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Abstract

The simultaneous optimisation of many objectives (say, in excess of 3), in or-

der to obtain a full and satisfactory set of trade-off solutions to support a pos-

teriori decision-making, remains challenging. To solve many-objective opti-

misation problems (MaOPs), a novel class of algorithms, namely, preference-

inspired co-evolutionary algorithms (PICEAs) is proposed based on a concept

of co-evolving the common population of candidate solutions with a family

of decision-maker preferences.

Two realisations of PICEAs, namely, PICEA-g and PICEA-w, are studied.

PICEA-g co-evolves goal vectors with candidate solutions. The algorithm

is demonstrated to perform better than or competitively with four of the

best-in-class multi-objective evolutionary algorithms (MOEAs) on the bench-

mark MaOPs. PICEA-w co-evolves weight vectors with candidate solutions.

PICEA-w performs better than or competitively with other leading decom-

position based algorithms on the benchmark MaOPs. Moreover, PICEA-w

eliminates the need to specify appropriate weights in advance of perform-

ing the optimisation, which leads the algorithm to be less sensitive to the

problem geometries. As performance of MOEAs is often affected by the asso-

ciated parameter configurations, parameter sensitivities of both the PICEAs

are empirically studied, and some suggestions on the settings of parameters

are provided.

This research also proposes a novel and unified approach, namely, interactive

PICEA-g (iPICEA-g) for a priori or progressive multi-objective optimisation

and decision-making. This approach is derived from PICEA-g by co-evolving

goal vectors that are exclusively generated in regions of interest to a decision-

maker. iPICEA-g, to the best of the author’s knowledge, is the first approach

that is simultaneously able to handle multiple preferences types such as aspi-

rations, weights or even via visually brushing, and that is also able to support

multiple regions of interest. The iPICEA-g is demonstrated to be effective

on different benchmark problems as well as a real-world problem – aircraft

control system design problem.
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Chapter 1

Introduction

1.1 Overview

Optimisation problems arise in various disciplines such as engineering, economics, manu-

facturing, mathematics, chemistry, robotics, logistics, medicine, architecture, etc.. These

problems are often multi-objective in nature, that is, two or more objectives are required

to be optimised simultaneously. In a multi-objective problem (MOP), objectives are of-

ten in competition with one another. Thus, the optimal solution of MOPs is a set of

trade-off solutions, rather than a single solution. Amongst these trade-off solutions,

none of them is better in all objectives.

Figure 1.1: Illustration of a multi-objective problem.

As a general example, let us consider the task of purchasing a laptop. One always

prefers a cheap and light laptop. That is, the first objective is to minimise the cost,

and the second objective is to minimise the weight. However, these two objectives are

typically contradictory, i.e. the lighter the laptop, the more the cost. Thus, it comes as

1
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no surprise that the optimal solution set is composed of a set of trade-off solutions as

shown in Figure 1.1. For any two solutions of this set, e.g. A and B, neither A nor B

is better in both objectives. A is cheaper but is heavier. B is lighter but costs more.

Without loss of generality, a minimisation MOP is defined as follows:

minimise fm(x) m = 1, 2, ...,M

subject to gj(x) ≤ 0, j = 1, 2, ..., J

hk(x) = 0, k = 1, 2, ...,K

xli ≤ xi ≤ xui, i = 1, 2, ..., n

(1.1)

A solution x is a vector of n decision variables: x = (x1, x2, · · · , xn), x ∈ Rn. Each

decision variable xi is subject to a lower bound xli, and an upper bound xui. fm

represents the m-th objective function. M is the number of objectives (generally, M ≥
2). J and K are the number of inequality and equality constraints, respectively. Feasible

decision vectors refer to those decision vectors that satisfy all inequality and equality

constraints. Some fundamental concepts in multi-objective optimisation are introduced

as follows:

Definition 1.1 (Pareto-dominance): For two feasible decision vectors x and y, x is said

to Pareto dominate y (denoted as x � y ) if and only if ∀m ∈ 1, 2, · · · ,M, fm(x) ≤ fm(y)

and ∃m ∈ 1, 2, · · · ,M, fm(x) < fm(y). Seen from Figure 1.2, we can find that A � B,

A � C, A � D and E � A. However, A and P , A and Q are non-dominated.

Figure 1.2: Illustration of Pareto-dominance relation.

Definition 1.2 (Pareto optimality): A solution x ∈ Rn is said to be Pareto optimal in

Rn if and only if @y ∈ Rn, y � x.

Definition 1.3 (Pareto optimal set): The Pareto optimal set (POS) is defined as the

set of all Pareto optimal solutions, i.e. POS = {x ∈ Rn|@y ∈ Rn,y � x}.
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Definition 1.4 (Pareto optimal front): The Pareto optimal front (POF ) is defined

as the set of all objective functions values corresponding to the solutions in POS, i.e.,

POF = {(f1(x), f2(x), · · · , fM (x)) : x ∈ POS}.

In addition, a nadir point is a vector composed of all the worst (e.g., maximum for

minimization problems) Pareto optimal objective values in a MOP. A ideal point is a

vector composed of all the best (e.g., minimum for minimization problems) values of

each objective (Miettinen, 1999, p.15).

Multi-objective evolutionary algorithms (MOEAs), inspired from the natural evolution,

are well suited for solving multi-objective optimisation problems: their population based

nature leads naturally to the generation of an approximate trade-off surface in a single

run (Deb, 2001; Coello Coello et al., 2007); their robustness on problem characteristics

enables them to be used on a wide range of application domains. Similar to evolution-

ary algorithms (EAs), in general a MOEA is composed of genetic-variation operator,

environment-selection operator and selection-for-variation operator, which can be de-

scribed as follows (Purshouse and Fleming, 2007):

P (t+ 1) = Ss(v(Sv(P (t))), P (t)) (1.2)

where P (t) are the candidate solutions (population) at iteration t , Ss is the environment-

selection operator, v is the genetic-variation (recombination and mutation) operator, Sv

is the selection-for-variation operator and P (t + 1) are the newly generated solutions.

Thus, a set of candidate solutions is evolved by successively applying recombination,

mutation, and selection to yield better solutions in an iterative process.

Evolutionary multi-objective optimisation (EMO) has enjoyed popularity in the last two

decades. Research on EMO mainly focuses on issues such as the design of efficient algo-

rithmic methods for the approximation of efficient solutions and the issue of measuring

the quality of the approximated solutions. The IEEE Transactions on Evolutionary

Computation by IEEE Press and Evolutionary Computation journal by MIT Press are

two of the most important journals in the core evolutionary computation field. There

are also some conferences for EMO. The bi-annual international Evolutionary Multi-

Criterion Optimization conference series is devoted especially to EMO. Three other

important evolutionary computation related conferences that also report EMO research

developments are:

• IEEE Congress on Evolutionary Computation (CEC).

• Genetic and Evolutionary Computation Conference (GECCO).

• Parallel Problem Solving from Nature (PPSN).
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1.2 Motivation

The central topic of this thesis is evolutionary multi-objective optimisation which links

all the chapters. There are two motivations of this research: (i) to address many-

objective optimisation problems; and (ii) to provide a unified approach for a priori or

progressive evolutionary multi-objective optimisation and decision-making.

• Many-objective optimisation: Pareto-dominance based MOEAs were one of

the earliest approaches for multi-objective optimisation. It is accepted that they

perform well on MOPs with 2 and 3 objectives. However, studies have shown that

their search capability often degrades significantly as the number of objectives

increases (Purshouse and Fleming, 2003c; Hughes, 2005). This is because the pro-

portion of Pareto-optimal (or non-dominated) objective vectors in the population

becomes large when MOPs have more than 3 objectives, i.e. many-objective prob-

lems (MaOPs). That is, the ability of the Pareto-dominance relation in offering

comparability between alternative solutions is reduced. As a result, insufficient

selection pressure is generated toward the Pareto front. Unfortunately, MaOPs

occur frequently in practice (Fleming et al., 2005; Coello Coello et al., 2007). In

another sense, it is often easier to specify as many objectives as possible in the

early stage of an optimisation process. Thus, it is desirable to develop more effec-

tive and efficient algorithms to handle MaOPs. This serves as the core motivation

of this thesis.

It is known that by incorporating decision-maker preferences we can potentially

gain comparability between otherwise incomparable solutions (Miettinen, 1999).

By holding multiple sets of hypothetical preferences simultaneously, we can ob-

tain multiple comparison perspectives simultaneously, which might be sufficient to

adequately describe the whole Pareto front. Existing approaches have tended to

explore the use of some types of preferences. For example, Fonseca and Fleming

(1998a) incorporated decision-maker preferences specified as goals and priorities

into their early work MOGA (Fonseca and Fleming, 1993) (a Pareto-dominance

based MOEA). The use of preferences enables MOGA to approximate a part of

the Pareto optimal front even when the problem dimension is high. Hughes (2003)

proposed a ranking method based on how each solution performed against a set

of pre-defined preferences expressed as weighted min-max formulations. However,

none of the studies has attempted to answer the question below

– how can a set of suitable preferences be maintained adaptively in order to be

employed to obtain a good approximation of the Pareto optimal front?
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These observations motivate us to consider the type of preferences and how these

preferences can be used. In this research, two of the most commonly used prefer-

ences, goals and weights are studied. The usefulness of preferences is maintained

by co-evolving them with candidate solutions during the search.

• a unified approach for preference-based MOEAs1: Having obtained a good

approximation of the Pareto optimal front, the MOP remains unsolved as a decision-

maker (DM) has to incorporate his/her2 preferences, and selects the most preferred

solution. In other words, the ultimate goal of solving a MOP is not to obtain a

good approximation of the Pareto optimal front but it is to help a DM to consider

multiple objectives simultaneously and identify a single Pareto optimal solution

that satisfies him/her, i.e. assisting multi-criteria decision making (MCDM).

However, the ultimate goal of solving a MOP is not to approximate the entire

Pareto optimal front but to help a decision maker (DM) to consider the multiple

objectives simultaneously and to identify a single Pareto optimal solution which is

satisfactory. Therefore, in order to select a single solution to a MOP, it is necessary

to resolve the trade-off between competing solutions by introducing subjective

preferences that a DM has for varying levels of performance across the objectives.

Incorporation of the DM preferences is an important part for a real-world decision

support system. However, current methods developed for preference-based multi-

objective optimisation are unable to handle, comprehensively, the range of ways in

which a DM likes to articulate his preferences. Moreover, in some cases it is easier

for a DM to express his preferences by aspiration levels and in others by weights or

other forms. These observations motivate us to develop a unified approach which

enables the decision-maker to articulate multiple preference types.

1.3 Outline of the thesis

There are seven chapters in this thesis, beginning with this Introduction. A literature

review Chapter follows. Chapters 3 and 4 introduce two novel algorithms for multi-

objective optimisation, in particular, many-objective optimisation. Chapter 5 analyses

parameter sensitivities of the proposed algorithms. Chapter 6 proposes a unified ap-

proach for a priori and progressive multi-objective optimisation and decision-making.

Chapter 7 concludes. The content of each of these chapters is outlined below.

• Chapter 2 provides a comprehensive review of current literature relevant to this

research. First, a historical overview of MOEAs is provided, followed by an intro-

duction to multi-objective benchmark problems and performance metrics. Then,

1MOEAs that incorporate decision-maker preference a priori or progressively is termed as preference-
based MOEAs.

2For brevity we use he instead of he/she, and his instead of his/her in this thesis.
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general issues on many-objective optimisation are introduced. Following this, a

detailed review of the existing methods developed for solving many-objective prob-

lems is provided. Finally, multi-objective evolutionary algorithms developed for a

priori and progressive decision-making are critically reviewed.

• Chapter 3 proposes a novel algorithm, called a preference-inspired co-evolutionary

algorithm using goal vectors (PICEA-g) for MOPs (especially for MaOPs). This

Chapter begins with an introduction to the concept of a preference-inspired co-

evolutionary algorithm. Secondly, as a realisation of this concept, PICEA-g is

proposed in which candidate solutions are co-evolved with a set of goal vectors.

Thirdly, the performance of PICEA-g is empirically assessed by comparing it with

four of the best-in-class MOEAs on multi-objective benchmark problems up to

10 objectives. Following that, some further discussions such as the effect of co-

evolution and the performance of goal vectors are provided. In the last section of

this Chapter, an effective strategy named the cutting plane is proposed to further

improve the performance of PICEA-g.

• Chapter 4 proposes another realisation of the preference-inspired co-evolutionary

algorithm, denoted as PICEA-w, where candidate solutions are co-evolved with

weight vectors. The use of co-evolution enables PICEA-w to effectively handle the

difficulties encountered by decomposition based methods. This Chapter first in-

troduces the basics and general issues in decomposition based methods. Following

that, PICEA-w is described in detail. Thirdly, the performance of PICEA-w is as-

sessed on a set of problems with different Pareto front geometries. Following that,

some further discussions such as the performance of weight vectors are provided.

• Chapter 5 analyses the sensitivities of parameters in PICEAs. Parameter sensi-

tivity analysis is helpful to gain insight into the robustness of an algorithm and to

provide suggestions with respect to the parameter settings for non-expert users.

First, a global sensitivity method is used to analyse the sensitivities of all param-

eters simultaneously, identifying the key parameters of PICEAs. Following that,

further analysis is conducted on some key parameters. Finally, the settings of

genetic operator parameters are studied.

• Chapter 6 proposes a novel approach, namely, iPICEA-g for a priori and progres-

sive evolutionary multi-objective optimisation and decision-making. iPICEA-g is

derived from PICEA-g. It co-evolves candidate solutions with goal vectors that are

exclusively generated in the regions of interest. This Chapter first introduces the

preference formulation used in iPICEA-g and the rationale of iPICEA-g. Secondly,

the performance of iPICEA-g is assessed on a set of benchmark problems. Finally,

iPICEA-g is applied to solve a real-world multi-objective problem– aircraft control

system design.
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• Chapter 7 concludes the thesis. First, the main contributions of this thesis are

summarised in depth. Second, the future work and some open questions in multi-

objective optimisation are identified.

1.4 Contributions

The main contributions of this thesis are:

• – A novel multi-objective evolutionary algorithm, PICEA-g for many-

objective optimisation. PICEA-g is based on the concept of co-evolution

of candidate solutions and preferences. It co-evolves candidate solutions with

preferences specified as goal vectors. A systematic empirical study is con-

ducted to assess the performance of PICEA-g. Experimental results show that

PICEA-g outperforms the four best-in-class MOEAs (NSGA-II, ε-MOEA,

HypE and MOEA/D) on many-objective WFG problems.

– The use of the cutting plane to further enhance PICEA-g perfor-

mance. PICEA-g is presented using an effective strategy named the cutting

plane. The cutting plane works with the assumption of knowing the ideal

point beforehand. Using this strategy, suitable goal vector bounds can be

determined adaptively along the search process. By co-evolving goal vectors

generated within different goal vector bounds, PICEA-g can then adaptively

distribute appropriate search effort towards different objectives, leading a

better performance. Experimental results conducted on bi- and 7-objective

problems have demonstrated the effectiveness of this strategy.

Related publications:

– Wang, R., Purshouse, R. C., Fleming, P. J., Preference-inspired co-evolutionary

algorithms for many-objective optimisation, IEEE Transactions on Evolution-

ary Computation., 17 (4), 474-494, 2013.

– Wang, R., Purshouse, R. C., Fleming, P. J., Preference-inspired co-evolutionary

algorithm using adaptively generated goal vectors, Evolutionary Computation

(CEC), 2013 IEEE Congress on. IEEE, Cancun, Mexico, 2013: 916- 923.

– Wang, R., Purshouse, R. C., Fleming, P. J., On Finding Well-Spread Pareto

Optimal Solutions by Preference-inspired Co-evolutionary Algorithm, Pro-

ceeding of the fifteenth annual conference on Genetic and evolutionary com-

putation conference (GECCO 2013). ACM, Amsterdam, The Netherlands,

2013: 695-702.

• A preference-inspired co-evolutionary algorithm using weights (PICEA-

w). PICEA-w is a new decomposition based algorithm that eliminates the need to
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specify appropriate weights in advance of performing the optimisation. Adopting

the concept of PICEA, in PICEA-w weights are adaptively modified by being

co-evolved with candidate solutions during the search process. The co-evolution

enables suitable weights to be adaptively constructed along the search process and

thus guiding candidate solutions towards the Pareto optimal front more effectively

and efficiently. Through rigorous empirical testing, we demonstrate that compared

to other leading decomposition-based algorithms, PICEA-w is less sensitive to

the Pareto front geometry of a problem and performs better on many-objective

problems.

Related publications:

– Wang, R., Purshouse, R. C., Fleming, P. J., Preference-inspired co-evolutionary

algorithms using weight vectors for many-objective optimisation, Proceeding

of the fifteenth annual conference on Genetic and evolutionary computation

conference (GECCO 2013), ACM, Amsterdam, The Netherlands, 2013, pp.

101-102.

– Wang, R., Purshouse, R. C., Fleming, P. J., Preference-inspired co-evolutionary

algorithms using weight vectors, European Journal of Operational Research.

(Under review)

• A novel and unified method, iPICEA-g for a priori and progressive

multi-objective optimisation and decision making. iPICEA-g is the first

approach which can cater simultaneously to different types of decision-maker pref-

erences, and that is also able to support multiple regions of interest. In particular,

the use of the brushing technique is the first time, to the best of the author’s

knowledge, that the decision-maker is able to articulate his/her preferences with-

out using numerical values but simply by drawing on the Cartesian or Parallel

coordinates in objective-space. As no direct elicitation of numbers is required, the

cognitive burden on the decision-maker is reduced. The iPICEA-g is demonstrated

to perform well on a set of benchmark problems as well as a real world application.

Related publications:

– Wang, R., Purshouse, R. C., Fleming, P. J., whatever works best for you-

a new method for a priori and progressive multi-objective optimisation, in:

Evolutionary Multi-Criterion Optimization, Springer, 2013, pp. 337-351.

– Wang, R., Purshouse, R. C., Fleming, P. J., On finding preferred solutions

by preference-inspired co-evolutionary algorithms, European Journal of Op-

erational Research. (Under review)

• A parameter sensitivity analysis of PICEA-g and PICEA-w. An empirical

study is conducted to analyse sensitivities of parameters used in both the PICEAs.

Some valuable suggestions on parameter settings are provided, which facilitates the

use of PICEAs for non-experts.
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– Wang, R., Purshouse, R. C., Fleming, P. J., Preference-inspired co-evolutionary

show robustness on parameter settings, International Journal of System Sci-

ence. (Under review)

Some additional contributions resulted during the development of this thesis. For the

coherency of the thesis, these contributions are not explicitly documented within the

monograph itself but are briefly described as follows.

• A general framework for localised multi-objective evolutionary algo-

rithms. This framework seeks to improve both the accuracy and the diversity of

these solutions through the local application of evolutionary operators to selected

sub-populations. A local operation-based implementation framework is presented

in which a population is partitioned, using hierarchical clustering, into a pre-

defined number of sub-populations. Environment-selection and genetic-variation

are then applied to each sub-population. The effectiveness of this approach is

demonstrated on 2- and 4-objective benchmark problems. The performance of each

of four best-in-class MOEAs is compared with their modified local operation-based

versions derived from this framework. In each case the introduction of the local

operation-based approach improves performance. Further, it is shown that the

combined use of local environment-selection and local genetic-variation is better

than the application of either local environment-selection or local genetic-variation

alone. This work has been published as

– Wang, R., Fleming, P. J., Purshouse, R. C., General framework for localised

multi-objective evolutionary algorithms, Information sciences, 258(2), 29-53.

– Wang, R., Purshouse, R. C., Fleming, P. J., Local preference-inspired co-

evolutionary algorithms, in: GECCO 2012: Proceedings of the Genetic and

Evolutionary Computation Conference, ACM, Philadelphia, USA, 2012, pp.

513-520.

• Enhancement of the MOGA Matlab toolbox of the University of Sheffield.

The toolbox was first created by Andrew J. Chipperfield, Carlos M. Fonseca and

Peter J. Fleming, then was enhanced by Robin C. Purshouse. During this PhD

research, some new components are developed for the toolbox. For example, a

set of differential evolution operators for doing recombination and mutation; the

ε-dominance archiving strategy for obtaining evenly distributed solutions; some

functions for generating randomly/evenly distributed points; a function to mea-

sure the neighbourhood. These components will further facilitate the design of

MOEAs.





Chapter 2

Literature review

Many real-world problems have multiple conflicting objectives that are required to be

optimised simultaneously. A variety of methods have been developed in the literature for

solving such optimisation problems. Prior to introducing our methods, it is important to

review the current literature relevant to this thesis. This review discusses the limitations

of the current state-of-the-art algorithms and provides motivations for this research.

This Chapter starts with an historical overview of MOEA, where co-evolutionary algo-

rithms are also introduced (Section 2.1). Secondly, in Section 2.2, three multi-objective

test suites are introduced, followed by an introduction to performance metrics in Sec-

tion 2.3. These test problems and performance metrics are used as means of comparing

the performance of MOEAs. Section 2.4 provides a comprehensive review of many-

objective optimisation, including the issues for MaOPs as well as the existing methods

proposed for many-objective optimisation. Lastly, multi-objective evolutionary algo-

rithms developed for a priori and progressive decision-making are critically reviewed in

Section 2.5.

2.1 Historical overview of MOEAs

Since the 1950s the operational research community has proposed approaches for solving

MOPs. Typically, these approaches convert a MOP into a single objective optimisa-

tion problem by using some user-defined procedures. A variety of such approaches are

available in specialised literature such as Miettinen (1999) and Ehrgott (2005). Some

representatives approaches are the weighted sum, weighted metric, ε-constraint, goal

programming (e.g., weighted goal programming, Lexicography goal programming and

Min-Max programming). These approaches have the following limitations:

11
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i) Only one Pareto optimal solution can be expected be found in an algorithm run.

Thus, a number of runs (with different parameter settings) are required in order to

obtain a set of Pareto optimal solutions.

ii) These approaches are susceptible to problem characteristics. For example, the

weighted sum approach fails to find Pareto optimal solutions in non-convex Pareto

regions.

iii) These approaches require some problem knowledge or additional parameter settings.

For example, the weight vector used in the weighted sum and weighted metric

approaches, the parameter ε used in the ε-constraint approach and the target vector

used in the goal programming approach.

These limitations greatly inhibit the applications of the traditional approaches and drive

us to develop some more effective methods. Multi-objective evolutionary algorithms

have generated considerable interest and acceptance. Their population based nature is

helpful to generate a set of trade-off solutions in a single run. Moreover, MOEAs tend

to be robust to underlying cost function characteristics (Deb, 2001; Coello Coello et al.,

2007). Over the last twenty years, many different MOEA approaches were proposed.

The following sections provide a historical overview of these approaches based on the

study of Coello Coello (2006).

2.1.1 MOEAs from 1985 to 1998

Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) is often recognised as

the first MOEA. VEGA is developed by modifying the selection mechanism of a basic

genetic algorithm (GA). At each generation, proportional selection is performed to select

a sub-population based on each objective function in turn. These sub-populations would

be pooled together to form a new population. The genetic operations, i.e. crossover and

mutation, are then performed on the new population in the usual way.

Later, Goldberg (1989) suggested two fundamental concepts for multi-objective opti-

misation: the Pareto-dominance relation, selecting non-dominated solutions, and the

niching technique, maintaining diversified solutions along the non-dominated frontier.

These two concepts opened a new avenue and generated an overwhelming interest in

MOEAs. Fonseca and Fleming (1993) proposed, to the best of the author’s knowl-

edge, the first Pareto-dominance based MOEA, i.e. Multi-Objective Genetic Algorithm

(MOGA). After that many other MOEAs that use Goldberg’s idea were implemented.

Two representative algorithms are Non-dominated Sorting Genetic Algorithm (NSGA

(Srinivas and Deb, 1994)) and Niched-Pareto Genetic Algorithm (NPGA (Horn et al.,

1994)). Among the three algorithms, MOGA is the most effective approach, followed by

NPGA, then NSGA and VEGA (Zitzler and Thiele, 1999).
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In addition to the mentioned MOEAs, Tanaka and Tanino (1992) proposed the first

mechanism to incorporate decision-maker preferences into MOEAs. Fonseca and Flem-

ing (1995b) provided the first survey of MOEAs, and introduced the first performance

metric, i.e. attainment surface (Fonseca and Fleming, 1996). Moreover, Fonseca and

Fleming (1998a) proposed one of the earliest preference-based MOEA where the decision-

maker preferences are specified as goals and priorities and can be interactively incor-

porated into MOGA so as to guide solutions towards a region of interest. However, in

this period few studies were carried out on the development of performance metrics and

benchmark problems. Comparisons were visual in most cases and most problems tackled

were bi-objective. The main achievements in this period are summarised in Figure 2.1.

Figure 2.1: MOEAs from 1985 to 1998.

2.1.2 MOEAs from 1999 to 2003

The second generation of MOEAs starts when the elitism strategy gets popularised

(Coello Coello, 2006). Specifically, after the publication of Strength Pareto Evolutionary
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Algorithm (SPEA) (Zitzler and Thiele, 1999) many researchers started to incorporate

elitism into the design of MOEAs. Elitism became the third common practice (the first

two are Pareto-dominance and diversity maintenance) in MOEAs. Typically, elitism is

implemented as an external archive that stores all non-dominated solutions found during

the search. It can also be induced by a (µ + λ)-selection framework, that is, parents

and their offspring are first pooled together, then new parents are selected based on the

pooled population.

In this period (from 1999 to 2003) researchers mainly focused on further improving the

effectiveness and efficiency of MOEAs. Some representative algorithms include SPEA,

SPEA2 (Zitzler et al., 2002), Pareto Archived Evolution Strategy (PAES (Knowles and

Corne, 1999, 2000)), Pareto Envelope-based Selection Algorithm (PESA (Corne et al.,

2000)) and its improved version PESA-II (Corne et al., 2001) and Non-dominated Sorting

Genetic Algorithm II (NSGA-II (Deb et al., 2002a)). In SPEA the fitness of solutions is

determined by the Pareto strength value (Zitzler and Thiele, 1999); a clustering method

is employed to maintain the diversity of solutions. SPEA2 is an improved version of

SPEA where an enhanced fitness assignment and clustering method is used. PAES,

PESA and PESA-II apply a hyper-grid based scheme to conduct selection and diversity

maintenance.

NSGA-II probably is the most widely used MOEA (9767 citations accessed on 09/10/2013).

It is implemented within a (µ + λ) framework. Solutions are selected based on their

dominance level and crowding distance. Specifically, the non-dominated sorting strat-

egy is applied to rank all individuals. The assigned rank is used as a primary criterion

in the binary tournament selection for parent selection. If more than µ solutions are

non-dominated, solutions with the same rank are further evaluated by their crowding

distance. Roughly speaking, solutions in a sparse region are preferred to those in a

crowded region when they have the same rank.

In addition to these studies, another concept, ε-dominance, was proposed by Laumanns

et al. (2002). It was demonstrated that the use of ε-dominance is helpful in finding

solutions with good proximity and diversity (Deb et al., 2003, 2005). Several benchmark

test suites and performance metrics were proposed which facilitates the assessment and

comparison of MOEAs. The main achievements over this period are summarised in

Figure 2.2.

MOEAs gained great developments during this period: the Pareto-dominance relation,

diversity maintenance and elitism mechanism become three of the most common modules

of MOEAs. MOEAs start to be applied in many application domains such as electri-

cal engineering, aeronautical engineering, robotics control, scheduling, etc. (Deb, 2001;

Fleming et al., 2005). However, with the increasing applications of MOEAs, researchers

subsequently found that Pareto-dominance based MOEAs, e.g. MOGA, NSGA-II and
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Figure 2.2: MOEAs from 1999 to 2003.

SPEA2, face difficulties on MOPs with more than three objectives, termed as many-

objective (optimisation) problems (MaOPs). Purshouse and Fleming (2003c) first iden-

tified this issue and found that the search ability of Pareto-dominance based approaches

degrades significantly as the number of objectives increases.

MaOPs arise in many applications, thus developing effective algorithms for MaOPs has

become a hot topic. Additionally, researchers realised that often a decision-maker is not

interested in obtaining the entire Pareto front but only a part of the Pareto front. Thus,

some preference-based MOEAs were developed to incorporate decision-maker preferences

into MOEAs. This thesis focuses on both the topics: many-objective optimisation and

preference-based MOEAs. Relevant studies to these topics are critically reviewed in the

next sections.

2.1.3 An introduction to co-evolutionary algorithms

Co-evolution refers to a process that simultaneously evolves different species. In co-

evolution, the fitness of a solution in one species is measured based on its cooperative

or competitive interactions with others (Goh et al., 2010). In cooperative co-evolution,

different species evolve in a mutually beneficial relationship. In competitive co-evolution,
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different species have opposing interests and the success of one species depends on the

failure of others.

A number of co-evolution based MOEAs have been proposed. These are briefly reviewed

next. Following that, possible issues of implementation of co-evolution based algorithms

are introduced.

Cooperative co-evolutionary algorithms

In cooperative co-evolution, an individual is formed by combining sub-individuals from

different species (sub-populations). Sub-individuals are ranked based on the fitness of the

combined individual. To better understand cooperative co-evolution based algorithms,

we briefly describe some representative studies.

Potter and Jong (2000) proposed a cooperative co-evolution based genetic algorithm

(CCGA). In CCGA a sub-population is initialized for each decision variable. Each

individual sub-population is evolved using a traditional GA. Two versions of CCGA

(i.e., CCGA1 and CCGA2) are implemented. The difference between the two versions

is as follows. In CCGA1 a sub-individual is evaluated by combining it with the best

known sub-individual from the other sub-populations. In CCGA2 a sub-individual is

evaluated by combining it either with a random or the best sub-individual from the

other sub-populations. The best fitness of the two individuals is assigned as the fitness

of the current sub-individual.

However, CCGA only applies to single-objective optimisation. Keerativuttitumrong

et al. (2002) proposed a multi-objective cooperative co-evolutionary genetic algorithm

(MOCCGA) based on CCGA2. The only difference is that the multi-objective optimizer,

MOGA, is applied to optimise each sub-population. In a similar way, Maneeratana et al.

(2006) applied this cooperative co-evolution concept to NPGA and NSGA, and Iorio and

Li (2004) applied this concept to NSGA-II. All the extended versions are reported to

exhibit significant improvements over their canonical counterparts.

Coello Coello and Sierra (2003) proposed an alternative co-evolutionary MOEA called

CO-MOEA. In their approach, some promising search spaces are identified during the

search, and more search effort is distributed on these regions. Specifically, the search

space is divided into some pre-defined sub-regions. The same number of individuals is

initialised for each sub-region. The number of individuals in each sub-region is modified

in proportion to the number of new non-dominated solutions discovered in the optimisa-

tion process. CO-MOEA is demonstrated to outperform PAES and NSGA-II on 2 and

3-objective problems. However, obviously the performance of CO-MOEA depends on

the choice of sub-regions.



Chapter 2 Literature review 17

Competitive co-evolutionary algorithms

In competitive co-evolution, an inverse fitness interaction exists between different species,

and different species compete to survive.

Laumanns et al. (1998) were the first to incorporate the concept of competitive co-

evolution into MOEAs. Their proposed algorithm is based on the predator-prey model.

Candidate solutions (acting as preys) are placed on an undirected and connected graph.

Objective functions (act as predators) are selected at random to evaluate all the candi-

date solutions. In the neighbourhood of an objective function, the candidate solution

that has the worst objective value is replaced by its offspring.

In Barbosa and Barreto (2001), another competitive co-evolutionary algorithm was pro-

posed for solving a graph layout problem. In their approach, two populations are co-

evolved – a graph layout population (candidate solutions) and a set of weight vectors.

The two populations are evolved by a separate genetic algorithm in a round robin process.

First candidate solutions are evolved for several generations while the weight vectors are

kept constant. Then a decision-maker is asked to select his/her preferred solutions.

These selected candidate solutions are then held constant while the weight vectors are

evolved in an attempt to produce suitable weights that can reveal the decision-maker’s

preference.

Lohn et al. (2002) proposed an interesting competitive co-evolutionary algorithm called

CGA, in which candidate solutions are co-evolved with target vectors. In CGA, the tar-

gets gain higher fitness by being satisfied by fewer candidate solutions, and the candidate

solutions gain higher fitness by meeting as many targets as possible. Experimental re-

sults show that CGA performs better than SPEA and NSGA on 2-objective problems.

However, Goh and Tan (2009) reported that CGA might be sensitive to the Pareto front

geometries.

Combined cooperative and competitive co-evolutionary algorithms

There are also some algorithms that incorporate both competitive and cooperative co-

evolutions, for example, the competitive-cooperation coevolutionary algorithm (COEA)

Goh and Tan (2009). In COEA, sub-individuals are co-evolved both competitively and

cooperatively. In the competitive mode, sub-individuals compete with each other to

become a representative of a particular sub-population. In the cooperative mode, rep-

resentatives from each sub-population co-evolve to generate better individuals. COEA

is tested on three benchmark problems. Experimental results indicate that COEA per-

forms well on problems with severe parameter interactions. A similar study is conducted

by Goh et al. (2010) where this concept is applied to a multi-objective particle swarm

optimisation (MOPSO) algorithm.
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Possible issues of co-evolutionary algorithms

Co-evolution based algorithms potentially face the following issues the Red Queen Effect,

cycling and disengagement (De Jong and Pollack, 2004; Bongard and Lipson, 2005).

(i) The Red Queen Effect means that the subjective fitness of the populations improves

during the course of evolution but there is no consistent progress along the objective

metric. Conversely, there is progress along an objective fitness but the improvement

cannot be reflected by their subjective fitness. For example, consider students’

scores in examinations and their true ability. A series of difficult examinations

may result in a low score (subjective fitness) while in fact their ability is improved.

Alternatively, students may get high scores in a series of easy examinations but

such scores do not represent their abilities.

(ii) Cycling refers to a scenario that solution a is better than solution b in one sub-

jective metric, and simultaneously, a is worse than b in another subjective metric.

Cycling might occur when the subjective fitness criteria keeps changing over time.

Cycling might arise in the situation that solutions keep searching the same space.

(iii) Disengagement refers to a loss of fitness gradient in the process of co-evolution.

That is, one population is completely better than another population; the sub-

jective fitness of solutions becomes constant in such a way that selection becomes

random. Disengagement often leads to over-specialization, that is, candidate solu-

tions only progress on some objectives.

Overall, although co-evolution is an interesting and promising concept, and some useful

algorithms have been developed based on this concept, a particular attention should be

paid to the potential for pathologies when implementing a co-evolution based algorithm.

2.2 Multi-objective test problems

A number of multi-objective test problems have been proposed to benchmark the perfor-

mance of MOEAs (Huband et al., 2006). This section reviews three of the most widely

used benchmarks. Detailed descriptions of the objective functions and the Pareto opti-

mal fronts (for 2- and 3-objective problems) are provided in Appendix A.

Prior to describing these problems, we introduce the following four terminologies. “Multi-

modal” means there are multiple local optimal Pareto fronts. “Separable” means that

the objective can be optimised by considering each parameter in turn. The global op-

timal solution is the cross-product of each of the optimal parameters. specifically, in

a multi-objective case, the ideal points for separable objectives can be determined by
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considering only one parameter at a time. “Bias” means that an evenly distributed set

of Pareto optimal solutions in the search space does not map to an evenly distributed

set of objective vectors in fitness space1. “Deceptive” means a problem has at least two

optima: a true optima and a deceptive optima. According to Deb (1999), deceptive func-

tions are those in which low order building blocks do not combine to form higher-order

building blocks: instead they form building blocks for a suboptimal solution.

2.2.1 ZDT test suite

Zitzler et al. (2000) proposed the first MOP test suite, the ZDT test suite. It contains six

bi-objective minimisation problems. Characteristics of the six test problems are shown

in Table 2.1.

Table 2.1: Properties of the ZDT test problems.

Objective Separable Multi-modal Pareto optimal front

ZDT1
f1 Yes No

Convex
f2 Yes No

ZDT2
f1 Yes No

Concave
f2 Yes No

ZDT3
f1 Yes No Convex
f2 Yes Yes disconnected

ZDT4
f1 Yes No

Convex
f2 Yes Yes

ZDT5
f1 Yes Yes

Convex
f2 Yes Yes

ZDT6
f1 Yes No

Concave
f2 Yes Yes

All the problems are real-valued except for ZDT5 which is binary encoded. The decision

variable xi for all the real-valued problems is within [0, 1] with the exception of ZDT4

where the x1 ∈ [0, 1] and all the other xi ∈ [−5, 5]. All the problems are separable,

that is, the Pareto optimal set can be achieved by optimising each decision variable

separately. ZDT1, ZDT2, ZDT3 and ZDT6 problems have only one global optimal front

and are not multi-modal while ZDT4 is multi-modal, having 219 local Pareto optimal

fronts. The Pareto optimal front of ZDT1 is convex, ZDT3 is convex and disconnected.

All the other problems have a concave Pareto optimal front. ZDT5 describes a deceptive

problem. However, as mentioned above, it is binary encoded. Moreover, the search space

of ZDT6 is non-uniform and thus is more difficult compared with ZDT2.

1Note that bias is also called non-uniformity in some studies
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2.2.2 DTLZ test suite

The DTLZ test suite was proposed by Deb et al. (2002b). Unlike the ZDT test suite,

the DTLZ test problems are scalable to any number of objectives. Properties of these

problems are described in Table 2.2.

Table 2.2: Properties of the DTLZ test problems.

Objective Separable Multi-modal Pareto optimal front

DTLZ1 f1:M Yes Yes Linear

DTLZ2 f1:M Yes No Concave

DTLZ3 f1:M Yes Yes Concave

DTLZ4 f1:M Yes No Concave

DTLZ5 f1:M Yes No a concave curve

DTLZ6 f1:M Yes No a concave curve

DTLZ7
f1:M−1 No No

Disconnected
fM Yes Yes

For all DTLZ test problems, the domain of decision variables is within [0, 1], and test

problems are scalable with respect the number of decision variables n. For problems

DTLZ1 to DTLZ6, n = k+l, where k is the number of distance parameters and l = M−1

is the position parameters. For DTLZ7, n is suggested to be set as 10M . DTLZ1

has 115k − 1 local optimal fronts and can be used to investigate an MOEA’s ability to

converge to a hyper-plane; typically, DTLZ2, DTLZ3 and DTLZ4 are used to investigate

an MOEA’s ability to scale up its performance for a large number of objective, obtaining

a set of well spread solutions that are also close to the Pareto optimal front. DTLZ5 and

DTLZ6 are used to test an MOEA’s ability to converge to a degenerated curve. DTLZ7

has 2(M−1) disconnected Pareto-optimal regions in the search space and therefore is

used to test an MOEA’s ability to maintain sub-population in different Pareto optimal

regions.

2.2.3 WFG test suite

The WFG test suite is proposed by Huband et al. (2006) which contains 9 test problems.

These problems are all scalable to any number of objectives. Table 2.3 summarises the

properties of these problems.

Compared with the ZDT and DTLZ test suites, the WFG test suite is more challenging

as problem attributes include separability/non-separability, unimodality/multimodality,

unbiased/biased parameters and convex/concave geometries. A solution vector x con-

tains k position parameters and l distance parameters, that is, the number of decision

variables, n = k + l. k should be divisible by M − 1 and l can be set to any positive

integer, except for WFG2 and WFG3 where it must be a multiple of 2. The domain of xi

is [0, 2i]. All the ZDT and DTLZ problems are separable (Huband et al., 2006), however,
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Table 2.3: Properties of the WFG test problems.

Objective Separable Multi-modal Bias Pareto optimal front

WFG1 f1:M Yes No
Polynomial convex,

flat mixed

WFG2
f1:M−1 No No convex,
fM No Yes disconnected

WFG3 f1:M No No
linear

degenerate

WFG4 f1:M Yes Yes concave

WFG5 f1:M Yes Yes concave

WFG6 f1:M No No concave

WFG7 f1:M Yes No
parameter

concave
dependent

WFG8 f1:M No No
parameter

concave
dependent

WFG9 f1:M No Yes
parameter

concave
dependent

the WFG2, WFG3, WFG6, WFG8 and WFG9 problems are all non-separable. With

respect to multi-modality, problems WFG2, WFG4, WFG5 and WFG9 are multi-modal.

None of the ZDT and DTLZ test problems contains bias. However, problems WFG1,

WFG7, WFG8 and WFG9 all feature significant bias. Other than ZDT5, none of the

ZDT or DTLZ test problems is deceptive. However, in the WFG test suite both WFG5

and WFG9 are deceptive. Additionally, all the WFG test problems have dissimilar

trade-off ranges.

2.3 Performance metrics

Apart from the test problems, to measure the performance of MOEAs we still need some

performance metrics. There are two distinct goals for multi-objective optimisation and

these are shown in Figure 2.3:

• find solutions as close to the Pareto optimal front as possible, i.e. convergence;

• distribute solutions evenly along the Pareto optimal front as widely as possible,

i.e. diversity.

Therefore, to evaluate the performance of MOEAs (the accuracy of the obtained approx-

imation of the Pareto optimal front), both the convergence and diversity performance

need to be assessed. According to the literature (Knowles and Corne, 2002; Zitzler et al.,

2003), a number of performance metrics have been proposed to either separately mea-

sure convergence and diversity performance explicitly, or measure both convergence and

diversity in an implicit manner.
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Figure 2.3: Illustration of two goals of multi-objective optimisation.

2.3.1 Convergence metrics

A convergence metric measures the closeness of solutions in the approximated set S to

the Pareto optimal front. Typically, the Pareto optimal front is described by a reference

set of representative Pareto optimal solutions, denoted as P ∗. A number of metrics

have been proposed such as, error ratio (Van Veldhuizen, 1999), generational distance

(Van Veldhuizen, 1999) and C metric (Zitzler and Thiele, 1999). Note that |S| denotes

the cardinality of set S.

Error ratio: ER

The ER metric counts the number of solutions in S that are not members of P ∗. The

metric is defined by Equation 2.1:

ER =

∑|S|
i=1 ei
|S|

(2.1)

where

ei =

0 di(ai, P
∗) < δ

1 otherwise.
(2.2)

and di is the minimum Euclidean distance of the ith objective vector ai in S to the

reference set P ∗; δ is a user-defined tolerance. di(ai, P
∗) < δ refers that ai could been

seen as a member of P ∗.

Generational distance: GD

The generational distance (GD) metric measures the mean distance from solutions in S

to the nearest neighbour in P ∗ in objective-space (Knowles and Corne, 2002; Knowles,
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2002). A favourable (smaller) GD value implies good proximity. The ideal GD value is

0. Mathematically, the GD metric is defined as follows:

GDp(S, P
∗) =

∑|S|
i=1 di(ai, P

∗)

|S|
(2.3)

where di is the minimum Euclidean distance of the ith objective vector ai in S to the

reference set P ∗.

di(ai, P
∗) = min

p∈P ∗
{‖ai − p‖2 : ai ∈ S}, (2.4)

Set converge metric: C(A,B)

C(A,B) is a binary metric which calculates the proportion of solutions in B that are

dominated by solutions in A, or mathematically:

C(A,B) =
|b ∈ B|∃a ∈ A : a � b

|B|
(2.5)

|A| and |B| represent the cardinality of set A and B, respectively. C(A,B) = 1 means

all solutions of B are weakly dominated by A. On the other hand, C(A,B) = 0 none

of solutions in B is weakly dominated by A. Note that C(A,B) is not necessarily equal

to 1 − C(B,A). Therefore, both C(A,B) and C(B,A) need to be calculated in order to

understand which set of solutions converge better.

Amongst these three metrics, the GD metric is more widely used (when the Pareto

optimal front is known) by researchers due to its simplicity. However, the C(A,B) gives

a relative comparison result which was found to be more reliable (Zitzler et al., 2003).

2.3.2 Diversity metrics

Diversity metric measures the diversity of the obtained Pareto optimal solutions. Di-

versity has two components: the extent of the spread of solutions and the uniformity of

the spread of solutions (Zitzler et al., 2000; Knowles and Corne, 2002). A number of

metrics have been proposed such as spacing (Schott, 1995), maximum spread (Zitzler

and Thiele, 1999) and spread (Deb et al., 2002a).

Spacing metric

The spacing metric measures relative distances between two solutions, the smaller the

better. It is defined as follows:



24 Chapter 2 Literature review

space =

√√√√ 1

|S|

|S|∑
i=1

(di − d̄)2 (2.6)

where

di = min
k∈S∧k 6=i

M∑
m=1

√
(f im − fkm)2

d̄ =

|S|∑
i=1

di
|S|

(2.7)

This metric does not consider the extent of the spread of the solutions. As long as the

obtained solutions are evenly distributed (uniformity), it will produce a smaller value. It

is important to normalise all objective values within an identical range before applying

this metric (Deb, 2001, p. 328).

Maximum spread: D

The maximum spread metric calculates the length of the diagonal of a hyper-box formed

by the extreme objective values found in the Pareto set. It measures the extent of the

obtained solutions:

D =

√√√√ 1

M

M∑
m=1

(
max

|S|
i=1 f

i
m −min

|S|
i=1 f

i
m

Fmaxm − Fminm

)2 (2.8)

where Fmaxm and Fminm refers the maximum and minimum objective value of the m-th

objective in the reference set P ∗.

Spread metric: ∆

The spread metric ∆ measures both the extent and uniformity of the solutions, which

effectively alleviates the limitation of the spacing and maximum spread metrics and so

is more preferred. Mathematically, ∆ is defined as :

∆ =

∑M
m=1 d

e
m +

∑|S|
m=i

√
(di − d̄)2∑M

m=1 d
e
m + |S|d̄

(2.9)

where dem is the distance between the extreme solutions in P ∗ and S, in terms of the

m-th objective function. di is a distance measure (e.g. Euclidean distance) between two

consecutive solutions and d̄ is the average value of all di (Deb et al., 2002a).
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2.3.3 Measures for evaluating both convergence and diversity

Two widely used metrics that can measure both the closeness to, and the spread along

the Pareto optimal front are hypervolume (Zitzler and Thiele, 1999) and inverted gen-

erational distance (Czyzżak and Jaszkiewicz, 1998).

Hypervolume: HV

The hypervolume metric (HV ) measures the volume of the M -dimensional region in

objective-space enclosed by the obtained non-dominated solutions S and a dominated

reference point, see Figure 2.4. The hypervolume is shown as the shaded region. Typi-

cally, the reference point could be set as the nadir point (Deb et al., 2010) or a relaxed

form of the nadir point. Mathematically,

HV = λ(∪|S|i=1vi) (2.10)

where λ represents the Lebesgue measure (Knowles, 2002; Auger et al., 2009b) and vi is

a hypercube constructed by the reference point and the ith solution in S.

Figure 2.4: Illustration of the hypervolume metric.

HV is an effective unary quality measure which is strictly monotonic with regard to the

Pareto-dominance. Moreover, calculation of the HV metric does not require the Pareto

optimal front, which greatly facilitates the use of this metric in practice. However,

there are two limitations: (i) the hypervolume calculation is computationally expensive

(Beume et al., 2009), and (ii) the HV value is affected by the chosen reference point

(Zitzler and Thiele, 1999; Auger et al., 2009b).
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Inverted generational distance: IGD

As mentioned earlier, GD measures the mean distance of each of the obtained solutions

in S to the nearest Pareto optimal solution in P ∗. The inverted generational distance

metric (IGD) measures the mean distance of each of the Pareto optimal solutions in P ∗

to the nearest solution in S, that is, IGD = GD(P ∗, S) (Czyzżak and Jaszkiewicz, 1998;

Li and Zhang, 2009). In this sense, both the convergence and diversity performance are

taken into account. For instance, in Figure 2.5 IGD value of the obtained non-dominated

solutions is large since although these solutions converge well, see Figure 2.5(a), they

spread poorly, see Figure 2.5(b).

(a) Good convergence (b) Poor spread

Figure 2.5: Illustration of the IGD metric.

2.3.4 Visual inspection

In addition to the above quantitative metrics, to measure the quality of the obtained

Pareto approximation set or compare the performance of different MOEAs, we can

also simply plot the obtained solutions so as to visually examine their convergence and

diversity performance. Fonseca and Fleming (1996) proposed to describe the Pareto front

by an attainment surface. Instead of joining the obtained non-dominated solutions by a

curve, see Figure 2.6(b), the obtained non-dominated solutions are joined by segmented

lines, see Figure 2.6(a). The main limitation of the visual methods is that they are only

convenient for 2- and 3-objective problems.

Overall this section provides a brief review of some representative performance metrics.

It should be noted that there are other performance metrics and these can be found in

survey studies of Knowles and Corne (2002) and Zitzler et al. (2003).
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(a) Attainment surface (b) Joining non-dominated solutions with a curve

Figure 2.6: Illustration of methods to visualize the Pareto front.

To conclude this section, we discuss the usefulness of performance metrics on many-

objective problems. As mentioned previously, performance metrics are used to measure

the accuracy (i.e., convergence and diversity) of an approximation of the Pareto optimal

front, and enable performance comparison of two MOEAs. In fact, the only unbiased

way for comparing two sets of solution is to use dominance relation – whether one

approximation set dominates another. This is because the only preference information

that this metric relies on is a direction of preference in each objective. However, often

such limited preference information is unable to distinguish between algorithms (Wang

et al., 2013). Thus, we must rely on other performance metrics which unavoidably

introduce an additional bias. However, as long as the bias ultimately reflects the decision-

maker preferences, such comparison still makes sense. For example, the HV measures a

volume enclosed by the Pareto front and a chosen reference point. The chosen reference

point introduces bias, e.g., the hypervolume metric bias solutions placed at the edge on

problems having concave Pareto front. However, if a decision-maker specifies his/her

aspirations as the reference point, then the resulting hypervolume value is “unbiased”.

Additionally, it is worth mentioning that the accuracy of an approximation set mea-

sured by a performance metric will be not reliable when the given approximation set

only contains a limited number of solutions, i.e., the approximation set cannot repre-

sent the Pareto optimal front. In particular, this might happen on MaOPs as a large

number of solutions are usually required to describe the entire Pareto optimal front. If

there is only a limited number of solutions in the approximation set, the value derived

from a performance metric becomes sensitive to the location of the solutions. In this

case, the accuracy of an approximation measured by a performance metric needs careful

consideration.
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2.4 Many-objective optimisation

2.4.1 Challenges of many-objective optimisation

Ishibuchi et al. (2008b) identified three challenges of many-objective optimisation:

(i) The Pareto-dominance relation loses its effectiveness in offering comparability be-

tween alternative solutions in many-objective problems. Most of the objective

vectors in a MOEA population become non-dominated when M is large (see Fig-

ure 2.7). The proportion of non-dominated vectors in a set of randomly generated

vectors increases exponentially as the number of objective increases. As a conse-

quence insufficient selective pressure can be generated towards the Pareto optimal

front. This results in a poor performance of the Pareto-dominance based MOEAs

such as MOGA, NSGA-II and SPEA2 (Purshouse and Fleming, 2003c; Hughes,

2005). Moreover, the “sweet-spot” of algorithm parameter settings that yield good

performance contract greatly (Purshouse and Fleming, 2007), i.e. MOEAs become

more sensitive to the user’s choice of parameter settings.
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Figure 2.7: The proportion of non-dominated vectors in a set of random vectors for
different number of objectives.

(ii) The Pareto optimal front of MaOPs is typically a (M−1)-dimension hyper-surface.

The number of solutions required to represent such a surface at a given resolution

grows exponentially with the number of objectives. Also it might be challenging

for the DM to choose the most preferred solution from such large sets of candidate

solutions.
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(iii) Visualisation of the obtained Pareto approximation set is not as easy as that of two

or three-objective problems. This creates difficulty for decision-makers to visually

choose their preferred solutions.

A straightforward way to handle the first issue is to use a fine-grained Pareto-dominance

relation which could exert more selective pressure. This will be discussed in detail

together with some other alternatives in Section 2.4.2. With respect to the second

difficulty, we could incorporate decision-maker preferences a priori or progressively into

MOEAs during the search so as to search solutions only in the region(s) of interest

to decision-makers. Regarding the third difficulty, some methods have been suggested

such as visualising the Pareto approximation set using parallel coordinates (Inselberg,

1985), star coordinates (Kandogan, 2001), scatter-plot (Touchette et al., 1985), etc.

Additionally, it is also helpful to apply some dimension reduction techniques to the

approximated Pareto front a priori before visualisation so as to map the objective vectors

into a low-dimensional space.

2.4.2 Methods for many-objective optimisation

A number of methods have been proposed to address the first challenging issue (Corne

and Knowles, 2007; Ishibuchi et al., 2008b). These methods can be classified into five

categories: modified Pareto-dominance based algorithms, ranking methods based algo-

rithms, objective-reduction based algorithms, indicator based algorithms, and decom-

position based algorithms.

All these methods (considered as a posteriori approaches) focus on finding a representa-

tive approximation of the Pareto optimal front. There remains some debate about the

viability of attempting to obtain such representative trade-off surfaces for MaOPs. This

concerns the number of solutions required to adequately represent a trade-off surface

at a desired level of resolution; this number is exponential in the number of conflicting

objectives.

Mathematically, it is believed that given a reasonable size of archive set, such a repre-

sentative subset can be achieved by storing all the non-dominated solutions. However,

in practice, this target seems difficult to achieve and is restricted by the computational

resource. Therefore, if we can use a very large number of solutions, we may be able to

find a solution set which approximates the entire Pareto front very well. If we can use

only a limited number of solutions, it is impossible to approximate the entire Pareto

front very well. Furthermore, there could be a case that some solution sets are more

representative than other solution sets. That is, we may be able to search for a solution

set which is the most representative. Therefore, if we have a definition of “representa-

tive” this target is achievable by solving the question – what is the most representative

solution set with a fixed number of solutions for a many-objective problem?
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Modified Pareto-dominance based algorithms

According to Farina and Amato (2002), limitations of the Pareto-dominance relation

on many-objective optimisation are (i) the number of objectives which are dominated;

(ii) the degree of dominance; and (iii) the preferences among objectives are not consid-

ered. To overcome these limitations, various modified Pareto-dominance relations are

proposed.

Ikeda et al. (2001) proposed a relaxed form of dominance relation called Pareto α-

dominance. The basic idea is that a smaller improvement in one objective is not com-

pensatable for a large deterioration in another objective. The trade-off rate between

two objectives is also restricted by a pre-defined bound. Using this relation, two Pareto

non-dominated solutions A and B, see Figure 2.8(a) are re-considered as A α-dominates

B, see Figure 2.8(b). A similar idea is also proposed by Branke (2001), however, the

author applies this concept to reveal the decision-maker preferences, thus guiding the

search towards a preferred region, which will be described in Section 2.5. Experimental

studies show that α-dominance works well when a proper trade-off rate is provided (Sato

et al., 2007a; Fabre et al., 2010).

(a) A and B are non-dominated (b) B is α-dominated by A

Figure 2.8: Illustration of the α-dominance relation.

Sato et al. (2007b) applied a preference relation to modify the dominance area of a

solution. The dominated area can either be expanded or contracted according to a user

defined vector. Figure 2.9 shows that solutions A and B are Pareto non-dominated

while A dominates B when the dominance area is expanded. This modified dominance

relation is applied to NSGA-II. Experimental results show that NSGA-II, when using

the modified dominance relation performs well on MaOPs (Sato et al., 2007a). However,

it is not straightforward to select a proper expanded or contracted degree.



Chapter 2 Literature review 31

(a) The standard Pareto-dominance (b) The expended Pareto-dominance

Figure 2.9: Illustration of a modified Pareto-dominance relation.

ε-dominance (Laumanns et al., 2002) is another widely used modified dominance rela-

tion. There are two schemes to implement ε-dominance, i.e., additive and multiplicative,

as shown in Figure 2.10. A vector x ∈ Rn is said to ε-dominate another vector y ∈ Rn,

denoted as x ≺ε y, if and only if (assuming a minimisation problem)

(additive) ∀i ∈ 1, 2, · · · ,M, xi − ε ≤ yi (2.11)

or in another scheme

(multiplicative) ∀i ∈ 1, 2, · · · ,M, xi(1− ε) ≤ yi (2.12)

Figure 2.10: Illustration of the ε-dominance relation.
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The value of ε can be different for different objectives, which reflects the scalings of a

problem. ε-dominance based MOEAs (Deb et al., 2003, 2005) have been demonstrated

to outperform NSGA-II on MaOPs (Wagner et al., 2007). However, the main issue for ε-

dominance based methods is on the choice of a suitable ε value. Moreover, ε-dominance

based MOEAs face difficulty on searching for extreme solutions, and the distribution

of the obtained solutions is sensitive to Pareto front geometries (e.g., convex, concave,

connected as well as disconnected Pareto front geometry) (Hernández-Dı́az et al., 2007).

Recently, Batista et al. (2011) proposed another dominance relation named Pareto cone

ε-dominance as shown in Figure 2.11. All the vectors in the shaded region are Pareto

cone ε dominated by vector A. The shaded region is composed of a standard Pareto dom-

inated area and an additional cone. This relaxation is helpful for obtaining some Pareto

non-dominated solutions in some adjacent boxes that are ε-dominated. It is demon-

strated that this relaxed dominance relation outperforms ε-dominance based MOEAs

on MaOPs. Again the limitation is on the definition of a proper ε value and the angle

of the cone.

Figure 2.11: Illustration of the cone ε-dominance relation.

Overall, modified Pareto-dominance relations typically can generate more selective pres-

sure towards the Pareto optimal front and therefore are more effective than the usual

Pareto-dominance for many-objective optimisation. However, the main issue of this

method concerns the choice of an appropriate parameter value, e.g. the ε value in the

ε-dominance relation. Moreover, it is argued that modified dominance relations, while

enhancing the selection pressure, might lead to degradation of solution diversity (Branke,

2001; Sato et al., 2007b).
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Ranking methods based algorithms

In addition to the use of modified dominance relations, in order to obtain a partial or-

dering over non-dominated solutions, some ranking techniques can be used, e.g. average

ranking, the favour relation, preference order ranking and the winning score technique.

Average ranking (denoted as AR) was proposed by Bentley and Wakefield (1997), and

was demonstrated to perform well on many-objective problems (Corne and Knowles,

2007). Solutions are ranked based on their performance on each objective in turn. This

results in a N ×M ranking matrix. For a solution x, its ranking position is described

by a vector r(x) = [r1(x), r2(x), · · · , rM (x)], where rm(x) is the rank of x for the m-th

objective. The global rank of x is then given by

AR(x) =
M∑
i=1

rm(x) (2.13)

Drechsler et al. (2001) proposed a new preference relation, known as favour. For two

non-dominated solutions, the favour relation prefers the one which performs better on

more objectives. Mathematically, xi is favoured over xj , denoted as xi �f xj if and only

if

|{m : fm(xi) < fm(xj)}| > |{n : fn(xi) < fn(xj)}|

For m, n ∈ {1, 2, · · · ,M}
(2.14)

Sülflow et al. (2007) slightly modified the favour relation by considering not only the

number of objectives for which one candidate solution is better than the other but also

the amount of the improvements in objective values between the two solutions. However,

experimental results show that the favour relation is not as effective as AR on many-

objective optimisation problems (Corne and Knowles, 2007).

Di Pierro et al. (2007) proposed another ranking method called preference order ranking

(PO) for many-objective optimisation problems. Specifically, solutions are ranked based

on their order of efficiency. A solution xi with efficiency of order k means that it is not

Pareto dominated by any other solutions for any of the
(
M
k

)
objectives. The order of

efficiency of a solution xi is the minimum k value for which xi is efficient. The order of

efficiency is then used to rank solutions. The smaller the order of efficiency, the better

the solution. Experimental results show that PO performs well for MaOPs (Di Pierro

et al., 2007). However, as was demonstrated by Corne and Knowles (2007), PO is not

as effective as AR.
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Maneeratana et al. (2006) proposed another ranking method called winning score. The

winning score of a solution is defined as the sum of its ‘margins’ over all the other

solutions. For instance, if a solution xi is better than xj in five objectives while worse

than xj in two objectives, the ‘margins’ of xi over xj is 3, and the ‘margins’ of xj over xi

is -3. Experimental results show that this method performs well on MaOPs. However,

it is proved by Corne and Knowles (2007) that this method is essentially equivalent to

the AR method.

Overall, the use of ranking methods enables a refined ordering to be obtained for non-

dominated solutions and therefore can be used to handle MaOPs. Among these methods,

AR is found to be the most simple, yet effective method (Corne and Knowles, 2007; Fabre

et al., 2009, 2010). However, Kukkonen et al. (2007) demonstrated that the ranking

methods also suffer from the problem of losing diversity .

Objective-reduction based algorithms

As is well known, almost all challenges in many-objective optimisation problems arise

from the high dimension in objective-space (Purshouse and Fleming, 2003b). Therefore,

a natural way to handle MaOPs could be to incorporate dimension reduction techniques

into MOEAs.

In general, there are two types of dimension reduction techniques, i.e. feature extraction

and feature selection. Feature extraction transforms data in a high-dimension space to

a low-dimension space. Feature selection is to find a subset of the original variables that

can cover the most of features of a problem (Fodor, 2002; Van der Maaten et al., 2009).

Deb and Saxena (2006) applied the linear principle component analysis (PCA), to trans-

form high-dimension data into low-dimension date (i.e., feature extraction) for applica-

tion in NSGA-II. The basic idea of the PCA based NSGA-II is to dismiss objectives that

are highly correlated with others, simultaneously, maintaining the shape of the Pareto

front in the remaining objective-space. This algorithm is shown to be able to identify

the correct objective combination that covers most of the attributes of a problem, and

therefore obtaining a good approximation of the Pareto optimal front. Their work was

further extended by incorporating constraints reduction techniques (Saxena and Deb,

2008). Furthermore, a generalised framework is proposed with which both linear and

non-linear objective reduction techniques can be applied (Saxena et al., 2010).

Brockhoff and Zitzler (2006) proposed a dominance preservation (feature selection) based

dimension reduction technique for many-objective problems. The overall aim is to select

a minimum set of objectives that can maintain the dominance structure of all con-

sidered solutions. This technique is applied to a hypervolume based algorithm which

greatly improves the algorithm’s performance (Brockhoff and Zitzler, 2007). Moreover,
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in Brockhoff and Zitzler (2009), some on-line and off-line objective reduction techniques

are introduced.

Additionally, López Jaimes and his colleagues also carried out some work on this aspect.

For instance, in López Jaimes et al. (2008) the authors introduced two ways to identify

the most conflicting objectives. One is to find the minimum subset of objectives that

yields the minimum error the other is to find a subset of objectives of a given size that

yields the minimum error. Furthermore, they also proposed a simple on-line objective

reduction method, which reduces the number of objectives periodically according to their

correlation, i.e. the conflicting information between objectives (López Jaimes et al., 2009,

2011).

Lastly, Purshouse and Fleming (2003a) proposed an adaptive divide-and-conquer method-

ology for many-objective optimisation. This study is based on the understanding of that

there are three different interactions between objectives: harmony, independent, conflict

(Purshouse and Fleming, 2003b). A harmony relationship means the improvement in

one objective is witnessed as an improvement in another objective; independent means

the change in one objective has no impact on another objective; and a conflict relation-

ship means an enhancement in one objective would result in a deterioration in another

objective. The divide-and-conquer approach utilises the relationship between objectives

and divides the objectives into some subsets, where possible. Note this method is also

applicable to operations in decision-space. Experimental results show this method to be

very encouraging.

Lygoe et al. (2010) proposed another PCA based dimension reduction method. The main

feature of this approach is that it exploits local harmony between objectives to reduce

dimensionality. Specifically, first, the k-means clustering approach is applied to divide

the whole population into groups of like-solutions. Then, for each group of solutions,

PCA together with some heuristic rules are applied to reduce objective dimensionality.

This approach is applied to solve a real-world problem (i.e., automotive diesel engine

calibration optimisation problem) with up to six objectives, and is shown to be effective.

The main issue of dimension-reduction based methods is that these approaches might

lose advantages on problems which have many conflicting objectives. None of the in-

troduced approaches (PCA, Pareto-dominance preservation, divide-and-conquer) has

clearly shown effectiveness on problems with a large number of conflicts.

Indicator based algorithms

In addition to the above methods, another theoretically well-supported alternative to

Pareto-dominance is the use of an indicator function to measure the quality of solution

sets. This kind of MOEA is referred as an indicator based evolutionary algorithm (Zitzler

and Künzli, 2004).
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This idea was first used by Knowles and Corne (2002, 2003), where the hypervolume

indicator is used for archive maintenance. Subsequently, Zitzler and Künzli (2004) pro-

posed a general framework of indicator based evolutionary algorithm (IBEA). Wagner

et al. (2007) demonstrated that IBEA outperforms Pareto-dominance based algorithms

(e.g. NSGA-II) on MaOPs.

Several variants of IBEAs have been proposed amongst which the hypervolume indi-

cator, which is the only unary quality measure that is strictly monotonic with regard

to Pareto-dominance, is often used as an indicator. Emmerich et al. (2005) applied

the hyervolume indicator as a selection criterion in their algorithm – S metric selection

based evolutionary multi-objective optimisation algorithm (SMS-EMOA) (Beume et al.,

2007). SMS-EMOA is a steady-state algorithm, considering one offspring per generation,

in which non-dominated sorting is combined with a selection operator based on the hy-

pervolume measure. Hypervolume is used as a second selection criterion that is similar

to the use of the crowding distance in NSGA-II. Between two non-dominated solutions,

the one that offers a larger hypervolume contribution is preferred. Experimental results

show that SMS-EMOA outperforms NSGA-II and SPEA2 on multi-objective problems

containing up to six objectives. However, the high computational effort required for

the hypervolume calculation (Beume et al., 2009) significantly inhibits its application to

MaOPs.

Regarding the calculation of hypervolume, Zitzler and Thiele (1999) proposed an un-

derlying principle approach – “hypervolume by slicing objectives”. The worst-case run-

ning complexity of both approaches is exponential in the number of objectives, i.e.

O(N (M−1)). Some improved hypervolume calculation methods were also proposed. For

example, Fonseca et al. (2006) proposed a “dimension-sweep” method with a worst-case

runtime complexity of O(N (M−2) logN). Yang and Ding (2007) introduced an approach

with a worst-case runtime complexity of O((M/2)N ) (as claimed by the authors). Addi-

tionally, some approximation methods have been proposed to compute the hypervolume

value. Ishibuchi et al. (2009d) uses a set of achievement scalarising functions with evenly

distributed weights to estimate the hypervolume value of a Pareto front. This estimation

method is applied to SMS-EMOA (Ishibuchi et al., 2010). Experimental results show

this method can greatly reduce the computation time of SMS-EMOA without severely

affecting its performance. However, the findings are only based on 6-objective problems;

as pointed out by the authors, this algorithm needs to be further tested on MOPs with

more objectives. Encouragingly, Bader and Zitzler (2010) proposed an effective method

in which the Monte Carlo Sampling method is used to estimate hypervolume contribution

of a single solution. This approximation method significantly reduces the hypervolume

computation load. The proposed algorithm “an algorithm for fast hypervolume-based

many-objective optimisation” (HypE) was demonstrated to perform well on MaOPs with

up to 20 objectives (Bader and Zitzler, 2011). The promising results lead HypE to be

considered as a challenging competitor MOEA for many-objective optimisation.
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Decomposition based algorithms2

Decomposition based algorithms transfer a MOP into a collection of single objective

problems that are defined by means of scalarising functions (e.g. the weighted sum and

the Chebyshev function) with different weight vectors. Solutions are evaluated by the

weighted scalarising functions. The use of scalarising function based fitness evaluation

enables decomposition based algorithms to become another well-supported approach for

many-objective optimisation. Next we review some representative decomposition based

algorithms. Note that decomposition based methods are also called aggregation based

methods or scalarising function based methods in some studies (Wagner et al., 2007;

Ishibuchi et al., 2008b).

Decomposition based algorithms were popularised after a paper (Zhang and Li, 2007)

describing MOEA/D. The earliest decomposition based MOEA might be the genetic

algorithm of Hajela et al. (1993) (denoted as HLGA). HLGA employs the weighted sum

scalarising function for fitness assignment. Each objective is assigned a weight wi ∈ [0, 1]

and
∑
wi = 1. The fitness scalar value of a solution is computed based on the weighted

sum of all objective function values. A set of diversified solutions is found by employing

a set of randomly generated weight vectors. However, it is known that the weighted sum

scalarising function faces difficulty in searching for solutions in non-convex Pareto regions

(Miettinen, 1999). To address this issue, Yaochu Jin and Sendhoff (2001) proposed a

method called Evolutionary Dynamic Weighted Aggregation (EDWA). This strategy

employs dynamic weights during the search, and stores non-dominated solutions in an

archive. It is demonstrated that EDWA is useful for obtaining Pareto optimal solutions

in both convex and non-convex region

Multi-objective genetic local search (MOGLS) can be seen as another decomposition

based algorithm. MOGLS of Ishibuchi and Murata (1998) (denoted as I-MOGLS) uses a

weighted sum fitness function with a randomly generated weight vector at each selection

of parents. The use of random weights enables the algorithm to explore different regions

of the Pareto front effectively. The weight applied in the selection procedure is also

copied to the generated offspring. It is further used in the local search procedure to

exploit the same search direction. I-MOGLS is improved by applying the local search

probabilistically to a set of solutions selected by the 5-tournament (Ishibuchi et al.,

2003).

Jaszkiewicz (2002) proposed another variant of MOGLS (denoted as J-MOGLS) where

the search is also guided by random weights. The main difference between J-MOGLS

and I-MOGLS is that I-MOGLS selects parents by roulette wheel selection among the

whole population while J-MOGLS randomly selects parents from the best k solutions

2This topic is covered in considerable detail due to its relevance to the research described in Chapter
4.
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in terms of the weighted scalar value. The author reported that J-MOGLS outperforms

I-MOGLS on multi-objective knapsack problems.

The cellular multi-objective genetic algorithm (CMOGA) (Murata et al., 2000, 2001) can

also be regarded as a decomposition based algorithm. In CMOGA each cell is associated

with a weighted scalarising function, more precisely, a weighted sum function. Weights

are evenly distributed in the search space, and this can effectively guide the search

towards different parts of the Pareto optimal front. A neighbourhood, measured by

the distance between two weight vectors, is defined for each cell. Mating restriction is

applied, that is, for each cell a new individual is generated by applying genetic operators

to neighbouring parents. The efficiency of CMOGA is demonstrated on a bi-objective

flowshop scheduling problem. CMOGA is further extended by combing a local search

procedure by Murata et al. (2002). The resulting algorithm, C-MOGLS, applies a local

search procedure to all non-dominated solutions in every generation. The performance

of C-MOGLS is tested on both flowshop scheduling and pattern classification problems.

However, good results are only found for scheduling problems. The considered reason is

that the balance between local search and global search is not appropriately controlled.

C-MOGLS is further improved in Murata et al. (2003), where a suitable search direction

is designed for each non-dominated solution based on its location. The performance of

this modified C-MOGLS is tested on a 3-objective pattern classification problem, and is

found to be effective.

All the above algorithms have the potential to handle MaOPs, however, none of them

is developed with the concern of addressing MaOPs. The first decomposition-type ap-

proach that is also claimed as a many-objective optimiser is the multiple single objec-

tive Pareto sampling (MSOPS (Hughes, 2003)). In MSOPS a set of evenly distributed

weighted vectors (target vectors) is employed to simultaneously guide the search towards

multiple search directions. Each solution is evaluated by a set of weighted saclarising

functions, which produces multiple ranks for each solution. These solutions are then

ranked by using the lexicographical ordering method based on the rank. MSOPS is

shown to perform well on both bi- and many-objective problems (Hughes, 2003; Wagner

et al., 2007).

MOEA/D, as the state-of-the-art decomposition based algorithm, has attracted a lot of

attention and has been shown to have a high search ability for continuous optimisation

and combinatorial optimisation (Zhang and Li, 2007; Ishibuchi et al., 2009c; Zhang et al.,

2010). It is also found to outperform NSGA-II on problems having complex Pareto sets

(Li and Zhang, 2009). As the winner of the “Unconstrained multi-objective evolutionary

algorithm” competition at the 2009 Congress on Evolutionary Computation (Zhang

et al., 2009), MOEA/D is an important approach to consider for solving many-objective

optimisation problems.
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Overall, compared with Pareto-dominance based algorithms, decomposition based al-

gorithms have a higher search ability and are more computationally efficient on fitness

evaluation (Zhang and Li, 2007; Li and Zhang, 2009). However, it is also known that the

performance of decomposition based algorithms depends on the employed weights - if

inappropriate weights are specified, the obtained solutions might not be well-spread.

Usually, determining a good set of weights a priori for real-world problems is not

straightforward due to a lack of knowledge of the underlying problem structure. To

overcome this limitation, some effort has been devoted to apply adaptive weights to

decomposition based algorithms. Related studies are reviewed as follows.

Kim and De Weck (2005, 2006) proposed an adaptive weighted-sum approach which is

shown to be able to find well-spread solutions for MOPs having complex geometries. The

main idea is to impose an equality constraint on the original multi-objective problem,

and solve it using the weighted sum method. Specifically, first the weighted sum method

is applied to quickly approximate the bounds of the Pareto optimal front. Having

determined the bounds, a mesh of the Pareto front patches is created. The Pareto

front patch is then refined by searching for solutions that satisfy a defined equality

constraint. The constraint guarantees the solution to be placed along the direction

from the estimated nadir point to an expected Pareto optimal solution. The expected

Pareto optimal solution is determined by the nodes of each patch with a specified weight

factor. This method performs well on bi- and three-objective problems. However, no

obvious evidence exists to show that this method would also work well on many-objective

problems. Besides, the method itself is rather complex as solving MOPs with equality

constraints is already difficult (Datta and Deb, 2011).

Hughes also extended his earlier work, i.e. MSOPS, to consider on-line generation of

target vectors by bootstrapping these from the on-line archive of locally non-dominated

solutions, with mixed results (Hughes, 2007). The target vector essentially is equivalent

to weight vectors. Specifically, in this extended algorithm MSOPSII, target vectors are

updated as follows. First the objective vectors of the current population are normalised

so as to create valid weight vectors. Secondly, take the current weight vectors and

augment each one with each of the created weight vectors in turn. Each time we calculate

the angle between each pair of weight vectors and remove the most crowded weight

vector.

Jiang et al. (2011) improved MOEA/D by using Pareto adaptive weights, paλ. The

approach paλ automatically adjusts weights according to the geometry characteristics

of the Pareto front. Specifically, this approach assumes that the Pareto optimal front is

symmetric of the form fp1 + fp2 + · · · ,+fpM = 1. Based on the non-dominated solutions

in the archive, parameter p is estimated. Having determined p, evenly distributed points

on the approximated symmetric shape are generated; these are then converted to valid

weights. The use of paλ can significantly improve the performance of MOEA/D when
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the Pareto front geometry is close to the form: fp1 + fp2 + · · · ,+fpM = 1. However, this

method faces difficulty on problems with an asymmetric and disconnected Pareto front.

Gu et al. (2012) proposed another algorithm which employs a dynamic weight design

method in MOEA/D, denoted as DMOEA/D. This algorithm features in Chapter 4 for

comparison purposes. Specifically, in every ten generations weights are re-generated ac-

cording to the shape of the current non-dominated Pareto front. A piecewise linear inter-

polation method is applied to fit a curve (2-objective case) of the current non-dominated

solutions. For each objective fi, Ni interpolation points, of which the projection on the

ith objective is uniform, are generated. Ni is determined by
10M−1N

∏M
j=1,j 6=iDj∑M

i=1

∏M
j=1,j 6=iDj

where

N is the population size and Dj is the maximum value of the projection of the current

non-dominant solutions on the ith objective. At the same time, non-dominated solutions

whose distance to the interpolation point is smaller than
Dj

10 are removed. All the
∑
Ni

interpolation points serve as an approximation to the Pareto front. These interpolation

points are then ordered by an objective (e.g. f1). Solutions that are adjacent in f1 are

clustered into one group. The maximum number of solutions in a group is [
∑
Ni/N

′]+1,

where N ′ is the size of current non-dominated solutions. A weight vector is then created

by converting the point defined by the mean of the solutions in a group. Experimental

results show DMOEA/D is able to find evenly distributed solutions for bi- and three-

objective problems having different geometries. Moreover, this adaptive approach is

reported to be applicable on many-objective problems, however, no experimental results

are shown.

All the above methods attempt to maintain evenly distributed solutions on the fly.

There are also some methods that aim to first obtain as many diversified solutions as

possible and then apply some ad-hoc methods to the obtained solutions so as to get

evenly distributed solutions. EMOSA (Li and Landa-Silva, 2011) belongs to this type.

It hybridises MOEA/D with simulated annealing. The simulated annealing based local

search is applied to improve the current solution of each single objective problem. In

EMOSA weights are adaptively modified as follows: for each member F si in the current

population, first find the closest neighbour (e.g., F sj) to F si and its associated weight

vector wj . Secondly, identify the weights in the pre-defined weight set (in Li and Landa-

Silva (2011) this weight set is formed by a set of evenly distributed weights generated by

using the simplex-lattice design method) whose Euclidean distance to wj is larger than

the distance between wi and wj . Furthermore, amongst the identified weights, select

all the weights of which the distance between them and wi is smaller than the distance

between them and all the neighbours of wi. The definition of the neighbourhood (T ) is

the same as MOEA/D. If there are multiple weights then pick one randomly. Experi-

mental results show that EMOSA outperforms three multi-objective simulated annealing

algorithms (SMOSA (Serafini, 1994), UMOSA (Ulungu et al., 1999), CMOSA (Czyzżak

and Jaszkiewicz, 1998) and three multi-objective memetic algorithms (i.e.. I-MOGLS,

the improved I-MOGLS and MOEA/D) on 2- and 3-objective knapsack problems and
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travelling salesman problems. Due to the promising performance of EMOSA, it is also

used in Chapter 4 for comparison purpose.

Derbel et al. (2013) proposed to dynamically compute a suitable search direction for each

solution during the search. The search direction is designed in an attempt to adaptively

fit the search process and approach the Pareto optimal more effectively. Five differ-

ent strategies are proposed which are repulsive force-based directions (R-D), repulsive-

attractive directions (RA-D), dominance based directions (D-D), non-backward direc-

tions (NB-D) and black hole directions (BH-D). These strategies are based on the so

called “attraction-repulsion force-based rules”, that is, solutions are attracted by other

solutions dominating it and repelled otherwise. Observed from the experimental results,

these five strategies are not very outstanding on MOPs and MaOPs.

Overall the use of adaptive weights is potentially helpful to handle the issue of Pareto

front geometry for decomposition based algorithm. However, first none of the existing

approaches has clearly shown their benefits on MaOPs; in addition, it is suspected that

adapting weights during the search may affect the convergence performance of MOEAs

(this will be discussed in Chapter 4).

2.4.3 Summary

In this section we first summarise the challenges of many-objective optimisation. Fol-

lowing that, existing approaches proposed for solving many-objective optimisation prob-

lems, in terms of different classes (modified dominance relation based, ranking methods,

objective-reduction based, indicator based and decomposition based), are reviewed to-

gether with their advantages and disadvantages. These observations motivate us to

develop more effective methods for addressing many-objective optimisation problems.

Such methods will be studied in Chapters 3 and 4.

2.5 Preference-based MOEAs

Once an approximation of the Pareto optimal front has been obtained, the MOP re-

mains to be solved completely, a decision-maker (DM) has to reveal his/her preferences

to choose one solution from the obtained solutions. This section reviews some repre-

sentative studies for incorporating decision-maker preferences into MOEAs. Prior to

reviewing these studies, we describe three different decision-making methods.
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2.5.1 A priori, progressive and posteriori decision-making

According to when decision maker preferences are incorporated, i.e., before, during or

after the search, decision-making approaches approaches can be divided into three classes

– a priori, progressive3 and a posteriori, respectively (Veldhuizen and Lamont, 2000).

(a) a priori (b) progressive (c) a posteriori

Figure 2.12: Illustration of different decision-making approaches in hybrid EMO-
MCDM schemes.

(i) In an a priori decision-making approach, the DM preferences are incorporated

prior to the search process as shown in Figure 2.12(a); the preferences are, in

general, incorporated in the fitness calculation. The weighted sum approach is

one of the most commonly employed a priori methods, where the DM preferences

are formulated by a weight vector that indicates the relative importance of the

objectives. When the DM preferences can be faithfully captured in a mathematical

model, a priori method would be effective and efficient. However, this is rarely the

case. The complete knowledge of the problem is often unavailable.

(ii) In an progressive decision-making approach, the DM preferences are incorporated

progressively during the optimization process, see Figure 2.12(b). This enables

a DM to learn about the problem and fine-tune his/her preferences if needed,

effectively guiding the search towards regions of interest and away from exploring

non-interesting solutions. The main limitation of this scheme is that DMs needs

to be involved during the whole search process.

(iii) In an a posteriori approach, the DM preferences are incorporated after the search;

an approximation of the Pareto optimal front is found first followed by selection

of a preferred solution by the DM from the set of trade-off solutions previously

obtained, see Figure 2.12(c). A posteriori approach is preferred for MOPs with 2

or 3 objectives since this approach performs well for these problems i.e. a good

approximation of the Pareto optimal front can be obtained. Additionally, the

availability of the entire Pareto optimal front enables the DM to confidently select

3Note that progressive is also termed interactive in some studies. These two terminologies are essen-
tially equal and interchangeable. In this thesis, we use progressive following the study of Fonseca and
Fleming (1998a).
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his/her preferred solutions. However, a posteriori scheme becomes less effective on

MaOPs Purshouse and Fleming (2003b). Not only does the computational burden

for solving this problems becomes very expensive to estimate the whole Pareto

optimal front, the approaches become more inefficient since the DMs often seek

solutions within particular regions of the Pareto front. Furthermore, the number

of Pareto optimal solutions required for describing the entire Pareto optimal front

of a MaOP is usually very large. Selecting one preferred solution from all these

solutions is cognitively difficult.

To date, a considerable effort has been spent on developing efficient EMO approaches for

finding a well-converged and well-distributed set of Pareto optimal solutions, supporting

a posteriori decision making, including, for example, MOGA (Fonseca and Fleming,

1993, 1998a), NSGA-II (Deb et al., 2002a), SPEA2 (Zitzler et al., 2002), and HypE

(Bader and Zitzler, 2011). See Zhou et al. (2011) for a review. However, as mentioned

above, this scheme faces difficulties when applied onto MaOPs, and such problems arise

regularly in the real-world (Fleming et al., 2005). Thus, to facilitate the process of

decision making, alternative is to consider incorporating DM preferences a priori or

progressively into the EMO approaches. Such hybrid approaches might take advantages

of both EMO algorithms and MCDM. methods.

2.5.2 Integrating DM preferences into MOEAs

Multi-criteria decision-making (MCDM) approaches (Miettinen, 1999) that are based on

MOEAs (named preference-based MOEAs) have been discussed in a number of studies,

for example, Coello Coello (2000), Rachmawati and Srinivasan (2006) and Ben Said

et al. (2010). This section first describes methods for modelling DM preferences and

then reviews some preference-based MOEAs.

Based on the study of Coello Coello et al. (2007), methods for modelling DM preferences

can be categorised as follows:

(i) Aspiration level (reference point): this describes the desired levels of objectives

(goal specification) from a decision-maker. The main advantage of the method

is in the simplicity, that is, it does not demand a significant of amount of effort

from the DM (Fonseca and Fleming, 1998a). A reference point can be seen as

an alternative to aspiration level. It is often used to search for non-dominated

solutions that are close to an expected solution specified as the reference point.

(ii) Weight: this describes the relative importance of objectives to a decision-maker.

Lexicographical ordering could be seen as an extreme case of using weights, that

is, a more important objective is infinitely more important than a less important

objective. The optimum solution is obtained by minimising the objective functions
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in sequence, starting with the most important one and proceeding according to the

assigned order of importance of the objectives. In addition, weight can also be

interpreted as a reference direction, which is used to search for solutions along a

given search direction.

(iii) Trade-off rate: this describes how much improvement in one or more objective(s)

is comparable to a unit degradation in another objective. Modelling preferences as

trade-offs between objectives is easy and effective on MOPs with fewer objectives,

however, the generalisation of this approach to a higher number of objectives is

difficult. This is because the involved dominance calculations become increasingly

complex when the number of objectives is large (Branke and Deb, 2005).

(iv) Utility function: this is used to determine a preference index of one solution over

another. The reference point, reference direction and trade-off information can

all be formulated by a utility function. This approach is effective when a suitable

utility function is provided. However, providing a proper utility function is difficult

due to the lack of problem knowledge.

(v) Outranking: this approach determines a preference index through a series of pair-

wise comparisons of alternatives. Outranking is non-transitive, that is, if A out-

ranks B and B outranks C, this does not infer that A outranks C. Therefore, it is

difficult to generate the final rank of all alternatives.

(vi) Fuzzy Logic: the DM preferences are expressed linguistically. This is more friendly

compared with using numerical values. The main disadvantage of this method is

that formulation of the fuzzy inference system requires intensive tuning of mem-

bership functions and inference operators (Rachmawati and Srinivasan, 2006).

Preference-based MOEAs using aspiration levels

MOGA (Fonseca and Fleming, 1993) is the one of the earliest MOEAs that incorporates

DM preferences in the search. In this study, the non-dominated ranking mechanism

is extended to accommodate preferences (goal information, aspiration level) as an ad-

ditional criterion. Individuals are ranked based on this modified ranking mechanism.

The preferences can be incorporated either a priori or progressively. With the sup-

plied preferences, the search is gradually guided towards the region of interest to the

decision-maker.

Fonseca and Fleming (1998a) further extended their work by introducing a preferability

operator, with which both goals and priorities (supplied by the DM) can be accommo-

dated in the ranking scheme. This new ranking scheme provides a unification of Pareto

optimality, the lexicographic method, goal programming, constraint satisfaction and con-

strained optimisation. MOGA has been successfully used in optimising a low-pressure
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spool-speed governor of a Pegasus gas turbine engine and many other applications (Fon-

seca and Fleming, 1998b; Fleming et al., 2005).

The main advantages of MOGA are in its simplicity of implementation, and effectiveness

of scaling up to many-objective problems. The main weakness of this approach is that

it requires a decision-maker to know the ranges of objective values in order to specify

coherent aspiration levels. Some studies have been proposed to enhance the performance

of MOGA. For example, Tan et al. (2003) improved MOGA by introducing a new goal-

sequence domination scheme to allow advanced specifications such as hard/soft priorities

and constraints to be incorporated.

Moreover, Molina et al. (2009) suggested a dominance relation called g-dominance (g

refers to goals). Solutions satisfying all the aspirations and solutions fulfilling none of the

aspirations are preferred over solutions satisfying some aspirations. An approach called

g-NSGA-II that couples g-dominance and NSGA-II is proposed to search for solutions

satisfying the specified aspirations. This algorithm works regardless of whether the

specified goal vector is feasible or infeasible. However, Ben Said et al. (2010) demonstrate

that g-NSGA-II faces difficulties when the provided goal vector is close to the true

Pareto front (as the approach does not preserve a Pareto based ordering). Moreover,

handling multiple regions of interest (ROIs) by g-NSGA-II is not discussed in their paper.

Intuitively, the g-dominance relation is not easy to extend to handle multiple ROIs as

an individual can g-dominate one goal vector, and simultaneously, be g-dominated by

another goal vector.

In addition to the use of aspiration levels, a large body of approaches are developed based

on the use of reference point, reference direction and light beam search (Miettinen, 1999,

pp. 179-189). These will be reviewed in the following sections.

Preference-based MOEAs using reference point

One representative reference point based MOEA is R-NSGA-II proposed by Deb and

Sundar (2006). R-NSGA-II hybridised the reference point approach with NSGA-II.

The reference point is not applied in a classical way, i.e. together with an achieve-

ment scalarising function (Miettinen and Mäkelä, 2002), but rather by establishing a

biased crowding scheme. Solutions near reference points are emphasised by the selec-

tion mechanisms. The extent and the distribution of the solutions is maintained by

an additional parameter ε. Another representative reference point based MOEA is the

preference-based evolutionary algorithm (PBEA) proposed by Thiele et al. (2009). It

is a hybridisation of the reference point method with the indicator based evolutionary

algorithm (IBEA). Preferences are incorporated using a binary quality indicator (the

ε-indicator) which is also Pareto-dominance preserving. The spread range of solutions

is controlled by an additional fitness scaling factor. Both R-NSGA-II and PBEA are



46 Chapter 2 Literature review

shown to perform well in finding a set of preferred solutions in the regions of interest to

the DM. However, for both the approaches, the spread range of the obtained solutions

is controlled by an additional parameter which is not easy to configure.

The reference point method is also used in multi-objective particle swarm optimisation

algorithm (MOPSO) (Allmendinger et al., 2008; Wickramasinghe and Li, 2008). The

main idea is to apply the DM preferences (reference points) to the selection of leaders.

This approach is shown to perform well on 2- and 3-objective test problems. However, the

effectiveness of this approach has not been demonstrated on many-objective problems.

Ben Said et al. (2010) proposed another approach named r-NSGA-II. This approach

employs the r-dominance relation to create a strict partial order over non-dominated

solutions. It is another reference point based approach as the r-dominance relation

prefers solutions that are closer to a specified reference point while preserving the order

induced by Pareto-dominance relation. In r-NSGA-II, as well as a reference point, two

additional parameters δ and w are introduced. δ ∈ [0, 1] is used to control the range

of the ROIs, and w expresses the bias of the DM. The performance of r-NSGA-II is

assessed on a set of benchmarks ranging from 2 to 10-objective problems and is shown to

be good on searching for both single and multiple ROIs. Moreover, the authors compare

r-NSGA-II with R-NSGA-II and PBEA, and report that r-NSGA-II offers competitive

and better performance on most problems. However, as pointed out by the authors,

r-NSGA-II faces difficulties on multi-modal problems, such as ZDT4.

Preference-based MOEAs using weights (reference direction or light beam

search)

Researchers have also conducted studies on incorporating DM preferences expressed as

weights into MOEAs. For example, Deb and Kumar (2007a) combined the reference

direction with NSGA-II. Preferences are modelled using the reference direction from

a starting point to a reference point. This approach is able to find Pareto optimal

solutions along the reference direction and multiple ROIs can be obtained by using

multiple reference directions. Deb and Kumar (2007b) also hybridised NSGA-II with

the light beam search method. The hybridised approach is able to search part(s) of

Pareto optimal fronts illuminated by the light beam emanating from a starting point to

the reference point with a span controlled by a threshold.

Additionally, light beam search is also hybridised with MSPSO by Wickramasinghe and

Li (2009). These approaches are all reported to have good performance on searching for

solutions in the regions of interest to a decision-maker. However, again, the difficulty is

how to appropriately control the spread range of the obtained solutions.
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Preference-based MOEAs using trade-off rate and weighted hypervolume

Branke (2001) proposed an approach called guidance in evolutionary multi-objective

optimisation (G-MOEA). In G-MOEA the DM preferences are manifested through a

modification of the dominance relation, specifying an acceptable trade-off rate between

objectives. G-MOEA works well for two objectives. However, as mentioned earlier,

providing all pair-wise information for a problem with many objectives is cognitively

intensive and needs M2−M
2 comparisons. For M = 2 only one comparison is needed, for

M = 3, three comparisons are needed. However, when M increases to 10, 45 comparisons

are required.

Branke and Deb (2005) suggested a modified and controllable biased crowding approach.

Their approach aims to search for a set of Pareto optimal solutions that are parallel to

an iso-utility function defined by a specified reference direction. In this approach, a

parameter is applied to control the range of ROI along the Pareto optimal front. The

parameter is defined as the ratio of the real distances between neighbouring solutions

on the Pareto optimal front and the projected distance of the same solutions on a plane

with a user specified direction connoting a central linearly weighted utility function.

Compared with G-MOEA, this approach is easier to scale up to high dimension problems.

In Zitzler et al. (2007), the authors integrate weight preferences in the calculation of

hypervolume indicator. The weighted hypervolume indicator serves as a means of inte-

grating the DM preferences. Auger et al. (2009a) implemented this idea on HypE and

developed a new approach W-HypE. W-HypE articulates the DM preferences using a

weight distribution function. It is demonstrated to perform well on searching for pre-

ferred solutions for both bi and many-objective problems. The only issue is that the

spread range of the ROI is controlled by a deviation parameter in the weight distribution

function. Defining a proper value for this parameter is not easy for a decision-maker.

Preference-based MOEAs using outranking

The outranking approach orders alternatives based on a series of pairwise compar-

isons. There has been some effort made to incorporate outranking approaches, such

as PROMETHEE, ELECTRE I and PROMETHEE II into MOEAs.

Pereira (1997) integrates PROMETHEE into a MOEA, respectively. Having obtained a

set of non-dominated solutions, pairwise comparisons of these solutions are performed.

Specifically, an aggregating method is used to measure whether a solutions is preferred

over another one. The final rank of these solutions is determined by the comparison

results. This approach can also applied in a progressive way.
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Massebeuf et al. (1999) combine PROMETHEE II with MOEAs. The DM is required to

show their preferences (either to prefer one of two solutions or to be indifferent) for ev-

ery pairwise comparison of alternatives (non-dominated solutions obtained by MOEAs).

Simultaneously, the DM is required to specify the relative importance of different ob-

jectives. Having this information, both concordance and discordance indices of alterna-

tives are computed. The outranking degree for each pairwise comparison is then created

according to these indices. All alternatives are finally sorted based on the outranking

degrees. Parreiras and Vasconcelos (2005) also integrated PROMETHEE II with NSGA-

II. In their approach, a Gaussian preference function and an aggregating function are

applied to compute a global preference for the non-dominated solutions obtained by

NSGA-II.

There are also some studies that combine the outranking method ELECTRE I with

MOEAs, e.g., Pereira (1995). First, alternatives are pairwise compared for each objec-

tive under consideration. Then, a global preference order is obtained by applying an

aggregating function to the comparison results. Additionally, some studies have com-

bined the PROMETHEE II with MOEAs (Rekiek., 2000; Rekiek et al., 2000). Similarly,

the DM is asked to assign weight to each objective. The weight information is then incor-

porated into PROMETHEE II for calculating a net flow for all non-dominated solutions.

These solutions are then ranked based on the value of net flow. It is also applied in a

progressive manner. Weights can be changed along the optimisation process.

Overall, using the outranking method, the DM preferences can be easily incorporated

during the pairwise comparison. The main advantage of this method is that pairwise

comparison is cognitively easy for a decision-maker. However, its main weakness is that

generation of the final ordering of alternatives is rather complex as outranking is non-

transitive. Moreover, outranking methods often require many parameters which are not

easy to configure (Coello Coello et al., 2007).

Preference-based MOEAs using Fuzzy logic

To solve multi-criteria decision-making problems, many researchers have also considered

combining fuzzy logic methods with MOEAs. This combination aims to take advantages

of both fuzzy logic (expressing preferences more naturally) and evolutionary computation

(identifying a set of trade-off solutions in a single run).

Voget and Kolonko (1998) use a fuzzy controller, equipped with pre-defined goals, to

adaptively control the selection pressure of MOEAs. The idea is similar to goal attain-

ment or aspiration levels. However, in their approach goals are specified in vague terms

by some membership function. Similar ideas are also implemented in studies by Lee

et al. (1996) and Lee and Esbensen (1997).
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Pirjanian (2000) transforms the DM preferences into weights using some fuzzy rules

and then apply these weights to some traditional multi-objective optimisation methods,

e.g. weighed sum and goal programming. This idea is further developed by Pirjanian

and Mataric (2000), where fuzzy rules are integrated with standard fuzzy inferencing.

Although this method is not combined with MOEAs, it is evident that MOEAs are

promising alternatives to the traditional multi-objective optimisation approach.

Jin and Sendhoff (2002) proposed an approach to turn fuzzy preferences into weighted

intervals. This approach is then incorporated into a MOEA using random/dynamic

weighted sum techniques (Jin and Okabe, 2001). The resultant algorithm has shown

good performance on bi-objective problems. However, this method has difficulty on non-

convex problems due to the use of weighted sum function. To handle this limitation,

the Chebyshev function can be used instead.

Wang and Terpenny (2003) use a fuzzy set-based aggregating function to model the DM

preferences. The aggregating function is constructed based on the weights (indicating

the relative importance of different objectives) and the trade-off information of a pair

of objectives. This approach is used in a progressive way within an agent-based system.

First, a set of non-dominated solutions are obtained by using a set of random weights.

Then, the solutions are refined according to the defined fuzzy preference aggregating

function.

Overall, applying fuzzy logic to incorporate the decision-maker preferences is non-trivial,

however, the main difficulty lies in the construction of fuzzy inference system, i.e., tuning

membership functions and inference operators.

2.5.3 Summary

This section reviewed some representative Preference-based MOEAs that are developed

for assisting multi-criteria decision-making. All approaches have their own advantages

and are able to find solutions in the region(s) of interest to a decision-maker. However, as

previously mentioned, most of these approaches have limitations. Some cannot explore

multiple ROIs, e.g., MOGA (aspiration level family) and G-MOEA (trade-off informa-

tion); some face difficulties in scaling up to many-objective problems, e.g. G-MOEA,

g-NSGA-II (aspiration level family) and outranking based approaches; and some require

some additional parameters to control the range of ROIs, e.g., R-NSGA-II, PBEA, W-

HypE and r-NSGA-II (reference point/direction family).

Another important observation is that none of the above approaches has catered simul-

taneously to the different ways that a DM can specify his/her preferences. However,

this is important as in some cases it might be easier for the DM to express his/her

preferences by aspiration levels and in some cases by weights or some other ways. In



50 Chapter 2 Literature review

another perspective, different decision-maker may have his/her preferred approaches or

be more confident in some particular way of expressing his/her preferences.

Overall, it would be helpful to develop an approach that can effectively overcome most of

the limitations of the existing methods. Such an approach will be studied in Chapter 6.

2.6 Summary

This Chapter provided a comprehensive review of the current literature relevant to

this thesis, such as the state-of-the-art MOEAs, multi-objective benchmark problems,

performance metrics and particularly the studies on many-objective optimisation and

Preference-based MOEAs.

Many-objective optimisation has become a hot topic in EMO field. The reason is that

many-objective problems arise regularly in practice while the state-of-the-art MOEAs

lose their effectiveness on such problems. Followed by a description of the challenges

of many-objective problems, different types of algorithms proposed for solving many-

objective problems are reviewed, together with their advantages and disadvantages. This

analysis motivates us to develop effective algorithms for many-objective optimisation.

These will be studied in Chapters 3 and 4 where two novel approaches will be proposed.

Additionally, as the performance of MOEAs is often affected by their associated param-

eter configurations, Chapter 5 provides a parameter sensitivity analysis for the proposed

two algorithms.

Preference-based MOEAs proposed for a priori and progressive decision-making are also

discussed in terms of five categories in detail. Our review shows that most of the existing

approaches have at least one weakness, such as handling multiple ROIs, scaling up to

many-objective problems, controlling the spread range of ROI, etc.. Moreover, it is

observed that none of approaches can cater simultaneously for the different ways that a

decision-maker can specify his/her preferences. Limitations of the existing approaches

motivate us to develop some more effective preference-based MOEAs. These will be

studied in Chapter 6.



Chapter 3

Preference-inspired

co-evolutionary algorithm using

goal vectors

3.1 Introduction

The simultaneous optimisation of many objectives, in order to obtain a full and sat-

isfactory set of trade-off solutions to support a posteriori decision-making, remains a

challenging problem (Purshouse and Fleming, 2003c; Corne and Knowles, 2007). One of

the major challenges identified for many-objective optimisation is the reduced ability of

the Pareto-dominance relation in offering comparability between alternative solutions.

This lack of comparability means that algorithms using Pareto-dominance struggle to

drive the search towards the Pareto optimal front (Purshouse and Fleming, 2007). How-

ever, it has long been known that by using decision-maker preferences we can potentially

gain comparability between otherwise incomparable solutions. A classic example can be

found in the study of Fonseca and Fleming (1998a), where the effect of different specifi-

cations of decision-maker goals and priorities on the partial ordering of solutions in an

enumerated search space is shown with striking clarity.

However, our interest here remains in assisting a posteriori decision making – that is,

providing decision-makers with a satisfactory representation of the entire Pareto optimal

front, prior to the elicitation and application of their preferences. In this sense, we are

interested in holding multiple sets of hypothetical preferences simultaneously, to provide

multiple comparison perspectives simultaneously, which are sufficient to adequately de-

scribe the whole front. The simultaneity is what differentiates this approach from the

multiple restart strategies of conventional MCDM methods.

51
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The notion of using preferences in this way is not to steer the search toward a specific sub-

set of preferred solutions; rather, they are synthetic preferences that act only to provide

discrimination between solutions in high-dimensional objective spaces. Thus, prefer-

ences here are not real decision-maker preferences, and can be interpreted as references.

This is not new to evolutionary multi-objective optimisation research, but is certainly

under-explored. Existing approaches have tended to focus on an aggregation-based for-

mulation of preferences; Jin and Okabe (2001) considered preferences in the form of a

weighted-sum, in which the weightings were varied over the course of the search. Hughes

(2003) proposed a ranking method based on how each solution performed against a set

of pre-defined preferences expressed as weighted min-max formulations. Zhang and Li

(2007) developed a cellular algorithm in which each node represents a particular prefer-

ence formulation, leading to a spatial distribution of preferences. The challenge for these

methods is how to define a suitable family of preferences that will produce a full repre-

sentation of the Pareto front. This issue is slightly different to that faced by multiple

restart algorithms, since the focus is now on maintaining the usefulness of the preference

family during the course of a population-based search.

A potential way of maintaining the relevance of the preference family as the search

progresses is to co-evolve the family together with the usual population of candidate

solutions. The solutions would gain fitness by performing well against the preferences

(as in the approaches above), and the preferences would gain fitness by offering com-

parability between solutions. We refer to this type of approach as a preference-inspired

co-evolutionary algorithm (PICEA).

In this Chapter we introduce the first instantiation of PICEA, i.e., preference-inspired

co-evolutionary algorithm using goal vectors (PICEA-g). Section 3.2 elaborates the

proposed algorithm PICEA-g. This is followed by an empirical study of PICEA-g on

many-objective optimisation. Experiment description, results and discussions are pro-

vided in Section 3.3, Section 3.4 and Section 3.5, respectively. Section 3.6 concludes

experiment findings. Section 3.7 proposes a new strategy called the cutting plane to

further improve the performance of PICEA-g. Section 3.8 summarises this Chapter.

3.2 PICEA-g

3.2.1 Algorithm design: PICEA-g

Harnessing the benefits of co-evolution for optimisation purposes is known to be chal-

lenging (Bongard and Lipson, 2005; Kleeman and Lamont, 2006), although there are

multi-objective examples, and we are aware of only one existing work that has attempted

to implement a concept similar to PICEA. Lohn et al. (2002) considered co-evolving a

family of target vectors as a means of improving diversity across the Pareto front. The



Chapter 3 Preference-inspired co-evolutionary algorithm using goal vectors 53

paper was published shortly before the advent of many-objective optimisation in EMO

and the authors did not consider the benefits of the target vectors for improving solution

comparability per se. However, the paper can certainly be interpreted in such terms.

The fitness assignment of Lohn et al.’s method is very interesting and we retain this

in our study of the first realisation of a preference-inspired co-evolutionary algorithm:

PICEA-g. PICEA-g considers a family of goals – a more natural terminology than tar-

get vectors when thinking about decision-maker preferences, but the two are essentially

equivalent.

According to the fitness assignment in Lohn et al. (2002), candidate solutions gain

fitness by dominating a particular set of goal vectors in objective-space, but the fitness

contribution from goal vectors is shared between other solutions that also dominate

those goals. In order to gain high fitness, candidate solutions need to dominate as

many valuable goal vectors as possible. Valuable goal vectors refer to those which are

dominated by few candidate solutions. To do so, candidate solutions must move towards

the Pareto optimal front, either being closer to the Pareto optimal front (convergence) or

spread in regions where few solutions exist (diversity). Goal vectors only gain fitness by

being dominated by a candidate solution, but the fitness is reduced the more times the

goal vectors are dominated by other candidate solutions in the population. Therefore,

in order to gain high fitness, goal vectors should be placed in regions where only few

solutions can dominate it, that is, either being closer to the Pareto optimal front or

spread in a sparser region. The overall aim is for the goal vectors to adaptively guide

the candidate solutions towards the Pareto optimal front. That is, the candidate solution

population and the goal vectors co-evolve towards the Pareto optimal front.

We implement PICEA-g within a (µ+λ) elitist framework1 shown as Figure 3.1. A

population of candidate solutions and preference sets (goal vectors), S and G, of fixed

size, N and Ng, are evolved for a number of generations. In each generation t, parents

S(t) are subjected to (representation-appropriate) genetic variation operators to produce

N offspring, Sc(t). Simultaneously, Ng new goal vectors, Gc(t), are randomly generated.

S(t) and Sc(t), and G(t) and Gc(t), are then pooled respectively and the combined

populations are sorted according to their fitness. Truncation selection is applied to

select the best N solutions as a new parent population S(t+ 1) and Ng goal vectors as

a new preference population G(t+ 1).

The method to calculate the fitness, Fits, of a candidate solution s and fitness, Fitg of

a goal vector g is defined by Equations 3.1, 3.2 and 3.3:

Fits = 0 +
∑

g∈G
⊎
GC |s�g

1

ng
(3.1)

1New parents (of size µ) are selected from a combined set of parents (of size µ) and offspring (of size
λ).
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Figure 3.1: A (µ+λ) elitist framework of PICEA-g.

where ng is the number of solutions that satisfy (i.e., dominate) goal vector g (note that

if s does not satisfy any g then the Fits of s is defined as 0) and

Fitg =
1

1 + γ
(3.2)

where

γ =

1 ng = 0

ng−1
2N−1 otherwise.

(3.3)

In order to further explain the fitness assignment scheme, consider the bi-objective

minimisation instance, shown in Figure 3.2, with two candidate solutions s1 and s3,

their offspring s2 and s4, two existing preferences g1 and g3, and two new preferences

g2 and g4 (i.e. N = Ng = 2).

Figure 3.2: A simple bi-objective minimisation example.
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In Figure 3.2, g1 and g2 are each satisfied by s1, s2, s3 and s4 and so ng1 = ng2 = 4.

g3 and g4 are satisfied by s3 and s4 only and therefore ng3 = ng4 = 2. In terms of

fitness of solutions, from Equation 3.1, Fits1 = Fits2 = 1
ng1

+ 1
ng2

= 1
4 + 1

4 = 1
2 and

Fits3 = Fits4 = 1
ng1

+ 1
ng2

+ 1
ng3

+ 1
ng4

= 1
4 + 1

4 + 1
2 + 1

2 = 3
2 . Considering the goal

vector fitnesses, using Equation 3.2, γ for g1 and g2 is
ng1−1
2N−1 = 4−1

4−1 = 1 and so, using

Equation 3.3, Fitg1 = Fitg2 = 1
2 . Similarly, γ for g3 and g4 is 2−1

4−1 = 1
3 and therefore

Fitg3 = Fitg4 = 3
4 .

Based on the fitness, s3 and s4 are considered as the best solutions, which will be selected

into the next generation. However, obviously, s3 is dominated by s4. Compared with

s3, although s2 has a lower fitness, it is non-dominated with s4. Therefore, s2 and s4

are desired to be kept in the population set. In order to do that, the classic Pareto-

dominance relation is incorporated. After calculating fitness values using Equations 3.1,

3.2 and 3.3 we next identify all the non-dominated solutions in the set S
⊎
Sc. If the

number of non-dominated solutions does not exceed the population size, then we assign

the maximum fitness to all of the non-dominated solutions. However, if more than N

non-dominated solutions are found, we then disregard the dominated solutions prior to

applying truncation selection (implicitly, their fitness is set to zero). Based on fitness,

the best N non-dominated solutions are selected to constitute the new parent S(t+ 1).

In the example in Figure 3.2, Fits1 = 0, Fits2 = 1
2 , Fits3 = 0 and Fits4 = 3

2 .

The pseudo-code of PICEA-g is presented in Algorithm 1 overleaf. Both the convergence

and diversity are taken into account by the fitness assignment. In the following we

explain the main steps of PICEA-g.

• Line 1 initialises the offline archive BestF as ∅.

• In lines 2 and 3, N candidate solutions S are initialised and their objective

values F S are calculated. The offline archive BestF is updated by function

updateArchive in line 4.

• Line 5 applies function goalBound to determine goal vector bounds GBounds

for the generation of goal vectors. Line 6 generates Ng goal vectors by function

goalGenerator.

• The offspring candidate solutions Sc are generated by function geneticOperation

in line 8, and their objective values F Sc are calculated in line 9. S and Sc, F S

and F Sc are pooled together, respectively in line 10. Line 11 generates another

set of goal vectors Gc based on the determined GBounds, and G and Gc are pooled

together in line 12.

• Line 13 applies function fitnessAssignment to calculate the fitness of the com-

bined solutions JointS and goal vectors JointG.
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Algorithm 1: Preference-inspired co-evolutionary algorithm using goals (PICEA-g)

Input: Initial candidate solutions, S of size N , initial goal vectors, G of size Ng,
maximum number of generations, maxGen, the number of objectives, M , a
scaling parameter, α, archive size ASize

Output: S,G, offline archive, BestF

1 BestF ← ∅;
2 S ← initializeS(N) ;
3 F S ← objectiveFunction(S);
4 BestF ← updateArchive(BestF, F S,ASize);
5 GBounds← goalBound(F S, α);
6 G← goalGenerator(Ng, GBounds) ;
7 for t← 1 to maxGen do
8 Sc← geneticOperation(S);
9 F Sc← objectiveFunction(Sc);

10 (JointS, JointF )← multisetUnion(S, Sc, F S, F Sc);
11 Gc← goalGenerator(Ng, GBounds) ;
12 JointG← multisetUnion(G,Gc);
13 (FitJointS, F itJointG)← fitnessAssignment(JointS, JointG);
14 find the index, ixNom of all the non-dominated solutions from JointF and count

the number of non-dominated solutions, numNomF ;
15 if numNomF < N then
16 FitJointS(ixNom)← maxFitness(FitJointS);
17 (S, F S)← truncation(JointS, F itJointS, JointF,N);

18 else
19 (S, F S)←

truncation(JointS(ixNom), JointF (ixNom), F itJointS(ixNom), N);

20 end
21 G← truncation(JointG, F itJointG,Ngoal);
22 BestF ← updateArchive(BestF, F S,ASize);
23 GBounds← goalBound(BestF, α);

24 end

• Lines 14 to 21 select the best N candidate solutions and Ng goal vectors as new

parents according to their fitness.

• Line 22 updates the offline archive with the F S by function updateArchive.

• Line 23 updates goal vector boundsGBounds based on the offline archive solutions.

Other basic functions

(i) Function geneticOperation applies genetic operators to generate offspring Sc.

A number of genetic operators are available, for example, single point crossover,

uniform crossover, simulated binary crossover (SBX) (Deb and Agrawal, 1994),

simplex crossover (SPX), one bit-flip mutation, polynomial mutation (PM) (Deb
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et al., 2002a), etc.. These genetic operators have their own advantages and dis-

advantages. In this study the SBX and PM operators are chosen. It is worth

mentioning that different genetic operators may lead different algorithm perfor-

mance for different problems, that is, selecting suitable genetic operators is often

algorithm- and problem-dependent (Srinivas and Patnaik, 1994). This is beyond

the scope of this research but is worth investigating in future.

(ii) Note that using function goalGenerator, goal vectors in Gc are randomly gener-

ated as objective vectors directly in objective-space within the goal vector bounds,

GBounds. GBounds are determined by function goalBound based on all offline

members, BestF . Specifically, the lower bound, gmin, and the upper bound, gmax,

are estimated by Equation 3.4:

gmin = min (BestFi), i = 1, 2, · · · ,M

∆Fi = max (BestFi)−min (BestFi)

gmax = min (BestFi) + α× (∆Fi), α ≥ 1, i = 1, 2, · · · ,M

(3.4)

where α = 1.2 is suggested. A further discussion on the configuration of parameter

α is provided in Section 3.5.

Genetic operators are not applied to generate offspring goal vectors. This is be-

cause, based on our preliminary experiments, none of the classic genetic operators,

such as SBX and SPX, work more effectively than the random method. A possible

reason is due to the observation that applying genetic operators to goal vectors of-

ten produces arbitrary goal vectors. This is similar to the general observation that,

recombining two dissimilar candidate solutions often does not produce a fruitful

solution; for this reason, mating restriction is often considered in genetic opera-

tions (Ishibuchi et al., 2008a)). Although the random method might also generate

some non-useful goal vectors, it guarantees that goal vectors in the entire objective-

space are generated, and this helps the algorithm find solutions in all regions of

the Pareto optimal front. It is expected that, in future, some effective genetic op-

erators can be developed and so can be applied to goal vectors, further improving

the performance of PICEA-g.

(iii) Function updateArchive updates the offline archive BestF by F S. For each so-

lution (e.g. F si) in the F S, if F si is dominated by a solution in the archive, then

F si is rejected. Otherwise it is accepted as a new archive member. Simultaneously,

solutions in the archive that are dominated by F si are removed. When the number

of archive solutions cASize exceeds the archive size ASize, the clustering method

employed in SPEA2 (Zitzler et al., 2002) (i.e., an archive truncation strategy) is in-

voked which iteratively removes solutions from the archive until cASize = ASize,

and simultaneously maintains a set of evenly distributed solutions. The clustering

method is described as follows: at each iteration, a member in the archive F si is
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chosen for removal for which F si ≤d F sj for all F sj ∈ BestF with

F si ≤d F sj :⇔∀0 < k < cASize : distki = distkj∨

∃ < k < cASize : [(∀0 < l < k : distli = distlj) ∧ (distki < distkj )]

(3.5)

where distki denotes the distance of F si to its k-th nearest neighbour in BestF .

Equation 3.5 means that the most crowded solution (the one that has the minimum

distance to another solution) is chosen for removal at each stage; if there are

multiple solutions with minimum distance, the tie is broken by considering the

second smallest distances, and so on.

With respect to the time complexity of PICEA-g, evaluation of a population of candidate

solutions runs at O(M×N), where M is the number of objectives and N is the number of

candidate solutions. Fitness assignment for candidate solutions and goal vectors which

needs a crossed comparison (to determine which candidate solution dominates which

goal vector) runs at O(M ×N ×Ng). Therefore, the overall time complexity of PICEA-

g is O(M ×N ×Ng). When candidate solutions are evaluated by the same number of

goal vectors, the time complexity of PICEA-g is O(M ×N2) which is equivalent to the

running time of NSGA-II (Deb et al., 2002a).

3.2.2 Algorithm analysis: PICEA-g

Co-evolution in PICEA-g

In PICEA-g, candidate solutions and goal vectors are co-evolved during the search pro-

cess. In the co-evolution, candidate solutions act as predators and goal vectors act as

preys. Candidate solutions try to catch (i.e., dominate) more goal vectors while goal

vectors try to avoid being caught (i.e., dominated) by candidate solutions. Goal vectors

act like a mechanical rabbit – keeping a certain distance from the dogs but never getting

too far ahead or too close (Kleeman and Lamont, 2006).

Convergence: comparability with objective scaling

The use of goal vectors enables incomparable solutions (i.e. non-dominated solutions) to

become comparable, thus generating selective pressure towards the Pareto optimal front

and enabling a good proximity performance of PICEA-g. More specifically, whilst the use

of goals does rely on Pareto-dominance comparison at the level of the individual goal, the

presence of multiple goals can significantly mitigate the comparability issues observed

when scaling the standard dominance relation. To see this, consider a population of

100 objective vectors randomly generated in the hypercube (0, 1]M , where M is the
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dimension of objective space (number of objectives), and a direction of preference in

each objective. We sort the 100 individuals into equivalence classes using a global

Pareto-dominance relation (non-dominated sorting) and also using the fitness assignment

scheme in PICEA-g for three populations of randomly generated goal vectors (of size 20,

100 and 500). We repeat our experiments 500 times and calculate the mean number of

equivalence classes for each of the four approaches. The results are shown in Figure 3.3.

It is evident that by using goals, a substantially greater level of comparability can be

achieved than by using global Pareto-dominance. The more goals that are used, the

greater the comparability that is achieved. Whilst the number of equivalence classes does

reduce in the goal scheme as the number of objectives is increased, by 10 objectives a 100-

goal approach (i.e. matched to the number of objective vectors) is still able to provide

greater comparability than the global Pareto approach in 3 objectives. This provides

some reassurance that the method has potential for many-objective optimisation, since

Pareto-dominance based algorithms tend to still work well for 3-objective problems.

Figure 3.3: Changes in comparability with objective scaling: Pareto-dominance and
goal approaches.

Implicitly, the use of goal vectors acts like a modified dominance relation – considering

both the number of objectives for which one candidate solution is better than another and

the amount of difference in objective values between two candidate solutions (Sülflow

et al., 2007; Corne and Knowles, 2007). In Figure 3.4, s1 and s2 are non-dominated

with each other. However, s1 dominates a larger region and therefore is more likely to

dominate more goal vectors than s2 does. Therefore, s1 is likely to have a higher fitness

than s2. Regarding the dominance relation, for a minimisation problem s1 is a bit worse

than s2 in objective f1 while it is much better than s2 in objective f2. Therefore, s1 is

more likely to be considered as a better solution by the modified dominance relation,

e.g., the favour relation (Sülflow et al., 2007).
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Figure 3.4: Convergence analysis of PICEA-g.

Diversity: fitness sharing

The diversity performance of PICEA-g is maintained by introducing the fitness sharing

method (Rosin and Belew, 1997; Della Cioppa et al., 2007) into the fitness assignment

of PICEA-g. That is, a candidate solution (e.g., si) only receives 1
ng

credit from a goal

vector gi that is dominated by si. ng is the number of solutions that dominate gi. To

be more specific, let us consider an example, as shown in Figure 3.5(a), to describe

the fitness contribution of goal vectors in different regions. The fitness contribution of

goal vectors in G3 is shared by all the three candidate solutions, that is, each candidate

solution receives 1
3 credit from a goal vector in G3. Similarly, each candidate solution

receives 1
2 credit from a goal vectors in G2. The fitness contribution of goal vectors

in G1 is exclusively attributed to every single solution. Using the fitness sharing, goal

vectors are implicitly labelled with different credits. The higher the credit labelled to a

goal vector, the more challenging the goal vector to be dominated. That is, goal vectors

in G1 are more challenging compared with goal vectors in G2. A solution should gain

more credits by dominating a challenging goal vector. This is somehow more reasonable

in nature.

Assuming that we have obtained four solutions as shown in Figure 3.5(b). s1, s2 and

s3 are close to each other while s4 is distant from the three solutions. Disregarding the

fitness sharing, s4 might not be selected as a new parent. This is because the credit

gained by dominating an individual goal vector in different Gi is the same; and so

s4 might not obtain higher fitness than the other solutions. However, considering the

fitness sharing, s4 would gain more credits by dominating those challenging goal vectors

in G1, which results in higher fitness and so is more likely to be selected into the next

generation. That is to say, using fitness sharing, solutions in a sparse region is more

likely to survive and this improves the solution diversity.
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(a) (b)

Figure 3.5: Diversity analysis of PICEA-g.

The use of archive

The fitness assignment applied in PICEA-g is susceptible to unevenness in the distribu-

tion. Neighbouring candidate solutions (e.g. s1 and s2, or s3 and s4) in general are of

high probability to dominate similar goal vectors and so to gain similar fitness values.

Therefore, neighbouring solutions may either be selected or disregarded at the same time

(based on the truncation selection used in PICEA-g). This results in a set of unevenly

distributed solutions along the Pareto optimal front as shown in Figure 3.6(a). Referring

to the example shown in Figure 3.7, candidate solutions s1 and s2 are adjacent to one

another and have the same fitness value 1
2 . Similarly, s3 and s4 gain the same fitness

value 3
2 . s3 and s4 are selected in the end due to their high fitness. However, it is easy

to see that a better distribution can be achieved if s1 or s2 is selected.

To handle this limitation, we propose to maintain an archive to store all non-dominated

solutions found during the search. The clustering technique used in SPEA2 is then ap-

plied to obtain a user-defined size of evenly distributed solutions (Zitzler et al., 2002).

Figure 3.6(b) shows a set of evenly distributed solutions obtained by applying the clus-

tering technique to the offline archive solutions.

3.3 Experiment description

In this section, we explore the potential of the PICEA concept by comparing PICEA-g

with four best-in-class MOEAs: the ε-dominance based algorithm, ε-MOEA (Deb et al.,

2003), an indicator based algorithm, HypE (Bader and Zitzler, 2011), a decomposition



62 Chapter 3 Preference-inspired co-evolutionary algorithm using goal vectors

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

non−dominated
solutions
Pareto optimal front

(a) Unevenly distributed solutions

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

Offline archive
Pareto optimal front

(b) Evenly distributed solutions

Figure 3.6: Illustration of the limitation of the fitness assignment.

Figure 3.7: An example to illustrate the limitation of fitness assignment of PICEA-g.

based algorithm, MOEA/D (Zhang and Li, 2007) and the Pareto-dominance based al-

gorithm, NSGA-II (Deb et al., 2002a), along with random search which is included as

a baseline2. First, the selected test problems are presented. Then, we briefly introduce

each of the competitor algorithms, together with some details of the specific implemen-

tations adopted for the comparison. Furthermore, the general parameter settings are

shown. Lastly, the performance assessment is introduced.

2The ranking based approaches are not included in this comparison as Purshouse et al. (2011) has
demonstrated that Lohn et al’s method outperforms the average ranking based MOEA (one of the
most promising ranking based approaches (Corne and Knowles, 2007) on MaOPs). Also, the objective
reduction based approaches are not considered as competitor MOEAs. This is because all the selected
test problems have high dimensions in objective-space and are highly conflicting.
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3.3.1 Test problems

To benchmark the performance of the considered MOEAs, problems 2 to 9 from the

Walking Fish Group (WFG) test suite (Huband et al., 2006) are invoked in 2, 4, 7 and

10-objective instances. In each case, the WFG parameters k and l are set to 18 and 14,

providing a constant number of decision variables for each problem instance. Problem at-

tributes covered include separability/non-separability, unimodality/multimodality, un-

biased/biased parameters and convex/concave geometries. Please note that WFGn-Y

refers to problem WFGn with Y objectives.

According to Huband et al. (2006), the Pareto optimal front of WFG2 is not a regular

geometry (disconnected and convex), the Pareto optimal front of WFG3 is a linear line,

and the Pareto optimal front of WFG4-WFG9 is the surface of an M -dimension hyper-

ellipsoid with radius ri = 2i in the first quadrant. The ideal point and the nadir point

of these problems are [0, 0, · · · , 0] and [2, 4, · · · , 2M ], respectively.

3.3.2 The considered competitor MOEAs

ε-Multi-objective evolutionary algorithm: ε-MOEA

Laumanns et al. (2002) proposed the ε-MOEA algorithm, in which the ε-dominance

concept is applied. Both the convergence property and the diversity property of this

algorithm can be maintained by the setting of an appropriate value for ε. The objective

space is divided into a grid of hyperboxes, whose size can be adjusted by the choice

of ε. For each hyperbox that contains a solution (or solutions), the dominance of the

hyperbox is checked. An archive strategy, suggested in Deb et al. (2003), is applied

in ε-MOEA and is used to retain one solution for each non-dominated hyperbox. The

specific dominance checking process is explained as follows (see Figure 3.8): firstly, if

the hyperbox of a new solution (C) dominates another hyperbox (D) in the archive,

the dominated archive members (D) are rejected. Secondly, if there is more than one

solution in the same hyperbox (A,B), the dominated solutions are removed (B). Thirdly,

if there is more than one non-dominated solution in a hyperbox (E,F ), one of them is

randomly selected. For the third step, Deb et al. (2005) suggested choosing the solution

(E) which is the closest to the origin of the hyperbox.

In this study, ε-MOEA of Deb et al. (2005) is used and, for each test instance, different

ε values are used3 in order to obtain roughly 100 solutions after an allowed number of

3M = 2: WFG2: ε = (0.004,0.008), WFG3: ε = (0.0133,0.0266), WFG4 to WFG9: ε = (0.02,0.04);
M = 4: WFG2: ε = (0.0500 0.1000 0.1500 0.2000), WFG3: ε= (0.1000 0.2000 0.3000 0.4000), WFG4
to WFG9: ε = (0.2857 0.5714 0.8571 1.1429); M = 7: WFG2: ε= (0.0500 0.1000 0.1500 0.2000 0.2500
0.3000 0.3500) WFG3: ε= (0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000) WFG4 to WFG9: ε =
0.4000 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000) M = 10: WFG2: ε=(0.0571 0.1143 0.1714 0.2286
0.2857 0.3429 0.4000 0.4571 0.5143 0.5714) WFG3: ε=(0.1333 0.2667 0.4000 0.5333 0.6667 0.8000 0.9333
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Figure 3.8: Illustration of the ε-dominance concept.

function evaluations (25 000 in this study). The value of ε varies with each objective,

reflecting the scaling of the selected benchmark functions.

Indicator based evolutionary algorithm: HypE

Zitzler and Künzli (2004) proposed a general indicator based evolutionary algorithm

(IBEA). Hypervolume, which has good properties with respect to set-based dominance

comparisons (Zitzler et al., 2003), is often taken as an indicator in IBEA. However, the

high computational effort required for its calculation inhibits the full exploitation of its

potential (Beume et al., 2009). HypE proposed by Bader and Zitzler (2011) uses a hyper-

volume estimation algorithm for multi-objective optimisation (Monte Carlo simulation

to approximate the exact hypervolume values), by which the accuracy of the estimates

can be traded off against the available computing resources. There is evidence that

the approach can be effective for many-objective problems. In the same way as a stan-

dard multi-objective evolutionary algorithm, it is based on fitness assignment schemes,

and consists of successive application of mating selection, variation and environmental

selection. The hypervolume indicator is applied in environmental selection.

In HypE the hypervolume-based fitness of a solution is not only calculated based on its

own hypervolume contribution, but also the hypervolume contribution associated with

other solutions. This is illustrated in Figure 3.9, where the portion of hypervolume that

is dominated by a is fully attributed to a, the portion of hypervolume that is dominated

by a and another solution c is attributed half to a. For example, the hypervolume con-

tribution of the solution a is described as Hyp(a) shown in Figure 3.9. Note that this is

1.0667 1.2000 1.3333) WFG4 to WFG9: ε= (0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000
4.5000 5.0000)
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a more refined approach than that adopted in the other hypervolume-based approaches,

such as the S metric selection based evolutionary multi-objective optimisation algorithm

(SMS-EMOA) (Beume et al., 2007), in which contribution calculations are limited to

single solutions, without consideration of the wider population context.

Figure 3.9: Illustration of the calculation of hypervolume contribution in HypE.

In this comparison study, we strictly follow the hypervolume contribution calculation

method described in Bader and Zitzler (2011). On 2-objective problems, the exact

hypervolume contribution of each solution is calculated. On 4-, 7- and 10-objective test

instances, a Monte Carlo simulation method with 2000, 3500 and 5000 sampling points,

respectively, is used to calculate the estimated hypervolume contribution.

Decomposition based algorithm: MOEA/D

MOEA/D, proposed by Zhang and Li (2007), is a simple yet powerful MOEA. It has a

number of advantages over Pareto-dominance based algorithms such as its high search

ability for combinatorial optimisation, computational efficiency of fitness evaluation, and

high compatibility with local search (Zhang and Li, 2007; Li and Zhang, 2009; Ishibuchi

et al., 2009a). The main characteristic feature of MOEA/D is the handling of a multi-

objective problem as a collection of a number of single-objective problems (SOPs), which

are defined by a scalarising function (e.g. weighted-sum or weighted Chebyshev) with

different weight vectors. Each scalarising fitness function (defined by a specific weight

vector) identifies a single solution which is the best with respect to that scalarising fitness

function. For each SOP, a new solution is generated by performing genetic operators

on several solutions from amongst its neighbours. Neighbours are defined based on the

distance between the weight vectors. A SOP i is a neighbour of SOP j if the weight

vector of SOP i is close to that of SOP j. The newly generated solution is compared with

all of its neighbours. If the new solution is better, then some (or all) of its corresponding
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neighbours are replaced by the new solution. At the same time, the diversity of solutions

is maintained by a number of uniformly distributed weight vectors in MOEA/D.

The weight vectors are generated according to Equations 3.6 and 3.7:

w1 + w2 + · · ·+ wM = 1 (3.6)

wi ∈
{

0,
1

H
,

2

H
, · · · H

H

}
, i = 1, 2, · · · ,M (3.7)

where H is a user-definable positive integer, and M is the number of objectives. The

number of weight vectors is calculated as Nwv = CM−1
H+M−1, where C stands for the

combination formula. For example, for 2-objective problems, if H is specified as 100,

then we can generate C1
101 = 101 groups of weight vectors (0, 1), (0.01, 0.99), ... , (1, 0).

Since each individual has a different weight vector, the population size is the same as the

number of weight vectors. In the first MOEA/D version (Zhang and Li, 2007), the new

solution will replace all the neighbours that are worse than itself. However, in order to

maintain a better diversity, in Li and Zhang (2009), an upper bound is defined to limit

the maximum number of replacements. In our experiments, the weighted Chebyshev

scalarising function is used. The reference point z∗i is updated according to Equation 3.8:

z∗i = min {fi(x)|x ∈ Ω} , i = 1, 2, · · · ,M (3.8)

where Ω shows all the examined solutions during the optimisation. The reference point,

z∗ is updated once a better (smaller) value of fi is found.

Population size and other required parameters in MOEA/D are set as shown in Table 3.1.

Table 3.1: Parameters for MOEA/D.

M
Population size

H
(the number of weight vectors)

2 100 99

4 455 12

7 924 6

10 2002 5

Disregarding the stopping criterion (i.e. a fixed number of function evaluations) it is

obvious that the more weight vectors used in MOEA/D, the better the performance

that the algorithm can achieve. However, given a fixed number of function evaluations,

it is not straightforward to decide how many groups of weight vectors are appropriate

for each problem. In this comparison study, 100 and 455 groups of weight vectors

are chosen for 2 and 4-objective WFG tests, as they are commonly used in MOEA/D

studies (Ishibuchi et al., 2009c; Li and Zhang, 2009). However, on 7 and 10-objective
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WFG tests, no related suggestions are given in the literature. The conventional method

for deriving the H parameter for 2 and 4-objective problems is not appropriate for 7

and 10-objective cases due to the extremely large population size that results. For

example, choosing H = 12 for 7-objective problems makes the population size as large

as C6
18 = 18564. Therefore we performed a limited search through the parameter space

of the H parameter to find more appropriate configurations of the MOEA/D weight

vectors. Our choice of H then leads to the population sizes of 924 and 2002. No specific

information is provided in the literature concerning the selection of neighbourhood size,

T , and replacement neighbourhood size, nr, except that, in Li and Zhang (2009), the

authors point out that T should be much smaller than the population size and nr should

be much smaller than T . In this comparison study, therefore, T = 10 and nr = 2 are

used for all the problems4.

Pareto-dominance based evolutionary algorithm: NSGA-II

A wide variety of algorithms have been proposed, based on Pareto-dominance compar-

isons supplemented with diversity enhancement mechanisms. The most popular of these

methods – the seminal NSGA-II algorithm (Deb et al., 2002a) – is selected in the study

as representative of this class. NSGA-II is known to perform well on bi-objective prob-

lems but may experience difficulties in many-objective spaces (Purshouse and Fleming,

2003c, 2007). It is an elitist approach; the parent and offspring population are combined

and evaluated, using a fast non-dominated sorting approach and an efficient crowding

scheme. When more than N population members of the combined population belong

to the non-dominated set, only those that are maximally apart from their neighbours

according to the crowding measure are chosen.

Random search: rand

Evidence exists that random search can be competitive to evolutionary approaches in

many-objective spaces (Hughes, 2005), making this a natural benchmark, at present,

for comparison against any proposed new algorithm. A very crude random scheme is

implemented in which N × maxGen candidate solutions are randomly generated and

the dominated solutions are removed.

4It is demonstrated in Wang et al. (2013) that such setting yields good results on the selected WFG
test problems.
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3.3.3 General parameters

For each test problem, 31 runs of each algorithm test (each run for 25 000 function

evaluations, this is to permit reasonable execution times, while providing meaningful re-

sults.) are performed in order to subject to statistical analysis. Some general parameter

settings are listed in Table 3.2 and are fixed across all algorithm runs.

Table 3.2: Algorithm testing parameter settings.

Parameters values

Population size of candidate solutions, N 100

The number of goal vectors, Ng 100M

The number of decision variables, n n = k + l = 32

Crossover operator SBX (pc = 1, ηc = 15)

Mutation operator PM (pm = 1/n, ηm = 20)

The simulated binary crossover (SBX) and polynomial mutation (PM), as described

in Deb et al. (2002a), are applied. The recombination probability pc is set to 1 per

individual and mutation probability pm is set to 1
n per decision variable. The distribution

indices ηc = 15 and ηm = 20.

3.3.4 Performance assessment

Firstly, median attainment surfaces (Fonseca and Fleming, 1996) are plotted to visualise

the performance of algorithms on 2-objective instances. Secondly, approximation set

comparisons are made using the hypervolume metric (HV ). A favourable hypervolume

(larger, for a minimization problem) implies good proximity with diversity.

Prior to calculating the hypervolume metric we normalise all objectives within the range

[0, 1] using the nadir vector. The reference point for calculating the hypervolume is

chosen as (1.2, 1.2, · · · , 1.2). The software developed by Fonseca et al. (2006) is used to

calculate the hypervolume. Note that throughout the thesis, the hypervolume value of

an approximation set is computed based on the normalised objectives.

Additionally we also express the performance of each algorithm in terms of the propor-

tion of the globally optimal hypervolume achieved (the method used to calculate optimal

hypervolume depends on which WFG problem is being considered, and is described fur-

ther in the Appendix B).

Performance comparisons between algorithms are made according to a rigorous non-

parametric statistical framework, drawing on recommendations in Zitzler et al. (2003).

The initial populations of candidate solutions are generated randomly for every repli-

cation of every algorithm on every problem instance – 31 replications are executed for

each algorithm-instance pair. The approximation sets used in the comparisons are the

members of the offline archive of all non-dominated points found during the search, since
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this is the set most relevant to a posteriori decision-making. For reasons of computa-

tional feasibility, prior to analysis the set is pruned to a maximum size of 100 using the

SPEA2 truncation procedure (Zitzler et al., 2002).

For each problem instance, the performance metric values of each algorithm are calcu-

lated for each approximation set. Then the non-parametric statistical approach intro-

duced in Hollander and Wolfe (1999) is conducted with the performance metric values.

We first test the hypothesis that all algorithms perform equally using the Kruskal-Wallis

test. If this hypothesis is rejected at the 95% confidence level, we then consider pair-wise

comparisons between the algorithms using the Wilcoxon-ranksum two-sided comparison

procedure at the 95% confidence level, employing the Šidák correction to reduce Type I

errors (Curtin and Schulz, 1998).

3.4 Experiment results

In this section, we present and discuss the experimental results obtained by PICEA-g

and the algorithms on the WFG benchmark problems. A comparison of the results, in

terms of attainment surface and hypervolume, is provided in this section.

3.4.1 Attainment surface results

Considering as a starting point the bi-objective results, plots of median attainment

surfaces across the 31 runs of each algorithm are shown in Figure 3.10 and Figure 3.11.

These allows visual inspection of performance in terms of the dual aims of proximity to

and diversity across the global trade-off surface. For clarity, PICEA-g, HypE, NSGA-II

and MOEA/D are plotted on the left, while NSGA-II, ε-MOEA, and rand are plotted

on the right. (NSGA-II serves as a cross-reference). A colour reproduction is available

at http://www.sheffield.ac.uk/acse/staff/rstu/ruiwang/index.

Qualitatively, from inspection of Figure 3.10 and Figure 3.11, it is clear that rand is the

worst performer. All the other MOEAs have comparable performances on convergence

with different performances on diversity. Specifically, MOEA/D exhibits the best per-

formance. PICEA-g and HypE have equivalent performances and both algorithms are

slightly better than NSGA-II on all the benchmark functions. ε-MOEA can provide as

good proximity as NSGA-II but its diversity performance is sometimes inferior. Upon

closer examination, on WFG5-2, 6-2, 7-2 and 8-2, all the algorithms exhibit difficulties

in converging to the true Pareto front. On WFG8-2, none of the algorithms consid-

ered is able to provide a good representation of the trade-off surface. On WFG9-2, only

MOEA/D can converge to the most part of the Pareto front. From the results of WFG5-

2 to WFG9-2 we can see that bi-objective problems featuring strong multi-modality or

non-separable parameters still present a challenge for best-in-class MOEAs.

http://www.sheffield.ac.uk/acse/staff/rstu/ruiwang/index
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Figure 3.10: Attainment surfaces for 2-objective WFG test instances (a: WFG2-2 to
WFG5-2).
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Figure 3.11: Attainment surfaces for 2-objective WFG test instances (b: WFG6-2 to
WFG9-2).
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3.4.2 Statistical results

Results of the Kruskal-Wallis tests followed by pair-wise Wilcoxon-ranksum plus Šidák

correction tests based on the hypervolume metric are provided in this Section. The

initial Kruskal-Wallis test breaks the hypothesis that all six algorithms are equivalent.

Therefore the outcomes of pair-wise statistical comparisons for 2, 4, 7 and 10-objective

WFG problems are shown in Tables 3.3, 3.4, 3.5 and 3.6 respectively. The related

partial ordering of algorithms is constructed using the method previously described –

again a smaller rank value indicates better performance; ordering within a rank is purely

alphabetical.

Box plots of Figures 3.12, 3.13, 3.14 and 3.15 are used to visualize the distribution of the

31 hypervolume values for the associated problems. The upper and lower ends of the box

are the upper and lower quartiles, while a thick line within the box encodes the median.

Dashed appendages summarize the spread and shape of the distribution. Outlying values

are marked as ‘+’. The box plots allow us to consider absolute performance (in terms

of the proportion of the optimal hypervolume achieved by each algorithm) in addition

to hypothesis testing around relative performance.

HV results for 2-objective WFG problems.

Table 3.3: HV results for 2-objective instances.

WFG Ranking by HV WFG Ranking by HV

1 HypE PICEA-g 1 MOEA/D PICEA-g
2 ε-MOEA MOEA/D NSGA-II 2 HypE

2 3 rand 3 3 NSGA-II
4 ε-MOEA
5 rand

1 HypE MOEA/D PICEA-g 1 MOEA/D
2 NSGA-II 2 PICEA-g

4 3 ε-MOEA 5 3 HypE
4 rand 4 NSGA-II

5 ε-MOEA
6 rand

1 MOEA/D 1 MOEA/D
2 PICEA-g 2 PICEA-g

6 3 HypE 7 3 HypE NSGA-II
4 NSGA-II 4 ε-MOEA
5 ε-MOEA 5 rand
6 rand

1 MOEA/D 1 MOEA/D

8 2 HypE 9 2
ε-MOEA HypE
NSGA-II PICEA-g

3 ε-MOEA NSGA-II PICEA-g 3 rand
4 rand
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Figure 3.12: Box plots of hypervolume results for 2-objective instances.

From the statistical comparison results in Table 3.3 and box plots in Figure 3.12, the

following key points can be observed for 2-objective WFG problems:

(i) MOEA/D is always amongst the top performing algorithms except for WFG2,

where HypE and PICEA-g are the best performers.

(ii) PICEA-g outperforms ε-MOEA and NSGA-II on all the problems except for WFG8

and WFG9, where the three algorithms perform comparably.

(iii) HypE is inferior to PICEA-g on WFG3, 5 , 6 and 7, while it performs better on

WFG8 and comparably on WFG9.

(iv) The performance of ε-MOEA is worse than (problems WFG3 to WFG7) or at best

equivalent to (WFG2, 8 and 9) other MOEAs.

(v) NSGA-II exhibits mixed performance. It is ranked in the second class on WFG2

and WFG9, but it is worse than PICEA-g, HypE and MOEA/D on problems

WFG3 to WFG6. Its performance is equivalent to PICEA-g, ε-MOEA on WFG8
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and WFG9. Also, it performs worse than (WFG8) or comparably to (WFG7 and

WFG9) HypE.

(vi) All five MOEAs outperform random search.

HV results for 4-objective WFG problems

Table 3.4: HV results for 4-objective instances.

WFG Ranking by HV WFG Ranking by HV

1 HypE PICEA-g 1 PICEA-g
2 MOEA/D NSGA-II 2 HypE

2 3 ε-MOEA 3 3 MOEA/D
4 rand 4 NSGA-II

5 ε-MOEA
6 rand

1 PICEA-g 1 PICEA-g
2 HypE 2 HypE

4 3 MOEA/D 5 3 MOEA/D
4 ε-MOEA 4 ε-MOEA
5 NSGA-II 5 NSGA-II
6 rand 6 rand

1 HypE PICEA-g 1 HypE PICEA-g
2 MOEA/D 2 MOEA/D

6 3 ε-MOEA 7 3 ε-MOEA
4 NSGA-II 4 NSGA-II
5 rand 5 rand

1 MOEA/D 1 HypE PICEA-g
2 PICEA-g 2 MOEA/D

8 3 HypE 9 3 ε-MOEA
4 ε-MOEA 4 NSGA-II
5 NSGA-II 5 rand
6 rand

It is clear from Table 3.4 and Figure 3.13 that, for all 4-objective WFG problems, all

MOEAs outperform random search. The performance of PICEA-g remains promis-

ing. In detail, except for WFG8 (MOEA/D is the best), PICEA-g is ranked first on

all benchmark functions, exclusively for WFG3, 4 and 5, and jointly with HypE on

WFG2, 6, 7 and 9. Reinforcing conclusions from previous studies, the Pareto-dominance

based NSGA-II begins to struggle on 4-objective problems: it performs equivalently to

MOEA/D on WFG2 and better than ε–MOEA on WFG3, but exhibits worse perfor-

mance than both MOEA/D and ε–MOEA on the remaining benchmark functions.
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Figure 3.13: Box plots of hypervolume results for 4-objective instances.

Table 3.5: HV results for 7-objective instances.

WFG Ranking by HV WFG Ranking by HV

1
ε-MOEA HypE MOEA/D
NSGA-II PICEA-g

1 HypE PICEA-g

2 rand 2 MOEA/D
2 3 3 ε-MOEA

4 NSGA-II
5 rand

1 PICEA-g 1 PICEA-g
2 HypE 2 HypE

4 3 ε-MOEA MOEA/D 5 3 MOEA/D
4 NSGA-II 4 ε-MOEA
5 rand 5 NSGA-II

6 rand

1 PICEA-g 1 PICEA-g
2 HypE 2 HypE

6 3 ε-MOEA MOEA/D 7 3 MOEA/D
4 NSGA-II 4 ε-MOEA
5 rand 5 NSGA-II

6 rand

1 PICEA-g 1 HypE PICEA-g
2 HypE 2 ε-MOEA MOEA/D

8 3 ε-MOEA MOEA/D NSGA-II 9 3 NSGA-II
4 rand 4 rand
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Figure 3.14: Box plots of hypervolume results for 7-objective instances.

HV results for 7-objective WFG problems

As the number of objectives increases to 7, we can observe (see Table 3.5 and Figure 3.14)

that PICEA-g and HypE outperform the other three MOEAs. Interestingly, random

search still performs the least well in all cases. Upon closer examination, the findings

are as follows.

(i) PICEA-g and HypE are ranked first and second for WFG4, 5, 6, 7 and 8, respec-

tively. The two algorithms are jointly ranked in the first class on WFG2, 3 and

9.

(ii) MOEA/D performs better than (on problems WFG3, 5 and 7) or at least compa-

rably to (WFG2, 4, 6 and 9) ε–MOEA on all the benchmark functions. NSGA-II

exhibits an inferior performance to ε–MOEA on all tests, except WFG2 and WFG8,

where it gives comparable performance with MOEA/D and ε–MOEA.

(iii) All of the MOEAs have a comparable performance for WFG2, where absolute

coverage of the globally optimal hypervolume remains at over 80%.
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Table 3.6: HV results for 10-objective instances

WFG Ranking by HV WFG Ranking by HV

1
ε-MOEA HypE MOEA/D
NSGA-II PICEA-g

1 HypE PICEA-g

2 rand 2 ε-MOEA MOEA/D
2 3 3 NSGA-II

4 rand

1 PICEA-g HypE 1 PICEA-g
2 MOEA/D 2 HypE

4 3 ε-MOEA NSGA-II 5 3 MOEA/D
4 rand 4 ε-MOEA

5 NSGA-II
6 rand

1 PICEA-g 1 HypE PICEA-g
2 HypE 2 MOEA/D

6 3 ε-MOEA 7 3 ε-MOEA
4 MOEA/D 4 NSGA-II
5 NSGA-II 5 rand
6 rand

1 HypE PICEA-g 1 HypE
2 MOEA/D 2 PICEA-g

8 3 NSGA-II 9 3 ε-MOEA
4 ε-MOEA 4 MOEA/D
5 rand 5 NSGA-II

6 rand

HV results for 10-objective WFG problems

Results for 10-objective WFG problems are shown in Table 3.6 and Figure 3.15. Consid-

ering relative comparisons, random search continues to perform badly and the superiority

of PICEA-g and HypE is more established. The performances of these two algorithms

are statistically better than all of the other algorithms on all benchmark functions except

for WFG2, on which the five MOEAs are all in the first class (as for WFG2 with 7 objec-

tives) and are better than random search. Specifically, PICEA-g and HypE jointly rank

in the first class for WFG3, 4, 7 and 8. PICEA-g is the exclusive best for WFG5 and

WFG6, and, likewise, HypE the exclusive best for WFG9. Among MOEA/D, ε–MOEA

and NSGA-II, MOEA/D exclusively gives the best performance on WFG4, 5, 7 and 8.

ε–MOEA is somewhat inferior to MOEA/D on most of the benchmark functions, how-

ever, for WFG6 and 9, it outperforms MOEA/D. The performance of both algorithms is

comparable on WFG3. NSGA-II performs worst on all benchmark functions except for

WFG8, where ε–MOEA is the worst. In terms of absolute performance, the box plots

show that on all problems, except for WFG8 and 9, HypE and PICEA-g are still able to

achieve over 80% of the global hypervolume value. A crude random search can achieve
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Figure 3.15: Box plots of hypervolume results for 10-objective instances.

approximately 20% coverage of the optimal hypervolume – with all MOEAs performing

better than this for the equivalent number of candidate solution evaluations.

Supplementary results: GD and spread metric ∆

To further understand the performance of the algorithms, we have also separately calcu-

lated proximity (as measured by generational distance – GD) and diversity (as measured

by the spread metric – ∆) measures for the 7-objective WFG4 to WFG9 benchmark

functions.

The Pareto optimal front for these problems is a regular geometric shape (the surface

of a hyper-ellipsoid) which is amenable to uniform sampling. We sample 20,000 points

as the reference set for calculating the metrics. The statistical tests are based on the

mean values of the performance indicators, and the same non-parametric procedures

are adopted as earlier. The GD and ∆ results are shown in Table 3.7 and Table 3.8

respectively. Similar to the HV calculation, approximation sets are normalised by the

nadir point prior to the calculation.

MOEA/D is found to achieve the best proximity on four of the six problems considered;

however it tends to rank quite poorly in terms of diversity. NSGA-II is found to provide

inferior proximity to random search on all six benchmark problems, but with a diversity

metric that is superior to random. PICEA-g consistently ranks amongst the top two
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Table 3.7: GD results for selected 7-objective instances.

WFG Ranking by GD WFG Ranking by GD

1 MOEA/D 1 MOEA/D
2 PICEA-g 2 PICEA-g

4 3 HypE 5 3 HypeE
4 ε-MOEA 4 ε-MOEA
5 rand 5 rand
6 NSGA-II 6 NSGA-II

1 MOEA/D 1 PICEA-g
2 PICEA-g 2 HypE MOEA/D

6 3 HypE 7 3 ε-MOEA
4 ε-MOEA 4 rand
5 rand 5 NSGA-II
6 NSGA-II

1 PICEA-g 1 MOEA/D
2 HypE 2 HypE PICEA-g

8 3 MOEA/D rand 9 3 ε-MOEA
4 ε-MOEA 4 rand
5 NSGA-II 5 NSGA-II

Table 3.8: ∆ results for selected 7-objective instances.

WFG Ranking by ∆ WFG Ranking by ∆

1 HypE 1 HypE
2 ε-MOEA PICEA-g 2 ε-MOEA PICEA-g

4 3 NSGA-II 5 3 NSGA-II
4 MOEA/D 4 MOEA/D
5 rand 5 rand

1 ε-MOEA HypE PICEA-g 1 HypE
2 NSGA-II 2 PICEA-g

6 3 MOEA/D 7 3 ε-MOEA
4 rand 4 NSGA-II

5 MOEA/D
6 rand

1 ε-MOEA MOEA/D NSGA-II 1 ε-MOEA HypE
2 HypE PICEA-g 2 PICEA-g

8 3 rand 9 3 NSGA-II
4 MOEA/D
5 rand
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for both proximity and spread, and is the only algorithm under test to achieve such a

performance.

Additionally, as the true Pareto front of these problems is the surface of a hyper-ellipsoid,

the GD metric can also be calculated by:

GD =

∑i=num
i=1 (

√∑j=M
j=1 (normF 2

ij)− 1)

num
(3.9)

where num is the number of solutions in the offline archive, normF are the offline archive

solutions normalised by the nadir point.

We have also examined the ranking results using GD values calculated by Equation 3.9.

The same results as shown in Table 3.7 are found. This further confirms the convergence

ranking results of algorithms. Also it suggests that the sampled solutions are sufficient

to represent the entire Pareto optimal front and therefore the spread ranking results are

reliable.

Supplementary results: C(A,B) for WFG2

According to the HV comparison results, NSGA-II is also found to perform well in ab-

solute terms on the many-objective WFG2 problems (i.e., WFG2-7 and WFG2-10). It

is known that standard Pareto-dominance based approaches can perform well when the

dimensionality of the Pareto front is not many-objective (Schütze et al., 2011) or if the

objectives are highly correlated (Ishibuchi et al., 2011), but these are not characteristics

of the WFG2 problem. To understand this issue, we further compare NSGA-II to the

other five algorithms in terms of the C metric. This aims to investigate if NSGA-II

has achieved a comparable convergence performance as other algorithms. The com-

parison results are summarised in Table 3.9. The non-parametric Wilcoxon-ranksum

two-sided comparison procedure at the 95% confidence level is employed to test if the

two approaches performs comparably in terms of the C metric. The symbol ‘<’, ‘=’ or

‘>’ means NSGA-II perform statistically worse, equal or better than a considered algo-

rithm at 95% confidence level.

From Table 3.9 we observe that for each pair of comparisons, all the considered MOEAs

outperform NSGA-II in terms of the C metric. Specifically, none of solutions achieved by

PICEA-g, HypE or MOEA/D is dominated by NSGA-II for both WFG2-7 and WFG2-

10. Regarding ε-MOEA, some of the obtained solutions are dominated by NSGA-II

(C(NSGA-II, ε-MOEA): 0.0006) on WFG2-7. However, for WFG2-10 again, none of the

solutions from ε-MOEA is dominated by NSGA-II.

Based on these results, we conclude that NSGA-II does not have comparable conver-

gence performance to the other MOEAs on WFG2 problem. The reason that NSGA-II
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Table 3.9: C metric comparison results (mean±std) of NSGA-II and other MOEAs.

C(NSGA-II, PICEA-g) C(PICEA-g, NSGA-II)

WFG2-7 0±0 < 0.1819±0.1157

WFG2-10 0±0 < 0.1397±0.1013

C(NSGA-II, HypE) C(HypE, NSGA-II)

WFG2-7 0±0 < 0.2035±0.1193

WFG2-10 0±0 < 0.1177±0.0967

C(NSGA-II, ε-MOEA) C(ε-MOEA, NSGA-II)

WFG2-7 0.0006±0.0036 < 0.0348±0.0637

WFG2-10 0±0 < 0.0635±0.0865

C(NSGA-II, MOEA/D) C(MOEA/D, NSGA-II)

WFG2-7 0±0 < 0.1784±0.0914

WFG2-10 0±0 < 0.1858±0.1197

performs comparably with other algorithms on the 7- and 10-objective WFG2 prob-

lems might be that the selected reference point is not suitable for a disconnected Pareto

optimal front which the WFG2 has.

3.5 Discussion

3.5.1 The effect of the scaling parameter α

On the estimation of goal vector upper bound, see Equation 3.4, a parameter α is used.

In the comparison study, α is set to 1.2. This section experimentally examines the effect

of this parameter. Five different settings are investigated: α = {1, 1.2, 1.5, 2, 4}. The

2-, 4-, 7- and 10-objective WFG4 problems are selected as test problems. 31 runs are

executed for each problem. Other parameters are set the same as adopted in Table 3.2.

HV results of PICEA-g using different α are box plotted in Figure 3.16 for different

problems.

From Figure 3.16 we can observe that the performance of PICEA-g is affected by the goal

vector bound, itself arising from the setting of α. First, the performance of PICEA-g is

not improved as the value of α increases. Next, α = 1 produces the worst performance

for WFG4-2. α = 4 produces the worst performance on the other three many-objective

problems. Relatively, α = 1.2, α = 1.5 or α = 2 produces better performance.

The reason for the poor performance of α = 1 is that goal vectors are generated exclu-

sively in G1 as shown in Figure 3.17. These goal vectors are not effective in exploring

boundary areas and therefore lead to a poor diversity performance, in particular, a poor

coverage of the Pareto optimal front. The reason for the poor performance of α = 4

is that a large portion of goal vectors are generated in G4, see Figure 3.17. However,

goal vectors generated in this region do not offer comparability between solutions (as

they are dominated by all the solutions). It is also worth mentioning that when α = 4
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Figure 3.16: The influence of parameter α on PICEA-g performance in terms of HV
metric (1: α = 1, 2: α = 1.2, 3: α = 1.5, 4: α = 2 and 5: α = 4).

Figure 3.17: Illustration of the effect of α.
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many goal vectors are generated in G2 and G3. These goal vectors are helpful to explore

boundary areas since these goal vectors result in higher fitness for boundary solutions.

Therefore, α = 4 might enable the algorithm to have a better diversity performance, in

particular, the coverage of the Pareto optimal front. The effect of goal vector bound is

also discussed later in Section 3.7.1.

These observations can also be confirmed by the statistical comparison results made

with the GD and ∆ metric. Table 3.10 and Table 3.11 show the mean and standard

deviation values of the two metrics for PICEA-g using different settings of α. The best

mean value is marked in boldface.

Table 3.10: GD comparison results (mean±std) of PICEA-g with different α value.

α WFG4-2 WFG4-4 WFG4-7 WFG4-10

1 0.0008±0.0001 0.0021±0.0005 0.0151±0.0006 0.0194±0.0008

1.2 0.0010±0.0002 0.0024±0.0005 0.0168±0.0008 0.0227±0.0008

1.5 0.0011±0.0002 0.0028±0.0006 0.0178±0.0008 0.0269±0.0010

2 0.0011±0.0002 0.0035±0.0004 0.0191±0.0008 0.0292±0.0010

4 0.0012±0.0002 0.0041±0.0005 0.0236±0.0011 0.0331±0.0018

Table 3.11: ∆ comparison results (mean±std) of PICEA-g with different α value.

α WFG4-2 WFG4-4 WFG4-7

1 0.1952±0.0051 2.5098±0.0849 6.0188±0.3941

1.2 0.1614±0.0049 2.1436±0.0460 4.0147±0.2214

1.5 0.1610±0.0052 2.4141±0.0490 5.3106±0.1887

2 0.1601±0.0053 2.2783±0.0480 5.6292±0.2117

4 0.1734±0.0053 2.4067±0.1214 4.6561±0.1960

Combining Table 3.10 and Table 3.11 we can observe that

• α = 1 produces the best convergence, but the worst diversity performance;

• α = 4 produces good diversity performance while its convergence performance is

the worst.

• α = 1.2, 1.5 or 2 produces neutral performance on both convergence and diversity.

According to the above analysis we report that α affects the performance of PICEA-g.

More rigorously, the performance of PICEA-g is affected by the goal vector bounds. It

is suggested, from the experimental results, that α ∈ (1, 2) is a good choice.

3.5.2 The effect of co-evolution

To clearly demonstrate the effect of co-evolution, PICEA-g is further compared with

its variant: random-g. In random-g, goal vectors are not co-evolved but are randomly
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generated within goal vector bounds in each generation. Specifically, in random-g goal

vectors in G are randomly generated the same as Gc. The experimental setup is the

same as that adopted in Section 3.3.

The HV comparison results between random-g and PICEA-g are shown in Tables 3.12,

3.13 and 3.14 for the 2-, 4- and 7-objective WFG problems, respectively. In each table,

the mean and the standard deviation HV values across the 31 independent runs are

presented. The symbol ‘<’, ‘=’ or ‘>’ shows PICEA-g is statistically worse, equal or

better than random-g at 95% confidence level. Superior results are marked in boldface.

Table 3.12: HV comparison results (mean±std) of PICEA-g and random-g for 2-
objective WFG instances.

PICEA-g random-g

WFG2-2 0.5712±0.0143 = 0.5635±0.0190

WFG3-2 0.6132±0.0085 > 0.5969±0.0079

WFG4-2 0.4194±0.0039 = 0.4210±0.0064

WFG5-2 0.3990±0.0052 = 0.3949±0.0054

WFG6-2 0.3921±0.0074 = 0.3923±0.0046

WFG7-2 0.3631±0.0076 = 0.3650±0.0101

WFG8-2 0.2394±0.0066 > 0.2163±0.0028

WFG9-2 0.3893±0.0191 = 0.3792±0.0219

Table 3.13: HV comparison results (mean±std) of PICEA-g and random-g for 4-
objective WFG instances.

PICEA-g random-g

WFG2-4 0.8160±0.0088 = 0.8157±0.0246

WFG3-4 0.8528±0.0099 > 0.8269±0.0115

WFG4-4 0.7516±0.0058 > 0.7263±0.0143

WFG5-4 0.7146±0.0071 > 0.6842±0.0113

WFG6-4 0.7137±0.0170 = 0.7002±0.0180

WFG7-4 0.7603±0.0128 = 0.7594±0.0121

WFG8-4 0.6126±0.0133 > 0.5732±0.0124

WFG9-4 0.6234±0.0098 = 0.6095±0.0098

Table 3.14: HV comparison results (mean±std) of PICEA-g and random-g for 7-
objective WFG instances.

PICEA-g random-g

WFG2-7 0.8764±0.0601 = 0.8785±0.0703

WFG3-7 0.9321±0.0131 > 0.9050±0.0145

WFG4-7 0.8410±0.0361 > 0.7716±0.0461

WFG5-7 0.8314±0.0072 > 0.7621±0.0097

WFG6-7 0.8257±0.0137 > 0.7885±0.0164

WFG7-7 0.8487±0.0184 > 0.8325±0.0221

WFG8-7 0.7481±0.0120 > 0.7029±0.0098

WFG9-7 0.6619±0.0152 > 0.6321±0.0203
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According to the results presented in Tables 3.12, 3.13 and 3.14 we can observe that

PICEA-g performs better than, or comparably, with random-g on all problems. Specif-

ically, PICEA-g performs better than random-g for two bi-objective problems, four 4-

objective problems and seven 7-objective problems. These results clearly demonstrate

that co-evolution plays an important role in PICEA-g, and its effect becomes more

significant as the number of objective increases.

3.5.3 The performance of goal vectors

A particular concern with optimisation-focused implementations of co-evolution is the

potential for pathologies such as: the Red Queen Effect (subjective fitness improves

without any corresponding improvement in objective fitness, or vice versa); cycling

(subjective fitness exhibits limit cycle dynamics, without incremental improvement);

and disengagement (loss of fitness discrimination due to the total superiority of one

population) (De Jong and Pollack, 2004; Bongard and Lipson, 2005). Fortunately, the

fitness assignment scheme in PICEA-g, based on the approach of Lohn et al. (2002),

appears resistant to these issues. As anticipated, both the candidate solutions and the

preferences can converge towards the Pareto optimal front. Figure 3.18 shows how hy-

pervolume (normalised by the true hypervolume value) changes over the course of the

evolution for candidate solutions and preferences. Note that the preference dynamics

tend to slightly lag the solutions. The reason for the lag is that goal vectors that cannot

be dominated by any solutions are assigned the worst possible fitness score in PICEA-g.
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Figure 3.18: Illustration of the performance of candidate solutions and goal vectors
on WFG4-2.
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3.6 Summary of experiment findings

We have carried out a systematic comparison of six algorithms which included five

different classes of multi-objective evolutionary algorithms: a preference-influenced co-

evolutionary algorithm (PICEA-g), a Pareto-dominance based algorithm (NSGA-II),

an ε-dominance based algorithm (ε-MOEA), a scalarising function based algorithm

(MOEA/D) and an indicator based algorithm (HypE). Overall the empirical comparison

has identified that, from the representative algorithms considered, PICEA-g and HypE

are presently good options for many-objective optimisation. Meanwhile, MOEA/D ex-

hibits outstanding performance on bi-objective problems, but has not performed so well

in a many-objective context. Specifically, the findings are summarised as follows:

(i) The preference-inspired co-evolutionary algorithm (PICEA-g) exhibits promising

performance for many-objective problems. It is found to be consistently among

the top performing algorithms across the test problems considered. In addition

to superior performance, as measured by the hypervolume indicator, on many-

objective problems it also offers competitive performance with the popular NSGA-

II in bi-objective environments.

(ii) The estimated hypervolume indicator based evolutionary algorithm (HypE) gives

very competitive performance on both bi-objective and many-objective problems.

Its performance is close to PICEA-g and better than other MOEAs on most of the

selected problems.

(iii) The concept of ε-dominance is much more effective than pure Pareto-dominance

in solving many-objective problems. Although ε-MOEA does not exhibit the best

performance, it outperforms NSGA-II on most of the many-objective problems

studied. However, the hypervolume measure of ε-MOEA is not found to be better

than NSGA-II on bi-objective WFG tests. This may be due to the fact that ε-

MOEA is not effective in obtaining extreme solutions on the Pareto front (Deb

et al., 2003, 2005), or, perhaps, the ε value is set inappropriately.

(iv) MOEA/D performs well on 2-objective problems. However its performance is not

particularly notable on the many-objective problems studied. Despite the un-

remarkable performance of MOEA/D on many-objective problems, according to

hypervolume, the 7-objective results focusing separately on proximity and spread

show that this algorithm is still very capable at finding solutions that are close

to the global Pareto front. The issue is a loss of diversity, which is likely to be

due to inappropriate specifications of a priori weight vectors, itself arising from a

general lack of knowledge in the literature about how to configure the algorithm

in many-objective spaces. (This issue will be further studied in Chapter 4) More-

over, this might be explained, partly, by the parameter settings used. Studies have
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demonstrated that MOEA/D is sensitive to parameters such as the selection and

replacement neighbourhood size (Ishibuchi et al., 2009b).

(v) The classical Pareto-dominance and density based algorithm (NSGA-II) can per-

form well on bi-objective problems. However its performance is significantly de-

graded, in both relative and absolute terms, when dealing with many-objective

problems. This result was first identified in Purshouse and Fleming (2003c) and

confirmed in Hughes (2005) and is believed to be due to dominance resistance

(in this case due to many-objectives) coupled with an active diversity promotion

mechanism that favours remote solutions far away from the global Pareto front.

(vi) In terms of hypervolume, all the MOEAs considered offer better performance than

a crude random strategy. Note that other studies have found that MOEAs can

degenerate to random search (or possibly worse) on many-objective problems (Pur-

shouse and Fleming, 2003c; Knowles and Corne, 2007). In this comparison study

NSGA-II is seen to outperform random search in many-objective spaces according

to hypervolume, further interrogation of the 7-objective results has confirmed that

this tends to be based on approximation sets with equivalent or worse proximity

to random search, yet retaining good diversity.

Overall the concept of co-evolving preferences with candidate solutions during the opti-

misation process is promising for solving many-objective optimisation problems. PICEA-

g, as one specific algorithm of this concept, is demonstrated to show a highly competitive

performance (compared to four best-in-class MOEAs) on WFG test problems with 2, 4,

7 and 10 objectives.

3.7 An enhanced PICEA-g using adaptively generated goal

vectors

We have demonstrated the superiority of PICEA-g in approximating the entire Pareto

optimal front in comparison with other MOEAs. However, all MOEAs have shortcom-

ings. This section identifies one shortcoming of PICEA-g, that is, its performance is

affected by the determined goal vector bounds. A strategy named the cutting plane is

proposed to address this issue, and to improve the performance of PICEA-g even further.

The cutting plane is based on the assumption that the ideal point is known a priori.

Unlike the nadir point (which is difficult to obtain (Deb et al., 2010)), the ideal point

zide = (zide1 , zide2 , · · · , zideM ), being composed of all the best criteria available (minimum

objective values for minimisation problems), can be easily obtained either via expert

domain-specific knowledge or via preliminary single objective optimisation.
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If the ideal point is known, the degree of exploration of an objective can be known

by simply comparing objective value fi with its corresponding ideal value zidei . Such

information might serve as a guide to appropriately distribute search effort towards

different objectives during the search process. The earlier discussion in Section 3.5 p.81

shows that PICEA-g is affected by goal vector bounds. By co-evolving goal vectors

generated in suitable goal vector bounds, PICEA-g can then distribute the search effort

appropriately towards different objectives (this will be discussed in Section 3.7.1), and

therefore lead to a better performance.

The rest of this research is structured as follows. First, we analyse the influence of

goal vector bounds on the performance of PICEA-g. Following this, we describe our

proposed strategy – the cutting plane that can adaptively configure the goal vector

bounds. Finally, we experimentally examine the effectiveness of the proposed strategy.

3.7.1 An analysis of the effect of goal vector bounds

This section analyses the effect of goal vector bounds in PICEA-g. This analysis is

conducted by considering six different sets of goal vectors generated using six different

gmax, see the left column of Figure 3.19 and Figure 3.20. In each case, PICEA-g is

executed independently for 31 runs (each run for 25 000 function evaluations) on the

2-objective WFG4 problem. Plots of Pareto front which has median hypervolume value

are shown in the right column of Figure 3.19 and Figure 3.20. In each figure, the shaded

area represents the region dominated by a candidate solution. A and C represent the

lower, gmin and upper, gmax bound, respectively. gmin is set to the coordinate origin

as the ideal point for WFG4-2 is (0, 0). In respect to gmax, the six cases, respectively,

represent that

(i) the generated goal vectors only cover the knee (EF ) of the Pareto optimal front:

Figure 3.19(a).

(ii) the generated goal vectors are all infeasible: Figure 3.19(b).

(iii) more goal vectors are generated in the top-left part of the Pareto optimal front:

Figure 3.19(c).

(iv) more goal vectors are generated in the bottom-right part of the Pareto optimal

front: Figure 3.20(a).

(v) goal vectors are now generated within the bounds of ideal and nadir vector: Fig-

ure 3.20(b).

(vi) goal vectors are generated within the bounds of ideal and a relaxed form of the

nadir vector, i.e. 3× nadir: Figure 3.20(c).
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(a) case i

(b) case ii

(c) case iii

Figure 3.19: Illustration of different goal vectors (Left) and the corresponding Pareto
front (Right): Part I
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(a) case iv

(b) case v

(c) case vi

Figure 3.20: Illustration of different goal vectors (Left) and the corresponding Pareto
front (Right): Part II
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The obtained non-dominated solutions for case (i) are shown in Figure 3.19(a). It is

observed from the results that the obtained solutions are all constrained within the

region of CEF . The reason is that candidate solutions (e.g. s2) inside the region of

ABCD are more likely to dominate more goal vectors and therefore gaining higher

fitness than candidate solutions placed outside this region (e.g. s1 and s3). Hence,

candidate solutions inside the region of ABCD are more likely to be propagated into

the next generation. In addition, it is easy to understand that goal vectors in ABFED

are ineffective as these goal vectors cannot be dominated by any candidate solution,

i.e., they have no contribution in offering comparability between alternative solutions;

rather goal vectors should be generated in a feasible region so that there is a non-zero

probability that at least one solution dominates the goal vectors.

The results for case (ii) are shown in Figure 3.19(b). Clearly, candidate solutions have

not converged to the Pareto optimal front. The reason is that all goal vectors are

infeasible. None of the candidate solutions is able to dominate any goal vector. Hence,

candidate solutions are scored randomly and then PICEA-g behaviours in a similar way

to random search.

Figure 3.19(c) shows the obtained solutions for case (iii). Solutions are biased towards

the top-left of the Pareto optimal front as the generated goal vectors are biased to

objective f1. Specifically, candidate solutions with smaller value of f1 (e.g., s1) would

gain higher fitness by dominating more goal vectors than those with smaller value of f2

(e.g., s3). Hence, solutions in the top-left are more likely to be propagated, leading a

richer set of solutions in this region. In other words, more search effort is distributed

on f1. Note that, case (iii) is just an example to illustrate that the search effort would

be biased if goal vectors are not appropriately generated. Whether s1 would dominate

more goal vectors or not is also conditioned on the problem geometry.

Case (iv) is similar to case (iii), see Figure 3.20(a). More goal vectors are generated

in the bottom-right part. Therefore, solutions in the bottom-right region (e.g. s3) are

more likely to gain higher fitness (compared to s1) and so are more likely to survive in

the evolution.

Results for case (v) are shown in Figure 3.20(b). A and C represent the ideal and nadir

vector, respectively. It is observed that solutions have converged well to the knee part

of the Pareto optimal front while the extreme part of the Pareto optimal front is not

sufficiently explored. Again, the reason is that compared with solutions in the knee

region (e.g. s2), candidate solutions (e.g. s1 and s3) in the extreme parts can only

dominate a few goal vectors and so have low fitness. That is to say, solutions in the

extreme region are more likely to be disregarded; this degrades the solution diversity.

Results for case (vi) are shown in Figure 3.20(c). This time A is set to the ideal point

and C is set as α× nadir, α = 3 vector. From the results, we observe that the extreme

solutions converge slightly better than the knee solutions. Additionally, goal vectors
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generated in PGCQ are also ineffective as these goal vectors are dominated by all can-

didate solutions, i.e. having no contribution in offering comparability between solutions;

therefore we should not generate goal vectors in such region.

Based on the above analysis we conclude that different gmax have different influences

on the performance of PICEA-g. This enables us to adjust the search effort towards

different objectives by using different gmax. In addition, from the above analysis it is

suggested that

• goal vectors that can be dominated by all candidate solutions or cannot be dom-

inated by any candidate solution are ineffective, and should not be generated.

Overall, the useful goal vectors are only those in the shaded region, see Figure 3.21.

Figure 3.21: Illustration of the useful goal vectors.

• applying the nadir point as gmax is not a good choice. In any case, the nadir point

is difficult to estimate. One reason has been mentioned in case (v), that is, the

extreme part of the Pareto optimal front cannot be explored well. Another reason

is that for some problems e.g., DTLZ1, the initial objective values are all outside

the region enclosed by the nadir vector, even a relaxed form of nadir vector).

In this case, PICEA-g would behave similarly to that of a random search, see

Figure 3.19(c).

3.7.2 Adaptive goal vector bounds by the cutting plane

This section describes a proposed strategy named the cutting plane with which a suitable

gmax can be determined adaptively. Prior to introducing this strategy, the limitation of

the previous strategy used to estimate the gmax (Equation 3.4) is discussed.
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Limitation of the previous method

In the comparison study, Equation 3.4 is applied to determine the goal vector bounds.

This method is viable when no further information concerning the problem is available.

However, if the ideal point is known beforehand, more effective methods can be developed

to determine suitable goal vector bounds.

As mentioned earlier, by comparing the ideal point with the obtained solutions, we can

determine which objective is less explored, that is, being far from the ideal value of this

objective. According to the analysis in Section 3.7.1, to distribute more search effort

towards the unexplored objective, we can set gmax with an offset to this objective so

as to generate more goal vectors for the unexplored objective. The method given in

Equation 3.4 simply takes the minimum value of BestFi as gmini , and gmini + ∆Fi as

gmaxi , where ∆Fi is the value of the difference between the minimum and maximum

BestFi multiplied by a scaling parameter α.

Figure 3.22: Limitation of the previous goal vector bounds estimation method.

In this method, knowledge of the ideal vector is not utilised. Moreover, this method

has a limitation, this is explained with Figure 3.22. Let us assume that the existing

solutions have converged to the top-left part of the Pareto optimal front, see Figure 3.22.

This indicates that f1 has been well explored while f2 is not sufficiently well explored.

According to Equation 3.4, the region for the generation of goal vectors towards each

objective will have the same size, i.e., the size of G1 for f1 is equivalent to the size of G2

for f2. Thus, the search effort distributed towards each objective is equivalent. However,

obviously, f2 requires more exploration as its objective value is far from the ideal value.

A new method: the cutting plane

Next we introduce our proposed method, namely, the cutting plane which can effectively

solve this problem and thus distribute the search effort more appropriately along the
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search process. To describe this strategy, let us consider, as an example, the bi-objective

minimisation problem shown in Figure 3.23. The current Pareto front is shown as the

dotted arc EF . The goal vector upper bound is calculated by the following two steps.

(i) Compute extreme points (E,F ) of the current Pareto front and then obtain the

cutting plane, i.e. the dashed straight line EF .

(ii) Obtain intercepts of the cutting plane on the coordinate axis. The obtained inter-

cepts are labelled as K,L. The initial goal vector upper bound is determined by

the intercepts, shown as point H.

Having obtained the goal vector upper bound, as shown in Figure 3.21, the final region

for the generation of goal vectors should be the region closed by E,F,C,B,G,A and D

(the shaded region shown in Figure 3.23). In this sense, all generated goal vectors are

useful, that is, each of them can be dominated by at least one candidate solution.

Figure 3.23: Illustration of the cutting plane.

This strategy is able to adaptively adjust the search effort towards different objectives

based on the current Pareto front. Observing the current Pareto front EF shown in

Figure 3.23, we find that more search effort should be assigned to objective f2 as the

value of f2 is far from the ideal value. Here, the ideal vector is at the coordinate

origin. Using the proposed method, a larger region GFCB (compared with DEGA), as

expected, is constructed, and more goal vectors are generated in this region. Therefore,

according to the working process of PICEA-g, solutions in this region dominate more

goal vectors, gaining higher fitness. Thus, these solutions are then more likely to be

propagated into the next generation. That is to say, more search effort is distributed

towards objective f2.
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Note that if the ideal point is not at the coordinate origin, we would need to do a trans-

formation of the coordinate system first, i.e., set the ideal point as the new coordinate

origin and compute the intercepts (K,L) based on the new coordinate system.

3.7.3 Experiments

This section empirically examines the effectiveness of the cutting plane approach. A

comparison is made between PICEA-g using goal vector bounds determined by Equa-

tion 3.4 (denoted as PICEA-g1) and by the cutting plane (denoted as PICEA-g2). Note

that for both the algorithms, the lower goal vector bound is set to the ideal point.

Experimental setup

Problems 2 to 9 from the WFG test suite are invoked in 2- and 7-objective instances.

In each case, the WFG position parameter and distance parameter are set to 18 and 14,

providing a constant number of decision variables (n = 18 + 14 = 32) for each problem

instance. Parameters used for PICEA-g1 and PICEA-g2 are the same as those adopted

in the comparison study, see Table 3.2. For each test problem, 31 runs of each algorithm

test are performed, each run for 250 generations.

The generational distance metric (GD) and the spread metric (∆) are used to measure

the convergence and diversity performance, respectively. The hypervolume metric (HV )

is applied to measure a combination of convergence and diversity performance. For all

three metrics, the null hypotheses used are those of equality of mean values. The non-

parametric Wilcoxon-ranksum two-sided comparison procedure at the 95% confidence

level is employed to test the working hypotheses.

Experimental results

The comparison results for PICEA-g1 and PICEA-g2 in terms of the HV , GD and ∆

metrics are shown in Tables 3.15 to 3.20. A favourable (smaller) GD value implies good

proximity and also a favourable (smaller) spread metric value implies good diversity.

A favourable hypervolume (larger, for a minimization problem) implies good proximity

with diversity. In each table, the mean±deviation values of each performance metric

across the 31 independent runs are shown. The symbol ‘<’, ‘=’ or ‘>’ shows PICEA-g1

is statistically worse, equal or better than PICEA-g2 at 95% confidence level. Superior

results are marked in boldface.

The HV comparison results for 2- and 7-objective problems are shown in Table 3.15 and

Table 3.16, respectively. Key observations are as follows:



96 Chapter 3 Preference-inspired co-evolutionary algorithm using goal vectors

Table 3.15: HV comparison results (mean±std) of PICEA-g1 and PICEA-g2 for
2-objective WFG instances.

PICEA-g1 PICEA-g2

WFG2-2 0.5712±0.0143 = 0.5736±0.0097

WFG3-2 0.6132±0.0085 < 0.6254±0.0080

WFG4-2 0.4194±0.0039 < 0.4313±0.0031

WFG5-2 0.3990±0.0052 < 0.4123±0.0032

WFG6-2 0.3921±0.0074 = 0.4017±0.0081

WFG7-2 0.3631±0.0076 < 0.3710±0.0069

WFG8-2 0.2394±0.0066 = 0.2402±0.0149

WFG9-2 0.3893±0.0191 = 0.3944±0.0204

Table 3.16: HV comparison results (mean±std) of PICEA-g1 and PICEA-g2 for
7-objective WFG instances.

PICEA-g1 PICEA-g2

WFG2-7 0.8764±0.0601 = 0.8851±0.0591

WFG3-7 0.9321±0.0131 < 0.9416±0.0171

WFG4-7 0.8410±0.0361 < 0.8578±0.0355

WFG5-7 0.8314±0.0072 < 0.8564±0.0059

WFG6-7 0.8257±0.0137 < 0.8471±0.0152

WFG7-7 0.8487±0.0184 < 0.8610±0.0161

WFG8-7 0.7481±0.0120 < 0.7656±0.0115

WFG9-7 0.6619±0.0152 < 0.6796±0.0121

(i) For 2-objective problems PICEA-g2 performs better than PICEA-g1 on WFG3, 4,

5 and 7; while on the rest of four problems the two algorithms perform comparably.

(ii) For 7-objective problems PICEA-g2 performs better than PICEA-g1 on all the

problems, except for WFG2-7 where the two algorithms have comparable perfor-

mance.

These results clearly demonstrate the effectiveness of the cutting plane, especially for

many-objective problems.

To better investigate the effect of this strategy, GD and ∆ metrics are employed for a

further comparison. These metrics are calculated for the 2 and 7-objective WFG4 to

WFG9 benchmark problems. The same reference set as used in Section 3.4.2 is adopted

here. That is, 20,000 uniformly sampled points from the surface of a M -dimension

hyper-ellipsoid with radius ri = 2i, i = 1, 2, · · · ,M in the first quadrant.

The GD results for 2- and 7-objective problems are shown in Table 3.17 and Table 3.18,

respectively. From the results, we observe that for 2-objective problems, PICEA-g2

performs comparably with PICEA-g1 on all the problems except for WFG6-2 where

PICEA-g2 is worse. For 7-objective problems, the two algorithms performs comparably

on four problems. On WFG8-7 PICEA-g1 is better while on WFG9-7 PICEA-g2 is

better.
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Table 3.17: GD comparison results (mean±std) of PICEA-g1 and PICEA-g2 for
2-objective WFG instances.

Problem PICEA-g1 PICEA-g2

WFG4-2 0.0010±0.0002 = 0.0011±0.0002

WFG5-2 0.0034±0.0003 = 0.0033±0.0002

WFG6-2 0.0035±0.0004 > 0.0056±0.0005

WFG7-2 0.0035±0.0009 = 0.0032±0.0008

WFG8-2 0.0224±0.0013 = 0.0240±0.00219

WFG9-2 0.0042±0.0015 = 0.0038±0.0017

Table 3.18: GD comparison results (mean±std) of PICEA-g1 and PICEA-g2 for
7-objective WFG instances.

Problem PICEA-g1 PICEA-g2

WFG4-7 0.0168±0.0006 = 0.0172±0.0008

WFG5-7 0.0179±0.0007 = 0.0184±0.0008

WFG6-7 0.0192±0.0008 = 0.0201±0.0012

WFG7-7 0.0204±0.0005 = 0.0211±0.0008

WFG8-7 0.0210±0.0011 > 0.0241±0.0015

WFG9-7 0.0174±0.0009 < 0.0160±0.0011

Table 3.19: ∆ comparison results (mean±std) of PICEA-g1 and PICEA-g2 for 2-
objective WFG instances.

Problem PICEA-g1 PICEA-g2
WFG4-2 0.1614±0.0056 < 0.1141±0.0049

WFG5-2 0.2694±0.0201 < 0.2014±0.0124

WFG6-2 0.2517±0.0153 < 0.2016±0.0197

WFG7-2 0.5026±0.0429 < 0.4392±0.0501

WFG8-2 0.9136±0.0864 < 0.6831±0.0546

WFG9-2 0.2098±0.0191 < 0.1831±0.0136

Table 3.20: ∆ comparison results (mean±std) of PICEA-g1 and PICEA-g2 for 7-
objective WFG instances.

Problem PICEA-g1 PICEA-g2
WFG4-7 4.0147±0.2214 < 3.6104±0.2293

WFG5-7 4.1134±0.2149 < 3.9681±0.1990

WFG6-7 4.0893±0.2081 = 4.1794±0.3026

WFG7-7 4.1614±0.2362 < 3.6871±0.2095

WFG8-7 4.9619±0.1620 < 4.5912±0.1362

WFG9-7 3.8218±0.1827 < 3.5205±0.2391
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The ∆ results for 2 and 7-objective problems are shown in Table 3.19 and Table 3.20,

respectively. From the results, we can see that PICEA-g2 performs statistically better

than PICEA-g1 on all the 2-objective problems, and on five out of the six 7-objective

problems. Only for WFG6-7 does PICEA-g1 have a comparable performance to PICEA-

g2.

Combining all the comparison results we can conclude that the use of cutting plane can

significantly improve the performance of PICEA-g, especially for the diversity perfor-

mance. Such results make a strong case for including this strategy when setting the goal

vector bounds, when the ideal point of the problem is available.

The ideal point of a problem can be obtained either via expert domain-specific knowledge

or preliminary single-objective optimisation. Given that the performance of PICEA-g

is affected by the employed goal vector bounds, this section introduces a new strategy

named the cutting plane which uses the information of the ideal point to adaptively

construct suitable goal vector bounds. By setting proper goal vector bounds, PICEA-

g is able to adjust the search effort towards different objectives appropriately during

the search. The effectiveness of the cutting plane is examined on 2- and 7-objective

WFG problems. Experimental results show that this strategy is helpful in improving

the performance of PICEA-g for most of the problems.

3.8 Summary

Many-objective optimisation problems remain a challenging issue for most of the existing

MOEAs, in obtaining a full and satisfactory approximation of Pareto optimal solutions.

This Chapter has studied a novel class of algorithm, namely, the preference-inspired

co-evolutionary algorithm, for many-objective problems. The main achievements are

summarised as follows:

• Co-evolution of a family of decision-maker preferences with a population of can-

didate solutions is demonstrated to have promising performance characteristics

for many-objective optimisation problems. After introducing the concept of the

preference-inspired co-evolutionary algorithm (PICEA), a realisation of this con-

cept, PICEA-g, is implemented and is rigorously compared to four best-in-class

MOEAs (NSGA-II, ε-MOEA, MOEA/D and HypE) and a random search bench-

mark on the leading WFG test problems with 2, 4, 7 and 10 objectives. Experi-

mental results show that PICEA-g has competitive performance with NSGA-II on

bi-objective problems, and a better performance than other algorithms on many-

objective problems.

• Based on the assumption that the ideal point of a problem is known a priori,

an effective strategy named the cutting plane is proposed to further improve the
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performance of PICEA-g. The cutting plane utilises knowledge of the ideal point

to determine proper goal vector bounds and then leads to a generation of suitable

goal vectors along the search process. This then enables PICEA-g to adaptively

distribute the search effort towards different objectives appropriately. Thereby,

leading to a better performance. The effectiveness of this strategy is examined on

2- and 7-objective WFG problems. Experimental results show this strategy has

positive effect on PICEA-g.

The goal vector approach examined in this Chapter represents just one possible formu-

lation of the preference-inspired co-evolutionary algorithm. In the next Chapter, we will

study the potential of co-evolving another type of decision-maker preferences.

Additionally, there needs to be a systematic analysis of how performance varies with the

tunable parameters of PICEA-g (this will be conducted in Chapter 5). Such analysis is

important to gain an insight into the robustness of the algorithms on parameter settings

and to provide further suggestions on parameter settings for non-expert use.





Chapter 4

Preference-inspired

co-evolutionary algorithm using

weight vectors

4.1 Introduction

Chapter 3 has demonstrated the benefits of co-evolution of candidate solutions with

preferences. The co-evolution enables suitable preferences to be constructed adaptively

and therefore guide candidate solutions towards the Pareto optimal front effectively.

Given the success of PICEA-g, a natural consideration is that what might be the benefits

of co-evolving candidate solutions with other types of preferences, such as weights.

A decomposition based algorithm is a popular class of evolutionary multi-objective op-

timiser that uses weights – it transfers a MOP into a set of single objective problems

by means of scalarising functions with different weights. Weights are used to define the

search directions. An approximation of the Pareto optimal front can be obtained by

solving a range of the single objective problems.

Compared with Pareto-dominance based algorithms, decomposition based algorithms

have a number of advantages, such as high search ability and computational efficiency

on fitness evaluation (Zhang and Li, 2007; Li and Zhang, 2009). However, more recent

studies have demonstrated that decomposition based algorithms, e.g., MOEA/D (Zhang

and Li, 2007), face difficulties on problems that have complex Pareto optimal fronts (Gu

et al., 2012); also though they perform well on bi-objective problems, are not particularly

effective on many-objective problems due to a loss of diversity (Wang et al., 2013).

These issues might be due to an inappropriate specification of weight vectors (this will

be discussed later), itself arising from a lack of knowledge on the underlying problem

structure.

101
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In this Chapter, we study how decomposition based methods can benefit from the co-

evolution of candidate solutions and weights. A new decomposition based algorithm

called preference-inspired co-evolutionary algorithm using weights (PICEA-w) is pro-

posed, which eliminates the need to specify appropriate weights in advance of performing

the optimisation. The rest of this Chapter is structured as follows: in Section 4.2, basics

of decomposition based algorithms are introduced. Section 4.3 analyses the issues of de-

composition based algorithms. Section 4.4 elaborates our proposed algorithm PICEA-w.

Section 4.5 describes the experimental setup. The experimental results and discussions

are provided in Section 4.6 and Section 4.7, respectively. Section 4.8 summarises this

Chapter.

4.2 Basics of decomposition based MOEAs

As previously mentioned, decomposition based algorithms handle a MOP by simultane-

ously solving a set of single objective problems defined by means of scalarising functions

with different weights. Scalarising functions and weights are two basics for a decom-

position based algorithm, and will be introduced in Section 4.2.1 and Section 4.2.2,

respectively. Additionally, a decomposition based algorithm often requires a normalisa-

tion procedure; this will be introduced in Section 4.2.3.

4.2.1 Scalarising functions

A variety of scalarising functions have been introduced for decomposition based algo-

rithms. The weighted sum and the weighted Chebyshev function are two frequently-used

scalarising functions, and can be written as follows.

• The weighted sum scalarising function:

gws(x|w) =
∑

i=1,2,··· ,M
{wi(fi(x)− z∗i )} (4.1)

• The weighted Chebyshev scalarising function:

gte(x|w) = max
i=1,2,··· ,M

{wi(fi(x)− z∗i )} (4.2)

For minimisation problems, both gws(x|w) and gte(x|w) should be minimised. In both

Equation 4.1 and Equation 4.2, w = (w1, w2, · · · , wM ) represents a weight vector,

wi ≥ 0,
∑i=M

i=1 wi = 1 and z∗ = (z∗1 , z
∗
1 , · · · , z∗M ) is a reference point. Typically,

the reference point is updated once a better (smaller) value of fi is found during the

algorithm execution, see Equation 4.3.
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z∗i = min {fi(x)|x ∈ Ω} (4.3)

where Ω represents all the examined solutions during the algorithm execution. Ideally,

the reference point should be set as the ideal point of the problem.

The optimal solution of each single objective problem, defined by a weighted scalarising

function, corresponds to one Pareto optimal solution of a MOP. The weight vector defines

a search direction for the scalarising function. Thus, one can use different weights to

search for a set of diversified Pareto optimal solutions.

It is worth mentioning that the weighted sum scalarising function encounters difficulties

with certain problem geometries1, that is, the fact it is not possible to find Pareto

optimal solutions in concave regions of the Pareto optimal front unless some addition

technique (e.g., ε-constraint method) is applied (Kim and De Weck, 2005, 2006). The

Chebyshev scalarising function does not have such issue, see Figure 4.1. However, its

search ability is not as high as the weighted sum approach (Ishibuchi et al., 2009a).

(a) The weighted sum method (b) The Chebyshev function

Figure 4.1: Behaviours of the weighted sum and Chebyshev scalarising function on
non-convex Pareto front.

Next we briefly analyse the search abilities of the two scalarising functions based on

the study of Giagkiozis and Fleming (2012). Figure 4.2 shows contour lines of each of

the scalarising functions in a bi-objective case with reference point z∗ at the origin and

weight vector w = (0.5, 0.5). The objective-space is divided into two sub-spaces by the

contour line. Solutions in one sub-space are better than solutions on the contour line

while solutions in the other sub-space are worse. Solutions that lie on the same contour

line have the same scalar objective value. In Figure 4.2, solution A is the optimal solution

of gws(x|(0.5, 0.5)) and gte(x|(0.5, 0.5)).

1Note that in this thesis problem geometry specifically refers to Pareto front geometry
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The contour line of the weighted sum approach is a line, and the contour line of the

weighted Chebyshev approach is a polygonal line (with vertical angle). According to

the shape of the contour line we can observe that for the weighted sum approach the

size of a better region is always half of the whole objective-space regardless of the

number of objectives. This indicates that the probability of replacement of an existing

solution by a newly generated solution is always 1
2 . That is, the search ability of the

weighted sum approach is not affected by an increase in the number of objectives. With

respect to the weighted Chebyshev function, a better region roughly equals to (1
2

M
) of

the M -dimensional objective-space. This indicates that the probability of replacement

decreases significantly as the number of objective increases. That is, the search ability

of the weighted Chebyshev function deteriorates as the number of objectives increases.

(a) The weighted sum (b) The weighed Chebyshev

Figure 4.2: Contour lines of scalarising functions.

In fact the weighted sum and the weighted Chebyshev approach can be unified into a

single formulation, known as the weighted Lp function.

gLp(x|w) =
∑

i=1,2,··· ,M

{
wi(|fi(x)− z∗i |p)1/p

}
(4.4)

where p ∈ (0,∞]. When p = 1, gLp represents the weighted sum approach, and when

p =∞, gLp represents the weighted Chebyshev function, minimising the largest deviation

|fi(x)− z∗i |. Contour lines of the weighted Lp function with different p values are shown

in Figure 4.3 (Giagkiozis and Fleming, 2012). It is observed that the search ability of

the weighted Lp function decreases as p increases.

All the weighted Lp functions suffer from the geometry issue except for the Chebyshev

function. Specifically, a Lp function cannot identify the whole Pareto optimal front of a

MOP when the curvature of the Pareto optimal front is larger than the curvature of the
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Figure 4.3: Contour lines of the weighted Lp function with different p values.

contour line of the chosen Lp function. Since the curvature of the Chebyshev function

is ∞, it is able to identify Pareto optimal solutions for any type of geometry.

Overall, for a Lp scalarising function its search ability and its robustness on problem

geometries are a trade-off – the higher the search ability, the lower the robustness. If

we can estimate the curvature of the Pareto optimal front a priori, then we can easily

select a suitable Lp function, based on its search ability. For example, if the curvature of

the Pareto optimal front is quadratic, the most suitable Lp function should be the one

using p = 2. Alternatively, for a new problem or a problem having a complex geometry,

the use of the Chebyshev function is a good choice.

4.2.2 Weights

Diversified solutions can be obtained by employing different weights in decomposition

based algorithms. Typically, the employed weights can either be pre-defined before the

search or adaptively modified during the search. This section introduces two frequently-

used methods that generate random weight vectors and evenly distributed weights.

Randomly generated weights

To generate a random weight vector, the easiest way that has been used in many studies,

(e.g. Hajela et al., 1993; Ishibuchi and Murata, 1998) is first to randomly generate M

numbers, e.g., a1, a2, · · · , aM and ai ≥ 0 and then to normalise ai by ai∑M
i=1 ai

to obtain

a valid component of weight vector, i.e., wi = ai∑M
i=1 ai

. However, this method has a

limitation, that is, the generated weights are dense in the centre while sparse at the
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edge. This is because the method equals to directly projecting all randomly distributed

points in a hypercube at a hyperplane, see Figure 4.4.
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(a) random points in a cube
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(b) random weights on a plane

Figure 4.4: Illustration of the distribution of random weights.

Jaszkiewicz (2002) proposed another way to generate random weights which does not

face the issue as shown in Figure 4.4. Components of a weight vector are calculated by

Equation 4.5, where function rand() returns a random value within the interval (0, 1).

w1 = 1− M−1
√
rand()

· · ·

wi = (1−
i−1∑
j=1

wj)(1− M−1
√
rand())

· · ·

wM = 1−
i−1∑
j=1

wj

(4.5)

Evenly distributed weights

To generate evenly distributed weights on a hyperplane, many methods are available

such as the simplex-lattice design, simplex-centroid design and axial design and uniform

design (Tan et al., 2012). Amongst these methods, the simplex-lattice design method is

frequently used (MOEA/D employs this method). Weights are formed by all normalised

weight vectors with components chosen from the set {0, 1/H, · · · , (H − 1)/H, 1} where

H is a positive integer number, see Figure 4.5(a). For example, for 2-objective problems,

if H is specified as 100, then we can generate C1
101 = 101 groups of weight vectors (0, 1),

(0.01, 0.99), ... , (1, 0). The number of weights generated using this method increases
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significantly when M increases; it is determined by CH+M−1
M−1 . Given H = 30, the number

of weights is 5456 for M = 4, while the number increases to 46376 when M = 5.

Hughes (2003) proposed another approach which generates evenly distributed points on

a hypersphere by minimising the metric V defined by Equation 4.6, see Figure 4.5(b).

These points can be transformed into valid weights by using the equation: wi = xi∑M
i=1 xi

where xi is the ith component of a point.

V =
N

max
i=1

N
max
j=1,j 6=i

(xi · xj) (4.6)

The metric V measures the worst-case angle of two nearest neighbours. The dot product

xi · xj provides the cosine of angle between xi and xj . The inner maximisation finds

the nearest two neighbours in terms of the angle between them. The outer maximum

operator finds the largest angle between two nearest neighbours. The optimal set of

weights is produced when the outer maximum operator is minimised.
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Figure 4.5: Evenly distributed weights on a hyperplane and hypersphere in 3-objective
case.

4.2.3 Normalisation

Decomposition based algorithms combine different objectives into one metric. These

objectives might have various units of measurement. Thus, it is important to rescale

different objectives to dimension-free units before aggregation. Moreover, normalisation

is useful for obtaining evenly distributed solutions when the objectives are disparately

scaled.
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Typically, the normalisation procedure transforms an objective value fi (in Equations

4.1 or 4.2) by

f i =
fi − zidei
znadi − zidei

(4.7)

where zide = (zide1 , zide2 , · · · , zideM ) is the ideal point and znad = (znad1 , znad2 , · · · , znadM ) is

the nadir point. After normalisation, objective values are within [0, 1].

If the true zide and znad are not available (they are often difficult to obtain, especially

for znad (Deb et al., 2010)), we can use the smallest and largest fi of all non-dominated

solutions found so far to estimate the zidei and znadi , respectively.

4.3 General issues of decomposition based algorithms

This section discusses two difficulties that are usually encountered by decomposition

based algorithms: problem geometry and many-objective optimisation.

4.3.1 Problem geometry

In decomposition based algorithms, each Pareto optimal solution corresponds to an

optimal solution of a single objective problem that is defined by a weighted scalarising

function. That is to say, once the weighted scalarising function is determined, the

distribution of the obtained Pareto optimal solutions is determined. Furthermore, if the

scalarising function is also chosen, the distribution of solutions would only be affected

by the distribution of the employed weights.

Gu et al. (2012) and Giagkiozis et al. (2013) discussed what the optimal distribution of

weights is for a specified Pareto front when using different scalarising functions. For ex-

ample, when the Chevbyshev scalarising function is used, the optimal weight for search-

ing for a solution x is (
1

f1(x)∑M
i=1

1
fi(x)

,
1

f2(x)∑M
i=1

1
fi(x)

, · · · ,
1

fM (x)∑M
i=1

1
fi(x)

). That is, given a weight

vector w, the obtained Pareto optimal solution is along the search direction of 1
w (as

long as the search direction 1
w does not point at a disconnected Pareto region).

Specifically, this relationship is described using Figure 4.6. The straight line from the

reference point along the direction ( 1
wi,1

, 1
wi,2

) can be described as f1wi,1 = f2wi,2. Note

that wi,j represents the jth component of weight vector wi. Line A intersects the

Pareto front at point s1. It is easy to see that min max(w1f(x)) = max(w1f(x1)),

where x1 corresponds to the decision vector of s1. Thus, we can conclude that weight

vector wi = (wi,1, wi,2) corresponds to a Pareto optimal solution along the direction

of ( 1
wi,1

, 1
wi,2

). In other words, the optimal weight vector corresponding to a Pareto

optimal solution x1 is determined by the vector ( f2(x1)
f1(x1)+f2(x1) ,

f1(x1)
f1(x1)+f2(x1)). It is worth

mentioning that this conclusion is based on the assumption that there is a Pareto optimal
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Figure 4.6: Illustration of the relation between weights and Pareto optimal solutions
for a Chebyshev scalarising function.

solution along the defined search direction. If the search direction defined by a weight

vector (e.g., w2) points at a disconnected region (termed boundary search direction),

a solution at the boundary (e.g. s2) will be identified as the optimal solution for this

weight vector instead. This is because the decision vector x2 of s2 produces the minimal

value for the expression max(w2f(x)).

Given the above analysis, it is easy to see that the optimal distribution of weights for

different problem geometries changes. Figure 4.7 illustrates the optimal distributions

of weights for problems having linear, convex, concave or disconnected Pareto optimal

fronts. Taking Figure 4.7(b) as an example, the optimal distribution of weights for a

concave Pareto front is dense in the centre while sparse at the edge.

Overall, due to a lack of knowledge of the underlying problem geometry, it is usually not

straightforward to determine a proper distribution of weights a priori for decomposition

based algorithms so as to obtain a set of evenly distributed solutions. Although the use

of adaptive weights is potentially helpful in handling this issue (Jiang et al., 2011; Gu

et al., 2012), it is suspected that adaptive weights might have a deleterious effect on an

algorithm’s convergence performance (this will be discussed next).

4.3.2 Many-objective optimisation

Decomposition based algorithms using evenly distributed weights, such as MOEA/D,

face difficulties on many-objective problems. This is because the number of Pareto

optimal solutions that are required to describe the entire Pareto optimal front of a MaOP

is very large (Ishibuchi et al., 2008b). In decomposition based algorithms each weight

vector typically corresponds to one Pareto optimal solution. The evenly distributed

weights are often initialised before the search and remain unchanged during the search. It
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Figure 4.7: The optimal distributions of weights for different Pareto fronts in a 2-
objective case using a Chebyshev scalarising function.

is therefore difficult to use a limited number of weights to obtain a full and representative

approximation of the entire Pareto optimal front.

To illustrate this issue, we apply MOEA/D with 20 evenly distributed weights to solve

the 2-objective DTLZ2 problem. Figure 4.8(a) and Figure 4.8(b) show the obtained non-

dominated solutions in the last generation and in the archive respectively after running

MOEA/D for 500 generations. It is obvious that the obtained solutions are not sufficient

to cover the entire Pareto optimal front. It should be noted that due to the stochastic

nature of MOEAs, neighbouring solutions of the sw are likely to be obtained during the

search. sw is referred as the optimal solution of a single objective problem defined by

the weighted scalarising function g(x|w). However, it is less likely to find solutions that

are distant from sw, see Figure 4.8(b).

A natural way to address this limitation, i.e., a lack of solution diversity, is by employing

a large number of weights. However, it is argued that compared with the number of

solutions required to describe the entire Pareto optimal front, the number of employed
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Figure 4.8: An approximation of Pareto front of 2-objective DTLZ2 obtained by
MOEA/D using 20 weights.

weights is always relatively small. Besides, for some decomposition based MOEAs, e.g.,

MOEA/D, the population size is required to be equal to the number of weights. It is

not easy to strike an effective balance between the population size and the generations

with a fixed computational budget – the larger the population size, the the more the

beneficial dynamics of evolution are curtailed.

(a) fixed weights (b) non-fixed weights

Figure 4.9: Illustration of the search behaviour using fixed weights and non-fixed
weights.

Another alternative is to use non-fixed weights. Typically, non-fixed weights could be

either randomly generated or adaptively modified during the search. The use of non-

fixed weights enables MOEAs to have more opportunities to explore different regions,

thereby obtaining a set of diversified solutions. However, this might slow down the
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convergence speed of an algorithm. When using fixed weights, solutions are guided

towards the Pareto optimal front along the search directions constructed by the weights,

see Figure 4.9(a). When using non-fixed weights, the constructed search directions keep

changing. This suggests that solutions are guided towards the Pareto optimal front in a

polyline trajectory as shown in Figure 4.9(b), that is, the convergence speed is degraded.

Certainly, it should be admitted that in some case, e.g., multi-modal problems, the use

of random/adaptive weights is helpful to maintain diversified solutions and to prevent

the algorithm being trapped in the local optima, resulting in better convergence.

Overall, decomposition based algorithms face difficulties with many-objective optimisa-

tion. This issue has not received much attention. To the best of the author’s knowledge,

none of the existing decomposition based algorithms that use adaptive weights, such as

Hughes (2007), Li and Landa-Silva (2011) and Gu et al. (2012) can effectively strike a

balance between exploitation (convergence) and exploration (diversity). Therefore, it is

proposed to develop an effective weights adaptation strategy to address this issue.

4.4 PICEA-w

This section introduces a novel weights adaptation method based on the concept of

PICEA. Weights maintain their usefulness by being co-evolved with candidate solu-

tions along the search process. The co-evolution enables suitable sets of weights to be

constructed adaptively, and thus guide candidate solutions towards the Pareto optimal

front effectively. We refer to this new strategy as a preference-inspired co-evolutionary

algorithm using weight vectors (PICEA-w).

4.4.1 Algorithm design: PICEA-w

Similar to a general decomposition based algorithm, PICEA-w decomposes a MOP into

a set of single objective problems that are defined by different weighted scalarising func-

tions. The main feature of PICEA-w is that the scalarising functions’ underlying weights

are adaptively modified in a co-evolutionary manner during the search. Specifically, in

PICEA-w candidate solutions are ranked by each of the weighted scalarising functions,

creating a ranking matrix. The fitness of candidate solutions is then calculated based

on the ranking matrix. Weights are co-evolved with the candidate solutions towards an

optimal distribution, and are also responsible for striking a balance between exploration

and exploitation.

We implement PICEA-w within a (µ+λ) elitist framework as shown in Figure 4.10. A

population of candidate solutions and weight vectors, S and W , of fixed size, N and

Nw, are co-evolved for a number of generations. At each generation t, parents S(t) are

subjected to genetic variation operators to produce N offspring, Sc(t). Simultaneously,
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Nw new weight vectors, Wc(t), are randomly generated. S(t) and Sc(t), W (t) and

Wc(t), are then pooled respectively and the combined populations are sorted according

to their fitness. Truncation selection is applied to select the best N solutions as a

new parent population, S(t + 1), and Nw solutions as a new preference population,

W (t + 1). Additionally, an offline archive is employed to store all the non-dominated

solutions found during the search. Evenly distributed solutions are obtained by using

the clustering technique described in Zitzler et al. (2002).

Figure 4.10: A (µ+λ) elitist framework of PICEA-w.

Algorithm 2: Preference-inspired co-evolutionary algorithm using weights

Input: Initial candidate solutions, S of size N , initial weight vectors, W of size Nw,
the maximum number of generations, maxGen, the number of objectives, M ,
archive size, ASize

Output: S,W , offline archive, BestF

1 BestF ← ∅;
2 S ← initialiseS(N);
3 F S ← objectiveFunction(S);
4 BestF ← updateArchive(BestF, F S);
5 W ← weightGenerator(Nw);
6 for gen← 1 to maxGen do
7 Sc← geneticOperation(S,F S);
8 F Sc← objectiveFunction(Sc);
9 (JointS, JointF )← multisetUnion(S, Sc,F S, F Sc);

10 Wc← weightGenerator(Nw);
11 JointW ← multisetUnion(W,Wc);
12 θ ← thetaConfiguration(gen, π/2);
13 (S, F S,W )← coEvolve(JointF, JointS, JointW, θ);
14 BestF ← updateArchive(BestF, F S,ASize);

15 end

The pseudo-code of PICEA-w is presented in Algorithm 2. In the following we explain

the main steps of PICEA-w.



114 Chapter 4 Preference-inspired co-evolutionary algorithm using weight vectors

• Line 1 initialises the offline archive BestF as ∅.

• In lines 2 and 3, N candidate solutions S are initialised and their objective

values F S are calculated. The offline archive, BestF is updated by function

updateArchive in line 4.

• Line 5 applies function weightGenerator to generate Nw random weights.

• The offspring candidate solutions Sc are generated by function geneticOperation

in line 7. Their objective values F Sc are calculated in line 8. S and Sc, F S and

F Sc are pooled together, respectively in line 9.

• Line 10 generates another set of weights Wc. In line 11, W and Wc are pooled

together.

• Line 12 sets the parameter θ which would be used in function coEvolve to imple-

ment a local operation.

• Line 13 co-evolves the joint candidate solutions JointS and the joint weights

JointW , and so to obtain new parents S and W .

• Line 14 updates the offline archive with newly obtained solutions F S.

Note that function weightGenerator forms a new weight set Wc with Nw weight vectors

that are generated according to Equation 4.5 (Jaszkiewicz, 2002). Alternatively, Wc

can be formed by randomly sampling Nw weights from an evenly distributed candidate

weight set, Ψ. Ψ can be created by the simplex-lattice design method (as described on

p.107). Genetic operators are not applied to generate offspring weight vectors, the reason

is the same as the case in PICEA-g, which is described in p. 56. In addition, functions

geneticOperation and updateArchive are the same as that used in PICEA-g, see p.

56.

Function thetaConfiguration adjusts parameter θ by Equation 4.8, that is, θ increases

linearly from a small value to π
2 radians.

θ =
π

2
× gen

maxGen
; (4.8)

The use of θ implements a local selection at the early stages of the evolution and im-

plements a global selection at the later stages of the evolution. A local selection refers

to a candidate solution that only competes with its neighbours, and a global selection

refers to a candidate solution that competes with all the other candidate solutions. The

benefits of this strategy will be illustrated later (in Section 4.7.2).

The core part of PICEA-w lies in the function coEvolve which will be elaborated next.

Function coEvolve evaluates the performance of candidate solutions and weight vectors,

and then constructs new parent populations S and W from the joint populations JointS
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and JointW , respectively. A candidate solution gains high fitness by performing well on

a large number of weighted scalarising functions. A weight vector only gains fitness by

being rewarded from the candidate solutions that are ranked as the best by this weight.

In other words, a weight vector is considered to be good only if it has contribution on

the survived candidate solutions. The pseudo-code of function coEvolve is as follows.

Function coEvolve(JointS, JointF,W )

Input: The joint populations JointS, JointF, JointW , the parameter θ
Output: New parents, S, F S,W

1 R← rankingSW(JointF, JointW, θ);
2 (F S, S, ix)← selectS(JointF, JointS,R);
3 W ← selectW(JointW,F S,R, ix);

Figure 4.11: Illustration of the neighbourhood of candidate solutions and weight
vectors.

(i) Line 1 applies function rankingSW to rank JointF by each weighted scalarising

function. Specifically, for each w ∈ JointW , we first identify its neighbouring

candidate solutions. The neighbourhood is measured by the angle between a can-

didate solution, s and a weight vector, w. If the angle is smaller than θ, then s

and w are defined as neighbours. For example, in Figure 4.11, s1 is a neighbour of

w while s2 is not. Then we rank these neighbouring candidate solutions based on

their performance measured by the corresponding weighted Chebyshev scalarising

function. This produces a [2N×2Nw] ranking matrix, denoted as R. Rij represents

the rank of the candidate solution si on the weighted Chebyshev function using

wj , i.e., gte(si|wj). The best solution is ranked 1. Ranking values for solutions

that are not neighbours of the w are set as inf. The Chebyshev scalarising function

is used in PICEA-w due to its guarantee of producing a Pareto optimal solution

for each weight vector, and also its robustness on problem geometries (Miettinen,

1999).
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(ii) Line 2 applies function selectS to select the best N candidate solutions as new

parents, S. Specifically, the following steps are executed.

• Sort each row of the ranking matrix R in an ascending order, producing

another matrix Rsort. Rsort holds in the first column the best ranking (the

smallest) value achieved by each candidate solution across all the weighted

scalarising functions. Simultaneously, the second column holds the second

smallest ranking result for each candidate solution and so on.

• All candidate solutions are lexicographically ordered based on Rsort. This

returns a rank (denoted as r) for each candidate solution. The fitness of a

candidate solution is then determined by 2N − r. Truncation selection is

applied to select the best N solutions as new parents.

(iii) Line 3 applies function selectW to select a suitable weight vector from JointW

for each of the survived candidate solutions, i.e., members in the new parent S.

The basic idea of the selection is to balance exploration and exploitation. To do

so, two criteria are set for the weights selection. First, for each candidate solution

the selected weight must be the one that ranks the candidate solution as the best.

Then, if more than one weight is found by the first criterion, the one that is the

furthest from the candidate solution is chosen. The first criterion is helpful to

drive the search quickly towards the Pareto front. The second criterion is helpful

to guide the search to explore new areas.

More specifically, for a candidate solution si, first we identify all the weights that

rank si the best. If there is only one weight, then this weight is selected for si.

This guarantees that solution si will not lose its advantage in the next generation

as there is still one weight vector that ranks this candidate solution the best,

unless a better solution along this direction is generated. If so, the convergence

performance is improved. If more than one weight is found, we select the weight

that has the largest angle between si and itself. In this way, the algorithm is

guided to investigate some unexplored areas, i.e., improving diversity. It is worth

mentioning that the second criterion is not considered unless multiple weights are

identified by the first criterion. This guarantees that when exploring for a better

diversity, the exploitation for a better convergence is also maintained. The pseudo-

code of the function selectW is described as follows.

• Line 1 initialises the new weight set as empty, ∅. Line 2 forms a new ranking

matrix R′ by selecting the ix-th row of R, where ix is the index of F S in the

JointF .

• Line 3 ranks the contribution of weights to each of the candidate solutions

according to R′. The results are stored in matrix R′′. R′′ij describes the

relative order of contribution that a candidate solution si received from a

weight vector wj . The lower the rank, the higher the contribution.
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Function selectW(JointW,F S,R, ix)

Input: the objective values F S of the survived candidate solutions, the joint weight
vectors, JointW , the ranking matrix, R, the index list of F S in JointF , ix

Output: weight set, W

1 W ← ∅;
2 construct the ranking matrix R′ by extracting all the ix rows of R;
3 rank weights for each si according to R′ and obtain another matrix R′′;
4 foreach F si ∈ F S do
5 J ← {j|j = arg minj∈{1,2,··· ,N}R

′′
ij} ;

6 if |J | > 1 then
7 k ← arg maxj∈Jangle(wj ,F si) ;
8 else
9 k ← j;

10 end
11 W ←W ∪wk;
12 set the k-th column of R′′ as inf;

13 end

• Line 5 finds all the weight vectors that give the highest contribution to solution

si, i.e., weights that have R′′ij = 1. If there is only one weight then we choose

this weight for si. If multiple weights are found, then we choose the weight

wk that has the largest angle with F si (lines 6 to 11). To avoid multiple

selections of a weight, once the weight wk is selected, the k-th column of R′′ij
is set as inf.

• Additionally, function angle computes the angle between a candidate solution

and a weight vector. The dot product of two normalised vectors returns the

cosine of the angle between the two vectors.

To further explain the co-evolution procedure, let us consider a bi-objective minimisation

instance shown in Figure 4.12 with four candidate solutions and four weight vectors, i.e.

N = Nw = 2. In this example, it is assumed that w1 has two neighbours s1 and s2; w2

has only one neighbour s3; w3 has two neighbours s3 and s4; w4 has no neighbour.

Table 4.1 shows the selection process of candidate solutions. First, candidate solutions

are ranked by each of the weighted Chebyshev functions. Then the fitness of each

candidate solution is calculated according to the procedure of function selectS. Based

on the fitness, s1 (Fits1 = 2) and s3 (Fits3 = 3) are selected as new parent candidate

solutions S.

Next we select the best weight for each candidate solution in the S. First, we randomly

select one solution from S, e.g. s1. Then we identify the weights that contribute the

most to s1, that is, s1 is ranked the best on these weights. There is only one weight

i.e., w1, that contributes to s1 and therefore w1 is selected for s1. After this, another

candidate solution is randomly selected from the set S\s1, e.g., s3. Similarly, we find
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Figure 4.12: Illustration of the co-evolution procedure of PICEA-w with a bi-objective
minimisation example.

Table 4.1: Candidate solutions selection process.

(a) Ranking matrix R

w1 w2 w3 w4

s1 1 inf inf inf
s2 2 inf inf inf
s3 inf 1 1 inf
s4 inf inf 2 inf

(b) Ranking matrix R1, r and Fitsi

w1 w2 w3 w4 r F itsi
s1 1 inf inf inf 2 2
s2 2 inf inf inf 3 1
s3 1 1 inf inf 1 3
s4 2 inf inf inf 3 1

Table 4.2: Weights selection process.

(a) Ranking matrix R′

w1 w2 w3 w4

s1 1 inf inf inf
s3 inf 1 1 inf

(b) Ranking matrix R′′

w1 w2 w3 w4

s1 1 2 2 2 w1

s3 2 1 1 2 w3

the weights on which s3 performs the best. Both w2 and w3 satisfy the condition. Then

we look at the second criterion. It is found that the angle between s3 and w3 is larger

than that between s3 and w2 and so w3 is selected for s3. This procedure continues

until each candidate solution in the S is assigned a weight vector.

Additionally, in PICEA-w the number of weight vectors Nw is not required to be equal

to the number of candidate solutions N . However, since in each generation each of

the survived candidate solution is assigned a different weight vector, it is required that

2Nw ≥ N .
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4.4.2 Algorithm analysis: PICEA-w

PICEA-w co-evolves candidate solutions with weight vectors during the search. The can-

didate solutions are evaluated by the employed weights in a similar way to other decom-

position based algorithms (e.g., MOGLS, MSOPS and MOEA/D). However, the weights

are neither randomly generated nor initialised as an even distribution but are adaptively

modified in a co-evolutionary manner during the search. It is expected PICEA-w would

be less sensitive to problem geometry and perform better than other decomposition based

algorithms that use random, evenly distributed or adaptive weights on many-objective

problems.

The convergence of PICEA-w is affected by the chosen scalarising function (as described

in Section 4.2.1). We apply the Chebyshev scalarising function to PICEA-w. Compared

with other Lp scalarising functions, the Chebyshev scalarising function, though it leads

to a slower convergence speed, is able to identify Pareto optimal solutions in both convex

and non-convex regions.

The diversity performance of PICEA-w is affected by the distribution of the employed

weights. Co-evolution enables suitable weights to be constructed adaptively and thus

distributing the search effort appropriately towards different parts of the Pareto front.

The two criteria used for the selection of weights effectively balances exploration and

exploitation.

With respect to the time complexity of PICEA-w, evaluation of a population of candidate

solutions runs at O(M ×N), where M is the number of objectives and N is the number

of candidate solutions. The main cost of PICEA-w concerns function coEvolve, in

which three sub-functions are involved. The sub-function rankingSW ranks all candidate

solutions on each weight vector and so runs at O(N2×Nw) (assuming that bubble sorting

is used). The sub-function selectS selects the best N solutions from 2N solutions which

runs at O(N2). The sub-function selectW calculates the angle between each pair of

candidate solution and weight vector, and runs at O(N × Nw). Therefore, the overall

time complexity of PICEA-w is O(N2 ×Nw).

4.5 Experiment description

4.5.1 Test problems

Table 4.3 shows the employed test problems. These test problems are constructed by

applying different shape functions provided in the WFG toolkit to the standard WFG4

benchmark problem (Huband et al., 2006). Details are provided in Appendix A.3.



120 Chapter 4 Preference-inspired co-evolutionary algorithm using weight vectors

Table 4.3: Problem geometries of the WFG4X test problems.

Test problem Geometry

WFG41 concave

WFG42 convex

WFG43 strong concave

WFG44 strong convex

WFG45 mixed

WFG46 hyperplane

WFG47 disconnected, concave

WFG48 disconnected convex

These problems are invoked in 2-, 4-, 7- and 10- objective instances. The WFG param-

eters k (position parameter) and l (distance parameter) are set to 18 and 14, i.e., the

number of decision variables is n = k + l = 32 for each problem instance.

Optimal solutions of these problems satisfy the condition in Equation 4.9:

xi=k+l:n = 2i× 0.35 (4.9)

where n is the number of decision variables and n = k + l. To obtain an approximation

of the Pareto optimal front, we first randomly generate 20, 000 optimal solutions for

the test problem and compute their objective values. Second, we employ the clustering

technique employed in SPEA2 to select a set of evenly distributed solutions from all the

generated solutions.

The Pareto optimal front of the WFG4X problem has the same trade-off magnitudes, and

it is within [0, 2]. Thus, the nadir point for these problems is [2, 2, · · · , 2]. Figures 4.13

and 4.14 show the Pareto optimal front as well as the corresponding optimal distribution

of weights for all the 2-objective WFG problems. We also plot the Pareto optimal fronts

of the 3-objective WFG4X problems in Appendix A.3.

4.5.2 The considered competitor MOEAs

To benchmark the performance of PICEA-w, four competitor decomposition based al-

gorithms are considered. All the competitors use the same algorithmic framework as

PICEA-w, and the Chebyshev scalarising function is chosen. The only difference lies in

the way of constructing JointW .

• The first algorithm (denoted as RMOEA) forms JointW by combining Nw weights

that are randomly selected from current JointW and another set of Nw ran-

domly generated weights. RMOEA represents decomposition based algorithms

using random weights, e.g., I-MOGLS (Ishibuchi and Murata, 1998) and J-MOGLS

(Jaszkiewicz, 2002).
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Figure 4.13: Pareto optimal fronts and the optimal distributions of weights for
WFG41-2 to WFG44-2.

• The second competitor MOEA applies 2Nw evenly distributed weights as JointW

(denoted as UMOEA). UMOEA represents another class of decomposition based

algorithms, such as MSOPS and MOEA/D, that use uniform weights.

• The other two considered competitors use adaptive weights. The weights adapta-

tion strategies are extracted from DMOEA/D (Gu et al., 2012) and EMOSA (Li

and Landa-Silva, 2011), respectively. The reason for choosing these two algorithms

is that DMOEA/D has been shown to be able to obtain evenly distributed solu-

tions for bi- and three-objective problems having complex geometries, and EMOSA

is found to outperform MOGLS and MOEA/D on bi- and three-objective prob-

lems. Note that the neighbourhood size used in DMOEA/D and EMOSA is set

as T = 10 which is demonstrated to offer a good performance (according to our

previous comparative study (Wang et al., 2013)).



122 Chapter 4 Preference-inspired co-evolutionary algorithm using weight vectors

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 

 

Pareto optimal front
Optimal weights

(a) WFG45-2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 

 

Pareto optimal front
Optimal weights

(b) WFG46-2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 

 

Pareto optimal front
Optimal weights

(c) WFG47-2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 

 

Pareto optimal front
Optimal weights

(d) WFG48-2

Figure 4.14: Pareto optimal fronts and the optimal distributions of weights for
WFG45-2 to WFG48-2.

The weights adaptation strategies in DMOEA/D and EMOSA are briefly described as

follows (for the readers’ convenience), more details can be found in Chapter 2.4.2 p.40.

(i) DMOEA/D: first a piecewise linear interpolation method is used to fit a curve

(M = 2) or hyper-surface (M > 2) for the current non-dominated solutions. Sec-

ond, sample a set of evenly distributed points from the curve (or the hyper-surface).

After that an optimal distribution of weights, corresponding to the evenly dis-

tributed points, is generated to guide the search.

(ii) EMOSA: for each member F si in the current population, first, find the closest

neighbour (e.g., F sj) to F si and its associated weight vector wj . Second, identify

the weights in JointW whose Euclidean distance to wj is larger than the distance

between wi and wj . Third, amongst the identified weights, select the weights for
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which the distance between them and wi are closer than the distance between them

and all the neighbours of wi. The definition of the neighbourhood is the same as

MOEA/D. If there are multiple weights, then pick one randomly.

4.5.3 General parameters

Each algorithm is performed for 31 runs, each run for 25 000 function evaluations. For

all algorithms the population size of candidate solutions and weights are set as N = 100

and Nw = 100, respectively. Simulated binary crossover (SBX) and polynomial mutation

(PM) are applied as genetic operators. The recombination probability pc of SBX is set to

1 per individual and mutation probability pm of PM is set to 1/n per decision variable.

The distribution indices ηc of SBX and ηm of PM are set as 15 and 20, respectively.

These parameter settings are summarised in Table 4.4 and are fixed across all algorithm

runs.

Table 4.4: Algorithm testing parameter setting.

Parameters Values

N 100

Nw 100

maxGen 250

Crossover operator SBX (pc = 1, ηc = 15)

Mutation operator PM (pm = 1
n , ηm = 20)

4.5.4 Performance assessment

The hypervolume metric (HV ) is used as a performance metric. A favourable hypervol-

ume (larger, for a minimisation problem) implies a better combination of proximity and

diversity. The approximation sets used in the HV calculation are the members of the

offline archive of all non-dominated points found during the search, since this is the set

most relevant to a posteriori decision-making. For reasons of computational feasibility,

prior to analysis the set is pruned to a maximum size of 100 using the SPEA2 truncation

procedure (Zitzler et al., 2002). Note that prior to calculating the HV , we normalize all

objective values to be within the range [0, 1] using the nadir point (which assumes equal

relative importance of normalised objectives across the search domain). The reference

point for the hypervolume calculation is set as ri = 1.2, i = 1, 2, · · · ,M .

Performance comparisons between algorithms based on the HV metric are made accord-

ing to a rigorous non-parametric statistical framework, drawing on recommendations in

Zitzler et al. (2003). Specifically, we first test the hypothesis that all algorithms perform

equally using the Kruskal-Wallis test (Hollander and Wolfe, 1999). If this hypothesis is

rejected at the 95% confidence level, we then consider pair-wise comparisons between

the algorithms using the Wilcoxon-ranksum two-sided comparison procedure (Hollander
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and Wolfe, 1999) at the 95% confidence level, employing the Šidák correction to reduce

Type I errors (Curtin and Schulz, 1998).

4.6 Experiment results

First, the Pareto fronts obtained by PICEA-w are visually plotted. Then, the statistical

comparison results of PICEA-w and other competitor decomposition based algorithms

are presented.

4.6.1 Non-dominated Pareto fronts and the co-evolved weights
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Figure 4.15: Pareto fronts and weights obtained by PICEA-w for WFG41-2 to
WFG44-2.
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Figure 4.16: Pareto fronts and weights obtained by PICEA-w for WFG45-2 to
WFG48-2.

To visualise the performance of PICEA-w, we plot the obtained Pareto front (that has

the median HV metric value across the 31 runs) as well as the distribution of the co-

evolved weights of the 2-objective WFG4X problems in Figures 4.15 and 4.16.

From the results, it is observed that, for most of problems, the obtained solutions spread

evenly along the Pareto front, that is, the performance of PICEA-w is robust with

respect to the problem geometry. In addition, compared with Figures 4.13 and 4.14,

the distribution of the obtained weights also approximates to the optimal distribution

for each problem (this will be further discussed in Section 4.7.3). For example, problem

WFG43-2 features strong concavity, and then the distribution of the obtained weights

is dense in the centre while sparse at the edge. WFG44-2 features strong convexity, and

thus the distribution of the co-evolved weights is sparse in the centre while dense at the

edge. A much clearer observation can be made on problems WFG47-2 and WFG48-2.
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On these two problems the co-evolution leads most of the weights to be constructed in

the right place, intersecting the Pareto optimal front.

4.6.2 Statistical results

Results of the Kruskal-Wallis tests followed by pair-wise Wilcoxon-ranksum plus Šidák

correction tests based on the performance metric are provided in this Section. The

initial Kruskal-Wallis test breaks the hypothesis that all five algorithms are equivalent.

Therefore the outcomes of pair-wise statistical comparisons for 2-, 4-, 7- and 10-objective

WFG problems are shown in Tables 4.5, 4.6 4.7 and 4.8 respectively. A smaller rank

value indicates better performance; ordering within a rank is purely alphabetical.

HV results for 2-objective problems

Table 4.5: HV results for 2-objective instances

WFG Ranking by Performance WFG Ranking by Performance

1 UMOEA 1 UMOEA
41

2
DMOEA/D EMOSA 42 2 PICEA-w EMOSA
PICEA-w 3 DMOEA/D

3 RMOEA 4 RMOEA

43
1

DMOEA/D EMOSA

44
1

DMOEA/D EMOSA
PICEA-w PICEA-w

2 UMOEA 2 UMOEA
3 RMOEA 3 RMOEA

45
1

DMOEA/D EMOSA

46

1 UMOEA
PICEA-w UMOEA

2
DMOEA/D EMOSA

2 RMOEA PICEA-w
3 RMOEA

47

1 PICEA-w UMOEA

48

1 PICEA-w
2 DMOEA/D EMOSA 2 UMOEA
3 RMOEA 3 DMOEA/D EMOSA

4 RMOEA

For 2-objective problems, it is observed from Table 4.5 that

(i) UMOEA performs the best for WFG41, WFG42, WFG45 and WFG46 for which

the Pareto optimal fronts are neutral. However, UMOEA exhibits an inferior

performance on the rest of the four problems. Specifically, its performance is worse

than PICEA-w on three out of the four problems, and is worse than DMOEA/D

and EMOSA on WFG43 and WFG44.

(ii) The three decomposition based algorithms that use adaptive weights have com-

parable performance on five problems: WFG41, WFG43, WFG44, WFG45 and
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WFG46. On WFG47 and WFG48, DMOEA/D and EMOSA have comparable per-

formance and both are worse than PICEA-w. On WFG42, PICEA-w and EMOSA

have comparable performance and they both perform better than DMOEA/D.

(iii) RMOEA is the worst optimiser for all of the problems.

HV results for 4-objective problems

Table 4.6: HV results for 4-objective instances.

WFG Ranking by Performance WFG Ranking by Performance

1 PICEA-w 1 PICEA-w EMOSA
41 2 DMOEA/D EMOSA 42 2 DMOEA/D

3 RMOEA UMOEA 3 RMOEA UMOEA

1 EMOSA PICEA-w 1 PICEA-w EMOSA
43 2 DMOEA/D 44 2 DMOEA/D

3 RMOEA 3 RMOEA
4 UMOEA 4 UMOEA

1
DMOEA/D EMOSA 1 PICEA-w

45 PICEA-w 46 2 DMOEA/D EMOSA
2 RMOEA 3 RMOEA UMOEA
3 UMOEA

47

1 PICEA-w

48

1 PICEA-w
2 DMOEA/D EMOSA 2 DMOEA/D EMOSA
3 RMOEA 3 RMOEA
4 UMOEA 4 UMOEA

For 4-objective problems, it is observed from Table 4.6 that:

(i) The performance of UMOEA degrades. It is inferior to the three adaptive weights

based algorithms for all the problems. It even performs worse than RMOEA for

five out of the eight problems, and on the other three problems (WFG41, WFG42

and WFG46) UMOEA performs comparably with RMOEA.

(ii) PICEA-w is always amongst the top performing algorithms. It is exclusively the

best for four problems, i.e., WFG41, WFG46, WFG47 and WFG48.

(iii) With respect to EMOSA and DMOEA/D, it is found that EMOSA exhibits a

better or comparable performance for all of the problems.

(iv) RMOEA performs better than UMOEA, but is worse than the three adaptive

weights based algorithms.

HV results for 7-objective problems

As the number of objectives increases to 7, we can observe from Table 4.7 that the

performance of PICEA-w becomes more promising:
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Table 4.7: HV results for 7-objective instances.

WFG Ranking by Performance WFG Ranking by Performance

1 PICEA-w 1 PICEA-w
41 2 DMOEA/D EMOSA 42 2 DMOEA/D EMOSA

3 RMOEA 3 RMOEA
4 UMOEA 4 UMOEA

1 PICEA-w 1 PICEA-w
2 EMOSA 2 DMOEA/D EMOSA

43 3 DMOEA/D 44 3 RMOEA
4 RMOEA 4 UMOEA
5 UMOEA

45

1 EMOSA PICEA-w

46

1 EMOSA PICEA-w
2 DMOEA/D RMOEA 2 DMOEA/D
3 UMOEA 3 RMOEA

4 UMOEA

47

1 PICEA-w

48

1 PICEA-w
2 EMOSA 2 EMOSA
3 DMOEA/D RMOEA 3 DMOEA/D RMOEA
4 UMOEA 4 UMOEA

(i) PICEA-w ranks exclusively or jointly (on WFG45 and WFG46) the best for all of

the problems.

(ii) Among the remaining four algorithms, EMOSA is the most effective one. It per-

forms better than DMOEA/D for five out of the eight problems, and is comparable

to DMOEA/D for the remaining three problems.

(iii) Although DMOEA/D is worse than PICEA-w and EMOSA, it is better than

RMOEA for most of the problems.

(iv) RMOEA performs better than UMOEA for all the problems. UMOEA performs

the least well.

HV results for 10-objective problems

Similar results to the 7-objective problems are found for the 10-objective problems. Key

observations are as follows: PICEA-w consistently performs the best for all problems,

followed by EMOSA and then DMOEA/D. With respect to RMOEA and UMOEA,

RMOEA is better for all problems.

Supplementary convergence and diversity results

To further investigate the performance of the algorithms, we also separately calculated

the proximity (as measured by generational distance – GD) and diversity (as measured

by the spread metric – ∆) measures for the 2-, 4-, 7- and 10-objective WFG41 problems.
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Table 4.8: HV results for 10-objective instances

WFG Ranking by Performance WFG Ranking by Performance

1 PICEA-w 1 PICEA-w
2 DMOEA/D EMOSA 2 EMOSA

41 3 RMOEA 42 2 DMOEA/D
4 UMOEA 3 RMOEA

5 UMOEA

1 PICEA-w 1 PICEA-w
2 EMOSA 2 EMOSA

43 3 DMOEA/D 44 3 DMOEA/D
4 RMOEA 4 RMOEA
5 UMOEA 5 UMOEA

1 EMOSA PICEA-w 1 PICEA-w
45 2 DMOEA/D RMOEA 46 2 DMOEA/D EMOSA

3 UMOEA 3 RMOEA
4 UMOEA

1 PICEA-w 1 PICEA-w EMOSA
8 2 EMOSA DMOEA/D 9 2 DMOEA/D

3 RMOEA 3 RMOEA
4 UMOEA 4 UMOEA

The Pareto optimal front of WFG41 is the surface of an M -dimension hyper-sphere with

radius r = 2 in the first quadrant, which is amenable to uniform sampling. We sample

20,000 points as the reference set for calculating the performance metrics.

Table 4.9: GD and ∆ results for WFG41 problems

WFG Ranking by GD WFG Ranking by ∆

41-2

1 UMOEA

41-2
1

DMOEA/D EMOSA
2 DMOEA/D PICEA-w PICEA-w
3 EMOSA 2 UMOEA
4 RMOEA 3 RMOEA
1 UMOEA 1 EMOSA PICEA-w
2 PICEA-w 2 DMOEA/D

41-4 3 DMOEA/D EMOSA 41-4 3 RMOEA
4 RMOEA 4 UMOEA

41-7

1 UMOEA

41-7

1 PICEA-w
2 PICEA-w 2 DMOEA/D EMOSA
3 DMOEA/D EMOSA 3 RMOEA
4 RMOEA 4 UMOEA

41-10

1 UMOEA

41-10

1 PICEA-w
2 PICEA-w 2 EMOSA
3 DMOEA/D EMOSA 3 DMOEA/D RMOEA
4 RMOEA 4 UMOEA

From Table 4.9, it is found that

• in terms of the convergence performance, UMOEA performs the best while RMOEA

performs the worst for all four problems. Among the three adaptive weights
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based algorithms, PICEA-w outperforms DMOEA/D and EMOSA for WFWG41-

4, WFG41-7 and WFG41-10. For WFG41-2 DMOEA/D is comparable to PICEA-

w, and both algorithms are better than EMOSA.

• in terms of the diversity performance PICEA-w is amongst the top performing

algorithms for all the four problems. EMOSA performs competitively with PICEA-

w on WFG41-2 and WFG41-4, however, it is worse than PICEA-w on the other

two problems. DMOEA/D is worse than EMOSA and PICEA-w on the three

many-objective problems. However, it is better than RMOEA on all problems

except for WFG41-10 where DMOEA/D is comparable to RMOEA. Comparing

UMOEA with RMOEA, RMOEA is worse on WFG41-2 while better on the other

three many-objective problems.

4.7 Discussion

4.7.1 General discussion

UMOEA, which employs a set of pre-defined evenly distributed weights, faces difficulties

on many-objective problems or problems having extremely complex geometry. The rea-

son is that, as mentioned earlier, evenly distributed weights lead to a poor distribution

of solutions for problems whose geometry is not similar to a hyper-plane. Simultane-

ously, as the employed weights are fixed, UMOEA can only obtain a limited number of

solutions. These are are insufficient to approximate the entire Pareto optimal front, in

particular, for many-objective problems. Certainly, when the problem is low-dimension

and has a neutral (i.e., not extremely complex) Pareto optimal front, UMOEA performs

well, e.g., the 2-objective WFG41, WFG42, WFG45 and WFG46.

RMOEA, which employs weights that are randomly generated in each generation, per-

forms worse than UMOEA for low-dimension problems. The reason is that, the search

directions in RMOEA are not fixed as in UMOEA but keep changing during the whole

search process. This leads RMOEA to have an inferior convergence performance com-

pared with UMOEA. However, RMOEA tends to perform better than UMOEA for

high-dimension problems. This is also due to the use of random weights, that is, ran-

dom weights guide the algorithm to search different regions of the Pareto optimal front,

therefore lead to a set of diversified solutions, i.e., a better diversity performance.

The three adaptive weights based decomposition based algorithms perform better than

UMOEA and RMOEA for the four 2-objective problems (WFG43, WFG44, WFG47

and WFG48) that have complex Pareto optimal fronts and most of the many-objective

problems. This indicates that the weights adaptation strategies employed in these al-

gorithms are helpful to handle the issue of problem geometry and many-objective op-

timisation. Given a closer examination, it is found that amongst the three algorithms,
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the co-evolution based weights adaptation is the most effective one. It appropriately

balances exploration and exploitation and so enables PICEA-w to perform well on most

problems. Moreover, during co-evolution, weights gradually learn the geometry of the

problem and evolve towards the optimal distribution. This leads PICEA-w to be less

sensitive to the problem geometry.

4.7.2 The effect of the angle θ

On the evaluation of candidate solutions in PICEA-w, a parameter θ, which measures

the angle between a candidate solution and a weight vector, is employed to implement

local selection. As mentioned earlier, the use of θ, i.e., local selection, has a positive

effect on improving the diversity performance of PICEA-w, and obtaining the entire

Pareto optimal front (Wang et al., 2014). Next, we demonstrate the effectiveness of this

strategy.
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Figure 4.17: The Pareto front obtained by PICEA-w1 and PICEA-w2 for WFG47-2.

The 2- and 4-objective WFG47 are selected as test problems. Two different settings of θ

are examined. The first setting configures θ as π
2 radians during the whole search process,

which indicates that the evaluation of candidate solutions is performed globally. That is,

every solution competes against all the other solutions. The second strategy configures

θ as π
18 radians during the whole search process, which indicates that the evaluation of

candidate solutions is always executed locally. That is, every solution competes against

its neighbours. All the other parameters are the same as those adopted in Table 4.4.

We use PICEA-w1 and PICEA-w2 to denote PICEA-w using θ = π
2 and θ = π

18 radians,

respectively. These two variants are compared with PICEA-w in which θ is adjusted by

Equation 4.8, that is, θ linearly increases from zero to π
2 radians. Experimental results in

terms of the HV metric are shown in Table 4.10. The symbol ‘−’, ‘=’ or ‘+’ means that
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the considered algorithm performs statistically worse, equal or better than PICEA-w at

95% confidence level.

Table 4.10: HV comparison results (mean±std) for WFG47 and WFG48.

PICEA-w1 PICEA-w2 PICEA-w
WFG47-2 0.5028±0.0131 (−) 0.5730±0.0158 (=) 0.5910±0.0109
WFG47-4 0.6346±0.1212 (−) 0.7615±0.0219 (−) 0.7961±0.0182

From the results we can observe that (i) PICEA-w1 performs worse than PICEA-w for

all problems; and (ii) PICEA-w2 performs comparably with PICEA-w on the 2-objective

WFG47 while performing worse than PICEA-w on WFG47-4.

The poor performance of PICEA-w1 in terms of the HV metric is caused by the fact

that PICEA-w1 has not found the entire Pareto optimal front, see Figure 4.17. The

reason could be that each solution globally competes with other solutions, which leads

to some potentially useful, though dominated, solutions to be removed at the early

stage of the evolution. For example, see Figure 4.18, although solutions in region A are

dominated, they are helpful to search for Pareto optimal solutions in region B. Using a

small θ initially is helpful to keep those locally good solutions in region A and therefore

obtaining the entire Pareto optimal front.

Figure 4.18: The initial objective vectors and the Pareto optimal front for WFG47-2.

The reason for the poor performance of PICEA-w2 is likely to be that local selection

has a deleterious effect on convergence. This operation might assign higher fitness to

some dominated solutions. Although this is helpful from a diversity perspective, it slows

down convergence speed as some dominated solutions are stored during the search. This

side effect becomes more significant on higher-dimension problems since convergence is

inherently more difficult to achieve on many-objective fitness landscapes. Equation 4.8,

used to adjust θ, though simple, is an effective strategy to balance convergence and



Chapter 4 Preference-inspired co-evolutionary algorithm using weight vectors 133

diversity performance. In future, some other strategies will be investigated in order to

provide a more effective strategy for configuring θ.

4.7.3 The distribution of the co-evolved weights

As previously mentioned, during the search weights are also evolved towards the optimal

distribution. Comparing Figure 4.13 and Figure 4.14 with Figure 4.15 and Figure 4.16,

we can observe that for most of the problems the distribution of the co-evolved weights

approximates to an optimal distribution. Furthermore, to make a statistical analysis, the

two-sample multi-dimensional Kolmogorov-Smirnov test at 95% confidence level (Justel

et al., 1997) is employed to test the null hypothesis that the co-evolved weights and

the optimal weights are drawn from the same distribution. Comparative results are

presented in Table 4.11. p ≤ 0.05 means that the hypothesis is rejected, that is, the

tested two samples are not from the same distribution. Alternatively, p ≥ 0.05 means

that the hypothesis cannot be rejected.

To generate a set of optimal weights, first, Nw solutions from the Pareto optimal front

are randomly sampled. The selected solutions are then scaled and normalised to create

a valid weight. This procedure is repeated 31 times to get 31 sets of optimal weights.

The co-evolved weight vectors from each of the 31 runs are compared with the 31 sets

of the optimal weights, separately.

Table 4.11: Statistical comparison results of the distribution of optimal weights and
the co-evolved weights for 2-objective problems.

WFG41 WFG42 WFG43 WFG44

p 0.1231 0.1011 0.2035 0.1208

WFG45 WFG46 WFG47 WFG48

p 0.1253 0.1217 0.1041 0.2868

Table 4.11 shows that none of the null hypotheses is rejected. This indicates that the

co-evolved weights and the optimal weights are drawn from the same distribution. This

could also serve as a reason for the good performance of PICEA-w.

4.8 Summary

Decomposition based algorithms comprise a popular class of evolutionary multi-objective

optimiser, and have been demonstrated to perform well when a suitable set of weights are

provided. However, determining a good set of weights a priori for real-world problems is

usually not straightforward due to a lack of knowledge of the underlying problem struc-

ture. This Chapter proposes a new decomposition based algorithm for multi-objective

optimisation, PICEA-w, that eliminates the need to specify appropriate weights in ad-

vance of performing the optimisation. Specifically, weights are adaptively modified by
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being co-evolved with candidate solutions during the search process. The co-evolution

enables suitable weights to be adaptively constructed along the optimisation process

and thus guiding the candidate solutions towards the Pareto optimal front effectively.

Through rigorous empirical testing, we demonstrate the benefits of PICEA-w compared

with other leading decomposition-based algorithms. The chosen test problems encom-

pass the range of problem geometries likely to be seen in practice, including simultaneous

optimisation of up to ten conflicting objectives. The main findings are as follows:

(1) PICEA-w is less sensitive to the problem geometry, and outperforms other leading

decomposition based algorithms on many-objective problems. Moreover, it is shown

that when guiding candidate solution towards the Pareto optimal front, weights also

evolve towards the optimal distribution.

(2) UMOEA faces difficulties on problems having a complex Pareto optimal front and

many-objective problems. The poor performance of UMOEA is due to a lack of

solution diversity. However, UMOEA is found to perform the best in terms of

convergence. This could be explained by the fact that the employed weights are

kept fixed during the whole search process, which guide candidate solutions towards

Pareto optimal front directly.

(3) RMOEA also faces difficulties on problems having a complex Pareto optimal front.

Noticeably, although it performs worse than UMOEA on bi-objective problems, it

performs better than UMOEA on many-objective problems. The reason is that,

for bi-objective problems, the employed evenly distributed weights are sufficient to

describe the entire Pareto optimal front and therefore the diversity performance of

UMOEA is not much inferior to RMOEA. However, UMOEA demonstrates a better

convergence performance than RMOEA. For many-objective problems, the limited

number of weights employed in UMOEA is not sufficient to approximate the entire

Pareto optimal front while the use of random weights enables the search to explore

different regions of the Pareto optimal front, producing better solution diversity.

Lastly, although adaptive weights are helpful in dealing with the issues – problem ge-

ometry and many-objective optimisation – adapting weights degrades the algorithm’s

convergence performance. Therefore, it is worth mentioning that if the underlying prob-

lem knowledge, such as problem geometry, is known a priori, it is better to employ

weights that are pre-defined with an optimum distribution.



Chapter 5

Parameter sensitivity study for

PICEAs

5.1 Introduction

Chapters 3 and 4 have demonstrated the effectiveness of the PICEA concept. PICEA-

g, which co-evolves goal vectors with candidate solutions, outperforms four best-in-

class algorithms on many-objective problems, and PICEA-w, which co-evolves weight

vectors with candidate solutions, overcomes some difficulties faced by decomposition

based algorithms. However, it is unknown whether PICEAs are robust with respect to

their chosen parameter settings. Eliminating the need for tuning parameters settings

makes PICEAs robust and easy to use, especially for a non-expert user.

This Chapter studies the sensitivities of parameters in PICEAs. A variety of sensi-

tivity analysis approaches are available, ranging from local methods that vary a single

parameter at a time, to global methods that investigate the entire parameter space

simultaneously. In this study, we first employ a global sensitivity analysis method,

the Sobol’ variance decomposition approach (Sobol, 1993, 2001; Saltelli et al., 2010),

to determine the relative importance of the parameters controlling the performance of

PICEAs. Arising from this approach, we investigate the effect of key parameters and

the genetic operators. This analysis enables us to gain insight of the robustness of the

algorithms and also to provide suggestions for parameter settings.

The rest of this Chapter is structured as follows. Section 5.2 discusses parameter sensi-

tivities in a global manner using the Sobol’ variance decomposition approach. Section 5.3

experimentally studies the sensitivities of key parameters. Section 5.4 summarises this

Chapter.
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5.2 Parametric sensitivity analysis: a global manner

5.2.1 The Sobol’ variance decomposition method

A number of different global sensitivity analysis approaches have been proposed (Sheri-

dan, 2008). The Sobol’ variance decomposition (Sobol, 1993) is chosen due to its effec-

tiveness compared with other global sensitivity analysis approaches (Tang et al., 2007).

The first-order effect Si and the total-order effect STi are two widely used measures in the

Sobol’ variance decomposition method. Considering a model Y = f(x1, x2, · · · , xh) that

has h parameters, Si measures the expected reduction in variance that can be achieved

if one input parameter, xi, is fixed. Meanwhile, STi measures the remaining expected

variance if all parameters except xi are fixed.

Mathematically, Si is defined as follows (Hadka and Reed, 2012):

Si =
Vxi [Ex∼i(Y |xi)]

V (Y )
(5.1)

where xi is the ith parameter and x∼i represents a container that contains all the param-

eters except xi. Ex∼i(Y |xi) in the numerator represents the expected value of Y , taken

over all possible values of x∼i when xi is fixed. Vxi [Ex∼i(Y |xi)] measures the variance

of Ex∼i(Y |xi), taken over all possible values of xi.

Si only measures the effect of a single input parameter to the variance of the output.

It has not taken into account the interactions Vij between two input parameters. Vij is

defined as follows:

Vij = V (E[Y |xi, xj ])− V (E[Y |xi])− V (E[Y |xj ]) (5.2)

where V (E[Y |xi, xj ]) describes the joint effect of the pair of parameters (xi, xj) on Y .

This is known as the second-order effect. Higher-order effects can be computed similarly,

e.g. the variance of the third-order effect of three parameters xi, xj and xk is:

Vijk = V (E[Y |xi, xj , xk])− Vij − Vjk − Vik − Vi − Vj − Vk (5.3)

STi denotes the sum of the first and higher order effects of xi. Taking a model with

three input parameters (h = 3) as an example, the total order effect of x1 is ST1 =

S1 + S12 + S13 + S123, where S12 and S13 are the second-order effect of x1, S123 is the

third-order effect of x1. Obviously, computing the total-order effect using Equation 5.3

is not appropriate when h is large. However, from Equation 5.1, S∼i can be extended

as:
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S∼i =
Vx∼i [Exi(Y |x∼i)]

V (Y )
(5.4)

S∼i represents the first order effect of x∼i. Therefore, V (Y ) − Vx∼i [Exi(Y |x∼i)] is the

contribution of all terms in the variance decomposition that includes xi (Saltelli et al.,

2010). Thus, STi can be computed by:

STi = 1− Vx∼i [Exi(Y |x∼i)]
V (Y )

(5.5)

In practice, Si and STi can be computed by evaluating the model at a number of sample

points. These points can be selected by using the Monte Carlo method. Each point

corresponds to a model output. In this study, all the Monte Carlo samples of the

parameter space are generated using the Sobol’ quasi-random sequence sampling method

(Sobol and Kucherenko, 2005). Si and STi are calculated by the approach presented in

Saltelli (2002) with q × (h+ 2) runs, where h is the number of parameters, and q is the

sample size which is set to 2h as suggested in Saltelli (2002).

To validate that the sensitivity results are caused by the effect of parametrisation rather

than the stochastic effects, the bootstrap technique called the moment method is applied

to evaluate the confidence level of the Sobol’ indices, producing 95% confidence intervals.

The reason for choosing the moment method is that it produces reliable results using a

small resampling size (Archer et al., 1997). In this study the resampling size B is set to

2 000 as suggested in Saltelli et al. (2010). Assuming that we have determined Si and

STi for each parameter of the model Y = f(x1, x2, · · · , xh), the Bootstrap Confidence

Interval (BCI) for each parameter is computed as follows, taking Si as an example (BCI

for STi is calculated in a similar way):

(i) Resample B groups of the parameters, (x1, x1, · · · , xh), with which we can then

obtain B outputs of Y . Si is recalculated at each sampling time. This produces a

bootstrap estimate of the sampling distribution of the sensitivity indices, Sbi , where

b = 1, 2, · · · , B.

(ii) BCI for Si with 95% confidence is then determined by Si ± 1.96 × std(Si), where

std(Si) =

√
1

B−1

∑B
b=1 (Sbi −

1
B

∑B
b=1 S

b
i )

2
.

When the value of Si or STi exceeds the BCIs of Si or STi , we say the sensitivity indices

cannot be reliably computed. In other words, the variance of Si or STi is mostly caused

by stochastic effects. More precisely, a large confidence level of Si or STi is due to the fact

that the effect of parameterization is not significantly stronger than stochastic effects

(Hadka and Reed, 2012).
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5.2.2 Experiment description

There are h = 7 parameters in both PICEA-g and PICEA-w. These parameters are

the number of function evaluations, NFS, the population size of candidate solutions, N ,

the number of preferences, Np, the crossover rate of SBX, pc, the mutation rate of PM,

pm, the SBX distribution index, ηc and the PM distribution index, ηm. The sampled

parameter space of these parameters is shown in Table 5.1. Parameter Np is the number

of preferences used in the PICEAs. Np refers to Ng in PICEA-g, and Nw in PICEA-w.

Table 5.1: The sampled parameter space.

values

NFS 2500 5000 10000 15000 20000 25000 30000 35000 40000 50000
N 20 50 100 150 200 300 400 500 700 1 000
Np 20 50 100 150 200 300 400 500 700 1 000
pc 0.01 0.05 0.1 0.2 0.4 0.5 0.7 0.8 0.9 1
ηc 1 5 10 20 50 100 200 300 400 500
pm 0.01 0.05 0.1 0.2 0.4 0.5 0.7 0.8 0.9 1
ηm 1 5 10 20 50 100 200 300 400 500

Parameter NFS is sampled from 2 500 to 50 000 times, and parameters N and Np range

from 20 to 1000. Such configurations aim to permit reasonable execution times, while

providing meaningful results. The configuration of parameters pc and pm covers the

entire feasible range [0,1]. The distribution indices of SBX (ηc) and PM (ηm) are based

on the choice used by Purshouse and Fleming (2007).

As mentioned earlier, the sample size q is suggested to be 2h, that is, q = 27 = 128 groups

of parameter settings are sampled. For each test problem, the testing algorithm is run

q × (h+ 2) = 128× (7 + 2) = 1152 times, which correspondingly produces 1152 Pareto

approximation sets. The HV metric is then calculated for each Pareto approximate

set. Thus, the final results comprise of 1152 parameter settings and their corresponding

end-of-run HV values. Additionally, for each problem the testing algorithm is run

independently 31 times in order to facilitate a statistical analysis.

Test problems are chosen from the WFG test suite. Specifically, all the even-numbered

WFG problems are invoked for 2-, 4- and 7-objective instances. For each test problem,

the WFG position parameter and distance parameter are set to 18 and 14, that is, each

problem has n = 18 + 14 = 32 decision variables.

5.2.3 Experiment results

Figure 5.1 shows the first-order (Si) and total-order (STi ) effects of the parameters in

PICEA-g in terms of the HV metric. Similarly, the results for PICEA-w are shown

in Figure 5.2. Si represents the contribution of a single parameter to the variance of

the HV distribution. STi measures the overall effect of a parameter to the variance of



Chapter 5 Parameter sensitivity study for PICEAs 139

 

 

2−2 4−2 6−2 8−2 2−4 4−4 6−4 8−4 2−7 4−7 6−7 8−7

η
m

p
m

η
c

p
c

N

N
g

NFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Less
important

More
important

(a) the first-order effect

 

 

2−2 4−2 6−2 8−2 2−4 4−4 6−4 8−4 2−7 4−7 6−7 8−7

η
m

p
m

η
c

p
c

N

N
g

NFS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Less
important

More
important

(b) the total-order effect

Figure 5.1: The sensitivity of an individual parameter in PICEA-g measured by the
Sobol’ variance decomposition method.
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Figure 5.2: The sensitivity of an individual parameter in PICEA-w measured by the
Sobol’ variance decomposition method.



Chapter 5 Parameter sensitivity study for PICEAs 141

the HV distribution. In each figure, the shaded grid corresponds to a problem instance

(x-axis) and one of the parameters (y-axis). For brevity in the x-axis label we use n−Y
to denote the problem WFGn− Y . For example, 2-4 refers to WFG2 with 4 objectives.

The intensity of the grid represents the importance of a parameter. A larger intensity

indicates that the corresponding parameter has a significant effect on algorithm perfor-

mance whereas a small intensity implies that the effect of changing the parameters is

negligible. In Figures 5.1 and 5.2, all the indices are reliable as the calculated indices are

all within the 95% BCIs. This implies that the sampling size q = 2h = 128 is sufficient.

Key observations are as follows:

(i) Combining both the first-order and the total-order effects, it is observed that the

parameter NFS is the most significant parameter for both PICEAs across most

problems. This indicates that PICEAs are user-friendly as the algorithm per-

formance is controlled for the most part by a single parameter. Parameterising

PICEAs should be easy in practice. A better performance can be obtained sim-

ply by lengthening the runtime of PICEAs, i.e., increasing the number of function

evaluations. Additionally, it is worth mentioning that NFS is not always the most

dominant parameter for all MOEAs. For example, it is demonstrated in Hadka and

Reed (2012) that in some MOEAs, such as ε-MOEA (Deb et al., 2005) that utilises

ε-dominance archives, the setting of ε-dominance is the most dominant component

for controlling the algorithm performance.

(ii) Amongst the remaining six parameters, population size, N and preference size, Np

are relatively more significant to algorithm performance. As the number of objec-

tives increases, these two parameters become more important. However, there is

an exception, that is, the influence of Np is not significant on WFG2 problems.

One reason might be that the Pareto optimal front of WFG2 problem is discon-

nected and only occupies a small portion of the objective-space. Therefore, a small

number of preferences are enough to guide the solutions approximate the entire

Pareto optimal front. Another reason might be that the reference point chosen for

the HV calculation is not appropriate; it cannot distinguish the quality of different

Pareto approximation sets. With respect to the four genetic operators, pm is the

most dominant, especially on the WFG2 problems.

5.3 Parametric sensitivity analysis: a local manner

This section discusses the effect of parameters in a local manner. The influence of five

parameters is investigated: one is the number of preferences and the other four param-

eters are associated with the genetic operator. The aim is to provide useful suggestions

with respect to the parameter settings for non-expert users.
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5.3.1 The effect of the number of preferences

Tables 5.2 and 5.3 present possible settings for Ng and Nw for different problems, re-

spectively. Configurations for other parameters are shown in Table 5.4. The WFG

benchmarks are selected as test problems. For each test problem, the algorithm is exe-

cuted for 31 independent runs.

Table 5.2: Parameter settings of Ng.

the number of goal vectors

M M × 10 M × 100 M × 500

2 20 200 1000

4 40 400 2000

7 70 700 3500

10 100 1000 5000

Table 5.3: Parameter settings of Nw.

M Nw

2 100 200 500

4 100 200 500

7 100 200 500

10 100 200 500

Table 5.4: Parameter settings of PICEAs.

N NFS SBX (pc) SBX (ηc) PM (pm) PM (ηm)

100 25000 1 15 1/n = 1/32 20

Figure 5.3(a) and Figure 5.3(b) present representative experimental results arising from

these different settings when PICEA-g and PICEA-w are applied to 4-objective WFG

problems, respectively. From the Figures, we can observe that for most problems (except

for WFG2), the larger the number of preferences used, the better the performance that

PICEAs can deliver. On the WFG2 problem, increasing the number of preferences does

not necessarily produce better algorithm performance. This can also be observed from

Figure 5.1 and Figure 5.2 where parameter Np does not play a crucial role on WFG2

problems.

Additionally, it is obvious that as the number of preferences increases there is a cor-

responding increase in the resulting computational cost. Clearly, choice of a suitable

value for Np demands an appreciation of the trade-off between computational effort and

performance. Although only results on 4-objective WFG problems are provided above,

similar experiments were performed on WFG problems with 2, 7 and 10 objectives, with

similar outcomes.
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Figure 5.3: The performance of PICEAs on 4-objective problems for different numbers
of preferences.
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5.3.2 The effect of the genetic operator parameters

Experiment description

In PICEAs SBX and PM are applied as genetic operators. This section studies the effect

of the two genetic operators. Two parameters (i.e., pc and ηc) are considered for the SBX

operator. pc is the probability of applying crossover to a pair of parent solutions, and

ηc is the magnitude of the expected variation from the parent values. The smaller the

value for ηc, the larger the variation, although this also depends on the distance between

the parent values (Deb et al., 2007). Note that originally there is another parameter pe

in the SBX operator which controls the probability of exchanging the child values for a

decision variable between the child solutions. However, most of the time (e.g. Deb et al.,

2002a; Zhang and Li, 2007) this parameter is set to zero. Thus, in this experiment, pe is

also set to zero for simplicity. There are two controllable parameters pm and ηm in the

PM operator: – pm is the probability of applying mutation to a pair of parent solutions,

and ηm is the magnitude of the expected mutation from the parent values. The smaller

the value for ηm, the larger the mutation.

The first experiment studies parameter settings for the SBX operator, i.e., pc and ηc. The

PM parameters are set constantly as pm = 1
n = 1

32 , ηm = 20. The second experiment

studies parameter settings of the PM operator, i.e., pm and ηm. The SBX operator

parameters are set as pc = 0.9, ηc = 20.

Table 5.5 and Table 5.6 show the genetic operator settings for each experiment, respec-

tively. For each parameter, six values are sampled from a wide range of the parameter

space, based on the study of Purshouse and Fleming (2007), and thus produce 36 groups

of parameter settings for each experiment. The other parameters are set as N = 100,

Np = 100, NFS = 25000 for both experiments. For each group of parameter setting, the

algorithm is executed for 31 independent runs in order to enable a statistical analysis.

Table 5.5: The SBX operator parameter settings.

SBX parameter Values

pc 0.01 0.1 0.2 0.5 0.8 1

ηc 1 5 10 50 100 500

Table 5.6: The PM operator parameter settings.

PM parameter Values

pm 0.01 0.1 0.2 0.5 0.8 1

ηm 1 5 10 50 100 500
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Figure 5.4: The SBX experimental results for PICEA-g.

Results of varying the recombination operator SBX

Algorithm performance associated with each pair of parameter settings is presented by

a grayscale square on the control map. Performance is measured by the HV metric.

The intensity of the shade represents algorithm performance – the darker the shade,

the better the performance. Control maps shown in Figure 5.4 and Figure 5.5 show the

results for PICEA-g and PICEA-w, respectively.

From Figure 5.4 and Figure 5.5 the following key observations can be made.

(i) The SBX parameters behave similarly on both the PICEAs. Different parameter

combinations result in different algorithm performance. Among the test problems,

algorithm performance varies more markedly for the WFG2 and WFG8 problems.

The reason might be that the WFG2 problem has disconnected Pareto fronts and

WFG8 problem features strong non-separability and parameter-dependency. These

characteristics create difficulty in generating good solutions.

(ii) Both the PICEAs are less sensitive on parameter pc. Their performance is more

influenced by parameter ηc. For all the problems, the smaller the ηc, the better
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Figure 5.5: The SBX experimental results for PICEA-w.

the algorithm performance. To summarise, we find that ηc ∈ [1,10] and pc ∈ [0.5,1]

are good settings for the SBX operator.

Results of varying the mutation operator PM

Control maps of PICEA-g and PICEA-w with different mutation parameter settings are

shown in Figure 5.6 and Figure 5.7. It is observed from the results that the PM param-

eters behave similarly on both the PICEAs. Different parameter combinations result in

different algorithm performance. The algorithm performance degrades gradually from

the top-left of the control map to the bottom-right of the control map. A PM operator

configured with a small pm and a large ηm leads to good performance. Overall, the

suggested parameter settings for the PM operator are pm ∈ [0.01,0.1] and ηm ∈ [10,500].
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Figure 5.6: The PM experimental results for PICEA-g.

5.4 Summary

This Chapter analyses parameter sensitivities of PICEA-g and PICEA-w. It is found

that the performance of both the PICEAs is largely determined by the number of func-

tion evaluations. This indicates that parameter configuration for PICEAs is easy in

practice – increasing the number of function evaluations should directly result in better

performance. In addition to the parameter NFS, the number of preferences also plays an

important role on algorithm performance. The more preferences that are co-evolved, the

better the performance that the algorithm delivers, although this improvement gradually

becomes smaller.

In terms of the genetic operator configuration, it is found for the SBX operator that

the more dominant parameter, ηc, should adopt a small value, while the less dominant

parameter, pc, could be set to a large value. We also suggest applying a small value

for pm and a large value for ηm, for the PM operator. These recommended settings are

summarised in Table 5.7.

We have empirically studied the sensitivities of parameters in PICEA-g and PICEA-w,

and provide some suggestions for the parameter settings, see Table 5.7. However, the
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Figure 5.7: The PM experimental results for PICEA-w.

Table 5.7: The suggested SBX and PM parameter settings for PICEAs.

SBX PM

pc ηc pm ηm
PICEAs [0.5, 1] [1, 10] [0.01, 0.1] [10, 500]

effects of parameter settings are often problem-dependent. A more reliable approach may

be to develop a reliable and effective strategy, which enables the algorithm parameters to

be updated according to the problem posed (e.g., Eiben et al., 1999; Brest et al., 2006).

This have the potential to simultaneously reduce the burden of the users in terms of

parameter configuration and improve the algorithm performance.



Chapter 6

“Whatever works best for you”- a

unified approach for a priori and

progressive multi-criteria

decision-making

6.1 Introduction

Chapters 3 and 4 have proposed two effective MOEAs that are able to find a representa-

tive approximation of the Pareto optimal front. However, the ultimate goal of solving a

MOP is not to obtain the entire Pareto optimal front but it is to help a decision-maker to

consider the multiple objectives simultaneously and to identify a single Pareto optimal

solution which is satisfactory (Coello Coello et al., 2007, pp. 31-47), that is, assisting

multi-criteria decision-making (MCDM).

According to when decision-maker (DM) preferences are made, i.e., before, during or

after the search, MCDM can be divided into three classes – a priori, progressive and

a posteriori decision-making respectively. A posteriori decision-making attempts to

first find a good approximation of the entire Pareto optimal front and subsequently

to let the DM choose a preferred one. This scheme is effective on problems having 2

or 3 objectives. This is mainly because that obtaining a good approximation of the

Pareto optimal front for bi- and tri-objective MOPs is not difficult. In addition, having

known the entire Pareto optimal front, the DM can be confident of selecting his/her

preferred solutions. However, a posteriori decision-making scheme becomes less effective

on MaOPs. The reason is that approximation of the whole Pareto optimal front for

MaOPs is computationally expensive, and the DM is usually only interested in some

regions of the Pareto front (see Figure 6.1 for an example of a region of interest (ROI)

149
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to a decision-maker). Moreover, the number of Pareto optimal solutions required for

describing the entire Pareto optimal front of a MaOP is usually very large. Selecting

one preferred solution from all these solutions is cognitively difficult.

Figure 6.1: Illustration of a ROI.

Thus, to facilitate the process of decision-making, alternatives are to consider DM pref-

erences in an a priori or progressive way. In these cases, the search can be guided by

the preferences towards the ROI and away from exploring non-interesting solutions.

As reviewed in Section 2.5, a variety of methods have been introduced to model the pref-

erences of a decision-maker, such as aspiration level, trade-off rate, reference point/direc-

tion and utility function. Coupled with these preference models, a number of preference-

based MOEAs have also been proposed to search for solutions in the ROI to a decision-

maker. For example, MOGA uses aspiration level (Fonseca and Fleming, 1998a) , G-

MOEA uses trade-off rate (Branke, 2001), Thiele et al. (2009) incorporates reference

point into IBEA, Deb and Kumar (2007a) incorporates reference direction into NSGA-

II, Auger et al. (2009a) incorporates utility function into HypE. These approaches all

have their own advantages and disadvantages. However, these approaches share some

common points, that is, they are all based on a single preference model, and the DM

preferences are specified using numerical values.

However, it is argued that a decision-maker might have his/her preferred way to ex-

press his/her preferences. In addition, in some cases it is easier for a decision-maker to

express his preferences using aspiration levels and in others by weights or other forms.

Furthermore, a decision-maker might find it much easier to specify his preferences simply

by drawing, that is, brushing his preferred region in objective-space, rather than using

numerical values. Therefore, it would be helpful to develop a unified approach which

enables the decision-maker to articulate his preferences in different ways.
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This Chapter proposes such a unified evolutionary multi-objective optimisation and

decision-making approach. This approach is derived from the previously introduced

algorithm PICEA-g, and is denoted as iPICEA-g. The rest of this Chapter is structured

as follows. In Section 6.2 we describe our proposed approach, iPICEA-g. Section 6.3

shows the simulation results of using iPICEA-g with different preference formulations.

Section 6.4 presents a case study – applying iPICEA-g to solve a real-world problem

(aircraft control systems design) problem. Section 6.5 summarises this Chapter.

6.2 Articulating decision-maker preference into PICEA-g:

iPICEA-g

To meet the needs of different DMs, this section describes our proposed approach with

which iPICEA-g can cater simultaneously to different ways that a DM could specify

his preferences. Section 6.2.1 presents the formulation of iPICEA-g and Section 6.2.1

explains the rationale of iPICEA-g.

6.2.1 The unified approach iPICEA-g: formulation

Three parameters are defined for the unified approach, iPICEA-g: a reference point in

objective-space (zR), a weight (w) and a search range (θ). zR can be used to describe

the aspiration level or simply serves as a reference point; w = (w1, w2, · · · , wM ) is to

introduce the DM’s bias towards some objectives,
∑M

i=1wi = 1, ∀i, wi ≥ 0. By default wi

is set as 1/M , indicating that there is no bias towards any objective. The θ parameter

controls the size of ROI and its domain is [0, π2 ]. θ → π
2 leads to a search over a

large region of the Pareto optimal front while θ → 0 results in a search over a small and

targeted region of the Pareto optimal front. θ is set to π
4 radians by default. An example

in the bi-objective case is shown in Figure 6.2. Note that zR can also be unattainable;

this will be described later. Using the three parameters, the decision-maker can either

express his preferences using aspirations or weights.

(i) If the DM specifies preferences as aspiration levels, then we set zR as the aspira-

tions, wi = 1/M, i = 1, · · · ,M and θ = arccos(
√

M−1
M ). An example where M = 2,

w1 = w2 = 0.5 and θ = π
4 radians is shown in Figure 6.3(a).

(ii) If the DM specifies weights, then zR is set to the ideal point (if the ideal point

is unknown, an estimated value can be used instead), w represents the specified

weight vector and θ controls the search range, see Figure 6.3(b). For example,

when the DM specifies that objective f1 is twice as important as objective f2, w

will be (2
3 ,

1
3). Note that in this case, objective values need to be normalised: b
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Figure 6.2: Illustration of the parameters zR, w and θ.

(a) Aspirations (b) Weights

Figure 6.3: Illustration of searching with aspiration level and weights.

f i =
fi − zidei
znadi − zidei

(6.1)

(iii) Alternatively, the DM can specify his preferences using all three parameters to-

gether, see Figure 6.2.

In addition to specifying preferences using numerical values, the DM might find it cogni-

tively easier to specify preferences visually by drawing, that is, “brushing” his preferred

region in objective-space. According to the brushed region, see Figure 6.4(a), preference

information is elicited and then incorporated into an algorithm to search for solutions

in the preferred region, see Figure 6.4(b).
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(a) (b)

Figure 6.4: Illustration of the brushing technique.

Assuming that a set of solutions has been obtained and is presented to the DM, the DM

then brushes his preferred region. Based on the brushed region, the three parameters

are configured. Very naturally, there are two schemes to configure the parameters, as

illustrated in Figure 6.5, the brushed region is labelled as A.

(a) Scheme 1 (b) Scheme 2

Figure 6.5: Illustration of parameters calculation for the brushing technique.

(i) When parameters are configured in Scheme 1, as shown in Figure 6.5(a), the search

is similar to that using aspiration levels. Specifically, zR is created by the maximum

value of P1 and P2 in each objective. P1 and P2 are two extreme vectors of the

brushed region A. The extreme vector has the largest value in one objective.

Parameters w and θ are set as wi = 1/M, i = 1, · · · ,M , θ = arccos(
√

M−1
M ).
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(ii) When parameters are configured in Scheme 2, as shown in Figure 6.5(b), the search

is similar to that using weights. However, here weight w does not introduce a bias

but describes the search direction from the ideal point to the centre of region

A. Specifically, the three parameters are calculated as follows: first obtain the

normalised vector P ′1 and P ′2 of the extreme points P1 and P2, i.e., Pi = Pi/Li, i =

1, 2, where Li is the Euclidean distance from z∗ to Pi, and |P ′1z∗| = |P ′2z∗| = 1. z∗

is the estimated ideal point. Then, the search direction w is determined by vector
−−→
Pz∗, where P is the centre of P ′1 and P ′2. θ is then calculated by arccos(

−−→
Pz∗ ·

−−→
P ′1z

∗).

Additionally, zR is set to the ideal point z∗.

6.2.2 The unified approach iPICEA-g: rationale

According to the fitness assignment scheme of PICEA-g, it can be observed that if the

goal vectors are exclusively generated in a region then candidate solutions inside this

region will be more likely to survive during the search. The reason is that these candidate

solutions can dominate more goal vectors and so are more likely to gain higher fitness,

while candidate solutions outside this region can only dominate a few goal vectors and

so are likely to have lower fitness. Therefore, candidate solutions will exhibit a tendency

to approach to the specified region. This has also been demonstrated in Section 3.7.1

that by using different goal vector bounds, PICEA-g can approximate different parts of

the Pareto optimal front.

(a) Aspirations (b) Weights

Figure 6.6: Illustration of the goal vectors generated in different cases.

Inspired by this thinking, goal vectors in iPICEA-g are generated only within the region

defined by zR, w and θ. Specifically, goal vectors are generated in the shaded region in

Figures 6.6(a) and 6.6(b) when the preferences are modelled by aspirations and weights,

respectively. By co-evolving candidate solutions with these specially generated goal
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vectors, candidate solutions are expected to be guided towards the ROIs. Similarly, when

the preferences are specified using the brushing technique, goal vectors are generated in

a similar way as shown in Figures 6.6(a) and 6.6(b) for the Scheme 1 and Scheme 2,

respectively.

(i) When searching with aspiration levels, goal vectors are generated in both G1 and

G2, extending both towards and away from the ideal point. This is to handle the

case where the supplied zR is unattainable. In this case, the Pareto-dominance

relation is applied to determine whether a solution meets (i.e., dominates) a goal

vector or not.

(ii) When searching with weights, goal vectors are generated along the direction w and

spanned within θ radians, that is, goal vectors are generated in the shaded region

closed by points gmin, gf1, gf2 and gmax.

Note that in this case, instead of using the Pareto-dominance relation, iPICEA-g

employs the Pareto cone-dominance (Batista et al., 2011) to determine whether

a goal vector g is met by a candidate solution s or not. Specifically, gj is said

to be Pareto cone-dominated by si, if and only if the angle between the vector
−−→sigj and the vector −−−−→sigmin is not larger than θ. For example, in Figure 6.6(b),

g1 is Pareto cone-dominated by candidate solution s1 while g2 is not Pareto

cone-dominated by s1. Mathematically, given two feasible vectors x and y we

say x Pareto cone-dominates y, x �cone y : if and only if y ∈ C, where C is

a generated cone, given by weight vector w1,w2, · · · ,wM , i.e. C = {z : z =

λ1w1 + λ2w2, · · · , λMwM,
∑
λi = 1, ∀λi > 0}. Figure 6.7 illustrates the gener-

ated cone of x in a bi-objective space.

Figure 6.7: Illustration of a generated cone in 2-objective case.

Compared with Pareto-dominance, the use of Pareto cone-dominance can further em-

phasise the solutions along the reference direction, i.e., assigning higher fitness to these
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solutions. For example, in terms of Pareto-dominance, s2 can satisfy some goal vectors

and therefore might be retained in the evolution. However, s2 is not in the ROI. When

using Pareto cone-dominance, s2 cannot satisfy any goal vector, having the lowest fitness

and then would be more likely to be disregarded in the evolution.

In both cases the lower, gmin, and upper, gmax, goal vector bounds are estimated based

on the objective values of the non-dominated solutions f(S∗) found so far and the refer-

ence point, zR,

gmin = min (zRi ∪ fi(S∗)), i = 1, 2, · · · ,M

gmax = max (zRi ∪ fi(S∗)), i = 1, 2, · · · ,M
(6.2)

In addition to the benefit that iPICEA-g can handle different types of DM preference,

i.e. aspiration levels and weights, another major benefit of iPICEA-g is that multiple

ROIs can be explored by simultaneously generating goal vectors for all the ROIs. It is

also anticipated that iPICEA-g will perform well on many-objective problems because

PICEA-g has been demonstrated to have good performance in this environment.

Finally, the interaction of the analyst and the decision-maker when using iPICEA-g is

as follows:

(i) The analyst asks the decision-maker to specify his preferences. The preferences

can be expressed by aspirations, weights or brushed regions. Based on these pref-

erences, the three parameters (zR, w and θ) are configured.

(ii) Next, the algorithm sets the population size of candidate solutions, the number of

goal vectors and the stopping criterion. Subsequently, iPICEA-g is executed until

the stopping criterion is met.

(iii) The obtained solutions are presented to the decision-maker. If the decision-maker

is satisfied with the provided solutions then stop the search process. Otherwise,

ask the decision-maker to specify new preference information. For example, if

the decision-maker would like to narrow the range of the obtained solutions, then

reduce the setting of θ; if the decision-maker would like to bias one objective, e.g.

fi, then increase the value of wi. Certainly, decision-maker can specify a different

zR. After updating the preferences, return to step (ii).

An additional issue

Intuitively, driving the search towards a narrow region at the beginning of an optimisa-

tion process might cause a lack of population diversity as the candidate solutions may

have similar phenotypes and thus result in low search efficiency and converge to a local

optimum (Coello Coello et al., 2007, pp. 131-143). This issue is more likely to appear
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in a priori decision-making as the decision-maker might be only interested in a small

Pareto region, i.e., the search range is small. In order to avoid this problem, we suggest

starting the search with a large search range θ′ and gradually, decreasing θ′ to a preferred

search range θ. The decreasing process is defined:

θuse = θ′ − (θ′ − θ)× (
gen

maxGen
)α; (6.3)

where gen is the current generation, maxGen is the maximum generations, and α is to

control the speed of decreasing. As shown in Figure 6.8, θ is decreased from π
4 radians to

π
9 radians with different α. A large α corresponds to a slow decreasing speed in the early

stages and a fast decreasing speed in the later stages of evolution. α = 2 is suggested

for use after a preliminary analysis. The benefit of this strategy will be illustrated next

in Section 6.3.1.
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Figure 6.8: Illustration of the decrease process of θ with maxGen = 100.

6.3 Experiments

In this section, we examine the performance of iPICEA-g on different benchmarks from

the ZDT, DTLZ and WFG test suites. The selected test problems have convex, concave,

connected, as well as disconnected, Pareto front geometry. In all the experiments, the

simulated binary crossover (SBX, pc = 1, ηc = 15) and polynomial mutation (PM,

pm = 1/n per decision variable and ηm = 20, where n is the number of decision variables)

are applied as genetic operators. To quantitatively measure the performance of iPICEA-

g, the generational distance (GD) metric is employed to evaluate the convergence of the

obtained solutions.
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To gain insight into the effect that the parameters zR, w and θ have in iPICEA-g, we

study them in isolation in Section 6.3.1. In Section 6.3.2, we describe the performance

of iPICEA-g when searching with aspiration levels or weights for regions of interest in

an a priori preference articulation setting. In Section 6.3.3, we introduce what we refer

to as the brushing technique (Buja et al., 1996; Hauser et al., 2002), which is useful for

interactive preference articulation and decision-making.

6.3.1 Parameters and their effect in iPICEA-g

The bi-objective 20-variable DTLZ2, which has a concave Pareto optimal front is se-

lected as the test problem to study the effect of the three parameters. Note that unless

otherwise specified, in all the experiments of this study, the initial search range θ′ is set

as θ + π
18 radians.

The effect of zR

Figure 6.9: Solutions obtained by iPICEA-g for different zR.
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If the decision-maker wishes to have solutions around a point then we set zR as the

specified point. For example, the DM specifies (i) one infeasible (0.5,0.5) reference

point; (ii) one reference point (0.7,0.7) near the Pareto optimal front; and (iii) two

feasible reference points, (0.3,1.1) and (1.1,0.3). Figure 6.9 shows the obtained results

after an optimisation run for 250 generations with iPICEA-g for different cases. During

the optimisation the search direction is set as w = (0.5, 0.5) and the search range is set

as θ = π
4 . It can be seen in the Figure 6.9 that in every case iPICEA-g can find a set

of solutions close to the true Pareto front. This result is encouraging as it suggests that

iPICEA-g is able to handle both feasible and infeasible aspiration levels. Moreover, as the

fitness calculation in iPICEA-g preserves the Pareto-dominance relation and therefore,

unlike g-NSGA-II whose performance is degraded when zR approaches to the Pareto

optimal front (Ben Said et al., 2010), iPICEA-g performs well when zR is close to the

Pareto optimal front.

The effect of w

Assuming that decision-maker would like to specify a preference for one objective over

another, we use w. For example, the DM specifies that (i) both the objectives are equally

important then w = (1
2 ,

1
2) or (ii) objective f1 is twice as important as f2 then w = (2

3 ,
1
3)

or (iii) objective f1 is half as important as f2 then w = (1
3 ,

2
3). Figure 6.10 shows

the obtained results after performing iPICEA-g for 250 generations with w = (1
2 ,

1
2),

w = (1
3 ,

2
3) and w = (2

3 ,
1
3), respectively. During the simulation, zR = (1

2 ,
1
2) and θ = π

6

radians. As seen in Figure 6.10, the obtained solutions are along the search direction w

and span over π
6 radians. Consider a case where w = (2

3 ,
1
3), in this scenario, a higher

importance is ascribed to the first objective function, f1, which leads the optimisation

algorithm to be more sensitive to fluctuations in its value. Therefore, it is more likely

to obtain lower values for the first objective.

Figure 6.10: Solutions obtained by iPICEA-g for different w.
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The effect of the θ

If the decision-maker seeks to obtain solutions widely spread over the Pareto front then θ

should be set to a relatively large value. For instance for θ = π
2 radians, the whole Pareto

front can be obtained, given of course that the reference point is chosen appropriately, see

Section 6.3.1. If the DM has a preference towards a set of solutions in a narrow region of

the Pareto front then w can be directed towards that region and the θ parameter should

be set to a small value, π
180 radians, for example. The obtained results are depicted in

Figure 6.11 and as in the previous experiments iPICEA-g was allowed to operate on

the population of solutions for 250 generations for three values of the θ parameter, π
2 ,

π
4

and π
180 . During the optimisation, zR and w have been set to (0.3, 0.3) and (0.5, 0.5)

respectively. Clearly, the obtained portion of the Pareto front contracts for decreasing

values of θ.

Figure 6.11: The distribution of solutions obtained by iPICEA-g with different θ
values.

The effect of adaptive management of θ

In this section we explore the effect that adaptation of the θ parameter has on algorithm

performance, see Equation 6.3. We take the 10-variable ZDT4, featuring multi-modality,

as a test problem. Assuming the DM wishes to obtain optimal solutions around zR =

(0.1, 0.4), the search direction is the ray emanating from the ideal point (here it is the

origin) to zR, i.e. w = (0.2, 0.8) and a relatively narrow spread range of ROI is required,

say θ = π
18 . We perform two runs of iPICEA-g with the initial search range θ′ = π

4

and θ′ = π
9 , respectively. In this experiment too, iPICEA-g is allowed to execute for

250 generations per run. The initial population size is set to N = 100 and Ng = 100.

The obtained results are shown in Figure 6.12. iPICEA-g with θ′ = π
4 has obtained

solutions near the Pareto optimal region. However, the solutions obtained by iPICEA-

g with θ′ = π
9 are still far away from the Pareto optimal front. Such results clearly

illustrate that the adaptive process of θ is beneficial to iPICEA-g. A large initial search

range enables iPICEA-g to perform more exploration at the beginning, that is, a more

diverse set of individuals can be evolved in the search process. Therefore the possibility
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of being trapped in a local optimum is reduced. The obtained solutions are more likely

to converge to the true Pareto front.

Figure 6.12: The obtained results with θ′ = π/4 and θ′ = π/9 radians.

6.3.2 Results for a priori preference articulation

In this section we illustrate the scenario of searching with aspiration levels and searching

with weights, respectively. Unless stated otherwise, the population size of candidate

solutions and the number of co-evolved goal vectors are set to 200. For every test

problem, the reported results are evaluated using 31 independent trials. The obtained

Pareto front that has the median GD value over the 31 runs is shown.

Search with aspiration levels

Here we consider the case where the DM specifies preferences as aspiration levels. The

ZDT1, DTLZ2 and DTLZ4 problems are used in the simulation and iPICEA-g is run

for 250 generations on each problem.

Searching for a ROI: the 30-variable ZDT1 is considered as the first test problem.

We assume that the DM specifies his aspiration level as (0.5, 0.5) and so zR = (0.5, 0.5);

correspondingly, w is configured as (0.5, 0.5) and θ is set as π
4 radians. After run-

ning iPICEA-g for 250 generations a set of satisfied solutions is obtained shown in Fig-

ure 6.13(a). We can see that visually all the obtained solutions are very close to the true

Pareto front. Quantitatively, the mean GD value is 0.0006±0.0002 which indicates that

the obtained solutions converge well. In some cases the DM might specify an infeasible

aspiration level, i.e., zR = (0.3, 0.3). After running iPICEA-g for 250 generations, a set

of solutions are obtained, as shown in Figure 6.13(b). Although the obtained solutions

have not met the aspiration level, they have approached the Pareto optimal front. This

is also confirmed by the GD metric, where the mean value is 0.0007± 0.0002.
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

iPICEA−g
True PF
z

R
: (0.3 0.3)

(b) ZDT1

Figure 6.13: Illustration of searching with aspiration level on ZDT1.
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(a) DTLZ4-6
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Figure 6.14: Illustration of searching with aspiration level on DTLZ4-6.

Similarly, iPICEA-g is tested on the 6-objective DTLZ4 problem for both cases: attain-

able aspirations, zR1 = (0.42, 0.48, 0.43, 0.5, 0.43, 0.49) and unattainable appropriations,

zR2 = (0.35, 0.32, 0.2, 0.35, 0.34, 0.3). Figure 6.14 shows the obtained solutions after run-

ning iPICEA-g for 250 generations. The obtained solutions are shown in Figure 6.14(a)

using Parallel coordinate system (An introduction to the Parallel coordinate system

is offered in Appendix C). It is observed that these solutions have met the aspiration

level. Moreover, the mean GD value is 0.0036 ± 0.0006, indicating that the solutions

converge well to the Pareto optimal front. From Figure 6.14(b), it is observed that all

the solutions have not met the aspiration level. However, after examining the GD value

we find that the mean GD value is 0.0027 ± 0.0019 which indicates that the solutions
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have approached to the Pareto optimal front. Furthermore, the Pareto optimal front of

DTLZ4 lies on the surface of a hyper-sphere with radius 1 (
∑M

i=1 f
2
i = 1) in the first

quadrant (Deb et al., 2002b). Having computed
∑4

i=1 f
2
i for all the obtained solutions

(across 31 runs), we find all values are within the range [1.0141, 1.0528], which indicates

that all the obtained solutions have almost converged to the true Pareto front.
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Figure 6.15: Illustration of searching with multiple aspiration levels.

Searching for multiple ROIs: next we demonstrate the performance of iPICEA-

g on searching for multiple ROIs. The 2-objective DTLZ2 is chosen as the first test

problem. Assume that the DM specifies his preferences that objective f1 should be

better (smaller) than 0.7 and f2 should be smaller than 0.9, or, alternatively, that f1 is

smaller than 0.9 and f2 is smaller than 0.6. Therefore, the reference point zR is set to

(0.7, 0.9) and (0.9, 0.6), denoted as zR1 and zR2, respectively. After running iPICEA-g

for 250 generations, two sets of solutions are obtained, and both sets of solutions have

met the corresponding aspirations. Visually, both sets of solutions are close to the true

Pareto front. Quantitatively, the mean GD value over the 31 runs is 0.0011± 0.0004 for

zR1, and is 0.0010 ± 0.0003 for zR2, which shows that the obtained solutions converge

well to the Pareto optimal front.

iPICEA-g is also tested on the 5-objective DTLZ4 problem. Assuming that the DM

specifies two aspiration levels, where one is attainable zR1 = (0.10, 0.28, 0.48, 0.68, 0.88)

and the other is unattainable, zR2 = (0.39, 0.39, 0.39, 0.39, 0.39). For each aspiration,

a set of solutions is obtained, as shown in Figure 6.15(b). Visually, we observe that

solutions have met the aspiration zR1 while they have not met zR2 (as it is unattainable).

Quantitatively, the mean GD value is 0.0029 ± 0.0013 for zR1, and is 0.0024 ± 0.0011

for zR2, which confirms that the obtained solutions converge well to the Pareto optimal

front.
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These results confirm that iPICEA-g when searching with aspirations is able to achieve

a set (or sets) of solutions with good convergence to the true Pareto front and that is

also of interest to the decision-maker.

Search with weights

Here we consider the case where the DM specifies his preferences as weights. Again, the

experiments are conducted for searching a single ROI and multiple ROIs, respectively.

(a) DTLZ4-2 (b) DTLZ4-4

Figure 6.16: Illustration of searching with weights on DTLZ4.

Searching for a ROI: first, the bi-objective DTLZ4 problem is used as a test problem.

Assuming that the DM specifies that the two objectives have equivalent importance,

then the weight vector is configured as w = (0.5, 0.5). Correspondingly, θ is set as π
6

radians in order to obtain a moderate range of solutions. After running iPICEA-g for

250 generations a set of satisfied solutions are obtained, as shown in Figure 6.16(a). It

is observed that all the obtained solutions are close to the Pareto optimal front, and the

solutions show no bias towards any objective.

Second, the 4-objective DTLZ4 problem is chosen as another test problem to examine

the scalability of iPICEA-g. Again, we assume that the DM has no bias towards any

objective, then the weight vector is configured as w = (0.25, 0.25, 0.25, 0.25), and θ is

set as π
36 radians in order to obtain a small range of solutions. After running iPICEA-g

for 250 generations a set of solutions are obtained as shown in Figure 6.16(b). All the

obtained solutions are concentrated around the projected reference point zR′ shown as

− ? − (the white line in the middle). zR′ represents the Pareto optimal solution along

the search direction (0.25, 0.25, 0.25, 0.25), namely it is the point of intersection of the

ray emanating from the ideal point with direction w. After computing
∑4

i=1 f
2
i for all
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obtained solutions, the values lie within the range [1.0391, 1.0903], therefore indicating

that all solutions have converged to the true Pareto front.

Statistically, the mean GD values over the 31 independent runs are 0.0010± 0.0005 for

DTLZ4-2 and 0.0041 ± 0.0012 for DTLZ4-4. Such results confirm that the obtained

solutions converge well to the true Pareto front. Note that DTLZn-Y represents the

DTLZ(n) problem with Y objectives.

(a) DTLZ2-2 (b) DTLZ2-4

Figure 6.17: Illustration of searching with weights on DTLZ2.

Searching for multiple ROIs: the bi- and 4-objective DTLZ2 problems are used as

test problems. For the DTLZ2-2 problem, we assume that the DM bias one objective

over another: either f1 is four times as important as f2, or, alternatively, f2 is four times

as important as f1. Thus, two weight vectors are constructed, i.e., w1 = (0.2, 0.8) and

w2 = (0.8, 0.2). Correspondingly, for both cases, θ is set as π
12 radians so as to obtain a

close range of solutions. After running iPICEA-g for 250 generations two sets of solutions

are obtained as shown in Figure 6.17(a). We can observe that all the obtained solutions

are close to the Pareto optimal front. This is also confirmed by the GD metric, that is,

the mean GD value is 0.0006± 0.0003.

For the DTLZ2-4 problem, we assume that the DM is satisfied with any of the following

three cases: (i) either the four objectives are equally important, i.e., w = (0.25, 0.25,

0.25, 0.25), (ii) f1 is four times as important as f4, f2 is three times as important as f4, f3

is twice as important as f4, i.e., w = (0.4, 0.3, 0.2, 0.1), and (iii) f1 is 1
4 times as important

as f4, f2 is 1
2 times as important as f4, f3 is 3

4 as important as f4, i.e., w = (0.1, 0.2,

0.3, 0.4). Correspondingly, the search range is assumed to be θ = π
20 radians. After

running iPICEA-g for 250 generations three sets of solutions are obtained as shown in

Figure 6.17(b). It is observed that in each set, solutions are concentrated around the

projected reference point zR′ shown as − ?−. After computing
∑4

i=1 f
2
i for all obtained
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solutions, the values lie within the range [1.0391, 1.0903], indicating that all solutions

have converged close to the true Pareto front. Statistically, the mean GD values over

the 31 independent runs are 0.0024± 0.0011 for DTLZ2-4. Such results further confirm

that the obtained solutions converge well to the true Pareto front.

These results demonstrate that iPICEA-g works well when searching with weights. It

is able to achieve solutions that are close to the true Pareto front and are also in the

regions of interest to the decision-maker.

A discussion on the use of weights

A weight vector w can either be interpreted as the relative importance of objectives or

simply as a reference direction. Different interpretations might lead to different results.

In the following, we illustrate the difference of these two interpretations. The 2-objective

DTLZ2 and WFG4 benchmarks are used as test problems. The Pareto optimal front of

DTLZ2-2 has the same trade-off magnitude, while the Pareto optimal front of WFG4-2

has a different trade-off magnitude.

Assuming that the weight vector is (0.5, 0.5) (correspondingly, θ is set as π
12 radians and

zR is set as [0, 0]), when w is interpreted as relative importance, it means f1 is the same

as important as f2; when it is interpreted as reference direction, it describes a direction

from the ideal point to a reference point having the same objective values, e.g., (0.5,0.5).

Figure 6.18 presents the obtained solutions for the two cases. Clearly we can observe

that for DTLZ2-2 w used as reference direction or relative importance leads to the same

results. However, for WFG4-2 the obtained results are different.

These results illustrate that for problems having the same trade-off magnitude (i.e., the

same range of objective value), there is no difference between the two interpretations.

However, the two interpretations lead to different results when a problem has a different

trade-off magnitude. The reason is that when w is taken as the relative importance

of objectives, implicitly, it is assumed that Pareto front geometry is disregarded, which

means the search is conducted on the normalised solutions. When w is interpreted to

be the reference direction, the decision-maker aims to find solutions along the specified

direction, and normalisation is not required.

6.3.3 Progressive scenario

Although we have only demonstrated the effectiveness of iPICEA-g when searching

with aspirations and weights in Section 6.3.2, it is reasonable to assume that iPICEA-g

should also work well when the preferences are expressed using the brushing technique.

This is because the brushing technique essentially simulates the search using aspirations

(Scheme 1) and weights (Scheme 2).
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Figure 6.18: Weights: relative importance and reference direction.

In this section, we simply illustrate the use of the brushing technique. To describe

the scenario, we solve the bi-objective ZDT1 and four-objective DTLZ4 problems by

simulating an interactive search process. The population size of candidate solutions

and the number of goal vectors is set to N = 200 and Ng = 200. Note that in this

illustration, the parameters are configured according to Scheme 2.

Bi-objective ZDT1

First, iPICEA-g is run for 10 generations without incorporating any preferences. The

aim is to roughly know the range of the objectives so as to inform the DM’s initial

preferences. The obtained solutions are shown in Figure 6.19(a).



168
Chapter 6 “Whatever works best for you”- a unified approach for a priori and

progressive multi-criteria decision-making

Second, the DM brushes his preferred regions, i.e., ellipses A and B, see Figure 6.19(a).

The parameters of iPICEA-g are then configured based on the brushed solutions, which

are w = (0.05, 0.95), θ = 5π
36 radians and w = (0.45, 0.55), θ = π

18 radians for A and

B, respectively. After running iPICEA-g for 50 more generations, two sets of improved

solutions are found, as shown in Figure 6.19(b).

Third, we assume that the DM is not satisfied with the obtained solutions. He again

brushes a set of solutions that are of his interest, see Figure 6.19(b), solutions in ellipse

C. The related parameter settings are w = (0.76, 0.24), θ = π
12 radians. By running

iPICEA-g for another 50 generations, a set of solutions are found, see Figure 6.19(c).

Lastly, the DM remains dissatisfied, and, would like to focuses on a part of these solutions

– a set of solutions that is in a more specific region of interest (that is in region D) is

brushed (see Figure 6.19(c)). iPICEA-g is run for 50 more generations. The related

parameters are configured as w = (0.5, 0.5), θ = π
18 radians. A set of better solutions

are found. The DM is now happy to choose a solution from this set, see Figure 6.19(d).

(a) (b)

(c) (d)

Figure 6.19: Interactive scenario on a 30-variable instance of the ZDT1 test problem
(viewed in objective-space).
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4-objective DTLZ2

Similarly, iPICEA-g is run without introducing any preference for 10 generations. A set

of solutions is found, as shown in Figure 6.20(a).

Next, the DM brushes the preferred solutions for each objective as shown by the band

in Figure 6.20(a). The selected solutions are shown in Figure 6.20(b). Parameters w

and θ are then calculated as (0.25, 0.25, 0.25, 0.25) and π
6 radians. iPICEA-g is run for

50 more generations. An improved set of solutions is obtained (see Figure 6.20(c)).

Thirdly, assuming that DM is dissatisfied with the obtained solutions. He brushes some

solutions that are of interest (see Figure 6.20(d)). Based on the brushed solutions, two

ROIs are identified. The related parameters are configured, that is, w = (0.3986, 0.3500,

0.1105, 0.1409), θ = π
12 radians and w = (0.1124, 0.2249, 0.3498, 0.3128), θ = 7π

90 radians.

The brushed solutions are shown in Figure 6.20(e). After running iPICEA-g for another

50 generations, more solutions are found, see Figure 6.20(f).

Fourthly, the DM is still not satisfied with the obtained solutions. He decides to explore

one set of the obtained solutions. Again, he brushes his preferred region, as shown

in Figure 6.21(a) (solutions existed in this region are shown in Figure 6.21(b)), and

run iPICEA-g for 50 more generations. According to the brushed region, w is set to

(0.3691, 0.2773, 0.1383, 0.2153), θ is set as π
36 radians. As seen from Figure 6.21(c), a

set of refined solutions are found in this preferred region. We compute
∑4

i=1 f
2
i for all

the obtained solutions. The value lies within the range of [1.0190, 1.041] which indicates

the obtained solutions have converged well to the true Pareto front. The DM is now

happy to choose a solution from this set. The solution shown as the white dashed line

is selected, see Figure 6.21(d).

6.4 Real-world application: aircraft control systems design

Section 6.3 has demonstrated the effectiveness of iPICEA-g on benchmark problems.

This section assesses the performance of iPICEA-g using a real-world problem, i.e.,

aircraft control system design. This problem is taken from the study of Tabak et al.

(1979). Section 6.4.1 describes this problem in detail where performance criteria and

decision variables are described. Section 6.4.2 describes how this problem is solved by

using iPICEA-g.

6.4.1 Problem description

The dynamic equations of the aircraft motion are often highly nonlinear. In practice,

the customary treatment of these equations is to convert them into a linear problem
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20: Interactive scenario for a 4-objective instance of the DTLZ2 test problem:
part A (viewed in objective-space).
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(a) (b)

(c) (d)

Figure 6.21: Interactive scenario for a 4-objective instance of the DTLZ2 test problem:
part B (viewed in objective-space).

by using some small deviations from an equilibrium trajectory (Tabak et al., 1979).

This study investigates the lateral response of the aircraft motion. According to Tabak

et al. (1979), the lateral response can be formulated by a fourth order set of linear state

equation:

ẋ = Ax +Bµ (6.4)

where x is a state vector containing the variable sideslip angle (β), yaw rate (r), roll

rate (p) and bank angle (φ), µ is the control vector that has variables, aileron control

motions (δa) and rudder control motions (δr). The matrices A and B are set as follows

according to Tabak et al. (1979):

A =


−0.2482 −0.9879 −0.1574 −0.0204

−10.8574 −0.5504 −0.2896 0

−199.8942 −0.4840 −1.6025 0

0 0.1566 1 0

 (6.5)
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B =


0 0.0524

0.4198 −12.7393

50.5756 21.6573

0 0

 (6.6)

The control operator µ is further formulated as

µ = Cµp +Kx (6.7)

where µp = [δap, δrp]
T is the pilot’s control input vector. As described in Tabak et al.

(1979), δap and δrp are specified as 16 and 0, respectively. C and K are two gain matrices

of the form

C =

[
1 0

k5 1

]
(6.8)

K =

[
k6 k2 k1 0

k7 k3 k4 0

]
(6.9)

Experience shows that feedback from the bank angle (φ) is not crucial and so the last

column of the K matrix is set to zero. Substituting Equation 6.7 into Equation 6.4 we

obtain

ẋ = (A+BK)x +BCµp (6.10)

Next, we introduce the decision variables and objective functions of this problem.

Decision variables

In this problem variables k1, k2, · · · , k7 are the decision variables that need to be es-

tablished by the optimisation procedure. ki represents gains applied to various signals,

involved in the aircraft control system. High gains tend to cause sensitivity to sensor

noise, and may also cause saturation of the control actuator response, so ki should be

configured as small as possible. In this experiment, ki is set within the interval (0, 1).

The stability of the system is determined by the eigenvalues of the matrix A+BK, that

is, the stability characteristics of the system can be modified by changing the value of

ki.
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Performance criteria

In this system, eight performance criteria (M = 8) are required to be satisfied:

(i) Four performance criteria are related to the stability parameters, that is, the spiral

root λs, the damping in roll root λr, the damping ratio of the Dutch-roll complex

pair εd and the Dutch roll frequency wd. These parameters are derived from the

characteristic roots of the matrix A+BK. The spiral root (λs) should be as small as

possible, since a small real root, in general, corresponds to a tendency of returning

to wings level straight flight after a small bank angle disturbance. A marginally

stable roll damping root (λr) could be satisfactory, however, a larger negative real

root of λr is preferred. The damping ratio εd should be as large as possible in

order to avoid persistent oscillations and large overshoots in the response. A larger

frequency wd is preferred since this leads to a good stability.

(ii) The speed and the steadiness of the basic roll response to the aileron are two other

criteria. These two criteria are determined by the bank angle φ at two specific

times (i.e., φ(t1) and φ(t2)) in response to maximum aileron input. The first time

is chosen for providing a rapid initial response. The second time is chosen for

insuring that the response remains steady.

(iii) Another criterion is to minimise the deviation of the overall sideslip angle, λ, i.e.,

min(∆β). ∆β must meet the response speed requirement. A small ∆β can decouple

the roll response from the yaw-sideslip modes, producing smooth and precise roll

responses.

(iv) The last criterion is to minimise the control effort. This is implemented by keeping

the gains as small as possible, that is, minimising
∑7

i=1 k
2
i .

Some criteria are in conflict with each other, for example, maximising φ(t1) requires

high gains ki and that is contrary to the goal of minimising the control effort. Moreover,

maximising φ(t1) is also conflicting with minimising the deviation of the sideslip, ∆β.
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Optimisation model

Overall, the optimisation model can be written as follows:

minF (k) = (f1(k), f2(k), f3(k), f4(k), f5(k), f6(k), f7(k))

where f1 =

7∑
i=1

k2
i

f2 = ∆β = (max(x4)−min(x4))/2

f3 = −φ(t1) = −φ(1)

f4 = −φ(t2) = −φ(2.8)

f5 = λs = r(D(1))

f6 = λR = r(D(2))

f7 = −εd = cos (arctan i(D(3), r(D(3))))

f8 = −wd = −real(D(4))

(6.11)

and k = (k1, k2, k3, k4, k5, k6, k7) is the decision vector, ki ∈ (−1, 1). x4 is a vector

formed by the fourth components (φ) of the state vector x. D represents the eigenvalues

of the matrix A+BK. K is the matrix formed by different k vectors. r and i represent

the real and imaginary parts of a complex number.

6.4.2 Experiments

In this section we illustrate how to obtain a preferred solution for this design problem

by using iPICEA-g. Note that to better visualise the results, we normalise the ob-

jectives values by two vectors fmax = (1.5, 1.5,−45,−180, 0.49,−2.5, 0.1, 6) and fmin =

(0, 0,−540,−2160,−2,−20, −4,−32). The population size of candidate solutions and

goal vectors are set as N = 200 and Ng = 200, respectively.

First, iPICEA-g is run without introducing any preference for 50 generations. The aim

is to approximately learn the range of the objectives, i.e., the estimated ideal and nadir

point, so as to inform the DM’s initial preferences. The obtained solutions are shown in

Figure 6.22(a).

Next, the DM specifies his aspiration levels for different performance criteria: the control

effort (f1) should be smaller than 0.75; the deviation of the overall sideslip angle (f2)

should be smaller than 0.75; according to the military specifications requirement φ(1s)

is preferred to be larger than 90◦ and φ(2.8s) is preferred to be larger than 360◦, i.e.

(f3 ≥ 90, f4 ≥ 360); the spiral root (f5) should be larger than 0.0005; the marginally

stable roll damping root (f6) should be smaller than -3.75; the damping ratio (f7) should

be larger than 0.45; the frequency (f8) should be larger than 1. Therefore, zR is set

to [0.75, 0.75,−90, −360, −0.005,−3.75,−0.45,−1], shown as –•– in Figure 6.22(b).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Interactive scenario for an aircraft control system design problem (viewed
in objective-space).
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Correspondingly, parameters w and θ are set as w1 = w2 =, · · · ,= w8 = 0.125 and

arccos(
√

7
8) = 0.3614 radians. iPICEA-g is run for 50 more generations. A satisfied set

of solutions is obtained, see Figure 6.22(b).

Next, assume that the DM is dissatisfied with the obtained solutions. To enable better

stability of the aircraft, the DM wants to further minimise the control effort and the

sideslip deviation and so the aspiration levels of f1 and f2 are modified to 0.55 and 0.55,

respectively. Also, the DM decides to search for a larger frequency wd to ensure a better

stability. Thus, the aspiration level for f8 is set to −5.5. Moreover, having obtained

the exiting solutions, there is space to improve other objectives further. The DM then

provides new aspiration levels for other objectives: bank angle at 1.0 second f3 ≤ −115,

bank angle at 2.8 second f4 ≤ −380, roll damping f6 ≤ −4.25, dutch roll damping

f7 ≤ −0.6. Overall, zR is set as (0.55, 0.55,−115,−380,−0.0050, −4.25,−0.6,−5.5).

After running iPICEA-g for another 50 generations, a set of solutions is found as shown

in Figure 6.22(c). Correspondingly, Figure 6.22(d) shows the objective values normalised

by the estimated ideal and nadir points.

Next, the DM further specifies that the first four objectives are as half important as

the last four objectives. Therefore, the weight vector in iPICEA-g is configured as

w = ( 1
12 ,

1
12 ,

1
12 ,

1
12 ,

1
6 ,

1
6 ,

1
6 ,

1
6). Additionally, the spread range θ is set to π

18 radians.

After running iPICEA-g for 50 more generations, a set of new solutions is found, see

Figure 6.22(e).

Finally, assume that the DM is still dissatisfied with the obtained solutions. He brushes

a set of solutions that are within region of interest. Based on the brushed solutions, the

related parameters are configured as w = (0.1237, 0.1250, 0.1251, 0.1247, 0.1250, 0.1261,

0.1245, 0.1259), and θ = π
60 radians. After running iPICEA-g for 50 more generations, a

set of satisfactory solutions are found, see Figure 6.22(f). The DM is now able to choose

a solution from this set.

6.5 Summary

Incorporation of decision-maker preferences is an important part of a real-world decision

support system. However, current methods for preference-based evolutionary multi-

objective approaches are unable to handle, comprehensively, the range of ways in which

a decision-maker wishes to articulate his/her preferences. In this Chapter, we have

presented, to the best of our knowledge, the first unified preference-based MOEA that is

simultaneously able to handle decision-maker preferences specified either as aspirations

or weights and that is also able to support multiple regions of interest. The effectiveness

of iPICEA-g is demonstrated on a set of problems. Moreover, we also enhance the DM-

friendliness by allowing preferences to be expressed via visually brushing in objective-

space on a coordinate system. The main findings are summarised as follows:
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(i) The effects of the three parameters zR, w and θ are sufficient to formulate the

decision-maker preferences in different ways.

(ii) iPICEA-g can either incorporate the decision-maker preference expressed by aspi-

ration levels or by weights. In both cases, iPICEA-g is able to find solutions that

are better in the region of interest to the decision-maker, and that are also close

to the Pareto optimal front.

(iii) The brushing technique allows decision-maker preferences to be expressed visually

via drawing. It is illustrated to be effective. Since no direct elicitation of numer-

ical values is required, a decision-maker may find it cognitively easier to use this

method.

(iv) The performance of iPICEA-g is further examined on a real-world decision-making

problem – aircraft control system design problem. Experimental results show that

this unified approach iPICEA-g works well, and it enables the decision-maker to

freely articulate his/her preferences in different ways.





Chapter 7

Conclusions

7.1 Key results

This research proposes a novel class of multi-objective evolutionary algorithm named

the preference-inspired co-evolutionary algorithm (PICEA). PICEA co-evolves the pop-

ulation of candidate solutions with a family of decision-maker preferences during the

optimisation process. Two instantiations of the PICEA, i.e., PICEA-g and PICEA-w,

are proposed. PICEA-g takes goal vectors as preferences, and can handle many-objective

problems successfully. PICEA-w takes weight vectors as preferences, and can effectively

overcome the difficulties encountered by decomposition based algorithms. Additionally,

sensitivities of parameters in PICEAs are studied. Lastly, a unified approach named

iPICEA-g is proposed to support an a priori or progressive decision-making.

PICEA-g

Many-objective optimisation problems remain challenging in terms of obtaining a good

and representative approximation of the Pareto optimal front. One of the main chal-

lenges identified for many-objective optimisation is the reduced ability of the Pareto-

dominance relation in offering comparability between alternative solutions. This lack

of comparability means that algorithms using Pareto-dominance struggle to drive the

search towards the Pareto optimal front. PICEA-g co-evolves the usual population of

candidate solutions with a family of decision-making preferences, formulated as goal vec-

tors during the search. The incorporation of goal vectors enables incomparable solutions

(in terms of the Pareto-dominance) to be comparable, thus creating selective pressure

towards the Pareto optimal front.

During the co-evolution, candidate solutions act as predators that attempt to catch (i.e.,

dominate) as many goal vectors as possible. Goal vectors act as prey that attempt to

179
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avoid being caught (i.e., dominated) by candidate solutions. This scenario is realised by

fitness assignment. Specifically, candidate solutions gain higher fitness by dominating

more goal vectors and the fitness contribution of a goal vector to a candidate solution

is shared between other solutions that also dominate this goal vector. Goal vectors gain

higher fitness by being dominated by fewer candidate solutions. Both the candidate

solutions and the goal vectors are co-evolved towards the Pareto optimal front. Key

findings are:

(i) Compared with the four best-in-class MOEAs, that is, NSGA-II (Pareto-dominance

class), ε-MOEA (modified Pareto-dominance class), MOEA/D (decomposition class)

and HypE (indicator class), PICEA-g exhibits a better performance on many-

objective benchmark problems, namely WFG.

(ii) An effective strategy named the cutting plane is proposed which can improve the

performance of PICEA-g even further. This strategy utilises the knowledge of

the ideal point, and enables PICEA-g to adaptively distribute the search effort

towards different objectives appropriately. The effectiveness of this strategy is

demonstrated on the WFG benchmark problems with up to seven objectives.

PICEA-w

Decomposition based algorithms transfer a MOP into a set of single objective problems

that are determined by means of scalarising functions with different weights. They

have been demonstrated to perform well when a suitable set of weights is provided.

However, determining a good set of weights a priori for real-world problems is usually

not straightforward due to a lack of knowledge of the underlying problem structure.

Adopting the concept of PICEA, a new decomposition based algorithm, PICEA-w, is

proposed, which eliminates the need to specify appropriate weights before performing

the optimisation. Specifically, weights are co-evolved with candidate solutions during the

search process. The co-evolution enables suitable weights to be adaptively constructed

along the optimisation process. Through rigorous empirical testing, we demonstrate the

benefits of PICEA-w compared to other leading decomposition-based algorithms. The

chosen test problems encompass the range of Pareto front geometries likely to be seen

in practice, including simultaneous optimisation of up to ten conflicting objectives. Key

findings are:

(i) PICEA-w is less sensitive to the Pareto front geometry, and performs well on many-

objective problems. During the co-evolution, the employed weights also evolve

towards an optimal distribution.
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(ii) Decomposition based algorithms using pre-defined weights face difficulty on prob-

lems having a complex Pareto optimal front. The use of adaptive weights is helpful

to solve this problem. However, adapting weights during the search would affect

an algorithm’s convergence performance.

Parameter sensitivity of PICEAs

It is known that performance of an algorithm is often affected by its associated param-

eter settings. We have performed both a global and a local sensitivity analysis on the

parameters used in PICEA-g and PICEA-w. Key findings are:

(i) The performance of both PICEA-g and PICEA-w is controlled for the most part

by a single parameter, i.e., the number of function evaluations. This indicates

that parameterising PICEAs should be easier in practice for non-experts. A better

performance can be obtained simply by lengthening the runtime of PICEAs, i.e.,

increasing the number of function evaluations.

(ii) Amongst the remaining parameters, the number of preferences is an important one.

PICEAs can deliver a better performance if more preferences are co-evolved during

the search. In terms of the genetic operator configurations, it is found that, for the

recombination operator (SBX), parameter ηc is more dominant, and it is suggested

that a small value of ηc is used. For the mutation operator (PM), a combination

of a small pm and a large ηm produces good results, and are suggested for use.

iPICEA-g

iPICEA-g is a unified approach for a priori or progressive evolutionary multi-objective

optimisation and decision-making. It extends the existing algorithm PICEA-g by co-

evolving candidate solutions with goal vectors that are exclusively generated in the

regions of interest to the decision-maker. iPICEA-g distinguishes itself from other

preference-based MOEAs by its ability to cater simultaneously in different ways, i.e., as-

pirations, weights or via visually brushing, which a decision-maker could specify his/her

preferences.

The performance of iPICEA-g has been assessed on a set of benchmark problems as well

as a real world problem. Experimental results show that iPICEA-g works effectively

while incorporating different types of preferences. Moreover, by incorporation of the

brushing technique, iPICEA-g allows a decision-maker to specify his/her preferences

without using numerical values but simply by drawing in objective-space, which might

prove cognitively easier for a decision-maker to use.
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7.2 Future work

It is admitted that there are a number of ways in which the central contributions of this

research are limited. These limitations suggest where more studies are needed in future.

Testing PICEAs on other problems

One of the main limitations is that all the findings in this research are based on real-

parameter function optimisation problems. It would be valuable to assess the perfor-

mance of PICEAs on other problem types, such as many-objective combinatorial prob-

lems, the travelling salesman problem and the graph partitioning problem, and also,

crucially, real-world problems in future.

Constraints, dynamism and uncertainty handling techniques

Real-world problems are often involved with constraints, dynamism and uncertainty.

In the literature, a number of methods have been proposed to handle problems having

these properties (Jin and Branke, 2005; Mallipeddi and Suganthan, 2010; Mezura-Montes

and Coello Coello, 2011; Cruz et al., 2011; Nguyen et al., 2012). However, none of

these techniques has been investigated specifically for PICEAs. Further study on these

important aspects should be conducted.

Estimation of ideal and nadir point

The importance of the ideal and nadir point in multi-objective optimisation has been

mentioned in a number studies (Miettinen, 1999; Deb et al., 2006). These two vectors can

be used to normalise the objectives such that multi-objective evolutionary algorithms

can be used more reliably. Moreover, these two vectors are also required in multi-criteria

decision-making methodologies. Additionally, they are helpful as an aid in visualising

Pareto solutions.

To estimate the ideal point, one can perform single objective optimisation for each ob-

jective separately. However, this might not be effective since in some cases the single

objective optimisation is also difficult. To estimate the nadir point, various methods

have been provided such as surface–to–nadir, edge–to–nadir and extreme–to–nadir (Deb

and Miettinen, 2009). However, these methods all have limitations, such as computa-

tionally expense. Thus, developing an effective strategy for estimating these two vectors

would be valuable.
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Adaptive parameter configurations

As previously mentioned, the performance of an algorithm is often affected by its as-

sociated parameter configurations. An appropriate parameter configuration is often

problem-dependent. For example, given a fixed number of function evaluations, it is not

easy to strike an effective balance between population size and the number of genera-

tions, for example, the larger the population size, the beneficial dynamics of evolution

are curtailed. In most of the existing studies, population size is set as a constant value

during the whole search. However, this has been demonstrated not to be the best choice

(Lobo, 2011; Cook and Tauritz, 2010).

Therefore, developing adaptive approaches that can effectively configure parameters

appropriately for an algorithm is valuable. Particularly, this will greatly facilitate the

use of algorithms for non-experts in practice since the procedure of tuning parameter

settings can be eliminated.

Genetic operator design

In order to improve the performance of MOEAs, most studies focus on designing a better

selection mechanism. Undoubtedly, a good selection mechanism is important as it can

provide good parent candidates for the generation of offspring. However, in addition

to the selection mechanism, genetic operators are also crucial in terms of producing

fruitful offspring. Therefore, it is worth studying how effective genetic operators can

be designed. As a start, it is helpful to first assess the performance of different genetic

operators, such as the one-point crossover, SBX, SPX, DE and PM, etc. This analysis

might provide some insights on designing effective genetic operators.

Mating restriction

The use of mating restriction has been demonstrated to be beneficial in generating

fruitful offspring (Fonseca and Fleming, 1995a). One of the frequently used mating re-

striction strategies is to recombine neighbouring solutions (Ishibuchi and Shibata, 2003,

2004). Neighbourhood can be measured by Euclidean distance, Manhattan distance

and the like. However, the effectiveness of this method is highly dependent on a defined

neighbourhood size. Few approaches are able to handle this issue effectively. Therefore,

it is worth investigating how to determine a suitable neighbourhood size for different

problems, or developing other effective mating restriction strategies.
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Multi-criteria decision-making

We have proposed a unified approach iPICEA-g for a priori and progressive decision-

making. However, it is known that decision-making is often a group rather than indi-

vidual activity. Therefore, it would be useful to develop a methodology to support a

group decision-making process. Moreover, since the decision-maker preferences are often

expressed in fuzzy linguistic terms (Jin and Sendhoff, 2002; Rachmawati and Srinivasan,

2010), it would also be interesting to investigate how fuzzy preferences can be incorpo-

rated into iPICEA-g.



Appendix A

Multi-objective test benchmarks

A.1 ZDT test

General definitions of ZDT test problems are

f1 = x1

f2 = g ∗ h
(A.1)

where g and h are functions of the decision vector x.

• ZDT1

f1(x1) = x1

g(x2, · · · , xn) = 1 + 9

k∑
i=1

zi/k

h(f1, g) = 1−
√
f1/g

(A.2)

where ∀xi ∈ [0, 1]. The Pareto optimal front is convex (see Figure A.1), and is

formed with g(x2, · · · , xm) = 1. The solutions are uniformly distributed in the

search space:

• ZDT2

f1(x1) = x1

g(x2, · · · , xn) = 1 + 9
k∑
i=1

zi/k

h(f1, g) = 1− (f1/g)2

(A.3)
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Figure A.1: The Pareto optimal front of ZDT1.

where ∀xi ∈ [0, 1]. The Pareto optimal front is concave (see Figure A.2), and is

formed with g(x2, · · · , xm) = 1. The solutions are uniformly distributed in the

search space.

Figure A.2: Pareto optimal front of ZDT2.

• ZDT3
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f1(x1) = x1

g(x2, · · · , xn) = 1 + 9

k∑
i=1

zi/k

h(f1, g) = 1−
√
f1/g − (f1/g) sin(10πfi)

(A.4)

where ∀xi ∈ [0, 1]. The Pareto optimal front is formed with g(x2, · · · , xm) = 1.

The Pareto optimal front is composed of five disconnected convex fronts as shown

in Figure A.3. Although the Pareto optimal front is disconnected, there is no

discontinuity in the search space.

Figure A.3: Pareto optimal front of ZDT3.

• ZDT4

f1(x1) = x1

g(x2, · · · , xn) = 1 + 10(m− 1) +

m∑
i=2

(x2
i − 19 cos(4πxi))

h(f1, g) = 1−
√
f1/g

(A.5)

where x1 ∈ [0, 1] and xi ∈ [−5, 5], i = 2, · · · , n. ZDT4 is multi-modal which has 219

local Pareto optimal fronts. The Pareto optimal front (see Figure A.4) is formed

with g(x2, · · · , xm) = 1.

• ZDT6
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Figure A.4: Pareto optimal front of ZDT4.

f1(x1) = 1− exp(−4x1) sin6(6πx1)

g(x2, · · · , xn) = 1 + 9(
m∑
i=2

xi)
0.25

h(f1, g) = 1− (f1/g)2

(A.6)

where x1 ∈ [0, 1] and xi ∈ [−5, 5], i = 2, · · · , n. Both the Pareto optimal front and

the search space are non-uniform. The Pareto optimal front is convex shown as

Figure A.5 and is formed with g(x2, · · · , xm) = 1.

Figure A.5: Pareto optimal front of ZDT6.
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Note that ZDT5 is not listed here as the scope of this thesis is on real-parameter opti-

mization. ZDT5 is a binary coded problem.

A.2 DTLZ test

• DTLZ1

f1 = (1 + g)
1

2
x1x2 · · ·xM−1

f2 = (1 + g)
1

2
x1x2 · · · (1− xM−1)

...

fM−1 = (1 + g)
1

2
x1(1− x2)

fM = (1 + g)
1

2
(1− x1)

g = 100(|XM |+
∑

xi∈XM

(xi − 0.5)2 − cos(20π(xi − 0.5)))

(A.7)

where |XM | = k and XM = [xM , xM+1, · · · , xN ]. Parameter k is suggested to be

5 in (Deb et al., 2002b). The Pareto optimal front is a linear hyper-plane that

satisfies
∑M

i=1 f
∗
i = 0.5 as shown in Figure A.6. The Pareto optimal solutions

corresponds to x∗i = 0.5, x∗i ∈ XM . DTLZ1 is a multi-modal problem which has

11k − 1 local optimal fronts.

(a) DTLZ1-2 (b) DTLZ1-3

Figure A.6: Pareto optimal fronts of DTLZ1-2 and DTLZ1-3.
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• DTLZ2

f1 = (1 + g) cos(x1
π

2
) cos(x2

π

2
) · · · cos(xM−2

π

2
) cos(xM−1

π

2
)

f2 = (1 + g) cos(x1
π

2
) cos(x2

π

2
) · · · cos(xM−2

π

2
) sin(xM−1

π

2
)

...

fM−1 = (1 + g) cos(x1
π

2
) sin(x2

π

2
)

fM = (1 + g) sin(x1
π

2
)

g =
∑

xi∈XM

(xi − 0.5)2

(A.8)

where k = |XM | = 10 is suggested (Deb et al., 2002b). The Pareto optimal front

satisfies
∑M

i=1(f∗i )2 = 1 as shown in Figure A.7. The Pareto optimal solutions

corresponds to x∗i = 0.5, x∗i ∈ XM .

(a) DTLZ2-2 (b) DTLZ2-3

Figure A.7: Pareto optimal fronts of DTLZ2-2 and DTLZ2-3.

• DTLZ3

f1 = (1 + g) cos(x1
π

2
) cos(x2

π

2
) · · · cos(xM−2

π

2
) cos(xM−1

π

2
)

f2 = (1 + g) cos(x1
π

2
) cos(x2

π

2
) · · · cos(xM−2

π

2
) sin(xM−1

π

2
)

...

fM−1 = (1 + g) cos(x1
π

2
) sin(x2

π

2
)

fM = (1 + g) sin(x1
π

2
)

g = 100(|XM |+
∑

xi∈XM

(xi − 0.5)2 − cos(20π(xi − 0.5)))

(A.9)
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The Pareto optimal front of DTLZ3 is concave and satisfies
∑M

i=1(f∗i )2 = 1 as

shown in Figure A.8. The Pareto optimal solutions corresponds to x∗i = 0.5, x∗i ∈
XM . DTLZ3 is also multi-modal that has 3k − 1 local optimal fronts.

(a) DTLZ3-2 (b) DTLZ3-3

Figure A.8: Pareto optimal fronts of DTLZ3-2 and DTLZ3-3.

• DTLZ4

f1 = (1 + g) cos(xα1
π

2
) cos(xα2

π

2
) · · · cos(xαM−2

π

2
) cos(xαM−1

π

2
)

f2 = (1 + g) cos(xα1
π

2
) cos(xα2

π

2
) · · · cos(xαM−2

π

2
) sin(xαM−1

π

2
)

...

fM−1 = (1 + g) cos(xα1
π

2
) sin(xα2

π

2
)

fM = (1 + g) sin(xα1
π

2
)

g =
∑

xi∈XM

(xi − 0.5)2

(A.10)

DTLZ4 is constructed by substitute xi in DTLZ2 with xαi . α is set as 100. The

Pareto optimal front of DTLZ4 satisfies
∑M

i=1(f∗i )2 = 1, however, the its dis-

tribution is not uniform as shown in Figure A.9. The Pareto optimal solutions

corresponds to x∗i = 0.5, x∗i ∈ XM .

• DTLZ5
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(a) DTLZ4-2 (b) DTLZ4-3

Figure A.9: Pareto optimal fronts of DTLZ4-2 and DTLZ4-3.

f1 = (1 + g) cos(θ1
π

2
) cos(θ2

π

2
) · · · cos(θM−2

π

2
) cos(θM−1

π

2
)

f2 = (1 + g) cos(θ1
π

2
) cos(θ2

π

2
) · · · cos(θM−2

π

2
) sin(θM−1

π

2
)

...

fM−1 = (1 + g) cos(θ1
π

2
) sin(θ2

π

2
)

fM = (1 + g) sin(θ1
π

2
)

g =
∑

xi∈XM

(xi − 0.5)2

θi =
π

4(1 + g)
(1 + 2gxi), i = 1, 2, · · · ,M − 1

θ1 = x1
π

2

(A.11)

where |k = XM = 10| is suggested. The Pareto optimal front is a degenerated

concave curve shown as in Figure A.10, satisfying
∑M

i=1(f∗i )2 = 1, correspondingly,

the Pareto optimal solutions satisfy x∗i = 0.5, x∗i ∈ XM .

• DTLZ6
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(a) DTLZ5-2 (b) DTLZ5-3

Figure A.10: Pareto optimal fronts of DTLZ5-2 and DTLZ5-3.

f1 = (1 + g) cos(θ1
π

2
) cos(θ2

π

2
) · · · cos(θM−2

π
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) cos(θM−1

π
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f2 = (1 + g) cos(θ1
π

2
) cos(θ2

π

2
) · · · cos(θM−2

π

2
) sin(θM−1

π

2
)

...

fM−1 = (1 + g) cos(θ1
π

2
) sin(θ2

π

2
)

fM = (1 + g) sin(θ1
π

2
)

g =
∑

xi∈XM

x0.1
i

θi =
π

4(1 + g)
(1 + 2gxi), i = 1, 2, · · · ,M − 1

θ1 = x1
π

2

(A.12)

where k = |XM | = 10| is suggested. The Pareto optimal front is the same as

DTLZ5, see Figure A.11. The Pareto optimal solutions correspond to x∗i = 0, x∗i ∈
XM .

• DTLZ7
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(a) DTLZ6-2 (b) DTLZ6-3

Figure A.11: Pareto optimal fronts of DTLZ6-2 and DTLZ6-3.

f1 = x1

f2 = x2

...

fM−1 = xM−1

fM = (1 + g)(M −
M−1∑
i=1

(
fi

1 + g
(1 + sin(3πfi))))

g = 1 +
9

|XM |
∑

xi∈XM

xi

(A.13)

where |k = XM = 20| is suggested. The Pareto optimal front has 2M−1 discon-

nected regions as shown in Figure A.12. The Pareto optimal solutions correspond

to x∗i = 0, x∗i ∈ XM .

A.3 WFG test

The general definition of WFG test suite can be described as
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(a) DTLZ7-2 (b) DTLZ7-3

Figure A.12: Pareto optimal fronts of DTLZ7-2 and DTLZ7-3.

Given z = {z1, · · · , zk, zk+1, · · · , zn}

Minimise fm=1:M (x) = Dxm + Smhm(x1, · · · , xM−1)

where x = {x1, · · · , xM}

= {max(tpM , A1)(tp1 − 0.5) + 0.5, · · · ,

max(tpM−1, A1)(tpM−1 − 0.5) + 0.5, tpM}

tp = {tp1, · · · , t
p
M}

z[0,1] = {z1,[0,1], · · · , zn,[0,1]}

= { z1

z1,max
, · · · , zn

zn,max
}

(A.14)

where z is a decision vector, consisting n = k + l decision variables. k is the number

of position parameters and l is the number of distance parameters. hm is the shape

functions and Sm is the scaling constraints. tp is the transition vector.

Priori to describing the WFG test problems, we introduce the shape functions, and the

transformation functions used in the test suite.

The shape functions

The shape functions are introduced as follows, in all cases, x1, · · · , xM−1 ∈ [0, 1], and

A, α and β are constants:
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• Linear

linear1(x1, · · · , xM−1) =

M−1∏
i=1

xi

linearm=2,··· ,M−1(x1, · · · , xM−1) = (

M−1∏
i=1

xi)(1− xM−m+1)

linearM (x1, · · · , xM−1) = 1− xi

(A.15)

The Pareto front is a hyper-plane (
∑M

m=1 hm = 1) when hm=1,··· ,M = linearm

• Convex

convex1(x1, · · · , xM−1) =
M−1∏
i=1

(1− cos(xi
π

2
))

convexm=2,··· ,M−1(x1, · · · , xM−1) =

M−1∏
i=1

(1− cos(xi
π

2
))(1− sin(xM−m+1

π

2
))

convexM (x1, · · · , xM−1) = 1− sin(x1
π

2
)

(A.16)

The Pareto front is convex when hm=1,··· ,M = convexm.

• Concave

concave1(x1, · · · , xM−1) =
M−1∏
i=1

sin( i
π

2
)

concavem=2,··· ,M−1(x1, · · · , xM−1) =
M−1∏
i=1

sin( i
π

2
) cos(xM−m+1

π

2
))

concaveM (x1, · · · , xM−1) = cos(x1
π

2

(A.17)

The Pareto front is concave when hm=1,··· ,M = concavem, having
∑M

m=1(hm)2 = 1.

• Mixed convex/concave (α > 0, A ∈ {1, 2, · · · })

mixedM (x1, · · · , xM−1) = (1− x1 −
cos(2Aπx1) + π/2

2Aπ
)α (A.18)

Parameter A is to control the number of concave or convex segments. If α > 1,

the overall front is convex; if α < 1, the overall shape is concave; and if α = 1 the

overall shape is linear.

• Disconnected (α > 0, β > 0 A ∈ {1, 2, · · · })

disconM (x1, · · · , xM−1) = (1− xα1 − cos(A(x1)βπ)2 (A.19)
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Similarly, A controls the number of disconnected segments. α > 1 leads to a

convex overall shape; α < 1 leads to a concave shape; and α = 1 leads to a linear

shape. β impacts the locations of the disconnection.

The transformation functions

The transformation functions are listed below. In these functions y and [y1, · · · , y|y|] is

in the domain [0, 1]. A,B,C, α and β are constants.

• Bias: Polynomial (α > 0, α 6= 0)

b poly(y, α) = yα (A.20)

when α > 1, y is bias towards 0 else towards 1.

• Bias: Flat region (A,B,C ∈ (0, 1), B < C,B = 0→ A = 0∧C 6= 1→ A = 1∧B 6=
1)

b flat(y,A,B,C) = A+ min(0, by −Bc)
A(B−y)

B −

min(0, bC − yc)
(1−A)(y−C)

1−C

(A.21)

Values of y between B and C (the area of flat region) are all mapped to A.

• Bias: Parameter dependent ( A ∈ (0, 1), 0 < B < C)

b param(y,y′, A,B,C) = yB+(C−B)v(u(y′))

v(u(y′)) = A− (1− 2u(y′))|b0.5− u(y′)c+A|
(A.22)

A,B,C and y′ determine the degree to which y is biased by being raised to an

associated power: values of u(y′) ∈ [0, 0.5] are mapped linearly onto [B,B + (C −
B)A], and values of u(y′) ∈ [0.5, 1] are mapped linearly onto [B + (C −B)A,C].

• Shift: Linear (A ∈ (0, 1))

s linear(y,A) =
|y −A|

|bA− yc+A|
(A.23)

A is the value for which y is mapped to 0.

• Shift: Deceptive (A ∈ (0, 1), 0 < B � 1, 0 < C � 1, A−B > 0, A+B < 1)

s decept(y,A,B,C) = 1 + (|y −A| −B)×

(
by −A+Bc(1− C + A−B

B )

A−B
+
bA+B − yc(1− C + 1−A−B

B )

1−A−B
+

1

B
)

(A.24)
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A is the value at which y is mapped to 0, and the global minimum of the transfor-

mation. B is the “aperture” size of the well/basin leading to the global minimum

at A, and C is the value of the deceptive minima (there are always two deceptive

minima).

• Shift: Multi-modal (A ∈ {1, 2, · · · }), B ≥ 0, (4A+ 2)π ≥ 4B,C ∈ (0, 1))

s multi(y,A,B,C) =

1 + cos[(4A+ 2)π(0.5− |y−C|
2(bC−yc+C))] + 4B( |y−C|

2(bC−yc+C))2

B + 2
(A.25)

A controls the number of minima, B controls the magnitude of the “hill sizes”

of the multi-modality, and C is the value for which y is mapped to 0. When

B = 1, 2A+ 1 values of y (one at C) are mapped to 0, and when B 6= 0, there are

2A local minima, and one global minimum at C. Larger values of A smaller values

of B create more difficult problems.

• Reduction: Weighted sum (|w| = y, ∀wi > 0, i = 1, 2, · · · , |y|)

r sum(w,y) =

∑|y|
i=1wiyi∑|y|
i=1wi

(A.26)

Be varying the constants of the weight vector w, Evolutionary algorithms are

forced to treat parameters differently.

• Reduction: Non-separable (A ∈ {1, · · · , |y|}, ymodA = 0)

r nonsep(y, A) =

∑|y|
i=1(yj +

∑A−2
k=0 |yj − y(1+j+k)mody|)

y
AdA/2e(1 + 2A− 2dA/2e)

(A.27)

The degree of non-separability is controlled byA, r nonsep(y,1) = r sum(y, {1, 1, · · · , 1}).

The standard WFG test suite

Prior to introducing the format of the WFG test suite, we describe some general param-

eters for all the WFG test problems. For any transition vector ti, we let y = ti−1. For

t1, let y = z[0,1] = {z1/2, · · · , zn/(2n)}. The domain of xi is [0, 2i], where i = 1, 2, · · · , n.

The constants are set as follows:

Sm=1,··· ,M = 2m

D = 1

A1 = 1

(A.28)
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A2:M−1 is set to 0 for WFG3, and 1 for the other problems. The settings for S1:M ensures

Pareto optimal fronts have dissimilar trade-off magnitudes, and the settings for A1:M−1

ensures Pareto optimal fronts are not degenerated, except for WFG3, which has a one

dimensional Pareto optimal front.

• WFG1

hm=1,··· ,M−1 = convex m

hM = mixed M (with α = 1 and A = 5)

t1i=1:k = yi

t1i=k+1:n = s linear(yi, 0.35)

t2i=1:k = yi

t2i=k+1:n = b flat(yi, 0.8, 0.75, 0.85)

t3i=1:n = b poly(yi, 0.02)

t4i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)},

{2((i− 1)k/(M − 1) + 1), · · · , 2ik/(M − 1)})

t4M = r sum({yk+1, · · · , yn}, {2(k + 1), · · · , 2n})

(A.29)

Pareto optimal fronts of 2 and 3-objective WFG2 are show in Figure A.13.

(a) WFG1-2 (b) WFG1-3

Figure A.13: Pareto optimal fronts of WFG1-2 and WFG1-3.

• WFG2
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hm=1,··· ,M−1 = convex m

hM = disc M(withα = β = 1andA = 5)

t1 is the same as WFG1 (Linear shift)

t2i=1:k = yi

t2i=k+1:k+l/2 = r nonsep({yk+2(i−k)−1, yk+2(i−k)}, 2)

t3i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t3M = r sum({yk+1, · · · , yk+l/2}, {1, · · · , 1})

(A.30)

Pareto optimal fronts of 2 and 3-objective WFG2 are show in Figure A.14.

(a) WFG2-2 (b) WFG2-3

Figure A.14: Pareto optimal fronts of WFG2-2 and WFG2-3.

• WFG3

hm=1,··· ,M = linearm (degenerate)

t1:3 is the same as t1:3 in WFG2
(A.31)

Pareto optimal fronts of 2 and 3-objective WFG3 are show in Figure A.15.

• WFG4

hm=1,··· ,M = concave m

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.32)
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(a) WFG3-2 (b) WFG3-3

Figure A.15: Pareto optimal fronts of WFG3-2 and WFG3-3.

Pareto optimal fronts of 2 and 3-objective WFG4 are show in Figure A.16.

(a) WFG4-2 (b) WFG4-3

Figure A.16: Pareto optimal fronts of WFG4-2 and WFG4-3.

• WFG5

hm=1,··· ,M = concave m

t1i=1:n = s decept(y1, 0.35, 0.001, 0.05)

t2 is the same as t2 in WFG4 (Weighted sum reduction)

(A.33)

Pareto optimal fronts of 2 and 3-objective WFG5 are show in Figure A.17.

• WFG6
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(a) WFG5-2 (b) WFG5-3

Figure A.17: Pareto optimal fronts of WFG5-2 and WFG5-3.

hm=1:M = concave m

t1isthe same as t1 in WFG1 (Linear shift)

t2i=1:M−1 = r nonsep({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, k/(M − 1))

t2M = r nonsep({yk+1, · · · , yn}, l)

(A.34)

Pareto optimal fronts of 2 and 3-objective WFG6 are show in Figure A.18.

(a) WFG6-2 (b) WFG6-3

Figure A.18: Pareto optimal fronts of WFG6-2 and WFG6-3.

• WFG7
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hm=1:M = concave m

t1i=1:k = b param(y1, r sum({yi+1, · · · , yn}, {1, · · · , 1}),
0.98

49.98
, 0.02, 50)

t1i=k+1:n = y1

t2 is the same as t1 in WFG1 (Linear shift)

t3 is the same as t2 in WFG4 (Weighted sum reduction)

(A.35)

Pareto optimal fronts of 2 and 3-objective WFG7 are show in Figure A.19.

(a) WFG7-2 (b) WFG7-3

Figure A.19: Pareto optimal fronts of WFG7-2 and WFG7-3.

• WFG8

hm=1:M = concave m

t1i=1:k = yi

t1i=k+1:n = b param(y1, r sum({yi+1, · · · , yn}, {1, · · · , 1}),
0.98

49.98
, 0.02, 50)

t1i=k+1:n = y1

t2 is the same as t1 in WFG1 (Linear shift)

t3 is the same as t2 in WFG4 (Weighted sum reduction)

(A.36)

Pareto optimal fronts of 2 and 3-objective WFG8 are show in Figure A.20.

• WFG9
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(a) WFG8-2 (b) WFG8-3

Figure A.20: Pareto optimal fronts of WFG8-2 and WFG8-3.

hm=1:M = concave m

t1i=1:n−1 = b param(y1, r sum({yi+1, · · · , yn}, {1, · · · , 1}),
0.98

49.98
, 0.02, 50)

t1n = yn

t2i=1:k = s decept(yi, 0.35, 0.001, 0.05)

t2i=k+1:n = s multi(yi, 30, 95, 0.35)

t3 is the same as t2 in WFG6 (Non separable reduction)

(A.37)

Pareto optimal fronts of 2 and 3-objective WFG9 are show in Figure A.21.

(a) WFG9-2 (b) WFG9-3

Figure A.21: Pareto optimal fronts of WFG9-2 and WFG9-3.
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The modified WFG4X test suite

The WFG4X test suite is developed by replacing the shape function used in WFG4 prob-

lem with different shapes functions. The Pareto optimal front of the WFG4X problems

have the same trade-off magnitudes, that is, S1:M = 2, see Equation A.28.

• WFG41 is the same as the WFG4 problem which has a concave Pareto optimal

front.

hm=1,··· ,M = concave m

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.38)

• WFG42 has a convex Pareto optimal front. It is built by replacing the concave

shape function used in WFG4 with the convex shape function.

hm=1,··· ,M = convex m

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.39)

• WFG43 has a strong concave Pareto optimal front. It is built by scaling the

concave shape function with power 1
4 .

hm=1,··· ,M = (concave m)
1
4

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.40)

• WFG44 has a strong convex Pareto optimal front. It is built by scaling the convex

shape function with power 1
4 .

hm=1,··· ,M = (convex m)
1
4

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.41)
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• WFG45 has a mixed Pareto optimal front. It is built by replacing the concave

shape function used in WFG4 with the mixed shape function.

hm=1,··· ,M = mixed m(with α = 1 and A = 5)

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.42)

• WFG46

hm=1,··· ,M = linear m

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.43)

The Pareto optimal front of WFG46 is a hyperplane. It is built by replacing the

concave shape function used in WFG4 with the linear shape function.

• WFG47

hm=1,··· ,M−1 = concave m

hM = discon m(with α = β = 1 and A = 2)

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.44)

The Pareto optimal front of WFG47 is disconnected and concave. It is built by

replacing the concave shape function used in WFG4 with the concave (for the first

M − 1 objectives) and the disconnected (for the last objective) shape function.

Parameters used in the disconnected function are set as α = β = 1
2 , A = 2.

• WFG48
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hm=1,··· ,M−1 = convex m

hM = discon m(with α = β = 1 and A = 2)

t1i=1:n = s multi(y1, 30, 10, 0.35)

t2i=1:M−1 = r sum({y(i−1)k/(M−1)+1, · · · , yik/(M−1)}, {1, · · · , 1})

t2M = r sum({yk+1, · · · , yn}, {1, · · · , 1})

(A.45)

The Pareto optimal front of WFG48 is disconnected and convex. It is built by

replacing the concave shape function used in WFG4 with the convex (for the first

M − 1 objectives) and the disconnected (for the last objective) shape function.

Parameters used in the disconnected function are set as α = β = 1
2 , A = 2.

Pareto optimal fronts of the 3-objective WFG4X problem are shown in Figure A.22 and

Figure A.23.

The source code of all the above test problems is available in http://www.sheffield.

ac.uk/acse/staff/rstu/ruiwang/index.

http://www.sheffield.ac.uk/acse/staff/rstu/ruiwang/index
http://www.sheffield.ac.uk/acse/staff/rstu/ruiwang/index
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Figure A.22: Pareto optimal fronts of WFG41-3 to WFG44-3.
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Figure A.23: Pareto optimal fronts of WFG45-3 to WFG48-3.





Appendix B

True hypervolume value of WFG

problems

The true optimal hypervolume values (HV ∗) for WFG problems vary by problem, due

to the different Pareto front geometries employed. From Huband et al. (2006) the true

Pareto-optimal front of test problems (WFG4 to WFG9) is the surface of M -dimension

hyper-ellipsoid with radius ri = 2 × i, i = 1, 2, · · · ,M in the first quadrant. Therefore

HV ∗ can be computed by

HV ∗ = V2 −
V1

2M
(B.1)

where V1 is the volume of M -dimension hyper-ellipsoid, and V2 is the volume of M -

dimension hypercube, which is constructed by the reference point and the coordinate

origin. As the volume covered by the Pareto front is only in the first 1
2M

area, e.g.

the first quadrant for 2 dimensions. So V1 must be divided by 2M . The formula of

calculating V1 is given as follows (Schrocker, 2008):

V1 =


1

(M
2

)!
π

M
2
∏M
i=1 ri M is even

2(
M+1

2 )

(M)!! π
M−1

2
∏M
i=1 ri M is odd

(B.2)

Taking the 2-objective WFG4 test as an example, see Figure B.1:

V1 = πr1r2 = π×1×1 = 1.44π, and V2 = 1.2×1.2 = 1.44. So HV ∗ = 1.44− pi
22

= 0.6546.

As the Pareto front of WFG2 is disconnected, the above computation process is not

applicable. However, in Huband et al. (2006) the authors point out that the optimal

solutions of WFG2 satisfy the condition Equation B.3:

211



212 Appendix B True hypervolume value of WFG problems

Figure B.1: True hypervolume calculation.

Zi=k+l:n = 2× i× 0.35 (B.3)

where n is the number of decision variables and n = k+l, k and l are position and distance

parameters. Therefore, we generate 10, 000 × M optimal solutions for M -dimension

WFG2 and then the approximation of HV ∗ can be calculated by using conventional

methods (Zitzler and Thiele, 1999; Fonseca et al., 2006).



Appendix C

An introduction to the Parallel

coordinate system

The concept of Parallel coordinates was first introduced by Inselberg (1985) and subse-

quently applied to EMO by Fonseca and Fleming (1993). It places all the axes paral-

lel to each other thus effectively reducing an arbitrary high-dimensional space to two-

dimensions.

Figure C.1: Mapping from Cartesian into parallel coordinates.

In Cartesian system, a solution (in objective-space) is displayed by a single point. In

the Parallel coordinates system, a solution is displayed by joining the objective values in

all adjacent objectives by straight lines. Figure C.1 illustrates the mapping between the

Cartesian system and the parallel coordinates, where point A in the coordinate system

is represented by line A in the parallel coordinates representation.

Parallel coordinates also visually represent the relationships, such as conflict and har-

mony, between design objectives. Specifically, lines representing two adjacent objectives

will cross if conflict is observed or will fail to cross if harmony is exhibited between the

213



214 Appendix C An introduction to the Parallel coordinate system

Figure C.2: Solutions displayed using parallel coordinates.

two objectives. For example, in Figure C.2, objectives f1 and f2 are in conflict while

objectives f2 and f3 are harmony.
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