
CSDL-T-1251

FAULT TOLERANT DESIGN USING
SINGLE AND MULTICRITERIA

GENETIC ALGORITHM OPTIMIZATION

by
Jason R. Schott

May 1995

Master of Science Thesis
Massachusetts Institute of Technology

ai^CsftJ'

19950710 091

LABORATORY
The Charles Stark Draper Laboratory, Inc.

555 Technology Square, Cambridge, Massachusetts 02139-3563

n. er wrvi uu^ui"-i\ IMIIUI* rr.u- OWJ wo. C70*-C'iSE

> »~»-ri«»'•o-rntiJW-OIHI. »•#-•»—tlo-v DC 39VSJ.

1. AGENCY USE ONLY Uf* N*n<J 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

*.. TITLE AND SUBTITLE ' C\ \ \

Hal-T-ircH-fe^o. Geneve AlcorVÖiVn Qtfämiwki

t. AUTHOR(S)

^T^^Ä^i^. :

5. FUNDING NUMBERS

?. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFIT Students Attending: hi (] *-f]

^ftW§&t KD9

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRE'SS(ES) •-

- DEPARTNEMT 'OF THE AIR FORCE ' '■
AFIT/CI ■'.■•.'.■■
2950 ? STREET., 3DLG 125 .. __
TvTRI GET-PATTERSON 'AFB -OH';^5«33-7765'?:^^-^-'^

B. PERFORMING ORGANIZATION
REPORT NUMBER.----.--'----- ■- -
AFIT/Cl/CIA '..

qs--(5^f
TO. SPONSORING/MONITORING

AGENCY REPORT NUMBER .'"

11. SUPPLEMENTARY NOTES

12*. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for Public Release 1AW APR 190-1
Distribution TJnlirdted -. :...-,
BRIAN D. <GAUTEIER, MSgt,-..'.I3SA? .•-'.: .
."Chief Adäiiiis trat ion :.....:"::'■■.■■; '■;.;■'

12b. DISTRIBUTION CODE

12. ABSTRACT [M»ximim2D0 vortis)

DTIt QUALITY INSPECTED 8

«. SUBJECT TERMS IS. NUMBER OF PAGES

JZOO
It. PRICE CODE

17. SECURITY CLASSIFICATION IE. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

IE. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7»£D-DV2SD-E»DD Sincere:' rotm 29E (Sev. 2-E9)

Fault Tolerant Design using Single and Multicriteria
Genetic Algorithm Optimization

Jason R. Schott, Second Lieutenant
United States Air Force

1995

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for

the degree of Master of Science in Aeronautics and Astronautics
at the Massachusetts Institute of Technology

Abstract

This thesis incorporates a mixed discrete/continuous parameter genetic
algorithm optimization capability into the Design Optimization/Markov
Evaluation (DOME) program developed by the Charles Stark Draper
Laboratory of Cambridge, Massachusetts. DOME combines the merits of
Markov modeling and the Optimal Design Process to generate a systematic
framework for system design with realistic reliability and cost analyses. The
addition of genetic algorithms expands the design problem domain to include
discrete parameter problems, which current optimization methods continue to
struggle with.

A new variant of the genetic algorithm called the steady-state genetic
algorithm is introduced to eliminate the idea of distinct generations. Functional
constraints are dealt with by ingenious use of the function information
contained in the genetic algorithm population. The optimal genetic algorithm
parameter settings are investigated, and the genetic algorithm is compared to
the Monte Carlo method and the Branch and Bound method to show its
relative utility in optimization. This research shows that a single criterion
genetic algorithm can be expected to outperform other methods in efficiency,
accuracy, and speed on problems of moderate to high complexity.

The work then extends to multicriteria optimization, as applied to fault
tolerant system design. A multicriteria genetic algorithm is created as a
competitive means of generating the efficient (Pareto) set. Method
parameters such as cloning, sharing, domination pressure, and population
variability are investigated. The method is compared to the e-constraint
multicriteria method with a steady-state genetic algorithm performing the
underlying single-criterion optimization. This research shows that a genetic
algorithm using dominance as a selection criterion exhibits excellent
performance for efficient set generation.

(200 pages)

Fault Tolerant Design using Single and Multicriteria
Genetic Algorithm Optimization

by

Jason R. Schott, 2Lt, USAF

B.S., United States Air Force Academy (1993)

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND
ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1995

© Jason R. Schott, 1995

Signature of Author

Approved by

Certified by

Accepted by

Department of Aeronautics and Astronautics
May 1995

Dr. Andrei L. Schor
Thesis Supervisor, C.S. Draper Laboratory

Professor Wallace E. Vander Velde
Thesis Supervisor, Professor of Aeronautics and Astronautics

Professor Harold Y. Wachman
Chairman, Department Graduate Committee

Of □
□

■YK'oS&X

!/

'f'*V/-*l'i.

Fault Tolerant Design using Single and Multicriteria
Genetic Algorithm Optimization

by

Jason R. Schott, Second Lieutenant
United States Air Force

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for

the degree of Master of Science in Aeronautics and Astronautics
at the Massachusetts Institute of Technology

Abstract

This thesis incorporates a mixed discrete/continuous parameter genetic
algorithm optimization capability into the Design Optimization/Markov
Evaluation (DOME) program developed by the Charles Stark Draper
Laboratory of Cambridge, Massachusetts. DOME combines the merits of
Markov modeling and the Optimal Design Process to generate a systematic
framework for fault tolerant system design with realistic reliability and cost
analyses. The addition of genetic algorithms expands the permissible design
problem domain to include discrete parameter problems, which current
optimization methods continue to struggle with.

A new variant of the traditional genetic algorithm called the steady-
state genetic algorithm is introduced to eliminate the idea of distinct
generations. Functional constraints are dealt with by ingenious use of "fitness
penalty" that capitalizes on the function information contained in the genetic
algorithm population. The optimal genetic algorithm parameter settings are
investigated, and compared to those of earlier work in this area. The genetic
algorithm is compared to the Monte Carlo method and an adapted form of the
Branch and Bound optimization method to show its relative utility in the
optimization field. This research shows that a single criterion genetic
algorithm can be expected to outperform other methods in efficiency, accuracy,
and speed on problems of moderate to high complexity.

The work then extends to multicriteria optimization, as applied to fault
tolerant system design. A multicriteria genetic algorithm is created as a
competitive means of generating the efficient (Pareto) set. Method
parameters such as cloning, sharing, domination pressure, and population
variability are investigated. The method is compared to the e-constraint
multicriteria method with a steady-state genetic algorithm performing the
underlying single-criterion optimization. This research shows that a genetic
algorithm using dominance as a selection criterion exhibits excellent
performance for efficient set generation.

Thesis Supervisor: Professor Wallace E. Vander Velde
Thesis Supervisor: Dr. Andrei L. Schor

Acknowledgments

I would like to express my gratitude to the people who made this effort

both challenging and rewarding.

Andrei Schor, for providing the oversight to keep me on track and the freedom

to follow the paths I thought best.

Professor Vander Velde, for asking the tough questions necessary to expand

my thoughts and for his efforts in following my erratic progress.

Emily Schott, for being my wife and for supporting me even though I was never

home.

Kent Engebretson, for allowing me to vent frustration and for punishing my

body in the gym on a regular basis.

The Boys of 13 Bigelow, who made the first semester a most memorable one.

Jesus, my God and my Savior, who gives me the strength to push on.

This thesis was prepared at the Charles Stark Draper Laboratory,

Incorporated under an internal development contract.

Publication of this thesis does not constitute approval by the Draper

Laboratory of the findings or conclusions contained herein. It is published for

the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to the Charles Stark Draper

Laboratory, Incorporated, Cambridge, Massachusetts.

W*J \l &tUfc~
Jksrfn R. Schott, 2Lt., USAF

Permission is hereby granted by the Charles Stark Draper Laboratory,

Incorporated to the Massachusetts Institute of Technology to reproduce and to

distribute copies of this thesis document in whole or in part.

This thesis is dedicated to my wife, Emily,
and to the child she carries for us.

Table of Contents

Abs trjict •»••*•••••••*•••••••••••••••••••••**•**

Table of Contents ...••.••••••••••••••••••«•• ®

List of Figures ~ * 2

TÄst. Of JL&bleS .„„„^m%—•—mm—»——»m»———*————————^•————————^^^——••———————"""'—^ **

Nomenclature~»»~«~«~~~-~..~~~~~~«~~~~-~..~~~~~~~«~-~~~~~"~"««~"~'»~"""~16

1.0 Introduction .„————————————————"———«.11

1.1 Background 1?

1.2 The Modeling Process 19

1.3 Optimal Design Process 20

1.4 Single-criterion versus Multicriteria Optimization 23

1.5 Mathematical Programming 24

2.0 Description of Test Problems 27

2.1 Warning Lamp Problem 27

2.2 Asymmetric Lamp Problem 30

2.3 Triplex Problem 33

2.4 TISS Problem 35

3.0 Genetic AiffO'**i|^''Tnfi —————.....................................«».»..«»..»»»««»«»«««»■»«« •

3.1 Background 37

3.2 Traditional Genetic Algorithm 39

3.3 Coding and Schema Theorem 41

3.3.1 Fault Tolerant Parameter Coding. 43

3.4 Population Initialization 45

3.4.1 Initial Guesses 45

8

3.5 Reproduction 46

3.5.1 Selection 46

3.5.2 Fitness Scaling 47

3.6 Crossover 50

3.7 Mutation 51

3.8 Function Evaluation 52

4.0 Steady-State Genetic Algorithm .. 53

5.1 Function Constraints 57

5.2 Parameter Constraints 67

6.0 Convei3?ence.~........~~~~..~~~~..~~~~~~~~—............................69

6.1 The Fundamentals of Convergence 69

6.2 Steady-State Genetic Algorithm Behavior 72

6.3 Traditional Genetic Algorithm Behavior 73

6.4 Termination Criteria Analysis 74

7.0 Mutation Rate Analysis-—..—...... 83

8.0 Population Size Analysis——«~»^««~~~~~«~~~—~—~....~«~~~~..~~..87

8.1 Population size rules-of-thumb 87

8.2 Results 89

8.3 Traditional Genetic Algorithm Population Size 90

8.4 Steady-State Genetic Algorithm Population Size 93

8.5 'Wasted" Binary Coding 95

9.0 Summary of Single Criterion Design 97

10.0 Multicriteria Optiiiiizatioii.~~..~~~~~~~~~~~~~~~~~~~««~~~~~—««~~~~«»« 101

10.1 Background 101

10.2 Multicriteria Technique Classification 104

10.2.1 No preference articulation 104

10.2.2 A priori articulation of preferences 105

10.2.3 Progressive articulation (interactive programming) 105

10.2.4 A posteriori articulation (generating methods) 106

10.3 Multicriteria Test Problems 108

10.4 Display 108

11.0 Multicriteria Generating Techniques. 111

11.1 e-Constraint Method Ill

11.2 Weighting Method 115

11.3 Multicriteria Genetic Algorithm 117

11.3.1 Tournament Selection 119

11.3.2 Equivalence Class Sharing. 120

12.0 MCGA Performance Parameters, 127

12.1 Clones 127

12.2 Population Variability 129

12.2.1 Fixed population size 131

12.2.2 Variable population size (+2) 131

12.2.3 Variable population size (+2/-Pdom) 131

12.3 Definition of a Tie 132

12.4 Tournament Size 133

12.5 Niches 133

12.6 Summary of Options 134

10

13.0 MCGA Performance Parameters.——————————135

13.1 Efficient points 135

13.2 Efficient set spacing 136

13.3 Seven point distance measure 136

13.4 Cost Function Evaluations 137

13.5 Additional Criteria 138

13.5.1 Proportion of Clones 138

13.5.2 Total clones identified 138

14.0 MCGA Performance Analysis 139

14.1 Effect of Clones 141

14.2 Population Variability 149

14.3 Population size sensitivity 156

14.4 Effect of Tie Definitions 159

15.0 Multicriteria Method Comparison—— ————— 163

15.1 Triplex problem comparison 163

15.2 TISS problem comparison 167

16.0 Summary of Multicriteria Design———————————— 173

17.0 Suggestions for Further Work 177

17.1 Single Criterion 177

17.2 Multicriteria 179

Appendix A: The Markov Modeling Method ——— . 183

Appendix B: The Branch and Bound Method.-— — -. 193

Appendix C: Down-hill Simplex.————————————. 197

References————————————————————.199

11

Figure 1-1

Figure 1-2

Figure 2-1

Figure 2-2

Figure 3-1

Figure 3-2

Figure 3-3

Figure 4-1

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4:

Figure 5-5

Figure 5-6:

Figure 5-7

Figure 5-8

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6-7

Figure 6-8

Figure 6-9

Figure 7-1

Figure 8-1

Figure 8-2

Figure 8-3

Figure 8-4

List of Figures

Optimal Design Process 20

Simple Markov model for a dual component system 22

Mesh plot of Warning Lamp problem 28

Markov model of TRIPLEX problem 33

Flow diagram of the genetic algorithm 38

Traditional genetic algorithm reproduction cycle 40

Inverted linear fitness scaling 49

Steady-state genetic algorithm reproduction cycle 54

General ga population distribution with constraint bound shown...60

Penalty function (G) as a function of the amount of violation 62

Population distribution for correlated cost and constraint 63

Constant J value isoquants when infeasible points are ignored 63

Constant J isoquants with G penalized infeasible points 64

Penalized fitness function for g* close to g^ 64

Population distribution for correlated J-g with g* far from g^ 65

Penalized fitness function for g* far from g,^ 65

Convergence to a Warning Lamp solution 70

ssga convergence behavior on the TISS problem 72

tga convergence on the TISS problem 73

Convergence method candidate: (high-low)/mean 76

Convergence method candidate: mean parameter variance 77

Convergence method candidate: mean of bit likeness 78

Convergence method candidate: product of bit likeness 79

PBL comparison to average cost decay on TISS problem 81

PBL comparison to lowest cost decay on TISS problem 81

Mutation rate comparison 84

Population size comparison for tga 91

tga population size analysis for competitive runs 92

Population size comparison for ssga 93

ssga population size for competitive timed runs 94

12

Figure 10-1: Two dimensional multicriteria objective space 103

Figure 10-2: Two criteria problem efficient set with "knee" 109

Figure 10-3: Profile display for multicriteria analysis 110

Figure 11-1: e - constraint multicriteria method 112

Figure 11-2: Weighting multicriteria method disadvantages 116

Figure 11-3: Equivalence class sharing 121

Figure 11-4: Two dimensional Holder metric niche shapes 123

Figure 11-5: Multicriteria genetic algorithm reproduction cycle 125

Figure 12-1: Example efficient set resolution limitations 129

Figure 13-1: Seven point distance measure of population accuracy 137

Figure 14-1: Sample MCGA optimization of TISS problem 140

Figure 14-2: Clones in population for 3 clone options on TRIPLEX problem. 142

Figure 14-3: Clones identified in TRIPLEX problem for 3 clone options 142

Figure 14-4: Efficient point analysis for cloning on TRIPLEX problem 143

Figure 14-5: Efficient set range variance for cloning on TRIPLEX problem.. 144

Figure 14-6: Distance measure analysis for cloning on TRIPLEX problem... 144

Figure 14-7: Clones in population for 3 clone options on TISS problem 145

Figure 14-8: Clones identified in TISS problem for 3 clone options 146

Figure 14-9: Efficient point comparison of cloning on TISS problem 146

Figure 14-10: Efficient set range variance of cloning on TISS problem 147

Figure 14-11: Distance measure analysis of cloning on TISS problem 147

Figure 14-12: Distance measure for cloning on TISS problem (end of run).... 148

Figure 14-13: Population size with P variability on TRIPLEX problem 150

Figure 14-14: Size of e with P variability on TRIPLEX problem 151

Figure 14-15: e range variance for P variability on TRIPLEX problem 151

Figure 14-16: Distance measure of P variability on TRIPLEX problem 152

Figure 14-17: Population size with P variability on TISS problem 153

Figure 14-18: Size of e comparison for P variability on TISS problem 153

Figure 14-19: e range variance for P variability on TISS problem 154

Figure 14-20: Distance measure analysis for variable P on TISS problem... 155

Figure 14-21: Clones detected in TISS problem with variable P 155

Figure 14-22: Size of e comparison for various P on TRIPLEX problem 156

13

Figure 14-23: e range variance for various P on TRIPLEX problem 157

Figure 14-24: Distance measure for various P on TRIPLEX problem 158

Figure 14-25: Size of e comparison of tie definition on TTSS problem 160

Figure 14-26: e range variance of tie definition on TISS problem 160

Figure 14-27: Distance measure of tie definition on TISS problem 161

Figure 15-1: MCGA and constraint method on TRIPLEX problem 166

Figure 15-2: TISS problem results for constraint method 168

Figure 15-3: MCGA and constraint method comparison on TISS problem.... 170

Figure A-l: Single component system block diagram 183

Figure A-2: Single component system Markov model 184

Figure A-3: Two component system block diagram 186

Figure A-4: Two component system Markov model 187

Figure A-5: Aggregated two component system Markov model 188

Figure B-l: Tree structure for Branch and Bound optimization 195

Figure C-l: Simplex modification of the Down-hill Simplex method 198

14

List of Tables

Table 2-1: Lamp cost versus quality level 29

Table 2-2: Asymmetric lamp cost versus quality level 31

Table 2-3: Asymmetric Lamp problem data 32

Table 2-4: Asymmetric Lamp problem minima 32

Table 2-5: TRIPLEX cost function constant values 34

Table 2-6: TRIPLEX problem data 34

Table 2-7: TRIPLEX minima 35

Table 2-8: TISS problem data 36

Table 2-9: TISS problem computation time on various platforms 36

Table 3-1: Logarithmic parameter-to-string mapping 45

Table 6-1: Bit likeness illustration on 4 member population 77

Table 8-1: Ps population sizes for various binary string lengths 88

Table 8-2: "Wasted" effort caused by binary coding 96

Table 10-1: Sample fault tolerant design criteria 108

Table 12-1: MCGA implementation parameters 134

Table 15-1: TRIPLEX ssga configuration for constraint method 164

Table 15-2: Constraint method data for TRIPLEX problem optimization 164

Table 15-3: Performance comparison on TRIPLEX problem 165

Table 15-4: TISS problem ssga configuration for constraint method 167

Table 15-5: Constraint method data for TISS problem optimization 168

Table 15-6: Constraint method performance data on TISS problem 169

15

Nomenclature

Y, |x repair (transition) rate

X failure (transition) rate
a8hare equivalence class sharing niche radius

A transition matrix
cfe cost function evaluation
DM decision maker
e efficient set representation
E actual problem efficient set

F fitness
g function constraint
G multiplicative fitness penalty function

ga genetic algorithm

J cost functional
J vector of cost functionals (multicriteria design)

1 number of criteria
1 binary string length
m number of function constraints
MCGA multicriteria genetic algorithm
n number of design parameters

p Holder metric degree

P population size
Pdom domination tournament fraction times population size

PBL product of bit likeness convergence criterion

ssga steady-state genetic algorithm
T1 candidate domination tie defined as when only one candidate does

not dominate the entire tournament set
T, candidate domination tie defined as when both candidates dominate

the same fraction of the entire tournament set
domination tournament size expressed as a fraction of the

population size
tga traditional genetic algorithm
x design parameter
x vector of design parameters

16

L2

udom

1.0 Introduction

1.1 Background

Fault tolerance is defined as the ability to continue operating after the
failure of a given system component. To be fault tolerant, a system must have
one or more redundant components that can take over the function when the
primary component fails. In addition, the system must have both a means of
detecting failures in the components and a means of transferring to working
components after a failure has been detected. Fault-tolerant system
configurations are used extensively in processes where the system must
remain on-line in the event of component failure. Although applications are
widespread, industrial processes, aerospace vehicles, and ground
transportation are especially noteworthy. The need for optimization in the
design of these systems is apparent when one thinks of the complexity of
modern spacecraft. The high costs associated with their fabrication and
launch dictate that any design proposal be assured a very high probability of

success at the lowest possible system cost.
This thesis attempts to combine the robustness of the genetic algorithm

with the proven effectiveness of the Markov Modeling method and the Optimal
Design Process for fault tolerant system design. The efforts of this thesis are
divided into two main sections: the first deals with the application of the
genetic algorithm to single criterion fault tolerant design, while the second deals
with the application of the genetic algorithm to multicriteria fault tolerant
design.

17

Chapter 1 provides a brief overview of the Markov Modeling Method, the

Optimal Design Process, and general mathematical programming. Chapter 2
details the fault tolerant test problems used throughout this research. The

next chapter introduces the concepts involved in genetic algorithm
optimization and is followed in Chapter 4 by discussion of the Steady-State

Genetic Algorithm developed independently for this research. The next two

chapters, 5 and 6, discuss the difficulties involved in handling functional
constraints and determining convergence in genetic algorithms. Chapter 5
introduces a new concept called "fitness penalty" which uses the strengths of
the genetic algorithm to create general, effective penalty functions. Chapter 6

provides an outline of genetic algorithm convergence and the difficulty in
determining a termination criteria. A method of predicting convergence is
presented that relies on a measure of diversity in the genetic algorithm. The
results for mutation rate and population size analyses are presented in
Chapters 7 and 8, respectively, followed by a summary of genetic algorithm

single criterion optimization in Chapter 9.
The second section of the thesis begins in Chapter 10 with a background

summary of multicriteria optimization and the various types of methods that
fall into this category of mathematical programming. Chapter 11 illustrates
two common generating techniques of multicriteria optimization that have

applicability to fault tolerant design, followed by the introduction of a genetic
algorithm that uses multicriteria dominance as its selection technique. This
multicriteria genetic algorithm, or MCGA, is investigated in greater detail by
the remaining chapters. Chapter 12 summarizes the parameters of the
method that effect its performance and Chapter 13 lists some criteria by
which its performance can be measured. The performance of the MCGA on
two criteria fault tolerant system design problems is investigated in Chapter
14, including the effect of three of the performance parameters. Chapter 15
compares the performance of the MCGA to that of the constraint method,
followed by a general summary of multicriteria optimization in Chapter 16.
The final chapter of the thesis, Chapter 17, lists the various avenues of effort

that further work could pursue to enhance the knowledge in this field.
Before the methods of optimization that will be investigated are

presented, the reader must understand the framework of this analysis. For
this, we begin with an introduction of the modeling process of fault tolerant

system design.

18

1.2 The Modeling Process

The design of fault tolerant systems relies heavily on the availability,
accuracy, and completeness of a model representing the system design. The
development of an appropriate model becomes especially complex as
component interdependencies and failure rates propagate with time. This
section provides a basic outline of the modeling process for fault tolerant

design.
The process of generating a reliability prediction for a system can be

divided into three steps [1]. First, the system needs to be carefully examined.
The goal is to discover how the system operates and what are its critical
aspects. This step results in a system description. Second, the impact of
failures is explored. This step is often called a failure modes and effects
analysis (FMEA). During this step, the accident modes of the system are
delineated. Third, the Markov model is constructed. Information on system
operation from step one is used to guide modeling decisions such as the proper
representation for the human elements (this reflects the manner in which
personnel affect the system operation). The model is a systematic
representation of the FMEA from step two.

The actual process of generating a model requires information on:
architecture, component characteristics, operational requirements and
reconfiguration procedures. The system architecture provides information
such as what components exist and how they are connected, both physically
and logically. The model also needs various component characteristics, such
as failure and repair rates. The operational requirements provide a definition of
what equipment or abilities are needed to achieve an operational state. The
reconfiguration procedures are the actions taken when a failure occurs so that
system operation remains in the most desirable mode.

The model indicates when certain operational decisions impact safety
(such as the rate of restoration of a specific safety function following a
component failure). Also, sensitivity analyses indicate how different modeling
assumptions and uncertainties in model inputs affect the results. A complete
description of the Markov Modeling Method can be found in Appendix A.

19

1.3 Optimal Design Process

Optimization implies the process of determining a set of function

parameter values that cause a process to satisfy specified constraints and at

the same time maximize (or minimize) some performance criteria (expressed

as cost functions). Fault-tolerant system optimization normally requires
extensive and usually subtle tradeoffs between factors such as component
quality, reconfiguration strategies, level of redundancy, and operational
policies. Optimization strategies must incorporate the conflicting effects of
such constraints as performance specifications, reliability goals, and size and

weight in order to design to minimize cost. The complexity of this process
requires the availability of a systematic and efficient design approach capable

of dealing with large numbers of components arranged in any number of ways.

nvwi iw nnivuvMwniwnnfifvwwiftnfir ft t r t * Free Design Parameters

System Description
• architecture
• rules of operation
• redundancy mgt.

Design Constraints

System Model
• failures
• reconfigurations
• repairs

\

Cost Function
(Performance measures)

Designer
Judgement

user interaction

Figure 1-1: Optimal Design Process

Such a design approach should create a suitable system model and
apply a computational algorithm that adapts readily to model changes and

20

reaches a satisfactory solution in a reasonable amount of time. As shown in
Figure 1-1, the optimal design process can be formulated much like the optimal
control problem. The solid arrows show the analytic path that correlates to the
feed-forward path of control, with constant interaction from the external
"control constraints" shown as the left column of boxes. Optimization forms
the feedback portion of the control loop and completes the control-analogy to
the optimal control problem. The behavior of the Optimal Design Process
"plant" can be modeled to exhibit the same behaviors associated with control.
This framework allows us to use much of the existing knowledge in optimal
control to systematically solve the complex fault-tolerant design problem.

Markov modeling techniques (Appendix A) have been increasingly used
for reliability prediction. These techniques in conjunction with the Optimal
Design Process framework have also been used successfully to aid in the design
of fault tolerant systems. Specifically, past research efforts at the Charles
Stark Draper Laboratory have created a general framework for integrated
system optimization incorporating Markov models in the Design

Optimization/Markov Evaluation (DOME) program.
A Markov reliability model calculates the probability of the system

being in various states as a function of time. A state in the model represents
the system status with respect to component failures and the behavior of the
system's redundancy management strategy. Transitions from one state to
another occur at given transitions rates which reflect component failure and
repair rates and redundancy management performance. Each element in the
model's state vector represents the time-dependent probability of the system
being in a specific state. Since the Markov model traces the evolution of state
probabilities P based on the above mentioned transition rates, it is not
explicitly simulating the system and therefore does not have the deficiencies
associated with Monte Carlo techniques (see [1] for details on the Monte Carlo
method as an additional reliability analysis technique). Sequence dependencies,
such as repairs and redundancy management decisions, are included naturally.
The Markov model is cast into a system of ordinary differential equations of

the form:

P = A(a)P (1)

where A is the nxn transition matrix whose elements represent the transition

21

rates between system states, and a is the vector of input design parameters

such as failure, repair or reconfiguration rates. As an example, a simple four

state Markov system model is shown below.

HE IF
A FAILED

2F
A and B FAILED

A and B OK

B FAILED

Figure 1-2: Simple Markov model for a dual component system

The decay of the system from state 1 to state 4 is denoted by the failure
rates X and A, • Repairs are effected at the rate u. This basic Markov

framework can be expanded to model any fault tolerant system. A complete
description of the process involved in obtaining Figure 1-2 is provided in

Appendix A: "The Markov Modeling Process".
Furthermore, the differential nature of the model means that it is not

necessary to generate explicitly all possible combinations of events that can
occur over the entire time period in question; rather, it is only necessary to
model events that can occur during an infinitesimal time step. Of course, there
are also some drawbacks to this method. First, the state space grows
exponentially with the number of components. Nevertheless, techniques have
been developed to render this drawback tractable in many situations of
interest. Reference [1] covers this dimension problem in greater detail for the
interested reader. The second drawback is that treatment of complex mission
scenarios and repair strategies, although possible, are generally cumbersome.

To summarize, the merging of the framework of the Optimal Design

Process with the versatility, effectiveness, and efficiency of the genetic
algorithm should provide a state-of-the-art capability for dealing with formerly
intractable problems. It is the goal of this thesis to verify the validity of this

assertion.

22

1.4 Single-criterion versus Multicriteria Optimization

As stated above, fault-tolerant design requires extensive tradeoffs
between factors such as component quality, reconfiguration strategies, level of
redundancy, and operational policies. Therefore, optimization strategies must
somehow incorporate the conflicting effects of such criteria as performance
specifications, reliability goals, and size and weight in order to design to
minimize cost. The Optimal Design Process is a very effective means of
dealing with these conflicting criteria and generating a realistic system model.

Whenever possible, the designer attempts to combine all criteria of
interest into a single cost function. The creation of a single figure-of-merit for a
problem enhances the ability of a search method to quickly and accurately
generate a solution and often increases the decision maker (DM) satisfaction

with the solution produced.
The three most common criteria in fault tolerant design are (1)

procurement cost, (2) availability, and (3) operating cost. Procurement cost is
a configuration fixed quantity. It is solely dependent on the initial conditions for
the problem. The availability (reliability) of the design depends on the states of
the Markov model at the terminal conditions. The operating cost, however, is
not a fixed time quantity. Operating cost is determined as an integral-over-
time condition over the system's life cycle.

A common example of this approach would be fleet design for an airline.

Some airlines employ a "deferred maintenance'' concept, which strives to meet
specified goals but allows maximum maintenance flexibility to decide when an
where maintenance should occur. The issues involved include keeping aircraft
operational, reducing the locations where heavy maintenance is performed,
reducing the heaving maintenance frequency, reducing emergency repairs, and
others. A single cost function that could be created for this type of problem is

shown in equation (2):

Iifecyde

Costtota] = Unavailability«,,, + j{Replacement«,, + RepairC0BtB + Waste«,^ (2)
0

If a relationship such as this between procurement cost, availability,
and operating cost is known or satisfactorily approximated, a single scalar

function can be formulated. If, however, a cost cannot be readily assigned to

23

availability, a multicriteria problem must be solved.
Criteria are not always commensurate. For example, the design of a

system may have to account for the desire to minimize collateral damage and
mission preparation. The worth of human life and the value of time are
incommensurate to most decision makers (DM) because of the difficulty
involved in resolving the relative worth of human life in terms of hours. In such
an instance, another framework for the design process is desired that takes
conflicting criteria into account without unduly sacrificing the reliability of the
solution or the time required to reach it. The focus of multiobjective
programming is to provide the DM with a means of understanding the tradeoffs

involved in the problem and to help him or her to identify a quality solution.

Fortunately, multicriteria optimization problems also fit into the
framework of the Optimal Design Process. Except for the fact that a single
optimum solution does not exist in the normal sense and multiple cost
functionals are maintained, Markov modeling still provides an effective means
of achieving time-dependent reliability analysis on problem criteria of interest.
Commensurate criteria should be combined into a single cost functional
whenever possible, to avoid dealing with the complexities of multicriteria
optimization and to regain the greater assurances of optimum.

1.5 Mathematical Programming

In any given search space for optimization, there are two types of

optima: global and local. The definition of optima also changes depending on
whether the goal is the maximum or the minimum of some value. Fault
tolerant design deals primarily with costs, which almost always are to be
minimized. As such, all optimums in this thesis should be considered

minimums unless otherwise noted.
A global minimum indicates the location in the search space with the

very lowest cost function evaluation. A local minimum, on the other hand,
represents the lowest cost function value over a limited portion of the search
space. All optimization processes intend to locate the global minimixm, the
constraints (either external or internal) imposed on optimization in a complex
problem keep the search algorithm from complete assurance of finding the
global minimum. Additionally, local minima may exist in the design space in
the complete absence of constraints. Consequently, successful optimization

24

hinges on the search algorithm's ability to locate a minimum that satisfies

performance criteria.
The fault-tolerant problem formulation developed here must be solved

by some combination of four mathematical programming approaches:
1) Linear programming where both objective and constraints are linear

functions of decision variables,
2) Non-linear programming where at least one function is non-linear,
3) Integer programming where the solution must lie in the integer set,
4) Discrete programming where it is required that the solution lie within a

chosen set of discrete values.
DOME has a versatile and well-tested continuous parameter

optimization capability capable of solving non-linear programming problems
[8]. This means, however, that like most capabilities available today, it lacks
the means of dealing with many real-world problems. The ability to deal with
integer and discrete problems are important because realistic design must
often deal with a finite number of available components, quality levels, limited
personnel expertise or scheduling conflicts, equipment settings, etc.

Dealing with discrete programming problems is not a trivial undertaking.
George Dantzig, the creator of the famous simplex linear programming method,
once said that the first phase in doing an integer programming problem is to
try to convince the user that he or she does not wish to solve an integer
programming problem at all! [5]

We have chosen to develop the capability to perform discrete
programming into the DOME framework because unlike other analytic
approaches that require explicit formulas for state probabilities, DOME is a
general framework applicable to a wide range of real-world fault tolerant design
problems. In addition, DOME's modular design readily incorporates new
developments in optimization techniques—which makes it perfect for testing
the benefits genetic algorithms can bring to discrete and mixed
continuous/discrete fault tolerant design optimization.

25

26

2.0 Description of Test Problems

Four fault tolerant test problems have been selected, representing three
stages of increasing complexity. The four are referred to as Warning Lamp,
Asymmetric Lamp, Triplex, and TISS.

2.1 Warning Lamp Problem

The most basic problem used is the Warning Lamp problem described in
detail in [8]. Briefly, Warning Lamp is a design problem for a dual redundant
fault tolerant system. The system makes use of a "warning lamp" to signal a
system operator that a manufacturing process requires adjustment to
continue producing usable product. Failure to make the adjustment will result
in production of unusable product and lost profits. At the end of the production
run (system life cycle), the system will be subject to an audit and total failure
of the system at this time will result in a cost penalty.

The design specifies that a dual redundant lamp will be used. Each lamp
will be testable for malfunction and repairable only by qualified repair
personnel, who check the system at regular intervals. The design goal is to
maximize life cycle profit by choosing the optimal quality lamp for each of lamp
1 and lamp 2 and scheduling an optimal repair schedule. The better the
quality, the more the lamps cost; adding repair visits increased cost; and
emergency repair visits between scheduled intervals due to failure of both
lamps requires high cost penalties.

Warning Lamp was used to verify the single criterion genetic algorithm
(ga) code development and is shown here to illustrate the typical fault-tolerant

27

design formulation. It is also used as a continuous parameter problem to
compare the ga against the present capabilities of DOME. The derivation of

the Markov model for this system is described in Appendix A.
There are four Markov states in this three parameter model (see Figure

1-2) that correspond to both lamps operational, the loss of the first lamp, the
loss of the second, or both of the dual redundant lamps off-line. The two lamps
contained identical components and repair is allowed from all failure states.
The search space of this problem has a single, well denned minimum with
gentle characteristics in the vicinity of the minimum. The smoothness of this
simple problem makes it especially easy for gradient based optimization
methods. The figure shows the shape of the cost function when the failure

rates are not allowed to vary independently.

■S

n
O u

12 m .— ^-l^/ [llj^y /2 failures/mil hours
T——^ repairs/year 4 2

Figure 2-1: Mesh plot of Warning Lamp problem

The cost function for this problem is formulated as (see Appendix A):

J = P4(T)Cfa + Jo
T {y[Cr + (P2Clpl) + (P3Clp2) + P4(Clpl + Clp2)] + P4Cpl}dt (1)

28

The cost function has many components. First, regardless of whether a
failure occurs or not, the repairman costs Cr for each visit. For this example
Cr was $25. The frequency of his visits (i.e. maintenance frequency) is a
continuous design variable y. The second, third and fourth terms in the integral
are the cost of lamp replacement, Cipi and CiP2- The problem statement

allows for the choice between three different, distinct lamp qualities:

lamp quality MTBF (hr.) cost per lamp
average

high reliability

ultra high reliability

le+05
5e+05

10e+05

$1
$10

$ 100

Table 2-1: Lamp cost versus quality level

Note that mean-time-between-failures (MTBF) for the average quality
lamp is slightly higher than the 10 year (87,600 hour) life cycle. The cost of
lamp quality in the cost function is approximated by a polynomial curve fit
across the range of qualities. This polynomial curve fit is necessary for most
optimization methods that directly apply or indirectly use continuous
optimization techniques (see Appendix B: "The Branch and Bound Method") to
arrive at the final discrete solution. The importance of curve fit is mostly
ehminated here since the fit matches the actual cost at the discrete points of
interest. The final term in the integral is the cost of operation when a dual
failure exists. The profit loss rate Cpi was $1000 for this example. The

terminal portion of the cost function is concerned with conditions that exist at
the end of the production run. If the system is found to be in the dual lamp
failure state at the end of production, P4(T), a cost penalty of Cfa equal to

$100,000 will result, representing an entire lost batch of product.
The state transition matrix is

A =

-(A* + A.b) y Y Y
A* -(A* + y) 0 0
Ab 0 -(Aa + y) 0

0 Ab Aa -y

(2)

This state transition matrix A is representative of those of the
remaining problems in the test set. Its development is detailed in Appendix A,

where the Markov modeling process outlined. Note that each column of A adds

29

to zero, allowing Equation (2) to step forward in time via ordinary differential
equations. This is only one of the reasons that the Markov modeling method is

recommended for fault tolerant system design.

2.2 Asymmetric Lamp Problem

The second stage of testing consists of two problems of higher
complexity than that of the Warning Lamp problem. The first is called the
Asymmetric Lamp problem and is derived from Warning Lamp.

In the Warning Lamp problem, a manufacturing system makes use of a

dual warning lamp to signal an operator that a manufacturing process requires

adjustment to continue producing a usable product. Once a dual lamp failure

occurs (both lamps failed simultaneously), it is assumed that the system
immediately needs adjustment and produces an unusable product, and loss of

profits, until the lamps are repaired and the process adjusted. To insure proper
working of the lamps a qualified repairman is contracted to check the system
on a regular interval, ranging from as frequent as once every three days (87.72

hour intervals) to as infrequent as not at all during the ten year life cycle
(10,000 hour intervals). Each visit requires a repair fee and the cost of any
lamps replaced. Moreover, at the end of the production run, the system is
subject to an audit and total failure of the system at this time results in a cost
penalty. The three design variables in the problem were the two lamp qualities

and the repair frequency.
The primary difference between the Warning Lamp problem and the

Asymmetric Lamp problem is that the lamp failures will be considered discrete

variables instead of continuous variables. In this way, we more accurately
model the actual system. Additionally, we will know that the solution obtained

is indeed an extremum for the situation considered. We will not have to
concern ourselves with rounding to the nearest lamp quality level, as a solution
to the Warning Lamp problem may require. Also, we will know that the cost
(problem solution) will be accurate since we will not have to interpolate
between costs for different quality levels. The repair interval remains
continuous since the repairman can come as frequently or infrequently as
desired. The resulting problem has much of the same characteristics as the
Warning Lamp, but it represents a mixed continuous and discrete parameter

problem more typical of fault tolerant design.

30

To observe optimization methods' performance more clearly and
increase the problem complexity, the cost of one of the lamps is altered to
create an asymmetric solution. One of the lamps is considered the primary
lamp that must put out more light and so costs more. The actual qualities and

costs are given in the table below.

lamp quality MTBF (hr.) cost per lamp A cost per lamp B
average

high reliability
ultra high reliability

le+05
5e+05

10e+05

$1
$10
$100

$100
$ 1,000

$ 10,000

Table 2-2: Asymmetric lamp cost versus quality level

Other than the change in lamp cost, the rest of the problem is similar.
Both the Asymmetric Lamp and Warning Lamp problem can be represented
by the diagram in Figure A-3, the Markov model in Figure 1-2, and the cost
function in equation (1), shown below. As Table 2-2 shows, the Asymmetric
Lamp has the same failure rates for both lamps, but the two lamps are
treated as different cost components in the cost function. In other words, while
both lamps choose between components of the same quality range, the
components for lamp 2 cost two orders of magnitude more than those for lamp
1. This creates the problem asymmetry that generates a search space with
multiple optima. Equation (1) is shown to help illustrate the form of the cost

function:

J = P4(T)Cfa + Jo
T {y[Cr + (P2Clpl) + (P3&P2) + P4(Clpl+ Clp2)] + P4CPi]dt (1)

The cost function has many components. First, regardless of whether a
failure occurs or not, the repairman costs Cr ($25) for each visit. The
frequency of the visits is a continuous design variable y. The second, third and
fourth terms in the integral are the cost of lamp replacement, Cipi and CiP2.

The final term in the integral is the cost of operation when a dual failure exists.
The profit loss rate Cpi was $1000 for this example. The terminal portion of

the cost function is concerned with conditions that exist at the end of the pilot
production run. If the system is found to be in the dual lamp failure state at
the end of production P4(T), a cost penalty of Cfa equal to $100,000 results.

The state transition matrix (A) is the same as in equation (2).

31

This problem is used to test the genetic algorithm's capability to
optimize problems with both continuous and discrete parameters. In order to
do this, the two failure rates are treated as discrete parameters with 16 bins
(discrete values) for each, while the repair rate is kept continuous (represented

by 255 discrete points by the genetic algorithm methods). The remaining

problem information can be found in Table 2-3.

String length 16

Continuous parameters 1

Discrete parameters 2

Values per discrete parameter 16

Design space points 65280

Markov model states 4

Model time duration 10 years

Table 2-3: Asymmetric Lamp problem data

There are three known minima found by exhaustive search of the design

space that are used to provide a reliability comparison of the discrete
optimization methods used in this thesis. These minima are described in Table
2-4. Parameters one and two are the discrete failure rates and the third is the
continuous repair rate. The parameter values are given in a normalized range

from 1.0 (their highest value) to 0.0 (their lowest).

cost parameter

1

(1) (2) (3)

0.0 1.0 0.5 0.72

2 185.3 1.0 0.0 0.77

3 254.6 1.0 1.0 0.00

Table 2-4: Asymmetric Lamp problem minima

The costs of Table 2-4 are also normalized. A value of 0.0 represents
the global optimum, while 100 is the value Monte Carlo analysis produced for

400 points.

32

2.3 Triplex Problem

The other problem of the second level of problem complexity is the
TRIPLEX problem. Triplex is a system containing three redundant
components, with assumed operational capability when at least one
component is still functional. The parameters of interest are the failure rates
for the three system components. Repair is kept as a fixed parameter not
used in optimization to limit the problem complexity. It is initiated following
the second failure or at regularly scheduled intervals of (i = 0.2 (5 hours). Each

of the failure rates is allowed to vary independently.
Triplex is treated as the first all-discrete problem. It contains 8 states

in its Markov model:

Figure 2-2: Markov model of TRIPLEX problem

As in the previous two problems, the cost functional contains an integral
portion, reflecting the cost of repairs over the system life cycle, and a terminal
part, representing a penalty for the system not being available at the end of
the scenario. The resulting cost functional for the TRIPLEX problem is

represented as:

J =
SPj(T)
J=1

— 1
T 8

0 i=5

-*■+ a3 + a4u+-f- Pj(t)jiWt (3)

In this equation, \'s are the component failure rates affecting P{, [i is

the fixed repair rate, and the a's are the cost factors. The state probabilities Px

to P4 are availability states, while P5 to P8 are unavailability (repair) states.
The reciprocal of the availability states is used to determine the probability of

33

system unavailability at the end of the life cycle (T) of 1,000 hours. The failure
rates are treated as discrete parameters with ten possible rates equally
spaced logarithmically between le-05 and 0.1. The values shown in Table 2-5

are based on a replacement system cost of $2.5 million and represent the

values needed for equation (3).

symbol value function

H 2.0e-01 repair rate (hr1)

ai 2.5e+06 system replacement cost ($)

a2
2.5e+04 overhead ($)

a3 2.5e+01 labor rate ($/hr)

a4
2.5e+04 repairability ($ hr)

afi 5.0e+04 quality factor (S/hr2)

Table 2-5: TRIPLEX cost function constant values

The cost factors (aj for the problem are chosen to bias the repair cost in
the overall cost function, resulting in multiple optima in the feasible design
space. The bias was created by multiplying ax by 0.01 to significantly reduce

its effect on the cost function.
Design and implementation information for this problem is included in

Table 2-6.

String length

Continuous parameters

Discrete parameters

Valuesi per^,.^screte.parameter

Design spacejgoints

Markov model states

Model time duration

12

0

10

1000

8

1000 hours

Table 2-6: TRIPLEX problem data

Each of the parameters are given 10 bins. Providing ten bins causes an

additional complexity in that 6 (16-10) bit combinations of each genetic
algorithm string are simply not allowed. The treatment of these disallowed

values is explained in Section 3.3.

34

TRIPLEX has five (5) known minima described in Table 2-7, found by an
exhaustive search of the design space. The values are normalized in the same

manner as was done in Table 2-4.

cost parameter

1
(1) (2) (3)

0.0 0.51 0.51 0.51

2 493.6 0.99 0.49 0.49

3 493.6 0.49 0.99 0.49

4 493.6 0.49 0.49 0.99

5 3322.0 0.00 0.00 0.00

Table 2-7: TRIPLEX minima

Triplex is not a very complex problem, but the various unconstrained
minima allow proper testing of the optimization methods' solution reliability.

2.4 TISS Problem

The final problem is the most complex by far and represents a real-world
fault tolerant design optimization problem. TISS stands for Trans-Ionospheric
Sensing System and is a problem actually analyzed for the US Air Force by
C.S. Draper Laboratory, Cambridge MA. The TISS problem used here is a
slightly simplified version consisting of a 33 state Markov model with 17
optimization parameters. The 17 parameters of the model represent the 15
major system components and two repair rates. Each parameter is provided 5
discrete component options of varying quality and cost.

The TISS configuration consists of a dual redundant system that will
process and store Global Positioning System (GPS) data. TISS is designed to
operate autonomously in remote regions of the world. Infrequent scheduled
maintenance and critical unscheduled repair visits will be design variables with
a high associated cost due to the remote location. Remote access to the
system is permitted via three dial-up telephone lines. The design architecture
will look at minimizing the total life-cycle costs over a 5.7 year period while
considering such items as reliability, maintenance, overhead, and component

costs.

35

Table 2-8 shows the implementation data for this problem.

String length
Continuous parameters

Discrete parameters
Values per discrete parameter
Design space points
Global minimum
Markov model states
Model time duration

51
0

17
5
7.63E+11
unknown

33
5.7 years

Table 2-8: TISS problem data

This problem is used for much of the analysis performed in this thesis.

The Markov model is constructed following the guidelines of Appendix A, with

some additional state reduction schemes employed to keep the problem
tractable. The size of the resulting system model, with 33 states and two
independent repair rates represents a practical example of realistic fault
tolerant design. The computational effort needed to run this problem on

several machines is shown in Table 2-9.

Platform

seconds per
cost function evaluation

Macintosh Ilex 10.5

MacIntosh^^adraTOO^ 1.83

Ma^tosh^Qua^aSöO

IBM RS6000 Workstation

1.55

0.83

Quadra 700 with
PowerMac Upgrade Card*

0.20
(* optimized compiler)

Table 2-9: TISS problem computation time on various
platforms

Additional information necessary for the implementation of this problem

can be found in [1].

36

3.0 Genetic Algorithms

3.1 Background

The genetic algorithm (ga) was developed a quarter century ago by John
Holland, et. al., at the University of Michigan with two goals in mind: (1) to
abstract and rigorously explain the adaptive processes of natural systems, and
(2) to design artificial systems that retain the important mechanisms of
natural systems [7]. Over the years, the genetic algorithm has developed into
a reliable means of dealing with a wide range of problems. Our intent here is to
maintain a high reliance on natural, evolutionary mechanisms to find quality

solutions to difficult fault tolerant system design problems.
Genetic algorithms use random choice in a directed search process for

optimization. This search is randomized, but its use of mechanisms found in
natural genetics to improve the solution distinguishes it from random search
methods in the strictest sense. The basic features of the ga that separate it

from other methods are that it:
1) works with a coding of system parameters, not the parameters themselves,
2) searches from a population of points, not a single point,
3) uses payoff information only from the objective function, not derivatives or

other auxiliary knowledge, and
4) uses probabilistic transition rules, not deterministic rules.

Genetic algorithms use reproduction, crossover, and mutation as their
three basic operators. In the implementation of this thesis, the ga takes the

form shown in Figure 3-1:

37

initialization
evaluation
while not done

reproduction
crossover
mutation
evaluation

end

Figure 3-1: Flow diagram of the genetic algorithm

The ga works because it reproduces high-quality (fit) notions according

to their performance. These notions are allowed to mate with many other high-

quality notions of other strings to combine the notions into superior individuals.
Finally, the crossover and mutation operators speculate on new ideas
constructed at random (mutation) and from the experience of past trials
(crossover). Mutation is a necessary operator because reproduction and
crossover may lose some potentially useful genetic material; injecting diversity
by way of mutations improves the probability of locating the global optimum.
However, just as in natural genetics, it needs to be used sparingly to keep from
disrupting beneficial information already in the population and to allow the
algorithm to converge to a solution without unnecessary delay. Appropriate

use of reproduction, crossover, and mutation enhance the robustness of the
genetic algorithm as applied to the design of fault tolerant systems.

The notion of robustness is very important to the development and use
of the genetic algorithm and can be described as follows. Suppose that the
problem of interest P belongs to a set & of problems that contain all variations
of P that meet some criteria of similarity. In this thesis, ^contains all fault

tolerant design problems with characteristics in common with those described
in Chapter 2, "Description of Test Problems". A design method, M, is robust
with respect to the optimization of P if its characteristic optimization
performance, C, holds for every problem in &. Robustness requires a set •$**, a

method M, and some characteristic C of M. In this thesis, robustness refers to
the optimization of the problems described in Chapter 2, and the degree of

exploration and efficiency that a method attains.

38

Exploration as defined here refers to an ability to master the design
space—to provide outstanding solutions to & with incredible reliability.

Exploration can also be described as the effectiveness of a method (efficacy).
Perfect method exploration would achieve the global optima of every problem
in & 100 percent of the time. Methods that achieve high effectiveness usually

examine a large fraction of the design space. Therefore, exploration usually
comes at a cost to efficiency.

Efficiency refers to the degree of effort necessary to achieve
effectiveness. Efficient optimization methods spend little or no time searching
non-optimal/locally optimal portions of the design space and proceed directly to
global optimum.

In essence, robustness provides some balance between exploration and
efficiency, allowing the search method's survival in many design environments.
Robustness is desired because it reduces design effort and time and increases
the quality of solutions produced. As stated in [7], "where robust performance
is desired (and where is it not?), nature does it better; the secrets of adaptation
and survival are best learned from the careful study of biological example".

Genetic algorithms are the product of such biological study. Twenty
years of research has verified the robustness of the ga in general, and it is the
intent of this thesis to prove their robust application to the design of fault
tolerant systems.

3.2 Traditional Genetic Algorithm

The most common implementation of genetic algorithms is commonly
called the traditional genetic algorithm (tga). In the tga, a. generation
represents the genetic algorithm population of members at the current "time".
"Time" within the algorithm represents the linear progression of a population
through successive generations and is analogous to time in an evolutionary
sense. The population size (P) normally remains fixed from generation to
generation. The genetic algorithm evolves its population in "time", always
striving to improve the overall fitness ("worth" of individual members) of each
successive generation.

39

The traditional genetic algorithm used in this thesis is a modified version
of the classical tga used in single criterion optimization. It can be classified as

a tga by having the following characteristics:
1) binary (0 and 1) parameter encoding

2) generational reproduction

3) fitness normalization
4) elitism (optional for tga classification)
5) crossover and mutation operators
This tga is modified only in characteristic 5 in that a two-point crossover

is used instead of the traditional one-point crossover technique.
The tga developed for this thesis uses appropriate implementations of

the three basic operators based on their ability to enhance the robustness of
the method. The corresponding probabilities (settings) of the operators and the
appropriate population size are examined and the results compared with other
direct search methods. The aim is to establish robust values of these
parameters applicable to many fault tolerant system design problems.

The diagram below shows how the tga operators manipulate population
members in an effort to evolve a new generation, separate from the previous,

that has a better average fitness.
Generation T Generation T+1

1

2
random member A selection

—
random

selection member B

n-1

n

test
fitness

test
fitness

>

mutation

mutation

member A*

member B*

n-1

r PARENTS
i i

XHXX'XXX
o oio o oio O 0

 random crossover sites
(with probability pj

OFFSPRING

xxoooxxx
ooxxxooo

Figure 3-2: Traditional genetic algorithm reproduction cycle

40

3.3 Coding and Schema Theorem

Coding a problem into a form compatible with the ga is not generally
difficult. The robustness of the ga allows it to be forgiving of the form the
problem is presented in, but [7] provides two simple principles that reasonably
govern the efficiency of the method:

1) The user should select a coding so that short, low-order schemata

are relevant to the underlying problem and relatively unrelated to

schemata over other fixed positions.
2) The user should select the smallest alphabet that permits a natural

expression of the problem.
To understand these principles, first one must know the "schema

theorem." Schema theorem states that the ga works because it propagates
encoded building blocks of valuable problem information at exponentially higher
rates and in parallel through the use of a population.

Genetic algorithms exploit similarities in the string coding when the
schemata (plural for schema) represent optima. A schema describes a
template of similarity among ga strings. In the case of binary coding, the
alphabet of the schema has three characters: 0,1 and *, where the "don't care"
(*) signifies that we "don't care" if the bit in question is a 1 or 0. For example,
the schema 0**1 on a four bit string can represent four different strings: [0001;
0011; 0101; 0111]. The length of a schema is the inclusive number of bits from
its first to its last 1 or 0 bits. In schema 0**1 the schema length is 4, while
*11****** has a length of two. Note that the * is only used for notation and is
never explicitly referenced by the ga.

The schemata must be naturally represented by the alphabet used to
allow the ga operators to fully exploit the design space. For example, consider
how one could encode the first eight integers. A binary string of length 3 would
fully represent these values, with one corresponding to [0 0 0] and eight to
[111]. Another alphabet for this problem would be A-H, where one

corresponds to A, two corresponds to B, etc.
In fault-tolerant design, like most discrete engineering problems, the

parameters being coded are physical quantities (weight, size) or probabilistic
quantities (failure rate, repair rate, coverage), which are naturally represented
by either of the two forms given above. In the example above, both alphabets
give a complete and accurate representation of the first eight integers.

41

However, what happens if only the first 5 integers are desired?
In this case, the second nonbinary alphabet can be reduced to A-E, to

again represent the parameter. However, the binary alphabet is restricted to

21 dimensions, where 1 is the length of the string. A binary representation of
the first 5 integers requires the same binary string length as the first 8 (1=3).
This leads us to have to consider what influence the extra three values will
have on the ga operation, but first let us look at the impact of principle (1).

Principle (1) implies that the problem coding should provide a maximum
of schemata. Alphabet cardinality influences the string length required to
represent a parameter; to equate schemata of coding schemes of different
cardinality, we can watch the relationship of binary string cardinality (2*)
where 1 is the binary string length, to nonbinary string cardinality represented

as k*', where 1' is the nonbinary string length:

Binary string schemata = 31

Nonbinary string schemata = (k +1)

From these relationships, the number of schemata formed from a
particular problem coding can be determined. Using the first 8 integers for
example, k=8,1=3, and l'=l, such that the number of schemata are 27 for the
binary string and 9 for the nonbinary string. Binary coding allows the
maximum number of schemata to be available for ga exploitation.

Binary coding is desirable for design space exploration, but again we

return to the impact of undesired bit combinations on a binary string. One
means of restricting their impact is to only generate initial population strings

in the feasible range, but the impact of mutation and crossover still applies.

This issue could be dealt with in one of several ways:
1) Fill the empty portion of the 21 string with values from the acceptable set

(i.e. [1,2,3,4,5,+ 1£,3] = 2% = 8).
2) Ignore the generated disallowed string(s) and retain the parent(s).
3) Reinitialize disallowed parameter values at random into the acceptable set.
4) Fix the higher order bit and/or place at the parameter limit (i.e. if 6, 7, or 8

are created, place the parameter at 5.
5) Revert the disallowed parameter to the acceptable value it possessed prior

to crossover or mutation. All changes made to other parameters of the

string are retained.

42

Option 1 places the repeated portions of the design space in a more
favorable likelihood of occurrence unrelated to their fitness and therefore
biases the optimization process. Obviously it is desirable to retain as much of
the reproduction effort as possible, so options 2, 3 and 4 would negate much of
the effort generated. Option 3 introduces a whole new, and highly schemata
destructive operator into the algorithm, while option 4 negates the whole
randomized notion of the ga and imparts a rigidity to the algorithm that ignores
any beneficial information the parameter previously may have contained.
Consequently, option 5 is used in this analysis. If the two-point crossover
affects two or more adjacent parameters, only that parameter that becomes
disallowed is reverted to the previous value to maintain as much of the
reproduction effect as possible. This issue will be examined in Section 8.5 to

observe its impact.

3.3.1 Fault Tolerant Parameter Coding

In this research the selection of a parameter value is limited to the
number of discrete bins provided by the user, all with equal likelihood. The
discrete bins are the acceptable solution values recognized by the decision
maker (DM) for the problem. Some problems are not solely discrete however,
and have a combination of discrete and continuous parameters. In such a
case, 256 (eight bit representation) linearly spaced discrete values are created
to represent each continuous parameter. Note however, that these strings are
cast independently of what bin values correspond to the bin numbers the ga

operates on.
For example, a fully continuous three parameter problem with

parameter ranges: [le-10 to le-04], [rc to 2TC], and [1+jlO to 1+J70], could be

represented by a string:

[0 001000 0|1010000 1|0 1111111] = [16|161|127] (2)

The ga does not care directly about the parameter ranges. The ranges
are extraneous information used solely to determine string fitness.

The bit size of each parameter (word) on a string is calculated
independently as well. The size of a word corresponding to a continuous
parameter is 8 bits (0 to 255), while discrete parameter word sizes are
calculated independently as a "best fit". For example, 3 bins fit into a 2 bit

43

word, 8 bins into 3 bits, and 9 bins into 4 bits. How the "wasted" space on the
fourth bit in this last case (4 bits holds 16 numbers, but only 9 are used)

affects the ga is explored in Section 8.5.
Continuous parameter optimization must ensure that the encoding

resolution is fine enough to realize a continuous-like representation along the

applicable axes. In order to keep the manipulations required by the algorithm
as simple as possible for memory and speed considerations, all continuous
parameter encoding in this thesis is done on single byte binary strings. A single
byte, 8 bit, string contains integer values from 0 to 255. This choice was made
with the full knowledge that it places a limitation on the algorithm, but that if a
particular representation does not provide adequate resolution, it can be fixed

by reducing the range of interest, using a longer string, or using the scaling

technique described below.
In this research, using 256 values for continuous parameters may limit

the sensitivity of parameters with large ranges. For example, if linear mapping
is used for a parameter with the range [le-10 to le-4], it would have bin values
separated by 3.92e-7. In other words, the first three recognized continuous
values would be le-10,3.92e-7, and 7.84e-7. This type of mapping makes it
unlikely for the algorithm to find minima located at the lower end of the range
because the parameter values of the population will likely be evenly distributed
across the entire range, making le-10 an unlikely possibility in normal
population sizes. It is also impossible for the ga to locate any minima that

may occur between le-10 and le-7, for example.
In the design of fault tolerant systems, the engineer is often looking at

parameter values covering orders of magnitude, especially when considering
failure rates and possibly even repair rates. In light of this, a logarithmic
mapping is used in this thesis so that equal logarithmic spacing is provided to
continuous parameters for better sensitivity at the lower end of parameter
ranges. If the engineer believes that linear mapping is more appropriate to his
or her problem, a simple change of the ga code will allow that capability.

If we wish to represent a parameter in the range [le-10 to le-4] with an

eight-bit string, we need to know how much resolution the encoding provides.

Table 3-1 shows the associated resolution.

44

bit value parameter value difference

0 1.000e-10
1 1.056e-10 5.57e-12
2 1.114e-10 5.88e-12
3 1.176e-10 6.20e-12

253 8.973e-5 4.73e-6
254 9.947e-5 9.74e-6

255 10.000e-5 10.53e-6

Table 3-1: Logarithmic parameter-to-string mapping

The worst resolution always occurs at the upper bound of the parameter
when scaling is logarithmic, but in this case it never exceeds 11 percent of the
value to which it corresponds. Therefore, the single byte continuous parameter
representation should provide resolution sufficient to represent all but the
most unusual parameter ranges.

3.4 Population Initialization

The first step of the ga is to create independent strings which form the
initial population. The initial population of strings for the ga can be created in
many different ways as long as a wide diversity of characteristics are
represented, i.e. the first generation initialization should cover the search space
as thoroughly as possible. In this research, the initial population is created at
random by randomly generating parameter values on each string.

3.4.1 Initial Guesses

Sometimes the decision maker (DM) has a good idea where the
parameter values should lie and wishes to inject that hypothesis into
optimization routine. This initial guess is mandatory in optimization tools that
do not operate on a population. Such methods are also extremely sensitive to
the quality of the guess unless a means of adding robustness, such as
simulated annealing, is applied. Regardless of the safeguards used, however,
the ga has the vast advantage in that instead of requesting a good guess, it

45

requests diverse guesses. As a consequence, the ga exploits the advantageous

schemata of a DM provided guess and ignores the rest ofthat string.

3.5 Reproduction

In this thesis, reproduction occurs in one of two ways, depending on
whether single or multicriteria optimization is performed. Single criterion ga
reproduction selection and fitness testing to determine which individuals of the
population will be reproduced based on factors equivalent with environment,

mating preferences, and individual strengths. The second manner of
reproduction, used in multicriteria optimization, incorporates tournament

selection, and is described in Section 11.3.1.
Selection is simply the means by which members are "selected" for

fitness testing. Fitness scaling maps the relative "worth" of strings of the
population into a simple, strictly positive function that the ga can easily
recognize and optimize. It has the additional benefits of separating the ga
optimization from the underlying problem complexities, which adds to the
method's versatility, and allows the incorporation of "survival of the fittest"
into the optimization procedure via a standardized, normalized, and readily
interpretable scale of relative string worth. Adapting the fitness coefficients to
penalize members that violate function constraints is another benefit of

fitness mapping (see Chapter 5).

3.5.1 Selection

Selection is performed randomly to enhance the diversity of the mating

pool. Two members of the current population are chosen to be parental
strings. Parents that "survive" have the ability to mate and produce offspring
that (1) form a new generation in the case of the traditional ga or (2)
strengthen the population in the case of the steady-state genetic algorithm

(defined in Chapter 4).
First, two members of the current population are chosen at random to

reproduce. In order to actually reproduce, however, these members must meet
the current fitness requirement. This is accomplished by the algorithm by
comparing the evaluated fitness of each member to a random number—if the

fitness exceeds that number, the member is allowed to reproduce, otherwise

46

another member is selected at random and is tested in the same way until two
members have passed the test. In this way, all members have a chance to
reproduce, but the most fit members are more likely to pass the fitness test
and will consequently produce more offspring. Hence, survival of the fittest!

3.5.2 Fitness Scaling

Fitness is a criterion for parent "survival''. Fitness testing corresponds
to the Darwinian theory of "Survival of the Fittest". A fitness function, which
provides a mapping of the problem cost function on a scale of string "worth" or
"value" recognizable by the ga, is formulated as a scale against which strings
can be compared to determine their expected ability to improve the population.

Optimization is normally a problem of maximizing some performance
criterion, and the genetic algorithm is no exception. Fault tolerant system
design as it is addressed here (as well as many problems in optimization),
however, is one of minimization, where the choice and configuration of
parameters are meant to minimize some cost function—a lower cost
represents a better system. One of the benefits of the genetic algorithm is
that it doesn't care what the problem looks like, nor does it care what kind of
cost function is involved. All that matters to the algorithm is that it has a
string (chromosome) that it wishes to manipulate in order to maximize some
fitness function.

The fitness function and the cost function must have a one-to-one
relationship, but they can be arbitrarily related. In fact, the simplest way to
make the genetic algorithm minimize a cost function is to make the fitness
function that the algorithm is concerned with inversely related to the cost
function. By making high fitness evaluations equal to low costs, the algorithm

minimizes without even knowing it.
The fitness scaling function should be created to maintain suitable

disparity between all members of the current population. This disparity allows
all members the opportunity to generate offspring while the scaling keeps the
proportion of the worst members only high enough to maintain population
diversity. This diversity is a key advantage of the genetic algorithm because
even though a particular string may have a high cost, it may contain
schemata particularly beneficial to reaching a global optimum when combined

with the schemata of other strings through crossover.

47

The most common methods of fitness mapping are cited in [7] and [3].
Roulette wheel fitness provides fitness based on a string's cost relative to the
rest of the population. Windowing uses the costs associated with the string,

and merely adds or subtracts a limit to influence the fitness values. Finally,

linear normalization orders the strings from a fixed maximum at some

decrement. The first two are particularly oriented toward maximization
problems, which are not of interest in the context of most fault tolerant design.
Linear normalization, or simple ordering, is an effective methods that
accomplishes minimization as well as maximization by producing a partial
order of strings. It has the drawback, however, of requiring the entire
population to be sorted for each new individual. None of these methods
warrant use in serious fault tolerant system design optimization.

One of the most powerful and simplest fitness schemes is inverted linear

fitness scaling. It accomplishes the goal of string competition because it
provides a complete mapping from cost function to fitness and it has excellent

qualities for function handling. Fitness normalization, function inversion, and
strictly positive fitness are all easily created using linear scaling for superior
fitness mapping results. As noted by [7], linear scaling helps prevent the early
domination of extraordinary individuals, while later encouraging a competition
among similar strings. In the tga, the fitness scale is updated each new
generation when the new population is ready to begin mating.

The following method of fitness scaling, suggested by Dr. W.E. Vander
Velde of MIT, begins by making a linear fitness function with a negative slope.

The scaled fitness function for the entire population is:

Fi — F max di — d min /«x

F nrin— J max d max— d min

Fj represents the fitness value of the current string under consideration

with associated cost J{. J,^ and J^ are the worst and best cost function
values for the current population of strings. The maximum fitness value F^
for this method is 1.0, and the minimum F^ is 0.05. The Fi denote
probabilities of mating. Therefore, the lowest probability for reproduction of
any string in a generation is fixed at 0.05. On the other hand, the most fit
member of a generation is always wanted for reproduction, so its fitness value
of 1.0 assures certainty of reproduction. This fitness-to-cost function scaling is

illustrated in Figure 3-3.

48

min ~max

Figure 3-3: Inverted linear fitness scaling

These bounds were chosen so that the lowest cost members of the
population will always mate if they are chosen by the random operator of the
selection step, while the highest cost members will be allowed some, if very
small, chance of reproducing. This scaling method is very robust in that it
doesn't care what the associated cost function values are—they can be
positive or negative or both.

In all of the design problems of this thesis, the objective of the decision
maker (DM) is to locate the single, best optimum of the problem. In some
design problems, however, the DM may have several regions of interest that
she wishes to examine or she may wish alternative solutions to be created in
addition to the overall optimum. In either case, normal fitness sharing can be
applied to spread the ga population among the optima of the search space,
with each optimum getting a fraction of the population proportional to its
relative fitness. Fitness sharing is discussed in Section 11.3.1 for the
interested reader.

49

3.6 Crossover

Crossover mates parental strings two at a time. Crossover occurs at a
rate (probability) of pc to capture and combine the beneficial traits of the

different members. There are three main types of crossover in use today: (1)
single-point crossover, (2) two-point crossover, and (3) multi-point crossover.

Single-point crossover simply chooses a random "cut" site on the string
pair and causes the strings to exchange all bits on one side of the cut. This
crossover propagates schemata of short defining length at a greater rate.
These short schemata are reproduced at an exponentially higher rate. This
procedure is called Implicit Parallelism, and is the fundamental feature behind

genetic algorithm success.
Implicit parallelism, in short, is the simultaneous allocation of search

effort to many "ideas", or hyperplanes, in the search space. Different strings of
the population look at the merits of the different parameter values. This
concept holds a diverse set of parameter combinations separately and
propagates only those combinations that show merit in combination.

A more advanced crossover that has been shown to be much less
destructive to schemata of longer definition length while being just as
aggressive in recombining short defining-length schemata as other types of
crossover is the two-point crossover. The two-point crossover selects two

random cut sites on the string pair and exchanges the bits between the cuts.
In this case, the string is arbitrarily long and can exchange any region of the

strings—from a single bit at any location on the strings to the entire strings.
The final type is the multi-point crossover, which swaps random bits

along the length of the string. In this way, schemata are not restricted to being
composed of bits that He adjacent to one another. This method suffers in that
some additional effort is required for the operation. The others require the
selection of cut sites and the movement of bit strings, while this one
necessitates the generation of a random number for each bit of the string and a

test of the bit in each crossover location.
These three methods have been studied extensively in prior research

[73,[17]. All literature has shown the superiority of (2) and (3) over the single-
point crossover. However, no significant difference has been shown between
them. Therefore, a two-point crossover was chosen to be used exclusively in

50

this thesis due to its simplicity and speed advantage over the multi-point
crossover.

Crossover rates have been shown by studies elsewhere to provide peak
performance in a consistent range of values across different problems. De
Jong (1975) [7] showed that crossover rates of approximately 0.60 were the
most beneficial to the problems he dealt with, while Grefenstette (1986) [17]
held that 0.95 was more appropriate. A very comprehensive study by
Schaffer, et al. [17] led to the conclusion that crossover rates in the range 0.75
to 0.95 would all produce robust results. Consistent with the general
conclusions of the ga field, a value of 0.80 is used in all simulations here without
loss of generality or algorithm robustness. We have not further investigated
this selection.

3.7 Mutation

Mutation occurs to keep the population from converging too rapidly and
to introduce small amounts of new information that may be beneficial to
locating an optimum. Since mutation rates vary widely across the ga
literature, this parameter is examined in this thesis to determine its benefit in
fault tolerant system design and whether any conclusions can be drawn about
the relationship of mutation with population size, string length, or problem

complexity.
Binary mutation occurs with probability pm to individual bits on the

strings going through the reproduction cycle. When initiated, the bit is simply
"flipped" to its conjugate (0 to 1 or 1 to 0).

Having a high mutation rate keeps population diversity high. The
population is not allowed to converge toward the best members because of the
continual influx of new genetic diversity from the mutations. This is
disadvantageous at excessively high rates because the later part of a ga
simulation is composed of mixing and matching strings that have already
proven to have beneficial schemata. The ga is therefore just trying to find the
right combination of parameters from these good strings to make an optimal
string. Continually adding new diversity into this process by an excessively
high mutation rate will slow the final convergence.

At the other extreme, having a very low mutation rate allows the
population to converge very fast. No additional genetic information is provided

51

once the initial population is established, which makes the creation of the
initial population and the choice of random number generator seeds very
important. Having some mutation provides gentle sanity checks on the
algorithm to help prevent the algorithm from prematurely converging on a

less-than-optimum solution.

3.8 Function Evaluation

The evaluation of a string's cost value is a straight forward operation.
The string is simply transformed from its binary representation into the form
recognizable by the cost function and the cost is calculated. This step of the ga

unfortunately requires the most significant single chunk of time

(computational effort) in the ga process. The time required for a single
evaluation of a problem cost function is obviously constant across different

optimization techniques as well. As such, the number of cost function
evaluations performed is treated as a representation of time for comparing the

speed and efficiency of optimization methods.
Any modification of an algorithm that reduces the number of cost

function evaluations required to reach a quality solution positively impacts
performance. The ga methods of this thesis only evaluate the cost function of
those strings that have actually been changed by the reproduction cycle.
Saving the costs of unchanged strings makes a linear increase in performance

equal to the number of unchanged strings each cycle. With low mutation
probabilities and a crossover rate of 0.80, about 20 percent increase in

performance is achieved through the use of this feature.

52

4.0 Steady-State Genetic Algorithm

The steady-state genetic algorithm (ssga) is an independent
development of this author created for more rapid ga problem convergence
without sacrifice of solution quality. The ssga presented in this thesis
advances the state-of-the-art in single criterion ga optimization without dealing
with advanced ga operators or incorporating problem-specific information.

Like the tga, the ssga optimizes single criterion problems, but it differs
in that the concept of a "generation" is eliminated. The ssga population
continuously "evolves" to improve its average. By eliminating distinct
generations, the ssga can use the improvements created by the reproduction
cycle immediately, instead of waiting until a full new population is created. The
best members "float to the top" and are propagated at a higher rate while the
poorest members "sink" and are "killed" instead of being allowed to remain until
a new generation is created. These operations allow more aggressive learning
rates without unduly endangering highly fit schemata that already exist in the
population.

Other forms of the ssga have since been uncovered in recent literature
that incorporate much of the same fundamental logic used here. Davis [3]
cites Darrell Whitley as the first to introduce a non-generational ga into the ga
literature in 1988. Gilbert Syswerda coined the phrase "steady-state
reproduction" in 1989 to describe the ssga evolution process, and the name
"steady-state" has since become part of the ga nomenclature.

53

The form of the ssga developed for this thesis is shown is shown in

Figure 4-1.

random
selection

random
selection

test
fitness

test
fitness

Phase 1: Selection of two highly fit members to reproduce

random
selection

random
selection

test
fitness

test
fitness
>

death

Phase 2: Killing low fit members

crossover

mutation

mutation

Phase 3: Operators applied to replace dead Individuals

Figure 4-1: Steady-state genetic algorithm reproduction cycle

A generic ssga can reproduce any number of individuals from 1 to P in a

cycle. Reproducing a full population size (P) make the ssga the same as the
tga. The size of the reproduction set is also called "generation gap", and was
used in the earliest research of the ga field [7]. The ssga developed for this
thesis uses a reproductive set of two, to maximize reproductive turnover
without hindering the crossover operation which requires two parental strings.

The ssga used in this research differs from those specified in much of the
literature in that the two members that are killed are selected at random and
chosen by the inverse of their fitness. This gives the poor members that have
"sunk" a small, but finite chance for survival to maintain greater population

54

diversity. Other ssga methods simply kill the two worst members [3], thus
ignoring the uncertainties involved in nature itself.

The same inverse-linear fitness scaling is used to accomplish string
competition. In the tga, the fitness scale is updated each new generation when
the new population is ready to begin mating. The ssga, on the other hand,
updates the fitness scale anytime a newly created string has a fitness value
that exceeds the bounds (highest and lowest fit members) of the current

population.
The ssga of this thesis does not use "steady-state without duplicates" as

is described in [3]. The inclusion of clones (duplicate members) in the

population allows the ssga to gauge convergence (see Chapter 6) at some
expense to computational effort, though a reasonable attempt (see below) is
made at each reproduction cycle to select unique parents.

Each selection cycle (phase 1 of Figure 4-1) uses cloning as an additional
selection feature. The selection of parents is based on (1) their individual
fitnesses and (2) that they be unique (not duplicate strings). In the present
implementation, if P (population size) prospective parents are tested for
uniqueness and two unique strings are not found, then reproduction of
duplicates is allowed.

55

56

5.0 Constraints

5.1 Function Constraints

The problems dealt with in this thesis are typical in most respects to
those encountered when doing fault tolerant system design. However, they do
not address one aspect that a designer is likely to face. Many real-world
problems contain one or more functional constraints that must be satisfied.
Many applications of genetic algorithms have a great difficulty with
constrained problems due to a lack of a general methodology for handling
constraints. Constraints are usually classified as inequality or equality. The
manner in which inequality constraints are dealt with in the genetic algorithm
are described first.

Inequality Constraints

Several means of dealing with inequality constraints have been
attempted by previous ga work. References [11] and [3] provide details for five
approaches to dealing with constrained problems in ga's:

1) throw away infeasible solutions and regenerate new strings
2) use decoders and repair algorithms
3) develop specialized data structures and genetic operators

4) use penalty functions
The first option of throwing away infeasible solutions and repeating the

crossover and/or mutation operations until a feasible solution has been

57

generated is inefficient and generally ineffective. It guarantees feasibility at
high cost to computational effort and solution quality. Ignoring infeasible
strings often leads the ga to ignore constrained optima due to the indirect
penalization of the region surrounding the constraint.

Decoders guarantee the generation of a feasible solution by using special
representation mappings. Repair algorithms "correct" infeasible solutions,
moving the solutions into the feasible region in some pre-defined manner. Both
of these methods have received limited application because of the high

computational effort required and the lack of generality in their
implementation. Decoders and repair algorithms work reasonable well

according to [11], but are highly problem specific.
Experiments cited in [11] indicate the potential usefulness of specialized

data structures and genetic operators for dealing with constrained optimization
problems. Problem tailored data structures combined with appropriate
"genetic" operators are used to "hide" constraints presented in the problem.
This approach appears to work well in the experiments performed to date, but
they raise concerns due to the highly problem specific tailoring they require and
the fact that many of the "genetic" operators have no biological parallel.

Finally, the application of penalties to constraint violations is an
approach with wide applicability across the field of optimization. This option

allows the generation of potential problem solutions without regard for
constraints, and then penalizes them by decreasing their "value" in some

manner. All the penalty approaches that we found rely on penalization of the

cost functional.
A penalty function augments the cost functional of the problem to

introduce cost degradation. It transforms a constrained problem into an
unconstrained problem by penalizing constraint violations [7]. For example,

the original constrained problem has the form:

Optimize: J(x)
Subject to: gi(x)<0; i = l,2,...,m

This can be transformed to the unconstrained form:

Optimize: J(x) + <£[& (x)]; i = 1,2,.. .m

where O is the penalty function

58

(1)

(2)

The penalty can be additive, multiplicative, or otherwise, and can either
apply direct penalties to all violations or use some scaling to discriminate
between degrees of constraint violation (usually increasing the penalties for
larger distances from feasibility). Davis [3] cites evidence that genetic
algorithm penalty functions, especially those that discriminate between
different types of infeasible solutions, are competitive in performance to
methods that use specialized operators without loss of generality. The major
drawback of penalty functions, however, is the necessity to develop a separate
appropriate scaling for the cost functional of every problem attempted.

General guidelines for the construction of ga penalty functions are listed
in [15]. The work concludes that for ga problems having few constraints and a
limited set of full solutions (such as the discrete problems of this thesis),
penalties that are solely functions of the number of violated constraints are
not likely to find solutions. Good penalties, according to that work, are
functions of the distance from feasibility for each constraint violation.
Reference [15] asserts that a ga should incorporate what it calls the
completion cost to generate the best penalties.

Completion cost refers to how much of a cost difference would have to be
accepted to make an infeasible solution feasible. Instead of being rejected or
labeled "undesirable", infeasible solutions should be thought of as incomplete
solutions. The completion cost helps determine the appropriate penalty to
assign based on the "incompleteness" of its structure.

The completion cost used in [15], though it has a good deal of theoretical
appeal, requires problem-specific estimation of the tradeoffs between
constraints and the cost functional. The difficulty and tedious nature of this
estimation has led the author to create a simple method of applying function
constraint penalties that capitalizes on the function knowledge contained
inherently within the genetic algorithm population. A multiplicative penalty
function that degrades string fitness (F) is used to shown the applicability of

this new approach.

59

Automatic penalty functions

To justify the use of a penalty that does not require problem specific
scaling, we look at a general single criterion problem with a single inequality
constraint. This problem is the minimization of a cost function (J) subject to
the constraint g < g*. The population of the ga appears similar to that of

Figure 5-1 if the constraint, shown at g = g*, is ignored.

Figure 5-1: General ga population distribution with constraint bound shown

The values of J would have started in some unknown range larger than
that shown, but the evolution of the population toward an optimum has
narrowed the ga's focus to the given J values. The values of g, on the other
hand, have not been directly considered, and a wide range of their values for the

current range of J exists in the population.
As mentioned earlier, references [3] and [15] state that penalty

functions should account for the distance from the constraint bound g*.
Unfortunately, these penalty functions have to be applied problem-specifically.

The DM is forced to decide the appropriate scaling of g.
Let's explore the issue of problem-specific penalty functions a bit further

by way of a comparison of possible gl values, where g1 > g*. Assume that the
distance from g* to gx is 8g = g^ - g* = 10. In one theoretical problem, the actual
constraint is a distance tolerance of g < 2 cm, where 5g = 10 is an intolerable
violation. In another problem with 8g = 10, however, the constraint is g <

10,000 cm and g = 10,010 is actually very close to the optimal feasible solution
in the design space. The problem is that optimization algorithms do not known
the difference between 10 cm for one problem and 10 cm for another. As such,

the penalty on g must be defined problem-specifically.

60

However, another approach may exist. It is the assertion of this author
that the genetic algorithm contains sufficient information about the
"constraint space" of any problem to assign its own approximation of

"closeness"!
The ga works from a whole population of points. Going back to Figure 5-

1, the ga knows the g values of the strings of its present population. With a
properly sized population, sufficient diversity of values should exist in the
current population to allow the ga to make effective estimates of "closeness" to

the constraint bound (g*). The premise of this assertion is that the DM himself
frequently estimates "closeness" in forming the penalty scaling for a problem
and usually uses knowledge of the probable g values in that estimate (i.e. for g
< 2 cm, 8g = 10 is bad, but for g < 10,000 cm, 8g = 10 is acceptable).

To incorporate the ga's knowledge of the constraint values into an actual
penalty formulation, an assumption must be made of what relative distances
would generally be considered appropriate by a DM. The assumption made for
this thesis is that any distance into the infeasible region (8g) less than the

range of feasible g values in the current population is acceptably "close" to
warrant involvement in the reproduction process. To form a penalty from this
assumption, the distance (Ag) is defined as:

Ag = g*-grain (3)

where g^ is the minimum g value of the strings in the current population. The
remainder of this chapter details the particular penalty function used in this
thesis to apply this general ga "hands-ofF penalty approach.

Since a penalty that accounts for the distance from the constraint
bound is preferable, the amount of penalization to be allowable at g = g* + Ag

must be defined. This thesis assumes arbitrarily that the penalty should
increase from 0% at g = g* to approximately 90% at g = g* + Ag. The exact

form of the penalty function is arbitrary, as long as it exhibits the desired
trend, i.e. it decays as a function of the distance (8g) that a value is from g*.

61

We apply a decaying cubic of the distance (8g) relative to Ag in this

thesis:

G(g(x)) =
(ft* g*-g(x)

Ag

1.0

+ 1.0 ifg(x)>g*

otherwise

(4)

where GKg(x)= I Ag I) = 0.125 (1 - 0.125 = 87.5% penalty). The form of the

fitness penalty G is shown in Figure 5-2.

0.75-

G
0.5-

0.25-

g* g*+Ag

Figure 5-2: Penalty function (G) as a function of the amount of violation

G can now be applied as a multiplicative fitness penalty function that
degrades fitness (F) as a function of the amount of constraint violation:

F = GF (5)

Figure 5-1 assumes that g and J are very weakly correlated, such that a
change in g has little or no effect on J. In many real-world problems, however,
the constraint and cost function are negatively correlated as in Figure 5-3.
Though the range of J narrowed as before, the shape of the population points in

the g-J space shows the conflicting relationship between g and J.

62

gmin g* Ag

Figure 5-3: Population distribution for correlated cost and constraint

This figure has the appearance of a two-dimensional multicriteria
problem. The similarities will be addressed and taken advantage of in Chapter
15 with the e-constraint method of multicriteria optimization.

For the example in Figure 5-3, the optimal solution lies at [J*, g*]. If no
infeasible points are allowed in the population, no incomplete solutions
containing the schemata of J* are allowed, while schemata of J > J* have little
constraint on their allowed frequency in the population. This effect is shown by
plotting constant values of J (called isoquants) versus g:

J **— J

Ji

g*

(a)
g g* g

(b)

Figure 5-4: Constant J value isoquants when infeasible points are ignored

Figure 5-4a shows that the only solution possible with all the schemata
of J* is the optimal solution. Its chances of appearance in the population are
greatly reduced by this strict approach. On the other hand, an isoquant of a Jx

> J* in Figure 5-4b allows a great many variations of Jx schemata to appear in
the population.

Applying G to the problem makes the isoquants above take the form of
Figure 5-5. The isoquants of normal J values are plotted in the J' space , where
J' is the cost of strings that have G applied to their fitness (F).

63

J'
*.':;;.<:m

g* g
(a)

J'

g* g
(b)

Figure 5-5: Constant J isoquants with G penalized infeasible points

Though penalized, J* incomplete solutions are allowed into the
population so that the ga has a much better probability of generating

competitive schemata of J* and thus locating [J*,g*]. G allows fitnesses of J*
to be competitive with non-optimal J with g < g* so that the schemata of

[J*,g*] have a higher probability of occurrence.
For the negatively correlated g-J example, let's look at the effect G on

fitness (F) for different g*. Figure 5-3 shows g* close to g^. Applying G to this
example and looking at F as a function of J for possible isoquants of constant g

value gives the form:

fe

Figure 5-6: Penalized fitness function for g* close to g^

F is degraded for constrained points. Because g* is located close to g,^,
all J values are allowed to reproduce (assigned F > 0), but high penalties are
assigned for very large distances (8g) from g*, even though the change inJis

very small.

64

Next let's look at the same example when g* is placed close to g„

Figure 5-7: Population distribution for correlated J-g with g* far from g^,,

The fitness with G applied takes the form in Figure 5-8:

100

normal

Figure 5-8: Penalized fitness function for g* far from g,^

The span between g,^ and g* is large in this example. As such, G does
not heavily penalize g > g* values it finds in its population because it assumes
that these values of g are sufficiently "close" to g* to warrant their inclusion in
the population for the potentially good schemata they may contain.

The key observation from Figure 5-6 and Figure 5-8 is that since fitness
provides a ranking of strings relative to one another for parent selection, the
penalty not only keeps the fitness of infeasible points degraded even if they
have good cost function values but also allows infeasible points to be

65

competitive to the feasible region based on the incomplete cost of their
schemata, which correlates to the peak performing penalty functions

suggested in [15].
Elitism must still be applied in conjunction with this fitness penalty to

ensure that the solution is always feasible. Again, we note that the actual
choice of applying a multiplicative penalty to fitness is just one way of
approaching inequality function constraints in genetic algorithms. What is
novel here, however, is the use of the ga's knowledge of the "constraint space"

to scale the penalty automatically.

Equality constraints

Equality constraints have not been dealt with directly by this research,

but the ideas presented for inequality constraints can be used for many
equality constraints the user may deal with by simply penalizing deviation

from the function equality.
In most instances, however, the existence of equality constraints

strengthens the designer's ability to solve the problem. The existence of an
equality function constraint is most often used to "reduce the order" of the
problem. The equality constraint is usually presented as some function of the
design parameters, which allows the user to solve for one variable as a function
of the others. This solution is then placed into the remaining functions of the

problem, thus reducing the number of free design variables that must be solved

for. The order reduction calculation may be a simple algebraic equation in the
case of linear problems, or it may have to be solved numerically if the problem
is nonlinear (as in this context). In either case, the solution to the intermediate
step of order reduction almost always reduces the computational requirement

of the cost functionals.

66

5.2 Parameter Constraints

Apart from constraints placed on the cost functionals, a far more

typical instance involves constraints of the parameters themselves. However,
the ga deals with this issue directly. This is a consequence of the ga's use of
parameter coding rather than the actual parameters.

The ga user can apply such constraints directly as he or she inputs the
parameter values into the problem. An equality constraint is simply a fixed
value of the parameter. Inequality constraints are treated as hard bounds by
limiting the range of the parameter to the feasible region. This is done by
scaling the binary word which represents the parameter in the string to
parameter values which just span the allowable range. The ga operates
directly and solely on the domain provided. By not using derivative or other
auxiliary information, the ga never exceeds parameter bounds.

67

68

6.0 Convergence

When one talks about convergence, the issue is twofold. First,
convergence refers to how near the solution obtained is to the actual minimum
of the problem. Secondly, one is interested in the method's approach to a
solution—how rapidly in time a solution is obtained. Therefore convergence
constitutes two criteria by which the ga can be compared to other optimization

methods.

6.1 The Fundamentals of Convergence

The speed at which a solution is reached is important, but in the ga it
demands a tradeoff. Getting the solution as soon as possible is obviously
beneficial, but if the population converges too quickly, diversity is lost before

the ga has had a chance to make a reasonable search of the design space.
Fitness testing, elitism, and a properly sized population maintain this trade-off
for peak performance. As described in Chapter 3, fitness scaling is structured
such that poor members may still inject genetic material into the mating pool,
though at a lower rate than highly fit members. Elitism describes the process
of always keeping the best member ever created in the current population to
ensure that its schemata are kept available. This mechanism prevents
crossover and mutation from destroying the best genetic code found so far.
The importance of the correct population size is examined in Chapter 8.
However, it is safe to note here that using a population size too small limits the

diversity available, while using a population size too large excessively slows
convergence without necessarily increasing in solution quality.

69

The single criterion ga has the beneficial quality that it always has a
population size (P) number of candidate solutions on hand. Therefore, a

solution is always available to the decision maker (DM) at any stage of

operation that termination is desired. To illustrate more clearly how the ga

converges on a problem, Figure 6-1 shows how the Down-hill simplex and

steady-state genetic algorithm (ssga) operate on the Warning Lamp problem.

100000-

10000-

1000

100000 -

» 10000

cost function evaluations
(a) lowest cost in simplex

1000

cost function evaluations
(b) lowest cost in ssga population

Figure 6-1: Convergence to a Warning Lamp solution

The most obvious observation from this figure is that the shape of the
two plots is very similar—this is perhaps the most encouraging observation as
well. The Down-hill Simplex method is directly suitable for the Warning Lamp
problem. This solution space is completely monotonic with a steep gradient
over most of the surface, and a benign gradient near the minimum. Since we
wish to prove in this thesis that the ga is a very robust method, to ask the ga
to outperform the Down-hill Simplex on this problem is unrealistic. The Down-

hill Simplex is able to reach the minimum of this problem (which implies zero

error in its ability to terminate in the proximity near the global minimum) in
under 50 cost function evaluations (a bull's eye for efficiency!) no matter what

starting point is used.
The ssga in Figure 6-lb is able to reach a solution within 15% of the true

minimum in about 200 cost function evaluations. The 15% value represents
continuous solutions near the optimum. In doing continuous optimization with
a ga it is necessary to verify the discretization of the continuous parameters is
sufficiently fine to allow the ga to find the optimum. In this example, the

70

resolution is adequate to allow better solutions to be found, so that the poorer
performance indicates the difficulty the ga has in assuring convergence to the
optimum of continuous problems. This result shows that the ssga is
competitive even when operating outside its preferred conditions. This
analysis was done with a population size of 20 to show the convergence
better—thus the performance could be improved by using the optimal

parameter settings described in Chapter 8. Also, this problem was purely
continuous, and the ga operates best when the design space is limited in an

integer or discrete manner.
This genetic algorithm uses elitism, which means that the best member

ever generated in a run is always kept in the current population. The ga
converges the whole population toward the elite members, but genetic
algorithms provide no guarantees of convergence on arbitrary problems. To
say that the ga is only capable of ensuring a solution within 15% of the
nrnTiinrnim would disturb some decision makers (DM). The ga does sort rather
quickly through a great deal of the space looking for interesting segments, but
it is nonetheless a very "coarse" method, without any real guarantees.
However, this must not be seen as a limit to the genetic algorithm's capability.
More rapidly convergent methods, such as the Down-hill Simplex method,
sacrifice global minimum assurance and problem flexibility even when coupled
with simulated annealing. As a result, ga's can be used in situations other
methods shy from or are helpless to proceed in. If a guarantee of convergence
is desired, the DM should use the ga to find the local region of the optimum and
then use another method to fine-tune the solution to her specifications. This
approach allows the DM to combine the global search ability and flexibility of
the ga with the convergence behavior of a local technique.

71

6.2 Steady-State Genetic Algorithm Behavior

The bottom line of convergence rests with the quality of the solutions

obtained. This will be analyzed in great detail in the next two chapters, but we
will first take an introductory look at the genetic algorithm convergence on a
difficult problem. First, let's look at the convergent behavior of the ssga.
Figure 6-2 shows the mean (average) cost of the entire population as a
function of cost function evaluations (cfe) when the ssga is applied to the TISS
problem. The first plot shows the ssga with a population size (P) of 60, while

200 is used in the second.

0000 -

Population size 60

1000 -

100 -

■ \

1 ^ % % * % %

1 i i
* o

in
o o g o w> g
u> t~ S

uuuuu -
I Population size 200

10000 -

1000 -

i

100 - t ■
i
■

10-1 1 r-
> o o o 0

0
0
-

0
0
0
-

10
00

-

cost function evaluations cost function evaluations

Figure 6-2: ssga convergence behavior on the TISS problem

Both plots show excellent convergence characteristics. The
convergence of the first occurs in about 1,000 cost function evaluations and

the second in less than 4,000 cost function evaluations. The average and
minimum cost function values He at about 30. Note that the general
performance of the ssga, as shown by the plot shape and solution attained,
does not change a great deal even when the population size is changed
dramatically—the effect is only seen in the cfe required for population

convergence. This illustrates the robust nature of this technique.

72

6.3 Traditional Genetic Algorithm Behavior

Unlike the ssga, the tga does not show the same insensitivity to
population size. Figure 6-3 shows the different convergence behavior of the tga

population when P is changed.
100000

10000 -

1000 -

100-

Population size 200

0000 -

1000-

100- 1»!
■ *

1 M tl %1 L '"», w
1 1 1 l

cost function evaluations cost function evaluations

Figure 6-3: tga convergence on the TISS problem

The first plot shows the behavior of the tga when P is near optimal as
described in Chapter 8. Even at the optimal P, though, the mean cost does not
make the smooth transition seen in the ssga. The fluctuations are extremely
erratic, and though the minimum cost member does not change after 10,000
cfe, the population fluctuates widely until termination at 50,000 cfe.

The second plot, with a tga population size of 200, illustrates a different
tga convergence behavior emerges as P changes. The general form of this plot
is much like that of the ssga. It differs however, first in that the lowest cost
member is slightly higher (worse) than the first plot of Figure 6-3 and both
plots of Figure 6-2, but even more prominently in that it requires almost
50,000 cfe for the mean cost to converge to the lowest cost member.

Going back to the two criteria for good convergence, the tga achieves its
minimum value in more than twice as many cfe as the ssga. The average cost
of the small tga population size doesn't show any convergence behavior
compared to the ssga and large population size tga, but it gives a solution of

better quality than the larger population size tga. The final test of convergence

73

of these two methods will come when the solutions they generate are compared
to those generated by the Branch and Bound method in Chapter 8, but it can

be seen here that, in general, the convergence of the genetic algorithm exhibits

quantitatively favorable characteristics even on the diflficult TISS problem

representative of fault tolerant design problems of moderate to high

complexity. The convergence behavior of the ssga is especially appealing in
that the constantly "evolving" population does not experience the erratic
behavior experienced by the tga with its separate generational populations.

6.4 Termination Criteria Analysis

What the above discussion of convergence means in actual ga
implementation, however, is that it is very difficult to know when to terminate
the ga search. In practice, the user must usually limit the computational
effort because of monetary or time constraints. As such, the ga is ready to
provide a solution any time the user needs one, but the user still would like to
know the relationship between computational effort and solution reliability.

Population convergence does indeed occur for intelligent
implementations of the genetic algorithm. At some point in an algorithm run,
diversity falls below the "critical mass" necessary to fully exploit the design
space. When this occurs, if the user still wishes optimization to continue,
diversity should be re-injected into the population. As part of this thesis, we
attempted to identify mechanisms that could illustrate ga convergence and

reasonably indicate that termination should occur.
To accomplish this goal, convergence/termination testing was done on

the basis of 8 candidate ideas of convergence developed for this research:
1) the number of cfe between changes of the lowest cost member
2) the difference between average and lowest population costs
3) an indication of population variability calculated as the range between the

highest and lowest cost members divided by the mean population cost
4) the variance of the population costs

5) the average variance of the parameter values in the string
6) the product of the parameter variances
7) the average of the "bit likeness"
8) the product of the "bit likeness" (PBL)

74

Moderate testing was accomplished using all of the test problems to
determine which of the eight provide the user some quantifiable sense of
convergence. Before the results of this analysis is shown, a quick discussion
will reveal and explain those ideas that were quickly eliminated.

Options 4 and 6 were immediately discarded because they were
discovered to not provide an adequate desirable stopping point indication.
Though the characteristics of these figures of merit did change over the course
of a ga run, there did not appear to be a strong correlation between a desirable
convergence indication and their characteristics.

The number of cost function evaluations (cfe) between changes in the
lowest cost member (Option 1) seemed to have a great deal of merit when the
plots of this item were first obtained. However, it was determined that it is
impractical for two primary reasons. First, greater numbers of continuous
parameters provide for a larger design space that can often cause changes in
the lowest member that are insignificant to amount of effort required. This
also occurred in discrete problems with shallow minima. The second reason
dealt with problem complexity. In the TISS problem, for instance, 10,000 cost
functions could easily be required, and the number of cfe between changes of
the lowest cost member could best be set at 500+, while the TRIPLEX problem
would only need a cfe change of about 50 for the small number of total cfe
required. These issues make this idea potentially workable, but possibly too
complex to implement for the common user.

Most of the other ideas prove inadequate due to the amount of noise in
the measurement or to scaling difficulties. Noise in the measurement is
especially evident in Options 2 and 3. Option 3 is just a scaled version of 2, and
attempts to approximate convergence by the cost relationship: (high-
low)/mean. Figure 6-4 shows that because the population possesses a great
deal of internal diversity even when the average and lowest cost values are
nearly the same, the figure of merit does not show measurable convergence.

75

(high-low)/mean

lowest cost member

o
t

JS
oo

10000

- 1000.

h 100°

10

cost function evaluations

Figure 6-4: Convergence method candidate: (high-low)/mean

This figure shows an ssga run for the TISS problem solved using a 100
member population with crossover and mutation rates of 0.80 and 0.02,
respectively. The simulation shown is run for 5,000 cost function evaluations
(cfe). The figure shows three lines: the mean population cost, the lowest cost
(best) member of the population, and the figure of merit. The two costs are
associated with the right-side axis, while the left side is scaled separately for
the figure of merit. This run is typical for ssga (and most tga) performance in
that the lowest cost and mean cost lines decay and, though initially separated,

the lowest cost reaches steady-state and the mean cost decays to meet it.
Somewhere between 2,000 and 4,000 cfe some means of determining adequate
population convergence must exist, but Figure 6-4 is not such a measure.

Another idea that initially seemed to show merit was Option 5, the
average of the parameter variances, which has the form:

'«w-riw) n j=i (1)
1

where s ■ = —— £ (x, - xn)
" — ■»■ i=i

where n is the number of design parameters (x) of the problem and P is the

population size.
The behavior of this figure of merit is shown in Figure 6-5 for the same

TISS problem run used in Figure 6-4. Using the mean parameter variance as

a guide, we can see that full population convergence occurs at 3,000 cfe.

76

mean parameter variance

lowest cost member

mean cost

^••■•■••"•■■"■■■■•••^■•'^^••«»■■■•■»■•■••■■i

■10000

- 1000 c-

00
\- 100-2

10
© o
o

o o o

cost function evaluations

Figure 6-5: Convergence method candidate: mean parameter variance

This option appears to give a good indication of convergence, but its
problem is one of scaling. The left-side axis shows that the mean parameter
variance decays from about 2.0 to zero in this instance. This range,
unfortunately, cannot be generalized beyond this example. As a consequence,
if the user wishes to terminate the ga prior to complete population convergence,
this option does not provide a simple quantifiable convergence limit.

Options 7 (mean bit likeness) and 8 (product bit likeness) are a return to
the fundamental ideas of the ga. The ga operates on genetic binary strings of
data that are independent, but uniquely correlated to the problem of interest.
Using the assumption that a population with qualities X is converged no
matter if problem A or problem B is being optimized, it is only natural that the
quest for a convergence criterion should look solely at the bit strings.

The term "bit likeness" is used to refer to the fraction of the bits that are
the same at a bit location Qocus) across the whole population. For instance,
look at the following population of 4 strings of length 3:

string 1 1 1 0
string 2 0 0 0
string 3 0 1 0
string 4 1 1 0

bit likeness 0.50 0.75 1.00

Table 6-1: Bit likeness illustration on 4 member population

From this illustration the meaning of bit likeness is easy to see. The

77

first locus has a bit likeness of 0.5 because there are equal numbers of 0's and

l's. The second locus has a value of 0.75 because 3/4 of the bits are l's, while
the last locus has all 0's and thus has a bit likeness of 1.00. The bit likeness is
the greater of either the fraction of 0's or l's at each locus. This convention is
based on the assumption that the ga propagates beneficial schemata;
therefore the greater of l's or 0's at a locus should signify participation in more

beneficial schemata and better population fitness.
In the population of Table 6-1, the average of 0.5, 0.75, and 1.0 gives a

mean bit likeness of 0.75. The mean bit likeness is shown below for the

example TISS problem.

mean of bit likenesses

lowest cost member

mean cost

- 1000 -s-

T r-
© ©
© ©
© ©

cost function evaluations

■10000

- 100
00 o

10
©
©
©

Figure 6-6: Convergence method candidate: mean of bit likeness

The convergence of this figure of merit is complete by 3,000 cfe. To
reach that point (1.0), all strings must be identical. Again, absolute
convergence is farther than we normally want the ga to operate to reduce
redundant and unproductive operation, but as with the "variance of the
parameter values" (Option 5) extrapolating a quantifiable measure of general
population convergence is difficult. This figure of merit begins at values
between 0.7 and 0.85 for various problems. Using the behavior of the mean
cost and lowest cost lines as a guide, terminating at a particular mean bit
likeness value such as 0.95 gives different and sometimes unsatisfactory

results for different problems.
The final option is the product of the bit likeness. In Table 6-1, the

product of the bit likeness (PBL) is (0.5*0.75*1.0 = 0.375). The behavior of this
figure of merit is quite different and reveals some interesting characteristics of

78

population convergence useful for formulating a termination criterion. The

range of PBL is always 0 to 1.

rloooo
product of bit likenesses

lowest cost member

mean cost

.* 0.5 -

.5
e

0.0 -j

0 1000 2000

cost function evaluations

5000

Figure 6-7: Convergence method candidate: product of bit likeness

The behavior of the PBL shown in Figure 6-7 for the TISS example
appears to be typical for all the problems solved by the ssga in this thesis.
PBL applies only to the ssga because of the great fluctuations in tga
generation statistics. The initial values of PBL are near zero, while the values
after total population convergence are near one. These ranges are understood
as follows: in the initial stages, the mean bit likeness is somewhere in the
range of 0.8. PBL is approximately 0.81, where 1 is the bit string length. For
typical fault tolerant problems, where the string lengths are in excess of 50
bits, PBL is a very small value (0.850 = 1.4e-5). Even small problems of only 16
bits have initial PBL values close to zero (0.816 = 0.028).

To approach a PBL of 1.0, the population must lose a considerable
amount of diversity. As the strings of the population begin to sort through
schemata and choose those of higher fit regions of the design space, the bit
likeness at each locus of the string is assumed to gravitate toward higher fit
(better) binary values. This effect is best described by two examples.

First assume a locus on a string where the initial population has a bit

79

likeness of 0.7 of ones and ones represent high fitness and optimal solution(s).
As the ga operates, the number of ones will increase, moving the bit likeness
from 0.7 to 1.0 and increasing the overall value of PBL. Secondly, assume the
same locus with the bit likeness 0.7 of ones, but now with zeros representing

high fitness and optimal solution(s). As the ga operates, the number of zeros in
the locus will increase, and the bit likeness will first decrease from 0.7 to 0.5

(lowering PBL) before rising from 0.5 to 1.0 (raising PBL) as the zeros become

more frequent than ones.
The result of many loci along a string with bit likeness behaving like

either of the above two examples is that the decrease in some loci bit likeness

will offset the increase in others, keeping PBL near zero for the first stages of
ga optimization. The sharp rise of the PBL value occurs when all of the loci

have positive bit likeness changes.
The object of this analysis is to make PBL a sufficiently general

convergence criterion applicable to any string length.
There is an intuitive relationship between the length of the bit strings

and the appropriate termination value for PBL. Unfortunately, since only

three string lengths of 12,16, and 51 are used for the TRIPLEX,
ASYMMETRIC LAMP, and TISS problems respectively, this thesis cannot
provide adequate data to determine a reliable relationship. We can, however,
attempt to determine some PBL guidelines for problems similar to those of this

thesis.
Figure 6-8 and Figure 6-9 show the relationship of PBL to two

potentially useful quantities. The data shown is a compilation from the 180
TISS simulations performed in the population analysis section of this thesis
run to 50,000 cfe (see Chapter 8). Figure 6-8 shows the difference between the
mean and lowest costs as a function of PBL. The y-axis is a normalization
between zero and one of all simulation result values. Simulation points are

included in Figure 6-8a for normalized ranges above le-4.
Figure 6-8b limits the axes to include only the normalized range above

0.01. This second plot shows that if the decision maker (DM) considers 1
percent of the original range between mean cost and the best population
member sufficient convergence, the PBL value for the TISS problem can
safely be placed at 0.3 to terminate all 180 TISS simulations performed in
Chapter 8. Raising the bound to 5 percent, a PBL termination value of 0.2 can

be used.

80

8 o.ooi

o.oooi

PBL

(a) full TISS analysis

PBL

(b) restricted view of analysis

Figure 6-8: PBL comparison to average cost decay on TISS problem

However, as stated earlier, there is a second quantity of potential
interest for determining a termination criterion. The second quantity is the
difference between the present lowest cost and the lowest cost to be
determined by the simulation. This quantity measures the effort involved in
achieving a better solution. Unlike the previous figure of merit, this one cannot
be computed during the simulation. Figure 6-9 shows a compilation of this
measure versus PBL for values above le-4. As above, the quantities are
normalized between zero and one to represent the full range of values of the
TISS problem analysis in Chapter 8.

1-*

2

o

0.01

PBL

(a) full TISS analysis

PBL

(b) restricted view of analysis

Figure 6-9: PBL comparison to lowest cost decay on TISS problem

Figure 6-9b is a limitation of (a) based on certain assumptions. The

second plot assumes that the DM would be interested in convergence to 1

81

percent of the original value of this quantity. One point, seen by itself at the
far right of the first plot has been ignored in the second plot. Using the
information of Figure 6-9b, the DM could reasonably set a PBL limitation of 0.5

to have a great deal of assurance of achieving the best solution possible in any

TISS simulation.
The introduction of PBL has given a figure of merit with a strong

correlation to ga population convergence. Unfortunately, we have not directly
used the PBL's particular behavior (i.e. the sharp rise from hovering near zero
to hovering near one) to signify convergence. Additional work in this area that
would determine a suitable test for the rise would enhance the benefits of PBL

usage.
The remaining analyses performed for this thesis terminate the genetic

algorithms by setting PBL levels between 0.1 and 0.3 and dictating a
maximum number of cost function evaluations to perform. The mutation

analysis does not use PBL to observe the effects mutation has on degenerated
populations with little diversity remaining. The population size analysis does
use PBL under the assumption that extra effort to ensure the best possible

solution is unnecessary.
As was stated earlier in this section, PBL has only been developed as a

termination criterion for the ssga. While the tga can be terminated on PBL,
the termination PBL values are generally much lower because of the large

fluctuations of the tga population characteristics from generation to

generation. As such, PBL in the tga does not illustrate the same
characteristics seen in Figure 6-7 and consequently is not recommended as a
termination criterion for the tga. The fact that PBL applies only to the ssga
leaves the tga without an adequate method of determining convergence.

The ga simulations performed in this thesis keep a single degenerative
population because in most fault tolerant system design applications,
population rejuvenation is not necessary to attain a solution with adequate
quality to satisfy the DM. In limited instances not encountered by the efforts
of this research, the design space may be particularly difficult to optimize or
the DM may not be satisfied with the solution obtained by a single ssga
optimization run. In either case, population rejuvenation may be necessary to

meet the DM demands for the design. Rejuvenation occurs by using the
solution attained by a completed ga simulation as one of the points of the

population of a new ga simulation.

82

7.0 Mutation Rate Analysis

This section analyzes the effect of mutation on ga optimization of fault
tolerant systems. Tests are performed to determine the optimum mutation
rate for these problems. Nine probabilities of mutation are tested in the range
from 0 to 1. Both the tga and ssga are applied to the TRIPLEX and
ASYMMETRIC LAMP problems (see their descriptions in Chapter 2). All
other ga parameters are held fixed for this analysis. Five seeds (runs) are
performed for each mutation rate to reduce the result's sensitivity to the seed.
All runs go to 300 cost function evaluations (cfe) to maintain the efficiency
pressure established by the Branch and Bound method for these two problems.
A population size of 100 is used for the tga, while a value of 40 is used for the
ssga.

Two criteria are examined. First, the average population cost criterion
looks at the convergence of the population to the design space optimum and
indicates how reliable a result would be if selected prior to steady-state
operation. This situation is directly applicable to large problem applications

where steady-state may not be attainable within the time constraints allowed.
The other criterion is the lowest cost during the run. This criterion measures
the ability of the algorithm to find the best solution possible.

An obvious conflict results between these two criteria. Increasing
mutation rates to induce exploration for better solutions slows the rate of
convergence and required additional computation time. The results of this
analysis are shown for the TRIPLEX and ASYMMETRIC LAMP problems in
Figure 7-1. Each criterion has been individually normalized so that zero on one

83

criterion denotes the lowest criterion value attained from the analysis (one

denotes the highest value of the analysis), but does not equal a zero on the
other criterion. Note therefore that the criterion average shows a normalized,

general average of the two criteria. The legend at right shows the
corresponding mutation probabilities on the lower axis of the figure.

A-—D-—P
 O""" lowest cost criteria

mean cost criteria

criteria average

mwtatipn rates

1 0.0
2 0.00001
3 0.0001
4 0.001
5 0.005
6 0.01
7 0.05
8 0.1
9 1.0

Figure 7-1: Mutation rate comparison

As suspected, the best individual solutions of the TRIPLEX and
ASYMMETRIC LAMP problems are found by injecting the highest rates of
mutation into the ga. This is shown by the continual improvement of the
lowest cost criterion as mutation is increased to 100%. "Saturating" the
population with diversity throughout the run augments exploration to allow a
wide search of the design space. However, too much population diversity
reduces the ga's ability to effectively sort through the population to isolate
schemata of high fitness and hinders the confidence in the solution obtained.

Figure 7-1 shows that very high mutation rates prevent the population

from converging and concentrating its search. This observation is especially

applicable to complex fault tolerant system designs because computational
constraints prevent steady-state operation from being reached. Therefore, the
DM wants to know the rehability of the solution presented after the algorithm
has been permitted a reasonable attempt at the problem. Figure 7-1 shows
that this assurance is best met at mutation rates of 0.001 to 0.005.

Nevertheless, a tradeoff must be made between the two criteria to allow

84

for good exploration with good solution reliability. The average line shows the
tradeoff when the two criteria are weighted equally. Using this as the basis, we
conclude that mutation rates in the range of 0.001 to 0.01 should be used for
fault tolerant system design to maximize the ga's robustness. This range
coincides with the suggested rates of 0.005 to 0.01 by Schaffer, et. al., 0.001 by
De Jong, and 0.01 by Grefenstette [17].

Mutation in this thesis is considered in the common convention of a rate
that affects individual bits. Consequently, the number of mutations expected
to occur in the population is a function of the size of the population and the
number of bits in each string. The relationship between these parameters and
mutation rate is not explored rigorously in this thesis, but some thoughts on
the subject follow.

In any population, the total number of bits (N) is the product of its size
(P) and its binary string length (1):

N = P*1 (1)

For example: 10 strings * length 10 = 20 strings * length 5 = 100 bits.
Specifying a mutation rate of 0.01 causes one mutation to occur, on average,
in each of these populations. The issue at hand is whether the "dimensions'' of
the population should affect the mutation rate selection.

The intent of mutation is to inject diversity into a population in hopes of
generating new or previously lost schema of high fitness. The schema lie along
the string length, while the population size holds different schema
combinations. For a fixed number of bits in a population, therefore, a larger
population size holds a greater diversity for fewer possible schema (due to the
shorter string length). As a consequence, the mutation rate may be lower for
larger populations and higher for smaller populations.

But what if the population size is fixed and the length of the string is
varied? If mutation is to inject diversity at bit locations to affect schema, then
the mutation rate as a "per bit" formulation should account for the number of
schemata in each string. As string length increases, mutation rate should
increase to affect the larger number of schemata. The string lengths examined
in this thesis fell within a relatively narrow range from 10 to 51 bits, and the
effect of the string length on mutation performance is not analyzed.

As a result of the above reasoning and the empirical results of this

85

section, the remaining analyses use a mutation rate of 0.2/P. For the size of
the strings involved (N < 51), this relationship lowers the mutation rate for

larger populations and keeps the rate within the recommended bounds, though

it ignores the schemata differences between problems.

86

8.0 Population Size Analysis

Besides mutation rate, the other ga parameter chosen for detailed
investigation is population size (P). To date, there has been no reliable rule-of-
thumb developed by which P can be chosen by the decision maker (DM)
without extensive problem specific/algorithm specific knowledge. A few others
have analyzed this parameter in the past, but the tests have been done with a
tga only, and the results have varied. The steady-state genetic algorithm
exhibits marked differences from the tga in its exploration and convergence
abilities and therefore needs its own population size guidelines.

De Jong made the first attempt at generating a rule-of-thumb for P in
1975. He concluded that tga population sizes between 50 and 100 produce
robust results. His efforts were contrasted by Grefenstette in 1986, who
proposed a tga population size of 30 and growth of the crossover and mutation
rates to maintain population diversity. The latest testing was performed by
Schaffer, Caruana, Eshelman, and Das in 1991. This extensive tga test
determined that population size should be held to 20-30 strings for good

average cost performance [17].

8.1 Population size rules-of-thumb

The first analytical attempt known to this author at determining
population size was conducted by Goldberg in 1985. He derived an expression
for optimal population size based on the expected number of new schemata per
population member [17]. This expression can be approximated as
P = i.65*2°-21*leneth, and advocates population sizes of 30, 557, and 3,460,300 for

87

string lengths of 20,40, and 100. Obviously, this method suggests excessively
large population sizes as the string length (corresponding in most cases to

problem complexity) increases.
Vander Velde [19] suggested a different approach that relies on the

stochastic nature of the genetic algorithm. He proposed the population size be
chosen to correspond to a given "wrong bit" probability at any locus (bit
location). This "wrong bit" probability, Ps, is defined as the probability that all

members of the initial population have one or more bit locations for which the
bits of all members of the population are the same and that bit is "wrong".

"Wrong" here means that a bit, when mapped from the string into the cost
function, cannot contribute to a good solution (optimum). When this occurs,

the entire population lacks information essential to the generation of a good
solution. The Ps rule-of-thumb below generates a population size that keeps

the probability of this undesirable occurrence suitably low.

p-ilength

P =1" 1- T
,2,

(1)

The following table shows the required population sizes for various Ps

probabilities.

number of bits in each string

Ps 20 | 40 80 | 320

le-4 18 19

31 32

44 45

20

33

46

22

35

48
le-8

le-12

Table 8-1: Ps population sizes for various binary string lengths

Note that there is a very small effect of string length on population size
for a given Ps. Complex problems (320 bits) require a population size only four

members larger than a problem with strings of length 20. A value between le-
4 and le-8 would support the work of Grefenstette and Schaffer, et al., while
probabilities lower than le-12 would be needed for De Jong's findings. The rule-
of-thumb developed by Goldberg is not supported by this relationship because

the probabilities required to correlate that large of population sizes are

insignificant.

88

The idea of using "wrong" bit probabilities does not provide the rule-of-
thumb for P we desire, but it does show that injecting diversity into a
population is easy, which helps justify the use of low mutation rates. In
addition, the amount of diversity in a problem is not greatly affected by the
number of bits in the strings, which also justifies our intentional negligence of
string length by using mutation rates as 0.2/P.

8.2 Results

Population sizes are tested in the range of 10 to 600. The test is
performed using both the tga and ssga on the TRIPLEX problem, the
ASYMMETRIC LAMP problem, and the TISS problem (see their descriptions
in Chapter 2). For this analysis, mutation rate is set to 0.2/P and crossover is
held at 0.80. Twenty (20) seeds (runs) are performed for each population size
to reduce the result's sensitivity to the random number generator seed.

Twenty Branch and Bound solutions have been obtained from randomly
generated starting points and twenty Monte Carlo simulations are performed
for each problem. The results of these runs determine the competitiveness
required of the ga methods. All ga runs are limited to a maximum number of
cost function evaluations to maintain the efficiency pressure established by
the Branch and Bound and Monte Carlo methods. If excessive diversity is lost
from the population, denned by tile product of the bit likeness (PBL) (see
Chapter 6), the runs are terminated early.

First of all, an exhaustive search of the entire design space has been
performed for the TRIPLEX and ASYMMETRIC LAMP problems. Cost
function values are normalized such that 0 refers to the absolute known
minim«™ for the problem and 100 refers to the average results obtained by
the twenty Monte Carlo simulations for each problem. A Monte Carlo
simulation of 400 points was used for the TRIPLEX problem, a 400 point
simulation was used for the ASYMMETRIC LAMP problem, and a 10,000
point simulation was used for the TISS problem.

A comparison to the Branch and Bound method is desired, so twenty
runs are performed with twenty randomly selected starting points. The mean
normalized solution is 688.49 for the TRIPLEX problem, 43.89 for the

ASYMMETRIC LAMP problem, and 60.20 for the TISS problem.
Understandably, the results are best for the mixed continuous/discrete

89

ASYMMETRIC LAMP problem because Branch and Bound uses an underlying
continuous search algorithm-^tiie greater the percentage of the problem that

is continuous, the better Branch and Bound should perform. The ga, on the
other hand, approaches continuous problems as finely divided discrete
problems, so that performance is maximized on purely discrete problems. The
poor TRIPLEX performance for the Branch and Bound indicates that the
method can easily stick in local optima. The Monte Carlo simulations used to
set the upper cost normalization value fair very well on the TRIPLEX problem
because in 400 points they explore 40% of the 1,000 point design space formed

by 10 point discretization of three parameters.
The other variable of comparison for the Branch and Bound and ga

methods is computational effort. Branch and Bound does not have solution-on-

demand capability—it must be allowed to work to its conclusion. On the
twenty runs for the TRIPLEX and ASYMMETRIC LAMP problems, Branch
and Bound performs an average of 316 and 195 cfe, respectively, to generate a
solution. Likewise, the average number of cost function evaluations for the
TISS problem is 38,700, with a maximum limit set at 50,000 cfe. Based on
these results, the goal is to prove that the ga is able to systematically generate
solutions equal to or better than the Monte Carlo simulation in the TRIPLEX
problem and equal to or better than Branch and Bound for the ASYMMETRIC
LAMP and TISS problems, in less time than Branch and Bound requires to

obtain tile solutions.

8.3 Traditional Genetic Algorithm Population Size

The first population size analysis is performed on the tga to compare it
to the other methods. Figure 8-1 shows the tga performance at each
population size for the three test problems. For the TRIPLEX and
ASYMMETRIC LAMP problems, the tga is set to run for 5,000 cfe or a PBL of
0.1, whichever occurs first, while termination is contingent upon 50,000 cfe or
a PBL of 0.2 for the TISS problem. Notice also that larger population sizes are
tried for the TISS problem to account for its greater problem complexity.

90

100 -

75-

cost 50 -

25-

Monte Carlo (triplex)

branch and bound (tiss)

Vranch and bound (asymmetric lamp)

■ X, ,.-' \v

i—i—i—i—7 Y# i—Y—l—r

-O tiss

—*—— triplex

• -Ö asymmetric lamp

DODulation Size

1 10 6 80
2 20 7 100
3 30 8 200
4 40 9 400
5 60 10 600

population size

Figure 8-1: Population size comparison for tga

A noticeable difference exists between the problems. The results are
generally better as P increases, but the algorithm has greater difficulty with
the mixed continuous/discrete problems than it does with the purely discrete
TRIPLEX problem. The performance for population sizes below 30 is very
poor for the two smaller problems. According to this figure, the optimal
population size for a problem similar to the complex TISS problem lies
somewhere between 40 and 400 for the tga. The ASYMMETRIC LAMP

problem works well with a population size of about 60, while the simple
TRIPLEX problem obtains good performance for population sizes greater than
60. This figure also shows the method that generated the most competitive
results for each of the three problems. It can be seen that the tga outperforms
the Branch and Bound and Monte Carlo methods (on the basis of answer

quality alone) for P > 30.
As stated earlier, the Branch and Bound and Monte Carlo methods are

able to generate solutions reasonably fast. In order to compare the genetic
algorithm properly, the tga is stopped at a number of cost function evaluations
competitive to the other two methods for each problem. As a consequence,
Figure 8-2 shows the tga performance as a function of the same population
sizes, but when constrained to 400 cfe for the two smaller problems. The TISS
problem is not included because neither of the other methods provided any

91

worthy competition to the tga! For that problem, Branch and Bound obtains a
solution of 60.2 with 38,700 cfe, while the Monte Carlo method generates
solutions of 242 and 100 for simulations of 1,000 and 10,000 cfe respectively.

160

140-

120-

100-

S 80 H
©

60-

40-

20-

Monte Carlo Itriplex)

branch and bound (asymmetric lamp)

"I 1 1
3 4 5

population size

triplex

asymmetric lamp

ooDulation size

1 10 6 80
2 20 7 100
3 30 8 200
4 40
5 60

Figure 8-2: tga population size analysis for competitive runs

This figure shows that the competitiveness of the tga is limited in mixed
parameter and/or small problems. The best performance of the tga occurs
with a population size of 60 (exact correspondence to the optimal value in
Figure 8-1), but when limited to 400 cfe its solution is 75.8 compared to the

Branch and Bound solution of 43.89.
The tga performance on the fully discrete TRIPLEX problem is better

than that of the Branch and Bound and the 400 cfe Monte Carlo attempts.
The best tga performance for this small problem was realized for population
sizes of 30 to 80 members. From this analysis, we conclude that the optimal P

is 60 members for a tga performing fault tolerant system design.

92

8.4 Steady-State Genetic Algorithm Population Size

The ssga performance at the ten attempted population sizes begins to
show its superiority over the tga. Figure 8-3 reveals that ssga performance
exceeds that of the Branch and Bound as P increases. This analysis uses the
same termination criteria indicated for Figure 8-1: 5,000 cfe/0.1PBL for the
two smaller problems and 50,000 cfe/0.2 PBL for the TISS problem. The
results of the test problems are also very consistent with one another, which
shows that the ssga is less affected by the continuous portions of the
ASYMMETRIC LAMP problem than the tga is. There appears to be a
monotonic increase in the solution quality with increased population size.

100 -

75 -

cost 50-

25 -

Monte Carlo (triplex)

branch and,bpund_(dss)

tiss

—♦•■ triplex

asymmetric lamp

branch andbound^asym netric lamp)

population size

1 10 6 80
2 20 7 100
3 30 8 200
4 40 9 400
5 60 10 600

population size

Figure 8-3: Population size comparison for ssga

The ssga requires much fewer cost function evaluations than the tga.
The number of cfe needed to reach termination on the basis of PBL increases
quadratically with population size and only exceeds half of the maximum
allowed cfe in one instance (P = 400 for the ASYMMETRIC LAMP problem).
Any population size greater than 40 is superior for the discrete problems, while
a slightly larger P of 80 allows the mixed problem performance of the ssga to
exceed that of its competitors. Again, remember Figure 8-3 shows a
comparison of solution quality only. The impact of time constraints such as

93

limitations of time or computational capability must also be addressed as

shown in Figure 8-4.

140'

120-

100-

80-

60

40-

20-

Monte Carlo (triplex)

branch and bound (asy:

T
2

triplex

asymmetric lamp

DODulation size

1 10 6 80
2 20 7 100
3 30 8 200
4 40
5 60

population size

Figure 8-4: ssga population size for competitive timed runs

The ssga performance on the TRIPLEX problem is again superior. The

ssga is able to outperform the tga, Branch and Bound, and Monte Carlo
methods for all population sizes above 30 members. The figure shows that the
best performance can be achieved by using a population size of about 80.
Values far from this value show decreased short-run performance. The
decrease in solution quality with population size increases above 80 on the
time constrained problems is most likely due to the lack of sufficient time for

the ga operators to effectively sort through the population and focus their
efforts on high fitness areas of the design space. This behavior should be noted
by the decision maker (DM), who must determine the time constraint placed on
the algorithm—4he looser the time constraint, the larger P can be made and

the better the solution quality that can be obtained.
The performance of the ssga on the ASYMMETRIC LAMP problem is

better than that of the tga, and is very competitive with the Branch and Bound
method when the proper P is used. Figure 8-4 shows that a population size
between 80 and 100 makes the ssga competitive even though the problem is

partially continuous and therefore more favorable to Branch and Bound.

94

8.5 "Wasted" Binary Coding

As discussed in Section 3.3, choosing to use a binary alphabet for
parameter coding introduces "wasted" space on the coded string. Section 3.3
uses the coding of the first 5 integers as an example. This requires a binary
string of 1 = 3, which also has room for integers 6, 7, and 8. A crossover
between 3 [0 1 1], and 4 [1 0 0] between the second and third loci (counting
from the right) produces 8 [111], which is not in the parameter space. In this

thesis, disallowed parameters are reverted to the value previously assigned to
them—all other string changes created by reproduction are retained.

The TISS problem has 17 parameters with 5 discrete bin choices each.
As such, each parameter coding, like the example above, has 3 disallowed bit
combinations. In the entire string, 3*17 = 51 disallowed parameter
combinations exist compared to the 5*17 = 85 allowed. In other words, 3/8 =
37.5% of each string is a disallowed combination. Reverting the affected
parameters maintains convergence, but effort is still expended for each
appearance, slowing down the method. The effort of keeping disallowed
combinations from appearing in the population is small in most cases, but
when coupled with the "wasted" crossover and/or mutation operations that
produced the disallowed combination, the effect may be significant in some
problems.

The frequency of this occurrence is shown in Table 8-2 for both ga
methods used on the TRIPLEX and TISS problems. The values in the table
are percentages of the total cost function evaluations that required at least
one disallowed parameter to be reverted. Remember that a cost function
evaluation occurs whenever crossover or mutation is performed on a string.

A Monte Carlo operator on either problem would produce a disallowed
value 37.5% of the time. Therefore, the 3% to 10% disallowed generated by
both ga methods is three to ten times better in limiting the effort to the proper
domain. The reason for the difference in wasted effort for the different
problems is not easily determined. It is likely due to beneficial schemata in the
TISS problem that appear on disallowed strings. The ga thus looks often in
disallowed regions while trying to explore highly fit schemata.

95

TRIPLEX problem TISS problem

p tga ssga tga ssga

10 7.38 7.50

20 5.26 5.08 16.08 16.46

40 4.10 4.70 9.66 10.89

60 3.46 4.65 7.23 9.45

80 3.33 4.41 5.90 9.49

100 3.07 4.43 5.21 8.08

200 4.75 3.97 3.79 7.35

400 5.67 3.92 4.50 6.98

600 4.82 7.03

Table 8-2: "Wasted" effort caused by binary coding

This also table shows that for some reason the ssga generally creates

more members with disallowed portions.
Table 8-2 shows that the ga not only produces robust, efficient results, it

also effectively limits its operation to beneficial areas of the coded design space
and is not greatly influenced by "wasted" space of binary coded parameters. In
addition, Table 8-2 proves that the ga user can confidently choose P anywhere

within the wide ranges covered by this analysis without hindering the ga's

ability to deal effectively with defined regions of the string.

96

9.0 Summary of Single Criterion Design

The design of fault tolerant systems relies heavily on (1) the availability,
accuracy and completeness of a system model, (2) a systematic and efficient
design approach capable of handling large component numbers, and (3) an
optimization algorithm that adapts readily to model changes and reaches a
satisfactory solution in a reasonable amount of time. This thesis has shown
that the combination of the Markov Modeling Method, the Optimal Design
Process, and genetic algorithms is an effective combination for dealing with
real-world fault tolerant system design. Early work at the Charles Stark
Draper Laboratory developed the interactions of the Markov Modeling Method
and the Optimal Design Process in a continuous problem framework [8]. It has

been the intention of this thesis to expand that work to include the robustness
of the genetic algorithm (ga) and its ability to optimize the discrete parameter
problems that often appear in fault tolerant system design.

The genetic algorithm readily changes to model expansion and additional
problem complexity because it never needs to know details of the system it
optimizes. The cost function and the associated parameter-to-string mapping

are the only parts of the genetic algorithm method that change in response to

system alterations.
The genetic algorithm works on simple principles that parallel natural

biological systems. It uses random choice in a directed search process for
optimization. The three key operators that dictate ga performance are
reproduction, crossover, and mutation. These operators evolve a population of
potential solutions to increase the average solution quality of the population.

97

The ability of an optimization method to deal effectively with
constraints is crucial to fault tolerant system design. The most common
constraint in such problems is parameter constraints, where the design

variables are limited to a specified range or a discrete set of choices. The
genetic algorithm deals with this issue directly by operating directly and solely
on the domain allowed through the use of parameter coding. Function
constraints, on the other hand, are generally dealt with in ga applications
through the use of a penalty function applied directly to the cost function
problem-specifically by the user. This thesis introduces a new approach that
relies on the constraint space information inherently contained in the ga
population to automatically assign the penalty function. A multiplicative

penalty function applied to the fitness scaling of strings that violate

constraints is included to illustrate the approach.
Two types of single criterion genetic algorithms have been explored: the

traditional genetic algorithm (tga) evolves whole "generations" of potential
solutions in tandem; while the steady-state genetic algorithm (ssga) has been
developed by the author to enhance the convergence and speed of the ga by
eliminating generational replacement. This thesis has shown that the ssga
has better convergence characteristics than the tga in fault tolerant system
design. The termination criterion "probability of bit likeness" (PBL) has been
developed to capitalize on the convergence characteristics of the ssga and to
allow termination at a prescribed level of population diversity loss.

The proper implementation of the mutation operator rate and the

population size have been explored for several fault tolerant system design

problems.. The crossover rate has not been examined due to a general
agreement on its implementation by most ga literature. The effect of mutation
is shown to be positive, and the proper mutation rate was found to coincide well

with the results of other ga parameter studies.
Mutation rates of 0.001 to 0.01 provided the best performance on the

three test problems examined. To coincide with the recent understanding of
the ga community that population size and string length affect optimal
mutation performance, however, the mutation rate recommended by this
thesis is 0.2/P for small string lengths. Longer string lengths (» 50 bits) were
not examined by this thesis, but should generally account for the larger
number of schemata in longer string lengths by increasing the mutation rate.

98

To date, the existence of a reliable rule-of-thumb for determining
population size (P) has not been produced. This thesis explores determining
population size using the string length and the probability of losing critical
levels of diversity from the string (P8). This idea does not provide a reliable rule-
of-thumb, but it does show that injecting diversity into population is very easy,
so that the combination of properly sized populations and adequate mutation
can easily provide the necessary ga population diversity.

The optimal population size for the ga when optimizing fault tolerant
system designs has been explored empirically and has been determined to be a
function of the type of ga used and the computational constraints imposed.

The tga performance is optimal when population size is between 60 and
80 members. This conclusion is based on the consistent performance for all
three test problems, representing various string lengths and problem
complexities. The computational effort expended by the tga increases linearly
with additional population members, such that P = 60 usually requires less
computational effort than P = 80.

This thesis finds that the ssga exhibits excellent performance over a
wide range of population sizes. If not severely constrained by limited
computational effort, the ssga can be expected to provide exceptional
performance for P > 60. On large, complex problems like the TISS problem,

very large populations of 600 members produce the best assurance of a quality
solution. When time constraints are applied, though, the ssga still exhibits
superior performance, but like the tga, population size should be limited to the
range 60-100.

The computational effort of the ssga goes up quadratically with
increases in population size. Though the ssga appears to be very robust and
the decision maker (DM) may choose any population size in the above range
without concern, the more knowledgeable user may wish to adjust the
population size to best suit her wishes: for more accuracy by increasing
population size to 100, or more efficiency by decreasing population size to 60.
As population size is approximately doubled from 60 to 100, the effort is
approximately squared. This general relationship holds for all population sizes

tried on the ssga.
Even at the tga's optimal population size of 60 where the average

solution outperforms the ssga of the same population size, three times more

tga computational effort is required to achieve the solution. Therefore, it is the

99

general conclusion of this thesis that the ssga is superior to the tga for

optimizing fault tolerant system design problems.
One of the more important conclusions of this thesis is that the genetic

algorithm is superior to the Branch and Bound method. The ga is a much more
robust and efficient method for optimizing the design of fault-tolerant systems
as shown by Figure 8-1 through Figure 8-4. In contrast to the ssga with a
population size of 600 on the TISS problem, the Branch and Bound delivers
solutions 4 times worse and performs 2.8 times the computational effort.

The ga has solution-on-demand capability. Following a reasonably brief

operating period, the ga is capable of delivering a solution to the DM. Further

efforts may improve that solution, but the DM need not wait for the algorithm

to complete its operation. Branch and Bound, on the other hand, is usually

incapable of finding a quality intermediate answer. In a small test of this
assertion, only 3 of 10 Branch and Bound trials on the TISS problem generated
any solution after 4,000 cfe, and those three were very poor.

By direct comparison of the genetic algorithm and other discrete
optimization results, such as the Monte Carlo method and the Branch and
Bound method, the genetic algorithm is shown to provide a very efficient and
robust approach to discrete optimization. Because the system model requires
no derivative information, the genetic algorithm formulation proves to be much

easier to develop. Second, the genetic algorithm need not be changed with the
system's variations because the cost function and its associated string-to-

parameter mapping are the only parts of this method that change in response
to system alterations. Third, since the genetic algorithm searches from a
population of points, it converges to an acceptable solution faster than
methods that move along a single optimization path and is capable of providing

solutions to the DM at any point of its operation. Even with a large population
size of 600, the ssga only requires 13,580 cfe to converge and generates a
solution 75% better than Branch and Bound is capable of generating in 38,700
cfe. Finally, a concern for any optimization technique is the reliability of the
result. This thesis proves that the genetic algorithm can be relied on to provide
a suitable solution to complex, integrated fault-tolerant systems while
maintaining its model simplicity and efficiency attributes.

100

10.0 Multicriteria Optimization

10.1 Background

Multicriteria optimization refers to the process of dealing with multiple
criteria that a decision maker (DM) wishes to optimize simultaneously. The
issue of optimality in this context differs due to the often conflicting
relationship between criteria. The general single criterion problem with n
design variables and m constraints is:

Optimize: J(x); x = [x1,x2,...,xnf

Subject to: gj(x) < 0; i = 1,2,..., m

The general multicriteria optimization problem with n design variables,
m constraints, and 1 criteria is [2]:

Optimize: J(x) = [J1(x),J2(x),...,J,(x)f; x = [x1,x2,...,xn]'1

Subject to: g^x) < 0; i = X 2, —, m
(2)

The vector J is the multicriteria objective function formulation with
elements Jv J2,..., Ji as the individual criterion objective functions. It is
important to note that the individual criterion functions are merely listed
together in a vector; they are not added, multiplied or otherwise combined in
the general multicriteria problem.

Single criterion optimization seeks to identify an optimal solution. This
is defined as simply the feasible solution (or solutions) that gives the best

101

objective function value. The desired location in the design space is unique

even if alternative optima exist.
The single criterion notion of optimality does not work in the

multicriteria context, however. A new concept involving efficiency (also called
domination) serves a similar function in multicriteria problems. The desire of

the analyst in multicriteria problems is to assist the DM in isolating a
preferable solution that lies in the set of efficient points (also called the
dominant or Pareto dominant set). The means for accomplishing this goal is
explained later—first we must assemble the basics of the multicriteria

problem.
The notion of efficiency (noninferiority, nondominance, or Pareto

optimality) is best illustrated by way of example. Suppose four solutions exist

for comparison in a two criteria minimization problem [2] (see Figure 10-1).

Alternative C is inferior to B and D because it has criteria values worse than
the others in both criteria in each case. Furthermore, B and D dominate C
because their values are better than C in both criteria. Alternative A does not
have a dominance relation with any of the given alternatives B, C or D because
the J2 value of A is better than all the others while its Jx value is worse than all
the others. Alternatives B and D do not have a dominance relationship either
for the same reason. Solutions that are not dominated by any part of the
objective space are called efficient, such as A, B, and D of Figure 10-1, because

as defined in Cohon:
"A feasible solution to a multiobjective [multicriteria] programming

problem is non-inferior [efficient] if there exists no other feasible solution that
will yield an improvement in one objective without causing a degradation in at

least one other objective." [2]
Figure 10-1 shows efficiency in a Jx - J2 plane. The objective space

shown must be distinguished from the decision space containing the feasible
design variable (parameter) regions. All interior solutions of the objective
space such as alternative C are inferior no matter if the individual criteria are

to be minimized or maximized. In Figure 10-1, both criteria are to be
nunimized, so that the optimal value would lie at the origin if the entire

quadrant were feasible.

102

Jl

Two dimensional
objective space

Alternative Ji J2

A 10 10
B 3 80
C 7 90
D 5 30

dominated solution

Efficient Set of noninferior solutions

Figure 10-1: Two dimensional multicriteria objective space

The general rule for determining efficiency in a minimization problem is
that when no feasible solutions lie in a "cone" to the lower left of a point of
interest—that point is efficient. Conversely, any point that has some portion

of the feasible objective space in a "cone" to its lower left is dominated. The
shaded region of Figure 10-1 shows the full efficient set of the problem.

Multicriteria methods attempt to allow the analyst and decision maker
(DM) to perform the aspects of system design they are best prepared to deal
with. The analyst represents the design engineer with a great deal of technical
knowledge pertaining to the multicriteria fault tolerant design process and the
optimization methods employed. The DM, on the other hand, represents the
individual or group that must make the critical design decisions when
presented with the tradeoffs between conflicting criteria. The DM need not
have any technical knowledge «morning optimization for multicriteria design
to be effective. Multicriteria optimization for fault tolerant system design
couples (1) the analysis of potential solution dominance (solutions should lie in
the efficient set) and (2) the more intuitive, empirical, and "gut level" decisions
that must be made between alternatives in the efficient set to arrive at a
satisfactory system design solution.

103

10.2 Multicriteria Technique Classification

Classification of the various multicriteria optimization techniques is

based on the interaction of the method, analyst (who controls the method), and

the DM (who chooses the solution). Techniques are classified in many ways by
different authors, but for the context of this thesis multicriteria techniques
include four main types: no preference articulation, a priori articulation,
progressive articulation, and a posteriori articulation. The techniques that fall

into these categories will not be explained in detail, but the general approach of
each category will be explained to illustrate how this thesis fits into the broader

framework of multicriteria design.

10.2.1 No preference articulation

This class of multicriteria optimization requires no DM interaction with

the method. Commonly referred to as the Global Criterion Method, in this
method the analyst applies an optimization technique to provide the DM with a
single solution from the efficient set. The solution comes from a two part

problem:
1) Solve the problem for individual criteria:

Optimize: Jk(x); k = X 2, ...1
Subject to: gi(x) < 0; i = X 2,..., m

(3)

The solutions to this step are designated Jk (x*)
2) The second step is a goal minimization:

T A«,*\ T (nr\ P

Minimize: min]£
k=l

Jt(x*)-Jk(x)

Jk(x*)
P>1 (4)

Subject to: gj(x) < 0; i = X % .», m

The optimal solution depends on the choice of the norm p. The solution
is the point of the objective space where the tradeoffs between the criteria are
the smallest for the given norm p. The solution produced is in the efficient set if
all criteria are strictly positive so that measurements from the objective space
origin (where Jj = 0; i = 1,2,...,1) to J(x*) are always positive distance quantities

104

[2]. This method would produce a solution at the "knee" of Figure 10-2 where

the choice of solutions is relatively easy.
This method by itself, however, does not provide adequate information

about the criteria tradeoffs to allow the DM to be confident in the solution. No
justification of the solution is provided and the arbitrary choice of p affects the
solution obtained. This type of analysis is a "no brainer" that is often avoided

in actual multicriteria design.

10.2.2 A priori articulation of preferences

Several methods fit this category. All of them require the DM to have a
good grasp of what she expects to see from the analysis and what she would
prefer to do with that information before any analysis takes place. The way
preferences are articulated identifies the individual methods. The utility
function method, lexicographic method, surrogate worth tradeoff method, and
goal programming method all require a priori preference articulation.

These methods place a relatively large demand on the DM in terms of
the information required. They have the major disadvantage of requiring the
DM to spell out very explicitly her preferences. This process is usually very
time consuming, which makes DM involvement difficult since no feedback can
be immediately returned. Also, the DM may not know enough about the
problem to effectively state preferences. The unknowns of feasibility and the
tradeoffs necessary to achieve stated preferences often make DM reluctant to

express their preferences.

10.2.3 Progressive articulation (interactive programming)

Interactive methods use DM preferences to perform local searches of
the multicriteria design space. Progress toward a solution of tile problem is
accomplished by iterative interaction of the method with the DM, either with or
without the assistance of an analyst. As local progress is made to a solution,
new reactions of the DM are used to redirect the next local search. These
methods have the distinct advantage of often producing solutions that the DM
particularly likes because of the constant interaction and the better visibility

of where the solution came from.

105

Methods often placed in this category include: interactive goal
prograinming, the step method, and the sequential multiobjective problem
solving technique. These methods have distinct disadvantages, however.

First, they require a very high time involvement from the DM. The DM must
be present at each iteration of the method to look at intermediate results and

express preferences to orient further search. Secondly, there is no guarantee
that the solution obtained will be satisfactory to the DM. The expression of
local preferences as the method progresses may lead to a solution that is the

sum of the satisfactory parts but is not a satisfactory whole.

10.2.4 A posteriori articulation (generating methods).

Finally, there are methods that enlist the assistance of the DM only at

very late stages of the analysis. These methods put a comparatively small

burden on the DM in terms of the amount of information required.
Using the convention adopted in [2], these methods will be called

generating methods for their ability to generate a full or partial representation
of the efficient set. Because the analytical analysis has already been
performed, the DM need only to react to the results produced. As put in [2],
"the emphasis is on the demarcation of the range of choice, not on the explicit
definition of preferences." The DM are offered insights into feasibility,
necessary sacrifices, and the costs/benefits of each solution of the efficient set.

The a posteriori methods inform the DM, not the other way around.
Preference articulation is an overpowering drawback to multicriteria

optimization. A priori and iterative methods are usually rendered useless if the
DM changes her mind. The very fact that these problems deal with a human-
interface with the frequent capacity for indecision or reversal of position lends

a great deal of weight to a posteriori methods.
The first three classes of methods have an additional drawback. In

them, the role the analyst takes in the process of selecting a problem solution
can greatly affect the solution selected and the satisfaction the end-user (DM
or otherwise) has with that solution. It is never the role of the analyst to steer
the progression toward a solution. If the DM is not well versed in the technical

aspects of optimization, especially the complexity of the multicriteria
framework, the analyst may have a great deal of difficulty in obtaining the

necessary articulation of preferences for the method. In such a case, the

106

analyst can have a large impact on the progression of the method. Also, such
DM will often distrust the solutions obtained because the analyst will have
seemed to have pulled solutions "from thin air". These difficulties can usually
be overcome, of course, but the premise of this thesis is that the analytical
analysis of the problem should be kept as isolated as possible from the
expression of preferences.

The analytical methods for approaching a multicriteria problem will
always remain short of fully capturing the essence of multicriteria problems.
This fact must be appreciated so that the non-analytical articulation of
preference, an emotional, "gut level", and always individual choice, can be
appreciated and allowed to work without the constraints of analytic thought

and over-constrained structure.
Generating methods can also be used as a "front-end" approach for

other techniques. If the efficient set cannot be analyzed by the DM without
additional considerations, articulation of preferences at this point, with a larger
picture of the tradeoffs in the objective space available, can narrow the
solutions under consideration. Making the efficient set representation
produced by the generating method the domain of additional search, the
additional computational requirements can be kept to a minimum and the "big
picture" context of the narrowed focus can be kept in proper perspective.

The major disadvantage of generating methods is the computational
requirement. The fact that these methods provide a full set of potential
solutions makes this disadvantage understandable. Many methods in this
category require the solution of a complete single-criterion mathematical
program for each point of the solution set. For these methods to be worth
using, therefore, they must provide competitive computational requirements.

Computationally, the first three categories avoid high costs by full
utilization of the preferences given. These methods usually have a great
computational advantage over the generating methods, but the high
investments of user time weigh heavily against their use.

No one approach is optimum for every multicriteria problem, but this
thesis intends to show that a posteriori articulation of preferences has general
applicability when coupled with an optimization technique that is rapid, reliable
and versatile. Methods in this category include the e-constraint method,

weighting method, and the Multicriteria Genetic Algorithm (MCGA). These

methods will be presented in further detail in later sections.

107

10.3 Miüticriteria Test Problems

The fault tolerant design test problems used in this section are
essentially identical to those used heretofore. The same fully discrete
TRIPLEX and TISS problems are used with the same problem characteristics
described in Chapter 2. The only significant difference is that now each
problem has more than one criterion to optimize.

Two criteria have been created for each problem, and a third is available

if the methods analyzed in the following sections would need to be analyzed for
problems with greater dimensions. The three criteria are shown in Table 10-1.

criterion

Purchase Cost

Unavailability

Operating Cost

description

sum of component costs

probabiHl^ofbeinjgm^ßdlurestetes^

configuration dependent; accounts for
overhead, maintenance, etc.

Markov Model

dependent?

no

..yes..
yes

Table 10-1: Sample fault tolerant design criteria

10.4 Display

The difficulty of multicriteria optimization is not limited to algorithm

deficiencies; a DM (often with no technical background) must also use a
representation of the efficient set to make a qualitative choice of optimality.

Assisting the DM choose a single solution through point comparisons or
articulation of preferences is contingent upon the quality of the result
presentation. The manner in which multicriteria optimization results should

be presented depends on the number of criteria in the problem.
In two criteria problems, the best manner of display is a simple plot of

the two criteria on perpendicular axes. This display is used throughout this
thesis and is easily understood by most DM. The tradeoffs between criteria are
easily seen and special interactions of the criteria can make the choice of a
single solution much easier. For instance, the points with mild tradeoffs
between criteria at a distinct "knee" of the efficient set as in Figure 10-2

usually are good solution choices.

108

Jl

Regions of large
criteria tradeoffs
often ignored by DM

J2

Figure 10-2: Two criteria problem efficient set with "knee"

For problems with three or more criteria, this simple graph is no longer
practical. For three criteria and associated efficient sets with appropriate
characteristics, 3-D plots, usually with color references, can help the DM to
visualize the surface of interest. Another manner to display three criteria is to
use a simple graph and display efficient set cross-sections for fixed levels of the
third criterion [4]. However, both of these are difficult to construct and only

applicable to three criteria problems.
The number of complex, multidimensional points that a DM can directly

compare is usually limited to 4 or 5 to avoid information overload at a single
step of the analysis. After general regions of the efficient set have been
separated, more focused analysis can occur. To facilitate this approach in

multiple dimensions, the profile device has been established [4]. Figure 10-3
shows an example profile for three points on four criteria. The addition of color
and other visualization tools can greatly aid the DM to effectively compare the

relative merits of points using the profile.
In a profile, vertical lines indicate the different criteria. The criteria are

usually normalized in some region of interest, such that relative values are
compared. Points in the design space are designated a particular symbol
(circle, triangle, etc.) and their values in each criterion are plotted and
connected with lines to show visual continuity. In the minimization problems
of this thesis, a dominated solution has all of its symbols above (worse) than
at least one other point of the design space.

109

1.0

0.75

0.50 Ü

0.25

0.0

O.. . point 1 - efficient
□... point 2 - efficient
•. . . point 3 - dominated

Figure 10-3: Profile display for multicriteria analysis

The profile shows the tradeoffs between potential solutions of the
objective space. Comparing a few potential solutions from different regions of
the objective space can help the DM determine the amount of give and take

required between different regions of the efficient set.

110

11.0 Multicriteria Generating Techniques

11.1 e - Constraint Method

The e - Constraint method, and the Weighting method explained in the

next section, both transform the multicriteria problem into a series of one-
dimensional (single-criterion) problems for which solutions are obtained in the
traditional manner. As with the Branch and Bound method, the e - Constraint

method (from here on simply referred to as the constraint method) is a
framework for configuring a difficult problem. It requires an underlying
optimization algorithm to solve the stack of sub-problems it creates. The
solutions to those sub-problems should map out a representation of the

efficient set (E).
The framework for this method begins with the general multicriteria

problem presented in equation (18) and shown again here:

|T Optimize: J(x) = [J1(x),J2(x),...,J1(x)]T; x = [x1,x2,...,xn]

Subject to: gs(x) < 0; i = 1,2,..., m

The constrained problem for n parameters, 1 criteria, and m constraints is:

(1)

Optimize: Jk(x); k = 1,2,..., 1

Subject to: gj(x)<0; i=l,2,...,m (2)

and Jh(x)<Lh; h = l,2,...,k-l,k + l,...,l

111

where the hth criteria are chosen arbitrarily for optimization to create a single
criterion problem. The means for obtaining the function constraints 1^ is

detailed below.
The fundamental idea of this method is that one criterion should be

optimized while all others are represented as constraints. This process defines
a noninferior solution. Choosing proper L,, to find a desirable number of
efficient points, a representation of the efficient set can be generated while only
one criterion has to be optimized (changing line 1 of equation (2) so that Jh(x)
has to be optimized for only one value of k). The manner in which this is done is

described graphically for a two criteria problem in Figure 11-1.

'1A

'IB

Jl

Figure 11-1: e - constraint multicriteria method

This figure shows two criteria represented as Jx and J2. By optimizing

on criterion J2 without placing any condition on the other, the point A is
obtained as the minimum. Point A denotes one edge of the efficient set; the
other could be found by optimizing on Jx with no conditions on J2.

Now suppose that an inequality constraint is placed on J1 such that J2 is
to be minimized subject to Jx < J1B. The solution to this problem is point B,
which is a point on the efficient set. This process can now be repeated to
generate the desired resolution of the efficient set. The choice of which criterion
is to be optimized and which is to be held as a constraint can be done
arbitrarily without impacting the method's performance in most instances, or
can be made by the DM based on prior knowledge of the relative ease of

optimizing and/or bounding either criterion.

112

The DM desired resolution is established through the parameter e. This

parameter denotes the change in the constraint bound for one criterion
necessary to achieve the desired spacing in other criteria. For example, if the

individual Jx and J2 problem optima (i.e. the efficient set boundaries) are found
to be [100,1] and [200,0.1], we know that Jr varies from 100 to 200 along the
efficient set. If the DM desires a 5 point efficient set resolution, e is set to (200-

100)/(5-l) = 25.
Thus, to provide five point resolution, three points must be located in

addition to the two endpoints. With e = 25, the three necessary constraints are

set as:

Jli<100+iE; i = 1,2,3 (3)

In more than two dimensions, this method experiences significant
drawbacks, however. The difficulty arises that many constraints imposed
create infeasible sub-problems. This phenomenon is described in more detail in
[4] with a graphical illustration. Though this disadvantage is not catastrophic
for the method, it may result in much wasted computational effort because the
solutions obtained in such instances will either be a duplication of effort that
produces cloned solutions or will not be part of the desired resolution.

The constraint method can be very tedious and computationally
expensive. The DM has the option of defining as much or little resolution of the
efficient set he or she would like to generate, however, which makes the method

reasonably predictable and very parallelizable. Once the individual limits on
the criteria are found (which can be done in parallel), the remaining sub-
problems needed to create the efficient set are simply a function of those initial
solutions as illustrated by equation (3). Every remaining sub-problem can be
solved independently. In this way, an analyst with access to highly parallel
hardware can make excellent use of his facilities and reduce the otherwise
excessive run-time of the constraint method.

In this research, a simple 2-dimensional constraint method framework
has been created. The underlying optimization algorithm is the steady-state
genetic algorithm (ssga), already proven to be a superior method for the
optimization of discrete single criterion fault tolerant system design problems.

As noted earlier, one drawback of the constraint method is infeasibility
for constrained design space locations. This disadvantage is dealt with in this

113

particular implementation by analyzing the initial population of the ssga at
each constraint level for feasibility. If the entire initial population is infeasible,

the method is instructed to suspect that the current problem is too tightly
constrained. To verify this assumption, the initial population is regenerated at

random and again checked for total infeasibility. If the second attempt also

generates an infeasible first generation, the current constrained problem is
discarded. This manner of dealing with infeasible constrained problems
requires 2*P cfe to determine the validity of the infeasible first generation
assumption. To not include this, check, however, would allow a full ssga run
with a fully infeasible population, requiring many cost function evaluations

with little chance of finding a feasible, optimal solution.
The intent of this thesis is to accentuate the robustness of the genetic

algorithm by mamtaining biological analogies whenever possible and keeping
the methods' characteristics general by separating problem data from the ga
operating domain. In light of this intention, a new formulation of the distance-
based penalty function has been developed for this thesis (see Chapter 5) and
is included in this implementation of the constraint method.

A multiplicative fitness penalty function (G) is applied to degrade the
fitness (F) of ssga strings that violate the imposed bound on Jv referred to

below as g.

Fitness: Fj = F, * G^; j = X %.... P

where
f * v» (4)

ifgi(x)>g*(x); i = l,2,...,l-l G„ = Si oj . -i

1.0 otherwise

where P is the population size, j is an index over the string members of the
population, and i is an index over the problem constraints. The quantity Ag is

the distance between the efficient set boundaries measured along the g (Jx)
axis. The inequality constraint is presented as a function of the actual
constraint bound to show the effect of crossing the inequality threshold g*.

This G has very favorable effects on the test problems of this thesis.
The fitness is degraded as a function of the distance from feasibility. The value
of G drops off sufficiently fast to give a reasonable assurance that strings with
large constraint violation distances will not be assigned competitively high

114

fitness values. The decay rate (-3) is chosen arbitrarily for this thesis to
provide a penalty of approximately 90% to those strings at the bound of
constraint "closeness" (see Chapter 5). Results for the constraint method are
discussed in Chapter 15.

11.2 Weighting Method

The weighting method generates a representation of the efficient set

systematically by varying a single weighted sum function of the problem
criteria. It accomplishes its task somewhat faster than the constraint
method. Its major disadvantage is its vulnerability to missing or
misrepresenting portions of the efficient set.

The weighting method operates in the following manner to reduce the
multicriteria problem of 1 criteria to a single criterion weighted sum [4]:

Optimize: J = [J1(x), J2(x),..., Jj(x)] ,_,

Subject to: g(x) < 0

is the multicriteria problem transformed into:

l

Optimize: wJ =]£ wk Jk (x)

Subject to: g(x) < 0

The problem defined in equation (6) defines a point in the efficient set.
Systematically repeating the process for various wk defines some
representation of the efficient set.

The weights do not have to provide meaningful interpretation for the
problem. The weights are a means of mapping out the efficient set and can be
considered arbitrary numbers generated simply for the mapping produced or as
relative "worth" assigned to each criterion. In fault tolerant system design,
however, the DM usually does not know what the relative "worth" of different
criteria should be and cannot confidently place weights on criteria to attain
optimum solutions. As such, a systematic change of the weights is usually

used.
The manner in which the weights wk are varied depends only on their

relative values, not their absolute size. With two criteria, for instance, the

115

weighted sum of (^ + 3J2) produce the same solution on the efficient set as the

sum (3Ji + 9J2). This relationship leads most applications of the weighting

method to use positive relative criteria weights that sum to 1.0. The

combination of criteria weights can be mapped into the design space as

surfaces of constant "value" called isoquants. In two-dimensional problems,

the isoquants are straight lines of constant "value" represented by:

C = W; Jx + W2 Jj (7)

The weighting method searches for points of the feasible objective space

that fall tangent to the isoquants and minimize the function value of the

isoquant at that point. Figure ll-2a below shows the isoquants for some

combination of weights in a two criteria problem. In the particular instance

shown, the solution is not unique.

Ji

\
v ^|^ Isoquants of

•(w^i + WjjJiz)

\

Ji

(a) the weighting method may skip
reentrant portions like that between
A and B.

(b) the weighting method
makes control of efficient set
resolution difficult.

Figure 11-2: Weighting multicriteria method disadvantages

Comparing the weighting method to the constraint method, the

constraint method usually gives a more reliable description of the efficient set

because the user directly controls the point spacing by the constraints

imposed. The weighting method has the tendency to skip over "reentrant"

portions of the efficient set as in Figure ll-2a. The second plot shows that

since problem geometry affects where the points are located (constant

changes in the weighting increments do not create equal spacing between

116

solutions), the analyst cannot predict the spacing of the points and may not
provide a satisfactory representation to the DM.

Another disadvantage shown in (a) above is that weights may not
provide unique solutions. Both A and B above are obtained by the same weight
configuration. The particular point found would depend on the underlying single
criterion optimization method used and, in the case of gradient based methods,

would depend on the method's starting conditions.
The weighting method does have a significant computational advantage

over the constraint method. Its single criterion cost function is a simple sum of
the criteria functions without regard for constraint difficulties. The weighting
method does not waste effort as the constraint method does, looking for
solutions in infeasible areas. Unless external constraints are imposed, every
weighted combination of criteria is feasible.

The weighting method is not used in this thesis, but is presented due to
its popularity, generality, and ease of use. The methods used in this thesis
must prove to be competitive to the known strengths and weaknesses of the
weighting method to justify their use in fault tolerant system design.

11.3 Multicriteria Genetic Algorithm

The Multicriteria Genetic Algorithm (MCGA) expands upon the basic
structure of the steady-state genetic algorithm in its attempt to
simultaneously optimize multiple criteria. The MCGA forms a representation
of the efficient set through the use of the same three basic ga operators:
reproduction, crossover, and mutation. For reproduction, since the concept of
fitness no longer applies with more than one criterion, tournament selection is
used instead, which places candidate members in competition with each other.

The MCGA creates a "partial order" of the members of the population
based on dominance. Dominance replaces fitness for reproduction testing and
allows the MCGA to optimize all criteria simultaneously with much less effort
than conventional multicriteria generating methods, due to the ga benefit of
working from a population of points. This is especially true in the multicriteria

context because, unlike the single criterion problems where having a
population was necessary to find a single optimum, here the population itself

evolves as an entity that is the solution.

Ill

The first reference to a multicriteria genetic algorithm we were able to

locate was in [10]. The algorithm they used was called the Niched Pareto
Genetic Algorithm (NPGA), and used domination tournaments for reproduction

selection, equivalence class sharing for mamtaining the necessary population

diversity along the efficient set, and a distinct generational algorithm similar in
its basic form to the tga. The NPGA was specifically a proof-of-concept of the
capability of genetic algorithms to optimize multicriteria problems. The NPGA
was not rigorously tested, and it was analyzed for its on-line performance only.
The MCGA of this thesis uses the same framework as the NPGA. It differs
only in some of the method parameters available and in its orientation toward

fault tolerant system design.

Reproduction

In the analyses of this thesis, reproduction occurs in one of two ways,
depending on whether single or multicriteria optimization is performed. The
single criterion methodology was described in Section 3.5 and uses selection
and fitness testing. These steps determine which individuals of the population
are reproduced based on factors equivalent with the environment, mating
preferences, and individual strengths. The multicriteria manner of
reproduction incorporates tournament selection, which allows for direct
competition among members of the population without the need of a separate

fitness scaling of string worth.
In tournament selection, members of the population directly compete to

determine who will survive and reproduce. In any competitive event, the
possibility always exists of a tie. This possibility is handled by applying

equivalence class sharing.

118

11.3.1 Tournament Selection

A competitive tournament is created from a representative sample of
the entire population to reduce the unnecessary computational burden of using

the entire population each time a parent is to be chosen. In this
implementation, the set of attributes (criteria, phenotypes) for the tournament
set is used to create a partial order of member domination [10]. The following
paragraphs describe the tournament selection procedure. The process is
shown as the "attribute tournament arena" box of Figure 11-5.

Competitors

First, two unique (not clones) candidates for reproduction are selected
from the population at random. Next, a set of representative individuals is also
selected from the population at random. Reproduction selection is based on the
relative domination of the candidate strings to the representative set.

Tournament set size (t^,,,,)

The size of the representative set significantly impacts the method. If
the set is too small, t^ is not representative, and a realistic domination rank
of the candidates cannot be determined. On the other hand, making the set too

large wastes valuable computational effort.
Just as the ga operates to continually improve the average fitness of

the population, the MCGA operates to continually move the population
towards a representation of the actual efficient set (E). Consequently, the
value of tdom also affects the pressure the method puts on the movement
toward E and impacts the tradeoffbetween efficiency and exploration. A
smaller t^ means that the candidates will be more likely to show a falsely
high dominance, which will reproduce less dominant members at a higher
rate—emphasizing exploration over efficiency.

Horn and Nafpliotis conclude the following order of magnitude guidelines
for setting tdom for on-line performance:
• tdom ~ 1% of population size (P), too many dominated solutions

• tdom ~ 10% °f P» tight and complete distributions formed
• tdom » 20% of P, premature convergence occurs to small sections of E

119

Definition of a Tie

Once the proper tdom is established, the dominance based selection can

also occur in one of two ways to affect efficiency and resolution. First, if
dominance is determined when one candidate completely dominates the
tournament set, as suggested by [10], the tournament is very selective since

both candidates will not be completely dominant in most cases, leading to
many ties that have to be decided by sharing—emphasizing spacing and

resolution over efficiency of movement toward E. Secondly, dominance can be
denned as the candidate that dominates the greatest number (or fraction) of

the tournament set. In this manner sharing is only required when both
candidates dominate the same fraction—emphasizing efficiency over

resolution because fewer ties will be declared and less sharing has to be

performed.
The tournament could also choose the candidates from the

representative set itself, by either of the two methods above. Nevertheless,
the implementation here is easier to analyze and should have comparable

performance characteristics.

11.3.2 Equivalence Class Sharing

Equivalence class sharing is derived from normal fitness sharing, as it is
applied in a single criterion instance where multiple optima of interest exist.

There the goal is to distribute the ga population among the optima of the
search space, with each optimum receiving a fraction of the population
proportional to its relative fitness [10]. Normal sharing causes parental
selection to pass over members with niche counts greater than their allowable
proportion to encourage reproduction in areas with less population coverage.
Niche counts (mj) estimate the crowding in relative regions of the objective
space. Their values are calculated for individual members of the population:

mi = fsh[d((a,b)] (8)
j=i

where d(a,b) is the distance between members a and b and Sh(d) is the sharing

function. The triangular sharing function is used typically, where Sh(d) = 1-
d/ashare for d < oBhare and Sh(d) = 0 for d > oshare. Here, a8hare is the niche radius,

120

fixed as some minimum desired separation between population members.
An equilibrium should develop when normal sharing is used such that

the shared fitness of all niches is equal:

—a- = — V a,b members' niches
m

(9)
mfc

When this equality occurs, every optima has an "effective fitness" F/m equal to

every other minima of the search space.
In the multicriteria context, however, fitness does not apply. Rather, we

are interested in the resolution of E. We would like to emphasize reproduction
in sparsely covered areas while ignoring areas more densely resolved. By
applying sharing as a tie-breaking measure, we assume that the candidates
have equivalent domination characteristics, or that they are in the equivalent
"class" of solutions as Figure 11-3 shows:

Niche Regions

Ji
A candidate members
X representative set members

Equivalence Class Region

Figure 11-3: Equivalence class sharing

In this multicriteria context where we wish to minimize both criteria,
both candidates of the figure dominate the entire representative set. When
both candidates dominate the same fraction of the representative set, both lie
in the same class of solutions, shown in the figure as the dashed region. To
break the tie, equivalence class sharing is used to promote growth in sparsely
covered regions of the efficient set. In Figure 11-3, the candidate in the upper
left would be chosen as a parent because it has a niche count of zero, which is

less than the other's niche count of three.
Equivalence class sharing is performed in the attribute space

(attributes are the problem criteria) instead of the genotypic (parameter)

121

space because the genotype of any problem formulation is very generic in
nature and cannot be depended on to provide the distributed representation of

the efficient set^-which is in the attribute space not the genotypic space.

Criteria Scaling

Multicriteria optimization is performed when attribute scales are non-
commensurate (i.e. different units). If some form of scaling of the attributes is
not done, the non-commensurate nature of the criteria have a devastating
effect on the distribution of individuals in sharing. Sharing in two dimensions,

for instance, between a criterion with a range of 10,000 units(a) and one with a

range of 1 unit(b) would only spread the population along units(a)!
To avoid unintentional biasing of competing criteria, the attributes are

scaled to have non-dimensional units in the range 0 to 1, corresponding to the

minimums and maximums of the present population.

Niche size (aBhare)

The size of the niche regions (circles in Figure 11-3) significantly affect
sharing [10]. The MCGA attempts to develop a population evenly distributed
along the entire efficient set (E). In other words, it seeks to create a discrete
representation of the possibly continuous "curve" of non-dominated solutions.
Consequently, the appropriate niche size can be thought of as the total "area"

of the efficient set divided by the population size (P):

«W^E^/P (10)

The term "area" is used because E is an 1-1 dimensional surface in an
objective space of dimension 1, where 1 is the number of criteria. Equation (10)

can be approximated by:

Earea is never known exactly, and rarely even known generally. The
bounds on the dimensions of E are known, however, as long as we know the
bounds on the individual criteria (Jt). By knowing the best (J4 optimal) and
worst (Jk corresponding to Jj optimal) on each criterion axis, the minirrmm area

122

of the efficient set is the hyperplane passing through the extremes. In two

dimensions, for example:

Min(Earea)=^jr-jr^f+lj^-J: worst
2 (12)

Note that [J^***, J2
WOTBt] forms a single point in the objective space. The

upper bound on the area must be reached asymptotically:

MaxfE^) < IJS-*-jri+IJ?"*-JJ worst (13)

This is an asymptotic bound because the definition of an efficient set

requires that the surface be monotonic (i.e. all first-order partial derivatives

have the same sign throughout).
Scaling the attributes from 0 to 1 gives an upper bound of 2/P and a

lower bound of V(2)/P for the sharing radius (cy8hare).

Niche shape

The shape of the niche is affected by the degree of the Holder metric (p):

d(a,b) =
l

XlJf-j? b|P (14)

where d(a,b) is the distance between strings a and b in an 1 criteria objective

space.
Figure 11-4 shows the shape of the niche as the degree of p varies.

r *\

K)

P<1 p = l p = 2 p>2

Figure 11-4: Two dimensional Holder metric niche shapes

The limit of the metric at p -» infinity is the absolute value of the largest

component of the sum above. In Figure 11-4 this would be a square niche.

123

With Holder metrics of degree p < 2, niches along diagonal lines are more
densely packed than niches along individual criterion axes. Using this type of
niche should provide a higher distribution of individual members along parts of
E with the smallest criteria tradeoffs. These regions are notable because they
signify the least tradeoff between criteria. In problems where most of the set

is composed of trading a lot of one attribute for a slight gain in another, a

"knee" (a sharp turn of E) may result which has an approximate one-to-one

tradeoff. Niches with p < 2 should place more individuals at "knees" to better

explore them [10].
The full MCGA reproduction cycle, as applied in this thesis, is shown in

Figure 11-5.

124

random
selection

f random _
[selection j~

►0
candidates

Phase 1: Selection of two candidates to compete for parenthood

Phase 2: Parent chosen as winnerof domination and diversity competitive tournament

Phase 3: Repeat phases 1 and 2 to select the second parent

crossover

<

mutation

mutation

Phase 4: Operators applied to create two new individuals

Figure 11-5: Multicriteria genetic algorithm reproduction cycle

Figure 11-5 shows the full MCGA cycle as it produces two children.
Phase 2 marks the method's departure from its single criterion cousins and
contains the elements of interest for the MCGA parameter analyses of this

thesis.

125

126

12.0 MCGA Performance Parameters

The implementation of the MCGA, as with any optimization tool,
requires the determination of optimal configuration settings necessary for
optimal method performance. As has been stated throughout this thesis, we
wish to perform optimization using tools with a great deal of robustness across
fault tolerant system design problems (see Section 3.1 for a definition of
robustness). In order to create a robust multicriteria genetic algorithm
method, we must first become familiar with the potential configurations that

affect MCGA performance.

12.1 Clones

Creating the initial population by random parameter generation injects

maximum diversity into the population, allowing the ga to use implicit
parallelism to investigate many portions of the design space simultaneously.
The robustness of the ga depends heavily on the ability of the reproduction,
crossover, and mutation operators to balance diversity (exploration) and
efficacy (efficiency). Clones, defined as duplicate strings within a present
population, reduce the ga's ability to do both in multicriteria optimization.

In single criterion ga optimization, the ga creates a single solution. Since
only one solution is desired, the existence of clones in the population may affect
the manner in which the solution is attained, but may affect the quality of the

solution attained only marginally. Chapter 17 discusses the pros and cons of
ehminating clones from single criterion ssga optimization.

127

In multicriteria optimization, on the other hand, the ga creates a
population of points as the problem solution. Assuming a fixed population size,

the existence of clones reduces the ga's exploration of the design space by
limiting diversity and reduces efficiency by hindering the available resolution

point of the efficient set. With a population size fixed to X members, for
instance, an MCGA that prevents cloning can theoretically create an X point
resolution of the problem's efficient set, while the same MCGA without clone
prevention would be bounded to X minus the current number of clones in the
population. The number of clones that appear in MCGA operation is explored
in Chapter 14, but foresight of their potential ill effects enhances the analysis

and development of the MCGA for fault tolerant system design.

Three cases are examined to see the effects of cloning on MCGA

performance:

Allow cloning

This control case makes no provisions for the existence of clones in the
population. They are not treated any differently than other population

members and are allowed to remain and reproduce.

Clone removal

The strictest means of dealing with clones is to remove them directly as

they are produced by crossover or mutation. This requires checking new
members against the entire population as they are created. To implement this
case, the two children produced by a reproduction cycle are checked, if either is

a clone, both are removed, and the reproduction cycle is repeated until two
unique members are created. This case ensures maximum diversity in the
population at the expense of many string comparisons and reproduction cycles.

Clone penalization

The final case of dealing with clones identifies them at each reproduction
cycle by checking new members against the entire population and allows them
to be placed in the population. As always, the reproduction cycle selects

strings randomly and removes those with low "value" to make room for new
strings. Clones are "penalized" because they are removed from the population

128

if they are selected for "value" testing and they never reproduce because they
are prohibited from being selected as parental candidates. Clone penalization

reduces the heavy computational cost of repeating the reproduction cycle for
each clone created, but the existence of some clones in the population may
affect the efficient set resolution.

12.2 Population Variability

As stated earlier, the goal of the MCGA is to generate a high resolution
representation (e) of the design problem's efficient set (E). Since the decision
maker (DM) often chooses the route of multicriteria optimization in the first
place due to lack of knowledge about tradeoffs between problem criteria, the
DM and analyst usually do not know a priori if the proper resolution is 100

points or 10,000 points.
This uncertainty about resolution hinders DM confidence in the

constraint and weighting methods. The DM would often prefer the problem
resolution produced by generating techniques to provide a good sense of the
potential tradeoffs necessary at different parts of the efficient set. Figure 12-1
illustrates an efficient set for a two dimensional discrete parameter problem
where generating techniques that divide the efficient set resolution a priori may

mislead the DM.

Jx Jl

000%,

(a) actual 10 point efficient set (b) constraint method representation of
same efficient set (10 point resolution)

Figure 12-1: Example efficient set resolution limitations

A generating method capable of adapting to each problem's unique
efficient set would show the concentration of efficient solutions that the
constraint method misses in Figure 12-1. Flexibility to adapt e to the actual

129

resolution as it evolves has great advantages. The constraint method in Figure
12-1 is instructed to produce 10 points in the solution, the uneven distribution
in the actual efficient set caused 4 cycles of the constraint method to generate

duplicate solutions. Though this example is contrived to illustrate a point, it
shows how inflexibility in resolution leads to significant waste of computational

effort.
The MCGA has been developed to incorporate the possibility of adaptive

population dynamics to encourage flexibility in its efficient set resolution.
Three cases are examined: fixed population size and two types of variable
population size. These cases are covered later, after the process for adding and

removing (killing) members of the population is explained.

Adding members

Every reproduction cycle of the MCGA produces two children. The
number of members added to the population in each cycle is therefore always

two.

Sailing members

The process of identifying members of the population that should be
deleted each reproduction cycle depends on the cloning parameter in use and
the configuration of the tournament (t^J set. If clone penalization is used,

clones identified during the creation of the t^ set are marked for removal and
are not included in the tournament set. Clone elimination never allows clones
in the population, so no clones would be identified at this point. Additional
members to be killed are chosen by identifying strings of the t^ set that are
completely dominated by candidate members. This comparison occurs during
the tournament arena phase of reproduction (see Figure 11-5). A single
tournament set is used to determine the dominance for two parents in a
reproduction cycle. Since each parent is chosen as the winner of the
tournament between two candidates, each tdom member has four opportunities

to be declared a dominated member and marked for removal.
Now that we understand how strings are added and removed from the

population, we can explore when these processes are invoked. The actual
change in the population size (P) during each reproduction cycle depends on the

130

number of strings marked for adding and deleting and the P dynamics option
chosen, as described in the following paragraphs.

12.2.1 Fixed population size

This is the control case. It requires a single, fixed population size. The
appropriate P must not only consider the diversity and computational
guidelines that the single criterion ga deals with (see Chapter 8), but must also

consider the anticipated or desired e. Fixing P requires that exactly two
members be killed each cycle by clone and/or dominance checking. If less than
two are marked, members must be selected at random from the population or
the new members cannot be used. Random selection of killable members is
used in this thesis, but neither option is clearly superior since random selection
entails the loss of potentially valuable genetic information, while not using the
new strings keeps the population from evolving.

12.2.2 Variable population size (±2)

This case allows the MCGA population size to vary from +2 to -2 of its
present size at each reproduction cycle. It intends to take advantage of
evolutionary pressure to dictate the population size—and the efficient set

resolution as a consequence.
The amount of increase is determined as follows:

AP = a-b
where a = added members = 2 (1)

b = lesser of 4 and killable members

If no members are marked for removal, P rises by two, while if four or
more members are marked, the population size decreases by two. The
limitations on AP limit the collapse rate of the population to reduce the

tendency to eliminate beneficial diversity from the population.

12.2.3 Variable population size (+2/-Pdom)

This final case allows more drastic fluctuations of the population size by
increasing the maximum population collapse rate to Pdom members, where Pdom

is the domination tournament fraction (tdom) multiplied by the full population

131

size (P) (see Section 11.3.1). The Pdom bound on population size decreases
allows a higher P collapse rate if the method desires one, while still limiting the
loss of diversity during any one reproduction cycle. The P6om value is chosen to
represent a known fraction of the overall population size significantly larger
than the limitation of-2 of the (±2) case above.

No matter which case of variable population size is used, though, other
operations of the MCGA are affected. The size of the niche radius aBhare, defined

in Section 11.3.2, and the domination tournament set td<m (Section 11.3.1)
depend on P. Whether aBhare and/or t^ are kept fixed or varied with P may

affect MCGA performance. These quantities are allowed to vary with the P in
this thesis. This decision assumes that the population size dominates MCGA
performance, and that the size of 1^ and a8hare should be appropriately

correlated. We have not, however, tested this assumption and recommend its

verification in future research.

12.3 Definition of a Tie

Though dominance is easily seen as an excellent means of pursuing E,
the definition of dominance can significantly affect the manner in which the
algorithm proceeds. As such, MCGA parental string selection is examined
using two ways of declaring a domination tie between candidates. (1) If
dominance means a candidate dominates the entire tournament set, as
suggested by [10], the tournament is very selective since candidates will not be
completely dominant in most cases, leading to many ties that have to be
decided by equivalence class sharing. Sharing must also be done in this case if
both candidates dominate the entire tdom set. This option emphasizes
resolution of the efficient set over efficiency of moving toward E. (2)
Dominance can also be defined as the candidate that dominates the greatest

fraction of the tournament set. In this manner sharing is only required when
both candidates dominate the same number of tournament members—

emphasizing efficiency over resolution.
To summarize, the definition of a tie is made in two different manners

that require sharing to resolve:
1) one (only) candidate does not dominate entire tdom set
2) both candidates dominate same fraction of the tdom set

132

12.4 Tournament Size

The size of the domination tournament set (t^J is approached in this

thesis as a fraction of the full population. Reference [10] found tdom of about
10% of P to be generally adequate for on-line performance (see Section 11.3.1).
The impact of this parameter is not investigated by this research. All
subsequent MCGA analysis for this thesis uses a tdom of 0.20, or 20 percent of

the full population size.

12.5 Niches

The appropriate size and shape of equivalence class sharing niches is
not investigated by this thesis. The size of a niche (ashare) is described in

Section 11.3.2. This thesis uses

_ 1
^share Q

2 + V2' (2)

which is the value half-way between the upper and lower bounds on the
parameter. The shape of the niche depends on the degree p of the Holder
Metric used and is also described in Section 11.3.2. This thesis uses p = 1 to
place the greatest emphasis on equal tradeoffs between criteria. Also, p = 1
allows the metric to be calculated by a simple sum of absolute values instead

of powers and roots, which keeps the computational effort low.

133

12.6 Summary of Options

Table 12-1 summarizes the various MCGA implementation parameters

of interest in this thesis, and the different aspects of performance they

influence.

name definition values or options influence

cloning duplicate strings allow cloning reduces efficiency
and exploration

clone removal high computational

effort required

clone penalization some clones remain
in population

P
dynamics

variable
population size

fixed P inflexible efficient set
resolution

variable P (±2) gentle variability

variable P (+2/-P,„J strong variability

ties definition of a tie one candidate does
not dominate entire

emphasizes
diversity

both dominate same
fraction of t,_

emphasizes
domination

t«Jo«i fraction of P for
tournament set

0.2
[not examined]

determines
domination pressure

sharing
niches

sharing radius

'°share-'»

niche shape (p)

_ 1
*^ share Q

P=
[not exa

'2 + S~
P

1
mined]

medium sized niches
that emphasize
small criteria

tradeoffs

Table 12-1: MCGA implementation parameters

The effect these parameters will have on MCGA performance is

examined in the following sections.

134

13.0 MCGA Performance Criteria

Judging multicriteria method performance is a great deal more difficult
than similar efforts with single criterion optimization methods. Objective
measures of performance are not clearly denned in any of the references cited
on multicriteria optimization [2] [4] [10]. However, the need for concrete
measures for determining improved performance when comparing MCGA
implementation parameters and for making comparisons to other generating
techniques has led to the choice of a number of performance measures. The
first four represent concrete measures of multicriteria method quality. The
remaining two differentiate performance variations of different MCGA
configurations, though they are not be deemed crucial indicators of
performance in actual fault tolerant system design optimization.

13.1 Efficient points

The goal of a generating method is to produce an accurate
representation of the problem's efficient set (E). The resolution of the
representation (e) must be sufficiently fine to provide the DM with an adequate
understanding of the tradeoffs between criteria. As such, the number of
efficient points in a method's solution is an upper bound on the number of
quality points that the method can have in its solution. If a method produces
points that are dominated by members of its own e, they are by definition
excluded from inclusion in the problem's E.

This performance measure is simply the number of points in the

method's final solution that are efficient with respect to the remainder of the

135

solution. Unfortunately, the actual number of points in and the location of E in
each of our discrete fault tolerant system design test problems are unknown.
As such, the number of efficient points in any method's solution can only
provide a relative comparison measure of performance. In addition, the fact
that E is unknown prevents us from making any definitive statements about

the position quality of a method's efficient set (e).

13.2 Efficient set spacing

This measure refers to the variance of the range (distance) of each

member of the current e to its closest neighbor (also of e). It is measured in the

criteria (phenotypic) space by a p = 1 degree Holder metric (see Figure 11-4) to

correspond with the niche measurements. Note that only those strings that lie
in the current population's representation of the efficient set (e) are included in

this measure.
A generating method that minimizes this quantity has good efficiency in

finding E. The formula of this measure is given in equation (1).

1 e - 2

fB^^2 = eZlg(d-d0 (1)

where dt = min{|J* - J|| + \J\ - J£|}

A value of zero for this metric would mean that all members of e are

equally spaced from one another.

13.3 Seven point distance measure

The MCGA's ability to completely resolve E can be quite accurately
seen by how close it comes to the individual criteria optima and other known
(predetermined) points of E if prior knowledge of the efficient set is available.
Since E is not known for any of the test problem, seven points of comparison
are generated for each problem to create a measure of the algorithm's efficacy.
The individual criterion optima, which bound the efficient set of the two criteria
problem, were found by optimizing each criterion separately without regard for
the other. With the resulting two points at hand, the seven comparison points
are denned on a J^ as the origin [0,0], the maximum (within the range of E)

136

of each criterion [0, J2
worst] and [J1

woret, 0], and two points on each axis between
the origin and the maximum value. These points are shown in Figure 13-1.

J>

Figure 13-1: Seven point distance measure of population accuracy

The full distance measure is created by averaging the Euclidean
distances from each of the seven axis points to the member of the current
MCGA population that is closest to each point. Therefore, seven members of
the population are used each time the distance measure is created. This figure
of merit is an accurate means of comparing the relative dominance of different
populations to one another on a particular problem. The population with the
smallest distance measure value for a given problem will be the one that most

closely approaches E.

13.4 Cost Function Evaluations

As with single criterion optimization, the DM is limited by time and
computing constraints. Therefore, optimal performance of the MCGA must
account for the number of cost function evaluations (cfe) required. The
number must be competitive with other multicriteria methods for the MCGA
to be worth using. Since a means of gauging convergence to the efficient set is
not presently available for any method, the solution quality (number of
efficient points, distance measure, spacing) as a function of computational
effort will be the main comparison measure of the multicriteria analyses in

Chapters 14 and 15.

137

13.5 Additional Criteria

13.5.1 Proportion of Clones

The proportion of clones in the population is a parameter (genotypic)
quantity we wish to minimize, though it is not necessarily a hindrance to the

MCGA's ability to create high quality solutions. A value of zero for this
measure indicates that no member of the population is a clone of any other
member of the current population. Intuitively clones are a hindrance to both

efficiency and exploration and should be eliminated, but performing the

operations necessary to keep clones from forming may be unnecessarily
prohibitive. A configuration with good efficiency, good exploration, and a low
fraction of clones is preferable if we do not have to perform excessive
operations against the clones that form in the reproduction cycle.

13.5.2 Total clones identified

Depending on how the MCGA deals with clones in the population, a great
deal of additional computational effort may be required to keep the desired
optimization performance. When comparing different configurations of the
MCGA, those that identify the greatest number of duplicate strings in the
course of their runs are likely placing the highest amount of effort into the

reproductive process.

138

14.0 MCGA Performance Analysis

The MCGA is an unproved capability at the time of this writing. The
ability of the ga in general to perform multicriteria optimization has only had
limited analysis. Unlike the single criterion application of the ga, where the
basic framework and performance of the ga has been worked out and debated
for several years, multicriteria ga implementations are still in their infancy.
Therefore, this thesis not only investigates whether ga's can do multicriteria
optimization of fault tolerant system design better than other methods, it also
investigates the basic viability of ga's in multicriteria optimization.

The majority of the multicriteria analyses shown are performed in two
dimensions. The reader must note that unlike comparative methods that
suffer dimensionality difficulties, the MCGA suffers no (theoretical)
implementation hindrances—the choice of two dimensional analysis is made
solely for method comparison and visualization purposes.

The two criteria of interest are the unavailability (i.e. 1.0 - reliability)
and the system purchase cost (in dollars). The unavailability is treated as a
logarithmic quantity to accentuate the differences at the better (smaller value)
edge of performance. The purchase cost, on the other hand, is simply treated
as a linear quantity to be minimized.

The proper configuration of the MCGA for effective multicriteria
optimization is still very much uncertain. Therefore, the first priority of this
thesis is to prove that using a ga with domination as the string selection
criterion can actually perform multicriteria optimization. On those lines,
Figure 14-1 shows an MCGA attempt to create an efficient set representation

139

of the TISS problem. The configuration for this problem includes a t^ of 0.2,
variable P by (±2) bounds per reproduction cycle, and clone penalization. The

MCGA is given an initial P of 1,000, shown in the two dimensional plot of Figure

14-1 by the V symbols. After 10,000 cost function evaluations, the

population has 349 members and is shown as V.
This type of plot is used throughout the rest of this analysis. Note that

both axes are normalized from 0 to 100+. The normalization values are
obtained by optimizing each criterion separately using the steady-state genetic
algorithm (ssga). The assumed minimum purchase cost is represented as 0;
where unavailability is assigned a value of 100 (i.e. the J^ point of [100,0]).

The same scaling is used for the other axis based on the minimum of
unavailability. Criteria values greater than 100 can occur in dominated
solutions of the design space, as seen on the unavailability axis of Figure 14-1.

The vertical axis is a normalization of the log of the unavailability values.

+ initial - P = 1000
100-

o final - P = 350

'3

75-

50-
+ *■ +

o V
o

£$.++ +

+

25- 1$> + +

«5>o o

I i

() 2 5 50 75 100

purch ase cos t(S)

Figure 14-1: Sample MCGA optimization of TISS problem

Obviously, the MCGA in this example at least, moves the population

towards the efficient set (E) of the problem and improves the quality of its
solutions over time. The initial population, though randomly generated to cover
a wide area of the parameter space, does not have any points in the vicinity of
the final e. The MCGA makes a vast improvement over the 1,000 point Monte

Carlo attempt (i.e. the initial population creation). The final population
appears to have a good spread of members across its whole representation,

140

but there are no values near the minimum of unavailability, and the purchase
cost minimum found by the single criterion ssga is not attained. Note that E is
unknown and Figure 14-1 is just one possible representation.

Now we must analyze the influence MCGA parameters have on
performance and how those parameters can be best set for effective fault
tolerant system design. Once that is accomplished, the MCGA can be
compared to the constraint method to determine its viability as a competitive

multicriteria optimization tool.

14.1 Effect of Clones

The first configuration question to be addressed is the impact of clones
on MCGA performance. Implementations of the MCGA on the TRIPLEX and
TISS problems is analyzed.

Cloning analysis (Triplex)

The MCGA is run on the TRIPLEX problem for the three clone handling
options of allowing clones, clone replacement, and clone penalization. The
control configuration for this analysis includes a fixed P of 200 members, tdom of
0.2, and declaring candidate domination ties when only one does not dominate
the entire t^ set. Each option is run for 50,000 cfe with 20 different starting
points (random number generator seeds).

Some of the effects of each clone option can be seen in Figure 14-2. It
shows the fraction of the current MCGA population that is a duplication of
other members. Allowing clones to occur in the population has a dramatic
effect on the effective proportion of MCGA population. In Figure 14-2, for
instance, allowing clones in the population causes upwards of 80% clones to
occur. The dramatic rise in the clones occurs in the first 2,000 cfe, but is not
captured by the scale of Figure 14-2 (Figure 14-7 illustrates the clone fraction
behavior of the early stages of a run). A P with a percentage of clones this high
has to be approximately four times larger than a P containing no clones to get
the same potential e. Clone removal and clone penalization both keep the
proportion of clones small: clone removal at 0% and clone penalization never

exceeds 5%.

141

I 0.75 ■
cd

a
g

0.5-

* 0.25 -
0)
is o

clones allowed

clone removal •——••-

clone penalization --—©--

10000 20000 30000 40000 50000

cost function evaluations

Figure 14-2: Clones in population for 3 done options on TRIPLEX problem

Now that a definite impact of changing the clone option has been

identified, two issues remain. The first is the amount of computational effort

expended for clone identification and marking, while the second, and more
important, is the performance impact each clone option has. Figure 14-3
illustrates the first issue by showing the number of clones marked by each

option over the MCGA run.
200000■

clones allowed

'S
«a

g o

150000-

100000-

50000 -
s

clone removal

clone penalization

0 10000 20000 30000 40000 50000

cost function evaluations

Figure 14-3: Clones identified in TRIPLEX problem for 3 clone options

The "clones allowed" option does not check for clones and obviously
shows zero effort required for dealing with clones. The "clone penalization"
option shows that approximately 40,000 clones are identified and penalized

over the course of the 50,000 cfe TRIPLEX run. As was shown in Figure 14-2,

142

though, strict penalization keeps the number of clones in the population small.
The greatest amount of computational effort comes from the "clone removal"
option. If 190,000 clones are detected over the course of the TRIPLEX runs,
190,000 extra MCGA reproduction cycles are performed to replace those
clones. Though the additional reproduction cycles do not include cost function
evaluations, which are the greatest item of time for the method, the high
numbers of extra cycles add enough effort to make this option viable only if it
exhibits significantly better performance than clone penalization.

The last issue, and most critical, is performance. Figure 14-4 shows the
number of points that are efficient to the rest of the population. Note that the

quality of the efficient points is not shown by this figure—solution quality is

addressed in Figure 14-6.
21-

o

A 18-

8"
p.

.a
S3
.5 a
1 u

15.

12-

9-

g! 6 -

•I
g

***g£*«'*«4«tt$g£*<*Ffe»

clones allowed D——■

clone removal ——•

clone penalization O

 1 1—
10000 20000 30000 40000 50000

cost function evaluations

Figure 14-4: Efficient point analysis for cloning on TRIPLEX problem

As could be expected from Figure 14-2, allowing clones significantly

reduces the effective P and keeps the number of efficient points in the
population much lower than the other options. Clone removal and clone
penalization exhibit very similar efficient set sizes throughout the 50,000 cfe
attempt on the TRIPLEX problem. Both options suggest that this simple two
criteria design problem has an E containing approximately 20 points.

Another measure of performance is how evenly spread e becomes. The
variance of the range of each member of e to the closest member of e is shown

in Figure 14-5.
This figure shows that allowing clones creates a very poorly spread

efficient set representation. This effect is obviously caused by the low efficient

143

set size seen in Figure 14-4. The other two options appear to have equally well

spaced e. This figure shows that the solution points created by each method
are spread across an efficient front and not clustered in particular areas.

0.12

0.08- i
i *-•
Cfl
O
OS

"3
o a 0.04-
o
60

I
S3

clones allowed

clone removal

clone penalization

10000 20000 30000 40000 50000

cost function evaluations

Figure 14-5: Efficient set range variance for cloning on TRIPLEX problem

The final performance measure is the distance from seven points on the
criteria axes (see Figure 13-1) to the closest members of the population and is

shown in Figure 14-6.

•A
a
s

.a
•o

.S
a
P.
is
V

0.23

0.22-

clones allowed

clone removal

clone penalization

T 1 1 r
0 10000 20000 30000 40000 50000

cost function evaluations

Figure 14-6: Distance measure analysis for cloning on TRIPLEX problem

Because E for this problem is unknown, the only the relative distances

shown are significant. The scale of Figure 14-6 has what appears to be a
narrow range of normalized average distances between 0.19 and 0.23.
Absolute determination notwithstanding, however, the clone removal and clone

144

penalization options again exhibit similar performance that is superior to that

of allowing clones.
The performance of clone removal and clone penalization matches very

closely in all of the performance plots for the TRIPLEX problem, but the
additional computational effort required by clone removal places it at a

disadvantage.

Cloning analysis (TISS)

A single set of data from one, very simple fault tolerant system design
problem is not necessarily generalizable. As such, the results of the same
clone handling options are now shown for the TISS problem before any
conclusions are drawn. The control configuration for the TISS analysis
includes a fixed P of 600 members, t^ of 0.2, and declaring candidate
domination ties when only one does not dominate the entire tdom set. Each
option is run for 20,000 cfe with 20 different random number generator seeds.

Some of the effects of each clone option can be seen in Figure 14-7 and

Figure 14-8. They show the fraction of the current MCGA population that is a
duplication of other members and the total number of clones detected.

0.8-

a o
■a a

!

g

e o

0.6-

0.4-

0.2-

clone penalization

5000 10000 15000 20000

cost function evaluations

Figure 14-7: Clones in population for 3 clone options on TISS problem

This figure shows that allowing clones to appear unimpeded significantly

affects the effective population size.

145

1

t3

s
o

3 o

15000■

10000 -

5000-

clones allowed

clone removal
/

clone penalization ----©---- /

0 5000 10000 15000 20000

cost function evaluations

Figure 14-8: Clones identified in TISS problem for 3 clone options

The additional problem complexity in the TISS problem over the
TRIPLEX problem is seen by the far fewer clones detected in Figure 14-8 as
compared to the high numbers shown in Figure 14-3. As is evident for the
previous example, Figure 14-8 also shows that removing clones from the
population as they occur forces a significant number of additional reproduction
cycles to be performed even though it does not keep the number of clones in the
population much lower than clone penalization.

The effects of the three clone handling options on the TISS problem are

shown in the following three performance plots.
50- c o

■s
m
"5

clones allowed

clone removal

clone penalization

5000 10000 15000

cost function evaluations

20000

Figure 14-9: Efficient point comparison of cloning on TISS problem

146

Figure 14-9 shows that allowing clones to crowd out unique members of
the population reduces the number points in e. The other two options improve
the number of efficient points, with clone penalization having a smaller e for a
given number of cfe, but not significantly so.

0.14-

o

1
6
W
U

J2
U
Q
a
DO

>

0.12

0.1

0.08

0.06 H

0.04

0.02

0

clones allowed D

clone removal •*

clone penalization ----©-*-!

5000 10000 15000 20000

cost function evaluations

Figure 14-10: Efficient set range variance of cloning on TISS problem

Figure 14-10 shows that the spacing of e for clone removal and clone
penalization becomes better with time, while allowing clones exhibits poor
performance after about 7,500 cfe.

The final performance measure comparison necessary to determine the
appropriate clone option is the distance measure for the TISS problem.

.a
•o

-S
o
p.
a u
5

1-
^ clones allowed

\ clone removal 0.8-

\ clone penalization o—
0.6-

0.4-

no.
1 i 1 1

5000 10000 15000

cost function evaluations

20000

Figure 14-11: Distance measure analysis of cloning on TISS problem

147

Figure 14-11 shows an interesting, and somewhat unexpected result.

Though it has displayed significantly worse performance to this point of the

analysis, "allowing clones" on the TISS problem shows the same general

characteristics with respect to its ability to represent key portions of the

efficient set. Though the others eventually show better distance measures at
the end of the run, the difference is not apparent until 10,000 cfe have been

performed.
The scaling of Figure 14-11 is somewhat misleading because of the poor

performance all options have with their initial populations. The difference
between the options is more significant on the TISS problem than the figure
would indicate. Figure 14-12 shows the distance measure again using a
condensed scaling to accentuate the differences between the options during the

end of the runs.
0.27.

I

.5

§
5

0.25-

0.23-

0.21

clones allowed*Of\

clone removal

clone penalization

**&*-,
W

T T T
5000 10000 15000

cost function evaluations

20000

Figure 14-12: Distance measure for cloning on TISS problem (end of run)

The differences between options in Figure 14-12 indicate that even
though Figure 14-11 shows the same general behavior for all three options, the
differences between them at the end of the run are significant. Again, as
stated earlier, the distance measure only shows relative performance, but
again the "allowing clones" option is outperformed by the others. In conclusion,
therefore, the poor overall performance of the "allowing clones" option in both

the TRIPLEX and TISS problems argues against its use.
As in the TRIPLEX analysis, the solution quality does not appear to be

significantly different between the "clone removal" and "clone penalization"

options. Allowing identified clones to remain in the population but prevented

148

from mating and encouraged to be replaced by new members appears to have
the same performance effect as removing clones outright. The difference
between the two approaches comes in the amount of computational effort

required to achieve their relative goals. Clone removal requires four times as

many reproduction cycles in both the TRIPLEX and TISS problems as clone
penalization. As such, clone penalization is used in the control configuration for
the remainder of the MCGA analyses of this thesis.

14.2 Population Variability

As discussed in Section 12.2, multicriteria optimization is often
performed in a fault tolerant system design due to the uncertainties the DM
has about the relationships between criteria. As such, the proper resolution of
a particular E is not known prior to optimization, forcing the DM or analyst to
make arbitrary assumptions about the problem when resolution is an input to
the algorithm, such as it is in both the constraint and weighting methods. The
MCGA retains considerable latitude in its resolution of the efficient set. For
instance, a P of 100 members can create 5 point or 100 point e if a particular

problem warrants one or the other.
This section of the MCGA analysis, however, takes the efficient set

resolution (e) one step further by allowing the MCGA to vary its population
size based on preset conditions detailed in Section 12.2 to determine if the
MCGA can optimize its resolution on each problem it encounters.

Three population variability options are analyzed using the TRIPLEX
and TISS problems. Both problems are optimized on unavailability
Qogarithmically scaled) and purchase cost. The MCGA's performance on the
TRIPLEX problem is analyzed first, foDowed by the TISS problem, and the
applicability of population variability is discussed at the end of this section.

P variability analysis (Triplex)

The MCGA is run on the TRIPLEX problem for the three population
variability options of fixed population size (P), variable P with (±2) bounds, and

variable P with (+2/-'P6o[^ bounds. The control configuration for this analysis
includes an initial P of 200 members, t^ of 0.2, declaring candidate domination
ties when only one does not dominate the entire tdom set, and clone penalization.

149

Each option is run for 50,000 cfe with 20 different random number generator

seeds.
Some of the effects of automatic population variability are visible in

Figure 14-13. It shows the current MCGA population size as a function of the

cost function evaluations performed in the run.
200 H P-O^KHKHHHHJ4MJ-U-ll4MJ-U-L^^

P fixed

P(±2)

c lou-, - -.« ■* P(+2/-Pdom)
_o
03

u

10000 20000 30000 40000 50000

cost function evaluations

Figure 14-13: Population size with P variability on TRIPLEX problem

This figure shows that allowing population size variability significantly
impacts the P retained by the MCGA. The two variable P option reduce their
population sizes significantly in the initial portion of the run—prior to the first

point shown in the figure at 2,000 cfe. In both cases, P reduces from the initial
200 members to about 160 members. In the next 5,000 cfe of the run, the
populations increase in size at similar rates. Following that short increase,
both variable populations decrease for the remainder of the run, ending with
120 to 125 members. Though both are similar, the C+^-P^J option maintains
a slightly lower P, which would be expected since it is allowed to drop members
faster than the (±2) option, but cannot add them any faster.

Figure 14-13 shows some general behavior of the variable population
sizes, but it says nothing about performance. The following figures show the
performance impact of the rising and dropping population size.

The behavior indicated in Figure 14-13 and Figure 14-14 appear to be

inversely related with respect to the two variable P options. The initial
decrease in the MCGA population size results in e being three members
smaller on average than for the fixed P option (Figure 14-13). Likewise, as the

150

runs progress and the population sizes decrease, the number of efficient
members increase to be comparable to the fixed P (Figure 14-14).

13
Q

3

a
.s

1 o
p.

I o
«a

o

I

22-

21-
V V \R* H -y

>
 -o

20-

19-
- Y I 1 1

P fixed

P(±2)

P(+2/-Pdom)

0 10000 20000 30000 40000 50000

cost function evaluations

Figure 14-14: Size of e with P variability on TRIPLEX problem

The fixed P option keeps an efficient set between 21 and 23 members
throughout, but the considerable fluctuations over 20 seeds, may indicate
some performance uncertainty in individual runs.

P fixed

I
u
us

73
Q
U
60

9 9 A n "
ja l\ ,o A ;\

■?V ' ' ; / if k$

\/ Vd uA^ 1(* V
T™ ? 1 1

0 007-

0.006 -

0.005 -

0.004 -

 o

P(±2)

P(+2/-Pdom)

0 10000 20000 30000 40000 50000

cost function evaluations

Figure 14-15: e range variance for P variability on TRIPLEX problem

Figure 14-15 shows that no significant impact can be detected on the
spacing of e when P variability is included. All three options are characterized
by wide fluctuations within a small variance range that is comparable to the

TRIPLEX variance values of Figure 14-5.

151

o
s
ä
8

.s a
s
5

0.22

0.21-

0.2-

0.19
0 10000 20000 30000 40000 50000

cost function evaluations

Figure 14-16: Distance measure of P variability on TRIPLEX problem

Figure 14-16 is the final MCGA performance figure for population
variability on the TRIPLEX problem. It shows the most significant differences

between the three options. The fixed population size of 200 members
maintains its distance measure below those of the variable P options
throughout the run. There appears to be no difference between the accuracy
(distance measure) performance of the two variable P options.

P variability analysis (TISS)

In order to draw broader conclusions on the relative performance of

population size variability in the MCGA, the same three P variability options
addressed for the TRIPLEX problem are again compared below for the TISS
problem. The control configuration for this analysis includes an initial P of 600
members, t^ of 0.2, declaring candidate domination ties when only one does
not dominated the entire t,^ set, and clone penalization. Each option is run for

10,000 cfe with 20 different random number generator seeds.
Figure 14-17 shows the effect of P variability on the value of P over the

course of a run on the TISS problem. As is the case on the TRIPLEX problem,
the variable P options initially decrease P dramatically. In the first 500 cost
function evaluations beyond the initial creation of the 600 member population,
both variable P options dropped their populations to about 100 members, a
decrease of about 500 members! From that point to the end of the run, those

152

two options exhibit parallel performance. Both slowly increase their population
sizes to about 200 members by the end of the run.

g. o
EL,

600-
550-
500-
450-
400-
350-
300-
250-
200-
150-
100-
50-

1XKKK»«KMKHKMXXKKXn

P fixed

P(±2)

P(+2/-Pdom) o---

\s"
##svtzz*zm:

T T T
0 2500 5000 7500

cost function evaluations

10000

Figure 14-17: Population size with P variability on TISS problem

Using Figure 14-17 as a guide, the MCGA apparently "believes" that
sufficient population diversity for the TISS problem can be maintained in a
population of about 200 members. If its performance supports that assertion,
the MCGA can be used without concerning the user with choosing the optimum
initial population size for high performance.

Figure 14-18 shows the number of points e.

§

3

.5

.5
&

o

.s

2500 5000 7500

cost function evaluations

10000

Figure 14-18: Size of e comparison for P variability on TISS problem

The results shown in this figure are rather dramatic. All three options

begin with approximately 12 efficient members in their population, and all

153

three end with about 40 after 10,000 cfe. However, the fixed P option
increases the number of efficient members at a steady, linear rate, in marked
contrast with the variable P options. Even though the population sizes for the

variable P options drop dramatically during the initial portion of the run, the

number of efficient points in the population rises to about 40 members in only

about 5,000 cfe. Of course, the figure above says nothing about the quality of

those points, merely that they are efficient. A measure of the distance that e

is from E is illustrated in Figure 14-20.
Figure 14-19 shows the spacing of e for the three P variability options.

1
e
cfl
O
W
O

"o
2
o

2500 5000 7500

cost function evaluations

10000

Figure 14-19: e range variance for P variability on TISS problem

All three options exhibit similar behavior. The variable P options appear

to have better spacing during the early stages of the run, but since the fixed P
one has a smaller efficient set, this fact is understandable. The variance of the
spacing in the latter portions of the run appears to slightly favor the fixed P
option, but the small scaling of values in the figure cautions against making

early conclusions about relative superiority.
The final figure for TISS problem performance with P variability shows

the distance measure characteristics that indicate solutions quality. As is the
case with the TRIPLEX problem analysis for P variability, the distance
measure figure of merit proves to be significant in the comparison of the three
P variability options on the TISS problem. Though the variable P options holds
more points in e than the fixed P option for most of the 10,000 cfe run, the
quality of those points is better in the fixed P option for the entire run.

154

§

1
.S a
g >

0.3- -XT*

0.28-

0.26- | o

0.24-

1 CASK^ 1

0.22-

0.2- T 1 1

P fixed

P(±2)

P(+2/-Pdom)

2500 5000 7500

cost function evaluations

10000

Figure 14-20: Distance measure analysis for variable P on TISS problem

The quality of the variable P options appears to suffer most during the
initial stages of the run when the population size fluctuates the most. The
longer the run progresses, however, the better both of them become. The
general form of the figure suggests that the fixed and variable P lines are
converging upon one another and are in the same general range of accuracy at

10,000 cfe.
Finally, there is the question of what effect, if any, P variability has on

the number of clones generated by the MCGA. This effect is shown in Figure
14-21 for the TISS problem.

•8

I
tu
a
O

3 o

3000-j P fixed ° ♦°.<
J*A _*A

P(±2) """"*""" JP
2000-

P(+2/-Pdom)
A* Ji 4A r/^

AS sT
1000-

,o.
' trJO*^ &A

0- —r— i
2500 5000 7500

cost function evaluations

10000

Figure 14-21: Clones detected in TISS problem with variable P

155

This figure shows that in 10,000 cfe of the TISS problem, varying P
causes the MCGA to encounter twice as many clones. Using clone
penalization, no computational effort is expended on those clones beyond their

identification, and the percentage of clones in the population remains small

throughout the run.
The overall results of the TRIPLEX and TISS problem analyses leads us

to conclude that a properly chosen fixed population size is generally superior to
allowing P to vary. The general effect shown in Figure 14-18 and Figure 14-20,
however, indicates that a variable P option with ±2 bounded variability that is

allowed to run for a sufficient length of time, may show results comparable to

those expected from a fixed P option.

14.3 Population size sensitivity

The major factor still influencing the performance of the MCGA with
respect to population size is the impact of proper P selection. The performance
with P of 20,60,100, 200 (same as used above), and 600 on the TRIPLEX
problem are analyzed in the following figures. The results for each population

size are averages of 20 different seeds.
28.

a
■i a

I
&
.5
S3
.S
a
c u
'3
a
o

24-

20-

16

12-

'. ' '» •■»
'"> •

»/\» >«.„--%»%* '*«■•

^vVvr/VHV^V

P = 20

P = 60

P = 100

P = 200

P = 600

—I 1 1
5000 10000 15000 20000

cost function evaluations

Figure 14-22: Size of e comparison for various P on TRIPLEX problem

156

Figure 14-22 shows that the number of points in e does vary with the
population size chosen but does not change appreciably throughout a lengthy
20,000 cfe run. There is a definite correlation between the number of efficient
points and the population size used, but it is not a direct correlation! For the
limited numbers of P attempted, the best value was 100. The number of
points in e gets better as P increases from 20 to 100, and gets worse as P

increases from 100 to 600.
Figure 14-23 shows the variance of the distance between members of e.

The lines shown are a 6th order polynomial curve fit through the averages of the
20 seeds to better illustrate the trends of the data.

0.012'

I
V

A
V
©

s

0.009 -

0.006

0.003 —I 1
10000 15000 20000 0 5000

cost function evaluations

Figure 14-23: e range variance for various P on TRIPLEX problem

The 20 member population size is to poor to even show up on the scale
used for the figure, while all of the other P > 60 exhibit good performance.

Figure 14-23 shows that while the variance of efficient point spacing is affected
by the P chosen, good performance on this measure can be obtained by simply
choosing reasonable population sizes. Again, the best performance for the 5 P
tested is obtained by a 100 member population size. The impact is actually
very significant over P = 60, and somewhat less so over P > 200.

The quality of the respective populations is best in larger populations as

is shown in Figure 14-24. The P = 200 line is the same as in Figure 14-16

157

where the fixed population size option MCGA outperformed the variable P
options. The P=100 line, which shows the best performance in the other two
performance criteria exhibits compatible distance measure performance with

the variable P options in Figure 14-16.
0.45.

I
B
u

.a

o
p.

g
t

0.4-

0.35-

0.3-

0.25-

0.2-

0.15.

i.J A

/WV /U J
P = 20

P = 60

p = ioo

P = 200

P = 600

 1 1 1
0 5000 10000 15000 20000

cost function evaluations

Figure 14-24: Distance measure for various P on TRIPLEX problem

This figure shows that the ability of the MCGA to place its population in

proximity of E improves as P increases. The improvement, however, is not
significant above P = 100. Up to P = 100, however, the distance measure of
the population actually increases over time. This fact, coupled with the
uncertainty involved in picking P for good performance in all measures, makes
the importance of further testing on how to choose the appropriate P very

urgent indeed.
The results shown here for the TRIPLEX problem do not allow us to

form generalizable impressions about the proper MCGA configuration of
population size or population variability to use for a general fault tolerant
system design problem. It would appear that in most instances a properly
chosen population size used in a fixed P option produces good results. The
difficulty in choosing the proper P for a general problem, though, makes the
shown viability of P variability an attractive alternative. Additional research

on the general performance of these options and possible adaptations of the

158

growth/decline rules for changing the population size may increase the
reliability and effectiveness of this method.

14.4 Effect of lie Definitions

Another MCGA performance issue addressed in this thesis is the effect
of candidate domination "tie definitions". A tie is defined between two candidate
members when relative dominance cannot be determined. A tie is broken by
performing equivalence class sharing as described in Section 11.3.2. The
manner in which ties are defined impacts the relative weights that sharing and
dominance play in reproduction. Emphasizing dominance over diversity by
defining a tie between candidates that dominate the same fraction of the
representative tournament (t^) set (referred to as T2) should theoretically
result in an efficient set representation with high accuracy and poor spacing
variance. On the other hand, defining a tie as whenever only one candidate
does not dominate all of the tdom set (referred to as Tx) results in more ties being
declared and an emphasis of diversity over dominance that should theoretically
result in poor quality, but excellent spacing variance. The ensuing analysis
shows the empirical results for each option.

The analysis is performed for both the TRIPLEX and TISS problems,
but only results for the TISS problem are shown due to the similarity on the
two problems. The MCGA control configuration for this analysis includes an
initial P of 600 members, tdom of 0.2, fixed population size, and clone
penalization. Each option is run for 10,000 cfe with 20 different random

number generator seeds.
Figure 14-25 shows that the number of points in e is equal for the two

options at the beginning and end of the 10,000 cfe run. T2 holds more efficient
points in its population for most of the run.

159

ES o •a «
I a
.5
B
.s a
S 25-

total domination ties

equal fraction ties

2500 5000 7500

cost function evaluations

10000

Figure 14-25: Size of e comparison of tie definition on TISS problem

Figure 14-26 shows that changing the definition of a tie (and
theoretically shifting the dominance/diversity emphasis) does not appear to
have a significant impact on spacing variance. Theoretically, Tx should
outperform T2 in this figure, but that is not evident from the results of either

the TRIPLEX (not shown) or TISS problems.
0.016-

i

o
60

0.012-

0.008 -

0.004 -

total domination ties O-

equal fraction ties •

—I 1—
2500 5000

—I
7500 10000

cost function evaluations

Figure 14-26: e range variance of tie definition on TISS problem

160

Finally, Figure 14-27 shows the accuracy of the two tie definition
options.

1
8

.5

g

0.27-

0.26-

0.25-

0.24-

0.23-

0.22-

0.21-

0.2-

j-*-*. J*
«~ W

—I 1 1
2500 5000 7500

cost function evaluations

total domination ties O-

equal fraction ties •

10000

Figure 14-27: Distance measure of tie definition on TISS problem

Tx has better quality for most of the run, contrary to the hypothesis
that it should exhibit reduced accuracy at the cost of maintaining diversity.

The differences between T2 and T2 are slight, but the option suggested in
[10] of only declaring domination when one (only) candidate dominates the
entire tdom set and declaring a tie the rest of the time (Tx) seems to produce
better results for the limited test suite of this thesis. The emphasis of
dominance in T2 probably limits the spacing of the population across the full

range of attribute values, hindering its ability to approach the seven fixed
distance points—thus diversity is important not only to spacing the population
equally, but also to reaching different regions of the objective space.

By counting the number of times sharing is performed on the TRIPLEX
problem for both tie definitions, a 32% decrease in the number of sharing
operations is obtained by using T2 instead of Tr The sharing operation can be
performed rather rapidly, though, so the small additional computation for

diversity emphasis is worth the increase in performance.

161

162

15.0 Multicriteria Method Comparison

The constraint method will now be used to generate a representation of
the TRIPLEX and TISS problems to provide a comparison for the MCGA. For
both problems, a 50 point representation of the efficient set (E) is attempted.
The two criteria of interest are the unavailability (i.e. 1.0 - reliability) and the

system purchase cost (in dollars).
The implementation of the two-dimensional constraint method with the

ssga as the underlying single criterion optimization method requires one
criterion to be established as a constraint while the other is optimized. In this
thesis, the unavailability is constrained (with logarithmic constraint steps
between points). A multiplicative fitness penalty function (G) is applied as a
cubic of the value of the constraint violation (see Chapter 5 and Section 11.1).

15.1 Triplex problem comparison

The TRIPLEX problem will now be optimized by the constraint method.

Table 15-1 gives the input setting for the ssga that influence the constraint
method's configuration and performance.

163

Description Value

resolution 50 points

Population size 200

crossover rate 0.8

mutation rate 0.001

maximum cfe 5,000

PBL 0.3

G cubic-decay
fitness penalty

Table 15-1: TRIPLEX ssga configuration for constraint method

The configuration of Table 15-1 was used to generate an eflicient set

representation (e) of the TRIPLEX problem. The method performed 186,000

total cost function evaluations, or an average of 3,750 cfe per ssga run. In this
attempt, 6 of the 50 initial populations for the constrained ssga problems held
all infeasible points for their individually imposed constraint (see Section 11.1),
requiring random regeneration. Of the 6 regenerated, 3 were again completely
infeasible causing the associated constrained problem to be discarded.

Of the remaining 47 points created, 18 were duplicates of other points
(clones) and none were dominated, leaving 29 efficient points for e. The
statistics of the constraint method's attempt are summarized in Table 15-2.

Description Value
desired resolution 50
efficient points of solution (e) 29
dominated points 0
duplicate points 18
instances where initial population was mfeasible 6
instances where second attempt to create an initial population

failed and the sub-problem was rejected
3

ssga sub-problem points terminated by PBL = 0.3 11
total cfe of the constraint method 186,000

Table 15-2: Constraint method data for TRIPLEX problem optimization

To facilitate a comparison, a single run of the MCGA has been
performed on the TRIPLEX problem. The MCGA was run to 5,000 cfe, with a

164

crossover rate of 0.80 and a mutation rate of 0.001. The MCGA parameters
were set for an initial P of 200 members, P variability of (±2), clone

penalization, Tx tie definitions, and t^ of 0.20.
Table 15-3 shows the performance characteristics of the MCGA and

constraint method efficient set representations. The MCGA run terminated
with a population size of 90 members.

Performance criterion Constraint Method MCGA

cfe 186,000 5,000

range variance 6.737e-4 5.639e-4

distance measure 0.2545 0.2116

efficient points [29 [32

duplicate points 1 18 | 4

dominated points 1 0 1 54

Table 15-3: Performance comparison on TRIPLEX problem

From this table we can observe the impact of transferring even a simple
multicriteria problem into a set of single criterion problems to solve it. The
constraint method performed 37.2 times more cfe than the MCGA performed
to generate comparable results. In fact, the seven point distance measure and
the range variance for the constraint method were 16.8% and 16.3% worse
than MCGA, respectively. Finally, Figure 15-1 shows a comparison of the e
created by the MCGA and constraint method for the TRIPLEX problem.

Figure 15-1 shows that the two methods agree closely on the E of the
TRIPLEX problem. The design space for the TRIPLEX problem is very small
(1,000 points), so that neither method should struggle in determining a solution.
The two methods share most of the points of their respective e, but the MCGA
has five unique points, two at the lower right corner of the figure, and three in
the upper third of the figure. The constraint method found two unique points of
its e; one located in the center of the figure and the other in the lower right
corner.

Three key observations can be made from Figure 15-1. First, the reader
is reminded that the actual E for the TRIPLEX problem is unknown, but the
close agreement between the two methods suggests that both provide good
approximations of it. Secondly, allowing the ssga to run for 5,000 cfe on the

TRIPLEX problem seemed to be acceptable during single criterion problem

165

optimization, but the MCGA apparently has the ability to resolve what
appears to be an accurate e in approximately the same number of cfe as one
ssga run of the constraint method. Finally, the difficulty in determining the
resolution appropriate for the constraint method beforehand is slightly evident

in this problem.

100

60 o

•a
5

MCGA:
32 efficient points

5,000 cfe

constraint method:
29 points
186,000 cfe

purchase cost ($)

Figure 15-1: MCGA and constraint method on TRIPLEX problem

An arbitrary guess that a 50 point resolution would sufficiently resolve

the TRIPLEX problem efficient set causes only 29 efficient points to be
located. The method found 18 duplicates (2/3 the number of efficient points),
which suggests that the efficient set has been resolved to the closest extent
possible. If the resolution was increased, the number of failed ssga runs and

duplicate points would increase without gaining a significant number of
additional points in e. On the other hand, a resolution much smaller than 50
would leave the DM with insufficient E information because either (1) the
number of points in e would be smaller and E would be insufficiently resolved,

or (2) all ssga runs would generate unique points, causing the DM to ponder
whether or not additional resolution could improve e. In Figure 15-1, for
instance, the tight resolution of the representations and the frequency of
duplicates give the DM some assurance that the "jump" of purchase cost when
the log of unavailability drops below 25 is imbedded in the problem
characteristics and is not a result of insufficient resolution.

166

15.2 TISS problem comparison

The TISS problem will now be optimized according to the constraint
method guidelines given at the beginning of this chapter. Table 15-4 gives the
input settings for the ssga that influence the constraint method's configuration

and performance:

Description Value

resolution 50 points

P 600

crossover rate 0.8

mutation rate 0.00033

maximum cfe 10,000

PBL 0.3

Table 15-4: TISS problem ssga configuration for constraint method

The constraint method attempt at the TISS problem required 302,700
cfe, or an average of 6,050 cfe per ssga run. Of the 50 initial populations
created, 11 were infeasible and were regenerated. Of those regenerated, all 11
populations were again completely infeasible, causing the sub-problem to be
discarded. Therefore, only 39 points were created by the constraint method.
One clone and 15 dominated points were created, leaving only 23 efficient

points, as shown in Figure 15-2.
Figure 15-2 shows that the 11 rejected ssga problems were tightly

constrained for low values of unavailability. This gap in the figure could be a
sign of a method deficiency, or could merely indicate that the discrete TISS
problem has no efficient points in that region.

The dominated points are close to e, showing only that the individual
ssga runs terminated close to, but not perfectly at, the constrained problems'
optima. This run of the constraint method did find one point in the low range of
unavailability—during its unconstrained ssga attempt to locate the individual

optima. The point it found actually dominated the point the author originally
believed was the bound of E. Unfortunately, though, once the constraint was
applied, the method was unable to locate another point until unavailability

exceeded 20.

167

100 -S

BO
O

•8

B
p

75-

50-

25>

©L 23 efficient points

». 15 dominated points

V

\

e

©

+

T
o o

purchase cost ($)

Figure 15-2: TISS problem results for constraint method

The statistics of the constraint method attempt of the TISS problem

are summarized in Table 15-5.

desired resolution
Description

efficient points of solution

dominated points

duplicate points
'mstanceswhere initial population was infeasible

instances' where"s^nd aittempt to create an initial population
failed and the suj^problemj^

pointeterminated by PEL = 0.3

total "cfe of constraint metiiod

Value

50

23

15

11

11

27

302,700

Table 15-5: Constraint method data for TISS problem optimization

To facilitate a comparison, a single run of the MCGA has been
performed on the TISS problem. The MCGA was run to 10,000 cfe, with a
crossover rate of 0.80 and a mutation rate of 0.00033. The MCGA parameters
were set for an initial P of 600 members, P variability of (±2), clone

penalization, Tx tie definitions, and a t^ of 0.20. The MCGA run terminated
with a population size of 350 members. Table 15-6 shows the performance

characteristics of the MCGA and constraint method efficient set

representations.

168

performance criterion constraint method MCGA

cfe 302,700 1 10,000

range variance | 1.318e-2 1 1.577e-4

distance measure 0.2791 0.2786

efficient points 23 33

duplicate points 1 7

dominated points 15 310

Table 15-6: Constraint method performance data on TISS problem

From this table we observe a marked advantage in using the MCGA.
Though its representation (the final ga population) contained 310 dominated
and 7 duplicate points, filtering those points out leaves 33 points in e compared
to only 23 in the constraint method. The distance measures of the methods
only differ by 0.2%, but the resolution point spacing (range variance) is nearly
2 orders of magnitude better in the MCGA.

The actual e for the MCGA run and the constraint method run are
compared in Figure 15-3. It shows that again, as in the TRIPLEX problem, the
two methods generally agree on the location of E. Unlike the TRIPLEX
problem, however, where the design space is very small and the agreement is
expected to be close, the large discrete design space of the TISS problem is
more difficult for both methods. The best comparison of the two methods can
be made by looking at the low unavailability range of Figure 15-3. The
constraint method found the lowest unavailability value known using an
unconstrained ssga problem, but is unable to generate another point until
unavailability increases to over 20. The MCGA, in comparison, does not locate
the very lower bound of the efficient set, but it is able to locate points and
spread them nicely to values of unavailability of about 12. The most obvious,
and significant difference between the methods, though, is the number of cfe
each performed. In this test, the constraint method performs 30 times as
many cfe as the MCGA!

169

60
O

100

75-

50-

MCGA:
33 points
10,000 cfe

constraint method:
23 points
302,700 cfe

25-

purchase cost ($)

Figure 15-3: MCGA and constraint method comparison on TISS problem

From this limited comparison using two discrete, two-criteria fault
tolerant system design problems, we can conclude that the MCGA is capable
of generating an excellent e in a low number of cfe when compared to a method
that require many single-criterion sub-problems to be solved. The MCGA
spreads its representation very evenly as shown by the low range variance
values produced, but it appears to experience some difficulty in locating those

points at the far limits of the efficient set. Some additional work on the
mechanisms of the MCGA may be able to aid the expansion of its solution to

cover a greater range of the efficient set.
Though the results of Chapter 14 show rather conclusively that using a

fixed population size in the MCGA will provide the best performance, a variable
P has been used in this comparison to show that even at its slightly degraded
level of performance, the MCGA outperforms the constraint method handily.
The (±2) variability is also used for a reason that affects the constraint method
as well—a lack of understanding beforehand of what the proper resolution

should be. In both methods, choosing the resolution too small affects the
representation, while choosing it too large requires excessive cfe. Allowing the
MCGA to choose its own population size removes that burden from the DM.

The final issue of contention necessary to compare the MCGA and

constraint methods is their ability to handle problems with more than two

170

criteria. As described in Section 11.1, the constraint method is severely limited
by such problems. The MCGA, on the other hand, adapts readily to many
criteria because it always chooses members on the basis of dominance, which
is defined identically for any number of criteria. This thesis has not
investigated problems of more than two criteria, but the MCGA suffers no
theoretical limitations of larger dimensioned problems.

171

172

16.0 Summary of Multicriteria Design

Fault tolerant system optimization normally requires extensive and
usually subtle tradeoffs between factors such as component quality,
reconfiguration strategies, level of redundancy, and operational policies.
Optimization strategies must incorporate the conflicting effects of such
constraints as performance specifications, reliability goals, and size and weight
in order to design to minimize cost. Whenever possible, the designer attempts
to combine all criteria of interest into a single cost function. However, criteria
are not always commensurate, requiring the introduction of multicriteria
optimization techniques.

Several types of multicriteria optimization can be performed depending
on the level of involvement the DM wishes to have in the optimization process,
and the computational constraints involved. This thesis looks solely at
generating methods of multicriteria optimization where a representation of the
problem's efficient set is generated so that the DM not only has a number of
potential solutions from which to choose, but she is also given a greater
understanding of the relationship between the criteria.

The most common generating techniques in use are the e-constraint and
weighting methods. A form of the e-constraint method is created for this thesis

to allow optimization of two-criteria problems. The single criterion ssga is used
as the underlying optimization method to capitalize on the robustness of the
method demonstrated earlier in this thesis and to allow the optimization of
mixed and discrete parameter fault tolerant problems. The constraint

framework using a multiplicative fitness penalty function described in Chapter

173

5 is included that allows the ga to scale the penalty automatically. The ability
of the ga to effectively deal with function constraints in this manner is
demonstrated by its good performance in Chapter 15.

The main thrust of the latter half of this thesis is the examination of a

genetic algorithm that uses dominance as its string selection criterion to
operate on multicriteria fault tolerant design problem directly. The
Multicriteria Genetic Algorithm (MCGA) represents a fresh approach for
multicriteria optimization. Its remarkable effectiveness may generate

revolution in optimal design. It promises to revolutionize the ability of a DM to
analyze the complex tradeoffs of non-commensurate criteria and produce more

versatile, satisfactory designs.
The MCGA is an unproved capability at the time of this writing. The

ability of the ga in general to perform multicriteria optimization has only had
limited analysis. Unlike the single criterion application of the ga, where the
basic framework and performance of the ga has been worked out and debated
for several years, multicriteria ga implementations are still in their infancy.
Therefore, this thesis not only had to research whether ga's can do
multicriteria optimization of fault tolerant system design better than other
methods, it also needed to investigate the basic viability of ga's in multicriteria

optimization and the form the ga should take.
This thesis explored the effects clones, population variability, and

candidate member tie definitions have on MCGA performance. A set of
performance criteria for evaluating multicriteria methods has been created
and used to compare the performance of various MCGA configurations. Clones

significantly affect performance, and the best method of dealing with them is to
allow their presence in the population, but with heavy penalties assigned to

their reproductive ability.
The effect of population size variability has been examined to determine

whether the MCGA is capable of varying its own population size for optimal
performance because of the difficulty in determining a proper fixed population
size. The results show that the advantage of population size variability
inclusion depends on the user's confidence in the fixed population size chosen.
A properly sized fixed population outperforms a variable population size, while
the performance of a variable population size MCGA outperforms fixed

population attempts with poorly chosen population sizes.

174

Tournament selection with domination as the selection criterion is used
as the basis of selecting parents for mating in the MCGA. The manner in
which domination is defined dictated that a tie between candidate solutions has
to be decided by equivalence class sharing to spread the population along the
efficient front. The definition of ties is explored for its effect on the conflict
between domination and diversity in the MCGA population. This research
reveals that on the test problems examined, defining ties as when one (only)
candidate does not dominate the entire tournament set provides the best
MCGA performance. This result shows that diversity maintenance via
sharing is crucial to optimal MCGA performance.

A small comparison of the MCGA with the constraint method shows

that both methods are effective at providing accurate representations of the
multicriteria efficient set. The MCGA proves to be superior for three main
reasons: (1) the difficulty involved in using the constraint method for three or
more criteria, (2) the much larger numbers of cost functions required to
optimize many ssga single-criterion problems for the constraint method
representation compared to the MCGA which optimizes directly on the
efficient set representation, and (3) the uncertainty involved in choosing a

proper efficient set resolution from the constraint method that properly covers
the efficient set without creating excessive computational effort. The MCGA
resolution is limited only by the population size if population variability is not
permitted or only by the effectiveness of the method if population size

variability is allowed.
The performance of the MCGA can be expected to surpass other

generating methods more as the model complexity, number of criteria, and
discrete nature of problem increase. In all three cases, a genetic algorithm
that uses domination as its selection criterion continues retains its robustness
and shows a superior ability to generate a highly resolved, quality efficient set

representation. The results of this thesis suggest that the MCGA is an
effective means of optimizing multicriteria fault tolerant system design
problems easily, quickly, and accurately—the design community needs to take

a long, hard look at how to best capitalize on the strength of the MCGA.

175

176

17.0 Suggestions for Further Work

17.1 Single Criterion

The field of genetic programming is expanding at an exponential rate.
The massive influx of effort and literature in this field (of which this work is
included) reflects the exciting potential so much of the scientific community
sees in the ga. The biannual proceeding of the International Conference on
Genetic Algorithms (ICGA) provides a sampling of the astounding advances
currently being made. The Internet access provided by David Goldberg and his
associates at the University of Illinois Genetic Algorithm Laboratory (ILliGAL)

and the user group comp.ai.genetic are just two of the means by which the ga
community is communicating to speed the spread of progress in the field.

Further work on the applicability of ga's to fault tolerant system design
could incorporate many of the advancements being pursued around the world
due to the general, problem-independent nature of the ga. Some of the
potentially useful features located recently include introns between
parameters on a string and incest prevention in mating.

Those specific items that revealed themselves over the course of this
research as worthy of additional investigation include:

Disallowed Parameters

The direct effect disallowed parameters have on genetic algorithm
convergence and exploration has not been rigorously pursued in this thesis.

177

The impact of "wasted" space on the binary representation of parameters was
analyzed in Section 8.5, but no conclusions were drawn from the investigation.
The fact that the ssga is more significantly impacted by disallowed parameters
than the tga is substantiated by this investigation, but the reason for this

conclusion has not been determined.

Clones

As was stated in Chapter 4 in the discussion of the ssga used in this
thesis, the concept of "steady-state without duplicates" is not used because (1)
the ssga used here is an independent development that did not take the work of
others into account in its original configuration and (2) the use of "steady-state

without duplicates" ehminates the ability to determine convergence based on

the principles of Chapter 6. "Steady-state without duplicates", as described in

[3], discards children that are duplicates of current members of the population.

This keeps the entire population unique. The benefits cited by Davis are the

much more efficient use of the reproductive cycle and greater population

diversity.
Additional work on the ssga could make use of "steady-state without

duplicates" where diversity and computational efficiency is considered more
important than the ability to detect convergence.

Convergence

The efforts to define ga convergence in this thesis (see Chapter 6)
provide a great deal of insight into the behavior of the ssga as it is presently
configured. The "product of the bit likeness" (PBL) figure of merit shows that
convergent behavior can be observed for the ssga and an effective termination

criterion can be developed. Additional research that looks at some form of the

PBL gradient to determine when the sharp rise occurs would stand to improve

the robustness of this termination criterion.

Function Constraints:

The ability of the ga to assign its own penalty function scaling is a
concept the author believes is original to this thesis. The theoretical basis has
not been rigorously developed and general applicability to a wide set of function

178

constraints has not been investigated. The benefits of this novel approach
have only been tested in the multicriteria context of Section 11.1. Additional

work in this area should build an analytical and empirical framework for the
viability of this general penalty function approach.

Parallelization

That the ga is highly suited for parallel computing is rarely refuted. The
efforts of this thesis are limited to serial computing applications. However, the
framework established could be adapted to parallel configurations of either:
1) distributed processing among linked workstations or personal computers
2) parallel computing hardware

In [17], the authors reference a population size study by G. G.
Robertson (Proceedings of the 5th International Conference on Machine
Learning, 1988), which found that performance using a parallel computing
system monotonically increases with population size. This is not surprising
when there is no real "cost" for larger populations. In serial machines mainly
available today, there is a fixed cost increment for each population member; a
real tradeoff between population size and "performance'' exists.

Coupling the ssga, which provides optimal performance when
computational limitations are eased and population sizes are increased, and
parallel configurations will undoubtedly create a very competitive optimization
framework.

17.2 Multicriteria

Tournament set size (t^)

As presented in Section 12.4, the tournament set size tdom is one of the
four MCGA performance parameters that must be set correctly for optimal
MCGA performance. This thesis used a fixed t^ of 0.2, or 20 percent of the
current population size. The appropriateness of this choice has not been
verified. Reference [10] includes a brief look at the general setting of tdom, but
an in-depth analysis of the appropriate tournament size for multicriteria
genetic algorithm optimization is critical for the furtherance of this ga

application.

179

Convergence testing

The ability to determine satisfactory ga convergence and terminate the

algorithm is especially difficult in the MCGA because the algorithm is
converging to a population of points that represent an unknown quantity. The
development of a means of termination based on MCGA convergence may be
linked to convergence of the ssga with "steady-state without duplicates"

applied.

Representing the efficient set bounds

The MCGA is shown in Chapter 15 to have some amount of difficulty

reaching the boundaries of the efficient set. The push towards dominance
seems to be greatest where tradeoffs between criteria are the smallest.
Unfortunately, DM may need information on the limitations-of-possibility,
which requires some assurance that the efficient set representation includes
the actual bounds. The MCGA, as it is presently formulated, needs to be
augmented with additional operators to enhance exploration toward the edges
of the efficient set or will have to used in conjunction with another method.

One option that has not be tested is to run individual ssga runs for each
criterion to determine an approximation of the bounds, and then to include
those points into the MCGA population with a multicriteria form of elitism to

enhance their ability to produce offspring.

Constraint method

Though the constraint method has been shown to be generally inferior to

the MCGA, additional work in the area of multicriteria optimization will always
need sound competitive methods to compare performance against. A few

simple configuration changes of the constraint method used in this thesis

should greatly improve the competitiveness of the method:
1) If a good initial population is generated, each subsequent ssga run for the

constraint method could start with that initial population, thus saving a
great deal number of cfe. In fact, the effort required would be equal to the

population size times (resolution -1).

180

2) The constraint method has the most difficulty finding points when the
underlying single-criterion problem is tightly constrained. As such, better
performance can be attained in two-criteria problems by switching the
criterion and the constraint with each other at some mid-point of operation.
In this way, both edges of the efficient set are located by sub-problems with

larger feasibility regions.

181

182

Appendix A: The Markov Modeling Method

A.1 Background

Markov modeling techniques provide a systematic means of
investigating system reliability for large, complex systems and determining life
cycle (time dependent) system costs. They permit the inclusion of sequence
dependent events such as repairs in a natural fashion. One of the most
powerful aspects of Markov models is their ability to permit simplifying

approximations to be made and to provide means to obtain bounds on these
approximations. The basic concepts of Markov modeling are best introduced
by simple, but representative examples. These examples clearly point out the
general flexibility as well as the main drawback of the method, particularly the
rapid expansion of the state space. Techniques used to reduce the state space
to manageable proportions, without compromising the quality of the analysis,
are described in detail in [1],

A.2 Single-Component System

Figure A-l shows a single-component system. The first step in modeling
the reliability of this system is to determine what the system requires to be in
an operational state. This single-component system has a trivial operational

requirement: it is operational if the single component, A, has not failed.
(Conversely, the system is failed if component A has failed). While this step is
simple for this system, it is often one of the most complicated steps in modeling
a complex system, characterized by many operational states and subtle
interactions among components.

Figure A-l: Single component system block diagram

Given the system operational requirements, the next step is to

construct Markov model states. A state represents a unique configuration of

failed and operational elements, sometimes distinguished by the sequence of

183

the failures that led to it. Figure A-2 shows the Markov model for the one-
element system. In general, a model is generated by first creating state 1, the
state where there are no failed components in the system. The various
transitions out of state 1 represent failures of the system components,

accounted for individually or in groups. In this case there is only one
component, thus a transition denoted X is created leading to state 2. This state

represents this system when component A is failed. Noting the operational
requirements for this system, state 2 is labeled as a system failure. Since
there is only one component in the system and its failure has been accounted

for, the Markov model is complete.

OF IE

0^-0
Figure A-2: Single component system Markov model

This system's reliability is just the probability, as a function of time, of
being in state 1. Actually, there is a probability associated with each state.
For example, at time zero the probability of being in state 1 (no failures) is 1 (or
100%) and the probability of being in state 2, or any other state, is 0.
Parameter X on the transition in the model not only indicates that component
A has failed along this transition, but that the component's failure rate is X,

failures per hour. Throughout our discussion, it will be assumed that all failure
rates are constant in time. To obtain the system reliability as well as other
state probabilities of interest as a function of time, we need to track the
probability "flowing" out of state 1 into state 2. Probability flow is the product
of the transition rate and the state probability for the state at the origin of the
transition. Thus, a state with zero probability has no probability flowing out of
it, a state with no exiting transitions has no flow out, and a state with
probability equal to 1 and an exiting transition rate of X has an instantaneous
flow out equal to X. The rate of change of each probability is then given by the

net probability flow into the corresponding state. A Markov model is thus

184

mathematically described by a set of differential equations governing the
evolution in time of the probabilities of being in each state.

Using the definition of the probability flows, the following equations are

obtained for the Markov model shown in Figure A-2:

dP,(t)—KPift) (1)
dt

dP2(t)
dt

= XPi(t) (2)

These equations, representing the rate of changes in each state variable
(Pi and P2), are called state equations. Equation (1) shows that the rate of

change in probability for state 1 is the exiting transition rate X times the

probability of being in state 1. The minus sign indicates that the transition is

out of the state and, therefore, reduces the probability of being in state 1.

Equation (2) is interpreted similarly. Note that the flow is into state 2; the
positive term indicates an entering transition which increases the probability
in state 2. Also, the flow into state 2 is the rate X times the probability of state

1; the flow on this transition is due to state 1, the origin of the transition.
Equations (1) and (2), along with the initial condition of the state probabilities,
Pl(0) = 1 and P2(0) = 0, provide a complete description of the system's

reliability. Markov models have the property that a flow leaving one state
enters another, as shown in Equations (1) and (2). Hence, the total system
probability does not change as the system evolves. This fundamental property
is called conservation of probability. The sum of all the system's state

probabilities is always equal to 1.
There are many ways of solving Equations (1) and (2) in closed form,

such as standard integration or Laplace transform. Using any convenient
technique and recalling that the failure rate A, is constant, yields the solution:

Pl(t) = e-M (3)

P2(t) = 1-e-M (4)

State 1 starts with a probability of 1 and decays exponentially toward 0,

while state 2 has a probability initially at 0 which grows toward 1. Notice that

185

the sum of the two state probabilities is 1 at all times, thus indicating the

conservation of probability.

Two Component System with Repairs

Figure A-3 shows a two-component system where the components are
connected in parallel. The requirement for system operation is that at least
one of the two components is working. These components can be repaired

when they are failed.

Figure A-3: Two component system block diagram

The Markov model of this system is shown in Figure A-4. State 1
represents the no-failure configuration. Possible events when in this state are
that component A can fail or component B can fail. These two possibilities are
captured in the transitions leaving state 1 with the rates X\ and %2

respectively. State 2 represents component A failed and B working. Possible
events leading out of state 2 are that component B may fail (exiting transition
X2) or that component A may be repaired (exiting transition Uj). Here, Uj

stands for the repair rate for component A.
The failure of component B leads to state 4, while the repair of

component A leads back to state 1, returning the system to the no-failure
state. Similarly, the exiting transitions for state 3, the B failed/A working
state, are a failure of component A (transition Xi going to state 5) and a repair
of component B (transition \i2 going back to state 1). Notice that repairs,

which are sequence-dependent events (since they can only be performed after a
component has failed), are easily included in the model.

186

OF IF
A FAILED

2F
AthenB FAILED

A and B OK ^

B FAILED B then A FAILED

Figure A-4: Two component system Markov model

States 4 and 5 represent system failure, being distinguished only by the
sequence of events leading to the loss of both components. States 1, 2, and 3
represent the system in an operational configuration. If one was concerned
with degraded operational modes, such as operating without a backup, then
this model could also provide that information by giving the probability of
states 2 and 3 independent of state 1.

States 4 and 5 both represent system configurations where components
A and B are failed. However, in state 4 component A failed first and in state 5
component B failed first. In both of these states, the possible events are the
repair of A (transition Uj leading to state 3) and the repair of B (transition U2

leading to state 2). Since the possible actions taken and their consequences,
i.e., the destination states, are the same in states 4 and 5, these states may be
lumped together if the order-of-failure distinction is not needed in the analysis.
The resulting model is shown in Figure A-5. This simplification is referred to as
exact aggregation of states and introduces no approximations. It is useful in
systems where there are many identical components each with an identical
impact on the system operation.

187

OF IF

A FAILED

2F

A and B FAILED

A and B OK M-

B FAILED

Figure A-5: Aggregated two component system Markov model

The state equations for the model in Figure A-5 are obtained by
inspection of the model diagram and applying the rule for determining flows.

The state equations are:

dPi(t)
dt

= -On+X2)Pi(t) + uiP2(t) + U2P3(t) (5)

dP2(t)
dt

= JliPitt) - (fa + ui)P2(t)+u2P4(t) (6)

dPa(t)
dt

= X2Pi(t) - (fa + u2)P3(t) + UiP4(t) (7)

dP4(t)
dt

= taP2(t) + A.iPa(t) - (Ui + ^2)P4(t) (8)

Note that all flows leaving a state (negative terms) appear as a flow
entering a state (positive terms), thus indeed probability is conserved.
Equations (5) through (8), together with the initial condition that state 1 has a
probability of 1 and all other states have probabilities of 0 at time = 0, provide
a complete description of the system. Figure 1-2 is the same as that in Figure
A-5, except that the repair from state 4 is assumed to always be a complete

system repair that takes the system back to state 1.

188

All systems reach a point where the state probabilities are no longer
changing. In the example of the single-component system this situation

occurred when all of the probability was in state 2 and none was in state 1.
This is common for systems without repair. After a long period of time most
states have probabilities of 0 and only a few states, called trapping states,
have probabilities that are between 0 and 1. In the case of systems with
repairs, however, when they reach steady state, all their state probabilities
may be between 0 and 1. This comes about because a balance is reached
between the flows leaving and those entering the states. For example, when
the flow leaving state 1 in Figure A-5 equals the flow entering state 1, its
probability no longer changes. This occurs when the probabilities of states 1,
2, and 3 obtain values such that the flows are in balance. Equation (5) shows
that this balance is obtained when dPj(t) / dt = 0. Similarly, when the

derivatives of all state probabilities are equal to 0, the system has come to its
steady state.

The steady state is an important characteristic of fault tolerant system
analysis. After an initial transient phase, most systems will operate
continuously over a much longer period of time. Although various components
fail and are repaired as the system evolves, the probabilities of the various
system states have come to steady state. Therefore, the system analysis is,
in fact, an analysis of the system operating at steady state. For the
completeness of this introduction however, we will briefly discuss the time-

dependent problem.
The closed-form solution of equations (5) through (8) for this two-

component system, as is true of most systems with repairs, is rather complex
and not particularly enlightening. It is more common to solve such system
models numerically.

189

First, the system equations are written in matrix form:

dPtt)
dt

-(ta+ta) M-i (12 0

JCi -(ta + ui) 0 U2

ta 0 -(ta + U2) ui

0 X2 Xi -(U1+U2)

P(t) (9)

where the state vector is:

P(t) = [Pi(t),P2(t),P3(t),P4(t)]T (10)

Notice that the columns of the matrix add to zero. This represents the

flow conservation property in the system: all flows leaving a state must enter

another state. The matrix equation may be written more concisely as:

dP(t)
dt

= AP(t) (11)

Equation (11) is the continuous-time representation of the Markov
model. Matrix A is the continuous-time transition matrix. While there are
many ways of numerically integrating this equation, the one shown here is
straightforward and adequate in many situations. The derivative is

approximated over a discrete time step At by:

[P(t+At)-P(t)]/At = AP(t)

Multiplying each side by At and moving the state vector P(t) to the right-

hand side gives:

P(t+At) = [I + AAt]P(t)

where matrix I is the identity matrix. The term in brackets may be

relabeled as matrix M:

P(t+At)=MP(t) (12)

M is the discrete-time transition matrix. The above approximation,
Equation (12), is called Forward (or Explicit) Euler integration.

190

Equation (12) represents a recursive solution for the Markov model.
Given the system's initial condition, P(0), it is possible to use this equation to

propagate the state probability in time:
P(At) = MHO)

P(2At) = MP(At)

P(3At) = MP(2At)

P(4At) = MP(3At)

P(nAt) = MP[(n-l)At]=MnP(0)

The above procedure gives the state probabilities as a function of time
from time = 0 to time = nAt. It may also be viewed as an iterative solution of
the steady-state problem, i.e., A P(t) = 0, if continued until the state
probabilities no longer change.

A few remarks need to be made concerning this solution procedure.
First, At must be judiciously selected such that the integration is stable, has
the desired accuracy and produces meaningful probabilities, i.e., between 0 and
1. Second, in performing these calculations on a computer, special care must
be taken lest round-off errors destroy the solution. Finally, a faster version of

this integration scheme, taking advantage of the fact that M is time-invariant,
may be constructed, based on a very efficient technique to evaluate powers of

a matrix.

191

192

Appendix B: The Branch and Bound Method

The advantages and disadvantages of genetic algorithms cannot be
determined without comparing them against other, proven discrete-parameter
optimization techniques. Comparing the different methods can provide an
assessment of each based on such figures of merit as real-time operating
duration, consistency and reliability of convergence, and ease of use.

From the Society for Industrial and Applied Mathematics (SIAM)
course notes tutorial on Numerical Optimization Algorithms and Software
[19], page 48: "In many applications the solution of an optimization problem
only makes sense if certain of the unknowns ... are integers... Although a
number of algorithms have been proposed for [the integer programming
problem], the branch-and-bound technique is used in almost all the software we
collected. The technique has proven to be efficient on practical problems, and
it has the added advantage that it solves 'continuous' linear programs ... as
sub-problems ..."

The branch and bound optimization method provides a means of solving
a set of constrained continuous problems in order to find a suitable discrete or
integer solution. Branch and bound has two phases: (1) partition the sample
space of solutions into mutually exclusive and completely exhaustive sets by a
specified decision algorithm (branch); (2) create upper and lower bounds over
the objective functions in these sets (bound). These phases are repeated until
the solution is better than the bounds on all the unexplored sets (optimal).

Branch and bound is actually not an optimization method in itself. It is
a record keeping algorithm used to track the progress of a subordinate
optimization method. The branch and bound capability of DOME uses the
Down-hill Simplex continuous parameter optimization method to solve the
stack of potential solutions (branches). As the method progresses, it further
constrains the discrete parameters for each sub problem on its stack of
potential solutions. Because of its underlying continuous nature, branch and
bound can not only adjust itself to mixed continuous/discrete parameter
problems, it's abilities are improved when the discrete constraints are relaxed.
This stands in contrast to the genetic algorithm, which fairs better as the
solution space is contracted.

193

The Mechanics of the Method

The branch and bound discrete optimization method is essentially a

means of finding a discrete optimization solution through the repeated solution

of continuous optimization sub-problems. Each sub-problem is a more

constrained problem than the previously solved one.
Formally, the mixed integer optimization problem is to find the solution

x* to the problem
PD: Optimize f(x)

subject to x e R, xd is discrete valued (for all) d e D (1)

where D is the set of discrete variables, and R is the feasible region of the

continuous problem
P: Optimize fix)

subject to x e R (2)

Next, assume that x* is the minimizer of PD and is found. If ^ is a
discrete feasible solution, then the problem PD is solved. If not, then there
exists a d e D for which x'd is not discretely valued; that is, one of the
components x'd of the vector x' is not an acceptable discrete value. In this

situation, we branch on variable xd in problem P to create two sub problems

P-: minimize f(x)

subject to x e R , xd ^ [x'dl- (3)

and
P+: minimize f(x)

subject to x € R , xd > [x'dl+ (4)

where [x'dl- means the largest discrete value not greater than x'd, and [x'dl+
means the smallest discrete value not less than x'd- Essentially, we now have

two problems with smaller feasible regions since xd is now bounded in both

problems. Note that x* is the feasible solution in either P- or P+, but not both.
The branching process is repeated by branching on P- and P+ and other

sub-problems, resulting in a tree structure of optimization problems like that

194

of Figure B-l. The optimization of a sub problem will result in one of three
situations: (1) the problem has no feasible solution and can be discarded; (2)
the problem has a feasible solution that is not discrete-valued, requiring a
further branching; or (3) the problem has a solution that is discrete-valued and
may be the optimal solution.

O Parent problem

| | Discrete feasible

A Discrete infeasible

Figure B-l: Tree structure for Branch and Bound optimization

A drawback with this approach is that the number of nodes in the tree
grows exponentially with the number of variables and may not even be finite.
Thus, an exhaustive search is not efficient. The branch and bound method
attempts, however, to find the solution through only a partial search of the
tree. Note that the optimal objective function of P must be less than or equal
to the optimal objective functions of P- and P+, otherwise the optimal solution
to P was not found originally. Thus, the optimal objective function of the
parent problem is a lower bound on all its sub-problems. This relationship can
be used to reject certain branches of the tree if they cannot improve the
current best solution. For example, suppose some, but not all, of the problems

within the tree have been solved. Let the best discrete-valued solution have a

195

cost function value off. Suppose that other branches in the tree have lower
bounds on the objective function f, such that f > f. These branches can be
removed from the tree since none of the solutions will improve on the current

best. This principle allows a limited search of the tree to be effective.
There are two remaining issues to be addressed: first, which sub-

problem should be solved next; and second, on which variable should the branch

be made. The DOME program uses a stack to keep track of the unsolved
problems, each with a lower bound on the minimum of the objective function.
The effect of the stack method is to follow a single path deep into the tree to
find a discrete feasible solution. Then the algorithm works back, creating more

sub-trees or rejecting problems. The algorithm branches on the variable that

has the largest absolute error from its nearest acceptable bin value. For
example, for an integer problem, if xi= 3.2 and X2 = 6.4, the algorithm will use

X2 as the branch variable. The problem placed on the top on the stack is the

one with the bound closest to the branched variable. The other sub-problem is
placed second on the stack. For example, for an integer-valued problem, if the
branched variable X2=6.4, the top problem on the stack will have an upper
bound on X2 of 6, and the second problem on the stack will have a lower bound
on X2 of 7. In this way, the branch most likely to contain the optimum is tried
first (the branch with the upper bound on X2 of 6 in this instance) to try to trim

the tree as quickly as possible.
The stack method of Branch and Bound optimization has proven in

practice to be quite effective for the type of problems solved by the DOME
program. The relative value of the Branch and Bound method using the stack

method will be determined by its ability to find a discrete feasible solution in a
reasonably small number of sub-problems, which is important when the
number of iterations is limited, and how consistently the method is capable of

finding a quality solution.
Though most any optimization tool can be used as the underlying

method with Branch and Bound, the Down-hill Simplex method of [21] is used
in DOME. A brief discussion of this method follows in the next section.

196

Appendix C: Down-hill Simplex

The Down-hill Simplex method [21] has very robust characteristics and
can converge to a solution reliably in linear and non-linear programming
problems. It also has the advantage of not requiring any derivative
information of the cost function. This allows the branch and bound method to
operate on the same cost functions as the genetic algorithm and represents
the major reason why it was chosen for inclusion in this thesis. Other

continuous optimization capabilities require first or second derivative
information from the user, which not only increases the time required for a cost
function evaluation, but also puts a tremendous burden on the user to

formulate those extra portions.
A simplex is a geometric figure made up of N+l points in N dimensions.

For example, in two dimensions, a simplex is a triangle. Although the simplex
method of linear programming is based on the same geometric concept, it has
no relation to the method used here. In general, we are concerned only with
Simplexes that are nondegenerate, i.e. those that enclose a finite inner N-

dimensional volume.
Once the starting simplex is established, the method takes a series of

steps attempting to move the simplex to areas of lower function values. At
each iteration, a new simplex is constructed by replacing the worst point, i.e.,
the point at which the function has the highest value. This replacement is

accomplished through various geometric manipulations:
1) Reflection of the worst point of the simplex through the face of the

other vertices in the simplex.
2) Expansion in the direction along which further decreasing of the cost

function is expected.
3) Contraction along one or all dimensions if the reflection increases the

cost function.
These basic manipulations are shown for two dimensions in Figure C-l.

197

* contraction

*mid

Figure C-l: Simplex modification of the Down-mil Simplex method

Parameter constraints are directly incorporated and non-smooth cost
functions can also be used. In some instances the convergence may be slow,
typical of techniques not relying on derivative information.

198

References

[I] Babcock Philip S. An Introduction to Reliability Modeling of Fault
Tolerant Systems. Charles Stark Draper Laboratory Report R-1899,
September 1986.

[2] Cohon, Jared L. Multiobiective Programming and Planning. San Diego:
Academic Press, 1978.

[3] Davis, Lawrence. Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold, 1991.

[4] de Neufville, Richard. Applied Systems Analysis: Engineering Planning
and Technology Management. New York: McGraw-Hill, 1990.

[5] Fletcher, R. Practical Methods of Optimization. New York: John Wiley
and Sons, 1987.

[6] Genetic Algorithms and Simulated Annealing. Ed. Lawrence Davis. Los
Altos: Morgan Kaufmann Publishers, Inc., 1987.

[7] Goldberg, David E. Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading: Addison-Wesley Publishing Company, Inc.,
1989.

[8] Hammett, Robert, Brenan McCarragher, and Andrei Schor. Design
Optimizer/Markov Evaluator (DOME) Version 1.0. Charles Stark Draper
Laboratory Report R-2409, May 1992.

[9] Howard, Ronald A. Dynamic Programming and Markov Processes. MTT
Press, 1960.

[10] Horn, Jeffrey, and Nicholas Nafpliotis. Multiobiective Optimization Using
The Niched Pareto Genetic Algorithm. IlliGAL Report No. 93005.
University of Illinois at Urbana-Champaign, July 1993.

[II] Michalewicz, Zbigniew and Cezary Z. Janikow. handling Constraints in
Genetic Algorithms." Proceedings of the Fourth International Conference
on Genetic Algorithms. Eds. Richard K Belew and Lashon B. Booker,
San Mateo: Morgan Kaufmann Publishers, Inc., 1991, pp. 151-157.

[12] Multicriteria Design Optimization. Eds. Hans Eschenauer, Juhani Koski,
and Andrzej Osyczka, New York: Springer-Verlag, 1990.

[13] Osyczka, Andrzej. Multicriterion Optimization in Engineering. New York:
John Wiley and Sons, 1984

[14] Press, Flannery, Teukolsky, and Vetterling. Numerical Recipes: The Art
of Scientific Computing. Cambridge: Cambridge University Press, 1986.

[15] Richardson, Jon T., et. al. "Some Guidelines for Genetic Algorithms with
Penalty Functions." Proceedings of the Third International Conference on
Genetic Algorithms. Ed. J. David Schaffer, Los Altos: Morgan Kaufmann
Publishers, Inc., 1989, pp. 191-195.

[16] Rosch, Gene and Andrei L. Schor. TISS Reliability Analysis Presentation.
Charles Stark Draper Laboratory, Cambridge, MA. 1 May 1992.

199

[17] Schaffer, Caruana, Eshelman, and Das. "A study of control parameters
affecting on-line performance of genetic algorithms for function
optimization." Proceedings of the Third International Conference on
Genetic Algorithms. Ed. J. David Schaffer, Los Altos: Morgan Kaufinann
Publishers, Inc., 1989, pp. 51-60.

[18] Tillman, Frank, Ching-Lai Hwang, and Way Kuo. Optimization of
Systems Reliability. Marcel Dekker, Inc., 1980, pp. 231-238.

[19] Vander Velde, Wallace E. Unpublished notes on a Population Size Rule-of-
Thumb. Massachusetts Institute of Technology, Department of
Aeronautics and Astronautics. Sept. 1993.

[20] Wright, Stephen and Jorge J More\ Numerical Optimization Algorithms
and Software. Siam Tutorial, 10 May 1992.

[21] Neider, JA and R. Mead. A Simplex Method for Function Minimization.
Computer Journal, Vol. 7,1965.

200

