

ABSTRACT

Title of Dissertation: AN ARCHITECTURE FOR THE AUTONOMOUS

GENERATION OF PREFERENCE-OPTIMIZED

TRAJECTORIES

Jamie Lennon, Doctor of Philosophy, 2006

Dissertation directed by: Assistant Professor Ella M. Atkins

Department of Aerospace Engineering

Numerous techniques exist to optimize aircraft and spacecraft trajectories over cost

functions that include terms such as fuel, time, and separation from obstacles. Relative

weighting factors can dramatically alter solution characteristics, and engineers often must

manually adjust either cost weights or the trajectory itself to obtain desirable solutions.

Further, when humans and robots work together, or when humans task robots, they may

express their performance expectations in a “fuzzy” natural language fashion, or else as

an uncertain range of more or less acceptable values. This work describes a software

architecture which accepts both fuzzy linguistic and hard numeric constraints on

trajectory performance and, using a trajectory generator provided by the user,

automatically constructs trajectories to meet these specifications as closely as possible.

The system respects hard constraints imposed by system dynamics or by the user, and

will not let the user’s preferences interfere with the system and user needs.

The architecture’s evaluation agent translates these requirements into cost

functional weights expected to produce the desired motion characteristics. The quality of

the resulting full-state trajectory is then evaluated based on a set of computed trajectory

features compared to the specified constraints. If constraints are not met, the cost

functional weights are adjusted according to precomputed heuristic equations. Heuristics

are not generated in an ad hoc fashion, but are instead the result of a systematic testing of

the simulated system under a range of simple conditions.

The system is tested in a 2DOF linear and a 6DOF nonlinear domain with a

variety of constraints and in the presence of obstacles. Results show that the system

consistently meets all hard numeric constraints placed on the trajectory. Desired

characteristics are often attainable or else, in those cases where they are discounted in

favor of the hard constraints, failed by small margins. Results are discussed as a function

of obstacles and of constraints.

AN ARCHITECTURE FOR THE AUTONOMOUS GENERATION OF
PREFERENCE-BASED TRAJECTORIES

by

Jamie Lennon

Dissertation submitted to the faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

 Assistant Professor Ella Atkins, Chair
 Associate Professor David Akin
 Dr. C. Glen Henshaw
 Professor Dana Nau
 Associate Professor Robert Sanner

 ii

DEDICATION

This dissertation is dedicated to my mother, who worried that NASA wouldn’t be hiring,

and to my father, whose Star Trek books we can blame for all of this.

 iii

ACKNOWLEDGEMENTS

I first have to acknowledge the help and support of my advisor, Dr. Ella Atkins.

Ella, you made me think deeply when I wanted to think broadly, and to define processes

and architectures when I thought a big grab bag of stuff was enough.

I think this is the last time that I will have to acknowledge that this work was

performed at the Naval Research Laboratory under funding from the Office of Naval

Research under work order N0001404WX30001. I want to especially thank Alan Schultz

at the Naval Research Lab for hiring me on and supporting my work, and also thank my

co-workers there for their help and support.

I want to thank Dave Akin, for some words of encouragement that I very much

needed to hear.

I owe my sister Taryn many thanks for her loving support and enthusiastic help

planning mayhem when I got frustrated. All that and my maid of honor, too!

My parents I can never thank enough, for everything that they’ve done. Their

love, support and confidence gave me a rock-solid foundation to build myself upon. It’s

made all the difference.

Finally, I thank my dear, sweet, patient husband Moe, who has done absolutely

everything in his power to make these last six months of “dissertating” easier on me,

often at cost to himself.

 iv

TABLE OF CONTENTS

List of Figures.. viii

List of Tables ... xi

List of Symbols... xii

1 Introduction.. 1

1.1 Contributions .. 6

1.2 Organization.. 6

2 Related Work ... 7

2.1 Natural Language.. 7

2.2 Path Planning and Traversal ... 9

2.3 Kinodynamic Planning ... 12

2.4 Multi-objective Optimization ... 12

2.5 Evolutionary Approaches ... 13

2.6 Isoperformance and Adaptive Weighted Sums .. 16

2.7 Mixed Integer Linear Programming ... 17

2.8 Optimal Control .. 18

2.9 Fuzzy Set Theory .. 26

3 Architecture ... 28

3.1 Initialization .. 33

3.2 Trajectory Generation ... 39

3.3 Feature Extraction... 41

3.4 Weight Adjustment ... 42

3.5 Implementation ... 48

 v

4 Two Degree of Freedom Point Rover.. 51

4.1 System Dynamics ... 51

4.2 Terms of the Cost Functional.. 51

4.2.1 Energy Use... 52

4.2.2 Time ... 52

4.2.3 Clearance to Obstacles... 52

4.3 Development of Weight Adjustment Heuristics and Fuzzy Rules 54

4.3.1 Weight Adjustment Heuristics... 54

4.3.2 Heuristic Equation Verification ... 57

4.3.3 Fuzzy Rule Database Z .. 59

4.4 Results... 60

4.4.1 Detailed Examples ... 61

4.4.2 Overall 2DOF Results.. 74

4.5 Conclusions... 84

5 Six Degree of Freedom Deep Space Satellite.. 87

5.1 System Dynamics ... 88

5.2 Terms of the Cost Functional.. 89

5.2.1 Thruster Fuel.. 89

5.2.2 Electrical Energy.. 90

5.2.3 Time ... 90

5.2.4 Clearance to and Speed Near Obstacles... 90

5.3 Development of Weight Adjustment Heuristics and Fuzzy Rules 91

5.3.1 Weight Adjustment Heuristics... 91

 vi

5.3.2 Fuzzy Rules.. 95

5.4 Results... 95

5.4.1 Example Cases ... 96

5.4.2 Overall 6DOF Results.. 108

5.4.3 How WADJ Works... 117

5.4.4 Torque .. 119

5.5 Conclusions... 122

6 Conclusions and Future Work……………………………………………………….123

6.1 Future Work.. 127

6.1.1 Improving INIT .. 127

6.1.2 Improving WADJ ... 127

6.1.3 Improving EVAL .. 128

6.1.4 Developing Fuzzy Rule Database.. 129

6.1.5 Application to Other Adjustable Parameters ... 129

6.2 Final Summary.. 130

Appendix A: Features and Limits ... 131

Features... 131

Limits .. 132

Appendix B: Test Cases and Margin Data.. 136

2DOF Cases .. 136

Start Point, Goal Point, and Obstacle Sets.. 136

Constraint Sets .. 138

Margins of Success and Failure .. 139

 vii

2DOF Trajectory Data by Constraint Set.. 141

6DOF Cases .. 169

Start Point, Goal Point, and Obstacle Sets.. 169

Constraint Sets .. 172

Margins of Success and Failure .. 173

6DOF Trajectory Data by Constraint Set.. 175

Appendix C: WADJ Heuristic Graphs and Fuzzy Rule Definitions 210

2DOF WADJ Heuristics.. 210

2DOF Fuzzy Rule Definitions .. 214

6DOF WADJ Heuristics.. 217

6DOF Fuzzy Rule Definitions .. 221

References... 224

 viii

List of Figures

Figure 1: “Schlock Mercenary,” © 2000-2006, The Tayler Corporation, All Rights

Reserved. Used with permission.. 1

Figure 2: A potential function... 24

Figure 3: A fuzzy membership function ... 26

Figure 4: System architecture ... 29

Figure 5: Paths through the architecture ... 31

Figure 6: Initialization procedure.. 34

Figure 7: Calculating Ω1 and extended S0... 36

Figure 8: Developing WADJ rules .. 43

Figure 9: Effect of changing obstacle penalty weight (solid lines) and obstacle penalty

function influence limit (dashed lines) on separation from obstacle 46

Figure 10: Average speed as a function of W1/W2 for zero, one, and three obstacles in a

10m x 10m field .. 55

Figure 11: Average speed as a function of W1/W2 for four different empty field sizes.... 56

Figure 12: Heuristic equation less predictive as obstacles are added to the environment 57

Figure 13: 2DOF paths for CS 3, OS 1... 64

Figure 14: 2DOF path trajectories for CS 3, OS 1.. 64

Figure 15: 2DOF path for Ω1
 = [0.214, 1.0, 1.0, 1.0].. 65

Figure 16: 2DOF trajectory for Ω1 = [0.214, 1.0, 1.0, 1.0]... 65

Figure 17: 2DOF path for Ω2 = [0.214, 1.0, 1.0, 1.0] ... 67

Figure 18: 2DOF trajectory for Ω2 = [0.214, 1.0, 1.0, 1.0]... 67

Figure 19: 2DOF path for Ω3 = [0.015, 1.0, 1.0, 1.0] ... 69

 ix

Figure 20: 2DOF trajectory for Ω3 = [0.015, 1.0, 1.0, 1.0]... 69

Figure 21: 2DOF path for Ω4 = [0.050, 1.0, 1.0, 1.0].. 71

Figure 22: 2DOF trajectory for Ω4 = [0.050, 1.0, 1.0, 1.0] ... 71

Figure 23: 2DOF path for Ω5 = [0.002, 1.0, 1.0, 1.0] ... 73

Figure 24: 2DOF trajectory for Ω5 = [0.002, 1.0, 1.0, 1.0]... 73

Figure 25: Failures for each 2DOF solution case out of 28 H0 and 72 S0 74

Figure 26: 2DOF iterations through architecture.. 75

Figure 27: 2DOF S0 failure rates by obstacle set.. 76

Figure 28: 2DOF S0 failure rates by constraint set ... 77

Figure 29: Margin of success for hard limits in 2DOF case ... 79

Figure 30: Margin of success for soft limits in 2DOF case .. 81

Figure 31: Margins of failure on soft limits for 2DOF case ... 82

Figure 32: Margins of failure for soft limits after one iteration in 2DOF case................. 83

Figure 33: Margins of success for soft limits after one iteration in 2DOF case 84

Figure 34: Preliminary work in multi-vehicle formation management 86

Figure 35: WADJ curve for avg-speed in 6DOF domain ... 92

Figure 36: First stage of WADJ heuristic for determining torque in 6DOF domain......... 94

Figure 37: Second stage in torque heuristic in 6DOF... 95

Figure 38: 6DOF a) path, b) rates and c) inputs for Ω1 = [1.00, 1.00, 1.00, 1.00]............ 99

Figure 39: 6DOF a) path, b) rates, and c) input for Ω2 = [1.00, 1.00, 4.57, 1.00] 101

Figure 40: 6DOF a) path, b) rates and c) input for Ω4 = [1.00, 1.00, 4.86, 1.00] 103

Figure 41: 6DOF a) path, b) rates, and c) inputs for Ω1 = [1.00, 1.00, 4.00, 1.00]......... 106

Figure 42: 6DOF a) path, b) rates, and c) inputs for Ω2 = [1.00, 1.00, 4.79, 1.00]......... 107

 x

Figure 43: Failures for each solution case out of 20 H0 and 60 S0 108

Figure 44: Margins of failure for hard limits after first trajectory generation for 6DOF

cases .. 109

Figure 45: Number of iterations through architecture .. 110

Figure 46: 6DOF S0 failures by obstacle set... 111

Figure 47: 6DOF S0 failures by constraint set .. 112

Figure 48: Margins of success for hard limits for 6DOF cases 115

Figure 49: Margins of success for soft limits for 6DOF cases 116

Figure 50: Margins of failure for soft limits for 6DOF cases ... 117

Figure 51: Weight values evolving through Constraint Set 5, Obstacle Set 1 starting from

INIT1.. 118

Figure 52: 6DOF S0 failures for Constraint Sets 6, 7 and 8.. 121

Figure 53: Number of iterations required for Constraint Sets 6, 7 and 8........................ 122

 xi

List of Tables

Table 1: Verifying WADJ heuristics with analytical predictions...................................... 58

Table 2: One-Norm of Inertial and Body Forces .. 98

 xii

List of Symbols

a(x(t), u(t), t) System dynamic equations

avg-speed Average forward speed over trajectory

α Generic exponent

bc Set of boundary conditions

best_trajectory Best trajectory found by solver so far

ci Generic constant coefficient

D Set of domain-dependent parameters

δJ Variation in J

F Set of trajectory features

f(x), g(x), h(x) Generic functions of x(t)

H Matrix of moments of inertia

H(x(t), u(t), λ(t), t) Hamiltonian of the system

H0 Set of hard numeric limits on trajectory

half-range The value of one-half the range of a fuzzy interval

i, j, k Generic indices

J Cost functional

K Constant parameter in the obstacle penalty function

L0 Set of all limits on trajectory

LIM Adjustable parameter in the obstacle penalty function

λ(t) Lagrange multipliers

MAX Constant parameter in the obstacle penalty function

 xiii

m Mass

marginerror Vector of errors between F and L0

marginfail Vector of errors between F and S0

marginH Vector of margins of success computed between F and H0

marginS Vector of margins of success computed between F and S0

max-acc Maximum acceleration over trajectory

max-speed Maximum forward speed over trajectory

midpoint Value of center of fuzzy range

min-sep Minimum distance from path to any obstacle

{O} Set of obstacles

oi(ri) Obstacle penalty function

P0 Planning trajectory problem

P Set of solution vectors generated by multiobjective optimization
methods

p 3x1 position vector

ri Distance from vehicle to center of ith obstacle in {O}

S Matrix representation of cross product

S0 Set of soft constraints on trajectory

σ 3x1 orientation vector

t Time

t0 Initial time

tf Final time

time_limit Limit in cycles or seconds on soft constraint satisfaction loop

τ(t) Torque inputs

 xiv

u(t) Force or energy input

V Fuzzy language database

v 3x1 velocity vector

Wi ith weight of weight vector Ω

Ωi Weight vector for ith iteration through architecture

ω 3x1 rotational velocity vector

x(t) State vector

x0 Initial state vector

xf Final state vector

Y Generic set

Yi ith element of generic set

Yi The vector which is the ith element of Y

Yi
j jth element of vector Yi

yi
j Value of jth element of vector Yi

Z Fuzzy rules set

 1

1 Introduction

Figure 1: “Schlock Mercenary,” © 2000-2006, The Tayler Corporation, All Rights Reserved. Used
with permission.

As shown above in Figure 1, mercenary captain Kaff Tagon has a problem. He

needs to select an officer to command his troops in his absence. He chooses his human

commander, Kevyn, and leaves verbal orders: “Don’t let the troops get into any trouble

you can’t get back out of with reasonable bribes or zero friendly casualties.” Kevyn,

more an engineer than a commander, asks for more specifics – a “range of values for

‘reasonable’ and ‘friendly.’” Unsure of what judgments his captain would have him

make, he asks Tagon to quantify his order. In the last panel, Tagon reveals that he is

unwilling or unable to make his orders any more specific, and that if he could assign

numbers to the judgment call, he would have left the ship’s artificial intelligence agent in

charge.

 This comic strip neatly summarizes a dichotomy that points to a real problem in

automated systems research. Both potential command candidates – the human and the

A.I. agent – would like the captain to express his orders in a crisper, more quantifiable

fashion. This is not an unreasonable request for either to make, especially since the

captain will be very displeased indeed if company money is wasted on “unreasonable”

 2

bribes or “friendly” casualties are not kept to zero. But the captain cannot give numbers

to either – and only trusts the human decision-maker to be able to properly function

without them. The A.I. agent is assumed to lack the ability to translate this vague order

into a policy for overseeing the mercenary troops in the captain’s absence. But we might

like to have a system that can do exactly that. We would like for it to understand our

priorities and expectations without having to specify them as numbers that may be

counter-intuitive or even inaccurate.

 We can, for example, easily identify “aggressive driving” when we see it on the

roads. An aggressive driver’s behavior is marked by high traveling speeds, frequent lane

changes, sudden accelerations, and the maintenance of the very barest of safety margins

between other vehicles. What is a “high traveling speed?” Even once the context is fixed

(e.g., interstate vs. in-town), the linguistic term has some fuzziness to it. Certainly, it

implies a speed higher than the legal, posted speed limit. It probably means a speed

higher than the average speed of the other drivers. But is someone driving 5 m.p.h. faster

than road speed an aggressive driver? And on the other extreme, is there a speed so high

that we can say that we have gone past “aggressive driving” and are into a region of

“reckless driving?” When, exactly, is that line crossed? The answers to these questions

are easy for humans to intuit, but difficult to formalize.

 These concerns follow us into the realm of trajectory optimization. Robot

trajectories do not have to be optimal. In some domains, we may accept satisficing

trajectories that simply get the job done without capsizing the robot or running it into

walls. But in the space domain in particular, we will always be concerned with

conserving precious fuel and power. Even if we want an “aggressive, fast” trajectory, we

 3

will still want it to be the most fuel efficient aggressive trajectory. We are concerned

with fuel even if the result is not the fuel-optimal solution.

 Trajectory optimization, at its most general, will have multiple objectives and

constraints. Multiple objectives in particular give rise to multiple possible solutions.

Consider a two objective case: we desire to save both time and fuel. These objectives

compete with one another. The most fuel-efficient trajectory is rarely the most time-

efficient trajectory, and visa versa. There might be several solutions that take the same

minimum time, and we would be interested in the most fuel-efficient one. Or, we might

examine all of the minimum fuel solutions and pick the fastest of those. Or, we might

want some solution in between – one that is neither the fastest nor the most fuel-efficient,

but balances the two objectives in some fashion. Starting out, we may have some idea of

the kind of solution we want or of the relative importance of saving time or fuel. How

can we communicate those preferences to the numeric solver that will compute the

optimal trajectory, so that it will find the “right” optimal?

 In addition to these fuzzy preference ideas, we may also have constraints to place

on the trajectory. The generated trajectory must obey the system’s dynamics, and it must

avoid collisions. Beyond that, we might further impose limits on either the control inputs

(to reflect the realities of travel limits or thruster saturation) and on the state (as safety

measures). Some of these limits could be “soft,” like a posted speed limit. It’s a good

idea to obey the speed limit, but circumstances might require one to exceed it (e.g., to

avoid an erratic driver). Other limits are “hard.” Astronauts will start blacking out if

their re-entry capsule exceeds acceleration limits.

 4

 There are many approaches to solving the constrained multi-objective

optimization problem [1], some of which – evolutionary algorithms, mixed integer linear

programming, and optimal control theory – will be reviewed in Chapter 2. To a greater

or lesser extent, they all can handle soft and hard constraints. All, however, include an

iterative refinement loop to find those solutions that correspond to user preference: that

is, to find the “optimal optimal” solution. And in all of the papers reviewed, it was tacitly

understood that a human user would be interacting directly with the optimization

algorithm in that loop, injecting preference information to focus the optimization on the

areas of interest to the user.

 This work seeks to take the human user out of that loop as much as possible.

Before optimization ever begins, classes of motion are typified with linguistic

expressions: aggressive, curious, careful. Fuzzy logic [2] is an appropriate tool for

approaching the problem of translating natural language utterances into numeric terms

[3]. The words are correlated to fuzzy state values that the system estimates that the user

expects to see in the resulting trajectory: the “numbers for it” that we need to leave an

A.I. in charge. Some iteration may be required here to ensure that the user’s expectation

matches the fuzzy definition of the linguistic expressions. However, once that process is

complete, the user can interact with the optimal trajectory generator in a much more

hands-off fashion.

 This work considers a planetary rover and an Earth-observing satellite as

motivating examples. The planetary rover example is a very simplified case with two

degrees of freedom and linear dynamics that provided initial insight into the trajectory

generation and modification problem. The satellite case has more sophisticated and

 5

realistic dynamics and all six degrees of freedom. The satellite’s hypothetical job is to

provide imaging to support ground-based decision making. It can execute fuel burns to

change its orbit in response to user demands on the ground. These user demands may

have varying levels of urgency. Some may be matters of some curiosity, but no urgency

at all, and the satellite is free to execute maneuvers whenever it is most fuel-efficient to

do so. It may also need to maneuver around other space objects (perhaps other satellites

that require observation).

 This work proposes an architecture that can intelligently meet these demands. A

cognitively-inspired expert system moderates the trajectory generation and optimization

process. At initialization, a solution technique is selected based on problem

characteristics. If an initial trajectory estimate is required for the solution technique, one

is generated, again with consideration for the problem characteristics. Finally, expressed

user preferences are transformed via fuzzy methods into an initial set of weights or other

parameters, and the selected solution technique is run.

 The expert system also considers the results of the solution. Often in these

problems, one or more user-defined constraints or preferences will not be met after the

first iteration. Making changes to the weight vector or to other parameters may solve the

problem; so may a different initial trajectory estimate or the use of a different solution

technique (e.g., if the problem will not solve using the first technique). Given its

knowledge base and the current history of repair attempts for this problem, the expert

system continues to search for an appropriate trajectory.

 6

1.1 Contributions

 This dissertation describes an architecture for organizing trajectory generation and

optimization tools into an overall unit that allows optimization with respect to poorly

defined, fuzzy user preferences as well as respecting hard limits or boundaries placed on

the results (whether these are a result of system dynamics or are also matters of user

preference). This problem is challenging because it seeks to impose an automated,

formalized framework around a process that is usually accomplished by many man-hours

of trial and error. Suggesting such a framework and showing that it is useful in both

linear and nonlinear dynamical systems is one contribution of this work. Finding the

rules and techniques that would allow such automation, and showing their generality, is

another contribution.

1.2 Organization

 Chapter 2 introduces work related to this research. As the proposed architecture

draws from a wide variety of sources, including traditional optimization methods,

cognitive modeling, and fuzzy set theory, Chapter 2 is wide-ranging. Chapter 3 presents

the architecture in more detail. Chapter 4 presents the first implementation of the

architecture and the results of the two degree of freedom rover model. The extension to a

6DOF space satellite, and the changes this required, are given in Chapter 5. Chapter 6

concludes with a summary and review of the contributions of this research and explores

future avenues of research.

 7

2 Related Work

This work incorporates results from many fields. This chapter starts with a look

at some of the natural language literature dealing with position and motion. Then, it will

consider the traditional robotics approaches to motion planning and identify the primary

shortcomings there. The different approaches to solving multi-objective optimization

problems are next addressed, and their fitness for solving trajectory optimization

problems in particular is examined. Finally, fuzzy set theory is introduced, and the

literature linking it both to natural language and to optimization is explored.

2.1 Natural Language

Verbal or written instructions are one possible mode of interaction between a

human and a robot (e.g., as in [4]). Decoding the meaning of these utterances is the

provenance of natural language processing. With respect to motion words: “some

languages like English regularly encode manner of motion in verbs, such as ‘swagger,’

‘slink,’ ‘slide,’ and ‘sway’… Choice of verb is open to construal.” [5]. That is, the

speaker has a variety of choices to describe how a route from a location A to B is

traversed. What verbs the speaker selects will indicate to some extent the “manner of

motion” the speaker requires of the robot.

 To what extent? There is no appreciable literature dealing with the transformation

of verbs to numbers. There is, however, a literature on assigning numeric values to

spatial expressions such as “near” or “in front of” [6, 7, 8]. Researchers use, among other

techniques, a potential field (first developed for robotic path planning [9]) as a

membership function in the fuzzy set theory sense; indeed, fuzzy set theory terms like

 8

“crisp” and “scruffy” appear frequently. Essentially, one point or line is selected (by the

researchers) to represent the ideal of “near,” “along,” or “in front of” some object in the

space. This becomes the minimum for the potential field, which can be visualized as

something like a bowl. The bottom of the bowl (the minimum of the potential field) is

located at the location of the ideal representation of “near,” “along,” etc. As one moves

farther away from that point, line, or region, the bowl slopes up. The potential field

returns higher values the farther away from the minimum one moves. In this way, the

field generates a value for how much “nearness” or “in frontness” any coordinate in the

space possesses. The smaller the generated value, the fairer it is to apply the spatial

expression to it. At sufficiently large values, the spatial expression can be judged entirely

false (e.g., something behind a desk is in no way in front of it).

 This work extends this idea to motion words. First, we define a “state feature

space” composed of state features such as average forward velocity and maximum

acceleration. A collection of points in state feature space is taken (by the researchers) as

the ideal representation of a verb or adverb/verb pair, like “jog” or “move stealthily.”

Fuzzy membership functions are then defined around these areas, so that similar but not

identical kinds of motion can still be included in these classifications. This gives some

flexibility when trying to satisfy the multiple constraints and objectives such terms imply

while maintaining the user’s preference for motion type.

 Motion type is unavoidably somewhat domain-dependent when it comes to

translating words to actual numeric values. We may define “quickly,” for instance, as

having “high average speed” but exactly how fast that is will depend not only on the

dynamic agent but also possibly on its environment. “High speed” for a human runner is

 9

different from “high speed” for a car; similarly, a car going “too fast” through a

residential area is in absolute terms of velocity probably traveling at a speed that would

be “too slow” on the highway. Our definitional databases for each domain will store

these domain-based differences.

2.2 Path Planning and Traversal

The task of moving a robot from a start location to a goal location has been much-

studied. Path planning focuses on finding a path through free space for the robot to

follow [10]. The robot’s dynamics are not generally considered at all for holonomic

robots. For nonholonomic robots, dynamic constraints that directly affect path, such as a

turning radius, may be used to reject some paths. When following the path, the robot is

typically pre-programmed with a simple trapezoidal velocity profile. It accelerates at a

pre-programmed rate to achieve its traveling speed, and then it maintains that speed until

an obstacle or the goal requires it to smoothly decelerate. The rates of acceleration and

the traveling speed are set well within the robot’s operating parameters, so no impossible

demands will be made of the motors, and so that emergency stops will have a very

minimal stopping distance. For slow, wheeled robots, especially those in a laboratory or

office environment, this model usually suffices to move the robot around.

 A step beyond this simple model lies behavior-based motion control [11]. Here,

environmental cues trigger one of a suite of pre-programmed responses. The resulting

actions can seem quite sophisticated or even emotional [12]. A robot that is “frightened”

of red lights can be programmed to respond to that stimulus by moving away from red

lights very quickly. The same robot might also be programmed to approach green lights

very slowly, giving it an air of cautious interest. However, the behaviors “flee from red

 10

light” and “investigate green light” and the parameters that define them are typically

fixed, selected either by human researchers or machine learning techniques [13].

Although some research has been done into making the parameters that define these

behaviors adaptive to environmental stimuli, they are still reactive in nature, making any

sort of overall optimization impossible [14, 15].

 Whereas most behavior-based robotics can be modeled with some kind of Markov

decision process (MDP), another branch of research looks at using a hybrid dynamical

system approach [16, 17]. In a hybrid dynamical system, discrete events trigger shifts

between different continuous dynamics, e.g., reaching a fill line (a discrete event) causes

a shift in water flow rate into a tank (continuous system dynamics). In the cited work, a

simulated mouse agent adjusts its trajectory in response to the environment. As in this

work, this is accomplished via changing weights. The weights, however, are weights on

the repelling and attracting potential functions used for local navigation – there is no

possibility of global optimization. Further, all the weight changes are based on a single

“comfort” parameter and are linked directly to speed. The longer the mouse has gone

without encountering a nearby obstacle, the more “comfortable” it becomes and the faster

it moves. Its level of aggression (e.g., how closely it will approach obstacles) is also

linked directly to this comfort parameter. While a hybrid dynamical systems approach

provides an excellent way to realistically animate computer agents reacting to objects in

their world (which is its goal), it does not yet offer the ability to meet constraints or

optimize cost objectives; this is an open research area.

 “Programming by reward” is a technique that elicits different dynamic behaviors

from a system [18]. Like our research, it uses preference information to create these

 11

differences. Unlike our research, it injects the preference information into machine

learning algorithms for the development of motion behaviors. These behaviors can even

form an optimal policy, given preferences. However, the “interiors” of the behaviors are

still black boxes. The number of lane changes in the authors’ driving example can be

optimized for a safe driver and for a reckless driver, but the dynamics of that lane change

are unexamined. Our research is especially interested in controlling the low-level inputs

that result in the desired behaviors, rather than assembling pre-typed behaviors into a

policy.

 It is no coincidence that the fastest real-time motion planners – artificial potential

function guidance – are the ones with the least capability for optimization [9], and that

the most flexible optimization routines are the most computationally intensive. The high

dimensionality, nonlinearity, constraints and multiple objectives all combine to make

trajectory optimization a very difficult problem. In environments that are highly

“dynamic” in the AI community’s sense of the word (that is, rapidly and unpredictably

changing), optimization will rarely be feasible. Fast, reactive motion planning will

undoubtedly continue to play a role in robot control. But in the space domain,

optimization is a key tool in developing fuel- and time-efficient trajectories while

ensuring safety. The environment is in most cases very well-known, and the current and

future locations of obstacles can be predicted with a high degree of accuracy and

certainty. This is very unlike the rapid and unpredictable changes encountered by robots

operating in home, office, or street environments on Earth.

 12

2.3 Kinodynamic Planning

 Trajectory, or kinodynamic, planning is a newer field. Methods based on the idea

of velocity obstacles [19, 20] are conceptually similar to path planning “roadmap”

methods, with forbidden velocities (e.g., those that would cause collisions or exceed

system capabilities) modeled as obstacles in a velocity space. Spline methods [21, 22]

decouple the path and trajectory planning process; once a clear path through space is

found, interpolating splines are used to find smooth trajectories along them. Randomized

kinodynamic planning [23] explores the state space in a random fashion, working

forward from the start state and backward from the goal state until the search trees meet.

All of these methods search for dynamically feasible trajectories; none of them by

themselves have any notion of optimality. They can be used as input to optimization

routines, however. Velocity obstacles and spline methods have both been used to

generate time optimal trajectories [24, 25] and randomized methods are often used as

starting points for linear programming methods to generate fuel optimal trajectories [26].

2.4 Multi-objective Optimization

At its most general, trajectory optimization is a multi-objective problem with

constraints. Both the multiple objectives and the constraints complicate the solution of

the problem, which is already, except in certain very specialized cases like station-

keeping, nontrivial. A variety of approaches have been developed to solve multi-

objective optimization problems, and they will be surveyed below. While the different

approaches have different strengths and weaknesses, they all have one thing in common:

a parameter or set of parameters that can be adjusted to reflect the user’s priorities

concerning objectives. This common problem motivates the work of this dissertation.

 13

 The general form of the constrained multi-objective optimization problem is:

 minimize (f1(x), f2(x), … , fk(x)) (2.1)

subject to the m inequality constraints

 gi(x) ≤ 0 i = 1, 2, …, m (2.2)

and the p equality constraints

 hj(x) = 0 j = 1, 2, …, p (2.3)

where f are the k objective functions ℜ→ℜn
if : and x = [x1, x2, …, xn]T is the vector of

decision variables. P is the set of vectors that satisfy Equations 2.2 and 2.3; the set of

optimal vectors x* will be found in P.

2.5 Evolutionary Approaches

Genetic and evolutionary algorithms (GAs and EAs) have become popular search

and optimization tools since their introduction in the 1970s [27]. A population of

potential problem solutions is generated and encoded (in binary form for GAs, and in

other representations for EAs), then tested against some fitness function. A new

population is then formed from the first by selecting the “fittest” individuals for survival

and “breeding” them by combining features of their solutions into new solutions. The

fittest individuals themselves may also be included in the new population. Mutations –

small changes made at random to the solution – also increase novelty in the new

population. There are variations on this pattern of EA iteration, but this is the basic

technique.

 14

 Since there is rarely a single point where all of the multiple objectives are

simultaneously maximized or minimized, evolutionary multi-objective optimization

(EMO) frequently makes use of Pareto optimality [28, 29]. Given a set of k objective

functions f, a vector of decision variables P∈*x is Pareto optimal if there does not exist

another P∈x such that *)(f)(f xx ii ≤ for all i = 1, …, k and *)(f)(f jj xx < for at least

one j. In other words, there is no feasible vector x which would decrease some criterion

without also increasing some other criterion. The set of vectors x* that are Pareto

optimal are called nondominated. The corresponding set of Pareto optimal solutions to

the objective functions f is called the Pareto front.

 A variety of survey papers review the state-of-the-art in EMO research from the

mid-1990s to the present [30, 31, 32], and a comprehensive website with over 1000 EMO

references provides access to a wealth of literature [33]. Early attempts included the

Vector Evaluated Genetic Algorithm (VEGA) [34], which has a tendency to find

solutions that do very well in one dimension, but not “middling” or compromise

candidates, and the application of EA heuristics to traditional approaches like aggregation

(combining multiple objectives into a single objective) [35] and lexicographic ordering

(optimizing the objectives in turn, beginning with the most important) [36]. The ideas of

Pareto dominance were not fully utilized at this time.

 The primary drawback of the aggregation approach, so common in traditional

engineering applications, is that it can miss areas of the Pareto optimal front if the front is

non-convex. A region is said to be convex if it always contains the line segment

connecting two points when it contains the two points themselves. An EA that scores

members of a population based on their values for each objective f individually, rather

 15

than the aggregate of all of them, does not need to assume a convex Pareto front to

explore all of it. More recent research has concentrated on ways to encourage population

diversity, so that the EA will explore the entire Pareto front, and the addition of elitism,

which usually uses an external file to store nondominated individuals so that they will not

be lost. (The ways in which the members of the external population interact with the rest

of the population varies from algorithm to algorithm.) The algorithms have been

determined sufficiently robust to be applied to engineering, industrial and scientific

domains [30]. The bulk of this work has been done for problems with only two objective

functions; however, some research has been done with problems involving three. Beyond

that, the field re-names the problem “many-objective optimization,” and there are many

open questions there. In particular, it has been shown that, as the number of objectives

increases, Pareto dominance becomes nearly useless in ranking individuals [37].

Furthermore, it is recognized that often the user does not really want to have to evaluate

all members of the Pareto optimal front, and that incorporating user preference into the

EAs to reduce the returned solution set is a high research priority [30].

 There are two additional considerations to note. The first is that EAs do not

explicitly calculate gradients along the solution set. A good fitness function and the

judicious use of crossover and mutation ensures that the solutions will tend to follow the

gradient down to the minimum, but this is accomplished by selecting ever more-fit

individuals, not by taking advantage of trends. In some cases, this is a strength – EAs are

robust to discontinuities in the solution space, including discontinuities occurring at

constraint boundaries. Since they do not calculate a gradient, they are unaffected if it

 16

should disappear or go to infinity. But when gradients are available, their use would

greatly speed convergence.

 Second, EAs are an unconstrained optimization technique. There is no explicit

mechanism for enforcing constraints such as Equations 2.2 and 2.3. Researchers treat the

problem in different ways. Sometimes, constraints can be recast as objectives. An

assortment of penalty functions can be invoked, penalizing the fitness of solutions that do

not meet the constraints – although this can run the risk of degenerating into a random

walk if there are no good solutions at all in the initial population [32]. Another recent

approach iteratively shrinks the search space to focus on zones where the constraints are

met [38]. These approaches work, some faster than others, and most have a set of

parameters (such as the “rate of shrink” in [38]) that must be set and then tuned by the

user. If the parameters are poorly set, the methods do not work well at all.

2.6 Isoperformance and Adaptive Weighted Sums

de Weck et al. have investigated other, more deterministic methods of developing

a Pareto front. Isoperformance [39, 40] sets a required performance level, indicated by a

fixed value for a cost function. This can be the single output of a complex system, such

as the displacement of space telescope subjected to disturbance forces. Through one of

several algorithms, the design variables of the system (which for the hypothetical

telescope could include parameters as different as its mass, the stiffness of its bending

modes, the bandwidth of its attitude control system, and even the magnitude of the star

being used by the guidance system to orient the system) are varied, and those

combinations which give the desired performance level are recorded. From that set, a

 17

nondominated front is further selected. A user would then select a single solution from

among the nondominated solutions.

Adaptive weighted sum methods [41] can be used when the cost function is of the

form of a weighted sum of terms. Traditional techniques for exploring the Pareto front of

such a system would sample weights at constant fixed intervals, and so might miss many

important features of the front. The adaptive weighted sum approach begins with a

constant interval mesh of weights, then refines the mesh in areas where there are large

gaps between returned cost. Additional inequality constraints are also added to restrict

the calculations to areas where the Pareto front is thought to lie.

These techniques seem very promising for systems design, or in any application

where a user would want to obtain an entire nondominated set of solutions for

consideration. If we were interested in only planning a route between two fixed points,

the time required to form the Pareto front of trajectories using one of these techniques

might be worthwhile. However, our interest is in calculating many trajectories in similar

but not identical environments. Since the trajectory generation process is itself

computationally intensive, we would like to avoid computing a Pareto front of solutions

for any one set of boundary conditions.

2.7 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) has become increasingly popular as a

relatively fast way to generate and optimize trajectories [42]. The technique has been

well-known in the operations research field for many years, but recent increases in

computing speed have allowed the technique to be considered for real-time planning

applications. Equality and inequality constraints can all be handled robustly. It can

 18

approximate non-convex constraints and can handle logical constraints as well. Obstacle

avoidance is done by placing inequality constraints directly on the path space, forcing the

trajectory outside the region of the obstacles; penalty functions are not used. The cost

functional could in principle include many terms, although applications typically focus on

either fuel or time optimal trajectories. MILP has been applied to a spacecraft

rendezvous problem [43] and to multi-satellite reconfiguration problems [44].

 However, as its name suggests, it is suitable only for problems with linear

constraints, including dynamic constraints. [43] uses the linear Hill’s/Clohessy-Wiltshire

equations (although this is not inappropriate for a docking maneuver) and [44] linearizes

gravity-free dynamics. MILP does not handle nonlinear constraints at all, except by

linearizing them. This is appropriate for some domains, but not for all. Control of a

satellite formation over a highly-elliptical orbit, for example, is not amenable to

linearization.

2.8 Optimal Control

Optimal control methods [45, 46] have been used to solve trajectory planning

problems for many years. The calculus of variations is used to frame the problem as a

system of differential equations subject to conditions imposed at the initial and final time.

The equations can be – and often are – nonlinear. System dynamics as well as other

constraints can be included. Generally, a cost functional is of the form:

 ∫=
ft

t
ttttgJ

0

d)),(),((x'x (2.4)

 19

where x(t) is the state vector and x′(t) is its derivative. A variation in the functional, δJ,

can be defined for small changes of g(x(t),x′(t),t). If a relative minimum for J exists, it is

necessary that δJ be zero at that point. Applying the definition of δJ to Equation 2.4

yields the Euler Equation:

 () () 0),*(),(*
dd

d),*(),(*
d

=⎥⎦
⎤

⎢⎣
⎡ ∂−

∂ tttg
t

tttg x'x
x'

x'x
x

 (2.5)

where x*(t) is an extremal state vector and x′*(t) its derivative.

 The problem is to find an admissible input (or control) vector u*(t) that causes a

system described by the differential equations in Equation 2.6 to follow an admissible

trajectory x*(t) that minimizes the cost functional Equation 2.7.

)),(),(()(tttat uxx' = (2.6)

 () ∫=
ft

t
ttttgJ

0

d)),(),((uxu (2.7)

 At all points along an admissible trajectory, Equation 2.6 holds and can be

rewritten:

 0)()),(),((=− tttta x'ux (2.8)

and added to g(x(t),u(t),t) with Lagrange multipliers λ to form an augmented cost

functional:

 ∫=
ft

t aa ttttttgJ
0

d)),(),(),(),(()(λux'xu

or, rewriting,

 20

[] ttttta

tttgJ

T

t

ta
f

d)()),(),((

)),(),(()(
0

x'uxλ

uxu

−+

= ∫ (2.9)

 The extremals of the functional are where δJa is zero. Finding δJa and setting it to

zero results in three necessary equations. They are most commonly expressed in terms of

the Hamiltonian, which is defined as:

)]),(),(([)),(),((

)),(),(),((
tttatttg

ttttH
T uxλux

λux
+=

 (2.10)

The necessary conditions are then:

)),(*),(*),(*()*(ttttHt λux
λ

x'
∂
∂

= (2.11a)

)),(*),(*),(*()*(tttt
x
Ht λuxλ'
∂
∂

−= (2.11b)

)),(*),(*),(*(0 ttttH λux
u∂

∂
= (2.11c)

for all],[0 fttt∈ . For a fixed final time and a fixed final state, we have boundary

conditions

 x(t0) = x0 (2.12a)

 x(tf) = xf (2.12b)

 21

which gives the equations needed to determine the constants of integration. Solving the

system of equations returns the function (trajectory) that will minimize the cost

functional.

 If the final time and final state are not fixed but are free, a new boundary

condition called the transversality condition is produced:

 0=− f
T xλλux δδ)(tt)t),(t),(t),(t(g fffff

*
fa (2.13)

 When xf is fixed, as in this work, δxf = 0, so it must be that

ga(x(tf), u*(tf), λ(tf), tf) = 0.

Except for certain special cases, there is no way to analytically solve the optimal

control problem. A variety of numeric methods have been employed, including the

shooting method [47] and collocation. The shooting method is so-called because it uses

initial value problems (IVPs) as a starting point to “shoot” towards the solution of the

optimal controls boundary value problem (BVP). Unfortunately, a stable BVP (one

insensitive to changes in boundary values) may require the integration of unstable IVPs

(ones highly sensitive to changes in boundary values). This drawback led to the

development of the collocation approach.

 In collocation, the actual solution to differential equations 2.11 is approximated

over a mesh, defined by “knot points.” The approximation is made to satisfy the

boundary constraints at t0 and tf, and further to satisfy Equations 2.11a-c at each knot

point and at the midpoint of each interval between them. An initial guess for the solution

must be provided; the solution technique will alter the current solution estimate to bring

its residual (a measure of error) to within acceptable bounds.

 22

 There are many ways to solve a collocation problem. Solution methods fall in

general into two classes: direct and indirect. Direct methods [48] model the approximate

solution as composed of basis functions; the solution is improved by altering a vector

containing the coefficients for the basis functions. This allows vector optimization

algorithms such as sequential quadratic programming, Newton-Gauss, or Levenberg-

Marquardt to be applied [49]. Direct methods are considered faster and more robust than

the indirect methods. Indirect methods (as in, e.g., [50]) link the knot points with

continuous approximating functions (e.g., cubic splines) over each subinterval. The

coefficients of each of these functions must then be solved. This makes indirect methods

generally more computationally intensive than direct methods. Their advantage is

additional flexibility; the basis functions in the direct methods must be chosen such that

every function could be a feasible trajectory. The indirect method has no such constraint.

 The optimal control problem’s solution is governed by a single cost functional.

Multiple objectives can only be optimized via an aggregation method. Since some

constraints are likely to be non-convex, this means that certain solutions along the Pareto

optimal front may be missed. Typically, a sufficient number of other solutions that also

satisfy the user’s preferences also exist where they can be detected.

 Optimal controls problems can incorporate constraints and discontinuities.

Equality constraints on the state (such as satisfying the system dynamics) are adjoined to

the cost functional via Lagrangian multipliers, as discussed above. Constraints on the

control inputs can be handled via Pontryagin’s Minimum Principle and the resulting

switching curves. Inequality constraints can be handled by the introduction of a function

of a dummy variable, xn+1, whose derivative is defined as:

 23

)f(t)](t),([f...)f(t)](t),([f)f(t)](t),([f(t)x l221 −⇑++−⇑+−⇑≡′ +
22

1
2

1 xxx ln (2.14)

where)(if−⇑ is a unit Heavyside function defined by:

⎩
⎨
⎧

<
≥

=−⇑
01
00

t)(t),(f,
t)(t),(f,

)f(
i

i
i x

x
 (2.15)

for i = 1, 2,…, l (where l ≤ m, the size of the control vector). xn+1 can then be defined as:

 ∫ +++ += ft

t nnn txdttxtx
0

)()()(0111 & (2.16)

We then require boundary conditions xn+1(t0) = 0 and xn+1(tf) = 0. Since the derivative is

never less than zero, xn+1(t) must be zero for all t. This is a constraint of the form

f(x(t),t) = 0, and it can be treated by the method of Lagrange multipliers.

 However, the switching curves and Heavyside function are clearly discontinuous,

making them problematic for many numeric solvers. They can be approximated by a

series of increasingly steep polynomials to avoid this. However, the unchanging nature

of xn+1 presents a further problem. Collocation solvers require gradient information to

reduce the error between the current approximate solution and the true solution. Since

xn+1 is identically zero for the entire trajectory, it provides no gradient information at all.

In our particular case, the collocation solver required a Jacobian matrix which, when the

Heaviside approximation was added, contained a full row of zeroes and so would not

solve. Adjusting the Heaviside approximation further to provide some kind of gradient

information in the allowable solution region amounted to instituting a penalty function,

which is another way to treat state inequality constraints.

 24

 Penalty functions are often used in path and trajectory planning for obstacle

avoidance. Often cubic in form, these penalty functions are centered over an obstacle and

monotonically decrease as they move away from its center. Typically, they go to zero at

some influence limit away from the obstacle, but this is not required. Figure 2 shows the

piecewise continuous penalty function used for obstacle avoidance in the 2DOF work in

Chapter 4. It has a fixed value at the object’s center, at the edge of the object, and at a

fixed distance from the edge of the object. The coefficients of the cubic functions used

can be varied to achieve these conditions for obstacles of different sizes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

Distance from obstacle center

P
en

al
ty

Figure 2: A potential function

 The segment of the function that extends from the edge of the obstacle to the end

of the “influence limit” some distance away provides uniform penalties for approaching

obstacles of any size. No matter how large or small the obstacle, this segment of the

function persists from its outer edge (where contact would occur) to the influence limit.

The segment which lies over the obstacle itself aids in computation. If the penalty over

the obstacle was flat, and a possible path was plotted through the obstacle, there would be

 25

no information available to the solver to make a decision about moving the path. It

would be clear that this was an expensive path, but perturbations around it would cost

effectively the same. With this second segment, the solver can quickly determine a

gradient that will “roll” it off of the obstacle.

 The value of the penalty function is added to the cost functional. As cost is

minimized, the trajectory will tend to be moved away from the obstacles. However, if

other costs are sufficiently great, it may be numerically less expensive to accept the

penalty – which means planning a path through the obstacle. Penalty functions do not

offer guarantees on constraint satisfaction, which means that solutions generated via

optimal control methods must be checked in a post-processing step.

 Using penalty functions to disallow regions of the velocity space was attempted as

part of this research. However, doing so caused an unacceptable slow-down of trajectory

planner performance. The planners used in general have a more difficult time,

computationally, when there are many obstacles near the generated trajectory, and the

obstacles in velocity-space were apparently too near the solution velocity. This may not

be a problem with another trajectory planner, and would be a valid technique for

enforcing these limits. However, as with penalty functions used for physical obstacles,

there is always a chance that there will be a trajectory whose minimum cost lies within

the obstacle, if the penalty function is not sufficiently large. Trajectories would still have

to be checked for these failures, and some parameters of the penalty function adjusted to

shift the trajectory to the outside of the obstacle.

 26

2.9 Fuzzy Set Theory

 The main idea behind fuzzy set theory is that a member of a set may belong only

partly to that set [2]. Classically, individuals either are or are not contained in a set; they

are either hot or not hot, for example. In fuzzy set theory, an individual may be 50% hot

and 50% not hot, or 30% hot and 50% warm. Complements, like “hot” and “not hot”

must sum to 100% but non-complementary attributes may not. For example, the vertical

line in Figure 3 indicates that generic feature value F is about 45% “low,” about 60%

“medium,” and 0% “high.”

0

50

100

%

Feature value

LOW MEDIUM HIGH

fij

Figure 3: A fuzzy membership function

 The triangles in Figure 3 are membership functions. They correlate “crisp”

numeric values, as measured in the real world, to these fuzzy levels. A fuzzy rules set

 27

then acts on these “fuzzified” inputs. For example, “If air temperature is LOW, turn

heater fan to “HIGH” and “If air temperature is MEDIUM, turn heater fan to LOW.” The

fans speeds will have similar fuzzy membership function correlating speeds like “HIGH”

and “LOW” to revolutions per minute. These outputs are scaled by the membership

function of the inputs.

 Natural language, while a desirable input modality, is inherently ambiguous.

From interpreting sounds into words to parsing the words into sentences to interpreting

the possible shades of meaning of a sentence, there are ambiguities that must be dealt

with. Classical mathematics does not manage ambiguities well. Fuzzy techniques, on the

other hand, deal with them substantially better [3]. Ambiguities lend themselves to

problems involving shades of meaning or even slight differences in pronunciation.

 Fuzzy optimization, a fairly new field, applies fuzzy set theory to optimization

problems. Fuzzy techniques are not themselves used to solve the problem, but are rather

applied to candidate solutions to rank them. They are often used in conjunction with

EAs, where the evolutionary algorithms generate the candidate solutions and the fuzzy

methods are used to rank them before selection and breeding occurs. Recent work [6]

has shown that an expanded and fuzzified notion of Pareto dominance seems to perform

more in accord with common sense than strict Pareto dominance, and should not have the

same problem as Pareto dominance (e.g., that all solutions become equally good) as the

number of objective functions increases to infinity.

 28

3 Architecture

 The problem with which we are faced is this: to generate a dynamically feasible

trajectory for some autonomous vehicle which also satisfies user-imposed constraints.

Some of these constraints are “soft,” and indicate a user’s preference for a solution in

some region of the state space. Other constraints are “hard” and indicate regions of the

state space from which the vehicle is forbidden. Under these constraints, we still wish to

optimize the trajectory with respect to fuel and/or time. We will use a vector of weights

to direct the solution to the preferred regions of state space, automatically adjusting the

vector if an acceptable solution is not found.

 Figure 4 shows an outline of the agent’s processes. At the center sits the

evaluation model, overseeing all activities. The human user interacts with this module,

monitoring events rather than directly participating in trajectory generation processes.

The evaluation module, EVAL, accepts a planning problem, P0, which can be posed by

the user or by any suitable high-level planner that builds task-level actions to achieve its

goals, some of which may require vehicle motions.

 29

Evaluation
{HIST}

Feature
Extraction

Weight
Adjustment

Initialization

Domain D
Obstacles {O}={o1,o2,…,ok}
Problem P0: (D, {O}, H0, S0,bc)
Adverb definitions: V
Fuzzy rules: Z
Trajectory: {P0} X

Fi

Ωi, Fi, Hi, Si

P0, V, Z

@TPLAN, Ω1, H0, S0, x0

Ωi+1

ti, xi, ui, {O}

@TPLAN, bc, Ωi

Ji, ti, xi, ui

TPLAN

FEXT

INIT

WADJ

User

Trajectory
Planner

Figure 4: System architecture

 A trajectory planning problem P0 is defined as {D, {O}, H0, S0, bc}. Domain D

describes system dynamics and the parameterized cost functional J to be minimized. {O}

represents the set of obstacles in the environment. H0 describes the hard constraints

(limits on state space values) to be met, whereas S0 is a set of soft constraints that indicate

user preference, but are ultimately flexible. H0 are numeric; S0 may be numeric or fuzzy

linguistic terms. Fuzzy terms must eventually be converted into soft numeric limits; L,

the set of all limits, includes H0 and the extended S0. Members of L may be upper limits,

lower limits, or range limits (when we want the state feature to be within an upper and a

lower limit). The boundary conditions bc = {t0, x0, xf} are split and can include all of the

usual optimal controls cases (e.g., fixed or free final time or state, final state constrained

 30

to a fixed or moving surface). The goal is to return feasible and optimal solution X = {Jn,

Ln, tn, xn, un}, where Jn and Ln summarize solution cost and the feature limits/constraints,

respectively, of the nth iteration and the set {tn, xn, un} specifies the full-state trajectory

(i.e., time sequence tn, position/velocity vector sequence xn, control inputs un) to be

executed. This goal is achieved through intelligent selection of a trajectory planning

function and selection and adjustment of a weight vector Ωi that influences the relative

importance of terms in the cost functional J. EVAL incrementally builds a history of

activities {HIST} = {HIST1, HIST2, …} with HISTi including a record of the function

used by TPLAN, the initial solution estimate, and the weight vector Ωi used for the ith

iteration. EVAL can then use {HIST} to identify which weight adjustment strategies it

has already employed, to avoid infinite loops. Figure 5 shows the possible paths through

the architecture.

 31

INIT

TPLAN FEXT

SUCCESS
RETURN X

WADJ

Save
best_traj

WADJ TPLAN FEXTLoop
in Ω?

this_traj
better than
best_traj?

All H0,
S0

met?

All H0

met?
Loop
in Ω?

FAILURE
RETURN Xfail

best_traj = this_traj

Set time_limit

time <=
time_limit

?

PARTIAL SUCCESS
RETURN X with best_traj

SUCCESS
RETURN X

N

N N

N

N

N

N N

Y

Y

YY

Y

Y

Y

Y

All H0,
S0

met?

All H0

met?

Figure 5: Paths through the architecture

INIT initializes the problem state, P0, selecting a trajectory planning function and

providing a vector of cost functional weights Ω1 and an initial guess for the trajectory x0,

if needed. Next, TPLAN generates an optimal trajectory based on this initial P0. FEXT

extracts the relevant trajectory features, F1, and returns them to EVAL. If all elements of

F1 are within the limits L0, the trajectory is deemed a satisficing solution and the solution

X is returned by RETURN to the user and the higher-level strategic planner. Otherwise,

the nature of the limit failures is analyzed. If the user-imposed hard limits (e.g., those

which must be satisfied) are not met, WADJ is called to determine new weights Ωi+1.

EVAL then checks {HIST} for a cycle in the weights; if one has occurred, the process

 32

fails. This loop continues until the hard limits are met. If the hard limits are met but the

user-imposed soft limits (e.g., those which we prefer to be satisfied) fail, the process

enters a second loop. The goal in this case is to improve the solution so that it meets all

of the limits, hard and soft, but to provide some solution within a limited time. The user

may adjust this time_limit to reflect his desire for constraint satisfaction versus his desire

for timely results. (The loop which attempts to meet H0 does not have a similar

time_limit because we assume that the user has no use for the illegal trajectory; that loop

will run until H0 are met, the process fails, or the user interrupts it.) In any case, the

trajectory which satisfied the hard limits but not the soft limits is stored, so that a legal

trajectory is guaranteed to be returned. The process continues as for the hard limit case,

with the exception that if a trajectory is found which again satisfies the hard limits but not

the soft ones, this solution is compared to the prior best_trajectory. If it is a “better”

solution than best_trajectory, it replaces best_trajectory in memory. Currently, the 2-

norms of the respective error margin vectors, marginerror, are compared to determine

which solution is “better,” and the solution with the smaller overall error margin norm is

kept. The error margins are defined as:

⎪⎩

⎪
⎨
⎧ ¬−

= 0

00

0 j
i
j

j
i
jj

i
ji

jerror LF
LFLF

o

o

,
,

margin , (3.1)

where the operator ◦ indicates that a features meet its corresponding limit, whether they

are below an upper bound, above a lower bound, or within a range. For the ith iteration

of the trajectory planner, the jth feature is compared to the jth element of the vector of

limits. The elements of marginerror were not normalized for limit size in its first version

and an upgrade was never made; certainly some sort of normalization would be more

 33

appropriate. An element of marginerror is negative when a lower limit is violated and

positive when an upper limit is violated. (If Lj
0 is a range limit, the end of the range that

is violated is used.) When the 2-norm is taken, all the values are of course positive.

However, the sign of marginerror, j is important because it is used by WADJ to determine

the direction of the weight change.

We now examine each of the architecture components in more detail.

3.1 Initialization

 To guide the search toward an acceptable solution, the initialization routine INIT

(Figure 6) translates knowledge about the domain D, constraints L0 and obstacles {O}

into choices for the trajectory generation routine TPLAN, any seed information x0

required by TPLAN, and an initial weight vector Ω1.

 34

Dynamics
and

constraints
linear?

Anytime
planning
required?

@TPLAN = MILP @TPLAN = RHP

@TPLAN =
BVP4C

Crowded
with

obstacles?

x0 = cubic splinex0 = RRT

x0 = []
Compute

extended S0,
Ω1

Return
@TPLAN, x0,

Ω1
, S0

N N N

Y YY

EVAL

P0

Figure 6: Initialization procedure

 Most any trajectory generation tool set that optimizes over a weighted cost

function can be incorporated into the architecture. With multiple tools in place,

information for choosing between them must be made available. Figure 6 illustrates

choices between a mixed integer linear programming module (MILP) [26], a receding

horizon planner (RHP) [49], and MATLAB’s collocation-based boundary value solver

BVP4C [50]. User-provided information as well as domain information guides the

choices, although making a choice among multiple solvers is beyond the scope of this

work which relies strictly on collocation, the strategy we consider more flexible than

MILP given nonlinear dynamics and more mature than receding horizon algorithms.

 35

 Depending on the choice of trajectory planner TPLAN, some initial guess may

need to be supplied to the trajectory generator (e.g., for collocation). We use a cubic

spline which satisfies boundary conditions x0 and xf. In the future, it may be desirable to

use a Rapidly-expanding Random Tree (RRT) [23] if the area in which the robot moves

is very cluttered with obstacles. The RRT can find a dynamically plausible (but non-

optimal) trajectory through the space. This solution can then be used as an initial guess

for one of the optimization routines.

 Once TPLAN and any inputs it requires are chosen, the limits L0 are used to

compute the initial weight vector Ω1 and an extended version of the limits themselves as

described below. When no hard or soft constraints are specified, INIT defaults to equal

weights (Ω1
default) for all terms of the cost functional.

 This computation of Ω1, shown in Figure 7, accepts limits in either the form of

qualitative adverbs (e.g., “quickly” or “safely”) with optional adverbial modifiers (e.g.,

“very”) or numeric constraints on a trajectory feature (e.g., “maximum speed ≤ 5 m/s”).

The numeric constraints may be either hard or soft.

 36

Adverbs state inequality
constraints

Adverbial modifiers Є (0, 1)

Fuzzy L, Ω levels
numeric ranges

Adverb S0

state S0 S0 Ω1

Aggregate Ω1

Ω1

projected
to meet

H0?

Adjust Ω1 so H0 will
be met Normalize Ω1 Return H0, S0, Ω1

H0, S0

N

Y

INIT

Z ZV

0

50

100

%

Feature value

LOW MEDIUM HIGH

F

Figure 7: Calculating Ω1 and extended S0

 We deal firstly with the adverb constraints, all of which are considered soft

constraints. We define each adverb that our system understands in terms of the trajectory

features we can extract. For example, “quickly” involves maximum forward speed (max-

speed) and average forward speed (avg-speed). We further define fuzzy levels for each

feature. “Quickly” involves “high” max-speed and “high” avg-speed. These definitions

are stored in the fuzzy language database V.

 The ranges for these values are defined based on vehicle performance constraints

and a typical definition of each adverb relative to these constraints. We used the same

data that generated the weight adjustment curves to correlate feature levels to weight

 37

levels (see “Weight Adjustment,” below), resulting in our fuzzy rule set Z. We cannot

use the weight adjustment equations themselves, as they require constants that cannot be

calculated until the first set of trajectory data is available. But we can say that “low”

values of a given weight produce “high” values of avg-speed. We define ranges for the

weight levels as well. Since all of our fuzzy levels are defined geometrically as triangles

with fixed endpoints, their centroids are fixed along the weight axis. Defuzzification for

each weight correlated with each feature is the process of looking up this centroid value.

This numeric information is also contained within the fuzzy rule set Z and is represented

by the generic fuzzy membership function depicted in the upper right of Figure 7.

 Any numeric soft constraints in S0 are then also fuzzified (so that

“4 m/s ≤ max-speed ≤ 5 m/s” becomes “max-speed high”) and appropriate fuzzy weight

levels found by referencing Z. (In our current implementation, we only dealt with and so

only treat soft numeric range constraints. Soft upper and lower constraints would be

treated like hard constraints; see below.) We do this because, at this point in the

algorithm, we lack quantitative equations which could directly correlate hard or soft

numeric constraints directly to weight values. We have a general understanding that

“max-speed high” requires “time weight high,” and fuzzy estimates of what values

constitute “high” for both parameters. But we as yet lack a predictive equation which

would accept as input a desired feature value and give as output an estimated weight.

After our first trajectory has been computed, we can then solve for certain parameters that

do allow such estimation, but here in INIT we do not have the required data.

 Taken all together, these S0 represents the user’s preference for the vehicle’s

behavior. It now remains to combine these preferences into a single weight vector, and

 38

then to determine if the result is likely to satisfy any hard constraints H0 (the user’s

requirements on the vehicle’s behavior) that have been given.

 To combine all of these weights, we find a centroid that represents an average

over each feature’s “ideal” weight vector. The “mass” used for this centroid computation

is an optional adverbial qualifier that can be stated in the adverb constraint. So “safely

but a little quickly,” where “a little” is the adverbial qualifier, will place more emphasis

on weights resulting from features related to “safely” than weights computed from the

“quickly” term.

 Now we have our initial weight vector Ω1. If there are additional hard numeric

constraints on features in H0, we fuzzify those constraints as we did for the numeric soft

range constraints. Then we check if the current weight vector, when fuzzified via the

rules in Z, correlates to that fuzzy level. That is, if we require a hard limit “max-speed ≤

high” and the relevant weight in Ω1 is “low,” are we likely to generate an acceptable

behavior? If we are not, the weight value in the required fuzzy range that is closest to the

current weight value is selected. So, to continue the example, if we require a “high”

weight to elicit “high” max-speed, but our current weight is “low,” the algorithm will

select the value in the “high” fuzzy weight triangle closest to the “low” triangle. Since

this overrides the centroid calculation that was built on user preference, it is done only for

hard limits H0, which we assume the user needs rather than wants.

 If this work is extended to include soft upper or lower numeric constraints, a

similar checking procedure would be used to see if they would probably be satisfied by

Ω1 before the hard constraint check had been performed.

 39

3.2 Trajectory Generation

 The TPLAN module takes the weight vector Ω1 calculated by INIT as well as any

initial estimates it requires for itself that INIT generates. It returns a full state trajectory,

including position, velocity, and control inputs at each time step. The only requirement

we place on how TPLAN does this is that it must accept some vector of adjustable

weights which we can manipulate to change the features of the trajectory. We do not even

require that TPLAN return optimized trajectories, although we have chosen to use such a

TPLAN. The computational process of finding the optimal trajectory, given user

preferences, was not the primary focus of this research. Users can incorporate their

preferred trajectory generator (TPLAN) into this architecture, so long as it meets our

requirements.

 The current implementation assumes a cost functional in the form of a weighted

sum of terms. If the trajectory generation process were to use substantially different

adjustable parameters, new strategies for WADJ would have to be developed. For

example, an evolutionary algorithm which used a weighted sum as its fitness function

could be used as a TPLAN, since by changing the weights we can change what is a “fit”

trajectory and hence what the EA will return. But a multi-objective EA that uses Pareto

optimality as a fitness function would be different, since it by nature returns a whole

family of nondominated trajectories. Injecting user preference into multi-objective

optimization is an active area of research and techniques similar to the ones described

here may be helpful, but some work would have to be done to adapt them to the field.

 In our experimental domains, we used the collocation-based BVP4C solver and

Henshaw’s extension BVP4C2 [51] in MATLAB for the split boundary value problem.

 40

We found that we needed to make several assumptions to get the code to work, some of

which may affect the probability that the solution returned is the true optimal for the

given parameterized cost functional and not just a local minimum.

 First, although BVP4C and BVP4C2 can theoretically solve for a free end time, to

make a problem with free end time converge to a solution requires a very good initial

guess, both as to the shape and the duration of the trajectory. Without such an educated

guess, the solver returns a nonconvergent (invalid) solution. We instead provided the

solver with an array of possible final times and made the assumption of smoothness

between them. The solver iterated over each possible final time in the array and the costs

for each resulting trajectory were compared. If the lowest cost trajectory was somewhere

in the middle of the array, the times on either side of the lowest-cost trajectory were taken

as new upper and lower time limits for a new array with smaller steps between final

times. If the lowest-cost trajectory were at either end of the array, the current time step

was preserved and the lowest-cost trajectory was used as either the new high or low end

of the array. The lowest possible completion time was set for 1 sec; if forming the new

array would require a final time less than one second, the lowest possible time was set to

1 sec and the time step recomputed to fit evenly between 1 sec and the high end of the

time array. Second, although the collocation routines are fairly robust, they are still

sensitive to certain numeric artifacts. We discovered, for instance, poor convergence for

certain final times. The algorithm would converge well for some tf+dt and for tf - dt, but

for tf itself, no good answer would be found. Other variables, including continuation

schedules (where obstacle potential functions or vehicle step-response outputs are slowly

brought from some smooth approximation to their sharper, final shape) and obstacle

 41

placement (obstacles symmetric with respect to the initial path guess especially) could

also cause problems. Unfortunately, our automated data generation scheme did not allow

for the easy detection of these cases, nor did we have the time to hand-tune every

parameter in every optimization run to get the best results. (Dozens to hundreds of

optimal trajectories are generated for each set of L0 that we attempt to satisfy.) In many

of these cases, the nonconvergence was not pathological; desired error bounds of 0.1 m

might be exceeded by errors of 0.2 m, for instance. Further, these cases were rarely the

lowest-cost trajectories, and we assumed that we could validly select the lowest-cost

convergent trajectory in the presence of nonconvergent trajectories. Those cases where

nonconvergent trajectories were selected as optimal will be discussed in the relevant

Results sections in Chapters 4 and 5.

3.3 Feature Extraction

 Feature extraction (FEXT) is a computational routine that takes as an input the

generated trajectory and extracts from it certain gestalt properties useful in evaluating the

trajectory. Total battery power expended, total time, maximum speed, average speed, and

maximum acceleration during the traverse are typical features. A complete list of

features, together with the qualitative adverbs they define, is found in Appendix A. Some

are maximum or minimum values which are straightforward to express in L0; others are

averages or percentile values that give an overall impression of the trajectory. The

“percent plateau” values, for example, are the output of a routine which checks the

velocity and acceleration profiles for significant periods of time (at least 10% of the total

duration) during which the relevant value fluctuates no more than 1% of its total range.

 42

This was intended to give a numerical approximation to the human technique of looking

at a trajectory profile and estimating how “flat” it is.

 The features in Appendix A are very loosely domain-dependent. More

accurately, they can be defined independently of a domain, but simply may not apply to a

particular domain. An average rotational rate is meaningless in a 2DOF simulation that

has only linear motion in the x-y plane. Average vehicle separation is inapplicable to a

single vehicle domain. Likewise, certain adverbs or verbs may not be relevant to all

domains, even though they exist outside of them. We might prefer an Army field vehicle

to move “stealthily,” but there is little call to require a space robot to behave in such a

fashion.

3.4 Weight Adjustment

 The development of good weight adjustment (WADJ) heuristics was a key part of

this work. Our goal was to automate the process by which cost functional weights are

tuned. This is typically done by hand, by a domain expert, until the desired results are

achieved. We have attempted to encode these desired results into the limits L0, as

functions of the features defined above. What remains is to extract domain expert

knowledge and techniques and automate the adjustment process.

 43

Identify terms of cost
functional which can be

adjusted to affect
trajectory

Select range of relative
weights Ω that captures

dynamic range of system

Determine trajectory
features F of interest

For: different
sizes of

commanded
motion

For: Zero and
nonzero
obstacle

fields

For: Each
combination
of weights Ω

Calculate and
store the optimal

trajectory

Extract trajectory features
F from trajectories

Seek heuristic equations
that relate weights Ω to

features F for each
commanded motion and

each obstacle field

Determine if heuristics are
consistent over different

commanded motions and
different obstacle fields

Figure 8: Developing WADJ rules

Early in this research we discovered that many of the features in our set could be

expressed as functions of the weights used in the cost functional. The cost functional for

the 2DOF linear domain contained three fairly typical terms: one penalized electrical

energy use, another penalized time, and the last was the obstacle penalty function shown

in Figure 2. The cost functional for the 6DOF nonlinear domain contained four terms,

penalizing fuel used for thrust, electrical energy used for torque control, time, and an

obstacle penalty function. Despite the different dimensionalities, cost functionals, and

system dynamics, we were able to treat the generation of our WADJ heuristics in a similar

fashion in both cases.

 44

 Each test matrix covered a combinatorial set of cost functional term weights, Ω.

Since a cost functional can always be normalized, we knew that we would be looking at

relative weights rather than be concerned with their absolute magnitudes. Early

experimentation led us to conclude that a range of two orders of magnitude, from 0.1 to

10, would be sufficient to see a broad range of dynamic behavior in our systems. (If this

were ever not the case, it would be a simple matter to extend the scope of the weight

vector to see an even broader range of behavior.) We allowed each individual weight to

vary through {1, 2, 4, 8} which, in combination, gave us relative weights from 2-3 to 23,

which covered our two orders of magnitude.

We varied the magnitude of the commanded motions and also the number of

obstacles in the field. This was to ensure that the answers we were getting were not too

specific to a single domain subcase. At least one obstacle was needed to test features like

minimum separation to obstacles (min-sep); adding more obstacles would show how

performance changed as the field became more cluttered. The empty field and single

obstacle test cases could be performed very quickly, because the absence of many

obstacles greatly simplifies solving the problem.

 Once we had collected the trajectories, we used FEXT to compute the overall

trajectory features in which we were interested. For features relating to time (e.g.,

velocity, acceleration, power), we found strong power relationships between the feature

values and the ratio of the energy or fuel term weight and the time term weight (W1/W2).

That is:

α−

⎟
⎠
⎞⎜

⎝
⎛=

2

1
1_ W

Wcfeaturetime (3.2)

 45

The exponent -α in these equations stayed fairly constant across field sizes, although the

constant coefficient c1 varied.

 Similarly, for path-based features like minimum separation from obstacles (min-

sep), there was a linear relationship between the feature and the influence limit (LIM) in

the obstacle penalty function:

 LIMcfeaturepath 2_ = (3.3)

Figure 2 shows what LIM is. There is an elbow in the obstacle penalty function that

occurs at the edge of the obstacle; in Figure 2, this occurs at a value of 1 m on the x-axis.

Some distance later, at 2 m, the obstacle penalty function goes to zero. The distance past

the obstacle edge over which the penalty function goes to zero is LIM. Figure 9 shows an

obstacle (circle with solid red line). The obstacle penalty term was also weighted, but the

effect of the weight was nearly negligible in comparison to varying LIM, as shown in

Figure 9.

 46

-6 -4 -2 0 2 4 6 8

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

X

Y

Figure 9: Effect of changing obstacle penalty weight (solid lines) and obstacle penalty function

influence limit (dashed lines) on separation from obstacle

The dotted red line in Figure 9 corresponds to one LIM value. The black line

closest the obstacle is a path which goes within this LIM. That isn’t a problem by itself;

we assume the trajectory generator found the cost incurred by getting closer to the

obstacle was less than some other cost. However, we show a hypothetical constraint on

path nearness to obstacles, min-sep, in green. (This min-sep was not used for these data

runs; this is simply an illustration.) In this case, the path is less than min-sep away from

the obstacle. This is a constraint violation, and the cost functional would be adjusted to

correct it. As Figure 9 shows, the most efficient way to adjust path nearness to obstacles

 47

is to change LIM. Increasing LIM increases the distance between the vehicle and the

obstacle, meeting the required min-sep easily.

 Rather than attempt to calculate tables for all possible constant coefficients c1 and

c2 of these equations for all possible field sizes, they are computed online, using the

current weight and feature values to back out the coefficient value. The coefficient,

together with the desired feature value (e.g., the limit, if it was passed), are then used to

recompute the weights.

 As more obstacles are added to the field, the rules’ accuracy is affected.

(Domain-specific examples are given in the relevant chapters.) They remain, however,

useful rules of thumb for guiding weight adjustment, as our results will show.

 The effects of changing the fuel/time weight ratio or the energy/time weight ratio

and LIM were largely independent. This allowed us to decouple them, an important and

useful assumption. They are not, however, entirely independent. As LIM decreases, for

example, more direct paths which save both fuel and time can be found. The effect is not

dramatic, but can mean the difference between a successful and unsuccessful solution. If

the standard WADJ rules have failed to find a solution that mediates between competing

time and fuel goals, a secondary WADJ rule will change LIM in an attempt to take

advantage of this secondary effect and find a successful solution.

 We were concerned that the 6DOF spacecraft domain with nonlinear dynamics

would not be amenable to this WADJ rule-generation process. Results for the 6DOF

domain were in fact very similar to those for the 2DOF domain. A notable difference

was the torque weight term, which is unsurprising given the coupled nature of the

 48

rotational and translational mechanics. Our torque heuristic is discussed in detail in

Chapter 5.

3.5 Implementation

Initially, the TPLAN and FEXT modules were implemented in MATLAB. While

MATLAB runs more slowly than equivalent code implemented in C or C++, this gave us

ready access to the BVP4C function and the BVP4C2 code and domains developed in

[51] and minimized coding overhead. One could expect significant execution speed

increases with a translation to C or C++, making this work quite practical for complex

dynamic and constraint sets.

INIT and EVAL were first implemented in the cognitive architecture ACT-R [52],

which is itself implemented in Lisp [53]. (WADJ was at this point a computational

module written in Lisp, since it was used by EVAL.) Since we were attempting to model

a decision making process currently handled by humans, our thinking was that a

“cognitive model” would be best suited for the task. However, the code which resulted

was far from a cognitive model, despite its implementation in a cognitive architecture

[54]. Furthermore, as we moved into the nonlinear 6DOF domain, it became doubtful

that human decision making would even be something that we would want to emulate.

Humans are very adept at controlling linear systems, but our physical intuition breaks

down for nonlinear ones. As the reasons for using a cognitive architecture became more

uncertain, INIT, EVAL, and WADJ were all migrated to MATLAB since this offered the

certain benefit of easier integration. Additionally, the implementation of iterative loops

required for constraint checking was in many ways simpler and more obvious in

 49

MATLAB. Mathematical computations, while certainly possible in Lisp, were also

easier to represent in MATLAB.

Implementing these routines in MATLAB gave further insight into the strengths

of the cognitive architecture. ACT-R excels in pattern-matching, which it uses to find the

right “procedural knowledge” (an if-then rule) given the “declarative knowledge” (a

piece of data) and the goals that it currently has. The main work of building the ACT-R

model was finding the right representation of the declarative knowledge to enable general

and useful procedures that were not all simply one special case after another.

When this was done correctly, it made extending the modules very easy. To add a

new adverb, for instance, the user had only to write declarative chunks for the features

which composed the adverb, and the levels at which those features were present. If any

new features were defined, their relationship to the weights would have to be defined as

well, but that would also only be a small set of “chunks” of declarative knowledge. The

new adverb and new features could then be treated just like all of the pre-existing adverbs

and features by the system.

In MATLAB, adding a new adverb requires adding new cases to switch

commands in several subroutines. The actual amount of information that the user must

add is not much more than in the ACT-R case, but it is not all contained in one localized

area. The pattern-matching capabilities of ACT-R are simply more elegant than those in

MATLAB and, when dealing with symbolic information such as words, this gives ACT-

R a distinct advantage. Also, ACT-R and other cognitive architectures have learning

functions built into them, which would make it easier for the system to learn individual

users’ preferred fuzzy definitions. (That is, if the user always responds, “No, faster!” to

 50

the returned trajectory for something “very fast,” the system can update the values for

“very fast” to reflect this.) So, while the cognitive modeling aspect of the cognitive

architecture has proven to not be very important to this work, the capabilities of the

architecture may yet be useful in extending and generalizing the work.

 51

4 Two Degree of Freedom Point Rover

 A simplified 2-D domain model was developed as an intuitive baseline case for

our architecture and as a method of developing initial modules to populate the Figure 4

architecture.

4.1 System Dynamics

 We began our investigations with a 2DOF point-robot model, imagining a rover-

like robot traveling in a plane, using electric motors for propulsion. We used this highly

simplified domain to gain an intuition into the process of adjusting the cost functional

weights and computing, then evaluating, the resulting trajectories. The model has simple

linear dynamics:

 ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
mtt

t
mct

t

s /)(
0

)(
)(

/0
10

)(
)(

ux'
x

x"
x' (4.1)

where m is object mass and cs is the coefficient of sliding friction. We assume an

idealized system without motor saturation and perfect trajectory tracking.

4.2 Terms of the Cost Functional

 In robotic applications, two concerns are usually paramount: conserving fuel or

battery power and not running into obstacles. Additionally, there may be time constraints

on a mission. Equation (4.2) gives the cost functional J and weight vector

Ωi = [W1, W 2, W 3, LIM]. Each term is described more fully below.

 52

 () ()()∫ ∑∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
++=

∈=

f

o

t

t Oi
ii

j
j troWWtuWJ d)(

}{
32

)(length

1

2
1

u

 (4.2)

 4.2.1 Energy Use

 Since we are considering a hypothetically battery-powered vehicle, we followed

[46] in adding a minimum-energy term. We have simplified his representation somewhat;

the author of includes a potentially different weight for each uj
2(t) in the control vector.

We do, however, differentiate control vector elements in the 6-DOF example shown

below, where translational actuators require fuel and rotational actuators require electrical

power.

4.2.2 Time

 Since J is an integral, the cost functional only needs a constant term, W2, to

minimize time. Over the integral, the resulting W2*tf will be minimized.

4.2.3 Clearance to Obstacles

 To keep the vehicle away from obstacles, we add the term ∑
∈ }{

3)(*
Oi

ii roW ,

presuming simple circular obstacle geometries. (A sum is used, rather than a maximum,

to preserve the smoothness criterion required for convergence in the collocation solver.)

We assume that our agent has an a priori map of the region it will traverse, possibly

obtained from an orbiter or aerial overflight. oi(ri) is a function which increasingly

penalizes the agent as it approaches obstacle i. W3 is the relative weight in overall cost

from Equation 4.2, and ri is the distance from the vehicle to obstacle i’s center:

 ri = sqrt((x – xo)2 + (y – yo)2 + (z-zo)2) (4.3)

 53

oi(ri) is maximum value MAX over the center of the obstacle, attains fixed value K at the

obstacle boundary a distance Ri from the obstacle center, and decreases to zero at a

distance LIM away from the obstacle's edge (Figure 2). These constraints are described

by Equation 4.4 and also include smoothness conditions. A third-order polynomial

solution (Equation 4.5) that meets these constraints was selected as oi(ri). This solution is

positive within the region of influence (ri <LIM) and effectively repels the path given

sufficient MAX, K, LIM values.

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
=
=

=

=

=

=
=

0)("
0)('

0)(

)(")("

)(')('

)(

)(
)0(

LIMo
LIMo

LIMo

RoRo

RoRo

KRo

KRo
MAXo

i

i

i

rightiileftii

rightiileftii

rightii

leftii

i

 (4.4)

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>

+≤<+++

≤+++

=

LIMr

LIMRrRcrcrcrcK

RrcrcrcrcK

ro

i

iiiiii

iiiii

ii

,0

),(

),(

)(87
2

6
3

5

43
2

2
3

1

 (4.5)

 MAX and K were chosen in an ad hoc fashion, after some experimentation. They

should be sufficiently large compared to the other costs to appear nearly infinite; Eq. 4.5

is equal to K when the vehicle is touching the obstacle, and we would like to model any

further passage into the obstacle as being of infinite cost. (In practice, if the path does go

within the obstacle, this will violate an implicit hard min-sep limit and cause a

 54

recalculation of the trajectory.) The coefficients c are found by solving the two third-

order equations and their first and second derivatives to satisfy all of the smoothness

constraints.

 In our analysis of the effects of changing the weighting parameters on the

trajectory, we included changes not only in W3 but also in LIM. They had distinctly

different effects, as show in Figure 9 above.

 In addition to these terms, the system dynamic equations are adjoined to J as

shown in Eq. 2.9. This ensures that only dynamically feasible trajectories will be

considered.

4.3 Development of Weight Adjustment Heuristics and Fuzzy Rules

4.3.1 Weight Adjustment Heuristics

 The procedure outlined in Chapter 3 was followed, with WADJ rules and fuzzy

correlation rules established for all of the features addressed in the current

implementation of the architecture. The general procedure was very similar for each, so

one detailed example is presented here, while the rest of the WADJ plots can be found in

Appendix C.

 Figure 10 shows the data collected for average speed as a function of the ratio of

the energy weight, W1, to the time weight, W2. In the empty 10m x 10m field, this linear

system shows very predictable behavior, described well by the Figure 10 equation plotted

in black. As obstacles are added to the field, it becomes clear that, while the equation

still has value as a heuristic, it is not as accurate in predicting the average speed for a

given set of weights as it is in the empty field case.

 55

avg-speed10 = 1.12(W 1 /W 2)-0.38

R2 = 0.9914

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

W 1 /W 2

A
ve

ra
ge

 S
pe

ed

0 obstacles
1 obstacle
3 obstacles
Power (0 obstacles)

Figure 10: Average speed as a function of W1/W2 for zero, one, and three obstacles in a 10m x 10m

field

 Figure 11 shows the change in the equation linking average speed to the W1/W2

ratio as field size changes. 200m x 200m, 20m x 20m. and 2m x 2m fields were used,

and the 10m x 10m data from the Figure 10 zero obstacle case is included as well. There

is variation in the exponent, particularly between the mid-range and high field sizes and

the small field. In practice, we would not expect to operate frequently in such a small

field (unless the robot was exceptionally small, in which case we would probably not be

operating in the larger regimes).

 56

avg-speed 200 = 1.32(W 1 /W 2)-0.50

avg-speed 20 = 1.25(W 1 /W 2)-0.44

avg-speed 10 = 1.12(W 1 /W 2)-0.38

avg-speed 2 = 0.72(W 1 /W 2)-0.30

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

W1/W2

A
ve

ra
ge

 s
pe

ed

Field 200
Field 20
Field 2
Field 10
Power (Field 200)
Power (Field 20)
Power (Field 10)
Power (Field 2)

Figure 11: Average speed as a function of W1/W2 for four different empty field sizes

Since the equations serve only as a heuristic and become less accurate predictors

in cluttered environments (Figure 12), we did not want to impart too much precision to

the exponent. An average of all of the exponents yields a value of -0.41; the average of

the three largest fields yields a value of -0.44. Both of these can be rounded to a single

decimal place as -0.4, which is what was done. This resulted in the WADJ equation

relating average speed with W1/W2:

 avg-speed = c1(W1/W2)-0.4 (4.5)

The constant c1 is calculated from actual values of avg-speed and W1/W2 at runtime.

 57

avg-speed10 = 1.12(W 1 /W 2)-0.38

R2 = 0.9914

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

W 1 /W 2

A
ve

ra
ge

 S
pe

ed

0 obstacles
1 obstacle
3 obstacles
Power (0 obstacles)

Figure 12: Heuristic equation less predictive as obstacles are added to the environment

4.3.2 Heuristic Equation Verification

 To test our procedure, we compared it to analytical results. While there is no

analytical solution for a cost functional which includes the obstacle penalty function, one

can be derived for the zero obstacle case, where only energy and time are traded off. For

greatest simplicity, we examined a system without friction and only along one axis (valid

because the components are independent of each other). System dynamics are given in

Equation 4.6.

 ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
mtt

t
t
t

/)(
0

)(
)(

00
10

)(
)(

ux'
x

x"
x' (4.6)

Our simplified cost functional is given in Equation 4.7. As in our implementation, we

normalized by the time weight.

 58

 ∫ ⎟
⎠
⎞

⎜
⎝
⎛ +=

f

o

t

t

tWuJ d1
2
1 2 (4.7)

 To this we appended the system dynamics. The interior of that integral gives us

our Hamiltonian, as described in Equation 2.10. Computing the Euler-Lagrange

Equations (Eq. 2.11a-c) yields four linear ordinary differential equations with four

unknown coefficients. Final time is also unknown. We use known initial and final states

to solve for four of the unknowns and the transversality condition to get the fifth.

Solving the system for tf in terms of final position, xf, and weight W yields:

 Wxt ff 18= (4.8)

We ran our solver for a range of W for xf = 10 m and compared them to the solution given

in Equation 4.8. The results are precise to ±0.005 seconds. The results are summarized

in Table 1. The numbers agree to within our precision.

W tf computed Wxt ff 18=

0.125 3.875 3.873

0.250 4.609 4.606

0.500 5.473 5.477

1.000 6.518 6.514

2.000 7.748 7.746

4.000 9.207 9.211

8.000 10.953 10.954

Table 1: Verifying WADJ heuristics with analytical predictions

 59

We note that our BVP4C-based solver is not using BVP4C’s ability to solve for a free

final time. That proved too sensitive to initial estimates to be of use. Instead, we search

with increasing granularity over a range of known final times, narrowing our search in

the low-cost region. This method is vulnerable to local minima in cases where the cost

functional results are not smooth, as they may be in the presence of many obstacles.

4.3.3 Fuzzy Rule Database Z

 The fuzzy logic portion of the initialization routine required three different sets of

rules or correlations to be made: weight values to fuzzy levels, feature values to fuzzy

levels, and fuzzy feature levels to fuzzy weight levels.

 The data in Figure 10 and Figure 11 was generated using W1/W2 ratios that were

powers of two: 2-3, 2-2, … 22, 23. Before the fuzzy logic portion of this research was even

fully expressed, these numbers were chosen because they appeared to span the range

from “very low” to “very high” relative weights. It seemed reasonable, then, to formally

assign these values to the “fuzzy triangles” that relate weight values to their fuzzy levels.

The “medium” W1/W2 triangle (as in Figure 3), for example, is 100% medium at 20, and

0% medium at 2-1 and 21.

 The assignment of feature values to fuzzy levels is a matter of judgment. In

industry, teams of scientists expend significant effort to ensure that a washing machine’s

definition of “very clean” is as close to the definition used by the majority of the target

consumers as they can make it [2]. Without a real robot or a real consumer (paying

customer) to provide feedback for this problem, we have made our own judgments based

on the Figure 10 data.

 60

 As a starting point, we correlated the feature values at the weight values to fuzzy

levels. That is, if W1/W2 is “medium” between 2-1 and 21, we looked at the feature values

in Figure 10 that resulted from those weight values. If it seemed reasonable to call those

feature values “medium,” we did so. If, because of rapid changes in the feature value

curve, that interval clearly did not define a single interval, we looked for the nearest

values that could reasonably define it.

 The fuzzy relationships fell into two categories: directly and inversely related. In

directly related cases, “very low” weight values resulted in “very low” feature values;

“low” weight values resulted in “low” feature values, and so on. In inversely related

cases, “very low” weight values resulted in “very high” feature values.

 Although this implementation of fuzzy logic is not highly sophisticated, it was

sufficient to generate improved estimates of initial weight sets for our optimization

processes. The full set of fuzzy rules is found in Appendix C.

4.4 Results

 To evaluate the performance of our system for the 2D robot domain, five different

logical sets of constraints L0 of varied complexity were enforced on four different

obstacle fields {O} for a total of twenty trials. There were, overall, 28 hard limits (H0)

and 72 soft limits (S0). The simplest constraint set enforced one hard and two soft

constraints; the most extensive had two hard constraints and six soft constraints.

Appendix B fully details the constraint and obstacle sets used for the test cases.

 Each of the twenty test cases was run from a default weight vector

Ω1
default = [1, 1, 1, 1] and from a Ω1 provided by INIT. Only the collocation TPLAN

BVP4C was used for trajectory generation. The results after one iteration (labeled

 61

Default1 and INIT1) and after program completion (Defaultn and INITn) were examined

for both starting weight vectors.

Before looking at the overall results, we present a detailed walk-through of two

particular solutions to give the reader a clearer picture of how the EVAL and WADJ

processes work, and how they impact the generated trajectories. The first example shows

the routine working smoothly. The second example shows a partial success even in the

face of some unexpected behavior.

4.4.1 Detailed Examples

Constraint Set 3 was self-sabotaging. It asked for trajectories with S0 = {a little

quickly, exceedingly inquisitively}. These expanded into high avg-speed and max-speed

and medium-low avg-speed and low min-sep, respectively. It would not be possible to

satisfy both high avg-speed and medium low avg-speed. The idea, of course, was to

create a trajectory was that mostly inquisitive but on the fast end of that. The returned

trajectories for Obstacle Sets 2 and 3 achieved exactly that; Obstacle Sets 1 and 4

converged to a solution that favored “quickly.” (User preference information strength, as

described by the adverbial modifiers “a little” and “exceedingly,” is lost after

initialization in the current version of the architecture.) We will look at the result for

Obstacle Set 1.

INIT returned initial weights weights Ω1 = [0.954, 1.00, 1.00, 0.50]. (Recall that

W1 is the energy weight, W2 is the time weight, W3 is the weight on the obstacle penalty

function term, and W4 is LIM, the obstacle penalty function influence limit.) We

normalized the weights by W2, the time weight, in the 2DOF case. The result was not too

 62

different from the default weight vector [1, 1, 1, 1], although LIM was half its default,

anticipating the desire for “medium-low min-sep”.

Figure 13 and Figure 14 show the results for all the trajectories; the paths in

particular were so similar that it is necessary to graph them all together to detect

differences. The min-sep requirements were met on all paths. Using the Ω1 weights,

max-speed was 1.44 m/s and avg-speed was 1.22 m/s. For “inquisitively,”

0.67 m/s ≤ avg-speed ≤ 1.33 m/s, so this soft constraint was satisfied. It was of course

too slow for “quickly, whose “high avg-speed” required 2.67 m/s ≤ avg-speed ≤ 5.33 m/s,

and “high max-speed” required 4 m/s ≤ max-speed ≤ 8 m/s. Ω2 was generated using the

larger failure, on max-speed, giving Ω2 = [0.07, 1.00, 1.00, 0.50].

Such a low W1/W2 ratio indicated that time should be excessively optimized, and

that was exactly what happened. max-speed was raised to 4.17 m/s, just at the low end of

satisfying “quickly.” avg-speed was raised to 3.21 m/s, also satisfying “quickly.” By

necessity, avg-speed now violated the “medium low avg-speed” constraint within

“inquisitively,” exceeding it by 1.87 m/s. The speeds were too fast, so the W1/W2 ratio

must be raised. Ω3 was calculated as [0.67, 1.00, 1.00, 0.50].

This result was very similar to the Iteration 1 results. It was a little faster, so max-

speed and avg-speed failed their “quickly” requirements by less this time, 2.44 m/s and

1.34 m/s undershoots respectively. These errors fed into the weight adjustment, giving

Ω4 = [0.06, 1.00, 1.00, 0.50] - almost the same as Ω2. Indeed, the Ω4 results were close to

the Ω2 results. avg-speed was 3.42 m/s, 2.09 m/s too fast for “inquisitively.” max-speed

was 4.52 m/s; both of these values were on the lower ends of the ranges for “quickly,” as

we would hope that they would be as they moved toward some compromise with

 63

“inquisitively.” But the compromise ends here; Ω4 was too similar to Ω2. When the

weights were readjusted, the results were too close to Ω3 (the threshold was set at 0.01).

The process terminated and returned the best identified trajectory.

Constraint Set 1 consisted of one hard constraint, H0 = {max-speed ≤ 4.2 m/s},

and one soft constraint, S0 = {“somewhat quickly”}. “Quickly” was defined in the fuzzy

language database V as correlating to the state features max-speed and avg-speed, both at

level “high.” The fuzzy rules database Z defined, for this particular domain with this

particular simulated robot, “high max-speed” to be between 4 and 8 m/s; “high avg-

speed” is similarly between 2.67 and 5.33 m/s. So to meet both H0 and S0, the trajectory

planner must find a solution with a max-speed greater than 4 m/s (the lower limit for

“high max-speed”) but below 4.2 m/s (the hard constraint). Putting the max-speed in that

0.2 m/s window proved difficult; only one case out of eight managed it. We will look at

one where it did not fully succeed, to see how the trade-offs were being made, and why

the success was only partial.

INIT, given the constraints L0 above, returned an initial set of weights

Ω1 = [0.214, 1.00, 1.00, 1.00]. So we should read this as saying minimizing time is

roughly five times more important than minimizing energy. This generated the path and

trajectory seen in Figure 15 and Figure 16, below. Although it met both S0, the max-

speed was 4.30 m/s, failing H0 by 0.10 m/s. WADJ used this error to compute a new

W1/W2 ratio. The new W1 was 0.273 relative to a W2 of 1.0. (W3 and W4 were unchanged

since we assume the time-dependent properties are independent of path properties.) By

raising W1/W2 slightly, we hoped to elicit a slightly slower, more energy-efficient

trajectory – one that has a max-speed below 4.2 m/s.

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

X

Y

Path for CS 3, OS 1,
Iter1
Iter2
Iter3
Iter4

Figure 13: 2DOF paths for CS 3, OS 1

0 2 4 6 8 10 12
-5

0

5
Trajectory for CS 3, OS 1

Time

X

Iter1
Iter2
Iter3
Iter4

0 2 4 6 8 10 12
-5

0

5

Time

Y

0 2 4 6 8 10 12
0

2

4

Time

X
do

t

0 2 4 6 8 10 12
0

2

4

Time

Y
do

t

0 2 4 6 8 10 12
-5

0

5

Time

U

0 2 4 6 8 10 12
-5

0

5

Time

V

Figure 14: 2DOF path trajectories for CS 3, OS 1

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

Path for CS 1, OS 2, Iter 1
W1/W2 = 0.21, LIM = 1.00

X

Y

Figure 15: 2DOF path for Ω1
 = [0.214, 1.0, 1.0, 1.0]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5
Trajectory for CS 1, OS 2, Iter 1

Time

X

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

0

10

Time

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

Time

X
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

0

10

Time

U
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-10

0

10

Time
V

Figure 16: 2DOF trajectory for Ω1 = [0.214, 1.0, 1.0, 1.0]

 66

Figure 17 and Figure 18 show the results from the trajectory planner using Ω2. It

had in this case converged to a path quite different from the prior iteration. Although this

path was longer, the agent took more than three times as long to traverse it. This kept the

energy consumption and the speeds down. The max-speed here was only 1.26 m/s,

meeting H0 easily. Of course, this was too slow to satisfy S0, failing the max-speed

requirement by 2.74 m/s and the avg-speed requirement by 1.61 m/s. But we had a

partial success, since H0 is met, so this trajectory was stored as the best_trajectory so far.

Then we entered the S0 satisfaction loop shown in Figure 5; time_limit is set to five

iterations. Attempts were then made to improve the solution to better meet soft

constraints S0 while still meeting hard constraints. New Ω3 were computed; the W1/W2

ratio was 0.015, smaller than it was in Ω1 because of the rather large amount by which the

soft max-speed constraint failed. EVAL does not yet have the sophistication to check for

more than loops in the weights, so it did not notice that this was likely to be a bad choice

of weights.

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

Path for CS 1, OS 2, Iter 2
W1/W2 = 0.27, LIM = 1.00

X

Y

Figure 17: 2DOF path for Ω2 = [0.214, 1.0, 1.0, 1.0]

0 2 4 6 8 10 12 14 16 18
-10

0

10
Trajectory for CS 1, OS 2, Iter 2

Time

X

0 2 4 6 8 10 12 14 16 18
-5

0

5

Time

Y

0 2 4 6 8 10 12 14 16 18
-2

0

2

Time

X
do

t

0 2 4 6 8 10 12 14 16 18
0

1

2

Time

Y
do

t

0 2 4 6 8 10 12 14 16 18
-2

0

2

Time

U
0 2 4 6 8 10 12 14 16 18

-2

0

2

Time
V

Figure 18: 2DOF trajectory for Ω2 = [0.214, 1.0, 1.0, 1.0]

 68

Figure 19 and Figure 20 show the results of using Ω3 to generate the trajectory.

The path that had been found has the same shape as in Iteration 1, but the time to traverse

it had decreased even more. Just as in Iteration 1, this was too fast for H0, so WADJ

backed off from the current value of W1/W2. Recall Equation 4.5, which relates the

desired feature value to W1/W2. There is a constant coefficient, c1, in that equation, which

can vary strongly according to field size. Rather than try to maintain a rigid table of c1

values, we compute it online during every WADJ from the current W1/W2 value and the

current feature value – max-speed, in this case. This means that, when we applied the

same rule that we did after Iteration 1, we do not get the same new W1/W2 ratio that we

obtained previously, because c1 had changed. max-speed for this iteration was 6.79 m/s,

since 2.50 m/s too fast. Using this to adjust the weight ratio to a value that better

supported slow speeds, we obtained Ω4 = [0.050, 1.00, 1.00, 1.00] and ran the trajectory

planner again.

-6 -4 -2 0 2 4 6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Path for CS 1, OS 2, Iter 3
W1/W2 = 0.01, LIM = 1.00

X

Y

Figure 19: 2DOF path for Ω3 = [0.015, 1.0, 1.0, 1.0]

0 0.5 1 1.5 2 2.5 3 3.5
-5

0

5
Trajectory for CS 1, OS 2, Iter 3

Time

X

0 0.5 1 1.5 2 2.5 3 3.5
-10

0

10

Time

Y

0 0.5 1 1.5 2 2.5 3 3.5
0

5

Time

X
do

t

0 0.5 1 1.5 2 2.5 3 3.5
-10

0

10

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5
-20

0

20

Time

U
0 0.5 1 1.5 2 2.5 3 3.5

-20

0

20

Time
V

Figure 20: 2DOF trajectory for Ω3 = [0.015, 1.0, 1.0, 1.0]

 70

Despite a very low W1/W2 ratio (time is 20 times more important to minimize than

fuel) we obtained a trajectory much like that in Iteration 2 (where W1/W2 = 0.274). The

path in this case (Figure 21) was shorter and more direct than in Iteration 2, but the time

to traverse it was comparable (Figure 22). This was a curious result; we would expect

from the WADJ heuristics a trajectory generated with such a low W1/W2 to have higher

speeds. However, sometimes the weighted sum approach that we use for our cost

functional can, for different weights, return the same result [41]. Another possibility is

that this is a local minima, if the search over the time domain of trajectories missed the

low-time valley containing the expected solution. Our lowest allowable time for a

trajectory was 1 second. Since our previous fast trajectories had final times on the order

of 3 – 5 seconds, it is possible that the granularity of the final time matrix was too coarse

thus missed this solution.

The max-speed in this case was only 1.11 m/s, meeting H0 (as WADJ was

attempting). As before, this failed the S0 by fair margins (2.89 m/s too slow to make the

low end of “high max-speed). The W1/W2 weight ratio was again reduced, this time to the

very small value of 0.002. EVAL checks for loops when weights are “equivalent,” that is,

within some preset threshold of each other. In our tests, this threshold was set to 0.01, so

this new ratio was considered to cover the region between 0 – 0.01.

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

Path for CS 1, OS 2, Iter 4
W1/W2 = 0.05, LIM = 1.00

X

Y

Figure 21: 2DOF path for Ω4 = [0.050, 1.0, 1.0, 1.0]

0 2 4 6 8 10 12 14 16 18 20
-10

0

10
Trajectory for CS 1, OS 2, Iter 4

Time

X

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

Time

Y

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

Time

X
do

t

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

Time

Y
do

t

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

Time

U

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

Time
V

Figure 22: 2DOF trajectory for Ω4 = [0.050, 1.0, 1.0, 1.0]

 72

Iteration 5 returned unusual results. Again despite the very low W1/W2 value, we

were near the same final time as in Iteration 4. The path shape (Figure 23) was back to

something similar to that found for Iteration 1, but it traversed more widely around the

obstacles. At this point, the energy term had been so heavily discounted that the obstacle

penalty term is exerting a stronger influence on the solution. Figure 24 shows the

trajectory information, which was not at all as “quickly” as we might have liked. H0 was

still met (max-speed = 1.70 m/s) for this case, but that was too low for S0. Perhaps we

were in the same local minima? WADJ tried again for new weights and returned a still-

smaller W1/W2 value, 0.0002 – but that is, to our level of precision, the same as 0.002.

The weights had made a loop, and the best_trajectory was returned. Trajectory 1 and 3

failed H0 and so are clearly not acceptable. Trajectory 2 failed max-speed by 2.74 m/s

and avg-speed by 1.60 m/s; Trajectory 4 failed them by 2.89 and 1.73 m/s, respectively;

Trajectory 5 was ultimately returned as the best_trajectory even though it failed max-

speed by 2.31 m/s and avg-speed by 1.26 m/s.

What was the problem (beyond competing hard and soft constraints)? The initial

guess got us quite close to a good solution, and the adjustment to meet H0 seemed like a

reasonably small change in the weights. But the convergence to the wildly different path

shape and its very low speeds put us into a WADJ cycle around extreme weight values.

The trajectory planner’s search over the free final time parameter was at a fixed starting

granularity, which may have been unsuitable for this problem may have resulted in

repeated convergence to a local minima. Our technique is, as all numerical optimizer are,

vulnerable to these problems.

-6 -4 -2 0 2 4 6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Path for CS 1, OS 2, Iter 5
W1/W2 = 0.00, LIM = 1.00

X

Y

Figure 23: 2DOF path for Ω5 = [0.002, 1.0, 1.0, 1.0]

0 2 4 6 8 10 12 14
-5

0

5
Trajectory for CS 1, OS 2, Iter 5

Time

X

0 2 4 6 8 10 12 14
-10

0

10

Time

Y

0 2 4 6 8 10 12 14
0

1

2

Time

X
do

t

0 2 4 6 8 10 12 14
-2

0

2

Time

Y
do

t

0 2 4 6 8 10 12 14
-5

0

5

Time

U

0 2 4 6 8 10 12 14
-5

0

5

Time
V

Figure 24: 2DOF trajectory for Ω5 = [0.002, 1.0, 1.0, 1.0]

 74

4.4.2 Overall 2DOF Results

Figure 25 shows the total number of failures for each of the four cases Default1,

INIT1, Defaultn, and INITn. INIT1 shows a clear advantage over Default1, with both fewer

failures to meet H0 and S0. We are not in this work formally working within an anytime

planning framework, but this significant improvement in solution quality for the first

iteration would be of benefit should we extend the work in that direction.

0

10

20

30

40

50

60

Default1 INIT1 Defaultn INITn

Case

fa

ilu
re

s

S0 failures
H0 failures

Figure 25: Failures for each 2DOF solution case out of 28 H0 and 72 S0

Final results are not nearly as dramatically different as initial results. Our

different starting points in these cases did not, after repeated applications of WADJ, result

in significant differences in final solution. However, INITn converged to an acceptable

solution in, on average, 5.25 iterations. Three times, only one iteration was required, and

the maximum number of iterations was 13. Defaultn required on average 6.10 iterations;

it never found an acceptable trajectory on the first try, but its maximum number of

 75

iterations was only 9. Figure 26 shows a histogram of the number of iterations each

solution required before returning. Overall, INITn has more returns with fewer iterations

than Defaultn.

0
1
2

3
4
5
6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13

iterations

so

lu
tio

ns

Defaultn
INITn

Figure 26: 2DOF iterations through architecture

The effects of obstacle arrangement did not have a strong affect on the number of

S0 failures, as show in Figure 27 below. Except for INITn in Obstacle Set 4, all final

solutions had between 44% and 56% S0 failure rates when grouped by obstacle field. We

are pleased to see that solution quality is not greatly affected by obstacles.

 76

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Obstacle Set 1 Obstacle Set 2 Obstacle Set 3 Obstacle Set 4

S 0
 fa

ile
d Default1

INIT1
Defaultn
INITn

Figure 27: 2DOF S0 failure rates by obstacle set

Failure rates in S0 were impacted by the constraint set, as might be expected.

Figure 28 gives the failure rates. Constraint Set 1 and 4 had the overall highest rates. In

Constraint Set 1, a hard limit required a max-speed of less than 4.2 m/s, while a fuzzy

user preference for “very quickly” was also expressed. “Very quickly” was expanded to

“high max-speed” and “high avg-speed,” which defuzzified into 4.0 m/s ≤ max-speed ≤

8.0 m/s and 2.67 m/s ≤ avg-speed ≤ 5.33 m/s. So we were forcing the system response

into the very low end of “high max-speed” to meet the H0. In many cases, it undershot

max-speed (and sometimes avg-speed as well) in satisfying H0 and subsequent

applications of the WADJ heuristics were, in the presence of obstacles, not precise

enough to hit the 0.2 m/s window that would satisfy both max-speed constraints exactly.

 77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Constraint
Set 1

Constraint
Set 2

Constraint
Set 3

Constraint
Set 4

Constraint
Set 5

 S
0 f

ai
le

d Default1
INIT1
Defaultn
INITn

Figure 28: 2DOF S0 failure rates by constraint set

The Constraint Set 4 failure rates may reflect a weakness in the WADJ rule

generation method. Constraint Set 4 included two H0 upper constraints on max-acc and

max-speed, and then S0 numeric range constraints on energy and avg-speed. Except for

Obstacle Set 4 (which seems to be the easier obstacle set in Figure 27), the energy range

was uniformly failed. Maneuvering around obstacles may take more energy than

predicted by the fuzzy rules gotten from the WADJ curve data generated in empty space

or in a field with only one obstacle.

Constraint Set 2 was the most successful. It combined a hard upper limit on max-

acc and a hard lower limit on min-sep (min-sep ≥ 1.7 m) with the fuzzy constraint

“safely,” which entailed “high min-sep,” and “low” max-speed, avg-speed, and max-acc.

Only the “high min-sep” was failed in Defaultn and INITn; it defuzzifies to 3.0 m ≤ min-

 78

sep ≤ 5.0 m. (Note that this is the soft limit on min-sep; the hard limit of min-sep ≥ 1.7 m

was met in all final cases.) min-sep that high may have forced paths that detoured very

widely around the obstacles and the extra time required to traverse them may have made

the trajectories too costly. While the time-based parameters were certainly discounted in

these trajectories, they are not entirely ignored; “low” speed does include a fuzzy lower

bound. There is a category of speed variables slower than “low,” “very low,” and the

EVAL module works on the assumption that the user does not want something lower than

low – slow, but not that slow.

Out of all 40 test cases run to completion, 5 were able to meet all H0 and S0. Both

the Defaultn and INITn solutions for Constraint Set 2/Obstacle Set 3 and Constraint Set

4/Obstacle Set 4 were successful. INITn also met all limits on Constraint Set 1/Obstacle

Set 4. It is interesting that even though Constraint Sets 1 and 4 had the highest S0 failure

rates overall, they also contained examples of fully successful trajectories.

In addition to the number of failures and successes, we were interested in the

overall solution quality. Since H0
 and S0 represent two different things, they were treated

separately. Our assumption is that H0 represents boundaries on state regions into which

the vehicle may not go. They do not describe any preference by the user to be at or near

the limit; in fact, we assume the opposite, that being well away from the hard limits is

preferable. To this end, we define the hard margin of success to be:

⎪⎩

⎪
⎨
⎧

¬
−

= 0

000

undefined
abs

j
i
j

j
i
jjji

jH F
FF
H

HHH
o

o

,
,/)(

margin
i
j

, (4.9)

That is, if the jth element of the ith feature vector Fi in the set of feature vectors F is

constrained by a jth element in H0 and, further, meets that constraint, margini
H,j has a

 79

value. The larger margini
H,j (which, dropping the indices, we refer to now as marginH) is,

the farther from the hard limit H0 the relevant trajectory feature is. Large values of

marginH are desirable. (We do not define a similar margin of failure because there were

no H0 failures in the data sets run to completion.) Figure 29 shows the histogram for

values of marginH over this data set.

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

marginH

so

lu
tio

ns

INITn
Defaultn

Figure 29: Margin of success for hard limits in 2DOF case

This data suggests the initial choice of weighting parameters has little effect on the final

solution quality. Both INITn and Defaultn achieved 8 instances of marginH ≥ 0.5,

meaning that the solution feature was less than 50% of the hard limit. INITn had more

instances of meeting the H0 by less than 10% than Defaultn.

 Soft limits S0, on the other hand, represent those areas of the state space where the

user prefers that the vehicle operate. Those that arise from verbs or adverbs are broken

down into upper and lower limits on various state features, defining a range in which we

 80

prefer the vehicle to operate. For these, we assume that the user would prefer to be

toward the center of the range; that, as in fuzzy logic, the “ideal” expression of the

desired behavior is not near the limits of permissibility, but toward the center. We define

the margin of success for S0 as:

⎪⎩

⎪
⎨
⎧

¬
−−

= 0

000

undefined
abs

j
i
j

j
i
jjji

jS F
FF

S
SSS

o

o

,
),range(half/))midpoint((

margin
i
j

, (4.10)

where Fi
j is again the jth element of the ith feature vector computed by FEXT from the

trajectory, midpoint(S0
j) returns the center of the soft limit range that corresponds to the

feature under consideration and half-range(S0
j) returns the distance from the midpoint to

either limit. When an individual marginS = 0, the feature perfectly matches the desired

feature value. When marginS = 1, the feature is exactly on one of the range limits. So in

these cases, smaller margin magnitudes are desired. Negative values indicate a feature

that was less than midpoint(S0
j), while positive values indicate the feature exceeded

midpoint(S0
j). (Note that soft upper or lower limits can also be treated by the system;

however, we had none in our test suite. Their margins would be computed in the same

fashion as marginH). Figure 30 shows the histogram for soft limit success margins.

 81

0

1

2

3

4

5

6

7

-1 -0.
8

-0.
6

-0.
4

-0.
2 0 0.2 0.4 0.6 0.8 1

marginS

so

lu
tio

ns

INITn
Defaultn

Figure 30: Margin of success for soft limits in 2DOF case

 There are no strong trends in this data for either the INITn or the Defaultn case. S0

are met without necessarily being driven entirely to the center of the acceptable range.

Given our satificing approach, this is not surprising. Neither INITn nor Defaultn

noticeably outperformed the other in finding more solutions closer to midpoint. This

shows the robustness of WADJ, which (eventually) achieves similar results regardless of

starting point.

 Unlike the hard limits case, there were enough S0 which went unmet to warrant a

comparison of margins of failure for soft constraints. We define the margin of failure to

be:

⎪⎩

⎪
⎨
⎧ ¬−−

= 0

000

undefined j
i
j

j
i
jjji

jfail F
FF

S
SSS

o

o

,
),range(/half))limit((

margin
i
j

, (4.11)

 82

where limit(S0
j) is the upper or lower limit of the jth element in S0. The sign of the

margin tells us how it failed: negative marginfail indicate that a lower limit was failed,

whereas positive marginfail means that an upper limit was exceeded. In either case,

smaller magnitude values are better, since it means that the limits were failed by a smaller

amount. half-range(S0) is used as the scaling factor rather than the numeric value of the

limits or midpoint on the assumption that a narrower range is more sensitive to errors of a

given size than a larger range. That is, if the range is 100 units wide, an error of one unit

is of less import than if the range were only 2 units wide, regardless of the numeric values

of the ranges’ endpoints. Figure 31 shows the histogram for margins of failure on S0.

0

1

2

3

4

5

6

7

8

9

10

-2
.4

-1
.8

-1
.2

-0
.6 0

0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

marginfail

so

lu
tio

ns

INITn
Defaultn

Figure 31: Margins of failure on soft limits for 2DOF case

The results are again very similar for INITn and Defaultn. Defaultn has four more

solutions near the center, indicating smaller errors; however, it also has two more

 83

solutions on the tails of the histogram. The standard deviation in the Figure 31 is 2.41 for

Defaultn and 2.15 for INITn. There does not seem to be a clear advantage to either

technique.

 On the other hand, if INIT is used to support an anytime planning algorithm, there

is a definite benefit to using it. In addition to meeting more of the L0, INIT meets them

with better margins. Figure 32 shows the histogram of marginfail for the returned

trajectories after one iteration of TPLAN. Results are similar for failures to meet H0.

0

1

2

3

4

5

6

7

8

9

10

-2
.4

-1
.6

-0
.8 0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

10
.4

11
.2

marginfail

so

lu
tio

ns

Default1
INIT1

Figure 32: Margins of failure for soft limits after one iteration in 2DOF case

INIT1 shows four more failures with the very smallest marginfail. While Default1 has

more failures in the general central region, this may be because Default1 simply had more

failures overall. Default1 also has four more failures in the high-error tail region. INIT1

certainly has superior values for marginS when compared to Default1, as shown in Figure

 84

33. INIT1 not only has more successes, it has many more successes in the low-valued

region nearest the goal midpoint.

0

1

2

3

4

5

6

-1 -0.
8

-0.
6

-0.
4

-0.
2 0 0.2 0.4 0.6 0.8 1

marginS

so

lu
tio

ns

Default1
INIT1

Figure 33: Margins of success for soft limits after one iteration in 2DOF case

4.5 Conclusions

We are overall satisfied with the performance of our architecture and the INIT and

WADJ routines in this 2DOF case. INIT, while not greatly impacting final solution

quality, did shorten the time needed to arrive at an acceptable solution and did improve

the quality of early solutions – a boon if anytime planning is to be used. The WADJ

heuristics we developed reliably moved the solution into areas that satisfied hard

constraints H0 100% of the time, regardless of starting condition. The sometimes-

competing S0 were not always satisfied; however, definite improvement over the initial

 85

solutions achieved using either INIT or default weights was seen in the solution as WADJ

refined the trajectory.

Some preliminary work has been done into extending this 2DOF work into the

multi-agent formation maintenance field. A term can be added to the cost functional

which penalizes the variation from the desired formation and weighted along with the

rest. Proof-of-concept work was done in the linear 2DOF case, with two vehicles

maneuvering in the presence of obstacles (Figure 34). High relative weights placed on

formation maintenance resulted in both vehicles moving around the obstacle. High

relative weights for time resulted in trajectories where the vehicles parted ways to move

around the obstacle. Energy-efficient trajectories had a minimum disturbance from

straight-line trajectories – the vehicles parted ways to circumvent the obstacle, but with

smaller margins than they had in the “quickly” case. However, no rigorous collection of

multi-agent WADJ data has been performed to-date, although such analysis could be

applied to formations maneuvering in the presence of obstacles in future work.

 86

Average error in
formation: 98.5%

Fuel: 139.6 units

Average error in
formation: 68.9%

Fuel: 117.0 units

All considerations equal Conserve fuel

Average error in
formation: 6.2%

Fuel: 149.9 units

Maintain formation

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

X

Y

Vehicle 1
Vehicle 2

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

X

Y

Vehicle 1
Vehicle 2

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

X

Y

Vehicle 1
Vehicle 2

Figure 34: Preliminary work in multi-vehicle formation management

 It now remains to show how well – or even if – these techniques translate to a

more challenging six degree-of-freedom domain. Chapter 5 will consider the a simplified

version of the space shuttle/ISS docking problem first solved with hand-tuned weights in

[51]. We will attempt to find what different solutions can be found when other

constraints are placed on the problem as well as further evaluating the performance of our

system for a 6-DOF domain with nonlinear dynamics.

 87

 5 Six Degree of Freedom Deep Space Satellite

 The experiments described in Chapter 4 showed our architecture could be useful.

But the 2DOF point rover problem was highly simplified and linear. Would the

techniques developed, the WADJ rules in particular, be useful in a nonlinear space

domain as well?

 We began research into reproducing the International Space Station/Space Shuttle

docking simulation presented in [51]. Unfortunately, the implementation from [51] was

sufficiently complicated that the optimal controls-based trajectory planner could only

reliably identify solutions via substantial tuning of additional parameters beyond cost

function weights for each iteration. Changing the cost functional weights changed the

character of the problem sufficiently that the gain schedules used in [51] to incrementally

refine thruster approximations, error tolerances, and obstacle penalty function values no

longer guided the solver to convergence in many cases. Re-tuning those gain schedules

for every new weighted cost functional was simply beyond the scope of the current

research. Unable to generate trajectories for analysis and adjustment, we were forced to

abandon this problem for a somewhat simpler three-dimensional, six degree of freedom

(space) domain example with dynamic properties that were nonlinear but less complex

than orbital motion.

 We chose to examine a six degree of freedom satellite operating in deep space,

away from gravitational fields but potentially in proximity to obstacles (e.g., asteroids).

While this does result in very simple and linear translational dynamics, the rotational

dynamics are nonlinear and make the problem more interesting than the simple 2DOF

 88

rover. We assume impulse thrusters for translation and reaction wheels for torque

generation, following the modeling described in [51].

5.1 System Dynamics

 The general state space form of a rigid body in deep space is given by:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′
′
′

=′

0
H

0

)(
)S(HH-

0

1-1- (t)

/m(t)

G

(t)

σ

τ

u

ωσ
ωω

vp
v

x

σ
ω

 (5.1)

where:

p is the location (position) vector of the body in the inertial reference frame

v is its velocity vector

ω is the rotational velocity vector expressed in the body frame

σ is a representation of the body’s attitude (a modified Rodrigues vector [55])

H is a matrix of moments of inertia

S is the matrix representation of the cross product

Gσ is an expression which, when multiplied by ω, gives the rate of change in σ

 ωσσσσσωσσ
T

T
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−+−== I

2
1SI

2
1)()(Gσ& (5.2)

R is a rotation matrix that converts body coordinates to inertial coordinates

u is the vector of translational control input (force) expressed in the body frame

m is the mass of the rigid body

τ is the vector of rotational control input (torque)

 89

As in [51], the mass used was 1 kg and Ixx = Iyy = Izz = 1 N-m/s2. Maximum thruster

output was ±30,000 N in each axis. Maximum torque output about each axis was smooth

until a saturation value of ±1,000 N-m.

5.2 Terms of the Cost Functional

We have the same concerns in the 6DOF case as we do in the 2DOF: we wish to

conserve our fuel and power inputs, accomplish our goals in a timely fashion, and not

impact obstacles. Our inputs are different in this case; rather than a continuous

electrically-powered motor, we have saturating thrusters for 3DOF translation and an

electrically-powered reaction wheel for 3DOF attitude control. As a result, the cost

functional has the form:

 ()∫ ⎟
⎠
⎞⎜

⎝
⎛ +++=

∈

f

o

t

t
iiOi

T troWWtWttWJ d)(max)()()(
}{43211 ττu (5.3)

Each of these terms, and their rationale, is explained in detail in [51]. Brief descriptions

are given below.

5.2.1 Thruster Fuel

The one-norm of the thruster force results in a minimum-fuel control law. This

control law is, however, discontinuous and so violates the assumptions that underlie the

numeric solution of the Euler-Lagrange equations. The solution in [51] was to

approximate the discontinuous control law, beginning with an approximation with

moderate slopes and gradually increasing the slope to nearer a step function.

 90

5.2.2 Electrical Energy

 Still following [51], the rotational actuators are assumed to be powered by

electricity. This is the case on long-duration missions, and has the benefit of separating

translational and rotational control parameters. This form of the cost functional is an

energy-minimizing term, a standard cost representation for electrically-powered systems.

5.2.3 Time

Since J is an integral, the cost functional only needs a constant term, W3, to

minimize time. Over the integral, W3*tf will be minimized.

5.2.4 Clearance to and Speed Near Obstacles

As in Chapter 4, the obstacle penalty function contains a cubic spline term that

penalizes nearness to the obstacles. This function also includes a velocity-based

component that penalizes speed near the obstacle. Since the cost functional is an integral

over time, a penalty based purely on clearance to the obstacle can be minimized by being

very close to the obstacle but going very fast, so that the sum over time is less. The

clearance penalty is now multiplied by a smoothed one-norm of the velocity (at some

epsilon near zero, the one-norm is approximated by a cubic to maintain smoothness

properties necessary for convergence). As in the 2DOF case, the obstacle clearance

penalty goes to zero at some LIM from the obstacle; also as in the 2DOF case, the

penalties for each obstacle in the domain are summed.

 91

5.3 Development of Weight Adjustment Heuristics and Fuzzy Rules

5.3.1 Weight Adjustment Heuristics

 For the 6DOF weights, the TPLAN code BVP4C2 assumed that the force weight

W1 was normalized to 1, and all other weights were relative to this. As a result, it was

more intuitive to work with the W1 as the denominator in the weight ratios for our 6DOF

spacecraft domain. All of the code written to implement these 6DOF heuristics uses

torque/force and time/force weights, rather than the inverse as in the 2DOF case.

However, for some select charts and examples presented in this chapter, the weight ratios

were inverted for easier comparison to the Chapter 4 results. Not all of the WADJ

heuristic graphs nor the fuzzy rules sets contained in here and in Appendix C reflect this

inversion and are labeled W2/W1 and W3/W1 as they were implemented. Our weight

vector Ω included W1 the force weight, W2 the torque weight, W3 the time weight, and

LIM. (Since the obstacle penalty function weight W4 is never adjusted, we do not include

it in our weight vector representation.)

To develop WADJ rules, we followed the general procedure outlined in Chapter 3

again in the 6DOF domain. We did not test different field sizes this time, as we had

confidence from the 2DOF results that they would scale well. (This confidence was well-

placed; our WADJ curves, below, were generated at a scale of 50 m while our test cases

were on the order of 10 – 20 m.) We tested pure translation (along one axis and along

three), translation plus rotation, and a translation in the presence of obstacles. For the

translation in the presence of obstacles, the final state orientation was identical to the

initial state orientation; rotation was not required, but it was not forbidden, either.

Following the insights gained in the 2DOF domain, we plotted “per second” features

 92

versus the ratio of the weight of the translational inputs (here, thruster force) W1 to the

time weight W3. The results for the feature avg-speed are shown in Figure 35, below.

Once again, there is the power relationship between speed and the force/time weight

ratio. We found this to be the case for the other force and time-based quantities as well.

avg-speedx = 3.8402(W 1 /W 3)-0.4599

R2 = 0.9878

avg-speedxyz = 3.7014(W 1 /W 3)-0.5175

R2 = 0.988

0

2

4

6

8

10

12

0.000 2.000 4.000 6.000 8.000 10.000
W1/W3

A
vg

Sp
ee

d
(m

/s
)

AvgSpeed (50m x)

AvgSpeed (50m x-y-z)

Power (AvgSpeed (50m x))

Power (AvgSpeed (50m x-y-z))

Figure 35: WADJ curve for avg-speed in 6DOF domain

 The path-based features (e.g., min-sep) were once again linear with the influence

limit of the obstacle penalty function. Unlike the 2DOF case, the trajectories were much

more likely to be plotted through obstacles. To handle this, we added an implicit hard

constraint to every trajectory, min-sep > 0 m. If the path went inside an obstacle, the

trajectory failed and LIM was adjusted to move the path out of the obstacle. This solved

that problem.

Torque presented us with a challenge. Our WADJ test for torque included a

translation and a rotation, so that we would see the effects of dynamic coupling.

 93

Following the intuition we had from the translational features, we tried plotting the ratio

of the torque weight, W2, versus the time weight W3. However, since torque and the

resulting rotational motions are the source of nonlinearity in the system, initial results

indicated no power law for WADJ thus we at first were concerned this heuristic may not

be applicable.

Upon further examination, however, we identified a more promising heuristic.

Figure 36 shows the torque data grouped by time and force. First, the data were grouped

by their torque/force weight ratio (W2/W1) but plotted versus the time/force ratio (W3/W1)

as shown in Figure 36. Each line in Figure 36 represents a fixed W2/W1 ratio. Even

though that ratio is fixed, the amount of torque applied can be increased or decreased by

adjusting the W3/W1 ratio. Conversely, if the W3/W1 were known and fixed, changing the

W2/W1 ratio could jump the torque up or down that family of linear curves. Was there a

predictable relationship between the slopes of the lines in Figure 36 and W2/W1 ?

 94

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

W3/W1

To
rq

ue
 (N

-m
)

Figure 36: First stage of WADJ heuristic for determining torque in 6DOF domain

Figure 37 shows that there was. Our torque heuristic was implemented as follows: First,

all non-torque features were checked for limit failures and, if there were failures, the

weights were adjusted. Then the torque feature was checked. If it failed, the desired

torque value was divided by the current W3/W1 value to get the slope of the line we would

like to be traverse in Figure 36. Then the power relationship shown in Figure 37 was

used to calculate the necessary W2/W1 ratio from the desired slope.

 95

y = 0.3137x-0.4197

R2 = 0.9921

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

W2/W1

S
lo

pe Slope
Power (Slope)

Figure 37: Second stage in torque heuristic in 6DOF

5.3.2 Fuzzy Rules

 The fuzzy rules were generated as they had been for the 2DOF case. The WADJ

data was reverse engineered so that “very high,” “high,” etc., weight values were

correlated back to the trajectory features they elicited. We again found that the range

from 2-3, 2-2, …, 22, 23 was sufficient to describe the WADJ relationship. The full set of

fuzzy rules for the 6DOF spacecraft domain is again found in Appendix C.

5.4 Results

Six different sets of constraints L0 were enforced on four different obstacle fields

{O} for a total of twenty-four trials. However, one constraint/obstacle pairing proved to

be intractable and BVP4C2 could not converge on a solution. This trial (Constraint Set 4,

Obstacle Set 4) is omitted from the following results. There were, overall, 20 hard limits

(H0) and 60 soft limits (S0). The simplest constraint set enforced one soft constraint; the

 96

most extensive had two hard constraints and six soft constraints. Appendix B fully

details the test cases.

 Each of the twenty-three successful test cases was run from a default weight

vector Ω1
default = [1, 1, 1, 1] and from a Ω1 provided by INIT. Again, only the collocation

TPLAN BVP4C2 was used for trajectory generation. The results after one iteration

(labeled Default1 and INIT1) and after program completion (Defaultn and INITn) were

examined for both starting weight vectors.

 Before considering the overall results, we again present particular solutions to two

example cases for illustrative purposes. Both are for Constraint Set 1 and Obstacle Set 1.

We first show the results obtained when starting from the default weight vector, then

show results when the weight vector is initialized via our fuzzy logic rules.

5.4.1 Example Cases

Constraint Set 1 in 6DOF is analogous to Constraint Set 1 in 2DOF. The soft

constraint “somewhat quickly” is requested, while a hard constraint H0 = {max-speed ≤

5.5 m/s} is also included to force the solution toward the low end of the range of max-

speed encompassed by “quickly.” “Quickly” is still defined as high max-speed and high

avg-speed, but the values that define the fuzzy ranges of “high” have of course changed

for the new domain. We required that max-speed be between 5.0 and 10.6 m/s, and avg-

speed be between 4.0 and 8.6 m/s.

We look first at the default case, where we started with all weights in Ω1 equal

and normalized to 1 and the obstacle influence limit LIM = 1 as well. The results are

shown in Figure 38a-c, below. The force response (shown in body coordinates) was

typical for a time-efficient trajectory, accelerating to the midpoint and then decelerating.

 97

max-speed was 2.33 m/s, well under the limit imposed by H0, but the S0 limits were

failed. max-speed was 2.66 m/s too slow for “quickly,” and avg-speed was -2.10 m/s too

slow. The weight on time was increased to 4.57, up from its prior value of 1.0, so that

Ω2 = [1.00, 1.00, 4.57, 1.00], where W1 is the fuel weight, W2 is the torque weight, W3 is

the time weight, and W4 is LIM. In this domain, the weights were normalized by W1.

Increasing W3 indicated that time was of more value to us, so the next trajectory should

take less time and hence be faster.

The torques seen in the Ω1 are a result of the use of the (approximated) one-norm

in the cost functional fuel term. Consider a planar robot able to move in x, y, and θ. To

translate at a 45◦ angle to the x-axis with 1 N of force, it could fire the x and y thrusters

each at 1.4142 N, for a total expenditure of 2.8284 N as computed by the one-norm. Or,

it could rotate 45◦ so that its x thruster was aligned with the direction of motion, then

thrust with 1 N. As long as the cost of the torque maneuver is less than the force saved,

this is more efficient.

We see such fuel-minimizing torques in Constraint Sets 1-3; the numeric solver

did not identify cost savings via torque maneuvers in Constraint Sets 4 and 5. To validate

the use of torque commands to minimize fuel usage, Table 2 summaries the one-norms of

the forces for Constraint Sets 1-3 represented in the inertial frame, representing

initial/default spacecraft thruster alignment, and in the body frame, representing actual

thruster alignment when the designated torques are applied. The forces in the body frame

are always less than or equal to the inertial forces, demonstrating that by rotating the

vehicle, less force needed to be applied. The effects are very small, however, thus it is

 98

not surprising that some cases did not alter spacecraft attitude (Constraint Sets 4 and 5),

especially given a small but non-zero penalty for the energy (torque) term.

Constraint Set Obstacle Set
One-Norm of Inertial

Forces (N)

One-Norm of Body Forces

(N)

1 1 17.7316 17.7311

1 2 18.9900 18.9886

1 3 18.5617 18.4592

1 4 13.6732 13.4170

2 1 4.5407 4.5407

2 2 5.3882 5.3877

2 3 5.4126 5.0528

2 4 3.8322 3.8146

3 1 17.7316 17.7311

3 2 20.1985 20.1971

3 3 24.2088 24.0482

3 4 14.3041 14.0320

Table 2: One-Norm of Inertial and Body Forces

 99

0 2 4 6 8 100510

0

2

4

6

8

10

X

Path for Default CS 1, OS 1, Iter 1

Y

Z

(a)

0 1 2 3 4 5 6 7 8 9
-2

0

2
Velocities and Rotations for Default CS 1, OS 1, Iter 1

Time

X
do

t

0 1 2 3 4 5 6 7 8 9
-2

0

2

Time

Y
do

t

0 1 2 3 4 5 6 7 8 9
0

1

2

Time

Zd
ot

0 1 2 3 4 5 6 7 8 9
-5

0

5
x 10-3

Time

R
ol

l R
at

e

0 1 2 3 4 5 6 7 8 9
-5

0

5
x 10-3

Time

P
itc

h
R

at
e

0 1 2 3 4 5 6 7 8 9
-5

0

5
x 10-17

Time

Y
aw

 R
at

e

(b)

0 1 2 3 4 5 6 7 8 9
-1

0

1
Force and Torque for Default CS 1, OS 1, Iter 1

Time

X
-fo

rc
e

0 1 2 3 4 5 6 7 8 9
-1

0

1

Time

Y
-fo

rc
e

0 1 2 3 4 5 6 7 8 9
-1

0

1

Time

Z-
fo

rc
e

0 1 2 3 4 5 6 7 8 9
-0.02

0

0.02

Time

X
 to

rq
ue

0 1 2 3 4 5 6 7 8 9
-0.02

0

0.02

Time

Y
 to

rq
ue

0 1 2 3 4 5 6 7 8 9
-1

0

1
x 10-16

Time

Z
to

rq
ue

(c)

Figure 38: 6DOF a) path, b) rates and c) inputs for Ω1 = [1.00, 1.00, 1.00, 1.00]

 100

Figure 39 shows the results for Ω2. The overall completion time was almost

halved, with the speeds increasing accordingly. Indeed, the shape of the path, the rates,

and the input curves are almost unchanged except in magnitude. max-speed was 4.92 m/s

for this run, still meeting H0, and still failing the max-speed component of S0 – but only

by 0.08 m/s this time. avg-speed was 4.19 m/s, within its S0 requirements. We were

converging toward a full solution, but not quite there. The time weight was increased a

small amount, to 4.72, and another trajectory found.

Ω3 produced the same trajectory as Ω2. The returned features were the same; the

max-speed failed its S0 by the same amount. The plots of path, rates and inputs were the

same. The change in weight was not sufficient to elicit a different response in the system

at our levels of precision. WADJ increased the time weight again, applying the 0.08 m/s

failure margin to the base time weight of 4.72 from Ω3. The result was

Ω4 = [1.00, 1.00, 4.86, 1.00].

 101

0 2 4 6 8 100510

0

2

4

6

8

10

X

Path for Default CS 1, OS 1, Iter 2

Y

Z

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
Velocities and Rotations for Default CS 1, OS 1, Iter 2

Time

X
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

Time

Zd
ot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

R
ol

l R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

P
itc

h
R

at
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
x 10-15

Time

Y
aw

 R
at

e

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
Force and Torque for Default CS 1, OS 1, Iter 2

Time

X
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Y
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Z-
fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

X
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

Y
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

0

2
x 10-15

Time

Z
to

rq
ue

(c)

Figure 39: 6DOF a) path, b) rates, and c) input for Ω2 = [1.00, 1.00, 4.57, 1.00]

 102

 This change was successful. Figure 40 shows the results for Ω4. Again, the path

and the general response of the system was similar to all other solutions. But this time,

the feature values met both the H0 and S0 requirements. max-speed was 5.12 m/s, just

over the 5.0 m/s low end of “quickly,” and still below the H0 limit of 5.5 m/s. avg-speed

was 4.26 m/s, also still within “quickly.” Here we see a case of convergence without

overshoot or cycling. Most of the benefit was gained in the first iteration of WADJ, when

the time weight was changed from 1.00 to 4.57. Had we stopped there, we would have

had only a partial success, but one with a very small soft constraint failure margin.

Continuing, we refined the answer further until all constraints were met and a fully

acceptable solution was found.

In each of these figures, we noted an apparent discrepancy between the applied

forces and the resulting velocities. The forces appeared to be linear, but the velocities did

not look quadratic. We plot the velocity gradient in the inertial x-direction along with the

applied forces in both the body x-direction and inertial x-direction in Figure 41. Note

first that the difference between the body and inertial force is negligible. Although the

numeric solver found some small force savings in this case by torquing the vehicle, the

savings occurred well below our levels of precision in most cases. Figure 41 also shows

exact agreement between the slope of the x-velocity curve and the x-input, as expected.

 103

2 4 6 8 10246810

0

2

4

6

8

10

X

Path for Default CS 1, OS 1, Iter 4

Y

Z

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4
Velocities and Rotations for Default CS 1, OS 1, Iter 4

Time

X
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5

Time

Zd
ot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

R
ol

l R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

P
itc

h
R

at
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
x 10-15

Time

Y
aw

 R
at

e

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
Force and Torque for Default CS 1, OS 1, Iter 4

Time

X
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Y
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Z-
fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

X
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

Y
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

0

2
x 10-15

Time

Z
to

rq
ue

(c)

Figure 40: 6DOF a) path, b) rates and c) input for Ω4 = [1.00, 1.00, 4.86, 1.00]

 104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-8

-6

-4

-2

0

2

4

6

8
Gradient(Xdot)
Body-ux

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-8

-6

-4

-2

0

2

4

6

8
Gradient(Xdot)
Inertial-ux

Figure 41: Velocity gradient compared to body and inertial forces

We continue with a shorter example: the same constraint and obstacle set, but

starting with an initialized weight vector. INIT returns for this Ω1 = [1.00, 1.00, 4.00,

1.00]. Already, we see that this is much closer to the Ω2 of the default case. We

correspondingly expect that the first returned trajectory will be closer to our expressed

requirements and preferences.

Figure 42 shows that our expectations were met. Still similar in form to all the

other solutions, max-speed was 4.57 m/s and avg-speed was 3.90 m/s. H0 was met, but

 105

both S0 constraints failed. The magnitudes of the failures were much smaller than after

the first iteration of the default case, however: only 0.43 m/s for max-speed and 0.10 m/s

for avg-speed. The time weight was, as before, increased by WADJ to elicit a faster

response; Ω2 = [1.00, 1.00, 4.79, 1.00]. This was between the unsuccessful Ω3 and

successful Ω4 of the default case, but is definitely in the area of a known successful

weight vector. Ω2 succeeded in meeting all constraints. The resulting trajectory, shown

in Figure 43, appears to be the same as was found for the default weight vector after four

iterations. The max-speed and avg-speed were the same, 5.12 m/s and 4.26 m/s.

 Here, then, was shown the main advantage of INIT and the strength of WADJ.

INIT saved two iterations in this example because we were placed in the general area of a

successful weight vector on the first try. When trajectory calculations can take from

twenty minutes to several hours, this is no small savings. However, regardless of starting

point, the WADJ heuristics got us to near-identical solutions. (Actually, as the z-axis

torque results are so very far below our levels of precision that they could be counted as

identically zero, we could say that they are identical). Further, we saw that the first use

of WADJ in the default case resulted in large improvements in solution quality in a single

step.

Such success with INIT will not always be observed; in cases of competing

constraints, as seen in Chapter 4, the weights can oscillate between those satisfying one

constraint and those satisfying the other. Either the oscillation magnitude will decrease

until eventually settling, or else a cycle will be detected by EVAL, upon which case the

process will terminate. In either of those cases, solution quality may still improve,

although not as consistently as in these examples.

 106

0 2 4 6 8 100510

0

2

4

6

8

10

X

Path for Intiialized CS 1, OS 1, Iter 1

Y

Z

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
Velocities and Rotations for Initialized CS 1, OS 1, Iter 1

Time

X
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

Time

Zd
ot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

R
ol

l R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

P
itc

h
R

at
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
x 10-16

Time

Y
aw

 R
at

e

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
Force and Torque for Initialized CS 1, OS 1, Iter 1

Time

X
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Y
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Z-
fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.02

0

0.02

Time

X
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.02

0

0.02

Time

Y
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
x 10-15

Time

Z
to

rq
ue

(c)

Figure 42: 6DOF a) path, b) rates, and c) inputs for Ω1 = [1.00, 1.00, 4.00, 1.0]

 107

2 4 6 8 10246810

0

2

4

6

8

10

X

Path for Intiialized CS 1, OS 1, Iter 2

Y

Z

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4
Velocities and Rotations for Initialized CS 1, OS 1, Iter 2

Time

X
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5

Time

Zd
ot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

R
ol

l R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

P
itc

h
R

at
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-16

Time

Y
aw

 R
at

e

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
Force and Torque for Initialized CS 1, OS 1, Iter 2

Time

X
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Y
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Z-
fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

X
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

Y
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

0

2
x 10-15

Time

Z
to

rq
ue

(c)

Figure 43: 6DOF a) path, b) rates, and c) inputs for Ω2 = [1.00, 1.00, 4.79, 1.00]

 108

5.4.2 Overall 6DOF Results

Figure 44 shows the total number of failures for each of our solution cases. As in

Chapter 4, these are INIT1, the solution generated using the weights suggested by INIT,

INITn, the solution generated by running the INIT1 solution to conclusion through the

architecture, Default1, the solution generated using a default weight vector with all

weights equal and LIM = 1, and Defaultn, the Default1 solution run to completion.

0

10

20

30

40

50

60

Default1 INIT1 Defaultn INITn

Case

fa

ilu
re

s

Soft limit Failures
Hard limit Failures

Figure 44: Failures for each solution case out of 20 H0 and 60 S0

The results for soft limit failures S0 are similar to the 2DOF case. The INIT procedure

results in noticeably fewer soft constraint failures. There are more hard limit H0 failures

with INIT due to our examples with competing constraints, but again no hard limit

failures were present in the final solutions. A closer look at the data in Figure 45 shows

that the differences from 2D results are not quite as compelling as might appear at first

glance.

 109

0

2

4

6

8

10

12

-1 0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60

marginhardfail

so

lu
tio

ns

INIT1
Default1

Figure 45: Margins of failure for hard limits after first trajectory generation for 6DOF cases

Although Eq. 4.6 is presented as a margin of success for a hard limit, we use the same

equation to calculate the margins of failure here. Most of the INIT1 H0 failures, after

normalization, fall between -1 and 1. That is, they are relatively small, and the solution

was actually fairly close to meeting the hard limits. But it did not, so the question is

raised: was the INIT routine helpful in this case? Total limit failures after one trajectory

was computed were 54 with INIT1 and 57 with Default1 – not a significant difference.

After completion, both INITn and Defaultn were again without H0 failures, and the

difference in S0 failures was also small (31 for INITn and 33 for Defaultn). The average

number of iterations required for completion was 5.1 for INITn and 5.3 for Defaultn, so

there was not even the time savings that was seen for the 2DOF case. Although, as in the

2DOF case, INIT solved five problems on the first try, which the default never did, and it

had a single case with a large number of iterations (24) that was greater than the longest

 110

default run (11 iterations). But an examination of that 24-iteration run (Constraint Set 1,

Obstacle Set 4) shows that, after 2 iterations, all the limits were met within our level of

precision. However, the hard limit on max-speed was still exceeded by an amount

smaller than that. Since EVAL did not round the failure margins to our level of precision,

this was viewed as a failure and the architecture kept trying to find a solution until the

weights looped. INIT had a much-reduced impact on the 6DOF cases, neither

significantly helping nor hurting the results. Figure 46 shows a frequency histogram for

the number of iterations required (Constraint Set 1, Obstacle Set 4 is omitted for INITn).

The advantage of INIT is clearer here; a majority of the runs started with INIT finish in

one or two runs, while those starting from default weights need three runs at the least.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

iterations

so

lu
tio

ns

Defaultn
INITn

Figure 46: Number of iterations through architecture

 111

Displaying the S0 failures by obstacle set shows trends similar to the 2DOF case,

although the median failure rate is higher. Excluding the INITn case in Obstacle Set 4 in

Figure 27, the median S0 failure rate by obstacle set was 50% for the completed cases

(Defaultn and INITn) with a spread of about 6%. Here, neglecting the one very low

failure rate case in Obstacle Set 1 this time, we have a range from 54% to 77%, with the

median at 65.5% S0 failures in the completed cases. The range of failure rates is broader,

but there still does not seem to be an obstacle-based trend in solution fitness.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Obstacle Set
1

Obstacle Set
2

Obstacle Set
3

Obstacle Set
4

S 0
 fa

ile
d Default1

INIT1
Defaultn
INITn

Figure 47: 6DOF S0 failures by obstacle set

 Figure 48 shows the percentage of S0 failures by constraint set. Here we see

definite trends, with some constraint sets being apparently simple to entirely satisfy,

while others had 100% S0 failure rates.

 112

0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1

Constraint
Set 1

Constraint
Set 2

Constraint
Set 3

Constraint
Set 4

Constraint
Set 5

Constraint
Set 6

S 0
 fa

ile
d Default1

INIT1
Defaultn
INITn

Figure 48: 6DOF S0 failures by constraint set

Constraint Sets 2 and 3 had small numbers of noncompeting soft constraints and

no hard constraints. Constraint Set 2 had a soft numeric range limit on thrust; Constraint

Set 3 was “a little quickly,” which defuzzified into soft constraints on max-speed and

avg-speed. With no other requirements, these constraints were solved much more

successfully. INITn solved them entirely for all obstacle cases; Defaultn had small errors

with Obstacle Set 1 (in combination with Constraint Set 2) and Obstacle Set 4 (in

combination with Constraint Set 3).

Constraint Set 1 was very similar to Constraint Set 1 in the 2DOF case; we set a

hard limit on max-speed and also the soft preference for “somewhat quickly.” The hard

limit was toward the low end of the fuzzy ranges that define “quickly,” forcing the

system to hit a small window of feature values that would satisfy both. While this

constraint set gave the 2DOF case some problems, here it was entirely successfully

solved in all cases that went to completion.

 113

We also note that for these first three constraint sets, INIT1 returns remarkably

better initial solutions than Default1. By happenstance, the default weights produce

results that do not meet any of the S0, while INIT1 achieves at least partial success in that.

So we see here one practical application for INIT: in those cases where there are few or

noncompeting constraints, it provides an excellent initial guess compared to using default

weights.

Constraint Sets 4 and 5 were clearly less successful. Constraint Set 4 included

two hard upper limits on max-acc and max-speed and two soft range limits on force and

avg-speed. It appears that when the suggested weights for the force and avg-speed ranges

were combined via the centroid calculation, the force terms were much more sensitive to

the change away from their own desired values. Further, the hard limit on max-acc was

greatly exceeded in all initial cases. By the end of the iterations, the hard limits were all

met, but force was failed in all cases: failed under the lower limit of the range. By

requiring such a low max-acc, we were required to use less thrust than specified by the

soft range. Similarly, all final avg-speeds failed low, as the trajectory had to go slowly

enough to meet the upper limit on max-speed (a hard limit). Essentially, the stated soft

constraints in Set 4 had to fail for the hard constraints to be met. (This constraint set,

when combined with Obstacle Set 4, failed to converge for either the default or initialized

case. So only results from Obstacle Sets 1-3 have been considered here.)

Constraint Set 5 added the soft fuzzy preference “moderately safely” to Constraint

Set 4. This defuzzified into four more soft range constraints. We were practically

guaranteed a certain failure rate, since the upper limit of “safely’s” avg-speed constraint

equaled the lower limit of the soft range constraint on avg-speed from Constraint Set 4.

 114

Of course, if we failed low on avg-speed, as we did for all of the Constraint Set 4 cases,

we would be making the “safely” constraint, decreasing our overall failure rate. Soft

constraints on max-acc and max-speed arising from “safely” were sometimes met when

the hard constraints were met, again decreasing the failure rate. (And when they were

failed, they failed low as in Constraint Set 4.) We saw very large failure margins which

were greatly reduced by the end of the iterations.

Constraint Set 6 was “very energy-saving,” which decomposed into soft range

constraints on force and torque. But since the only torque needed in the trajectories was

that required to avoid obstacles, the trajectories all failed low; they could not use enough

torque to satisfy the “low torque” constraint. “Low force” was more typically made, or

failed high with very small margins (0.05, 0.02 N) for the completed cases (Defaultn,

INITn). Since the nonlinearity of the system is in its rotational dynamics, and since we

wish to show that our architecture will work with nonlinear systems, we decided to

rewrite the xf to include explicit rotational changes rerun it over the set of obstacles under

Constraint Set 6. The results are presented separately in Section 5.4.2, Torque, below.

Margins of success for H0 were overall much better than in the 2DOF case. Using

Eq. 4.6 to define marginH, we had many more cases where the margins were very near 1,

as shown in Figure 49.

 115

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

marginH

so

lu
tio

ns

INITn
Defaultn

Figure 49: Margins of success for hard limits for 6DOF cases

Recall that we assume that we would like to stay as well under H0
 as possible. Here we

have a full 2/5 of all solutions having features less than 90% of the H0
 values. We again

see that the final solution quality (with respect to H0) does not depend significantly on the

starting point of the solution. We continue to interpret this as a sign of the robustness of

the overall architecture.

 Figure 50 shows the margins of success for S0 in these cases. marginS is defined

in Eq. 4.10. More of the data lies at the edges of the histogram than in the 2DOF case.

Thirteen of the cases binned at -0.9 and -0.8 (for both INITn and Defaultn) resulted from

Constraint Set 1, which required “high max-speed” as a soft limit but

“max-speed ≤ 5.5 m/s” as a hard limit. The range for “high max-speed” was defined for

the 6DOF domain as 5.0 ≤ max-speed ≤ 10.6. The result is that the architecture takes full

advantage of the fuzziness of the soft constraint and drives it well into the low end of that

range to meet the more restrictive hard constraint.

 116

0
1
2

3
4
5
6

7
8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

marginS

so

lu
tio

ns

INITn
Defaultn

Figure 50: Margins of success for soft limits for 6DOF cases

 Figure 51 shows the margins for S0
 failures, calculated according to Eq. 4.11.

Unlike Figure 31, there is no tail of high margins. In this respect, we had better

performance in the complex 6DOF domain than in the 2DOF domain. Again, final

results are not much affected by initialization.

 117

0

2

4

6

8

10

12

14

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

marginfail

so

lu
tio

ns

INITn
Defaultn

Figure 51: Margins of failure for soft limits for 6DOF cases

5.4.3 WADJ Performance

 For many of the runs, a solution was returned after between one and three

iterations (Figure 46). For one or two iterations, the weights are converged upon with no

overshoot. For those default weight cases that took three iterations, some converged

monotonically to the correct weights, while others overshot on the second iteration and

corrected with the third. How did the system behave for more complex constraint sets?

Figure 52 shows a trace for the W3/W1 and LIM weights for the initialized run through

Constraint Set 5, Obstacle Set 1.

 118

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8

Iteration #

W
ei

gh
t V

al
ue

LIM
W3/W1

INITn

CS5, OS1

Figure 52: Weight values evolving through Constraint Set 5, Obstacle Set 1 starting from INIT1

Constraint Set 5 had hard upper limits on max-speed and max-acc, soft limits on

force and avg-speed, and the fuzzy constraint “moderately safely.” It was nearly

impossible to satisfy the soft requirements on avg-speed, which would only be met by

achieving an avg-speed of 1.8 m/s exactly. The initial guess for W3/W1 greatly

underpredicted the max-acc for the trajectory, and WADJ adjusted that weight down from

4.0 to 0.03 to compensate. At the same time, the minimum min-sep entailed by “safely”

was not met, so LIM was increased.

In the second iteration, the hard limits and the min-sep soft limit were all met, but

the remaining soft range limits were all failed low. The system was too slow and used

too little force. Since the current weight vector Ω2 satisfied H0, it was stored as a

possible return value. Then the routine continued to see if it could also meet the S0.

W3/W1 was increased again to try and meet these soft limits.

 119

That failed the max-acc hard upper limit again and the min-sep soft limit. W3/W1 was

decreased to 0.01 and LIM increased even further to get the weights for the fourth

iteration Ω4.

This pattern: decreasing W3/W1 and increasing LIM, meeting H0 but not all S0, and

then readjusting W3/W1 to a higher value was repeated in iterations 4 through 6. After

iteration 6, the first attempt at WADJ caused a loop in the weights. So EVAL reverted to

the best weights found thus far, Ω2, and called the secondary WADJ heuristic rule. This

decreased LIM by 10% while leaving W3/W1 unchanged.

Although the results of the second and seventh iteration weight vectors are

identical to our levels of precision, the EVAL routine found some small differences and

judged Ω2 and its results superior. When the seventh iteration returned with S0 failures,

our time_limit was reached and Ω2 and its resulting trajectory were returned.

5.4.4 Torque

 In our original data set, only one of eight completed trajectories (4 Defaultn, 4

INITn) met the “low torque” requirement. The rest were too low to be considered “low”

by the standards of our fuzzy rule set. Since none of our goal states required a rotation,

the only rotations required were those needed to avoid obstacles. These did not use

sufficient torque to be considered low. So, to test the torque WADJ rules, we included a

rotation change in each axis at the goal state and re-ran the tests.

We also had some concerns about the possible interaction of force and torque. In

WADJ, all features except torque are first checked for adjustment. Then the selected

W3/W1 ratio is used together with the desired torque value to calculate a slope from

Figure 36; that slope is then used to pick a W2/W1 ratio via the equation in Figure 37. The

 120

“low force” requirement was keeping W3/W1 small, and the heuristic is less well-

conditioned for W3/W1 less than 1. Although meeting mixed constraints is an important

goal, we also wanted to isolate the torque response to the WADJ process, since it is so

different from the other WADJ heuristics. So we created additional test cases: Constraint

Set 7, “low torque,” and Constraint Set 8, “medium torque.”

Figure 53 shows our overall failure rates for these three constraint sets (CS 7, 8,

and the revised CS 6); each case had 16 runs (four soft constraints run over four obstacle

sets). The Default1 and INIT1 cases are high again, not unexpectedly, and the failure rates

for the completed runs are much lower. All seven failures at run completion were torque

failing low; of those seven, four were from the “medium torque” Constraint Set 8. W2/W1

was continually adjusted down to discount it, to allow for greater torque in these cases,

but what was required was that W3/W1 be increased. Since there was a tacit assumption

that some other state feature would be relying on W3/W1 and that it may have been

adjusted to affect that other feature, the torque WADJ never altered W3/W1, and W2/W1

could not be adjusted sufficiently before time_limit was reached. Our current TPLAN

cannot handle direct maximization of trajectory qualities; it can only minimize. We have

found that we can minimize features which are inversely related to our feature of interest

for a maximizing effect; thus by penalizing time, we can usually force in increase in

speed. Another TPLAN might allow for direct maximization of features.

 121

0

2

4

6

8

10

12

14

16

Default1 INIT1 Defaultn INITn

Case

fa

ilu
re

s

S0 failures

Figure 53: 6DOF S0 failures for Constraint Sets 6, 7 and 8

Figure 54 shows the number of iterations required for these runs. All of those

runs which took four or fewer iterations to return a solution returned a complete success.

The utility of INIT is again shown in the large number of runs that returned successful

trajectories after only one or two iterations; eight (2/3 of the total) of the trajectories

created using INIT were solved in two or fewer iterations, while only 3 trajectories

created using default weights met this standard.

 122

0

1

2

3

4

1 2 3 4 5 6

iterations

so

lu
tio

ns

Defaultn
INITn

Figure 54: Number of iterations required for Constraint Sets 6, 7 and 8

 The margins of success on these runs showed no particular trends. The margins

of failure on the cases run to completion were all small, with the normalized magnitude

of the largest being 0.51; the smallest on Constraint Set 6, Obstacle Set 3, which failed

low on torque by a normalized margin of only -0.07.

5.5 Conclusions

In this chapter we have demonstrated that WADJ heuristics can be developed for a

deep space 6DOF domain with nonlinear dynamics. Our results were, if anything, better

in the 6DOF domain than in our 2DOF domain, with smaller S0 failure margins and

larger success margins for H0. The average number of iterations required to find a

 123

solution was commensurate with the 2DOF case, also arguing that the technique

implemented in the architecture will scale well with the dynamic complexity of the

domain. The surprising similarity of the 2DOF and 6DOF WADJ curves, even to the

values of the coefficients, is noteworthy. That also argues for the potential for a general

application to the optimization of dynamic systems.

The performance of our TPLAN, BVP4C2, was less robust and far more slow than

we had hoped. Prior work on this algorithm required extensive hand-tuning of several

sets of gains just to solve a single trajectory problem. We were running it, on average,

5.2 times per problem for 24 fairly different problems. So these difficulties are not

entirely unexpected. In the future, however, a different TPLAN should be selected for

work with nonlinear systems.

 124

 6 Conclusions and Future Work

The examples in Chapter 4 and 5 have shown that our architecture from Chapter 3

to optimize trajectories over hard constraints and natural language preferences can indeed

achieve our requirements:

• The WADJ heuristics consistently direct the weights toward values that meet hard

and soft constraints and are robust to differences in initial weight sets

• The fuzzy logic enables a more natural human interface, opening a route to easy

tasking of autonomous agents by non-expert users (e.g., hospital staff

commanding a robotic assistant, warfighters with a Future Combat System robot,

the elderly using a companion robot).

• The ability to meet hard numeric constraints is not lost in adding the fuzziness.

This allows the system to be used as an “automated graduate student,” overseeing

trajectory generation, rejecting those which do not meet required hard constraints,

and making intelligent adjustments to the weights to move the solution in the

required direction.

• Proper weight initialization saves computation time.

o One iteration saved on average in 2DOF

o 60% of 6DOF cases solved in under 3 iterations

• Substantial knowledge engineering and preprocessing was required to develop the

fuzzy rules, the WADJ rules, and the TPLAN implementation.

• But once this offline process was completed, the system was applicable to a wide

range of obstacle and constraint conditions with no further adjustments.

 125

• This makes the architecture useful for robots operating long-term in a consistent

environment, but not so useful for “one off” operations such as technology

demonstrations.

In all of our 86 cases run to completion, every hard constraint placed on the trajectory

was met. No maximum accelerations or velocities were ever exceeded, and no paths

through obstacles were ever returned.

 Our test runs were specifically constructed to include competing soft constraints

so that it was not possible to satisfy them all. Our architecture did manage to balance

these competing constraints well overall, returning trajectories that had typically small

margins of failure. A few soft constraint failures were notably larger; future work should

discover if this is the result of fuzzy rules degradation in the presence of obstacles (as

seems likely).

 The techniques developed for construction of WADJ curves that the architecture

uses to adjust cost functional weights and affect trajectory features were generalizable

from the linear 2DOF case to the nonlinear 6DOF case, although more manipulation and

insight was required of the 6DOF case.

 The INIT routine was somewhat useful in the 2DOF linear case, but on average

made little difference in the 6DOF nonlinear case, which was surprising. It did allow, in

certain constraint/obstacle combinations where there were no competing constraints, the

one-iteration solution of the problem, which a default weight vector never achieved. It

could also set the architecture up for a cycle between two opposing weights that would

take longer to resolve than the default weights typically did. Those problems with fewer

 126

and non-competing constraints more frequently achieved the one-step solution; certainly

INIT should continue to be used for problems with similar characteristics.

 A substantial knowledge engineering effort was required to develop the WADJ

curves and fuzzy rules sets. Once this was done, the resulting heuristics were useful over

a range of constraint and obstacle sets. While the work required to set up WADJ and an

appropriate INIT is not trivial, it is far less than the time required to compute the Pareto

front for the trajectory planning problem. Once the framework for developing WADJ

rules and the databases used by INIT was developed, the domain-specific development

could be accomplished within a few days. This is because the simulations were run in

empty or mostly-empty fields, for which the trajectory planning problem solves quickly.

The architecture was then ready to run trajectory planning problems, returning good

solutions after an average of five or six iterations of trajectory generation. A run of

twenty-four iterations was considered anomalously high. For a Pareto front to be

developed for a single point-to-point traversal, the EMO methods would have to generate

and evaluate hundreds or thousands of candidate trajectories. In a cluttered field, for a

nonlinear system, using a computationally-intensive solver like BVP4C, each trajectory

generation can take hours.

For one-off technology demonstrations or single-mission robots, this approach

may not be the right one. In those cases, effort spent creating a generic profile of the

system might be better invested in carefully engineering the one particular trajectory of

interest. This architecture is useful when a robot is going to be active in the same domain

for a long time, performing a variety of missions under different dynamic constraints.

 127

6.1 Future Work

6.1.1 Improving INIT

A more sophisticated version of INIT could look at the constraint set as a whole

and recognize potential conflicts. Currently, the system will go through many iterations

trying to satisfy conflicting constraints. If the conflicting constraints are both hard

constraints, it could be many iterations before a weight cycle is detected. (In this

research, the only such cycle took 24 iterations to be detected). An early detection of this

kind of possible conflict, or else a software monitor that detects a pattern of cycling back

and forth for “too many” iterations (where “too many” may be set at the user’s discretion)

would both be useful to have.

INIT should also be invariant to the order in which constraints are processed. In

this implementation, the order in which the hard constraints are considered impacts the

returned weight vector. After the soft constraints have been aggregated via a centroid

computation, INIT cycles through the hard constraints and checks to see if the currently

suggested weights are liable to meet them. If they are not, INIT adjusts the weights up or

down as needed. If competing constraints are being considered, the last one addressed by

INIT will be favored, rather than a median weight which might satisfy both. Given that

we do not know the number nor type of our hard constraints a priori, this problem might

be better addressed within a cognitive architecture, where its pattern-matching abilities

would be very useful.

6.1.2 Improving WADJ

After the INIT cycle, the “adverbial modifiers” like “very” or “somewhat” are lost

in the weight adjustment process. The endpoints of the fuzzy regions for the soft

 128

constraints are fixed, without regard to the strength of the user’s preference. Nor are they

currently considered when deciding which of several competing soft constraints must fail.

The assumption has been that the INIT process would put the solution in approximately

the correct region in weight-space, and further iterations would reflect that. That

assumption does not necessarily hold, as the WADJ rules can cause oscillations of

initially very large, then decreasing, magnitude in weight space. Something that

preserves the knowledge of soft preference strength past the INIT phase would help this

adhere more closely to true user preference, and perhaps reduce total iterations needed.

A more sophisticated notion of error margins in FEXT might also be of use here.

A WADJ algorithm that seeks to minimize the entire vector of errors, rather than each

error individually, would be computationally more expensive (an optimization within an

optimization) but could yield superior results with fewer iterations.

Finally, other forms of WADJ specific to other cost functionals could be explored.

A cost functional based on a linear quadratic regulator (LQR), in which components of

the state vector like the velocities are directly penalized, could replace the time

component of the cost functionals used here. Of course, these new terms would still have

weighting terms and the relationships between them would have to be investigated,

following the procedures outlined here.

6.1.3 Improving EVAL

We would like to augment EVAL with an understanding of the adverbial

modifiers, as mentioned above, so that preferences the user described as weaker would be

violated in favor of meeting more strongly-held preferences. Additionally, some

mechanism whereby the original set of limits L0 can be revisited and perhaps altered by

 129

the architecture is an avenue of further research. There could be cases where the slight

easement of a limit could lead to an overall acceptable solution; we would like to be able

to identify these cases and flag them for the user. In this vein, the addition of “firm”

versus “hard” or “soft” constraints might be considered: those constraints which the user

very greatly prefers to be met, but which do not indicate total failure if failed.

6.1.4 Developing the Fuzzy Rule Database

 The fuzzy rules used in this research were created in an ad hoc fashion. In

practice, they would possibly be generated in a more principled way. For a robot that

was to interact with the general public, a human user survey could be conducted to learn

what the user would consider a typical robot response to commands such as “come

quickly” or “follow carefully.” These expectations would then be incorporated into the

fuzzy rules database.

 If the robot was to be a personal assistant, then either some programmable

interface or else an automated machine learning technique could be implemented to allow

the robot to more closely conform to a single user’s expectations.

6.1.5 Application to Other Adjustable Parameters

Many numerical solution techniques used today involve the adjustment, usually

by hand and by good judgment, of certain parameters. They include parameters such as

the continuance schedule gains used for BVP4C and BVP4C2 solutions or the rates

controlling mutation and crossover in an evolutionary algorithm. Can the human

judgment gained by trial and error for these parameters be distilled into some sort of

adjustment curves, as the cost functional weights were distilled in the WADJ

 130

calculations? Can we make plots of “algorithm convergence vs. parameter?” This would

serve to generalize this work beyond the optimal control community, if it could be done.

Some optimization routines use negative weights in the cost functional, to allow

certain terms (e.g., a quality measure) to be maximized. Users must be very careful when

doing this, because it becomes possible for the term to grow without bound as time goes

to infinity. The cost goes to negative infinity, dominated by this term times its negative

constant. If the user has determined that, due to the properties of his particular problem,

this will not happen, then such a term can be used. This work does not investigate the

possibility of adding such terms, and we could look to that in the future as well.

6.2 Final Summary

In this dissertation, we have developed an architecture which brings together

several tools for the autonomous generation of preference-optimized trajectories. Both

hard and soft constraints are handled, with tradeoffs between soft constraints being made

in an intelligent fashion. This intelligence comes from cost functional weight adjustment

guidelines developed from domain-specific data, and the methods for collecting and

interpreting this data that have been developed seem to be generalizable from linear to

nonlinear domains. We have been able to find no prior work that addresses this problem

of weight selection and adjustment in anything other than an ad hoc fashion, much less

provide an overarching framework for its application to a variety of domains. As we

require humans to interact with and task robots to perform autonomous missions, whether

on land, sea, air, or in space, we will need ways for the robot to understand the human

user’s requirements on it. This work is a step in that direction.

 131

Appendix A: Features and Limits

Features

The following trajectory features were used or considered for use in this research:

max-speed, the maximum forward speed of the vehicle over the trajectory

avg-speed, the average forward vehicle speed over the trajectory

max-acc, the maximum absolute value of the vehicle acceleration over the trajectory

avg-acc, the average absolute value of the vehicle acceleration over the trajectory

speed-plat, a measure of how long the vehicle maintained a constant speed (plateau);

taken to be a region where speed does not vary by more than +/- 0.5%

(or 1% total) of its overall range. (Condition 1) and which extends for at

least 10% of the time domain. (Condition 2)

acc-plat, defined as speed-plat but for acceleration

min-sep, the minimum separation of the path from each obstacle in the environment

max-rot-vel, avg-rot-vel, and rot-plat-vel were not considered, although they could have

been defined as the terms above.

Additionally, the cost functional terms were considered features. In the 2DOF

domain, these were:

energy, the electrical energy used to move the vehicle forward

time, the time taken for the trajectory to complete

obstacle_penalty, as described in Eq. 4.5

In the 6DOF domain, the cost functional feature terms were:

force, the force exerted by the thrusters

 132

torque, expressed as an electrical minimum-energy term

time, time taken for the trajectory to complete

obstacle penalty

Limits

Hard or soft numeric limits could be placed on any of the features. In practice, we

used only upper for lower hard limits and soft range limits. That is, for hard limits, we

required that the feature value be above or below some value. For soft numeric limits, we

required that the feature be between two values. However, the architecture handles soft

upper or lower limits as well (although the centroid calculation in INIT would have to be

modified for best results).

 The other type of limit used was the soft word constraints. We used words like

“quickly” or “safely” as optimization parameters. To translate these words into

something the architecture could use, we broke them down into sets of fuzzy feature

values on different state features. These definitions are applied across domains:

“quickly” means “high max-speed” and “high avg-speed” everywhere it is used.

However, the actual value in meters per second that constitute high speed in a given

domain may change. They are loaded from a domain-specific file in our implementation.

We defined the following words for this research, although not all were used in

the results presented in this dissertation:

• Boldly = {low min-sep, high speed-plat, high acc-plat, medium high avg-speed}

• Cautiously = {low min-sep, low max-speed, low avg-speed, low max-acc, low

speed-plat, low acc-plat}

• Efficiently = {low force} (for 6DOF) or {low energy} (for 2DOF)

 133

• Energy-saving = {low force, low torque} (for 6DOF only)

• Inquisitively = {low min-sep, medium-low avg-speed}

• Quickly = {high max-speed, high avg-speed}

• Safely = {medium high min-sep, low max-speed, low avg-speed, low max-acc}

• Stealthily = {low min-sep, medium low avg-speed}

Although WADJ heuristic development results seemed to show that speed-plat and acc-

plat could be predictably controlled, that proved to not be the case in the presence of

obstacles. In very open or uncluttered terrain, one might expect to be able to command

them, but not otherwise.

 We additionally defined a large number of verbs and adverbs, correlating them to

upper, lower, or range limits on a host of feature values, including:

speed smoothness, a hypothetical measure of the rate of change in speed over the

trajectory; perhaps the linearity of the acceleration

acceleration smoothness, a hypothetical measure of the rate of change of the

acceleration over the trajectory

sign changes of acceleration: the number of times the vehicle changes from

accelerating to decelerating or visa versa

length, path length; perhaps normalized with respect to the straight-line distance

between start and goal

speed near obstacle

sign changes in rotational velocity

rotational velocity smoothness

 134

max-rot-acc, avg-rot-acc, rot-acc-plat, as other max, avg, and plat values for

rotational acceleration

sign changes in rotational acceleration

rotational acceleration smoothness

target_acqu, the precision with which a target is acquired

under_cover, the percent of the trajectory the vehicle remains in terrain known to be

cover

The definitions are given below. The state features involved with each word limit are

marked with an x.

max
speed

avg
speed

speed
plat

speed
smoothness max acc min acc avg acc acc plat # sgn chg

acc
acc

smoothness length min sep speed
near obst

max
rotvel

avg
rotvel rotvel plat # sng chg

rotvel
rotvel

smoothness
max

rotacc
min

rotacc
rotacc
plat

sng chg
rotacc

rotacc
smoothness

target
acqu

under
cover

accurately x
precisely x

agilely, nimbly x x x x x x x x x x x x x x x
quickly, fast x x

briskly x x x x x x
boldly x x x x x x x x

conspicuously x
stately x x x x x x x x x x

directly, straight x x x x x x
efficiently

curiously, all x x x x x
curiously, environment x x x

curiously, objects x x x x x
carefully x x x x x x x x

cautiously x x x x x x x x
slowly x x x x

ploddingly x x x x x
meanderingly x x x x x

leisurely x x x x
normally

gently x x x x x x x x x x x
roughly x x x x x x x x x x x

gracefully x x x x x x
simply, just x x x

softly, quietly x x x x x x x x x x x x x
stealthily x x x x x x x x x x x x x x

loudly x x x x x x x x x x x x x
easily x x x x x x x x

uneasily, hesitantly x x x x x x x x x x
shyly x x x x x x

charge x x x x x
drift x x x x

shamble, shuffle x x x x x x
mingle x x x
walk x x
jog x x
run x x

 136

Appendix B: Test Cases and Margin Data

2DOF Cases

Start Point, Goal Point, and Obstacle Sets

The state x is a 4-vector [position, velocity] in the x-y plane. In all cases:

x0 = [-5 -5 0 0]

xf = [5 5 0 0]

Circular obstacles are denoted as a set containing their center in the plane (x, y) and their

radius r, all in meters. The set of obstacles is denoted {O}.

Obstacle Set 1: {O} = { {(0.5, -0.5), 1}, {-4.0, -2.5}, 0.5}, {(4.0, 3.0), 0.5} }

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Obstacle Set 2: {O} = { {(1.5, 2.5), 2.0}, {(-4.2, -3.5), 0.5}, {(-3.2, -4.0), 0.5} }

 137

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Obstacle Set 3: {O} = { {(1, 1.2), 3} }

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Obstacle Set 4: {O} = { {(0.0, -3), 0.5}, {(4.0, -3.5), 0.5}, {(-3.5, 0.5), 1.0},

 138

{(-1.0, 0.5), 0.5}, {(1.0, 3.7), 0.5}, {(4.0, 3.0), 0.5},

{(0.5, -0.5), 1.0} }

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Constraint Sets

Constraint Set 1

H0 = {max-speed ≤ 4.2}

S0 = {somewhat quickly}

Constraint Set 2

H0 = {max-acc ≤ 1.0, min-sep ≥ 1.7}

S0 = {safely}

Constraint Set 3

S0 = {a little quickly, exceedingly inquisitively}

Constraint Set 4

H0 ={max-acc ≤ 1.0, max-speed ≥ 4.0}

 139

S0 = {10 <= energy ≤ 15, 1.0 ≤ avg-speed ≤ 2.0}

Constraint Set 5

H0 = {max acc ≤ 1.0, max-speed ≤ 4.0}

S0 ={10 ≤energy ≤ 15, 1.0 ≤ avg-speed ≤ 2.0, moderately safely}

Margins of Success and Failure

Green cells represent margins of success. Margins are normalized as described in

Chapter 4. For hard constraints (all uppers in these runs), a positive sign indicates how

far under the limit the value is. For soft constraints, positive sign indicates that the

margin normalized to the high side of the center of the fuzzy range and negative sign

indicates that it normalized to the low side.

Pink cells represent margins of failure. For hard failures, signs are positive and indicate

how far over the limit the failure went. For soft range failures, a positive sign indicates

that the upper limit was exceeded (“failed high”) while a negative sign indicates that the

lower limit was exceeded “failed low”)

Constraint Set 1 INIT0 INITn Default0 Defaultn INIT0 INITn Default0 Defaultn INIT0 INITn Default0 Defaultn INIT0 INITn Default0 Defaultn
max speed <= 4.2 0.37 0.08 0.67 0.08 0.10 0.60 0.08 0.75 0.76 0.27 0.87 0.13 0.57 0.04 0.29 0.23
somewhat quickly
hi 4 <= max speed <= 8 -0.68 -0.07 -1.32 -0.06 -0.69 -1.15 -0.06 -1.49 -1.50 -0.47 -1.74 -0.18 -1.41 -0.98 -0.50 -0.39
hi 2.67 <= avg speed <= 5.33 -0.44 -0.81 -1.14 -0.81 -0.62 -0.95 -0.93 -1.39 -1.36 -0.20 -1.62 -0.77 -0.80 -0.50 -0.53 -0.04
Constraint Set 2
max acc <= 1 0.25 0.25 0.41 0.25 0.78 0.04 3.78 0.29 0.28 0.28 0.47 0.39 0.08 0.08 0.50 0.44
min sep >= 1.7 0.02 0.02 0.51 0.02 0.00 0.00 0.43 0.00 0.48 0.48 0.44 0.48 0.02 0.02 0.95 0.02
safely
hi 3 <= min sep <= 5 -0.26 -0.26 -1.16 0.26 -0.80 -0.80 -1.53 -0.80 -0.48 -0.48 -1.04 -0.48 -0.26 -0.26 -1.91
lo 0.5 <= max speed <= 1.5 -0.72 -0.72 0.74 -0.50 -0.56 -0.92 4.76 -0.88 -0.56 -0.56 -0.94 -0.86 -0.42 -0.42 3.00 -0.69
lo 0.33 <= avg speed <= 1 -0.36 -0.36 0.45 -0.18 -0.18 -0.57 5.25 -0.48 0.00 0.00 -0.45 -0.96 0.36 0.36 2.84 -0.33
lo 0.33 <= max acc <= 1 0.27 0.27 -1.22 0.27 2.33 0.87 11.25 -0.12 0.15 0.15 -0.42 -0.15 0.75 0.75 1.49 -0.32
Constraint Set 3
a little quickly
hi 4 <= max speed <= 8 -1.29 -0.74 -1.32 -0.06 -1.63 -1.48 -0.06 -0.89 -1.34 -1.28 -1.74 -0.31 -1.02 0.14 -0.50 -1.05
hi 2.67 <= avg speed <= 5.33 -1.09 -0.44 -1.14 -0.81 -1.58 -1.30 -0.93 -0.83 -1.09 -1.20 -1.62 -0.97 -1.18 0.14 -0.53 -0.90
exceedingly inquisitively
medlo 0.67 <= avg speed <= 1.33 0.67 6.36 0.45 4.82 -0.30 -0.61 4.33 4.70 0.67 -0.64 -0.45 4.18 0.30 4.58 1.88 0.39
lo 0.3 <= min sep <= 1 -0.60 0.77 0.54 0.49 -0.66 -0.20 -0.51 -0.20 -0.54 0.20 0.89 0.29 -0.46 -0.60 -0.60 2.11
Constraint Set 4
max acc <= 1 0.41 0.04 0.41 0.04 3.78 0.46 3.78 0.46 0.47 0.04 0.47 0.04 0.50 0.05 0.50 0.05
max speed <= 4 0.66 0.76 0.66 0.76 0.03 0.87 0.03 0.87 0.87 0.76 0.87 0.76 0.25 0.46 0.25 0.46
soft 10 <= energy <= 15 0.23 0.10 0.23 0.10 1.62 0.37 1.62 0.37 0.84 0.84 0.84 -0.05 0.14 0.98 0.14 0.98
soft 1 <= avg speed <= 2 -0.70 -0.38 -0.70 -0.38 1.52 -1.06 1.52 -1.06 -0.96 -0.22 -0.96 4.18 0.90 -0.28 0.90 -0.28
Constraint Set 5
max acc <= 1 0.38 0.06 0.41 0.04 2.76 0.01 3.78 0.46 0.06 0.07 0.47 0.03 0.10 0.05 0.50 0.02
max speed <= 4 0.74 0.82 0.66 0.76 0.74 0.85 0.03 0.87 0.74 0.77 0.87 0.76 0.82 0.81 0.25 0.76
soft 10 <= energy <= 15 2.46 2.23 0.23 1.02 2.74 1.62 1.62 0.37 2.08 2.20 0.84 0.84 4.56 4.13 0.14 0.89
soft 1 <= avg speed <= 2 0.32 -0.58 -0.70 -0.38 -0.38 -1.04 1.52 -1.06 -0.12 -0.44 -0.96 -0.44 -1.10 -0.98 0.90 -0.38
moderately safely
hi 3 <= min sep <= 5 -0.26 -0.26 -1.16 -0.35 -0.80 -0.80 -1.53 -1.28 -0.48 -0.48 -1.03 -1.04 -0.26 -0.26 -1.91 -2.28
lo 0.5 <= max speed <= 1.5 0.12 -0.54 0.74 -0.08 0.08 -0.80 4.76 -0.92 0.12 -0.16 -0.94 -0.08 -0.58 -0.46 3.00 -0.06
lo 0.33 <= avg speed <= 1 0.51 0.12 0.45 0.42 0.51 -0.57 5.25 -0.57 0.18 0.36 -0.45 0.36 -0.66 -0.45 2.84 0.45
lo 0.33 <= max acc <= 1 1.13 0.84 1.22 0.90 8.24 0.99 11.25 -0.36 0.81 0.78 -0.42 0.93 0.69 0.87 1.49 0.93

Margins
Obstacle Set 1 Obstacle Set 2 Obstacle Set 3 Obstacle Set 4

 141

2DOF Trajectory Data by Constraint Set

We append here charts showing the paths and trajectories of all 40 2DOF test

cases. Each chart displays the Defaultn case in green and the INITn case in blue. Each

constraint set and obstacle set solution is represented by two charts. The first shows the

path that the agent took through the obstacle field. The other shows trajectory

information over time. The trajectory information charts show the x-coordinate (X), y-

coordinate (Y), x-velocity (Xdot), y-velocity (Ydot), x-input (U) and y-input (V).

Each chart is labeled using “CS” to denote “Constraint Set” and “OS” to denote

“Obstacle Set.” So “CS1, OS1” is the information for Constraint Set 1, Obstacle Set 1.

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 1, OS 1

X

Y

INITn
Defaultn

0 1 2 3 4 5 6
-5

0

5
Trajectory for CS 1, OS 1

Time

X

INITn
Defaultn

0 1 2 3 4 5 6
-5

0

5

Time

Y

0 1 2 3 4 5 6
0

2

4

Time

X
do

t

0 1 2 3 4 5 6
0

2

4

Time

Y
do

t

0 1 2 3 4 5 6
-5

0

5

Time

U

0 1 2 3 4 5 6
-5

0

5

Time

V

-6 -4 -2 0 2 4 6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Path for CS 1, OS 2

X

Y

INITn
Defaultn

0 5 10 15 20 25
-10

0

10
Trajectory for CS 1, OS 2

Time

X

INITn
Defaultn

0 5 10 15 20 25
-10

0

10

Time

Y

0 5 10 15 20 25
-2

0

2

Time

X
do

t

0 5 10 15 20 25
-2

0

2

Time

Y
do

t
0 5 10 15 20 25

-5

0

5

Time
U

0 5 10 15 20 25
-5

0

5

Time

V

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 1, OS 3

X

Y

INITn
Defaultn

0 1 2 3 4 5 6 7 8
-10

0

10
Trajectory for CS 1, OS 3

Time

X

INITn
Defaultn

0 1 2 3 4 5 6 7 8
-5

0

5

Time

Y

0 1 2 3 4 5 6 7 8
-5

0

5

Time

X
do

t

0 1 2 3 4 5 6 7 8
0

2

4

Time

Y
do

t

0 1 2 3 4 5 6 7 8
-5

0

5

Time

U

0 1 2 3 4 5 6 7 8
-5

0

5

Time

V

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 1, OS 4

X

Y

INITn
Defaultn

0 1 2 3 4 5 6 7 8
-10

0

10
Trajectory for CS 1, OS 4

Time

X

INITn
Defaultn

0 1 2 3 4 5 6 7 8
-10

0

10

Time

Y

0 1 2 3 4 5 6 7 8
-5

0

5

Time

X
do

t

0 1 2 3 4 5 6 7 8
-5

0

5

Time

Y
do

t

0 1 2 3 4 5 6 7 8
-10

0

10

Time

U

0 1 2 3 4 5 6 7 8
-10

0

10

Time

V

 146

Constraint Set 1 included H0 = {max-speed <= 4.2}, S0 = {somewhat quickly}.

The soft constraints were extended to S0 = {4 m/s ≤ max-speed ≤ 8 m/s, 2.67 m/s ≤ avg-

speed ≤ 5.33 m/s}. This constraint set was difficult because of the small window on

max-speed that would satisfy both H0 and S0. The H0 was mostly made by very small

margins; for instance, Constraint Set 1, Obstacle Set 1 had a H0 margin of 0.08, which

means that the actual max-speed was 3.864 m/s. This was still lower than the lower limit

on the max-speed soft constraint, so that returned a soft failure. An examination of the

H0 margins in the solution histories shows a see-saw pattern with the H0 margins

shrinking overall. At first, the H0 was met but the S0 was not; they fail low. The time

weight was raised to try to increase the max-speed and avg-speed to meet the S0. This

typically failed the H0. The time weight was lowered again, but not as low as it had been

initially. This traded off some of the margin on H0 to get closer to S0. Let S0
1 be the soft

constraint on max-speed and S0
2 be the soft constraint on avg-speed. Then the following

results are for the INITn runs, showing the H0 margins for each iteration and the final

success/failure conditions for S0:

CS1, OS1: {0.369195, 0.077382} (failed S0
1, succeeded S0

2)

CS1, OS2: {0.102730 (failed), 0.702101, 0.615724 (failed), 0.734784, 0.596354}

(failed S0
1, S0

2)

CS1, OS3: {0.762050, 0.460474 (failed), 0.269521} (failed S0
1, S0

2)

CS1, OS4: {0.566147, 0.284714 (failed), 0.034656} (succeeded S0
1, S0

2)

Obstacle Set 2 apparently presented some difficulty; the solution required more iterations

from both Defaultn and INITn, and it was longer (in traversal time) than the other

trajectories. For the other obstacle sets, the trajectory was traversed in ~5 – 7 seconds.

 147

For Obstacle Set 2, it took INITn’s solution ~12 seconds and Defaultn’s just over 20

seconds. These runs did not show more computational problems than the others. This

seems to indicate that the trajectory planner found a local minimum that represented a

different solution mode than the other three.

-4 -2 0 2 4 6

-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 2, OS 1

X

Y

INITn
Defaultn

0 5 10 15 20 25 30 35
-10

0

10
Trajectory for CS 2, OS 1

Time

X

INITn
Defaultn

0 5 10 15 20 25 30 35
-10

0

10

Time

Y

0 5 10 15 20 25 30 35
-1

0

1

Time

X
do

t

0 5 10 15 20 25 30 35
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30 35
-2

0

2

Time

U

0 5 10 15 20 25 30 35
-1

0

1

Time

V

-6 -4 -2 0 2 4 6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 2, OS 2

X

Y

INITn
Defaultn

0 5 10 15 20 25 30 35 40 45
-10

0

10
Trajectory for CS 2, OS 2

Time

X

INITn
Defaultn

0 5 10 15 20 25 30 35 40 45
-10

0

10

Time

Y

0 5 10 15 20 25 30 35 40 45
-1

0

1

Time

X
do

t

0 5 10 15 20 25 30 35 40 45
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30 35 40 45
-1

0

1

Time

U

0 5 10 15 20 25 30 35 40 45
-1

0

1

Time

V

-4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

Path for CS 2, OS 3

X

Y

INITn
Defaultn

0 10 20 30 40 50 60 70 80
-10

0

10
Trajectory for CS 2, OS 3

Time

X

INITn
Defaultn

0 10 20 30 40 50 60 70 80
-10

0

10

Time

Y

0 10 20 30 40 50 60 70 80
-1

0

1

Time

X
do

t

0 10 20 30 40 50 60 70 80
-1

0

1

Time

Y
do

t

0 10 20 30 40 50 60 70 80
-1

0

1

Time

U

0 10 20 30 40 50 60 70 80
-1

0

1

Time

V

-8 -6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

Path for CS 2, OS 4

X

Y

INITn
Defaultn

0 5 10 15 20 25 30 35 40 45
-10

0

10
Trajectory for CS 2, OS 4

Time

X

INITn
Defaultn

0 5 10 15 20 25 30 35 40 45
-10

0

10

Time

Y

0 5 10 15 20 25 30 35 40 45
-1

0

1

Time

X
do

t

0 5 10 15 20 25 30 35 40 45
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30 35 40 45
-1

0

1

Time

U

0 5 10 15 20 25 30 35 40 45
-2

0

2

Time

V

 152

Constraint Set 2 had H0 = {max-acc ≤ 1.0, min-sep ≥ 1.7}, S0 = {safely}.

“Safely” expanded into soft range constraints on min-sep, max-speed, avg-speed and

max-acc. Due to a bug, EVAL did not record failed soft min-sep limits as failures. (Hard

min-sep failures and other soft failures were all detected; the line of code to detect this

particular kind of error was just missing and not discovered until data post-processing.)

While these failures were counted in our analysis, it does mean that the routine exited

early in some cases, where if it had continued, it might have found a solution. That is,

however, doubtful; the soft min-sep range was on the order of a quarter to half of the

field. In all but the single-obstacle case, it would be very impractical to get sufficiently

far away from the obstacles to not trigger that soft failure. This is a case where perhaps

our ad hoc definitions were a bit off; a “high min-sep” required by “safely” might have

been set to smaller actual values.

INITn was particularly successful with this constraint set; three out of four runs

ended after one iteration (all with the soft min-sep failure which went undetected by

EVAL). They all took about 30 seconds (± about 5 seconds) to traverse their respective

obstacle fields. Obstacle Set 2, which had a W1/W2 weight ratio almost 4 times that of the

others (17.84 versus 4.67) took longer. Obstacle Set 2 was having a very hard time

meeting the max-acc hard limit, and kept raising W1/W2 until it was met. Defaultn did not

have this problem, ironically, because it started with a lower LIM value. The INIT

procedure set LIM to 3.0 for the initialized runs because of the “safely” constraint. This

met the hard min-sep limit of 1.7 m with room to spare. The default value for LIM was

1.0, which had to be raised in all cases; but in the Obstacle 2 case, it only had to be raised

to 1.7 to meet the hard min-sep limit exactly. This lower LIM meant a shorter, straighter

 153

path that could be traversed with lower accelerations for a much higher W1/W2 value (5.1

for Defaultn in the OS2 case). Defaultn had a similar problem with OS3. It started off

failing both min-sep and max-acc hard limits, and raised both W1/W2 and LIM until

W1/W2 was met. Then it raised LIM alone until min-sep was met. But W1/W2 was so high

that the lower limits on the “low avg-speed” and “low max-speed” elements of “safely”

were missed; W1/W2 was lowered (which is to say, W2 the time weight was increased) so

that the hard and soft limits were all met.

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 3, OS 1

X

Y

INITn
Defaultn

0 1 2 3 4 5 6
-5

0

5
Trajectory for CS 3, OS 1

Time

X

INITn
Defaultn

0 1 2 3 4 5 6
-5

0

5

Time

Y

0 1 2 3 4 5 6
0

2

4

Time

X
do

t

0 1 2 3 4 5 6
0

2

4

Time

Y
do

t

0 1 2 3 4 5 6
-5

0

5

Time

U

0 1 2 3 4 5 6
-5

0

5

Time

V

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 3, OS 2

X

Y

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18
-5

0

5
Trajectory for CS 3, OS 2

Time

X

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18
-10

0

10

Time

Y

0 2 4 6 8 10 12 14 16 18
0

2

4

Time

X
do

t

0 2 4 6 8 10 12 14 16 18
-5

0

5

Time

Y
do

t

0 2 4 6 8 10 12 14 16 18
-10

0

10

Time

U

0 2 4 6 8 10 12 14 16 18
-10

-5

0

5

Time

V

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 3, OS 3

X

Y

INITn
Defaultn

0 5 10 15 20 25
-5

0

5
Trajectory for CS 3, OS 3

Time

X

INITn
Defaultn

0 5 10 15 20 25
-10

0

10

Time

Y

0 5 10 15 20 25
0

2

4

Time

X
do

t

0 5 10 15 20 25
-5

0

5

Time

Y
do

t

0 5 10 15 20 25
-5

0

5

Time

U

0 5 10 15 20 25
-5

0

5

Time

V

-10 -8 -6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

8

Path for CS 3, OS 4

X

Y

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18 20
-10

0

10
Trajectory for CS 3, OS 4

Time

X

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

Time

Y

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

Time

X
do

t

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

Time

Y
do

t

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

Time

U

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

Time

V

 158

Constraint Set 3 was self-sabotaging. It asked for trajectories with S0 ={a little

quickly, exceedingly inquisitively}. These expanded into high avg-speed and max-speed

and medium-low avg-speed and low min-sep, respectively. It would not be possible to

satisfy both high avg-speed and medium low avg-speed. The idea, of course, was to

create a trajectory was that mostly inquisitive but on the fast end of that. For OS 2 and 3,

INIT seemed to do just that, finding avg-speeds that were within the “inquisitively”

requirements (although not always on the higher side). OS 1 and 4 seemed to converge

to the “quickly” requirements instead. The Default trajectories more often made the

“quickly” constraints over the “inquisitively” constraints, possibly a result of constraint

ordering. This is why they are so much faster than the ones arising from INIT for OS 1-3.

OS 4 gave Default problems as well, as it did not make any of the constraints before

timing out of the search procedure. (All of these runs, for INIT and for Default, exited

either with a loop in the weights or with the time limit expired.)

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 4, OS 1

X

Y

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18
-5

0

5
Trajectory for CS 4, OS 1

Time

X

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18
-5

0

5

Time

Y

0 2 4 6 8 10 12 14 16 18
0

0.5

1

Time

X
do

t

0 2 4 6 8 10 12 14 16 18
0

0.5

1

Time

Y
do

t

0 2 4 6 8 10 12 14 16 18
-1

0

1

Time

U

0 2 4 6 8 10 12 14 16 18
-1

0

1

Time

V

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 4, OS 2

X

Y

INITn
Defaultn

0 5 10 15 20 25 30 35
-5

0

5
Trajectory for CS 4, OS 2

Time

X

INITn
Defaultn

0 5 10 15 20 25 30 35
-10

0

10

Time

Y

0 5 10 15 20 25 30 35
0

0.5

1

Time

X
do

t

0 5 10 15 20 25 30 35
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30 35
-1

0

1

Time

U

0 5 10 15 20 25 30 35
-1

0

1

Time

V

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 4, OS 3

X

Y

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18 20
-10

0

10
Trajectory for CS 4, OS 3

Time

X

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

Time

Y

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

Time

X
do

t

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

Time

Y
do

t

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

Time

U

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

Time

V

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 4, OS 4

X

Y

INITn
Defaultn

0 5 10 15
-5

0

5
Trajectory for CS 4, OS 4

Time

X

INITn
Defaultn

0 5 10 15
-5

0

5

Time

Y

0 5 10 15
0

1

2

Time

X
do

t
0 5 10 15

0

1

2

Time
Y

do
t

0 5 10 15
-2

0

2

Time

U

0 5 10 15
-2

0

2

4

Time

V

 163

Constraint Set 4 had H0 ={max-speed ≤ 4.0 m/s, max-acc ≤ 1 m/s2}, S0 ={10 J ≤

energy ≤ 15 J, 1 m/s ≤ avg-speed ≤ 2 m/s}. That low acceleration required a high W1/W2

weight, which meant that it wais difficult to satisfy the avg-speed soft constraint. It was

also difficult to meet the energy constraint, even with very high W1/W2 values (e.g., 22;

that is, energy is weighted 22 times more heavily than time). This implied that something

may have been off with the weight adjustment heuristic for energy. Interestingly, in the

OS 3 cases, the W1/W2 ratio was adjusted down, not up, because the avg-speed was failing

low. Because of constraint ordering, it was processed after the energy constraint failure

and the net adjustment favored it.

 The resulting trajectories are identical in these cases because the constraints, when

processed by INIT, coincidentally happen to return the same value as the Default weight

vector.

-4 -2 0 2 4 6

-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 5, OS 1

X

Y

INITn
Defaultn

0 5 10 15 20 25 30
-10

0

10
Trajectory for CS 5, OS 1

Time

X

INITn
Defaultn

0 5 10 15 20 25 30
-10

0

10

Time

Y

0 5 10 15 20 25 30
-1

0

1

Time

X
do

t

0 5 10 15 20 25 30
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30
-2

0

2

Time

U

0 5 10 15 20 25 30
-1

0

1

Time

V

-6 -4 -2 0 2 4 6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5
Path for CS 5, OS 2

X

Y

INITn
Defaultn

0 5 10 15 20 25 30 35 40
-10

0

10
Trajectory for CS 5, OS 2

Time

X

INITn
Defaultn

0 5 10 15 20 25 30 35 40
-10

0

10

Time

Y

0 5 10 15 20 25 30 35 40
-1

0

1

Time

X
do

t

0 5 10 15 20 25 30 35 40
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30 35 40
-1

0

1

Time

U

0 5 10 15 20 25 30 35 40
-1

0

1

Time

V

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

Path for CS 5, OS 3

X

Y

INITn
Defaultn

0 5 10 15 20 25
-10

0

10
Trajectory for CS 5, OS 3

Time

X

INITn
Defaultn

0 5 10 15 20 25
-10

0

10

Time

Y

0 5 10 15 20 25
-1

0

1

Time

X
do

t

0 5 10 15 20 25
-1

0

1

Time

Y
do

t

0 5 10 15 20 25
-1

0

1

Time

U

0 5 10 15 20 25
-1

0

1

Time

V

-8 -6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

Path for CS 5, OS 4

X

Y

INITn
Defaultn

0 5 10 15 20 25 30 35 40 45 50
-10

0

10
Trajectory for CS 5, OS 4

Time

X

INITn
Defaultn

0 5 10 15 20 25 30 35 40 45 50
-10

0

10

Time

Y

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

Time

X
do

t

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

Time
Y

do
t

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

Time

U

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

Time

V

 168

Constraint Set 5 was another difficult set with competing soft constraints. H0 =

{max-acc ≤ 1.0, max-speed ≤ 4.0}, S0 = {10 ≤ energy ≤ 15, 1.0 ≤ avg-speed ≤ 2.0,

moderately safely}. So it was the same as Constraint Set 4 and had the same difficulties,

plus the soft constraint of “safely” added. (That “safely” caused INIT to increase the

initial LIM value from 1.0 to 3.0, so the trajectory planner did not start from identical

weight vectors as it did for Constraint Set 4.) “Safely” requires low speeds and low

acceleration, all of which were under the hard constraint values, so there was no

competition there: if the trajectory could make those S0, it would also make the H0 for

free. However, the lower limit of the soft avg-speed constraint that was stated explicitly

was equal to the upper limit of the avg-speed range arising from “safely;” both equal 1

m/s. Unless the trajectory’s average speed could be made exactly 1.0 m/s (highly

unlikely), one of those constraints would have to fail. This is another constraint set

where every run exhausted the time limit on iterations trying to find acceptable solutions

to the soft constraints.

The primary difference in the trajectories arose from the min-sep requirement.

When INIT was run, LIM was set to 3.0 to meet it, resulting in the longer trajectories seen

for the INIT cases. Default, starting from LIM = 1.0, found more trajectories that stayed

closer to obstacles.

Notable is the velocity spike in the middle of the CS 5, OS 4 Defaultn trajectory.

To minimize the penalty over time for being so close to the obstacles it was passing

between at that point, the vehicle speeded up. This is not necessarily desirable behavior!

For this reason, the cost functional used in Chapter 5 penalized velocity near obstacles as

well as distance from them.

 169

6DOF Cases

Start Point, Goal Point, and Obstacle Sets

The state x is a 12-vector [position, velocity, rotation, rotational velocity]. The rotation

vector is the modified Rodrigues vector. Spherical obstacles are denoted as a set

containing their center in space (x, y, z) and their radius r, all in meters. The set of

obstacles is denoted {O}

Obstacle Set 1: One large obstacle in the way.

x0 = [0 0 0 0 0 0 0 0 0 0 0 0]

xf = [10.0 10.0 10.5 0 0 0 0 0 0 0 0 0]

{O} = { {(6, 6, 0), 1} }

2
4

6
8

2468

0

2

4

6

8

10

Obstacle Set 2: Scattered obstacles.

 170

x0 = [0 0 0 0 0 0 0 0 0 0 0 0]

xf = [16 16 16 0 0 0 0 0 0 0 0 0]

{O} = { {(3, 2, 3}, 0.5}, {(8, 5, 8), 0.5}, {(14, 12, 12), 0.5}}

0

5

10

15

5
10

15
0

5

10

15

Obstacle Set 3: Moving from one end of a line of satellites to the other.

x0 = [20 19 35 0 0 0 0 0 0 0 0 0]

xf = [1 1 2 0 0 0 0 0 0 0 0 0]

{O} = { {(6, 6, 12), 0.5}, {(11, 11, 22}, 0.5}, {(16, 16, 32), 0.5} }

 171

10

20

5
10

15

5

10

15

20

25

30

35

Obstacle Set 4: Assuming a position in a tetrahedron.

x0 = [20.4 25 12 0 0 0 0 0 0 0 0 0]

xf = [25 25 31.53 0 0 0 0 0 0 0 0 0]

{O} = { {(20.38, 25, 25), 1}, {(27.31, 21, 25), 1}, {(27.31, 29, 25), 1} }

 172

20
25

20
25

30
12

14

16

18

20

22

24

26

28

30

Constraint Sets

Constraint Set 1

H0 = {max-speed <= 5.5 m/s}

S0 = {somewhat quickly}

Constraint Set 2

S0 = {exceedingly efficiently}

Constraint Set 3

S0 = {a little quickly}

Constraint Set 4

H0 = {max-acc <= 1.3, max-speed <= 4}

S0 = { 2.7 <= force <= 5.4, 1.8 <= avg-speed <= 4}

Constraint Set 5

H0 = {max-acc <= 1.3, max-speed <= 4}

 173

S0 = {2.7 <= force <= 5.4, 1.8 <= avg-speed <= 4, moderately safely}

Constraint Set 6

 S0 = {very energy-saving}

Constraint Set 7

 S0 = {low torque}

Constraint Set 8

 S0 = {medium torque}

Margins of Success and Failure

This table is formatted the same way as the one in the 2DOF section.

Constraint Set 1 INIT0 INITn Default0 Defaultn INIT0 INITn Default0 Defaultn INIT0 INITn Default0 Defaultn INIT0 INITn Default0 Defaultn
max speed <= 5.5 0.17 0.07 0.57 0.07 0.06 0.00 0.46 0.09 0.30 0.00 0.28 0.02 0.05 0.00 0.44 0.04
somewhat quickly
hi 5 <= max speed <= 10.6 -0.15 -0.96 -0.95 -0.86 -0.70 -0.83 -0.72 -0.99 -0.23 -0.82 -0.37 -0.85 -0.73 -0.82 -0.68 -0.90
hi 4 <= avg speed <= 8.6 -0.04 -0.89 -0.91 -0.89 -0.48 -0.64 -0.62 -0.88 0.06 -0.61 -1.23 -0.60 -0.65 -0.76 -1.68 -0.87
Constraint Set 2
exceedinly efficiently
lo 2.7 <= force <= 5.4 0.36 0.36 2.00 0.05 0.16 0.99 3.63 0.99 0.98 0.00 4.40 0.00 -0.17 -0.17 0.64 0.02
Constraint Set 3
a little quickly
hi 5 <= max speed <= 10.6 -0.15 -0.96 -0.95 -0.96 -0.70 -0.70 -0.72 -0.99 -0.23 -0.23 -0.37 0.58 -0.73 -0.73 -0.68 -0.68
hi 4 <= avg speed <= 8.6 -0.04 0.89 -0.91 -0.89 -0.48 -0.48 -0.62 -0.88 0.06 0.06 -1.23 0.90 -0.65 -0.65 -1.68 -1.68
Constraint Set 4
max acc <= 1.3 19.31 0.08 17.82 0.51 30.56 0.47 26.98 0.45 42.64 0.23 49.79 0.35 22.74 60.72 26.55 60.72
max speed <= 4 0.14 0.90 0.42 0.95 0.46 0.94 0.26 0.95 0.79 0.92 0.01 0.93 0.44 6.24 0.23 6.24
soft 2.7 <= force <= 5.4 7.73 -0.85 2.00 -1.39 10.96 -1.34 3.63 -1.45 13.81 -1.08 4.40 -1.22 6.39 47.53 0.64 47.53
soft 1.8 <= avg speed <= 4 0.91 -1.45 -0.91 -1.54 1.08 -1.53 -0.30 -1.55 2.22 -1.48 -0.56 -1.51 0.74 18.16 -1.50 18.16
Constraint Set 5
max acc <= 1.3 19.31 0.08 17.82 0.41 34.02 0.05 26.98 0.09 43.27 0.55 49.79 0.46 22.74 0.50 26.55 0.45
max speed <= 4 0.14 0.90 0.42 0.94 0.50 0.92 0.26 0.92 0.83 0.95 0.01 0.94 0.44 0.95 0.23 0.94
soft 2.7 <= force <= 5.4 7.73 -0.85 2.00 -1.26 11.75 -1.13 3.63 -1.12 14.69 -1.51 4.40 -1.40 6.39 -1.56 0.64 -1.52
soft 1.8 <= avg speed <= 4 0.91 -1.45 -0.91 -1.52 0.99 -1.47 -0.30 -1.49 2.43 -1.56 -0.56 -1.54 0.74 -1.54 -1.50 -1.53
moderately safely
hi 1.5 <= min sep <= 2.5 -0.80 0.34 -0.80 0.34 0.43 0.77 -1.20 1.02 0.66 0.39 -1.18 0.87 0.95 1.45 0.41 1.45
lo 1.4 <= max speed <= 2.7 2.88 -1.54 0.44 -1.76 5.11 -1.65 0.42 -1.68 7.09 -1.87 1.93 -1.80 4.70 -1.82 0.61 -1.79
lo 1<= max acc <= 2.5 31.87 -0.73 29.30 -0.30 57.37 -0.68 45.17 -0.76 73.40 -0.55 84.70 -0.40 37.82 -0.46 44.42 -0.38
lo 0.9<= avg speed <= 1.8 4.67 -1.56 0.22 -1.71 7.31 -1.60 1.71 -1.64 10.82 -1.80 -0.37 -1.77 6.69 -1.76 -1.67 -1.74
Constraint Set 6
very energy-saving
lo torque 0.05 <= torque <= .2 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.66 -0.67 -0.62 -0.64 -0.20 0.90 -0.64 -0.64 -0.63 -0.43

force 0.32 0.32 2.00 0.05 0.16 0.02 3.63 0.99 0.96 0.87 4.40 0.00 -0.19 -0.19 0.64 0.02

Margins
Obs1 Obs2 Obs3 Obs4

 175

6DOF Trajectory Data by Constraint Set

We append here charts showing the paths and trajectories of all 40 2DOF test

cases. Each chart displays the Defaultn case in green and the INITn case in blue. Each

constraint set and obstacle set solution is represented by two charts. The first shows the

path that the agent took through the obstacle field. The second shows translational and

rotational rates. The third shows force and torque inputs.

Each chart is labeled using “CS” to denote “Constraint Set” and “OS” to denote

“Obstacle Set.” So “CS1, OS1” is the information for Constraint Set 1, Obstacle Set 1.

 176

2 4 6 8 10246810

0

2

4

6

8

10

X

Path for CS 1, OS 1

Y

Z

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4
Velocities and Rotations for CS 1, OS 1

Time

X
do

t

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5

Time

Zd
ot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

R
ol

l R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

P
itc

h
R

at
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
x 10-15

Time

Y
aw

 R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
Force and Torque for CS 1, OS 1

Time

X
-fo

rc
e

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Y
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Z-
fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

X
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

Y
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

0

2
x 10-15

Time

Z
to

rq
ue

 177

0
5

10
15

0
5

10
15

0

2

4

6

8

10

12

14

16

Y

Path for CS 1, OS 2

X

Z

INITn
Defaultn

0 1 2 3 4 5 6 7
-5

0

5
Velocities and Rotations for CS 1, OS 2

Time

X
do

t

INITn
Defaultn

0 1 2 3 4 5 6 7
-5

0

5

Time

Y
do

t

0 1 2 3 4 5 6 7
-5

0

5

Time

Zd
ot

0 1 2 3 4 5 6 7
-0.02

0

0.02

Time

R
ol

l R
at

e

0 1 2 3 4 5 6 7
-2

0

2
x 10-15

Time

P
itc

h
R

at
e

0 1 2 3 4 5 6 7
-0.02

-0.01

0

0.01

Time

Y
aw

 R
at

e

0 1 2 3 4 5 6 7
-1

0

1
Force and Torque for CS 1, OS 2

Time

X
-fo

rc
e

INITn
Defaultn

0 1 2 3 4 5 6 7
-1

0

1

Time

Y
-fo

rc
e

0 1 2 3 4 5 6 7
-1

0

1

Time

Z-
fo

rc
e

0 1 2 3 4 5 6 7
-0.05

0

0.05

Time

X
 to

rq
ue

0 1 2 3 4 5 6 7
-5

0

5
x 10-15

Time

Y
 to

rq
ue

0 1 2 3 4 5 6 7
-0.05

0

0.05

Time

Z
to

rq
ue

 178

0
10

0 5 10 15
0

5

10

15

20

25

30

X
Y

Path for CS 1, OS 3

Z

INITn
Defaultn

0 1 2 3 4 5 6 7 8 9
-5

0

5
Velocities and Rotations for CS 1, OS 3

Time

X
do

t

INITn
Defaultn

0 1 2 3 4 5 6 7 8 9
-5

0

5

Time

Y
do

t

0 1 2 3 4 5 6 7 8 9
-5

0

5

Time

Zd
ot

0 1 2 3 4 5 6 7 8 9
-0.1

0

0.1

Time

R
ol

l R
at

e

0 1 2 3 4 5 6 7 8 9
-0.1

0

0.1

Time

P
itc

h
R

at
e

0 1 2 3 4 5 6 7 8 9
-0.01

0

0.01

Time

Y
aw

 R
at

e

0 1 2 3 4 5 6 7 8 9
-1

0

1
Force and Torque for CS 1, OS 3

Time

X
-fo

rc
e

INITn
Defaultn

0 1 2 3 4 5 6 7 8 9
-1

0

1

Time

Y
-fo

rc
e

0 1 2 3 4 5 6 7 8 9
-1

0

1

Time

Z-
fo

rc
e

0 1 2 3 4 5 6 7 8 9
-0.5

0

0.5

Time

X
 to

rq
ue

0 1 2 3 4 5 6 7 8 9
-0.5

0

0.5

Time

Y
 to

rq
ue

0 1 2 3 4 5 6 7 8 9
-0.05

0

0.05

Time

Z
to

rq
ue

 179

20
25

20

25

30

12

14

16

18

20

22

24

26

28

30

Y

Path for CS 1, OS 4

X

Z

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2
Velocities and Rotations for CS 1, OS 4

Time

X
do

t

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2
x 10-14

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

0

10

Time

Zd
ot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5
x 10-14

Time

R
ol

l R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

0

0.2

Time

P
itc

h
R

at
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5
x 10-15

Time

Y
aw

 R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1
Force and Torque for CS 1, OS 4

Time

X
-fo

rc
e

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2
x 10-13

Time

Y
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

Time

Z-
fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2
x 10-13

Time

X
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

Time

Y
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5
x 10-14

Time

Z
to

rq
ue

 180

Constraint Set 1 included H0 = {max-speed <= 5.5}, S0 = {somewhat quickly}.

The soft constraints were extended to S0 = {5.0 m/s ≤ max-speed ≤ 10.6 m/s, 4.0 m/s ≤

avg-speed ≤ 8.6 m/s}. These in general were very successful. For the INIT cases, only

two iterations were needed for total success. (We did have a problem with Obstacle Set

4, where a hard limit failure below our level of precision forced 24 iterations when, in

effect, we were meeting our constraints exactly.) In the default cases, Obstacle Sets 1

and 2 reacted similarly, increasing the time weight until success was found. For Obstacle

Sets 3 and 4 in the default cases, the results were more similar to the 2DOF Constraint

Set 1 behavior, with the time weight initially over-adjusted up, then adjusted back down

in one or more steps.

Since path lengths varied from obstacle set to set, final times were not necessarily

similar across the board. Similar speed results were achieved for all cases, however.

 Obstacle Set 4 requires no translation in the y-direction, so there is no force there

in any of the Constraint Sets.

 181

0 2 4 6 8 100510

0

2

4

6

8

10

X

Path for CS 2, OS 1

Y

Z

INITn
Defaultn

0 2 4 6 8 10 12 14 16
-1

0

1
Velocities and Rotations for CS 2, OS 1

Time

X
do

t

INITn
Defaultn

0 2 4 6 8 10 12 14 16
-1

0

1

Time

Y
do

t

0 2 4 6 8 10 12 14 16
-1

0

1

Time

Zd
ot

0 2 4 6 8 10 12 14 16
-2

0

2
x 10-3

Time

R
ol

l R
at

e

0 2 4 6 8 10 12 14 16
-2

0

2
x 10-3

Time

P
itc

h
R

at
e

0 2 4 6 8 10 12 14 16
-2

0

2
x 10-16

Time

Y
aw

 R
at

e

0 2 4 6 8 10 12 14 16
-1

0

1
Force and Torque for CS 2, OS 1

Time

X
-fo

rc
e

INITn
Defaultn

0 2 4 6 8 10 12 14 16
-1

0

1

Time

Y
-fo

rc
e

0 2 4 6 8 10 12 14 16
-1

0

1

Time

Z-
fo

rc
e

0 2 4 6 8 10 12 14 16
-0.01

0

0.01

Time

X
 to

rq
ue

0 2 4 6 8 10 12 14 16
-0.01

0

0.01

Time

Y
 to

rq
ue

0 2 4 6 8 10 12 14 16
-1

0

1
x 10-15

Time

Z
to

rq
ue

 182

0
5

10
15

0
5

10
15

0

2

4

6

8

10

12

14

16

Y

Path for CS 2, OS 2

X

Z

INITn
Defaultn

0 5 10 15 20 25
-1

0

1
Velocities and Rotations for CS 2, OS 2

Time

X
do

t

INITn
Defaultn

0 5 10 15 20 25
-1

0

1

Time

Y
do

t

0 5 10 15 20 25
-1

0

1

Time

Zd
ot

0 5 10 15 20 25
-5

0

5
x 10-3

Time

R
ol

l R
at

e

0 5 10 15 20 25
-2

0

2
x 10-16

Time

P
itc

h
R

at
e

0 5 10 15 20 25
-5

0

5
x 10-3

Time

Y
aw

 R
at

e

0 5 10 15 20 25
-1

0

1
Force and Torque for CS 2, OS 2

Time

X
-fo

rc
e

INITn
Defaultn

0 5 10 15 20 25
-1

0

1

Time

Y
-fo

rc
e

0 5 10 15 20 25
-1

0

1

Time

Z-
fo

rc
e

0 5 10 15 20 25
-0.01

0

0.01

Time

X
 to

rq
ue

0 5 10 15 20 25
-1

0

1
x 10-15

Time

Y
 to

rq
ue

0 5 10 15 20 25
-0.01

0

0.01

Time

Z
to

rq
ue

 183

0
10

0 5 10 15
0

5

10

15

20

25

30

X
Y

Path for CS 2, OS 3

Z

INITn
Defaultn

0 5 10 15 20 25 30 35
-1

0

1
Velocities and Rotations for CS 2, OS 3

Time

X
do

t

INITn
Defaultn

0 5 10 15 20 25 30 35
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30 35
-2

0

2

Time

Zd
ot

0 5 10 15 20 25 30 35
-0.5

0

0.5

Time

R
ol

l R
at

e

0 5 10 15 20 25 30 35
-0.5

0

0.5

Time

P
itc

h
R

at
e

0 5 10 15 20 25 30 35
-1

0

1
x 10-3

Time

Y
aw

 R
at

e

0 5 10 15 20 25 30 35
-0.5

0

0.5
Force and Torque for CS 2, OS 3

Time

X
-fo

rc
e

INITn
Defaultn

0 5 10 15 20 25 30 35
-0.5

0

0.5

Time

Y
-fo

rc
e

0 5 10 15 20 25 30 35
-1

0

1

Time

Z-
fo

rc
e

0 5 10 15 20 25 30 35
-0.1

0

0.1

Time

X
 to

rq
ue

0 5 10 15 20 25 30 35
-0.1

0

0.1

Time

Y
 to

rq
ue

0 5 10 15 20 25 30 35
-5

0

5
x 10-4

Time

Z
to

rq
ue

 184

20
25

20

25

30

12

14

16

18

20

22

24

26

28

30

Y

Path for CS 2, OS 4

X

Z

INITn
Defaultn

0 5 10 15
-0.5

0

0.5
Velocities and Rotations for CS 2, OS 4

Time

X
do

t

INITn
Defaultn

0 5 10 15
-5

0

5
x 10-18

Time

Y
do

t

0 5 10 15
-2

0

2

Time

Zd
ot

0 5 10 15
-5

0

5
x 10-18

Time

R
ol

l R
at

e

0 5 10 15
-0.1

0

0.1

Time

P
itc

h
R

at
e

0 5 10 15
-2

0

2
x 10-18

Time

Y
aw

 R
at

e

0 5 10 15
-1

0

1
Force and Torque for CS 2, OS 4

Time

X
-fo

rc
e

INITn
Defaultn

0 5 10 15
0

2

4
x 10-17

Time

Y
-fo

rc
e

0 5 10 15
-1

0

1

Time

Z-
fo

rc
e

0 5 10 15

-0.5
0

0.5

x 10-17

Time

X
 to

rq
ue

0 5 10 15
-0.5

0

0.5

Time

Y
 to

rq
ue

0 5 10 15
-5

0

5
x 10-18

Time

Z
to

rq
ue

 185

Constraint Set 2 was only a soft constraint, S0 = {“exceedingly efficiently”}. This

was extended to “low force,” and that was in turn defined for this system as 2.7 N ≤ force

≤ 5.4 N. INIT was again very successful with this set; for Obstacle Sets 1 and 4, it solved

it with the first weight vector. For OS 2 and 3, another iteration was needed; the time

weight (which was set to 0.25 by INIT) was a little too high and had to be lowered

further. The default cases all needed to adjust the time weight down, which they did in

between three and five steps. Default results were not identical to INIT results, but all

were very similar.

For OS 1, 2 and 4, we had the typical smooth acceleration followed by a smooth

deceleration, which is more what we would expect for a time-efficient trajectory.

Perhaps the values of “low” force were overestimated for smaller fields; Obstacle Set 3

gives something closer to a bang-coast-bang approximation, which is what we would

expect to see for an efficient trajectory. Our WADJ curves were generated in 50m cube

volumes, which is closer in size to the field of Obstacle 3 than the others. We reiterate

that the returned trajectories met the numeric values that defined the fuzzy preference

“efficiently” – WADJ did not fail, based on what it knew. However, this result suggests

that its knowledge was faulty and that some of our ad hoc definitions require more

refinement.

 186

2 4 6 8 10246810

0

2

4

6

8

10

X

Path for CS 3, OS 1

Y

Z

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4
Velocities and Rotations for CS 3, OS 1

Time

X
do

t

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

Time

Y
do

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5

Time

Zd
ot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

R
ol

l R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-5

0

5
x 10-3

Time

P
itc

h
R

at
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
x 10-15

Time

Y
aw

 R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1
Force and Torque for CS 3, OS 1

Time

X
-fo

rc
e

INITn
Defaultn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Y
-fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

0

1

Time

Z-
fo

rc
e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

X
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.05

0

0.05

Time

Y
 to

rq
ue

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

0

2
x 10-15

Time

Z
to

rq
ue

 187

0
5

10
15

0
5

10
15

0

2

4

6

8

10

12

14

16

Y

Path for CS 3, OS 2

X

Z

INITn
Defaultn

0 1 2 3 4 5 6 7
-5

0

5
Velocities and Rotations for CS 3, OS 2

Time

X
do

t

INITn
Defaultn

0 1 2 3 4 5 6 7
-5

0

5

Time

Y
do

t

0 1 2 3 4 5 6 7
-5

0

5

Time

Zd
ot

0 1 2 3 4 5 6 7
-0.02

0

0.02

Time

R
ol

l R
at

e

0 1 2 3 4 5 6 7
-2

0

2
x 10-15

Time

P
itc

h
R

at
e

0 1 2 3 4 5 6 7
-0.02

0

0.02

Time

Y
aw

 R
at

e

0 1 2 3 4 5 6 7
-1

0

1
Force and Torque for CS 3, OS 2

Time

X
-fo

rc
e

INITn
Defaultn

0 1 2 3 4 5 6 7
-1

0

1

Time

Y
-fo

rc
e

0 1 2 3 4 5 6 7
-1

0

1

Time

Z-
fo

rc
e

0 1 2 3 4 5 6 7
-0.05

0

0.05

Time

X
 to

rq
ue

0 1 2 3 4 5 6 7
-5

0

5
x 10-15

Time

Y
 to

rq
ue

0 1 2 3 4 5 6 7
-0.05

0

0.05

Time

Z
to

rq
ue

 188

0
10

0 5 10 15
0

5

10

15

20

25

30

X
Y

Path for CS 3, OS 3

Z

INITn
Defaultn

0 1 2 3 4 5 6 7
-5

0

5
Velocities and Rotations for CS 3, OS 3

Time

X
do

t

INITn
Defaultn

0 1 2 3 4 5 6 7
-5

0

5

Time

Y
do

t

0 1 2 3 4 5 6 7
-10

0

10

Time

Zd
ot

0 1 2 3 4 5 6 7
-0.2

0

0.2

Time

R
ol

l R
at

e

0 1 2 3 4 5 6 7
-0.2

0

0.2

Time

P
itc

h
R

at
e

0 1 2 3 4 5 6 7
-0.01

0

0.01

Time

Y
aw

 R
at

e

0 1 2 3 4 5 6 7
-1

0

1
Force and Torque for CS 3, OS 3

Time

X
-fo

rc
e

INITn
Defaultn

0 1 2 3 4 5 6 7
-1

0

1

Time

Y
-fo

rc
e

0 1 2 3 4 5 6 7
-2

0

2

Time

Z-
fo

rc
e

0 1 2 3 4 5 6 7
-0.5

0

0.5

Time

X
 to

rq
ue

0 1 2 3 4 5 6 7
-0.5

0

0.5

Time

Y
 to

rq
ue

0 1 2 3 4 5 6 7
-0.05

0

0.05

Time

Z
to

rq
ue

 189

20
25

20

25

30

12

14

16

18

20

22

24

26

28

30

Y

Path for CS 3, OS 4

X

Z

INITn
Defaultn

0 1 2 3 4 5 6 7 8
-2

0

2
Velocities and Rotations for CS 3, OS 4

Time

X
do

t

INITn
Defaultn

0 1 2 3 4 5 6 7 8
-5

0

5
x 10-14

Time

Y
do

t

0 1 2 3 4 5 6 7 8
-10

0

10

Time

Zd
ot

0 1 2 3 4 5 6 7 8
-5

0

5
x 10-14

Time

R
ol

l R
at

e

0 1 2 3 4 5 6 7 8
-0.2

0

0.2

Time

P
itc

h
R

at
e

0 1 2 3 4 5 6 7 8

-0.5
0

0.5

x 10-14

Time

Y
aw

 R
at

e

0 1 2 3 4 5 6 7 8
-1

0

1
Force and Torque for CS 3, OS 4

Time

X
-fo

rc
e

INITn
Defaultn

0 1 2 3 4 5 6 7 8
0

1

2
x 10-13

Time

Y
-fo

rc
e

0 1 2 3 4 5 6 7 8
-2

0

2

Time

Z-
fo

rc
e

0 1 2 3 4 5 6 7 8
-2

0

2
x 10-13

Time

X
 to

rq
ue

0 1 2 3 4 5 6 7 8
-1

0

1

Time

Y
 to

rq
ue

0 1 2 3 4 5 6 7 8
-5

0

5
x 10-14

Time

Z
to

rq
ue

 190

Constraint Set 3 was another soft-only, S0 = {“a little quickly”}. INIT was

generally more successful than the default case here, as it solved for all obstacle sets in a

single iteration in three cases, and required only two for the fourth. The default approach

typically required three or four for OS 1-3. For OS 4, it seriously over-estimated the time

weight needed in its second iteration. By the fourth iteration, it was back to a more

reasonable answer, but the margin of failure was so small that the weight adjustments to

the time weight were also very small, and the weight was not lowered enough before the

time limit expired. The first iteration, with default weights, was found to have the

smallest errors and returned; this is the only time in this CS that the default case found a

solution significantly different from the INIT case.

We see again in all the OS the typical time-efficient force curves that we would

hope to see in a “quickly” preference.

 191

2 4 6 8 10246810

0

2

4

6

8

10

X

Path for CS 4, OS 1

Y

Z

INITn
Defaultn

0 20 40 60 80 100 120
0

0.2

0.4
Velocities and Rotations for CS 4, OS 1

Time

X
do

t

INITn
Defaultn

0 20 40 60 80 100 120
0

0.2

0.4

Time

Y
do

t

0 20 40 60 80 100 120
0

0.2

0.4

Time

Zd
ot

0 20 40 60 80 100 120
-1

0

1
x 10-16

Time

R
ol

l R
at

e

0 20 40 60 80 100 120
-2

0

2
x 10-16

Time

P
itc

h
R

at
e

0 20 40 60 80 100 120
-1

0

1
x 10-16

Time

Y
aw

 R
at

e

0 20 40 60 80 100 120
-0.2

0

0.2
Force and Torque for CS 4, OS 1

Time

X
-fo

rc
e

INITn
Defaultn

0 20 40 60 80 100 120
-0.2

0

0.2

Time

Y
-fo

rc
e

0 20 40 60 80 100 120
-0.2

0

0.2

Time

Z-
fo

rc
e

0 20 40 60 80 100 120
-5

0

5
x 10-17

Time

X
 to

rq
ue

0 20 40 60 80 100 120
-5

0

5
x 10-17

Time

Y
 to

rq
ue

0 20 40 60 80 100 120
-5

0

5
x 10-17

Time

Z
to

rq
ue

 192

0
5

10
15

0
5

10
15

0

2

4

6

8

10

12

14

16

Y

Path for CS 4, OS 2

X

Z

INITn
Defaultn

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2
Velocities and Rotations for CS 4, OS 2

Time

X
do

t

INITn
Defaultn

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

Time

Y
do

t

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

Time

Zd
ot

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
x 10-15

Time

R
ol

l R
at

e

0 20 40 60 80 100 120 140 160 180 200
-2

0

2
x 10-16

Time

P
itc

h
R

at
e

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
x 10-15

Time

Y
aw

 R
at

e

0 20 40 60 80 100 120 140 160 180 200
-0.05

0

0.05
Force and Torque for CS 4, OS 2

Time

X
-fo

rc
e

INITn
Defaultn

0 20 40 60 80 100 120 140 160 180 200
-0.05

0

0.05

Time

Y
-fo

rc
e

0 20 40 60 80 100 120 140 160 180 200
-0.05

0

0.05

Time

Z-
fo

rc
e

0 20 40 60 80 100 120 140 160 180 200
-5

0

5
x 10-17

Time

X
 to

rq
ue

0 20 40 60 80 100 120 140 160 180 200
-2

0

2
x 10-17

Time

Y
 to

rq
ue

0 20 40 60 80 100 120 140 160 180 200
-5

0

5
x 10-17

Time

Z
to

rq
ue

 193

0
10

0 5 10 15
0

5

10

15

20

25

30

X
Y

Path for CS 4, OS 3

Z

INITn
Defaultn

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0
Velocities and Rotations for CS 4, OS 3

Time

X
do

t

INITn
Defaultn

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0

Time

Y
do

t

0 20 40 60 80 100 120 140 160 180 200
-0.4

-0.2

0

Time

Zd
ot

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
x 10-15

Time

R
ol

l R
at

e

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
x 10-15

Time

P
itc

h
R

at
e

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
x 10-15

Time

Y
aw

 R
at

e

0 20 40 60 80 100 120 140 160 180 200
-0.05

0

0.05
Force and Torque for CS 4, OS 3

Time

X
-fo

rc
e

INITn
Defaultn

0 20 40 60 80 100 120 140 160 180 200
-0.05

0

0.05

Time

Y
-fo

rc
e

0 20 40 60 80 100 120 140 160 180 200
-0.1

0

0.1

Time

Z-
fo

rc
e

0 20 40 60 80 100 120 140 160 180 200
-5

0

5
x 10-17

Time

X
 to

rq
ue

0 20 40 60 80 100 120 140 160 180 200
-5

0

5
x 10-17

Time

Y
 to

rq
ue

0 20 40 60 80 100 120 140 160 180 200
-5

0

5
x 10-17

Time

Z
to

rq
ue

 194

Constraint Set 4 consisted of two hard numeric constraints, H0 = {max-acc ≤ 1.3

m/s2, max-speed ≤ 4.0 m/s}, and two soft numeric constraints S0 = {2.7 N ≤ force ≤

5.4 N, 1.8 m/s ≤ avg-speed ≤ 4.0}. The acceleration and force are low for this system;

the avg-speed is medium-low or low; and the max-speed must be less than medium-high.

The constraints do not obviously conflict, but they will interact. We note that this CS

failed to converge for OS 4.

INIT selected weights that typically made the max-speed H0 but not the max-acc.

The default weights failed similarly. In all cases, this set up a cyclic solution cycle.

Weights were lowered to meet max-acc; typically on Iteration 2 both H0 were met. (For

INIT, OS 2 required five iterations to meet both; for default, OS 3 required two.) In all

cases where both H0 were met, both S0 failed low.

Despite the fact that most of the time weights were on the order of 0.01, the force

profiles still have the constant thrust characteristic of time-efficient trajectories. The

levels of thrust are greatly decreased from the prior constraint sets, and the time for

completion greatly extended. The velocity profiles match well, and the torques are zero

to our level of precision.

 195

2 4 6 8 10246810

0

2

4

6

8

10

X

Path for CS 5, OS 1

Y

Z

INITn
Defaultn

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4
Velocities and Rotations for CS 5, OS 1

Time

X
do

t

INITn
Defaultn

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

Time

Y
do

t

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

Time

Zd
ot

0 10 20 30 40 50 60 70 80 90 100
-1

0

1
x 10-16

Time

R
ol

l R
at

e

0 10 20 30 40 50 60 70 80 90 100
-2

0

2
x 10-16

Time

P
itc

h
R

at
e

0 10 20 30 40 50 60 70 80 90 100
-2

0

2
x 10-16

Time

Y
aw

 R
at

e

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2
Force and Torque for CS 5, OS 1

Time

X
-fo

rc
e

INITn
Defaultn

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

Time

Y
-fo

rc
e

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

Time

Z-
fo

rc
e

0 10 20 30 40 50 60 70 80 90 100
-2

0

2
x 10-17

Time

X
 to

rq
ue

0 10 20 30 40 50 60 70 80 90 100
-5

0

5
x 10-17

Time

Y
 to

rq
ue

0 10 20 30 40 50 60 70 80 90 100
-5

0

5
x 10-17

Time

Z
to

rq
ue

 196

0
5

10
15

0
5

10
15

2

4

6

8

10

12

14

16

Y

Path for CS 5, OS 2

X

Z

INITn
Defaultn

0 20 40 60 80 100 120 140
-0.5

0

0.5
Velocities and Rotations for CS 5, OS 2

Time

X
do

t

INITn
Defaultn

0 20 40 60 80 100 120 140
-0.2

0

0.2

Time

Y
do

t

0 20 40 60 80 100 120 140
-0.5

0

0.5

Time

Zd
ot

0 20 40 60 80 100 120 140
-2

0

2
x 10-16

Time

R
ol

l R
at

e

0 20 40 60 80 100 120 140
-2

0

2
x 10-16

Time

P
itc

h
R

at
e

0 20 40 60 80 100 120 140
-1

0

1
x 10-15

Time

Y
aw

 R
at

e

0 20 40 60 80 100 120 140
-0.1

0

0.1
Force and Torque for CS 5, OS 2

Time

X
-fo

rc
e

INITn
Defaultn

0 20 40 60 80 100 120 140
-0.1

0

0.1

Time

Y
-fo

rc
e

0 20 40 60 80 100 120 140
-0.1

0

0.1

Time

Z-
fo

rc
e

0 20 40 60 80 100 120 140
-2

0

2
x 10-17

Time

X
 to

rq
ue

0 20 40 60 80 100 120 140
-2

0

2
x 10-17

Time

Y
 to

rq
ue

0 20 40 60 80 100 120 140
-5

0

5
x 10-17

Time

Z
to

rq
ue

 197

0
10

0 5 10 15
0

5

10

15

20

25

30

X
Y

Path for CS 5, OS 3

Z

INITn
Defaultn

0 50 100 150 200 250 300 350
-0.2

0

0.2
Velocities and Rotations for CS 5, OS 3

Time

X
do

t

INITn
Defaultn

0 50 100 150 200 250 300 350
-0.2

0

0.2

Time

Y
do

t

0 50 100 150 200 250 300 350
-0.2

0

0.2

Time

Zd
ot

0 50 100 150 200 250 300 350
-2

0

2
x 10-15

Time

R
ol

l R
at

e

0 50 100 150 200 250 300 350
-2

0

2
x 10-15

Time

P
itc

h
R

at
e

0 50 100 150 200 250 300 350
-2

0

2
x 10-15

Time

Y
aw

 R
at

e

0 50 100 150 200 250 300 350
-0.05

0

0.05
Force and Torque for CS 5, OS 3

Time

X
-fo

rc
e

INITn
Defaultn

0 50 100 150 200 250 300 350
-0.02

0

0.02

Time

Y
-fo

rc
e

0 50 100 150 200 250 300 350
-0.05

0

0.05

Time

Z-
fo

rc
e

0 50 100 150 200 250 300 350
-5

0

5
x 10-17

Time

X
 to

rq
ue

0 50 100 150 200 250 300 350
-5

0

5
x 10-17

Time

Y
 to

rq
ue

0 50 100 150 200 250 300 350
-5

0

5
x 10-17

Time

Z
to

rq
ue

 198

20
25

20

25

30

14

16

18

20

22

24

26

28

30

Y

Path for CS 5, OS 4

X

Z

INITn
Defaultn

0 20 40 60 80 100 120 140
0

0.05

0.1
Velocities and Rotations for CS 5, OS 4

Time

X
do

t

INITn
Defaultn

0 20 40 60 80 100 120 140
-2

0

2
x 10-6

Time

Y
do

t

0 20 40 60 80 100 120 140
0

0.2

0.4

Time

Zd
ot

0 20 40 60 80 100 120 140
-2

0

2
x 10-16

Time

R
ol

l R
at

e

0 20 40 60 80 100 120 140
-2

0

2
x 10-16

Time

P
itc

h
R

at
e

0 20 40 60 80 100 120 140
-5

0

5
x 10-17

Time

Y
aw

 R
at

e

0 20 40 60 80 100 120 140
-0.05

0

0.05
Force and Torque for CS 5, OS 4

Time

X
-fo

rc
e

INITn
Defaultn

0 20 40 60 80 100 120 140
-2

0

2
x 10-6

Time

Y
-fo

rc
e

0 20 40 60 80 100 120 140
-0.1

0

0.1

Time

Z-
fo

rc
e

0 20 40 60 80 100 120 140
-5

0

5
x 10-17

Time

X
 to

rq
ue

0 20 40 60 80 100 120 140
-2

0

2
x 10-17

Time

Y
 to

rq
ue

0 20 40 60 80 100 120 140
-5

0

5
x 10-18

Time

Z
to

rq
ue

 199

Constraint Set 5 was identical to CS 4, with “moderately safely” added to S0.

“Safely” includes a “medium high min-sep” in its definition, which is defuzzified to a

min-sep between 1.0 and 2.0 m. Like CS 4, the solution cycled back and forth between

high and low values for the time weight; in this case, LIM was overall higher, leading to

the arcs seen in OS 2 and OS 3. This does not affect the path in OS 1 at all, as it is

already sufficiently far away from the obstacle; the path and trajectory are almost

identical to those found for CS 4.

It seems strange at first that CS 5, with more constraints, would converge for OS

4 while CS 4 would not. We wondered if the greater min-sep could be the cause – if

initialized to a higher value, might the path have stayed farther away from solutions near

constraint boundaries, which are computationally difficult for BVP4C2? But the path in

CS 5 shows no significant deflection as it passes through the formation of obstacles. And

if this were the case, then the default case would still have failed to converge, as it began

with the same LIM in all runs. We can only assume some numeric fluke akin to a

symmetry in the problem space, where the solver was faced with two identical-cost

variations and cannot select between them.

 200

0 2 4 6 8 100510

0

2

4

6

8

10

X

Path for CS 6, OS 1

Y

Z

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18
-1

0

1
Velocities and Rotations for CS 6, OS 1

Time

X
do

t

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18
-1

0

1

Time

Y
do

t

0 2 4 6 8 10 12 14 16 18
-1

0

1

Time

Zd
ot

0 2 4 6 8 10 12 14 16 18
-0.5

0

0.5

Time

R
ol

l R
at

e

0 2 4 6 8 10 12 14 16 18
-0.5

0

0.5

Time

P
itc

h
R

at
e

0 2 4 6 8 10 12 14 16 18
-0.5

0

0.5

Time

Y
aw

 R
at

e

0 2 4 6 8 10 12 14 16 18
-1

0

1
Force and Torque for CS 6, OS 1

Time

X
-fo

rc
e

INITn
Defaultn

0 2 4 6 8 10 12 14 16 18
-1

0

1

Time

Y
-fo

rc
e

0 2 4 6 8 10 12 14 16 18
-1

0

1

Time

Z-
fo

rc
e

0 2 4 6 8 10 12 14 16 18
-0.2

0

0.2

Time

X
 to

rq
ue

0 2 4 6 8 10 12 14 16 18
-0.2

0

0.2

Time

Y
 to

rq
ue

0 2 4 6 8 10 12 14 16 18
-0.2

0

0.2

Time

Z
to

rq
ue

 201

0
5

10
15

0
5

10
15

0

2

4

6

8

10

12

14

16

Y

Path for CS 6, OS 2

X

Z

INITn
Defaultn

0 5 10 15 20 25 30
-1

0

1
Velocities and Rotations for CS 6, OS 2

Time

X
do

t

INITn
Defaultn

0 5 10 15 20 25 30
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30
-1

0

1

Time

Zd
ot

0 5 10 15 20 25 30
-0.2

0

0.2

Time

R
ol

l R
at

e

0 5 10 15 20 25 30
-0.2

0

0.2

Time

P
itc

h
R

at
e

0 5 10 15 20 25 30
-0.2

0

0.2

Time

Y
aw

 R
at

e

0 5 10 15 20 25 30
-1

0

1
Force and Torque for CS 6, OS 2

Time

X
-fo

rc
e

INITn
Defaultn

0 5 10 15 20 25 30
-1

0

1

Time

Y
-fo

rc
e

0 5 10 15 20 25 30
-1

0

1

Time

Z-
fo

rc
e

0 5 10 15 20 25 30
-0.05

0

0.05

Time

X
 to

rq
ue

0 5 10 15 20 25 30
-0.05

0

0.05

Time

Y
 to

rq
ue

0 5 10 15 20 25 30
-0.05

0

0.05

Time

Z
to

rq
ue

 202

0
10

0 5 10 15
0

5

10

15

20

25

30

X
Y

Path for CS 6, OS 3

Z

INITn
Defaultn

0 5 10 15 20 25 30 35
-1

0

1
Velocities and Rotations for CS 6, OS 3

Time

X
do

t

INITn
Defaultn

0 5 10 15 20 25 30 35
-1

0

1

Time

Y
do

t

0 5 10 15 20 25 30 35
-2

0

2

Time

Zd
ot

0 5 10 15 20 25 30 35
-0.2

0

0.2

Time

R
ol

l R
at

e

0 5 10 15 20 25 30 35
-0.5

0

0.5

Time

P
itc

h
R

at
e

0 5 10 15 20 25 30 35
-0.5

0

0.5

Time

Y
aw

 R
at

e

0 5 10 15 20 25 30 35
-1

0

1
Force and Torque for CS 6, OS 3

Time

X
-fo

rc
e

INITn
Defaultn

0 5 10 15 20 25 30 35
-1

0

1

Time

Y
-fo

rc
e

0 5 10 15 20 25 30 35
-1

0

1

Time

Z-
fo

rc
e

0 5 10 15 20 25 30 35
-0.1

0

0.1

Time

X
 to

rq
ue

0 5 10 15 20 25 30 35
-0.1

0

0.1

Time

Y
 to

rq
ue

0 5 10 15 20 25 30 35
-0.1

0

0.1

Time

Z
to

rq
ue

 203

20
25

20

25

30

12

14

16

18

20

22

24

26

28

30

Y

Path for CS 6, OS 4

X

Z

INITn
Defaultn

0 2 4 6 8 10 12 14 16
-1

0

1
Velocities and Rotations for CS 6, OS 4

Time

X
do

t

INITn
Defaultn

0 2 4 6 8 10 12 14 16
-0.05

0

0.05

Time

Y
do

t

0 2 4 6 8 10 12 14 16
-5

0

5

Time

Zd
ot

0 2 4 6 8 10 12 14 16
-0.5

0

0.5

Time

R
ol

l R
at

e

0 2 4 6 8 10 12 14 16
-0.5

0

0.5

Time

P
itc

h
R

at
e

0 2 4 6 8 10 12 14 16
-0.5

0

0.5

Time

Y
aw

 R
at

e

0 2 4 6 8 10 12 14 16
-1

0

1
Force and Torque for CS 6, OS 4

Time

X
-fo

rc
e

INITn
Defaultn

0 2 4 6 8 10 12 14 16
-1

0

1

Time

Y
-fo

rc
e

0 2 4 6 8 10 12 14 16
-1

0

1

Time

Z-
fo

rc
e

0 2 4 6 8 10 12 14 16
-0.2

0

0.2

Time

X
 to

rq
ue

0 2 4 6 8 10 12 14 16
-0.5

0

0.5

Time

Y
 to

rq
ue

0 2 4 6 8 10 12 14 16
-0.2

0

0.2

Time

Z
to

rq
ue

 204

Constraint Set 6 was to be “very energy-saving,” a term we defined to mean

having low force and low torque. At first, we ran these without commanding orientation

changes; predictably, little to no torque was required. We re-ran the tests again, with a

commanded orientation change, and with a bug in the torque WADJ rule fixed to get the

results shown above.

The forces are not so low as in CS 4 and 5 because the constraint is directly on

force rather than on max-acc; a low max-acc apparently corresponds to a very low force,

these trajectories aren’t as fuel-efficient as those. They are considerably more so than CS

1 and 3, which were “quick,” but are comparable to CS 2, “exceedingly efficiently,”

which required low force as well. For the initialized cases, OS 4 needed only one

iteration; OS 1 and 3 required only two. OS 2 had problems here and in the default case

using enough torque to meet the low end of the “low torque” requirement, and so

required six iterations, quitting when the time limit was reached (five iterations after the

first). In the default cases, OS 1 and 4 required three and six iterations, respectively,

achieving total success. Their weight adjustments were monotonic, steadily increasing

torque weight and decreasing time weight. As seen in the Chapter 5 examples, most of

the benefit was derived in the first correction. OS 2 caused the same problem as in the

initialized case; the default starting weight for OS 3 put it in an unfortunate position, and

it got caught in a iterative cycle that timed out after five runs.

 205

0 2 4 6 8 100510

0

2

4

6

8

10

X

Path for CS 7, OS 1

Y

Z

INITn
Defaultn

0 2 4 6 8 10 12
0

1

2
Velocities and Rotations for CS 7, OS 1

Time

X
do

t

INITn
Defaultn

0 2 4 6 8 10 12
0

1

2

Time

Y
do

t

0 2 4 6 8 10 12
-2

0

2

Time

Zd
ot

0 2 4 6 8 10 12
-0.5

0

0.5

Time

R
ol

l R
at

e

0 2 4 6 8 10 12
-0.5

0

0.5

Time

P
itc

h
R

at
e

0 2 4 6 8 10 12
-0.5

0

0.5

Time

Y
aw

 R
at

e

0 2 4 6 8 10 12
-1

0

1
Force and Torque for CS 7, OS 1

Time

X
-fo

rc
e

INITn
Defaultn

0 2 4 6 8 10 12
-1

0

1

Time

Y
-fo

rc
e

0 2 4 6 8 10 12
-1

0

1

Time

Z-
fo

rc
e

0 2 4 6 8 10 12
-0.2

0

0.2

Time

X
 to

rq
ue

0 2 4 6 8 10 12
-0.2

0

0.2

Time

Y
 to

rq
ue

0 2 4 6 8 10 12
-0.2

0

0.2

Time

Z
to

rq
ue

 206

0
5

10
15

0
5

10
15

0

2

4

6

8

10

12

14

16

Y

Path for CS 7, OS 2

X

Z

INITn
Defaultn

0 2 4 6 8 10 12
-2

0

2
Velocities and Rotations for CS 7, OS 2

Time

X
do

t

INITn
Defaultn

0 2 4 6 8 10 12
-2

0

2

Time

Y
do

t

0 2 4 6 8 10 12
-2

0

2

Time

Zd
ot

0 2 4 6 8 10 12
-0.5

0

0.5

Time

R
ol

l R
at

e

0 2 4 6 8 10 12
-0.5

0

0.5

Time

P
itc

h
R

at
e

0 2 4 6 8 10 12
-0.5

0

0.5

Time

Y
aw

 R
at

e

0 2 4 6 8 10 12
-1

0

1
Force and Torque for CS 7, OS 2

Time

X
-fo

rc
e

INITn
Defaultn

0 2 4 6 8 10 12
-1

0

1

Time

Y
-fo

rc
e

0 2 4 6 8 10 12
-1

0

1

Time

Z-
fo

rc
e

0 2 4 6 8 10 12
-0.5

0

0.5

Time

X
 to

rq
ue

0 2 4 6 8 10 12
-0.5

0

0.5

Time

Y
 to

rq
ue

0 2 4 6 8 10 12
-0.5

0

0.5

Time

Z
to

rq
ue

 207

0
10

0 5 10 15
0

5

10

15

20

25

30

X
Y

Path for CS 7, OS 3

Z

INITn
Defaultn

0 2 4 6 8 10 12 14
-2

0

2
Velocities and Rotations for CS 7, OS 3

Time

X
do

t

INITn
Defaultn

0 2 4 6 8 10 12 14
-2

0

2

Time

Y
do

t

0 2 4 6 8 10 12 14
-5

0

5

Time

Zd
ot

0 2 4 6 8 10 12 14
-0.5

0

0.5

Time

R
ol

l R
at

e

0 2 4 6 8 10 12 14
-0.5

0

0.5

Time

P
itc

h
R

at
e

0 2 4 6 8 10 12 14
-0.5

0

0.5

Time

Y
aw

 R
at

e

0 2 4 6 8 10 12 14
-1

0

1
Force and Torque for CS 7, OS 3

Time

X
-fo

rc
e

INITn
Defaultn

0 2 4 6 8 10 12 14
-1

0

1

Time

Y
-fo

rc
e

0 2 4 6 8 10 12 14
-1

0

1

Time

Z-
fo

rc
e

0 2 4 6 8 10 12 14
-0.2

0

0.2

Time

X
 to

rq
ue

0 2 4 6 8 10 12 14
-0.2

0

0.2

Time

Y
 to

rq
ue

0 2 4 6 8 10 12 14
-0.1

0

0.1

Time

Z
to

rq
ue

 208

20
25

20

25

30

12

14

16

18

20

22

24

26

28

30

Y

Path for CS 7, OS 4

X

Z

INITn
Defaultn

0 2 4 6 8 10 12
-1

0

1
Velocities and Rotations for CS 7, OS 4

Time

X
do

t

INITn
Defaultn

0 2 4 6 8 10 12
-0.05

0

0.05

Time

Y
do

t

0 2 4 6 8 10 12
0

2

4

Time

Zd
ot

0 2 4 6 8 10 12
0

0.2

0.4

Time

R
ol

l R
at

e

0 2 4 6 8 10 12
-0.5

0

0.5

Time

P
itc

h
R

at
e

0 2 4 6 8 10 12
-0.5

0

0.5

Time

Y
aw

 R
at

e

0 2 4 6 8 10 12
-1

0

1
Force and Torque for CS 7, OS 4

Time

X
-fo

rc
e

INITn
Defaultn

0 2 4 6 8 10 12
-1

0

1

Time

Y
-fo

rc
e

0 2 4 6 8 10 12
-1

0

1

Time

Z-
fo

rc
e

0 2 4 6 8 10 12
-0.2

0

0.2

Time

X
 to

rq
ue

0 2 4 6 8 10 12
-0.2

0

0.2

Time

Y
 to

rq
ue

0 2 4 6 8 10 12
-0.2

0

0.2

Time

Z
to

rq
ue

 209

Constraint Sets 7 and 8 were soft constraints on torque only, at “low” and

“medium,” respectively. The maneuvers required little enough torque that CS 8 had

difficulties meeting those requirements at all; the returned trajectories were so similar to

the CS 7 solutions that they are not included separately here.

CS 7 was very successful; all the cases made the constraint. Either the first

solution worked, or it used too much torque; the torque weight was smoothly adjusted up

until it the feature value dropped sufficiently to make the limit. In CS 8, the first

solutions were all too low, and the weight was adjusted down, typically to a point where

it was below our granularity for detecting weight loops; when it was decreased again,

both attempts counted as zero and were detected as a loop. OS 1 and 2 failed for CS 8,

while OS 3 and 4 eventually succeeded.

 210

Appendix C: WADJ Heuristic Graphs and Fuzzy Rule

Definitions

2DOF WADJ Heuristics

In this early WADJ graph; the energy feature is called U2, after its representation

as a 2-norm in the cost functional. Data is for an empty field (U2-0) and for 1, 2, and 3

obstacles (U2-1, U2-2, U2-3). W1/W2 = {2-3, 2-2, …, 22, 23}.

Energy Use for Different Numbers of Obstacles
(5x5 field)

U2= 20.185(W1/W2)-0.5129

R2 = 0.9996

0

50

100

150

200

250

0 2 4 6 8 10

W1/W2

U2

U2-3
U2-2
U2-1
U2-0
Power (U2-0)

This shows how the energy heuristic exponent changes with field size. 2m, 10m, and

20m square fields were used (noted in the legend as U2-1, U2-5, and U2-10, because the

coordinates in each went from (e.g.) (-5, -5) to (5, 5).

 211

Energy Use for Various Field Size
(no obstacles)

y = 39.994x-0.5001

R2 = 1

y = 20.185x-0.5129

R2 = 0.9996

y = 4.2799x-0.5672

R2 = 0.9986

0

50

100

150

200

250

300

0 2 4 6 8 10

W1/W2

U
2

U2-10
U2-5
U2-1
Power (U2-10)
Power (U2-5)
Power (U2-1)

This shows the max-speed heuristic for 2m, 20m, and 200m square fields. Again the

indices (max-speed-1, etc.) refer to the corner coordinates used in the runs.

max-speed for various field sizes

max-speed 10, 100 = 1.4101(W1/W2)-0.495

R2 = 0.9999
max-speed1 = 1.0266(W1/W2)-0.3212

R2 = 0.9973

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 1 2 3 4 5

W1/W2

m
ax

-s
pe

ed

max-speed-1

max-speed-10

max-speed-100

Power (max-
speed-10)
Power (max-
speed-1)

 212

This graph shows the avg-speed heuristic degrading in the presence of obstacles. This is

Figure 10 in the text.

avg-speed for different numbers of obstacles

avg-speed 10 = 1.12(W 1 /W 2)-0.38

R2 = 0.9914

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

W 1 /W 2

A
ve

ra
ge

 S
pe

ed

0 obstacles
1 obstacle
3 obstacles
Power (0 obstacles)

This graph shows the avg-speed heuristic for different field sizes. This is Figure 11 in the

text, and the field size indicators were changed to reflect the actual field size rather than

the local coordinates. So this shows corner-to-corner motion through 2m, 10m, 20m, and

200m square empty fields.

 213

avg-speed for different field sizes

avg-speed 200 = 1.32(W 1/W 2)-0.50

avg-speed 20 = 1.25(W 1/W 2)-0.44

avg-speed 10 = 1.12(W 1/W 2)-0.38

avg-speed 2 = 0.72(W 1/W 2)-0.30

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

W1/W2

A
ve

ra
ge

 s
pe

ed

Field 200
Field 20
Field 2
Field 10
Power (Field 200)
Power (Field 20)
Power (Field 10)
Power (Field 2)

Min-sep varying with LIM for min-sep = {1, 3, 5, 7} and a single obstacle in a 10m

square field.

min-sep vs. LIM

min_sep = 0.8113(LIM) + 0.1636
R2 = 0.9909

0

1

2

3

4

5

6

7

0 2 4 6 8
LIM

m
in

-s
ep

MinSep
MinSep

 214

2DOF Fuzzy Rule Definitions

Fuzzy rules were generated from WADJ data in the following fashion:

For time-based features (e.g., everything besides min-sep): We took the W1/W2 weight

vector {2-3, 2-2, …, 22, 23} to correlate to the midpoints of the fuzzy levels {very low,

low, medium low, medium, medium high, high, very high}. The fuzzy triangles would

be bounded in most cases by the adjacent weight. Thus W1/W2 = 1 was the “ideal”

medium, but “medium” could range from ½ t o 2. Then the feature values in the WADJ

data that resulted from these weights were taken as the values that defined the feature

fuzzy triangles.

For min-sep: We had defaulted to a LIM of 3 in our 2DOF work and so that

became “medium.” The rest of the LIM levels were defined fairly linearly from there.

Since min-sep and LIM are related linearly, but the slope of the relationship is unknown

at initialization, we correlated them directly so that “high LIM” will result in “high min-

sep.”

W1/W2 Ratio
Fuzzy Level Low End Center High End
very low 0 0.15 0.25
low 0.125 0.21 0.5
medium low 0.25 0.43 1
medium 0.5 1 2
medium high 1 2.33 4
high 2 4.67 8
very high 4 7 100

The center values for W1/W2 should have been {2-3, 2-2, …, 22, 23}. The centroid

computation required that they be expressed separately, as whole numbers, and divided

 215

only at the end of the computation. Rather than express them exactly as {1/8, 1/4, …,

4/1, 8/1}, I approximated them with ratios {3/21, 3/14, 3/7, 3/3, 7/3, 14/3, 21/3}. While I

believe at the time (late 2003 – early 2004) I had good reasons for choosing these

numbers, I today have no idea why I did so. Given the overall fuzziness of the fuzzy

rules, the lack of precision did not hurt the algorithms, but this should be fixed in any

future version of the software.

LIM
Fuzzy Level Low End Center High End
very low 0 0.3 0.5
low 0.3 0.5 1
medium low 0.5 1 2
medium 1 2 3
medium high 2 3 4
high 3 4 5
very high 4 5 10

energy (J)
Fuzzy Level Low End Center High End
very low 0 7 10
low 7 10 15
medium low 10 15 20
medium 15 20 40
medium high 20 40 60
high 40 60 100
very high 60 100 200

max-speed (m/s)
Fuzzy Level Low End Center High End
very low 0 0.5 1
low 0.5 1 1.5
medium low 1 1.5 2
medium 1.5 2 3
medium high 2 4 6
high 4 6 8
very high 7 9 20

 216

avg-speed (m/s)
Fuzzy Level Low End Center High End
very low 0 0.333 0.667
low 0.333 0.667 1
medium low 0.667 1 1.333
medium 1 1.333 2
medium high 1.333 2 4
high 2.667 4.667 5.333
very high 4.667 6 20

max-acc (m/s2)
Fuzzy Level Low End Center High End
very low 0 0.333 0.667
low 0.333 0.667 1
medium low 0.667 1 1.333
medium 1 1.333 2
medium high 1.333 2 4
high 2.667 4.667 5.333
very high 4.667 6 20

min-sep (m)
Fuzzy Level Low End Center High End
very low 0 0.3 0.5
low 0.3 0.5 1
medium low 0.5 1 2
medium 1 2 3
medium high 2 3 4
high 3 4 5
very high 4 5 10

 217

6DOF WADJ Heuristics

Force

y = 7.439x0.4914

R2 = 0.999

0

5

10

15

20

25

0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

W3/W1

Fo
rc

e
(N

)

Force
Power (Force)

 218

MaxSpeed

y = 3.7165x0.4915

R2 = 0.999

0

2

4

6

8

10

12

0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

W3/W1

M
ax

S
pe

ed
 (m

/s
)

MaxSpeed
Power (MaxSpeed)

AvgSpeed

y = 2.7756x0.5304

R2 = 0.9974

0

1

2

3

4

5

6

7

8

9

10

0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

W3/W1

Av
gS

pe
ed

 (m
/s

)

AvgSpeed
Power (AvgSpeed)

 219

MaxAcc

y = 3.2951x0.5738

R2 = 0.9779

0

2

4

6

8

10

12

0.00E+00 2.00E+00 4.00E+00 6.00E+00 8.00E+00 1.00E+01

W3/W1

M
ax

Ac
c

(m
/s

2)

MaxAcc
Power (MaxAcc)

Torque

y = 0.8132x - 0.1336
R2 = 0.9663

y = 0.5358x - 0.001
R2 = 0.9979

y = 0.3786x - 0.0065
R2 = 0.9968

y = 0.3155x - 0.0439
R2 = 0.9987

y = 0.2388x - 0.0241
R2 = 0.9993

y = 0.1838x - 0.0099
R2 = 0.9997

y = 0.1326x - 0.0012
R2 = 0.9994-1

0

1

2

3

4

5

6

7

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000

W3/W1

To
rq

ue
 (N

-m
)

W2/W1=.125
W2/W1=.25
W2/W1=.5
W2/W1=1
W2/W1=2
W2/W1=4
W2/W1=8
Linear (W2/W1=.125)
Linear (W2/W1=.25)
Linear (W2/W1=.5)
Linear (W2/W1=1)
Linear (W2/W1=2)
Linear (W2/W1=4)
Linear (W2/W1=8)

 220

Slope of Torque Curve

y = 0.3137x-0.4197

R2 = 0.9921

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

W2/W1

Sl
op

e

Slope

Slope

Power (Slope)
Power (Slope)

min-sep vs. LIM

min-sep = 0.7429(LIM) - 0.4622
R2 = 0.9996

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3 3.5

LIM

m
in

-s
ep MinSep

Linear (MinSep)

 221

6DOF Fuzzy Rule Definitions

W2/W1 Ratio
Fuzzy Level Low End Center High End
very low 0 0.125 0.25
low 0.125 0.25 0.5
medium low 0.25 0.5 1
medium 0.5 1 2
medium high 1 2 4
high 2 4 8
very high 4 8 100

W3/W1 Ratio
Fuzzy Level Low End Center High End
very low 0 0.125 0.25
low 0.125 0.25 0.5
medium low 0.25 0.5 1
medium 0.5 1 2
medium high 1 2 4
high 2 4 8
very high 4 8 100

LIM
Fuzzy Level Low End Center High End
very low 0 0.3 0.5
low 0.3 0.5 1
medium low 0.5 1 2
medium 1 2 3
medium high 2 3 4
high 3 4 5
very high 4 5 10

force (N)
Fuzzy Level Low End Center High End
very low 0 2.7 3.7
low 2.7 3.7 5.4
medium low 3.7 5.4 7.4
medium 5.4 7.4 10.1
medium high 7.4 10.1 14.8
high 10.1 14.8 21.1
very high 14.8 21.1 60

 222

torque (N-m)
Fuzzy Level Low End Center High End
very low 0 0.05 0.1
low 0.05 0.1 0.2
medium low 0.1 0.2 0.6
medium 0.2 0.6 1.5
medium high 0.6 1.5 4
high 1.5 4 6
very high 4 6 20

max-speed (m/s)
Fuzzy Level Low End Center High End
very low 0 1.4 1.9
low 1.4 1.9 2.7
medium low 1.9 2.7 3.7
medium 2.7 3.7 5
medium high 3.7 5 7.4
high 5 7.4 10.6
very high 7.4 10.6 30

avg-speed (m/s)
Fuzzy Level Low End Center High End
very low 0 0.9 1.4
low 0.9 1.4 1.8
medium low 1.4 1.8 2.6
medium 1.8 2.6 4
medium high 2.6 4 5.8
high 4 5.8 8.6
very high 5.8 8.6 20

max-acc (m/s2)
Fuzzy Level Low End Center High End
very low 0 1 1.3
low 1 1.3 2.5
medium low 1.3 2.5 2.8
medium 2.5 2.8 4.7
medium high 2.8 4.7 8.7
high 4.7 8.7 10.3
very high 8.7 10.3 30

 223

min-sep (m)
Fuzzy Level Low End Center High End
very low 0 0.1 0.25
low 0.1 0.25 0.5
medium low 0.25 0.5 1
medium 0.5 1 1.5
medium high 1 1.5 2
high 1.5 2 2.5
very high 2 2.5 5

 224

References

[1] Johan Andersson. “A survey of multiobjective optimization in engineering design.”

Technical report LiTH-IKP-R-1097, Department of Mechanical Engineering,

Linköping University, Linköping, Sweden, 2000.

[2] Bart Kosko and Satoru Isaka. “Fuzzy logic.” Scientific American 269, pages 76-

81, July 1993.

[3] Vilém Novák. “Fuzzy logic: applications to natural language.” In Stuart C.

Shapiro (editor), Encyclopedia of Artificial Intelligence, Second Edition,, pages

515-521, John Wiley & Sons, New York, 1992.

[4] Dennis Perzanowski, Alan C. Schultz and William Adams. “Integrating natural

language and gestures in a robotics domain.” In Proceedings of the IEEE

International Symposium on Intelligent Control, pages 247-252. National Institute

of Standards and Technology, Gaithersburg, MD, 1998.

[5] Barbara Tversky and Paul U. Lee. “How space structures language.” In C. Freksa,

C. Habel, and K. F. Wender (editors). Spatial cognition. An Interdisciplinary

Approach to Representing and Processing Spatial Knowledge. pages 157-175,

Springer-Verlag, Berlin, 1998.

[6] Alicia Abella and John R. Kender. “Qualitatively describing objects using spatial

prepositions.” In Proceedings of IEEE Workshop on Qualitative Vision, pages 33-

38, New York, 1993.

[7] Patrick Oliver, Toshiyuki Maeda and Jun-ichi Tsujii. “Automatic depiction of

spatial descriptions.” Spatial Reasoning 2, pages 1405-1410, 1994.

 225

[8] Amitabha Mukerjee. “Neat vs. scruffy: a survey of computational models for

spatial expressions.” In Patrick Olivier and Klaus-Peter Gapp (editors),

Computational Representation and Processing of Spatial Expressions, Kluwer

Academic Press, Boston, MA, 1998.

[9] Oussama Khatib. “Real-time obstacle avoidance for manipulators and mobile

robots.” The International Journal of Robotics Research 5(1), pages 90-98, 1986.

[10] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,

Boston, MA, 1991.

[11] Ronald C. Arkin. Behavior-Based Robotics. The MIT Press, Cambridge, MA,

1998.

[12] Juan C. Velásquez. “An emotion-based approach to robotics.” In Proceedings of

the 1999 IEEE/RSJ International Conference on Intelligent Robotics and Systems,

pages 235 – 240, Kyongju, Korea, 1999.

[13] Ashwin Ram, Ronald Arkin, Gary Boone and Michael Pearce. “Using genetic

algorithms to learn reactive control parameters for autonomous robotic navigation.”

Adaptive Behavior 2(3), pages 277 – 304, 1994.

[14] Maxim Likhachev, Michael Kaess, and Ronald C. Arkin. “Learning behavioral

parameterization using spatio-temporal case-based reasoning.” in Proceedings of

the 2002 IEEE International Conference on Robotics and Automation (ICRA 2002),

pages 1282 – 1289, Washington, DC, 2002.

 226

[15] Juan C. Santamaría and Ashwin Ram. “Learning of parameter-adaptive reactive

controllers for robotic navigation.” In Proceedings of the World Multiconference

on Systems, Cybernetics, and Informatics (CSI ’97), Caracas, Venezuela, 1997.

[16] Eric Aaron, Harold Sun, Franjo Ivančić, and Dimitris Metaxas. “A hybrid

dynamical systems approach to intelligent low-level navigation.” In Proceedings of

Computer Animation 2002, 154-163, San Antonio, TX, 2002.

[17] Siome Goldstein, Menelaos Karavelas, Dimitris Metaxas, Leonidas Guibas, Eric

Aaron, and Ambarish Goswami. “Scalable nonlinear dynamical systems for agent

steering and crowd simulation.” Computers and Graphics 25(6), 983-998, 2001.

[18] Daniel Shapiro and Pat Langley. “Separating skills from preference: using learning

to program by reward.” In Proceedings of the Nineteenth International Conference

on Machine Learning, pages 570-577, Sydney, Australia, 2002.

[19] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments using

velocity obstacles.” International Journal of Robotics Research, 17(7), pages 760-

772, 1998.

[20] Zvi Shiller, F. Large and S. Sekhavat. “Motion planning in dynamic environments:

obstacles moving along arbitrary trajectories.” In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA 2001), Seoul, Korea,

2001.

[21] Jianwei Zang, Jörg Raczkowsky and Andreas Herp. “Emulation of spline curves

and its applications in robot motion control.” In Proceedings of the IEEE

Conference on Fuzzy Systems, pages 831-836, 1994.

 227

[22] Jung-Hoon Hwang, Ronald C. Arkin and Dong-Soo Kwon. “Mobile robots at your

fingertips: Bezier curve on-line trajectory generation for supervisory control.” In

Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS 2003), pages 1444-1449, Las Vegas, Nevada, 2003.

[23] Steven M. LaValle and James J. Kuffner, Jr. “Randomized kinodynamic planning.”

International Journal of Robotics Research, 20(5), pages 378-400, 2001.

[24] Paolo Fiorini and Zvi Shiller. “Time optimal trajectory planning in dynamic

environments.” Journal of Applied Mathematics and Computer Science, 7(2),

pages 101-126, 1997.

[25] Zvi Shiller and Yu-Rwei Gwo. “Dynamic motion planning of autonomous

vehicles.” IEEE Transactions on Robotics and Automation, 7(2), pages 241-249,

1991.

[26] Ian Garcia and Jonathan P. How. “Trajectory optimization for satellite

reconfiguration maneuvers with position and attitude constraints.”

[27] John H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, 1975.

[28] Francis Ysidro Edgewood. Mathematical Physics. P. Keagan, London, 1881.

[29] Vilfredo Pareto. Cours D’Economie Politique, volume I and II. F. Rouge,

Lausanne, 1896.

[30] Carlos A. Coello Coello. “Evolutionary multiobjective optimization: current and

future challenges.” In Jose Benitez, Oscar Cordon, Frank Hoffmann and Rajkumar

 228

Roy (editors), Advances in Soft Computing---Engineering, Design and

Manufacturing, pages 243--256, Springer-Verlag, New York, 2003.

[31] Eckart Zitzler, Marco Laumanns and Stefan Bleuler. “A tutorial on evolutionary

multiobjective optimization.” In Xavier Gandibleux, Marc Sevaux, Kenneth

Sörensen and Vincent T'kindt (editors), Metaheuristics for Multiobjective

Optimisation, pages 3-37, Springer, Berlin, 2004.

[32] Carlos M. Fonseca and Peter J. Fleming. “Multiobjective optimization and multiple

constraint handling with evolutionary algorithms I: a unified formulation.”

Technical Report 564, University of Sheffield, Sheffield, UK, 1995.

[33] Carlos A. Coello Coello. “EMOO Home Page.”

http://www.lania.mx/~ccoello/EMOO/ accessed 2005.

[34] J. David Schaffer. “Multiple objective optimization with vector evaluated genetic

algorithms.” In Genetic Algorithms and their Applications: Proceedings of the

First International Conference on Genetic Algorithms, pages 93-100, 1985.

[35] W. Jacob, M. Gorges-Schleuter, and C. Blume. “Application of genetic algorithms

to task planning and learning.” In R. Männer and B. Manderick, (editors), Parallel

Problem Solving from Nature, 2nd Workshop, pages 291-300, North Holland

Publishing Company, Amsterdam, 1992.

[36] Michael P. Fourman. “Compaction of symbolic layout using genetic algorithms.”

In Genetic Algorithms and their Applications: Proceedings of the First

International Conference on Genetic Algorithms, pages 141-153, 1985.

 229

[37] M. Farina and P. Amato. “On the optimal solution definition for many-criteria

optimization problems.” In Proceedings of the NAFIPS-FLINT International

Conference 2002, pages 233--238, New Orleans, LA, 2002.

[38] Arturo H. Aguirre, Salvador B. Rionda, Carlos A. Coello Coello, Giovanni L.

Lizárraga, and Efrén M. Montes. “Handling constraints using multiobjective

optimization concepts.” International Journal for Numerical Methods in

Engineering, 59(15), pages 1989-2017, 2004.

[39] Oliver de Weck and Marshall B. Jones. “Isoperformance: Analysis and Design of

Complex Systems with Known or Desired Outcomes.” In Proceedings of the 14th

Annual International Council on Systems Engineering, Toulouse, France, June

2004.

[40] Oliver de Weck, David W. Miller and Gary E. Moiser. “Multivariable

Isoperformance Methodology for Precision Opto-Mechanical Systems.” 43rd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, Denver, CO, April 2002.

[41] Il Yong Kim and Oliver de Weck. “Adaptive Weighted-Sum Method for Bi-

Objective Optimization: Pareto Front Generation.” Structural and Multidisciplinary

Optimization, 29 (2), pages 149-158, February 2005.

[42] Tom Schouwennaars, Bart De Moor, Eric Feron and Jonathan How. “Mixed

integer programming for multi-vehicle path planning.” In Proceedings of the

European Control Conference, pages 2603-2608, 2001.

 230

[43] Arthur Richards and Jonathan How. “Performance evaluation of rendezvous using

model predictive control.” In Proceedings of the AIAA Guidance, Navigation, and

Control Conference, Austin, Texas, 2003.

[44] Ian Garcia and Jonathan P. How. “Trajectory optimization for satellite

reconfiguration maneuvers with position and attitude constraints.” In Proceedings

of the IEEE American Control Conference, pages 889-895, 2005.

[45] A. E. Bryson Jr. and Y. C. Ho. Applied Optimal Control. Blaisdell, Waltham, MA,

1969.

[46] Donald E. Kirk. Optimal Control Theory: An Introduction. Dover Publications,

Inc., Mineola, NewYork, 2004 (reprint of 1970 edition by Prentice-Hall, Inc.,

Englewood Cliffs, NJ).

[47] S. Roberts and J. Shipman. Two-Point Boundary Value Problems: Shooting

Methods. Elsevier, New York, 1972.

[48] Oscar von Stryk. “Numerical solution of optimal control problems by direct

collocation.” In R. Bulirsch, A. Miele, J. Stoer, and K.-H. Well (editors), Optimal

Control – Calculus of Variations, Optimal Control Theory and Numerical Methods,

number 111 in International Series of Numerical Mathematics, Birkhauser, Basel,

1993.

[49] Carl Glen Henshaw. “A unification of artificial potential function guidance and

optimal trajectory planning.” In Proceedings of the 28th AAS Annual Rocky

Mountain Guidance and Control Conference, pages 219-234, Breckenridge,

Colorado, 2005.

 231

[50] Jacek Kierzenka and Lawrence Shampine. “A BVP solver based on residual

control and the Matlab PSE.” ACM Transactions on Mathematical Software 27(3),

pages 299-316, 2001.

[51] Carl Glen Henshaw. A Variational Technique for Spacecraft Trajectory Planning.

PhD dissertation, University of Maryland Department of Aerospace Engineering,

2003.

[52] John R. Anderson and Christian Libeire. Atomic Components of Thought. Lawrence

Erlbaum Associates., Mahwah, New Jersey, 1998

[53] Jamie Lennon and Ella Atkins. “Multi-objective spacecraft trajectory optimization

with synthetic agent oversight.” Journal of Aerospace Computing, Information and

Communication 1(1): pages1-20, 2004.

[54] Robert Wray and Ron Chong. “Comparing cognitive models and human behavior

representations: Computational tools for expressing human behavior.” Proceedings

of the Infotech@Aerospace 2005 Conference, Arlington, VA. American Institute of

Aeronautics and Astronautics, September 2005.

[55] Panagiotis Tsiotras. “Stabilization and optimality results for the attitude control

problem.” AIAA Journal of Guidance, Control, and Dynamics, 19(4): pages 772-

779, July-August 1996.

