chosen
seeking for the minimum of satisfied constraints shared with the first par-
ent. This mechanism was designed with the aim to produce better de-
scendants, recombining complementary parents according to the violated
constraints.

Another technique which makes a separation of objectives and con-
straints, is the extension made by Schoenauer and Xanthakis [158] to the
approach called behavioral memory, to make it able to handle problems
with constraints. This technique performs one optimization phase per
constraint, optimizing the constraint itself; later on, and assuming that the
previous phases produced enough feasible solutions in the population, the
approach proceeds to the optimization of the objective function. This ap-
proach is normally very sensitive to the order in which the constraints are
optimized.

The use of multiobjective concepts for constrained optimization is part
of this category. The original constraints of the problem can be seen as
objectives, where we try to minimize the violation. Such objectives can
be added to the original set of objective functions, and a multiobjective
approach can be applied then.

The first example of these techniques is the COMOGA by Surry et
al. [167, 166], which adopts the multiobjective approach called VEGA
[156] and Pareto ranking. Parmee and Purchase [131] also apply VEGA
in a real world problem. Camponogara and Talukdar [11] transform the
constrained optimization problem into a bi-objective problem, where the
first objective is the original one, and the second is the sum of violations.
Jiménez and Verdegay [78] use the min-max method, together with selec-
tion rules very similar to the rules of Deb [38] previously mentioned.

An approach based on sub-population, similar to VEGA, was proposed

26 Constraint-Handling Techniques used with Evolutionary Algorithms

by Coello Coello [19]. In each sub-population the objective is to mini-
mize the violation of one constraint. In a further approach [18], the au-
thor proposes the use of Pareto ranking to minimize violations, and, at the
same time, optimize the objective function. Coello Coello and Mezura-
Montes [22] proposed another approach based on multiobjective concepts,
in which the selection mechanism consists on tournaments based on dom-
inance.

Ray et al. [141] proposed a technique in which the ranking takes place
considering the objective function value and the violation of constraints
of the individuals. In addition to this ranking, the approach performs a
mechanism of complement of constraints, similar to the approach of Hin-
terding and Michalewicz [65].

Runarsson and Yao proposed the technique called stochastic ranking
(SR) [153], in which the aim is to balance the influence of the objective
function and the penalty function when assigning fitness to a solution. SR
does not require the definition of a penalty factor. Instead, a user-defined
parameter called Pf sets the probability of using only the objective func-
tion to compare two solutions to sort them. The selection process is based
on a ranking process. Then, when the solutions are sorted using a bubble
sort-like algorithm, sometimes, depending of the Pf value, the comparison
between two adjacent solutions will be performed using only the objective
function. This algorithm is based on an evolution strategy with global in-
termediate recombination, applied only to the strategy parameters (not to
the decision variables of the problem). For the validation of this approach,
the authors adopted the test suite of Michalewicz and Schoenauer [116],
and the results were equal or better than those of the homomorphous map-
pings [90], requiring a lower computational cost. Because of the excellent
results that this approach produces, stochastic ranking became another
reference point when comparing evolutionary algorithms for constrained
optimization.

3.1.5 Hybrid methods
Hybrid methods are those with two or more different algorithms for op-
timization. They can be mathematical programming methods or meta-
heuristics.

One example of hybridization with a mathematical programming
method is the approach of Adeli and Cheng [1]. They couple a genetic

3.1 Constraint-handling techniques 27

algorithm with the method of the augmented lagrangian for a penalty
function. Kim and Myung [84, 121] proposed an approach of two phases,
where the first phase is based on Lagrangian penalties.

The CORE (Constrained Optimization by Random Evolution) approach
[6] adopts the Nelder-Mead simplex method [122] for optimization with-
out constraints, together with random evolutionary search to minimize
the violation of constraints.

A fuzzy logic hybrid was proposed by Van Le [102], where the original
constraints are replaced by fuzzy constraints, defined in the same work. The
search engine of this approach is evolutionary programming [51].

The artificial immune system has been also used for constrained op-
timization. The immune systems have a population of antigens, and an-
other population of antibodies. While the antigens are undesirable agents,
the antibodies are agents which adapt themselves, in order to obtain a re-
semblance to the antigens, which are then able to neutralize them. The
first proposal to handle constraints with an artificial immune system, was
made by Hajela and Lee [60, 61], where the antigens were a set of feasible
individuals, and a genetic algorithm is used to do the actual optimization
(the artificial immune system is only used to move solutions towards the
feasible region). The expression strategies [63] are a refinement of the pre-
vious proposal based on an artificial immune system. Coello Coello and
Cruz Cortés [17] proposed improvements to Hajela and Lee’s proposal,
both in a serial and a parallel implementation. Another version of an artifi-
cial immune system for constrained optimization which is not hybridized
with any other metaheuristic, was proposed by Cruz Cortés et al. in [32].

Bilchev and Parmee [8, 9] proposed an ant colony optimization-based
approach for constrained optimization. The ant colony algorithm [42] was
inspired by the behavior of ants while searching for food. This approach
for handling constraints defines some sources of food as unacceptable,
when they violate constraints.

Another metaheuristic that has become very popular for constrained
optimization, is particle swarm optimization [83], which is inspired on the
movements of a group of animals, like birds or fish. An early approach
based on particle swarm is the one reported in [133], which uses a dynamic
penalty function. Hu el al. [69] also proposed an approach for constrained
optimization. Toscano-Pulido and Coello Coello [169] proposed a particle
swarm algorithm with turbulence (a mutation-like operator); the technique
performs comparisons between particles through a set of rules, similar

28 Constraint-Handling Techniques used with Evolutionary Algorithms

to those of [38], in order to choose the best particles of the swarm. The
approach of Muñoz-Zavala et al. [123] adopts a set of rules very similar to
the previous approach, but implements perturbation (an operator similar
to the one used by the differential evolution algorithm).

3.2 Cultural algorithms in constrained and Real-
Valued optimization problems

Cultural algorithms are considered hybrid methods, but in this thesis will
be described in a separate section because of their relevance for this work.

Reynolds et al. [148] and Chung and Reynolds [15] have explored the
use of cultural algorithms for global optimization with very encouraging
results. The first approach is a modification of the GENOCOP approach
[114] to incorporate it a belief space, but the technique only deals with
linear constraints, as the original GENOCOP. The second approach is an
evolutionary programming-based algorithm, with the same belief space
adopted for GENOCOP.

The belief space of these approaches is based on the interval-schemata of
Eshelman and Schaffer [46]. The belief space represents varying numerical
intervals, one for each decision variable. In this case, those intervals are
adapted to reflect the feasible region of the problem, with the information
acquired by the individuals of previous generations. At the beginning,
the intervals represent the whole search space, but they are tightened to
represent the known feasible region. With this structure as the belief space,
only convex feasible regions can be represented.

Although the belief space is similar for those approaches, the influence
function must be different for each population space, due to the fact that
each of them has its own variation operators:

• As we said before, GENOCOP’s crossover operator is a linear com-
bination of the parents. Now, one of the parents must be inside the
intervals stored in the belief space. Mutation operators are also mod-
ified, in order to move the individuals nearer to the region defined
by the belief space.

• Because evolutionary programming only performs mutation, this op-
erator was modified to generate new individuals nearer to the region

3.2 Cultural algorithms in constrained and Real-Valued optimization problems 29

defined by the belief space, and then spread along these intervals.
Besides mutation, a repair operator was also implemented, to trans-
form infeasible solutions into feasible ones.

3.2.1 CAEP

Based on their previous work, Chung and Reynolds [16] use evolutionary
programming with a mutation operator influenced by the best individ-
ual found so far, and the intervals where good solutions have been found.
They call their approach CAEP, or Cultural Algorithms with Evolution-
ary Programming. They follow their work with evolutionary program-
ming, probably because of the low computation cost it presented when
compared to the genetic algorithm of GENOCOP [15].

The pseudo code of a CAEP is shown in Algorithm 6 [14]. The selection
mechanism is the same adopted in the standard evolutionary program-
ming, conformed by stochastic tournaments.

Algorithm 6: Cultural algorithm with evolutionary programming
initialize(P = {x1, . . . ,xµ})
evaluate(P)
initialize(B)
repeat

for j = 1 to µ do
for i = 1 to n do

x′i,j = mutation(xi,j, influence(B))
end for

end for
evaluate(P ′)
P = selection(P ∪ P ′)
update(B, accept(P))

until the termination condition is achieved

A component of the belief space, based on the interval-schemata, was
called normative knowledge, because it states the norms that most of the
individuals must follow (to be socially accepted, according to the cultural
evolution model).

30 Constraint-Handling Techniques used with Evolutionary Algorithms

Besides normative knowledge, another knowledge source was added
to the belief space of the CAEP, and that is the situational knowledge, which
stores the best individual(s) found so far. This source presents the best in-
dividuals as leaders to follow. The name is because this knowledge source
represents the specific situation of the best individuals, which is attractive
to others.

Chung performed experiments with a CAEP with situational knowl-
edge, with normative knowledge, or with both sources [14]. However,
Chung’s approaches are designed for unconstrained optimization.

Jin and Reynolds [79] proposed a CAEP for constrained optimization.
Their main addition is an n-dimensional regional-based schema, called
belief-cell (renamed later as topographical knowledge), as an explicit mecha-
nism that supports the acquisition, storage and integration of knowledge
about nonlinear constraints in a cultural algorithm.

The cells are labeled, based on the points generated within them, as fea-
sible, infeasible or semifeasible. The idea of this approach is to build a map
of the search space which is used to derive rules about how to guide the
search of the CAEP (avoiding infeasible regions and promoting the explo-
ration of feasible and semi-feasible regions). As the cells are independent,
this map is able to represent non-convex, or even disjoint feasible regions.

Besides the topographical knowledge, the authors only adopted the
normative knowledge (they removed the situational source).

Later on, Jin and Reynolds adopted the previously proposed algorithm
for applications in data mining [80]. In this new version, the idea of using
a data structure for the topographical knowledge appears, because a static
set of cells involves a heavy memory usage. As indicated before, this work
focuses on data mining applications, and not on constrained optimization.

Using the same population space (evolutionary programming), Saleem
and Reynolds proposed a cultural algorithm for dealing with dynamic
environments [154], which adds two more ways to incorporate domain
knowledge to CAEPs, in addition to the existing proposals by Chung and
Jin. These knowledge sources are history knowledge and domain knowl-
edge, and are designed to extract patterns in environmental changes. The
history knowledge extracts patterns in the changes of optima’s location,
when environment changes occur, in order to predict new changes. The
domain knowledge is specialized information about the problem at hand;
for example, Saleem adopts the cones world [120], and knowledge about
the fitness landscape is encoded in this source. The domain knowledge

3.2 Cultural algorithms in constrained and Real-Valued optimization problems 31

source is somewhat difficult to implement when dealing with a broad class
of problems.

Using as a basis the work of Jin and Reynolds, a CAEP for constrained
optimization was developed in [26, 23], where a spatial data structure is
incorporated to store the map of the feasible region (topographical knowl-
edge), and also new rules are used in several phases of the algorithm. This
approach is the immediate antecedent, and the main motivation for this
thesis work.

3.2.2 Other search engines for cultural algorithms

In [73, 72], Iacoban et al. change the evolutionary programming algorithm
of the population space for a particle swarm optimizer [83], with the aim
to enhance convergence. They make an analysis of the effects of the belief
space over the evolutionary process, showing the similarities with CAEP,
and identifying the phases of the search process with the help of the belief
space.

Peng and Reynolds returned to evolutionary programming in [134], to
perform an analysis similar to the one from [73], about the roles of the
knowledge sources. Both works were developed for unconstrained opti-
mization.

Another approach based on particle swarm was developed in [43], this
time using only normative knowledge. The authors also explored a cul-
tured version of the gaussian particle swarm optimization (a modification
to the uniform distributions commonly applied in particle swarm opti-
mization).

These examples show the necessity to explore new search engines for
the population space in cultural algorithms, in order to improve their re-
sults. In this work we use, for the first time, differential evolution in a
cultural algorithm. Note however that differential evolution has been ap-
plied to contrained optimizaton several times in the past, as we will see in
the following section.

32 Constraint-Handling Techniques used with Evolutionary Algorithms

3.3 Differential evolution in constrained optimiza-
tion

The number of approaches based on differential evolution that have been
proposed for constrained optimization has considerably increased in the
last few years. We will review next the most representative of them.

One of the original developers of differential evolution, Storn, pro-
posed constraint adaptation [165], in which all the constraints of the prob-
lem at hand are relaxed, so that all the individuals in the initial popula-
tion become feasible. The constraints are reduced toward their original
versions at each generation, but the individuals must always remain fea-
sible (i.e., different relaxations are applied at each generation). The author
says that this approach is not suitable for handling equality constraints,
and one of its main applications is constraint satisfaction (where only con-
straint violation is important, and there is no objective function).

Another constraint handling technique is the one proposed by
Lampinen [94] (we will refer to this technique as DE). He states some rules
for the replacement made during the selection procedure, that can be sum-
marized as follows:

• If both individuals are feasible, the one with a better value of the
objective function always wins.

• If the newly generated individual is feasible, as his parent is infeasi-
ble, the new individual is used for the next generation.

• If both individuals are infeasible, the parent is replaced if the new
individual has lower or equal violation for all the constraints (this
comparison is made in the Pareto sense in the constraint violation
space).

These rules are very similar to those of Deb’s approach TS [38], but the
main difference between them is the comparison for the case of two in-
feasible individuals: while Lampinen makes a comparison in the Pareto
sense, Deb sums all the constraint violations and compares a single value.

The rest of the differential evolution algorithm remains the same. The
experiments are done with 10 of the 11 test functions proposed in [90].
Some previous versions of this algorithm appeared in [93, 92], where the

3.3 Differential evolution in constrained optimization 33

replacement rules were not as complete as in [94], and less test problems
were taken into account.

Simultaneously to Lampinen, Lin et al. [105] proposed the use of an
augmented Lagrangian function to guide the search, with a newly devel-
oped method to update the multipliers. In a first phase, the multipliers are
constant and the problem is minimized. During a second phase, the mul-
tipliers are updated and the algorithm tries to maximize the dual function.
Lin et al. [105] called their approach hybrid differential evolution, because
they add some new steps to the original algorithm. Such steps are acceler-
ation and migration, and are used when the current population has either
too much or no diversity.

Mezura-Montes et al. [112, 111] have experimented with the genera-
tion of several children per parent, which compete among them to define
the one that will survive in a local tournament. They also propose a diver-
sity mechanism which gives infeasible point some probability to survive.

34 Constraint-Handling Techniques used with Evolutionary Algorithms

4
Proposed Approach for Constrained Optimization

In this chapter we will describe the approach proposed in this thesis for
solving constrained optimization problems.

Our proposed approach uses differential evolution in the population
space. In previous work, we performed some experiments with a CAEP
[22], but our results although encouraging at first, could not be improved
in spite of our efforts. While looking for a more robust search engine
for our cultural algorithm, we came across differential evolution, which
is a heuristic that is specifically designed for global optimization of real-
valued functions, and it presents a highly competitive performance in un-
constrained problems even without a careful fine-tuning (as normally re-
quired by other evolutionary algorithms) [164]. After performing some
preliminaty experiments, it became evident that differential evolution was
a much better choice for the purposes of this thesis, and thus we decided
to adopt it as our search engine.

A pseudocode of our proposed approach (called cultured differential
evolution, or CDE) is shown in Algorithm 7.

In the initial steps of the algorithm, a population of µ individuals is cre-
ated, as well as a belief space. For the offspring generation, the variation
operator of the differential evolution algorithm is influenced by the belief
space.

35

36 Proposed Approach for Constrained Optimization

Algorithm 7: Cultured differential evolution
Generate initial population
Evaluate initial population
Initialize the belief space
repeat

for each individual in the population do
Apply the variation operator influenced by a randomly chosen
knowledge source
Evaluate the child generated
Replace the individual with the child, if the child is better

end for
Update the belief space with the accepted individuals

until the termination condition is achieved

4.1 Constraint-handling mechanism

Since we want to solve constrained optimization problems, the objective
function by itself does not provide enough information as to guide the
search properly. To determine if a child is better than its parent, and, there-
fore, it can replace it, we use the following rules in a binary tournament
selection scheme:

1. A feasible individual is always better than an infeasible one.

2. If both are feasible, the individual with the best objective function
value is better.

3. If both are infeasible, the individual with less amount of constraint
violation is better.

The amount of constraint violation is measured with normalized constraints,
adopting the following expression:

viol(x) =
1

`

∑̀

k=1

gk(x)

max(gk)

where gk(x) is the k-th of ` constraints of the problem, and max(gk) is the
largest violation of the constraint gk found so far.

4.2 The belief space 37

These tournament rules were based on other works reported in the spe-
cialized literature ([94, 38]). When comparing infeasible individuals, the
proposed approach is more similar to Deb’s approach, since Lampinen’s
approach makes the comparison of constraint violations in the Pareto sense.
However, the above expression describes the normalization of the con-
straints; this is done in order to allow a fair comparison among constraint
values, regardless of the units in which each constraint is expressed1. Such
a normalization was not adopted in Deb’s approach. Also, our approach
does not use niching to maintain diversity, as in Deb’s proposal [38].

A shared feature of the three approaches is the fact that the evaluation
of the objective function is only needed when comparing two feasible indi-
viduals, as can be seen from the tournament rules above. This reduces the
amount of CPU time required when solving highly constrained problems.

The rest of the algorithm, described below, is rather different from the
previous approaches.

4.2 The belief space

In our CDE, the belief space is divided into four knowledge sources. Each
knowledge source helps in different stages of the optimization process,
and for different problems. They are described next.

4.2.1 Situational knowledge

The situational knowledge consists of the best exemplar eall found along
the evolutionary process. It represents a leader for the other individuals
to follow, and gives the algorithm the stronger component of exploitation.
This knowlegde source is useful mainly during the final stages of the op-
timization process, when the algorithm refines the current solution.

Initialization

To initialize the situational knowledge, it is necessary to have an initial
population, so that we can find the best individual and store it.

1This sort of situation about the units of different functions is called "the incommen-
surability problem".

38 Proposed Approach for Constrained Optimization

Influence

The variation operators of differential evolution are influenced in the fol-
lowing way:

x
′
i,j = ei,all + F (xi,r1 − xi,r2)

where ei,all is the i-th component of the individual stored in the situational
knowledge. This operator uses the leader instead of a randomly chosen
individual for the recombination. This has the effect of pushing the newly
generated individuals closer to the best point found.

This way of influencing the variation operator was previously pro-
posed in a variant of the differential evolution algorithm [164], and is
called DE/best/1/bin (the rest of the mechanisms are the same as in the
DE/rand/1/bin variant; indeed, the word “rand” or “best” indicates if the
individual r3 is chosen at random or is the best of the population,). The
difference with that previous proposal is that we use several modifications
of the variation operator, and not only one.

Update

The update of the situational knowledge is done by replacing the stored
individual, e, by the best individual found in the current population, xbest,
only if xbest is better than eall.

eall =

{
xbest if xbest is better than eall

eall otherwise

4.2.2 Normative knowledge

The normative knowledge contains the intervals for the decision variables
where good solutions have been found, in order to move new solutions to-
wards those intervals. This knowledge source also exploits some regions,
but the mechanism is not so aggressive as the one of situational knowl-
edge. In some sense, it also explores, but only the region of good solutions
(which is the whole search space at the begining of the algorithm execu-
tion).

The normative knowledge has the structure shown in Figure 4.1.
In Figure 4.1, li and ui are the lower and upper bounds, respectively,

for the i-th decision variable, and Li and Ui are the values of the fitness

4.2 The belief space 39

l1 u1 l2 u2 · · · ln un

L1 U1 L2 U2 · · · Ln Un

dm1 dm2 . . . dmn

Figure 4.1: Structure of the normative knowledge

function associated with that bound. Also, the normative knowledge in-
cludes a scaling factor, dmi, to influence the mutation operator adopted in
differential evolution.

Initialization

To initialize the normative knowledge, all the bounds are set to the inter-
vals given as input data of the problem. Li and Ui are set to +∞, assuming
a minimization problem, and dmi = ui − li, for i = 1, 2, . . . , n, to have a
null influence at the first generation.

Influence

The following expression shows the influence of the normative knowledge
on the variation operators:

x
′
i,j =





xi,r3 + F |xi,r1 − xi,r2| if xi,r3 < li
xi,r3 − F |xi,r1 − xi,r2| if xi,r3 > ui

xi,r3 + F
(

ui−li
dmi

)
(xi,r1 − xi,r2) otherwise

We introduce the scaling factor ui−li
dmi

for the mutation to be proportional
to the interval of the normative knowledge for the i-th decision variable.
This scaling factor is adopted to spread the solutions within all the promis-
ing intervals, which introduces some exploration (only on the stored inter-
vals). This mechanism of scaling the differential operator can be seen as a
way to self-adapt the value of the parameter F of the differential evolution
algorithm.

40 Proposed Approach for Constrained Optimization

Update

The update of the normative knowledge is as follows: let A =
{a1, . . . , aaccepted} be the set of indices of the accepted individuals in the
population, and

amini ∈ A | xi,amini
= min(xi,a1 , . . . , xi,aaccepted

)

and

amaxi ∈ A | xi,amaxi
= max(xi,a1 , . . . , xi,aaccepted

)

be the indices of the individuals with minimum and maximum values,
respectively, for the parameter i. These minumum and maximum values
are obtained only among the accepted individuals. Then, the intervals are
updated using the following expressions:

li =

{
xi,amini

if xi,amini
< li ∨ f(xamini

) < Li

li otherwise

ui =

{
xi,amini

if xi,amini
> ui ∨ f(xamini

) < Ui

ui otherwise

In words, the update will reduce or expand the intervals stored on nor-
mative knowledge. An expansion takes place when the accepted individ-
uals do not fit in the current interval, while a reduction occurs when all
the accepted individuals lie inside the current interval, and the extreme
values have a better fitness and are feasible.

If the values of li or ui are updated, the same must be done with Li or
Ui.

The dmi values are updated with the greatest difference |xi,r1 − xi,r2|
found during the application of the variation operators at the previous
generation.

4.2.3 Topographical knowledge
The usefulness of the topographical knowledge is to create a map of the
problem fitness landscape during the evolutionary process. It also iden-
tifies good regions, but they can be disjoint and spread throughout the
entire search space.

4.2 The belief space 41

It consists of a set of cells, and the best individual found on each cell.
The topographical knowledge, also, has an ordered list of the best b cells,
based on the fitness value of the best individual on each of them. For
the sake of a more efficient memory management, in the presence of high
dimensionality (i.e., too many decision variables), we use an spatial data
structure, called k-d tree, or k-dimensional binary tree [7]. In k-d trees,
each node can only have two children (or none, if it is a leaf node), and
represents a division in half for any of the k dimensions. In Figure 4.2,
we show an example of a k-d tree representing a two-dimensional space;
every no-leaf node represents a region that is divided in half, while leaf
nodes represent a not divided region.

Initialization

To initialize the topographical knowledge, we only create the root node,
which represents the entire search space, and contains the best solution
found in the initial population.

Influence

The influence function tries to move the children to any of the b cells in the
list:

x
′
i,j =





xi,r3 + F |xi,r1 − xi,r2| if xi,r3 < li.c
xi,r3 − F |xi,r1 − xi,r2| if xi,r3 > ui,c

xi,r3 + F (xi,r1 − xi,r2) otherwise

where li,c and ui,c are the lower and upper bounds of the cell c for the
parameter i, such cell is randomly chosen from the list of the b best cells.

Update

The update function splits a node if a better solution is found in that cell,
and if the tree has not reached its maximum depth (defined as an input
parameter of the approach). The dimension in which the division is done,
is the one that has a greater difference between the solution stored and
the new reference solution (i.e., the new solution considered as the “best”
found so far).

42 Proposed Approach for Constrained Optimization

LIH N

GFB

J

K

E M O

CA

D

(a) Space represented

A

H I K L N OMJ

ED F G

B C

(b) Corresponding tree

Figure 4.2: Example of the partition of a two-dimensional space by a k-d
tree

4.2 The belief space 43

e1 e2 · · · ew

ds1 ds2 · · · dsn

dr1 dr2 · · · drn

Figure 4.3: Structure of the history knowledge

4.2.4 History knowledge

This knowledge source was originally proposed for dynamic objective
functions, and it was used to find patterns in the environmental changes
[154]. History knowledge records in a list, the location of the best indi-
vidual found before each environmental change. That list has a maximum
size w.

The structure of the history knowledge is shown in Figure 4.3, where
ej is the best individual found before the j-th environmental change, dsi is
the average distance of the changes for parameter i, and dri is the average
direction if there are changes for parameter i. In our approach, instead of
detecting changes of the environment, we store a solution if it remains as
the best one during the last p generations. If this happens, we assume that
we are trapped in a local optimum. Thus, this knowledge source is helpful
to escape from local optima, and has a limited ability to predict new local
(and possibly global) optima. We also use this mechanism to introduce
diversity to the search, as it can be seen from its influence described next.

Initialization

The initialization of this knowledge source consists of an empty list of pre-
vious local optima. The dsi values are set to dmi, and the dri values are
randomly set to 1 or -1; these values are chosen with the aim of making its
influence more similar to the standard neutral operator.

44 Proposed Approach for Constrained Optimization

Influence

The expression of the influence function of the history knowledge is the
following:

x
′
i,j =





ei,1 + F · dri · |xi,r1 − xi,r2| if U(0, 1) < α
ei,1 + dsi

dmi
· (xi,r1 − xi,r2) if U(0, 1) < β

U(lbi, ubi) otherwise

where ei,1 is the i-th decision variable of the previous best e1 stored in the
list of the history knowledge; dmi is the maximum difference for the i-
th variable, stored in the normative knowledge; lbi and ubi are the lower
and upper bounds of the i-th variable of the problem, given as input; and
U(a, b) is a realization of a random variable with uniform distribution be-
tween a and b.

The first part of the equation changes the direction of the operator,
while the second part changes its magnitude. The third part is for diver-
sity addition to the algorithm.

Update

To update the history knowledge, we add to the list any local optima
found during the evolutionary process. If the list has reached its maxi-
mum length w, the oldest element is discarded. The average distances and
directions of change are calculated by:

dsi =

∑w−1
j=1 |ei,j+1 − ei,j|

w − 1

dri = sgn

(
w−1∑
j=1

sgn (ei,j+1 − ei,j)

)

where the function sgn returns the sign of its argument. Through these
expresions, we obtain the average changes of magnitude and direction,
respectively, of each parameter for the previous local optima.

4.3 Acceptance function

The number of individuals accepted for the update of the belief space is
computed according the design of a dynamic acceptance function pro-

4.4 Main influence function 45

posed by Saleem [154]. The number of accepted individuals decreases as
the generation number increases.

Saleem [154] suggests to reset the number of accepted individuals when
an environmental change occurs. In our case, we reset the number of ac-
cepted individuals when the best solution has not changed in the last p
generations.

We obtain the number of accepted individuals, |A|, with the following
expression:

|A| =
⌊
µpaccept +

µ(1− paccept)

g

⌋

where paccept is a parameter given by the user, within the range (0, 1];
Saleem [154] suggests using 0.2, noticing the parallelism of this paramenter
with the 1/5 success rule of Rechenberg. g is the generation counter, but is
reset to 1 when the best solution has not changed in the last p generations.

4.4 Main influence function

The main influence function is responsible for choosing the knowledge
source to be applied to the variation operator of differential evolution. At
the beginning, all the knowledge sources have the same probability to be
applied, rks = 1

4
, because there are 4 knowledge sources; but during the

evolutionary process, the probability of the knowledge source ks to be
applied is:

rks = 0.1 + 0.6
vks

v

where vks is the number of times that an individual generated by the knowl-
edge source ks outperforms its parent in the current generation, and v
is the number of times that an individual generated (by any knowledge
source) outperforms its parent in the current generation. The lower bound
of rks is set arbitrarily to 0.1, to ensure that any knowledge source has
always a probability greater than 0 to be applied. If v = 0 during a gener-
ation, then rks = 1

4
, as in the beginning.

Such are the main mechanisms of the technique. Preliminary stages of
this algorithm were published in [96, 95]. The final version described here
was published in [98], and a journal version was published in [97].

46 Proposed Approach for Constrained Optimization

4.5 Parameters of the technique

The proposed approach has several parameters that the user must set by
hand in order to successfully use the algorithm. The following is a list of
all the parameters and some suggestions about their settings.

• Population size, µ, is the number of individuals in the population. A
value as small as 10 gives good results in “easy” (i.e., with few de-
cision variables and constraints easy to satisfy) problems. However,
in general, we recommend to adopt a population size of 100. Larger
sizes may be adopted, but such values are recommended only for
very hard problems if one can afford the extra computational cost.

• Maximum number of generations, gmax. Is the number of iterations
that the algorithm will run. This parameter, together with the pop-
ulation size, defines the number of fitness function evaluations that
the approach will perform. For easy problems, one may start with
100 or 200 generations. Then, if necessary, this value can get in-
creased until no improvement in the results is obtained. In general,
and based on our own experience, we suggest to set this parameter
to 1,000.

• F and CR are the parameters of differential evolution. These pa-
rameters can be set following the suggestions in [138]. Good default
values are F = 0.5 and CR = 1.

• Maximum depth of the k-d tree. The larger this value, the more accu-
rate the map generated by the topographical knowledge source will
be, but more memory will be needed. If m is this maximum depth,
the tree can have up to 2m − 1 nodes. This parameter depends of
the free memory available in the device in which the algorithm will
run. With a maximum depth of 12, the algorithm can have up to 4095
nodes, which is a manageable value for most current computers. So,
we suggest to set this parameter to 12.

• The length b of the best cells list is the number of independent cells
that will be considered for the topographical knowledge. We sug-
gest to adopt a number of independent cells equal to the number of
decision variables of the problem.

4.5 Parameters of the technique 47

• The size of the list in the history knowledge, w, is the number of
previous local optima that will be considered when looking for the
next one. This parameter has little influence on the performance of
the algorithm when the distribution of the local optima is not regular
in the problem. We recommend to set this parameter to 5.

• α and β have little influence on performance, and can be fixed to 0.4
or 0.45.

• paccept is the percentage of accepted individuals at the end of the evo-
lutionary process. Saleem [154] suggests using 0.2, which is the value
that we adopted. However, this value must be increased if the algo-
rithm exhibits premature convergence.

48 Proposed Approach for Constrained Optimization

5
Results for the Constrained Optimization
Approach

5.1 Standard problems

To validate our approach, we adopted the well-known benchmark origi-
nally proposed in [116] and extended in [153] which has been often used
in the literature to validate new evolutionary constraint-handling tech-
niques. It contains several problems with different characteristicis: large
and small fesible regions, linear and non linear objective functions, linear
and non linear constraints, equality and inequality constraints, etc.

The expressions of the 13 test problems are presented in Appendix A.

5.1.1 Comparison of results

The parameters used by our approach are the following: µ = 100, gmax =
1000, the factors of differential evolution are F = 0.5 and CR = 1, maxi-
mum depth of the k-d tree = 12, length of the best cells list b = 10, the size
of the list in the history knowledge w = 5, α = β = 0.45, and paccept = 0.2.
These parameters were empirically derived after numerous experiments.
This parameter setting was found to be a good compromise for all the test
functions; optimal settings for each problem may exist, but they are not re-
ported here. It is worth noticing that we did not spend too much effort in
performing a very thorough parameters fine-tuning, since we found that

49

50 Results for the Constrained Optimization Approach

our approach was relatively robust. However, it is expected that a better
performance (even if only marginal in some cases) may be obtained with
different settings. For each test function, we performed 30 independent
runs. The results for the 13 problems are shown in Table 5.1.

We compare our approach to five state-of-the-art approaches: the Ho-
momorphous Mappings (HM) [90], Stochastic Ranking (SR) [153], the Adap-
tive Segregational Constraint Handling Evolutionary Algorithm (ASCHEA)
[64], a Constraint Handling Method for Genetic Algorithms (TS) [38], and
a Constraint Handling Approach for Differential Evolution (DE) [94]. All
these approaches were briefly described in Chapter 3.

The best results obtained by each approach are shown in Table 5.2. The
mean values provided are compared in Table 5.3 and the worst results are
presented in Table 5.4. The results provided by these approaches were
taken from the original references for each method.

The results of HM were obtained with 1,400,000 evaluations of the fit-
ness function, the results of SR required 350,000 evaluations, and the re-
sults of the ASCHEA technique were obtained with 1,500,000 evaluations
of the fitness function. The results reported for TS and DE required a vari-
able number of fitness function evaluations and used different parameter
settings for each problem. TS required from 250,050 to 350,100 function
evaluations (in the original source, the number of evaluations and maxi-
mum generations for the problem g01 are missing), and DE required from
10,000 to 12,000,000 function evaluations. Our approach required 100,100
evaluations in all the test problems adopted.

The best result obtained by CDE in problem g01 is shown in Table 5.5.
The cultured differential evolution, SR and DE reached the optimum value
in all the 30 runs performed. TS reached the optimum in its best and me-
dian case, ASCHEA reached the optimum only in its best case, and HM
could not reach the optimum.

For the problem g02, SR has a lower variability than the cultured dif-
ferential evolution. However, our approach can get the optimum value in
some of the runs, and HM, SR and ASCHEA were unable to do it. The best
value obtained is shown in Table 5.6.

In g03, the best result obtained by the cultured differential evolution
is shown in Table 5.7, which is very close to the global optimum. SR and
DE are clear winners in this problem, because they were able to reach the
optimum in all the runs reported. HM and ASCHEA also had a better
performance than the cultured differential evolution in this problem.

5.1 Standard problems 51

R
es

ul
ts

of
th

e
cu

lt
ur

ed
di

ff
er

en
ti

al
ev

ol
ut

io
n

al
go

ri
th

m
Pr

ob
le

m
O

pt
im

al
B

es
t

M
ea

n
W

or
st

St
.D

ev
.

g0
1

-1
5

-1
5.

00
00

00
-1

4.
99

99
96

-1
4.

99
99

93
0.

00
00

02
g0

2
0.

80
36

19
0.

80
36

19
0.

72
48

86
0.

59
09

08
0.

07
01

25
g0

3
1

0.
99

54
13

0.
78

86
35

0.
63

99
20

0.
11

52
14

g0
4

-3
06

65
.5

39
-3

06
65

.5
38

67
2

-3
06

65
.5

38
67

2
-3

06
65

.5
38

67
2

0.
00

00
00

g0
5

51
26

.4
98

1
51

26
.5

70
92

3
52

07
.4

10
65

1
53

27
.3

90
49

7
69

.2
25

79
6

g0
6

-6
96

1.
81

38
-6

96
1.

81
38

76
-6

96
1.

81
38

76
-6

96
1.

81
38

76
0.

00
00

00
g0

7
24

.3
06

20
91

24
.3

06
20

9
24

.3
06

21
0

24
.3

06
21

2
0.

00
00

01
g0

8
0.

09
58

25
0.

09
58

25
0.

09
58

25
0.

09
58

25
0.

00
00

00
g0

9
68

0.
63

00
57

3
68

0.
63

00
57

68
0.

63
00

57
68

0.
63

00
57

0.
00

00
00

g1
0

70
49

.2
5

70
49

.2
48

05
8

70
49

.2
48

26
6

70
49

.2
48

48
0

0.
00

01
67

g1
1

0.
75

0.
74

99
00

0.
75

79
95

0.
79

64
55

0.
01

71
38

g1
2

1
1.

00
00

00
1.

00
00

00
1.

00
00

00
0.

00
00

00
g1

3
0.

05
39

49
8

0.
05

61
80

0.
28

83
24

0.
39

21
00

0.
16

70
95

Table 5.1: Results obtained by our cultured differential evolution (CDE)
approach

52 Results for the Constrained Optimization Approach

B
es

tR
es

ul
ts

of
th

e
co

m
pa

re
d

te
ch

ni
qu

es

Pr
ob

le
m

O
pt

im
al

C
D

E
H

M
SR

A
SC

H
EA

T
S

D
E

g0
1

−1
5

−1
5
.0

0
0
0
0
0

−1
4
.7

8
6
4

−1
5
.0

0
0

−1
5
.0

−1
5
.0

0
0

−1
5
.0

0
0

g0
2

0
.8

0
3
6
1
9

0
.8

0
3
6
1
9

0
.7

9
9
5
3

0
.8

0
3
5
1
5

0
.7

8
5

N
A

N
A

g0
3

1
0
.9

9
5
4
1
3

0
.9

9
9
7

1
.0

0
0

1
.0

N
A

1
.0

2
5
2

g0
4

−3
0
6
6
5
.5

3
9

−3
0
6
6
5
.5

3
8
6
7
2

−3
0
6
6
4
.5

−3
0
6
6
5
.5

3
9

−3
0
6
6
5
.5

−3
0
6
6
5
.5

3
7

N
A

g0
5

5
1
2
6
.4

9
8

5
1
2
6
.5

7
0
9
2
3

−
5
1
2
6
.4

9
7

5
1
2
6
.5

N
A

5
1
2
6
.4

8
4

g0
6

−6
9
6
1
.8

1
4

−6
9
6
1
.8

1
3
8
7
6

−6
9
5
2
.1

−6
9
6
1
.8

1
4

−6
9
6
1
.8

1
N

A
−6

9
6
1
.8

1
4

g0
7

2
4
.3

0
6

2
4
.3

0
6
2
0
9

2
4
.6

2
0

2
4
.3

0
7

2
4
.3

3
2
3

2
4
.3

7
2
4
8

2
4
.3

0
6

g0
8

0
.0

9
5
8
2
5

0
.0

9
5
8
2
5

0
.0

9
5
8
2
5
0

0
.0

9
5
8
2
5

0
.0

9
5
8
2
5

N
A

0
.0

9
5
8
2
5

g0
9

6
8
0
.6

3
6
8
0
.6

3
0
0
5
7

6
8
0
.9

1
6
8
0
.6

3
0

6
8
0
.6

3
0

6
8
0
.6

3
4
4
6
0

6
8
0
.6

3
0

g1
0

7
0
4
9
.2

5
7
0
4
9
.2

4
8
0
5
8

7
1
4
7
.9

7
0
5
4
.3

1
6

7
0
6
1
.1

3
7
0
6
0
.2

2
1

7
0
4
9
.2

4
8

g1
1

0
.7

5
0
.7

4
9
9
0
0

0
.7

5
0
.7

5
0

0
.7

5
N

A
0
.7

4
9
0
0

g1
2

1
.0

0
1
.0

0
0
0
0
0

0
.9

9
9
9
9
9

1
.0

0
0
0
0
0

N
A

N
A

N
A

g1
3

0
.0

5
3
9
5
0

0
.0

5
6
1
8
0

N
A

0
.0

5
3
9
5
7

N
A

0
.0

5
3
9
5
0

N
A

Table 5.2: Comparison of the best results of CDE with respect to HM [90],
SR [153], ASCHEA [64], TS [38], and DE [94]. “-” means no feasible solu-
tions were found. NA = Not Available. A result in boldface means that
our approach obtained the same or a better value than any other of the
techniques.

5.1 Standard problems 53

M
ea

n
R

es
ul

ts
of

th
e

co
m

pa
re

d
te

ch
ni

qu
es

Pr
ob

le
m

O
pt

im
al

C
D

E
H

M
SR

A
SC

H
EA

T
S

D
E

g0
1

−1
5

−1
4
.9

9
9
9
9
6

−1
4
.7

0
8
2

−1
5
.0

0
0

−1
4
.8

4
−1

5
.0

0
0

−1
5
.0

0
0

g0
2

0
.8

0
3
6
1
9

0
.7

2
4
8
8
6

0
.7

9
6
7
1

0
.7

8
1
9
7
5

0
.5

9
N

A
N

A

g0
3

1
0
.7

8
8
6
3
5

0
.9

9
8
9

1
.0

0
0

0
.9

9
9
8
9

N
A

1
.0

2
5
2

g0
4

−3
0
6
6
5
.5

3
9

−3
0
6
6
5
.5

3
8
6
7
2

−3
0
6
5
5
.3

−3
0
6
6
5
.5

3
9

−3
0
6
6
5
.5

−3
0
6
6
5
.5

3
5

N
A

g0
5

5
1
2
6
.4

9
8

5
2
0
7
.4

1
0
6
5
1

−
5
1
2
8
.8

8
1

5
1
4
1
.6

5
N

A
5
1
2
6
.4

8
4

g0
6

−6
9
6
1
.8

1
4

−6
9
6
1
.8

1
3
8
7
6

−6
3
4
2
.6

−6
8
7
5
.9

4
0

−6
9
6
1
.8

1
N

A
−6

9
6
1
.8

1
4

g0
7

2
4
.3

0
6

2
4
.3

0
6
2
1
0

2
4
.8

2
6

2
4
.3

7
4

2
4
.6

6
2
4
.4

0
9
4
0

2
4
.3

0
6

g0
8

0
.0

9
5
8
2
5

0
.0

9
5
8
2
5

0
.0

8
9
1
5
6
8

0
.0

9
5
8
2
5

0
.0

9
5
8
2
5

N
A

0
.0

9
5
8
2
5

g0
9

6
8
0
.6

3
6
8
0
.6

3
0
0
5
7

6
8
1
.1

6
6
8
0
.6

5
6

6
8
0
.6

4
1

6
8
0
.6

4
1
7
2
4

6
8
0
.6

3
0

g1
0

7
0
4
9
.2

5
7
0
4
9
.2

4
8
2
6
6

8
1
6
3
.6

7
5
5
9
.1

9
2

7
1
9
3
.1

1
7
2
2
0
.0

2
6

7
0
4
9
.2

4
8

g1
1

0
.7

5
0
.7

5
7
9
9
5

0
.7

5
0
.7

5
0

0
.7

5
N

A
0
.7

4
9
0
0

g1
2

1
.0

0
1
.0

0
0
0
0
0

0
.9

9
9
1
3
4

1
.0

0
0
0
0
0

N
A

N
A

N
A

g1
3

0
.0

5
3
9
5
0

0
.2

8
8
3
2
4

N
A

0
.0

6
7
5
4
3

N
A

0
.2

4
1
2
8
9

N
A

Table 5.3: Comparison of the mean results of CDE with respect to HM
[90], SR [153], ASCHEA [64], TS [38], and DE [94]. “-” means no feasible
solutions were found. NA = Not Available. A result in boldface means
that our approach obtained the same or a better value than any other of
the techniques.

54 Results for the Constrained Optimization Approach

W
or

st
R

es
ul

ts
of

th
e

co
m

pa
re

d
te

ch
ni

qu
es

Pr
ob

le
m

O
pt

im
al

C
D

E
H

M
SR

A
SC

H
EA

T
S

D
E

g0
1

−1
5

−1
4
.9

9
9
9
9
3

−1
4
.6

1
5
4

−1
5
.0

0
0

N
A

−1
3
.0

0
0

−1
5
.0

0
0

g0
2

0
.8

0
3
6
1
9

0
.5

9
0
9
0
8

0
.7

9
1
1
9

0
.7

2
6
2
8
8

N
A

N
A

N
A

g0
3

1
0
.6

3
9
9
2
0

0
.9

9
7
8

1
.0

0
0

N
A

N
A

1
.0

2
5
2

g0
4

−3
0
6
6
5
.5

3
9

−3
0
6
6
5
.5

3
8
6
7
2

−3
0
6
4
5
.9

−3
0
6
6
5
.5

3
9

N
A

−2
9
8
4
6
.6

5
4

N
A

g0
5

5
1
2
6
.4

9
8

5
3
2
7
.3

9
0
4
9
7

−
5
1
4
2
.4

7
2

N
A

N
A

5
1
2
6
.4

8
4

g0
6

−6
9
6
1
.8

1
4

−6
9
6
1
.8

1
3
8
7
6

−5
4
7
3
.9

−6
3
5
0
.2

6
2

N
A

N
A

−6
9
6
1
.8

1
4

g0
7

2
4
.3

0
6

2
4
.3

0
6
2
1
2

2
5
.0

6
9

2
4
.6

4
2

N
A

2
5
.0

7
5
3
0

2
4
.3

0
7

g0
8

0
.0

9
5
8
2
5

0
.0

9
5
8
2
5

0
.0

2
9
1
4
3
8

0
.0

9
5
8
2
5

N
A

N
A

0
.0

9
5
8
2
5

g0
9

6
8
0
.6

3
6
8
0
.6

3
0
0
5
7

6
8
3
.1

8
6
8
0
.7

6
3

N
A

6
8
0
.6

5
0
8
7
9

6
8
0
.6

3
0

g1
0

7
0
4
9
.2

5
7
0
4
9
.2

4
8
4
8
0

9
6
5
9
.3

8
8
3
5
.6

5
5

N
A

1
0
2
3
0
.8

3
4

7
0
4
9
.2

4
8

g1
1

0
.7

5
0
.7

9
6
4
5
5

0
.7

5
0
.7

5
0

N
A

N
A

0
.7

4
9
0
0

g1
2

1
.0

0
1
.0

0
0
0
0
0

0
.9

9
1
9
5
0

1
.0

0
0
0
0
0

N
A

N
A

N
A

g1
3

0
.0

5
3
9
5
0

0
.3

9
2
1
0
0

N
A

0
.2

1
6
9
1
5

N
A

0
.5

0
7
7
6
1

N
A

Table 5.4: Comparison of the worst results of CDE with respect to HM
[90], SR [153], ASCHEA [64], TS [38], and DE [94]. “-” means no feasible
solutions were found. NA = Not Available. A result in boldface means
that our approach obtained the same or a better value than any other of
the techniques.

5.1 Standard problems 55

Design variable Value
f −15.000000
x1 1.000000
x2 1.000000
x3 1.000000
x4 1.000000
x5 1.000000
x6 1.000000
x7 1.000000
x8 1.000000
x9 1.000000
x10 3.000000
x11 3.000000
x12 3.000000
x13 1.000000
g1 0.000000
g2 0.000000
g3 0.000000
g4 −5.000000
g5 −5.000000
g6 −5.000000
g7 0.000000
g8 0.000000
g9 0.000000

Table 5.5: Best result obtained by CDE for g01

56 Results for the Constrained Optimization Approach

Design variable Value
f −0.803619
x1 3.162681
x2 3.128106
x3 3.095032
x4 3.061492
x5 3.028413
x6 2.994410
x7 2.957990
x8 2.921746
x9 0.495094
x10 0.488762
x11 0.481956
x12 0.476491
x13 0.472845
x14 0.465291
x15 0.461291
x16 0.457043
x17 0.452091
x18 0.448045
x19 0.444050
x20 0.440310
g1 0.000000
g2 −120.066861

Table 5.6: Best result obtained by CDE for g02

5.1 Standard problems 57

Design variable Value
f 0.995413
x1 0.304887
x2 0.329917
x3 0.319260
x4 0.328069
x5 0.326023
x6 0.302707
x7 0.305104
x8 0.315312
x9 0.322047
x10 0.309009
g1 0.000991

Table 5.7: Best result obtained by CDE for g03

The best result obtained for the function g04 is shown in Table 5.8. This
problem is “easy” to solve for all the techniques, which present a simi-
lar behavior obtaining a value very close to the optimum in all the runs.
The results for DE show a slightly different version of this problem, and
therefore cannot be included in this comparison.

g05 is the problem in which the cultured differential evolution exhibits
its highest variability of results, even when its best value is very close to
the optimum (see Table 5.9). SR, ASCHEA and DE also obtained a best
value very close to the optimum, but their variability is lower. HM was
not able to find any feasible solution for this problem.

In Table 5.10 is shown the best result obtained for the cultured differen-
tial evolution in g06. In this problem, our approach shows a performance
which is clearly better than that of HM and SR in terms of consistency to
reach the optimum. Both had a large variability of results when solving
this problem. ASCHEA and DE reported a mean (and worst in the case of
DE) result very close to the optimum, as is the case of the cultured differ-
ential evolution.

The best result obtained by our approach in g07 is shown in Table 5.11.
The cultured differential evolution exhibits a great robustness in this prob-
lem, reaching a value very close to the optimum in all the runs. The best

58 Results for the Constrained Optimization Approach

Design variable Value
f −30665.538672
x1 78.000000
x2 33.000000
x3 29.995256
x4 45.000000
x5 36.775813
g1 0.000000
g2 −92.000000
g3 −11.159500
g4 −8.840500
g5 −5.000000
g6 −0.000000

Table 5.8: Best result obtained by CDE for g04

Design variable Value
f 5126.570923
x1 683.926335
x2 1021.814124
x3 0.116038
x4 −0.397581
g1 −0.036381
g2 −1.063619
g3 0.000803
g4 0.000419
g5 0.000980

Table 5.9: Best result obtained by CDE for g05

5.1 Standard problems 59

Design variable Value
f −6961.813876
x1 14.095000
x2 0.842961
g1 0.000000
g2 −0.000002

Table 5.10: Best result obtained by CDE for g06

value obtained for any of the other techniques (except DE), is worse than
the worst result produced by the cultured differential evolution. Only DE
can also reach the optimum, but exhibits a slightly larger variability (as
can be seen in the worst case).

The cultured differential evolution approach obtained its best result
shown in Table 5.12 for problem g08. This problem seems easy to solve
for the techniques analyzed here, because all the techniques reached the
optimum in almost all the runs, except HM, which exhibits a poor perfor-
mance in this problem.

In problem g09, the best result obtained is shown in Table 5.13. SR
and ASCHEA were able to reach the optimum in their best cases, while
the algorithm proposed here and DE obtained the optimum in all the runs
performed, being more robust.

In g10, the best result obtained by the cultured differential evolution is
shown in Table 5.14. Again, our cultured differential evolution approach
and DE obtained a value very close to the optimum in all the runs per-
formed, being clear winners. However, DE required 270,000 function eval-
uations for this particular problem. All the other techniques exhibited a
very high variability of results in this problem, and were not able to reach
the optimum in their best cases.

The best result obtained for the function g11 is shown in Table 5.15. In
this case, all the approaches analyzed here reached the optimum in their
best cases. However, HM, SR, ASCHEA and DE were more robust in this
problem, showing a low variability of results.

The best result obtained by our approach in g12 is shown in Table 5.16.
This problem is another example of similar performance of SR and the cul-
tured differential evolution, because they both could reach the optimum

60 Results for the Constrained Optimization Approach

Design variable Value
f 24.306209
x1 2.171982
x2 2.363717
x3 8.773931
x4 5.095984
x5 0.990654
x6 1.430557
x7 1.321617
x8 9.828704
x9 8.280092
x10 8.376018
g1 −0.000002
g2 0.000000
g3 0.000000
g4 0.000000
g5 −0.000010
g6 −0.000002
g7 −6.148630
g8 −50.024352

Table 5.11: Best result obtained by CDE for g07

Design variable Value
f 0.095825
x1 1.227971
x2 4.245373
g1 −1.737460
g2 −0.167763

Table 5.12: Best result obtained by CDE for g08

5.1 Standard problems 61

Design variable Value
f 680.630057
x1 2.330499
x2 1.951372
x3 −0.477541
x4 4.365726
x5 −0.624487
x6 1.038131
x7 1.594227
g1 −0.000045
g2 −252.561724
g3 −144.878190
g4 −0.000008

Table 5.13: Best result obtained by CDE for g09

Design variable Value
f 7049.248058
x1 579.380244
x2 1359.992748
x3 5109.875066
x4 182.023843
x5 295.604998
x6 217.976157
x7 286.418844
x8 395.604998
g1 0.000000
g2 0.000000
g3 0.000000
g4 0.000000
g5 −0.000537
g6 −0.001600

Table 5.14: Best result obtained by CDE for g10

62 Results for the Constrained Optimization Approach

Design variable Value
f 0.749900
x1 0.707036
x2 0.500000
g1 0.000100

Table 5.15: Best result obtained by CDE for g11

Design variable Value
f 1.000000
x1 5.000000
x2 5.000000
x3 5.000000
g1 −0.062500

Table 5.16: Best result obtained by CDE for g12

in practically all the runs performed.
Finally, in Table 5.17 is the best result obtained for the cultured differ-

ential evolution in g13. SR was more robust than our approach in this
problem, and its best result was slightly better than ours.

In short, SR and DE are the most competitive constraint handling tech-
niques compared here. However, our approach reached the global opti-
mum in ten problems, while SR and DE did it in nine (DE was only tested
in nine problems). Also, in most cases, the cultured differential evolu-
tion was more robust than SR, showing a very low standard deviation,
while performing less than one third of its total number of fitness func-
tion evaluations. Finally, it is worth noticing that our approach used the
same number of function evaluations and parameters for all the test func-
tions, while DE got its parameters tuned for each problem, and requires a
variable number of fitness function evaluations.

5.1.2 Statistical analysis

In order to determine the robustness of the approach proposed here, we
performed a statistical analysis to obtain the confidence intervals of the

5.1 Standard problems 63

Design variable Value
f 0.056180
x1 −1.648857
x2 1.515826
x3 1.949583
x4 0.753371
x5 0.784312
g1 0.000045
g2 0.000839
g3 0.000161

Table 5.17: Best result obtained by CDE for g13

mean statistic, for the 13 problems of the benchmark.
First, we need to identify the problems where at least two different so-

lutions were provided in the 30 test runs performed. During the runs we
performed, our approach always reached the optimum value in problems
g04, g06, g08, g09 and g12. This means that we can have enough confi-
dence that the algorithm will reach the optimum in these test problems.
Thus, no statistical analysis will be done for them.

For the rest of the problems, we performed an Anderson-Darling good-
ness of fit test [163], which is a modification of the Kolmogorov-Smirnov
test [160], for using informaton of a specific distribution when calculat-
ing critical values. We used a version of the Anderson-Darling test for the
normal distribution.

The motivation for adopting this test is to ensure that the results of
the algorithm do not have a normal distribution (alternative hypothesis).
If the results come from a normal distribution (null hypothesis), we can
easily obtain confidence intervals through a very simple expression. As it
was expected, in every case, the data did not fit a normal distribution.

An alternative to obtain confidence intervals from unknown distribu-
tions is the bootstrap technique [160]. To obtain a bootstrap distribution
for a statistic, we make “resamples” from the original sample, of the same
size, choosing values at random with replacement. From each resample,
we obtain the statistic of interest (the mean in this case), and construct a
new sample with those values.

64 Results for the Constrained Optimization Approach

5170 5180 5190 5200 5210 5220 5230 5240 5250

0

50

100

150

200

Mean Results of Resamples for g05

histogram y

Figure 5.1: Bootstrap distribution for the mean statistic for problem g05.

In our case, we performed the experiments with 1,000 resamples for
each problem. An example of the bootstrap distributions obtained is shown
in the histogram from Figure 5.1. This histogram corresponds to the prob-
lem g05.

From the bootstrap distributions for each problem, we obtained the
confidence intervals with the appropriate percentiles. The intervals were
obtained with 95% of confidence. These results are sumarized in Table 5.18.

All the bootstrap distributions obtained are very close to the normal
distribution. Actually, the Anderson-Darling test accepts all cases as data
that come from a normal distribution, except in the cases where all the
means are the same or very similar (g01, g07 and g10), and in the case of
g13, because the bootstrap distribution is slightly skewed.

In any case, the bootstrap-percentile technique gives a good estimation
of the confidence intervals. The intervals that we obtained are a good in-
dicator of the robustness of the proposed approach. In five cases (g04, g06,
g08, g09 and g12), the interval (for the precision used here) lies exactly
within the best known solution. In three other cases (g01, g07 and g10),

5.2 Engineering optimization problems 65

Problem Optimal 95% Confidence Interval on the Mean
g01 −15 [-14.999996, -14.999997]
g02 0.803619 [0.701130, 0.749364]
g03 1 [0.749766, 0.827785]
g04 −30665.539 [-30665.538672, -30665.538672]
g05 5126.4981 [5183.8667, 5233.5552]
g06 −6961.8138 [-6961.813876, -6961.813876]
g07 24.3062091 [24.306210, 24.306210]
g08 0.095825 [0.095825, 0.095825]
g09 680.6300573 [680.630057, 680.630057]
g10 7049.25 [7049.2476, 7049.2490]
g11 0.75 [0.752695, 0.764359]
g12 1 [1.000000, 1.000000]
g13 0.0539498 [0.235337, 0.347311]

Table 5.18: Confidence intervals for the mean statistic.

the intervals are very small and very close to the optimum (the difference
is only of one or two decimal places).

5.2 Engineering optimization problems

Additionally to this standard benchmark, we tested our proposed cultured
differential evolution on an engineering optimization problem: design of
trusses. Two different problems related to the design of trusses are tack-
led: the optimization of a 10-bar plane truss and a 200-bar plane truss [5],
minimizing its weight, subject to displacement and stress constraints. The
decision variables are the cross-sectional depth and width of each mem-
ber of the truss. For further descriptions of these problems, please see the
Appendix 3.

5.2.1 Comparison of results

The two engineering optimization problems previously mentioned were
used by Belegundu [5] to evaluate the following numerical optimization
techniques: Feasible directions (CONMIN and OPTDYN), Pshenichny’s

66 Results for the Constrained Optimization Approach

Method CONMIN OPTDYN LINRM GRP-UI SUMT
Weight 4793.0 9436.0 6151.0 5077.0 5070.0
Method M-3 M-4 M-5 CDE
Weight 4898.0 5057.0 5211.0 4656.39

Table 5.19: Results of several methods for the 10-bar plane truss (g14). Our
approach is labeled as CDE

Method CONMIN OPTDYN LINRM GRP-UI SUMT
Weight 34800.0 N/A 33315.0 N/A 27564.0
Method M-3 M-4 M-5 CDE
Weight 26600.0 26654.0 26262.0 20319.58

Table 5.20: Results of several methods for the 200-bar plane truss (g15).
Our approach is labeled as CDE

Recursive Quadratic Programming (LINRM), Gradient Projection (GRP-
UI), Exterior Penalty Function (SUMT), and Multiplier Methods (M-3, M-4
and M-5).

The parameters adopted by our cultured differential evolution approach
are the same used to solve the benchmark. Thus, we performed the same
number of objective function evaluations as before (100,100). For the 10-
bar truss, the best result of the 30 independent runs is shown in Table 5.19,
together with the results of the methods included in [5] (all the results
presented are feasible). For the 200-bar truss, the best result of the 30 in-
dependent runs is shown in Table 5.20, with the results of other methods
reported by Belegundu [5].

The best results of the cultured differential evolution are very compet-
itive. Additionally, such results present a low variability over the 30 runs
performed, as can be appreciated from Table 5.21.

Finally, we noticed that in engineering optimization problems with
large search spaces (such as the two presented in this work), our approach
could improve on the quality of the solutions produced if we allowed
a larger number of fitness function evaluations. Although such increase
may be unaffordable in real-world applications, this is a good indicative
of the effectiveness of our approach, since, if possible, it keeps improv-

5.2 Engineering optimization problems 67

TF Best Mean Worst Std Dev
10-bar truss (g14) 4656.39 4656.52 4656.71 0.18

200-bar truss (g15) 20319.58 25393.37 30269.49 2492.24

Table 5.21: Statistics of the results obtained by our approach for the design
of trusses

ing the solutions produced over time. To briefly illustrate this issue, we
allowed our approach to run for 3500 generations (for a total of 350,100
fitness function evaluations) in the 200-bar truss problem. This setup pro-
duced a solution with a weight of only 15824.32, which is about 28% bet-
ter than the solution reported in Table 5.20. Note however, that the com-
putational effort required to produce this solution (measured in terms of
fitness function evaluations) is over three times the original one.

68 Results for the Constrained Optimization Approach

6
Evolutionary Multiobjective Techniques

In the following chapters, we present an application of the previously de-
veloped cultural algorithm to solve multiobjective problems. In this chap-
ter, we present a brief review of the previous related work in evolutionary
multiobjective algorithms that is relevant to place our proposal in an ap-
propriate context.

6.1 The multiobjective optimization problem

The statement of the multiobjective optimization problem is similar to the
one of optimizing problems with only one objective. The problem consists
of finding the decision vector x that optimizes:

f(x) = (f1(x), f2(x), . . . , fm(x))

where f is the vector of objective functions. The problem may or may not
have constraints.

However, the concept of optimizing several functions simultaneously
is not as simple as to find the optimum for each function considered sepa-
rately, because the functions usually are in conflict with each other. Find-
ing the optimum, then, can be interpreted as finding a good trade-off be-
tween all the objectives of the problem.

Thus, the notion of optimum in a multiobjective problem is ambiguous,
since different people could claim that different points represent a good

69

70 Evolutionary Multiobjective Techniques

trade-off, but this does not necessarily imply that such points are optimal.
Vilfredo Pareto [130] introduced, towards the end of the 19th century, a
more formal definition of optimality in multiobjective problems, which is
known now as Pareto optimality. This definition is based on the concept
of dominance, which is the following: a point x dominates another point
y if and only if

fi(x) ≤ fi(y)

for i = 1, 2, . . . ,m, and, for at least one i:

fi(x) < fi(y)

A point x∗ is Pareto optimal, if there does not exist any other point x
that dominates it. That is to say, x∗ is Pareto optimal if there does not exist
any other point x that fulfills:

fi(x) ≤ fi(x
∗)

for i = 1, 2, . . . ,m, and, for at least one i:

fi(x) < fi(x
∗)

The previous definitions hold if the problem consists of minimizing all
the objectives.

From the above definition we can see that a given problem not neces-
sarily has a single Pareto optimal point. If the objectives are in conflict (as
is often the case in practice), the problem has a set of points that fulfill this
definition. After an optimization process has found several Pareto opti-
mal points, the decision maker is the person who must choose the final
solution that is to be implemented.

In addition to the definition of Pareto optimality, it is very common to
find in specialized literature the term Pareto front. The Pareto front is the
image of the set of points that conform the Pareto optimal set. In problems
with continuous decision variables, the Pareto front usually is a partially
continuous line (the set is infinite). Graphs of the Pareto front have been
often used to show this characteristic, and also to show (in a graphical
form) the trade-offs and the best results for each objective.

6.2 Evolutionary algorithms for multiobjective problems 71

6.2 Evolutionary algorithms for multiobjective prob-
lems

Next, some of the most representative multiobjective evolutionary tech-
niques developed to date are reviewed. The taxonomy of approaches
adopted follows to the classification of Cohon and Marks [29], which has
been widely accepted in the operations research community, and has been
recently used to classify multiobjective evolutionary algorithms [27].

6.3 A priori techniques

The first group in this classification of techniques are the a priori tech-
niques. This name is due to the fact that the preferences on the objective
functions are given before the technique begins the search. There exist
several a priori proposals, and some of them are reviewed next.

6.3.1 Lexicographic ordering

In this approach the objective functions are sorted according to their im-
portance, and they are optimized in sequence beginning with the most im-
portant, and finishing with the less important. This technique is only ad-
visable when the order of importance of the objectives is perfectly known,
because the performance of the algorithm is highly dependent on this or-
dering.

Fourman [53], and Kursawe [91], for example, have proposed algo-
rithms based on lexicographic ordering.

6.3.2 Linear aggregating functions

An aggregating function is the simplest way to adapt a single-objective
optimization method for multiobjective problems, because it combines the
results of the different objective functions into a single fitness value. This
single value is often obtained by means of a linear combination of the ob-
jective functions, although that is not the only way to do it. This linear
combination is done assigning a relative importance for each of the objec-
tive functions, through of a vector of constants with entries wi > 0, where

72 Evolutionary Multiobjective Techniques

all the weights adds to 1. The fitness function is:

fitness(x) =
m∑

i=1

wifi(x)

In most cases, it is necessary to introduce also a scaling factor, due to
the incommensurability of the objective functions.

Some applications that have been reported using a linear aggregating
function are reported on [168, 76, 106, 177].

Implementing an algorithm that uses a linear combination of objectives
can be very simple, and also efficient, but a linear function is incapable
to generate nonconvex portions of the Pareto front [35]. Moreover, it is
usually difficult to perform a good assignment of weights for the objective
functions.

6.3.3 Nonlinear aggregating functions

Although there exist several proposals and applications of nonlinear ag-
gregating functions (for example, multiplicative functions), these have not
been very popular. Perhaps the most used techniques have been those
that use a vectors of goals (e.g., min-max [81, 161, 127, 170, 62, 28] and
goal programming [13, 74, 174, 155]).

In the techniques with vectors of goals, the objective is to minimize
the difference between the points generated by the search process, and a
vector of desired objectives values. These techniques can generate, under
certain circumstances, nonconvex Pareto fronts, in addition to being quite
efficient computationally speaking. Nevertheless, if the characteristics of
the problem are not known, it can be difficult to provide a good vector of
goals.

6.4 Progressive techniques

In this sort of techniques, the preferences are expressed during the process
of generating solutions. The decision maker will express how good is a so-
lution for him/her, and the process must update the preferences to reflect
the opinions of the decision maker, before the search process continues.

6.5 A posteriori techniques 73

Although several techniques of this type exist in the operations re-
search area, in evolutionary computation, progressive approaches are prac-
tically non-existing, although several a priori or a posteriori techniques have
been modified to include the possibility of incorporating preferences dur-
ing the search.

6.5 A posteriori techniques

In this set of techniques, the preferences are expressed at the end of the
search process, and practically do not interfere with it. Here, an algorithm
tries to generate solutions which represent all the trade-offs of the objective
functions (that is to say, such techniques try to generate the entire Pareto
front, or a uniform sample of it), and the decision maker will express the
preferences when choosing the final solution.

6.5.1 Criterion selection techniques

In this type of techniques, the selection mechanism divides the population,
and in each sub-population the selection is performed based on only one of
the objectives. The best existing example of these techniques is Schaffer’s
vector evaluated genetic algorithm (VEGA) [156].

In VEGA, the total population is divided in m equal parts, and in each
one of them the selection operates taking into account only one objective
function. Once the selection mechanism was performed, the population is
mixed to apply the rest of the evolutionary operators. All this process is
repeated at each generation.

An evident VEGA problem is that it does not promote good trade-offs,
but it prefers the best solutions of each objective separately. This problem
is known as speciation (by its analogue in genetics). This problem was
identified and attacked by Schaffer, using mating restrictions, not allowing
recombination between individuals of the same sub-population, as well as
other heuristic rules applied during the selection mechanism.

In another work [149] is also demonstrated that, if proportional selec-
tion is used, VEGA’s scheme is equivalent to a linear combination of ob-
jective functions, which means that it has limitations regarding nonconvex
Pareto fronts.

74 Evolutionary Multiobjective Techniques

6.5.2 Aggregating selection techniques
Here is again the use of aggregating functions to solve multiobjective prob-
lems. The difference this time, is that the weights are varied through the
generations or from an evaluation to another one, throughout the execu-
tion of the technique [75, 107]. The variation of the weights can be carried
out in different ways, even encoding them in the chromosomes of the in-
dividuals.

Nevertheless, these techniques have the drawback that, if a linear com-
bination is used, it is impossible to generate the entire Pareto front in all
cases.

6.5.3 Pareto sampling techniques
This group of techniques works by identifying the nondominated individ-
uals, and fitness assignment is made according to that characteristic.

There exist several forms to carry out the selection using Pareto sam-
pling, but the original idea was developed by Goldberg [57]. He proposed
to perform a ranking in the following way: first the nondominated indi-
viduals of the population are identified, and they are assigned the highest
ranking value; they are ignored in the rest of the ranking process. The
process continues identifying nondominated points in the remainder of
the population, to which the next rank level is assigned. This process of
ranking by layers is applied until a rank value has been assigned to each
individual in the population.

Goldberg also suggested the use of niching and fitness sharing [57], to
avoid convergence towards a single point. Since Goldberg’s suggestion
, the use of techniques to maintain diversity has become a general char-
acteristic of multiobjective evolutionary algorithms, but also implies an
additional computational cost.

The multi-objective genetic algorithm (MOGA) by Fonseca and Flem-
ing [52], adopted a different ranking strategy. In this proposal, the rank of
an individual depends on the number of individuals in the present popu-
lation that dominate it, according to the following expression:

rank(xi, t) = 1 + p
(t)
i

where p
(t)
i is the number of individuals that dominate xi at generation t.

From the previous expression is evident that the nondominated individu-

6.5 A posteriori techniques 75

als will have a rank value of 1. After the ranking process, fitnesses are as-
signed through an interpolation of the ranking values. Fonseca and Flem-
ing also use niching to avoid premature convergence. Fitness sharing is
done in objective function space in this case.

Srinivas and Deb [162] proposed the nondominated sorting genetic al-
gorithm (NSGA) that implements almost the exact ranking idea proposed
by Goldberg. The algorithm proceeds with the ranking by layers, that
they call waves. Also the fitness is shared (in decision variable space) be-
tween individuals close from each other in order to maintain diversity.
A second version of this algorithm, the NSGA-II, was proposed by Deb
et al. [41]. The NSGA-II incorporates elitism, and an operator to main-
tain diversity that does not require any parameters; it is computationally
more efficient than the NSGA and has exhibited a very good performance,
although some researchers have indicated that it performs considerably
better with real encoded variables than with binary encoding [27].

Unlike the aforementioned algorithms, which rank the entire popula-
tion, Horn and Nafpliotis [68] proposed a mechanism to perform tourna-
ments based on Pareto dominance, with the aim of avoiding the computa-
tional cost of ranking all the population. Their proposal is called Niched-
Pareto Genetic Algorithm (NPGA). In the NPGA, when two individuals
compete, both are compared with a fraction of the population (the authors
use 10%) and, if only one is nondominated, it wins; but if both of them
are dominated or nondominated, then a niche count is performed, and the
individual in a less populated region wins.

Later on, Erickson et al. [45] developed a second version of this al-
gorithm, the NPGA 2, in which all the population is ranked before the
tournaments. Another important difference is that the niche count is per-
formed with the existing (partially filled) population of the next gener-
ation, whilst the original NPGA performs it with the current (complete)
population. This way to perform the niche count with the next generation
was previously proposed by Oei et al. [124].

The Strength Pareto Evolutionary Algorithm (SPEA), by Zitzler and
Thiele [180], implements an external archive to store the nondominated so-
lutions obtained throughout the evolutionary process. Each individual in
this nondominated external archive is assigned a value of strength, which
is proportional to the number of individuals it dominates. Then, the fit-
ness of each individual in the population depends on the value of strength
of all the individuals in the external archive that dominate it, and a series

76 Evolutionary Multiobjective Techniques

of binary tournaments take place.
Also, a second version of SPEA (appropriately called SPEA2) was de-

veloped by Zitzler et al. [179]. In this algorithm, both the number of points
that dominate an individual, and the number of points dominated by it,
are used to calculate its fitness. Moreover, the method adopted to trun-
cate the external archive in SPEA2 always preserves the ends of the Pareto
front.

Van Veldhuizen and Lamont [172] proposed a multiobjective version
of the messy genetic algorithm [37], called Multi-Objective Messy Genetic
Algorithm (MOMGA). In the first phase, called initialization, the building
blocks are generated exhaustively up to certain specified size. The next
phase, called primordial, performs tournament selection. Finally, the jux-
tapositional phase generates the population by means of a cut and splice
operator of recombination.

MOMGA-II was proposed by Zydallis et al. [181], and is the multi-
objective version of the fast-messy genetic algorithm [58]. The initializa-
tion phase also produces building blocks, but this time are generated in a
stochastic way, to avoid an uncontrolled growth of the population when
generating all the existing building blocks. The second phase, called build-
ing block filtering, consists of reducing the population by means of a fil-
tering operation, so that only the best building blocks are preserved; also,
a tournament selection is performed in this phase. The third phase is the
same found in the previous version.

Pareto-Based Selection

Among the approaches based on Pareto sampling are the techniques that
use a selection based only on Pareto ranking, but they replace the other
standard mechanisms, such as fitness sharing to maintain diversity. For
example, the Thermodynamical Genetic Algorithm (TDGA) proposed by
Kita et al. [86]. This algorithm is based on an idea similar to simulated
annealing, and to perform selection it tries to minimize the free energy of
the system; this helps to maintain diversity in the population. This method
includes a temperature that is controlled according to a cooling schedule.

Another example of Pareto-based selection is the technique proposed
by Osyczka and Kundu [128], called “distance method” because is based
on the contact theorem to calculate relative distances among the individu-
als in the Pareto front. It does not require an additional method to main-

6.5 A posteriori techniques 77

tain diversity.

Pareto-Demes Based Selection

The techniques within this group divide their population into several sub-
populations, and they perform Pareto ranking on each one of them. This
process is expected to be more efficient than other approaches because of
this local ranking. Nevertheless, in order to obtain global Pareto optimal
solutions, a mechanism of communication among them is needed. These
techniques are specially suitable for parallelization [152].

Pareto Elitist-Based Selection

In evolutionary single-objective optimization, is necessary to retain the
best individual in order to assure convergence. In evolutionary multiob-
jective optimization the role of elitism is not clearly known, but the expe-
rience shows that it is important, and most modern approaches include
it. Elitism in the multiobjective optimization framework is more compli-
cated than in the single-objective case, because in the latter case the best
individual can be identified clearly, but in the former case all the nondom-
inated individuals are equally good. The most common way to perform
elitism in multiobjective evolutionary optimization is through an external
archive, that stores the nondominated individuals to preserve them.

Elitism can be the main source to conform a population, using a sec-
ondary source (e.g., a diversity archive) to fill it. If this is the case, we say
that the technique applies Pareto elitist-based selection. The following are
some examples of approaches within this group.

The Pareto Archived Evolution Strategy (PAES), proposed by Knowles
and Corne [87], is a (1 + 1)-ES with an external archive incorporated, in
which the nondominated individuals found along the evolutionary pro-
cess are stored. The nondominated individuals with respect to the current
population are compared with the points in the external archive, and if
they are again nondominated, they are stored. The mechanism adopted
by PAES to maintain diversity consists of an adaptive grid, that is compu-
tationally more efficient than the niching methods.

Knowles and Corne also experimented with a (1 + λ)-ES and a (µ +
λ)-ES, but they claim that there are no significant improvements, but an
increment in the computational cost associated [87].

78 Evolutionary Multiobjective Techniques

Corne et al. [31] proposed the Pareto Envelope-based Selection Algo-
rithm (PESA), with a small main population, and a larger secondary pop-
ulation (similar to the external archive mentioned before). During each
iteration of the algorithm, some points from the external archive are ran-
domly selected, and they are transformed to produce the new individuals
in the main population; when this main population is filled, the nondom-
inated individuals will be integrated to the secondary archive.

Later on, the PESA-II was proposed by Corne et al. [30], whose main
difference with PESA is the region-based selection (the selection is per-
formed using regions, and not individuals). When the mechanism selects
a region as a parent, an individual within that region is selected at random.

The micro-Genetic Algorithm (µ-GA), proposed by Coello Coello and
Toscano Pulido [24, 25], is another algorithm that keeps a small main pop-
ulation. It has a population memory, that is divided in a replaceable and
a non-replaceable part; from this memory are selected the individuals to
conform the main population. This small population is adopted by the
genetic algorithm with normal operators, and when it converges, it pro-
vides the nondominated individuals to fill up an external memory (exter-
nal archive). Some of the individuals in this external memory will enter to
the replaceable part of the population memory. The µ-GA uses three types
of elitism.

6.5.4 Independent sampling techniques
Independent sampling consists of performing several executions of the
technique to find different points of the Pareto front.

The independent sampling techniques that have been proposed in evo-
lutionary computation consist of scalarizing functions, but in this case the
weights do not represent the preferences, but that they are varied to per-
form independent executions, so that different portions of the Pareto front
can be found [117, 12, 171, 77, 132].

These techniques can generate good fronts, but they are not very popu-
lar probably because the computational cost may be excessive when many
points are required, or when the problem has many objectives.

The approach proposed in this work can be classified within the inde-
pendent sampling techniques. Our motivation is to take advantage of the
convergence properties of the CDE approach, while managing the afore-
mentioned drawbacks with additional mechanisms to reduce their influ-

6.5 A posteriori techniques 79

ence.
It is worth mentioning that our approach performs several optimiza-

tion processes, one for each point produced, but they are not totally inde-
pendent, as we will see in the following chapter.

80 Evolutionary Multiobjective Techniques

7
A Proposal for Multiobjective Optimization using
the Cultured Differential Evolution

Hybrid approaches of evolutionary techniques and mathematical program-
ming methods for multiobjective optimization are not very popular, prob-
ably due to the fact that mathematical programming techniques are fre-
quently scalarizing functions, and thus require several executions of a
single-objective optimizer to obtain the Pareto set or a sample of it. Con-
versely, most evolutionary multiobjective approaches obtain a set of non-
dominated solutions (i.e., an approximation of the Pareto set) in a single
run.

The experience of some researchers is that hybrid approaches have
been found to be relatively expensive when solving “easy” multiobjective
problems, because of the several single-objective optimizations that need
to be performed in order to generate the Pareto front.

Nevertheless, and despite their disadvantages, we consider that a hy-
brid approach can be a very effective choice under certain conditions. In
our experience, mathematical programming techniques tend to produce
points of very high quality (i.e., tend to produce Pareto optimal points, or
very good approximations of them), even when the problem may appear
to be very difficult for most elitist multiobjective evolutionary algorithms
based on Pareto ranking. This is due to the fact that in this case the search
focuses on a single point, instead of aiming to converge to a set of them,
and therefore, a better exploitation may take place.

81

82 A Proposal for Multiobjective Optimization using CDE

In this work, we use the ε-constraint method as the mathematical pro-
gramming technique, and the CDE previously described as the evolu-
tionary algorithm. The CDE, according to our previous results, allows
us to reduce the total number of fitness function evaluations, while ob-
taining competitive results, due to the extracted and applied information
during the search process. Even with this reduction of function evalua-
tions, the total approach may be more expensive (in fitness function eval-
uations) than a current multiobjective evolutionary algorithm, when solv-
ing “easy” multiobjective problems. But the advantages are evident when
trying to solve “hard” problems.

When we talk about “easy” or “hard” problems, we correlate this terms
to the degree of difficulty for a state-of-the-art evolutionary multiobjective
approach (such as the NSGA-II) to solve it, with a parameter setup as rec-
ommended by its authors, and a typical budget of fitness function evalua-
tions (10,000–100,000). Recently, researchers have proposed problem sets,
that contain very difficult problems (according to the previous meaning),
because with them, most evolutionary algorithms cannot converge to the
true Pareto front within 100,000 fitness function evaluations or even more
[71, 126]. It is precisely in these “hard” problems where a hybrid approach
may appear advantageous, mainly when we use an efficient evolutionary
approach for the hybridization, such as the CDE.

Moreover, in order to reduce the computational cost of the hybrid ap-
proach, we propose to generate only a few points. We will also show that,
by carefully choosing the values of the ε vector, it is possible to obtain a
well distributed set of points, that constitute a reasonably good approxi-
mation of the true Pareto front. These points are then processed by another
approach able to diversify them such that a larger area of the Pareto front
can be covered. Obviously, this diversification approach, which acts as a
local search algorithm, should be computationally affordable, so that the
total cost of the proposed hybrid algorithm remains reasonably low. We
propose a simple evolutionary algorithm for this step.

With this further processing of the obtained points, we also alleviate
some of the problems related to the parametrization of the ε-constraint
method when dealing with many-objective problems.

Next, we will describe the hybridization of the ε-constraint method
with the CDE, and the approach developed for diversification of the points.
But first, some considerations to properly assign the values of the ε vector
are provided.

7.1 Estimating the nadir objective vector 83

7.1 Estimating the nadir objective vector

To assign different values to the ε vector without any knowledge of the
problem, is not a trivial task. Recently, Laumanns et al. [101] proposed a
method to vary the ε values. It consist of executing an initial optimization
without constraints, and then use the objective functions values of the re-
sult to set up the values for ε for the next optimization, and so on. If the
Pareto front is discrete, this approach is particularly suitable, because it
can find the entire Pareto optimal set, as proved in [101].

This approach may be too expensive when the Pareto front is continu-
ous, as it is most likely to be when we are dealing with real-valued prob-
lems. This is because the ε values tend to produce points that are too close
of each other, making very difficult to control the number of points de-
sired as outcome, and requiring many single-objective optimizations. As
our approach is designed to work with real-valued problems, we consid-
ered an alternative: to obtain an approximation of the dimensions of the
Pareto front, and then divide it into a number of intervals depending of
the number of solutions that we want as outcome. The εj must vary from
the best to the worst value for the objective j, i.e. the search must move
from the ideal to the nadir objective vector.

The estimation of the ideal objective vector involves individual opti-
mizations of one objective at a time. On the other hand, the estimation of
the nadir objective vector is a more difficult task [118]. Currently, there
are no efficient and reliable methods to estimate the nadir point, for an
arbitrary problem. Only for the two-objective case, there exists a simple
method that can provide a good estimation, which is called the payoff ta-
ble. This approach consists of performing individual optimizations of one
objective at a time, similar to those required to the ideal vector; the result of
every optimization is evaluated for all the objectives, an finally the worst
values for each objective are recorded. Figure 7.1 illustrates this process. A
first approach for solving two-objective problems using this method was
published in [99].

The payoff table method may produce estimations with significant er-
ror, when the problem has more than two objectives, regardless of the op-
timization procedure adopted. As we also want to solve problems with
three or more objectives, the alternative is to use metaheuristics for this
task as well. In this work, we use a technique based on the approach in

84 A Proposal for Multiobjective Optimization using CDE

Results for the optimizations:

f1 f2 f3 f4

23.5 62.63 23.75 76.44
39.68 48.68 84.84 186.64
65.46 64.68 8.80 43.84
84.16 92.34 13.39 14.39

Estimated ideal objective vector: 23.5 48.68 8.80 14.39

Estimated nadir objective vector: 84.16 92.34 84.84 186.64

Figure 7.1: Example of the payoff table method

[39], which is a modification of the crowding mechanism of the NSGA-II.
The modification consists of emphasizing the generation of nondominated
solutions near to the edges of the Pareto front, and not only the extreme
values. This is done checking first for nondominance; then, the points of
a given front are sorted, and assigned a crowding distance higher for each
of the extreme valued, and lower for central values. This procedure is per-
formed for each objective, and the final crowding value of each point is
assigned as the maximum of all the computed values for that point.

In this work, we perform the estimation using a standard differential
evolution approach, incorporating the new ranking rules before the selec-
tion procedure. A detailed description of the fitness assignment mecha-
nism is the following:

1. After the generation of all the children in the current iteration, per-
form Pareto ranking.

2. Sort the points of the first front using the values for the first objective.

3. Assign a fitness of 0 to the first and the last individuals; assign a
fitness of 1 to the individuals next to the first and the last points, and
so on.

4. Sort the same front using the values for the second objective, and
repeat step 3. If the previous assigned fitness value of an individual
is larger than the current one, do not update (keep the larger one).
Sort for the other objectives and repeat step 3.

7.2 The ε-constraint based approach: εCCDE 85

5. Repeat steps 2, 3 and 4 for the rest of the fronts. When assigning
fitness to the k-th front, the fitness values will be: t1 + . . . + tk−1 for
the first and last points, t1 + . . . + tk−1 + 1 for the individuals next to
the first and the last, and so on. tk is the number of points in the k-th
front.

The rest of the algorithm adopted is a standard differential evolution. The
decision of using a differential evolution algorithm is due to the speed re-
quired, because this is only the first step of the process, and the estimation
obtained will be relaxed in the next steps.

In the following, let us assume that the procedure nadir_st(f , g) per-
forms the modified differential evolution previously described for g gen-
erations. It will return two arrays, lb and ub with the estimated ideal and
nadir objective vectors (assuming minimization).

7.2 The ε-constraint based approach: εCCDE

The single-objective optimizer, on which our method is based, is the cul-
tured differential evolution previously described. Let’s now assume that it
is available as the procedure cde(fl, ε, g), which performs the optimization
process of the ε-constraint method during g generations and returns the
best point found. The pseudo-code of the ε-constraint with CDE (εCCDE)
is shown in Algorithm 8.

In Algorithm 8, the lower and upper bounds, lb and ub, are increased
by a tolerance t; this is done since the results of the nadir_st procedure
are only approximations, and it is possible to find a better point beyond
them. We use tj = 0.1(ubj − lbj). The ε values are updated with a δ, which
depends on the number of points in the Pareto front desired by the user (or
decision maker). It is obtained as follows: δj =

ubj−lbj

pj
. This way, we aim

that the final points are equally spaced in their projection over the f2 to fm

axes. g is an input parameter of the algorithm, but it is very important,
because together with pj and the population size of the cde procedure,
µ, define the total number of fitness function evaluations required by the
approach. The number of fitness function evaluations is

(∏m
j=2 pj

)
· g · µ.

Algorithm 8 shows f1 as the objective to be optimized, and f2 to fm as
the constraints. However, one can interchange the roles of the objectives

86 A Proposal for Multiobjective Optimization using CDE

Algorithm 8: ε-constraint with CDE
P = ∅
(lb,ub) = nadir_st(f , g)
ub = ub + t, lb = lb− t
εj=2,...,m = lbj + δj

while εm ≤ ubm do
x = cde(f1, ε, g)
if x is nondominated with respect to P then

P = P − {y ∈ P | x Â y}
P = P ∪ {x}

end if
ε2 = ε2 + δ2

for j = 2 to m− 1 do
if εj > ubm then

εj = lbj + δj

εj+1 = εj+1 + δj+1

end if
end for

end while

7.3 An additional technique for dispersion 87

if the problem looks harder to solve in the original setting. In the experi-
ments shown in this thesis, the original setting was always preserved, and
f1 was always taken as the objective to optimize, to allow a fair compar-
ison. But, as a suggestion for better results, if it is known which of the
objective functions is the most difficult to optimize, such objective func-
tion should be chosen to be optimized, and the rest should be adopted as
constraints.

In order to improve the performance of each optimization process, the
algorithm shares a percentage of the population, in the initial population
of the next process. This helps because the problems to be solved are very
similar, and the only change is the upper bound of the objective functions
which are treated as constraints. When all the population is shared, the
loss of diversity leads to premature convergence. In practice, we found
that a small percentage (around 10%) of the population to be shared is
enough to improve convergence without losing diversity.

The εCCDE approach provides good results by itself (see Chapter 8),
but it can result computationally expensive when many points of the Pareto
front are required (i.e., when pj is large), because it needs an individual
optimization process for each point. At this point, we propose to keep the
pj values low, and to use an alternative technique to spread out the few
points obtained earlier, in order to cover a larger area of the Pareto front.

By low, we mean pj ≤ 5, depending on the number of objectives. When
the number of objectives m is greater than, say, 6, one may use pj = 1
for m − 6 objectives, and pj = 2 to the rest, to avoid adding unnecessary
computational cost to this phase, even when this may affect the spread
over the Pareto front. This is an inherent problem of the technique, and is
related to the fact that, when dealing with many-objective problems, the
search for Pareto optimal solutions is harder, because more points become
nondominated.

This approach, based only on the ε-constraint method, and without
any dispersion technique, was published in [99].

7.3 An additional technique for dispersion

There exist some techniques specialized in spreading points from the Pareto
front. Here, we developed a simple evolutionary algorithm, based on the
assumption that we have as input a well distributed sample of the Pareto

88 A Proposal for Multiobjective Optimization using CDE

front. This sample is obtained with the εCCDE approach.
The algorithm then, tries to fill the spaces between one point and an-

other. This is made using crossover operators based on interpolation, and
then we apply a mutation operator. The procedure is described in Algo-
rithm 9.

Algorithm 9: Evolutionary algorithm for disperssion
Set the input points as the initial population
repeat

Select one crossover operator
Randomly select as many parents as needed for the crossover opera-
tor
Apply crossover
Apply mutation
if the newly generated point is nondominated then

Add the new point to the population
end if
if Size of the population > desired number points then

Remove one point in the most populated area
end if

until the maximum number of evaluations has been reached

Two crossover operators were used, based on linear and quadratic in-
terpolation, respectively. The linear crossover operator is especially useful
when the Pareto optimal set is a convex set. For other cases, the quadratic
crossover operator, as well as the mutation operator complement the job.

7.3.1 Crossover operators
The linear crossover operator to generate the j-th child is the following:

x′j = (1− α)xr1 + αxr2

where the random integers r1, r2 ∈ {1, . . . , µ} represent the parents, and α
is a random number with mean = 0.5 and standard deviation = 0.5. This is
to keep most of the time the newly generated individual between xr1 and
xr2, but with a small chance to generate it outside this interval (to make an
extrapolation).

7.4 Parameters of the technique 89

The quadratic crossover operator is the following:

x′1,j = (1− α3)x1,r1 + α3x1,r3

x′i=2,...,n,j = (1− α1)(1− α3)xi,r1 + α1(α2 − 1)xi,r2 + α3α2xi,r3

where α1 =
x′1−xr1

1

xr2
1 −xr1

1
, α2 =

x′1−xr2
1

xr3
1 −xr2

1
. α3 must be obtained as α for the linear

crossover operator, allowing sometimes to compute an extrapolation. In
this case there are three parents, and the child obtained will be a quadratic
interpolation in their projection over the x1-xi axes (for i = 1, . . . , n).

7.3.2 Mutation operator
Finally, a very small mutation is applied, mainly not to destroy the effect
of the crossover operators, but to perform a local search. To avoid the need
of self-adaptation in its magnitude, we use the values of the parents:

x′′i=1,...,n = x′i + Zi

(
0, 0.1

∣∣xr1
i − xr2

i

∣∣)

where Zi(µ, σ) is a realization of a random variable, with mean µ and stan-
dard deviation σ.

This evolutionary algorithm is designed to generate several intermedi-
ate points over the Pareto front, assuming that the input points are Pareto
optimal. In addition to some Pareto points, it takes as input parameter the
limit for the fitness function evaluations it will perform, emax. This is an al-
ternative for a second phase of the approach in order to save evaluations,
but it is not the only one. In [100], we use an approach based on rough sets
theory.

7.4 Parameters of the technique

The parameters needed for this approach to work are summarized in Ta-
ble 7.1. We suggest some values for each parameter, according to our ob-
servations, empirically derived after numerous experiments.

Besides the parameters in Table 7.1, is necessary to set the parameters
of the CDE procedure, as described in Section 4.5 on page 46, including all
the parameters related to the belief space.

In the next chapter, we will describe the performed experiments, and
we will present the comparison of the results obtained.

90 A Proposal for Multiobjective Optimization using CDE

Table 7.1: Parameters for the εCCDE technique

Parameter Meaning Suggested Value
µ Population

size of the
individual
optimizations.

As the CDE (Chapter 4), the ap-
proach works well with small
populations. A good choice is
between 10 and 50.

g Maximum
number of gen-
erations per
each individual
optimization.

Between 50 and 100. Try reduc-
ing it if more speed is needed, or
increasing it if more precise re-
sults are required.

pj Number of
divisions for
the ε-constraint
method per
objective. It
also refers to
the number of
points on each
dimension.

The total number of points ob-
tained during the ε-constraint
phase is

∏m
j=2 pj . It is advisable

to keep this number ≤ 32, or
lower (near to 10) if possible.

sshare Portion of the
population
shared between
optimizations.

Use a small value, such as 10 %,
to improve the individual opti-
mizations keeping a low risk of
diversity loss.

emax Maximum
number of fit-
ness function
evaluations
to be per-
formed by the
evolutionary
algorithm for
dispersion.

More evaluations provide more
points and they tend to be closer
to the true Pareto front. Perform
as many as resources allow.

8
Results for the Multiobjective Optimization
Approach

In the previous chapter, we mention that the εCCDE approach can be ap-
plied alone, producing all points as a result of individual optimizations.
This may result expensive, especially if the problem has many objectives.
In this chapter, we perform some experiments with εCCDE alone, on prob-
lems with only two objectives, in order to explore its performance. Then,
we perform more experiments of the εCCDE and the additional technique
for dispersion, on problems of two and three objectives.

8.1 εCCDE alone

In order to validate the performance of the proposed approach, some test
functions have been taken from the specialized literature. One may think
that the several single-objective optimizations required may give rise to
a prohibitively high computational cost, which is unnecessary consider-
ing that a modern multiobjective evolutionary algorithm may produce a
similar approximation of the Pareto front at a much more affordable com-
putational cost. There are problems, however, where this is not the case,
and in which a modern evolutionary algorithm presents difficulties, or
definitively cannot converge to the true Pareto front even if we do not re-
strict the number of evaluations performed. It is precisely in those cases
for which we believe that our approach can be a viable alternative. The

91

92 Results for the Multiobjective Optimization Approach

εCCDE, as a hybrid approach, focuses on a region during each individual
optimization, and this may result on a good approximation for that indi-
vidual point, even tough the rest of the front is ignored in that step (with
several individual optimizations it is possible to cover a significant region
of the Pareto front).

8.1.1 Test problems

To make evident the possible advantages of our approach, we looked within
the current benchmarks for multiobjective problems that are particularly
difficult to solve for current multiobjective evolutionary approaches. Our
search led us to the use of a recent benchmark proposed by Huband et al.
[70]. This benchmark was constructed using a block-oriented approach,
where each block introduces a desired feature to the problem. For exam-
ple, there are blocks for making the problem non-separable, deceptive,
multimodal, etc. The shape of the Pareto front is also controlled with
blocks, and it is possible to design linear, concave, convex, mixed or dis-
connected fronts.

In this benchmark we found very hard problems (WFG1, WFG2 and
WFG9). Each of them has 24 variables. WFG1 is strongly biased toward
small values of the first 4 variables, WFG2 is non-separable and also has a
disconnected Pareto front, and WFG9 is a deceptive problem.

All the problems in the benchmark were used for the experiments. The
expressions for the problems are provided in Appendix B.

We decided to compare results with respect to the NSGA-II [41], since
this is an approach representative of the state-of-the-art in the area.

8.1.2 Experimental setup

We ran both algorithms during 25,000 fitness function evaluations each
(except for WFG1). With this number of evaluations we can fairly perform
the comparison (the authors of the NSGA-II performed close to 25,000
evaluations in the orignial proposal). We aimed to obtain a set of 50 points
as a result of each run, so we adapted the parameters according to that. For
the ε-CCDE, the parameters adopted were: p = 50, g = 48, with 10% of the
population shared between optimizations (this 10% is chosen at random).
For the cde procedure we used µ = 10, F = 0.7, CR = 0.5. The popula-
tion size of the NSGA-II was set to 52, and the number of generations to

8.1 εCCDE alone 93

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

NSGA−II
True Pareto front

eCCDE

Figure 8.1: Results for the 2-objective WFG1

481. The rest of the parameters were set as recommended by its authors:
probability of crossover = 0.9, probability of mutation = 1/n, the value of
the distribution index for crossover = 15, and the value of the distribution
index for mutation = 20.

Only for WFG1, the total number of fitness function evaluations was
increased to 250,000, because this is a really difficult problem. The pa-
rameters adopted in this case were: g = 120 and µ = 40. The number of
generations of the NSGA-II was changed in this case to 4808. Even with
this large number of iterations, the NSGA-II was not able to reach the true
Pareto front.

In Figures 8.1 to 8.9, we show the results of a single run for each test
problem. Since a visual comparison of the results may be inaccurate, we
also used some performance measures to allow a quantitative comparison
of results.

8.1.3 Performance measures

To assess the performance of the proposed approach, we adopted two
measures.

Two Set Coverage (CS) measure [178], which is an indicator of how much
a set covers (or dominates) another one. A value of CS(X,Y) = 1
means that all points in X dominate or are equal to Y . If CS(X,Y) =
0, there are no points in X that dominate some point in Y . When

94 Results for the Multiobjective Optimization Approach

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

eCCDE
NSGA−II

True Pareto front

Figure 8.2: Results for the 2-objective WFG2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

eCCDE
NSGA−II

True Pareto front

Figure 8.3: Results for the 2-objective WFG3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

eCCDE
NSGA−II

True Pareto front

Figure 8.4: Results for the 2-objective WFG4

8.1 εCCDE alone 95

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

eCCDE
NSGA−II

True Pareto front

Figure 8.5: Results for the 2-objective WFG5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

eCCDE
NSGA−II

True Pareto front

Figure 8.6: Results for the 2-objective WFG6

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

eCCDE
NSGA−II

True Pareto front

Figure 8.7: Results for the 2-objective WFG7

96 Results for the Multiobjective Optimization Approach

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

eCCDE
NSGA−II

True Pareto front

Figure 8.8: Results for the 2-objective WFG8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

eCCDE
NSGA−II

True Pareto front

Figure 8.9: Results for the 2-objective WFG9

8.1 εCCDE alone 97

Table 8.1: Mean and standard deviation of the CS measure for the εCCDE
alone (a larger value is better for the first algorithm)

Test Problem CS(εCCDE, NSGA-II) CS(NSGA-II, εCCDE)
mean (std. dev.) mean (std. dev.)

WFG1 1.0000 (0.0000) 0.0000 (0.0000)
WFG2 0.8509 (0.1771) 0.0362 (0.0614)
WFG3 0.3987 (0.2691) 0.0908 (0.1368)
WFG4 0.2415 (0.1358) 0.4672 (0.2948)
WFG5 0.0065 (0.0073) 0.96694 (0.0461)
WFG6 0.3815 (0.1075) 0.04753 (0.0152)
WFG7 0.0124 (0.0062) 0.6275 (0.2546)
WFG8 0.6789 (0.1746) 0.3272 (0.2803)
WFG9 0.6415 (0.3669) 0.0995 (0.2114)

using this measure, it is necessary to calculate CS(X, Y), as well as
CS(Y, X), to quantify possible overlaps between sets.

Binary Coverage (Qc) [47], which is an indicator of the ability of an algo-
rithm to obtain solutions near the extrema of the Pareto front, mea-
suring the largest possible angle between two vectors of the output
of an algorithm. This is a secondary criterion when proper conver-
gence has been achieved, because it does not measure convergence
itself, and it may occur that a set is very far from the true Pareto
front, but it covers a larger area. A value of Qc(X,Y) > 0 means that
X contains points that are nearer to the extrema of the true Pareto
front than those of Y (it covers a larger angle). It is worth noticing
that Qc(X,Y) = −Qc(Y,X), therefore, it is not necessary to compute
both Qc(X,Y) and Qc(Y,X).

We executed our ε-CCDE 30 times per problem, and then executed the
NSGA-II 30 times with the same random seeds, and we performed 30 one-
to-one comparisons.

The results of the CS and the Qc measures are summarized in Tables 8.1
and 8.2, respectively.

98 Results for the Multiobjective Optimization Approach

Table 8.2: Mean and standard deviation of the Qc measure for the εCCDE
alone (a larger value is better for the first algorithm)

Test Problem Qc(εCCDE, NSGA-II)
mean (std. dev.)

WFG1 0.2112 (0.0634)
WFG2 0.0677 (0.2172)
WFG3 -0.0299 (0.0253)
WFG4 -0.3967 (0.1469)
WFG5 -0.4375 (0.0168)
WFG6 -0.4328 (0.2258)
WFG7 -0.2813 (0.1868)
WFG8 -0.5678 (0.2687)
WFG9 -0.0913 (0.1154)

In more than half of the problems in Table 8.1, the εCCDE obtained
better average values. However, the improvement is not always the same.
In WFG1, all the points of εCCDE always dominate the points produced
by the NSGA-II, because the latter cannot properly converge. The con-
vergence is also good in problems WFG2 and WFG9. On the other hand,
in WFG5 and WFG7, the NSGA-II presented a significantly better con-
vergence. This may be due to the number of evaluations needed for the
εCCDE to converge, even when the problem is not so hard.

In other cases, as WFG3, WFG4, WFG6 and WFG8, the algorithms are
very competitive regarding convergence.

Now, we will examine Table 8.2. This time, our approach obtained the
largest values for WFG1 and WFG2. For the rest of the problems, and
particularly for WFG5, WFG6 and WFG8, this metric indicates that that
NSGA-II can cover a larger length of the Pareto front. However, it is im-
portant to keep in mind that this is a secondary criterion, which becomes
relevant only when a proper convergence has been achieved.

As an overall conclusion, we can see that when the problem is hard
enough to prevent the convergence of an evolutionary multiobjective ap-
proach such as the NSGA-II, the εCCDE may achieve a better convergence
and a better distribution. But, if the evolutionary algorithm can converge

8.2 εCCDE plus dispersion technique 99

within a moderate number of evaluations, the εCCDE alone may present
difficulties for both, convergence and dispersion (within this number of
evaluations).

8.2 εCCDE plus dispersion technique

This time, we perform a second phase of the approach, in order to reduce
the number of fitness function evaluations necessary to obtain good re-
sults. The experiments were performed on two- and three-objective prob-
lems.

8.2.1 Test problems

We use again the WFG problems, but this time, we adopt the version with
three objectives. The dispersion technique reduces the cost of the εCCDE,
and we can now tackle three-objective problems at an affordable cost.

In addition to the WFG suite, in the recent literature there are other
examples of hard problems for current multiobjective approaches, such
as the problems from Okabe et al. [125]. This test suite consist only of
two problems, but they have shown to be very challenging for current
multiobjective evolutionary algorithms. These problems are constructed
based on a starting space, and then applying transformations to obtain
both, the Pareto front and the Pareto optimal set (i.e., the optimal points
in objective and decision variable space). The aim of this benchmark is to
obtain problems with a Pareto optimal set whose expression is nonlinear
in objective space, but also in decision variable space.

The problems of this benchmark are designated as OKA1 and OKA2.
They only have 2 and 3 variables and 2 objectives, but the geometry of
their Pareto optimal sets is nonlinear, and they are also strongly biased to
the opposite side of the Pareto front.

We also use four of the so-called Zitzler-Deb-Thiele (ZDT) problems
[178], because they have been used frequently in the specialized literature,
and they constitute a reference point for many researchers in the field.

The expressions for all the problems are found in Appendix B.
Again, we compare our results with respect to the NSGA-II [41]. It

is also known, that the NSGA-II performs particularly well in the ZDT
problem set.

100 Results for the Multiobjective Optimization Approach

8.2.2 Experimental setup

We ran both algorithms during 15,000 fitness function evaluations each
(including those evaluations required to estimate the ideal vector), except
for OKA2 and WFG1. We aimed to obtain a set of 100 points as a result of
each run, so we adapted the parameters according to that. For the εCCDE,
the parameters adopted were, for the two-objective problems: p = 5, g =
100, with 10% of the population shared between optimizations (this 10%
is chosen at random), for the cde procedure we used µ = 20, F = 0.7,
CR = 0.5.

The parameters for the three-objective problems (the parameters must
be different because the number of evaluations depends of the number of
objectives m) were: p = 3, g = 70 and µ = 16 .

The maximum number of evaluations performed by the dispersion
technique was set to 5,000 in both cases.

The population size of the NSGA-II was set to 100, and the number of
generations to 150. The rest of the parameters were set as recommended
by the NSGA-II’s authors: probability of crossover = 0.9, probability of
mutation = 1/n, the value of the distribution index for crossover = 15,
and the value of the distribution index for mutation = 20.

Only for OKA2 and WFG1, the total number of fitness function evalu-
ations was increased to 25,000, because these are really difficult problems.
In this case, we adopted, for the two-objective problem (OKA2): g = 150,
and for the three-objective problem (WFG1): g = 104. In both cases the
maximum number of evaluations of the dispersion technique was set to
10,000. The number of generations of the NSGA-II was changed in this
case to 250, to allow a fair comparison. However, even with this large
number of iterations, the NSGA-II was not able to reach the true Pareto
front of WFG1, and in the case of OKA2, a very small length of the Pareto
front was covered.

In Figures 8.10 to 8.24, we show the results of the run on the median
with respect to the CS measure for each test problem adopted.

8.2.3 Performance measures

The methodology to measure the performance of the algorithms was the
same as the adopted for the εCCDE alone. The results are summarized in
Table 8.3 for the CS measure, and in Table 8.4 for the Qc measure.

8.2 εCCDE plus dispersion technique 101

eCCDE+D
NSGA−II

True Pareto front

0 0.5 1 1.5 2 2.5 3 0 0.51 1.52 2.53 3.54
−1

0
1
2
3
4
5
6

Figure 8.10: Results for the 3-objective WFG1

eCCDE+D
NSGA−II

True Pareto front

0
0.5

1
1.5

2 0 0.51 1.52 2.53 3.54
0
1
2
3
4
5
6

Figure 8.11: Results for the 3-objective WFG2

eCCDE+D
NSGA−II

True Pareto front

0 0.5 1 1.5 2 2.5 3 0
0.5

1
1.5

2
2.5

0
1
2
3
4
5
6
7

Figure 8.12: Results for the 3-objective WFG3

102 Results for the Multiobjective Optimization Approach

eCCDE+D
NSGA−II

True Pareto front

0 0.5 1 1.5 2 2.5 0 0.51 1.52 2.53 3.54 4.5
0
1
2
3
4
5
6
7

Figure 8.13: Results for the 3-objective WFG4

eCCDE+D
NSGA−II

True Pareto front

0 0.5 1 1.5 2 2.5 0 0.51 1.52 2.53 3.54 4.5
0
1
2
3
4
5
6
7

Figure 8.14: Results for the 3-objective WFG5

eCCDE+D
NSGA−II

True Pareto front

0 0.5 1 1.5 2 2.5 0 0.51 1.52 2.53 3.54 4.5
0
1
2
3
4
5
6

Figure 8.15: Results for the 3-objective WFG6

8.2 εCCDE plus dispersion technique 103

eCCDE+D
NSGA−II

True Pareto front

0 0.5 1 1.5 2 2.5 0 0.51 1.52 2.53 3.54 4.5
0
1
2
3
4
5
6
7

Figure 8.16: Results for the 3-objective WFG7

eCCDE+D
NSGA−II

True Pareto front

0 0.5 1 1.5 2 2.5 0 0.51 1.52 2.53 3.54 4.5
0
1
2
3
4
5
6
7

Figure 8.17: Results for the 3-objective WFG8

eCCDE+D
NSGA−II

True Pareto front

0 0.5 1 1.5 2 2.5 0 0.51 1.52 2.53 3.54 4.5
0
1
2
3
4
5
6
7

Figure 8.18: Results for the 3-objective WFG9

104 Results for the Multiobjective Optimization Approach

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7

eCCDE+D
NSGA−II

True Pareto front

Figure 8.19: Results for OKA1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

−4 −3 −2 −1 0 1 2 3 4

eCCDE+D
NSGA−II

True Pareto front

Figure 8.20: Results for OKA2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

eCCDE+D
NSGA−II

True Pareto front

Figure 8.21: Results for ZDT1

8.2 εCCDE plus dispersion technique 105

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

eCCDE+D
’NSGA−II

True Pareto front

Figure 8.22: Results for ZDT2

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

eCCDE+D
True Pareto front

NSGA−II

Figure 8.23: Results for ZDT3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

eCCDE+D
NSGA−II

True Pareto front

Figure 8.24: Results for ZDT4

106 Results for the Multiobjective Optimization Approach

Table 8.3: Mean and standard deviation of the CS measure for the
εCCDE+D (a larger value is better for the first algorithm)

Test Problem CS(εCCDE+D, NSGA-II) CS(NSGA-II, εCCDE+D)
mean (std. dev.) mean (std. dev.)

WFG1 0.8040 (0.0169) 0.0000 (0.0000)
WFG2 0.5288 (0.4904) 0.3986 (0.3737)
WFG3 0.1273 (0.0387) 0.4146 (0.2638)
WFG4 0.1688 (0.0386) 0.1285 (0.0315)
WFG5 0.0033 (0.0027) 0.2723 (0.0783)
WFG6 0.2564 (0.1670) 0.0579 (0.3490)
WFG7 0.0021 (0.0015) 0.1683 (0.0872)
WFG8 0.2736 (0.1543) 0.1448 (0.0984)
WFG9 0.6896 (0.2014) 0.0543 (0.0539)
OKA1 0.2798 (0.2179) 0.1600 (0.1384)
OKA2 0.4165 (0.1593) 0.1688 (0.1062)
ZDT1 0.4896 (0.0738) 0.1906 (0.0760)
ZDT2 0.0269 (0.0094) 0.4000 (0.1724)
ZDT3 0.0242 (0.0083) 0.5145 (0.0574)
ZDT4 0.5906 (0.2208) 0.1966 (0.1118)

8.2 εCCDE plus dispersion technique 107

Table 8.4: Mean and standard deviation of the Qc measure for the
εCCDE+D (a larger value is better for the first algorithm)

Test Problem Qc(εCCDE+D, NSGA-II)
mean (std. dev.)

WFG1 0.6194 (0.1322)
WFG2 -0.1636 (0.1154)
WFG3 0.4158 (0.1667)
WFG4 -0.0711 (0.0241)
WFG5 -0.3513 (0.1784)
WFG6 -0.4257 (0.1686)
WFG7 -0.1687 (0.1268)
WFG8 0.1273 (0.0613)
WFG9 0.0361 (0.1028)
OKA1 0.0918 (0.1001)
OKA2 -0.1375 (0.1403)
ZDT1 0.0060 (0.0082)
ZDT2 0.0378 (0.0248)
ZDT3 -0.1102 (0.0615)
ZDT4 -0.4357 (0.3510)

108 Results for the Multiobjective Optimization Approach

In most of the problems in Table 8.3, the approach presented here ob-
tained better average values. However, the improvement is not always
the same. In WFG1 and WFG9, almost all the points of εCCDE always
dominate the points produced by the NSGA-II, because the latter cannot
properly converge. On the other hand, in WFG2, WFG4, and WFG8, as
well as OKA1, both algorithms show difficulties to dominate the results of
each other.

Regarding the ZDT problems, the NSGA-II presented a better conver-
gence in two problems (ZDT2 and ZDT3), while in the other two our ap-
proach obtained a better convergence.

The results for the Qc measure was this time more balanced. Our ap-
proach obtained the largest value for WFG1. For WFG5 and WFG6, as
well as for ZDT4, this metric indicates that the NSGA-II can cover a sig-
nificantly larger length of the Pareto front. But the previous measure for
these problems, showed that our εCCDE obtained a better convergence
than the NSGA-II, except in WFG5, where the NSGA-II obtained both, a
better convergence and a larger length over the Pareto front.

Our approach presented good results on the two-objective version of
WFG3, but in the three-objective version, the performance is not so good.
This may be consequence of the degenerated Pareto front, a characteris-
tic which is not evident on two objectives. Because of the division of the
search space by the ε values, we expected the approach to have some prob-
lems with degenerated Pareto fronts.

Finally we can say that, with the addition of a dispersion technique,
which reduces the number of function evaluations needed for the εCCDE
to work, the approach becomes very competitive while preserving its ad-
vantages on hard problems.

9
Incorporation of Preferences to εCCDE

Incorporating preferences of the decision maker to the optimization pro-
cess is a common practice in operational research [118]. It consist of ex-
pressing the preference for some objectives over the others, or for some
region of the objective space, aiming to reduce the total number of solu-
tions representing different compromises, and thus helping to the decision
making process.

Evolutionary algorithms are frequently designed to obtain a sample of
the whole Pareto front, giving all the information to the decision maker
and leaving to him/her the decision of which to implement (a posteriori
methods) [21]. However, it may be useful to express preferences a priori or
interactively to the optimization process, for example to reduce the com-
putational cost of generating many points on regions of little interest.

Here, we develop two mechanisms of incorporation of preferences to
our previously proposed εCCDE. We obtain two main advantages from
the use of such mechanisms:

• To reduce the computational cost related to obtaining the ideal and
nadir objective vectors.

The ideal and nadir objective vectors are not necessary when infor-
mation about the region of desired solutions is available, because
individual optimizations are carried out only inside that region.

• To alleviate the issues of the algorithm when solving many-objective

109

110 Incorporation of Preferences to εCCDE

problems.

Because the number of desired solutions as outcome may be smaller
(because they are closer to the desired values), is not necessary to
perform an aggressive sub-division of the objective space. This point
will be clarified after the descriptions of the developed mechanisms.

The two approaches developed for incorporation of preferences to the
εCCDE are: to provide ranges for m−1 objectives, and to provide a vector
of goals. Both approaches are described next.

9.1 Provide ranges for m− 1 objectives

With this first approach is easier to control the length of the portion of the
Pareto front that will be obtained, but the values of the solutions in one
objective function will be defined by the other objectives. This is useful if
the decision maker is interested in some values of specific objectives, but
he/she has not information about all of them.

This approach is a direct application of the ε-constraint method, which
needs the ideal and nadir vectors to bound the search. In this case, the
search is bounded by the ranges provided by the decision maker. In Fig-
ure 9.1 is shown an example for two objectives. The values of f1 are de-
fined by the range given for f2, which is the range of concern of the deci-
sion maker. A series of individual optimizations are carried out, as many
as the number of points desired as outcome.

The implementation of this approach is very simple: the ranges pro-
vided by the decision maker are assigned to the lb and ub vectors in Al-
gorithm 8 on page 86.

If many points are desired as outcome, or the problem has many (three
or more) objectives, the ε-constraint method can be used only to find the
extreme points in the range of interest (2m−1 points), and then the disper-
sion technique described in Section 7.3 on page 87 can be used.

9.1.1 Results
For this approach, it is very difficult to make a comparison of results with
another multiobjective approach, because even when there are some ap-
proaches that incorporate preferences of the decision maker [33, 48, 144],

9.1 Provide ranges for m− 1 objectives 111

f1

f2

Range of
interest of f 2 values

Possible ε

Pareto front

Figure 9.1: The ε-constraint method with ranges

the resulting covered region of the Pareto front will not be the same. Thus,
we decided to measure only convergence, adopting a unary performance
measure. We use the generational distance, GD [173], which measures the
differences from the obtained points to the nearest points of the true Pareto
front. As it measures distances, a value closer to zero is better.

The GD measure has received some critics because it only measures
distance from the true Pareto front, and not the dispersion or region cov-
ered. The inverted GD measure somehow alleviates these issues, measur-
ing the differences from every point of a good sample of the true Pareto
front to the nearest obtained point. However, when only a portion of the
Pareto front is intentionally produced, the inverted GD will always report
bad results, whilst the original GD measure will only measure conver-
gence, regardless of the portion of the Pareto front generated.

To validate this approach, we only use some WFG bi-objective prob-
lems, because the next approach is more suitable for many-objective prob-
lems. The ranges for the objective f2 were obtained randomly between the
corresponding entries of the ideal and nadir objective vectors. They are

112 Incorporation of Preferences to εCCDE

Table 9.1: Ranges adopted for the experiments

Test problem Ranges for the objective f2

WFG1 0.99 – 1.78
WFG2 2.18 – 2.89
WFG2 0.68 – 2.38

Table 9.2: Mean and standard deviation of the GD measure for the incor-
poration of preferences through ranges (a smaller value is better)

Test problem GD measure
mean (std. dev.)

WFG1 0.0265 (0.0082)
WFG2 0.0030 (0.0011)
WFG2 0.0085 (0.0024)

shown in Table 9.1.
The rest of the parameters were adapted to obtain 10 points: p = 10,

g = 75, with 10% of the population shared between optimizations (this
10% is chosen at random), for the cde procedure we used µ = 20, F = 0.7,
CR = 0.5. With these parameters, the approach performed 15, 000 function
evaluations.

The results for WFG1, WFG2 and WFG3 are shown in Figures 9.2 to
9.4.

We executed the technique 30 times for each problem, with the same
ranges, but different random seeds. The results of the application of the
GD measure are in Table 9.2.

All the values of Table 9.2 are very small, indicating a good perfor-
mance. The larger values correspond to WFG1; however, we had antic-
ipated this result, because WFG1 has been shown to be a very difficult
problem by other authors.

9.1 Provide ranges for m− 1 objectives 113

lb

ub

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

Points produced
True Pareto front

Figure 9.2: Results for WFG1

114 Incorporation of Preferences to εCCDE

ub

lb

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

Points produced
True Pareto front

Figure 9.3: Results for WFG2

9.1 Provide ranges for m− 1 objectives 115

ub

lb

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

Points produced
True Pareto front

Figure 9.4: Results for WFG3

116 Incorporation of Preferences to εCCDE

9.2 Provide a vector of goals

This second approach may appear more natural for a decision maker, be-
cause he/she provides only one point zgoal = (zgoal

1 , . . . , zgoal
m) (one value

for each of the m objectives), and expects values near of it. The entries of
the zgoal vector are frequently called aspiration levels [118] or goals, and there
are several methods based on them in the operational research area (such
as goal programming, or the reference points models). For this reason, this
approach may be more familiar to the decision maker.

With this approach is a little harder to control the length of the portion
of the Pareto front that will be generated, but if at least two executions are
allowed, or previous knowledge about the dimensions of the Pareto front
is available, it is possible to determine such a length. However, this knowl-
edge is not mandatory to apply this approach, and the resulting points will
always be close to the provided goals.

Figures 9.5 and 9.6 show two cases of vectors of goals, one of them after
the true Pareto front, and one before it. In both cases, an optimization
per objective is performed, using a modified version of the ε-constraint
problem, whose values for the constraints are taken from the vector of
goals (for that reason, we call it goal-constraint):

minimize fi(x)

subject to fj(x) ≤ zgoal
j ∀j = {1, . . . , m}, j 6= i

This process is carried out for all i ∈ {1, . . . ,m}, with the aim of ob-
taining the vertices of the region to be explored. The solution of each goal-
constraint problem is the nearest weakly Pareto optimal solution less or
equal to the set of goals zgoal

j with j 6= i. If the solution of the problem
is unique, it will be Pareto optimal, with the same proximity to the goals.
These two characteristics can be proven in a very similar way as the proofs
of Pareto optimality for the ε-constraint problem (see Appendix D).

It is possible that any of these optimization processes cannot find a fea-
sible solution (depending on the shape of the Pareto front, and the vector
of goals chosen), but an infeasible solution will work in most of the cases
as an approximation for the next steps. If there is no feasible solution for
one problem, it is possible to generate one by eliminating some of the m−1
constraints of the problem, but this may increase the computational cost of
the approach. The only advise for this approach, is that the defined goals

9.2 Provide a vector of goals 117

f1

f2

zgoal

the vector of goals
Vertices obtained from

Pareto front

Figure 9.5: Use of a vector of goals after the Pareto front

are not lower that the corresponding entry of the ideal objective vector
(in that case, no feasible solution will be found, because there is no x that
fulfills the constraints of the problem).

Once all the optimizations have been performed, we apply the payoff
table method to the results, and these values will define the ranges for the
optimizations, together with the vector zgoal.

We propose this goal-constraint method for defining the portion of the
Pareto front generated by our approach, but it can be used by any other
technique that supports ranges for the incorporation of preferences. The
use of the same method for defining the generated portion of the Pareto
front would allow to make comparisons of techniques, which is currently
very difficult due to the variety of methods.

To obtain some points between these ranges (if desired by the user or
decision maker), several executions of the ε-constraint method can be per-
formed, or, again, the alternative dispersion technique can be used if the
problem has many objectives. In such a case, we can only obtain the ver-
tices of the region defined by zgoal, and perform a few evaluations of the

118 Incorporation of Preferences to εCCDE

f2

f1

zgoal

the vector of goals
Vertices obtained fromPareto front

Figure 9.6: Use of a vector of goals before the Pareto front

dispersion technique, to obtain at least one intermediate point. This pro-
cess will produce several points at a reasonable computational cost, even
for problems of ten or more objectives.

9.2.1 Results

This time we performed the experiments on problems with more objec-
tives, to show the potential of the technique. Firstly, we performed exper-
iments on WFG1 and WFG2 with two and three objectives, to show the
results graphically. Then, some experiments were performed on the same
test problems with five and ten objectives.

The vectors of goals provided were obtained randomly between the
ideal and nadir objective vectors. In Table 9.3 are shown the vectors of
goals adopted. The rest of the parameters were adopted to obtain 20
points.

The parameters adopted for the two-objective problems were: p = 5,
g = 150 for WFG1 and g = 75 for WFG2, with 10% of the population
shared between optimizations (this 10% is chosen at random). For the cde

9.2 Provide a vector of goals 119

Table 9.3: Vectors of goals adopted for the experiments

Test Problem Number of objectives Vector of goals
WFG1 2 (0.47, 1.03)
WFG2 2 (1.08, 2.12)
WFG1 3 (0.23, 2.44, 4.91)
WFG2 3 (0.29, 0.79, 0.77)
WFG1 5 (1.48, 1.80, 1.90, 4.78, 7.03)
WFG2 5 (1.75, 0.58, 5.14, 0.91, 6.54)
WFG1 10 (1.97, 3.35, 0.40, 1.41, 8.35,

2.77, 2.80, 4.02, 14.67, 7.18)
WFG2 10 (1.50, 3.70, 5.90, 3.84, 9.84,

9.78, 1.33, 13.10, 17.44, 8.30)

procedure we used µ = 20, F = 0.7, CR = 0.5. The maximum number of
function evaluations for the dispersion technique was set to 7, 500. With
these parameters, the approach performed 30, 000 function evaluations for
WFG1 and 15, 000 for WFG2.

The parameters adopted for the three-objective problems were: p = 3,
g = 150 for WFG1 and g = 75 for WFG2, with 10% of the population
shared between optimizations (this 10% is chosen at random). For the cde
procedure we used µ = 20, F = 0.7, CR = 0.5. The maximum number of
function evaluations for the dispersion technique was set to 6, 500. With
these parameters, the approach performed 40, 000 function evaluations for
WFG1 and 20, 000 for WFG2.

The parameters adopted for the five-objective problems were: p = 2,
g = 100 for WFG1 and g = 50 for WFG2, with 10% of the population
shared between optimizations (this 10% is chosen at random). For the cde
procedure we used µ = 20, F = 0.7, CR = 0.5. The maximum number of
function evaluations for the dispersion technique was set to 4, 000. With
these parameters, the approach performed 40, 000 function evaluations for
WFG1 and 20, 000 for WFG2.

The parameters adopted for the ten-objective problems were: p = 1,
g = 150 for WFG1 and g = 75 for WFG2, with 10% of the population
shared between optimizations (this 10% is chosen at random). For the cde

120 Incorporation of Preferences to εCCDE

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

Points produced
Vector of goals

True Pareto front

Figure 9.7: Results for the two-objective WFG1

procedure we used µ = 20, F = 0.7, CR = 0.5. The maximum number of
function evaluations for the dispersion technique was set to 10, 000. With
these parameters, the approach performed 50, 000 function evaluations for
WFG1 and 25, 000 for WFG2.

The results for the two-objective problems adopted are shown in Fig-
ures 9.7 and 9.8, while the results for the three-objective problems are
shown in Figures 9.9 and 9.10.

The results of the application of the GD measure on all the instances
adopted are in Table 9.4.

According to the GD measure, the approach decreases in quality as we
increase the number of objectives. This sort of behavior is exhibited by
most other evolutionary multiobjective approaches as well, and is subject
of current research.

Another source for the degradation of the quality is that, as the number
of objectives increases, the ranges for the higher objectives also increase
(for the WFG problems), as can be seen from their expressions (see Ap-
pendix B).

Regarding the different test problems, the technique obtain better re-

9.2 Provide a vector of goals 121

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

Points produced
Vector of goals

True Pareto front

Figure 9.8: Results form the two-objective WFG2

Point produced
True Pareto front

0
0.5

1
1.5

2 0 0.51 1.52 2.53 3.54
−1

0
1
2
3
4
5
6

Vector of goals

Figure 9.9: Results for the three-objective WFG1

122 Incorporation of Preferences to εCCDE

Points produced
Vector of goals

True Pareto front

0
0.5

1
1.5

2 0
0.5

1
1.5

2
2.5

3
3.5

4
0
1
2
3
4
5
6

Figure 9.10: Results for the three-objective WFG2

Table 9.4: Mean and standard deviation of the GD measure for the incor-
poration of preferences through a vector of goals (a smaller value is better)

Test Problem Number of objectives GD measure
mean (std. dev.)

WFG1 2 0.0142
WFG2 2 0.0015
WFG1 3 0.0511
WFG2 3 0.0124
WFG1 5 0.4176
WFG2 5 0.2379
WFG1 10 1.2867
WFG2 10 0.6675

9.2 Provide a vector of goals 123

sults for WFG2, for all the number of objectives adopted here. These re-
sults are consistent with all the previous experiments involving WFG1,
which has shown to be a very difficult problem.

The overall results are very good, lower than 0.1 for three objectives,
lower than 0.5 for five objectives, and lower than 1.5 for ten objectives.
When comparing these values is important to keep in mind the increase of
the ranges of higher objectives for WGF problems.

124 Incorporation of Preferences to εCCDE

10
Final Remarks

In the first part of this work, we developed a cultural algorithm for con-
strained optimization problems. This algorithm is based on differential
evolution, a recently developed algorithm that has been found to be very
effective for problems with real-valued decision variables. The cultural
algorithm proposed here, includes four knowledge sources to exploit dif-
ferent aspects of the search, cooperating and competing to be the one with
more improvements on the solutions. The knowledge sources included
are the following:

Situational knowledge. This source involves the identification of a leader,
which is the best individual found so far, and the attempts of other
individuals to imitate it. Situational knowledge increases the pres-
sure of the search towards the best point found; this has found to be
useful in certain phases of the search. Moreover, the variant of dif-
ferential evolution which only has an operator similar to this one, is
one of the most competitive variants.

Normative knowledge. This source stores ranges where good solutions
have been found. It has two adaptive functionalities: at the begin-
ning of the search, or when the ranges are wide, it works as an ex-
ploration operator, because it tries to spread the solutions into the
intervals; if the ranges are narrow, it works as an exploitation oper-
ator, because it focus only on that good region. Our implementation

125

126 Final Remarks

for differential evolution can also be seen as a mechanism for self-
adaptation of the F parameter.

Topographical knowledge. It builds a map of promising regions, based
on the fitness of previously generated points. Thus, it is possible to
identify disjoint promising regions. This source also increases the
pressure of the search, but this pressure is towards several regions
(possibly different local optima), diversifying the search.

History knowledge. This source tries to identify patterns in the locations
of previous good solutions, in order to predict unexplored good re-
gions. The original motivation of this source is for its use in dy-
namic environments, but it could be useful also in a static problem
which present certain regularity or symmetry in its fitness landscape.
The proposed expression for this knowledge source provides also a
mechanism to preserve diversity, generating random individuals in
the whole search space.

The synergic effect of all knowledge sources has shown to be effective,
when analyzing the results of the proposed approach on all the problems
of a well-known benchmark; also the approach was tested on two different
instances of an engineering optimization problem (design of trusses).

In the second part of the work, we explore further alternatives for the
application of cultural algorithms. This time, we couple the previously de-
veloped cultural algorithm and a mathematical programming method (the
ε-constraint method), in order to solve multiobjective optimization prob-
lems. This time the motivation is to take advantage of the convergence
capabilities that the cultural algorithm exhibited, assigning it task of sam-
pling a Pareto front. This way, we expect to obtain good approximations
of the Pareto front, even in problems where other evolutionary approaches
have presented difficulties.

Regarding computational cost, with a hybrid approach that performs
independent sampling is difficult to reduce the total number of objective
function evaluation, because the approach performs an optimization pro-
cess per each point produced, contrary to most evolutionary approaches
that produce a set of points in a single search process. However, with
the help of some additional mechanisms, is possible to perform a similar
number of objective evaluations than other approaches.

10.1 Conclusions 127

Given such conditions, the proposed hybrid approach obtained very
good approximations in hard problems, while the performance in easy
and regular problems is very competitive.

Finally, we present an approach for incorporating preferences of the
decision maker to the multiobjective approach, for special cases when the
entire Pareto front is not necessary, thus reducing the cost of the search
focusing in a smaller region. With this last contribution, we conclude pre-
senting different proposals that cover a wide range of situations.

10.1 Conclusions

The following conclusions were obtained during the development process
of the approach for constrained optimization, its experimental validation,
as well as its application as a part of a hybrid algorithm for multiobjective
optimization.

• The proper use of domain information incorporated into an evolu-
tionary algorithm can enhance its convergence capabilities (as is the
case of the results in Chapter 5), the quality of solutions obtained (as
is the case of the results in several problems in Chapter 8), or both.

• Cultural algorithms are a promising alternative to incorporate do-
main information into an evolutionary algorithm. The main advan-
tage of cultural algorithms is that, in addition to the domain knowl-
edge incorporated a priori, the information can be extracted from the
population during the search process itself, giving characteristics of
self-adaptation to different instances of the problem.

• For the case of constrained optimization with real-valued decision
variables, differential evolution is a powerful alternative. Addition-
ally to this work, recently several authors have chosen differential
evolution for constrained optimization tasks [94, 105, 112].

• If we use different knowledge sources emphasizing different aspects
of the search, the interaction of them is beneficial for the entire search
process.

128 Final Remarks

• The approach for constrained optimization presented here is able
to reduce the computational cost (measured as the number of ob-
jective functions evaluations) compared with other evolutionary al-
gorithms, when approximating the global optimum of constrained
optimization problems. The experiments included in Chapter 5 re-
ported competitive results, but requiring 7%-40% of the number of
evaluations of other 4 algorithms. This is specially useful when the
evaluation of objective functions are computationally expensive (e.g.
when there is no analytical expression for the objective function,
when the results are provided by a simulator, or when they require
intensive computations, as is the case of the optimization of trusses
adopted in this work).

• The convergence capabilities of the proposed approach are useful
in several applications, including the hybridization with other tech-
niques. We exploited this characteristic in a proposal for multiobjec-
tive optimization problems, obtaining good results on hard problems
(see Chapter 8).

• Even when mathematical programming methods of independent sam-
pling (as the ε-constraint method) are not very popular in evolu-
tionary computation, are useful in certain situations, like the case
when dealing with very difficult problems for other evolutionary ap-
proaches. This is because these methods focus on a single sample of
the Pareto front at a time, and thus can achieve a better convergence
towards that point.

• The hybrid methods based on independent sampling can result very
expensive, because of the several optimization processes carried out.
An alternative to reduce this cost is reducing the number of points
produced. In any case, if a good single-objective optimizer is chosen,
each point will be a good approximation. Our experiments with the
technique based only on independent sampling, obtained better re-
sults in 6 out of 9 problems with different characteristics, when com-
paring with the results of the NSGA-II. In one case, the output sets of
our proposed technique always dominate the sets of those produced
by the NSGA-II.

• Another alternative to reduce that cost, is to perform a second phase

10.2 Future work 129

algorithm. The first stage is responsible of convergence, and the sec-
ond must be designed to spread the points. We implemented a tech-
nique for that second phase, and we obtained better results in 10
out of 15 different problems, when comparing with the results of the
NSGA-II. These experiments were performed with a lower number
of function evaluations, when comparing with the previous case.

• The incorporation of preferences to a multiobjective algorithm is an
advisable practice when the needed information is available (in this
case, a vector of goals), because it can reduce the computational cost
required by the algorithm. With the approach proposed here for in-
corporating preferences, we were able to perform experiments with
problems that have up to 10 objectives. In this case, it would be use-
ful a framework that allows comparisons of the performances dif-
ferent algorithms. The approach proposed here can be useful for
such task, and can be used as a starting point for more sophisticated
methodologies.

10.2 Future work

Cultural algorithms have been scarcely applied, considering the wide range
of problems adopted for other evolutionary approaches. There exist also
little theoretical studies about them. In this field, thus, there is much work
to do. Particular research ideas are the following:

• The application of cultural algorithms to other optimization prob-
lems. Particularly suitable problems are those that have been inten-
sively studied, and we have important results for them (we posses a
considerable amount of domain knowledge). Such is the case of sev-
eral combinatorial optimization problems, and scheduling problems,
where cultural algorithms are promising alternatives.

• The development of theoretical models to describe the properties of
cultural algorithms. Seminal works are in [146, 14], but no further
advances have been developed.

130 Final Remarks

• In constrained optimization, it may be possible to design a fifth knowl-
edge source: the domain knowledge. This task may be difficult be-
cause of the generality of the problem; this is more like information
added a priori. Reynolds has previously suggested that five knowl-
edge sources (those included in this work, plus the domain knowl-
edge) are a complete set, and other sources can be represented as a
combination of this set. That statement remains to be proven.

• In multiobjective optimization, the experimentation and comparison
methodologies are constantly developing. An important work that
remains to be done is a good framework that allows a proper experi-
mentation and comparison of results of approaches that incorporate
preferences.

A
Single-objective Constrained Optimization
Problems

The following is the benchmark originally proposed in [116] and extended
in [153] which is used in this thesis. The 13 test problems are the following.

g01.

Minimize

f(x) = 5
4∑

i=1

xi − 5
4∑

i=1

x2
i −

13∑
i=5

xi

subject to

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

131

132 Single-objective Constrained Optimization Problems

where: 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and
0 ≤ x13 ≤ 1.

The optimum solution is x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where
f(x∗) = −15.

g02.

Maximize

f(x) =

∣∣∣∣∣
∑n

i=1 cos4(xi)− 2
∏n

i=1 cos2(xi)√∑n
i=1 ix2

i

∣∣∣∣∣

subject to

g1(x) = 0.75−
n∏

i=1

xi ≤ 0

g2(x) =
n∑

i=1

xi − 7.5n ≤ 0

where: n = 20 y 0 ≤ xi ≤ 10 (i = 1, . . . , n).

The best known solution is f(x∗) = 0.803619.

g03.

Maximize

f(x) = (
√

n)n

n∏
i=1

xi

subject to

h1(x) =
n∑

i=1

x2
i − 1 = 0

where: n = 10 y 0 ≤ xi ≤ 1 (i = 1, . . . , n).

The optimum solution is x∗i = 1/
√

n (i = 1, . . . , n) where f(x∗) = 1.

133

g04.

Minimize

f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4

−0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4

+0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+0.0021813x2
3 − 110 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2

−0.0021813x2
3 + 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3

−0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5).

The optimum solution is x∗ = (78, 33, 29.995256025682,
45, 36.775812905788) where f(x∗) = −30665.539.

g05.

Minimize

f(x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2

subject to

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25)

+894.8− x1 = 0

134 Single-objective Constrained Optimization Problems

h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25)

+894.8− x2 = 0

h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25)

+1294.8 = 0

where: 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55 and
−0.55 ≤ x4 ≤ 0.55.

The best known solution is x∗ = (679.9453, 1026.067, 0.1188764,
−0.3962336) where f(x∗) = 5126.4981.

g06.

Minimize
f(x) = (x1 − 10)3 + (x2 − 20)3

subject to

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)− 82.81 ≤ 0

where: 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100.

The optimum solution is x∗ = (14.095, 0.84296) where
f(x∗) = −6961.81388.

g07.

Minimize

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

135

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where: −10 ≤ xi ≤ 10 (i = 1, . . . , 10).

The optimum solution is x∗ = (2.171996, 2.363683, 8.773926,
5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927)
where f(x∗) = 24.3062091.

g08.

Maximize

f(x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

subject to

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0

where: 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10.

The optimum solution is x∗ = (1.2279713, 4.2453733) where f(x∗) =
0.095825.

g09.

Minimize

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

subject to

g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

136 Single-objective Constrained Optimization Problems

where: −10 ≤ xi ≤ 10 (i = 1, . . . , 7).

The optimum solution is x∗ = (2.330499, 1.951372,−0.4775414,
4.365726,−0.6244870, 1.038131, 1.594227) where f(x∗) = 680.6300573.

g10.

Minimize
f(x) = x1 + x2 + x3

subject to

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where: 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3) and 10 ≤ xi ≤
1000 (i = 4, . . . , 8).

The optimum solution is x∗ = (579.19, 1360.13, 5109.92, 182.0174,
295.5985, 217.9799, 286.40, 395.5979), where f(x∗) = 7049.25.

g11.

Minimize
f(x) = x2

1 + (x2 − 1)2

subject to

h(x) = x2 − x2
1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1.

The optimum solution is x∗ = (±1/
√

2, 1/2) where f(x∗) = 0.75.

g12.

Maximize

f(x) =
(100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)

100

137

subject to

g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where: 0 ≤ xi ≤ 10 (i = 1, 2, 3), and p, q, r = 1, 2, . . . , 9.

The optimum solution is x∗ = (5, 5, 5) where f(x∗) = 1.

g13.

Minimize
f(x) = ex1x2x3x4x5

subject to

h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x3
1 + x3

2 − 1 = 0

where: −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5).

The optimum solution is x∗ = (−1.717143, 1.595709, 1.827247,
−0.7636413,−0.763645) where f(x∗) = 0.0539498.

Additionally to this standard benchmark, we adopted in this thesis the
optimization of a 10-bar plane truss and a 200-bar plane truss.

Design of a 10-bar plane truss.

Consider the 10-bar plane truss shown in Figure A.1 [5]. The prob-
lem is to find the cross-sectional area of each member of this truss,
such that we minimize its weight. The problem is subject to both
displacement and stress constraints. The weight of the truss is given
by f(x).

f(x) =
10∑

j=1

ρAj Lj

where x is the candidate solution, Aj is the cross-sectional area of the
jth member, Lj is the length of the jth member, and ρ is the weight
density of the material. The assumed data are: modulus of elasticity,

138 Single-objective Constrained Optimization Problems

6 4 2

360"

 360" 360"

 5 3 1

Figure A.1: 10-bar plane truss adopted for problem G14.

h
0.1 in

0.1 in

 w

w

0.1 in

Figure A.2: Cross-section used for the 10-bar plane truss from problem
G14.

139

E = 1.09×104 ksi, ρ = 0.10 lb/in3, and a load of 100 kips in the nega-
tive y-direction is applied at nodes 2 and 4. The maximum allowable
stress of each member is called σa, and it is assumed to be ±25 ksi.
The maximum allowable displacement of each node (horizontal and
vertical) is represented by ua, and is assumed to be 2 inches. The
minimum allowable cross-section area is 0.10 in2 for all members.
The cross-section of each element can be different, and is defined by
the I-section shown in Figure A.2, with the depth and width as de-
sign variables. The web thickness and flange thickness are each kept
fixed at 0.1 in. The problem has, therefore, 20 design variables.

To solve this problem, it was necessary to add a module responsible
for the analysis of the plane truss. This module uses the stiffness
method [55] to analyze the structure, and returns the values of the
stress and displacement constraints, as well as the total weight of the
structure.

Design of a 200-bar plane truss.

Consider the 200-bar plane truss taken from Belegundu [5] and shown
in Figure A.3. The problem is to find the cross-sectional area of each
member of this truss, such that we minimize its weight. The problem
is subject to both displacement and stress constraints.

There are a total of three loading conditions: (1) 1 kip acting in pos-
itive x-direction at node points 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and
71; (2) 10 kips acting in negative y-direction at node points 1, 2, 3,
4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 24, 71, 72, 73, 74, and 75;
and (3) loading condition 1 and 2 acting together. The 200 elements
of this truss linked to 29 groups. The grouping information is shown
in Table A.1. The stress in each element is limited to a value of 10
ksi for both tension and compression members. Young’s modulus of
elasticity = 30,000 ksi, weight density = 0.283× 10−3 kips/in3.

140 Single-objective Constrained Optimization Problems

Group Member
Number Number

1 1,2,3,4
2 5,8,11,14,17
3 19,20,21,22,23,24
4 18,25,56,63,94,101,132,139,170,177
5 26,29,32,35,38
6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37
7 39,40,41,42
8 43,46,49,52,55
9 57,58,59,60,61,62

10 64,67,70,73,76
11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75
12 77,78,79,80
13 81,84,87,90,93
14 95,96,97,98,99,100
15 102,105,108,111,114
16 82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113
17 115,116,117,118
18 119,122,125,128,131
19 133,134,135,136,137,138
20 140,143,146,149,152
21 120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151
22 153,154,155,156
23 157,160,163,166,169
24 171,172,173,174,175,176
25 178,181,184,187,190
26 158,159,161,162,164,165,167,168,179,180,182,183,185,186,188,189
27 191,192,193,194
28 195,197,198,200
29 196,199

Table A.1: Group membership for the 200-bar plane truss from problem
G15.

141

240"

1 2 3 4 5

6 7 8 9 10 11 12 13 14

15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33

34 35 36 37 38 39 40 41 42

43 44 45 46 47

48 49 50 51 52 53 54 55 56

57 58 59 60 61

62 63 64 6665 67 68 69 70

71 72 73 74 75

144"

1 32 4

5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34
35 36 37 38

39 40 41 42

43 46 4744 45 48 49 50 51
52 53 54 55

56 57 58 59 60 61 62 63

64
65

66 67 68
69 70 71 72 73 74 75 76

77 78 79 80

81 82 83
84 85 86

87 88 89 90 91 92 93
94 95 96 97 98 99 100 101

102 103
104 105 106

107 108 109 110 111 112 113 114

115 116 117 118

119 120 121
122

123 124
125

126 127
128

129 130
131

132 133 134 135 136 137 138 139

140
141

142 143 144 145 146 147
148 149 150 151 152

153 154 155 156

157
158 159

160
161 162

163
164 165

166
167 168

169
170 171 172 173 174 175 176 177

178 179 180 181 182 183 184 185 186 187 188
189 190

191 192 193 194

195 196 197 198 199 200 360"

76 77

x

x

2

1

Figure A.3: 200-bar plane truss used for problem G15.

142 Single-objective Constrained Optimization Problems

B
Multiobjective Optimization Problems

The first test suite adopted in this thesis is the one from [71]. The authors
of this suite propose a set of transformations that are sequentially applied
to the decison variables, where each transformation adds a desired charac-
teristic to the problem. All the problems generated with this methodology
follow this format:

Given z = [z1, . . . , zk, zk+1, . . . , zn]

Minimize fm=1:M(x) = DxM + Smhm(x1, . . . , xM−1)

where x = [x1, . . . , xM]

= [max(tpM , A1)(t
p
1 − 0.5) + 0.5, . . . ,

max(tpM , AM−1)(t
p
M−1 − 0.5) + 0.5, tpM]

tp = [tp1, . . . , t
p
M]←[tp−1 ←[. . .←[t1 ←[z[0,1]

z[0,1] = [z1,[0,1], . . . , zn,[0,1]]

= [z1/z1,max, . . . , zn/zn,max]

where z is the vector of decision variables with 0 ≤ zi ≤ zi,max, D, A1:M−1

and S1:M are constants to modify position and scale of the Pareto front.
The h1:M functions define the shape of the Pareto front, which can be

linear, convex, concave, mixed convex and concave, and disconnected.

143

144 Multiobjective Optimization Problems

Such characteristics are obtained with the following set of functions:

linear1(x1, . . . , xM−1) =
M−1∏
i=1

xi

linearm=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

xi

)
(1− xM−m+1)

linearM(x1, . . . , xM−1) = 1− x1

convex1(x1, . . . , xM−1) =
M−1∏
i=1

(1− cos(xiπ/2))

convexm=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

(1− cos(xiπ/2))

)
·

(1− sin(xM−m+1π/2))

convexM(x1, . . . , xM−1) = 1− sin(x1π/2)

concave1(x1, . . . , xM−1) =
M−1∏
i=1

sin(xiπ/2))

concavem=2:M−1(x1, . . . , xM−1) =

(
M−m∏
i=1

sin(xiπ/2)

)
·

cos(xM−m+1π/2)

concaveM(x1, . . . , xM−1) = cos(x1π/2)

mixedM(x1, . . . , xM−1) =

(
1− x1 − cos(2Aπx1 + π/2)

2Aπ

)α

discM(x1, . . . , xM−1) = 1− xα
1 cos2(Axβ

1π)

For a mixed Pareto front, when α > 1 the overall shape is concave,
when α < 1 it is concave, and when α = 1 it is linear; the number of
segments concave-convex is A. For a disconnected Pareto front, α controlls
the overall shape in the same way it do for a mixed front; β controlls the
location of the disconnected segments, and the number of disconnected
segments is A.

145

The rest of the characteristics of the problem are added through a set
of transformations. Huband et al. distinguish between three types of
transformations, based on the characteristics they emphasize as important
when designing multiobjective problems. Bias transformations produce
a bias in the fitness landscape, and are used to produce polynomial bias,
flat regions, or other type of bias depending of the values of another vari-
ables; shift transformations move the location of optimal values, and are
used to apply a linear shift, or to produce deceptive and multimodal prob-
lems; and reduction transformations, which combine the values of several
variables into a single one, this is used to produce nonseparability of the
problem (dependency between variables). The set of transformations is
the following:

b_poly(y, α) = yα

b_flat(y, A, B, C) = A + min(0, by −Bc)A(B − y)

B
−

min(0, bC − yc)(1− A)(y − C)

1− C

b_param(y, u(y′), A, B, C) = yB+(C−B)(A−(1−2u(y′))|b0.5−u(y′)c+A|)

s_linear(y,A) =
|y − A|

|bA− yc+ A|

s_decept(y,A, B, C) = 1 + (|y − A| −B)

(
by − A + Bc (1− C + A−B

B

)

A−B
+

bA + B − yc (1− C + 1−A−B
B

)

1− A−B
+

1

B

)

s_multi(y, A,B, C) =

(
1 + cos

(
(4A + 2)π

(
0.5− |y − C|

2(bC − yc+ C)

))
+

4B

(|y − C|
2(bC − yc+ C)

)2
)/

(b + 2)

r_sum(y,w) =

∑|y|
i=1 w1yi∑|y|
i=1 wi

146 Multiobjective Optimization Problems

r_nonsep(y, A) =

∑|y|
j=1

(
yj +

∑A−2
k=0

∣∣yj − y1+(j+k)mod|y|
∣∣
)

|y|
A

⌈
A
2

⌉ (
1 + 2A− 2

⌈
A
2

⌉)

With this set of transformations and shape functions, Huband et al.
propose a set of scalable problemas. It is easy to obtain the characteristics
of each based on the transformation and shape functions used.

WFG1

Minimize

fm=1:M−1(x) = xM + Smconvexm(x1, . . . , xM−1)

fM(x) = xM + SMmixedM(x1, . . . , xM−1)

where

yi=1:M−1 = r_sum([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)],

[2((i− 1)k/(M − 1) + 1), . . . , 2ik/(M − 1)])

yM = r_sum([y′k+1, . . . , y
′
n], [2(k + 1), . . . , 2n])

y′i=1:n = b_poly(y′′i , 0.02)

y′′i=1:k = y′′′i

y′′i=k+1:n = b_flat(y′′′i , 0.8, 0.75, 0.85)

y′′′i=1:k = zi,[0,1]

y′′′i=k+1:n = s_linear(zi,[0,1], 0.35)

WFG2

Minimize

fm=1:M−1(x) = xM + Smconvexm(x1, . . . , xM−1)

fM(x) = xM + SMdiscM(x1, . . . , xM−1)

where

yi=1:M−1 = r_sum([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r_sum([y′k+1, . . . , y
′
k+l/2], [1, . . . , 1])

y′i=1:k = y′′i
y′i=k+1:k+l/2 = r_nonsep([y′′k+2(i−k)−1, y

′′
k+2(i−k)], 2)

y′′i=1:k = zi,[0,1]

y′′i=k+1:n = s_linear(zi,[0,1], 0.35)

147

WFG3

Minimize

fm=1:M(x) = xM + Smlinearm(x1, . . . , xM−1)

where

yi=1:M−1 = r_sum([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r_sum([y′k+1, . . . , y
′
k+l/2], [1, . . . , 1])

y′i=1:k = y′′i
y′i=k+1:k+l/2 = r_nonsep([y′′k+2(i−k)−1, y

′′
k+2(i−k)], 2)

y′′i=1:k = zi,[0,1]

y′′i=k+1:n = s_linear(zi,[0,1], 0.35)

WFG4

Minimize

fm=1:M(x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r_sum([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r_sum([y′k+1, . . . , y
′
n], [1, . . . , 1])

y′i=1:n = s_multi(zi,[0,1], 30, 10, 0.35)

WFG5

Minimize

fm=1:M(x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r_sum([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r_sum([y′k+1, . . . , y
′
n], [1, . . . , 1])

y′i=1:n = s_decept(zi,[0,1], 0.35, 0.001, 0.05)

148 Multiobjective Optimization Problems

WFG6

Minimize

fm=1:M(x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r_nonsep([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], k/(M − 1))

yM = r_nonsep([y′k+1, . . . , y
′
n], l)

y′i=1:k = zi,[0,1]

y′i=k+1:n = s_linear(zi,[0,1], 0.35)

WFG7

Minimize

fm=1:M(x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r_sum([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r_sum([y′k+1, . . . , y
′
n], [1, . . . , 1])

y′i=1:k = y′′i
y′i=k+1:n = s_linear(y′′i , 0.35)

y′′i=1:k = b_param(zi,[0,1], r_sum([zi+1,[0,1], . . . , zn,[0,1]],

[1, . . . , 1]), 0.98/49.98, 0.02, 50)

y′′i=k+1:n = zi,[0,1]

WFG8

Minimize

fm=1:M(x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r_sum([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], [1, . . . , 1])

yM = r_sum([y′k+1, . . . , y
′
n], [1, . . . , 1])

149

y′i=1:k = y′′i
y′i=k+1:n = s_linear(y′′i , 0.35)

y′′i=1:k = zi,[0,1]

y′′i=k+1:n = b_param(zi,[0,1], r_sum([z1,[0,1], . . . , zi−1,[0,1]],

[1, . . . , 1]), 0.98/49.98, 0.02, 50)

WFG9

Minimize

fm=1:M(x) = xM + Smconcavem(x1, . . . , xM−1)

where

yi=1:M−1 = r_nonsep([y′(i−1)k/(M−1)+1, . . . , y
′
ik/(M−1)], k/(M − 1))

yM = r_nonsep([y′k+1, . . . , y
′
n], l)

y′i=1:k = s_decept(y′′i , 0.35, 0.001, 0.05)

y′i=k+1:n = s_multi(y′′i , 30, 95, 0.35)

y′′i=1:n−1 = b_param(zi,[0,1], r_sum([zi+1,[0,1], . . . , zn,[0,1]],

[1, . . . , 1]), 0.98/49.98, 0.02, 50)

y′′n = zn,[0,1]

The authors of this suite suggest to use this problems with 24 variables
(k = 4 and n = 24). The following constants hold for all the problems:

zi=1:n,max = 2i

Sm=1:M = 2m

A1 = 1

A2:M−1 =

{
0, for WFG3
1, otherwise

D = 1

The second test suite adopted is the one from [125]. The problems are
not scalable, and the expressions are the following.

150 Multiobjective Optimization Problems

OKA1
Minimize

f1(x) = cos
(π

12

)
x1 − sin

(π

12

)
x2

f2(x) =
√

2π −
√∣∣∣cos

(π

12

)
x1 − sin

(π

12

)
x2

∣∣∣

+2
∣∣∣sin

(π

12

)
x1 + cos

(π

12

)
x2

−3 cos
(
cos

(π

12

)
x1 − sin

(π

12

)
x2

)
− 3

∣∣∣
1
3

where 6 sin
(

π
12

) ≤ x1 ≤ 6 sin
(

π
12

)
+ 2π cos

(
π
12

)
and −2π sin

(
π
12

) ≤
x2 ≤ 6 cos

(
π
12

)
.

OKA2
Minimize

f1(x) = x1

f2(x) = 1− 1

4π2
(x1 + π)2 + |x2 − 5 cos(x1)|

1
3 + |x3 − 5 sin(x1)|

1
3

where −π ≤ x1 ≤ π and −5 ≤ x2, x3 ≤ 5.

Finally, we also adopted the test suite from [178]. All the problems are
based in this format:

Minimize
f(x) = (f1(x1), f2(x))

with
f2(x) = g(x2, . . . , xn)h(f1(x1), g(x2, . . . , xn))

A particular instance is constructed by defining f1, g and h. The fol-
lowing problems are proposed by the authors of this suite.

ZDT1

f1(x1) = x1

g(x2, . . . , xn) = 1 + 9
n∑

i=2

xi

m− 1

h(f1, g) = 1−
√

f1

g

151

where n = 30 and 0 ≤ xi ≤ 1.

ZDT2

f1(x1) = x1

g(x2, . . . , xn) = 1 + 9
n∑

i=2

xi

m− 1

h(f1, g) = 1−
(

f1

g

)2

where n = 30 and 0 ≤ xi ≤ 1.

ZDT3

f1(x1) = x1

g(x2, . . . , xn) = 1 + 9
n∑

i=2

xi

m− 1

h(f1, g) = 1−
√

f1

g
− f1

g
sin(10πf1)

where n = 30 and 0 ≤ xi ≤ 1.

ZDT4

f1(x1) = x1

g(x2, . . . , xn) = 1 + 10(m− 1) +
n∑

i=2

(x2
i − 10 cos(4πxi))

h(f1, g) = 1−
√

f1

g

where n = 10, 0 ≤ x1 ≤ 1 and −5 ≤ xi=2,...,n ≤ 5.

152 Multiobjective Optimization Problems

C
Histograms of the Bootstrap Distributions for the
Constrained Optimization Problems

In this appendix, we show the histograms of the bootstrap distributions
of 1,000 resamples, for each problem of the benchmark for constrained
optimization which has been produced at least two different results. The
histograms are shown in Figures C.1 to C.8.

153

154 Histograms of the Bootstrap Distributions for the Constrained Problems

−17 −16 −15 −14 −13

0

200

400

600

800

1000

Mean Results of Resamples for g01

Figure C.1: Bootstrap distribution for the mean statistic for problem g01.

-0.8 -0.75 -0.7 -0.65

0

50

100

150

200

Mean Results of Resamples for g02

histogram y

Figure C.2: Bootstrap distribution for the mean statistic for problem g02.

155

-0.89 -0.84 -0.79 -0.74 -0.69

0

50

100

150

200

Mean Results of Resamples for g03

histogram y

Figure C.3: Bootstrap distribution for the mean statistic for problem g03.

5170 5180 5190 5200 5210 5220 5230 5240 5250

0

50

100

150

200

Mean Results of Resamples for g05

histogram y

Figure C.4: Bootstrap distribution for the mean statistic for problem g05.

156 Histograms of the Bootstrap Distributions for the Constrained Problems

24.3062 24.3062 24.3062 24.3062 24.3062 24.3062 24.3062

0

200

400

600

800

1000

Mean Results of Resamples for g07

Figure C.5: Bootstrap distribution for the mean statistic for problem g07.

7049.246 7049.247 7049.248 7049.249 7049.25 7049.25

0

100

200

300

400

500

600

700

800

900

1000

Mean Results of Resamples for g10

histogram y

Figure C.6: Bootstrap distribution for the mean statistic for problem g10.

157

0.745 0.75 0.755 0.76 0.765 0.77 0.775

0

50

100

150

200

Mean Results o Resamples for g11

histogram y

Figure C.7: Bootstrap distribution for the mean statistic for problem g11.

0.15 0.2 0.25 0.3 0.35 0.4

0

50

100

150

200

Mean Results of Resamples for g13

histogram y

Figure C.8: Bootstrap distribution for the mean statistic for problem g13.

158 Histograms of the Bootstrap Distributions for the Constrained Problems

D
Proofs of Pareto Optimality for the Approach
Based on a Vector of Goals

The following proofs correspond to Pareto optimality for the ε-constraint
problem, found in [118]. Such proofs were adapted for its use with a vector
of goals, instead of ε values. For such reason, we renamed the problem as
the goal-constraint problem.

Definition 1. Let zgoal = (zgoal
1 , . . . , zgoal

m) be a vector of goals. Thus, a goal-
constraint problem is defined as follows:

minimize fi(x)

subject to fj(x) ≤ zgoal
j ∀j = {1, . . . , m}, j 6= i

This problem must be solved for all i ∈ {1, . . . , m}, in order to obtain
the vertices of the nearest region of the Pareto front to the vector of goals.

Theorem 1. The solution of a goal-constraint problem is weakly Pareto
optimal.

Proof. Let x? be a solution of the goal-constraint problem. Assuming that
x? is not weakly Pareto optimal, there exists another solution xa such
that fk(x

a) < fk(x
?) for all k = 1, . . . , m. Such solution fulfills all the

constraints of the goal-constraint problem, since fk(x
a) < fk(x

?) ≤
zgoal

k for k 6= i. Moreover, for k = i, we have fi(x
a) < fi(x

?), which

159

160 Proofs of Pareto Optimality for the Approach Based on a Vector of Goals

contradicts the affirmation that x? is a solution of the goal-constraint
problem. Thus, x? has to be weakly Pareto optimal.

Theorem 2. A solution x? of a goal-constraint problem is Pareto optimal
if such a solution is unique for some i with zgoal

j = fj(x
?), j 6= i.

Proof. Let x? be a unique solution of the goal-constraint problem for some
i. Assuming that x? is not Pareto optimal, there exists another solu-
tion xa such that fk(x

a) ≤ fk(x
?) for all k = 1, . . . ,m, and f`(x

a) <
f`(x

?) for at least one `. Because the solution x? is unique, it is the
only minimum for all the feasible solutions x (the feasibility condi-
tion is fk(x) ≤ fk(x

?), k 6= i), i.e., fi(x) > fi(x
?). These relations

contradict the previous ones. Thus, x? has to be Pareto optimal.

Theorem 3. The unique solution of a goal-constraint problem is Pareto op-
timal, regardless of the value of the vector of goals
zgoal = (zgoal

1 , . . . , zgoal
m).

Proof. Let x? be a unique solution of the goal-constraint problem. Assum-
ing that x? is not Pareto optimal, there exists another solution xa such
that fk(x

a) ≤ fk(x
?) for all k = 1, . . . , m, and f`(x

a) < f`(x
?) for at

least one `. It may occur one of two cases:

• If ` = i, then fi(x
a) < fi(x

?), which contradicts the affirmation
that x? is a solution of the goal-constraint problem.

• If ` 6= i, then f`(x
a) < f`(x

?) ≤ zgoal
` , fk(x

a) ≤ fk(x
?) ≤ zgoal

k

for all k 6= ` and i, and fi(x
a) ≤ fi(x

?). This last inequality
contradicts the uniqueness of the solution.

Thus, x? has to be Pareto optimal.

Bibliography

[1] Hojjat Adeli and Nai-Tsang Cheng. Augmented Lagrangian Genetic
Algorithm for Structural Optimization. Journal of Aerospace Engineer-
ing, 7(1):104–118, January 1994.

[2] Thomas Bäck, David Fogel, and Zbigniew Michalewicz, editors.
Handbook of Evolutionary Computation, volume 1. IOP Publishing Ltd.
and Oxford University Press, 1997.

[3] James C. Bean. Genetics and random keys for sequencing and opti-
mization. ORSA Journal on Computing, 6(2):154–160, 1994.

[4] James C. Bean and Atidel Ben Hadj-Alouane. A Dual Genetic Al-
gorithm for Bounded Integer Programs. Technical Report TR 92-53,
Department of Industrial and Operations Engineering, The Univer-
sity of Michigan, 1992. To appear in R.A.I.R.O.-R.O. (invited sub-
mission to special issue on GAs and OR).

[5] Ashok Dhondu Belegundu. A Study of Mathematical Programming
Methods for Structural Optimization. Department of civil and envi-
ronmental engineering, University of Iowa, Iowa, Iowa, 1982.

[6] Sheela V. Belur. CORE: Constrained Optimization by Random Evo-
lution. In John R. Koza, editor, Late Breaking Papers at the Genetic Pro-
gramming 1997 Conference, pages 280–286, Stanford University, Cali-
fornia, July 1997. Stanford Bookstore.

[7] Jon Louis Bentley and Jerome H. Friedman. Data Structures for
Range Searching. ACM Computing Surveys, 11(4):397–409, Decem-
ber 1979.

161

162 Bibliography

[8] George Bilchev and Ian C. Parmee. The Ant Colony Metaphor for
Searching Continuous Design Spaces. In Terence C. Fogarty, editor,
Evolutionary Computing, pages 25–39. Springer Verlag, Sheffield, UK,
April 1995.

[9] George Bilchev and Ian C. Parmee. Constrained and Multi-Modal
Optimisation with an Ant Colony Search Model. In Ian C. Parmee
and M. J. Denham, editors, Proceedings of 2nd International Conference
on Adaptive Computing in Engineering Design and Control. University
of Plymouth, Plymouth, UK, March 1996.

[10] H. J. Bremermann. Optimization through evolution and recombi-
nation. In Marshall C. Yovitis and George T. Jacobi, editors, Self-
Organizing Systems, pages 93–106. Spartan, Washington, D.C., 1962.

[11] Eduardo Camponogara and Sarosh N. Talukdar. A Genetic Algo-
rithm for Constrained and Multiobjective Optimization. In Jarmo T.
Alander, editor, 3rd Nordic Workshop on Genetic Algorithms and Their
Applications (3NWGA), pages 49–62, Vaasa, Finland, August 1997.
University of Vaasa.

[12] C. S. Chang, W. Wang, A. C. Liew, F. S. Wen, and D. Srinivasan.
Genetic Algorithm Based Bicriterion Optimization for Traction Sus-
tations in DC Railway System. In Proceedings of the Second IEEE In-
ternational Conference on Evolutionary Computation, pages 11–16, Pis-
cataway, New Jersey, 1995. IEEE Press.

[13] A. Charnes and W. W. Cooper. Management Models and Industrial
Applications of Linear Programming, volume 1. John Wiley, New York,
1961.

[14] Chan-Jin Chung. Knowledge-Based Approaches to Self-Adaptation in
Cultural Algorithms. PhD thesis, Wayne State University, Detroit,
Michigan, 1997.

[15] Chan-Jin Chung and Robert G. Reynolds. A Testbed for Solving
Optimization Problems using Cultural Algorithms. In Lawrence J.
Fogel, Peter J. Angeline, and Thomas Bäck, editors, Evolutionary Pro-
gramming V: Proceedings of the Fifth Annual Conference on Evolutionary
Programming, Cambridge, Massachusetts, 1996. MIT Press.

163

[16] Chan-Jin Chung and Robert G. Reynolds. CAEP: An Evolution-
based Tool for Real-Valued Function Optimization using Cultural
Algorithms. Journal on Artificial Intelligence Tools, 7(3):239–292, 1998.

[17] Carlos A. Coello Coello and Nareli Cruz Cortés. A Parallel Imple-
mentation of an Artificial Immune System to Handle Constraints
in Genetic Algorithms: Preliminary Results. In Proceedings of the
Congress on Evolutionary Computation 2002 (CEC’2002), volume 1,
pages 819–824, Piscataway, New Jersey, May 2002. IEEE Service Cen-
ter.

[18] Carlos A. Coello Coello. Constraint-handling using an evolutionary
multiobjective optimization technique. Civil Engineering and Envi-
ronmental Systems, 17:319–346, 2000.

[19] Carlos A. Coello Coello. Treating Constraints as Objectives for
Single-Objective Evolutionary Optimization. Engineering Optimiza-
tion, 32(3):275–308, 2000.

[20] Carlos A. Coello Coello. Use of a Self-Adaptive Penalty Approach
for Engineering Optimization Problems. Computers in Industry,
41(2):113–127, January 2000.

[21] Carlos A. Coello Coello. Theoretical and Numerical Constraint-
Handling Techniques used with Evolutionary Algorithms: A Sur-
vey of the State of the Art. Computer Methods in Applied Mechanics
and Engineering, 191(11–12):1245–1287, January 2002.

[22] Carlos A. Coello Coello and Ricardo Landa Becerra. Adding knowl-
edge and efficient data structures to evolutionary programming: A
cultural algorithm for constrained optimization. In Erick Cantú-Paz
et al., editor, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2002), pages 201–209, San Francisco, California,
July 2002. Morgan Kaufmann Publishers.

[23] Carlos A. Coello Coello and Ricardo Landa Becerra. Adding Knowl-
edge and Efficient Data Structures to Evolutionary Programming: A
Cultural Algorithm for Constrained Optimization. In W.B. Lang-
don, E.Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrish-
nan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A.C.

164 Bibliography

Schultz, J. F. Miller, E. Burke, and N.Jonoska, editors, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’2002),
pages 201–209, San Francisco, California, July 2002. Morgan Kauf-
mann Publishers.

[24] Carlos A. Coello Coello and Gregorio Toscano Pulido. A Micro-
Genetic Algorithm for Multiobjective Optimization. In Eckart Zit-
zler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello, and
David Corne, editors, First International Conference on Evolutionary
Multi-Criterion Optimization, pages 126–140. Springer-Verlag. Lec-
ture Notes in Computer Science No. 1993, 2001.

[25] Carlos A. Coello Coello and Gregorio Toscano Pulido. Multiobjec-
tive Optimization using a Micro-Genetic Algorithm. In Lee Spector,
Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt,
Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H.
Garzon, and Edmund Burke, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’2001), pages 274–282,
San Francisco, California, 2001. Morgan Kaufmann Publishers.

[26] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. La-
mont. Evolutionary Algorithms for Solving Multi-Objective Problems.
Kluwer Academic Publishers, New York, May 2002. ISBN 0-3064-
6762-3.

[27] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. La-
mont. Evolutionary Algorithms for Solving Multi-Objective Problems.
Kluwer Academic Publishers, New York, May 2002. ISBN 0-3064-
6762-3.

[28] Carlos Artemio Coello Coello. An Empirical Study of Evolutionary
Techniques for Multiobjective Optimization in Engineering Design. PhD
thesis, Department of Computer Science, Tulane University, New
Orleans, LA, April 1996.

[29] J. L. Cohon and D. H. Marks. A Review and Evaluation of Mul-
tiobjective Programming Techniques. Water Resources Research,
11(2):208–220, 1975.

165

[30] David W. Corne, Nick R. Jerram, Joshua D. Knowles, and Martin J.
Oates. PESA-II: Region-based Selection in Evolutionary Multiobjec-
tive Optimization. In Lee Spector, Erik D. Goodman, Annie Wu,
W.B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, ed-
itors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO’2001), pages 283–290, San Francisco, California, 2001.
Morgan Kaufmann Publishers.

[31] David W. Corne, Joshua D. Knowles, and Martin J. Oates. The Pareto
Envelope-based Selection Algorithm for Multiobjective Optimiza-
tion. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin
Yao, Evelyne Lutton, J. J. Merelo, and Hans-Paul Schwefel, editors,
Proceedings of the Parallel Problem Solving from Nature VI Conference,
pages 839–848, Paris, France, 2000. Springer. Lecture Notes in Com-
puter Science No. 1917.

[32] Nareli Cruz-Cortés, Daniel Trejo-Pérez, and Carlos A. Coello Coello.
Handling Constraints in Global Optimization using an Artificial Im-
mune System. In Christian Jacob, Marcin L. Pilat, Peter J. Bentley,
and Jonathan Timmis, editors, Artificial Immune Systems. 4th Interna-
tional Conference, ICARIS 2005, pages 234–247, Banff, Canada, Au-
gust 2005. Springer. Lecture Notes in Computer Science Vol. 3627.

[33] Dragan Cvetković and Ian C. Parmee. Preferences and their Appli-
cation in Evolutionary Multiobjective Optimisation. IEEE Transac-
tions on Evolutionary Computation, 6(1):42–57, February 2002.

[34] George B. Dantzig. Linear Programming and Extensions. Princeton
University Press, 1963.

[35] I. Das and J. Dennis. A Closer Look at Drawbacks of Minimizing
Weighted Sums of Objectives for Pareto Set Generation in Multicri-
teria Optimization Problems. Structural Optimization, 14(1):63–69,
1997.

[36] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nos-
trand Reinhold, New York, New York, 1991.

166 Bibliography

[37] Kalyanmoy Deb. Binary and Floating-Point Function Optimzation us-
ing Messy Genetic Algorithms. PhD thesis, University of Alabama,
Tuscaloosa, AL 35487, 1991. Department of Engineering Mechanics.

[38] Kalyanmoy Deb. An Efficient Constraint Handling Method for Ge-
netic Algorithms. Computer Methods in Applied Mechanics and Engi-
neering, 186(2/4):311–338, 2000.

[39] Kalyanmoy Deb, Shamik Chaudhuri, and Kaisa Miettinen. Towards
Estimating Nadir Objective Vector Using Evolutionary Approaches.
In Maarten Keijzer et al., editor, 2006 Genetic and Evolutionary Com-
putation Conference (GECCO’2006), volume 1, pages 643–650, Seattle,
Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

[40] Kalyanmoy Deb and David E. Goldberg. An Investigation of
Niche and Species Formation in Genetic Function Optimization. In
J. David Schaffer, editor, Proceedings of the Third International Confer-
ence on Genetic Algorithms, pages 42–50, San Mateo, California, June
1989. George Mason University, Morgan Kaufmann Publishers.

[41] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan.
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197, April 2002.

[42] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system:
Optimization by a colony of cooperating agents. IEEE Trans. on Sys-
tems, Man, and Cybernetics–Part B, 26(1):29–41, 1996.

[43] Leandro dos Santos Coelho and Viviana Cocco Mariani. An efficient
particle swarm optimization approach based on cultural algorithm
applied to mechanical design. In Proceedings of the Congress on Evolu-
tionary Computation (CEC 2006), pages 3844–3849. IEEE Service Cen-
ter, 2006.

[44] W. H. Durham. Co-evolution: Genes, Culture, and Human Diversity.
Stanford University Press, Stanford, California, 1994.

[45] Mark Erickson, Alex Mayer, and Jeffrey Horn. The Niched Pareto
Genetic Algorithm 2 Applied to the Design of Groundwater Reme-
diation Systems. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele,

167

Carlos A. Coello Coello, and David Corne, editors, First International
Conference on Evolutionary Multi-Criterion Optimization, pages 681–
695. Springer-Verlag. Lecture Notes in Computer Science No. 1993,
2001.

[46] Larry J. Eshelman and J. Davis Schaffer. Real-coded Genetic Algo-
rithms and Interval-Schemata. In L. Darrell Whitley, editor, Foun-
dations of Genetic Algorithms 2, pages 187–202. Morgan Kaufmann
Publishers, San Mateo, California, 1993.

[47] A. Farhang-Mehr and S. Azarm. Minimal Sets of Quality Metrics.
In Carlos M. Fonseca et al., editors, Evolutionary Multi-Criterion Op-
timization. Second International Conference, EMO 2003, pages 405–417,
Faro, Portugal, April 2003. Springer. LNCS. Volume 2632.

[48] Eduardo Fernández and Juan Carlos Leyva. A method based
on multiobjective optimization for deriving a ranking from a
fuzzy preference relation. European Journal of Operational Research,
154(1):110–124, April 2004.

[49] David B. Fogel. An analysis of evolutionary programming. In
David B. Fogel and Wirt Atmar, editors, Proc. of the First Annual Con-
ference on Evolutionary Programming, pages 43–51, La Jolla, CA, 1992.
Evolutionary Programming Society.

[50] Lawrence J. Fogel, editor. Evolutionary Computation. The Fossil Record.
Selected Readings on the History of Evolutionary Algorithms. The Insti-
tute of Electrical and Electronic Engineers, New York, 1998.

[51] Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial
Intelligence Through Simulated Evolution. John Wiley and Sons, New
York, 1966.

[52] Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion and Gener-
alization. In Stephanie Forrest, editor, Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms, pages 416–423, San Mateo,
California, 1993. University of Illinois at Urbana-Champaign, Mor-
gan Kauffman Publishers.

168 Bibliography

[53] M. P. Fourman. Compaction of Symbolic Layout using Genetic Al-
gorithms. In Genetic Algorithms and their Applications: Proceedings of
the First International Conference on Genetic Algorithms, pages 141–153.
Lawrence Erlbaum, 1985.

[54] Benjamin Franklin and Marcel Bergerman. Cultural algorithms:
Concepts and experiments. In Proceedings of the 2000 Congress on
Evolutionary Computation, pages 1245–1251, Piscataway, New Jersey,
2000. IEEE Service Center.

[55] James M. Gere and William Weaver. Analysis of Framed Structures. D.
Van Nostrand Company, Inc., 1965.

[56] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic
Publishers, New York, 1998.

[57] David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1989.

[58] David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and Georges
Harik. Rapid, accurate optimization of difficult problems using fast
messy genetic algorithms. In Proceedings of the Fifth International Con-
ference on Genetic Algorithms, pages 56–64, San Mateo, CA, 1993. Mor-
gan Kaufman.

[59] Atidel Ben Hadj-Alouane and James C. Bean. A Genetic Algorithm
for the Multiple-Choice Integer Program. Operations Research, 45:92–
101, 1997.

[60] P. Hajela and J. Lee. Constrained Genetic Search via Schema Adapta-
tion. An Immune Network Solution. In Niels Olhoff and George I. N.
Rozvany, editors, Proceedings of the First World Congress of Stuctural
and Multidisciplinary Optimization, pages 915–920, Goslar, Germany,
1995. Pergamon.

[61] P. Hajela and J. Lee. Constrained Genetic Search via Schema Adapta-
tion. An Immune Network Solution. Structural Optimization, 12:11–
15, 1996.

169

[62] P. Hajela and C. Y. Lin. Genetic search strategies in multicriterion
optimal design. Structural Optimization, 4:99–107, 1992.

[63] P. Hajela and J. Yoo. Constraint Handling in Genetic Search Using
Expression Strategies. AIAA Journal, 34(12):2414–2420, 1996.

[64] Sana Ben Hamida and Marc Schoenauer. ASCHEA: New Results Us-
ing Adaptive Segregational Constraint Handling. In Proceedings of
the Congress on Evolutionary Computation 2002 (CEC’2002), volume 1,
pages 884–889, Piscataway, New Jersey, May 2002. IEEE Service Cen-
ter.

[65] Robert Hinterding and Zbigniew Michalewicz. Your Brains and My
Beauty: Parent Matching for Constrained Optimisation. In Proceed-
ings of the 5th International Conference on Evolutionary Computation,
pages 810–815, Anchorage, Alaska, May 1998.

[66] John H. Holland. Concerning efficient adaptive systems. In M. C.
Yovitis, G. T. Jacobi, and G. D. Goldstein, editors, Self-Organizing
Systems, pages 215–230. Spartan Books, Washington, D.C., 1962.

[67] John H. Holland. Adaptation in Natural and Artifical Systems. Ann
Harbor, University of Michigan Press, 1975.

[68] Jeffrey Horn and Nicholas Nafpliotis. Multiobjective Optimization
using the Niched Pareto Genetic Algorithm. Technical Report Illi-
GAl Report 93005, University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, USA, 1993.

[69] Xiaohui Hu, Russell C. Eberhart, and Yuhui Shi. Engineering Op-
timization with Particle Swarm. In Proceedings of the 2003 IEEE
Swarm Intelligence Symposium, pages 53–57. Indianapolis, Indiana,
USA, IEEE Service Center, April 2003.

[70] Simon Huband, Luigi Barone, Lyndon While, and Phil Hingston.
A Scalable Multi-objective Test Problem Toolkit. In Carlos A.
Coello Coello et al., editors, Evolutionary Multi-Criterion Optimiza-
tion. Third International Conference, EMO 2005, pages 280–295, Gua-
najuato, México, March 2005. Springer. LNCS Vol. 3410.

170 Bibliography

[71] Simon Huband, Phil Hingston, Luigi Barone, and Lyndon While. A
Review of Multiobjective Test Problems and a Scalable Test Problem
Toolkit. IEEE Transactions on Evolutionary Computation, 10(5):477–
506, October 2006.

[72] Radu Iacoban, Robert G. Reynolds, and Jon Brewster. Cultural
Swarms: Assessing the Impact of Culture on Social Interaction and
Problem Solving. In 2003 IEEE Swarm Intelligence Symposium Proceed-
ings, pages 212–219, Indianapolis, Indiana, USA, April 2003. IEEE
Service Center.

[73] Radu Iacoban, Robert G. Reynolds, and Jon Brewster. Cultural
Swarms: Modeling the Impact of Culture on Social Interaction and
Problem Solving. In 2003 IEEE Swarm Intelligence Symposium Proceed-
ings, pages 205–211, Indianapolis, Indiana, USA, April 2003. IEEE
Service Center.

[74] Y. Ijiri. Management of Goals and Accounting for Control. North-
Holland, Amsterdan, 1965.

[75] Hisao Ishibuchi and Tadahiko Murata. Multi-Objective Genetic Lo-
cal Search Algorithm and Its Application to Flowshop Scheduling.
IEEE Transactions on Systems, Man and Cybernetics, 28(3):392–403, Au-
gust 1998.

[76] W. Jakob, M. Gorges-Schleuter, and C. Blume. Application of Ge-
netic Algorithms to task planning and learning. In R. Männer and
B. Manderick, editors, Parallel Problem Solving from Nature, 2nd Work-
shop, Lecture Notes in Computer Science, pages 291–300, Amster-
dam, 1992. North-Holland Publishing Company.

[77] Andrzej Jaszkiewicz. Genetic local search for multiple objective
combinatorial optimization. Technical Report RA-014/98, Institute
of Computing Science, Poznan University of Technology, 1998.

[78] Fernando Jiménez and José L. Verdegay. Evolutionary techniques
for constrained optimization problems. In Hans-Jürgen Zimmer-
mann, editor, 7th European Congress on Intelligent Techniques and Soft
Computing (EUFIT’99), Aachen, Germany, 1999. Verlag Mainz. ISBN
3-89653-808-X.

171

[79] Xidong Jin and Robert G. Reynolds. Using Knowledge-Based Evo-
lutionary Computation to Solve Nonlinear Constraint Optimization
Problems: a Cultural Algorithm Approach. In 1999 Congress on
Evolutionary Computation, pages 1672–1678, Washington, D.C., July
1999. IEEE Service Center.

[80] Xidong Jin and Robert G. Reynolds. Mining Knowledge in Large-
Scale Databases Using Cultural Algorithms with Constraint Han-
dling Mechanisms. In Proceedings of the Congress on Evolutionary Com-
putation 2000 (CEC’2000), volume 2, pages 1498–1506, Piscataway,
New Jersey, July 2000. IEEE Service Center.

[81] H. Jutler. Liniejnaja modiel z nieskolkimi celevymi funkcjami (liner
model with several objective functions). Ekonomika i matematiceckije
Metody, 3:397–406, 1967.

[82] S. Kazarlis and V. Petridis. Varying Fitness Functions in Genetic
Algorithms: Studying the Rate of Increase of the Dynamic Penalty
Terms. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwe-
fel, editors, Proceedings of the 5th Parallel Problem Solving from Nature
(PPSN V), pages 211–220, Heidelberg, Germany, September 1998.
Amsterdan, The Netherlands, Springer-Verlag. Lecture Notes in
Computer Science Vol. 1498.

[83] James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan
Kaufmann Publishers, San Francisco, California, 2001.

[84] J.-H. Kim and H. Myung. Evolutionary programming techniques
for constrained optimization problems. IEEE Transactions on Evolu-
tionary Computation, 1:129–140, July 1997.

[85] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[86] Hajime Kita, Yasuyuki Yabumoto, Naoki Mori, and Yoshikazu
Nishikawa. Multi-Objective Optimization by Means of the Ther-
modynamical Genetic Algorithm. In Hans-Michael Voigt, Werner
Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel
Problem Solving from Nature—PPSN IV, Lecture Notes in Computer

172 Bibliography

Science, pages 504–512, Berlin, Germany, September 1996. Springer-
Verlag.

[87] Joshua D. Knowles and David W. Corne. Approximating the Non-
dominated Front Using the Pareto Archived Evolution Strategy. Evo-
lutionary Computation, 8(2):149–172, 2000.

[88] Ryszard Kowalczyk. Constraint Consistent Genetic Algorithms. In
Proceedings of the 1997 IEEE Conference on Evolutionary Computation,
pages 343–348, Indianapolis, USA, April 1997. IEEE.

[89] Slawomir Koziel and Zbigniew Michalewicz. A Decoder-based Evo-
lutionary Algorithm for Constrained Parameter Optimization Prob-
lems. In T. Bäck, A. E. Eiben, M. Schoenauer, and H.-P. Schwefel, ed-
itors, Proceedings of the 5th Parallel Problem Solving from Nature (PPSN
V), pages 231–240, Heidelberg, Germany, September 1998. Amster-
dan, The Netherlands, Springer-Verlag. Lecture Notes in Computer
Science Vol. 1498.

[90] Slawomir Koziel and Zbigniew Michalewicz. Evolutionary Al-
gorithms, Homomorphous Mappings, and Constrained Parameter
Optimization. Evolutionary Computation, 7(1):19–44, 1999.

[91] Frank Kursawe. A variant of evolution strategies for vector opti-
mization. In H. P. Schwefel and R. Männer, editors, Parallel Prob-
lem Solving from Nature. 1st Workshop, PPSN I, volume 496 of Lecture
Notes in Computer Science, pages 193–197, Berlin, Germany, oct 1991.
Springer-Verlag.

[92] Jouni Lampinen. Multi-Constrained Optimization by the Differen-
tial Evolution. In M.H. Hamza, editor, Proceedings of the IASTED
International Conference Artificial Intelligence and Applications (AIA
2001), pages 177–184, September 2001.

[93] Jouni Lampinen. Solving Problems Subject to Multiple Nonlin-
ear Constraints by the Differential Evolution. In Radek Matousek
& Pavel Osmera, editor, Proceedings of MENDEL 2001, 7th Interna-
tional Conference on Soft Computing, pages 50–57, June 2001.

173

[94] Jouni Lampinen. A Constraint Handling Approach for the Differ-
ential Evolution Algorithm. In Proceedings of the Congress on Evo-
lutionary Computation 2002 (CEC’2002), volume 2, pages 1468–1473,
Piscataway, New Jersey, May 2002. IEEE Service Center.

[95] Ricardo Landa Becerra and Carlos A. Coello Coello. A Cultural
Algorithm with Differential Evolution to Solve Constrained Opti-
mization Problems. In Carlos A. Reyes Christian Lemaître and
Jesús A. González, editors, Advances in Artificial Intelligence – IB-
ERAMIA 2004, pages 881–890. Springer-Verlag, Lecture Notes in Ar-
tificial Intelligence Vol. 3315, November 2004.

[96] Ricardo Landa Becerra and Carlos A. Coello Coello. Culturizing Dif-
ferential Evolution for Constrained Optimization. In Ricardo Baeza-
Yates, J. Luis Marroquin, and Edgar Chávez, editors, Proceedings
of the Fifth International Conference on Computer Science (ENC 2004),
pages 304–311. IEEE Computer Society, September 2004.

[97] Ricardo Landa Becerra and Carlos A. Coello Coello. Cultured Dif-
ferential Evolution for Constrained Optimization. Computer Methods
in Applied Mechanics and Engineering, 2005. in press.

[98] Ricardo Landa Becerra and Carlos A. Coello Coello. Optimization
with Constraints using a Cultured Differential Evolution Approach.
In Hans-Georg Beyer et al., editor, Genetic and Evolutionary Computa-
tion Conference (GECCO’2005), volume 1, pages 27–34, Washington,
DC, USA, June 2005. ACM Press. ISBN 1-59593-010-8.

[99] Ricardo Landa Becerra and Carlos A. Coello Coello. Solving hard
multiobjective optimization problems using ε-constraint with cul-
tured differential evolution. In Thomas Philip Runarsson, Hans-
Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell
Whitley, and Xin Yao, editors, Parallel Problem Solving from Nature
- PPSN IX, 9th International Conference, pages 543–552. Springer.
Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland,
September 2006.

[100] Ricardo Landa Becerra, Carlos A. Coello Coello, and Alfredo G.
Hernandez-Diaz. Alternative techniques to solve hard multi-
objective optimization problems. In Proceedings of the Genetic

174 Bibliography

and Evolutionary Computation Conference (GECCO’2007). ACM Press,
2007. (accepted).

[101] Marco Laumanns, Lothar Thiele, and Eckart Zitzler. An efficient,
adaptive parameter variation scheme for metaheuristics based on
the epsilon-constraint method. European Journal of Operational Re-
search, 169:932–942, 2006.

[102] T. Van Le. A Fuzzy Evolutionary Approach to Constrained Op-
timization Problems. In Proceedings of the Second IEEE Conference
on Evolutionary Computation, pages 274–278, Perth, November 1995.
IEEE.

[103] G. E. Liepins and Michael D. Vose. Representational Issues in Ge-
netic Optimization. Journal of Experimental and Theoretical Computer
Science, 2(2):4–30, 1990.

[104] Gunar E. Liepins and W. D. Potter. A Genetic Algorithm Approach
to Multiple-Fault Diagnosis. In Lawrence Davis, editor, Handbook of
Genetic Algorithms, chapter 17, pages 237–250. Van Nostrand Rein-
hold, New York, New York, 1991.

[105] Yung-Chien Lin, Kao-Shing Hwang, and Feng-Sheng Wang. Hybrid
Differential Evolution with Multiplier Updating Method for Non-
linear Constrained Optimization. In Proceedings of the Congress on
Evolutionary Computation 2002 (CEC’2002), volume 1, pages 872–877,
Piscataway, New Jersey, May 2002. IEEE Service Center.

[106] Xiaojian Liu, D. W. Begg, and R. J. Fishwick. Genetic approach to
optimal topology/controller design of adaptive structures. Interna-
tional Journal for Numerical Methods in Engineering, 41:815–830, 1998.

[107] Daniel H. Loughlin and S. Ranjithan. The Neighborhood constraint
method: A Genetic Algorithm-Based Multiobjective Optimization
Technique. In Thomas Bäck, editor, Proceedings of the Seventh Inter-
national Conference on Genetic Algorithms, pages 666–673, San Mateo,
California, July 1997. Michigan State University, Morgan Kaufmann
Publishers.

[108] Sushil Louis and Gregory Rawlins. Designer genetic algorithms:
Genetic algorithms in structure design. In Richard K. Belew and

175

Lashon B. Booker, editors, Fourth International Conference on Genetic
Algorithms, pages 53–60, University of California, San Diego, jul
1991. Morgan Kauffman Publishers.

[109] Sushil J. Louis. Genetic Algorithms as a Computational Tool for Design.
PhD thesis, Department of Computer Science, Indiana University,
aug 1993.

[110] Sushil J. Louis and Fang Zhao. Domain knowledge for genetic algo-
rithms. International Journal of Expert Systems, 8(3):195–211, 1995.

[111] Efrén Mezura-Montes and Carlos A. Coello Coello. Saving Evalu-
ations in Differential Evolution for Constrained Optimization. In
Vladimir Estivill-Castro and J. Alfredo Sánchez, editors, Sixth Mexi-
can International Conference on Computer Science (ENC’05), pages 274–
281, Los Alamitos, California, September 2005. IEEE Computer So-
ciety Press.

[112] Efrén Mezura-Montes, Jesús Velázquez-Reyes, and Carlos A. Coello
Coello. Promising Infeasibility and Multiple Offspring Incorpo-
rated to Differential Evolution for Constrained Optimization. In H.-
G. Beyer, U.-M. O’Reilly, D.V. Arnold, W. Banzhaf, C. Blum, E.W.
Bonabeau, E. Cantú Paz, D. Dasgupta, K. Deb, J.A. Foste r, E.D.
de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G.R. Raidl,
T. Soule, A. Tyrrell, J.-P. Watson, and E. Zitzler, editors, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’2005),
volume 1, pages 225–232, New York, June 2005. Washington DC,
USA, ACM Press. ISBN 1-59593-010-8.

[113] Zbigniew Michalewicz and Naguib F. Attia. Evolutionary Optimiza-
tion of Constrained Problems. In Proceedings of the 3rd Annual Con-
ference on Evolutionary Programming, pages 98–108. World Scientific,
1994.

[114] Zbigniew Michalewicz and Cezary Z. Janikow. Handling Con-
straints in Genetic Algorithms. In R. K. Belew and L. B. Booker,
editors, Proceedings of the Fourth International Conference on Genetic Al-
gorithms, pages 151–157, San Mateo, California, 1991. Morgan Kauf-
mann Publishers.

176 Bibliography

[115] Zbigniew Michalewicz and G. Nazhiyath. Genocop III: A co-
evolutionary algorithm for numerical optimization with nonlinear
constraints. In David B. Fogel, editor, Proceedings of the Second IEEE
International Conference on Evolutionary Computation, pages 647–651,
Piscataway, New Jersey, 1995. IEEE Press.

[116] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary Algo-
rithms for Constrained Parameter Optimization Problems. Evolu-
tionary Computation, 4(1):1–32, 1996.

[117] Eric Michielssen, Jean-Michel Sajer, S. Ranjithan, and Raj Mittra. De-
sign of Lightweight, Broad-Band Microwave Absorbers Using Ge-
netic Algorithms. IEEE Transactions on Microwave Theory and Tech-
niques, 41(6/7):1024–1031, 1993.

[118] K. Miettinen, M. M. Mäkelä, and J. Mäkinen. Handling Constraints
with Penalty Techniques in Genetic Algorithms - A Numerical Com-
parison. Technical Report B10/1999, University of Jyväskylä, De-
partment of Mathematical Information Technology, Series B, Scien-
tific Computing, 1999.

[119] Tom Mitchell. Version Spaces: An Approach to Concept Learning. PhD
thesis, Computer Science Department, Stanford University, Stan-
ford, California, 1978.

[120] R. Morrison and K. De Jong. A test problem generator for non-
stationary environments. In Proceedings of the Congress on Evolution-
ary Computation (CEC 1999), pages 2047–2053. IEEE Service Center,
1999.

[121] Hyun Myung and Jong-Hwan Kim. Hybrid Interior-Lagrangian
Penalty Based Evolutionary Optimization. In V.W. Porto, N. Sara-
vanan, D. Waagen, and A.E. Eiben, editors, Proceedings of the 7th In-
ternational Conference on Evolutionary Programming (EP98), pages 85–
94, Heidelberg, Germany, March 1998. San Diego, California, USA,
Springer-Verlag. Lecture Notes in Computer Science Vol. 1447.

[122] J.A. Nelder and R. Mead. A simplex method for function minimiza-
tion. Computer Journal, 7:308–313, 1965.

177

[123] Angel E. Mu noz Zavala, Arturo Hernández-Aguirre, Enrique R.
Villa-Diharce, and Salvador Botello-Rionda. PESO+ for Constrained
Optimization. In 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), pages 935–942, Vancouver, BC, Canada, July 2006. IEEE.

[124] C. K. Oei, D. E. Goldberg, and S.-J. Chang. Tournament Selection,
Niching, and the Preservation of Diversity. Technical Report Tech-
nical Report 91011, University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, USA, 1993.

[125] Tatsuya Okabe. Evolutionary Multi-Objective Optimization - On the
Distribution of Offspring in Parameter and Fitness Space -. PhD thesis,
Bielefeld University, Germany, 2004.

[126] Tatsuya Okabe, Yaochu Jin, Markus Olhofer, and Bernhard Send-
hoff. On Test Functions for Evolutionary Multi-objective Optimiza-
tion. In Xin Yao et al., editors, Parallel Problem Solving from Na-
ture - PPSN VIII, pages 792–802, Birmingham, UK, September 2004.
Springer-Verlag. LNCS Vol. 3242.

[127] A. Osyczka. Multicriterion Optimization in Engineering with FOR-
TRAN programs. Ellis Horwood Limited, 1984.

[128] Andrzej Osyczka and Sourav Kundu. A new method to solve gener-
alized multicriteria optimization problems using the simple genetic
algorithm. Structural Optimization, 10:94–99, 1995.

[129] J. Paredis. Co-evolutionary Constraint Satisfaction. In Proceedings of
the 3rd Conference on Parallel Problem Solving from Nature, pages 46–
55, New York, 1994. Springer Verlag.

[130] V. Pareto. Cours D’Economie Politique, volume I and II. F. Rouge,
Lausanne, 1975.

[131] I. C. Parmee and G. Purchase. The development of a directed ge-
netic search technique for heavily constrained design spaces. In
I. C. Parmee, editor, Adaptive Computing in Engineering Design and
Control-’94, pages 97–102, Plymouth, UK, 1994. University of Ply-
mouth.

178 Bibliography

[132] Ian C. Parmee and Andrew H. Watson. Preliminary Airframe De-
sign Using Co-Evolutionary Multiobjective Genetic Algorithms. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’99), volume 2, pages
1657–1665, San Francisco, California, July 1999. Morgan Kaufmann.

[133] K.E. Parsopoulos and M.N. Vrahatis. Particle Swarm Optimiza-
tion Method for Constrained Optimization Problems. In P. Sincak,
J.Vascak, V. Kvasnicka, and J. Pospicha, editors, Intelligent Technolo-
gies - Theory and Applications: New Trends in Intelligent Technologies,
pages 214–220. IOS Press, 2002. Frontiers in Artificial Intelligence
and Applications series, Vol. 76 ISBN: 1-58603-256-9.

[134] Bin Peng and Robert G. Reynolds. Cultural algorithms: Knowledge
learning in dynamic environments. In Proceedings of the Congress on
Evolutionary Computation (CEC 2004), pages 1751–1758. IEEE Service
Center, 2004.

[135] David Powell, Michael Skolnick, and S. Tong. EnGENEous : do-
main independent, machine learning for design implementation. In
J. David Schaffer, editor, Third International Conference on Genetic Al-
gorithms, pages 151–9, George Mason University, jun 1989. Morgan
Kauffman Publishers.

[136] David Powell and Michael M. Skolnick. Using genetic algorithms
in engineering design optimization with non-linear constraints. In
Stephanie Forrest, editor, Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, pages 424–431. Morgan Kaufmann Pub-
lishers, jul 1993.

[137] David J. Powell, Michael M. Skolnick, and Siu Shing Tong. Inter-
digitation : Hybrid technique for engineering design optimization
employing genetic algorithms, expert systems, and numerical opti-
mization. In Lawrence Davis, editor, Handbook of Genetic Algorithms,
chapter 20, pages 312–331. Van Nostrand Reinhold, New York, 1991.

[138] Kenneth V. Price. An introduction to differential evolution. In David
Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Opti-
mization, pages 79–108. McGraw-Hill, London, UK, 1999.

179

[139] Singiresu S. Rao. Engineering Optimization. John Wiley and Sons,
third edition, 1996.

[140] Gregory J. Rawlins. Introduction. In Gregory J. Rawlins, editor,
Foundations of genetic algorithms, pages 1–10. Morgan Kaufmann, San
Mateo, CA, 1991.

[141] Tapabrata Ray, Tai Kang, and Seow Kian Chye. An Evolution-
ary Algorithm for Constrained Optimization. In Darrell Whitley,
David Goldberg, Erick Cantú-Paz, Lee Spector, Ian Parmee, and
Hans-Georg Beyer, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’2000), pages 771–777, San Fran-
cisco, California, July 2000. Morgan Kaufmann.

[142] Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution. Frommann-Holzbog,
Stuttgart, 1973. German.

[143] Colin B. Reeves, editor. Modern Heuristic Techniques for Combinatorial
Problems. John Wiley & Sons, Great Britain, 1993.

[144] B. Rekiek, P. de Lit, and A. Delchambre. Hybrid assembly line de-
sign and user’s preferences. International Journal of Production Re-
search, 40(5):1095–1111, March 2002.

[145] A. C. Renfrew. Dynamic Modeling in Archaeology: What, When,
and Where? In S. E. van der Leeuw, editor, Dynamical Modeling
and the Study of Change in Archaelogy. Edinburgh University Press,
Edinburgh, Scotland, 1994.

[146] Robert G. Reynolds. An Introduction to Cultural Algorithms. In
A. V. Sebald and L. J. Fogel, editors, Proceedings of the Third Annual
Conference on Evolutionary Programming, pages 131–139. World Sci-
entific, River Edge, New Jersey, 1994.

[147] Robert G. Reynolds. Cultural algorithms: Theory and applications.
In David Corne, Marco Dorigo, and Fred Glover, editors, New Ideas
in Optimization, pages 367–377. McGraw-Hill, London, 1999.

[148] Robert G. Reynolds, Zbigniew Michalewicz, and M. Cavaretta. Us-
ing cultural algorithms for constraint handling in GENOCOP. In

180 Bibliography

J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proceedings
of the Fourth Annual Conference on Evolutionary Programming, pages
298–305. MIT Press, Cambridge, Massachusetts, 1995.

[149] Jon T. Richardson, Mark R. Palmer, Gunar Liepins, and Mike
Hilliard. Some Guidelines for Genetic Algorithms with Penalty
Functions. In J. David Schaffer, editor, Proceedings of the Third Inter-
national Conference on Genetic Algorithms (ICGA-89), pages 191–197,
San Mateo, California, June 1989. George Mason University, Mor-
gan Kaufmann Publishers.

[150] Rodolphe G. Le Riche, Catherine Knopf-Lenoir, and Raphael T.
Haftka. A Segregated Genetic Algorithm for Constrained Structural
Optimization. In Larry J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA-95), pages 558–
565, San Mateo, California, July 1995. University of Pittsburgh, Mor-
gan Kaufmann Publishers.

[151] Peter J. Richerson and Robert Boyd. Not by Genes Alone: How culture
transformed human evolution. The University of Chicago Press, 2005.

[152] Jon Rowe, Kevin Vinsen, and Nick Marvin. Parallel GAs for Mul-
tiobjective Functions. In Jarmo T. Alander, editor, Proceedings of the
Second Nordic Workshop on Genetic Algorithms and Their Applications
(2NWGA), pages 61–70, Vaasa, Finland, August 1996. University of
Vaasa.

[153] Thomas P. Runarsson and Xin Yao. Stochastic Ranking for Con-
strained Evolutionary Optimization. IEEE Transactions on Evolution-
ary Computation, 4(3):284–294, September 2000.

[154] Saleh M. Saleem. Knowledge-Based Solution to Dynamic Optimization
Problems using Cultural Algorithms. PhD thesis, Wayne State Univer-
sity, Detroit, Michigan, 2001.

[155] Eric Sandgren. Multicriteria design optimization by goal program-
ming. In Hojjat Adeli, editor, Advances in Design Optimization, chap-
ter 23, pages 225–265. Chapman & Hall, London, 1994.

181

[156] J. David Schaffer. Multiple Objective Optimization with Vector Eval-
uated Genetic Algorithms. In Genetic Algorithms and their Applica-
tions: Proceedings of the First International Conference on Genetic Algo-
rithms, pages 93–100. Lawrence Erlbaum, 1985.

[157] Marc Schoenauer and Zbigniew Michalewicz. Evolutionary Com-
putation at the Edge of Feasibility. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors, Proceedings of the Fourth
Conference on Parallel Problem Solving from Nature (PPSN IV), pages
245–254, Heidelberg, Germany, September 1996. Berlin, Germany,
Springer-Verlag.

[158] Marc Schoenauer and Spyros Xanthakis. Constrained GA Opti-
mization. In Stephanie Forrest, editor, Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms (ICGA-93), pages 573–580,
San Mateo, California, July 1993. University of Illinois at Urbana-
Champaign, Morgan Kauffman Publishers.

[159] Hans-Paul Schwefel. Numerical Optimization of Computer Models. Wi-
ley, Chichester, 1981.

[160] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC, Boca Raton, Florida, USA, 2004.

[161] R. Solich. Zadanie programowania liniowego z wieloma funkcjami
celu (linear programming problem with several objective functions).
Przeglad Statystyczny, 16:24–30, 1969.

[162] N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using
Nondominated Sorting in Genetic Algorithms. Evolutionary Compu-
tation, 2(3):221–248, Fall 1994.

[163] M. A. Stephens. Edf statistics for goodness of fit and some compar-
isons. Journal of the American Statistical Association, 69:730–737, 1974.

[164] Rainer Storn. On the Usage of Differential Evolution for Function
Optimization. In 1996 Biennial Conference of the North American Fuzzy
Information Processing Society (NAFIPS 1996), pages 519–523, Berke-
ley, 1996. IEEE.

182 Bibliography

[165] Rainer Storn. System Design by Constraint Adaptation and Dif-
ferential Evolution. IEEE Transactions on Evolutionary Computation,
3(1):22–34, April 1999.

[166] Patrick D. Surry and Nicholas J. Radcliffe. The COMOGA Method:
Constrained Optimisation by Multiobjective Genetic Algorithms.
Control and Cybernetics, 26(3):391–412, 1997.

[167] Patrick D. Surry, Nicholas J. Radcliffe, and Ian D. Boyd. A Multi-
Objective Approach to Constrained Optimisation of Gas Supply
Networks : The COMOGA Method. In Terence C. Fogarty, ed-
itor, Evolutionary Computing. AISB Workshop. Selected Papers, Lec-
ture Notes in Computer Science, pages 166–180. Springer-Verlag,
Sheffield, U.K., 1995.

[168] Gilbert Syswerda. Schedule Optimization Using Genetic Algo-
rithms. In Lawrence Davis, editor, Handbook of Genetic Algorithms,
chapter 21, pages 332–349. Van Nostrand Reinhold, New York, New
York, 1991.

[169] Gregorio Toscano-Pulido and Carlos A. Coello Coello. A Constraint-
Handling Mechanism for Particle Swarm Optimization. In Proceed-
ings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol-
ume 2, pages 1396–1403, Piscataway, New Jersey, June 2004. Port-
land, Oregon, USA, IEEE Service Center.

[170] C. H. Tseng and T. W. Lu. Minimax multiobjective optimization in
structural design. Int. J. Numerical Methods in Engineering, 30:1213–
1228, 1990.

[171] Effie Tsoi, Kit Po Wong, and Chun Che Fung. Hybrid GA/SA Algo-
rithms for Evaluating Trade-off Between Economic Cost and Envi-
ronmental Impact in Generation Dispatch. In David B. Fogel, editor,
Proceedings of teh Second IEEE Conference on Evolutionary Computation
(ICEC’95), pages 132–137, Piscataway, New Jersey, 1995. IEEE Press.

[172] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective Opti-
mization with Messy Genetic Algorithms. In Proceedings of the 2000
ACM Symposium on Applied Computing, pages 470–476, Villa Olmo,
Como, Italy, 2000. ACM.

183

[173] David A. Van Veldhuizen and Gary B. Lamont. On Measuring Mul-
tiobjective Evolutionary Algorithm Performance. In 2000 Congress
on Evolutionary Computation, volume 1, pages 204–211, Piscataway,
New Jersey, July 2000. IEEE Service Center.

[174] P. B. Wienke, C. Lucasius, and G. Kateman. Multicriteria target op-
timization of analytical procedures using a genetic algorithm. Ana-
lytica Chimica Acta, 265(2):211–225, 1992.

[175] Stewart W. Wilson. Classifier systems and the animat problem. Ma-
chine Learning, 2(3):199–228, 1987.

[176] David H. Wolpert and William G. Macready. No Free Lunch Theo-
rems for Optimization. IEEE Transactions on Evolutionary Computa-
tion, 1(1):67–82, April 1997.

[177] Xiaofeng Yang and Mitsuo Gen. Evolution program for bicriteria
transportation problem. In M. Gen and T. Kobayashi, editors, Pro-
ceedings of the 16th International Conference on Computers and Industrial
Engineering, pages 451–454, Ashikaga, Japan, 1994. Pergamon Press.

[178] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of
Multiobjective Evolutionary Algorithms: Empirical Results. Evolu-
tionary Computation, 8(2):173–195, Summer 2000.

[179] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Im-
proving the Strength Pareto Evolutionary Algorithm. In K. Gian-
nakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fogarty, edi-
tors, EUROGEN 2001. Evolutionary Methods for Design, Optimization
and Control with Applications to Industrial Problems, Athens, Greece,
September 2001.

[180] Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Al-
gorithms: A Comparative Case Study and the Strength Pareto Ap-
proach. IEEE Transactions on Evolutionary Computation, 3(4):257–271,
November 1999.

[181] Jesse B. Zydallis, David A. Van Veldhuizen, and Gary B. Lam-
ont. A Statistical Comparison of Multiobjective Evolutionary Al-
gorithms Including the MOMGA–II. In Eckart Zitzler, Kalyanmoy

184 Bibliography

Deb, Lothar Thiele, Carlos A. Coello Coello, and David Corne, edi-
tors, First International Conference on Evolutionary Multi-Criterion Op-
timization, pages 226–240. Springer-Verlag. Lecture Notes in Com-
puter Science No. 1993, 2001.

	Abstract
	Resumen
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	Optimization
	Evolutionary computation
	Evolutionary programming
	Evolution strategies
	Genetic algorithms

	Knowledge incorporation in evolutionary computation
	Cultural algorithms
	Differential evolution

	Constraint-Handling Techniques used with Evolutionary Algorithms
	Constraint-handling techniques
	Penalty functions
	Special representations and operators
	Repair algorithms
	Separation of objectives and constraints
	Hybrid methods

	Cultural algorithms in constrained and Real-Valued optimization problems
	CAEP
	Other search engines for cultural algorithms

	Differential evolution in constrained optimization

	Proposed Approach for Constrained Optimization
	Constraint-handling mechanism
	The belief space
	Situational knowledge
	Normative knowledge
	Topographical knowledge
	History knowledge

	Acceptance function
	Main influence function
	Parameters of the technique

	Results for the Constrained Optimization Approach
	Standard problems
	Comparison of results
	Statistical analysis

	Engineering optimization problems
	Comparison of results

	Evolutionary Multiobjective Techniques
	The multiobjective optimization problem
	Evolutionary algorithms for multiobjective problems
	A priori techniques
	Lexicographic ordering
	Linear aggregating functions
	Nonlinear aggregating functions

	Progressive techniques
	A posteriori techniques
	Criterion selection techniques
	Aggregating selection techniques
	Pareto sampling techniques
	Independent sampling techniques

	A Proposal for Multiobjective Optimization using the Cultured Differential Evolution
	Estimating the nadir objective vector
	The -constraint based approach: CCDE
	An additional technique for dispersion
	Crossover operators
	Mutation operator

	Parameters of the technique

	Results for the Multiobjective Optimization Approach
	CCDE alone
	Test problems
	Experimental setup
	Performance measures

	CCDE plus dispersion technique
	Test problems
	Experimental setup
	Performance measures

	Incorporation of Preferences to CCDE
	Provide ranges for m-1 objectives
	Results

	Provide a vector of goals
	Results

	Final Remarks
	Conclusions
	Future work

	Single-objective Constrained Optimization Problems
	Multiobjective Optimization Problems
	Histograms of the Bootstrap Distributions for the Constrained Optimization Problems
	Proofs of Pareto Optimality for the Approach Based on a Vector of Goals
	Bibliography

