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This thesis incorporates a mixed discrete/continuous parameter genetic 
algorithm optimization capability into the Design Optimization/Markov 
Evaluation (DOME) program developed by the Charles Stark Draper 
Laboratory of Cambridge, Massachusetts. DOME combines the merits of 
Markov modeling and the Optimal Design Process to generate a systematic 
framework for system design with realistic reliability and cost analyses. The 
addition of genetic algorithms expands the design problem domain to include 
discrete parameter problems, which current optimization methods continue to 
struggle with. 

A new variant of the genetic algorithm called the steady-state genetic 
algorithm is introduced to eliminate the idea of distinct generations. Functional 
constraints are dealt with by ingenious use of the function information 
contained in the genetic algorithm population. The optimal genetic algorithm 
parameter settings are investigated, and the genetic algorithm is compared to 
the Monte Carlo method and the Branch and Bound method to show its 
relative utility in optimization. This research shows that a single criterion 
genetic algorithm can be expected to outperform other methods in efficiency, 
accuracy, and speed on problems of moderate to high complexity. 

The work then extends to multicriteria optimization, as applied to fault 
tolerant system design. A multicriteria genetic algorithm is created as a 
competitive means of generating the efficient (Pareto) set. Method 
parameters such as cloning, sharing, domination pressure, and population 
variability are investigated. The method is compared to the e-constraint 
multicriteria method with a steady-state genetic algorithm performing the 
underlying single-criterion optimization. This research shows that a genetic 
algorithm using dominance as a selection criterion exhibits excellent 
performance for efficient set generation. 
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1.0 Introduction 

1.1 Background 

Fault tolerance is defined as the ability to continue operating after the 
failure of a given system component. To be fault tolerant, a system must have 
one or more redundant components that can take over the function when the 
primary component fails. In addition, the system must have both a means of 
detecting failures in the components and a means of transferring to working 
components after a failure has been detected. Fault-tolerant system 
configurations are used extensively in processes where the system must 
remain on-line in the event of component failure. Although applications are 
widespread, industrial processes, aerospace vehicles, and ground 
transportation are especially noteworthy. The need for optimization in the 
design of these systems is apparent when one thinks of the complexity of 
modern spacecraft. The high costs associated with their fabrication and 
launch dictate that any design proposal be assured a very high probability of 

success at the lowest possible system cost. 
This thesis attempts to combine the robustness of the genetic algorithm 

with the proven effectiveness of the Markov Modeling method and the Optimal 
Design Process for fault tolerant system design. The efforts of this thesis are 
divided into two main sections: the first deals with the application of the 
genetic algorithm to single criterion fault tolerant design, while the second deals 
with the application of the genetic algorithm to multicriteria fault tolerant 
design. 

17 



Chapter 1 provides a brief overview of the Markov Modeling Method, the 

Optimal Design Process, and general mathematical programming. Chapter 2 
details the fault tolerant test problems used throughout this research. The 

next chapter introduces the concepts involved in genetic algorithm 
optimization and is followed in Chapter 4 by discussion of the Steady-State 

Genetic Algorithm developed independently for this research. The next two 

chapters, 5 and 6, discuss the difficulties involved in handling functional 
constraints and determining convergence in genetic algorithms. Chapter 5 
introduces a new concept called "fitness penalty" which uses the strengths of 
the genetic algorithm to create general, effective penalty functions. Chapter 6 

provides an outline of genetic algorithm convergence and the difficulty in 
determining a termination criteria. A method of predicting convergence is 
presented that relies on a measure of diversity in the genetic algorithm. The 
results for mutation rate and population size analyses are presented in 
Chapters 7 and 8, respectively, followed by a summary of genetic algorithm 

single criterion optimization in Chapter 9. 
The second section of the thesis begins in Chapter 10 with a background 

summary of multicriteria optimization and the various types of methods that 
fall into this category of mathematical programming. Chapter 11 illustrates 
two common generating techniques of multicriteria optimization that have 

applicability to fault tolerant design, followed by the introduction of a genetic 
algorithm that uses multicriteria dominance as its selection technique. This 
multicriteria genetic algorithm, or MCGA, is investigated in greater detail by 
the remaining chapters. Chapter 12 summarizes the parameters of the 
method that effect its performance and Chapter 13 lists some criteria by 
which its performance can be measured. The performance of the MCGA on 
two criteria fault tolerant system design problems is investigated in Chapter 
14, including the effect of three of the performance parameters. Chapter 15 
compares the performance of the MCGA to that of the constraint method, 
followed by a general summary of multicriteria optimization in Chapter 16. 
The final chapter of the thesis, Chapter 17, lists the various avenues of effort 

that further work could pursue to enhance the knowledge in this field. 
Before the methods of optimization that will be investigated are 

presented, the reader must understand the framework of this analysis. For 
this, we begin with an introduction of the modeling process of fault tolerant 

system design. 
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1.2 The Modeling Process 

The design of fault tolerant systems relies heavily on the availability, 
accuracy, and completeness of a model representing the system design. The 
development of an appropriate model becomes especially complex as 
component interdependencies and failure rates propagate with time. This 
section provides a basic outline of the modeling process for fault tolerant 

design. 
The process of generating a reliability prediction for a system can be 

divided into three steps [1]. First, the system needs to be carefully examined. 
The goal is to discover how the system operates and what are its critical 
aspects. This step results in a system description. Second, the impact of 
failures is explored. This step is often called a failure modes and effects 
analysis (FMEA). During this step, the accident modes of the system are 
delineated. Third, the Markov model is constructed. Information on system 
operation from step one is used to guide modeling decisions such as the proper 
representation for the human elements (this reflects the manner in which 
personnel affect the system operation). The model is a systematic 
representation of the FMEA from step two. 

The actual process of generating a model requires information on: 
architecture, component characteristics, operational requirements and 
reconfiguration procedures. The system architecture provides information 
such as what components exist and how they are connected, both physically 
and logically. The model also needs various component characteristics, such 
as failure and repair rates. The operational requirements provide a definition of 
what equipment or abilities are needed to achieve an operational state. The 
reconfiguration procedures are the actions taken when a failure occurs so that 
system operation remains in the most desirable mode. 

The model indicates when certain operational decisions impact safety 
(such as the rate of restoration of a specific safety function following a 
component failure). Also, sensitivity analyses indicate how different modeling 
assumptions and uncertainties in model inputs affect the results. A complete 
description of the Markov Modeling Method can be found in Appendix A. 
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1.3 Optimal Design Process 

Optimization implies the process of determining a set of function 

parameter values that cause a process to satisfy specified constraints and at 

the same time maximize (or minimize) some performance criteria (expressed 

as cost functions). Fault-tolerant system optimization normally requires 
extensive and usually subtle tradeoffs between factors such as component 
quality, reconfiguration strategies, level of redundancy, and operational 
policies. Optimization strategies must incorporate the conflicting effects of 
such constraints as performance specifications, reliability goals, and size and 

weight in order to design to minimize cost. The complexity of this process 
requires the availability of a systematic and efficient design approach capable 

of dealing with large numbers of components arranged in any number of ways. 

nvwi iw nnivuvMwniwnnfifvwwiftnfir ft t r t * Free Design Parameters 

System Description 
• architecture 
• rules of operation 
• redundancy mgt. 

Design Constraints 

System Model 
• failures 
• reconfigurations 
• repairs 

\ 

Cost Function 
(Performance measures) 

Designer 
Judgement 

user interaction 

Figure 1-1: Optimal Design Process 

Such a design approach should create a suitable system model and 
apply a computational algorithm that adapts readily to model changes and 
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reaches a satisfactory solution in a reasonable amount of time. As shown in 
Figure 1-1, the optimal design process can be formulated much like the optimal 
control problem. The solid arrows show the analytic path that correlates to the 
feed-forward path of control, with constant interaction from the external 
"control constraints" shown as the left column of boxes. Optimization forms 
the feedback portion of the control loop and completes the control-analogy to 
the optimal control problem. The behavior of the Optimal Design Process 
"plant" can be modeled to exhibit the same behaviors associated with control. 
This framework allows us to use much of the existing knowledge in optimal 
control to systematically solve the complex fault-tolerant design problem. 

Markov modeling techniques (Appendix A) have been increasingly used 
for reliability prediction. These techniques in conjunction with the Optimal 
Design Process framework have also been used successfully to aid in the design 
of fault tolerant systems. Specifically, past research efforts at the Charles 
Stark Draper Laboratory have created a general framework for integrated 
system optimization incorporating Markov models in the Design 

Optimization/Markov Evaluation (DOME) program. 
A Markov reliability model calculates the probability of the system 

being in various states as a function of time. A state in the model represents 
the system status with respect to component failures and the behavior of the 
system's redundancy management strategy. Transitions from one state to 
another occur at given transitions rates which reflect component failure and 
repair rates and redundancy management performance. Each element in the 
model's state vector represents the time-dependent probability of the system 
being in a specific state. Since the Markov model traces the evolution of state 
probabilities P based on the above mentioned transition rates, it is not 
explicitly simulating the system and therefore does not have the deficiencies 
associated with Monte Carlo techniques (see [1] for details on the Monte Carlo 
method as an additional reliability analysis technique). Sequence dependencies, 
such as repairs and redundancy management decisions, are included naturally. 
The Markov model is cast into a system of ordinary differential equations of 

the form: 

P = A(a)P (1) 

where A is the nxn transition matrix whose elements represent the transition 
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rates between system states, and a is the vector of input design parameters 

such as failure, repair or reconfiguration rates. As an example, a simple four 

state Markov system model is shown below. 

HE IF 
A FAILED 

2F 
A and B FAILED 

A and B OK 

B FAILED 

Figure 1-2: Simple Markov model for a dual component system 

The decay of the system from state 1 to state 4 is denoted by the failure 
rates X and A, • Repairs are effected at the rate u. This basic Markov 

framework can be expanded to model any fault tolerant system. A complete 
description of the process involved in obtaining Figure 1-2 is provided in 

Appendix A: "The Markov Modeling Process". 
Furthermore, the differential nature of the model means that it is not 

necessary to generate explicitly all possible combinations of events that can 
occur over the entire time period in question; rather, it is only necessary to 
model events that can occur during an infinitesimal time step. Of course, there 
are also some drawbacks to this method. First, the state space grows 
exponentially with the number of components. Nevertheless, techniques have 
been developed to render this drawback tractable in many situations of 
interest. Reference [1] covers this dimension problem in greater detail for the 
interested reader. The second drawback is that treatment of complex mission 
scenarios and repair strategies, although possible, are generally cumbersome. 

To summarize, the merging of the framework of the Optimal Design 

Process with the versatility, effectiveness, and efficiency of the genetic 
algorithm should provide a state-of-the-art capability for dealing with formerly 
intractable problems. It is the goal of this thesis to verify the validity of this 

assertion. 
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1.4 Single-criterion versus Multicriteria Optimization 

As stated above, fault-tolerant design requires extensive tradeoffs 
between factors such as component quality, reconfiguration strategies, level of 
redundancy, and operational policies. Therefore, optimization strategies must 
somehow incorporate the conflicting effects of such criteria as performance 
specifications, reliability goals, and size and weight in order to design to 
minimize cost. The Optimal Design Process is a very effective means of 
dealing with these conflicting criteria and generating a realistic system model. 

Whenever possible, the designer attempts to combine all criteria of 
interest into a single cost function. The creation of a single figure-of-merit for a 
problem enhances the ability of a search method to quickly and accurately 
generate a solution and often increases the decision maker (DM) satisfaction 

with the solution produced. 
The three most common criteria in fault tolerant design are (1) 

procurement cost, (2) availability, and (3) operating cost. Procurement cost is 
a configuration fixed quantity. It is solely dependent on the initial conditions for 
the problem. The availability (reliability) of the design depends on the states of 
the Markov model at the terminal conditions. The operating cost, however, is 
not a fixed time quantity. Operating cost is determined as an integral-over- 
time condition over the system's life cycle. 

A common example of this approach would be fleet design for an airline. 

Some airlines employ a "deferred maintenance'' concept, which strives to meet 
specified goals but allows maximum maintenance flexibility to decide when an 
where maintenance should occur. The issues involved include keeping aircraft 
operational, reducing the locations where heavy maintenance is performed, 
reducing the heaving maintenance frequency, reducing emergency repairs, and 
others. A single cost function that could be created for this type of problem is 

shown in equation (2): 

Iifecyde 

Costtota] = Unavailability«,,, +   j{Replacement«,, + RepairC0BtB + Waste«,^ (2) 
0 

If a relationship such as this between procurement cost, availability, 
and operating cost is known or satisfactorily approximated, a single scalar 

function can be formulated. If, however, a cost cannot be readily assigned to 
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availability, a multicriteria problem must be solved. 
Criteria are not always commensurate. For example, the design of a 

system may have to account for the desire to minimize collateral damage and 
mission preparation. The worth of human life and the value of time are 
incommensurate to most decision makers (DM) because of the difficulty 
involved in resolving the relative worth of human life in terms of hours. In such 
an instance, another framework for the design process is desired that takes 
conflicting criteria into account without unduly sacrificing the reliability of the 
solution or the time required to reach it. The focus of multiobjective 
programming is to provide the DM with a means of understanding the tradeoffs 

involved in the problem and to help him or her to identify a quality solution. 

Fortunately, multicriteria optimization problems also fit into the 
framework of the Optimal Design Process. Except for the fact that a single 
optimum solution does not exist in the normal sense and multiple cost 
functionals are maintained, Markov modeling still provides an effective means 
of achieving time-dependent reliability analysis on problem criteria of interest. 
Commensurate criteria should be combined into a single cost functional 
whenever possible, to avoid dealing with the complexities of multicriteria 
optimization and to regain the greater assurances of optimum. 

1.5 Mathematical Programming 

In any given search space for optimization, there are two types of 

optima: global and local. The definition of optima also changes depending on 
whether the goal is the maximum or the minimum of some value. Fault 
tolerant design deals primarily with costs, which almost always are to be 
minimized. As such, all optimums in this thesis should be considered 

minimums unless otherwise noted. 
A global minimum indicates the location in the search space with the 

very lowest cost function evaluation. A local minimum, on the other hand, 
represents the lowest cost function value over a limited portion of the search 
space. All optimization processes intend to locate the global minimixm, the 
constraints (either external or internal) imposed on optimization in a complex 
problem keep the search algorithm from complete assurance of finding the 
global minimum. Additionally, local minima may exist in the design space in 
the complete absence of constraints. Consequently, successful optimization 
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hinges on the search algorithm's ability to locate a minimum that satisfies 

performance criteria. 
The fault-tolerant problem formulation developed here must be solved 

by some combination of four mathematical programming approaches: 
1) Linear programming where both objective and constraints are linear 

functions of decision variables, 
2) Non-linear programming where at least one function is non-linear, 
3) Integer programming where the solution must lie in the integer set, 
4) Discrete programming where it is required that the solution lie within a 

chosen set of discrete values. 
DOME has a versatile and well-tested continuous parameter 

optimization capability capable of solving non-linear programming problems 
[8]. This means, however, that like most capabilities available today, it lacks 
the means of dealing with many real-world problems. The ability to deal with 
integer and discrete problems are important because realistic design must 
often deal with a finite number of available components, quality levels, limited 
personnel expertise or scheduling conflicts, equipment settings, etc. 

Dealing with discrete programming problems is not a trivial undertaking. 
George Dantzig, the creator of the famous simplex linear programming method, 
once said that the first phase in doing an integer programming problem is to 
try to convince the user that he or she does not wish to solve an integer 
programming problem at all! [5] 

We have chosen to develop the capability to perform discrete 
programming into the DOME framework because unlike other analytic 
approaches that require explicit formulas for state probabilities, DOME is a 
general framework applicable to a wide range of real-world fault tolerant design 
problems. In addition, DOME's modular design readily incorporates new 
developments in optimization techniques—which makes it perfect for testing 
the benefits genetic algorithms can bring to discrete and mixed 
continuous/discrete fault tolerant design optimization. 
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2.0 Description of Test Problems 

Four fault tolerant test problems have been selected, representing three 
stages of increasing complexity. The four are referred to as Warning Lamp, 
Asymmetric Lamp, Triplex, and TISS. 

2.1 Warning Lamp Problem 

The most basic problem used is the Warning Lamp problem described in 
detail in [8]. Briefly, Warning Lamp is a design problem for a dual redundant 
fault tolerant system. The system makes use of a "warning lamp" to signal a 
system operator that a manufacturing process requires adjustment to 
continue producing usable product. Failure to make the adjustment will result 
in production of unusable product and lost profits. At the end of the production 
run (system life cycle), the system will be subject to an audit and total failure 
of the system at this time will result in a cost penalty. 

The design specifies that a dual redundant lamp will be used. Each lamp 
will be testable for malfunction and repairable only by qualified repair 
personnel, who check the system at regular intervals. The design goal is to 
maximize life cycle profit by choosing the optimal quality lamp for each of lamp 
1 and lamp 2 and scheduling an optimal repair schedule. The better the 
quality, the more the lamps cost; adding repair visits increased cost; and 
emergency repair visits between scheduled intervals due to failure of both 
lamps requires high cost penalties. 

Warning Lamp was used to verify the single criterion genetic algorithm 
(ga) code development and is shown here to illustrate the typical fault-tolerant 
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design formulation. It is also used as a continuous parameter problem to 
compare the ga against the present capabilities of DOME. The derivation of 

the Markov model for this system is described in Appendix A. 
There are four Markov states in this three parameter model (see Figure 

1-2) that correspond to both lamps operational, the loss of the first lamp, the 
loss of the second, or both of the dual redundant lamps off-line. The two lamps 
contained identical components and repair is allowed from all failure states. 
The search space of this problem has a single, well denned minimum with 
gentle characteristics in the vicinity of the minimum. The smoothness of this 
simple problem makes it especially easy for gradient based optimization 
methods. The figure shows the shape of the cost function when the failure 

rates are not allowed to vary independently. 

■S 

n 
O u 

12       m .— ^-l^/ [llj^y /2   failures/mil hours 
T——^ repairs/year 4 2 

Figure 2-1: Mesh plot of Warning Lamp problem 

The cost function for this problem is formulated as (see Appendix A): 

J = P4(T)Cfa + Jo
T {y[Cr + (P2Clpl) + (P3Clp2) + P4(Clpl + Clp2)] + P4Cpl}dt (1) 
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The cost function has many components. First, regardless of whether a 
failure occurs or not, the repairman costs Cr for each visit. For this example 
Cr was $25. The frequency of his visits (i.e. maintenance frequency) is a 
continuous design variable y. The second, third and fourth terms in the integral 
are the cost of lamp replacement, Cipi and CiP2- The problem statement 

allows for the choice between three different, distinct lamp qualities: 

lamp quality MTBF (hr.) cost per lamp 
average 

high reliability 

ultra high reliability 

le+05 
5e+05 

10e+05 

$1 
$10 

$ 100 

Table 2-1: Lamp cost versus quality level 

Note that mean-time-between-failures (MTBF) for the average quality 
lamp is slightly higher than the 10 year (87,600 hour) life cycle. The cost of 
lamp quality in the cost function is approximated by a polynomial curve fit 
across the range of qualities. This polynomial curve fit is necessary for most 
optimization methods that directly apply or indirectly use continuous 
optimization techniques (see Appendix B: "The Branch and Bound Method") to 
arrive at the final discrete solution. The importance of curve fit is mostly 
ehminated here since the fit matches the actual cost at the discrete points of 
interest. The final term in the integral is the cost of operation when a dual 
failure exists. The profit loss rate Cpi was $1000 for this example. The 

terminal portion of the cost function is concerned with conditions that exist at 
the end of the production run. If the system is found to be in the dual lamp 
failure state at the end of production, P4(T), a cost penalty of Cfa equal to 

$100,000 will result, representing an entire lost batch of product. 
The state transition matrix is 

A = 

-(A* + A.b)      y Y       Y 
A*      -(A* + y)      0       0 
Ab 0      -(Aa + y) 0 

0 Ab Aa      -y 

(2) 

This state transition matrix A is representative of those of the 
remaining problems in the test set. Its development is detailed in Appendix A, 

where the Markov modeling process outlined. Note that each column of A adds 
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to zero, allowing Equation (2) to step forward in time via ordinary differential 
equations. This is only one of the reasons that the Markov modeling method is 

recommended for fault tolerant system design. 

2.2 Asymmetric Lamp Problem 

The second stage of testing consists of two problems of higher 
complexity than that of the Warning Lamp problem. The first is called the 
Asymmetric Lamp problem and is derived from Warning Lamp. 

In the Warning Lamp problem, a manufacturing system makes use of a 

dual warning lamp to signal an operator that a manufacturing process requires 

adjustment to continue producing a usable product. Once a dual lamp failure 

occurs (both lamps failed simultaneously), it is assumed that the system 
immediately needs adjustment and produces an unusable product, and loss of 

profits, until the lamps are repaired and the process adjusted. To insure proper 
working of the lamps a qualified repairman is contracted to check the system 
on a regular interval, ranging from as frequent as once every three days (87.72 

hour intervals) to as infrequent as not at all during the ten year life cycle 
(10,000 hour intervals). Each visit requires a repair fee and the cost of any 
lamps replaced. Moreover, at the end of the production run, the system is 
subject to an audit and total failure of the system at this time results in a cost 
penalty. The three design variables in the problem were the two lamp qualities 

and the repair frequency. 
The primary difference between the Warning Lamp problem and the 

Asymmetric Lamp problem is that the lamp failures will be considered discrete 

variables instead of continuous variables. In this way, we more accurately 
model the actual system. Additionally, we will know that the solution obtained 

is indeed an extremum for the situation considered. We will not have to 
concern ourselves with rounding to the nearest lamp quality level, as a solution 
to the Warning Lamp problem may require. Also, we will know that the cost 
(problem solution) will be accurate since we will not have to interpolate 
between costs for different quality levels. The repair interval remains 
continuous since the repairman can come as frequently or infrequently as 
desired. The resulting problem has much of the same characteristics as the 
Warning Lamp, but it represents a mixed continuous and discrete parameter 

problem more typical of fault tolerant design. 
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To observe optimization methods' performance more clearly and 
increase the problem complexity, the cost of one of the lamps is altered to 
create an asymmetric solution. One of the lamps is considered the primary 
lamp that must put out more light and so costs more. The actual qualities and 

costs are given in the table below. 

lamp quality MTBF (hr.) cost per lamp A cost per lamp B 
average 

high reliability 
ultra high reliability 

le+05 
5e+05 

10e+05 

$1 
$10 
$100 

$100 
$ 1,000 

$ 10,000 

Table 2-2: Asymmetric lamp cost versus quality level 

Other than the change in lamp cost, the rest of the problem is similar. 
Both the Asymmetric Lamp and Warning Lamp problem can be represented 
by the diagram in Figure A-3, the Markov model in Figure 1-2, and the cost 
function in equation (1), shown below. As Table 2-2 shows, the Asymmetric 
Lamp has the same failure rates for both lamps, but the two lamps are 
treated as different cost components in the cost function. In other words, while 
both lamps choose between components of the same quality range, the 
components for lamp 2 cost two orders of magnitude more than those for lamp 
1. This creates the problem asymmetry that generates a search space with 
multiple optima. Equation (1) is shown to help illustrate the form of the cost 

function: 

J = P4(T)Cfa + Jo
T {y[Cr + (P2Clpl) + (P3&P2) + P4(Clpl+ Clp2)] + P4CPi]dt (1) 

The cost function has many components. First, regardless of whether a 
failure occurs or not, the repairman costs Cr ($25) for each visit. The 
frequency of the visits is a continuous design variable y. The second, third and 
fourth terms in the integral are the cost of lamp replacement, Cipi and CiP2. 

The final term in the integral is the cost of operation when a dual failure exists. 
The profit loss rate Cpi was $1000 for this example. The terminal portion of 

the cost function is concerned with conditions that exist at the end of the pilot 
production run. If the system is found to be in the dual lamp failure state at 
the end of production P4(T), a cost penalty of Cfa equal to $100,000 results. 

The state transition matrix (A) is the same as in equation (2). 
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This problem is used to test the genetic algorithm's capability to 
optimize problems with both continuous and discrete parameters. In order to 
do this, the two failure rates are treated as discrete parameters with 16 bins 
(discrete values) for each, while the repair rate is kept continuous (represented 

by 255 discrete points by the genetic algorithm methods). The remaining 

problem information can be found in Table 2-3. 

String length 16 

Continuous parameters 1 

Discrete parameters 2 

Values per discrete parameter 16 

Design space points 65280 

Markov model states 4 

Model time duration 10 years 

Table 2-3: Asymmetric Lamp problem data 

There are three known minima found by exhaustive search of the design 

space that are used to provide a reliability comparison of the discrete 
optimization methods used in this thesis. These minima are described in Table 
2-4. Parameters one and two are the discrete failure rates and the third is the 
continuous repair rate. The parameter values are given in a normalized range 

from 1.0 (their highest value) to 0.0 (their lowest). 

cost parameter 

1 

(1) (2) (3) 

0.0 1.0 0.5 0.72 

2 185.3 1.0 0.0 0.77 

3 254.6 1.0 1.0 0.00 

Table 2-4: Asymmetric Lamp problem minima 

The costs of Table 2-4 are also normalized. A value of 0.0 represents 
the global optimum, while 100 is the value Monte Carlo analysis produced for 

400 points. 
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2.3 Triplex Problem 

The other problem of the second level of problem complexity is the 
TRIPLEX problem. Triplex is a system containing three redundant 
components, with assumed operational capability when at least one 
component is still functional. The parameters of interest are the failure rates 
for the three system components. Repair is kept as a fixed parameter not 
used in optimization to limit the problem complexity. It is initiated following 
the second failure or at regularly scheduled intervals of (i = 0.2 (5 hours). Each 

of the failure rates is allowed to vary independently. 
Triplex is treated as the first all-discrete problem. It contains 8 states 

in its Markov model: 

Figure 2-2: Markov model of TRIPLEX problem 

As in the previous two problems, the cost functional contains an integral 
portion, reflecting the cost of repairs over the system life cycle, and a terminal 
part, representing a penalty for the system not being available at the end of 
the scenario. The resulting cost functional for the TRIPLEX problem is 

represented as: 

J = 
SPj(T) 
J=1 

— 1 
T   8 

0 i=5 

-*■+ a3 + a4u+-f- Pj(t)jiWt (3) 

In this equation, \'s are the component failure rates affecting P{, [i is 

the fixed repair rate, and the a's are the cost factors. The state probabilities Px 

to P4 are availability states, while P5 to P8 are unavailability (repair) states. 
The reciprocal of the availability states is used to determine the probability of 
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system unavailability at the end of the life cycle (T) of 1,000 hours. The failure 
rates are treated as discrete parameters with ten possible rates equally 
spaced logarithmically between le-05 and 0.1. The values shown in Table 2-5 

are based on a replacement system cost of $2.5 million and represent the 

values needed for equation (3). 

symbol value function 

H 2.0e-01 repair rate (hr1) 

ai 2.5e+06 system replacement cost ($) 

a2 
2.5e+04 overhead ($) 

a3 2.5e+01 labor rate ($/hr) 

a4 
2.5e+04 repairability ($ hr) 

afi 5.0e+04 quality factor (S/hr2) 

Table 2-5: TRIPLEX cost function constant values 

The cost factors (aj for the problem are chosen to bias the repair cost in 
the overall cost function, resulting in multiple optima in the feasible design 
space. The bias was created by multiplying ax by 0.01 to significantly reduce 

its effect on the cost function. 
Design and implementation information for this problem is included in 

Table 2-6. 

String length 

Continuous parameters 

Discrete parameters 

Valuesi per^,.^screte.parameter 

Design spacejgoints 

Markov model states 

Model time duration 

12 

0 

10 

1000 

8 

1000 hours 

Table 2-6: TRIPLEX problem data 

Each of the parameters are given 10 bins. Providing ten bins causes an 

additional complexity in that 6 (16-10) bit combinations of each genetic 
algorithm string are simply not allowed. The treatment of these disallowed 

values is explained in Section 3.3. 
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TRIPLEX has five (5) known minima described in Table 2-7, found by an 
exhaustive search of the design space. The values are normalized in the same 

manner as was done in Table 2-4. 

cost parameter 

1 
(1) (2) (3) 

0.0 0.51 0.51 0.51 

2 493.6 0.99 0.49 0.49 

3 493.6 0.49 0.99 0.49 

4 493.6 0.49 0.49 0.99 

5 3322.0 0.00 0.00 0.00 

Table 2-7: TRIPLEX minima 

Triplex is not a very complex problem, but the various unconstrained 
minima allow proper testing of the optimization methods' solution reliability. 

2.4 TISS Problem 

The final problem is the most complex by far and represents a real-world 
fault tolerant design optimization problem. TISS stands for Trans-Ionospheric 
Sensing System and is a problem actually analyzed for the US Air Force by 
C.S. Draper Laboratory, Cambridge MA. The TISS problem used here is a 
slightly simplified version consisting of a 33 state Markov model with 17 
optimization parameters. The 17 parameters of the model represent the 15 
major system components and two repair rates. Each parameter is provided 5 
discrete component options of varying quality and cost. 

The TISS configuration consists of a dual redundant system that will 
process and store Global Positioning System (GPS) data. TISS is designed to 
operate autonomously in remote regions of the world. Infrequent scheduled 
maintenance and critical unscheduled repair visits will be design variables with 
a high associated cost due to the remote location. Remote access to the 
system is permitted via three dial-up telephone lines. The design architecture 
will look at minimizing the total life-cycle costs over a 5.7 year period while 
considering such items as reliability, maintenance, overhead, and component 

costs. 
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Table 2-8 shows the implementation data for this problem. 

String length 
Continuous parameters 

Discrete parameters 
Values per discrete parameter 
Design space points 
Global minimum 
Markov model states 
Model time duration   

51 
0 

17 
5 
7.63E+11 
unknown 

33 
5.7 years 

Table 2-8: TISS problem data 

This problem is used for much of the analysis performed in this thesis. 

The Markov model is constructed following the guidelines of Appendix A, with 

some additional state reduction schemes employed to keep the problem 
tractable. The size of the resulting system model, with 33 states and two 
independent repair rates represents a practical example of realistic fault 
tolerant design. The computational effort needed to run this problem on 

several machines is shown in Table 2-9. 

Platform 

seconds per 
cost function evaluation 

Macintosh Ilex 10.5 

MacIntosh^^adraTOO^ 1.83 

Ma^tosh^Qua^aSöO  

IBM RS6000 Workstation 

1.55 

0.83 

Quadra 700 with 
PowerMac Upgrade Card* 

0.20 
(* optimized compiler) 

Table 2-9: TISS problem computation time on various 
platforms 

Additional information necessary for the implementation of this problem 

can be found in [1]. 
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3.0 Genetic Algorithms 

3.1 Background 

The genetic algorithm (ga) was developed a quarter century ago by John 
Holland, et. al., at the University of Michigan with two goals in mind: (1) to 
abstract and rigorously explain the adaptive processes of natural systems, and 
(2) to design artificial systems that retain the important mechanisms of 
natural systems [7]. Over the years, the genetic algorithm has developed into 
a reliable means of dealing with a wide range of problems. Our intent here is to 
maintain a high reliance on natural, evolutionary mechanisms to find quality 

solutions to difficult fault tolerant system design problems. 
Genetic algorithms use random choice in a directed search process for 

optimization. This search is randomized, but its use of mechanisms found in 
natural genetics to improve the solution distinguishes it from random search 
methods in the strictest sense. The basic features of the ga that separate it 

from other methods are that it: 
1) works with a coding of system parameters, not the parameters themselves, 
2) searches from a population of points, not a single point, 
3) uses payoff information only from the objective function, not derivatives or 

other auxiliary knowledge, and 
4) uses probabilistic transition rules, not deterministic rules. 

Genetic algorithms use reproduction, crossover, and mutation as their 
three basic operators. In the implementation of this thesis, the ga takes the 

form shown in Figure 3-1: 
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initialization 
evaluation 
while not done 

reproduction 
crossover 
mutation 
evaluation 

end 

Figure 3-1: Flow diagram of the genetic algorithm 

The ga works because it reproduces high-quality (fit) notions according 

to their performance. These notions are allowed to mate with many other high- 

quality notions of other strings to combine the notions into superior individuals. 
Finally, the crossover and mutation operators speculate on new ideas 
constructed at random (mutation) and from the experience of past trials 
(crossover). Mutation is a necessary operator because reproduction and 
crossover may lose some potentially useful genetic material; injecting diversity 
by way of mutations improves the probability of locating the global optimum. 
However, just as in natural genetics, it needs to be used sparingly to keep from 
disrupting beneficial information already in the population and to allow the 
algorithm to converge to a solution without unnecessary delay. Appropriate 

use of reproduction, crossover, and mutation enhance the robustness of the 
genetic algorithm as applied to the design of fault tolerant systems. 

The notion of robustness is very important to the development and use 
of the genetic algorithm and can be described as follows. Suppose that the 
problem of interest P belongs to a set & of problems that contain all variations 
of P that meet some criteria of similarity. In this thesis, ^contains all fault 

tolerant design problems with characteristics in common with those described 
in Chapter 2, "Description of Test Problems". A design method, M, is robust 
with respect to the optimization of P if its characteristic optimization 
performance, C, holds for every problem in &. Robustness requires a set •$**, a 

method M, and some characteristic C of M. In this thesis, robustness refers to 
the optimization of the problems described in Chapter 2, and the degree of 

exploration and efficiency that a method attains. 
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Exploration as defined here refers to an ability to master the design 
space—to provide outstanding solutions to & with incredible reliability. 

Exploration can also be described as the effectiveness of a method (efficacy). 
Perfect method exploration would achieve the global optima of every problem 
in & 100 percent of the time. Methods that achieve high effectiveness usually 

examine a large fraction of the design space. Therefore, exploration usually 
comes at a cost to efficiency. 

Efficiency refers to the degree of effort necessary to achieve 
effectiveness. Efficient optimization methods spend little or no time searching 
non-optimal/locally optimal portions of the design space and proceed directly to 
global optimum. 

In essence, robustness provides some balance between exploration and 
efficiency, allowing the search method's survival in many design environments. 
Robustness is desired because it reduces design effort and time and increases 
the quality of solutions produced. As stated in [7], "where robust performance 
is desired (and where is it not?), nature does it better; the secrets of adaptation 
and survival are best learned from the careful study of biological example". 

Genetic algorithms are the product of such biological study. Twenty 
years of research has verified the robustness of the ga in general, and it is the 
intent of this thesis to prove their robust application to the design of fault 
tolerant systems. 

3.2 Traditional Genetic Algorithm 

The most common implementation of genetic algorithms is commonly 
called the traditional genetic algorithm (tga). In the tga, a. generation 
represents the genetic algorithm population of members at the current "time". 
"Time" within the algorithm represents the linear progression of a population 
through successive generations and is analogous to time in an evolutionary 
sense. The population size (P) normally remains fixed from generation to 
generation. The genetic algorithm evolves its population in "time", always 
striving to improve the overall fitness ("worth" of individual members) of each 
successive generation. 
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The traditional genetic algorithm used in this thesis is a modified version 
of the classical tga used in single criterion optimization. It can be classified as 

a tga by having the following characteristics: 
1) binary (0 and 1) parameter encoding 

2) generational reproduction 

3) fitness normalization 
4) elitism (optional for tga classification) 
5) crossover and mutation operators 
This tga is modified only in characteristic 5 in that a two-point crossover 

is used instead of the traditional one-point crossover technique. 
The tga developed for this thesis uses appropriate implementations of 

the three basic operators based on their ability to enhance the robustness of 
the method. The corresponding probabilities (settings) of the operators and the 
appropriate population size are examined and the results compared with other 
direct search methods. The aim is to establish robust values of these 
parameters applicable to many fault tolerant system design problems. 

The diagram below shows how the tga operators manipulate population 
members in an effort to evolve a new generation, separate from the previous, 

that has a better average fitness. 
Generation T Generation T+1 

1 

2 
random member A selection 
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Figure 3-2: Traditional genetic algorithm reproduction cycle 
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3.3 Coding and Schema Theorem 

Coding a problem into a form compatible with the ga is not generally 
difficult. The robustness of the ga allows it to be forgiving of the form the 
problem is presented in, but [7] provides two simple principles that reasonably 
govern the efficiency of the method: 

1) The user should select a coding so that short, low-order schemata 

are relevant to the underlying problem and relatively unrelated to 

schemata over other fixed positions. 
2) The user should select the smallest alphabet that permits a natural 

expression of the problem. 
To understand these principles, first one must know the "schema 

theorem." Schema theorem states that the ga works because it propagates 
encoded building blocks of valuable problem information at exponentially higher 
rates and in parallel through the use of a population. 

Genetic algorithms exploit similarities in the string coding when the 
schemata (plural for schema) represent optima. A schema describes a 
template of similarity among ga strings. In the case of binary coding, the 
alphabet of the schema has three characters: 0,1 and *, where the "don't care" 
(*) signifies that we "don't care" if the bit in question is a 1 or 0. For example, 
the schema 0**1 on a four bit string can represent four different strings: [0001; 
0011; 0101; 0111]. The length of a schema is the inclusive number of bits from 
its first to its last 1 or 0 bits. In schema 0**1 the schema length is 4, while 
*11****** has a length of two. Note that the * is only used for notation and is 
never explicitly referenced by the ga. 

The schemata must be naturally represented by the alphabet used to 
allow the ga operators to fully exploit the design space. For example, consider 
how one could encode the first eight integers. A binary string of length 3 would 
fully represent these values, with one corresponding to [0 0 0] and eight to 
[111]. Another alphabet for this problem would be A-H, where one 

corresponds to A, two corresponds to B, etc. 
In fault-tolerant design, like most discrete engineering problems, the 

parameters being coded are physical quantities (weight, size) or probabilistic 
quantities (failure rate, repair rate, coverage), which are naturally represented 
by either of the two forms given above. In the example above, both alphabets 
give a complete and accurate representation of the first eight integers. 

41 



However, what happens if only the first 5 integers are desired? 
In this case, the second nonbinary alphabet can be reduced to A-E, to 

again represent the parameter. However, the binary alphabet is restricted to 

21 dimensions, where 1 is the length of the string. A binary representation of 
the first 5 integers requires the same binary string length as the first 8 (1=3). 
This leads us to have to consider what influence the extra three values will 
have on the ga operation, but first let us look at the impact of principle (1). 

Principle (1) implies that the problem coding should provide a maximum 
of schemata. Alphabet cardinality influences the string length required to 
represent a parameter; to equate schemata of coding schemes of different 
cardinality, we can watch the relationship of binary string cardinality (2*) 
where 1 is the binary string length, to nonbinary string cardinality represented 

as k*', where 1' is the nonbinary string length: 

Binary string schemata      = 31 

Nonbinary string schemata = (k +1) 

From these relationships, the number of schemata formed from a 
particular problem coding can be determined. Using the first 8 integers for 
example, k=8,1=3, and l'=l, such that the number of schemata are 27 for the 
binary string and 9 for the nonbinary string. Binary coding allows the 
maximum number of schemata to be available for ga exploitation. 

Binary coding is desirable for design space exploration, but again we 

return to the impact of undesired bit combinations on a binary string. One 
means of restricting their impact is to only generate initial population strings 

in the feasible range, but the impact of mutation and crossover still applies. 

This issue could be dealt with in one of several ways: 
1) Fill the empty portion of the 21 string with values from the acceptable set 

(i.e. [1,2,3,4,5,+ 1£,3] = 2% = 8 ). 
2) Ignore the generated disallowed string(s) and retain the parent(s). 
3) Reinitialize disallowed parameter values at random into the acceptable set. 
4) Fix the higher order bit and/or place at the parameter limit (i.e. if 6, 7, or 8 

are created, place the parameter at 5. 
5) Revert the disallowed parameter to the acceptable value it possessed prior 

to crossover or mutation. All changes made to other parameters of the 

string are retained. 

42 



Option 1 places the repeated portions of the design space in a more 
favorable likelihood of occurrence unrelated to their fitness and therefore 
biases the optimization process. Obviously it is desirable to retain as much of 
the reproduction effort as possible, so options 2, 3 and 4 would negate much of 
the effort generated. Option 3 introduces a whole new, and highly schemata 
destructive operator into the algorithm, while option 4 negates the whole 
randomized notion of the ga and imparts a rigidity to the algorithm that ignores 
any beneficial information the parameter previously may have contained. 
Consequently, option 5 is used in this analysis. If the two-point crossover 
affects two or more adjacent parameters, only that parameter that becomes 
disallowed is reverted to the previous value to maintain as much of the 
reproduction effect as possible. This issue will be examined in Section 8.5 to 

observe its impact. 

3.3.1 Fault Tolerant Parameter Coding 

In this research the selection of a parameter value is limited to the 
number of discrete bins provided by the user, all with equal likelihood. The 
discrete bins are the acceptable solution values recognized by the decision 
maker (DM) for the problem. Some problems are not solely discrete however, 
and have a combination of discrete and continuous parameters. In such a 
case, 256 (eight bit representation) linearly spaced discrete values are created 
to represent each continuous parameter. Note however, that these strings are 
cast independently of what bin values correspond to the bin numbers the ga 

operates on. 
For example, a fully continuous three parameter problem with 

parameter ranges: [le-10 to le-04], [rc to 2TC ], and [1+jlO to 1+J70], could be 

represented by a string: 

[0 001000 0|1010000 1|0 1111111] = [16|161|127] (2) 

The ga does not care directly about the parameter ranges. The ranges 
are extraneous information used solely to determine string fitness. 

The bit size of each parameter (word) on a string is calculated 
independently as well. The size of a word corresponding to a continuous 
parameter is 8 bits (0 to 255), while discrete parameter word sizes are 
calculated independently as a "best fit". For example, 3 bins fit into a 2 bit 
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word, 8 bins into 3 bits, and 9 bins into 4 bits. How the "wasted" space on the 
fourth bit in this last case (4 bits holds 16 numbers, but only 9 are used) 

affects the ga is explored in Section 8.5. 
Continuous parameter optimization must ensure that the encoding 

resolution is fine enough to realize a continuous-like representation along the 

applicable axes. In order to keep the manipulations required by the algorithm 
as simple as possible for memory and speed considerations, all continuous 
parameter encoding in this thesis is done on single byte binary strings. A single 
byte, 8 bit, string contains integer values from 0 to 255. This choice was made 
with the full knowledge that it places a limitation on the algorithm, but that if a 
particular representation does not provide adequate resolution, it can be fixed 

by reducing the range of interest, using a longer string, or using the scaling 

technique described below. 
In this research, using 256 values for continuous parameters may limit 

the sensitivity of parameters with large ranges. For example, if linear mapping 
is used for a parameter with the range [le-10 to le-4], it would have bin values 
separated by 3.92e-7. In other words, the first three recognized continuous 
values would be le-10,3.92e-7, and 7.84e-7. This type of mapping makes it 
unlikely for the algorithm to find minima located at the lower end of the range 
because the parameter values of the population will likely be evenly distributed 
across the entire range, making le-10 an unlikely possibility in normal 
population sizes. It is also impossible for the ga to locate any minima that 

may occur between le-10 and le-7, for example. 
In the design of fault tolerant systems, the engineer is often looking at 

parameter values covering orders of magnitude, especially when considering 
failure rates and possibly even repair rates. In light of this, a logarithmic 
mapping is used in this thesis so that equal logarithmic spacing is provided to 
continuous parameters for better sensitivity at the lower end of parameter 
ranges. If the engineer believes that linear mapping is more appropriate to his 
or her problem, a simple change of the ga code will allow that capability. 

If we wish to represent a parameter in the range [le-10 to le-4] with an 

eight-bit string, we need to know how much resolution the encoding provides. 

Table 3-1 shows the associated resolution. 
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bit value parameter value difference 

0 1.000e-10 
1 1.056e-10 5.57e-12 
2 1.114e-10 5.88e-12 
3 1.176e-10 6.20e-12 

253 8.973e-5 4.73e-6 
254 9.947e-5 9.74e-6 

255 10.000e-5 10.53e-6 

Table 3-1: Logarithmic parameter-to-string mapping 

The worst resolution always occurs at the upper bound of the parameter 
when scaling is logarithmic, but in this case it never exceeds 11 percent of the 
value to which it corresponds. Therefore, the single byte continuous parameter 
representation should provide resolution sufficient to represent all but the 
most unusual parameter ranges. 

3.4 Population Initialization 

The first step of the ga is to create independent strings which form the 
initial population. The initial population of strings for the ga can be created in 
many different ways as long as a wide diversity of characteristics are 
represented, i.e. the first generation initialization should cover the search space 
as thoroughly as possible. In this research, the initial population is created at 
random by randomly generating parameter values on each string. 

3.4.1 Initial Guesses 

Sometimes the decision maker (DM) has a good idea where the 
parameter values should lie and wishes to inject that hypothesis into 
optimization routine. This initial guess is mandatory in optimization tools that 
do not operate on a population. Such methods are also extremely sensitive to 
the quality of the guess unless a means of adding robustness, such as 
simulated annealing, is applied. Regardless of the safeguards used, however, 
the ga has the vast advantage in that instead of requesting a good guess, it 
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requests diverse guesses. As a consequence, the ga exploits the advantageous 

schemata of a DM provided guess and ignores the rest ofthat string. 

3.5 Reproduction 

In this thesis, reproduction occurs in one of two ways, depending on 
whether single or multicriteria optimization is performed. Single criterion ga 
reproduction selection and fitness testing to determine which individuals of the 
population will be reproduced based on factors equivalent with environment, 

mating preferences, and individual strengths. The second manner of 
reproduction, used in multicriteria optimization, incorporates tournament 

selection, and is described in Section 11.3.1. 
Selection is simply the means by which members are "selected" for 

fitness testing. Fitness scaling maps the relative "worth" of strings of the 
population into a simple, strictly positive function that the ga can easily 
recognize and optimize. It has the additional benefits of separating the ga 
optimization from the underlying problem complexities, which adds to the 
method's versatility, and allows the incorporation of "survival of the fittest" 
into the optimization procedure via a standardized, normalized, and readily 
interpretable scale of relative string worth. Adapting the fitness coefficients to 
penalize members that violate function constraints is another benefit of 

fitness mapping (see Chapter 5). 

3.5.1 Selection 

Selection is performed randomly to enhance the diversity of the mating 

pool. Two members of the current population are chosen to be parental 
strings. Parents that "survive" have the ability to mate and produce offspring 
that (1) form a new generation in the case of the traditional ga or (2) 
strengthen the population in the case of the steady-state genetic algorithm 

(defined in Chapter 4). 
First, two members of the current population are chosen at random to 

reproduce. In order to actually reproduce, however, these members must meet 
the current fitness requirement. This is accomplished by the algorithm by 
comparing the evaluated fitness of each member to a random number—if the 

fitness exceeds that number, the member is allowed to reproduce, otherwise 
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another member is selected at random and is tested in the same way until two 
members have passed the test. In this way, all members have a chance to 
reproduce, but the most fit members are more likely to pass the fitness test 
and will consequently produce more offspring. Hence, survival of the fittest! 

3.5.2 Fitness Scaling 

Fitness is a criterion for parent "survival''. Fitness testing corresponds 
to the Darwinian theory of "Survival of the Fittest". A fitness function, which 
provides a mapping of the problem cost function on a scale of string "worth" or 
"value" recognizable by the ga, is formulated as a scale against which strings 
can be compared to determine their expected ability to improve the population. 

Optimization is normally a problem of maximizing some performance 
criterion, and the genetic algorithm is no exception. Fault tolerant system 
design as it is addressed here (as well as many problems in optimization), 
however, is one of minimization, where the choice and configuration of 
parameters are meant to minimize some cost function—a lower cost 
represents a better system. One of the benefits of the genetic algorithm is 
that it doesn't care what the problem looks like, nor does it care what kind of 
cost function is involved. All that matters to the algorithm is that it has a 
string (chromosome) that it wishes to manipulate in order to maximize some 
fitness function. 

The fitness function and the cost function must have a one-to-one 
relationship, but they can be arbitrarily related. In fact, the simplest way to 
make the genetic algorithm minimize a cost function is to make the fitness 
function that the algorithm is concerned with inversely related to the cost 
function. By making high fitness evaluations equal to low costs, the algorithm 

minimizes without even knowing it. 
The fitness scaling function should be created to maintain suitable 

disparity between all members of the current population. This disparity allows 
all members the opportunity to generate offspring while the scaling keeps the 
proportion of the worst members only high enough to maintain population 
diversity. This diversity is a key advantage of the genetic algorithm because 
even though a particular string may have a high cost, it may contain 
schemata particularly beneficial to reaching a global optimum when combined 

with the schemata of other strings through crossover. 

47 



The most common methods of fitness mapping are cited in [7] and [3]. 
Roulette wheel fitness provides fitness based on a string's cost relative to the 
rest of the population. Windowing uses the costs associated with the string, 

and merely adds or subtracts a limit to influence the fitness values. Finally, 

linear normalization orders the strings from a fixed maximum at some 

decrement. The first two are particularly oriented toward maximization 
problems, which are not of interest in the context of most fault tolerant design. 
Linear normalization, or simple ordering, is an effective methods that 
accomplishes minimization as well as maximization by producing a partial 
order of strings. It has the drawback, however, of requiring the entire 
population to be sorted for each new individual. None of these methods 
warrant use in serious fault tolerant system design optimization. 

One of the most powerful and simplest fitness schemes is inverted linear 

fitness scaling. It accomplishes the goal of string competition because it 
provides a complete mapping from cost function to fitness and it has excellent 

qualities for function handling. Fitness normalization, function inversion, and 
strictly positive fitness are all easily created using linear scaling for superior 
fitness mapping results. As noted by [7], linear scaling helps prevent the early 
domination of extraordinary individuals, while later encouraging a competition 
among similar strings. In the tga, the fitness scale is updated each new 
generation when the new population is ready to begin mating. 

The following method of fitness scaling, suggested by Dr. W.E. Vander 
Velde of MIT, begins by making a linear fitness function with a negative slope. 

The scaled fitness function for the entire population is: 

Fi — F max di — d min /«x 

F nrin— J max       d max— d min 

Fj represents the fitness value of the current string under consideration 

with associated cost J{. J,^ and J^ are the worst and best cost function 
values for the current population of strings. The maximum fitness value F^ 
for this method is 1.0, and the minimum F^ is 0.05. The Fi denote 
probabilities of mating. Therefore, the lowest probability for reproduction of 
any string in a generation is fixed at 0.05. On the other hand, the most fit 
member of a generation is always wanted for reproduction, so its fitness value 
of 1.0 assures certainty of reproduction. This fitness-to-cost function scaling is 

illustrated in Figure 3-3. 
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min ~max 

Figure 3-3: Inverted linear fitness scaling 

These bounds were chosen so that the lowest cost members of the 
population will always mate if they are chosen by the random operator of the 
selection step, while the highest cost members will be allowed some, if very 
small, chance of reproducing. This scaling method is very robust in that it 
doesn't care what the associated cost function values are—they can be 
positive or negative or both. 

In all of the design problems of this thesis, the objective of the decision 
maker (DM) is to locate the single, best optimum of the problem. In some 
design problems, however, the DM may have several regions of interest that 
she wishes to examine or she may wish alternative solutions to be created in 
addition to the overall optimum. In either case, normal fitness sharing can be 
applied to spread the ga population among the optima of the search space, 
with each optimum getting a fraction of the population proportional to its 
relative fitness. Fitness sharing is discussed in Section 11.3.1 for the 
interested reader. 
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3.6 Crossover 

Crossover mates parental strings two at a time. Crossover occurs at a 
rate (probability) of pc to capture and combine the beneficial traits of the 

different members. There are three main types of crossover in use today: (1) 
single-point crossover, (2) two-point crossover, and (3) multi-point crossover. 

Single-point crossover simply chooses a random "cut" site on the string 
pair and causes the strings to exchange all bits on one side of the cut. This 
crossover propagates schemata of short defining length at a greater rate. 
These short schemata are reproduced at an exponentially higher rate. This 
procedure is called Implicit Parallelism, and is the fundamental feature behind 

genetic algorithm success. 
Implicit parallelism, in short, is the simultaneous allocation of search 

effort to many "ideas", or hyperplanes, in the search space. Different strings of 
the population look at the merits of the different parameter values. This 
concept holds a diverse set of parameter combinations separately and 
propagates only those combinations that show merit in combination. 

A more advanced crossover that has been shown to be much less 
destructive to schemata of longer definition length while being just as 
aggressive in recombining short defining-length schemata as other types of 
crossover is the two-point crossover. The two-point crossover selects two 

random cut sites on the string pair and exchanges the bits between the cuts. 
In this case, the string is arbitrarily long and can exchange any region of the 

strings—from a single bit at any location on the strings to the entire strings. 
The final type is the multi-point crossover, which swaps random bits 

along the length of the string. In this way, schemata are not restricted to being 
composed of bits that He adjacent to one another. This method suffers in that 
some additional effort is required for the operation. The others require the 
selection of cut sites and the movement of bit strings, while this one 
necessitates the generation of a random number for each bit of the string and a 

test of the bit in each crossover location. 
These three methods have been studied extensively in prior research 

[73,[17]. All literature has shown the superiority of (2) and (3) over the single- 
point crossover. However, no significant difference has been shown between 
them. Therefore, a two-point crossover was chosen to be used exclusively in 
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this thesis due to its simplicity and speed advantage over the multi-point 
crossover. 

Crossover rates have been shown by studies elsewhere to provide peak 
performance in a consistent range of values across different problems. De 
Jong (1975) [7] showed that crossover rates of approximately 0.60 were the 
most beneficial to the problems he dealt with, while Grefenstette (1986) [17] 
held that 0.95 was more appropriate. A very comprehensive study by 
Schaffer, et al. [17] led to the conclusion that crossover rates in the range 0.75 
to 0.95 would all produce robust results. Consistent with the general 
conclusions of the ga field, a value of 0.80 is used in all simulations here without 
loss of generality or algorithm robustness. We have not further investigated 
this selection. 

3.7 Mutation 

Mutation occurs to keep the population from converging too rapidly and 
to introduce small amounts of new information that may be beneficial to 
locating an optimum. Since mutation rates vary widely across the ga 
literature, this parameter is examined in this thesis to determine its benefit in 
fault tolerant system design and whether any conclusions can be drawn about 
the relationship of mutation with population size, string length, or problem 

complexity. 
Binary mutation occurs with probability pm to individual bits on the 

strings going through the reproduction cycle. When initiated, the bit is simply 
"flipped" to its conjugate (0 to 1 or 1 to 0). 

Having a high mutation rate keeps population diversity high.  The 
population is not allowed to converge toward the best members because of the 
continual influx of new genetic diversity from the mutations. This is 
disadvantageous at excessively high rates because the later part of a ga 
simulation is composed of mixing and matching strings that have already 
proven to have beneficial schemata. The ga is therefore just trying to find the 
right combination of parameters from these good strings to make an optimal 
string. Continually adding new diversity into this process by an excessively 
high mutation rate will slow the final convergence. 

At the other extreme, having a very low mutation rate allows the 
population to converge very fast. No additional genetic information is provided 

51 



once the initial population is established, which makes the creation of the 
initial population and the choice of random number generator seeds very 
important. Having some mutation provides gentle sanity checks on the 
algorithm to help prevent the algorithm from prematurely converging on a 

less-than-optimum solution. 

3.8 Function Evaluation 

The evaluation of a string's cost value is a straight forward operation. 
The string is simply transformed from its binary representation into the form 
recognizable by the cost function and the cost is calculated. This step of the ga 

unfortunately requires the most significant single chunk of time 

(computational effort) in the ga process. The time required for a single 
evaluation of a problem cost function is obviously constant across different 

optimization techniques as well. As such, the number of cost function 
evaluations performed is treated as a representation of time for comparing the 

speed and efficiency of optimization methods. 
Any modification of an algorithm that reduces the number of cost 

function evaluations required to reach a quality solution positively impacts 
performance. The ga methods of this thesis only evaluate the cost function of 
those strings that have actually been changed by the reproduction cycle. 
Saving the costs of unchanged strings makes a linear increase in performance 

equal to the number of unchanged strings each cycle. With low mutation 
probabilities and a crossover rate of 0.80, about 20 percent increase in 

performance is achieved through the use of this feature. 
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4.0 Steady-State Genetic Algorithm 

The steady-state genetic algorithm (ssga) is an independent 
development of this author created for more rapid ga problem convergence 
without sacrifice of solution quality. The ssga presented in this thesis 
advances the state-of-the-art in single criterion ga optimization without dealing 
with advanced ga operators or incorporating problem-specific information. 

Like the tga, the ssga optimizes single criterion problems, but it differs 
in that the concept of a "generation" is eliminated. The ssga population 
continuously "evolves" to improve its average. By eliminating distinct 
generations, the ssga can use the improvements created by the reproduction 
cycle immediately, instead of waiting until a full new population is created. The 
best members "float to the top" and are propagated at a higher rate while the 
poorest members "sink" and are "killed" instead of being allowed to remain until 
a new generation is created. These operations allow more aggressive learning 
rates without unduly endangering highly fit schemata that already exist in the 
population. 

Other forms of the ssga have since been uncovered in recent literature 
that incorporate much of the same fundamental logic used here. Davis [3] 
cites Darrell Whitley as the first to introduce a non-generational ga into the ga 
literature in 1988. Gilbert Syswerda coined the phrase "steady-state 
reproduction" in 1989 to describe the ssga evolution process, and the name 
"steady-state" has since become part of the ga nomenclature. 
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The form of the ssga developed for this thesis is shown is shown in 

Figure 4-1. 

random 
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Phase 3: Operators applied to replace dead Individuals 

Figure 4-1: Steady-state genetic algorithm reproduction cycle 

A generic ssga can reproduce any number of individuals from 1 to P in a 

cycle. Reproducing a full population size (P) make the ssga the same as the 
tga. The size of the reproduction set is also called "generation gap", and was 
used in the earliest research of the ga field [7]. The ssga developed for this 
thesis uses a reproductive set of two, to maximize reproductive turnover 
without hindering the crossover operation which requires two parental strings. 

The ssga used in this research differs from those specified in much of the 
literature in that the two members that are killed are selected at random and 
chosen by the inverse of their fitness. This gives the poor members that have 
"sunk" a small, but finite chance for survival to maintain greater population 
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diversity. Other ssga methods simply kill the two worst members [3], thus 
ignoring the uncertainties involved in nature itself. 

The same inverse-linear fitness scaling is used to accomplish string 
competition. In the tga, the fitness scale is updated each new generation when 
the new population is ready to begin mating. The ssga, on the other hand, 
updates the fitness scale anytime a newly created string has a fitness value 
that exceeds the bounds (highest and lowest fit members) of the current 

population. 
The ssga of this thesis does not use "steady-state without duplicates" as 

is described in [3]. The inclusion of clones (duplicate members) in the 

population allows the ssga to gauge convergence (see Chapter 6) at some 
expense to computational effort, though a reasonable attempt (see below) is 
made at each reproduction cycle to select unique parents. 

Each selection cycle (phase 1 of Figure 4-1) uses cloning as an additional 
selection feature. The selection of parents is based on (1) their individual 
fitnesses and (2) that they be unique (not duplicate strings). In the present 
implementation, if P (population size) prospective parents are tested for 
uniqueness and two unique strings are not found, then reproduction of 
duplicates is allowed. 
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5.0 Constraints 

5.1 Function Constraints 

The problems dealt with in this thesis are typical in most respects to 
those encountered when doing fault tolerant system design. However, they do 
not address one aspect that a designer is likely to face. Many real-world 
problems contain one or more functional constraints that must be satisfied. 
Many applications of genetic algorithms have a great difficulty with 
constrained problems due to a lack of a general methodology for handling 
constraints. Constraints are usually classified as inequality or equality. The 
manner in which inequality constraints are dealt with in the genetic algorithm 
are described first. 

Inequality Constraints 

Several means of dealing with inequality constraints have been 
attempted by previous ga work. References [11] and [3] provide details for five 
approaches to dealing with constrained problems in ga's: 

1) throw away infeasible solutions and regenerate new strings 
2) use decoders and repair algorithms 
3) develop specialized data structures and genetic operators 

4) use penalty functions 
The first option of throwing away infeasible solutions and repeating the 

crossover and/or mutation operations until a feasible solution has been 
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generated is inefficient and generally ineffective. It guarantees feasibility at 
high cost to computational effort and solution quality. Ignoring infeasible 
strings often leads the ga to ignore constrained optima due to the indirect 
penalization of the region surrounding the constraint. 

Decoders guarantee the generation of a feasible solution by using special 
representation mappings. Repair algorithms "correct" infeasible solutions, 
moving the solutions into the feasible region in some pre-defined manner. Both 
of these methods have received limited application because of the high 

computational effort required and the lack of generality in their 
implementation. Decoders and repair algorithms work reasonable well 

according to [11], but are highly problem specific. 
Experiments cited in [11] indicate the potential usefulness of specialized 

data structures and genetic operators for dealing with constrained optimization 
problems. Problem tailored data structures combined with appropriate 
"genetic" operators are used to "hide" constraints presented in the problem. 
This approach appears to work well in the experiments performed to date, but 
they raise concerns due to the highly problem specific tailoring they require and 
the fact that many of the "genetic" operators have no biological parallel. 

Finally, the application of penalties to constraint violations is an 
approach with wide applicability across the field of optimization. This option 

allows the generation of potential problem solutions without regard for 
constraints, and then penalizes them by decreasing their "value" in some 

manner. All the penalty approaches that we found rely on penalization of the 

cost functional. 
A penalty function augments the cost functional of the problem to 

introduce cost degradation. It transforms a constrained problem into an 
unconstrained problem by penalizing constraint violations [7]. For example, 

the original constrained problem has the form: 

Optimize: J(x) 
Subject to: gi(x)<0;        i = l,2,...,m 

This can be transformed to the unconstrained form: 

Optimize: J(x) + <£[& (x)];     i = 1,2,.. .m 

where O is the penalty function 
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The penalty can be additive, multiplicative, or otherwise, and can either 
apply direct penalties to all violations or use some scaling to discriminate 
between degrees of constraint violation (usually increasing the penalties for 
larger distances from feasibility). Davis [3] cites evidence that genetic 
algorithm penalty functions, especially those that discriminate between 
different types of infeasible solutions, are competitive in performance to 
methods that use specialized operators without loss of generality. The major 
drawback of penalty functions, however, is the necessity to develop a separate 
appropriate scaling for the cost functional of every problem attempted. 

General guidelines for the construction of ga penalty functions are listed 
in [15]. The work concludes that for ga problems having few constraints and a 
limited set of full solutions (such as the discrete problems of this thesis), 
penalties that are solely functions of the number of violated constraints are 
not likely to find solutions. Good penalties, according to that work, are 
functions of the distance from feasibility for each constraint violation. 
Reference [15] asserts that a ga should incorporate what it calls the 
completion cost to generate the best penalties. 

Completion cost refers to how much of a cost difference would have to be 
accepted to make an infeasible solution feasible. Instead of being rejected or 
labeled "undesirable", infeasible solutions should be thought of as incomplete 
solutions. The completion cost helps determine the appropriate penalty to 
assign based on the "incompleteness" of its structure. 

The completion cost used in [15], though it has a good deal of theoretical 
appeal, requires problem-specific estimation of the tradeoffs between 
constraints and the cost functional. The difficulty and tedious nature of this 
estimation has led the author to create a simple method of applying function 
constraint penalties that capitalizes on the function knowledge contained 
inherently within the genetic algorithm population. A multiplicative penalty 
function that degrades string fitness (F) is used to shown the applicability of 

this new approach. 
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Automatic penalty functions 

To justify the use of a penalty that does not require problem specific 
scaling, we look at a general single criterion problem with a single inequality 
constraint. This problem is the minimization of a cost function (J) subject to 
the constraint g < g*. The population of the ga appears similar to that of 

Figure 5-1 if the constraint, shown at g = g*, is ignored. 

Figure 5-1: General ga population distribution with constraint bound shown 

The values of J would have started in some unknown range larger than 
that shown, but the evolution of the population toward an optimum has 
narrowed the ga's focus to the given J values. The values of g, on the other 
hand, have not been directly considered, and a wide range of their values for the 

current range of J exists in the population. 
As mentioned earlier, references [3] and [15] state that penalty 

functions should account for the distance from the constraint bound g*. 
Unfortunately, these penalty functions have to be applied problem-specifically. 

The DM is forced to decide the appropriate scaling of g. 
Let's explore the issue of problem-specific penalty functions a bit further 

by way of a comparison of possible gl values, where g1 > g*. Assume that the 
distance from g* to gx is 8g = g^ - g* = 10. In one theoretical problem, the actual 
constraint is a distance tolerance of g < 2 cm, where 5g = 10 is an intolerable 
violation. In another problem with 8g = 10, however, the constraint is g < 

10,000 cm and g = 10,010 is actually very close to the optimal feasible solution 
in the design space. The problem is that optimization algorithms do not known 
the difference between 10 cm for one problem and 10 cm for another. As such, 

the penalty on g must be defined problem-specifically. 
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However, another approach may exist. It is the assertion of this author 
that the genetic algorithm contains sufficient information about the 
"constraint space" of any problem to assign its own approximation of 

"closeness"! 
The ga works from a whole population of points. Going back to Figure 5- 

1, the ga knows the g values of the strings of its present population. With a 
properly sized population, sufficient diversity of values should exist in the 
current population to allow the ga to make effective estimates of "closeness" to 

the constraint bound (g*). The premise of this assertion is that the DM himself 
frequently estimates "closeness" in forming the penalty scaling for a problem 
and usually uses knowledge of the probable g values in that estimate (i.e. for g 
< 2 cm, 8g = 10 is bad, but for g < 10,000 cm, 8g = 10 is acceptable). 

To incorporate the ga's knowledge of the constraint values into an actual 
penalty formulation, an assumption must be made of what relative distances 
would generally be considered appropriate by a DM. The assumption made for 
this thesis is that any distance into the infeasible region (8g) less than the 

range of feasible g values in the current population is acceptably "close" to 
warrant involvement in the reproduction process. To form a penalty from this 
assumption, the distance (Ag) is defined as: 

Ag = g*-grain (3) 

where g^ is the minimum g value of the strings in the current population. The 
remainder of this chapter details the particular penalty function used in this 
thesis to apply this general ga "hands-ofF penalty approach. 

Since a penalty that accounts for the distance from the constraint 
bound is preferable, the amount of penalization to be allowable at g = g* + Ag 

must be defined. This thesis assumes arbitrarily that the penalty should 
increase from 0% at g = g* to approximately 90% at g = g* + Ag. The exact 

form of the penalty function is arbitrary, as long as it exhibits the desired 
trend, i.e. it decays as a function of the distance (8g) that a value is from g*. 

61 



We apply a decaying cubic of the distance (8g) relative to Ag in this 

thesis: 

G(g(x)) = 
(ft* g*-g(x) 

Ag 

1.0 

+ 1.0 ifg(x)>g* 

otherwise 

(4) 

where GKg(x)= I Ag I) = 0.125 (1 - 0.125 = 87.5% penalty). The form of the 

fitness penalty G is shown in Figure 5-2. 

0.75- 

G 
0.5- 

0.25- 

g* g*+Ag 

Figure 5-2: Penalty function (G) as a function of the amount of violation 

G can now be applied as a multiplicative fitness penalty function that 
degrades fitness (F) as a function of the amount of constraint violation: 

F = GF (5) 

Figure 5-1 assumes that g and J are very weakly correlated, such that a 
change in g has little or no effect on J. In many real-world problems, however, 
the constraint and cost function are negatively correlated as in Figure 5-3. 
Though the range of J narrowed as before, the shape of the population points in 

the g-J space shows the conflicting relationship between g and J. 
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gmin      g*        Ag 

Figure 5-3: Population distribution for correlated cost and constraint 

This figure has the appearance of a two-dimensional multicriteria 
problem. The similarities will be addressed and taken advantage of in Chapter 
15 with the e-constraint method of multicriteria optimization. 

For the example in Figure 5-3, the optimal solution lies at [J*, g*]. If no 
infeasible points are allowed in the population, no incomplete solutions 
containing the schemata of J* are allowed, while schemata of J > J* have little 
constraint on their allowed frequency in the population. This effect is shown by 
plotting constant values of J (called isoquants) versus g: 

J **— J 

Ji 

g* 

(a) 
g g*     g 

(b) 

Figure 5-4: Constant J value isoquants when infeasible points are ignored 

Figure 5-4a shows that the only solution possible with all the schemata 
of J* is the optimal solution. Its chances of appearance in the population are 
greatly reduced by this strict approach. On the other hand, an isoquant of a Jx 

> J* in Figure 5-4b allows a great many variations of Jx schemata to appear in 
the population. 

Applying G to the problem makes the isoquants above take the form of 
Figure 5-5. The isoquants of normal J values are plotted in the J' space , where 
J' is the cost of strings that have G applied to their fitness (F). 
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Figure 5-5: Constant J isoquants with G penalized infeasible points 

Though penalized, J* incomplete solutions are allowed into the 
population so that the ga has a much better probability of generating 

competitive schemata of J* and thus locating [J*,g*]. G allows fitnesses of J* 
to be competitive with non-optimal J with g < g* so that the schemata of 

[J*,g*] have a higher probability of occurrence. 
For the negatively correlated g-J example, let's look at the effect G on 

fitness (F) for different g*. Figure 5-3 shows g* close to g^. Applying G to this 
example and looking at F as a function of J for possible isoquants of constant g 

value gives the form: 

fe 

Figure 5-6: Penalized fitness function for g* close to g^ 

F is degraded for constrained points. Because g* is located close to g,^, 
all J values are allowed to reproduce (assigned F > 0), but high penalties are 
assigned for very large distances (8g) from g*, even though the change inJis 

very small. 
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Next let's look at the same example when g* is placed close to g„ 

Figure 5-7: Population distribution for correlated J-g with g* far from g^,, 

The fitness with G applied takes the form in Figure 5-8: 

100 

normal 

Figure 5-8: Penalized fitness function for g* far from g,^ 

The span between g,^ and g* is large in this example. As such, G does 
not heavily penalize g > g* values it finds in its population because it assumes 
that these values of g are sufficiently "close" to g* to warrant their inclusion in 
the population for the potentially good schemata they may contain. 

The key observation from Figure 5-6 and Figure 5-8 is that since fitness 
provides a ranking of strings relative to one another for parent selection, the 
penalty not only keeps the fitness of infeasible points degraded even if they 
have good cost function values but also allows infeasible points to be 
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competitive to the feasible region based on the incomplete cost of their 
schemata, which correlates to the peak performing penalty functions 

suggested in [15]. 
Elitism must still be applied in conjunction with this fitness penalty to 

ensure that the solution is always feasible. Again, we note that the actual 
choice of applying a multiplicative penalty to fitness is just one way of 
approaching inequality function constraints in genetic algorithms. What is 
novel here, however, is the use of the ga's knowledge of the "constraint space" 

to scale the penalty automatically. 

Equality constraints 

Equality constraints have not been dealt with directly by this research, 

but the ideas presented for inequality constraints can be used for many 
equality constraints the user may deal with by simply penalizing deviation 

from the function equality. 
In most instances, however, the existence of equality constraints 

strengthens the designer's ability to solve the problem. The existence of an 
equality function constraint is most often used to "reduce the order" of the 
problem. The equality constraint is usually presented as some function of the 
design parameters, which allows the user to solve for one variable as a function 
of the others. This solution is then placed into the remaining functions of the 

problem, thus reducing the number of free design variables that must be solved 

for. The order reduction calculation may be a simple algebraic equation in the 
case of linear problems, or it may have to be solved numerically if the problem 
is nonlinear (as in this context). In either case, the solution to the intermediate 
step of order reduction almost always reduces the computational requirement 

of the cost functionals. 
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5.2 Parameter Constraints 

Apart from constraints placed on the cost functionals, a far more 

typical instance involves constraints of the parameters themselves. However, 
the ga deals with this issue directly. This is a consequence of the ga's use of 
parameter coding rather than the actual parameters. 

The ga user can apply such constraints directly as he or she inputs the 
parameter values into the problem. An equality constraint is simply a fixed 
value of the parameter. Inequality constraints are treated as hard bounds by 
limiting the range of the parameter to the feasible region. This is done by 
scaling the binary word which represents the parameter in the string to 
parameter values which just span the allowable range. The ga operates 
directly and solely on the domain provided. By not using derivative or other 
auxiliary information, the ga never exceeds parameter bounds. 
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6.0 Convergence 

When one talks about convergence, the issue is twofold. First, 
convergence refers to how near the solution obtained is to the actual minimum 
of the problem. Secondly, one is interested in the method's approach to a 
solution—how rapidly in time a solution is obtained. Therefore convergence 
constitutes two criteria by which the ga can be compared to other optimization 

methods. 

6.1 The Fundamentals of Convergence 

The speed at which a solution is reached is important, but in the ga it 
demands a tradeoff. Getting the solution as soon as possible is obviously 
beneficial, but if the population converges too quickly, diversity is lost before 

the ga has had a chance to make a reasonable search of the design space. 
Fitness testing, elitism, and a properly sized population maintain this trade-off 
for peak performance. As described in Chapter 3, fitness scaling is structured 
such that poor members may still inject genetic material into the mating pool, 
though at a lower rate than highly fit members. Elitism describes the process 
of always keeping the best member ever created in the current population to 
ensure that its schemata are kept available. This mechanism prevents 
crossover and mutation from destroying the best genetic code found so far. 
The importance of the correct population size is examined in Chapter 8. 
However, it is safe to note here that using a population size too small limits the 

diversity available, while using a population size too large excessively slows 
convergence without necessarily increasing in solution quality. 
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The single criterion ga has the beneficial quality that it always has a 
population size (P) number of candidate solutions on hand. Therefore, a 

solution is always available to the decision maker (DM) at any stage of 

operation that termination is desired. To illustrate more clearly how the ga 

converges on a problem, Figure 6-1 shows how the Down-hill simplex and 

steady-state genetic algorithm (ssga) operate on the Warning Lamp problem. 

100000- 

10000- 

1000 

100000 - 

»   10000 

cost function evaluations 
(a) lowest cost in simplex 

1000 

cost function evaluations 
(b) lowest cost in ssga population 

Figure 6-1: Convergence to a Warning Lamp solution 

The most obvious observation from this figure is that the shape of the 
two plots is very similar—this is perhaps the most encouraging observation as 
well. The Down-hill Simplex method is directly suitable for the Warning Lamp 
problem. This solution space is completely monotonic with a steep gradient 
over most of the surface, and a benign gradient near the minimum. Since we 
wish to prove in this thesis that the ga is a very robust method, to ask the ga 
to outperform the Down-hill Simplex on this problem is unrealistic. The Down- 

hill Simplex is able to reach the minimum of this problem (which implies zero 

error in its ability to terminate in the proximity near the global minimum) in 
under 50 cost function evaluations (a bull's eye for efficiency!) no matter what 

starting point is used. 
The ssga in Figure 6-lb is able to reach a solution within 15% of the true 

minimum in about 200 cost function evaluations. The 15% value represents 
continuous solutions near the optimum. In doing continuous optimization with 
a ga it is necessary to verify the discretization of the continuous parameters is 
sufficiently fine to allow the ga to find the optimum. In this example, the 
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resolution is adequate to allow better solutions to be found, so that the poorer 
performance indicates the difficulty the ga has in assuring convergence to the 
optimum of continuous problems. This result shows that the ssga is 
competitive even when operating outside its preferred conditions. This 
analysis was done with a population size of 20 to show the convergence 
better—thus the performance could be improved by using the optimal 

parameter settings described in Chapter 8. Also, this problem was purely 
continuous, and the ga operates best when the design space is limited in an 

integer or discrete manner. 
This genetic algorithm uses elitism, which means that the best member 

ever generated in a run is always kept in the current population. The ga 
converges the whole population toward the elite members, but genetic 
algorithms provide no guarantees of convergence on arbitrary problems. To 
say that the ga is only capable of ensuring a solution within 15% of the 
nrnTiinrnim would disturb some decision makers (DM). The ga does sort rather 
quickly through a great deal of the space looking for interesting segments, but 
it is nonetheless a very "coarse" method, without any real guarantees. 
However, this must not be seen as a limit to the genetic algorithm's capability. 
More rapidly convergent methods, such as the Down-hill Simplex method, 
sacrifice global minimum assurance and problem flexibility even when coupled 
with simulated annealing. As a result, ga's can be used in situations other 
methods shy from or are helpless to proceed in. If a guarantee of convergence 
is desired, the DM should use the ga to find the local region of the optimum and 
then use another method to fine-tune the solution to her specifications. This 
approach allows the DM to combine the global search ability and flexibility of 
the ga with the convergence behavior of a local technique. 

71 



6.2 Steady-State Genetic Algorithm Behavior 

The bottom line of convergence rests with the quality of the solutions 

obtained. This will be analyzed in great detail in the next two chapters, but we 
will first take an introductory look at the genetic algorithm convergence on a 
difficult problem. First, let's look at the convergent behavior of the ssga. 
Figure 6-2 shows the mean (average) cost of the entire population as a 
function of cost function evaluations (cfe) when the ssga is applied to the TISS 
problem. The first plot shows the ssga with a population size (P) of 60, while 

200 is used in the second. 
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Figure 6-2: ssga convergence behavior on the TISS problem 

Both plots show excellent convergence characteristics. The 
convergence of the first occurs in about 1,000 cost function evaluations and 

the second in less than 4,000 cost function evaluations. The average and 
minimum cost function values He at about 30. Note that the general 
performance of the ssga, as shown by the plot shape and solution attained, 
does not change a great deal even when the population size is changed 
dramatically—the effect is only seen in the cfe required for population 

convergence. This illustrates the robust nature of this technique. 
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6.3 Traditional Genetic Algorithm Behavior 

Unlike the ssga, the tga does not show the same insensitivity to 
population size. Figure 6-3 shows the different convergence behavior of the tga 

population when P is changed. 
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Figure 6-3: tga convergence on the TISS problem 

The first plot shows the behavior of the tga when P is near optimal as 
described in Chapter 8. Even at the optimal P, though, the mean cost does not 
make the smooth transition seen in the ssga. The fluctuations are extremely 
erratic, and though the minimum cost member does not change after 10,000 
cfe, the population fluctuates widely until termination at 50,000 cfe. 

The second plot, with a tga population size of 200, illustrates a different 
tga convergence behavior emerges as P changes. The general form of this plot 
is much like that of the ssga. It differs however, first in that the lowest cost 
member is slightly higher (worse) than the first plot of Figure 6-3 and both 
plots of Figure 6-2, but even more prominently in that it requires almost 
50,000 cfe for the mean cost to converge to the lowest cost member. 

Going back to the two criteria for good convergence, the tga achieves its 
minimum value in more than twice as many cfe as the ssga. The average cost 
of the small tga population size doesn't show any convergence behavior 
compared to the ssga and large population size tga, but it gives a solution of 

better quality than the larger population size tga. The final test of convergence 

73 



of these two methods will come when the solutions they generate are compared 
to those generated by the Branch and Bound method in Chapter 8, but it can 

be seen here that, in general, the convergence of the genetic algorithm exhibits 

quantitatively favorable characteristics even on the diflficult TISS problem 

representative of fault tolerant design problems of moderate to high 

complexity. The convergence behavior of the ssga is especially appealing in 
that the constantly "evolving" population does not experience the erratic 
behavior experienced by the tga with its separate generational populations. 

6.4 Termination Criteria Analysis 

What the above discussion of convergence means in actual ga 
implementation, however, is that it is very difficult to know when to terminate 
the ga search. In practice, the user must usually limit the computational 
effort because of monetary or time constraints. As such, the ga is ready to 
provide a solution any time the user needs one, but the user still would like to 
know the relationship between computational effort and solution reliability. 

Population convergence does indeed occur for intelligent 
implementations of the genetic algorithm. At some point in an algorithm run, 
diversity falls below the "critical mass" necessary to fully exploit the design 
space. When this occurs, if the user still wishes optimization to continue, 
diversity should be re-injected into the population. As part of this thesis, we 
attempted to identify mechanisms that could illustrate ga convergence and 

reasonably indicate that termination should occur. 
To accomplish this goal, convergence/termination testing was done on 

the basis of 8 candidate ideas of convergence developed for this research: 
1) the number of cfe between changes of the lowest cost member 
2) the difference between average and lowest population costs 
3) an indication of population variability calculated as the range between the 

highest and lowest cost members divided by the mean population cost 
4) the variance of the population costs 

5) the average variance of the parameter values in the string 
6) the product of the parameter variances 
7) the average of the "bit likeness" 
8) the product of the "bit likeness" (PBL) 
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Moderate testing was accomplished using all of the test problems to 
determine which of the eight provide the user some quantifiable sense of 
convergence. Before the results of this analysis is shown, a quick discussion 
will reveal and explain those ideas that were quickly eliminated. 

Options 4 and 6 were immediately discarded because they were 
discovered to not provide an adequate desirable stopping point indication. 
Though the characteristics of these figures of merit did change over the course 
of a ga run, there did not appear to be a strong correlation between a desirable 
convergence indication and their characteristics. 

The number of cost function evaluations (cfe) between changes in the 
lowest cost member (Option 1) seemed to have a great deal of merit when the 
plots of this item were first obtained. However, it was determined that it is 
impractical for two primary reasons. First, greater numbers of continuous 
parameters provide for a larger design space that can often cause changes in 
the lowest member that are insignificant to amount of effort required. This 
also occurred in discrete problems with shallow minima. The second reason 
dealt with problem complexity. In the TISS problem, for instance, 10,000 cost 
functions could easily be required, and the number of cfe between changes of 
the lowest cost member could best be set at 500+, while the TRIPLEX problem 
would only need a cfe change of about 50 for the small number of total cfe 
required. These issues make this idea potentially workable, but possibly too 
complex to implement for the common user. 

Most of the other ideas prove inadequate due to the amount of noise in 
the measurement or to scaling difficulties. Noise in the measurement is 
especially evident in Options 2 and 3. Option 3 is just a scaled version of 2, and 
attempts to approximate convergence by the cost relationship: (high- 
low)/mean. Figure 6-4 shows that because the population possesses a great 
deal of internal diversity even when the average and lowest cost values are 
nearly the same, the figure of merit does not show measurable convergence. 
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Figure 6-4: Convergence method candidate: (high-low)/mean 

This figure shows an ssga run for the TISS problem solved using a 100 
member population with crossover and mutation rates of 0.80 and 0.02, 
respectively. The simulation shown is run for 5,000 cost function evaluations 
(cfe). The figure shows three lines: the mean population cost, the lowest cost 
(best) member of the population, and the figure of merit. The two costs are 
associated with the right-side axis, while the left side is scaled separately for 
the figure of merit. This run is typical for ssga (and most tga) performance in 
that the lowest cost and mean cost lines decay and, though initially separated, 

the lowest cost reaches steady-state and the mean cost decays to meet it. 
Somewhere between 2,000 and 4,000 cfe some means of determining adequate 
population convergence must exist, but Figure 6-4 is not such a measure. 

Another idea that initially seemed to show merit was Option 5, the 
average of the parameter variances, which has the form: 

'«w-riw) n j=i (1) 
1 

where    s ■ = —— £ (x, - xn) 
" — ■»■ i=i 

where n is the number of design parameters (x) of the problem and P is the 

population size. 
The behavior of this figure of merit is shown in Figure 6-5 for the same 

TISS problem run used in Figure 6-4. Using the mean parameter variance as 

a guide, we can see that full population convergence occurs at 3,000 cfe. 
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Figure 6-5: Convergence method candidate: mean parameter variance 

This option appears to give a good indication of convergence, but its 
problem is one of scaling. The left-side axis shows that the mean parameter 
variance decays from about 2.0 to zero in this instance. This range, 
unfortunately, cannot be generalized beyond this example. As a consequence, 
if the user wishes to terminate the ga prior to complete population convergence, 
this option does not provide a simple quantifiable convergence limit. 

Options 7 (mean bit likeness) and 8 (product bit likeness) are a return to 
the fundamental ideas of the ga. The ga operates on genetic binary strings of 
data that are independent, but uniquely correlated to the problem of interest. 
Using the assumption that a population with qualities X is converged no 
matter if problem A or problem B is being optimized, it is only natural that the 
quest for a convergence criterion should look solely at the bit strings. 

The term "bit likeness" is used to refer to the fraction of the bits that are 
the same at a bit location Qocus) across the whole population. For instance, 
look at the following population of 4 strings of length 3: 

string 1 1 1 0 
string 2 0 0 0 
string 3 0 1 0 
string 4 1 1 0 

bit likeness 0.50 0.75 1.00 

Table 6-1: Bit likeness illustration on 4 member population 

From this illustration the meaning of bit likeness is easy to see. The 

77 



first locus has a bit likeness of 0.5 because there are equal numbers of 0's and 

l's. The second locus has a value of 0.75 because 3/4 of the bits are l's, while 
the last locus has all 0's and thus has a bit likeness of 1.00. The bit likeness is 
the greater of either the fraction of 0's or l's at each locus. This convention is 
based on the assumption that the ga propagates beneficial schemata; 
therefore the greater of l's or 0's at a locus should signify participation in more 

beneficial schemata and better population fitness. 
In the population of Table 6-1, the average of 0.5, 0.75, and 1.0 gives a 

mean bit likeness of 0.75. The mean bit likeness is shown below for the 

example TISS problem. 
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Figure 6-6: Convergence method candidate: mean of bit likeness 

The convergence of this figure of merit is complete by 3,000 cfe. To 
reach that point (1.0), all strings must be identical. Again, absolute 
convergence is farther than we normally want the ga to operate to reduce 
redundant and unproductive operation, but as with the "variance of the 
parameter values" (Option 5) extrapolating a quantifiable measure of general 
population convergence is difficult. This figure of merit begins at values 
between 0.7 and 0.85 for various problems. Using the behavior of the mean 
cost and lowest cost lines as a guide, terminating at a particular mean bit 
likeness value such as 0.95 gives different and sometimes unsatisfactory 

results for different problems. 
The final option is the product of the bit likeness. In Table 6-1, the 

product of the bit likeness (PBL) is (0.5*0.75*1.0 = 0.375). The behavior of this 
figure of merit is quite different and reveals some interesting characteristics of 
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population convergence useful for formulating a termination criterion. The 

range of PBL is always 0 to 1. 
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Figure 6-7: Convergence method candidate: product of bit likeness 

The behavior of the PBL shown in Figure 6-7 for the TISS example 
appears to be typical for all the problems solved by the ssga in this thesis. 
PBL applies only to the ssga because of the great fluctuations in tga 
generation statistics. The initial values of PBL are near zero, while the values 
after total population convergence are near one. These ranges are understood 
as follows: in the initial stages, the mean bit likeness is somewhere in the 
range of 0.8. PBL is approximately 0.81, where 1 is the bit string length. For 
typical fault tolerant problems, where the string lengths are in excess of 50 
bits, PBL is a very small value (0.850 = 1.4e-5). Even small problems of only 16 
bits have initial PBL values close to zero (0.816 = 0.028). 

To approach a PBL of 1.0, the population must lose a considerable 
amount of diversity. As the strings of the population begin to sort through 
schemata and choose those of higher fit regions of the design space, the bit 
likeness at each locus of the string is assumed to gravitate toward higher fit 
(better) binary values. This effect is best described by two examples. 

First assume a locus on a string where the initial population has a bit 
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likeness of 0.7 of ones and ones represent high fitness and optimal solution(s). 
As the ga operates, the number of ones will increase, moving the bit likeness 
from 0.7 to 1.0 and increasing the overall value of PBL. Secondly, assume the 
same locus with the bit likeness 0.7 of ones, but now with zeros representing 

high fitness and optimal solution(s). As the ga operates, the number of zeros in 
the locus will increase, and the bit likeness will first decrease from 0.7 to 0.5 

(lowering PBL) before rising from 0.5 to 1.0 (raising PBL) as the zeros become 

more frequent than ones. 
The result of many loci along a string with bit likeness behaving like 

either of the above two examples is that the decrease in some loci bit likeness 

will offset the increase in others, keeping PBL near zero for the first stages of 
ga optimization. The sharp rise of the PBL value occurs when all of the loci 

have positive bit likeness changes. 
The object of this analysis is to make PBL a sufficiently general 

convergence criterion applicable to any string length. 
There is an intuitive relationship between the length of the bit strings 

and the appropriate termination value for PBL. Unfortunately, since only 

three string lengths of 12,16, and 51 are used for the TRIPLEX, 
ASYMMETRIC LAMP, and TISS problems respectively, this thesis cannot 
provide adequate data to determine a reliable relationship. We can, however, 
attempt to determine some PBL guidelines for problems similar to those of this 

thesis. 
Figure 6-8 and Figure 6-9 show the relationship of PBL to two 

potentially useful quantities. The data shown is a compilation from the 180 
TISS simulations performed in the population analysis section of this thesis 
run to 50,000 cfe (see Chapter 8). Figure 6-8 shows the difference between the 
mean and lowest costs as a function of PBL. The y-axis is a normalization 
between zero and one of all simulation result values. Simulation points are 

included in Figure 6-8a for normalized ranges above le-4. 
Figure 6-8b limits the axes to include only the normalized range above 

0.01. This second plot shows that if the decision maker (DM) considers 1 
percent of the original range between mean cost and the best population 
member sufficient convergence, the PBL value for the TISS problem can 
safely be placed at 0.3 to terminate all 180 TISS simulations performed in 
Chapter 8. Raising the bound to 5 percent, a PBL termination value of 0.2 can 

be used. 
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Figure 6-8: PBL comparison to average cost decay on TISS problem 

However, as stated earlier, there is a second quantity of potential 
interest for determining a termination criterion. The second quantity is the 
difference between the present lowest cost and the lowest cost to be 
determined by the simulation. This quantity measures the effort involved in 
achieving a better solution. Unlike the previous figure of merit, this one cannot 
be computed during the simulation. Figure 6-9 shows a compilation of this 
measure versus PBL for values above le-4. As above, the quantities are 
normalized between zero and one to represent the full range of values of the 
TISS problem analysis in Chapter 8. 
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(a) full TISS analysis 

PBL 

(b) restricted view of analysis 

Figure 6-9: PBL comparison to lowest cost decay on TISS problem 

Figure 6-9b is a limitation of (a) based on certain assumptions. The 

second plot assumes that the DM would be interested in convergence to 1 
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percent of the original value of this quantity. One point, seen by itself at the 
far right of the first plot has been ignored in the second plot. Using the 
information of Figure 6-9b, the DM could reasonably set a PBL limitation of 0.5 

to have a great deal of assurance of achieving the best solution possible in any 

TISS simulation. 
The introduction of PBL has given a figure of merit with a strong 

correlation to ga population convergence. Unfortunately, we have not directly 
used the PBL's particular behavior (i.e. the sharp rise from hovering near zero 
to hovering near one) to signify convergence. Additional work in this area that 
would determine a suitable test for the rise would enhance the benefits of PBL 

usage. 
The remaining analyses performed for this thesis terminate the genetic 

algorithms by setting PBL levels between 0.1 and 0.3 and dictating a 
maximum number of cost function evaluations to perform. The mutation 

analysis does not use PBL to observe the effects mutation has on degenerated 
populations with little diversity remaining. The population size analysis does 
use PBL under the assumption that extra effort to ensure the best possible 

solution is unnecessary. 
As was stated earlier in this section, PBL has only been developed as a 

termination criterion for the ssga. While the tga can be terminated on PBL, 
the termination PBL values are generally much lower because of the large 

fluctuations of the tga population characteristics from generation to 

generation. As such, PBL in the tga does not illustrate the same 
characteristics seen in Figure 6-7 and consequently is not recommended as a 
termination criterion for the tga. The fact that PBL applies only to the ssga 
leaves the tga without an adequate method of determining convergence. 

The ga simulations performed in this thesis keep a single degenerative 
population because in most fault tolerant system design applications, 
population rejuvenation is not necessary to attain a solution with adequate 
quality to satisfy the DM. In limited instances not encountered by the efforts 
of this research, the design space may be particularly difficult to optimize or 
the DM may not be satisfied with the solution obtained by a single ssga 
optimization run. In either case, population rejuvenation may be necessary to 

meet the DM demands for the design. Rejuvenation occurs by using the 
solution attained by a completed ga simulation as one of the points of the 

population of a new ga simulation. 
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7.0 Mutation Rate Analysis 

This section analyzes the effect of mutation on ga optimization of fault 
tolerant systems. Tests are performed to determine the optimum mutation 
rate for these problems. Nine probabilities of mutation are tested in the range 
from 0 to 1. Both the tga and ssga are applied to the TRIPLEX and 
ASYMMETRIC LAMP problems (see their descriptions in Chapter 2). All 
other ga parameters are held fixed for this analysis. Five seeds (runs) are 
performed for each mutation rate to reduce the result's sensitivity to the seed. 
All runs go to 300 cost function evaluations (cfe) to maintain the efficiency 
pressure established by the Branch and Bound method for these two problems. 
A population size of 100 is used for the tga, while a value of 40 is used for the 
ssga. 

Two criteria are examined. First, the average population cost criterion 
looks at the convergence of the population to the design space optimum and 
indicates how reliable a result would be if selected prior to steady-state 
operation. This situation is directly applicable to large problem applications 

where steady-state may not be attainable within the time constraints allowed. 
The other criterion is the lowest cost during the run. This criterion measures 
the ability of the algorithm to find the best solution possible. 

An obvious conflict results between these two criteria. Increasing 
mutation rates to induce exploration for better solutions slows the rate of 
convergence and required additional computation time. The results of this 
analysis are shown for the TRIPLEX and ASYMMETRIC LAMP problems in 
Figure 7-1. Each criterion has been individually normalized so that zero on one 
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criterion denotes the lowest criterion value attained from the analysis (one 

denotes the highest value of the analysis), but does not equal a zero on the 
other criterion. Note therefore that the criterion average shows a normalized, 

general average of the two criteria. The legend at right shows the 
corresponding mutation probabilities on the lower axis of the figure. 

A-—D-—P 
 O"""     lowest cost criteria 

mean cost criteria 

criteria average 

mwtatipn rates 

1 0.0 
2 0.00001 
3 0.0001 
4 0.001 
5 0.005 
6 0.01 
7 0.05 
8 0.1 
9 1.0 

Figure 7-1: Mutation rate comparison 

As suspected, the best individual solutions of the TRIPLEX and 
ASYMMETRIC LAMP problems are found by injecting the highest rates of 
mutation into the ga. This is shown by the continual improvement of the 
lowest cost criterion as mutation is increased to 100%. "Saturating" the 
population with diversity throughout the run augments exploration to allow a 
wide search of the design space. However, too much population diversity 
reduces the ga's ability to effectively sort through the population to isolate 
schemata of high fitness and hinders the confidence in the solution obtained. 

Figure 7-1 shows that very high mutation rates prevent the population 

from converging and concentrating its search. This observation is especially 

applicable to complex fault tolerant system designs because computational 
constraints prevent steady-state operation from being reached. Therefore, the 
DM wants to know the rehability of the solution presented after the algorithm 
has been permitted a reasonable attempt at the problem. Figure 7-1 shows 
that this assurance is best met at mutation rates of 0.001 to 0.005. 

Nevertheless, a tradeoff must be made between the two criteria to allow 
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for good exploration with good solution reliability. The average line shows the 
tradeoff when the two criteria are weighted equally. Using this as the basis, we 
conclude that mutation rates in the range of 0.001 to 0.01 should be used for 
fault tolerant system design to maximize the ga's robustness. This range 
coincides with the suggested rates of 0.005 to 0.01 by Schaffer, et. al., 0.001 by 
De Jong, and 0.01 by Grefenstette [17]. 

Mutation in this thesis is considered in the common convention of a rate 
that affects individual bits. Consequently, the number of mutations expected 
to occur in the population is a function of the size of the population and the 
number of bits in each string. The relationship between these parameters and 
mutation rate is not explored rigorously in this thesis, but some thoughts on 
the subject follow. 

In any population, the total number of bits (N) is the product of its size 
(P) and its binary string length (1): 

N = P*1 (1) 

For example: 10 strings * length 10 = 20 strings * length 5 = 100 bits. 
Specifying a mutation rate of 0.01 causes one mutation to occur, on average, 
in each of these populations. The issue at hand is whether the "dimensions'' of 
the population should affect the mutation rate selection. 

The intent of mutation is to inject diversity into a population in hopes of 
generating new or previously lost schema of high fitness. The schema lie along 
the string length, while the population size holds different schema 
combinations. For a fixed number of bits in a population, therefore, a larger 
population size holds a greater diversity for fewer possible schema (due to the 
shorter string length). As a consequence, the mutation rate may be lower for 
larger populations and higher for smaller populations. 

But what if the population size is fixed and the length of the string is 
varied? If mutation is to inject diversity at bit locations to affect schema, then 
the mutation rate as a "per bit" formulation should account for the number of 
schemata in each string. As string length increases, mutation rate should 
increase to affect the larger number of schemata. The string lengths examined 
in this thesis fell within a relatively narrow range from 10 to 51 bits, and the 
effect of the string length on mutation performance is not analyzed. 

As a result of the above reasoning and the empirical results of this 
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section, the remaining analyses use a mutation rate of 0.2/P. For the size of 
the strings involved (N < 51), this relationship lowers the mutation rate for 

larger populations and keeps the rate within the recommended bounds, though 

it ignores the schemata differences between problems. 
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8.0 Population Size Analysis 

Besides mutation rate, the other ga parameter chosen for detailed 
investigation is population size (P). To date, there has been no reliable rule-of- 
thumb developed by which P can be chosen by the decision maker (DM) 
without extensive problem specific/algorithm specific knowledge. A few others 
have analyzed this parameter in the past, but the tests have been done with a 
tga only, and the results have varied. The steady-state genetic algorithm 
exhibits marked differences from the tga in its exploration and convergence 
abilities and therefore needs its own population size guidelines. 

De Jong made the first attempt at generating a rule-of-thumb for P in 
1975. He concluded that tga population sizes between 50 and 100 produce 
robust results. His efforts were contrasted by Grefenstette in 1986, who 
proposed a tga population size of 30 and growth of the crossover and mutation 
rates to maintain population diversity. The latest testing was performed by 
Schaffer, Caruana, Eshelman, and Das in 1991. This extensive tga test 
determined that population size should be held to 20-30 strings for good 

average cost performance [17]. 

8.1 Population size rules-of-thumb 

The first analytical attempt known to this author at determining 
population size was conducted by Goldberg in 1985. He derived an expression 
for optimal population size based on the expected number of new schemata per 
population member [17]. This expression can be approximated as 
P = i.65*2°-21*leneth, and advocates population sizes of 30, 557, and 3,460,300 for 
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string lengths of 20,40, and 100. Obviously, this method suggests excessively 
large population sizes as the string length (corresponding in most cases to 

problem complexity) increases. 
Vander Velde [19] suggested a different approach that relies on the 

stochastic nature of the genetic algorithm. He proposed the population size be 
chosen to correspond to a given "wrong bit" probability at any locus (bit 
location). This "wrong bit" probability, Ps, is defined as the probability that all 

members of the initial population have one or more bit locations for which the 
bits of all members of the population are the same and that bit is "wrong". 

"Wrong" here means that a bit, when mapped from the string into the cost 
function, cannot contribute to a good solution (optimum). When this occurs, 

the entire population lacks information essential to the generation of a good 
solution. The Ps rule-of-thumb below generates a population size that keeps 

the probability of this undesirable occurrence suitably low. 

p-ilength 

P   =1" 1- T 
,2, 

(1) 

The following table shows the required population sizes for various Ps 

probabilities. 

number of bits in each string 

Ps 20     |     40 80 |    320 

le-4 18           19 

31           32 

44           45 

20 

33 

46 

22 

35 

48 
le-8 

le-12 

Table 8-1: Ps population sizes for various binary string lengths 

Note that there is a very small effect of string length on population size 
for a given Ps. Complex problems (320 bits) require a population size only four 

members larger than a problem with strings of length 20. A value between le- 
4 and le-8 would support the work of Grefenstette and Schaffer, et al., while 
probabilities lower than le-12 would be needed for De Jong's findings. The rule- 
of-thumb developed by Goldberg is not supported by this relationship because 

the probabilities required to correlate that large of population sizes are 

insignificant. 
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The idea of using "wrong" bit probabilities does not provide the rule-of- 
thumb for P we desire, but it does show that injecting diversity into a 
population is easy, which helps justify the use of low mutation rates. In 
addition, the amount of diversity in a problem is not greatly affected by the 
number of bits in the strings, which also justifies our intentional negligence of 
string length by using mutation rates as 0.2/P. 

8.2 Results 

Population sizes are tested in the range of 10 to 600. The test is 
performed using both the tga and ssga on the TRIPLEX problem, the 
ASYMMETRIC LAMP problem, and the TISS problem (see their descriptions 
in Chapter 2). For this analysis, mutation rate is set to 0.2/P and crossover is 
held at 0.80. Twenty (20) seeds (runs) are performed for each population size 
to reduce the result's sensitivity to the random number generator seed. 

Twenty Branch and Bound solutions have been obtained from randomly 
generated starting points and twenty Monte Carlo simulations are performed 
for each problem. The results of these runs determine the competitiveness 
required of the ga methods. All ga runs are limited to a maximum number of 
cost function evaluations to maintain the efficiency pressure established by 
the Branch and Bound and Monte Carlo methods. If excessive diversity is lost 
from the population, denned by tile product of the bit likeness (PBL) (see 
Chapter 6), the runs are terminated early. 

First of all, an exhaustive search of the entire design space has been 
performed for the TRIPLEX and ASYMMETRIC LAMP problems. Cost 
function values are normalized such that 0 refers to the absolute known 
minim«™ for the problem and 100 refers to the average results obtained by 
the twenty Monte Carlo simulations for each problem. A Monte Carlo 
simulation of 400 points was used for the TRIPLEX problem, a 400 point 
simulation was used for the ASYMMETRIC LAMP problem, and a 10,000 
point simulation was used for the TISS problem. 

A comparison to the Branch and Bound method is desired, so twenty 
runs are performed with twenty randomly selected starting points. The mean 
normalized solution is 688.49 for the TRIPLEX problem, 43.89 for the 

ASYMMETRIC LAMP problem, and 60.20 for the TISS problem. 
Understandably, the results are best for the mixed continuous/discrete 
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ASYMMETRIC LAMP problem because Branch and Bound uses an underlying 
continuous search algorithm-^tiie greater the percentage of the problem that 

is continuous, the better Branch and Bound should perform. The ga, on the 
other hand, approaches continuous problems as finely divided discrete 
problems, so that performance is maximized on purely discrete problems. The 
poor TRIPLEX performance for the Branch and Bound indicates that the 
method can easily stick in local optima. The Monte Carlo simulations used to 
set the upper cost normalization value fair very well on the TRIPLEX problem 
because in 400 points they explore 40% of the 1,000 point design space formed 

by 10 point discretization of three parameters. 
The other variable of comparison for the Branch and Bound and ga 

methods is computational effort. Branch and Bound does not have solution-on- 

demand capability—it must be allowed to work to its conclusion. On the 
twenty runs for the TRIPLEX and ASYMMETRIC LAMP problems, Branch 
and Bound performs an average of 316 and 195 cfe, respectively, to generate a 
solution. Likewise, the average number of cost function evaluations for the 
TISS problem is 38,700, with a maximum limit set at 50,000 cfe. Based on 
these results, the goal is to prove that the ga is able to systematically generate 
solutions equal to or better than the Monte Carlo simulation in the TRIPLEX 
problem and equal to or better than Branch and Bound for the ASYMMETRIC 
LAMP and TISS problems, in less time than Branch and Bound requires to 

obtain tile solutions. 

8.3 Traditional Genetic Algorithm Population Size 

The first population size analysis is performed on the tga to compare it 
to the other methods. Figure 8-1 shows the tga performance at each 
population size for the three test problems. For the TRIPLEX and 
ASYMMETRIC LAMP problems, the tga is set to run for 5,000 cfe or a PBL of 
0.1, whichever occurs first, while termination is contingent upon 50,000 cfe or 
a PBL of 0.2 for the TISS problem. Notice also that larger population sizes are 
tried for the TISS problem to account for its greater problem complexity. 
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Figure 8-1: Population size comparison for tga 

A noticeable difference exists between the problems. The results are 
generally better as P increases, but the algorithm has greater difficulty with 
the mixed continuous/discrete problems than it does with the purely discrete 
TRIPLEX problem. The performance for population sizes below 30 is very 
poor for the two smaller problems. According to this figure, the optimal 
population size for a problem similar to the complex TISS problem lies 
somewhere between 40 and 400 for the tga. The ASYMMETRIC LAMP 

problem works well with a population size of about 60, while the simple 
TRIPLEX problem obtains good performance for population sizes greater than 
60. This figure also shows the method that generated the most competitive 
results for each of the three problems. It can be seen that the tga outperforms 
the Branch and Bound and Monte Carlo methods (on the basis of answer 

quality alone) for P > 30. 
As stated earlier, the Branch and Bound and Monte Carlo methods are 

able to generate solutions reasonably fast. In order to compare the genetic 
algorithm properly, the tga is stopped at a number of cost function evaluations 
competitive to the other two methods for each problem. As a consequence, 
Figure 8-2 shows the tga performance as a function of the same population 
sizes, but when constrained to 400 cfe for the two smaller problems. The TISS 
problem is not included because neither of the other methods provided any 
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worthy competition to the tga! For that problem, Branch and Bound obtains a 
solution of 60.2 with 38,700 cfe, while the Monte Carlo method generates 
solutions of 242 and 100 for simulations of 1,000 and 10,000 cfe respectively. 
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Figure 8-2: tga population size analysis for competitive runs 

This figure shows that the competitiveness of the tga is limited in mixed 
parameter and/or small problems. The best performance of the tga occurs 
with a population size of 60 (exact correspondence to the optimal value in 
Figure 8-1), but when limited to 400 cfe its solution is 75.8 compared to the 

Branch and Bound solution of 43.89. 
The tga performance on the fully discrete TRIPLEX problem is better 

than that of the Branch and Bound and the 400 cfe Monte Carlo attempts. 
The best tga performance for this small problem was realized for population 
sizes of 30 to 80 members. From this analysis, we conclude that the optimal P 

is 60 members for a tga performing fault tolerant system design. 
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8.4 Steady-State Genetic Algorithm Population Size 

The ssga performance at the ten attempted population sizes begins to 
show its superiority over the tga. Figure 8-3 reveals that ssga performance 
exceeds that of the Branch and Bound as P increases. This analysis uses the 
same termination criteria indicated for Figure 8-1: 5,000 cfe/0.1PBL for the 
two smaller problems and 50,000 cfe/0.2 PBL for the TISS problem. The 
results of the test problems are also very consistent with one another, which 
shows that the ssga is less affected by the continuous portions of the 
ASYMMETRIC LAMP problem than the tga is. There appears to be a 
monotonic increase in the solution quality with increased population size. 
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Figure 8-3: Population size comparison for ssga 

The ssga requires much fewer cost function evaluations than the tga. 
The number of cfe needed to reach termination on the basis of PBL increases 
quadratically with population size and only exceeds half of the maximum 
allowed cfe in one instance (P = 400 for the ASYMMETRIC LAMP problem). 
Any population size greater than 40 is superior for the discrete problems, while 
a slightly larger P of 80 allows the mixed problem performance of the ssga to 
exceed that of its competitors. Again, remember Figure 8-3 shows a 
comparison of solution quality only. The impact of time constraints such as 
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limitations of time or computational capability must also be addressed as 

shown in Figure 8-4. 
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Figure 8-4: ssga population size for competitive timed runs 

The ssga performance on the TRIPLEX problem is again superior. The 

ssga is able to outperform the tga, Branch and Bound, and Monte Carlo 
methods for all population sizes above 30 members. The figure shows that the 
best performance can be achieved by using a population size of about 80. 
Values far from this value show decreased short-run performance. The 
decrease in solution quality with population size increases above 80 on the 
time constrained problems is most likely due to the lack of sufficient time for 

the ga operators to effectively sort through the population and focus their 
efforts on high fitness areas of the design space. This behavior should be noted 
by the decision maker (DM), who must determine the time constraint placed on 
the algorithm—4he looser the time constraint, the larger P can be made and 

the better the solution quality that can be obtained. 
The performance of the ssga on the ASYMMETRIC LAMP problem is 

better than that of the tga, and is very competitive with the Branch and Bound 
method when the proper P is used. Figure 8-4 shows that a population size 
between 80 and 100 makes the ssga competitive even though the problem is 

partially continuous and therefore more favorable to Branch and Bound. 
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8.5 "Wasted" Binary Coding 

As discussed in Section 3.3, choosing to use a binary alphabet for 
parameter coding introduces "wasted" space on the coded string. Section 3.3 
uses the coding of the first 5 integers as an example. This requires a binary 
string of 1 = 3, which also has room for integers 6, 7, and 8. A crossover 
between 3 [0 1 1], and 4 [1 0 0] between the second and third loci (counting 
from the right) produces 8 [111], which is not in the parameter space. In this 

thesis, disallowed parameters are reverted to the value previously assigned to 
them—all other string changes created by reproduction are retained. 

The TISS problem has 17 parameters with 5 discrete bin choices each. 
As such, each parameter coding, like the example above, has 3 disallowed bit 
combinations. In the entire string, 3*17 = 51 disallowed parameter 
combinations exist compared to the 5*17 = 85 allowed. In other words, 3/8 = 
37.5% of each string is a disallowed combination. Reverting the affected 
parameters maintains convergence, but effort is still expended for each 
appearance, slowing down the method. The effort of keeping disallowed 
combinations from appearing in the population is small in most cases, but 
when coupled with the "wasted" crossover and/or mutation operations that 
produced the disallowed combination, the effect may be significant in some 
problems. 

The frequency of this occurrence is shown in Table 8-2 for both ga 
methods used on the TRIPLEX and TISS problems. The values in the table 
are percentages of the total cost function evaluations that required at least 
one disallowed parameter to be reverted. Remember that a cost function 
evaluation occurs whenever crossover or mutation is performed on a string. 

A Monte Carlo operator on either problem would produce a disallowed 
value 37.5% of the time. Therefore, the 3% to 10% disallowed generated by 
both ga methods is three to ten times better in limiting the effort to the proper 
domain. The reason for the difference in wasted effort for the different 
problems is not easily determined. It is likely due to beneficial schemata in the 
TISS problem that appear on disallowed strings. The ga thus looks often in 
disallowed regions while trying to explore highly fit schemata. 
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TRIPLEX problem TISS problem 

p tga ssga tga            ssga 

10 7.38 7.50 

20 5.26 5.08 16.08         16.46 

40 4.10 4.70 9.66         10.89 

60 3.46 4.65 7.23           9.45 

80 3.33 4.41 5.90           9.49 

100 3.07 4.43 5.21           8.08 

200 4.75 3.97 3.79           7.35 

400 5.67 3.92 4.50           6.98 

600 4.82           7.03 

Table 8-2: "Wasted" effort caused by binary coding 

This also table shows that for some reason the ssga generally creates 

more members with disallowed portions. 
Table 8-2 shows that the ga not only produces robust, efficient results, it 

also effectively limits its operation to beneficial areas of the coded design space 
and is not greatly influenced by "wasted" space of binary coded parameters. In 
addition, Table 8-2 proves that the ga user can confidently choose P anywhere 

within the wide ranges covered by this analysis without hindering the ga's 

ability to deal effectively with defined regions of the string. 
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9.0 Summary of Single Criterion Design 

The design of fault tolerant systems relies heavily on (1) the availability, 
accuracy and completeness of a system model, (2) a systematic and efficient 
design approach capable of handling large component numbers, and (3) an 
optimization algorithm that adapts readily to model changes and reaches a 
satisfactory solution in a reasonable amount of time. This thesis has shown 
that the combination of the Markov Modeling Method, the Optimal Design 
Process, and genetic algorithms is an effective combination for dealing with 
real-world fault tolerant system design. Early work at the Charles Stark 
Draper Laboratory developed the interactions of the Markov Modeling Method 
and the Optimal Design Process in a continuous problem framework [8]. It has 

been the intention of this thesis to expand that work to include the robustness 
of the genetic algorithm (ga) and its ability to optimize the discrete parameter 
problems that often appear in fault tolerant system design. 

The genetic algorithm readily changes to model expansion and additional 
problem complexity because it never needs to know details of the system it 
optimizes. The cost function and the associated parameter-to-string mapping 

are the only parts of the genetic algorithm method that change in response to 

system alterations. 
The genetic algorithm works on simple principles that parallel natural 

biological systems. It uses random choice in a directed search process for 
optimization. The three key operators that dictate ga performance are 
reproduction, crossover, and mutation. These operators evolve a population of 
potential solutions to increase the average solution quality of the population. 

97 



The ability of an optimization method to deal effectively with 
constraints is crucial to fault tolerant system design. The most common 
constraint in such problems is parameter constraints, where the design 

variables are limited to a specified range or a discrete set of choices. The 
genetic algorithm deals with this issue directly by operating directly and solely 
on the domain allowed through the use of parameter coding. Function 
constraints, on the other hand, are generally dealt with in ga applications 
through the use of a penalty function applied directly to the cost function 
problem-specifically by the user. This thesis introduces a new approach that 
relies on the constraint space information inherently contained in the ga 
population to automatically assign the penalty function. A multiplicative 

penalty function applied to the fitness scaling of strings that violate 

constraints is included to illustrate the approach. 
Two types of single criterion genetic algorithms have been explored: the 

traditional genetic algorithm (tga) evolves whole "generations" of potential 
solutions in tandem; while the steady-state genetic algorithm (ssga) has been 
developed by the author to enhance the convergence and speed of the ga by 
eliminating generational replacement. This thesis has shown that the ssga 
has better convergence characteristics than the tga in fault tolerant system 
design. The termination criterion "probability of bit likeness" (PBL) has been 
developed to capitalize on the convergence characteristics of the ssga and to 
allow termination at a prescribed level of population diversity loss. 

The proper implementation of the mutation operator rate and the 

population size have been explored for several fault tolerant system design 

problems.. The crossover rate has not been examined due to a general 
agreement on its implementation by most ga literature. The effect of mutation 
is shown to be positive, and the proper mutation rate was found to coincide well 

with the results of other ga parameter studies. 
Mutation rates of 0.001 to 0.01 provided the best performance on the 

three test problems examined. To coincide with the recent understanding of 
the ga community that population size and string length affect optimal 
mutation performance, however, the mutation rate recommended by this 
thesis is 0.2/P for small string lengths. Longer string lengths (» 50 bits) were 
not examined by this thesis, but should generally account for the larger 
number of schemata in longer string lengths by increasing the mutation rate. 
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To date, the existence of a reliable rule-of-thumb for determining 
population size (P) has not been produced. This thesis explores determining 
population size using the string length and the probability of losing critical 
levels of diversity from the string (P8). This idea does not provide a reliable rule- 
of-thumb, but it does show that injecting diversity into population is very easy, 
so that the combination of properly sized populations and adequate mutation 
can easily provide the necessary ga population diversity. 

The optimal population size for the ga when optimizing fault tolerant 
system designs has been explored empirically and has been determined to be a 
function of the type of ga used and the computational constraints imposed. 

The tga performance is optimal when population size is between 60 and 
80 members. This conclusion is based on the consistent performance for all 
three test problems, representing various string lengths and problem 
complexities. The computational effort expended by the tga increases linearly 
with additional population members, such that P = 60 usually requires less 
computational effort than P = 80. 

This thesis finds that the ssga exhibits excellent performance over a 
wide range of population sizes. If not severely constrained by limited 
computational effort, the ssga can be expected to provide exceptional 
performance for P > 60. On large, complex problems like the TISS problem, 

very large populations of 600 members produce the best assurance of a quality 
solution. When time constraints are applied, though, the ssga still exhibits 
superior performance, but like the tga, population size should be limited to the 
range 60-100. 

The computational effort of the ssga goes up quadratically with 
increases in population size. Though the ssga appears to be very robust and 
the decision maker (DM) may choose any population size in the above range 
without concern, the more knowledgeable user may wish to adjust the 
population size to best suit her wishes: for more accuracy by increasing 
population size to 100, or more efficiency by decreasing population size to 60. 
As population size is approximately doubled from 60 to 100, the effort is 
approximately squared. This general relationship holds for all population sizes 

tried on the ssga. 
Even at the tga's optimal population size of 60 where the average 

solution outperforms the ssga of the same population size, three times more 

tga computational effort is required to achieve the solution. Therefore, it is the 
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general conclusion of this thesis that the ssga is superior to the tga for 

optimizing fault tolerant system design problems. 
One of the more important conclusions of this thesis is that the genetic 

algorithm is superior to the Branch and Bound method. The ga is a much more 
robust and efficient method for optimizing the design of fault-tolerant systems 
as shown by Figure 8-1 through Figure 8-4. In contrast to the ssga with a 
population size of 600 on the TISS problem, the Branch and Bound delivers 
solutions 4 times worse and performs 2.8 times the computational effort. 

The ga has solution-on-demand capability. Following a reasonably brief 

operating period, the ga is capable of delivering a solution to the DM. Further 

efforts may improve that solution, but the DM need not wait for the algorithm 

to complete its operation. Branch and Bound, on the other hand, is usually 

incapable of finding a quality intermediate answer. In a small test of this 
assertion, only 3 of 10 Branch and Bound trials on the TISS problem generated 
any solution after 4,000 cfe, and those three were very poor. 

By direct comparison of the genetic algorithm and other discrete 
optimization results, such as the Monte Carlo method and the Branch and 
Bound method, the genetic algorithm is shown to provide a very efficient and 
robust approach to discrete optimization. Because the system model requires 
no derivative information, the genetic algorithm formulation proves to be much 

easier to develop. Second, the genetic algorithm need not be changed with the 
system's variations because the cost function and its associated string-to- 

parameter mapping are the only parts of this method that change in response 
to system alterations. Third, since the genetic algorithm searches from a 
population of points, it converges to an acceptable solution faster than 
methods that move along a single optimization path and is capable of providing 

solutions to the DM at any point of its operation. Even with a large population 
size of 600, the ssga only requires 13,580 cfe to converge and generates a 
solution 75% better than Branch and Bound is capable of generating in 38,700 
cfe. Finally, a concern for any optimization technique is the reliability of the 
result. This thesis proves that the genetic algorithm can be relied on to provide 
a suitable solution to complex, integrated fault-tolerant systems while 
maintaining its model simplicity and efficiency attributes. 
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10.0 Multicriteria Optimization 

10.1 Background 

Multicriteria optimization refers to the process of dealing with multiple 
criteria that a decision maker (DM) wishes to optimize simultaneously. The 
issue of optimality in this context differs due to the often conflicting 
relationship between criteria. The general single criterion problem with n 
design variables and m constraints is: 

Optimize: J(x); x = [x1,x2,...,xnf 

Subject to: gj(x) < 0;     i = 1,2,..., m 

The general multicriteria optimization problem with n design variables, 
m constraints, and 1 criteria is [2]: 

Optimize: J(x) = [J1(x),J2(x),...,J,(x)f;      x = [x1,x2,...,xn]'1 

Subject to: g^x) < 0;     i = X 2, —, m 
(2) 

The vector J is the multicriteria objective function formulation with 
elements Jv J2,..., Ji as the individual criterion objective functions. It is 
important to note that the individual criterion functions are merely listed 
together in a vector; they are not added, multiplied or otherwise combined in 
the general multicriteria problem. 

Single criterion optimization seeks to identify an optimal solution. This 
is defined as simply the feasible solution (or solutions) that gives the best 
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objective function value. The desired location in the design space is unique 

even if alternative optima exist. 
The single criterion notion of optimality does not work in the 

multicriteria context, however. A new concept involving efficiency (also called 
domination) serves a similar function in multicriteria problems. The desire of 

the analyst in multicriteria problems is to assist the DM in isolating a 
preferable solution that lies in the set of efficient points (also called the 
dominant or Pareto dominant set). The means for accomplishing this goal is 
explained later—first we must assemble the basics of the multicriteria 

problem. 
The notion of efficiency (noninferiority, nondominance, or Pareto 

optimality) is best illustrated by way of example. Suppose four solutions exist 

for comparison in a two criteria minimization problem [2] (see Figure 10-1). 

Alternative C is inferior to B and D because it has criteria values worse than 
the others in both criteria in each case. Furthermore, B and D dominate C 
because their values are better than C in both criteria. Alternative A does not 
have a dominance relation with any of the given alternatives B, C or D because 
the J2 value of A is better than all the others while its Jx value is worse than all 
the others. Alternatives B and D do not have a dominance relationship either 
for the same reason. Solutions that are not dominated by any part of the 
objective space are called efficient, such as A, B, and D of Figure 10-1, because 

as defined in Cohon: 
"A feasible solution to a multiobjective [multicriteria] programming 

problem is non-inferior [efficient] if there exists no other feasible solution that 
will yield an improvement in one objective without causing a degradation in at 

least one other objective." [2] 
Figure 10-1 shows efficiency in a Jx - J2 plane. The objective space 

shown must be distinguished from the decision space containing the feasible 
design variable (parameter) regions. All interior solutions of the objective 
space such as alternative C are inferior no matter if the individual criteria are 

to be minimized or maximized. In Figure 10-1, both criteria are to be 
nunimized, so that the optimal value would lie at the origin if the entire 

quadrant were feasible. 
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Jl 

Two dimensional 
objective space 

Alternative Ji J2 

A 10 10 
B 3 80 
C 7 90 
D 5 30 

dominated solution 

Efficient Set of noninferior solutions 

Figure 10-1: Two dimensional multicriteria objective space 

The general rule for determining efficiency in a minimization problem is 
that when no feasible solutions lie in a "cone" to the lower left of a point of 
interest—that point is efficient. Conversely, any point that has some portion 

of the feasible objective space in a "cone" to its lower left is dominated. The 
shaded region of Figure 10-1 shows the full efficient set of the problem. 

Multicriteria methods attempt to allow the analyst and decision maker 
(DM) to perform the aspects of system design they are best prepared to deal 
with. The analyst represents the design engineer with a great deal of technical 
knowledge pertaining to the multicriteria fault tolerant design process and the 
optimization methods employed. The DM, on the other hand, represents the 
individual or group that must make the critical design decisions when 
presented with the tradeoffs between conflicting criteria. The DM need not 
have any technical knowledge «morning optimization for multicriteria design 
to be effective. Multicriteria optimization for fault tolerant system design 
couples (1) the analysis of potential solution dominance (solutions should lie in 
the efficient set) and (2) the more intuitive, empirical, and "gut level" decisions 
that must be made between alternatives in the efficient set to arrive at a 
satisfactory system design solution. 
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10.2 Multicriteria Technique Classification 

Classification of the various multicriteria optimization techniques is 

based on the interaction of the method, analyst (who controls the method), and 

the DM (who chooses the solution). Techniques are classified in many ways by 
different authors, but for the context of this thesis multicriteria techniques 
include four main types: no preference articulation, a priori articulation, 
progressive articulation, and a posteriori articulation. The techniques that fall 

into these categories will not be explained in detail, but the general approach of 
each category will be explained to illustrate how this thesis fits into the broader 

framework of multicriteria design. 

10.2.1 No preference articulation 

This class of multicriteria optimization requires no DM interaction with 

the method. Commonly referred to as the Global Criterion Method, in this 
method the analyst applies an optimization technique to provide the DM with a 
single solution from the efficient set. The solution comes from a two part 

problem: 
1) Solve the problem for individual criteria: 

Optimize: Jk(x); k = X 2, ...1 
Subject to: gi(x) < 0;      i = X 2,..., m 

(3) 

The solutions to this step are designated Jk (x*) 
2) The second step is a goal minimization: 

T   A«,*\       T   (nr\ P 

Minimize: min ]£ 
k=l 

Jt(x*)-Jk(x) 

Jk(x*) 
P>1 (4) 

Subject to: gj(x) < 0;     i = X % .», m 

The optimal solution depends on the choice of the norm p. The solution 
is the point of the objective space where the tradeoffs between the criteria are 
the smallest for the given norm p. The solution produced is in the efficient set if 
all criteria are strictly positive so that measurements from the objective space 
origin (where Jj = 0; i = 1,2,...,1) to J(x*) are always positive distance quantities 
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[2]. This method would produce a solution at the "knee" of Figure 10-2 where 

the choice of solutions is relatively easy. 
This method by itself, however, does not provide adequate information 

about the criteria tradeoffs to allow the DM to be confident in the solution. No 
justification of the solution is provided and the arbitrary choice of p affects the 
solution obtained. This type of analysis is a "no brainer" that is often avoided 

in actual multicriteria design. 

10.2.2 A priori articulation of preferences 

Several methods fit this category. All of them require the DM to have a 
good grasp of what she expects to see from the analysis and what she would 
prefer to do with that information before any analysis takes place. The way 
preferences are articulated identifies the individual methods. The utility 
function method, lexicographic method, surrogate worth tradeoff method, and 
goal programming method all require a priori preference articulation. 

These methods place a relatively large demand on the DM in terms of 
the information required. They have the major disadvantage of requiring the 
DM to spell out very explicitly her preferences. This process is usually very 
time consuming, which makes DM involvement difficult since no feedback can 
be immediately returned. Also, the DM may not know enough about the 
problem to effectively state preferences. The unknowns of feasibility and the 
tradeoffs necessary to achieve stated preferences often make DM reluctant to 

express their preferences. 

10.2.3 Progressive articulation (interactive programming) 

Interactive methods use DM preferences to perform local searches of 
the multicriteria design space. Progress toward a solution of tile problem is 
accomplished by iterative interaction of the method with the DM, either with or 
without the assistance of an analyst. As local progress is made to a solution, 
new reactions of the DM are used to redirect the next local search. These 
methods have the distinct advantage of often producing solutions that the DM 
particularly likes because of the constant interaction and the better visibility 

of where the solution came from. 
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Methods often placed in this category include: interactive goal 
prograinming, the step method, and the sequential multiobjective problem 
solving technique. These methods have distinct disadvantages, however. 

First, they require a very high time involvement from the DM. The DM must 
be present at each iteration of the method to look at intermediate results and 

express preferences to orient further search. Secondly, there is no guarantee 
that the solution obtained will be satisfactory to the DM. The expression of 
local preferences as the method progresses may lead to a solution that is the 

sum of the satisfactory parts but is not a satisfactory whole. 

10.2.4 A posteriori articulation (generating methods). 

Finally, there are methods that enlist the assistance of the DM only at 

very late stages of the analysis. These methods put a comparatively small 

burden on the DM in terms of the amount of information required. 
Using the convention adopted in [2], these methods will be called 

generating methods for their ability to generate a full or partial representation 
of the efficient set. Because the analytical analysis has already been 
performed, the DM need only to react to the results produced. As put in [2], 
"the emphasis is on the demarcation of the range of choice, not on the explicit 
definition of preferences." The DM are offered insights into feasibility, 
necessary sacrifices, and the costs/benefits of each solution of the efficient set. 

The a posteriori methods inform the DM, not the other way around. 
Preference articulation is an overpowering drawback to multicriteria 

optimization. A priori and iterative methods are usually rendered useless if the 
DM changes her mind. The very fact that these problems deal with a human- 
interface with the frequent capacity for indecision or reversal of position lends 

a great deal of weight to a posteriori methods. 
The first three classes of methods have an additional drawback. In 

them, the role the analyst takes in the process of selecting a problem solution 
can greatly affect the solution selected and the satisfaction the end-user (DM 
or otherwise) has with that solution. It is never the role of the analyst to steer 
the progression toward a solution. If the DM is not well versed in the technical 

aspects of optimization, especially the complexity of the multicriteria 
framework, the analyst may have a great deal of difficulty in obtaining the 

necessary articulation of preferences for the method. In such a case, the 
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analyst can have a large impact on the progression of the method. Also, such 
DM will often distrust the solutions obtained because the analyst will have 
seemed to have pulled solutions "from thin air". These difficulties can usually 
be overcome, of course, but the premise of this thesis is that the analytical 
analysis of the problem should be kept as isolated as possible from the 
expression of preferences. 

The analytical methods for approaching a multicriteria problem will 
always remain short of fully capturing the essence of multicriteria problems. 
This fact must be appreciated so that the non-analytical articulation of 
preference, an emotional, "gut level", and always individual choice, can be 
appreciated and allowed to work without the constraints of analytic thought 

and over-constrained structure. 
Generating methods can also be used as a "front-end" approach for 

other techniques. If the efficient set cannot be analyzed by the DM without 
additional considerations, articulation of preferences at this point, with a larger 
picture of the tradeoffs in the objective space available, can narrow the 
solutions under consideration. Making the efficient set representation 
produced by the generating method the domain of additional search, the 
additional computational requirements can be kept to a minimum and the "big 
picture" context of the narrowed focus can be kept in proper perspective. 

The major disadvantage of generating methods is the computational 
requirement. The fact that these methods provide a full set of potential 
solutions makes this disadvantage understandable. Many methods in this 
category require the solution of a complete single-criterion mathematical 
program for each point of the solution set. For these methods to be worth 
using, therefore, they must provide competitive computational requirements. 

Computationally, the first three categories avoid high costs by full 
utilization of the preferences given. These methods usually have a great 
computational advantage over the generating methods, but the high 
investments of user time weigh heavily against their use. 

No one approach is optimum for every multicriteria problem, but this 
thesis intends to show that a posteriori articulation of preferences has general 
applicability when coupled with an optimization technique that is rapid, reliable 
and versatile. Methods in this category include the e-constraint method, 

weighting method, and the Multicriteria Genetic Algorithm (MCGA). These 

methods will be presented in further detail in later sections. 
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10.3 Miüticriteria Test Problems 

The fault tolerant design test problems used in this section are 
essentially identical to those used heretofore. The same fully discrete 
TRIPLEX and TISS problems are used with the same problem characteristics 
described in Chapter 2. The only significant difference is that now each 
problem has more than one criterion to optimize. 

Two criteria have been created for each problem, and a third is available 

if the methods analyzed in the following sections would need to be analyzed for 
problems with greater dimensions. The three criteria are shown in Table 10-1. 

criterion 

Purchase Cost 

Unavailability 

Operating Cost 

description 

sum of component costs 

probabiHl^ofbeinjgm^ßdlurestetes^ 

configuration dependent; accounts for 
overhead, maintenance, etc.  

Markov Model 

dependent? 

no 

..yes.. 
yes 

Table 10-1: Sample fault tolerant design criteria 

10.4 Display 

The difficulty of multicriteria optimization is not limited to algorithm 

deficiencies; a DM (often with no technical background) must also use a 
representation of the efficient set to make a qualitative choice of optimality. 

Assisting the DM choose a single solution through point comparisons or 
articulation of preferences is contingent upon the quality of the result 
presentation. The manner in which multicriteria optimization results should 

be presented depends on the number of criteria in the problem. 
In two criteria problems, the best manner of display is a simple plot of 

the two criteria on perpendicular axes. This display is used throughout this 
thesis and is easily understood by most DM. The tradeoffs between criteria are 
easily seen and special interactions of the criteria can make the choice of a 
single solution much easier. For instance, the points with mild tradeoffs 
between criteria at a distinct "knee" of the efficient set as in Figure 10-2 

usually are good solution choices. 
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Jl 

Regions of large 
criteria tradeoffs 
often ignored by DM 

J2 

Figure 10-2: Two criteria problem efficient set with "knee" 

For problems with three or more criteria, this simple graph is no longer 
practical. For three criteria and associated efficient sets with appropriate 
characteristics, 3-D plots, usually with color references, can help the DM to 
visualize the surface of interest. Another manner to display three criteria is to 
use a simple graph and display efficient set cross-sections for fixed levels of the 
third criterion [4]. However, both of these are difficult to construct and only 

applicable to three criteria problems. 
The number of complex, multidimensional points that a DM can directly 

compare is usually limited to 4 or 5 to avoid information overload at a single 
step of the analysis. After general regions of the efficient set have been 
separated, more focused analysis can occur. To facilitate this approach in 

multiple dimensions, the profile device has been established [4]. Figure 10-3 
shows an example profile for three points on four criteria. The addition of color 
and other visualization tools can greatly aid the DM to effectively compare the 

relative merits of points using the profile. 
In a profile, vertical lines indicate the different criteria. The criteria are 

usually normalized in some region of interest, such that relative values are 
compared. Points in the design space are designated a particular symbol 
(circle, triangle, etc.) and their values in each criterion are plotted and 
connected with lines to show visual continuity. In the minimization problems 
of this thesis, a dominated solution has all of its symbols above (worse) than 
at least one other point of the design space. 
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1.0 

0.75 

0.50 Ü 

0.25 

0.0 

O.. . point 1 - efficient 
□... point 2 - efficient 
•. . . point 3 - dominated 

Figure 10-3: Profile display for multicriteria analysis 

The profile shows the tradeoffs between potential solutions of the 
objective space. Comparing a few potential solutions from different regions of 
the objective space can help the DM determine the amount of give and take 

required between different regions of the efficient set. 
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11.0 Multicriteria Generating Techniques 

11.1 e - Constraint Method 

The e - Constraint method, and the Weighting method explained in the 

next section, both transform the multicriteria problem into a series of one- 
dimensional (single-criterion) problems for which solutions are obtained in the 
traditional manner. As with the Branch and Bound method, the e - Constraint 

method (from here on simply referred to as the constraint method) is a 
framework for configuring a difficult problem. It requires an underlying 
optimization algorithm to solve the stack of sub-problems it creates. The 
solutions to those sub-problems should map out a representation of the 

efficient set (E). 
The framework for this method begins with the general multicriteria 

problem presented in equation (18) and shown again here: 

|T Optimize: J(x) = [J1(x),J2(x),...,J1(x)]T;      x = [x1,x2,...,xn] 

Subject to: gs(x) < 0;     i = 1,2,..., m 

The constrained problem for n parameters, 1 criteria, and m constraints is: 

(1) 

Optimize: Jk(x);      k = 1,2,..., 1 

Subject to: gj(x)<0;     i=l,2,...,m (2) 

and Jh(x)<Lh;      h = l,2,...,k-l,k + l,...,l 
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where the hth criteria are chosen arbitrarily for optimization to create a single 
criterion problem. The means for obtaining the function constraints 1^ is 

detailed below. 
The fundamental idea of this method is that one criterion should be 

optimized while all others are represented as constraints. This process defines 
a noninferior solution. Choosing proper L,, to find a desirable number of 
efficient points, a representation of the efficient set can be generated while only 
one criterion has to be optimized (changing line 1 of equation (2) so that Jh(x) 
has to be optimized for only one value of k). The manner in which this is done is 

described graphically for a two criteria problem in Figure 11-1. 

'1A 

'IB 

Jl 

Figure 11-1: e - constraint multicriteria method 

This figure shows two criteria represented as Jx and J2. By optimizing 

on criterion J2 without placing any condition on the other, the point A is 
obtained as the minimum. Point A denotes one edge of the efficient set; the 
other could be found by optimizing on Jx with no conditions on J2. 

Now suppose that an inequality constraint is placed on J1 such that J2 is 
to be minimized subject to Jx < J1B. The solution to this problem is point B, 
which is a point on the efficient set. This process can now be repeated to 
generate the desired resolution of the efficient set. The choice of which criterion 
is to be optimized and which is to be held as a constraint can be done 
arbitrarily without impacting the method's performance in most instances, or 
can be made by the DM based on prior knowledge of the relative ease of 

optimizing and/or bounding either criterion. 
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The DM desired resolution is established through the parameter e. This 

parameter denotes the change in the constraint bound for one criterion 
necessary to achieve the desired spacing in other criteria. For example, if the 

individual Jx and J2 problem optima (i.e. the efficient set boundaries) are found 
to be [100,1] and [200,0.1], we know that Jr varies from 100 to 200 along the 
efficient set. If the DM desires a 5 point efficient set resolution, e is set to (200- 

100)/(5-l) = 25. 
Thus, to provide five point resolution, three points must be located in 

addition to the two endpoints. With e = 25, the three necessary constraints are 

set as: 

Jli<100+iE;       i = 1,2,3 (3) 

In more than two dimensions, this method experiences significant 
drawbacks, however. The difficulty arises that many constraints imposed 
create infeasible sub-problems. This phenomenon is described in more detail in 
[4] with a graphical illustration. Though this disadvantage is not catastrophic 
for the method, it may result in much wasted computational effort because the 
solutions obtained in such instances will either be a duplication of effort that 
produces cloned solutions or will not be part of the desired resolution. 

The constraint method can be very tedious and computationally 
expensive. The DM has the option of defining as much or little resolution of the 
efficient set he or she would like to generate, however, which makes the method 

reasonably predictable and very parallelizable. Once the individual limits on 
the criteria are found (which can be done in parallel), the remaining sub- 
problems needed to create the efficient set are simply a function of those initial 
solutions as illustrated by equation (3). Every remaining sub-problem can be 
solved independently. In this way, an analyst with access to highly parallel 
hardware can make excellent use of his facilities and reduce the otherwise 
excessive run-time of the constraint method. 

In this research, a simple 2-dimensional constraint method framework 
has been created. The underlying optimization algorithm is the steady-state 
genetic algorithm (ssga), already proven to be a superior method for the 
optimization of discrete single criterion fault tolerant system design problems. 

As noted earlier, one drawback of the constraint method is infeasibility 
for constrained design space locations. This disadvantage is dealt with in this 
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particular implementation by analyzing the initial population of the ssga at 
each constraint level for feasibility. If the entire initial population is infeasible, 

the method is instructed to suspect that the current problem is too tightly 
constrained. To verify this assumption, the initial population is regenerated at 

random and again checked for total infeasibility. If the second attempt also 

generates an infeasible first generation, the current constrained problem is 
discarded. This manner of dealing with infeasible constrained problems 
requires 2*P cfe to determine the validity of the infeasible first generation 
assumption. To not include this, check, however, would allow a full ssga run 
with a fully infeasible population, requiring many cost function evaluations 

with little chance of finding a feasible, optimal solution. 
The intent of this thesis is to accentuate the robustness of the genetic 

algorithm by mamtaining biological analogies whenever possible and keeping 
the methods' characteristics general by separating problem data from the ga 
operating domain. In light of this intention, a new formulation of the distance- 
based penalty function has been developed for this thesis (see Chapter 5) and 
is included in this implementation of the constraint method. 

A multiplicative fitness penalty function (G) is applied to degrade the 
fitness (F) of ssga strings that violate the imposed bound on Jv referred to 

below as g. 

Fitness: Fj = F, * G^;      j = X %.... P 

where 
f *     v» (4) 

ifgi(x)>g*(x); i = l,2,...,l-l G„ = Si      oj   .  -i 

1.0 otherwise 

where P is the population size, j is an index over the string members of the 
population, and i is an index over the problem constraints. The quantity Ag is 

the distance between the efficient set boundaries measured along the g (Jx) 
axis. The inequality constraint is presented as a function of the actual 
constraint bound to show the effect of crossing the inequality threshold g*. 

This G has very favorable effects on the test problems of this thesis. 
The fitness is degraded as a function of the distance from feasibility. The value 
of G drops off sufficiently fast to give a reasonable assurance that strings with 
large constraint violation distances will not be assigned competitively high 
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fitness values. The decay rate (-3) is chosen arbitrarily for this thesis to 
provide a penalty of approximately 90% to those strings at the bound of 
constraint "closeness" (see Chapter 5). Results for the constraint method are 
discussed in Chapter 15. 

11.2 Weighting Method 

The weighting method generates a representation of the efficient set 

systematically by varying a single weighted sum function of the problem 
criteria. It accomplishes its task somewhat faster than the constraint 
method. Its major disadvantage is its vulnerability to missing or 
misrepresenting portions of the efficient set. 

The weighting method operates in the following manner to reduce the 
multicriteria problem of 1 criteria to a single criterion weighted sum [4]: 

Optimize: J = [J1(x), J2(x),..., Jj(x)] ,_, 

Subject to: g(x) < 0 

is the multicriteria problem transformed into: 

l 

Optimize: wJ = ]£ wk Jk (x) 

Subject to: g(x) < 0 

The problem defined in equation (6) defines a point in the efficient set. 
Systematically repeating the process for various wk defines some 
representation of the efficient set. 

The weights do not have to provide meaningful interpretation for the 
problem. The weights are a means of mapping out the efficient set and can be 
considered arbitrary numbers generated simply for the mapping produced or as 
relative "worth" assigned to each criterion. In fault tolerant system design, 
however, the DM usually does not know what the relative "worth" of different 
criteria should be and cannot confidently place weights on criteria to attain 
optimum solutions. As such, a systematic change of the weights is usually 

used. 
The manner in which the weights wk are varied depends only on their 

relative values, not their absolute size. With two criteria, for instance, the 
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weighted sum of (^ + 3J2) produce the same solution on the efficient set as the 

sum (3Ji + 9J2). This relationship leads most applications of the weighting 

method to use positive relative criteria weights that sum to 1.0. The 

combination of criteria weights can be mapped into the design space as 

surfaces of constant "value" called isoquants. In two-dimensional problems, 

the isoquants are straight lines of constant "value" represented by: 

C =  W; Jx + W2 Jj (7) 

The weighting method searches for points of the feasible objective space 

that fall tangent to the isoquants and minimize the function value of the 

isoquant at that point. Figure ll-2a below shows the isoquants for some 

combination of weights in a two criteria problem. In the particular instance 

shown, the solution is not unique. 

Ji 

\ 
v ^|^ Isoquants of 

•(w^i + WjjJiz) 

\ 

Ji 

(a) the weighting method may skip 
reentrant portions like that between 
A and B. 

(b) the weighting method 
makes control of efficient set 
resolution difficult. 

Figure 11-2: Weighting multicriteria method disadvantages 

Comparing the weighting method to the constraint method, the 

constraint method usually gives a more reliable description of the efficient set 

because the user directly controls the point spacing by the constraints 

imposed. The weighting method has the tendency to skip over "reentrant" 

portions of the efficient set as in Figure ll-2a. The second plot shows that 

since problem geometry affects where the points are located (constant 

changes in the weighting increments do not create equal spacing between 
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solutions), the analyst cannot predict the spacing of the points and may not 
provide a satisfactory representation to the DM. 

Another disadvantage shown in (a) above is that weights may not 
provide unique solutions. Both A and B above are obtained by the same weight 
configuration. The particular point found would depend on the underlying single 
criterion optimization method used and, in the case of gradient based methods, 

would depend on the method's starting conditions. 
The weighting method does have a significant computational advantage 

over the constraint method. Its single criterion cost function is a simple sum of 
the criteria functions without regard for constraint difficulties. The weighting 
method does not waste effort as the constraint method does, looking for 
solutions in infeasible areas. Unless external constraints are imposed, every 
weighted combination of criteria is feasible. 

The weighting method is not used in this thesis, but is presented due to 
its popularity, generality, and ease of use. The methods used in this thesis 
must prove to be competitive to the known strengths and weaknesses of the 
weighting method to justify their use in fault tolerant system design. 

11.3 Multicriteria Genetic Algorithm 

The Multicriteria Genetic Algorithm (MCGA) expands upon the basic 
structure of the steady-state genetic algorithm in its attempt to 
simultaneously optimize multiple criteria. The MCGA forms a representation 
of the efficient set through the use of the same three basic ga operators: 
reproduction, crossover, and mutation. For reproduction, since the concept of 
fitness no longer applies with more than one criterion, tournament selection is 
used instead, which places candidate members in competition with each other. 

The MCGA creates a "partial order" of the members of the population 
based on dominance. Dominance replaces fitness for reproduction testing and 
allows the MCGA to optimize all criteria simultaneously with much less effort 
than conventional multicriteria generating methods, due to the ga benefit of 
working from a population of points. This is especially true in the multicriteria 

context because, unlike the single criterion problems where having a 
population was necessary to find a single optimum, here the population itself 

evolves as an entity that is the solution. 
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The first reference to a multicriteria genetic algorithm we were able to 

locate was in [10]. The algorithm they used was called the Niched Pareto 
Genetic Algorithm (NPGA), and used domination tournaments for reproduction 

selection, equivalence class sharing for mamtaining the necessary population 

diversity along the efficient set, and a distinct generational algorithm similar in 
its basic form to the tga. The NPGA was specifically a proof-of-concept of the 
capability of genetic algorithms to optimize multicriteria problems. The NPGA 
was not rigorously tested, and it was analyzed for its on-line performance only. 
The MCGA of this thesis uses the same framework as the NPGA. It differs 
only in some of the method parameters available and in its orientation toward 

fault tolerant system design. 

Reproduction 

In the analyses of this thesis, reproduction occurs in one of two ways, 
depending on whether single or multicriteria optimization is performed. The 
single criterion methodology was described in Section 3.5 and uses selection 
and fitness testing. These steps determine which individuals of the population 
are reproduced based on factors equivalent with the environment, mating 
preferences, and individual strengths. The multicriteria manner of 
reproduction incorporates tournament selection, which allows for direct 
competition among members of the population without the need of a separate 

fitness scaling of string worth. 
In tournament selection, members of the population directly compete to 

determine who will survive and reproduce. In any competitive event, the 
possibility always exists of a tie. This possibility is handled by applying 

equivalence class sharing. 
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11.3.1 Tournament Selection 

A competitive tournament is created from a representative sample of 
the entire population to reduce the unnecessary computational burden of using 

the entire population each time a parent is to be chosen. In this 
implementation, the set of attributes (criteria, phenotypes) for the tournament 
set is used to create a partial order of member domination [10]. The following 
paragraphs describe the tournament selection procedure. The process is 
shown as the "attribute tournament arena" box of Figure 11-5. 

Competitors 

First, two unique (not clones) candidates for reproduction are selected 
from the population at random. Next, a set of representative individuals is also 
selected from the population at random. Reproduction selection is based on the 
relative domination of the candidate strings to the representative set. 

Tournament set size (t^,,,,) 

The size of the representative set significantly impacts the method. If 
the set is too small, t^ is not representative, and a realistic domination rank 
of the candidates cannot be determined. On the other hand, making the set too 

large wastes valuable computational effort. 
Just as the ga operates to continually improve the average fitness of 

the population, the MCGA operates to continually move the population 
towards a representation of the actual efficient set (E). Consequently, the 
value of tdom also affects the pressure the method puts on the movement 
toward E and impacts the tradeoffbetween efficiency and exploration. A 
smaller t^ means that the candidates will be more likely to show a falsely 
high dominance, which will reproduce less dominant members at a higher 
rate—emphasizing exploration over efficiency. 

Horn and Nafpliotis conclude the following order of magnitude guidelines 
for setting tdom for on-line performance: 
• tdom ~ 1% of population size (P), too many dominated solutions 

• tdom ~ 10% °f P» tight and complete distributions formed 
• tdom » 20% of P, premature convergence occurs to small sections of E 
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Definition of a Tie 

Once the proper tdom is established, the dominance based selection can 

also occur in one of two ways to affect efficiency and resolution. First, if 
dominance is determined when one candidate completely dominates the 
tournament set, as suggested by [10], the tournament is very selective since 

both candidates will not be completely dominant in most cases, leading to 
many ties that have to be decided by sharing—emphasizing spacing and 

resolution over efficiency of movement toward E. Secondly, dominance can be 
denned as the candidate that dominates the greatest number (or fraction) of 

the tournament set. In this manner sharing is only required when both 
candidates dominate the same fraction—emphasizing efficiency over 

resolution because fewer ties will be declared and less sharing has to be 

performed. 
The tournament could also choose the candidates from the 

representative set itself, by either of the two methods above. Nevertheless, 
the implementation here is easier to analyze and should have comparable 

performance characteristics. 

11.3.2 Equivalence Class Sharing 

Equivalence class sharing is derived from normal fitness sharing, as it is 
applied in a single criterion instance where multiple optima of interest exist. 

There the goal is to distribute the ga population among the optima of the 
search space, with each optimum receiving a fraction of the population 
proportional to its relative fitness [10]. Normal sharing causes parental 
selection to pass over members with niche counts greater than their allowable 
proportion to encourage reproduction in areas with less population coverage. 
Niche counts (mj) estimate the crowding in relative regions of the objective 
space. Their values are calculated for individual members of the population: 

mi = fsh[d((a,b)] (8) 
j=i 

where d(a,b) is the distance between members a and b and Sh(d) is the sharing 

function. The triangular sharing function is used typically, where Sh(d) = 1- 
d/ashare for d < oBhare and Sh(d) = 0 for d > oshare. Here, a8hare is the niche radius, 
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fixed as some minimum desired separation between population members. 
An equilibrium should develop when normal sharing is used such that 

the shared fitness of all niches is equal: 

—a- = —     V a,b members' niches 
m 

(9) 
mfc 

When this equality occurs, every optima has an "effective fitness" F/m equal to 

every other minima of the search space. 
In the multicriteria context, however, fitness does not apply. Rather, we 

are interested in the resolution of E. We would like to emphasize reproduction 
in sparsely covered areas while ignoring areas more densely resolved. By 
applying sharing as a tie-breaking measure, we assume that the candidates 
have equivalent domination characteristics, or that they are in the equivalent 
"class" of solutions as Figure 11-3 shows: 

Niche Regions 

Ji 
A candidate members 
X representative set members 

Equivalence Class Region 

Figure 11-3: Equivalence class sharing 

In this multicriteria context where we wish to minimize both criteria, 
both candidates of the figure dominate the entire representative set. When 
both candidates dominate the same fraction of the representative set, both lie 
in the same class of solutions, shown in the figure as the dashed region. To 
break the tie, equivalence class sharing is used to promote growth in sparsely 
covered regions of the efficient set. In Figure 11-3, the candidate in the upper 
left would be chosen as a parent because it has a niche count of zero, which is 

less than the other's niche count of three. 
Equivalence class sharing is performed in the attribute space 

(attributes are the problem criteria) instead of the genotypic (parameter) 
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space because the genotype of any problem formulation is very generic in 
nature and cannot be depended on to provide the distributed representation of 

the efficient set^-which is in the attribute space not the genotypic space. 

Criteria Scaling 

Multicriteria optimization is performed when attribute scales are non- 
commensurate (i.e. different units). If some form of scaling of the attributes is 
not done, the non-commensurate nature of the criteria have a devastating 
effect on the distribution of individuals in sharing. Sharing in two dimensions, 

for instance, between a criterion with a range of 10,000 units(a) and one with a 

range of 1 unit(b) would only spread the population along units(a)! 
To avoid unintentional biasing of competing criteria, the attributes are 

scaled to have non-dimensional units in the range 0 to 1, corresponding to the 

minimums and maximums of the present population. 

Niche size (aBhare) 

The size of the niche regions (circles in Figure 11-3) significantly affect 
sharing [10]. The MCGA attempts to develop a population evenly distributed 
along the entire efficient set (E). In other words, it seeks to create a discrete 
representation of the possibly continuous "curve" of non-dominated solutions. 
Consequently, the appropriate niche size can be thought of as the total "area" 

of the efficient set divided by the population size (P): 

«W^E^/P (10) 

The term "area" is used because E is an 1-1 dimensional surface in an 
objective space of dimension 1, where 1 is the number of criteria. Equation (10) 

can be approximated by: 

Earea is never known exactly, and rarely even known generally. The 
bounds on the dimensions of E are known, however, as long as we know the 
bounds on the individual criteria (Jt). By knowing the best (J4 optimal) and 
worst (Jk corresponding to Jj optimal) on each criterion axis, the minirrmm area 
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of the efficient set is the hyperplane passing through the extremes. In two 

dimensions, for example: 

Min(Earea)=^jr-jr^f+lj^-J: worst 
2 (12) 

Note that [J^***, J2
WOTBt] forms a single point in the objective space. The 

upper bound on the area must be reached asymptotically: 

MaxfE^) < IJS-*-jri+IJ?"*-JJ worst (13) 

This is an asymptotic bound because the definition of an efficient set 

requires that the surface be monotonic (i.e. all first-order partial derivatives 

have the same sign throughout). 
Scaling the attributes from 0 to 1 gives an upper bound of 2/P and a 

lower bound of V(2)/P for the sharing radius (cy8hare). 

Niche shape 

The shape of the niche is affected by the degree of the Holder metric (p): 

d(a,b) = 
l 

XlJf-j? b|P (14) 

where d(a,b) is the distance between strings a and b in an 1 criteria objective 

space. 
Figure 11-4 shows the shape of the niche as the degree of p varies. 

r *\ 

K ) 

P<1 p = l p = 2 p>2 

Figure 11-4: Two dimensional Holder metric niche shapes 

The limit of the metric at p -» infinity is the absolute value of the largest 

component of the sum above. In Figure 11-4 this would be a square niche. 
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With Holder metrics of degree p < 2, niches along diagonal lines are more 
densely packed than niches along individual criterion axes. Using this type of 
niche should provide a higher distribution of individual members along parts of 
E with the smallest criteria tradeoffs. These regions are notable because they 
signify the least tradeoff between criteria. In problems where most of the set 

is composed of trading a lot of one attribute for a slight gain in another, a 

"knee" (a sharp turn of E) may result which has an approximate one-to-one 

tradeoff. Niches with p < 2 should place more individuals at "knees" to better 

explore them [10]. 
The full MCGA reproduction cycle, as applied in this thesis, is shown in 

Figure 11-5. 
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f random   \_ 
[selection j~ 

►0 
candidates 

Phase 1: Selection of two candidates to compete for parenthood 

Phase 2: Parent chosen as winnerof domination and diversity competitive tournament 

Phase 3: Repeat phases 1 and 2 to select the second parent 

crossover 

< 

mutation 

mutation 

Phase 4: Operators applied to create two new individuals 

Figure 11-5: Multicriteria genetic algorithm reproduction cycle 

Figure 11-5 shows the full MCGA cycle as it produces two children. 
Phase 2 marks the method's departure from its single criterion cousins and 
contains the elements of interest for the MCGA parameter analyses of this 

thesis. 
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12.0 MCGA Performance Parameters 

The implementation of the MCGA, as with any optimization tool, 
requires the determination of optimal configuration settings necessary for 
optimal method performance. As has been stated throughout this thesis, we 
wish to perform optimization using tools with a great deal of robustness across 
fault tolerant system design problems (see Section 3.1 for a definition of 
robustness). In order to create a robust multicriteria genetic algorithm 
method, we must first become familiar with the potential configurations that 

affect MCGA performance. 

12.1 Clones 

Creating the initial population by random parameter generation injects 

maximum diversity into the population, allowing the ga to use implicit 
parallelism to investigate many portions of the design space simultaneously. 
The robustness of the ga depends heavily on the ability of the reproduction, 
crossover, and mutation operators to balance diversity (exploration) and 
efficacy (efficiency). Clones, defined as duplicate strings within a present 
population, reduce the ga's ability to do both in multicriteria optimization. 

In single criterion ga optimization, the ga creates a single solution. Since 
only one solution is desired, the existence of clones in the population may affect 
the manner in which the solution is attained, but may affect the quality of the 

solution attained only marginally. Chapter 17 discusses the pros and cons of 
ehminating clones from single criterion ssga optimization. 
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In multicriteria optimization, on the other hand, the ga creates a 
population of points as the problem solution. Assuming a fixed population size, 

the existence of clones reduces the ga's exploration of the design space by 
limiting diversity and reduces efficiency by hindering the available resolution 

point of the efficient set. With a population size fixed to X members, for 
instance, an MCGA that prevents cloning can theoretically create an X point 
resolution of the problem's efficient set, while the same MCGA without clone 
prevention would be bounded to X minus the current number of clones in the 
population. The number of clones that appear in MCGA operation is explored 
in Chapter 14, but foresight of their potential ill effects enhances the analysis 

and development of the MCGA for fault tolerant system design. 

Three cases are examined to see the effects of cloning on MCGA 

performance: 

Allow cloning 

This control case makes no provisions for the existence of clones in the 
population. They are not treated any differently than other population 

members and are allowed to remain and reproduce. 

Clone removal 

The strictest means of dealing with clones is to remove them directly as 

they are produced by crossover or mutation. This requires checking new 
members against the entire population as they are created. To implement this 
case, the two children produced by a reproduction cycle are checked, if either is 

a clone, both are removed, and the reproduction cycle is repeated until two 
unique members are created. This case ensures maximum diversity in the 
population at the expense of many string comparisons and reproduction cycles. 

Clone penalization 

The final case of dealing with clones identifies them at each reproduction 
cycle by checking new members against the entire population and allows them 
to be placed in the population. As always, the reproduction cycle selects 

strings randomly and removes those with low "value" to make room for new 
strings. Clones are "penalized" because they are removed from the population 
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if they are selected for "value" testing and they never reproduce because they 
are prohibited from being selected as parental candidates. Clone penalization 

reduces the heavy computational cost of repeating the reproduction cycle for 
each clone created, but the existence of some clones in the population may 
affect the efficient set resolution. 

12.2 Population Variability 

As stated earlier, the goal of the MCGA is to generate a high resolution 
representation (e) of the design problem's efficient set (E). Since the decision 
maker (DM) often chooses the route of multicriteria optimization in the first 
place due to lack of knowledge about tradeoffs between problem criteria, the 
DM and analyst usually do not know a priori if the proper resolution is 100 

points or 10,000 points. 
This uncertainty about resolution hinders DM confidence in the 

constraint and weighting methods. The DM would often prefer the problem 
resolution produced by generating techniques to provide a good sense of the 
potential tradeoffs necessary at different parts of the efficient set. Figure 12-1 
illustrates an efficient set for a two dimensional discrete parameter problem 
where generating techniques that divide the efficient set resolution a priori may 

mislead the DM. 

Jx Jl 

000%, 

(a) actual 10 point efficient set (b) constraint method representation of 
same efficient set (10 point resolution) 

Figure 12-1: Example efficient set resolution limitations 

A generating method capable of adapting to each problem's unique 
efficient set would show the concentration of efficient solutions that the 
constraint method misses in Figure 12-1. Flexibility to adapt e to the actual 
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resolution as it evolves has great advantages. The constraint method in Figure 
12-1 is instructed to produce 10 points in the solution, the uneven distribution 
in the actual efficient set caused 4 cycles of the constraint method to generate 

duplicate solutions. Though this example is contrived to illustrate a point, it 
shows how inflexibility in resolution leads to significant waste of computational 

effort. 
The MCGA has been developed to incorporate the possibility of adaptive 

population dynamics to encourage flexibility in its efficient set resolution. 
Three cases are examined: fixed population size and two types of variable 
population size. These cases are covered later, after the process for adding and 

removing (killing) members of the population is explained. 

Adding members 

Every reproduction cycle of the MCGA produces two children. The 
number of members added to the population in each cycle is therefore always 

two. 

Sailing members 

The process of identifying members of the population that should be 
deleted each reproduction cycle depends on the cloning parameter in use and 
the configuration of the tournament (t^J set. If clone penalization is used, 

clones identified during the creation of the t^ set are marked for removal and 
are not included in the tournament set. Clone elimination never allows clones 
in the population, so no clones would be identified at this point. Additional 
members to be killed are chosen by identifying strings of the t^ set that are 
completely dominated by candidate members. This comparison occurs during 
the tournament arena phase of reproduction (see Figure 11-5). A single 
tournament set is used to determine the dominance for two parents in a 
reproduction cycle. Since each parent is chosen as the winner of the 
tournament between two candidates, each tdom member has four opportunities 

to be declared a dominated member and marked for removal. 
Now that we understand how strings are added and removed from the 

population, we can explore when these processes are invoked. The actual 
change in the population size (P) during each reproduction cycle depends on the 
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number of strings marked for adding and deleting and the P dynamics option 
chosen, as described in the following paragraphs. 

12.2.1 Fixed population size 

This is the control case. It requires a single, fixed population size. The 
appropriate P must not only consider the diversity and computational 
guidelines that the single criterion ga deals with (see Chapter 8), but must also 

consider the anticipated or desired e. Fixing P requires that exactly two 
members be killed each cycle by clone and/or dominance checking. If less than 
two are marked, members must be selected at random from the population or 
the new members cannot be used. Random selection of killable members is 
used in this thesis, but neither option is clearly superior since random selection 
entails the loss of potentially valuable genetic information, while not using the 
new strings keeps the population from evolving. 

12.2.2 Variable population size (±2) 

This case allows the MCGA population size to vary from +2 to -2 of its 
present size at each reproduction cycle. It intends to take advantage of 
evolutionary pressure to dictate the population size—and the efficient set 

resolution as a consequence. 
The amount of increase is determined as follows: 

AP = a-b 
where   a = added members = 2 (1) 

b = lesser of 4 and killable members 

If no members are marked for removal, P rises by two, while if four or 
more members are marked, the population size decreases by two. The 
limitations on AP limit the collapse rate of the population to reduce the 

tendency to eliminate beneficial diversity from the population. 

12.2.3 Variable population size (+2/-Pdom) 

This final case allows more drastic fluctuations of the population size by 
increasing the maximum population collapse rate to Pdom members, where Pdom 

is the domination tournament fraction (tdom) multiplied by the full population 
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size (P) (see Section 11.3.1). The Pdom bound on population size decreases 
allows a higher P collapse rate if the method desires one, while still limiting the 
loss of diversity during any one reproduction cycle. The P6om value is chosen to 
represent a known fraction of the overall population size significantly larger 
than the limitation of-2 of the (±2) case above. 

No matter which case of variable population size is used, though, other 
operations of the MCGA are affected. The size of the niche radius aBhare, defined 

in Section 11.3.2, and the domination tournament set td<m (Section 11.3.1) 
depend on P. Whether aBhare and/or t^ are kept fixed or varied with P may 

affect MCGA performance. These quantities are allowed to vary with the P in 
this thesis. This decision assumes that the population size dominates MCGA 
performance, and that the size of 1^ and a8hare should be appropriately 

correlated. We have not, however, tested this assumption and recommend its 

verification in future research. 

12.3 Definition of a Tie 

Though dominance is easily seen as an excellent means of pursuing E, 
the definition of dominance can significantly affect the manner in which the 
algorithm proceeds. As such, MCGA parental string selection is examined 
using two ways of declaring a domination tie between candidates. (1) If 
dominance means a candidate dominates the entire tournament set, as 
suggested by [10], the tournament is very selective since candidates will not be 
completely dominant in most cases, leading to many ties that have to be 
decided by equivalence class sharing. Sharing must also be done in this case if 
both candidates dominate the entire tdom set. This option emphasizes 
resolution of the efficient set over efficiency of moving toward E. (2) 
Dominance can also be defined as the candidate that dominates the greatest 

fraction of the tournament set. In this manner sharing is only required when 
both candidates dominate the same number of tournament members— 

emphasizing efficiency over resolution. 
To summarize, the definition of a tie is made in two different manners 

that require sharing to resolve: 
1) one (only) candidate does not dominate entire tdom set 
2) both candidates dominate same fraction of the tdom set 
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12.4 Tournament Size 

The size of the domination tournament set (t^J is approached in this 

thesis as a fraction of the full population. Reference [10] found tdom of about 
10% of P to be generally adequate for on-line performance (see Section 11.3.1). 
The impact of this parameter is not investigated by this research. All 
subsequent MCGA analysis for this thesis uses a tdom of 0.20, or 20 percent of 

the full population size. 

12.5 Niches 

The appropriate size and shape of equivalence class sharing niches is 
not investigated by this thesis. The size of a niche (ashare) is described in 

Section 11.3.2. This thesis uses 

_ 1 
^share        Q 

2 + V2' (2) 

which is the value half-way between the upper and lower bounds on the 
parameter. The shape of the niche depends on the degree p of the Holder 
Metric used and is also described in Section 11.3.2. This thesis uses p = 1 to 
place the greatest emphasis on equal tradeoffs between criteria. Also, p = 1 
allows the metric to be calculated by a simple sum of absolute values instead 

of powers and roots, which keeps the computational effort low. 
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12.6 Summary of Options 

Table 12-1 summarizes the various MCGA implementation parameters 

of interest in this thesis, and the different aspects of performance they 

influence. 

name definition values or options influence 

cloning duplicate strings allow cloning reduces efficiency 
and exploration 

clone removal high computational 

effort required 

clone penalization some clones remain 
in population 

P 
dynamics 

variable 
population size 

fixed P inflexible efficient set 
resolution 

variable P (±2) gentle variability 

variable P (+2/-P,„J strong variability 

ties definition of a tie one candidate does 
not dominate entire 

emphasizes 
diversity 

both dominate same 
fraction of t,_ 

emphasizes 
domination 

t«Jo«i fraction of P for 
tournament set 

0.2 
[not examined] 

determines 
domination pressure 

sharing 
niches 

sharing radius 

'°share-'» 

niche shape (p) 

_ 1 
*^ share       Q 

P= 
[not exa 

'2 + S~ 
P 

1 
mined] 

medium sized niches 
that emphasize 
small criteria 

tradeoffs 

Table 12-1: MCGA implementation parameters 

The effect these parameters will have on MCGA performance is 

examined in the following sections. 
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13.0 MCGA Performance Criteria 

Judging multicriteria method performance is a great deal more difficult 
than similar efforts with single criterion optimization methods. Objective 
measures of performance are not clearly denned in any of the references cited 
on multicriteria optimization [2] [4] [10]. However, the need for concrete 
measures for determining improved performance when comparing MCGA 
implementation parameters and for making comparisons to other generating 
techniques has led to the choice of a number of performance measures. The 
first four represent concrete measures of multicriteria method quality. The 
remaining two differentiate performance variations of different MCGA 
configurations, though they are not be deemed crucial indicators of 
performance in actual fault tolerant system design optimization. 

13.1 Efficient points 

The goal of a generating method is to produce an accurate 
representation of the problem's efficient set (E). The resolution of the 
representation (e) must be sufficiently fine to provide the DM with an adequate 
understanding of the tradeoffs between criteria. As such, the number of 
efficient points in a method's solution is an upper bound on the number of 
quality points that the method can have in its solution. If a method produces 
points that are dominated by members of its own e, they are by definition 
excluded from inclusion in the problem's E. 

This performance measure is simply the number of points in the 

method's final solution that are efficient with respect to the remainder of the 
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solution. Unfortunately, the actual number of points in and the location of E in 
each of our discrete fault tolerant system design test problems are unknown. 
As such, the number of efficient points in any method's solution can only 
provide a relative comparison measure of performance. In addition, the fact 
that E is unknown prevents us from making any definitive statements about 

the position quality of a method's efficient set (e). 

13.2 Efficient set spacing 

This measure refers to the variance of the range (distance) of each 

member of the current e to its closest neighbor (also of e). It is measured in the 

criteria (phenotypic) space by a p = 1 degree Holder metric (see Figure 11-4) to 

correspond with the niche measurements. Note that only those strings that lie 
in the current population's representation of the efficient set (e) are included in 

this measure. 
A generating method that minimizes this quantity has good efficiency in 

finding E. The formula of this measure is given in equation (1). 

1    e   -       2 

fB^^2 = eZlg(d-d0 (1) 

where    dt = min{|J* - J|| + \J\ - J£|} 

A value of zero for this metric would mean that all members of e are 

equally spaced from one another. 

13.3 Seven point distance measure 

The MCGA's ability to completely resolve E can be quite accurately 
seen by how close it comes to the individual criteria optima and other known 
(predetermined) points of E if prior knowledge of the efficient set is available. 
Since E is not known for any of the test problem, seven points of comparison 
are generated for each problem to create a measure of the algorithm's efficacy. 
The individual criterion optima, which bound the efficient set of the two criteria 
problem, were found by optimizing each criterion separately without regard for 
the other. With the resulting two points at hand, the seven comparison points 
are denned on a J^ as the origin [0,0], the maximum (within the range of E) 
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of each criterion [0, J2
worst] and [J1

woret, 0], and two points on each axis between 
the origin and the maximum value. These points are shown in Figure 13-1. 

J> 

Figure 13-1: Seven point distance measure of population accuracy 

The full distance measure is created by averaging the Euclidean 
distances from each of the seven axis points to the member of the current 
MCGA population that is closest to each point. Therefore, seven members of 
the population are used each time the distance measure is created. This figure 
of merit is an accurate means of comparing the relative dominance of different 
populations to one another on a particular problem. The population with the 
smallest distance measure value for a given problem will be the one that most 

closely approaches E. 

13.4 Cost Function Evaluations 

As with single criterion optimization, the DM is limited by time and 
computing constraints. Therefore, optimal performance of the MCGA must 
account for the number of cost function evaluations (cfe) required. The 
number must be competitive with other multicriteria methods for the MCGA 
to be worth using. Since a means of gauging convergence to the efficient set is 
not presently available for any method, the solution quality (number of 
efficient points, distance measure, spacing) as a function of computational 
effort will be the main comparison measure of the multicriteria analyses in 

Chapters 14 and 15. 
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13.5 Additional Criteria 

13.5.1 Proportion of Clones 

The proportion of clones in the population is a parameter (genotypic) 
quantity we wish to minimize, though it is not necessarily a hindrance to the 

MCGA's ability to create high quality solutions. A value of zero for this 
measure indicates that no member of the population is a clone of any other 
member of the current population. Intuitively clones are a hindrance to both 

efficiency and exploration and should be eliminated, but performing the 

operations necessary to keep clones from forming may be unnecessarily 
prohibitive. A configuration with good efficiency, good exploration, and a low 
fraction of clones is preferable if we do not have to perform excessive 
operations against the clones that form in the reproduction cycle. 

13.5.2 Total clones identified 

Depending on how the MCGA deals with clones in the population, a great 
deal of additional computational effort may be required to keep the desired 
optimization performance. When comparing different configurations of the 
MCGA, those that identify the greatest number of duplicate strings in the 
course of their runs are likely placing the highest amount of effort into the 

reproductive process. 
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14.0 MCGA Performance Analysis 

The MCGA is an unproved capability at the time of this writing. The 
ability of the ga in general to perform multicriteria optimization has only had 
limited analysis. Unlike the single criterion application of the ga, where the 
basic framework and performance of the ga has been worked out and debated 
for several years, multicriteria ga implementations are still in their infancy. 
Therefore, this thesis not only investigates whether ga's can do multicriteria 
optimization of fault tolerant system design better than other methods, it also 
investigates the basic viability of ga's in multicriteria optimization. 

The majority of the multicriteria analyses shown are performed in two 
dimensions. The reader must note that unlike comparative methods that 
suffer dimensionality difficulties, the MCGA suffers no (theoretical) 
implementation hindrances—the choice of two dimensional analysis is made 
solely for method comparison and visualization purposes. 

The two criteria of interest are the unavailability (i.e. 1.0 - reliability) 
and the system purchase cost (in dollars). The unavailability is treated as a 
logarithmic quantity to accentuate the differences at the better (smaller value) 
edge of performance. The purchase cost, on the other hand, is simply treated 
as a linear quantity to be minimized. 

The proper configuration of the MCGA for effective multicriteria 
optimization is still very much uncertain. Therefore, the first priority of this 
thesis is to prove that using a ga with domination as the string selection 
criterion can actually perform multicriteria optimization. On those lines, 
Figure 14-1 shows an MCGA attempt to create an efficient set representation 
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of the TISS problem. The configuration for this problem includes a t^ of 0.2, 
variable P by (±2) bounds per reproduction cycle, and clone penalization. The 

MCGA is given an initial P of 1,000, shown in the two dimensional plot of Figure 

14-1 by the V symbols. After 10,000 cost function evaluations, the 

population has 349 members and is shown as V. 
This type of plot is used throughout the rest of this analysis. Note that 

both axes are normalized from 0 to 100+. The normalization values are 
obtained by optimizing each criterion separately using the steady-state genetic 
algorithm (ssga). The assumed minimum purchase cost is represented as 0; 
where unavailability is assigned a value of 100 (i.e. the J^ point of [100,0]). 

The same scaling is used for the other axis based on the minimum of 
unavailability. Criteria values greater than 100 can occur in dominated 
solutions of the design space, as seen on the unavailability axis of Figure 14-1. 

The vertical axis is a normalization of the log of the unavailability values. 
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Figure 14-1: Sample MCGA optimization of TISS problem 

Obviously, the MCGA in this example at least, moves the population 

towards the efficient set (E) of the problem and improves the quality of its 
solutions over time. The initial population, though randomly generated to cover 
a wide area of the parameter space, does not have any points in the vicinity of 
the final e. The MCGA makes a vast improvement over the 1,000 point Monte 

Carlo attempt (i.e. the initial population creation). The final population 
appears to have a good spread of members across its whole representation, 
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but there are no values near the minimum of unavailability, and the purchase 
cost minimum found by the single criterion ssga is not attained. Note that E is 
unknown and Figure 14-1 is just one possible representation. 

Now we must analyze the influence MCGA parameters have on 
performance and how those parameters can be best set for effective fault 
tolerant system design. Once that is accomplished, the MCGA can be 
compared to the constraint method to determine its viability as a competitive 

multicriteria optimization tool. 

14.1 Effect of Clones 

The first configuration question to be addressed is the impact of clones 
on MCGA performance. Implementations of the MCGA on the TRIPLEX and 
TISS problems is analyzed. 

Cloning analysis (Triplex) 

The MCGA is run on the TRIPLEX problem for the three clone handling 
options of allowing clones, clone replacement, and clone penalization. The 
control configuration for this analysis includes a fixed P of 200 members, tdom of 
0.2, and declaring candidate domination ties when only one does not dominate 
the entire t^ set. Each option is run for 50,000 cfe with 20 different starting 
points (random number generator seeds). 

Some of the effects of each clone option can be seen in Figure 14-2. It 
shows the fraction of the current MCGA population that is a duplication of 
other members. Allowing clones to occur in the population has a dramatic 
effect on the effective proportion of MCGA population. In Figure 14-2, for 
instance, allowing clones in the population causes upwards of 80% clones to 
occur. The dramatic rise in the clones occurs in the first 2,000 cfe, but is not 
captured by the scale of Figure 14-2 (Figure 14-7 illustrates the clone fraction 
behavior of the early stages of a run). A P with a percentage of clones this high 
has to be approximately four times larger than a P containing no clones to get 
the same potential e. Clone removal and clone penalization both keep the 
proportion of clones small: clone removal at 0% and clone penalization never 

exceeds 5%. 
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Figure 14-2: Clones in population for 3 done options on TRIPLEX problem 

Now that a definite impact of changing the clone option has been 

identified, two issues remain. The first is the amount of computational effort 

expended for clone identification and marking, while the second, and more 
important, is the performance impact each clone option has. Figure 14-3 
illustrates the first issue by showing the number of clones marked by each 

option over the MCGA run. 
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Figure 14-3: Clones identified in TRIPLEX problem for 3 clone options 

The "clones allowed" option does not check for clones and obviously 
shows zero effort required for dealing with clones. The "clone penalization" 
option shows that approximately 40,000 clones are identified and penalized 

over the course of the 50,000 cfe TRIPLEX run. As was shown in Figure 14-2, 
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though, strict penalization keeps the number of clones in the population small. 
The greatest amount of computational effort comes from the "clone removal" 
option. If 190,000 clones are detected over the course of the TRIPLEX runs, 
190,000 extra MCGA reproduction cycles are performed to replace those 
clones. Though the additional reproduction cycles do not include cost function 
evaluations, which are the greatest item of time for the method, the high 
numbers of extra cycles add enough effort to make this option viable only if it 
exhibits significantly better performance than clone penalization. 

The last issue, and most critical, is performance. Figure 14-4 shows the 
number of points that are efficient to the rest of the population. Note that the 

quality of the efficient points is not shown by this figure—solution quality is 

addressed in Figure 14-6. 
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Figure 14-4: Efficient point analysis for cloning on TRIPLEX problem 

As could be expected from Figure 14-2, allowing clones significantly 

reduces the effective P and keeps the number of efficient points in the 
population much lower than the other options. Clone removal and clone 
penalization exhibit very similar efficient set sizes throughout the 50,000 cfe 
attempt on the TRIPLEX problem. Both options suggest that this simple two 
criteria design problem has an E containing approximately 20 points. 

Another measure of performance is how evenly spread e becomes. The 
variance of the range of each member of e to the closest member of e is shown 

in Figure 14-5. 
This figure shows that allowing clones creates a very poorly spread 

efficient set representation. This effect is obviously caused by the low efficient 
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set size seen in Figure 14-4. The other two options appear to have equally well 

spaced e. This figure shows that the solution points created by each method 
are spread across an efficient front and not clustered in particular areas. 
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Figure 14-5: Efficient set range variance for cloning on TRIPLEX problem 

The final performance measure is the distance from seven points on the 
criteria axes (see Figure 13-1) to the closest members of the population and is 

shown in Figure 14-6. 
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Figure 14-6: Distance measure analysis for cloning on TRIPLEX problem 

Because E for this problem is unknown, the only the relative distances 

shown are significant. The scale of Figure 14-6 has what appears to be a 
narrow range of normalized average distances between 0.19 and 0.23. 
Absolute determination notwithstanding, however, the clone removal and clone 
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penalization options again exhibit similar performance that is superior to that 

of allowing clones. 
The performance of clone removal and clone penalization matches very 

closely in all of the performance plots for the TRIPLEX problem, but the 
additional computational effort required by clone removal places it at a 

disadvantage. 

Cloning analysis (TISS) 

A single set of data from one, very simple fault tolerant system design 
problem is not necessarily generalizable. As such, the results of the same 
clone handling options are now shown for the TISS problem before any 
conclusions are drawn. The control configuration for the TISS analysis 
includes a fixed P of 600 members, t^ of 0.2, and declaring candidate 
domination ties when only one does not dominate the entire tdom set. Each 
option is run for 20,000 cfe with 20 different random number generator seeds. 

Some of the effects of each clone option can be seen in Figure 14-7 and 

Figure 14-8. They show the fraction of the current MCGA population that is a 
duplication of other members and the total number of clones detected. 
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Figure 14-7: Clones in population for 3 clone options on TISS problem 

This figure shows that allowing clones to appear unimpeded significantly 

affects the effective population size. 
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Figure 14-8: Clones identified in TISS problem for 3 clone options 

The additional problem complexity in the TISS problem over the 
TRIPLEX problem is seen by the far fewer clones detected in Figure 14-8 as 
compared to the high numbers shown in Figure 14-3. As is evident for the 
previous example, Figure 14-8 also shows that removing clones from the 
population as they occur forces a significant number of additional reproduction 
cycles to be performed even though it does not keep the number of clones in the 
population much lower than clone penalization. 

The effects of the three clone handling options on the TISS problem are 

shown in the following three performance plots. 
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Figure 14-9: Efficient point comparison of cloning on TISS problem 
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Figure 14-9 shows that allowing clones to crowd out unique members of 
the population reduces the number points in e. The other two options improve 
the number of efficient points, with clone penalization having a smaller e for a 
given number of cfe, but not significantly so. 
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Figure 14-10: Efficient set range variance of cloning on TISS problem 

Figure 14-10 shows that the spacing of e for clone removal and clone 
penalization becomes better with time, while allowing clones exhibits poor 
performance after about 7,500 cfe. 

The final performance measure comparison necessary to determine the 
appropriate clone option is the distance measure for the TISS problem. 
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Figure 14-11: Distance measure analysis of cloning on TISS problem 
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Figure 14-11 shows an interesting, and somewhat unexpected result. 

Though it has displayed significantly worse performance to this point of the 

analysis, "allowing clones" on the TISS problem shows the same general 

characteristics with respect to its ability to represent key portions of the 

efficient set. Though the others eventually show better distance measures at 
the end of the run, the difference is not apparent until 10,000 cfe have been 

performed. 
The scaling of Figure 14-11 is somewhat misleading because of the poor 

performance all options have with their initial populations. The difference 
between the options is more significant on the TISS problem than the figure 
would indicate. Figure 14-12 shows the distance measure again using a 
condensed scaling to accentuate the differences between the options during the 

end of the runs. 
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Figure 14-12: Distance measure for cloning on TISS problem (end of run) 

The differences between options in Figure 14-12 indicate that even 
though Figure 14-11 shows the same general behavior for all three options, the 
differences between them at the end of the run are significant. Again, as 
stated earlier, the distance measure only shows relative performance, but 
again the "allowing clones" option is outperformed by the others. In conclusion, 
therefore, the poor overall performance of the "allowing clones" option in both 

the TRIPLEX and TISS problems argues against its use. 
As in the TRIPLEX analysis, the solution quality does not appear to be 

significantly different between the "clone removal" and "clone penalization" 

options. Allowing identified clones to remain in the population but prevented 
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from mating and encouraged to be replaced by new members appears to have 
the same performance effect as removing clones outright. The difference 
between the two approaches comes in the amount of computational effort 

required to achieve their relative goals. Clone removal requires four times as 

many reproduction cycles in both the TRIPLEX and TISS problems as clone 
penalization. As such, clone penalization is used in the control configuration for 
the remainder of the MCGA analyses of this thesis. 

14.2 Population Variability 

As discussed in Section 12.2, multicriteria optimization is often 
performed in a fault tolerant system design due to the uncertainties the DM 
has about the relationships between criteria. As such, the proper resolution of 
a particular E is not known prior to optimization, forcing the DM or analyst to 
make arbitrary assumptions about the problem when resolution is an input to 
the algorithm, such as it is in both the constraint and weighting methods. The 
MCGA retains considerable latitude in its resolution of the efficient set. For 
instance, a P of 100 members can create 5 point or 100 point e if a particular 

problem warrants one or the other. 
This section of the MCGA analysis, however, takes the efficient set 

resolution (e) one step further by allowing the MCGA to vary its population 
size based on preset conditions detailed in Section 12.2 to determine if the 
MCGA can optimize its resolution on each problem it encounters. 

Three population variability options are analyzed using the TRIPLEX 
and TISS problems. Both problems are optimized on unavailability 
Qogarithmically scaled) and purchase cost. The MCGA's performance on the 
TRIPLEX problem is analyzed first, foDowed by the TISS problem, and the 
applicability of population variability is discussed at the end of this section. 

P variability analysis (Triplex) 

The MCGA is run on the TRIPLEX problem for the three population 
variability options of fixed population size (P), variable P with (±2) bounds, and 

variable P with (+2/-'P6o[^ bounds. The control configuration for this analysis 
includes an initial P of 200 members, t^ of 0.2, declaring candidate domination 
ties when only one does not dominate the entire tdom set, and clone penalization. 
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Each option is run for 50,000 cfe with 20 different random number generator 

seeds. 
Some of the effects of automatic population variability are visible in 

Figure 14-13. It shows the current MCGA population size as a function of the 

cost function evaluations performed in the run. 
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Figure 14-13: Population size with P variability on TRIPLEX problem 

This figure shows that allowing population size variability significantly 
impacts the P retained by the MCGA. The two variable P option reduce their 
population sizes significantly in the initial portion of the run—prior to the first 

point shown in the figure at 2,000 cfe. In both cases, P reduces from the initial 
200 members to about 160 members. In the next 5,000 cfe of the run, the 
populations increase in size at similar rates. Following that short increase, 
both variable populations decrease for the remainder of the run, ending with 
120 to 125 members. Though both are similar, the C+^-P^J option maintains 
a slightly lower P, which would be expected since it is allowed to drop members 
faster than the (±2) option, but cannot add them any faster. 

Figure 14-13 shows some general behavior of the variable population 
sizes, but it says nothing about performance. The following figures show the 
performance impact of the rising and dropping population size. 

The behavior indicated in Figure 14-13 and Figure 14-14 appear to be 

inversely related with respect to the two variable P options. The initial 
decrease in the MCGA population size results in e being three members 
smaller on average than for the fixed P option (Figure 14-13). Likewise, as the 
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runs progress and the population sizes decrease, the number of efficient 
members increase to be comparable to the fixed P (Figure 14-14). 
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Figure 14-14: Size of e with P variability on TRIPLEX problem 

The fixed P option keeps an efficient set between 21 and 23 members 
throughout, but the considerable fluctuations over 20 seeds, may indicate 
some performance uncertainty in individual runs. 
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Figure 14-15: e range variance for P variability on TRIPLEX problem 

Figure 14-15 shows that no significant impact can be detected on the 
spacing of e when P variability is included. All three options are characterized 
by wide fluctuations within a small variance range that is comparable to the 

TRIPLEX variance values of Figure 14-5. 
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Figure 14-16: Distance measure of P variability on TRIPLEX problem 

Figure 14-16 is the final MCGA performance figure for population 
variability on the TRIPLEX problem. It shows the most significant differences 

between the three options. The fixed population size of 200 members 
maintains its distance measure below those of the variable P options 
throughout the run. There appears to be no difference between the accuracy 
(distance measure) performance of the two variable P options. 

P variability analysis (TISS) 

In order to draw broader conclusions on the relative performance of 

population size variability in the MCGA, the same three P variability options 
addressed for the TRIPLEX problem are again compared below for the TISS 
problem. The control configuration for this analysis includes an initial P of 600 
members, t^ of 0.2, declaring candidate domination ties when only one does 
not dominated the entire t,^ set, and clone penalization. Each option is run for 

10,000 cfe with 20 different random number generator seeds. 
Figure 14-17 shows the effect of P variability on the value of P over the 

course of a run on the TISS problem. As is the case on the TRIPLEX problem, 
the variable P options initially decrease P dramatically. In the first 500 cost 
function evaluations beyond the initial creation of the 600 member population, 
both variable P options dropped their populations to about 100 members, a 
decrease of about 500 members! From that point to the end of the run, those 
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two options exhibit parallel performance. Both slowly increase their population 
sizes to about 200 members by the end of the run. 
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Figure 14-17: Population size with P variability on TISS problem 

Using Figure 14-17 as a guide, the MCGA apparently "believes" that 
sufficient population diversity for the TISS problem can be maintained in a 
population of about 200 members. If its performance supports that assertion, 
the MCGA can be used without concerning the user with choosing the optimum 
initial population size for high performance. 

Figure 14-18 shows the number of points e. 
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Figure 14-18: Size of e comparison for P variability on TISS problem 

The results shown in this figure are rather dramatic. All three options 

begin with approximately 12 efficient members in their population, and all 
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three end with about 40 after 10,000 cfe. However, the fixed P option 
increases the number of efficient members at a steady, linear rate, in marked 
contrast with the variable P options. Even though the population sizes for the 

variable P options drop dramatically during the initial portion of the run, the 

number of efficient points in the population rises to about 40 members in only 

about 5,000 cfe. Of course, the figure above says nothing about the quality of 

those points, merely that they are efficient. A measure of the distance that e 

is from E is illustrated in Figure 14-20. 
Figure 14-19 shows the spacing of e for the three P variability options. 

1 
e 
cfl 
O 
W 
O 

"o 
2 
o 

2500 5000 7500 

cost function evaluations 

10000 

Figure 14-19: e range variance for P variability on TISS problem 

All three options exhibit similar behavior. The variable P options appear 

to have better spacing during the early stages of the run, but since the fixed P 
one has a smaller efficient set, this fact is understandable. The variance of the 
spacing in the latter portions of the run appears to slightly favor the fixed P 
option, but the small scaling of values in the figure cautions against making 

early conclusions about relative superiority. 
The final figure for TISS problem performance with P variability shows 

the distance measure characteristics that indicate solutions quality. As is the 
case with the TRIPLEX problem analysis for P variability, the distance 
measure figure of merit proves to be significant in the comparison of the three 
P variability options on the TISS problem. Though the variable P options holds 
more points in e than the fixed P option for most of the 10,000 cfe run, the 
quality of those points is better in the fixed P option for the entire run. 
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Figure 14-20: Distance measure analysis for variable P on TISS problem 

The quality of the variable P options appears to suffer most during the 
initial stages of the run when the population size fluctuates the most. The 
longer the run progresses, however, the better both of them become. The 
general form of the figure suggests that the fixed and variable P lines are 
converging upon one another and are in the same general range of accuracy at 

10,000 cfe. 
Finally, there is the question of what effect, if any, P variability has on 

the number of clones generated by the MCGA. This effect is shown in Figure 
14-21 for the TISS problem. 
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Figure 14-21: Clones detected in TISS problem with variable P 
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This figure shows that in 10,000 cfe of the TISS problem, varying P 
causes the MCGA to encounter twice as many clones. Using clone 
penalization, no computational effort is expended on those clones beyond their 

identification, and the percentage of clones in the population remains small 

throughout the run. 
The overall results of the TRIPLEX and TISS problem analyses leads us 

to conclude that a properly chosen fixed population size is generally superior to 
allowing P to vary. The general effect shown in Figure 14-18 and Figure 14-20, 
however, indicates that a variable P option with ±2 bounded variability that is 

allowed to run for a sufficient length of time, may show results comparable to 

those expected from a fixed P option. 

14.3 Population size sensitivity 

The major factor still influencing the performance of the MCGA with 
respect to population size is the impact of proper P selection. The performance 
with P of 20,60,100, 200 (same as used above), and 600 on the TRIPLEX 
problem are analyzed in the following figures. The results for each population 

size are averages of 20 different seeds. 
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Figure 14-22: Size of e comparison for various P on TRIPLEX problem 
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Figure 14-22 shows that the number of points in e does vary with the 
population size chosen but does not change appreciably throughout a lengthy 
20,000 cfe run. There is a definite correlation between the number of efficient 
points and the population size used, but it is not a direct correlation! For the 
limited numbers of P attempted, the best value was 100. The number of 
points in e gets better as P increases from 20 to 100, and gets worse as P 

increases from 100 to 600. 
Figure 14-23 shows the variance of the distance between members of e. 

The lines shown are a 6th order polynomial curve fit through the averages of the 
20 seeds to better illustrate the trends of the data. 
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Figure 14-23: e range variance for various P on TRIPLEX problem 

The 20 member population size is to poor to even show up on the scale 
used for the figure, while all of the other P > 60 exhibit good performance. 

Figure 14-23 shows that while the variance of efficient point spacing is affected 
by the P chosen, good performance on this measure can be obtained by simply 
choosing reasonable population sizes. Again, the best performance for the 5 P 
tested is obtained by a 100 member population size. The impact is actually 
very significant over P = 60, and somewhat less so over P > 200. 

The quality of the respective populations is best in larger populations as 

is shown in Figure 14-24. The P = 200 line is the same as in Figure 14-16 
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where the fixed population size option MCGA outperformed the variable P 
options. The P=100 line, which shows the best performance in the other two 
performance criteria exhibits compatible distance measure performance with 

the variable P options in Figure 14-16. 
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Figure 14-24: Distance measure for various P on TRIPLEX problem 

This figure shows that the ability of the MCGA to place its population in 

proximity of E improves as P increases. The improvement, however, is not 
significant above P = 100. Up to P = 100, however, the distance measure of 
the population actually increases over time. This fact, coupled with the 
uncertainty involved in picking P for good performance in all measures, makes 
the importance of further testing on how to choose the appropriate P very 

urgent indeed. 
The results shown here for the TRIPLEX problem do not allow us to 

form generalizable impressions about the proper MCGA configuration of 
population size or population variability to use for a general fault tolerant 
system design problem. It would appear that in most instances a properly 
chosen population size used in a fixed P option produces good results. The 
difficulty in choosing the proper P for a general problem, though, makes the 
shown viability of P variability an attractive alternative. Additional research 

on the general performance of these options and possible adaptations of the 

158 



growth/decline rules for changing the population size may increase the 
reliability and effectiveness of this method. 

14.4 Effect of lie Definitions 

Another MCGA performance issue addressed in this thesis is the effect 
of candidate domination "tie definitions". A tie is defined between two candidate 
members when relative dominance cannot be determined. A tie is broken by 
performing equivalence class sharing as described in Section 11.3.2. The 
manner in which ties are defined impacts the relative weights that sharing and 
dominance play in reproduction. Emphasizing dominance over diversity by 
defining a tie between candidates that dominate the same fraction of the 
representative tournament (t^) set (referred to as T2) should theoretically 
result in an efficient set representation with high accuracy and poor spacing 
variance. On the other hand, defining a tie as whenever only one candidate 
does not dominate all of the tdom set (referred to as Tx) results in more ties being 
declared and an emphasis of diversity over dominance that should theoretically 
result in poor quality, but excellent spacing variance. The ensuing analysis 
shows the empirical results for each option. 

The analysis is performed for both the TRIPLEX and TISS problems, 
but only results for the TISS problem are shown due to the similarity on the 
two problems. The MCGA control configuration for this analysis includes an 
initial P of 600 members, tdom of 0.2, fixed population size, and clone 
penalization. Each option is run for 10,000 cfe with 20 different random 

number generator seeds. 
Figure 14-25 shows that the number of points in e is equal for the two 

options at the beginning and end of the 10,000 cfe run. T2 holds more efficient 
points in its population for most of the run. 
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Figure 14-25: Size of e comparison of tie definition on TISS problem 

Figure 14-26 shows that changing the definition of a tie (and 
theoretically shifting the dominance/diversity emphasis) does not appear to 
have a significant impact on spacing variance. Theoretically, Tx should 
outperform T2 in this figure, but that is not evident from the results of either 

the TRIPLEX (not shown) or TISS problems. 
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Figure 14-26: e range variance of tie definition on TISS problem 
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Finally, Figure 14-27 shows the accuracy of the two tie definition 
options. 
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Figure 14-27: Distance measure of tie definition on TISS problem 

Tx has better quality for most of the run, contrary to the hypothesis 
that it should exhibit reduced accuracy at the cost of maintaining diversity. 

The differences between T2 and T2 are slight, but the option suggested in 
[10] of only declaring domination when one (only) candidate dominates the 
entire tdom set and declaring a tie the rest of the time (Tx) seems to produce 
better results for the limited test suite of this thesis. The emphasis of 
dominance in T2 probably limits the spacing of the population across the full 

range of attribute values, hindering its ability to approach the seven fixed 
distance points—thus diversity is important not only to spacing the population 
equally, but also to reaching different regions of the objective space. 

By counting the number of times sharing is performed on the TRIPLEX 
problem for both tie definitions, a 32% decrease in the number of sharing 
operations is obtained by using T2 instead of Tr The sharing operation can be 
performed rather rapidly, though, so the small additional computation for 

diversity emphasis is worth the increase in performance. 
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15.0 Multicriteria Method Comparison 

The constraint method will now be used to generate a representation of 
the TRIPLEX and TISS problems to provide a comparison for the MCGA. For 
both problems, a 50 point representation of the efficient set (E) is attempted. 
The two criteria of interest are the unavailability (i.e. 1.0 - reliability) and the 

system purchase cost (in dollars). 
The implementation of the two-dimensional constraint method with the 

ssga as the underlying single criterion optimization method requires one 
criterion to be established as a constraint while the other is optimized. In this 
thesis, the unavailability is constrained (with logarithmic constraint steps 
between points). A multiplicative fitness penalty function (G) is applied as a 
cubic of the value of the constraint violation (see Chapter 5 and Section 11.1). 

15.1 Triplex problem comparison 

The TRIPLEX problem will now be optimized by the constraint method. 

Table 15-1 gives the input setting for the ssga that influence the constraint 
method's configuration and performance. 
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Description Value 

resolution 50 points 

Population size 200 

crossover rate 0.8 

mutation rate 0.001 

maximum cfe 5,000 

PBL 0.3 

G cubic-decay 
fitness penalty 

Table 15-1: TRIPLEX ssga configuration for constraint method 

The configuration of Table 15-1 was used to generate an eflicient set 

representation (e) of the TRIPLEX problem. The method performed 186,000 

total cost function evaluations, or an average of 3,750 cfe per ssga run. In this 
attempt, 6 of the 50 initial populations for the constrained ssga problems held 
all infeasible points for their individually imposed constraint (see Section 11.1), 
requiring random regeneration. Of the 6 regenerated, 3 were again completely 
infeasible causing the associated constrained problem to be discarded. 

Of the remaining 47 points created, 18 were duplicates of other points 
(clones) and none were dominated, leaving 29 efficient points for e. The 
statistics of the constraint method's attempt are summarized in Table 15-2. 

Description Value 
desired resolution 50 
efficient points of solution (e) 29 
dominated points 0 
duplicate points 18 
instances where initial population was mfeasible 6 
instances where second attempt to create an initial population 

failed and the sub-problem was rejected 
3 

ssga sub-problem points terminated by PBL = 0.3 11 
total cfe of the constraint method 186,000 

Table 15-2: Constraint method data for TRIPLEX problem optimization 

To facilitate a comparison, a single run of the MCGA has been 
performed on the TRIPLEX problem. The MCGA was run to 5,000 cfe, with a 
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crossover rate of 0.80 and a mutation rate of 0.001. The MCGA parameters 
were set for an initial P of 200 members, P variability of (±2), clone 

penalization, Tx tie definitions, and t^ of 0.20. 
Table 15-3 shows the performance characteristics of the MCGA and 

constraint method efficient set representations. The MCGA run terminated 
with a population size of 90 members. 

Performance criterion Constraint Method MCGA 

cfe                            186,000                       5,000 

range variance                  6.737e-4                    5.639e-4 

distance measure                  0.2545                       0.2116 

efficient points        [               29              [               32 

duplicate points       1               18              |                4 

dominated points      1                0                1               54 

Table 15-3: Performance comparison on TRIPLEX problem 

From this table we can observe the impact of transferring even a simple 
multicriteria problem into a set of single criterion problems to solve it. The 
constraint method performed 37.2 times more cfe than the MCGA performed 
to generate comparable results. In fact, the seven point distance measure and 
the range variance for the constraint method were 16.8% and 16.3% worse 
than MCGA, respectively. Finally, Figure 15-1 shows a comparison of the e 
created by the MCGA and constraint method for the TRIPLEX problem. 

Figure 15-1 shows that the two methods agree closely on the E of the 
TRIPLEX problem. The design space for the TRIPLEX problem is very small 
(1,000 points), so that neither method should struggle in determining a solution. 
The two methods share most of the points of their respective e, but the MCGA 
has five unique points, two at the lower right corner of the figure, and three in 
the upper third of the figure. The constraint method found two unique points of 
its e; one located in the center of the figure and the other in the lower right 
corner. 

Three key observations can be made from Figure 15-1. First, the reader 
is reminded that the actual E for the TRIPLEX problem is unknown, but the 
close agreement between the two methods suggests that both provide good 
approximations of it. Secondly, allowing the ssga to run for 5,000 cfe on the 

TRIPLEX problem seemed to be acceptable during single criterion problem 
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optimization, but the MCGA apparently has the ability to resolve what 
appears to be an accurate e in approximately the same number of cfe as one 
ssga run of the constraint method. Finally, the difficulty in determining the 
resolution appropriate for the constraint method beforehand is slightly evident 

in this problem. 
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purchase cost ($) 

Figure 15-1: MCGA and constraint method on TRIPLEX problem 

An arbitrary guess that a 50 point resolution would sufficiently resolve 

the TRIPLEX problem efficient set causes only 29 efficient points to be 
located. The method found 18 duplicates (2/3 the number of efficient points), 
which suggests that the efficient set has been resolved to the closest extent 
possible. If the resolution was increased, the number of failed ssga runs and 

duplicate points would increase without gaining a significant number of 
additional points in e. On the other hand, a resolution much smaller than 50 
would leave the DM with insufficient E information because either (1) the 
number of points in e would be smaller and E would be insufficiently resolved, 

or (2) all ssga runs would generate unique points, causing the DM to ponder 
whether or not additional resolution could improve e. In Figure 15-1, for 
instance, the tight resolution of the representations and the frequency of 
duplicates give the DM some assurance that the "jump" of purchase cost when 
the log of unavailability drops below 25 is imbedded in the problem 
characteristics and is not a result of insufficient resolution. 
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15.2 TISS problem comparison 

The TISS problem will now be optimized according to the constraint 
method guidelines given at the beginning of this chapter. Table 15-4 gives the 
input settings for the ssga that influence the constraint method's configuration 

and performance: 

Description Value 

resolution 50 points 

P 600 

crossover rate 0.8 

mutation rate 0.00033 

maximum cfe 10,000 

PBL 0.3 

Table 15-4: TISS problem ssga configuration for constraint method 

The constraint method attempt at the TISS problem required 302,700 
cfe, or an average of 6,050 cfe per ssga run. Of the 50 initial populations 
created, 11 were infeasible and were regenerated. Of those regenerated, all 11 
populations were again completely infeasible, causing the sub-problem to be 
discarded. Therefore, only 39 points were created by the constraint method. 
One clone and 15 dominated points were created, leaving only 23 efficient 

points, as shown in Figure 15-2. 
Figure 15-2 shows that the 11 rejected ssga problems were tightly 

constrained for low values of unavailability. This gap in the figure could be a 
sign of a method deficiency, or could merely indicate that the discrete TISS 
problem has no efficient points in that region. 

The dominated points are close to e, showing only that the individual 
ssga runs terminated close to, but not perfectly at, the constrained problems' 
optima. This run of the constraint method did find one point in the low range of 
unavailability—during its unconstrained ssga attempt to locate the individual 

optima. The point it found actually dominated the point the author originally 
believed was the bound of E. Unfortunately, though, once the constraint was 
applied, the method was unable to locate another point until unavailability 

exceeded 20. 
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Figure 15-2: TISS problem results for constraint method 

The statistics of the constraint method attempt of the TISS problem 

are summarized in Table 15-5. 

desired resolution 
Description 

efficient points of solution 

dominated points 

duplicate points 
'mstanceswhere initial population was infeasible 

instances' where"s^nd aittempt to create an initial population 
failed and the suj^problemj^   

pointeterminated by PEL = 0.3 

total "cfe of constraint metiiod 

Value 

50 

23 

15 

11 

11 

27 

302,700 

Table 15-5: Constraint method data for TISS problem optimization 

To facilitate a comparison, a single run of the MCGA has been 
performed on the TISS problem. The MCGA was run to 10,000 cfe, with a 
crossover rate of 0.80 and a mutation rate of 0.00033. The MCGA parameters 
were set for an initial P of 600 members, P variability of (±2), clone 

penalization, Tx tie definitions, and a t^ of 0.20. The MCGA run terminated 
with a population size of 350 members. Table 15-6 shows the performance 

characteristics of the MCGA and constraint method efficient set 

representations. 
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performance criterion constraint method MCGA 

cfe                             302,700          1            10,000 

range variance        |          1.318e-2         1          1.577e-4 

distance measure                  0.2791                       0.2786 

efficient points                       23                              33 

duplicate points                        1                                7 

dominated points                      15                             310 

Table 15-6: Constraint method performance data on TISS problem 

From this table we observe a marked advantage in using the MCGA. 
Though its representation (the final ga population) contained 310 dominated 
and 7 duplicate points, filtering those points out leaves 33 points in e compared 
to only 23 in the constraint method. The distance measures of the methods 
only differ by 0.2%, but the resolution point spacing (range variance) is nearly 
2 orders of magnitude better in the MCGA. 

The actual e for the MCGA run and the constraint method run are 
compared in Figure 15-3. It shows that again, as in the TRIPLEX problem, the 
two methods generally agree on the location of E. Unlike the TRIPLEX 
problem, however, where the design space is very small and the agreement is 
expected to be close, the large discrete design space of the TISS problem is 
more difficult for both methods. The best comparison of the two methods can 
be made by looking at the low unavailability range of Figure 15-3. The 
constraint method found the lowest unavailability value known using an 
unconstrained ssga problem, but is unable to generate another point until 
unavailability increases to over 20. The MCGA, in comparison, does not locate 
the very lower bound of the efficient set, but it is able to locate points and 
spread them nicely to values of unavailability of about 12. The most obvious, 
and significant difference between the methods, though, is the number of cfe 
each performed. In this test, the constraint method performs 30 times as 
many cfe as the MCGA! 
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Figure 15-3: MCGA and constraint method comparison on TISS problem 

From this limited comparison using two discrete, two-criteria fault 
tolerant system design problems, we can conclude that the MCGA is capable 
of generating an excellent e in a low number of cfe when compared to a method 
that require many single-criterion sub-problems to be solved. The MCGA 
spreads its representation very evenly as shown by the low range variance 
values produced, but it appears to experience some difficulty in locating those 

points at the far limits of the efficient set. Some additional work on the 
mechanisms of the MCGA may be able to aid the expansion of its solution to 

cover a greater range of the efficient set. 
Though the results of Chapter 14 show rather conclusively that using a 

fixed population size in the MCGA will provide the best performance, a variable 
P has been used in this comparison to show that even at its slightly degraded 
level of performance, the MCGA outperforms the constraint method handily. 
The (±2) variability is also used for a reason that affects the constraint method 
as well—a lack of understanding beforehand of what the proper resolution 

should be. In both methods, choosing the resolution too small affects the 
representation, while choosing it too large requires excessive cfe. Allowing the 
MCGA to choose its own population size removes that burden from the DM. 

The final issue of contention necessary to compare the MCGA and 

constraint methods is their ability to handle problems with more than two 

170 



criteria. As described in Section 11.1, the constraint method is severely limited 
by such problems. The MCGA, on the other hand, adapts readily to many 
criteria because it always chooses members on the basis of dominance, which 
is defined identically for any number of criteria. This thesis has not 
investigated problems of more than two criteria, but the MCGA suffers no 
theoretical limitations of larger dimensioned problems. 
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16.0 Summary of Multicriteria Design 

Fault tolerant system optimization normally requires extensive and 
usually subtle tradeoffs between factors such as component quality, 
reconfiguration strategies, level of redundancy, and operational policies. 
Optimization strategies must incorporate the conflicting effects of such 
constraints as performance specifications, reliability goals, and size and weight 
in order to design to minimize cost. Whenever possible, the designer attempts 
to combine all criteria of interest into a single cost function. However, criteria 
are not always commensurate, requiring the introduction of multicriteria 
optimization techniques. 

Several types of multicriteria optimization can be performed depending 
on the level of involvement the DM wishes to have in the optimization process, 
and the computational constraints involved. This thesis looks solely at 
generating methods of multicriteria optimization where a representation of the 
problem's efficient set is generated so that the DM not only has a number of 
potential solutions from which to choose, but she is also given a greater 
understanding of the relationship between the criteria. 

The most common generating techniques in use are the e-constraint and 
weighting methods. A form of the e-constraint method is created for this thesis 

to allow optimization of two-criteria problems. The single criterion ssga is used 
as the underlying optimization method to capitalize on the robustness of the 
method demonstrated earlier in this thesis and to allow the optimization of 
mixed and discrete parameter fault tolerant problems. The constraint 

framework using a multiplicative fitness penalty function described in Chapter 
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5 is included that allows the ga to scale the penalty automatically. The ability 
of the ga to effectively deal with function constraints in this manner is 
demonstrated by its good performance in Chapter 15. 

The main thrust of the latter half of this thesis is the examination of a 

genetic algorithm that uses dominance as its string selection criterion to 
operate on multicriteria fault tolerant design problem directly. The 
Multicriteria Genetic Algorithm (MCGA) represents a fresh approach for 
multicriteria optimization. Its remarkable effectiveness may generate 

revolution in optimal design. It promises to revolutionize the ability of a DM to 
analyze the complex tradeoffs of non-commensurate criteria and produce more 

versatile, satisfactory designs. 
The MCGA is an unproved capability at the time of this writing. The 

ability of the ga in general to perform multicriteria optimization has only had 
limited analysis. Unlike the single criterion application of the ga, where the 
basic framework and performance of the ga has been worked out and debated 
for several years, multicriteria ga implementations are still in their infancy. 
Therefore, this thesis not only had to research whether ga's can do 
multicriteria optimization of fault tolerant system design better than other 
methods, it also needed to investigate the basic viability of ga's in multicriteria 

optimization and the form the ga should take. 
This thesis explored the effects clones, population variability, and 

candidate member tie definitions have on MCGA performance. A set of 
performance criteria for evaluating multicriteria methods has been created 
and used to compare the performance of various MCGA configurations. Clones 

significantly affect performance, and the best method of dealing with them is to 
allow their presence in the population, but with heavy penalties assigned to 

their reproductive ability. 
The effect of population size variability has been examined to determine 

whether the MCGA is capable of varying its own population size for optimal 
performance because of the difficulty in determining a proper fixed population 
size. The results show that the advantage of population size variability 
inclusion depends on the user's confidence in the fixed population size chosen. 
A properly sized fixed population outperforms a variable population size, while 
the performance of a variable population size MCGA outperforms fixed 

population attempts with poorly chosen population sizes. 
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Tournament selection with domination as the selection criterion is used 
as the basis of selecting parents for mating in the MCGA. The manner in 
which domination is defined dictated that a tie between candidate solutions has 
to be decided by equivalence class sharing to spread the population along the 
efficient front. The definition of ties is explored for its effect on the conflict 
between domination and diversity in the MCGA population. This research 
reveals that on the test problems examined, defining ties as when one (only) 
candidate does not dominate the entire tournament set provides the best 
MCGA performance. This result shows that diversity maintenance via 
sharing is crucial to optimal MCGA performance. 

A small comparison of the MCGA with the constraint method shows 

that both methods are effective at providing accurate representations of the 
multicriteria efficient set. The MCGA proves to be superior for three main 
reasons: (1) the difficulty involved in using the constraint method for three or 
more criteria, (2) the much larger numbers of cost functions required to 
optimize many ssga single-criterion problems for the constraint method 
representation compared to the MCGA which optimizes directly on the 
efficient set representation, and (3) the uncertainty involved in choosing a 

proper efficient set resolution from the constraint method that properly covers 
the efficient set without creating excessive computational effort. The MCGA 
resolution is limited only by the population size if population variability is not 
permitted or only by the effectiveness of the method if population size 

variability is allowed. 
The performance of the MCGA can be expected to surpass other 

generating methods more as the model complexity, number of criteria, and 
discrete nature of problem increase. In all three cases, a genetic algorithm 
that uses domination as its selection criterion continues retains its robustness 
and shows a superior ability to generate a highly resolved, quality efficient set 

representation. The results of this thesis suggest that the MCGA is an 
effective means of optimizing multicriteria fault tolerant system design 
problems easily, quickly, and accurately—the design community needs to take 

a long, hard look at how to best capitalize on the strength of the MCGA. 
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17.0 Suggestions for Further Work 

17.1 Single Criterion 

The field of genetic programming is expanding at an exponential rate. 
The massive influx of effort and literature in this field (of which this work is 
included) reflects the exciting potential so much of the scientific community 
sees in the ga. The biannual proceeding of the International Conference on 
Genetic Algorithms (ICGA) provides a sampling of the astounding advances 
currently being made. The Internet access provided by David Goldberg and his 
associates at the University of Illinois Genetic Algorithm Laboratory (ILliGAL) 

and the user group comp.ai.genetic are just two of the means by which the ga 
community is communicating to speed the spread of progress in the field. 

Further work on the applicability of ga's to fault tolerant system design 
could incorporate many of the advancements being pursued around the world 
due to the general, problem-independent nature of the ga. Some of the 
potentially useful features located recently include introns between 
parameters on a string and incest prevention in mating. 

Those specific items that revealed themselves over the course of this 
research as worthy of additional investigation include: 

Disallowed Parameters 

The direct effect disallowed parameters have on genetic algorithm 
convergence and exploration has not been rigorously pursued in this thesis. 
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The impact of "wasted" space on the binary representation of parameters was 
analyzed in Section 8.5, but no conclusions were drawn from the investigation. 
The fact that the ssga is more significantly impacted by disallowed parameters 
than the tga is substantiated by this investigation, but the reason for this 

conclusion has not been determined. 

Clones 

As was stated in Chapter 4 in the discussion of the ssga used in this 
thesis, the concept of "steady-state without duplicates" is not used because (1) 
the ssga used here is an independent development that did not take the work of 
others into account in its original configuration and (2) the use of "steady-state 

without duplicates" ehminates the ability to determine convergence based on 

the principles of Chapter 6. "Steady-state without duplicates", as described in 

[3], discards children that are duplicates of current members of the population. 

This keeps the entire population unique. The benefits cited by Davis are the 

much more efficient use of the reproductive cycle and greater population 

diversity. 
Additional work on the ssga could make use of "steady-state without 

duplicates" where diversity and computational efficiency is considered more 
important than the ability to detect convergence. 

Convergence 

The efforts to define ga convergence in this thesis (see Chapter 6) 
provide a great deal of insight into the behavior of the ssga as it is presently 
configured. The "product of the bit likeness" (PBL) figure of merit shows that 
convergent behavior can be observed for the ssga and an effective termination 

criterion can be developed. Additional research that looks at some form of the 

PBL gradient to determine when the sharp rise occurs would stand to improve 

the robustness of this termination criterion. 

Function Constraints: 

The ability of the ga to assign its own penalty function scaling is a 
concept the author believes is original to this thesis. The theoretical basis has 
not been rigorously developed and general applicability to a wide set of function 
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constraints has not been investigated. The benefits of this novel approach 
have only been tested in the multicriteria context of Section 11.1. Additional 

work in this area should build an analytical and empirical framework for the 
viability of this general penalty function approach. 

Parallelization 

That the ga is highly suited for parallel computing is rarely refuted. The 
efforts of this thesis are limited to serial computing applications. However, the 
framework established could be adapted to parallel configurations of either: 
1) distributed processing among linked workstations or personal computers 
2) parallel computing hardware 

In [17], the authors reference a population size study by G. G. 
Robertson (Proceedings of the 5th International Conference on Machine 
Learning, 1988), which found that performance using a parallel computing 
system monotonically increases with population size. This is not surprising 
when there is no real "cost" for larger populations. In serial machines mainly 
available today, there is a fixed cost increment for each population member; a 
real tradeoff between population size and "performance'' exists. 

Coupling the ssga, which provides optimal performance when 
computational limitations are eased and population sizes are increased, and 
parallel configurations will undoubtedly create a very competitive optimization 
framework. 

17.2 Multicriteria 

Tournament set size (t^) 

As presented in Section 12.4, the tournament set size tdom is one of the 
four MCGA performance parameters that must be set correctly for optimal 
MCGA performance. This thesis used a fixed t^ of 0.2, or 20 percent of the 
current population size. The appropriateness of this choice has not been 
verified. Reference [10] includes a brief look at the general setting of tdom, but 
an in-depth analysis of the appropriate tournament size for multicriteria 
genetic algorithm optimization is critical for the furtherance of this ga 

application. 
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Convergence testing 

The ability to determine satisfactory ga convergence and terminate the 

algorithm is especially difficult in the MCGA because the algorithm is 
converging to a population of points that represent an unknown quantity. The 
development of a means of termination based on MCGA convergence may be 
linked to convergence of the ssga with "steady-state without duplicates" 

applied. 

Representing the efficient set bounds 

The MCGA is shown in Chapter 15 to have some amount of difficulty 

reaching the boundaries of the efficient set.  The push towards dominance 
seems to be greatest where tradeoffs between criteria are the smallest. 
Unfortunately, DM may need information on the limitations-of-possibility, 
which requires some assurance that the efficient set representation includes 
the actual bounds. The MCGA, as it is presently formulated, needs to be 
augmented with additional operators to enhance exploration toward the edges 
of the efficient set or will have to used in conjunction with another method. 

One option that has not be tested is to run individual ssga runs for each 
criterion to determine an approximation of the bounds, and then to include 
those points into the MCGA population with a multicriteria form of elitism to 

enhance their ability to produce offspring. 

Constraint method 

Though the constraint method has been shown to be generally inferior to 

the MCGA, additional work in the area of multicriteria optimization will always 
need sound competitive methods to compare performance against. A few 

simple configuration changes of the constraint method used in this thesis 

should greatly improve the competitiveness of the method: 
1) If a good initial population is generated, each subsequent ssga run for the 

constraint method could start with that initial population, thus saving a 
great deal number of cfe. In fact, the effort required would be equal to the 

population size times (resolution -1). 
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2) The constraint method has the most difficulty finding points when the 
underlying single-criterion problem is tightly constrained. As such, better 
performance can be attained in two-criteria problems by switching the 
criterion and the constraint with each other at some mid-point of operation. 
In this way, both edges of the efficient set are located by sub-problems with 

larger feasibility regions. 
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Appendix A: The Markov Modeling Method 

A.1 Background 

Markov modeling techniques provide a systematic means of 
investigating system reliability for large, complex systems and determining life 
cycle (time dependent) system costs. They permit the inclusion of sequence 
dependent events such as repairs in a natural fashion. One of the most 
powerful aspects of Markov models is their ability to permit simplifying 

approximations to be made and to provide means to obtain bounds on these 
approximations. The basic concepts of Markov modeling are best introduced 
by simple, but representative examples. These examples clearly point out the 
general flexibility as well as the main drawback of the method, particularly the 
rapid expansion of the state space. Techniques used to reduce the state space 
to manageable proportions, without compromising the quality of the analysis, 
are described in detail in [1], 

A.2 Single-Component System 

Figure A-l shows a single-component system. The first step in modeling 
the reliability of this system is to determine what the system requires to be in 
an operational state. This single-component system has a trivial operational 

requirement: it is operational if the single component, A, has not failed. 
(Conversely, the system is failed if component A has failed). While this step is 
simple for this system, it is often one of the most complicated steps in modeling 
a complex system, characterized by many operational states and subtle 
interactions among components. 

Figure A-l: Single component system block diagram 

Given the system operational requirements, the next step is to 

construct Markov model states. A state represents a unique configuration of 

failed and operational elements, sometimes distinguished by the sequence of 
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the failures that led to it. Figure A-2 shows the Markov model for the one- 
element system. In general, a model is generated by first creating state 1, the 
state where there are no failed components in the system. The various 
transitions out of state 1 represent failures of the system components, 

accounted for individually or in groups. In this case there is only one 
component, thus a transition denoted X is created leading to state 2. This state 

represents this system when component A is failed. Noting the operational 
requirements for this system, state 2 is labeled as a system failure. Since 
there is only one component in the system and its failure has been accounted 

for, the Markov model is complete. 

OF IE 

0^-0 
Figure A-2: Single component system Markov model 

This system's reliability is just the probability, as a function of time, of 
being in state 1. Actually, there is a probability associated with each state. 
For example, at time zero the probability of being in state 1 (no failures) is 1 (or 
100%) and the probability of being in state 2, or any other state, is 0. 
Parameter X on the transition in the model not only indicates that component 
A has failed along this transition, but that the component's failure rate is X, 

failures per hour. Throughout our discussion, it will be assumed that all failure 
rates are constant in time. To obtain the system reliability as well as other 
state probabilities of interest as a function of time, we need to track the 
probability "flowing" out of state 1 into state 2. Probability flow is the product 
of the transition rate and the state probability for the state at the origin of the 
transition. Thus, a state with zero probability has no probability flowing out of 
it, a state with no exiting transitions has no flow out, and a state with 
probability equal to 1 and an exiting transition rate of X has an instantaneous 
flow out equal to X. The rate of change of each probability is then given by the 

net probability flow into the corresponding state. A Markov model is thus 
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mathematically described by a set of differential equations governing the 
evolution in time of the probabilities of being in each state. 

Using the definition of the probability flows, the following equations are 

obtained for the Markov model shown in Figure A-2: 

dP,(t)—KPift) (1) 
dt 

dP2(t) 
dt 

= XPi(t) (2) 

These equations, representing the rate of changes in each state variable 
(Pi and P2), are called state equations. Equation (1) shows that the rate of 

change in probability for state 1 is the exiting transition rate X times the 

probability of being in state 1. The minus sign indicates that the transition is 

out of the state and, therefore, reduces the probability of being in state 1. 

Equation (2) is interpreted similarly. Note that the flow is into state 2; the 
positive term indicates an entering transition which increases the probability 
in state 2. Also, the flow into state 2 is the rate X times the probability of state 

1; the flow on this transition is due to state 1, the origin of the transition. 
Equations (1) and (2), along with the initial condition of the state probabilities, 
Pl(0) = 1 and P2(0) = 0, provide a complete description of the system's 

reliability. Markov models have the property that a flow leaving one state 
enters another, as shown in Equations (1) and (2). Hence, the total system 
probability does not change as the system evolves. This fundamental property 
is called conservation of probability. The sum of all the system's state 

probabilities is always equal to 1. 
There are many ways of solving Equations (1) and (2) in closed form, 

such as standard integration or Laplace transform. Using any convenient 
technique and recalling that the failure rate A, is constant, yields the solution: 

Pl(t) = e-M (3) 

P2(t) = 1-e-M (4) 

State 1 starts with a probability of 1 and decays exponentially toward 0, 

while state 2 has a probability initially at 0 which grows toward 1. Notice that 
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the sum of the two state probabilities is 1 at all times, thus indicating the 

conservation of probability. 

Two Component System with Repairs 

Figure A-3 shows a two-component system where the components are 
connected in parallel. The requirement for system operation is that at least 
one of the two components is working. These components can be repaired 

when they are failed. 

Figure A-3: Two component system block diagram 

The Markov model of this system is shown in Figure A-4. State 1 
represents the no-failure configuration. Possible events when in this state are 
that component A can fail or component B can fail. These two possibilities are 
captured in the transitions leaving state 1 with the rates X\ and %2 

respectively. State 2 represents component A failed and B working. Possible 
events leading out of state 2 are that component B may fail (exiting transition 
X2) or that component A may be repaired (exiting transition Uj). Here, Uj 

stands for the repair rate for component A. 
The failure of component B leads to state 4, while the repair of 

component A leads back to state 1, returning the system to the no-failure 
state. Similarly, the exiting transitions for state 3, the B failed/A working 
state, are a failure of component A (transition Xi going to state 5) and a repair 
of component B (transition \i2 going back to state 1). Notice that repairs, 

which are sequence-dependent events (since they can only be performed after a 
component has failed), are easily included in the model. 
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OF IF 
A FAILED 

2F 
AthenB FAILED 

A and B OK ^ 

B FAILED B then A FAILED 

Figure A-4: Two component system Markov model 

States 4 and 5 represent system failure, being distinguished only by the 
sequence of events leading to the loss of both components. States 1, 2, and 3 
represent the system in an operational configuration. If one was concerned 
with degraded operational modes, such as operating without a backup, then 
this model could also provide that information by giving the probability of 
states 2 and 3 independent of state 1. 

States 4 and 5 both represent system configurations where components 
A and B are failed. However, in state 4 component A failed first and in state 5 
component B failed first. In both of these states, the possible events are the 
repair of A (transition Uj leading to state 3) and the repair of B (transition U2 

leading to state 2). Since the possible actions taken and their consequences, 
i.e., the destination states, are the same in states 4 and 5, these states may be 
lumped together if the order-of-failure distinction is not needed in the analysis. 
The resulting model is shown in Figure A-5. This simplification is referred to as 
exact aggregation of states and introduces no approximations. It is useful in 
systems where there are many identical components each with an identical 
impact on the system operation. 
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OF IF 

A FAILED 

2F 

A and B FAILED 

A and B OK     M- 

B FAILED 

Figure A-5: Aggregated two component system Markov model 

The state equations for the model in Figure A-5 are obtained by 
inspection of the model diagram and applying the rule for determining flows. 

The state equations are: 

dPi(t) 
dt 

= -On+X2)Pi(t) + uiP2(t) + U2P3(t) (5) 

dP2(t) 
dt 

= JliPitt) - (fa + ui)P2(t)+u2P4(t) (6) 

dPa(t) 
dt 

= X2Pi(t) - (fa + u2)P3(t) + UiP4(t) (7) 

dP4(t) 
dt 

= taP2(t) + A.iPa(t) - (Ui + ^2)P4(t) (8) 

Note that all flows leaving a state (negative terms) appear as a flow 
entering a state (positive terms), thus indeed probability is conserved. 
Equations (5) through (8), together with the initial condition that state 1 has a 
probability of 1 and all other states have probabilities of 0 at time = 0, provide 
a complete description of the system. Figure 1-2 is the same as that in Figure 
A-5, except that the repair from state 4 is assumed to always be a complete 

system repair that takes the system back to state 1. 
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All systems reach a point where the state probabilities are no longer 
changing. In the example of the single-component system this situation 

occurred when all of the probability was in state 2 and none was in state 1. 
This is common for systems without repair. After a long period of time most 
states have probabilities of 0 and only a few states, called trapping states, 
have probabilities that are between 0 and 1. In the case of systems with 
repairs, however, when they reach steady state, all their state probabilities 
may be between 0 and 1. This comes about because a balance is reached 
between the flows leaving and those entering the states. For example, when 
the flow leaving state 1 in Figure A-5 equals the flow entering state 1, its 
probability no longer changes. This occurs when the probabilities of states 1, 
2, and 3 obtain values such that the flows are in balance. Equation (5) shows 
that this balance is obtained when dPj(t) / dt = 0. Similarly, when the 

derivatives of all state probabilities are equal to 0, the system has come to its 
steady state. 

The steady state is an important characteristic of fault tolerant system 
analysis. After an initial transient phase, most systems will operate 
continuously over a much longer period of time. Although various components 
fail and are repaired as the system evolves, the probabilities of the various 
system states have come to steady state. Therefore, the system analysis is, 
in fact, an analysis of the system operating at steady state. For the 
completeness of this introduction however, we will briefly discuss the time- 

dependent problem. 
The closed-form solution of equations (5) through (8) for this two- 

component system, as is true of most systems with repairs, is rather complex 
and not particularly enlightening. It is more common to solve such system 
models numerically. 
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First, the system equations are written in matrix form: 

dPtt) 
dt 

-(ta+ta)      M-i (12 0 

JCi      -(ta + ui)       0 U2 

ta 0       -(ta + U2)      ui 

0 X2 Xi      -(U1+U2) 

P(t) (9) 

where the state vector is: 

P(t) = [Pi(t),P2(t),P3(t),P4(t)]T (10) 

Notice that the columns of the matrix add to zero. This represents the 

flow conservation property in the system: all flows leaving a state must enter 

another state. The matrix equation may be written more concisely as: 

dP(t) 
dt 

= AP(t) (11) 

Equation (11) is the continuous-time representation of the Markov 
model. Matrix A is the continuous-time transition matrix. While there are 
many ways of numerically integrating this equation, the one shown here is 
straightforward and adequate in many situations. The derivative is 

approximated over a discrete time step At by: 

[P(t+At)-P(t)]/At = AP(t) 

Multiplying each side by At and moving the state vector P(t) to the right- 

hand side gives: 

P(t+At) = [I + AAt]P(t) 

where matrix I is the identity matrix. The term in brackets may be 

relabeled as matrix M: 

P(t+At)=MP(t) (12) 

M is the discrete-time transition matrix. The above approximation, 
Equation (12), is called Forward (or Explicit) Euler integration. 
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Equation (12) represents a recursive solution for the Markov model. 
Given the system's initial condition, P(0), it is possible to use this equation to 

propagate the state probability in time: 
P(At) = MHO) 

P(2At) = MP(At) 

P(3At) = MP(2At) 

P(4At) = MP(3At) 

P(nAt) = MP[(n-l)At]=MnP(0) 

The above procedure gives the state probabilities as a function of time 
from time = 0 to time = nAt. It may also be viewed as an iterative solution of 
the steady-state problem, i.e., A P(t) = 0, if continued until the state 
probabilities no longer change. 

A few remarks need to be made concerning this solution procedure. 
First, At must be judiciously selected such that the integration is stable, has 
the desired accuracy and produces meaningful probabilities, i.e., between 0 and 
1. Second, in performing these calculations on a computer, special care must 
be taken lest round-off errors destroy the solution. Finally, a faster version of 

this integration scheme, taking advantage of the fact that M is time-invariant, 
may be constructed, based on a very efficient technique to evaluate powers of 

a matrix. 
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Appendix B: The Branch and Bound Method 

The advantages and disadvantages of genetic algorithms cannot be 
determined without comparing them against other, proven discrete-parameter 
optimization techniques. Comparing the different methods can provide an 
assessment of each based on such figures of merit as real-time operating 
duration, consistency and reliability of convergence, and ease of use. 

From the Society for Industrial and Applied Mathematics (SIAM) 
course notes tutorial on Numerical Optimization Algorithms and Software 
[19], page 48: "In many applications the solution of an optimization problem 
only makes sense if certain of the unknowns ... are integers... Although a 
number of algorithms have been proposed for [the integer programming 
problem], the branch-and-bound technique is used in almost all the software we 
collected. The technique has proven to be efficient on practical problems, and 
it has the added advantage that it solves 'continuous' linear programs ... as 
sub-problems ..." 

The branch and bound optimization method provides a means of solving 
a set of constrained continuous problems in order to find a suitable discrete or 
integer solution. Branch and bound has two phases: (1) partition the sample 
space of solutions into mutually exclusive and completely exhaustive sets by a 
specified decision algorithm (branch); (2) create upper and lower bounds over 
the objective functions in these sets (bound). These phases are repeated until 
the solution is better than the bounds on all the unexplored sets (optimal). 

Branch and bound is actually not an optimization method in itself. It is 
a record keeping algorithm used to track the progress of a subordinate 
optimization method. The branch and bound capability of DOME uses the 
Down-hill Simplex continuous parameter optimization method to solve the 
stack of potential solutions (branches). As the method progresses, it further 
constrains the discrete parameters for each sub problem on its stack of 
potential solutions. Because of its underlying continuous nature, branch and 
bound can not only adjust itself to mixed continuous/discrete parameter 
problems, it's abilities are improved when the discrete constraints are relaxed. 
This stands in contrast to the genetic algorithm, which fairs better as the 
solution space is contracted. 
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The Mechanics of the Method 

The branch and bound discrete optimization method is essentially a 

means of finding a discrete optimization solution through the repeated solution 

of continuous optimization sub-problems. Each sub-problem is a more 

constrained problem than the previously solved one. 
Formally, the mixed integer optimization problem is to find the solution 

x* to the problem 
PD: Optimize f(x) 

subject to x e R,  xd is discrete valued (for all) d e D (1) 

where D is the set of discrete variables, and R is the feasible region of the 

continuous problem 
P: Optimize fix) 

subject to x e R (2) 

Next, assume that x* is the minimizer of PD and is found. If ^ is a 
discrete feasible solution, then the problem PD is solved. If not, then there 
exists a d e D for which x'd is not discretely valued; that is, one of the 
components x'd of the vector x' is not an acceptable discrete value. In this 

situation, we branch on variable xd in problem P to create two sub problems 

P-: minimize f(x) 

subject to x e R ,  xd ^ [x'dl- (3) 

and 
P+: minimize f(x) 

subject to x € R ,  xd > [x'dl+ (4) 

where [x'dl- means the largest discrete value not greater than x'd, and [x'dl+ 
means the smallest discrete value not less than x'd- Essentially, we now have 

two problems with smaller feasible regions since xd is now bounded in both 

problems. Note that x* is the feasible solution in either P- or P+, but not both. 
The branching process is repeated by branching on P- and P+ and other 

sub-problems, resulting in a tree structure of optimization problems like that 
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of Figure B-l. The optimization of a sub problem will result in one of three 
situations: (1) the problem has no feasible solution and can be discarded; (2) 
the problem has a feasible solution that is not discrete-valued, requiring a 
further branching; or (3) the problem has a solution that is discrete-valued and 
may be the optimal solution. 

O    Parent problem 

|   |    Discrete feasible 

A    Discrete infeasible 

Figure B-l: Tree structure for Branch and Bound optimization 

A drawback with this approach is that the number of nodes in the tree 
grows exponentially with the number of variables and may not even be finite. 
Thus, an exhaustive search is not efficient. The branch and bound method 
attempts, however, to find the solution through only a partial search of the 
tree. Note that the optimal objective function of P must be less than or equal 
to the optimal objective functions of P- and P+, otherwise the optimal solution 
to P was not found originally. Thus, the optimal objective function of the 
parent problem is a lower bound on all its sub-problems. This relationship can 
be used to reject certain branches of the tree if they cannot improve the 
current best solution. For example, suppose some, but not all, of the problems 

within the tree have been solved. Let the best discrete-valued solution have a 
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cost function value off. Suppose that other branches in the tree have lower 
bounds on the objective function f, such that f > f. These branches can be 
removed from the tree since none of the solutions will improve on the current 

best. This principle allows a limited search of the tree to be effective. 
There are two remaining issues to be addressed: first, which sub- 

problem should be solved next; and second, on which variable should the branch 

be made. The DOME program uses a stack to keep track of the unsolved 
problems, each with a lower bound on the minimum of the objective function. 
The effect of the stack method is to follow a single path deep into the tree to 
find a discrete feasible solution. Then the algorithm works back, creating more 

sub-trees or rejecting problems. The algorithm branches on the variable that 

has the largest absolute error from its nearest acceptable bin value. For 
example, for an integer problem, if xi= 3.2 and X2 = 6.4, the algorithm will use 

X2 as the branch variable. The problem placed on the top on the stack is the 

one with the bound closest to the branched variable. The other sub-problem is 
placed second on the stack. For example, for an integer-valued problem, if the 
branched variable X2=6.4, the top problem on the stack will have an upper 
bound on X2 of 6, and the second problem on the stack will have a lower bound 
on X2 of 7. In this way, the branch most likely to contain the optimum is tried 
first (the branch with the upper bound on X2 of 6 in this instance) to try to trim 

the tree as quickly as possible. 
The stack method of Branch and Bound optimization has proven in 

practice to be quite effective for the type of problems solved by the DOME 
program. The relative value of the Branch and Bound method using the stack 

method will be determined by its ability to find a discrete feasible solution in a 
reasonably small number of sub-problems, which is important when the 
number of iterations is limited, and how consistently the method is capable of 

finding a quality solution. 
Though most any optimization tool can be used as the underlying 

method with Branch and Bound, the Down-hill Simplex method of [21] is used 
in DOME. A brief discussion of this method follows in the next section. 
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Appendix C: Down-hill Simplex 

The Down-hill Simplex method [21] has very robust characteristics and 
can converge to a solution reliably in linear and non-linear programming 
problems. It also has the advantage of not requiring any derivative 
information of the cost function. This allows the branch and bound method to 
operate on the same cost functions as the genetic algorithm and represents 
the major reason why it was chosen for inclusion in this thesis. Other 

continuous optimization capabilities require first or second derivative 
information from the user, which not only increases the time required for a cost 
function evaluation, but also puts a tremendous burden on the user to 

formulate those extra portions. 
A simplex is a geometric figure made up of N+l points in N dimensions. 

For example, in two dimensions, a simplex is a triangle. Although the simplex 
method of linear programming is based on the same geometric concept, it has 
no relation to the method used here. In general, we are concerned only with 
Simplexes that are nondegenerate, i.e. those that enclose a finite inner N- 

dimensional volume. 
Once the starting simplex is established, the method takes a series of 

steps attempting to move the simplex to areas of lower function values. At 
each iteration, a new simplex is constructed by replacing the worst point, i.e., 
the point at which the function has the highest value. This replacement is 

accomplished through various geometric manipulations: 
1) Reflection of the worst point of the simplex through the face of the 

other vertices in the simplex. 
2) Expansion in the direction along which further decreasing of the cost 

function is expected. 
3) Contraction along one or all dimensions if the reflection increases the 

cost function. 
These basic manipulations are shown for two dimensions in Figure C-l. 
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* contraction 

*mid 

Figure C-l: Simplex modification of the Down-mil Simplex method 

Parameter constraints are directly incorporated and non-smooth cost 
functions can also be used. In some instances the convergence may be slow, 
typical of techniques not relying on derivative information. 

198 



References 

[I] Babcock Philip S. An Introduction to Reliability Modeling of Fault 
Tolerant Systems. Charles Stark Draper Laboratory Report R-1899, 
September 1986. 

[2]    Cohon, Jared L. Multiobiective Programming and Planning. San Diego: 
Academic Press, 1978. 

[3]   Davis, Lawrence. Handbook of Genetic Algorithms. New York: Van 
Nostrand Reinhold, 1991. 

[4]   de Neufville, Richard. Applied Systems Analysis: Engineering Planning 
and Technology Management. New York: McGraw-Hill, 1990. 

[5]   Fletcher, R. Practical Methods of Optimization. New York: John Wiley 
and Sons, 1987. 

[6]    Genetic Algorithms and Simulated Annealing. Ed. Lawrence Davis. Los 
Altos: Morgan Kaufmann Publishers, Inc., 1987. 

[7]   Goldberg, David E. Genetic Algorithms in Search, Optimization, and 
Machine Learning. Reading: Addison-Wesley Publishing Company, Inc., 
1989. 

[8]    Hammett, Robert, Brenan McCarragher, and Andrei Schor. Design 
Optimizer/Markov Evaluator (DOME) Version 1.0. Charles Stark Draper 
Laboratory Report R-2409, May 1992. 

[9]   Howard, Ronald A. Dynamic Programming and Markov Processes. MTT 
Press, 1960. 

[10] Horn, Jeffrey, and Nicholas Nafpliotis. Multiobiective Optimization Using 
The Niched Pareto Genetic Algorithm. IlliGAL Report No. 93005. 
University of Illinois at Urbana-Champaign, July 1993. 

[II] Michalewicz, Zbigniew and Cezary Z. Janikow. handling Constraints in 
Genetic Algorithms." Proceedings of the Fourth International Conference 
on Genetic Algorithms. Eds. Richard K Belew and Lashon B. Booker, 
San Mateo: Morgan Kaufmann Publishers, Inc., 1991, pp. 151-157. 

[12] Multicriteria Design Optimization. Eds. Hans Eschenauer, Juhani Koski, 
and Andrzej Osyczka, New York: Springer-Verlag, 1990. 

[13] Osyczka, Andrzej. Multicriterion Optimization in Engineering. New York: 
John Wiley and Sons, 1984 

[14] Press, Flannery, Teukolsky, and Vetterling. Numerical Recipes: The Art 
of Scientific Computing. Cambridge: Cambridge University Press, 1986. 

[15] Richardson, Jon T., et. al. "Some Guidelines for Genetic Algorithms with 
Penalty Functions." Proceedings of the Third International Conference on 
Genetic Algorithms. Ed. J. David Schaffer, Los Altos: Morgan Kaufmann 
Publishers, Inc., 1989, pp. 191-195. 

[16] Rosch, Gene and Andrei L. Schor. TISS Reliability Analysis Presentation. 
Charles Stark Draper Laboratory, Cambridge, MA. 1 May 1992. 

199 



[17] Schaffer, Caruana, Eshelman, and Das. "A study of control parameters 
affecting on-line performance of genetic algorithms for function 
optimization." Proceedings of the Third International Conference on 
Genetic Algorithms. Ed. J. David Schaffer, Los Altos: Morgan Kaufinann 
Publishers, Inc., 1989, pp. 51-60. 

[18] Tillman, Frank, Ching-Lai Hwang, and Way Kuo. Optimization of 
Systems Reliability. Marcel Dekker, Inc., 1980, pp. 231-238. 

[19] Vander Velde, Wallace E. Unpublished notes on a Population Size Rule-of- 
Thumb. Massachusetts Institute of Technology, Department of 
Aeronautics and Astronautics. Sept. 1993. 

[20] Wright, Stephen and Jorge J More\ Numerical Optimization Algorithms 
and Software. Siam Tutorial, 10 May 1992. 

[21] Neider, JA and R. Mead. A Simplex Method for Function Minimization. 
Computer Journal, Vol. 7,1965. 

200 


