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Chapter 1 



Multi-objective Optimization and Genetic Algorithm 

This chapter aims to provide background knowledge Multi-objective 

optimization problems (MOP) and genetic algorithm. Chapter begins with the 

discussion on Multi-objective optimization basic concepts, requirements of 

optimizer and MOP test suit. Evolutionary Algorithms (EAs) are based on some of 

the phenomenon of the nature. Genetic Algorithms (GAs) are evolutionary 

algorithms. This chapter introduces working principles of simple GA and discusses 

specific issues like population initialization, selection mechanism, crossover 

operator, replacement strategies and GA parameters. This chapter also gives insight 

to EAs suitability for solving MOP and covers literature review as well as metrics 

for performance measure of EA for MOP. 

Multi-objective Optimization 

Problem solving is a cognitive process and one of the most complicated 

intellectual activity of the human brain. Regardless of the problem‘s nature, the 

process of problem solving is concerned with finding solutions to certain 

predicaments or transitions from certain reviled states to desired states, such as the 

transition from unstable to stable or incorrect to correct. When a problem exists, a 

solution is sought and an objective is established. Unfortunately, finding a solution 

to certain problems or satisfying certain objectives can be a tricky and complicated 

process. An exact solution to some problems might simply be infeasible, especially 

if the problem consists of multiple conflicting and constrained objectives. In many 

applications, a good approximation or alternatively an optimized estimate to a 

solution might be deemed very good and sufficient. 

Real-world problems commonly require the simultaneous consideration of 

multiple performance measures. Buying a new car is a simple illustration of such 

real-world multi-objective tasks. Comfort, price, depreciation factor, safety features, 

road tax and running costs such as fuel, service and repair are all criteria that usually 

car buyers consider and look to optimize when buying a new car. Most often, the 

multiple objectives are in conflict and compete with each other. Ultimately, the 



decision maker (DM) has to decide on an individual solution based on certain 

preferences and objective priorities. As an example, a DM might decide that the 

safety features in a car are prioritized over the running costs of its fuel consumption 

while on the other side the car‘s depreciation factor can be traded for its luxurious 

comfort. 

1.1.1 Basic concepts 

Unlike single objective optimization which aims to maximize, minimize or 

achieve a certain goal value for a single objective, multi-objective optimization 

consists of multiple criteria that need to optimize simultaneously. These criteria can 

manifest pair-wise relationships such as independence, harmony or conflict. In the 

former two relationships, an improvement or, alternatively deterioration in terms of 

a certain objective, will either have no influence on the performance of the 

remaining independent objectives or alternatively an impact of a similar nature. 

Such multi-objective optimization (MO) scenarios can be ultimately divided into a 

set of different single objective optimization problems in the case of complete 

independence, or reduced to a single optimization problem of one representative 

objective in the case of complete harmony. Optimizing multiple competing 

objectives is by far the most complicated multi-objective scenario, in such scenarios 

no single utopian solution can be found. 

Definition: Multi-objective Optimization Problem 

The Multi-objective Optimization problem in its general form can be 

described as follows: 

Minimize/Maximize  
),(xfm               m=1,2,…..,M; 

Subjected to               
0)( xg j           j=1,2,…..,J; 

                                    
)(xhk =0          k=1,2,…..,K; 

               
)()( u

ii

L

i xxx 
 , i=1,2,…...,n. 

A solution x is a vector of n decision variables: x = ( x1, x2,…, xn)
T
. The last 

set of constraints is called variable bound, restricting each decision variable xi to 

take a value within lower 
 L

ix  and an upper 
 U

ix  bounds.  These bounds constitute a 



decision variable space Ɗ.  Associated with the problem are J inequality and K 

equality constraints. The terms gj(x) and hk(x) are called constraint functions. A 

solution x ∈ X that satisfies all the (J+K) constraint and the entire variable bound 

stated above is called a feasible solution. The set of all feasible solutions is called 

feasible region or search space S. For each solution x in the decision variable space, 

there exists a point in the objective space Z, denoted by f(x) = z= (z1, z2,…..,zM)
T
 . 

The mapping takes place between an n-dimensional solution space and an M-

dimensional objective space. A maximization problem can be converted to a 

minimization problem by multiplying the function by -1[1]. 

Numerical analysis methods such as classical gradient descent, Newton-

Fourier and Levenberg-Marquardt methods which operate in a single search space, 

termed as the decision variable space are use to solve single objective optimization. 

For thorough literature about numerical analysis and optimization techniques in the 

operations research (OR) community, reader is directed to Hillier and Lieberman in 

[2]. OR is an interdisciplinary science that deals with decision making, optimization, 

planning and coordinating activities of complex nature from the real-world. 

In single objective optimization, a solution explored in the decision variable 

space replaces the current best solution only if it presents a superior objective 

function value. Operating in a single search space is yet another major difference 

with the simultaneous optimization of multiple objectives. Multi-objective 

optimization consists of finding the set of vectors in the decision variable space 

which produce the best set of solutions in the objective space. Usually, the search in 

the decision variable space is steered and influenced by the information that 

becomes available in the objective space. 

In Fig 1.1 an optimization problem consisting of two objectives and three 

decision variables are illustrated. Note that the dimensionality of the objective space 

and the decision variable space can be any positive integer. The pink bounded area 

in the decision variable space denotes the feasible region of the space which is 

defined by certain application specific constraints. The objective vector function (f) 

maps a certain solution ‘x’ in the decision variable space to its corresponding 



objective vector. It is only through the objective function mapping that the 

performance of a certain candidate solution can be assessed. 

 

Fig 1.1 The multi-objective problem domain 

Pareto Dominance 

The idea of ‗optimal‘ in MO can be traced back to the period between 1870 

and 1900 with the work and philosophies of Ysidro Francis Edgeworth (1845-1926) 

[3] and Vilfredo Pareto (1848-1923), some of the most brilliant economists of the 

19th century. Edgeworth main interests revolved around the utilitarian philosophy 

whose ultimate aim consisted of maximising society‘s happiness by optimizing the 

problem of resource allocation. Vilfredo Pareto, on the other hand, concentrated on 

the use of classical programming techniques such as differential calculus and 

Lagrangian multipliers for the analysis of general equilibrium theories and the 

optimization of market efficiency. His work and theories constituted the foundation 

of the Pareto optimality concept which comprises the core of most multi-objective 

optimizers. 

 

Definition: Pareto Dominance 

A solution x in the search space S dominates a solution y in the search space 

S if both the conditions are true: 

1.  The solution x is no worse than y in all objectives, or 



          𝑓𝑗  𝑥 ⋫ 𝑓𝑗  𝑦 for all j=1, 2, …, M 

2.  The solution x is strictly better than y in at least one objective or  

          yfxf jj 
 
for at least one jϵ {1,2,…, M}. 

The superiority (or dominance) of one solution over the other cannot be 

established with many objectives in mind. When the following inequalities hold 

between two solutions x and y, it is said that solution y dominates the solution x:  

                            fi(x) ≤ fi(y) for i and j: fj(x) < fj(y) 

If the solution is not dominated by any other solutions, that solution is said to 

be a non-dominated solution. There exist many such non-dominated solutions in the 

search space known as Pareto-optimal Solutions.  The curve formed by joining these 

solutions is known as a Pareto-optimal Front . The Pareto dominance concept is 

illustrated in Figure 1.2 in the objective space of a simple bi-objective scenario.  

  
TABLE 1.1 OBJECTIVE VALUES IN2-D OBJECTIVE SPACE 

Solution f1 (maximize) f2 (minimize) 

1 14 5 

2 13 3 

3 12 2 

4 10 1 

5 10 4 

6 6 3 



Fig 1.2 Pareto Dominance Illustration in a 2-dimensional objective space 

Table 1.1 shows objective values of solutions in 2-D objective space. First 

objective function f1 is to be maximized and second objective function f2 is to be 

minimized.  Fig 1.2 shows the plot of solutions given in table 1.1. Solution 1(f1=14, 

f2=5) is superior to solution 2 (f1=13) with respect to objective f1 and inferior than 

solution 2 (f2=3) with respect to objective f2. Solution 1 and 2 are non dominated 

solutions. In this way when all the solutions (1 to 6) are compared with each other it 

is found that 1, 2, 3 & 4 are non dominated solutions and 5&6 are dominated 

solutions. The line joining solutions 1, 2, 3 and 4 is called Pareto Front.  

In the context of Pareto dominance, we can further distinguish between weak 

dominance and strong dominance or loose dominance and strict dominance 

respectively [1]. 

Weak dominance: Pareto dominance is sometimes simply referred to as a weak 

dominance. A solution x weakly dominates a solution y if x is better than y in at 

least one objective and is as good as y in all other objectives. 

Strong dominance: A solution x strongly dominates a solution y if x is strictly 

better than y in all objectives. 



Non-dominance: If neither x dominates y nor y dominates x, then both solutions are 

said to be incomparable or non-dominated. In this case, no solution is clearly 

preferred over the other, at least under the Pareto dominance criterion. 

A set P* consisting of all non-dominated solutions for a given set of 

solutions P is called the non-dominated set of P. Any solution in P has not 

dominated solutions in P*. The non-dominated set P* is also termed as the Pareto set 

of P which refers to the decision variable space. In the literature, there is also 

another term known as the Pareto front of P which refers to the objective functions 

space. 

Definition: Pareto Set (PS) 

For a given MOP and its set of solutions P, the Pareto set P* is defined as 

follows: 

 xyPyPxP :*   

When the set P is the entire search space (P = S), the Pareto set P* of the set 

P is called the Pareto-optimal set. 

Definition: Pareto optimal Set (PF) 

For a given MOP and its search space S, the Pareto-optimal set PF is defined 

as follows: 

 xySySxPF :  

1.1.2 Classical methods 

Operations Research (OR) is a branch of mathematics within which a variety 

of techniques have been developed to deal with MOPs. These approaches developed 

within OR for solving MOPs are known as classical methods. Up to 1980 most of 

the computational methods to solve MOPs consisted of minimizing only one 

function, either using the other objective functions as constraints of the problem, or 

simply by taking a combination of all the objectives. The most common way to 

tackle a MOP is by scalarization which means reducing the problem to a single 

objective optimization problem (SOP). One example of this approach is the 

following method:  



Weighted sum method: This method consists of transforming the vector of function 

values into a scalar value using an aggregating function over the vector function, 

getting the following problem: 
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In this way, the solution set consists only of one point for each weight 

combination. An important drawback of this approach is that controlling the weights 

dose not necessary help us to control the distribution of the points in the variable 

space. Besides, there are points that cannot be generated as a combination of weights 

in non convex cases—see [4] for a more in-depth explanation about this. There exist, 

in general, many scalarization methods which transform the MOP into a ‗classical‘ 

SOP. It is worth to notice that by choosing a clever sequence of SOPs, a suitable 

finite size approximation of the entire Pareto set can be obtained (see [5] and 

references therein). Another approach to approximate the entire Pareto set is to use 

set oriented methods such as subdivision techniques [6]. 

ε-constraint method: In the  ε -constraint method [7], one of the objective is chosen 

for minimization while the rest of the objectives conform a set of constraints limited 

by user specified bounds εi   i.e.: 

  .,,...,1 jikiallforftosubject

fMinimize

ii

j
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The ε-constraint problem should be solved using multiple different values for 

εi if several Pareto optimal solutions are desired. This method can deal with convex 

and non convex functions; but, choosing the εi values is still an issue since there is 

no warranty that a feasible optimum exists for a specific εi. An in depth analysis of 

these method can be found in [8]. 

 



1.1.3  Requirements of optimizer 

 

 

 

 

 

 

 

 

Fig 1.3 Two requirements of Multi-objective optimizer 

The two requirements for multi-objective optimizers are usually sought and 

desired. They are shown in fig 1.3 and are as given below 

Convergence: The approximation set achieved for a multi-objective optimization 

problem is required to as close as possible to the true Pareto front. 

Diversity: Because of the non-existence of an ideal single solution in Multi-

objective optimization frameworks with many competing objectives, and due to the 

fact that the global trade-off surface can potentially present an infinite number of 

solutions, the set of Pareto optimal solutions is also required to be well spread and 

uniformly covering wide areas of the Pareto front. Solutions diversity is 

conventionally preferred in the objective space as to present the DM with a well 

distributed set of solutions to choose from based on certain preferences such as 

objective priorities or region of interest (ROI). Solution‘s diversity is however not 

restricted to the objective space, and can be a desired requirement in the decision 

space of some applications. 

1.1.4 Multi-objective Optimization Problems (MOPs) 

 

Pareto Front 



Applying mathematics to a problem of the real-world mostly means, at first, 

modeling the problem mathematically, may be with hard restrictions, idealizations, 

or simplifications, then solving the mathematical problem, and finally drawing some 

conclusions about the real problem based on the solutions of the mathematical 

problem [9]. Real-world optimization problems involve a number of characteristics, 

which make them difficult to solve up to a required level of satisfaction. Those 

characteristics are  

Existence of mixed type of variables (such as Boolean, discrete, integer and 

real). 

Existence of non-linear constraints. 

Existence of multiple conflicting objectives. 

Existence of multiple optimum (local and global) solutions. 

Existence of strong interaction among variables (epistatic). 

Existence of stochasticities and uncertainties in describing the optimization 

problem. 

Many real-world problems that could be transformed into optimization 

problems have complex search landscapes. These landscapes are unimodal or multi-

modal, epistatic or non-epistatic and having strong local minima. Sometimes it is 

difficult to predict exact landscape of problem. Real-world optimization problem is a 

mix of difficulties mentioned above. Optimization problems are classified as  

1. Single-objective problems (Have only one objective) 

2. Multi-objective problems (Have 2 to 5 objectives) 

3. Many-objective problems (Have more than 5 objectives) 

Test suit: Due largely to the nature of multi-objective evolutionary algorithms 

(MOEAs), their behaviors and performances are mainly studied experimentally. In 

the past 20 years, several continuous multi-objective optimization problem test 

suites have been proposed the evolutionary computation community, which has 

played crucial role in developing and studying MOEAs. However, more test 



instances are needed to resemble complicated real-life problems and thus stimulate 

the MOEA research [10]. 

K. Deb in [11] has identified several features that may cause difficulties for 

multi-objective EAs in 1) converging to the Pareto-optimal front and 2) maintaining 

diversity within the population. Concerning the first issue, multimodality, deception, 

and isolated optima are well-known problem areas in single-objective evolutionary 

optimization. The second issue is important in order to achieve a well distributed 

nondominated front. However, certain characteristics of the Pareto-optimal front 

may prevent an EA from finding diverse Pareto optimal solutions: convexity or 

nonconvexity, discreteness, and nonuniformity. [12]. 

This section describes 15 multi-objective unconstrained (bound constrained) 

optimization problems used in the study. Test problems are chosen from a number of 

significant past studies in this area. First set of test problems contains Kursawe‘s 

study (KUR) [13], ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 from ZDT test suit [12]. 

All problems have two objective functions and all objective functions are to be 

minimized. None of these problems have any constraint. Table 1.2 describes these 

problems. The table shows the number of objectives, number of variables, their 

bounds and the nature of the Pareto-optimal front for each problem. 

Second set of test problems contains nine unconstrained (bound constrained) 

MOP test instances form the IEEE  CEC09 algorithm contest for multi-objective 

evolutionary algorithms [10]. These test functions have characteristics, such as 

multi-modality and discontinuity, which generally cause difficulties to most 

MOEAs. Test problems under consideration are minimization problems. 

 

 

 

 



TABLE 1.2  TEST PROBLEMS USED IN THIS STUDY 

Problem 
No. of  

Objective 

No. of 

variables 

Variable 

bounds 
Comments 

KUR 2 3 [-5,5] Nonconvex 

ZDT1 2 30 [0,1] Convex 

ZDT2 2 30 [0,1] Nonconvex 

ZDT3 2 30 [0,1] Convex, Disconnected 

ZDT4 2 10 [0,1]x[-5,5]
n-2

 Convex 

ZDT6 2 10 [0,1] Nonconvex, Non-uniformly spaced 

IEEE CEC09 Unconstrained (Bound Constrained) Test Problems 

UF1 2 30 [0,1]x[-1,1]
n-1

 Convex PF 

UF2 2 30 [0,1]x[-1,1]
n-1

 Convex  PF 

UF3 2 30 [0,1]
n
 Convex  PF 

UF4 2 30 [0,1]x[-2,2]
n-1

 Non Convex PF 

UF5 2 30 [0,1]x[-1,1]
n-1

 
Non Convex, Disconnected and 

uniformly spaced PF 

UF6 2 30 [0,1]x[-1,1]
n-1

 
NonConvex, Disconnected and Non-

uniformly spaced PF 

UF7 2 30 [0,1]x[-1,1]
n-1

 NonConvex PF 

UF8 3 30 [0,1]
2
x[-2,2]

n-2
 Connected  PF 

UF9 3 30 [0,1]
2
x[-2,2]

n-2
 Disconnected  PF 

1.2 Evolutionary Algorithms 
Evolutionary algorithms (EAs) are based on models of organic evolution, i.e. 

nature is the source of inspiration. They model the collective learning process within 

the population of individuals, each of which represent not only a search point in the 

space of potential solutions to a given problem but also may be a temporal container 

of a current knowledge about the ―laws‖ of the environment [14]. The starting 

population is initialized by an algorithm-dependent method, and evolves towards 

successively better regions of the search space by means of (more or less) 

randomized process of recombination, mutation, and selection. The common opinion 

about EAs is that they explore the search space by the (genetic) search operators, 

while exploitation is done by selection. The environment delivers quality 

information (fitness value) for new search points, and the selection process favors 

individuals of higher quality to reproduce more often than worse individuals. The 

recombination mechanism allows mixing of parental information while passing it to 



their descendants, and mutation introduces innovation into the problem.  EAs are 

population based, stochastic, and flexible, thereby providing an ideal platform to 

modify them to suit to solve most optimization problems. Thus, the task in an 

optimization process is to start from one or a few random solutions in the search 

space and utilize the objective functions and constraints to drive search towards the 

feasible region and finally reach near the optimum solution by exploring as small as 

a set of solutions as possible. Figure 1.4 provides an overview of computational 

intelligence and its components. Different sub-fields of evolutionary computing are 

also shown. 

 

 

 

 

 

 

 

Fig 1.4: Computational intelligence and evolutionary computation 

Number of researchers located in geographically distant places across the 

globe has suggested the idea of using evolutionary principles to constitute a 

computerized optimization algorithm. The origins of evolutionary algorithms can be 

traced to at least the 1950's. As of today, there are four dominant methodologies: 

Genetic Algorithms, Genetic Programming, Evolutionary Programming and 

Evolutionary Strategies. Besides the different historical roots and philosophy there 

are also technical differences between these streams in EA. These differences 

concern the representation applied, the corresponding genetic search operators, the 

selection mechanism and the role of self-adaptation. Evolution Strategies (―ESs‖), 

like EPs, emphasize phenotypic transformations. GAs emphasizes the genotypic 
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transformation of individual problem solutions. A typical GA represents a solution 

to a problem in terms of its genotypic features i.e. the basic features, or elements, 

that make up a solution. In the following section GA as a representative of EAs is 

discussed. 

1.3 Genetic Algorithm 
Evolutionary biologists who were explicitly seeking to model aspects of 

natural evolution has generated computer programs appeared in the late 1950s and 

early 1960s that might today be called genetic algorithms. By 1962, researchers such 

as G.E.P. Box, G.J. Friedman, W.W. Bledsoe and H.J. Bremermann had all 

independently developed evolution-inspired algorithms for function optimization 

and machine learning, but their work attracted little follow-up. As early as 1962, 

John Holland's work on adaptive systems laid the foundation for later developments; 

most notably, Holland was also the first to explicitly propose crossover and other 

recombination operators. J. H. Holland has strongly influenced the idea which 

appears first in 1967 in J. D. Bagley‘s thesis ―The Behavior of Adaptive Systems 

Which Employ Genetic and Correlative Algorithms‖ .Who is considered as the 

pioneer of genetic algorithms. However, the seminal work in the field of genetic 

algorithms came in 1975, with the publication of the book Adaptation in Natural 

and Artificial Systems. The book has described earlier research and papers by 

Holland and his colleagues at the University of Michigan. This book presents 

systematic and rigorous concept of adaptive digital systems using mutation, 

selection and crossover by simulating the processes of biological evolution as a 

problem-solving strategy [15].  Genetic algorithms are stochastic, population-based 

search and optimization algorithms loosely modeled after the paradigms of 

evolution. Genetic algorithms guide the search through the solution space by using 

natural selection and genetic operators, such as crossover and mutation. In the early 

to mid-1980s, genetic algorithms has been applied to a broad range of subjects, from 

abstract mathematical problems like bin-packing and graph coloring to tangible 

engineering issues such as pipeline flow control, pattern recognition and 

classification, and structural optimization. The spectrum of GAs applicability has 

gone well beyond the use of it as search and optimization algorithm. Now GAs have 
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Fig 1.5 A Flowchart of working principle of a genetic algorithm. 

been used for automatic programming, for understanding biological systems, for 

modeling communities in ecologies, for modeling social organizations, and also as 

computational models of innovation and creativity. 

1.3.1 Working of GA 

Genetic algorithm (GA) is an iterative optimization procedure. GA works 

with a number of solutions (collectively known as a population). A flowchart of the 

working principle of a simple GA is shown in Fig 1.5. In the absence of any 

knowledge of the problem domain, a GA begins its search from a random population 

of solutions. If a termination criterion is not satisfied, reproduction and variation 

operators (crossover and mutation, and others) are applied to update the population 

of solutions. An iteration of these operators is known as a generation in the parlance 

of GAs. The name Genetic Algorithm derived from the fact that: the representation 

of a solution in GA is similar to a natural chromosome and GA operators are similar 

to genetic processes. 

  



The solution vector can be represented as a vector of real numbers, discrete 

numbers, a permutation of entities or others or a combination, as suitable to the 

underlying problem. If a problem demands mixed real and discrete variables, a GA 

allows such a representation of a solution. The purpose of variation operators is to 

create new and hopefully improved solutions by using the mating pool formed by 

the selection operator. Crossover is a very powerful tool for introducing new genetic 

material and maintaining genetic diversity. The selection process drives the search 

towards the regions of the best individuals. The mutation operator is an exploratory 

operator that reestablishes the genetic diversity loss during the evolution and 

explores new solutions avoiding premature convergence to local optima. Every 

search algorithm must establish a balance between two conflicting features: 

exploitation of the best solutions, depth search, and exploration of the search space, 

width search. GAs are general-purpose search methods where the selection process 

and the crossover and mutation operators establish a balance between the 

exploration and exploitation of the search space very adequate for a wide variety of 

problems. 

The data type or representation is one of the distinguishing features of the 

different styles of GAs. In traditional GAs binary representation is used i.e. 

individuals or chromosomes are bit-strings with a fixed length. The study of 

sequencing problems such as routing and scheduling has yielded order-based GAs 

where each individual is a permutation. Parameter optimization problems with 

variables over continuous domains have led to real-valued or floating point GAs. 

Genetic Programming uses individuals that are tree structures. 

It is argued earlier that depending on the fitness landscape and the position of 

the parent population, the population variance may decrease or increase after the 

reproduction operation. Thus to avoid any premature convergence or stagnation, the 

population after variation operation must adjust its variance accordingly, so as to 

keep the overall population variance to be of reasonable value from generation to 

generation. Particularly, if the reproduction operator reduces the variance of 

population, the variation operator must increase the variance of population and vice 

versa. 



1.3.1.1  Individual Representation  

Within the EA framework, individuals are considered at two levels: the 

genotypic level and the phenotypic level [16]. The genotype of an individual, also 

referred to as the chromosome, is a string of genes of finite length. The 

chromosomes could be in any form such as binary, integer/alphabet, real-valued. 

The most common forms are binary (binary representation) and integer/alphabet (e. 

g. permutation representation). In the binary representation, each gene in encoded 

individuals takes a value of either 0 or 1 and the value of genes is important. The 

coding of the variables is called genotypes, and the variables themselves are called 

phenotypes In the permutation representation, each gene in encoded individuals 

takes a distinguished value and the position of genes is important. In real-valued 

representation, chromosomes are represented as real-parameter vector. In this study 

GA with real-valued representation (also called Real-Coded GA (RCGA)) is used. 

The choice of chromosome representation, which depends on the problem as well as 

the EA itself, is important. An unsuitable representation could lead to unnecessary 

computational overhead and low performance of the EA. 

1.3.1.2  Evaluation of Individual Fitness 

The evaluation of an individual is the process which obtains the objective 

value, the phenotype of the individual by decoding its genotype. The phenotype of 

individuals could be used to directly compare individuals based on Pareto 

dominance and at different stages of the algorithm. However, it is very common that 

the algorithm takes one step further in assessing individual‘s quality by assigning 

fitness to each individual. This process is referred to as the individual's fitness 

evaluation to distinguish from the individual's objective values evaluation. The 

fitness evaluation derives the fitness of an individual from its objective values. 

While computing the fitness of an individual, the fitness evaluation might or might 

not consider other individuals in the population. The fitness evaluation strategy is 

one of the core features of which could differentiate one EA from others. Fitness 

assignment strategies could be categorized into three types:  

 



Dominance-based: The fitness of individuals is determined by comparing 

individuals to others in the population based on Pareto dominance (or other types of 

relaxed Pareto dominance); for example, NSGA-II [17] and SPEA2 [61]. 

Non dominance-based: The fitness of individuals is determined by applying 

transferring functions on the objective values of individuals which combine and/or 

modify the objective values; for example, MOEA/D.[19] 

Hybridization: Based on some satisfaction on dominance condition, transferring 

functions are applied to the objective values of individuals to obtain the fitness 

value. For example, IBEA[ 62]. 

1.3.1.3 Parent Selection 

The parent selection, or mating selection, is the process of selecting 

individuals to participate in the production of offspring [16]. There are two common 

mating selections: stochastic selection and tournament selection. Stochastic selection 

selects parents at random regardless of parents' quality/fitness. Tournament selection 

applies an additional layer onto the stochastic selection. In tournament selection, 

parents are also drawn at random but selected parents then undergo a fitness 

comparison process. The highest quality parent, i. e. the winner of the tournament, is 

selected to be in the mating pool. The size of the tournament is usually set to 2 

(binary tournament). There are other schemes such as fitness proportionate selection 

and truncation selection. In fitness proportionate selection, the probability of each 

individual being selected for the mating pool is in proportion to its fitness.In 

truncation selection, each of the top (1/c)% individuals in the population (with 

respect to fitness) get c copies in the mating pool. The selection of parents is also 

one of the key features in EAs. 

1.3.1.4 Replacement Strategy 

The replacement strategy, which is also known as the environmental 

selection or survival selection, is the process of selecting individuals for the next 

generation based on the fitness of individuals. As opposed to the parent‘s selection, 

which is usually stochastic, the replacement strategy usually select the best 

individuals based on their fitness, is mainly deterministic [20]. The replacement 



strategy is categorized into generational and steady-state selection schemes. The 

difference between these two schemes is at which point parents and offspring 

compete for survival. In the generational selection scheme, for each generation, the 

offspring population is constructed (based on the parent population) first. The sizes 

of the offspring population and parent population are usually the same size of the 

current population. The offspring population and the current population are 

combined. Individuals from resulting population are then selected for the next 

generation. However, the steady-state selection scheme allows offspring to compete 

for survivor and reproduction as soon as they are created. In other words, offspring 

are considered to replace their parents (or other individuals) in the current 

population immediately after offspring are constructed. Besides the fitness 

assignment and the parent‘s selection, the replacement strategy is also one of the 

important aspects of an EA. This thesis will discusses various replacement or parent 

selection schemes for formation of next generation.   

1.3.1.5 Recombination Mechanism 

The recombination mechanism uses the genetic material, the genotype, of 

parents to create offspring. The aim of the recombination mechanism is to 

manipulate the gene structure of individuals in the current population, create new 

individuals with the expectation that better individuals could be obtained. There are 

a large number of genetic operators that can be used for the recombination, but 

broadly these are divided into two categories: 

Mutation: is a unary operator which is applied to the genotype of one individual in 

order to slightly modify the gene structure of that solution. The mutation operator is 

most times a stochastic operator. The mutation operator attempts to introduce a few 

new features that might not be inherited from the parents. The purpose is to add 

diversity to the population and contribute so that the entire search space can be 

possibly explored. The simplest form of mutation operator is bit lip mutation used 

with a binary representation. Each gene in the genetic material of an individual is 

inverted (between 0 and 1) with certain probability (usually very low). This 

probability is known as the mutation probability, which is relatively small to prevent 

too much disruption of the inherited genetic material [1]. 



Crossover Operator: is usually a binary operator which combines the genetic 

material from two parents to produce the genetic material for one or two offspring. 

The crossover operator, which is usually a random operator, decides which part of 

the genetic material from parents is inherited by the offspring. The principle behind 

the recombination is that "good" genes in parents are combined in the genetic 

material of the offspring. 

It is noted that both crossover and mutation operators are genotypic 

representation dependent. Different individual representations often require different 

operators. It is also noted that while operators for mutation are usually problem 

independent, many crossover operators are problem specific. Recombination, or 

crossover, operators have many different forms. Two common fortes of crossover 

for binary representation are k-point and uniform crossover. The simplest versions 

of k-point crossover are one-point crossover and two-point crossover. In one-point 

crossover, a crossover point is selected at random then genes on one side of the 

crossover point are exchanged between individuals. In two-point crossover, two 

crossover points are selected at random and genes between two crossover points are 

exchanged between individuals [1].  

Recombination operator in real-parameter (real-coded) GAs directly 

manipulates two or more real numbers to generate one or more real numbers as 

offspring [1]. The detailed study of many recombination operators can be found 

elsewhere [1] and [21]. 

Eshelman and Schaffer introduced the notion of interval schemata for real-

coded genetic algorithms and suggested a blend crossover (BLX-α) operator [22]. 

Deb and Agrawal developed the simulated binary crossover (SBX) operator that 

creates children solutions proportional to the difference in parent solutions [23]. In 

the design of SBX operator, the search power of single point crossover, used in 

binary coded GA is calculated and derived a functional relationship between 

probability distribution and spread factor. Polynomial probability distribution for 

contracting and expanding crossover is used. SBX-l [24] developed by Raghuwanshi 

et al uses lognormal distribution for contracting and expanding crossover. 



The multi-parent recombination operator combines the features of more than 

two parents to generate offspring. Eiben introduced, scanning and diagonal 

crossover which is the generalized multi-parent recombination operators used in GA 

[25]. Ono and Kobayashi [26] introduced the unimodal normal distributed crossover 

(UNDX) that generates offspring using a normal distribution defined by the three 

parents. This operator has a feature of independence from the coordinate systems 

and is excellent in characteristics preservation. The UNDX has shown excellent 

performance in optimization of multi-modal and highly epistatic functions. Tsutsui 

and Ghosh [27] proposed the three types of multi-parent recombination operators:  

the center of mass crossover operator (CMX), the multi-parent feature-wise 

crossover operator (MFX), and the seed crossover operator (SX). They used the 

blend crossover (BLX-α) [22] as the base operator. Tsutsui et al. [28] proposed the 

multi-parent simplex crossover (SPX) that generates offspring by uniformly 

sampling values from the simplex formed by m (2≤m≤number of parameters +1) 

parents. Like UNDX, the SPX is also independent from the coordinate systems. Kita 

et al.[29]  proposed the multi-parent extension of the UNDX to enhance its 

exploration ability. This operator uses multiple parents to create offspring solutions 

around the center of mass of these parents. Deb et al. in [30] proposed the vector 

based multi-parent crossover operator PCX (parent-centric recombination operator) 

and with Generalized Generation Gap (G3) model for a real coded steady state GA. 

The PCX allows large probability of creating a solution near each parent. They have 

shown that G3-PCX has better convergence than gradient methods on some 

unimodal functions. All these proposed operators are tested for performance 

evaluation on unimodal and multi-modal functions with/without epitasis among the 

parameters.  

The multi-parent polynomial distribution recombination operator (MPX) 

[31] is a multi-parent extension of simulated binary crossover operator (SBX) [23] 

and the multi-parent lognormal distribution recombination operator (MLX) [31] is a 

multi-parent extension of SBX with lognormal distribution (SBX-l) [24]. MPX and 

MLX operators were used for single objective optimization. Investigation on 



suitability of MPX & MLX for multi-objective optimization will be part of this 

study.  

1.3.1.6  Stopping Criteria 

Stopping criteria define states in which the evolutionary search terminates 

and the best individuals are presented. Stopping criteria usually vary accordingly to 

the type of applications and the purpose of the studies. For theoretical studies, in 

which the purpose is to investigate the performance of newly proposed EAs for 

example, the stopping criteria are usually the number of evaluations (or generations) 

or the amount of execution time. However, the latter is rarely used due to its low 

reliability and dependence on other factors such as hardware, operating systems and 

programming languages. For real-world application (especially in real-time 

application), in which the computational time is limited, it is sensible to set the 

amount of execution time as the stopping criterion. There are other criteria such as 

on-line performance metrics which keep track of the improvement of population or 

best solutions until no improvement after a certain amount of time or evaluations. 

The number of generations could be also the stopping criterion of real-world 

applications. 

1.3.1.7 Other Issues in EA 

The core features of an EA have been discussed above. Although, when 

designing an EA, it is also worthwhile to pay attention to other issues in order to 

design a good performing EA. These issues include, but are not limited to:  

Population Initialization & Reinitialization: The simplest approach is to generate 

random individuals for the initial population. However, it is possible and often 

advisable to use heuristics to construct (better) individuals. The heuristics are 

usually knowledge-based and problem dependent. Apart from being generated at the 

start of the search, new individuals could also be introduced during the search by 

heuristics instead of using reproduction operators as discussed above. This is known 

as reinitialization in which a part or whole population is reinitialized if the search 

stagnates. 



Generational vs. Steady-State: As aforementioned, the replacement strategy could 

be either a generational or a steady-state approach, also referred to as generational or 

steady-state selection. Fitness assignment strategy drives the decision on which 

approach is deployed within an EA. If the fitness assignment strategy requires all (or 

a large number of) individuals in the population to estimate the fitness of an 

individual, the generational approach should be employed. On the other hand, the 

steady-state selection could be used if the fitness of an individual is not affected by 

other individuals in the population. Inappropriate approaches could lead to 

expensive computational time and degraded performance of the search. It is noted 

that recent studies show a better performance of the steady-state selection over 

generational selection. For example, Durillo et al. [32] modified NSGA-II and 

SPEA2 from generational to steady-state selection and reported better performance 

than the original algorithms although the computational time increased significantly. 

Recent steady-state selection EAs, such as MOEA/D [19] also report better 

performance than generational state-of-the-art MOEAs such as NSGA-II and 

SPEA2. Therefore in this study emphasis will be given to this issue. 

Exploration vs. Exploitation. This is also known as diversity vs. intensification of 

the population. The reproduction mechanism is mainly the driving force for 

exploration whereas exploitation is taken care by the replacement strategy. In EAs, it 

is very difficult to obtain good results in terms of both exploration and exploitation 

at the same time. There is usually a trade-off between these two aspects. Therefore, 

balancing well this trade-off could lead to high performance MOEAs. 

Elitism: This term means that the best individuals are always included in the next 

population. It is unambiguous in the single-objective framework where there is only 

one best individual at anytime. However under the multi-objective framework, there 

could be always more than one best individual. The number of best individuals 

could increase dramatically with respect to the number of objectives of the problem. 

With a limited population size, it is non-trivial to identify which best individuals 

should be kept. An external archive or favouring best solutions with at least one best 

objective value could be the answer. Laumanns et al. in [33] also argued that the 



usefulness of elitism strongly depends on the mutation rate. However, in the author's 

opinion, it remains inconclusive how elitism should be tackled. 

Duplication: Duplication occurs in the population if there is at least a pair of 

distinct (in the decision space) individuals having the same objective values. The 

problem with allowing duplication is that all individuals in the population could 

converge too quickly to a single point in the objective space which is not desirable. 

To deal with this problem, a hard approach it to strictly not allow any duplication 

while in a soft approach is to allow the replacement strategy to eliminate duplication 

(like in NSGA-II and SPEA2). 

Mating Restriction: The idea of restricted mating comes from natural selection 

where mating only seems to happen between similar individuals. Deb and Goldberg 

in [34] argued that mating between dissimilar individuals will likely lead to unfit 

offspring called lethals. However, mating between too similar individuals, known as 

in-breeding, could affect adversely the progress of the search. Mating restriction 

could be performed on either the genotype or phenotype of individuals. 

1.3.2  Parameters of GAs  

Parameters used in GAs are classified as 

1. Algorithm dependent 

 Population size (N) 

 Offspring population size 

 Crossover Probability 

 Mutation Probability 

2. Operator dependent 

 Distribution Index for crossover operator 

 Distribution Index for mutation operator 

 Number of parents participating in recombination operation 

 Number of Offspring generated by recombination operator 



3. Problem dependent 

 Number of variables (n) 

 Range for variable initialization 

 Bound check for variables 

1.4  EA for solving MOP 
Evolutionary algorithms are a popular tool for multi-objective optimization. 

The mechanisms that underpin their special utility are described in Section 1.4.1. A 

brief history of the MOEAs is  provided in Section 1.4.2. As discussed previously in 

Section 1.1.3 a multi-objective optimizer is required to produce an approximation set 

that is close to globally Pareto optimal and that contains a rich distribution of 

solutions in regions of interest to the decision-maker. Distinct EA components have 

been developed to address each aspect of approximation set quality. In Section 1.4.3, 

methods for obtaining good proximity to the global Pareto front are reviewed. In 

Section 1.4.4, methods for obtaining a suitable distribution are discussed.  

1.4.1  Why use EA for solving MOP 

In addition to the general benefits of using an EA as a search tool, the EA 

concept is particularly suitable for multi-objective tasks. The population-based 

nature of the algorithm permits objectives to be treated distinctly through the notion 

of Pareto dominance and permits a family of trade-off solutions to be produced in a 

single execution of the algorithm. The fundamental benefit of this latter factor over 

multiple-start strategies is the potential for a cooperative search for ultimately 

different solutions, thus saving on the total number of solution evaluations required. 

In multi-start strategies that rely on particular parameter settings to provide direction 

toward a particular area of the Pareto front, there is generally no guarantee that a 

good distribution of parameter settings will ultimately lead to a good distribution of 

solutions on the trade-off surface. The key MOEA benefit of not requiring objectives 

to be aggregated in some way to form an overall cost function cannot be over 

emphasized. It is generally very difficult to aggregate objectives in a manner that 

precisely captures the DM preferences. Also, the required normalization of non-

commensurable objectives can be far from straightforward. The MOEAs Pareto-

based approach offers flexibility and information-richness with regard to solution 



performance discrimination, and assists the DM in learning about the problem as the 

search progresses.  

1.4.2  History 

The first evolutionary algorithms that were purposefully designed to obtain 

an approximation set were proposed in the mid-1980s ([35], [36] and [13]). In these 

schemes, a proportion of the population was selected according to each individual 

objective. 

The main difficulty with this approach is that it often creates a phenomenon 

known as speciation, in which solutions arise in the population that are particularly 

strong in a single objective and particularly poor in others. Thus, important 

compromise solutions remain undiscovered, since the recombination of solutions 

from different extreme regions of the tradeoff surface cannot usually be assumed to 

generate an ‗intermediate‘ compromise. 

In the weighted-sum approach to MO, performance is captured in a single 

objective, calculated as a weighted-sum of individual performance in each of the 

original individual objectives. The well-known drawbacks of this approach are the 

difficulty in setting values for the weights, and the necessary condition for convexity 

of the trade-off surface that is required to obtain all Pareto optimal solutions. Thus, 

no combination of weights exists that can generate solutions in non-convex regions 

of the trade-off surface, as shown geometrically by Fleming and Pashkevich [37]. 

However, MOEAs based on weighted-sums schemes have also been proposed. 

Haleja and Lin [38] included the weight vector in the solution genotype and allowed 

multiple weight combinations to be propagated through the population during 

evolution. Jin, Okabe and Sendhoff [39] varied the weight vector over the evolution, 

and have also provided theoretical justification for the method ([39] & [40]). 

Unlike these early attempts, the majority of modern MOEAs are based on the 

concept of Pareto dominance [41]. The use of Pareto dominance as a basis for 

solution comparison in Goldberg first suggested EAs in [15], together with the use 

of a niching technique to encourage solution distribution across the trade-off surface. 

In the early-1990s, three much-cited techniques emerged based on Goldberg‘s ideas: 



Fonseca and Fleming‘s [42] multi-objective genetic algorithm (MOGA), Horn and 

Nafpliotis‘s [43] niched Pareto genetic algorithm (NPGA) and Srinivas and Deb‘s 

non-dominated sorting genetic algorithm (NSGA) [44], although early less well-

known implementations by Ritzel and Cieniawski have also been reported ([43]and 

[45]). The techniques differ slightly in the way in which fitness is derived from 

Pareto comparisons of solutions. MOGA, NPGA, and NSGA all use fitness sharing 

for diversity promotion [46]. 

In the late-1990s, new methods were proposed to improve on the 

performance of the earlier Pareto-based algorithms. The innovations were usually 

evaluated on bi-objective test problems. Research efforts have focused particularly 

on the selection-for-survival aspect of an MOEA, with new methods for preserving 

and using identified (relatively) good solutions. Techniques for population density 

estimation and its use in diversity-promotion schemes have also been the focus of 

contemporary research. These ideas have been implemented in algorithms such as 

Zitzler and Thiele‘s strength Pareto evolutionary algorithm (SPEA) [18] , Corne, 

Knowles and Oates‘s Pareto envelope-based selection algorithm (PESA) [47], and 

Deb, Pratap, Agarwal and Meyarivan‘s elitist non-dominated sorting genetic 

algorithm (NSGA-II) [17]. 

1.4.3 Methods for convergence 

The proximity (or otherwise the convergence) of an approximation set to the 

Pareto front is the primary requirement of evolutionary multi-objective optimization. 

In order to achieve proximity, the search process should be steered in the right 

direction towards the Pareto optimal front of a certain multi-objective problem. This 

steering is more accurately achieved through the selection processes that govern 

MOEAs. As a result, fitter solutions, hence closer to the Pareto front, have higher 

chances for being selected for contributing to the next generations through the 

variation operators. Additionally, at the environmental selection process, fitter 

solutions would equally have higher chances for being selected for survival to the 

next generations. 



Based on the Pareto dominance scheme, several techniques for ranking 

candidate solutions and assigning them fitness values were proposed for MOEAs. 

The interested reader is also referred to Zitzler, Laumanns and Bleuler [48] for more 

information about ranking and fitness assignment in MOEAs. The fitness values 

assigned to alternative candidate solutions to a MOP usually reflect their relative 

performance, and hence their prefer ability in terms of closeness to the Pareto front. 

These fitness values are then used as the primary selection criteria for variation and 

contribution to the next generation. 

Elitism is a strategy which aims to ensure that any good solutions found 

during the optimization do not get filtered out and lost [48]. The implementation of 

an elitist strategy can be achieved by deploying an active selection for survival 

strategy (similar to the (μ+ λ)-ES), or using an external archive of non-dominated 

solutions. The latter elitist approach can be implemented in two different ways. An 

archive can be offline (or inactive) or otherwise online (or active). The first 

generation of MOEAs (e.g. MOGA) used to deploy offline archives to store all the 

non-dominated solutions achieved all along the optimization process. The offline 

archive however did not have any impact on, or interaction with, the evolutionary 

search. On the other hand, some of the second generation of MOEAs (e.g. SPEA2) 

deploy an online archive as an elitist strategy. In addition to storing the best 

‗representative‘ solutions, the content of the online archive is used to steer the search 

by participating in the mating procedures and contributing to the next generations. 

This last strategy of elitism is generally more efficient then its counterpart 

(deploying offline archives) and results in an accelerated convergence towards the 

Pareto front [1]. 

Moreover, it is worth mentioning that the majority of the first generation of 

MOEAs used to deploy a (μ, λ) strategy at the selection for survival stage. All the 

offspring solutions deterministically replaced their parents regardless of their 

performances. In other words, the selection for survival process can be described as 

inactive in the majority of the early approaches and hence elitism was absent. 

Deploying elitism in the form of an external archive, the inclusion of candidate 

solutions in the archive is performed in en bloc or incremental fashion. The latter 



two terminologies suggested by Zitzler in [18] and correspondingly denoted the 

strategy of simultaneously including a set of solutions into the external archive (e.g. 

SPEA2) or otherwise the inclusion of one solution at a time (e.g. PAES, PESA). 

While in the latter approach, the order of including the solutions in the archive is 

essential, in en bloc strategies the order of inclusions is irrelevant. 

The importance of elitism was particularly highlighted after the outcome of 

several critical studies ([18] and [12]). These studies were conducted in the aim of 

contrasting the performance of multiple MOEAs on a set of bi-objective 

optimization problems. Some of the MOEAs included in the comparative studies 

deployed elitist strategies, while other MOEAs did not. The studies‘ outcomes 

illustrated that the elitist MOEAs were generally outperforming their counterparts 

with no active elitist strategies. Indeed, study has shown that in order to ensure the 

convergence of the population of solutions handled by a MOEA in the limit, elitism 

is an essential and a theoretical requirement [49].  

1.4.4  Methods for Diversity 

Fitness sharing, a concept first introduced in 1989 by Goldberg in [15], is 

one of the earliest attempts for promoting diversity as a requirement in EMO. 

Fitness sharing is based on a density estimation approach and was originally 

motivated by the need for niche formation to prevent premature convergence 

towards sub-optimal regions of the objective space. As its name reveals, the ‗fitness 

sharing‘ method forces the sharing and therefore the degradation of the fitness 

values corresponding to solutions lying within a certain distance from each other. 

The notion of distance is an application dependent variable, and is usually the 

Euclidean distance in most real-coded applications. The process of sharing fitness 

values commonly penalizes solutions populating dense areas of the search space 

without violating the Pareto dominance notion. In other words, fitness sharing 

discriminates each set of solutions belonging to a certain level of performance or 

rank in terms of diversity without degrading their membership with the rank they 

occupy. Hence, a non-dominated solution lying in a poorly populated area of the 

objective or decision space will always have the highest probability of selection for 



variation or survival. The major disadvantage of the fitness sharing method is that its 

success is highly dependent on the chosen niche size parameter.  

Several alternatives to the fitness sharing technique for density estimation 

were proposed in MOEAs. The most widespread alternatives include the Nearest 

Neighbor approach and the histogram based techniques. In a framework aiming to 

improve the performance of SPEA [18], Zitzler et al suggested a density estimate 

based on the use of the kth nearest neighbor measure in the Euclidean objective-

space. A statistical heuristic was deployed to determine the value of the critical 

parameter k based on the square root of the population size. Other density estimation 

approaches based on the nearest neighbor included the method suggested by Abbass, 

Sarker and Newton (2001) [50] who replaced the use of the kth nearest neighbor 

measure as a density estimate with the mean Euclidean distances of the two nearest 

solutions. Sarker, Liang and Newton (2002) [51] later on extended the technique by 

Abbass et al to incorporate the mean Euclidean distances of the M nearest solutions 

as the density estimate. The two most popular diversity-preserving operators based 

on the nearest neighbor density estimation are the clustering technique [18] and the 

crowding technique [17].  

Despite their conceptual simplicity and their relatively low computational 

requirements, the nearest neighbor diversity promotion mechanisms suffer from a 

fundamental disadvantage due to their requisite for the consistency and scalability of 

potentially no commensurable objectives. Another disadvantage of the nearest 

neighbor approaches is their requirement for a sensitive choice of the parameter k 

which is essential to the success of the technique. This disadvantage is vaguely 

similar to the choice of σshare in the fitness sharing approach for promoting diversity. 

On the other hand, histogram based techniques are an alternative density 

estimation procedure that overcome the disadvantage of requiring distance 

measurements and the concatenation of non-commensurable objectives in the 

nearest neighbor schemes. These alternative techniques operate by partitioning the 

objective space into a grid of different hyper boxes. The density estimation is then 

based on the count of the number of solutions residing in a certain hyper box in the 



objective space. Several objective space gridding systems where introduced for 

MOEAs. In the context of the Pareto archived evolution strategy (PAES) [47] by 

Knowles and Corne, the user specifies the number of bisections in terms of each 

objective range, and therefore specifies the spacing between the objective space 

hyper boxes. These user-specified spacing, ranges between partitions of the 

objective space which are then used in an adaptive grid spacing system defined by 

the locally non-dominated solutions. Deb et al suggested a steady state approach (ε-

MOEA)[52] based on a combination of the ε-dominance concept introduced by 

Laumanns et al [53] and an adaptive grid archiving (ADA) similar to PAES. 

Laumanns et al [53] used the ε-dominance concept to implement a histogram-based 

diversity promotion strategy based on the proposition by Papadimitriou and 

Yannakakis (2000) [54]. ε-MOEA maintains diversity in the archive by allowing 

only one solution in each pre-assigned hyperbox in the objective space. No specific 

upper limit on the archive size is needed to be predetermined as the archive gets 

bounded according to the chosen ε vector in terms of each objective. Despite their 

increasing popularity, one of the major drawbacks of histogram-based diversity 

promotion techniques is their exponential computational complexity in the number 

of objectives. The gridding system applied in the objective space is yet another 

sensitive design parameter which can be inappropriate to some Pareto front 

structures. Choosing the right gridding system is particularly a hard design choice 

when the dimensionality of the objective space increases. 

Other miscellaneous approaches for promoting diversity include mating 

restrictions, lateral diversity and target vector approaches. Deb and Goldberg [34] 

suggested mating restriction  after a study on multimodality. They have noticed that 

when solutions from remote areas of the search space (objective or decision space) 

recombine, they most often produce week offspring known as lethals. Booker (1982) 

was the first to introduce the restrictions on the mating process for promoting 

diversity in the approximation set [34]. Similar to fitness sharing‘s parameter σshare ,  

a parameter σmate is calculated to determine whether two selected solutions belong to 

different regions of the space and should be restricted from mating. Lateral diversity 

on the other hand, suggests maintaining diversity in the dominated regions of the 



space for obtaining an overall better diversity in the population. This is interpreted 

as a requirement for keeping a balanced tradeoff between diversity and proximity to 

the Pareto front [55]. Examples of studies deploying lateral diversity for maintaining 

a tradeoff between proximity and diversity include Deb and Goel [56], Laumanns et 

al.[57], Laumanns and Ocenasek  [58], and Bosman and Thierens [55]. 

Moreover, target vector approaches, originally suggested in the OR 

community and used to assess the performance of EAs, are deployed as a diversity 

promotion techniques in MOEAs. The approach consists of suggesting a target point 

in the search space, and then seeks to minimize the distance between candidate 

solutions and the suggested target point [59]. Later on in the MOEAs, the target 

vector approach was extended to allow the suggestion of multiple target objective 

vectors [60]. In the extended approach, better fitness scores get allocated to solutions 

close to certain target vectors. Nevertheless, fitness sharing takes place when 

multiple solutions reside in the neighborhood of a target objective vector in the aim 

of promoting diversity and avoid the genetic drift towards a single target vector. 

1.4.5  Performance Measures 

An important aspect of an algorithm is its performance, i.e., how ―good‖ it is 

in carrying out a specific task. For such a characterization one has to evaluate the 

quality of the result in relation to the resources that were needed to achieve it. The 

notion of performance includes both the quality of the outcome as well as the 

computational resources needed to generate this outcome. Concerning the latter 

aspect, it is common practice to keep the number of fitness evaluations or the overall 

runtime constant in this sense, there is no difference between single and multi-

objective optimization. As to the quality aspect, however, there is a difference. In 

single-objective optimization, we can define quality by means of the objective 

function: the smaller (or larger) the value, the better the solution. In contrast, there 

are two goals in a multi-objective optimization: To find a set of solutions as close as 

possible to the Pareto-optimal front and to find a set of solutions as diverse (or non-

dominated) as possible  



There are several metrics that have been proposed to measure the 

performance of MOEAs. Some of the most popular performance metrics used in this 

work are described below: 

Inverted Generational Distance: Let Q be non-dominated set and P* be Pareto 

optimal set. This metric indicates how close the Pareto-optimal front is to 

nondominated solutions set is.  
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Where d(v,Q) is the minimum Euclidean distance between v and the points 

in Q. IGD measures both convergence and diversity of Q. The lower the value of the 

IGD, the more diversity in the non-dominated solution set indicating the better 

performance of the algorithm. [10] 

SPREAD (Δ) metric: The Spread indicator is a diversity metric that measures the 

extent of spread achieved among the obtained solutions. This metric takes a zero 

value for an ideal distribution, pointing out a perfect spread out of the solutions in 

the Pareto front. It is desired that the Pareto set be well spread. Euclidean distance 

between any two neighbor solutions in non-dominated solution set is calculated and 

then the average of these distances is obtained. The non-uniformity in the 

distribution, Δ, is calculated as:   
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Where di can be any measure between neighboring solutions and 
_

d is the 

mean value of these distance measures. The parameter 
e

md is the distance between the 

extreme solutions of P* and Q corresponding to m-th objective function. [1] 

Two Set Coverage (SC): This metric is used for comparison of two sets of 

nondominated solutions. Let X be the set of decision vectors for the considered 



problem and A,BX are two sets of decision vectors. The function SC maps the 

ordered pair (A,B) into interval [0,1] : 
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If all solutions in A dominate or are equal to all points in B then by definition 

SC = 1. SC = 0 implies the opposite. In general SC(A,B) and SC(B,A) both have to 

be considered due to set intersections not being empty. This metric can be used for 

decision as well as objective space. In this work we have used it in objective 

space.[12] 

Statistical test: A popular way to compare the overall performances of algorithms is 

to count the number of cases on which an algorithm is the overall winner. Some 

authors also use these counts in inferential statistics, with a form of two-tailed 

binomial test that is known as the sign test. In this study sign test is used as 

Statistical test to compare performance of proposed algorithm with other algorithm. 

The difference of performance scores of the two algorithms on a problem should be 

significant. The direction of any significant differences is denoted as follows: 

A plus sign (+): the performance of the proposed algorithm is better than or 

comparable with the one of the corresponding algorithm  

A minus sign (-): Performance of proposed algorithm is insignificant. 

CPU Time: CPU Time measure shows computational efficiency of proposed 

algorithm. 

It is noted that several performance metrics, which require the true Pareto 

front Point for calculation, include the generational distance, the inverted 

generational distance and the distance to the Pareto optimal front. However, it is 

often true that the Pareto front is unknown for a given problem. In this case, an 

estimated true Pareto front for that problem could always be used. The estimated 

true Pareto front could be obtained by using integer programming to solve the 

problem (with long computational time), solving a relaxed version of the problem, 



or in the worst case by combining the best solutions from several runs obtained by 

all algorithms under investigation. 

It is usually the case that a number of performance metrics are used in 

conjunction to assess the performance of MOEA. The reason behind it is that within 

the multi-objective optimization framework there are several criteria to assess the 

MOEA performance such as diversity, convergence and distribution of an obtained 

set of solutions. One performance metric is often only able to assess on of such 

criteria. Furthermore the criteria are normally conflicted. Performance metrics we 

will use in the study are IGD, SPREAD, SC and CPU Time to asses‘ performance of 

algorithms. Also some statistical tests will be performed for performance 

comparison. 

1.5 Summary 
In this chapter we have introduced basic concepts of multi-objective 

optimization, classical methods of solving multi-objective problems and 

requirements of a multi-objective optimizer. Multi-objective optimization problems 

and their characteristics have been discussed along with few problems from 

commonly used test suits like ZDT and CEC09. Genetic algorithms are briefly 

introduced, including the terminology, working principles, major components, and 

algorithmic flow controls. After this GAs suitability for solving multi-objective 

optimization problem has been discussed. An overview of multi-objective genetic 

algorithm has been presented and various methods for convergence and diversity 

preservation are reviewed. Finally, issue of performance measure of multi-objective 

genetic algorithm is addressed. The performance metrics this study will be using to 

measure performance of proposed multi-objective genetic algorithms have been 

described in this chapter. 

 

 

 

 

 



Chapter 2 

NSGA-II with Multi-parent Recombination Operators 

The concept of Multi-objective optimization and Genetic Algorithm is 

explained in previous chapter. This chapter describes the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II). This algorithm is also known as the state-of- the-

art MOEA. NSGA-II uses nondominated sort and crowding comparison operators 

along with SBX crossover operator. This chapter also describes two multi-parent 

crossover operators, MPX (multi-parent crossover with polynomial distribution) and 

MLX (multi-parent crossover with lognormal distribution). The encouraging results 

obtained by these operators on single objective problems as given in the study [31] 

by Raghuwanshi et al, has motivated us to test them on multi-objective optimization 

problems. This chapter also presents an attempt to improve performance of real 

coded NSGA-II by replacing SBX operator with MPX and MLX operators. This 

study also investigates suitability of multi-parent operators for solving MOPs.  

2.1  Overview of NSGA-II 
K. Deb et al. [17] has proposed the Elitist Non-dominating Sorting Genetic 

Algorithm (NSGA-II) and, due to its proven robustness and efficacy, it has been 

widely used as a reference to assess the performance of new MOEAs. It has 

remarkable differences with its predecessor, the Non-dominating Sorting Genetic 

Algorithm (NSGA) [44], other than the addition of an elitism mechanism. 

NSGA-II successfully combines the following key elements: 

1.  A fast-nondominated sorting approach. 

2.  A density estimator. 

3.  A crowded comparison operator. 

4.  Recombination operator 

5.  Mutation operator 

 

 



Pseudo-code of NSGA-II is given below: 

1.  Procedure NSGA-II (gen) 

2.  Randomly generate population of individuals Pt, (t=0) 

3.  Sort the population into a set of different domination levels by using 

nondominated sort 

4.  Assign the fitness to each individual as its non-domination level 

5.  Create an offspring population Qt, of size N, from Pt by using tournament 

selection, crossover and mutation operators 

6.  for t= 1 to gen do 

7.  Combine parent and offspring population to conform 

8. Rt = Pt U Qt 

9.  Perform non-dominating sorting to Rt and identify different fronts Fi, i = 

1,…, etc 

10. Set new population Pt+1 = ϕ, set a counter i = 0 

11. repeat 

12. Pt+1 = Pt+1 U Fi 

13.  i = i+1 

14.  until | Pt+1 | +| Fi| < N 

15.  Perform the crowding-sort (Fi) procedure and include most widely spread 

N - | Pt+1 | solutions by using crowded distance values in sorted Fi to Pt+1 

16. Create an offspring population Qt, of size N, from Pt by using crowded 

tournament selection, crossover and mutation operators 

17.  end for 

18.  end procedure 

In the above algorithm lines 3 and 4, refer to the process known as 

nondominated sorting; this process consists of classifying the population into 

several disjoint layers Fi ‗s (non-dominated sets); such that P = U Fi. The main 

feature of these classes Fi is that any two members of the same class are 

incomparable in the Pareto sense. As a second criterion for ordering, after 

considering the Pareto rank of each solution, the crowding distance value is used 

(Line 15). Crowding distance is an indicator of the density of individuals around a 

particular individual pi inside the population. For this, the average distance of two 

solutions, on either side of solution pi; is taken along each objective. To create an 

offspring population, binary tournament selection followed by recombination and 



mutation is used. In this case, a modification called crowded tournament is 

employed for selection. In this operator, a solution pi wins a tournament against 

other solution pj if pi has a better (smaller) Pareto rank or, in the case that both have 

the same rank value, when pi has a better crowding distance value. This last 

condition provides a way to proceed in case of incomparable solutions, and, in terms 

of the evolutionary process, it helps to maintain diversity.  

A brief description of non-dominated sorting procedure, density estimation 

procedure, crowded comparison operator and SBX crossover operator used in 

NSGA-II are given below. 

A fast non-dominated sorting approach: In order to sort a population of size N 

according to the level of non-domination, each solution must be compared with 

every other solution in the population to find if it is dominated. First, all individuals 

in the first nondominated front are found. In order to find the individuals in the next 

front, the solutions in the first front are temporarily eliminated from the population. 

The procedure is repeated to find all the subsequent fronts. The fast non-dominated 

sorting procedure returns a list of the non-dominated fronts. Procedure for the same 

is given below: 
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Density Estimation: To get an estimate of the density of solutions surrounding a 

particular point in the population the average distance of the two points on either 

side of this point along each of the objectives is adopted. The obtained quantity 

serves as an estimate of the size of the largest cuboids enclosing the point of interest, 

without including any other point in the population (the so-called crowding 

distance). The following algorithm is used to calculate the crowding distance of each 

point in the set c: 

_ 

 

Crowded Comparison Operator: The crowded comparison operator guides the 

selection process at the various stages of the algorithm towards a uniformly spread 

out Pareto-optimal front. Let us assume that every individual /in the population has 

two attributes. 

 1.  Non-domination rank 

 2.  Local crowding distance 
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That is, between two solutions with differing non-domination ranks we 

prefer the point with the lower rank. Otherwise, if both the points belong to the same 

front then the algorithm prefers the point which is located in a region with lesser 

number of points. 
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NSGA-II has made use of SBX crossover operator for recombination. In 

1995, K.Deb and his students developed the Simulated Binary Crossover operator 

(SBX). First, they have calculated the search power of the single-point crossover 

operator of binary coded GA and later the SBX operator is developed to have the 

similar search power (The search power of a crossover operator is defined as a 

measure of how flexible the operator is to create an arbitrary point in the search 

space.). The procedure of computing the children solutions y1 and y2 from parent 

solutions x1 and x2 is described as follows.  

A spread factor  is defined as the ratio of the absolute difference in children 

values to that of the parent values: 

2. 
1x2x

1y2y




  3. (2.1) 

 

The spread factor  signifies a spread of children points relative to that of the 

parent points.  

On multi-variable problem, the SBX operator performs variable-wise 

crossover using polynomial probability distribution.  

The working of the SBX operator is described as follows. In multi-variable 

crossover, for each variable that undergo crossover (depends upon the crossover 

probability), generate a random number ui between 0 and 1.  From the polynomial 

probability distribution function, find the ordinate i so that the area under the 

probability curve from 0 to i is equal to the ui.  The probability distribution is given 

as  
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In the above expression, the larger value of distribution index  offers a 

higher probability for creating near parent solutions and a small value of  allow 

distant solutions to be selected as offspring solutions.  
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After obtaining i using (2.3), offspring solutions are generated as follows          
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The SBX operator respects the interval schemata processing, in the sense that 

common interval schemata between parents are preserved in children. Thus during 

early iteration, parents being far away from each other, offspring are also created on 

the entire search space, thereby providing a good initial search of the entire space. 

When solutions converge near a good region, the parents are closer to each other and 

this operator provides a more focused search. This property makes the resulting GA 

self-adaptive.  

2.2  Multi-parent Recombination operators 
In this section, we see the details of multi-parent crossover operators. 

Usually, the crossover operator is applied to pairs of chromosomes, generating two 

offspring for each one of them, which are introduced in the population. However, 

multi-parent crossover operators have been proposed, which combine the features of 

more than two parents for generating the offspring. In general, sampling of more 

information from a population helps evolution process to bring better changes in the 

next generation. The studies on multi-parent recombination operators have given 

sufficient indication that they can enhance performance of GAs. The exploitative 

and explorative behavior of operators are due to use of probability distribution and 

more sampling of information due to use of more than two parents. 



The multi-parent polynomial distribution recombination operator (MPX) 

[31] is a multi-parent extension of simulated binary crossover operator (SBX) [23] 

and the multi-parent lognormal distribution recombination operator (MLX) [31] is a 

multi-parent extension of SBX with lognormal distribution (SBX-l) [24]. 

Raghuwanshi et al. in [31] used MPX and MLX operators for single objective 

optimization. A brief description of the two operators is given below. 

The prototype algorithm for the MPX operator is as follows: 

a. From population select best parent and pick other (μ-1) solutions randomly. 

b. For each gene (i=1,n) in real-parameter chromosome execute following steps 

i. Choose ui randomly from the interval [0, 1]. 

ii. Compute i using (2.5). 
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iv. Generate two genes around gene of best parent (say x
1
) using (2.7) 
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The operators based on polynomial distribution are more exploitative and 

exploitation range decreases with increase in distribution index of probability 

distribution (η) [31]. 



It is observed that operators with lognormal distribution are more explorative 

i.e it is capable to generate genes away from the parent gene. Their exploration 

range increases with increase in η. Also it is noticed that the probability of creating 

genes near the parent gene is almost zero [31]. 

A prototype algorithm for the MLX operator is as follows: 

a. From population select best parent and pick other (μ-1) solutions randomly. 

b. For each gene (i=1,n) in real-parameter chromosome execute following steps 

i. Choose ui randomly from the interval [0, 1]. 

ii. Compute i using (2.8). 
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Where z ~ N (0, 1) is standard normal variable. 

iii. Calculate D using  (2.6) 

iv. Generate two genes around gene of best parent (say x
1
) using (2.7) 

Exploration and Exploitation 

For multi-parent recombination operator, let‘s consider (…,xij-

1,xij,xij+1,…) ∈ [li, ui]  genes to be combined to generate genes with αi<= xij and  

βi>= xij . The action  interval [li, ui] can be divided into three regions:    [ li,αi], [αi, 

βi] and [βi ui]. These intervals may be classified as exploration or exploitation zones 

as shown in figure 2.1.  

 

 

The exploration and/or exploitation degrees may be assigned to any 

recombination operator based on the way in which these intervals are considered to 

generate genes. The interval in which a generated genes lead to refinement is called 

as exploitation zone and genes generated in the interval leads to discover new search 

 li                                i                xi
j               i                                ui  

Exploration     Exploitation     Exploration 

Fig 2.1 Action interval for (…,xi
j-1

,xi
j
,xi

j+1
,…) 



space is called exploration zone. During evolution process the values of αi and βi
 
are 

changing.  

 

 

 

Fig 2.2 Distribution of offspring solution around parent solution at 5 for MPX 

Fig 2.2 shows that the probability of generating offspring in the near 

neighborhood parent is more and the length of interval in which offspring are 

generated decreases with increase in η. The polynomial distribution based MPX 

operator is more exploitative and exploitation range decreases with increase in η.   

Fig 2.3 shows that the probability of generating offspring away from the 

parent is more and the length of interval in which offspring are generated increases 

with increase in η. The lognormal distribution based MLX operator is more 

explorative and its exploration range increases with increase in η (shown by long tail 

in graph).  For lognormal distribution probability of generating offspring near the 

parent is very less (shown by deep at 5 in graph) [31]. 
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Fig 2.3 Distribution of offspring solution around parent solution at 5 for MLX 

Any good search algorithm desires to explore a large search space in the 

beginning and the search should narrow down as it converges to the solution. If 

more than one parent is used in perturbation process, the range of perturbation may 

be adaptive and can be determined from the diversity of the parents on the fly. In 

self-adaptive recombination operators the extent of perturbation is controlled at run 

time. Operators like SBX, SBX-l, UNDX, and SPX have been tested for self-

adaptive behavior. [31] 

2.3  Modified NSGA-II  
In section 2.1 a brief description of NSGA-II is presented. Many researchers 

around the world have accepted NSGA-II for its better diversity and faster 

convergence in solutions. However, the reviews of the NSGA-II suggest the 

following short comings of the algorithm: 

In every generation NSGA-II performs nondominated sort on combined (parent 

+ offspring) population.  
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Nondominated sorting is complex (O(MN
2
)) and time consuming procedure. 

Crowding distance check is done within the last front only. More diverse 

solutions may lie in other fronts also. 

With the decrease of diversity among all solutions, search rates of overall 

solution lowers and local Pareto solutions is arrived prematurely because 

most of non-elitist solutions cannot participate in the genetic action fully, 

although the elitist strategy had improved the efficiency greatly.  

The Pareto-domination based selection in NSGA-II aims at driving the whole 

population towards the PS (PF). However, it has no direct control over the 

movement of each individual in its population and then it has no good 

mechanism to control the distribution of its computational effort over 

different ranges of the PF or PS. 

NSGA-II uses SBX crossover operator for recombination. SBX is parent-mean-

centric crossover operator i.e. it produces offspring near the mean of two 

parents.  

Above mentioned drawbacks of NSGA-II have opened scope for 

improvement and design some new schemes of selection of solution for formation of 

new generation to address the issues like convergence and diversity. Also there is 

need to design new MOGA frame work which is efficient. The crossover operator 

has always been regarded as the primary search operator in genetic algorithm (GA) 

because it exploits the available information from the population about the search 

space. Moreover, it is one of the components to consider for improving the behavior 

of the GA.  

As mentioned in the previous section (section 2.2) MPX and MLX operator 

have given encouraging results on unimodal & multimodal single objective 

functions. In this study an attempt to improve performance of NSGA-II algorithm, 

MPX & MLX operators are deployed in NSGA-II framework by replacing SBX 

operator. These operators are gene-based parent centric crossover operator and more 

than two parent take part in recombination. The performance of modified NSGA-II 

is investigated on six multi-objective optimization problems.  



2.4  Experimentation 
An experimental study is performed to investigate the behavior of NSGA-II 

with multi-parent crossover operators MPX and MLX in terms of convergence and 

diversity. Modified real-coded NSGA-II is coded in MatLab 7.1. Table 2.1 shows 

parameter setting used for experimentation. Most of the parameters are same as 

given in [17]. Only few extra parameters are included for multi parent recombination 

operators. In this work NSGA-II will perform crossover for 90% times while go for 

mutation only for 10% times. As suggested in [31] we have kept number of parents 

involved in crossover operation as 5. Test problems used in the study are KUR, 

ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. Table 1.2 in chapter 1 shows the number of 

objectives, number of variables, their bounds and the nature of the Pareto-optimal 

front for each problem.  

Disruptiveness of chromosome depends upon the number of genes changed 

due to recombination operation. This disruptiveness on the one hand leads to more 

diverse exploration that can prevent premature convergence, but on the other hand, it 

slows convergence speed at the same time. For both the operators the value of 

crossover probability is moderated i.e. pvc=0.5.We use the polynomial mutation 

with mutation probability of 1.0mp  for real-coded NSGA-II.  

TABLE 2.1 PARAMETER SETTING USED IN THE STUDY 

Parameter Values 

GA type NSGA-II 

Population size (N) 100 

Number of generations 250 

Crossover probability parameter (pc)  0.9 

Probability Distribution indices for crossover c  2 - 8 

Probability Distribution indices for mutation m  
1 for  MLX operator 

20 for MPX operator 

Probability of variable change (pvc)  0.5 

Number of Parents 5 

Number of children (λ) 2 



2.5  Results and Discussion 
30 random simulations are performed for each problem. All the results are 

taken after 250 generations. Six test problems are solved by NSGA-II-MPX and 

NSGA-II-MLX. Metric used for performance measure is Inverted Generational 

distance (IGD).Performance of NSGA-II-MPX & NSGA-II-MLX is compared with 

NSGA-II-SBX & NSGA-II-SBX-l. Table 2.2 shows the mean and variance of the 

IGD values for all six functions given by NSGA-II-SBX, NSGA-II-SBX-l, NSGA 

II-MPX and NSGA-II-MLX. 

NSGA-II-MPX and NSGA-II-MLX have performed better than NSGA-II-

SBX and NSGA-II-SBX-l in all functions. NSGA-II-MLX has better MeanIGD than 

NSGA-II-MPX but NSGA-II-MPX has less deviation. NSGA-II-MPX and NSGA-

II-MLX are able to maintain a better spread of solutions in the obtained non-

dominated fronts and have shown good convergence for multi-objective test 

problems. MPX and MLX are parent centric gene level crossover operators i.e. they 

create offspring near the best parent. If one parent among the selected parent is near 

to Pareto optimal front than MPX operator will create offspring near to this parent 

and hence better convergence will be achieved. SBX operators are Parent mean 

centric operators i.e. they create offspring near the mean of the two parents. If one 

parent is near to Pareto optimal front and other solution is away from Pareto optimal 

front, SBX operator will create offspring near the mean of two parents little away 

from Pareto optimal front. This is the reason SBX & SBX-l show poor convergence 

than MPX or MLX. 

TABLE 2.2 IGD METRIC FOR NSGA-II-MPX AND NSGA-II-MLX  

Function  
NSGA-II-SBX NSGA-II-SBX-l NSGA-II-MPX  NSGA-II-MLX  

MeanIGD S.D.IGD MeanIGD S.D.IGD MeanIGD S.D.IGD MeanIGD S.D.IGD 

ZDT1 0.291342 0.040218 0.280034 0.030227 0.278916 0.024618 0.27582 0.030171 

ZD T 2 0.289128 0.045332 0.293881 0.059430 0.273995 0.045896 0.264356 0.067330 

ZD T 3 0.302956 0.028767 0.372282 0.049391 0.274595 0.037762 0.265193 0.053949 

ZD T 4 0.138006 0.034446 0.104872 0.039518 0.087087 0.017339 0.055097 0.046780 

ZD T 6 0.314778 0.059011 0.311945 0.093906 0.266901 0.059899 0.235517 0.096936 

K U R 0.010036 0.001234 0.016382 0.010051 0.001385 0.0114287 0.00113 0.00975 



 

 

Fig 2.4. Nondominated Solutions  with 
NSGA-II-MPX on KUR 

 

Fig 2.7. Nondominated Solutions with 
NSGA-II-MPX on ZDT3 

 

Fig 2.5. Nondominated Solutions with 
NSGA-II-MPX on ZDT1 

 

Fig 2.8. Nondominated Solutions with 
NSGA-II-MPX on ZDT4 

 

Fig 2.6. Nondominated Solutions with 
NSGA-II-MPX on ZDT2 

 

Fig 2.9. Nondominated Solutions with 
NSGA-II-MPX on ZDT6 
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Simulation results with MPX Operator: We have graphically shown the results 

obtained by NSGA-II-MPX with parameters pc =0.9, pvc=0.5, c =1 and m =20 for 

problems KUR, ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. These figures demonstrate 

the abilities of multi parent crossover operator to help in converging to the true front 

and in finding diverse solutions in the front. Figures given above shows all 

nondominated solutions obtained after 250 generations.  

The problem KUR has three discontinuous regions in the Pareto-optimal 

front. Fig. 2.4 shows all nondominated solutions obtained after 250 generations with 

NSGA-II-MPX. For ZDT1 function, the Pareto-optimal front shown in fig 2.5 is 

continuous and has a uniform distribution of solutions across the front. The 

nondominated solutions on the problem ZDT2 is shown in Fig 2.6. This problem has 

a non-convex Pareto-optimal front. NSGA-II-MPX has found a better spread and 

more solutions in the entire Pareto-optimal region. Fig 2.7 shows nondominated 

solutions for ZDT3 function. The Pareto-optimal front is discontinuous and NSGA-

II-MPX has got success in finding all the discontinuous regions with uniform spread 

of non-dominated solutions. Real-coded NSGA-II-MPX get stuck at local Pareto-

optimal front as shown in fig 2.8, but the convergence and ability to find a diverse 

set of solutions are definitely better for ZDT4. The problem ZDT4 has 21
9
 or 

7.94(10
11

) different local Pareto-optimal fronts in the search space, of which only 

one corresponds to the global Pareto-optimal front. The Euclidean distance in the 

decision space between solutions of two consecutive local Pareto-optimal sets is 

0.25.  For ZDT6 problem, the non-convex Pareto-optimal front is shown in fig 2.9. 

The density of non-dominated solution is thick towards Pareto-optimal front. The 

exploitative nature of MPX operator has produced a search-bias that has helped the 

algorithm to converge better in all problems.  

Simulation results with MLX Operator: Simulation results of NSGA-II-MLX for 

six different  test problems i.e. KUR, ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 with 

parameters pc =0.9, pvc=0.5, c =1 and m =1 are shown in fig 2.10-2.15. 

 



 

Fig 2.10 Nondominated Solutions with 
NSGA-II-MLX on KUR 

 

Fig 2.13 Nondominated Solutions with 
NSGA-II-MLX on ZDT3 

 

Fig 2.11 Nondominated Solutions with 
NSGA-II-MLX on ZDT1 

 

Fig 2.14 Nondominated Solutions with 

NSGA-II-MLX on ZDT4 

 

Fig 2.12 Nondominated Solutions with 

NSGA-II-MLX on ZDT2 

 

Fig 2.15 Nondominated Solutions with 

NSGA-II-MLX on ZDT6 

 

The algorithm has converged to Pareto-optimal front for functions like 

ZDT1, ZDT2, ZDT3 and ZDT6 in 250 generations. Function ZDT4 requires more 

generations to converge to Pareto-optimal front. Around 400 generations are 

required for convergence near to Pareto-optimal front. MLX operator has given 

excellent performance for ZDT6 problem. Fig 2.15 shows Pareto-optimal front, 

which is non-uniform with very good density of non-dominated solutions on the 

Pareto optimal front. Lognormal distribution is explorative in nature hence MLX 

operator produces offspring away from parent. Also it samples more than two 

parent, more diverse solutions it produces which helps in a better search of decision 

variable space. NSGA-II-MLX has given good performance with all the six 

problems. 
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Effect of Probability Distribution Index for crossover c : We have tested MPX 

and MLX operators for parameter probability of distribution index c . For MPX 

operator we have selected parameter pc =0.9, pvc=0.5, m =20 and 
c = 2 to 8 in step 

of 2. Fig 2.16-2.19 Shows simulation results for MPX operator for ZDT1 problem. It 

is observed that with increase in the value of probability distribution index for MPX 

crossover
c , the Pareto-optimal front deteriorates i.e. discontinues with less number 

of non-dominated solutions in Pareto front and convergence is also weak.. The 

reason is the exploitation capability of MPX that decreases with the increase
c  

Hence the study suggests keeping value of c in the range of 1-4. 

 

 

 

 

 

 

 

 

 

Fig 2.16-2.19 show effect of different values of distribution index for MPX 

crossover on Pareto-optimal front and non-dominated solutions. Values of c

for fig 2.13-2.16 are 2, 4,  6 and 8 respectively 
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MLX operator with parameter pc =0.9, pvc=0.5, m =1 and c = 2 to 5 in step 

of 1 is tested on ZDT1 function. Algorithms behavior is shown graphically in fig 

2.20-2.23. 

ZDT1 is a simple problem and the algorithm convergences very nicely with 

MLX operator. Since MLX is explorative operator and it exploration (capability to 

produce genes away from parent genes) increases with increase in probability 

distribution index c . Higher explorative power has produces gene very much away 

from the parent genes and hence there are less number of non-dominated solution in 

the Pareto front. Poor performance of NSGA-II-MLX with higher values of c is 

seen in fig 2.20-2.23. Therefore we suggest keeping value of c  1 or 2. 
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Fig 2.20-2.23 show effect of different values of distribution index for MLX  

crossover  on Pareto-optimal front and non-dominated solutions.  

Values of c for fig 2.17-2.20 are  2,  3, 4, and 5 respectively 
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2.6  Key findings 
This chapter presents study of NSGA-II algorithm and some drawbacks of 

the schemes used in the algorithms for convergence and diversity preservation 

among the solutions. These observations points towards new research directions. 

Multi-parent recombination operators, MPX & MLX have been described. NSGA-II 

is modified by replacing SBX operator with MPX & MLX operators. This is an 

attempt to investigate suitability of MPX & MLX operator for multi-objective 

optimization.  Performance of NSGA-II-MPX & NSGA-II-MLX are tested on six 

test problems, KUR, ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. 

Following conclusions are drawn from this study, 

The empirical result shows that, the use of multiple parent recombination 

operators, MPX & MLX, have produced good results.  

Use of more than two parent solutions helps operator to sample more features 

into offspring that accelerated speed of convergence to global Pareto optimal 

front. 

NSGA-II-MPX and NSGA-II-MLX are able to maintain a better spread of 

solutions in the obtained nondominated fronts and shown good converge for 

multi-objective test problems. MPX and MLX operators have improved 

performance of NSGA-II algorithm. 

Exploitation and exploration capability of MPX & MLX operator depends on 

value of probability distribution index. This study suggest range of 

probability distribution index as [1, 4] for MPX operator and probability 

distribution index as 1 or 2 for MLX operator.  

 

 

 

 

 

 



Chapter 3 

Rank-based Selection Methods for MOGA 

In multi-objective Genetic algorithm a selection of individual is the crucial 

issue because the algorithm has to achieve two goals i.e. to maintain diversity along 

the Pareto optimal front and convergence towards the Pareto optimal front. The 

selection methods used for formation of next generation can be split broadly into 

Pareto and non-Pareto based selection methods. Non-Pareto based selection methods 

are also called as rank-based selection methods. This chapter discusses rank-based 

selection methods. Rank sum based Multi-objective Genetic Algorithm (RSMOGA) 

and Summation of Normalized Objective Value based Multi-objective Genetic 

Algorithm (SNOVMOGA) are introduced and their performance is investigated in 

terms of convergence and diversity on MOPs. This chapter also speaks about 

comparison of rank based selection schemes with Pareto dominance based selection 

schemes. 

3.1  Introduction 
Many researchers have shown that Genetic Algorithm (GA) is a robust 

search and optimization tool and has got the potential to solve optimization 

problems. Real-world optimization problems have more than one objective normally 

in conflict with each other. Due to the existence of multiple objectives, the selection 

criterion used for single objective is not suitable for multi-objective in evolutionary 

algorithms (MOEAs). The superiority (or dominance) of one solution over the other 

cannot be established with many objectives in mind. In multi-objective Genetic 

algorithm a selection of individual is the crucial issue because the algorithm has to 

achieve two goals i.e. to maintain diversity along the Pareto optimal front and 

convergence towards the Pareto optimal front. The selection process in multi-

objective GA occurs at two different phases 

 



1. Selections of individuals for reproduction i.e. chosen individuals those 

undergo crossover and mutation operation.  

2. Selection of individuals for formation of a next generation population.  

Selection mechanism should select individuals which are close to Pareto 

front and are well separated. Selection mechanism is concerned with convergence 

towards Pareto-optimal front and maintenance of diversity among the selected 

individuals [1]. Most of the selection mechanism used for reproduction is based on 

the fitness of individuals in the population. The fitness of a solution depends upon 

how well the solution addresses the objective function of the target problem. 

Selection usually favors the fitter individuals. The selection pressure can be control 

by varying the level of emphasis the process assigns to fitter individuals. A more 

stringent selection process that is more biased towards the fitter solutions will lead to 

exploitation while a less stringent selection process will put less pressure lead to 

exploration of population. The state-of-the art methods used for selection of parents 

for reproduction are proportionate selection, tournament selection and Rank-based 

selection. In proportionate selection (Roulette Wheel Selection or Spinning Wheel 

Selection) each individual is assigned a selection probability based on its fitness 

over the total fitness of the entire population. Once this is done, individuals are 

concatenated with each other to form a spinning wheel, with each portion of the 

wheel representing an individual and the size of each portion representing the 

corresponding selection probabilities. The basic idea of tournament selection scheme 

is quite straightforward. A group of individuals is selected randomly from the 

population. The individuals in this group are then compared with each other, with 

the fittest among the group becoming the selected individual. Rank-based selection 

schemes first sort individuals in the population according to certain criteria (usually 

according to their fitness). A function is then used to map the indices of individuals 

in the sorted list to their selection probabilities. All these methods can be applied 

directly to single objective problem but for multi-objective problem they need a 

single scalar fitness assignment method. [1] 



The selection methods used for formation of next generation can be split 

broadly into Pareto and non-Pareto based methods. Pareto based methods (MOGA, 

NSGA-II, SPEA etc.)[16, 17, 61] rely on ranking the population based on the direct 

measure of Pareto dominance within the population. A non-domination sorting 

process is executed in each of the generation to select the fitter solutions. The steps 

of finding the nondominated solutions are complicated and time consuming. Beside 

this, if the selection of parents is only based on the nondominated front number, the 

diversity of the final solution is likely to be reduced in some problems. For the 

commonly used non-domination sorting, the complexity to obtain the overall non-

dominated set is O (MN
2
). 

The non-Pareto based methods (for eg. Vector Evaluated GA) [35] generate 

a Pareto set implicitly, without making a direct comparison to check 

domination/non-domination with other members of the population. There are 

various non-Pareto based methods called as Rank-based method. Rank-based 

selection schemes first assign single scalar fitness to each individual and then sort 

individuals in the population according to single scalar fitness. Then a function is 

used to map the indices of individuals in the sorted list to their selection 

probabilities. Although this mapping function can be linear (linear ranking) or a non-

linear (non-linear ranking) but the idea of rank-based selection remains unchanged. 

However, the performance of a selection scheme depends largely on this mapping 

function.  

Rank-based selection methods use ranking technique to assign ranks to 

solutions. Ranking technique used should be Range-independent (effective ranges of 

the objective functions are the same). Range-independent ranking techniques require 

no knowledge of the effective range of each objective function that makes them 

independent of the nature of the objectives and overall problem itself. In addition to 

being range-independent, there is another significant, and usually overlooked 

property that, a good ranking method should have the ability to increase the 

'importance' of some objectives with respect to others in ranking of solutions so as to 

allow search to be directed to converge on Pareto-optimal front. Importance is a 



simple way to give ranking method additional problem-specific information, in order 

to direct a GA to faster convergence. [64] 

In this work we propose to use Rank-sum (RS) based technique as 

discrimination (ranking) technique along with adaptive-diversified selection method 

for formation of next generation. Rank-sum based Technique finds ranks of 

solutions in terms of each separate objective and use these ranks with a suitable 

aggregation function to calculate fitness values (Rank-sum) for the solutions. 

Adaptive-diversified selection mechanism use Rank-sum for formation of next 

generation of population of multi-objective genetic algorithm.  

In order to be effective, the Rank-based method must provide a fine-grained 

discrimination by considering how significantly better is a solution from the others 

with respect to each objective. Discarding this information can lead to wrong 

discrimination decisions and, can thus; negatively affect the search capabilities of a 

MOEA. To achieve this we propose Summation of normalized objective value 

(SNOV) ranking (discrimination) techniques along with improved selection method. 

Summation of normalized objective value based Technique normalizes each 

objective value and calculates sum of these normalized values of all objectives of an 

individual and uses this sum to assign ranks to the individual. Along with SNOV 

procedure, improved diversified selection with a pre-selection mechanism is used to 

overcome the problems that are encountered in Rank-sum based method. 

3.1.1  Related work 

High computational complexity associated with dominance based selection 

schemes has opened a scope for the development of rank-based (non-Pareto) 

selection schemes, which are less computationally complex.  Bentley and Wakefield 

[64] proposed a preference ordering over a set of nondominated points for 2-

objective problems. They compared six such ranking methods. They designed four 

methods: 1) weighted average ranking (WAR), 2) weighted maximum ranking 

(WMR – a basic extension to VEGA [35]), 3) sum of weighted ratios (SWR), and 4) 

sum of weighted global ratios (SWGR). The other two were, non-dominated sorting, 

and the equivalent of single-objective fitness (i.e. summing the objective values). In 



their methods any point in a collection P (whether nondominated or not) is 

considered as a vector of ranks. The sum of the elements in this vector provides a 

way to rank the points. All six methods were used with a basic binary coded genetic 

algorithm. 

Drechsler et al [65], proposed and tested the favor relation technique to 

provided a finer grained ordering over multi-objective points Essentially, point s is 

favored over point t if s is better than t on more objectives than on which t is better 

than s, and if we treat the pair wise favor relations as edges in a graph (and do some 

necessary processing), we can obtain an ordering. Di Pierro et al in [66, 67] have 

also investigated preference ordered ranking for multi-objective points. The 

technique offered the notion of ‗efficiency of order k‘, or ‗k-optimality‘. Another 

method winning score is proposed in [68]. The idea of the ‗Compressed Objective 

Genetic Algorithm‘ (COGA) [68] is to treat a many objective problem as a 2-

objective one, where one objective is winning score, which can impose an ordering 

on nondominated points, and the other is a helper-objective that ensures diversity. In 

[69] Knowles et al evaluated the relative quality of various ranking methods for 

nondominated-point and found that the average ranking (ARF) method is highly 

effective in comparison with the other methods. The next-best method was k-

optimality, while favor and random selection from the Pareto front both tended to do 

well. Knowles et al have also proposed metric to assess rank distributions in terms 

of their relative entropy.  If relative entropy is close to 1 it is ‗ideal‘ situation in 

which the points are totally ordered over |N| distinct ranks. It is zero in the case 

where the distribution simply gives every point the same rank.  

Suganthan et al. [70] proposed Rank-sum based sorting that works well for 

multi-objective evolutionary programming (MOEP). This is very simple and 

effective ranking technique for selection of nondominated solutions. Suganthan et al. 

have also proposed fast sorting technique and improved selection scheme for multi-

objective differential evaluation (MODE) in [71] [72]. 

All the above-mentioned ranking schemes are simple schemes of scalar 

fitness assignment in multi-objective problems. Schemes given in [64-69] are tested 



on relatively simple multi-objective test problems whereas schemes given in [70-73] 

are tested on complex problems. In this work use the schemes given in [70 & 71] in 

a new Multi-Objective Genetic Algorithms (MOGA) framework.  

 3.2  Two Rank-based selection methods 
In this section we review Rank-sum based selection and Summation of 

Normalized Objective Value based selection methods in detail. In this study we 

propose following two MOGA that employ rank-based selection methods 

RSMOGA (Rank-sum Sort based Multi-objective GA) uses Rank-sum (RS) 

ranking (fitness assignment) method along with adaptive diversified 

selection mechanism for multi-objective genetic algorithm.  

SNOVMOGA (Summation of Normalized Objective Value based Multi-

objective Genetic Algorithm) uses Summation of Normalized Objective 

Values (SNOV) based ranking technique and improved diversified selection 

mechanism as discrimination technique for selection of individuals of next 

generation in a multi-objective genetic algorithm. 

3.2.1  Rank-sum Sorting 

Rank-sum sorting is a simple discrimination technique and can be used for 

making discrimination among the solutions in presence of multiple objectives. It is a 

range-independent ranking method i.e. fitness ranking of solutions, defined by the 

ranking method does not change when the effective range of objective changes. The 

idea is to divide every objective‘s range into 10 ranks for a population of 10 

solutions. Then assign rank to individual objective-value of solution and calculate 

sum of all the objective ranks of the solution. This single scalar value is called Rank-

sum (fitness) of the solution. An Algorithm for Rank-sum calculation is as follows. 

We assumed that all are minimizing problems (maximizing problems can be 

converted to minimizing problems by multiplying -1): 

Step 1 Select one unranked objective 

Step 2 Get the maximum and minimum value of the selected objective to 

calculate the range for this objective 



Step 3 Divide the objective‘s range into 10 grids (10 fuzzy ranks) i.e. grid size = 

(maximum-minimum) / Number of Ranks 

Step 4 For every point in the search space, identify which grid it belongs to and 

assign the corresponding rank to the point for the selected objective. 

Step 5 If all objectives have been selected go to step 6, otherwise repeat Step 1-

4. 

Step 6 Sum the rank of all objectives of each solution to obtain the Rank-sum of 

the solution. Also obtain the Rank-sum for all solutions in population. 

Example: For a population of ten solutions, if minimum objective value = 0.1 

and maximum objective value = 1.0 then grid size will be 0.09. Solution having 

Minimum objective value is assigned Rank 1 and solution having maximum 

objective value is assigned rank 10. Ranks of remaining solutions having objective 

value (x) is decided as  

0.1>x<= (0.1+0.09=0.19) then Rank is 2  

0.19>x<= (0.1+2*0.09=0.28) then Rank is 3 

 … 

0.63>x<= (0.1+8*0.09=0.82) then Rank is 9. 

 Working of Rank-sum calculation algorithm is illustrated with the sample 

example as shown in Table 3.1.  

TABLE 3.1 RANK-SUM ASSIGNMENT TO 10 SOLUTIONS 

Objective1 Rank1 Objective2 Rank2 
Rank1+ Rank2 = 

Rank-sum 

0.431 4 0.340 4 8 

0.314 3 0.364 4 7 

0.393 4 0.591 7 11 

0.934 9 0.264 3 12 

0.314 3 0.364 4 7 

0.393 3 0.591 7 10 

0.100 1 0.038 1 2 

0.458 5 0.869 10 15 

1.000 10 0.664 8 18 

0.870 8 0.012 1 9 



It is an alternative to computationally complex non-domination sorting. 

Rank-sum calculation algorithm Step 2 requires O(N) comparisons to find the 

maximum and minimum value. Step 4 requires O(N) comparisons to identify the 

corresponding rank. Step 5 recursively call step 1-4, thereby requiring O(MN) 

(where M is the number of objectives and N is the number of solutions) 

computations of the above procedure. For non-domination sorting, the complexity to 

obtain the overall nondominated set is O (MN
2
). Complexity of Rank-sum is linear 

and hence it requires less CPU time. All these observations lead us to select Rank-

sum sorting for multi-objective genetic algorithm.  

3.2.2   Adaptive Diversified selection (DS) scheme 

Selection scheme used in the formation of population for next generation in 

any genetic algorithm is responsible for maintaining the diversity i.e. solutions 

should be distributed in such a way that they cover entire Pareto front. A scan 

percentage P is set and all the individuals having Rank greater than P will not be 

considered for selection. The proposed diversified selection scheme adaptively set 

this scan percentage. In the initial generation P is set to 90 to 80 of total rank and as 

generation progresses P is gradually reduced to 50 percent of the total rank. The 

adaptive diversified selection scheme maintains two sets of population namely, 

preferential set and backup set. All the solutions with rank less than P and minimum 

Rank-sum are placed in the preferential set where as solution with higher Rank-sum 

will be kept in back-up set. Solutions from preference set will be selected as 

members of next generation. If there is insufficient number of solutions in 

preference set then solutions from back-up set will be selected as members of next 

generation. The steps of building the preferential set are as follow: 

Step 1 Select one unselected objective 

Step 2 For the selected objective, scan P percentage of the total ranks. For each 

rank (if this rank is not empty, otherwise just continue to the next rank) of the 

selected objective, the solutions with the lowest Rank-sum will be chosen to 

enter preferential set. 



Step 3 If all objectives have been selected go to step 4. Otherwise repeat Step 1-

2. 

Step 4 Collect the solutions not inside the preferential set and put them in the 

backup set. 

Table 3.2 shows an example of formation of preferential set. First select 

solution having minimum objective1 rank (obj1_rank=1 i.e. solution7), check if 

other solutions have same obj1_rank. No other solutions have same obj1_rank. 

Place, solution7 in the preferential set. Now select next minimum obj1_rank 

(obj1_rank=3). Since more than one solutions have obj1_rank=3 select solution 

having minimum Rank-sum. But solution 2 and 5 have same Rank-sum (Rank-

sum=7). In this situation selection scheme will select randomly between 2 and 5. 

Here solution 2  is chosen and placed in preferential set. Repeat the procedure for all 

the obj1_rank less than P (P=9). Thus we get preferential set according to objective 

1 having solutions 7,2,1,8,10. Now select objective 2 and repeat the same procedure. 

We get preferential set according to objective2 having solutions 7,4,2,6,9. Combine 

the two sets and remove duplicates. The final preferential set has solutions 

1,2,4,6,7,8,9 and 10. Solution 3 and 5 will be placed in backup set.   

TABLE 3.2 RANK-SUM  BASED SELECTION METHOD 

S No 
Obj1 

rank 

Obj2 

rank 

Rank 

sum 

Sol
n
 in Pref  

set (according 

to obj1) 

Sol
n
 in Pref  

set (according 

to obj2) 

Sol
n
 in Pref  

set 

1 4 4 8 

7,2,1,8,10 7,4,2,6, 9 
1,2,4, 6,7, 

8,9 and 10 

2 3 4 7 

3 4 7 11 

4 9 3 12 

5 3 4 7 

6 3 7 10 

7 1 1 2 

8 5 10 15 

9 10 8 18 

10 8 1 9 



3.2.3  Ranking based on SNOV  

Ranking method must provide a fine-grained discrimination by considering 

how significantly better is a solution from the others with respect to each objective. 

Suganthan et al. proposed the SNOV (Summation of Normalized Objective Value) 

based ranking technique for differential evaluation [72]. We have planned to use it in 

Genetic algorithm.  

Throughout the GA evolution, every separate objective (fitness) function in a 

multi-objective problem will return values within a particular range. This 'effective 

range' of every objective function is determined not only by the function itself, but 

also by the domain of input values produced by the GA during evolution. These 

values are the parameters to be evolved by the GA and their exact values are 

normally determined initially by random, and subsequently by evolution. Every 

separate objective function will have a different effective range. This means that a 

bad value for one could be a reasonable or even good value for another. If the results 

from these two objective functions were simply added to produce a single fitness 

value for the GA, the function with the largest range would dominate evolution. GA 

should treat all objectives in a multi-objective problem should be treated equally i.e. 

all the effective ranges of the objective functions should be the same. To make 

effective range of the entire objective functions equal, we normalize objective 

values. After normalization effective range of all the objective function will be zero 

to one. The summation of normalized objective value will be treated as single scalar 

fitness of the solution. The SNOV procedure is given below: 

Step 1 For m = 1 to M (number of objectives) 

Step 2 Find the maximum max f and minimum min f objective values of the m
th

 

objective and calculate the range of the m
th

 objective. 

Step 3 Normalize the m
th 

objective values of all members using the equation 

below:   fm(x)=( fm(x) - fmin)/ (fmax - fmin) 

where  fm  is the normalized m
th

 objective value. 

Step 4 Endfor 

Step 5 For i = 1 to NP (population size) 



Step 6 Sum all normalized objective values of the member to obtain a single 

value. 

Step 7 End for 

Improved selection (IS) 

Diversified selection proposed in [70], maintains diversity but the problem 

with the scheme is excessive selection of individuals along the two objective axes 

i.e. more number of individuals having minimum value of objective are selected. To 

achieve diversity along the front it is expected that more number of solutions having 

tradeoff of objectives should be selected in the approximate set of individuals. A 

genetic drift is seen in the population as generation progresses. To overcome this 

problem, an improved diversified selection is proposed. In the proposed method, a 

pre-selection is added before the diversified selection. In the pre-selection, a 

reference point is identified in every generation and this point is used to remove the 

bad individuals in the current population. The reference point (in normalized 

objective space) is identified using the following equation: 

objective = 0.5 – (0.5* gen/ Max_gen)                                                   (3.1) 

where objective is the i
th

 objective value of the reference point (all the 

objective value are the same). Max_gen is the maximum generation number while 

gen is the current generation number. The reference point is starting at the centre of 

the objective space and gradually moves to the origin along the search process. 

Figure 3.1 (line) shows how the reference point moves in a two objective case. With 

the reference point, some individuals are removed from the current population 

before diversified selection. The details are given below 

 

 

 

 



 

Fig.3.1. Reference point selection 

Step1 Identify the reference point using equation (3.1) 

Step2 Find the closest individual in population to the reference point and set it as 

reference individual. 

Step3 Remove all the individuals that are dominated by the reference individual. 

All the selected solutions are kept in the preferential set and remaining 

solutions are kept in backup set. The solutions inside the preferential set will be 

selected first for evolving. If there are insufficient solutions in the preferential set, 

solutions in the backup set will be selected based on the summation of normalized 

objective values. The steps for obtaining the two sets are given as: 

Step1 For m = 1 to M (number of objectives) 

Step2 Evenly divide the range of the objective space into 100 bins. 

Step3  Scan P percentage of the 100 bins  (i.e. from bin 1 to P, P may be chosen 

as 80 or 90). 

Step4  For each scanned bin (if this bin is empty, otherwise just continue to next 

bin), the solution with the smallest summation of normalized objective 

values will be chosen to enter preferential set. 

Step5 End For 

Step6 Accumulate the solutions excluded from the preferential set and store them 

in backup set. 

An example of above-mentioned techniques is given in the table 3.3. The 

two objective values are normalized using the SNOV procedure. Table 3.3 shows the 

normalized objective values of population of size 10 for the first generation. Divide 
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objective space into 100 bins. The reference point is at the centre of the objective 

space whereas the reference individual is point D. All the individuals that are 

dominated by point D (i.e. points G, I and J) will be removed from current 

population and are kept in backup set. Now set the bin scan percentage P to 80 and 

start selecting individuals from current population for preferential set. First bin is 

scanned and individual present in the bin will be kept in Preferential set. If two or 

more individuals belong to same bin than individual having lower SNOV value will 

be kept in preferential set and other individuals will be kept in backup set. Next bin 

will be scanned and individuals will be selected for preferential set. In this way 80% 

bins will be scanned and A, B, C, D, E, F and H are kept in preferential set. Note that 

at least NP individuals should be kept as parents for next generation. If too many 

individuals are removed, the ones with better SNOV will restored until the number 

of individuals reach NP (In this case, the diversified selection step is skipped). 

Complexity of scanning procedure is (M*Number of Bins Scanned*N) where N is 

number of individuals in current population. 

 

3.3  Experimental design  
An experimental study is performed to investigate the behavior of the 

selection approaches in terms of convergence and diversity. To demonstrate the 

proposed schemes of ranking for selection of parents in MOGA, we have 

TABLE 3.3 SUMMATION OF NORMALIZED OBJECTIVE VALUES AND IMPROVED 

SELECTION OF INDIVIDUALS FOR FIRST GENERATION OF SNOVMOGA 

Pop 
Normalized 

objective value1 

Normalized 

objective value2 

Summation of 

Normalized 

objective values 

Ref. Pt. Pref. set 

A 0.51231 0.00011 0.51242 

D 

A,B, C, D, 

E, F and 

H 

B 0.25901 0.15032 0.40933 

C 0.00032 0.39321 0.39353 

D 0.49897 0.50708 1.00605 

E 0.39321 0.41367 0.80688 

F 0.40027 0.60011 1.00038 

G 0.71967 0.51231 1.23198 

H 0.28901 0.71067 0.99968 

I 1.00000 0.85966 1.85966 

J 0.85945 1.00000 1.85945 



implemented MOGA using MatLab 7.1.  The experimentation carried out for two 

different MOGAs: 

Part A: RSMOGA uses RS ranking method along with adaptive diversified 

selection mechanism for multi-objective genetic algorithm.  

Part B: SNOVMOGA uses SNOV based ranking technique and improved 

diversified selection mechanism  

Common settings and details of experimentation for Part A and Part B are 

given below: 

GA procedure: The MOGA procedure used for experimentation is given below. 

Part A uses it with RS-DS and Part B uses it for SNOV-IS. 

Step1. Initialize Population (P) of size N 

Step2. Evaluate objective functions and assign fitness to each individual of P 

Step3. Apply RS/SNOV procedure on P to assign scalar fitness to every 

individual in P 

Step4. Select individuals from P for crossover using Multi-level Tournament 

selection.  

Step5. Perform crossover in initial generations using MLX operator [31] and in 

later generations algorithm uses MPX operator [31]. 

Step6. Repeat Step 4 and 5 till Offspring Population (OP)  size = N 

Step7. Combine P and OP to produce Combined Population(CP) of size=2N. 

Remove all individuals from P and OP. 

Step8. Apply Ranking scheme (RS/ SNOV) on CP 

Step9. Select N individuals as parent for next generation using adaptive 

diversified selection / improved selection method and store them in P 

Step10. Check, if the stopping criterion (Max. No. Of generations) is met, and 

then present individuals in P as Pareto optimal solutions. Otherwise, the 

procedure is repeated from Step 2. 



Any good search algorithm must explore a large search space in the 

beginning and the search should then narrow down as it converges to the solution. 

To support this property explorative operator MLX is used in the initial generations 

(30-40 percent of maximum generation) and in the later generations exploitative 

operator MPX is used in the algorithm. 

Since algorithm is using parent centric multi-parent crossover operators a 

multilevel tournament selection is used. The steps for multilevel tournament 

selection are given below: 

Select two pairs of solutions randomly. Compare Rank-sum/SNOV of each 

pair. The comparison of two pairs will generate two winner solutions. Again 

Compare Rank-sum/SNOV of pair winner solutions. This will produce the 

Tournament winner solution. This tournament winner is treated as best parent and 

MLX & MPX generate offspring near this best parent. 

Multilevel tournament selection increases selection pressure that give better 

chance to select more fit parents for reproduction.  That may help to speed up the 

convergence. 

Multi-parent crossover operators: Multi-parent recombination operator combines 

the features of more than two parents to generate offspring. In general, sampling of 

more information from a population helps evolution process to bring better changes 

in the next generation. The performance of RCGA on a particular problem strongly 

determined by the degree of exploration and exploitation associated with the 

crossover operator being applied. MPX and MLX are the two parent centric multi-

parent recombination operators where child solutions are generated around one 

parent solution using other parent solutions. The degree of exploration and 

exploitation can be controlled by using a proper value of distribution index of 

probability distribution used by them. MPX operator is more exploitative in nature 

and the exploitation range decreases with increase in η. The MLX is explorative in 

nature i.e. it is capable to generate genes away from the parent gene. Its exploration 

range increases with increase in η. [17] 



Test problems and performance indicator: The test problems (UF1-UF9) in this 

work are taken from CEC2009 special session and   competition [10]. The IGD 

(Inverted Generational Distance) metric is used as performance indicator to quantify 

the quality of the obtained results [1]. The IGD metric measures ―how well is the 

Pareto-optimal front represented by the obtained solution set‖.  

PC configuration: 

System: Microsoft Windows XP 

RAM: 2.00 GB 

CPU: Pentium 4, 2.99GHz 

Parameter settings: 

Population size (N): 100 (for 2 objectives) and 150 (for 3 objectives) 

Number of generations: 3000 

Crossover probability (pc): 0.9 

Probability Distribution indices for MPX : 2 

Probability Distribution indices for MLX : 6  

Number of Parents:  5 

Number of children (λ): 2 

Bin scan Percentage P( Improved selection) : 80% 

Scan Percentage P (Adaptive diversified selection): 90%-50%( P reduces by 

10% after every (Number of Generations/10) generations till P reduces to 

50%). 

TABLE 3.4 THE  IGD METRIC FOR RSMOGA 

Problem Min Max Mean Std 

UF1 0.042128 1.000722 0.064189 0.095339 

UF2 0.014962 0.546735 0.020020 0.016462 

UF3 0.022385 0.044631 0.031159 0.004444 

UF4 0.012623 0.059979 0.028890 0.006118 

UF5 0.774876 3.776223 0.978930 0.407084 

UF6 0.265128 2.838803 0.370197 0.289605 



UF7 0.010607 0.669267 0.019931 0.013800 

UF8 1.225456 4.956260 1.83609 0.523283 

UF9 0.550592 5.966486 0.988528 0.580680 

 

3.4  Discussion on results 
This section covers discussion on results obtained in experimentation 

Part A: 30 random simulations are performed for each problem with RSMOGA The 

minimum (Min), maximum (Max), mean, and standard deviation (Std) of the IGD 

metric are reported in Table 3.4 and figure 3.2-3.10 shows plot of approximate 

solutions for function UF1-UF9 with RSMOGA. For seven bi-objective instances, 

RSMOGA found good   approximation to UF3, UF4 and UF7 but performed poorly 

on UF5 and UF6. It has given comparable results for UF1 and UF2.For three 

objective instances; RSMOGA has shown very poor performance for UF8 and UF9.  

RSMOGA algorithm converges to near to Pareto-optimal front with good 

spread in nondominated solutions on Pareto-optimal front in less than 1000 

generations for some functions. Further use of diversified selection of parents for 

next generation has contributed to good spread of solutions as evident from the IGD 

values given in the table V. For other functions to some extent it has found global 

convergence but the complete Pareto-optimal frontier is not discovered. For 

functions, UF5 and UF6, RSMOGA fails to converge to Pareto-optimal front. Both 

the functions have discontinuous Pareto front.  

The objective function profile is multi-modal near the global Pareto-optimal 

frontier, and a slight perturbation in the optimization variables causes the solutions 

to become dominated. Also, the phenomenon of genetic drift causes the population 

to follow the good solutions, which get discovered early in the search process. This 

genetic drift results in the clustering of the solutions around these points. Further 

Rank-sum technique fails on three objective functions UF8 and UF9. The reason is 

multiple solution share same rank as number of objective and size of population 

increases, the discrimination among the solution becomes difficult. Even the use of 

explicit diversity maintenance technique won‘t serve the purpose and hence the 

algorithm fails to converge on the true Pareto-optimal front.  RSMOGA has shown 



good performance on few bi-objective functions having convex, non-convex and 

continuous Pareto fronts. 

 
Fig.3. 2 Best approximate to UF1 (RSMOGA) 

 
Fig.3. 5 Best approximate to UF4 (RSMOGA) 

 
Fig. 3.3 Best approximate to UF2 (RSMOGA) 

 
Fig 3.6 Best approximate to UF5 (RSMOGA) 

 
Fig. 3.4 Best approximate to UF3 (RSMOGA) 

 
Fig 3.7 Best approximate to UF6 (RSMOGA) 
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Fig. 3.8  Best approximate to UF7 (RSMOGA) 

 

Fig. 3.9 Best approximate to UF8 (RSMOGA) 

 

Fig. 3.10. Best approximate to UF9 (RSMOGA) 



Part B: 30 random simulations are performed for each problem with SNOVMOGA. 

The minimum (Min), maximum (Max), mean, and standard deviation (Std) of the 

IGD metric are reported in Table 3.5 and figure 3.11-3.19 shows plot of approximate 

solutions for function UF1-UF9 with SNOVMOGA. For seven bi-objective 

instances, SNOVMOGA found good   approximation to UF2, UF3, UF4 and UF7 

but performed poorly on UF5 and UF6. It has given comparable results for UF1.For 

three objective instances; SNOVMOGA has given comparable performance for UF8 

and shown good performance for UF9. The algorithm fails on functions having 

discontinuous Pareto fronts.  

The possibility of different rank (SNOV) assigned to every solution in the 

population is very high. So discrimination among the solution at the time of 

selection as parents becomes easy and hence a good (fit) and divorced set of parents 

leads to improved performance of the algorithm in terms of convergence and 

diversity. The proof of the same is given in table 3.5 in the form of IGD values. 

Discrimination among the solution is not difficult even the number of objective 

increases. 

TABLE 3.5 THE  IGD METRIC FOR SNOVMOGA 

Problem Min Max Mean Std 

UF1 0.040123 1.000742 0.0573916 0.085339 

UF2 0.009862 0.526735 0.0110476 0.016462 

UF3 0.022385 0.044631 0.0311205 0.004444 

UF4 0.012623 0.059979 0.0162622 0.006118 

UF5 0.774876 1.776223 0.8196147 0.407084 

UF6 0.265128 1.838803 0.3116606 0.289605 

UF7 0.009107 0.669267 0.0104281 0.013800 

UF8 0.225452 1.956260 0.3225753 0.323283 

UF9 0.250592 1.00486 0.1084608 0.1806802 

 

 

 

 



 

 

 

Fig. 3.11. Best approximate to UF1 (SNOVMOGA) 

 

Fig. 3.14. Best approximate to UF4  
(SNOVMOGA) 

 

Fig. 3.12 Best approximate to UF2 (SNOVMOGA) 

 

Fig.3.15.Bestapproximateto UF5  
(SNOVMOGA) 

 

Fig. 3.13. Best approximate to UF3 (SNOVMOGA) 
(SNOVMOGA) 

 

Fig. 3.16. Best approximate to UF6  
(SNOVMOGA) 
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Fig.12. Best approximate to UF2 
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Fig. 3.17. Best approximate to UF7 (SNOVMOGA) 

 

Fig. 3.18. Best approximate to UF8 (SNOVMOGA) 

 

Fig. 3.19. Best approximate to UF9 (SNOVMOGA) 
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TABLE 3.6 COMPARISON OF  CPU TIME OF  RANK-SUM, SNOV  AND 

NONDOMINATED  SORTING TECHNIQUES 

Problem 
Rank-sum Sort 

(in seconds) 

SNOV Sort  

    (in seconds) 

Non-dominated Sort 

(in seconds) 

UF1 61.984 341.922 1008.341 

UF2 32.754 377.031 1014.821 

UF3 53.016 362.673 1028.630 

UF4 34.890 310.475 1002.473 

UF5 168.892 390.539 1068.459 

UF6 54.782 392.531 1015.378 

UF7 53.407 320.569 1013.489 

UF8 60.062 358.638 1104.672 

UF9 76.625 360.521 1100.592 

3.5 Performance Comparison  

3.5.1  Simulation Speed 

Further experiments are performed to find computational efficiency of the 

proposed techniques. For the Rank-sum and SNOV method, it requires O(N) 

comparisons to find the maximum and minimum values and O(N) comparisons to 

identify the corresponding bins for each objectives. In total, the complexity of each 

methods is O(MN), where M is the number of objectives and N is the number of 

solutions. From the complexity calculations, we can observe that the complexities of 

the Rank-sum and SNOV methods are in linear form while non-domination sorting 

is non-linear. This will reduce the CPU time of the RSMOGA and SNOVMOGA. 

For the commonly used non-domination sorting, the complexity to obtain the overall 

non-dominated set is O (MN
2
).  

Table 3.6 shows the CPU time (in seconds) taken by the Rank-sum, SNOV 

and nondominated sorting techniques on problems UF1-UF9. From the table data it 

is clear that Rank-sum sorting comes out to be winner among the three techniques. 

Rank-sum sorting is a simple technique, which makes use of simple aggregation 

function to assign scalar fitness to the individuals in the population and a less 

complex diversified selection scheme for formation of next generation of population. 

Less number of scans for fitness assignment and selection of individuals has greatly 



helped in reduction in computation time and hence enhancement in the efficiency of 

the algorithm. 

SNOV sorting has outperformed nondominated sort but it is less efficient 

than Rank-sum sort. Reason for it is that though SNOV use simple aggregation 

function to find sum of normalized objective value and assign the sum as scalar 

fitness to the individuals so that they can be discriminated at time of selection for 

formation of next generation population. Further SNOV used improved diversified 

selection, which involves a pre-selection method. This pre-selection method is an 

overhead as far as efficiency is concern otherwise has a great advantage in selection 

of trade-off solutions.  Number of iteration increases in pre-selection method and 

hence SNOVMOGA requires more CPU time than RSMOGA but less CPU time 

than non-dominated sort. It is proved that the proposed non-Pareto based techniques 

are computationally efficient than Pareto-dominance based techniques. 

3.5.2   Rank distribution 

Corne and Knowles [69] proposed to measure the relative entropy of the 

distribution of ranks induced by a method in order to analyze its effectiveness. They 

described this measure as follows: consider a population of N ranked solutions 

(there are at most N ranks and at least 1). The relative entropy of the distribution of 

ranks D is give by: 
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Where D(r) denotes the number of solutions with rank r. re(D) tends to 1 as 

we approach to the ideal situation in which each solution has a different rank. On the 

other hand, when all individuals share the same ranking position, re(D) is equal to 

zero. Thus, it is supposed that a ranking method providing a richer ordering would 

lead to a better performing optimization scheme. For experimentation population 

size of 1000 is taken and function used is UF1. Figure 3.21   shows the relative 



 

Fig. 3.21 Comparison of convergence and diversity of RSMOGA and 

SNOVMOGA for UF1 function  
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Fig.3. 20. Comparison of Relative Entropy of RSMOGA with SNOVMOGA 
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From figure 3.21 it is clear that SNOV has better rank distribution than 

Rank-sum technique. The reason behind this performance is that SNOV technique 

assigns unique SNOV (Rank) to every solution in the population whereas Rank-sum 

assigns same rank to multiple solutions and hence the ranking is less ordered. SNOV 

technique is fine-grained ranking technique. 

3.5.3    Convergence and diversity 

Experiments are performed to show that how effectively the two proposed 

schemes handle the issue of convergence and diversity. The figure 3.22 shows plot 

of IGD metric for UF1 function for RSMOGA and SNOVMOGA. It is clear from 

the figure that SNOV based ranking and diversity maintenance scheme have given 

better convergence and diversity than the Rank-sum based scheme. The reason is the 

fine-grain ranking of SNOV and the reference point based selection (pre-selection) 

of individuals for formation of next generation population. For all the functions 

SNOVMOGA has given better convergence and diversity than RSMOGA. 

3.5.4   Comparison with other algorithms 

The hybrid AMGA (Archive-based Micro Genetic Algorithm) [73] is a 

constrained multi-objective evolutionary optimization algorithm. For the purpose of 

selection, AMGA uses a two-tier fitness assignment mechanism; the primary fitness 

is the rank, which is based on the domination level, and the secondary fitness is 

based on the diversity of the solutions in the entire population. The gradient-based 

local optimizer used with AMGA is the Sequential Quadratic Programming (SQP) 

algorithm. SQP is used to speed-up the search process and obtain an improvement in 

the objective function value as quickly as possible. 

In [70], Multi-objective evolutionary programming (MOEP) using fuzzy 

Rank-sum with diversified selection is introduced. The performances of this 

algorithm as well as MOEP with non-domination sorting on the set of benchmark 

functions provided for CEC2009 Special Session and competition on Multi-

objective Optimization are reported. 

Performance of RSMOGA and SNOVMOGA is compared with hybrid 

AMGA and MOEP in Table 3.7. The table shows mean IGD of the four algorithms. 



RSMOGA has outperformed the two algorithms AMGA and MOEP, on UF3, UF4 

and UF7 whereas given similar results for UF1. For functions UF5 and UF6 

RSMOGA fails, so the primary cause of this behavior is the objective function 

profile, which is multi-modal near the global Pareto-optimal frontier and a slight 

perturbation in the optimization variables causes the solutions to become dominated. 

Also, the phenomenon of genetic drift causes the population to follow the good 

solutions, which get discovered early in the search process. This genetic drift results 

in the clustering of the solutions around these points. From the obvious discussion 

we can comment that RSMOGA has performed well on functions having convex, 

non-convex and continuous Pareto fronts but fails on discontinuous Pareto fronts. 

TABLE 3.7 COMPARISON OF SNOVMOGA WITH RSMOGA , AMGA AND MOEP 

Problem 
SNOVMOGA RSMOGA AMGA MOEP 

MeanIGD MeanIGD MeanIGD MeanIGD 

UF1 0.057391 0.064189 0.035886 0.059604 

UF2 0.011047 0.026720 0.016236 0.018911 

UF3 0.031120 0.031159 0.069981 0.099172 

UF4 0.016262 0.028890 0.040621 0.042761 

UF5 0.819614 0.978930 0.094057 0.224524 

UF6 0.311660 0.370197 0.129425 0.103114 

UF7 0.010428 0.019931 0.057076 0.019733 

UF8 0.322575 1.836091 0.171251 0.423023 

UF9 0.108460 0.988287 0.188611 0.342012 

 

SNOVMOGA has outperformed RSMOGA in almost all the test functions. 

SNOVMOGA has given good performance for function like UF1, UF2, UF4, UF7, 

UF8, and UF9 when compared with MOEP, whereas on functions UF2, UF3, UF4, 

UF7 and UF9, SNOVMOGA has shown improvement over hybrid AMGA. 

  



3.6  Key Findings 
In this chapter, two non-Pareto based selection approaches, Rank-sum and 

Summation of Normalized Objective Value as an alternative to Pareto-dominance 

based selection have been reviewed. Two multi-objective Genetic algorithm 

RSMOGA and SNOVMOGA based on above-mentioned selection approaches have 

been introduced, implemented and tested on unconstrained test problems of CEC09 

test suit. Experiments have been performed to investigate the search capability of 

these algorithms and the effectiveness of the two approaches in handling the issues 

of convergence and diversity in multi-objective optimization problems. Also the two 

methods are compared with Pareto-dominance based non-dominated sorting 

technique. 

Experimental results presented in the chapter indicate that the proposed 

algorithms are able to guide the search process towards the optimum for the seven 

bi-objective and the two 3-objective test functions. SNOV based selection technique 

is fine-grained ranking technique and provides high order ranking and has helped the 

SNOVMOGA to give better convergence and diversity in comparison to RSMOGA 

and non-dominated sort. On the other hand RSMOGA has shown better 

computational efficiency than SNOVMOGA and non-dominated sort. Rank-sum 

sort is less complex technique and adaptive diversified selection requires less 

iteration for selection of solutions for next generation.  

Both RSMOGA and SNOVMOGA have shown better convergence and 

diversity in all test functions having continuous convex and nonconvex Pareto fronts 

but performed poorly on functions having discontinuous Pareto fronts.   

 

 

 

 

 

 



Chapter 4 

Decomposition based MOGA with Opposition Based 

Learning (OBL) 

MOP can be solved either by considering MOP as a whole or by using 

decomposition methods which solves scalar optimization sub problems 

simultaneously by evolving a population of solutions. There are several approaches 

for converting the problem of approximation of the PF into a number of scalar 

optimization problems. This chapter describes two decomposition approaches 

namely weighted sum approach and Tchebycheffs scalarization approach. These 

approaches require uniformly distributed weight vectors to maintain diversity among 

solutions. In this chapter we introduce decomposition based multi-objective genetic 

algorithm with Opposition operation. In this work Opposition Based Learning 

(OBL) concept is used in a unique way for uniform weight vector generation. Also 

to have diversity among solutions and proper exploration of search space opposition 

based learning concept is used for population initialization and both parent and 

opposite parent are allowed to reproduce. Chapter covers topics like experimental 

details, results and performance comparison with other algorithms. Salient findings 

of the study are at the end of the chapter. 

4.1  Decomposition based Approach 
It is well-known that a Pareto optimal solution to a MOP, under mild 

conditions, could be an optimal solution of a scalar optimization problem in which 

the objective is an aggregation of all the objective function values. Therefore, 

approximation of the PF can be decomposed into a number of scalar objective 

optimization sub problems. This is a basic idea behind many traditional 

mathematical programming methods for approximating the PF. Several methods for 

constructing aggregation functions can be found in the literature (e.g., [8]). The most 

popular ones among them include the weighted sum approach and Tchebycheffs 

approach.[1] 



4.1.1  Tchebycheffs scalarization method 

In Tchebycheff approach, the scalar optimization problem is in the form 
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Where z*=(z1*,…,zm*)
T
 is the reference point, i.e., zi* = max{fi(x)|x ε Ω} for 

each i = 1,…,m. 

For each Pareto optimal point x*there exists a weight vector λ such that is the 

optimal solution of Tchebycheffs function and each optimal solution of scalar 

optimization problem is a Pareto optimal solution of MOP. Therefore, one is able to 

obtain different Pareto optimal solutions by altering the weight vector. One 

weakness with this approach is that its aggregation function is not smooth for a 

continuous MOP. This scalarization approach is use in the proposed algorithm. 

4.1.2  Weight-sum scalarization method   

This approach considers a convex combination of the different objectives. 

Let  m ,...,1   (be a weight vector, i.e., 0i for all i = 1,…,m and 1
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Then, the optimal solution to the following scalar optimization problem: is a Pareto 

optimal point to (1), where we use to emphasize that is a coefficient vector in this 

objective function, while is the variables to be optimized. To generate a set of 

different Pareto optimal vectors, one can use different weight vectors in the above 

scalar optimization problem. If the PF is concave (convex in the case of 

minimization), this approach could work well. However, not every Pareto optimal 

vector can be obtained by this approach in the case of nonconcave PFs. 
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To overcome these shortcomings, some effort has been made to incorporate 

other techniques such as -constraint into this approach, more details can be found  

in [1]. 

4.2  Opposition Based Learning (OBL) 
Tizhoosh [74] introduced the concept of Opposition-Based Learning (OBL). 

The basic idea behind OBL is that whenever we seek the solution in a direction that 

is beneficial to consider the opposite direction as well. Many machine intelligence 

algorithms consider finding the solution of a given problem as function 

approximation. Thus, if the objective is to search for the solution x, the algorithm 

makes an estimation ^x which should resemble the closest value to x. Such 

algorithms can be computationally expensive if the required solution must be very 

accurate. Starting point of search can dramatically affect the accuracy of the found 

solution (among others due to local maxima or minima) and the convergence time. 

In many cases, the starting points are chosen randomly, such as weights of a neural 

network, initial population of evolutionary algorithms, and action policy of 

reinforcement agents. If the starting point is close to the optimal solution, this results  

a faster convergence. On the other hand, if it is very far from the optimal solution, 

such as opposite location in worst case, the convergence will take much more time 

or even the solution can be intractable. Looking simultaneously for a better 

candidate solution in both current and opposite directions may help to solve the 

problem efficiently [75]. The opposite operation used in differential evolution for 

solving single-objective problems has been demonstrated effectively in paper [76]. 

In the following, we give the definition of the opposite number. 

Definition (Opposite Number):  Let x ∈ [a, b] be a real number. The opposite 

number ~x is defined by  ~x = a + b − x.  

 

a          x/x’                    c           x’/x                       b 

           Fig. 4.1 shows number and its opposite number in 1-D 

a          x/x’                                        c           x’/x                             b              



Similarly, this definition can be extended to higher dimensions as follows. 

Definition (Opposite Point):  Let P = (x1, x2, · · · , xn) be a point in n-dimension 

space, where x1, x2, · · · , xn ∈  R and  xi ∈  [ai, bi], i = 1, 2, · · · , n. 

iiii XbaX   

Fig 4.2 shows number and opposite number in 2-D space 

The opposite point ~ P = (~x1, ~x2, · · · , ~xn) is defined by its components 

Let P(x1,x2,…,xn) be a point in n-dimensional space with xi Є [ai, bi]; i Є{1,2,…,n} 

be a candidate solution. Assume f(x) is a fitness function which is used to measure 

candidate optimality. According to opposite point definition, P‘(x1‘,x2‘,…,xn‘)   is the 

opposite of P(x1,x2,…,xn) . Hence the point and its opposite point are evaluated 

simultaneously to continue with the fitter one. 

The definition of OBL is making two fundamental assumptions: 

1)  One of the estimate or the opposite-estimate is always closer to the solution 

(but fitness can mislead!), 

2)  Considering the opposition is more beneficial than generating independent    

random solution and taking the best among them. 
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Opposition based learning used in Evolutionary algorithm: In 2006, 

Rahnamayan et al. [76] applied the opposition concept to initialize Evolutionary 

Algorithms. In this method, an initial uniform-random population is generated. Then 

the opposite population is calculated and from the union of the two populations, the 

fittest candidate-solutions are selected. This supports more diversity and exploration 

when starting the search process. Rahnamayan et al. (2007) introduced Quasi-

Oppositional population initialization method in which, the opposite population 

consists of uniform-random points generated in the interval/region between the 

center (middle) of the search space and the opposite point [77]. Rahnamayan and 

Wang [2008] introduced Center-Point and Center-Based sampling methods to 

enhance population-based algorithms [78]. Peng and Wang in 2010 introduced the 

Uniform-Quasi-Opposite Different Evolution (UQODE) algorithm [79]. 

Rahnamayan et al base this algorithm on Quasi-Opposite Differential Evolution 

(QODE)[80].  In the UQODE algorithm, the uniform design is used for generating 

the first population. Malisia and Tizhoosh [82] apply the concept of opposition to 

Ant Colony Optimization (ACO). Han and He introduced the algorithm of 

Opposition-based PSO (OPSO) for solving noisy problems [81].  

4.3  Weight Vector generation using OBL 
It is found that MOEA/D might not work very well if the solutions to 

neighboring sub problems are not very close in the decision space. Appropriate 

setting of weight vectors lead to well separated solution set. However, it is often 

hard, if it is not impossible, to know beforehand which setting is proper. A possible 

solution may be to tune weight vectors adaptively based on the information collected 

during the search. 

Very often since the objectives in MOP contradict each other no point in 

search space minimizes all the objectives simultaneously. One has to balance them. 

The best tradeoffs among the objectives can be defined in terms of Pareto 

optimality. Any improvement in a Pareto optimal point in one objective must lead to 

deterioration in at least one other objective. With the above idea we suggest 

opposition operation can be used for uniform weight vector generation. Objective 

values of Pareto optimal points are opposite in nature i. e. (0,1),(0.3,0.7),……,(1,0) 



and sum of objective weights of a solution equals one. In this work we have used 

opposition based learning concept for weight vector generation. The method is as 

follows: 

Uniformly linearly divide the range [0, 1] into N values. 

Store these N values as first component of N weight vectors. 

For i=1 to N 

Calculate opposite of i
th

 value i.e.first component of   i
th

  weight vector 

using opposite operation and assign it as second component of i
th 

weight 

vector. 

         End 

For example Number of weight vectors N = 11,  Lower bound a = 0, Upper 

bound b =1, We linearly divide range [0,1] into 11 values. Therefore  

N={0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} 

Assign these values to First component of N weight vectors. Using the 

opposition operation we can calculate second component of weight vector as 

opposite number of first component. If first component of second weight vector is 

0.1 then Second component = 0+1-0.1=0.9. Thus λ1(0,1), λ2(0.1,0.9),…, λ11(1,0). 

This technique of weight vector generation is unique and simple. With this 

method we can generate uniform weight vectors for two objectives MOP in an 

efficient manner. Weight vector generation given in MOEA/D is very complicated 

since large number of random weights is generated and then one has to find distance 

between these weight vectors which is computationally complex method. In some 

papers (eg. [87]) weight vectors are randomly generated. Since weight vectors acts 

like pivot and well spread weight vectors help in finding well spread approximate 

solutions, opposition based weight vector generation will help MOGA to get good 

approximate to Pareto front. 

 



4.4  DMOGA-OBL 
In this section we introduce decomposition based MOGA with opposition 

operation. A Pareto optimal solution to an MOP could be an optimal solution of a 

single objective optimization problem in which the objective is a linear or nonlinear 

aggregation function of all the individual objectives. Therefore, approximation of 

the PF can be decomposed into a number of single objective optimization problems. 

Some MOEAs such as MOGLS [83]–[85] and MSOPS [86] adopt this idea to some 

extent. MOEA/D [19] (Multi-Objective Evolutionary Algorithm based on 

Decomposition) is a very recent evolutionary algorithm for multi-objective 

optimization using the decomposition idea. MOEA/D explicitly decomposes the 

MOP into N scalar optimization sub problems. It solves these sub problems 

simultaneously by evolving a population of solutions. At each generation, the 

population is composed of the best solution found so far (i.e. since the start of the 

run of the algorithm) for each sub problem. The neighborhood relations among these 

sub problems are defined based on the distances between their aggregation 

coefficient vectors. The optimal solutions to two neighboring sub problems should 

be very similar. Each sub problem (i.e., scalar aggregation function) is optimized in 

MOEA/D by using information, only from its neighboring sub problems. Paper [87] 

presents MOTGA (Multiple objective Tchebycheffs based Genetic Algorithm) a 

new multi-objective genetic algorithm based on the Tchebycheffs scalarising 

function, which aims to generate a good approximation of the nondominated 

solution set of the multi-objective problem. The algorithm performs several stages, 

each one intended for searching potentially nondominated solutions in a different 

part of the Pareto front. Pre-defined weight vectors act as pivots to define the 

weighted-Tchebycheffs scalarising functions used in each stage. These 

decomposition based MOEAs use random weight vectors. 

 In this work opposition based learning is used for weight vector generation 

which generates uniformly distributed weight vectors. Also this algorithm makes use 

of opposition operation for population initialization and both parent and opposite 

parent are given chance to reproduce so that more diverse solution will be produced. 

Tchebycheffs scalarization (TS) function is used for scalar fitness assignment to a 



solution. A solution having minimum TS value with respect to weight vector λ and 

reference point is selected for next generation. For reproduction SBX crossover 

operator is used. First Parent solution is sequentially selected from parent population 

and second parent is randomly selected from opposite parent population. Polynomial 

mutation operator is used for mutation. 

Pseudo code of proposed DMOGA-OBL is as follows: 

1. Initialize the population P with N individuals randomly in the 

decision space [a, b]; & evaluate 

2. Initialize reference point with minimum objective values  

3. Initialize Final Set, FS = ϕ 

4. Generate N weight vectors using opposition based learning concept. 

5. For gen =1 to Maxgen 

Calculate the opposite population OP by opposite operation  

Apply SBX operator on population P and opposite population OP and generate 

offspring population OFP of size 2N 

Combine P, OP and OFP (of size 4N) 

Update reference point with minimum objective values 

For i=1 to N 

o Select randomly (0.1*(4N)) solutions from combined population. 

o Calculate scalar fitness value of each selected solution using Tchebycheff 

scalarising (TS) function for i
th

 weight vector.  

o Add solution having minimum TS value to FS 

     End 

Copy solutions in FS to P 

End 

6. Present all the solution in FS as best approximate solution and stop. 

4.5  Experimental design and results 



For experimentation we have implemented the GA procedure using MatLab. 

The test problems (UF1-UF7) in this work are taken from CEC2009 special session 

and   competition. 

Parameter setting for experimentation: 

Population size (N): 100 (for 2 objectives)  

Number of generations: 1000 

Maximum No of Function Evaluations: 100000 

Crossover probability parameter (pc): 0.9 

Mutation probability: 0.1 

Probability Distribution indices for SBX : 20 

Probability Distribution indices for mutation: 20 

Number of Parents:  2 

Number of children (λ): 2 

30 random simulations are performed for each problem. The minimum 

(Min), maximum (Max), mean, and standard deviation (Std) of the IGD metric are 

reported in Table 4.1 and figure 4.3-4.10  shows plot of approximate solutions for 

function UF1-UF9. 

TABLE 4.1 THE  IGD METRIC 

Problem Min Max Mean Std 

UF1 0.003287 0.5007241 0.0099164 0.0089393 

UF2 0.004362 0.0267322 0.0067606 0.0018622 

UF3 0.022385 0.0446371 0.0311205 0.0404461 

UF4 0.012623 0.0597914 0.0162621 0.0051184 

UF5 0.094876 0.9762371 0.2906141 0.0607084 

UF6 0.015128 0.9838392 0.0311686 0.0289605 

UF7 0.004607 0.0696725 0.0048101 0.0013801 

UF8 0.982545 4.956260 0.836727 0.145532 

UF9 0.550592 5.966486 0.891271 0.134896 

 

 



 

 
Fig. 4.3 Approximate set of UF1 function 

 

Fig. 4.6 Approximate set of UF4 function 

 
Fig. 4.4 Approximate set of UF2 function 

 
Fig. 4.7 Approximate set of UF5 function 

 
Fig. 4.5 Approximate set of UF3 function 

 
Fig. 4.8 Approximate set of UF6 function 
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Fig. 4.9 Approximate set of UF7 function 

 

Fig. 4.10 Approximate set of UF8  function 

 

Fig. 4.11 Approximate set of UF9 function 
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4.6  Performance comparison with other algorithms 
Performance of RSMOGA, SNOVMOGA and MOEA/D is compared with 

DMOGA-OBL in Table 4.2. The table shows mean IGD of the four algorithms. 

DMOGA-OBL when compared with RSMOGA and SNOVMOGA has performed 

better on UF1-UF7 but not shown improvement in UF8 & UF9. It has good 

improvement on two functions (UF5 & UF6) having discontinuous Pareto front. 

When compared with MOEA/D shown comparable performance in UF1, UF2, UF4 

& UF7 but performed poorly on UF3, UF5, UF6, UF8 & UF9. 

 From the obvious discussion we can comment that DMOGA-OBL has 

performed well on functions having convex, non-convex and continuous Pareto 

fronts but fails on discontinuous Pareto fronts.  

TABLE 4.2 COMPARISON OF DMOGA-OBL WITH  SNOVMOGA,   
RSMOGA  AND MOEA/D 

Scheme RSMOGA SNOVMOGA DMOGA-OBL MOEA/D 

Function MeanIGD MeanIGD MeanIGD MeanIGD 

UF1 0.06418 0.05739 0.00991 0.00435 

UF2 0.02672 0.01104 0.00676 0.00679 

UF3 0.03115 0.03112 0.03127 0.00742 

UF4 0.02889 0.01626 0.01626 0.06385 

UF5 0.97893 0.81961 0.29061 0.18071 

UF6 0.37019 0.31166 0.03116 0.00587 

UF7 0.01993 0.01042 0.00481 0.00444 

UF8 1.83609 0.32257 0.83672 0.05840 

UF9 0.98828 0.10846 0.89127 0.07896 

 

  



4.7  Key findings 
This study has given insight into decomposition based approach of multi-

objective optimization. A brief description of Tchebycheffs scalarization and 

weight-sum approach is presented. A novel technique of uniform weight vector 

generation using opposition based learning is introduced in this chapter. 

Decomposition based Multi-objective Genetic Algorithm with opposition based 

learning is proposed. In the proposed algorithm, Opposition Based Learning (OBL) 

concept is used in a unique way for weight vector generation, which has produced 

uniform well distributed weight vectors and the performance of the algorithm is 

improved. Also to have diversity among solutions and proper exploration of search 

space opposition based learning concept is used for population initialization. Both 

parent and opposite parent, are allowed to reproduce. The simulation results show 

the effectiveness of the proposed algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Dying Strategy based MOGA 

Genetic Algorithm (GA) mimics natural evolutionary process. Since dying of 

an organism is important part of natural evolutionary process, GA should have some 

mechanism for dying of solutions just like GA have crossover operator for birth of 

solutions. Also, in nature, occurrence of event of dying of an organism has some 

reasons like aging, disease, malnutrition and so on. In this chapter we introduce a 

novel thought of gradual dying of solution and making dying strategy as explicit part 

of evolutionary process. We design three strategies of dying or removal of solution 

from next generation population. In a new MOGA framework dying strategy is 

deployed. MOGA takes decision of removal of solution, based on one of these three 

strategies. Experimental results show that gradual dying of solution can boost 

performance of genetic algorithm. Performance of three dying strategies is 

compared.  

5.1 Introduction 
In biology and ecology, dying is the end of an organism. Dying is the 

permanent cessation of all biological functions that sustain a living organism.  

Phenomena which commonly bring about death include biological aging, predation, 

malnutrition, disease, suicide, murder and accidents or trauma resulting in terminal 

injury [88]. Contemporary evolutionary theory sees death as an important part of the 

process of natural selection. It is considered that organisms less adapted to their 

environment are more likely to die having produced fewer offspring, thereby 

reducing their contribution to the gene pool. The gene pool of a species or a 

population is the variety of genetic information in its living members. A large gene 

pool (extensive genetic diversity) is associated with robust populations that can 

survive bouts of intense selection. Meanwhile, low genetic diversity reduces the 

range of adaption possible. Replacing native with alien genes narrows genetic 

diversity within the original population, thereby increasing the chance of  

extinction [89]. 



Algorithms based on strategies of evolution are called as evolutionary 

algorithms. The decision of selection of solution becomes complicated in presence 

of multiple conflicting objectives. Every multi-objective evolutionary algorithm has 

two goals; convergence and diversity, so they need two different mechanisms for 

fulfillment of these goals. Algorithms like NSGA-II use non-dominated sorting and 

crowding distance based selection strategies for convergence and diversity 

respectively [17]. Many such multi-objective evolutionary algorithms with explicit 

mechanism for convergence and diversity control are found in the literature [17, 35, 

43, 47, 63]. 

Selection strategy uses Pareto-dominance based [17] selection or single 

scalar value based [90] selection to select a multi-objective solution. Selected 

solutions are passed to next generation and they become parents in that generation. 

Solutions which are not selected die out or discarded from population and never re-

appear.  Dying of solution is inherent part of evolutionary process and selection 

strategies given in literature performs dying or removal implicitly. Solutions having 

better fitness produce fitter offspring and selection strategies are likely to select both 

parent and their offspring. Offspring solutions use cross over operator to inherit the 

properties of Parent solution present in first generation. In subsequent generations 

offspring solutions carry forward the good properties of parent solutions. Problem 

with this selection strategy is that, after few generation whole population is 

dominated by presence of few solutions from initial population and their offspring 

i.e. trail of very few solutions from initial population  reach to final generation and 

most of the solutions die out somewhere in between generations.  

In analogy with nature, if GA introduces a mechanism to control the rate of 

dying of solutions then diversity in population can be maintained. If dying rate of 

solutions is low, number of solutions having variety of genetic material will 

contribute in the formation of next generation population by producing diverse 

offspring.  

In this work dying of solution is made explicit part of evolutionary process 

and three strategies for dying of solution are proposed and implemented. One of the 



three proposed dying strategies is used to deterministically remove the solution from 

next generation population. Impact of dying rate of solutions on the performance of 

GA is studied. Idea of gradual dying is modeled and a new framework of MOGA is 

used to demonstrate the same. 

5.2 Strategies for Dying of Solution 
 A thought; dying of parent solution; opposite of selection of parent solution, 

is materialized in this work. Proposed three strategies of dying (Parent Removal 

(ParRem)) are given below. 

ParRem1: Remove solution having minimum distance from one or more solutions 

of next generation population. In this strategy before removing a solution from next 

generation population distance between all the solutions is checked. Since similarity 

means uniformity and dissimilarity means diversity, according to this strategy 

similar solution should die out and dissimilar solution should remain in population 

in order to have diversity in population. The solution having minimum distance from 

its neighbor solution will be removed from next generation population. Distance 

between solutions is calculated in objective space and distance measure used is 

Euclidean distance. Pseudo code for distance calculation is given below. 

Initialize min_d = 9999, 

 for  j = 1 : N-1  

       for   i =  j+1 : N 

d = distance between i
th

 parent  and j
th

 parent  

            if   (d < min_d) 

                 min_d = d; 

                      idx =i; 

          end if  

     endfor 

 endfor 

where N is population size, min_d is minimum distance between two parent 

solutions. idx is index of parent having minimum distance. A parent having idx 



index will be removed from next generation population.  This scheme looks similar 

to crowding distance assignment scheme of NSGA-II but it is not. In NSGA-II for 

crowding distance calculation all the solutions in the front are sorted first and then 

crowding distance is calculated among solution and its two neighboring solutions. 

Here in ParRem1 sorting is not required. Distance from every solution to all the 

solutions in the population is calculated and then the solution having minimum 

distance with any of the solution will be removed. 

ParRem2:  Remove solution having maximum SNOV (Summation of Normalized 

Objective Value)[90]. In this strategy to make effective range of all the objective 

functions equal objective values are normalized. After normalization effective range 

of all the objective function will be zero to one. Assign SNOV to each solution in 

next generation population. The SNOV will be treated as single scalar fitness of the 

solution. Now remove solution having highest SNOV value (for minimization of 

objective). Pseudo code for SNOV calculation is given below. 

for m = 1 : M (number of objectives) 

Find the maximum and minimum objective values of the m
th

 objective and calculate 

the  range  of the m
th

 objective.  

Normalize the m
th

 objective values of all members using the equation:  
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minmax
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xf m

m



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    where mf
is the normalized m

th
 objective value. 

 end for 

 for i = 1 :  N 

      Sum all normalized objective values of the member to   obtain a single value. 

 endfor 

ParRem3: Remove solution having poor fertility count. Frequency of reproduction 

is an important parameter in determining species survival: an organism that dies 

young but leaves numerous offspring displays, according to Darwinian criteria, 

much greater fitness than a long-lived organism leaving only one [89]. 



In this strategy, parameter fertility_count keep record of frequency of 

reproduction of a parent solution. Initially when population is initialized, zero 

fertility_count is assigned to all the solution in the population. If the offspring 

produced by the parent solution is better than the one who produced it then 

fertility_count of parent solution is incremented by one. Now fertility_count of 

parent solution is assigned to better offspring solution. In next generation 

population, dying of a solution is insured on the basis of fertility_count of the 

solution. A solution having minimum fertility_count will be removed from next 

generation population. Pseudo code is given below. 

 Assign initial fertility_count = 0 to all the solution in the initial population 

 If offspring solution wins the multi-level tournament then fertility_count of 

first parent solution is incremented by 1 and assigned as fertility_count to 

winner offspring solution  

 Sort next generation population according to fertility_count  

 Remove parent having minimum fertility_count  

5.3  MOGA with Dying strategies 
In this section a new MOGA framework is presented which uses simple 

mechanism for formation of next generation population. Uniform-random method is 

used for population initialization. Opposition based learning [74] is used to tune 

initial population. In the beginning each initial solution is given a unique number as 

parent number. For crossover operation first parent is sequentially selected and 

second parent is selected randomly from current population. Crossover operator 

generates two offspring that form family with first parent. Multi-level tournament 

operator is used to select one solution from the family. Parent number of first parent 

is assigned to offspring solution. Cycles of selection-crossover-multilevel 

tournament selection repeats with each solution in current population.  



Fig. 5.1. Proposed MOGA framework with dying strategy 

Breaking analogy with nature, the algorithm deterministically decides when 

to remove a solution and which solution should die out. The decision of dying or 

removal of parent solution from next generation population is based on one of the 

three proposed dying strategies. Following formula decides the generation number in 

which a parent solution should be removed. 

Gen_Rem =  maxgen / (N*DR) 

Where maxgen is Maximum number of generation, DR is Dying Rate (in %) 

(Number of solutions to be removed from population) and N is size of population. 

For example If maxgen = 2000, DR  = 30%  and N = 200 then Gen_Rem = 2000 / 

(200*0.3) = 34. In 34
th

 generation, one parent will be removed on the basis of one of 

the three strategies of dying, from next generation population. Now next generation 

contains 199 parent solutions. Dying of one solution makes space for new solution. 

This space is filled by introducing an offspring solution from offspring pool. Loser 

Initialize population and Set values for parameters  maxgen, DR & Gen =1

Assign parent number to each solution and calculate Gen_Rem. Set iGen_Rem = Gen_Rem 

Begin

Gen <= maxgen StopNo

For all solution Repeat

Select one solution sequentially and second solution randomly for crossover

Assign parent number of first parent to both the offspring solutions

Using Multi-level tournament selection select best among first parent and     offspring 

solutions for next generation population and put the offspring which is not selected in 

the offspring pool

Gen == Gen_Rem

Use dying strategy to remove one solution from Next generation 

population and insert one solution, from offspring pool

Update  Gen_Rem 

Gen = Gen+1

Yes

Yes

No
Gen= Gen+1

 



offspring of multilevel tournament selection forms the offspring pool. Next 

generation population contains 200 solutions but parents are 199 only. One solution 

is offspring of 199 selected solutions i.e. one solution have duplicate parent number.  

From 35
th

 to 67
th

 generations no solution will be removed and population evolves 

with 199 parents. In 34+34 =68
th

 generation one more parent solution will be 

removed. In this way after every 34
th

 generation one parent is removed from next 

generation population and in place of removed solution, one solution from offspring 

pool will be introduced in the next generation population in order to keep population 

size constant. At the end of maxgen generation final population contains traces of 

140 solution and 60 (= 200*0.3) solutions are removed from population i.e. 70% 

parent solutions survive and 30% parent solutions die out. Algorithmic steps of 

proposed framework are given in fig 5.1. 

Initialization and tuning the population:  The most famous and widely-used 

initialization method is uniform-random initialization, also known as pseudo-

random initialization. Even though pseudo-random initialization is computationally 

cheap, the quality of generated solutions is not very good and properly diverse.  

In order to contest the uniform-random method, Tizhoosh introduced the 

opposition concept through Opposition-Based Learning. In this concept, the 

opposite of a guess or estimate (i.e., uniform-random) is calculated and compared to 

the original estimate (random). This has resulted in creation of successful 

initialization method for Metaheuristic algorithms. In 2006, Rahnamayan et al 

applied the opposition concept to initialize Evolutionary Algorithms. This supports 

more diversity and exploration when starting the search process [74]. 

In proposed algorithm opposition based learning is used to tune the 

population. A solution is sequentially selected from initial population and its 

opposite solution is calculated by using opposition based learning as given above. 

Now tournament is played between solution and opposite solution and winner is 

selected as tuned solution and loser is discarded. This procedure is repeated for 

every solution. If there are N solutions in the initial population then N tune solutions 

are generated.    



Tournament selection: In this algorithm multi-level tournament selection is used. 

In first level of tournament selection, tournament is played between two offspring 

solutions. In second level, tournament is played between winner offspring solution 

and First parent. The winner of second level of tournament is selected as best 

solution and becomes member of next generation population. 

5.4  Experimental design and results 
The proposed framework for MOGA with three strategies for dying of 

solution is coded in MatLab 7.1.  30 independent runs have been taken for each 

problem with different strategies. Experimental parameter settings used are: 

Population size (N) = 100 

Maximum no. of generation (maxgen) = 3000 

Dying Rate (DR) = 10%, 30%, 40%, 50%, 60%, 90% 

Probability Distribution index for MPX crossover operator =  1 

Number of Parents=  2 

Number of children = 2 

In this section discussion is on experimental results of MOGA with three 

strategies of dying of solution. 

Strategy ParRem1: The Performance of dying strategy ParRem1 in terms of 

MeanIGD & SPREAD on function UF1-UF9 is shown in Table 5.1. Among nine 

functions (UF1-UF9) ParRem1 has given lowest value of SPREAD Metric 

(0.40815) for UF2 for dying rate = 50%.  Fig 5.2 shows plot of SPREAD produced 

by ParRem1 for functions UF1-UF9 with different Dying rates. It is observed from 

the figure that a moderate dying rate (50%) has given low value for SPREAD metric 

for all functions. A low value of SPREAD means better diversity among solutions of 

nondominated set.  For functions UF1, UF2 & UF8 best MeanIGD value is obtained 

for 50% dying rate. For rest of the functions best MeanIGD is for low dying rate. 

Strategy ParRem2: The Performance of dying strategy ParRem2 in terms of 

MeanIGD & SPREAD on function UF1-UF9 is shown in Table 5.2. For functions 

UF2 & UF8 best MeanIGD value is obtained at 50% dying rate. For rest of the 

functions best MeanIGD is for low dying rate.  



 

 

 

Fig 5.2 shows plot of SPREAD produced by ParRem1  

for UF1-UF9 

 

 

 

Fig 5.3 shows plot of SPREAD produced by ParRem2  

for UF1-UF9 

 

 

 

Fig 5.4 shows plot of SPREAD produced by ParRem3  

for UF1-UF9 
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TABLE 5.1 PERFORMANCE OF  PARREM1ON UF1-UF9 (POPULATION SIZE = 100 ANDNUMBER  

OF GENERATIONS= 3000) 

Function UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 

Dying 

Rate in % 
SPREAD 

10 0.67851 0.44045 0.52668 0.68793 0.79622 1.00287 0.78217 0.97061 0.71918 

30 0.61903 0.46852 0.53844 0.61184 0.79091 0.91346 0.74607 0.91805 0.71540 

40 0.59848 0.43489 0.56549 0.56923 0.79043 0.80435 0.72612 0.90348 0.69143 

50 0.58012 0.40815 0.54745 0.50465 0.67871 0.70065 0.67037 0.46400 0.63089 

60 0.59982 0.45439 0.52240 0.57528 0.74632 0.75061 0.80661 0.67061 0.65741 

90 0.63690 0.43187 0.56346 0.56192 0.73732 0.84422 0.87310 0.78601 0.69461 

 MeanIGD 

10 0.067327 0.023215 0.201176 0.050215 0.153826 0.064901 0.083477 0.864653 0.909465 

30 0.068071 0.024151 0.210074 0.059157 0.183894 0.066933 0.103827 0.774346 0.899907 

40 0.062276 0.024085 0.233127 0.062096 0.193835 0.069022 0.103612 0.760417 0.900172 

50 0.061657 0.019220 0.240011 0.062340 0.214201 0.072117 0.098397 0.755344 0.914492 

60 0.069975 0.021572 0.246741 0.063534 0.229206 0.078452 0.099014 0.774341 0.980227 

90 0.063974 0.032322 0.256764 0.064323 0.246873 0.082166 0.133976 0.835970 0.940427 

 

It is also observed that a moderate dying rate (50%) has given best spread for 

all functions. Fig 5.2 shows plot of SPREAD produced by ParRem1 for UF1-UF9. 

Fig 5.3 SPREAD produced by ParRem2 for UF1-UF9 with different Dying rates Fig 

5.4 SPREAD produced by ParRem3 for UF1-UF9 with different Dying rates with 

TABLE 5.2 PERFORMANCE OF  PARREM2 ON UF1-UF9 ( POPULATION SIZE= 100 ANDNUMBER  

OF GENERATIONS= 3000) 

Function UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 

Dying 

Rate in % 
MeanIGD 

 

10 0.060779 0.024376 0.170225 0.0543763 0.208118 0.0704405 0.123257 0.840894 0.904564 

30 0.062168 0.025683 0.188227 0.0543763 0.218096 0.0714245 0.113827 0.829490 0.919308 

40 0.063844 0.026923 0.207625 0.0669232 0.219954 0.0710112 0.158997 0.804156 0.929701 

50 0.066292 0.023877 0.200125 0.0694861 0.228448 0.0725229 0.143976 0.738952 0.934456 

60 0.067125 0.025134 0.242268 0.0713947 0.241254 0.0734245 0.159071 0.760831 0.964970 

90 0.065053 0.026968 0.251257 0.0709686 0.309919 0.0740860 0.161136 0.776082 1.089052 

 SPREAD 

10 0.62275 0.48583 0.61062 0.71562 0.86114 0.82630 0.88275 0.72383 0.68716 

30 0.60432 0.46012 0.51371 0.66981 0.85124 0.81630 0.87673 0.71085 0.58915 

40 0.60432 0.46803 0.59376 0.60370 0.81002 0.82630 0.87856 0.70381 0.58913 

50 0.55935 0.45033 0.47090 0.53480 0.78428 0.76884 0.79031 0.68068 0.64234 

60 0.56134 0.46393 0.61360 0.75597 0.80242 0.84546 0.80663 0.73817 0.68061 

90 0.56000 0.48436 0.55463 0.68868 0.82349 0.95473 0.93719 0.73134 0.68061 



different dying rates. Minimum value of SPREAD is reported with dying rate = 

50%. Diversity among solutions deteriorates with increase in dying rate. 

Strategy ParRem3:  The Performance of dying strategy ParRem3 in terms of 

MeanIGD & SPREAD on function UF1-UF9 is shown in Table 5.3. The best 

MeanIGD value for all the function is obtained at low dying rate. Also as dying rate 

increases it increases MeanIGD value that reflects the degradation of performance of 

algorithm. Fig 5.4 shows plot of SPREAD produced by ParRem3 for UF1-UF9 with 

different dying rates. Best SPREAD on UF1 & UF5-UF7 is for dying rate =50%, 

function UF2-UF4 is for dying rate=30 and on function UF8 & UF9 is for dying rate 

= 10%. 

TABLE 5.3 PERFORMANCE OF PARREM3 ON UF1-UF9 ( POPULATION SIZE = 100 ANDNUMBER  

OF GENERATIONS = 3000) 

Function UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 

Dying 

Rate in % 
MeanIGD 

10 0.067689 0.022364 0.180125 0.054034 0.201256 0.0596334 0.110274 0.777345 0.968565 

30 0.068954 0.024135 0.189227 0.060135 0.201784 0.0592211 0.113827 0.738637 0.959632 

40 0.068954 0.024813 0.209825 0.064815 0.201259 0.0609293 0.138097 0.756711 0.961038 

50 0.069195 0.025761 0.210129 0.069316 0.234478 0.0642109 0.159442 0.836640 0.965698 

60 0.070410 0.026186 0.230106 0.063186 0.238979 0.0662712 0.161913 0.922512 0.967616 

90 0.074881 0.027356 0.259957 0.064156 0.247846 0.0672019 0.171136 0.932455 0.967229 

 SPREAD 

10 0.58102 0.46043 0.54171 0.71257 0.93154 0.82297 0.80727 0.65029 0.68203 

30 0.61351 0.42707 0.50012 0.55244 0.90016 0.82098 0.82407 0.68400 0.72314 

40 0.56520 0.43101 0.50448 0.63289 0.82131 0.80232 0.85602 0.69864 0.73164 

50 0.55652 0.43078 0.54705 0.63106 0.63878 0.67963 0.70431 0.83246 0.63450 

60 0.67452 0.45257 0.50247 0.56174 0.68975 0.92213 0.76017 0.80253 0.72144 

90 0.59006 0.45841 0.47691 0.57659 0.80108 0.96403 0.79309 0.78183 0.73340 

 

 

 

  



5.5  Performance comparison of three strategies 
Three strategies of dying of solution have been designed, implemented and 

seen their performance on function UF1-UF9. It is observed that for all three 

strategies best results for MeanIGD and SPREAD have been obtained for dying rate 

at or below 50%. Hence we can say that excessive dying of solutions affects the 

convergence to and diversity in Pareto front.  Table 5.4 shows best performance 

(MeanIGD and SPREAD) of three strategies of dying of solution on function UF1-

UF9. From Table 5.4 it is observed that dying strategy ParRem1 with dying rate 

50% has outperformed ParRem2 and ParRem3 in terms of SPREAD on four 

functions (UF2, UF4, UF7 and UF8) out of nine functions. ParRem2 has 

outperformed ParRem1 and ParRem3 on three functions (UF1 & UF3 with dying 

rate 50% and UF9 with dying rate 40%). ParRem3 has outperformed ParRem1 and 

ParRem2 on two functions (UF5 and UF6 with dying rate 50%).  

TABLE 5.4 COMPARISON OF PERFORMANCE OF PARREM1, PARREM2 AND PARREM3 ON FUNCTION 

UF1-UF9 WITH  POPULATION SIZE = 100 AND NUMBER OF GENERATIONS = 3000 

Scheme ParRem1 ParRem2 ParRem3 Sign test 

Function MeanIGD 

(Dying 

rate) 

SPREAD 

(Dying rate) 

MeanIGD 

(Dying rate) 

SPREAD 

(Dying rate) 

MeanIGD 

(Dying rate) 

SPREAD 

(Dying 

rate) 

(IGD, 

SPREAD) 

UF1 
0.061657 

(50%) 

0.58012 

(50%) 
0.060779 

10%) 

0.55635 

(50%) 

0.067689 

(10%) 

0.55652 

(50%) 
(  - , - ) 

UF2 
0.019220 

(50%) 

0.40815 

(50%) 

0.023877 

(50%) 

0.45033 

(50%) 

0.022364 

(10%) 

0.42707 

(30%) 
( + , +) 

UF3 
0.201176 

(10%) 

0.52668 

(10%) 
0.170225 

10%) 

0.47090 

(50%) 

0.180125 

(10%) 

0.50012 

(30%) 
(- , - ) 

UF4 
0.050215 

(10%) 

0.50465 

(50%) 

0.054376 

(10%) 

0.53480 

(50%) 

0.054034 

(10%) 

0.55244 

(30%) 
( + , +) 

UF5 
0.153826 

(10%) 

0.67871 

(50%) 

0.208118 

(10%) 

0.78428 

(50%) 

0.201256 

(10%) 
0.63878 

(50%) 
( + , -) 

UF6 
0.064901 

(10%) 

0.70065 

(50%) 

0.070440 

(10%) 

0.76884 

(50%) 
0.059221 

(30%) 

0.67963 

(50%) 
( - , -) 

UF7 
0.083477 

(10%) 

0.67037 

(50%) 

0.113827 

(30%) 

0.79031 

(50%) 

0.110274 

(10%) 

0.70431 

(50%) 
( + , +) 

UF8 
0.755344 

(50%) 
0.46400 

(50%) 

0.738952 

(50%) 

0.68068 

(50%) 
0.738637 

(30%) 

0.65029 

(10%) 
( - , +) 

UF9 
0.899907 

(30%) 

0.63089 

(50%) 

0.904564 

(10%) 
0.58913 

(40%) 

0.959632 

(30%) 

0.68203 

(10%) 
( + , -) 



TABLE 5.5 STATISTICAL SUM OF PROBLEMS FOR WHICH EACH STRATEGY 

OBTAINS SIGNIFICANTLY BETTER RESULTS 

Metric ParRem1 ParRem2 ParRem3 

MeanIGD 05 02 02 

SPREAD 04 03 02 

Total 09 05 04 

 

Table 5.5 shows Statistical Sum of Problems for which each strategy obtains 

significantly better results. ParRem1 has given statistically significant performance 

than ParRem2 and ParRem3 and hence dying strategy ParRem1 and dying rate 50% 

will be used for further experimentation.  

Thus dying strategy ParRem1 is the best among the proposed three dying 

strategies and has helped 2 & 3-objective function having convex, non-convex, 

continuous and discontinuous Pareto fronts to converge to Pareto-optimal front and 

maintained diversity among solutions. 

5.6  Comparison with other algorithms 
The performance of proposed MOGA with dying strategy ParRem1 

(MOGA-ParRem1) is compared with proposed MOGA without dying (MOGA-WD) 

and NSGA-II. To make a fair comparison, NSGA-II-MPX is coded in MatLab 7.1 

and in place of SBX operator MPX crossover operator is used. Mutation operator is 

also removed from NSGA_II. Also parameter setting used for MOGA without dying 

and NSGA-II-MPX is same as given in section 4 except dying rate and 30 

independent runs have been taken for each problem. 

Table 5.6 shows MeanIGD and SPREAD of MOGA-WD, MOGA-ParRem1 

and NSGA-II-MPX. SPREAD values reported in the table 5.6 indicate that MOGA-

ParRem1 has outperformed MOGA-WD on functions UF1-UF9. Also MOGA-

ParRem1 has outperformed NSGA-II-MPX by giving better SPREAD on functions 

UF1-UF4 and UF8-UF9. IGD measure taken for MOGA-ParRem1 shows that it has 

given good performance on functions UF1,UF2 and UF6 functions. NSGA-II-MPX 

has shown good IGD values on functions UF3-UF5 and UF7-UF9.Table 5.7 shows 

Statistical Sum of Problems for which each algorithm obtains significantly better 

results. 



TABLE 5.6 COMPARISON OF PERFORMANCE OF  MOGA-PARREM1 WITH MOGA AND NSGA-II  

ON FUNCTION UF1-UF9 ( POPULATION SIZE = 100 AND NUMBER OF GENERATIONS = 3000 ) 

Scheme MOGA-WD 
MOGA-ParRem1  

(DR = 50%) 
NSGA-II-MPX Sign test 

Function MeanIGD SPREAD MeanIGD SPREAD MeanIGD SPREAD 
(MeanIGD, 

SPREAD) 

UF1 0.061892 0.615871 0.061657 0.580122 0.068187 0.697345 ( +  , + ) 

UF2 0.057764 0.644613 0.019220 0.408153 0.024311 0.540971 ( + , + )   

UF3 0.245993 0.583918 0.240011 0.547451 0.135773 0.666309 ( - , + ) 

UF4 0.066059 0.550369 0.062340 0.504653 0.019737 0.682081 ( - , + ) 

UF5 1.046338 0.753780 0.214201 0.678715 0.211415 0.658579 ( -  , - ) 

UF6 0.230648 0.695138 0.072117 0.700656 0.152526 0.694642 (  +, -  ) 

UF7 0.101259 0.715222 0.098397 0.670374 0.031356 0.626167 ( - , - ) 

UF8 0.836721 0.686384 0.755344 0.464006 0.536727 0.616086 ( - , + ) 

UF9 0.975251 0.883306 0.914492 0.630897 0.375251 0.703306 ( - , + ) 

 

Table 5.6 shows MeanIGD and SPREAD of MOGA-WD, MOGA-ParRem1 

and NSGA-II-MPX. SPREAD values reported in the table 5.6 indicate that MOGA-

ParRem1 has outperformed MOGA-WD on functions UF1-UF9. Also MOGA-

ParRem1 has outperformed NSGA-II-MPX by giving better SPREAD on functions 

UF1-UF4 and UF8-UF9. IGD measure taken for MOGA-ParRem1 shows that it has 

given good performance on functions UF1,UF2 and UF6 functions. NSGA-II-MPX 

has shown good IGD values on functions UF3-UF5 and UF7-UF9.Table 5.7 shows 

Statistical Sum of Problems for which each algorithm obtains significantly better 

results. 

TABLE 5.7 STATISTICAL SUM OF PROBLEMS FOR WHICH EACH 

ALGORITHM  OBTAINS SIGNIFICANTLY  BETTER RESULTS 

Metric MOGA-WD 
MOGA-ParRem1  

(DR = 50% 
NSGA-II-MPX 

MeanIGD 0 03 06 

SPREAD 0 06 03 

Total 0 09 09 

 

 

 



TABLE 5.8 COMPARISON OF CPU TIME  OF  MOGA-PARREM1 WITH MOGA 

AND NSGA-II  ON FUNCTION UF1-UF9 ( POPULATION SIZE = 100 AND 

NUMBER OF GENERATIONS = 3000 ) 

Function MOGA-WD 
MOGA-ParRem1  

(DR = 50% 
NSGA-II-MPX 

UF1 162.56 169.23 1008.341 

UF2 148.32 192.11 1014.821 

UF3 172.35 198.42 1028.630 

UF4 146.71 174.54 1002.473 

UF5 181.62 205.71 1068.459 

UF6 175.34 186.34 1015.378 

UF7 144.37 197.19 1013.489 

UF8 180.34 220.16 1104.672 

UF9 192.45 234.03 1100.592 

 

Next we consider simulation speed as metric for performance measure. Table 

5.8 shows the CPU time (in seconds) taken by the MOGA-WD, MOGA-ParRem1 

and NSGA-II-MPX on problems UF1-UF9. Strategy ParRem1 have complexity of 

O(N
2
) because in order to remove a solution it has to find solution having  minimum 

distance from other solution where N is number of solutions. . For NSGA-II, the 

complexity to obtain the overall non-dominated set is O (MN
2
). Complexity of 

MOGA-WD is O(N)  where M is number of objectives and N is size of population. 

MOGA-WD reports minimum CPU time for UF1-UF9 and MOGA-ParRem1 

requires little bit more CPU time for UF1-UF9 as compared to MOGA-WD. Reason 

for increase in CPU time is the complexity O(N
2
) of  strategy ParRem1. For UF1-

UF9 highest CPU time is reported for NSGA-II-MPX. This is because of complexity 

O (MN
2
) of Non-dominated sorting technique and NSGA-II has to execute Non-

dominated sorting in every generation whereas MOGA-ParRem1 has to run strategy 

ParRem1 after Gen_Rem generation only. Number of generations in which MOGA-

ParRem1 executes ParRem1 is very-very less than maximum number of generations. 

Fig 5.5-5.13 shows plots of non dominated set of solutions obtained on 

functions UF2, UF4 and UF7 with MOGA-WD, MOGA-ParRem1 and NSGA-II-

MPX. From fig. 5.6 & 5.9 it is clear that MOGA-ParRem1 has given better diversity 

and convergence than MOGA-WD and NSGA-II-MPX on test functions UF2 & 



UF4. Poor performance of MOGA-ParRem1 is seen in fig. 5.12 on function UF7. 

MOGA-WD has shown worst performance on all three test functions as shown in 

fig. 5.5, 5.8 & 5.11. 

 

Fig. 5.5 Best approximate of 

UF2 with MOGA-WD 

 

Fig. 5.6 Best approximate of 

UF2 with MOGA-ParRem1 

 

Fig. 5.7 Best approximate of 

UF2 with NSGA-II-MPX 

 

Fig. 5.8 Best approximate of 

UF4 with MOGA-WD 

 

Fig. 5.9 Best approximate of 

UF4 with MOGA-ParRem1 

 

Fig. 5.10 Best approximate of 

UF4 with NSGA-II-MPX 

 

Fig. 5.11 Best approximate of 

UF7 with MOGA-WD 

 

Fig. 5.12 Best approximate of 

UF7 with MOGA-ParRem1 

 

Fig.5.13 Best approximate of 

UF7 with NSGA-II-MPX 

 

Table 5.9 presents computational results of SC metric for all test algorithms. 

NSGA-II-MPX has outperformed MOGA-WD on all test functions by giving value 

of SC metric nearly equal to one. When relative coverage comparison is done 

between MOGA-ParRem1 and MOGA-WD, it is found that MOGA-ParRem1 has 

given better values of SC metric over MOGA-WD for all test functions. Non 

dominated set of MOGA-ParRem1 is compared with non dominated set of NSGA-

II-MPX and relative set coverage of two sets shows that MOGA-ParRem1 is better 
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than NSGA-II-MPX on UF1-UF4 & UF8,UF9 test functions whereas NSGA-II-

MPX has outperformed MOGA-ParRem1 on test functions UF5-UF7. 

TABLE 5.9 TWO SET COVERAGE METRIC SC 

Function X (x,MOGA-

WD) 

(x , MOGA-

ParRem1) 

(x , NSGA-II-

MPX) 

UF1 

MOGA-WD -- 0.3400  0.0 

MOGA-ParRem1 0.9600 -- 0.9000 

NSGA-II-MPX 0.9900 0.4200 -- 

UF2 

MOGA-WD - 0.3000 0.0 

MOGA-ParRem1 0.9500 -- 0.9300 

NSGA-II-MPX 0.9900 0.4700 -- 

UF3 

MOGA-WD -- 0.2700 0.1000 

MOGA-ParRem1 0.9000 -- 0.6500 

NSGA-II-MPX 0.9800 0.5300 -- 

UF4 

MOGA-WD -- 0.1900 0.0900 

MOGA-ParRem1 0.9900 -- 0.9700 

NSGA-II-MPX 0.9900 0.4900 -- 

UF5 

MOGA-WD - 0.3400 0.1200 

MOGA-ParRem1 0.8900 - 0.5600 

NSGA-II-MPX 0.9900 0.7800 - 

UF6 

MOGA-WD - 0.3000 0.2000 

MOGA-ParRem1 0.8200 - 0.5500 

NSGA-II-MPX 0.9700 0.6500 - 

UF7 

MOGA-WD - 0.2100 0.1000 

MOGA-ParRem1 0.9200 - 0.3500 

NSGA-II-MPX 0.9900 0.8600 - 

UF8 

MOGA-WD - 0.2000 0.1000 

MOGA-ParRem1 0.9100 - 0.8400 

NSGA-II-MPX 0.9700 0.3000 - 

UF9 

MOGA-WD - 0.2600 0.1200 

MOGA-ParRem1 0.9400 - 0.8600 

NSGA-II-MPX 0.9400 0.3800 - 

 

 

 

5.6  Key findings 



In this study GA procedure is made more close to natural evolutionary 

process which incorporate Birth-Reproduction-death cycle. The major contribution 

of this study is the introduction of dying strategy as explicit part of evolutionary 

process. This chapter has given insight into dying of solutions and its impact on 

diversity of population. Dying is implicit part of selection process i.e. solutions 

which are not selected die out. In this chapter proposed and implemented dying 

strategies are presented. Three strategies for dying of solution from next generation 

population have been incorporated in a new MOGA framework. Performances of 

these strategies have been tested on test functions of IEEECEC09 Test Suit.  

The empirical study suggest the following 

 Proposed MOGA with three strategies of dying of solutions is able to guide 

the search process towards the optimum for the seven bi-objective and the 

two 3-objective test functions.  

 It is found that Inverted Generational Distance (IGD) increases with increase 

in dying rate of solutions. 

 Also, as dying rate increases diversity among solution increases but diversity 

deteriorates when dying rate exceeds 50%. So we can conclude that a 

moderate dying rate (around 50% or less than 50%) gives the better spread. 

A comparative analysis of three dying strategies is also done in this study. 

On comparing performance of three strategies of dying of solutions we found that:   

 Among the three strategies of dying of solutions, strategy ParRem1 has 

given statistically significant results on 4 functions (UF2, UF4, UF7 and 

UF8) in terms of SPREAD metric. These functions are continues, convex 

and non convex functions 

 ParRem2 and ParRem3 have given statistically significant performance 

on three (UF1, UF3 & UF9) (Convex & disconnected Pareto front) and 

two (UF5 & UF6) (Discontinues ) functions respectively 



From the above observation we conclude that, “different strategies work 

well for different problems”. 

When MOGA-ParRem1 compared with MOGA-WD it is found that MOGA-

ParRem1 has outperformed MOGA-WD on all functions by giving better diversity.  

MOGA-ParRem1 has also outperformed NSGA-II-MPX on many functions in terms 

of SPREAD, IGD and SC metric. Also Moga-ParRem1 is faster than NSGA-II-

MPX.  

Thus study has successfully shown that MOGA with explicit dying 

mechanism with controlled dying rate can improve performance of genetic 

algorithm. And hence it is concluded that dying rate of solution has some impact on 

performance of GA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

Ensemble of Dying Strategy based MOGA 

Excessive dying in nature causes reduction in diversity and leads to 

extinction of organism. In previous chapter three explicit dying strategies are 

presented. Using dying strategy a solution is removed from next generation 

population in a deterministic way. MOGA takes decision of removal of solution, 

based on one of these three strategies. MOGA with dying strategy is tested on nine 

functions (UF1-UF9).  Empirically it is found that Among the three strategies of 

dying, strategy ParRem1 has given statistically significant results on 4 functions 

(UF2, UF4, UF7 & UF8), ParRem2 and ParRem3 have given statistically significant 

performance on three (UF1, UF3 & UF9) and two (UF5&UF6) functions 

respectively and hence it is concluded that no single strategy have got successes on 

all the functions. In this study to improve performance of MOGA ensemble learning 

is used and an ensemble of dying strategy based MOGA is presented.  

6.1  Introduction 
Genetic Algorithm (GA) mimics the process of natural selection and is 

robust tool for search and optimization problems [1]. Many researchers have proven 

this. Suganthan et.al in [91], present the development of multi-objective 

evolutionary algorithms (MOEAs) primarily, during the last eight years. The survey 

covers algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), 

memetic MOEAs, co-evolutionary MOEAs, selection and offspring reproduction 

operators, MOEAs with specific search methods, MOEAs for multimodal problems, 

constraint handling and MOEAs, computationally expensive multi-objective 

optimization problems (MOPs), dynamic MOPs, noisy MOPs, combinatorial and 

discrete MOPs, benchmark problems, performance indicators, and applications. In 

addition, some future research issues are also presented.  

Genetic algorithm uses selection, crossover and mutation operators to evolve 

a set of solutions of current generation. Selection operator is then used to select fit 

solutions from current generation as next generation population [1]. Weaker 



Solutions which are not selected die out and do not reappear. Thus dying is implicit 

part of selection mechanism. Solutions having better fitness produce fitter offspring 

and selection strategies are likely to select both parent and their offspring. Offspring 

solutions inherits the properties of Solutions (parent solution) present in first 

generation using cross over operator. Offspring solutions generated using crossover 

operator carry forward the good properties of parent solutions in subsequent 

generations. Problem with this selection strategy is that, after few generation whole 

population is dominated by presence of few solutions from initial population and 

their offspring i.e. trail of very few solutions from initial population reach to final 

generation and most of the solutions die out somewhere in between generations. 

Thus selection strategy based on survival of fittest reduces diversity and 

convergence of solutions. So, a new mechanism is needed to avoid excessive dying 

of solutions.  

In the study presented in previous chapter dying has been made explicit part 

of evolutionary process to control excessive dying of solutions, and three strategies 

for dying of solution have been proposed and implemented. Using one of the three 

proposed dying strategies a solution is deterministically removed from next 

generation population. Impact of dying rate of solutions on the performance of GA 

has been studied. Idea of gradual dying is modeled and a new framework of MOGA 

has been used to demonstrate the same. Experimental evidences show that any one 

strategy is not sufficient to solve all the problems. 

Given an optimization problem (i.e. objective function) f and an algorithm a, 

it is important to have some measure of how well a performs on f. Moreover, given 

empirical evidence of a‘s performance on f, is it possible to make generalizations 

about a‘s performance on other functions, either of the same or different type as f? 

Intuition would have one believe that there are some algorithms that will perform 

better than others on average. However, the No Free Lunch (NFL) Theorems state 

that such an assertion cannot be made. That is, across all optimization functions, the 

average performance of all algorithms is the same. This means that if an algorithm 

performs well on one set of problems then it will perform poorly (worse than 

random search) on all others [92].  



From the empirical results presented in previous chapter it is concluded that 

different dying strategies have given good performance on different MOPs. Hence 

there is need to design a MOGA which can select appropriate strategy among the 

three dying strategies for an MOP. Using ensemble learning technique a MOGA 

with three dying strategies can be designed. Ensemble Learning refers to the 

procedures employed to train multiple learning machines and combine their outputs, 

treating them as a committee of decision makers. The principle is that the committee 

decision, with individual predictions combined appropriately, should have better 

overall accuracy, on average, than any individual committee member. Numerous 

empirical and theoretical studies have demonstrated that ensemble models very often 

attain higher accuracy than single models. The members of the ensemble might be 

predicting real-valued numbers, class labels, posterior probabilities, rankings, 

clustering, or any other quantity. Therefore, their decisions can be combined using 

many methods, including averaging, voting, and probabilistic methods. The majority 

of ensemble learning methods are generic, applicable across broad classes of model 

types and learning tasks.  

This chapter introduces ensemble of dying strategy based MOGA (EDS-

MOGA) that can optimize given set of problems. In EDS-MOGA, ensemble of three 

dying strategy is formed and population is evaluated by selecting strategy one by 

one from the ensemble of dying strategies for few generations. Performance of each 

strategy is evaluated and best strategy is selected for rest of the generations. 

6.2 Ensemble learning and Evolutionary algorithms 
Ensemble learning is a machine learning paradigm where multiple learners 

are trained to solve the same problem. An ensemble combines a series of k learned 

models D1, D2,…,Dk, with the aim of creating an improved composite model D*. A 

given set of solutions P is used to create k sets, P1, P2,…Pk where Di (1<i<=k-1) is 

used to solve Pi. Ensemble is able to boost a weak learner to strong learner. There 

are many effective ensemble methods. The three representative methods are 

Boosting, Bagging and Stacking. [101] 



The Mixtures of Experts architecture is a widely investigated paradigm for 

creating an ensemble [102]. The principle underlying the architecture is that certain 

models will be able to `specialize' to particular parts of the input space. It is 

commonly implemented with a Neural Network as the base model, or some other 

model capable of estimating probabilities. A Gating network receives the same 

inputs as the component models, but its outputs are used as the weights for a linear 

combiner. The Gating network is responsible for learning the appropriate weighted 

combination of the specialized models ( or experts) for any given input. In this way 

the input space is `carved-up' between the experts, increasing and decreasing their 

weights for particular examples. In effect, a Mixture of Experts explicitly learns how 

to create expert ensemble members in different portions of the input space, and 

select the most appropriate subset for a new testing example. 

Ensemble learning has already been used in diverse applications such as 

optical character recognition, text categorization, face recognition, computer-aided 

medical diagnosis, gene expression analysis, etc. Actually, ensemble learning can be 

used wherever machine learning techniques can be used. 

Ensemble learning has proven to be very efficient and effective for adjusting 

algorithmic control parameters and operators in an online manner. Reference [93] 

shows the use of an ensemble of different Neighborhood Sizes, in MOEA/D and the 

neighborhood sizes dynamically adjust their selection probabilities based on their 

previous performances. In the paper [98], differential evolution with an ensemble of 

restricted tournament selection (ERTS-DE) algorithm is introduced to perform 

multimodal optimization. It is impossible for a single constraint handling technique 

to outperform all other constraint handling techniques always on every problem 

irrespective of the exhaustiveness of parameter tuning. To overcome this selection 

problem, an ensemble of constraint handling methods (ECHM) to tackle constrained 

multi-objective optimization problems has been used. The ECHM is integrated with 

multi-objective differential evolution (MODE) algorithm [97]. In [99] authors 

propose an ensemble of mutation and crossover strategies and parameter values for 

DE (EPSDE) in which a pool of mutation strategies, along with a pool of values 

corresponding to each associated parameter competes to produce successful 



offspring population. Thus the work done in [93]-[99] motivated authors to use 

ensemble methods to improve performance of MOGA with dying strategy. 

6.3  Ensemble of Dying strategy based MOGA 

In this section EDS-MOGA is presented. This is a novel MOGA with 

ensemble of dying strategies. Concept of ensemble learning is used to combine the 

three strategies in a MOGA. learning is presented. This algorithm uses mixture of 

experts‘ architecture is used to collaborate three dying strategies. In the beginning 

each initial solution is given a unique number as parent number. The algorithm 

divides input population into three subpopulations. It maintains a pool of three dying 

strategies. A Learning Period (LP) is defined. Parameter values for max gen, DR, 

Gen_Rem and iGen_Rem is set. Each subpopulation is randomly assigned a dying 

strategy from the pool. Each subpopulation undergoes cycles of selection-crossover-

multilevel tournament selection. Using corresponding dying strategy a solution is 

removed from each subpopulation in a deterministic way. Subpopulations evolve 

independently for LP number of generations. After LP
th

 generation performance of 

each subpopulation is evaluated. Here improvement in objective values is the criteria 

used for performance comparison of the three strategies. The dying strategy assigned 

to subpopulation showing large improvement in objective values is selected as 

winner dying strategy. All the three subpopulations are combined and evaluated with 

winner dying strategy for rest of the generation. Flowchart of proposed Ensemble of 

Dying Strategy Based Multi-Objective Genetic Algorithm is given in fig. 6.1.   

 

 

6.4  Experimental design and results 
Experiments are performed to demonstrate the behavior of the proposed 

approach in terms of convergence and diversity. Dying rate is chosen as 50% and 

other parameter setting used are same as given in chapter 5, section 5.4. 

 



TABLE 6.1 PERFORMANCE COMPARISON OF EDS-MOGA WITH ParRem1,  

ParRem2 AND ParRem3  

Scheme ParRem1        ParRem2       ParRem3       EDS-MOGA  

Function MeanIGD  SPREAD  MeanIGD  SPREAD  MeanIGD  SPREAD  MeanIGD  SPREAD  

UF1 0.061657  0.58012  0.060779  0.55635  0.067689  0.55652  0.054910  0.55891  

UF2 0.019220  0.40815  0.023877  0.45033  0.022364  0.42707  0.013663  0.40647  

UF3 0.201176  0.52668  0.170225  0.47090  0.180125  0.50012  0.097539 0.49136 

UF4 0.050215  0.50465  0.054376  0.53480  0.054034  0.55244  0.016117  0.50529  

UF5 0.153826  0.67871  0.208118  0.78428  0.201256  0.63878  0.094909 0.53358  

UF6 0.064901  0.70065  0.070440  0.76884  0.059221  0.67963  0.060966  0.66912  

UF7 0.083477  0.67037  0.113827  0.79031  0.110274  0.70431  0.080293  0.66937  

UF8 0.755344  0.46400  0.738952  0.68068  0.738637  0.65029  0.271814 0.46076 

UF9 0.899907  0.63089  0.904564  0.58913  0.959632  0.68203  0.165976  0.55382  

 

MeanIGD and SPREAD values of UF1-UF9 produced by EDS-MOGA are 

reported in table 6.1. Table 6.1 also shows MeanIGD and SPREAD values of three 

dying strategies on UF1-UF9 function. EDS-MOGA has outperformed MOGA with 

single dying strategy i.e.ParRem1, ParRem2 and ParRem3 on functions UF1-UF5 & 

UF7-UF9 in terms of IGD metric and on functions UF2, UF5-UF9 functions in 

terms of SPREAD metric. EDS-MOGA has comparable performance in other cases. 

EDS-MOGA combines‘ features of three dying strategy and contribution of each 

strategy has produced good convergence and diversity in the population. EDS-

MOGA dynamically selects the dying strategies. The selection of appropriate 

strategy by EDS_MOGA has helped in improving performance of EDS-MOGA 

Among the three dying strategies, strategy ParRem1 has performed better 

than the other two strategies. Hence ParRem1 is the winner dying strategy. To show 

that EDS-MOGA is better than MOGA-ParRem1 we plot nondominated sets 

obtained by two algorithms on UF1-UF9 functions. Fig 6.2-6.10 shows plots of 

nondominated sets of functions UF1-UF9 obtained by MOGA-ParRem1 and fig 

6.11-6.19 shows plots of nondominated sets of functions UF1-UF9 obtained by 

EDS-MOGA.  

 



 

   

 
Fig 6.2 Nondominated set obtained by MOGA-

ParRem1 on UF1 

 
Fig 6.3 Nondominated set obtained by MOGA-

ParRem1 on UF2 

 
Fig 6.4 Nondominated set obtained by MOGA-

ParRem1 on UF3 
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Fig 6.11 Nondominated set obtained by EDS-

MOGA on UF1 

 
Fig 6.12 Nondominated set obtained by EDS-

MOGA on UF2

 
Fig 6.13 Nondominated set obtained by EDS-

MOGA on UF3 
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Fig 6.5 Nondominated set obtained by MOGA-

ParRem1 on UF4 

 
Fig 6.6 Nondominated set obtained by MOGA-

ParRem1 on UF5 

 
Fig 6.7 Nondominated set obtained by MOGA-

ParRem1 on UF6 
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Fig 6.14 Nondominated set obtained by EDS-

MOGA on UF4 

 
Fig 6.15 Nondominated set obtained by EDS-

MOGA on UF5 

 
Fig 6.16 Nondominated set obtained by EDS-

MOGA on UF6 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

UF4

f1

f2

0 0.5 1 1.5
0

0.5

1

1.5

f
1

f 2

UF5

0 0.5 1 1.5
0

0.5

1

1.5

f
1

f 2

UF6



 

  

 
Fig 6.8 Nondominated set obtained by MOGA-

ParRem1 on UF7 

 
Fig 6.9 Nondominated set obtained by MOGA-

ParRem1 on UF8 

 

 
Fig 6.10 Nondominated set obtained by MOGA-

ParRem1 on UF9 
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Fig 6.17 Nondominated set obtained by EDS-MOGA 

on UF7 

 
Fig 6.18 Nondominated set obtained by EDS-MOGA 

on UF8 

 

 
 

Fig 6.19 Nondominated set obtained by EDS-MOGA 

on UF9 
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6.5  Performance comparison with other algorithm 
Performance of EDS-MOGA is compared with NSGA-II and SNOVMOGA 

algorithms.  For fair comparison SBX operator in NSGA-II is replaced by MPX 

operator and mutation operator is also removed. NSGA-II-MPX is coded in MatLab 

7.1. SNOVMOGA uses Summation of normalized objective value based sorting as 

discrimination technique while selecting parent solutions for formation of next 

generation population. In order to have diversity among solutions it uses reference 

point based improved selection method. 

MeanIGD and SPREAD values of EDS-MOGA, NSGA-II-MPX and 

SNOVMOGA algorithms are reported in Table 6.2. EDS-MOGA has outperformed 

NSGA-II-MPX on functions UF1-UF6 &UF8-UF9. NSGA-II-MPX has given better 

MeanIGD and SNOVMOGA has given better SPREAD on UF7 function when 

compared to EDS-MOGA. Also SNOVMOGA has outperformed EDS-MOGA on 

function UF1 and UF7 in terms of SPREAD metric. 

TABLE 6.2 PERFORMANCE COMPARISON OF EDS-MOGA WITH  NSGA-II-MPX  

 AND SNOVMOGA 

Scheme EDS-MOGA  NSGA-II-MPX SNOVMOGA 

Function MeanIGD SPREAD MeanIGD SPREAD MeanIGD SPREAD 

UF1 0.054910 0.55891 0.068187 0.697345 0.057391 0.536142 

UF2 0.010663 0.40647 0.024311 0.540971 0.011047 0.428002 

UF3 0.097539 0.52136 0.135773 0.666309 0.031120 0.588970 

UF4 0.016117 0.50529 0.019737 0.682081 0.016262 0.631167 

UF5 0.094909 0.53358 0.211415 0.658579 0.819614 0.697120 

UF6 0.029566 0.66912 0.152526 0.694642 0.311660 0.684705 

UF7 0.080293 0.65037 0.031356 0.606167 0.010428 0.531024 

UF8 0.271814 0.46076 0.536727 0.616086 0.322575 0.793246 

UF9 0.125976 0.55382 0.375251 0.703306 0.108460 0.604505 

 

Fig 6.20-6.28 shows plots of nondominated set obtained by EDS-MOGA and 

NSGA-II-MPX. Function UF5 is having discontinues Pareto-front. EDS-MOGA has 

successfully converged solutions on the Pareto-front of UF5 function whereas 

NSGA-II-MPX fails on UF5 as solutions are away from Pareto-front. EDS-MOGA 



has given poor spread on function UF7 as shown in fig. 6.6 where as NSGA-II-MPX 

has given good spread on UF7 as shown in fig.6.7. EDS-MOGA has shown better 

convergence and diversity when compared to NSGA-II-MPX. 

 
Figure 1.  Fig.6. 20 Best approximate of UF2 

with EDS-MOGA 

 
Fig. 6.24 Best approximate of UF2 with NSGA-

II-MPX 

 
Figure 2.  Fig. 6.21 Best approximate of UF4 

with EDS-MOGA 

 
Figure 3.  Fig. 6.25 Best approximate of UF4 with 

NSGA-II-MPX 

 
Figure 4.  Fig. 6.22 Best approximate of UF7 

with EDS-MOGA 

 
Figure 5.  Fig 6.26 Best approximate of UF7 with 

NSGA-II-MPX 

 
Figure 6.  Fig. 6.23  Best approximate of UF5 

with EDS-MOGA 

 
Fig.6.27 Best approximate of UF5 with NSGA-II-

MPX 
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Performance comparison of EDS-MOGA with MOEA/D on UF5 function is 

shown in table 6.3.  

TABLE 6.3 PERFORMANCE OF MOEA/D AND EDS-MOGA ON UF5 FUNCTION 

SCHEME MEANIGD STDIGD MINIGD MAXIGD 

MOEA/D  0.180711 0.068112 0.080283 0.306214 

EDS-MOGA  0.094909 0.018956 0.039203 0.574952 

EDS-MOGA has outperformed MOEA/D on UF5 function. UF5 is a difficult 

function with disconnected and uniform Pareto front. EDS-MOGA has remarkably 

good performance on UF5 function. Plots of nondominated solutions obtained by the 

two algorithms on UF5 function are shown in fig. 6.28. 

6.6  Key findings 

Previous chapter has presented three dying strategies, their performance on 

different functions. From the empirical results it is concluded that one single dying 

strategy has capability to solve all nine problems (UF1-UF9).  

In this chapter a novel MOGA has been presented. EDS-MOGA uses 

ensemble learning technique to combine the three dying strategies in a single 

MOGA. A brief introduction to ensemble learning and its foot prints in evolutionary 

algorithms also given in the chapter. EDS-MOGA uses all the three strategies of 

dying to evaluate solutions for few generations and then selects one dying strategy 

 

Figure 2.  Fig. 6.28a  Best approximate of UF5  

with MOGA/D 

 

Figure 1.  Fig. 6.28b  Best approximate of 

UF5  

with EDS-MOGA 
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i.e. best dying strategy for rest of the generations. Selection of dying strategy is 

based on performance of strategy in learning Period (LP) generations. 

EDS-MOGA has outperformed MOGA with single dying strategy. Also 

EDS-MOGA has shown better performance on many functions when compared to 

NSGA-II-MPX and SNOVMOGA.EDS-MOGA has given remarkably good 

performance on UF5 functions whereas all the MOGAs proposed in this study have 

performed poorly on UF5. In the LP generation all the three dying strategies 

contribute in evolution process and after checking performance of all the strategies 

algorithm selects best strategy for evolution. This effort of collaboration of three 

strategy in initial generation has helped solutions to have convergence and diversity 

and thus helped in the improvement of performance of EDS-MOGA. Thus ensemble 

of dying strategy has improved performance of MOGA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7 

Results and Conclusions 

The research work is aimed at the performance enhancement of Real-Coded 

Genetic Algorithms used for multi-objective optimization. Study started with 

identifying the potential areas in RCGAs where modification might enhance their 

performance. Operators play very important role in the functioning of GAs. In GAs 

the roles of selection and recombination (or crossover) operators are very well 

defined. Selection operator controls the direction of a search and the recombination 

operator generates new vistas for the search. The efficacy of GAs on a particular 

problem hinges quite strongly on the degree of exploration and exploitation of 

search space by the recombination operator and the direction of search in the search 

space set by the selection operator. GA uses simple selection operators for solving 

single objective optimization problems but special selection operators are needed to 

solve multi-objective optimization problems. Study proposes several selection 

schemes and special scheme called dying strategy and used them in new MOGA 

framework.  

7.1  Summary 
In chapter 2 an insight is given on Pareto-dominance based selection scheme 

and crossover operator used in NSGA-II. NSGA-II is modified and SBX operator is 

replaced by MPX and MLX operators. Performance of MPX and MLX operators is 

investigated on few functions from ZDT test suit. It is found that found that NSGA-

II-MPX and NSGA-II-MLX has given better performance. 

In chapter 3, two non-Pareto based selection approaches, Rank-sum and 

Summation of Normalized Objective Value as an alternative to Pareto-dominance 

based selection have been reviewed. Two multi-objective Genetic algorithm 

RSMOGA and SNOVMOGA based on above-mentioned selection approaches have 

been implemented and tested on unconstrained test problems of CEC09 test suit. 

Experiments have been performed to investigate the search capability of these 

algorithms and the effectiveness of the two approaches in handling the issues of 



convergence and diversity in multi-objective optimization problems. Also the two 

methods have been compared with Pareto-dominance based non-dominated sorting 

technique (NSGA-II-MPX) as shown in table 7.1. 

Experimental results indicate that RSMOGA and SNOVMOGA algorithms 

are able to guide the search process towards the optimum for the seven bi-objective 

and the two 3-objective test functions. SNOV sort technique is fine-grained ranking 

technique and provides high order ranking and has helped the SNOVMOGA to give 

better convergence and diversity in comparison to RSMOGA and NSGA-II-MPX. 

Sign test is also performed and shown in last column in table 7.1. A + indicate good 

or comparable performance and – indicate insignificant performance. Table 7.2 

shows that SNOVMOGA has given statistically significant performance on seven 

functions in terms of MeanIGD metric and on six functions in terms of SPREAD 

metric. On the other hand RSMOGA has shown better computational efficiency on 

all nine functions. SNOVMOGA and NSGA-II-MPX have shown poor efficiency. 

Rank-sum sort is less complex technique and adaptive diversified selection requires 

less iteration for selection of solutions for next generation.  

From the above discussion it is clear that SNOVMOGA has shown better 

convergence and diversity in all test functions having continuous convex and non-

convex Pareto fronts but performed poorly on functions having discontinuous Pareto 

fronts.   

  



 

 

TABLE 7.2 STATISTICAL SUM OF PROBLEMS FOR WHICH EACH STRATEGY OBTAINS 

SIGNIFICANTLY BETTER RESULTS 

Metric NSGA-II-MPX RSMOGA SNOVMOGA 

MeanIGD 02 00 07 

SPREAD 02 01 06 

CPU Time 00 09 00 

Total 04 10 13 

 

TABLE 7.1 COMPARISON OF  SNOVMOGA WITH RSMOGA & NSGA-II-MPX 

Scheme NSGA-II-MPX RSMOGA SNOVMOGA Sign test 

Function MeanIGD SPREAD CPU Time MeanIGD SPREAD 
CPU 

Time 
MeanIGD SPREAD 

CPU 

Time 

( MeanIGD, SPREAD, 

CPU Time) 

UF1 0.068187 0.697345 1008.341 0.064189 0.71734 61.984 0.057391 0.536142 341.922 ( +, +, - ) 

UF2 0.024311 0.540971 1014.821 0.026720 0.59107 32.754 0.011047 0.428002 377.031          ( +, +, - ) 

UF3 0.135773 0.666309 1028.630 0.031159 0.58190 53.016 0.031120 0.588970 362.673 ( +,  -,  - ) 

UF4 0.019737 0.682081 1002.473 0.028890 0.76925 34.890 0.016262 0.631167 310.475 ( +, +, - ) 

UF5 0.211415 0.658579 1068.459 0.978930 0.72905 168.892 0.819614 0.697120 390.539 ( -, -, - ) 

UF6 0.152526 0.694642 1015.378 0.370197 0.74035 54.782 0.311660 0.695705 392.531 (  -, -, - ) 

UF7 0.031356 0.606167 1013.489 0.019931 0.56061 53.407 0.010428 0.531020 320.569 ( +, +, - ) 

UF8 0.536727 0.616086 1104.672 1.836091 0.83692 60.062 0.322575 0.583246 358.638 (  +, +, - ) 

UF9 0.375251 0.703306 1100.592 0.988287 0.71489 76.625 0.108460 0.604505 360.521 ( +, +, -  ) 



Next the focus of the study is moved to decomposition based approach for 

solving MOPs. Two methods of scalar fitness assignment for decomposition 

approach Tchebycheffs and Weight-sum are studied. These methods require uniform 

well distributed weight vectors. In chapter 4 a unique procedure for uniform well 

distributed weight vector generation using opposition based learning has been 

presented.  A Decomposition based Multi-objective Genetic Algorithm with 

opposition based learning (DMOGA-OBL) is implemented. Table 7.3 shows 

performance comparison of DMOGA-OBL with RSMOGA and SNOVMOGA. 

DMOGA-OBL when compared with RSMOGA and SNOVMOGA has performed 

better or comparable on UF1-UF7 but not shown improvement in UF8 & UF9. It has 

good improvement on two functions (UF5 & UF6) having discontinuous Pareto 

front. SNOVMOGA has shown good SPREAD on six functions UF1, UF4, UF5 & 

UF7-UF9. RSMOGA is computationally efficient than the other two algorithms. 

Table 7.4 shows statistics of performance of the RSMOGA, SNOVMOGA and 

DMOGA-OBL.  

The attempts to enhance performance of MOGA with multiparent 

recombination operators, rank based selection mechanism and decomposition based 

approaches got remarkably good success in solving highly complex two and three 

objective MOPs having convex, non-convex and continuous Pareto fronts. The 

failure, however, with functions UF5 and UF6 having discontinuous Pareto fronts 

and very complicated Pareto sets is due to the inability of the algorithm to deal with 

multimodal functions. 

In chapter 5 a new study is presented to deal with issues of convergence and 

diversity in functions having complicated PF and PS. In this study GA procedure has 

been made more close to natural evolutionary process which incorporate Birth-

Reproduction-death cycle. This work has given insight into dying of solutions and 

its impact on diversity of population. Dying is implicit part of selection process i.e. 

solutions which are not selected die out. We have proposed and implemented 

strategies for explicit dying of solution in specific generations. Three strategies for 

dying of solution from next generation population have been proposed and 

implemented along with new MOGA framework.   



 TABLE 7.3 COMPARISON OF DMOGA-OBL WITH OTHER ALGORITHMS 

Scheme RSMOGA  SNOVMOGA DMOGA-OBL Sign test 

Function MeanIGD SPREAD CPU Time MeanIGD SPREAD 
CPU 

Time 
MeanIGD SPREAD 

CPU 

Time 

( MeanIGD, 

SPREAD, CPU Time) 

UF1 0.064189 0.71734 61.984 0.057391 0.536142 341.922 0.00991 0.54605 484.256 (+, -, -) 

UF2 0.026720 0.59107 32.754 0.011047 0.428002 377.031 0.00676 0.40673  498.168 (+, +, -) 

UF3 0.031159 0.58190 53.016 0.031120 0.588970 362.673 0.03127 0.58931 469.447 ( -, -, -) 

UF4 0.028890 0.76925 34.890 0.016262 0.631167 310.475 0.01626 0.63560 430.421 ( -, -, -) 

UF5 0.978930 0.72905 168.892 0.819614 0.697120 390.539 0.29061 0.79242 527.948 (+, -, -) 

UF6 0.370197 0.74035 54.782 0.311660 0.695705 392.531 0.03116 0.67722 510.481 (+, +, -) 

UF7 0.019931 0.56061 53.407 0.010428 0.531020 320.569 0.00481 0.53516 406.953 (+, -, -) 

UF8 1.836091 0.83692 60.062 0.322575 0.583246 358.638 0.836727 0.81782 583.827 (-, -, -) 

UF9 0.988287 0.71489 76.625 0.108460 0.604505 360.521 0.891271 0.70783 609.460 (-, -, -) 

 

 
TABLE 7.4  STATISTICAL SUM OF PROBLEMS FOR WHICH EACH STRATEGY OBTAINS 

SIGNIFICANTLY BETTER RESULTS 

Metric RSMOGA SNOVMOGA DMOGA-OBL 

MeanIGD 00 04 05 

SPREAD 01 06 02 

CPU Time 09 00 00 

Total 10 10 07 



It is observed that for all three strategies best results for MeanIGD and 

SPREAD have been obtained for dying rate at or below 50%. Hence we can say that 

excessive dying of solutions affects the convergence to and diversity in Pareto front.  

Table 7.5 shows best performance (MeanIGD and SPREAD) of three strategies of 

dying of solution on function UF1-UF9. From Table 7.5 it is observed that dying 

strategy ParRem1 with dying rate 50% has outperformed ParRem2 and ParRem3 in 

terms of SPREAD on four functions (UF2, UF4, UF7 and UF8) out of nine 

functions. ParRem2 has outperformed ParRem1 and ParRem3 on three functions 

(UF1 & UF3 with dying rate 50% and UF9 with dying rate 40%). ParRem3 has 

outperformed ParRem1 and ParRem2 on two functions (UF5 and UF6 with dying 

rate 50%). 

TABLE 7.5 COMPARISON OF PERFORMANCE OF PARREM1, PARREM2 AND 

PARREM3 ON FUNCTION UF1-UF9 WITH  POPULATION SIZE = 100 AND  

NUMBER OF GENERATIONS = 3000 

Scheme ParRem1 ParRem2 ParRem3 Sign test 

Function MeanIGD 

(Dying 

rate) 

SPREAD 

(Dying 

rate) 

MeanIGD 

(Dying 

rate) 

SPREAD 

(Dying 

rate) 

MeanIGD 

(Dying 

rate) 

SPREAD 

(Dying 

rate) 

(IGD, 

SPREAD) 

UF1 
0.061657 

(50%) 

0.58012 

(50%) 
0.060779 

10%) 

0.55635 

(50%) 

0.067689 

(10%) 

0.55652 

(50%) 
(  - , - ) 

UF2 
0.019220 

(50%) 

0.40815 

(50%) 

0.023877 

(50%) 

0.45033 

(50%) 

0.022364 

(10%) 

0.42707 

(30%) 
( + , +) 

UF3 
0.201176 

(10%) 

0.52668 

(10%) 
0.170225 

10%) 

0.47090 

(50%) 

0.180125 

(10%) 

0.50012 

(30%) 
(- , - ) 

UF4 
0.050215 

(10%) 

0.50465 

(50%) 

0.054376 

(10%) 

0.53480 

(50%) 

0.054034 

(10%) 

0.55244 

(30%) 
(+ , +) 

UF5 
0.153826 

(10%) 

0.67871 

(50%) 

0.208118 

(10%) 

0.78428 

(50%) 

0.201256 

(10%) 
0.63878 

(50%) 
( + , -) 

UF6 
0.064901 

(10%) 

0.70065 

(50%) 

0.070440 

(10%) 

0.76884 

(50%) 
0.059221 

(30%) 

0.67963 

(50%) 
( - , -) 

UF7 
0.083477 

(10%) 

0.67037 

(50%) 

0.113827 

(30%) 

0.79031 

(50%) 

0.110274 

(10%) 

0.70431 

(50%) 
( + , +) 

UF8 
0.755344 

(50%) 
0.46400 

(50%) 

0.738952 

(50%) 

0.68068 

(50%) 
0.738637 

(30%) 

0.65029 

(10%) 
( - , +) 

UF9 
0.899907 

(30%) 

0.63089 

(50%) 

0.904564 

(10%) 

0.58913 

(40%) 

0.959632 

(30%) 

0.68203 

(10%) 
( + , -) 

 



Table 7.6 shows Statistical Sum of Problems for which each strategy obtains 

significantly better results. ParRem1 has given statistically significant performance 

than ParRem2 and ParRem3 and hence dying strategy ParRem1 and dying rate 50% 

will be used for further experimentation.  

The performance of proposed MOGA with dying strategy ParRem1 

(MOGA-ParRem1) is compared with proposed MOGA without dying (MOGA-WD) 

and NSGA-II-MPX. NSGA-II is coded in MatLab 7.1 and in place of SBX operator 

MPX crossover operator is used. Also parameter setting used for MOGA-WD and 

NSGA-II-MPX is same as given in section 4.Table 6 shows MeanIGD and SPREAD 

of MOGA-WD, MOGA-ParRem1 and NSGA-II-MPX. SPREAD values reported in 

the table 7.7 indicate that MOGA-ParRem1 has outperformed MOGA-WD on 

functions UF1- UF5 and UF7-UF9. Giving better SPREAD on functions UF1-UF4 

and UF8-UF9, MOGA-ParRem1 has outperformed NSGA-II-MPX. IGD measure 

taken for MOGA-ParRem1 has shown that it has given good performance on 

functions UF1, UF2 and UF6 functions. NSGA-II-MPX has shown good IGD values 

on functions UF3-UF5 and UF7-UF9.Table 7.8 shows Statistical Sum of Problems 

for which each algorithm obtains significantly better results. 

  

TABLE 7.6 STATISTICAL SUM OF PROBLEMS FOR WHICH EACH STRATEGY 

OBTAINS SIGNIFICANTLY BETTER RESULTS 

Metric ParRem1 ParRem2 ParRem3 

MeanIGD 05 02 02 

SPREAD 04 03 02 

Total 09 05 04 



TABLE 7.7 PERFORMANCE COMPARISON OF  MOGA-ParRem1 WITH MOGA-WD 

AND NSGA-II-MPX 

Scheme MOGA-WD 
MOGA-ParRem1 

(DR = 50%) 
NSGA-II-MPX Sign test 

Functon MeanIGD SPREAD MeanIGD SPREAD MeanIGD SPREAD 
(MeanIGD 

SPREAD) 

UF1 0.061892 0.615871 0.061657 0.580122 0.068187 0.697345 ( +  , +) 

UF2 0.057764 0.644613 0.019220 0.408153 0.024311 0.540971 ( + , +) 

UF3 0.245993 0.583918 0.240011 0.547451 0.135773 0.666309 ( - , +) 

UF4 0.066059 0.550369 0.062340 0.504653 0.019737 0.682081 ( - , +) 

UF5 1.046338 0.753780 0.214201 0.678715 0.211415 0.658579 ( -  , -) 

UF6 0.230648 0.695138 0.072117 0.700656 0.152526 0.694642 (  +, - ) 

UF7 0.101259 0.715222 0.098397 0.670374 0.031356 0.626167 ( - , -) 

UF8 0.836721 0.686384 0.755344 0.464006 0.536727 0.616086 ( - , +) 

UF9 0.975251 0.883306 0.914492 0.630897 0.375251 0.703306 ( - , +) 

 

TABLE 7.8 STATISTICAL SUM OF PROBLEMS FOR WHICH EACH STRATEGY 

OBTAINS SIGNIFICANTLY BETTER RESULTS 

Metric MOGA-WD 
MOGA-ParRem1 (dying 

rate = 50%) 
NSGA-II-MPX 

MeanIGD 0 03 06 

SPREAD 0 06 03 

Total 0 09 09 

 

 



 

TABLE 7.10  STATISTICAL SUM OF PROBLEMS FOR WHICH EACH STRATEGY OBTAINS 

SIGNIFICANTLY BETTER RESULTS 

Metric RSMOGA SNOVMOGA DMOGA-OBL 
MOGA-ParRem1 

(dying rate = 50%) 

MeanIGD 00 04 04 01 

SPREAD 00 03 02 04 

CPU Time 09 00 00 00 

Total 09 07 06 05 

 

TABLE 7.9  COMPARISON OF MOGA-PARREM1 WITH OTHER ALGORITHMS 

Sche

me 
RSMOGA SNOVMOGA DMOGA-OBL MOGA-ParRem1 (DR = 50%) Sign test 

Func

tion 
MeanIGD SPREAD 

CPU 

Time 
MeanIGD SPREAD 

CPU 

Time 
MeanIGD SPREAD 

CPU 

Time 
MeanIGD SPREAD 

CPU 

Time 

( MeanIGD, 

SPREAD, 

CPU Time) 

UF1 0.064189 0.71734 61.98 0.057391 0.536142 341.92 0.00991 0.54605 484.25 0.061657  0.58012  169.23 (-,-,-) 

UF2 0.026720 0.59107 32.75 0.011047 0.428002 377.03 0.00676 0.40673  498.16 0.019220  0.40815  192.11 (-, -, -) 

UF3 0.031159 0.58190 53.01 0.031120 0.588970 362.67 0.03127 0.58931 469.44 0.201176  0.52668  198.42 ( -,+,-) 

UF4 0.028890 0.76925 34.89 0.016262 0.631167 310.47 0.01626 0.63560 430.42 0.050215  0.50465  174.54 ( -,+,-) 

UF5 0.978930 0.72905 168.8 0.819614 0.697120 390.53 0.29061 0.79242 527.94 0.153826  0.67871  205.71 (+,+,-) 

UF6 0.370197 0.74035 54.78 0.311660 0.695705 392.53 0.03116 0.67722 510.48 0.064901  0.70065  186.34 (-, -, -) 

UF7 0.019931 0.56061 53.40 0.010428 0.531020 320.56 0.00481 0.53516 406.95 0.083477  0.67037  197.19 (-, -, -) 

UF8 1.836091 0.83692 60.06 0.322575 0.583246 358.63 0.836727 0.81782 583.82 0.755344  0.46400  220.16 (-, +,-) 

UF9 0.988287 0.71489 76.62 0.108460 0.604505 360.52 0.891271 0.70783 609.46 0.899907  0.63089  234.03 (-, -, -) 



Empirically it is found that Among the three strategies of dying, strategy 

ParRem1 has given statistically significant results on 4 functions, ParRem2 and ParRem3 

have given statistically significant performance on three & two functions respectively in 

terms of SPREAD metric and hence it is concluded that no single strategy is capable 

enough to solve all the functions (UF1-UF9) properly. In chapter 6 an ensemble of dying 

strategy based MOGA is presented to improve performance of MOGA. Ensemble 

learning is a machine learning paradigm and has proven to be very efficient and effective 

for adjusting algorithmic control parameters and operators in an online manner. EDS-

MOGA maintains a pool of three dying strategies and appropriate strategy is selected for 

solving a problem. 

Performance Comparison of EDS-MOGA with ParRem1, ParRem2 and ParRem3 

is shown in Table 7.11. EDS-MOGA has outperformed MOGA with single dying 

strategy i.e.ParRem1, ParRem2 and ParRem3 on functions UF1-UF5 & UF7-UF9 in 

terms of IGD metric and on functions UF2, UF5-UF9 functions in terms of SPREAD 

metric. EDS-MOGA combines‘ features of three dying strategy and contribution of each 

strategy has produced good convergence and diversity in the population.  

TABLE 7.11 PERFORMANCE COMPARISON OF EDS-MOGA WITH ParRem1,  

ParRem 2 AND ParRem 3  

Scheme ParRem1 ParRem2 ParRem3 EDS-MOGA 

Function MeanIGD SPREAD MeanIGD SPREAD MeanIGD SPREAD MeanIGD SPREAD 

UF1 0.061657  0.58012  0.060779  0.55635  0.067689  0.55652  0.054910  0.55891  

UF2 0.019220  0.40815  0.023877  0.45033  0.022364  0.42707  0.013663  0.40647  

UF3 0.201176  0.52668  0.170225  0.47090  0.180125  0.50012  0.097539 0.49136 

UF4 0.050215  0.50465  0.054376  0.53480  0.054034  0.55244  0.016117  0.50529  

UF5 0.153826  0.67871  0.208118  0.78428  0.201256  0.63878  0.094909 0.53358  

UF6 0.064901  0.70065  0.070440  0.76884  0.059221  0.67963  0.060966  0.66912  

UF7 0.083477  0.67037  0.113827  0.79031  0.110274  0.70431  0.080293  0.66937  

UF8 0.755344  0.46400  0.738952  0.68068  0.738637  0.65029  0.271814 0.46076 

UF9 0.899907  0.63089  0.904564  0.58913  0.959632  0.68203  0.165976  0.55382  

 

Performance of EDS-MOGA is compared with NSGA-II-MPX, RSMOGA, 

SNOVMOGA, DMOGA-OBL and MOGA-ParRem1.  Table 7.12, table 7.13 and table 



7.14 compares performance of EDS-MOGA with other algorithms in terms of MeanIGD, 

SPREAD and CPU Time metrics respectively. Sign test is also performed and shown in 

last column. A + indicate good or comparable performance and – indicate insignificant 

performance. EDS-MOGA has shown remarkably good performance on UF5 function in 

terms of MeanIGD and SPREAD metric. UF5 has a discrete and uniformly distributed 

Pareto front and it is hard for an algorithm to deal with. EDS-MOGA has successfully 

moved few solutions on the Pareto front and remaining solutions are very close to Pareto 

front. EDS-MOGA has given good or comparable spread on all functions except UF7. 

Thus EDS-MOGA has given improved performance than MOGA-ParRem1 (with single 

dying strategy). This is because all the three dying strategies contributed in maintaining 

convergence and diversity in population in the initial generation and has helped in proper 

exploration of search space. The algorithm selects one suitable dying strategy to evolve 

solutions in later generations. Hence better convergence and diversity is seen in the end. 

TABLE 7.12 PERFORMANCE COMPARISON OF EDS-MOGA WITH THE OTHER 

ALGORITHMS 

Scheme RSMOGA 
SNOVMO

GA 

DMOGA-

OBL 

MOGA-

ParRem1 

EDS-

MOGA 

NSGA-

II-MPX 

Sign 

test 

Function MeanIGD MeanIGD MeanIGD MeanIGD MeanIGD 
MeanIG

D 
 

UF1 0.064189 0.057391 0.00991 0.061657 0.054910 0.068187 ( - ) 

UF2 0.026720 0.011047 0.00676 0.019220 0.010663 0.024311 ( - ) 

UF3 0.031159 0.031120 0.03127 0.201176 0.097539 0.135773 ( - ) 

UF4 0.028890 0.016262 0.01626 0.050215 0.016117 0.019737 ( + ) 

UF5 0.978930 0.819614 0.29061 0.153826 0.094909 0.211415 ( + ) 

UF6 0.370197 0.311660 0.03116 0.064901 0.029566 0.152526 (  +  ) 

UF7 0.019931 0.010428 0.00481 0.083477 0.080293 0.031356 (  -  ) 

UF8 1.836091 0.322575 0.836727 0.755344 0.271814 0.536727 (  +  ) 

UF9 0.988287 0.108460 0.891271 0.899907 0.125976 0.375251 (  +  ) 

 

TABLE 7.13 PERFORMANCE COMPARISON OF EDS-MOGA WITH THE  

OTHER ALGORITHMS 



 

TABLE 7.14 PERFORMANCE COMPARISON OF EDS-MOGA WITH THE  

OTHER ALGORITHMS 

Scheme RSMOGA SNOVMOGA 
DMOGA-

OBL 

MOGA-

ParRem1 

EDS-

MOGA 

NSGA-II-

MPX 

Sign 

test 

Function CPU Time CPU Time CPU Time CPU Time 
CPU 

Time 

CPU 

Time 
 

UF1 61.984 341.922 484.256 169.232 178.167 1008.341 ( -  ) 

UF2 32.754 377.031 498.168 192.114 198.810 1014.821 ( -  ) 

UF3 53.016 362.673 469.447 198.426 198.602 1028.630 ( -  ) 

UF4 34.890 310.475 430.421 174.547 185.118 1002.473 ( -  ) 

UF5 168.892 390.539 527.948 205.712 234.311 1068.459 ( -  ) 

UF6 54.782 392.531 510.481 186.348 197.801 1015.378 ( -  ) 

UF7 53.407 320.569 406.953 197.195 201.387 1013.489 ( -  ) 

UF8 60.062 358.638 583.827 220.169 241.617 1104.672 ( -  ) 

UF9 76.625 360.521 609.460 234.036 251.104 1100.592 ( -  ) 

 

Scheme RSMOGA SNOVMOGA 
DMOGA-

OBL 

MOGA-

ParRem1 

EDS-

MOGA 

NSGA-II-

MPX 

Sign 

test 

Function SPREAD SPREAD SPREAD SPREAD SPREAD SPREAD  

UF1 0.71734 0.536142 0.54605 0.58012 0.54891 0.697345 (   +  ) 

UF2 0.59107 0.428002 0.40673 0.40815 0.40647 0.540971 (   +  ) 

UF3 0.58190 0.588970 0.58931 0.52668 0.52136 0.666309 (   +  ) 

UF4 0.76925 0.631167 0.63560 0.50465 0.50429 0.682081 (   +  ) 

UF5 0.72905 0.697120 0.79242 0.67871 0.53358 0.658579 (   +  ) 

UF6 0.74035 0.695705 0.67722 0.70065 0.66912 0.694642 (   +  ) 

UF7 0.56061 0.53102 0.53516 0.67037 0.65037 0.606167 (   -  ) 

UF8 0.83692 0.583246 0.81782 0.46400 0.46076 0.616086 (   +  ) 

UF9 0.71489 0.604505 0.70783 0.63089 0.55382 0.703306 (   +  ) 



The major contribution of this study is the introduction of Dying strategy for 

removal of solutions for formation of next generation. Dying has been made explicit part 

of new MOGA framework and a unique ensemble of dying strategies for performance 

improvement of MOGA has been proposed. 

7.2 Conclusions 
The test problems simulate the various difficulty levels of real-world optimization 

problems. The study has attempted to device ways to enhance the performance MOGAs 

in solving such problems of different characteristics very successfully. To this end, the 

work has introduced multi-parent recombination operators and rank based selection 

schemes and also proposed new MOGAs to investigate their behaviors. Also 

decomposition based MOGA with opposition based learning has been proposed to 

address the issue of convergence and diversity. The crux of the research work is 

development of new strategies and improvement of MOGAs with a view to solve, highly 

complex MOPs having various difficulties of real world, in an efficient manner. The 

RSMOGA is the most efficient MOGA with lowest CPU Time it has taken to solve all 

the problems as shown in table 7.14. SNOVMOGA has shown good performance on 

functions having continues PFs but failed on functions having discontinues PFs. It has 

given remarkably good SPREAD on UF1 & UF7 function. DMOGA-OBL has shown 

better convergence on functions UF1, UF2 & UF7 as shown in table 7.13. Finally unique 

schemes of dying of solutions    are designed to curb mass dying of solutions in early 

generations thereby reducing diversity and hindering convergence. Ensemble of three 

dying strategies has shown improved performance on 2 & 3-objective MOPs having 

convex, concave, continues and discontinues PFs and comes out to be champion of all 

with respect to SPREAD metric as evident from table 7.13. 

Finally, we conclude that the in this work successful attempts have been made to 

improve performance of MOGA for solving MOPs showing difficulty of real world 

problems. Such study will definitely be helpful for one to choose and modify an 

algorithm for solving their problems. The experimental results also suggest that the 

presence of many local Pareto optimal solutions in MOPs with complicated PSs could be 

very challenging for algorithms.  



The scope for future research: 

 The strengths and weaknesses of these algorithms should be thoroughly studied 

on test problems with different characteristics. 

 Checking the effect of decision space dimensionality on the optimization process 

( scale up study) 

 Multi-objective Genetic Algorithms designed and implemented in this work can 

be used to solve  Many objective optimization problems i.e. MOPs having 5 or 

more objectives and constrained optimization problems 

 Thorough experimentation with other evolutionary computation techniques such 

as particle swarm or ant colony for solving multi-objective optimization with 

many competing objectives is an interesting future work direction  

 The topic that deserves further research is fine tuning proposed dying strategies 

and design of new dying strategies 

 Ensemble learning based MOGA can be extended by incorporating multiple 

ensembles of operators like crossover or mutation  

 

 

 

 

 

 

 

 

 

 

 



 

References 
1. Deb K.,―Multi-Objective Optimization using Evolutionary Algorithms‖, Chichester: John 

Wiley & Sons ISBN 0-471-87339-X. 2001 

2. Hillier, F. S. and Lieberman, G. J., ―Introductions to Operations Research‖, 7th edition, 

McGraw-Hill 2001 

3. F. Y. Edgeworth, ―Mathematical Physics”, P. Keagan, London, England, 1881. 

4. I. Das and J. Dennis., ―Normal-boundary intersection: A new method for generating the 

Pareto surface in nonlinear multicriteria optimization problems‖, SIAM Journal of 

Optimization, 8:631–657, 1998 

5. I. Das and J. E. Dennis, ―A closer look at drawbacks of minimizing weighted sums of 

objectives for Pareto set generation in multicriteria optimization problems‖, Structural 

and Multidisciplinary Optimization, 14(1):63–69, August, 1997 

6. Michael Dellnitz, Oliver Sch¨utze, and T. Hestermeyer, ―Covering Pareto Sets by 

Multilevel Subdivision Techniques‖, Journal of optimization theory and applications, 

124(1):113–136, 2005 

7. Y.Y. Haimes, L.S. Lasdon, and D.A. Wismer, ―On a bicriterion formulation of the 

problems of integrated system identification and system optimization‖, IEEE ransactions 

on Systems, Man, and Cybernetics, 1(3):296–297, 1971 

8. Kaisa M Miettinen, ― Nonlinear Multiobjective Optimization”, Springer, 1999. 

9. Ulrich Bodenhofer, , ―Genetic Algorithms: Theory and Applications‖, Lecture Notes 

Third Edition 2003/2004 

10. Q. Zhang, Aimin Zhou, S. Z. Zhao, P. N. Suganthan, Wudong Liu, and S. Tiwari, ―Multi-

objective optimization Test Instances for the CEC 2009 Special Session and 

Competition,‖ University of Essex, Colchester, UK and Nanyang Technological 

University, Singapore, Special Session on Performance Assessment of Multi-Objective 

Optimization Algorithms, Technical Report 2008. 

11. Deb K., ―Multiobjective genetic algorithms: Problem difficulties and construction of test 

functions,‖ in Evol. Comput.,  vol. 7, pp. 205–230. 1999, 



12. Zitzler E., K. Deb, and L. Thiele, ―Comparison of multiobjective evolutionary 

algorithms: Empirical results,‖ Evol. Comput., vol. 8, no. 2, pp. 173–195, 2000.  

13. F. Kursawe, ―A variant of evolution strategies for vector optimization,‖in Parallel 

Problem Solving from Nature, H.-P. Schwefel and R. Männer, Eds. Berlin, Germany: 

Springer-Verlag, pp. 193–197. 1990, 

14. B¨ack, T., Fogel, D., & Michalewicz, Z., ―Handbook of Evolutionary Computation‖, 

Institute of Physics Publishing Ltd, Bristol and Oxford University Press, New York, 

1997. 

15. Goldberg D.E., ―Genetic Algorithms in Search, Optimization and Machine Learning‖, 

Pearson Education Asia, 1989. 

16. Carlos Fonseca.1995, ―Multiobjective Genetic Algorithms with Application to Control 

Engineering Problems‖, PhD thesis, Department of Automatic Control and System 

Engineering The University of Sheffield,1995. 

17. Deb, K., A. Pratap, S. Agarwal, T. Meyarivan, ―A Fast and Elitist Multiobjective Genetic 

Algorithm: NSGA-II‖, IEEE Transactions on Evolutionary Computation, Vol. 6, No 2, 

182-197. Apr. 2002 

18. Zitzler, E. and Thiele, L.:, Multiobjective optimization using evolutionary algorithms: a 

comparative study, in A. E. Eiben (ed.), Proceedings of the Parallel Problem Solving 

from Nature V Conference, Springer-Verlag, Berlin, pp. 292–301,1998 

19. Q. Zhang and H. Li, ―MOEA/D: A multiobjective evolutionary algorithm based on 

decomposition,‖ IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 

712–731. 2007 

20. William Hart, Natalio Krasnogos, and Jim Smith. 2005, Recent Advances in Memetic 

Algorithms, volume 166 of Studies in Fuzziness and Soft Computing. Springer, 2005. 

21. Herrara, F., Lozano, M. and Verdegay, J. L, Tackling real-coded genetic algorithms: 

Operators and tools for behavioural analysis, Artificial Intelligence Review 12, 265 – 319, 

1998 

22. Eshelman L.J. and Schaffer J.D., ‖Real-coded genetic algorithms and interval schemata‖, 

In D. Whitley (Ed.), Foundation of Genetic Algorithm II, 187-202.evolution strategies, in 

E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello and D. Corne(eds), Proceedings of the First 



International Conference on Evolutionary Multi-Criterion Optimization (EMO 2001), 

Springer-Verlag, Berlin, pp. 96–110. 1993, 

23. Deb K., Agrawal R.B., ―Simulated binary crossover for continuous search space‖, 

Complex System 9 115-148. 1995, 

24. M.M. Raghuwanshi, O.G. Kakde, P.M. Singru, U. Kale,  ―Simulated Binary Crossover 

with Lognormal Distribution‖, In Proceedings of the 7
th
 Asia-Pacific Conference on 

Complex Systems (Complex 2004) 6-10 Dec. 2004.  

25. Eiben, A.E., ―Multi-parent recombination‖, In T. Bäck, D.B. Fogel, and Z. Michalewicz, 

editors, Evolutionary Computation 1: Basic Algorithms and Operators, pages 289-307, 

Institute of Physics Publishing, 2000, 

26. Ono I. & Kobayashi S., ―A real-coded genetic algorithm for functional optimization 

using unimodal normal distribution crossover‖, In Proceedings of the Seventh 

International Conference on Genetic Algorithms  (ICGA-7) 246-253, 1997. 

27. Tsutsui, S. and Ghosh, A.,―A study on effect of Multi-parent recombination in real-coded 

genetic algorithm‖, proceedings of the 1998 IEEE, CEC, pp. 828-833, 1998. 

28. Tsutsui, S., Yamamura, M. and Higuchi, T., ―Multi-parent recombination with simplex 

crossover in real-coded genetic algorithms‖, In: Proc. of the Genetic and Evolutionary 

Computation Conference(GECCO-99), Morgan Kaufmann, San Mateo, CA, pp. 657–

664, 1999. 

29. Kita, H., Ono I. and Kobayashi, S.,  ―Multi-parent extension of the Unimodal Normal 

Distribution Crossover for real-coded genetic algorithm‖, In proc. of the International 

conference on evolutionary computation‘99 (IEEE press, Piscataway, New Jersey, 1999), 

pp. 646-651, 1999 

30. Deb, K., Anand, A. and Joshi, D.,―A computationally efficient evolutionary algorithm for 

real parameter optimization‖, Evolutionary Computation Journal 10(4): 371-395. 2002, 

31. M.M. Raghuwanshi and O. G. Kakde, ―Multi-parent Recombination operator with 

Polynomial or Lognormal Distribution for Real Coded Genetic Algorithm‖ 2nd Indian 

International Conference on Artificial Intelligence (IICAI), pp. 3274-3290, 2005. 

32. Juan Durillo, Antonio Nebro, Francisco Luna, and Enrique Alba., ―On the effect of the 

steady-state selection scheme in multi-objective genetic algorithms‖, In Proceedings of 



the 2009 International Conferenceo n Evolutionary Multi-criterion Optimization, volume 

5467 of Lecture Notes in Computer Science, page 183197. Springer, 2009 

33. Marco Laumanns, Eckart Zitzler, and Lothar Thiele., ―On the effects of archiving, 

elitism, and density based selection in evolutionary multiobjective optimization‖, In The 

1st International Conference on Evolutionary Multi-Criterion Optimization, volume 1993 

of Lecture Notes in Computer Science. Springer, 2001. 

34. Deb, K. and Goldberg, D. E,  ―An investigation of niche and species formation in genetic 

function optimization‖, in J. D. Schaffer (ed.), Proceedings of the Third International 

Conference on Genetic Algorithms, Morgan Kaufmann, pp. 42 – 50.1989 

35. Schaffer, J. D, ―Multiple objective optimization with vector evaluated genetic 

algorithms‖, in J. Grefenstette (ed.), Proceedings of the First International Conference on 

Genetic Algorithms, Lawrence Erlbaum Associates, Mahwah, New Jersey, pp. 93–

100,1985 

36. Fourman, M. P, ―Compaction of symbolic layout using genetic algorithms‖, in J. 

Grefenstette (ed.), Proceedings of the First International Conference on Genetic 

Algorithms, Lawrence Erlbaum Associates, Mahwah, New Jersey, pp. 141–153, 1985 

37. Fleming, P. J. and Pashkevich, ―A. P, Computer aided control system design using a 

multiobjective optimization approach‖, Proceedings of the IEE Control ‘85 Conference, 

pp. 174–179.1985 

38. Haleja, P. and Lin, C.-Y., ―Genetic search strategies in multicriterion optimal design‖, 

Structural Optimization 4, 99–107. 1992 

39. Jin, Y., Okabe, T. and Sendhoff, B., ―Adapting weighted aggregation for multiobjective 

evolutionary optimization‖,  Proceedings of the  Genetic and Evolutionary Computation 

Conference (GECCO 2001) San Francisco, California, pp. 1042–1049. 2001 

40. Jin, Y., Okabe, T. and Sendhoff, B., ―Dynamic weighted aggregation for evolutionary 

multi-objective optimization: Why does it work and how?‖, in L. Spector, E. D. 

Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, 

M. H. Garzon and E. Burke (eds), Proceedings of the 2001 Genetic and Evolutionary 

Computation Conference (GECCO 2001), Morgan Kaufmann Publishers, San Francisco, 

California, pp. 1042–1049.2001 



41. Coello, C. A. C., ―Theoretical and numerical constraint-handling techniques used with 

evolutionary algorithms: A survey of the state of the art‖, Computer Methods in Applied 

Mechanics and Engineering 191(11–12), 1245–1287. 2002 

42. Fonseca, C. M. and Fleming, P. J., ―Genetic algorithms for multiobjective optimization: 

Formulation, discussion and generalization‖, in S. Forrest (ed.), Proceedings of the Fifth 

International Conference on Genetic Algorithms, Morgan Kauffman Publishers, San 

Mateo, California, pp. 416–423. 1993 

43. Horn, J. and Nafpliotis, N, ―Multiobjective optimization using the niched Pareto genetic 

algorithm‖, IlliGAL Report 93005, University of Illinois at Urbana-Champaign, Urbana, 

Illinois. 1993 

44. Srinivas, N., K. Deb, ― Multiobjective Optimization Using Nondominated Sorting in 

Genetic Algorithms‘, Evolutionary Computation, Vol. 2, No 3, 221-248, 1994. 

45. Fonseca, C. M. and Fleming, P. J., Multiobjective genetic algorithms made easy: 

Selection, sharing, and mating restriction, in A. M. S. Zalzala (ed.), Proceedings of the 

First International Conference on Genetic Algorithms in Engineering Systems: 

Innovations and Applications (GALESIA 95), Institution of Electrical Engineers, 

Stevenage, UK, pp. 42–52. 1995 

46. Goldberg, D. E. and Richardson, J., ―Genetic algorithms with sharing for multimodal 

function optimization‖, in J. Grefenstette (ed.), Proceedings of the Second International 

Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Mahwah, New 

Jersey, pp. 41–49. 1987 

47. Knowles and D. Corne, "The Pareto archived evolution strategy: a new baseline 

algorithm for Pareto multi-objective optimisation," in Proceedings of the Congress on 

Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, pp. 98-

105. , 1999 

48. Zitzler, E., Laumanns, M. and Bleuler, S., ―A tutorial on evolutionary multiobjective 

optimization‖, in X. Gandibleux, M. Sevaux, K. S¨orensen and V. T‘Kindt (eds), 

Methaheuristics for Multiobjective Optimisation, Vol. 535 of Lecture Notes in 

Economics and Mathematical Systems, Springer-Verlag, Berlin.2004 



49. Rudolph, G. and Agapie, A., ―Convergence properties of some multi-objective 

evolutionary algorithms‖, Proceedings of the Congress on Evolutionary Computation 

(CEC) 2000, IEEE, IEEE Press, pp. 1010 – 1016.2000 

50. Abbass, H. A., Sarker, R. and Newton, C., ― PDE: A Pareto-frontier differential evolution 

approach for multi-objective optimization problems, in IEEE Neural Networks Council 

(ed.), Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), Vol. 

2, IEEE Service Center, Piscataway, New Jersey, pp. 971–978. and R. M¨anner (eds), 

Proceedings of the Parallel Problem Solving from Nature I Conference, Springer-Verlag, 

Berlin, pp. 193–197.2001 

51. Sarker, R., Liang, K. and Newton, C., ―A new evolutionary algorithm for multiobjective 

optimization‖, European Journal of Operational Research 140(1), 12–23. 2002 

52. Deb, K., Mohan, M. and Mishra, S., ―Towards a quick computation of well-spread 

Pareto-optimal solutions‖, in C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb and 

L.Thiele (eds), Proceedings of the Second International Conference on Evolutionary 

Multi-Criterion Optimization (EMO 2003), Springer-Verlag, Berlin, pp. 222–236.2003 

53. Laumanns, M., Thiele, L., Deb, K. and Zitzler, E., ―Combining convergence and 

diversity in evolutionary multi-objective optimization‖, Evolutionary Computation 

10(3),263–282. 2002 

54. Papadimitriou, C. H. and Yannakakis, M.:, ―On the approximability of trade-offs and 

optimal access of Web sources, Proceedings of the 41st Annual Symposium on 

Foundations of Computer Science (FOCS 2000), IEEE Computer Society, Los Alamitos, 

California, pp. 86–92. 2000 

55. Bosman, P. A. N. and Thierens, D.:, ―The balance between proximity and diversity in 

multiobjective evolutionary algorithms‖, IEEE Transactions on Evolutionary 

Computation 7(2), 174–188. 2003 

56. Deb, K. and Goel, T.:, ―Controlled elitist non-dominated sorting genetic algorithms for 

better convergence‖, in E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello and D. Corne (eds), 

Proceedings of the First International Conference on Evolutionary Multi-Criterion 

Optimization (EMO 2001), Springer-Verlag, pp. 67–81. 2001 

57. Laumanns, M., Zitzler, E. and Thiele, L., ―On the effects of archiving, elitism, and 

density based selection in evolutionary multi-objective optimization‖, in E. Zitzler, K. 



Deb, L. Thiele, C. A. C. Coello and D. Corne (eds), Proceedings of the First International 

Conference on Evolutionary Multi-Criterion Optimization (EMO 2001), Springer-Verlag, 

Berlin, pp. 181–196. 2001 

58. Laumanns, M. and Ocenasek, J.:, ―Bayesian optimization algorithms for multi objective 

optimization, in J. J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-

Villacanas and H.-P. Schwefel (eds), Proceedings of the Parallel Problem Solving from 

Nature VII Conference, Springer-Verlag, Berlin, pp. 298–307. 2002 

59. Wienke, D., Lucasius, C. and Kateman, G.:, Multicriteria target vector optimization of 

analytical procedures using a genetic algorithm - part I. theory, numerical simulations and 

application to atomic emission spectroscopy, Analytica Chimica Acta 265, 211 – 225. 

1992 

60. Lohn, J. D., Kraus, W. F. and Haith, G. L.:, Comparing a coevolutionary genetic 

algorithm for multiobjective optimization, in IEEE Neural Networks Council (ed.), 

Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Vol. 2, 

IEEE Service Center, Piscataway, New Jersey, pp. 1157–1162. 2002 

61. Zitzler, E., M. Laumanns, L. Thiele, ―SPEA2: Improving the Strength Pareto 

Evolutionary Algorithm‖, In: EUROGEN 2001. 

62. Zitzler E. and Künzli S., ―Indicator-Based Selection in Multiobjective Search. In X. Yao 

et al., editors, Conference on Parallel Problem Solving from Nature (PPSN VIII), volume 

3242 of LNCS, pages 832–842. Springer, 2004  

63. D. W. Corne, J. D. Knowles, and M. J. Oates, ―The Pareto envelope-based selection 

algorithm for multi-objective optimization,‖ in Parallel Problem Solving from Nature 

PPSNVI. 6th International Conference. Proceedings (Lecture Notes in Computer Science 

Vol.1917), Paris, France, pp. 839-48. , 2000 

64. Bentley, P.J. and Wakefield, J.P.‘ ―Finding acceptable solutions in the Pareto-optimal 

range using multi-objective geneticalgorithms‖, In (Chawdry et al, eds.) Soft Computing 

in Eng‗g Design and Manufacturing, Springer Verlag, 1997.  

65. Drechsler, D., Drechsler, R., Becker, B. ―Multi-objective optimisation based on relation 

favour‖. In Proc. 1st EMO, pp.154–166, Springer Ver-lag, 2001. 



66.  di Pierro, K. Soon-Thiam, and D. A. Savic, "An investigation on preference order 

ranking scheme for multi-objective evolutionary optimization," IEEE Transactions on 

Evolutionary Computation, vol. 11, pp. 17-45, 2007. 

67. di Pierro, F., Djordjevic, S., Khu, S.-T, Savic, D. and Walters, G.A. Automatic 

calibration of urban drainage model using a novel multi-objective GA. In Krebs & Fuchs 

(eds.) Urban Drainage Modelling‗04, pp. 41–52, 2004. 

68.  Maneeratana, K., Boonlong, K. and Chaiyaratana, N.,―Compressed-objective genetic 

algorithm‖, In PPSN IX, SpringerLNCS, pp. 473–482, 2006.  

69. J. Knowles and D. Corne, ―Techniques for Highly Multiobjective Optimisation: Some 

Nondominated Points are Better than Others‖. GEC-CO‗07, London, England, United 

Kingdom. July 7–11, 2007, 

70. B. Y. Qu, P. N. Suganthan, ―Multi-objective Evolutionary Programming without Non-

domination Sorting is up to Twenty Times Faster‖, 2009 Congress on Evolutionary 

Computation-CEC09, 2009 

71. BY. Qu and P. N. Suganthan, ―Multi-objective evolutionary algorithms based on the 

summation of normalized objectives and diversified selection‖, Information sciences, vol. 

180, pp. 3170-3181. 2010. 

72. B.Y. Qu and Suganthan P. N., ―Multi-Objective Differential Evolution based on the 

Summation of Normalized Objectives and Improved Selection Method‖, SDE11, 2011 

73. Santosh Tiwari, Georges Fadel, Patrick Koch, and Kalyanmoy Deb, ―Performance 

Assessment of the Hybrid Archive-based Micro Genetic Algorithm (AMGA) on the 

CEC09 Test Problems‖, Congress on Evolutionary Computation-CEC09,2009  

74. H. R. Tizhoosh, ―Opposition-based learning: A new scheme for machine intelligence,‖ in 

Proceedings - International Conference on Computational Intelligence for Modelling, 

Control and Automation, CIMCA and International Conference on Intelligent Agents, 

Web Technologies and Internet, vol. 1, pp. 695–701, 2005.  

75. Fares S. Al-Qunaieer, Hamid R. Tizhoosh, Shahryar Rahnamayan, ―Opposition Based 

Computing – A Survey‖, IEEE TRANSACTIONS ON EVOLUTIONARY 

COMPUTATION,978-1-4244-8126-2/10/ ©2010 



76. S. Rahnamayan, H.R. Tizhoosh, M.M.A Salama, ―Opposition-Based Differential 

Evolution Algorithms‖, IEEE Congress on Evolutionary Computation (CEC), 

Vancouver, Canada, pp. 2010-2017, Sept. 2006. 

77.  S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, ―Quasi-Oppositional Differential 

Evolution‖, IEEE Congress on Evolutionary Computation (CEC), Singapore, pp. 22- 29, 

Sept. 2007. 

78. S. Rahnamayan, G.G. Wang, ―Center-Based Sampling for Population-Based 

Algorithms‖, IEEE Congress on Evolutionary Computation (CEC), pp. 933-938, May 

2009. 

79. L. Peng, Y.Wang, ―Differential Evolution using Uniform-Quasi-Opposition for 

Initializing  the Population‖, Information Technology Journal, Vol. 9, No. 8, pp. 1629-

1634, 2010. 

80. L. Peng, Y. Wang, G. Dai, ―A Novel Opposition-Based Multi-objective Differential 

Evolution Algorithm for Multi-objective Optimization‖, Advances in Computation and 

Intelligence, Vol. 5370, pp. 162-170, Springer Berlin and Heidelberg, 2008. 

81. L. Han, X. He, ―A Novel Opposition-Based Particle Swarm Optimization for Noisy 

Problems‖, Third International Conference on Natural Computation (ICNC), Haikou,Vol. 

3, pp. 624-629, Aug. 2007. 

82. A.R. Malisia, H.R. Tizhoosh, ―Applying Opposition-Based Ideas to the Ant Colony 

System, IEEE Swarm Intelligence Symposium (SIS), Honolulu, Hawaii, pp. 182-

189,Apr. 2007.  

83. H. Ishibuchi and T. Murata, ―Multiobjective genetic local search algorithm and its 

application to flowshop scheduling,‖ IEEE Transactions on Systems, Man and 

Cybernetics, vol. 28, no. 3, pp.392–403, 1998.  

84. A. Jaszkiewicz, ―On the performance of multiple-objective genetic local search on the 0/1 

knapsack problem - a comparative experiment,‖ IEEE Trans. Evolutionary Computation, 

vol. 6, no. 4, pp. 402–412, Aug. 2002.  

85. H. Ishibuchi, T. Yoshida, and T. Murata, ―Balance between genetic search and local 

search in memetic algorithms for multiobjective permutation flowshop scheduling,‖ IEEE 

Trans. Evolutionary Computation, vol. 7, no. 2, pp. 204–223, Apr. 2003.  



86. E. J. Hughes, ―Multiple single objective pareto sampling,‖ in Proc. Of Congress on 

Evolutionary Computation (CEC’03), Canberra, pp. 2678–2684. 2003  

87. Maria João Alvesa,, Marla Almeidab, ―MOTGA: A multiobjective Tchebycheff based 

genetic algorithm for the multidimensional knapsack problem‖, Computers & Operations 

Research 34 (2007) 3458 -- 3470 2006 Elsevier Ltd. All rights 

reserved.doi:10.1016/j.cor.2006.02.008, 2007 

88. en.wikipedia.org/wiki/Death 

89. en.wikipedia.org/wiki/Extinction 

90. Rahila Patel, M.M.Raghuwanshi, L.G.Malik ―An Improved Ranking Scheme For 

Selection Of Parents In Multi-Objective Genetic Algorithm‖, IEEE International 

Conference on Computer security and network technology (CSNT) 2011, Shri Mata 

Vaishnav Devi University, Katra, Jammu (J&K), on pages 734-739, DOI: 

10.1109/CSNT.2011.156, June 3-5, 2011 

91. Aimin Zhoua, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam 

Suganthan ,Qingfu Zhang, "Multiobjective Evolutionary Algorithms: A Survey of the 

State-of-the-art", Swarm and Evolutionary Computation, Vol. 1, No. 1, pp. 32-49, Mar 

2011. 

92. David H. Wolpert and William G. Macready, “No Free Lunch Theorems for 

Optimization”, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 

VOL. 1, NO. 1, APRIL 1997 

93. S. Z. Zhao, P. N. Suganthan, Q. Zhang, "Decomposition Based Multiobjective 

Evolutionary Algorithm with an Ensemble of Neighborhood Sizes", IEEE Trans. on 

Evolutionary Computation, Vol. 16, No. 3, pp. 442-446, June 2012.  

94. E. L. Yu and P. N. Suganthan, “Ensemble of niching algorithms,” Inform.Sci., vol. 180, 

no. 15, pp. 2815–2833, Aug. 2000.  

95. R. Mallipeddi and P. N. Suganthan, “Ensemble of constraint handling techniques,” IEEE 

Trans. Evol. Computat., vol. 14, no. 4, pp. 561–579,Aug. 2010.  

96. S. Z. Zhao and P. N. Suganthan, “Multi-objective evolutionary algorithm with ensemble 

of external archives,” Int. J. Innovative Comput., Inform. Contr., vol. 6, no. 1, pp. 1713–

1726, Apr. 2010.   



97. Bo-Yang Qu, Ponnuthurai Nagaratnam Suganthan, “Novel Multimodal Problems and 

Differential Evolution with Ensemble of Restricted Tournament Selection”, in the proc. 

IEEE confrernce on Congress on Evolutionary Computation CEC2010  

98. B. Y. Qu and P. N. Suganthan, “Constrained Multi-Objective Optimization Algorithm 

with Ensemble of Constraint Handling Methods”, School of Electrical and Electronic 

Engineering Nanyang Technological University, Singapore Available at 

http://www.ntu.edu.sg/home/epnsugan/index_files/EEAs-EOAs.htm  

99. Rammohan Mallipeddi and Ponnuthurai Nagaratnam Suganthan, “ Differential Evolution 

Algorithm with Ensemble of Parameters and Mutation and Crossover 

Strategies”,Nanyang Technological university, Singapore, Available at 

http://www.ntu.edu.sg/home/epnsugan/index_files/EEAs-EOAs.htm  

100. Q. Zhang, W. Liu, and H. Li, “The performance of a new version of MOEA/D on CEC09 

unconstrained MOP test instances,” in Proc. CEC, 2009, pp. 203–208.  

101. Gavin Brown, Ensemble Learning Encyclopedia of Machine Learning, C.Sammut & 

G.I.Webb (Eds.), Springer Press 2010   

102. R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, Adaptive Mixtures of Local 

Experts. Neural Computation, 3(1):79-87, 1991. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix  
 

 

 

 

 

 

IEEE CEC09 Test Problems 

Problem 
No. of  

Objective 
Objectives and PS 

UF1 2 

 

 
 

10,,...,2,6sin

10,1

2

2

6sin
2

1

6sin
2

11

112

2

1

2

1

2

12

2

1

1

1

2

1





























































xnj
n

j
xxisPS

fffisPFIts

njandevenisjjJand

njandisoddjjwhereJ

n

j
xx

J
xf

n

j
xx

J
xf

j

Jj

j

Jj

j










 

ZDT6 10 [0,1] 

 

   25.0

2

2

12

1

6

11

)1/(91)(

))(/)((1)()(

)6(sin)4exp(1)(







 
nxxg

xgxfxgxf

xxxf

n

i i



 

ni

x

x

i

,...,2

,0

]1,0[1







 

Nonconvex 

Non-

uniformly 

spaced 



UF2 2 

   

10

6sin6.0
4

24cos3.0

6cos6.0
4

24cos3.0

10,1

6cos6.0
4

24cos3.0

6cos6.0
4

24cos3.0

22

2
1

2

1

2111

2

1

1111

2

1

112

211

2

1

1111

2

1

21

2

2

12

2

1

11

2

1































































































































































x

Jj
n

j
xx

n

j
xx

Jj
n

j
xx

n

j
xx

x

isPSIts

fffisPFIts

Jj
n

j
xx

n

j
xxx

Jj
n

j
xx

n

j
xxx

y

njjisevenandjandJnjjisoddandjwhereJ

y
J

xf

y
J

xf

j

j

j

j

Jj

j

Jj

j

























 

UF3 2 

 

 

10.,....,2,

10,1

,....,2,

1

2
20

cos24
2

1

2
20

cos24
2

1

2

23
0.15.0

1

112

2

23
0.15.0

1

21

2

2

12

2

1

11

2 2

1 1































































































 

 

 

 

xnjxxisPSIts

fffisPFIts

njxxy

andUFofthoseassametheareJandJwhere

j

y
y

J
xf

j

y
y

J
xf

n

j

j

n

j

jj

Jj Jj

j

j

Jj Jj

j

j





 

UF4 2 

 

 

 
 

 

10.,...,2,6sin

.10,1

1

.,...,2,6sin

2

2

2
1

2

11

1

2

22

2

1

2

1

2

2

12

1

11

12

1










































xnj
n

j
xxisPSIts

fffisPFIts

e

t
thand

nj
n

j
xxy

njandevenisjjJand

njandoddisjjwhereJ

yh
J

xf

yh
J

xf

j

t

ji

Jj

j

Jj

j







 



UF5 2 

   

   

 
 

   

1.0,10.2,....,1,0,
2

1,
2

12

14cos2

.,...,2,6sin

0.int.2

2

2
2sin

2

1
1

2
2sin

2

1

2

1

2

1

2

112

1

111

2

1






































































NNi
N

i

N

i

solutionsoptimalParetoNhasPFIts

ttthand

nj
n

j
xxy

isNnjandevenisjjJand

njandoddisjjwhereJ

yh
J

xN
N

xf

yh
J

xN
N

xf

ji

Jj

j

Jj

j

 

 

UF6 2 

 

 

 
 

 


N

i

ji

Jj Jj

j

j

Jj Jj

j

j

N

i

N

i
fff

partsddisconecteNandpoisolatedoneofconsistPFIts

nj
n

j
xxyand

njandevenisjjJand

njandoddisjjJwhere

j

y
y

J
xN

N
xf

j

y
y

J
xN

N
xf

1

112

1

2

1

2

2

112

2

1

111

2

2
,

2

12
,1

:21,0int

.,...,2,6sin

2

2

2
20

cos24
2

2sin
2

1
2,0max1

2
20

cos24
2

2sin
2

1
2,0max

2 2

1 1



 

 








 




















































































































 

 










 

UF7 2  
 

10,1

.,...,2,6sin

2

2

2
1

2

112

1

2

1

2

2

5
12

2

1

5
11

2

1





























fffisPFIts

nj
n

j
xxyand

njandevenisjjJand

njandoddisjjJwhere

y
J

xf

y
J

xf

ji

Jj

j

Jj

j




 

UF8 3 

 

 



 
 

UF9 3 

 

 
 

 

 

 

 

 

 

 

 


