
Set Oriented Methods for

Global Optimization

Oliver Schütze
University of Paderborn
Warburger Straße 100

33095 Paderborn
email: schuetze@uni-paderborn.de

Danksagung

Die vorliegende Arbeit entstand während meiner Zeit als wissenschaftlicher Mi-
tarbeiter der Universität Paderborn. Dort arbeitete ich an dem Lehrstuhl für
Angewandte Mathematik unter der Leitung von Prof. Dr. Michael Dellnitz. Ich
möchte mich an dieser Stelle für seine intensive Betreuung und die Ermöglichung
der Durchführung der Arbeit bedanken. Besonders hervorzuheben ist seine Geduld,
die er aufbrachte, um mir viele Zusammenhänge zwischen der Optimierung und dem
Gebiet der Dynamischen Systeme zu erklären.

Mein Dank gilt ausserdem Prof. Dr. Kalyanmoy Deb und Prof. Dr. Björn
Schmallfuss für die Begutachtung dieser Arbeit.

Meinen Kollegen, insbesondere Katrin Witting, Alessandro Dell’Aere, Dr. Gary
Froyland, Dr. Oliver Junge und Stefan Sertl, danke ich für deren Hilfe und Un-
terstützung.

Ferner möchte ich der Abteilung CT PP 2 der Siemens AG unter der Leitung
von Prof. Dr. Albert Gilg und dem Lehrstuhl für Regelungstechnik und Mecha-
tronik unter der Leitung von Prof. Dr. Joachim Lückel danken, die mich stets mit
relevanten Beispielen vor allem aus den Bereichen der Stabilitätsanalyse und der
Mehrzieloptimierung versorgt haben.

Speziellen Dank möchte ich Dr. Qinghua Zheng aussprechen, der diese Arbeit
durch zahlreiche fruchtbare Diskussionen und Hinweise auf interessante Problem-
stellungen entscheidend prägte.

Nicht zuletzt gilt mein Dank Kathrine Badham-Thornhill, Kathrin Padberg und
Mirko Hessel, die diese Arbeit Korrektur gelesen haben.

Diese Arbeit wurde unterstützt durch die DFG-Sonderforschungsbereiche 376
”Massive Parallelität” und 614 ”Selbstoptimierende Systeme des Maschinenbaus”.

2

Contents

1 Introduction 5

2 The Subdivision Algorithm 11
2.1 Introduction . 11
2.2 The Algorithm . 12
2.3 Realization . 16
2.4 Estimates of the computational effort 18

3 Location of Zeros A: g : Rn → Rn 23
3.1 Introduction . 23
3.2 The Algorithms . 24
3.3 Numerical Results . 30
3.4 An ”Application”: Scalar Optimization 36
3.5 Conclusion . 40

4 Location of Zeros B: g : C→ C 41
4.1 Introduction . 41
4.2 Theoretical Background . 42
4.3 The Algorithm . 42

4.3.1 Description of a Basic Subdivision Scheme 43
4.3.2 Adaptive Version of the Basic Subdivision Scheme: the QZ-40

Algorithm . 44
4.4 Numerical Results . 46

4.4.1 Academic Example . 46
4.4.2 Stability of a Ring Oscillator 46
4.4.3 Stability of an Annular Combustion Chamber 49

4.5 Conclusion . 51

5 Computing the Stability Regions of Delay Differential Equations 52
5.1 Introduction . 52
5.2 Theoretical Background . 53
5.3 The Algorithm . 54
5.4 Numerical Results . 56

5.4.1 Example A . 56
5.4.2 Example B . 57

3

5.4.3 Example C . 57
5.5 Conclusion . 58

6 Multi–Objective Optimization 62
6.1 Introduction . 62
6.2 Theoretical Background . 64

6.2.1 Pareto Optimality . 64
6.2.2 Convergence toward Pareto Sets 69

6.3 Basic Algorithms . 71
6.3.1 Subdivision Algorithm . 72
6.3.2 Recovering Algorithm . 73
6.3.3 Sampling Algorithm . 75
6.3.4 Usage and Combination of the Algorithms 77

6.4 Numerical Results for General Models 78
6.4.1 Example G1 . 78
6.4.2 Example G2 . 79
6.4.3 Example G3 . 79
6.4.4 Example G4 . 81
6.4.5 Example G5 – Optimization of an Active Suspension 82

6.5 A Data Structure for the Computation of the Nondominance Problem 86
6.5.1 Introduction and Background 86
6.5.2 Attacking the Nondominance Problem 88
6.5.3 Computational Results . 92

6.6 Extensions for Non–Smooth Models 97
6.6.1 Introduction . 97
6.6.2 A Short Introduction to MOEA’s 97
6.6.3 The Algorithms . 99
6.6.4 Using Archives . 102

6.7 Numerical Results for Non–Smooth Models 106
6.7.1 Example N1 . 107
6.7.2 Example N2 . 107

6.8 Extensions for Smooth Models . 108
6.8.1 Introduction . 108
6.8.2 The Algorithms . 109
6.8.3 Uniform Distribution of Solutions 112

6.9 Numerical Results for Smooth Models 113
6.9.1 Example S1 . 114
6.9.2 Example S2 . 114
6.9.3 Example S3 . 114
6.9.4 Example S4 . 115
6.9.5 Example S5 . 115

6.10 Conclusion and Future Work . 116

7 Conclusion 128

4

Chapter 1

Introduction

The personal improvement is an inherent desire of every individual. The search for
the extremes is one of the biggest sources of motivation and inspiration for athletes,
scientists, mathematicians and the rest of the human race who seek the ultimate
solution in their subject. Since the beginning optimization has been a very active
field in mathematics though a thorough and beautiful theory was developed only in
the 1950s when computers became available. Both new generations of computers
with rapidly growing capacities and new problems arising from ever advancing ap-
plications, call perpetually for new optimization methods. The scope of this thesis
is to give a contribution to that issue, to develop new techniques for the solution of
modern optimization problems.
To be more precise, we propose in this work numerous schemes for the numerical
treatment of some global optimization problems, such as the (global) root find-
ing problem and multi–objective optimization. Most of the algorithms which are
presented here are based on a set–oriented multi–level scheme. These subdivision
techniques can be described quite well by a well–known albeit frivolous formulation
of the essence of optimization. This says that the task is to find a black cat in a
dark room in minimal time (and a constrained optimization problem belongs to a
room full of furniture). The general approach of the basic subdivision scheme for
the computation of the ”cat–finding problem” reads as follows:
The algorithm starts with a division of the complete room into a finite set of smaller
and disjoint room segments. In the next step all of the segments in which the cat
(or any part of it) is not located1 are discarded. Continual subdivision and selection
steps of the remaining parts of the room lead to a sequence of outer approxima-
tions which increasingly narrow down the requested location of the cat until it is
pinpointed.

To go into the detail of this subject the following approach is used: since the
approach of the subdivision algorithm is global (recall that we start with a partition
of the entire room in the first step in order to locate the black cat), we will conse-
quently address the corresponding global optimization problems.
In particular, in the subsequent chapters we will propose numerical algorithms for

1The effective realization of this part is in fact the crucial factor for the success of the algorithm.

5

the solution of the following problems:

• global zero finding for

– differentiable functions g : Rn → Rn, and for

– analytic functions g : C→ C, due to its particular structure.

• location of stability regions of parameter dependent delay differential equa-
tions, and

• multi–objective optimization.

We propose several adaptive algorithms for the location of zeros within a prescribed
compact region in Rn (and C respectively), and will demonstrate their strength by
several numerical results (see Chapters 3 and 4).
Furthermore, we address the problem of the location of the stability regions of pa-
rameter dependent delay differential equations (Chapter 5). The proposed algorithm
uses the stability criterion on the underlying characteristic functions. Due to its set–
oriented approach, the method has the advantage over most other existing schemes
that it does not require a particular structure of these functions.
The main part of this thesis consists of the numerical schemes for the computation
of the set of solutions for multi–objective optimization problems (Chapter 6). We
will propose algorithms for different assumptions of smoothness of the underlying
models. The main result of this thesis are algorithms for objectives which are twice
continuously differentiable. These set–oriented continuation–like methods can – as
a ”by–product” – be used for the computation of general implicitly defined mani-
folds, even in higher dimensional space. This allows for the efficient computation of
optimization models with equality constraints (one example is shown in Figure 1.3).
One interesting fact about the subdivision techniques is that they provide a lot of
potential to get parallelized efficiently. However, this is not a topic of this thesis.
For particular parallelization strategies of subdivision algorithms for the analysis of
general dynamical systems as well as for global optimization we refer to [102] and
[103].
Finally, it has to be mentioned that parts of this thesis grew out of the publications
[99], [25], [26], [24], [101], [100] and [87], for each of which the author has given a
substantial contribution.

A detailed outline of this thesis is summarized as follows:
In Chapter 2 we present a global set–oriented multi–level scheme which serves as
the basis for most of the algorithms presented in this thesis. The primary variant
of this scheme was proposed in [21]. It is based on a subdivision technique which
allows the construction of a covering of the so–called relative global attractor of a
given dynamical system f : Q ⊂ Rn → Rn in a given compact domain Q ⊂ Rn up
to a prescribed accuracy. The relative global attractor is important for our consider-
ations because it contains in particular all invariant sets of f within Q (a set A ⊂ Q
is called invariant with respect to f if f(A) = A). This fact will be utilized for the

6

construction of the dynamical system for the underlying optimization problem: all
dynamical systems which are used in combination with the subdivision algorithms
have in common that the set of interest – e.g. the minimizer of an objective function
in the context of scalar optimization – is contained in the invariant set.
We extend the basic algorithm to the situation where one is interested in the com-
putation of the common invariant sets of a finite number of different dynamical
systems. Moreover, we prove convergence of this abstract multi–level algorithm
(Section 2.2), discuss its implementation (Section 2.3) and make some estimates of
the computational effort (Section 2.4). The latter discussion will show that the sub-
division techniques are restricted to moderate dimensions n of the parameter space
of the dynamical system.

In Chapter 3 we develop a new method for the location of all roots of a given
differentiable function g : Rn → Rn within a prescribed (compact) domain. The
underlying idea is to view iteration schemes such as Newton’s method as dynami-
cal systems and then to apply the subdivision techniques mentioned above. It will
evolve that it is typically preferable to work with iteration schemes with variable
step sizes such as the damped Newton method since this makes the computations
both more reliable and more efficient. Since these iteration schemes with different
step sizes can be viewed as different dynamical systems we use the results of Chapter
2 to construct suitable algorithms. This will lead to an adaptive scheme which uses
the Armijo step size (Section 3.2). We present some numerical results and compare
them to a different global zero finding procedure (Section 3.3).
Prominent alternative ways to attack the global zero finding problem are mainly
based on interval analysis (see e.g. [1], [48] or [63]) or on homotopy methods (for
this we refer e.g. to [11], [2], [75] and [113]). The algorithms which use interval
analysis are mostly rigorous but typically just applicable in the case where the di-
mension n of the parameter space is not too large. Although homotopy methods
are in general non-rigorous, they can in certain cases be used to find the entire zero
set, for instance when the function g is polynomial-like.
Finally, we propose a new method for the numerical treatment of (unconstrained)
scalar optimization problems (Section 3.4). To be more precise, we combine the
subdivision techniques for the location of zeros of the gradient of the objective with
classical branch&bound strategies (see [56]) in order to combine the advantages of
both methods. The algorithm is designed for general optimization problems and
does not require particular properties of the underlying models. However, on lack
of this ”specialization”, the approach may have problems for higher dimensional
models. An alternative approach which is also based on subdivision techniques and
allows the computation of certain ”real world” problems is presented in [104, 10].

Chapter 4 deals with the problem of finding all the roots of an analytic function
g : Q ⊂ C → C within a rectangle Q ⊂ C. The basic idea for the algorithms pro-
posed in this chapter is to numerically use the argument principle and to combine
this with a multi–level subdivision strategy. This way we construct tight coverings
of the set NQ of zeros of g within Q. In combination with classical iteration schemes

7

this leads to an adaptive scheme for the approximation of NQ, the so–called QZ40
algorithm (Section 4.3). We conclude the chapter with three examples (Section 4.4)
indicating the robustness and efficiency of this numerical approach. The main ex-
ample (see Section 4.4.3 and also Figure 1.1) arises in the stability analyis of an
annular combustion chamber, which is joint work with Siemens, Munich.
The underlying idea of the approach, namely to use the argument principle in com-
bination with a subdivision procedure, already occurs in [115, 116] and [67]. All the
algorithms including the one presented here mainly differ in the numerical realiza-
tion. Furthermore, the methods developed in [84] and [114] are also similar in spirit,
where degree theory is the underlying concept for the approximation of the set of
zeros of a given function.

−30 −20 −10 0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

1600

1800

2000

Re(λ)

Im
(λ

)

Figure 1.1: Roots of the characteristic function of a model of an annular combus-
tion chamber under variation of a critical parameter. See Section 4.4.3 for further
information.

In Chapter 5 we address the problem of detecting the stability domain of pa-
rameter dependend delay differential equations (DDEs) which arose in an application
presented in Chapter 4. Similarly to the preceeding problem classes we also propose
in this context an adaptive subdivision algorithm for the outer approximation of
these sets (Section 5.3), which utilizes the stability criterion on the characteristic
function of the underlying DDE. To verify this criterion numerically, the root find-
ing algorithm QZ40 which is presented in Chapter 4 is applied. This algorithm is
applicable to a broad class of DDEs since it does not take a particular structure of
the underlying model into account. In fact, the method can also be applied more
generally to arbitrary bounded subsets S ⊂ Q of a given domain Q ⊂ Rn in param-
eter space, where S has to have positive Lebesque measure. Finally we close the
chapter by presenting some approximations of stability regions belonging to DDEs
with two and three free parameters (Section 5.4 and also Figure 1.2).
The most common methods for the computation of the stability regions which use

8

Figure 1.2: Approximation of the stability region of a parameter dependent delay
differential equation with three free parameters (see Section 5.4.3).

the characteristic function are based on the works of Nyquist ([82]), Pontryagin
([86]) and Neimark ([80]). Common to these different methods is that they are very
effective on a particular class of DDEs but none of them can be used generally.

Chapter 6 deals with the numerical treatment of multi–objective optimization
problems (MOPs). Here, the main task is the construction of algorithms for the
approximation of the entire set of solutions of a given MOP, the so–called Pareto
set. We start with the development of three basic algorithms (Section 6.3) which
can be applied when all objectives of the underlying optimization model are differ-
entiable. In addition to two subdivision algorithms (i.e. DS–Subdivision and the
Sampling Algorithm) we also propose a further technique: the class of Recover-
ing algorithms can be viewed as a (set–oriented) variant of a continuation method.
These algorithms are local in nature, but on the other hand are not restricted to
moderate dimensions like the algorithms based on subdivision techniques. A best
overall performance – i.e. a global and robust method which can also attack higher
dimensional problems – can be achieved by a combination of these three algorithms
which will be explained in Section 6.3.4.
After having stated the basic algorithms we refine them for MOPs with different
smoothness assumptions. To be more precise, we go into details for MOPs where
the objectives are not differentiable as well as for optimization models where all
objectives are twice continuously differentiable.
In the case the model consists of non–differentiable objectives, combinations of
Multi–Objective Evolutionary Algorithms (MOEAs, see e.g. [119], [18], [19] or [16])
with both the subdivision and the recovering techniques are proposed (Section 6.6).
For smooth MOPs it turns out that the performance of the recovering techniques can
be improved drastically (Section 6.8). The boxes which are used for the realization
of the algorithm serve as a surprisingly effective storage tool for the representation

9

Figure 1.3: Pareto set of a multi–objective optimization problem containing an
equality constraint (see Section 6.9.3).

of the solution set, in particular in higher dimensions. Since this technique can
also be used for the computation of general implicitly defined manifolds, also MOPs
with equality constraints can be treated effectively (see Figure 1.3). The recovering
techniques for smooth MOPs can be viewed as an improvement of the homotopy
approach which is described in [52], since the algorithm presented in that work is
only applicable locally and does not treat adequately the case where the MOP has
more than two objectives.
Numerous numerical results of non–differentiable, differentiable and twice conti-
nously differentiable MOPs taken from literature and emerging in applications will
be given in Sections 6.7, 6.4 and 6.9.
In addition, a new tree–based data structure for the effective computation of the
nondominated sorting problem which occurs in many algorithms for the treatment
of MOPs – e.g. the Sampling Algorithm presented in the same chapter – will be
proposed (Section 6.5). To attack this problem, there exist the intuitive linear list
approach, the quad tree approach (see [46], [111], [110] and [78]), and the composite
point approach ([34]) which have all the average case complexity of O(n2) for vector
comparisons – including the newly presented approach. We conclude this section
with a comparison of the new method to the quad tree approach and the linear list
approach by a category of problems.

We finally close this thesis with a conclusion in Chapter 7.

10

Chapter 2

The Subdivision Algorithm

2.1 Introduction

In this chapter we present a global set–oriented multi–level scheme which serves as
the basis for most of the algorithms presented in this thesis. The primary variant
of this scheme was proposed in [21]. It is based on a subdivision technique which
allows the construction of a covering of the so–called relative global attractor of a
given dynamical system f : Q ⊂ Rn → Rn in a given compact domain Q ⊂ Rn up
to a prescribed accuracy. The relative global attractor is important for our consider-
ations because it contains in particular all invariant sets of f within Q (a set A ⊂ Q
is called invariant with respect to f if f(A) = A). This fact will be utilized for the
construction of the dynamical system for the underlying optimization problem: all
dynamical systems which are used in combination with the subdivision algorithms
have in common that the set of interest – e.g. the minimizer of an objective function
in the context of scalar optimization – is contained in the invariant set.
In practice we would like to work with dynamical systems which are dependent on
a parameter – e.g. the step size of the damped Newton method for the computa-
tion of zeros. This is the reason why we have to extend the basic algorithm to the
situation where one is interested in the computation of the common invariant sets
of a finite number of different dynamical systems f1, . . . , fs. In fact, we generalize
the analytical results in [21] to this situation and develop a subdivision algorithm
for the outer approximation of the common global attractor of f1, . . . , fs inside a
compact subset of state space (Section 2.2).
Moreover, we prove convergence of this abstract multi–level algorithm (Section 2.2),
discuss its implementation (Section 2.3) and make some estimates of the compu-
tational effort (Section 2.4). The latter discussion will show that the subdivision
techniques are restricted to moderate dimensions n of the parameter space of the
dynamical system.
Parts of this chapter grew out of [99] and [25], for each of which the author has
given a substantial contribution.

11

2.2 The Algorithm

We consider a finite collection of discrete dynamical systems of the type

xj+1 = fℓ(xj), j = 0, 1, 2, . . . ,

where we assume for simplicity that each fℓ : Rn → Rn (ℓ = 1, . . . , s) is a dif-
feomorphism. The purpose is to develop a set oriented numerical method for the
approximation of those subsets of state space which are invariant for the entire
collection of dynamical systems. More precisely we want to approximate a subset
A ⊂ Rn such that

fℓ(A) = A for ℓ = 1, . . . , s.

With this technique we generalize a known subdivision algorithm for the computa-
tion of invariant sets of single dynamical systems. See [21] or [22], [23] for general-
izations of this approach. This new version of the subdivision algorithm will be e.g.
the basis for the detection of zeros of a given function using Newton’s method with
different step sizes as the family of dynamical systems. In fact, in this case the set
A consists of all the fixed points of the family of (damped) Newton iterations. See
Chapter 3 for more information.

Relative Global Attractors

Given a compact subset Q ⊂ Rn the subdivision algorithm in [21] allows to compute
the backward invariant set

AQ,f =
⋂

j≥0

f j(Q) (2.2.1)

of a dynamical system f : Q → Rn. We now modify this definition to the present
context in which we have to consider a finite set of different dynamical systems.

We begin by introducing some notations. Denote by

Ω = {1, 2, . . . , s}N0

the set of all sequences of the symbols {1, 2, . . . , s}. For ω = (ωi) ∈ Ω set ωj =
(ω0, ω1, . . . , ωj−1) and define for j ≥ 1

fωj = fωj−1
◦ · · · ◦ fω0

.

Definition 2.2.1 Let f1, . . . , fs : Rn → Rn be diffeomorphisms and let Q ⊂ Rn

be compact. Then we define the relative global attractor of f1, ..., fs with respect to
Q as

AQ,f1,...,fs
=
⋂

ω∈Ω

⋂

j≥1

fωj (Q) ∩Q. (2.2.2)

Observe that AQ,f1,...,fs
is contained in the intersection of all the standard relative

global attractors AQ,fi
, see (2.2.1). Moreover, it contains every set A which is

invariant for each fℓ, ℓ = 1, . . . , s.

12

Example 2.2.2 Let fℓ : Rn → Rn, ℓ = 1, 2, be defined as

f1(x) = 3x and f2(x) =
1

2
x,

and let Q ⊂ Rn be a compact convex subset containing the origin. Then the relative
global attractors are given by

AQ,f1
= Q and AQ,f2

= {0}.

It follows that in this case the relative global attractor is given by AQ,f1,f2
= 0.

The following basic facts on relative global attractors can immediately be ob-
tained from the definitions.

Lemma 2.2.3 Let AQ,f1,...,fs
be the relative global attractor for the dynamical systems

f1, . . . , fs with repsect to Q. Then

AQ,f1,...,fs
=
{
x ∈ Q : f−1

ωj (x) ∈ Q for all ω ∈ Ω and j ≥ 0
}
.

In particular, AQ,f1,...,fs
is backward invariant for every fℓ, that is,

f−1
ℓ (AQ,f1,...,fs

) ⊂ AQ,f1,...,fs
for all ℓ ∈ {1, ..., s}. (2.2.3)

Computation of Relative Global Attractors

We now present an algorithm for the numerical computation of the relative global
attractor AQ,f1,...,fs

where f1, . . . , fs are diffeomorphisms. Using a multi–level subdi-
vision scheme this method produces a sequence of sets B0,B1, B2,. . . where each Bk

consists of finitely many subsets of Q covering the relative global attractor AQ,f1,...,fs
.

In the following we will call the elements B of Bk boxes. By our construction, the
diameter

diam(Bk) = max
B∈Bk

diam(B)

converges to zero for k → ∞.
In order to guarantee convergence we have to assume that each dynamical system

is applied infinitely often in the subdivision procedure. To make this precise we
choose a sequence {uk}∞k=1 with uk ∈ {1, ..., s} which has the property

| {k : uk = ℓ} | = ∞ for each ℓ = 1, ..., s. (2.2.4)

We now describe the multi–level subdivision procedure in detail.

The Subdivision Algorithm

Let B0 be an initial collection of finitely many subsets of the compact set Q such
that ∪B∈B0

B = Q. Then Bk is inductively obtained from Bk−1 in two steps:

13

(i) Subdivision Construct from Bk−1 a new system B̂k of subsets such that

⋃

B∈B̂k

B =
⋃

B∈Bk−1

B

and
diam(B̂k) = θk diam(Bk−1),

where 0 < θmin ≤ θk ≤ θmax < 1.

(ii) Selection Define the new collection Bk by

Bk =
{

B ∈ B̂k : there exists B̂ ∈ B̂k such that f−1
uk

(B) ∩ B̂ 6= ∅
}

.

(Here uk is an element of the sequence defined above, see (2.2.4).)

Our aim is to show that this algorithm indeed converges to the relative global
attractor as k tends to infinity.

Let Qk be the union of subsets in Bk,

Qk =
⋃

B∈Bk

B.

In particular we have Q0 = Q. In analogy to the proof of the convergence result for
the classical subdivision procedure ([21]) we divide the proof into three parts. In a
first step we show that the relative global attractor is always covered by the sets Qk.

Lemma 2.2.4 Let AQ,f1,...,fs
be the relative global attractor of f1, ..., fs with respect

to Q. Then
AQ,f1,...,fs

⊂ Qk for all k ∈ N.

Proof: By definition, see (2.2.2), we have that AQ,f1,...,fs
⊂ Q0 = Q. Now suppose

that there is an x ∈ AQ,f1,...,fs
⊂ Qk−1 such that x 6∈ Qk. Then there is a box

B ∈ B̂k with x ∈ B, and B is removed from the collection in step k. In particular,
f−1

uk
(B) ∩Qk−1 = ∅ and therefore f−1

uk
(x) 6∈ Qk−1. But this contradicts the fact that

f−1
uk

(AQ,f1,...,fs
) ⊂ AQ,f1,...,fs

⊂ Qk−1, see Lemma 2.2.3.

In the next step we show that a subset A ⊂ Q is contained in the relative global
attractor AQ,f1,...,fs

if it is backward invariant for each fℓ, ℓ = 1, . . . , s.

Lemma 2.2.5 Let A ⊂ Q be a subset which is backward invariant for each f1, ..., fs,
that is,

f−1
ℓ (A) ⊂ A for ℓ = 1, ..., s.

Then A is contained in the relative global attractor of f1, . . . , fs, that is,

A ⊂ AQ,f1,...,fs
.

14

Proof: By assumption we have

A ⊂ fℓ(A) for all ℓ ∈ {1, . . . , s},

and this implies that

A ⊂ fωj (A) for all ω ∈ Ω and j ≥ 0.

Moreover A ⊂ Q and therefore

A ⊂
⋂

ω∈Ω

⋂

j≥1

fωj (A) ∩Q ⊂
⋂

ω∈Ω

⋂

j≥1

fωj (Q) ∩Q = AQ,f1,...,fs
.

Now the Qk’s form a nested sequence of compact subsets of Q and therefore the
limit

Q∞ =
∞⋂

k=0

Qk

does exist. We now show that Q∞ is backward invariant for each dynamical system
fℓ (ℓ = 1, . . . , s).

Lemma 2.2.6 The set Q∞ is contained in Q and backward invariant for each fℓ

(ℓ = 1, . . . , s), that is,

f−1
ℓ (Q∞) ⊂ Q∞ for ℓ = 1, . . . , s.

Proof: Obviously Q∞ ⊂ Q. For contradiction suppose that there is an ℓ ∈ {1, ..., s}
and a y ∈ Q∞ such that f−1

ℓ (y) 6∈ Q∞. Since Q∞ is compact it follows that there is
a δ > 0 with

d(f−1
ℓ (y), Q∞) > δ.

Here d denotes the usual distance between a point and a set. Thus, there is an
N ∈ N such that

d(f−1
ℓ (y), Qk) > δ/2 for all k ≥ N .

Now y ∈ Q∞ and therefore there exist boxes Bk(y) ∈ Bk with y ∈ Bk(y) for all
k ∈ N0. Since limk→∞ diam(Bk) = 0 and since fℓ is continuous there exists an
m > N such that um = ℓ and f−1

ℓ (Bm(y)) ∩Qm = ∅. (Here we have used the prop-
erty (2.2.4) of the sequence {uk}.) By the selection step of the subdivision algorithm
this is a contradiction to the fact that y ∈ Q∞ ⊂ Qm+1.

Combining the lemmas we now show that the subdivision algorithm indeed con-
verges to the relative global attractor AQ,f1,...,fs

.

Proposition 2.2.7 Let AQ,f1,...,fs
be the relative global attractor of f1, ..., fs with

respect to Q ⊂ Rn. Then the subdivision algorithm converges to AQ,f1,...,fs
, that is,

AQ,f1,...,fs
= Q∞.

15

Proof: Lemma 2.2.4 states that AQ,f1,...,fs
⊂ Qk for all k ∈ N which implies that

AQ,f1,...,fs
⊂ Q∞. By Lemma 2.2.6 Q∞ is a backward invariant subset of Q for each

f1, ..., fs. Therefore Lemma 2.2.5 implies that Q∞ ⊂ AQ,f1,...,fs
and we obtain

AQ,f1,...,fs
⊂ Q∞ ⊂ AQ,f1,...,fs

as desired.

Observe that the limit Q∞ does not depend on the particular sequence ω = {uk}
which is chosen in the subdivision algorithm. The only criterion which has to be
satisfied is (2.2.4). Moreover, the following example shows that in general

AQ,f1,...,fs
6=
⋂

j≥1

fωj (Q) ∩Q,

where ωj = (u1, u2, . . . , uj).

Example 2.2.8 Let Q = [−1, 1] and consider the dynamical systems fi : R → R
(i = 1, 2) with f1(x) = 0.5x and f2(x) = 2x. Then we choose the sequence

{uk}∞k=1 = {2, 2, 1, 2, 2, 1, 2, 2, 1, . . .}.

Obviously this sequence satisfies (2.2.4), but it is easy to see that

⋂

j≥1

fωj (Q) ∩Q = [−1, 1] 6= {0} = AQ,f1,f2
.

Remarks 2.2.9 (a) Since Q∞ is the limit of the Qk’s, we can reformulate Propo-
sition 2.2.7 as

lim
k→∞

h(AQ,f1,...,fs
, Qk) = 0,

where h(B,C) denotes the standard Hausdorff distance between two compact
sets B,C ⊂ Rn.

(b) It is obvious that the speed of convergence to the relative global attractor will
in general crucially depend on the choice of the sequence {uk}. In fact, for an
efficient numerical realization one would expect that the uk’s should not be
constant for a large number of successive indices k.

(c) Proposition 2.2.7 can be extended to the case where one has countably many
different dynamical systems fℓ with ℓ ∈ N. However the sequence {uk} still
has to be chosen in such a way that (2.2.4) holds for each ℓ ∈ N.

2.3 Realization

In this section we give a brief desciption of a possible implementation of the subdi-
vision procedure. For details we refer to [21] and [60].

16

Realization of the Subdivision Step For the realization of the subdivision
algorithm we use n-dimensional boxes. Every box B ⊂ Rn can be represented by a
center c ∈ Rn and a radius r ∈ Rn

+ such that

B = B(c, r) = {x ∈ Rn : |xi − ci| ≤ ri ∀i = 1, . . . , n}.

We start the subdivision algorithm typically with a single box B0 = {B}. In
the k-th subdivision step we subdivide each box B(c, r) ∈ Bk of the current box
collection in the simplest case by one bisection with respect to the j-th coordinate,
where j is varied cyclically, that is, j = ((k− 1) mod n) + 1. This division leads to
two boxes R−(c−, r̂) and R+(c+, r̂), where

r̂i =

{
ri for i 6= j
ri/2 for i = j

, c±i =

{
ci for i 6= j

ci ± ri/2 for i = j
.

Of course it is also possible to make more bisections per iteration step. See next
section for a detailed discussion.

The collections Bk can easily be stored in a binary tree. In Figure 2.1 a rep-
resentation of three subdivision steps in three dimensions (n = 3) together with
the corresponding sets Qk, k = 0, 1, 2, 3, is shown. Note that each Bk is completely
determined by the tree structure and the initial box B(c, r). Using this scheme, the
memory requirements grow only linearly in the dimension n of the problem.

Root

0 1

00 01

000 001 010

10

100 101

Figure 2.1: The data structure used for the subdivision techniques.

Realization of the Selection Step For the selection step, we have to decide
whether or not the preimage of a given set Bi ∈ Bk has a nonzero intersection with
another set Bj ∈ Bk, i.e. whether or not

f−1(Bi) ∩ Bj = ∅ (2.3.5)

holds. Obviously, this can hardly be done exactly except for trivial mappings f .
For more complex systems we have to use some kind of discretization. Motivated
by similar approaches in the context of cell–mapping ([58]), we choose a finite set of
test points in each box Bj ∈ Bk and replace condition (2.3.5) by

f(x) 6∈ Bi for all test points x ∈ Bj . (2.3.6)

17

Within each box, the test points are typically chosen by one of the following strate-
gies:

(i) The test points lie on an a priori specified fixed grid within each single box.
This typically works quite well in low dimensional problems.

(ii) The test points are chosen at random. This strategy is chosen in higher di-
mensional problems.

(iii) More recently an adaptive choice for the set of test points has been suggested in
[60] where Lipschitz estimates on the underlying dynamical system are taken
into account. This method works particularly well for dynamical systems
which do not arise via a discretization of an underlying ordinary differential
equation.

2.4 Estimates of the computational effort

Here we give some estimates of the computational effort of the subdivision algorithm
for typical examples from real applications. The effort of the subdivision algorithm
is determined by the total number of function evaluations, which in turn depends
on the number of test points per box on the one hand and on the total number of
boxes that are considered in the course of the computation on the other hand. For
the latter, the following estimation is crucial:
Suppose we are given a function f : Rn → Rn and a set M – i.e. the object of
interest given as the relative global attractor AQ,f of f and a compact set Q ⊂ Rn

– of dimension1 1 ≤ m ≤ n 2. Further let a box B ∈ Bl, l ∈ N, be given which
contains a part of M and suppose the subdivision process is realized via bisection
according to one coordinate in each iteration step. For sufficiently small B we can
expect that appoximately 2m of the 2n subboxes of B intersect M (see Figure 2.2).

For sufficiently large l we can thus expect the number of boxes after n subdivision
steps to be approximately

|Bl+n| ≈ 2m|Bl|.
Hence for one iteration step we can assume an expansion factor χ defined as

χ ≈ n
√

2m,

which fits quite well to the observation made by the author in numerous computa-
tions. Using these assumptions the expected number of boxes which intersect M in
each iteration step is given by

|B0| = 1

|Bl| = |Bl(n,m)| ≈ n
√

2m|Bl−1| ≈ (
n
√

2m)l, l = 2, 3, . . . ,
(2.4.7)

1The definition of the dimension of a set can be found e.g. in [33]. For simplicity the reader
may think of a manifold.

2For m = 0, i.e. when M is a set of discrete points, the following estimates are too simple and
do not coincide with observations made in practice.

18

B

M

Figure 2.2: Example: two subboxes of B cover some part of M after two iteration
steps.

Table 2.1: Approximate (round up) numbers of boxes e(n,m, d) which have to be
evaluated for several dimensions of the dynamical system f (n) and of the set M
(m) for several iteration steps. Here one bisection per iteration step was used (i.e.
b = 1).

depth
d

f1

n = 2, m = 1
f2

n = 10, m = 1
f3

n = 5, m = 2
f4

n = 10, m = 2

1 · n 5 28 19 41
2 · n 15 84 94 202
5 · n 150 864 6404 1.3 · 104

10 · n 4940 2.8 · 104 6.5 · 106 1.4 · 107

in case the computation starts with one single box. Hence the expected number
e(n,m, d) of boxes which have to be evaluated up to iteration step d – i.e. the total
number of boxes which intersect M in each iteration step – is given by

e(n,m, d) =

d∑

i=1

2|Bi−1|

Table 2.1 shows values of e(n,m, d) for some typical (moderate) dimensions of
the state space n of the dynamical system f and of the dimension m of the set
M. An example for a function f1 with n = 2 and m = 1 is a multi–objective
optimization problem of the form

min
x∈R2

f1(x) = (g1(x), g2(x)),

where g1, g2 : R2 → R. See Chapter 6 for more information.

Furthermore, if the time for a function call can be approximated, then e(n,m, d)
can be used to estimate the total running time of the subdivision algorithm. For ex-
ample, let the time for a function call be given by one second (0.001 seconds). Then

19

the computation of 20 iterations of the subdivision algorithm using a dynamical sys-
tem f1 : R2 → R2 with m = 1 takes approximately 22 hours (80 seconds), if every
box is evaluated by a 4 × 4-grid of test points. The computation of 25 subdivision
steps using a dynamical system f3 : R5 → R5 with m = 2 will last approximately
17 hours (60 seconds), if for every box 10 randomly chosen points are taken. If 50
iteration steps have to be computed for the same model, the expected running time
is 752 days (18 hours).

Since the number of bisections b which are done in each iteration step affects
(slightly) the total number of boxes which have to be evaluated, we will now discuss
the proper value of b in order to reduce the total running time.
To do this, we have to make some generalizations on the estimation e(n,m, d). Note
that if d1 iteration steps are computed using b1 bisections, the same box size is
reached within d2 = d1

b1
b2

iteration steps using b2 bisections per iteration – if the
same initial box collection is used. The expected approximate number eb(n,m, d)
of boxes which have to be evaluated up to iteration step d using b bisections is thus
given by

eb(n,m, d) =

d∑

i=1

2b|Bi−1| = 2bχ(i−1)b.

In the following we want to minimize eb(n,m, d). Suppose we are given a box
collection Bl and a set S of possible number of bisections – say S = {1, . . . , n}.
The minimal number of boxes which have approximately to be evaluated up to the
succeeding d bisection steps (let e.g. d be the least common multiple of all elements
of S) is given by

min
b∈S

db∑

i=1

2b|Bl+(i−1)|, (2.4.8)

where db = d
b
. Since |Bl+(i−1)| ≈ χb(i−1)|Bl|, problem (2.4.8) can be approximated by

min
b∈S

2b|Bl|
db∑

i=1

χb(i−1). (2.4.9)

The computation of the minimum is simple since only few ”candidates” for b
have to be considered. See Table 2.2 for the optimal number of bisections for values
of χ in [1, 1.92].

Table 2.3 shows the expected number of boxes to be evaluated for dynamical
systems of the same dimension as in Table 2.1 (for all examples the ”optimal”
number of bisections is b = 2). It turnes out that the difference gets smaller with
smaller fraction m

n
– and hence with smaller expansion factor χ.

In practice the observed expansion factor

χi
o =

|Bi|
|Bi−1|

.

20

Table 2.2: Optimal number b of bisection steps for different values of the expansion
factor χ. Here it is assumed that the expansion is fixed for the next d steps.

Number of
bisections

Expansion Factor

χ = 1 b = 1
χ ∈ I2 ≈ [1, 1.61] b = 2
χ ∈ I3 ≈ [1.62, 1.83] b = 3
χ ∈ I4 ≈ [1.84, 1.92] b = 4

Table 2.3: Number of boxes e2(n,m, d), i.e. b = 2, which have approximately to be
evaluated for several dimensions of the dynamical system f (n) and of the set M
(m) for several iteration steps. Note that the difference to the values of e1(n,m, d)
is hardly noticable when the fraction m

n
is small.

depth
d

f1

n = 2, m = 1
f2

n = 10, m = 1
f3

n = 5, m = 2
f4

n = 10, m = 2

1 4 27 23 38
2 12 81 81 188
5 124 834 (not applicable) 1.2 · 104

10 4092 2.7 · 104 5.6 · 106 1.3 · 107

is typically higher than the ”ideal” one. This is in particular the case when the
dynamics of the system f inside the domain B0 is complicated or when the conver-
gence of f towards AQ,f is slow (note that a box B ∈ Bl ⊂ Rn has 3n − 1 neighbor
boxes). Hence χi

o should be used. In computations the use of the ”optimal” bisec-
tion number was observed to be advantageous in comparison to b = 1. Savings of
up to 25% of the total running time have been noticed.

Conclusion The estimates made above lead to the conclusion that the use of the
subdivsion techniques is fairly time consuming regarding the huge number of boxes
which have to be evaluated until the granularity of the box collection is small enough.
This seems to be the price one has to pay for the global nature of the method. In
spite of this fact the set oriented approach permits the computation of ”real world”
optimization problems (for this we refer e.g. to the following sections). Nevertheless,
these techniques should in general be viewed as a tool to obtain an ”overview” of
the global dynamics of the underlying system. A box collection computed by the
subdivision algorithm can serve as a basis for other techniques as pointwise iteration
methods or (set oriented) continuation. One probably convincing example is the
problem of global zero finding within a compact set Q, which is described in detail

21

in Chapters 3 and 4: starting with B0 ≈ Q one can compute a box collection Bl

which invariably covers the set of zeros within Q. When the boxes are small enough
– or if it is clear that a box contains exactly one root – a classical iteration scheme
like Newton’s method can be used to locate this point. In this case the subdivision
procedure gives the proper initial conditions for the solver. Another example is
the class of recovering algorithms described in Chapter 6, which is developed to
compute the connected component of the set of substationary points which contains
a particular Pareto point (which was located e.g. via the use of DS–Subdivision).

22

Chapter 3

Location of Zeros A: g : Rn → Rn
3.1 Introduction

In many applications in natural science or engineering the problem arises to detect
all the zeros of a given smooth function g : Rn → Rn within a certain compact
region Q ⊂ Rn. One way to attack this problem is to choose randomly a large
number of initial points inside Q and to apply a classical iteration scheme – e.g. a
damped Newton method – to these points for a certain number of times. Using this
approach there is a fair amount of uncertainty as to whether or not one has found
all the zeros of g within Q. In principle this problem can be avoided by applying
zero finding procedures which are based on interval analysis, see e.g. [1], [48] or [63].
However, due to the nature of these techniques there is a trade–off between rigor
and computing time so that these methods are typically just applicable in the case
where the dimension n is not too large.

Another way for locating all the zeros of a given function is given by homotopy
methods, see e.g. [11], [2]. Although these methods are in general non–rigorous they
can in certain cases be used to find the entire zero set, see e.g. [75], [113] in the
situation where the underlying function is polynomial. Finally there are also global
numerical techniques which are based on the adaptive refinement of Q into smaller
subsets and by which all the zeros of g are approximated by outer coverings. See e.g.
[115, 116, 26] or Chapter 4 in the case where g : C → C is a holomorphic function
or [57] in the context of problems in global optimization.

In this chapter an approach is presented which in principle fits into the last cate-
gory, that is, we propose an adaptive multi–level scheme for the outer approximation
of the set of zeros of g inside a specified compact set Q. The approach was partly
developed by the author and can also be found in [25]. An early version of these
techniques are presented in [99]. The underlying idea is to view iteration schemes
such as Newton’s method as dynamical systems and then to apply the subdivision
technique which is presented in Chapter 2. Observe that the zeros of g are fixed
points for the iteration schemes and therefore represent particular low dimensional
invariant sets.

In practice we like to work with iteration schemes with variable step size such as
the damped Newton method Nh(x), where h ∈ R+ is the damping factor, since this

23

makes the computations both more reliable and more efficient. Note that this also
fits to the abstract framework of the subdivision algorithm which was proposed in the
preceeding chapter: for every (fixed) damping factor hi the roots of a given function
g within Q are contained in the relative global attractor AQ,fi

of the dynamical
system fi(x) := Nhi

(x). Hence given s different step sizes, the aim is to compute
the relative global attractor AQ,f1,...,fs

of all dynamical systems f1, . . . , fs.
The theoretical results in Chapter 2 are not restricted to the situation where the

underlying dynamical systems are produced by iteration schemes, and in Section 3.2
we show how these general results apply in the particular context of zero finding.
Moreover we discuss the effect of choosing different step sizes on the behavior of the
subdivision algorithm by a couple of motivating examples. This experience leads to
the development of two algorithms based on different a priori step size strategies and
of an adaptive algorithm based on the Armijo step size (see Section 3.2 for both).
In principle these algorithms allow us to determine arbitrarily close coverings of the
set of zeros of the function g. However, in practice we would switch to a classical
iteration scheme as soon as a particular level of refinement has been reached. Finally
we compare and discuss the numerical efficiency of these different approaches, and
we also compare our method with a global zero finding procedure based on a routine
taken from the NAG1 library (Section 3.3).

3.2 The Algorithms

Based on the theoretical results that we have developed so far we now consider
the problem of finding all the zeros of a given function g : Rn → Rn inside a
specified compact subset Q ⊂ Rn. We motivate our techniques with the following
two examples.

Examples 3.2.1 (a) First we consider the function g : R2 → R2

g(x1, x2) =

(
4x1(x

2
1 + x2 − 11) + 2(x1 + x2

2 − 7)
2(x2

1 + x2 − 11) + 4x2(x1 + x2
2 − 7)

)

which is the gradient of an objective function proposed in [53]. We would like
to find all the zeros of g within the compact set Q = [−5, 5] × [−5, 5].

In this example we set s = 1 and use the classical Newton function Ng as
the only underlying dynamical system. The result of the computations is
quite promising, see Figure 3.1. All the nine zeros within the given domain
Q can be located after only a few subdivision steps (Figure 3.1(c)). In the
computations we have chosen five test points in each box B ∈ Bk according to
strategy (ii) in Section 2.3 for an evaluation of Ng(B).

(b) As a second example we consider the following function g : R2 → R2

g(x1, x2) =

(
x3

1 − 3x1x
2
2 − x1 + 1√

2

−x3
2 + 3x2

1x2 − x2

)

.

1http://www.nag.com

24

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) k = 5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) k = 8

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) k = 11

Figure 3.1: Application of the subdivision algorithm using Newton’s method as the
only dynamical system. The box collections B5,B8 and B11 are shown.

The aim is to find all the zeros inside Q = [−5, 5] × [−5, 5]. Again we set
s = 1 and use just the classical Newton method in the subdivision process. In
the computations we have used nine test points per box lying on a 3 × 3 grid
inside the box (i.e. strategy (i) in Section 2.3). The result of this computation
after 20 subdivision steps is shown in Figure 3.2. It can be observed that

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Box covering

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

iteration step

nu
m

be
r

of
 b

ox
es

(b) Numbers of boxes

Figure 3.2: (a) The box collection B20 consisting of 40648 boxes; (b) the number of
boxes increases permanently with each subdivision step up to depth 20. Note that
the box collection is not perfectly symmetric with respect to the x-axis. This is due
to the occurrence of round off errors in the numerical computation of Ng.

the number of boxes is rapidly growing, and that no close covering of the
set of zeros Z = {(−1.251, 0), (0.625, 0.417), (0.625,−0.417)} is obtained. The
reason is that we do not just obtain a covering of Z alone but of all the invariant
sets of Newton’s method. For instance, in this case it can be shown that the
Newton iteration has an asymptotically stable periodic orbit {(0, 0), (1√

2
, 0)}.

Thus, we have to develop step size strategies which allow us to eliminate the

25

computation of invariant sets of the iteration schemes besides their common
fixed points.

Denote by
NQ,g = {x ∈ Q : g(x) = 0}

the set of all the zeros of g inside Q. If we are using the classical Newton method
alone as the dynamical system for an approximation of NQ,g then – as indicated by
Example 3.2.1(b) – we may cover much more than just NQ,g by the box collections
obtained in the subdivision procedure. In order to avoid this problem we are going
to use the damped Newton method

xj+1 = xj − hDg(xj)
−1g(xj), j = 0, 1, . . . , (3.2.1)

where h > 0 denotes the step length. More precisely, denoting the right hand side
in (3.2.1) by

Ngh(x) = x− hDg(x)−1g(x),

we are going to work with finitely many different step lengths hℓ, ℓ = 1, . . . , s, and
define s dynamical systems fℓ : Rn → Rn (ℓ = 1, . . . , s) by

fℓ(x) = Nghℓ
(x).

By this construction we have

NQ,g ⊂ AQ,f1,...,fs
, (3.2.2)

where AQ,f1,...,fs
denotes the relative global attractor of f1, ..., fs with respect to Q,

see (2.2.2), and therefore we can compute an outer covering of the set of zeros of g
by an application of the subdivision algorithm to f1, . . . , fs.

Remark 3.2.2 Observe that formally the convergence result in Proposition 2.2.7
does not apply in this context since the mappings f1, . . . , fs will in general not
be diffeomorphisms on the set Q. However, in practice we expect to rapidly lose
neighborhoods of the singular points of f1, . . . , fs within the subdivision process.
Moreover Proposition 2.2.7 certainly applies to the damped Newton method in the
case when we choose Q to be a compact neighborhood of the set NQ,g of regular
zeros of g within Q.

The following result shows that for different step sizes h1 and h2 the dynamical
systems f1 and f2 cannot have common periodic points of period greater or equal
to two.

Proposition 3.2.3 Let f1 and f2 be dynamical systems belonging to the step sizes
h1 and h2. For x̄ ∈ Rn suppose that g(x̄) 6= 0 and that the Jacobian Dg(x̄) is
invertible. Then

f1(x̄) = f2(x̄) =⇒ h1 = h2.

26

Proof: We compute

f1(x̄) = f2(x̄)

⇐⇒ x̄− h1Dg(x̄)
−1g(x̄)

︸ ︷︷ ︸

=:y 6=0

= x̄− h2Dg(x̄)
−1g(x̄)

⇐⇒ (h1 − h2)y = 0

=⇒ h1 = h2.

Remark 3.2.4 Suppose that Q is chosen in such a way that f1, . . . , fs are diffeo-
morphisms on a neighborhood of Q. Then we expect that generically equality will
hold in (3.2.2) if s ≥ 2 and the different step sizes hℓ (ℓ = 1, . . . , s) are chosen
randomly in (0, 1]. In fact, Proposition 3.2.3 indicates that common invariant sets
of f1, . . . , fs do not contain periodic points which on the other hand would at least
be generic for C1-diffeomorphisms. (This is Pugh’s celebrated Closing Lemma, see
e.g. [105]). Also observe that the smaller we choose the step size h the closer is the
map Nfh to the identity.

The Algorithms A crucial aspect for an application of the subdivision algorithm
lies in the selection procedure for the different step sizes hℓ. If the step size is not
varied at all then we expect to obtain in the limit not just the zeros of g but also
additional invariant sets of the (damped) Newton’s method (see [29, 85] and also
Example 3.2.1(b)). On the other hand we expect to lose this additional dynamical
behavior when we use quite small step sizes (see [54, 64] and Remark 3.2.4). But in
this case the number of boxes in the covering of AQ,f1,...,fs

will grow significantly and
therefore one has to choose a step length control mechanism which balances these
two different goals.

We now describe our first basic algorithm. In the following g : Rn → Rn is the
function for which we would like to find all the zeros inside the compact set Q ⊂ Rn.

Algorithm A In this algorithm we prescribe a priori two step lengths h1, h2 ∈
(0, 1] together with four integers q1, q2, n1, n2 ∈ N. Then we work with two dynamical
systems

f1 : Rn → Rn, f1(x) = (Ngh1
)q1(x),

f2 : Rn → Rn, f2(x) = (Ngh2
)q2(x).

Using the integers n1 and n2 we define the sequence

{uk}∞k=1 = {1, . . . , 1
︸ ︷︷ ︸

n1

, 2, . . . , 2
︸ ︷︷ ︸

n2

, 1, . . . , 1
︸ ︷︷ ︸

n1

, 2, . . .}

By this definition it is clear that the condition (2.2.4) is satisfied and therefore, in
principle, the convergence of the subdivision algorithm to AQ,f1,f2

is guaranteed.

27

In the realization of Algorithm A we typically choose (h1, q1) = (1, 1) and
(h2, q2) = (0.1, 10). That is, we choose the classical Newton method and a strongly
damped version.

Algorithm A has the disadvantage that the numbers n1 and n2 have to be de-
fined in advance and that no adjustment is made in the course of the subdivision
procedure. However, in the case that the number of boxes is growing too fast then
it would be desirable to adjust the step size in Newton’s method according to this
observation. This leads to

Algorithm B Set (h1, q1) = (1, 1) and specify an integer N ∈ N. Moreover
choose a (small) step size h2 ∈ (0, 1) and q2 ∈ N. Then proceed in the kth step of
the algorithm according to the diagram in Figure 3.3.

����
HHHH

HHHH
����

yes no
lk−1 = 1

����
HHHH

HHHH
����

yes no
bk−1 < N

����
HHHH

HHHH
����

yes no
bk−2 < bk−1

continue with f1 continue with f2

l
l

l
l

l
l

l
l

l

,
,

,
,

,
,

,
,

,

Figure 3.3: Schematic description of Algorithm B. bk denotes the number of boxes
in the box collection Bk and lk the chosen step length.

During the subdivision procedure the number of boxes is monitored and h2 is
chosen as a damping parameter when the number of boxes bk−1 is increasing be-
yond the prescribed number N . Otherwise one proceeds with the classical Newton
method, that is, with step length h1 = 1. The reason for this strategy is that the
occurence of a large number of boxes indicates that the subdivision procedure has
found more than just the fixed points of Newton’s method. A significant change in
the damping parameter should lead to an elimination of these additional boxes. On
the other hand, if the number of boxes is increasing again when the step length h2 is
repeatedly chosen then this is an indication for the fact that the contraction around
the fixed points is not fast enough. In this case we switch back to the classical
Newton method.

28

Example 3.2.5 We now apply Algorithm B to Example 3.2.1(b) by choosing N =
500, (h1, q1) = (1, 1) and (h2, q2) = (0.1, 10). The results are shown in Figure 3.4.
After 15 steps 502 boxes are computed by the subdivision algorithm. The algorithm
then switches to the function f2 = (Ng0.1)

10. In step 19 the number of boxes is again
increasing so that the algorithm switches back to the classical Newton method. A
close covering of the roots can be obtained after 23 subdivision steps.

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

(a) k = 15

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

(b) k = 18

0 5 10 15 20 25 30
0

100

200

300

400

500

600

iteration step

nu
m

be
r

of
 b

ox
es

(c) Number of boxes

Figure 3.4: Application of Algorithm B: the box collections B15, B18 and the number
of boxes during the subdivision process are shown.

An Adaptive Algorithm We now present a refined version of Algorithm B. In
this algorithm the step length h is chosen to be the Armijo step length (see [27]) and
therefore the step size h becomes a function of x, i.e. h = h(x). Moreover we specify
in each subdivision step a power q = q(x) ≥ 1 and apply the dynamical system
(Ngh(x))

q(x) at the point x. Observe that this algorithm still fits into the underlying
theoretical framework since in practice we only perform finitely many subdivision
steps and since we are evaluating (Ngh)

q only at finitely many points.
We now state the underlying theoretical result which will allow us to find an

appropriate choice for the power q = q(x). Its proof can be found in [21].

Proposition 3.2.6 For q ≥ 1 let AQ,fq be the global attractor of f q relative to the
compact set Q ⊂ Rn (cf. (2.2.1)). Moreover suppose that AQ,fq is an attracting com-
pact hyperbolic set. Let ρ ≥ 1 be a constant such that for each compact neighborhood
Q̃ of AQ,fq we have

h(AQ,fq , Q̃) ≤ δ =⇒ Q̃ ⊂ Uρδ(AQ,fq).

Then the coverings Qk obtained by the subdivision algorithm for f q satisfy

h(AQ,fq , Qk) ≤ diam(Bk)(1 + α + α2 + · · · + αk). (3.2.3)

Here α = Cρλq/θmin, where C is a constant, λ ∈ (0, 1) is the number quantifying
the contractivity of the hyperbolic set AQ,fq and θmin is defined in the subdivision
step of the subdivision algorithm.

29

Remark 3.2.7 In Proposition 3.2.6 h(E,F) denotes the Hausdorff distance be-
tween two compact sets E,F . Moreover Uρδ(AQ,fq) is defined as

Uρδ(AQ,fq) = {y ∈ Rn : there is an x ∈ AQ,fq such that y ∈W s(x)

and dist(x, y) < ρδ}.

(W s(x) is the stable manifold of the point x.)

Let us consider Proposition 3.2.6 in the specific context where AQ,fq is a fixed
point of the damped Newton method Ngh. In that case we have close to the fixed
point

C ≈ 1, ρ ≈ 1 and λ = 1 − h.

For a verification of this fact recall that fixed points of Ngh are asymptotically stable
with contraction rate 1 − h.

Taking the estimate (3.2.3) into account we would like to choose q such that
α < ǫ for a specified (small) ǫ > 0 which implies fast convergence of the algorithm.
This leads to the following choice for the power q:

ǫ > α =
λq

θmin

⇐⇒ λq < ǫθmin ⇐⇒ (1 − h)q < ǫθmin ⇐⇒ q >
ln(ǫθmin)

ln(1 − h)
.

This computation suggests that, as expected, one should choose a large q if the step
length is small. Since in practice we do not want to exclude the case where h = 1,
that is the case where we are working with the classical Newton method, we choose
the power q as follows

q =

⌈
ln(ǫθmin)

ln(max(1 − h), δ)

⌉

, (3.2.4)

where δ ∈ (0, 1) is a prescribed constant.
Thus, we suggest the following adaptive subdivision algorithm:

in each subdivision step choose the Armijo step length h = h(x) at the
test point x. Then choose the power q = q(x) according to (3.2.4) and
apply (Ngh(x))

q(x) at the point x.

Example 3.2.8 We reconsider Example 3.2.1(b) and show the result obtained by
the adaptive algorithm in Figure 3.5. The maximum number of boxes calculated by
this strategy is 123.

Finally we compare the three algorithms that we have described so far in Fig-
ure 3.6.

3.3 Numerical Results

We now investigate the computational efficiency of the adaptive algorithm by a
comparison with another global root finding method based on the NAG routine
c05pbc(). Our approach is expected to be particularly advantageous in the situation
where the zeros of the given function g are not uniformly distributed inside the

30

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a)

0 5 10 15 20 25 300

20

40

60

80

100

120

140

iteration step

nu
m

be
r

of
 b

ox
es

(b)

Figure 3.5: (a) The box collection B20 containing 114 boxes obtained by the adaptive
algorithm. (b) Number of boxes in the box collections using the adaptive strategy.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

iteration step

nu
m

be
r

of
 b

ox
es

Figure 3.6: A comparison of the proposed algorithms: the respective number of
boxes in the subdivision procedure is shown (classical Newton (solid), Algorithm B
(dash-dotted) and the adaptive algorithm (dotted)).

compact set Q but rather occur in clusters. In fact, by the construction of the
subdivision process these clusters should always be covered by the box collections.
On the other hand it seems very unlikely to find all the zeros inside the clusters by
an application of Newton’s method to a certain number of randomly chosen initial
conditions since the basins of attraction of the zeros are very different in size. We
illustrate this fact by the Examples (a) and (b). Examples (c) and (d) are taken
from the literature and indicate the efficiency of our apporach even in the case where
the zeros do not occur in clusters.

In all the computations we have used the following set of parameter values for
the adaptive algorithm:

ǫ = 0.2 and δ = 0.1,

see (3.2.4). Moreover the test points have been chosen randomly (i.e. strategy (ii)
in Section 2.3).

31

(a) Consider the following test function:

g1 : R2 → R2

g1(x, y) =

(

ψ(y)
40∏

i=1

(x− xi), φ(x)
40∏

i=1

(y − yi)

)

,

where

xi = yi =

{

0.1 + −10+i
1000

: for i = 1, ..., 20

0.9 + −30+i
1000

: for i = 21, ..., 40

and
ψ(y) = sin(4y), φ(x) = sin(4x).

By construction g1 possesses 1649 roots in the domain Q = [−3, 3] × [−3, 3]
and most of them are concentrated in four clusters, Figure 3.7(c). In addition
to an application of our adaptive algorithm we have tried to find all the roots
by using the NAG–solver c05pbc() with 10.000 randomly distributed initial
points. By this strategy only 300 roots were found (including some spurious
zeros, see Figure 3.7(a)). In the right hand side of this figure the roots located
by this method in one of the four clusters are shown. Observe that, as expected,
almost all the zeros on the “boundary” of the cluster have been found but very
few inside.

In Figure 3.7(b) we show the box collection obtained after 24 subdivision steps
of the adaptive algorithm. All the roots are covered by the boxes. Moreover,
by switching to the classical Newton method with a few initial conditions per
box all the roots could be computed (see Figure 3.7(c)).

(b) In order to illustrate that our method also works in higher dimensions we
now embed the previous example into an n-dimensional context: consider the
following function

g2 : Rn → Rn,

g2(x1, ..., xn) = (g1(x1, x2), (x3 − 3)2, ..., (xn − n)2),

where g1 denotes the function from the previous example. Using this function
we have performed numerical tests up to dimension n = 10. Some of the
results are presented in Table 3.1 and illustrate the efficiency of our approach.

(c) In this example we consider a polynomial function taken from [109]:

g3 : Rn → Rn,

g3(x) = (f1(x), .., fn(x))

where fi(x) = −
n∑

i=1

xi + λxi + x2
i − x3

i .

32

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0.85 0.9 0.95
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

(a) Zeros found by the NAG–solver c05pbc()

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0.85 0.9 0.95
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

(b) The box collection B24 computed by the adaptive subdivision algorithm

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0.85 0.9 0.95
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

(c) All the roots of g inside Q = [−3, 3]× [−3, 3]

Figure 3.7: Numerical results for Example (a).

33

Table 3.1: Performance of the different zero finding procedures. In the table #
IP denotes the number of test points per box (subdivision procedure) or the total
number of initial points (NAG solver). # FC denotes the number of function calls
and # DC the number of derivative calls. The computations have been done on a
SUN Ultra 10 Workstation.

Dim Method # IP # FC # DC CPU–time # zeros found
5 Subdivision 5 0.4 · 107 2.6 · 106 5 min 1624

12 4.0 · 107 27 · 106 47 min 1649
NAG c05pbc() 50.000 0.7 · 107 0.8 · 106 5 min 570

300.000 4.0 · 107 4.6 · 106 33 min 991
400.000 5.4 · 107 6.2 · 106 44 min 1062

10 Subdivision 4 0.6 · 107 4.3 · 106 10 min 1609
10 9.6 · 107 65 · 106 150 min 1649

NAG c05pbc() 50.000 0.7 · 107 0.8 · 106 10 min 578
600.000 8.1 · 107 9.2 · 106 124 min 1176
800.000 11 · 107 12 · 106 164 min 1256

Here λ ∈ [−50, 1000] is a bifurcation parameter and the equations can be
viewed as a model describing speciation phenomena occuring in the evolution
process. For n = 8 and λ = 100 the function has 6561 roots in Q = [−40, 40]n.
In Table 3.2 we have summarized our results in comparison with the NAG–
solver. Since g3 is polynomial, all the roots could in principle also be found by
a global homotopy algorithm as implemented in the package PHC2.

Finally we remark that we have also tried to find all the zeros for this example
using the software GLOBSOL3 taking the standard parameter values. How-
ever, this computation has not been successful since the maximal number of
iteration steps has been exceeded in the course of the computation.

(d) Our final example is a test example taken from [74]:

g4 : Rn → Rn,

g4(x) = (f1(x), .., fn(x)),

with fi(x) = n−
n∑

j=1

cos(xj) + i(1 − cos(xi)) − sin(xi).

For n = 10 there exist 10 roots inside the box Q = [−0.3, 0.8]n. Since in
this case the basin of attraction for Newton’s method is quite large for every
root we do not have a computational advantage in comparison with the NAG–
solver. However, it can be seen that also in this case the computational effort
is comparable, see Table 3.3.

2http://www.math.uic.edu/˜jan/download.html
3http://interval.usl.edu/GLOBSOL

34

−10 −5 0 5 10

−10

−5

0

5

10

x
1

x 2

Figure 3.8: All the roots of g3. A projection onto the first two coordinates is shown.

Table 3.2: Comparison for the test function g3. The notation is the same as in
Table 3.1.

Dim Method # IP # FC # DC # zeros found
8 Subdivision 5 2.2 · 107 1.6 · 107 6463

12 5.9 · 107 4.2 · 107 6561
NAG c05pbc() 100.000 2.8 · 106 1.5 · 105 5716

200.000 5.5 · 106 3.6 · 105 6128
400.000 1.1 · 107 7.3 · 105 6392

1.000.000 2.7 · 107 1.8 · 106 6522
2.000.000 5.6 · 107 3.6 · 106 6556
4.000.000 8.3 · 107 5.5 · 106 6560

Table 3.3: Comparison for the test function g4. The notation is the same as in
Table 3.1.

Dim Method # IP # FC # DC # zeros found
10 Subdivision 3 9200 6800 8

5 26747 19741 10
8 137900 102700 10

12 1.0 · 107 0.77 · 107 10
NAG c05pbc() 250 13300 2300 6

500 26400 4800 9
750 39800 7400 10

1000 52800 9800 10

35

3.4 An ”Application”: Scalar Optimization

In this section we propose a global approach for the numerical treatment of scalar
optimization problems which uses the preceeding results for the localization of zeros
as well as classical branching and bounding techniques. The presentation of this
approach is placed in this chapter because it is the author’s opinion that the results
are worth more than just a remark but do (by far) not justify a separate chapter.
The algorithm which is stated below is designed for general unconstrained optimiza-
tion problems and does not require particular properties of the underlying models.
However, on account of this lack of ”specialization” and due to the general re-
strictions of the subdivision techniques (see Section 2.4), the approach may have
problems for higher dimensional models. For instance, it may be the case that the
function has many local minima which cannot be discarded quickly by the selection
process and hence the box collections will contain a large number of ”false” boxes
for a long time, resulting in slow convergence.
An alternative approach using subdivision techniques which allows the computation
of certain ”real world” optimization problems is presented in [104, 10].

To be more precise, we address in this section the following

Problem Let a compact set Q ⊂ Rn and a continuous function f : A ⊂ Rn → R,
where Q ⊂ A, be given. The task is to find the set MQ of global minimizers within
Q, i.e.

MQ := {x∗ ∈ Rn | f(x∗) ≤ f(y) ∀y ∈ Q}. (3.4.5)

One possible way to attack the problem is obviously to compute all the zeros of
∇f first and then to compare the function values of these candidates. This is in
general not effective since f can contain many local minima. Another reason why it
is not advising to compute all roots of ∇f in advance – if they are not required – by
the use of the subdivision techniques is given by one characteristic of the approach:
the subdivision algorithms which use Newton’s method as dynamical system tend to
generate many boxes in the ”middle” part of the computation. Figure 3.4 shows two
typical charts where the number of boxes |Bk| versus the iteration step k is plotted.
In the first steps the collections typically contain few boxes. This indicates that the
algorithm is able to compute a coarse localization of the region which contains all
the roots of the underlying model quickly4. After several iteration steps the size of
the boxes begins to increase rapidly. The reason for this seems to be that the cover-
ing is not tight enough such that Newton’s method does not converge quadratically
(recall that a box B has 3n − 1 neighbor boxes). This changes when the diameter of
the boxes is small enough and hence the number of boxes is reduced rapidly within
a few iteration steps.

4This is well known in the very restricted situation where g is a polynomial and Q = [a, b] is
large enough.

36

The typical problems which arise when using classical branching and bounding tech-
niques are different: in the beginning of the computation it can be a difficult task
to find tight bounds for big boxes or they are not helpfull in the sense that only
few subsets can be deleted. Moreover, the process typically has to perform a lot of
iteration steps until a ”good” feasible point is detected to be in fact good since the
accuracy of an approximate solution can only be measured by the upper and lower
bounds of the boxes.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

iteration step

nu
m

be
r

of
 b

ox
es

(a) Newton’s Method Ng1(x)

0 5 10 15 20 25 300

20

40

60

80

100

120

140

iteration step

nu
m

be
r

of
 b

ox
es

(b) adaptive strategy Ngh(x)q

Figure 3.9: Typical chart for the number of boxes vs. the iteration step: a peak
appears in the ”middle” part of the computation.

Basic Variant of the Algorithm

Motivated by the previous observations we now formulate a basic algorithm which
combines the two techniques. Thus, it can be viewed as (another) variant of a
branch&bound method.
Denote by Newton-Step an algorithm for the localization of zeros of the derivative
of the objective function as described in Section 3.2, taking a box collection Bk as
input and generating the succeeding collection Bk+1 with

diam(B̂k+1) = θk+1 diam(Bk),

where 0 < θmin ≤ θk+1 ≤ θmax < 1 (compare to Section 2.2). Let Branch&Bound-Step
be defined analogously, e.g. by an algorithm described in [56]. Starting with a col-
lection of finitely many boxes B0, the algorithm DSBB reads as follows:

37

Algorithm DSBB

Step 1:
k = 0
while |Bk| ≤ C

Bk+1 = Newton-Step(Bk)
k = k + 1

Step 2:
sd = 0
if sd == 1

Bj+1 = Newton-Step(Bj)
else

Bj+1 = Branch&Bound-Step(Bj)
if |Bj+1| > |Bj |
sd = 1 − sd

Remarks 3.4.1 (a) In the examples we have computed we used the stopping
criterion of the branch&bound-step for DSBB (or alternatively, the diameter
of the boxes). Note that if the number of boxes remains permanently under
the constant C, Step 2 will never be reached and hence no branch&bound
technique will be applied. In this case this leads – when a prescribed maximal
number of iterations is reached – to the comparison of the function values of
the (few) points where the first order condition is fulfilled.

(b) In practice it was observed that the algorithm described above is more ro-
bust than the solitary use of the branch&bound techniques due to the (local)
convergence of Newton’s method. Herfore, it must be allowed to reintroduce
boxes to the collection if an image Ngh(x) of a test point x is not contained
in any box of the current collection.

(c) In [104] an algorithm which combines branch and bound methods with subdi-
vision techniques for the computation of invariant sets of dynamical systems
and its applicatility to global scalar optimization problems is presented. Since
that algorithm is similar in spirit to the one described above, we just refer to
the convergence result which is done in that work.

Numerical Results

Here we present the results for two (low dimensional) scalar optimization problems.
For the realization of the branch&bound step we have used Lipschitz constants
to estimate the bounds of every box. To estimate the Lipschitz constant LB of
f within a box B ∈ Bk we have done the following: starting from test points
TP (B) := {x1, . . . , xn} we have estimated LB as

LB := κL̃,

38

where κ > 1 is a safety factor and

L̃ := max

{

max
i=1,..,n−1

|f(xi+1) − f(xi)|
‖xi+1 − xi‖2

, max
i=1,..,n

‖∇f(xi)‖2

}

.

Example 1

First let us consider the following example taken from [53]:

f1 : R2 → R
f1(x1, x2) = (x2

1 + x2 − 11)2 + (x1 + x2
2 − 7)2

Figure 3.10 shows several box collections which are generated by an application
of DSBB. Here, all four global minima within Q = [−5, 5] × [−5, 5] could be located.
In Figure 3.11 the number of boxes which are generated in each iteration step by (a)
using the dynamical system Ngh(x)

q for the computation of all the roots of ∇f –
see Example (3.2.1)(a) – and (b) using the algorithm DSBB are compared indicating
that the latter algorithm is able to compute the set MQ much faster.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) 5 steps

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) 8 steps

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) 13 steps

Figure 3.10: Coverings of the four minima of Example 1 for different iteration steps
generated by algorithm DSBB. It can be observed that the roots ∇f which are not
relevant in the optimization context get discarded soon in the course of the compu-
tation (compare to Figure 3.1).

Example 2

Next we we consider the following example (see [53]):

f2 : R4 → R
f2(x1, x2, x3, x4) = 100(x2 − x2

1)
2 + (1 − x1)

2 + 90(x4 − x2
3)

2 + (1 − x3)
2

+ 10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1),

By using DSBB the global minimizer x∗ = [1, 1, 1, 1] within the domain Q = [−10, 10]4

could be found quickly.

39

0 5 10 15 20 25 300

20

40

60

80

100

120

140

iteration step

nu
m

be
r

of
 b

ox
es

(a) adaptive strategy Ngh(x)q

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

iteration step

nu
m

be
r

of
 b

ox
es

(b) use of DSBB

Figure 3.11: A comparison of the number of boxes which were produced in every
iteration step by the different methods.

3.5 Conclusion

In this chapter we have presented a robust technique for the global zero finding of
differentiable functions g : Rn → Rn. This technique, including the use of different
step sizes in the course of the computation in order to increase the performance,
is based on the general framework of the subdivision algorithm which is described
in Chapter 2. We have demonstrated the strength and the particular advantage of
this technique by several examples. But it should be mentioned that, due to the
global approach, these algorithms can only be applied for functions g with moderate
dimension n. For higher dimensional problems a parallization strategy can be used
to reduce the computational time. See [102] and [103] for more information.

40

Chapter 4

Location of Zeros B: g : C→ C
4.1 Introduction

Dynamical systems are frequently used as models for the temporal evolution of
technical processes. In this case the stability analysis for an equilibrium state of the
system naturally leads to the problem of finding all the zeros – or at least bounds
on the set of zeros – of a certain analytic function g : C → C. For instance, if
there is no temporal delay to be taken into account in the underlying system then
one has to consider the spectrum of the Jacobian of a vector field evaluated at the
equilibrium. This can e.g. be done by using efficient eigenvalue solvers. However,
if the technical process has to be modeled by a delay differential equation then the
zero set of a non–polynomial but holomorphic function has to be approximated.

Motivated by this application we propose in this chapter – following [26] – a
robust numerical method for the computation of all the zeros of a holomorphic
function g : C → C within a certain bounded domain. The underlying idea is to use
numerically the argument principle and to combine this properly with the subdivi-
sion algorithm to obtain an adaptive multi–level strategy. This way we construct
tight box coverings of the set of zeros of g. The reliability of the method is due to
the fact that by the argument principle one has to check whether or not a certain
number is a nonvanishing integer, and this test is typically quite robust.

The underlying idea of this approach, namely to use the argument principle in
combination with a subdivision procedure, already occurs in [115, 116]. However,
we go one step further and propose an adaptive subdivision technique. Moreover,
in contrast to [115, 116] we also describe in detail a specific numerical realization.
This approach is similar in spirit to the topological methods developed in [84] and
[114] where degree theory is the underlying concept for the approximation of the
set of zeros of a given function. In fact, the argument principle as used here has to
be viewed as the specific holomorphic situation for the computation of the degree
of a mapping (cf. [20]). Further it should be mentioned that almost in parallel –
and without the knowledge of the authors of [26] – the software package ZEAL
(see [67]) was developed which basically includes the same functionality which is
presented here.

A detailed outline of the chapter is as follows. In Section 6.2 we briefly restate the

41

argument principle. Then, in Section 4.3, we develop our adaptive multi–level algo-
rithm, prove its convergence and discuss a particular numerical realization. Finally
we present three examples indicating the robustness and efficiency of this numerical
approach (Section 4.4).

4.2 Theoretical Background

Our numerical approach is based on an elementary fact from complex analysis
namely the so–called “argument principle”. For a given meromorphic function g
this result states that the number of zeros minus the number of singularities of g
(counting multiplicities) within a specified region in C can in principle be computed
by a certain integration:

Theorem 4.2.1 (Argument principle) Let g : U → C be a meromorphic non-
constant function on the open subset U ⊂ C and let γ be a closed curve on the
boundary of a compact set K inside U . Finally denote by qj, j = 1, . . . , n, and by
pℓ, ℓ = 1, . . . , m, the zeros resp. the singular points of g inside K. Then

1

2πi

∫

γ

g′(z)

g(z)
dz =

n∑

j=1

n(γ, qj)µ(qj) −
m∑

ℓ=1

n(γ, pℓ)µ(pℓ),

where n(γ, qj), n(γ, pℓ) denote the winding numbers of the curve γ with respect to qj
resp. pℓ and µ(qj), µ(pℓ) are the multiplicities of qj resp. pℓ.

In our applications we are particularly interested in the situation where g is a
holomorphic function and where the winding number of γ is one. For this specific
case we immediately obtain

Corollary 4.2.2 Let g : U → C be a holomorphic nonconstant function on the
open subset U ⊂ C and let γ be a closed curve on the boundary of a compact set
K inside U with winding number one for all the points surrounded by γ. Finally
denote by qj, j = 1, . . . , n, the zeros of g inside K. Then

∫

γ

g′(z)

g(z)
dz = 2πi

n∑

k=1

µ(qj) (4.2.1)

where µ(qj) are the multiplicities of the zeros qj.

In the following we will denote by µ(g, γ) the right hand side in (4.2.1).

4.3 The Algorithm

Our aim is to find all the zeros of an analytic function g in one complex variable
inside a given compact domain. The underlying idea of the algorithm is as follows.
We start with a (big) rectangle B in C inside which we would like to find all the

42

zeros of g. Then we compute the integral in the left hand side in (4.2.1) where γ is
a parametrization of the boundary of the rectangle B with winding number one. If
this integral is zero then there are no zeros inside B and we are done. Otherwise we
subdivide B into smaller rectangles and compute the integrals in (4.2.1) over their
boundaries. Proceeding this way and disregarding rectangles for which the integral
is zero we obtain a close covering of all the zeros of g inside B.

4.3.1 Description of a Basic Subdivision Scheme

We now formalize the idea stated above and present the abstract multi–level subdivi-
sion procedure in detail. The general structure of the following abstract algorithmic
scheme is essentially known and can be found in the literature (see [115, 116]).

Basic Subdivision Scheme

Let B0 be an initial collection of finitely many rectangles in C. Then Bk is inductively
obtained from Bk−1 in two steps:

(i) Subdivision step Construct from Bk−1 a new system B̂k of rectangles such
that ⋃

B∈B̂k

B =
⋃

B∈Bk−1

B

and
diam(B̂k) = θk diam(Bk−1), (4.3.2)

where 0 < θmin ≤ θk ≤ θmax < 1. (Here diam(Bk) denotes the diameter of the
largest rectangle inside Bk.)

(ii) Selection step Define the new collection Bk by

Bk =
{

B ∈ B̂k : µ(g, γB) 6= 0
}

.

Remarks 4.3.1 (a) If at some stage in the subdivision process a zero of g is lying
on the boundary of one of the rectangles B then µ(g, γB) = ∞. We explicitly
allow this possibility in the selection step and keep the corresponding rectangle
in this case.

(b) Observe that we do not require that the rectangles inside the collection Bk are
disjoint. However, in our modification and realization of the basic subdivision
scheme we are always working with collections having this property in order
to avoid unnecessary numerical computations.

Denote by z(g, B) the set of zeros of the holomorphic function g inside the
rectangle B and let

Zk =
⋃

B∈Bk

B.

43

Observe that lim
k→∞

Zk does exist since the Zk form a nested sequence of compact sets.

Moreover, it is immediate from the construction of the general algorithm that the
following result holds.

Proposition 4.3.2 An application of the basic subdivision scheme to the rectangle
B = B0 yields a sequence of collections Bk such that

lim
k→∞

h(Zk, z(g, B)) = 0, (4.3.3)

where h(·, ·) denotes the standard Hausdorff distance.

4.3.2 Adaptive Version of the Basic Subdivision Scheme:
the QZ-40 Algorithm

We now present a modification of the basic subdivision scheme which will lead to a
robust and efficient numerical realization. The crucial difference consists essentially
of two ingredients: first an adaptive subdivision strategy is used and second we
introduce an additional search step. The structure of the following algorithm is
significantly different to that of the basic subdivision scheme. Therefore – in order
to avoid any potential confusion – we will from now on use the letter R instead of
B in the notation for rectangles or their collections, respectively.

The QZ-40 Algorithm

Let R0 be an initial collection of finitely many rectangles in C. Then Rk is induc-
tively obtained from Rk−1 in three steps:

(i) Selection step For every rectangle R ∈ Rk−1 denote by γR a parametrization
of the boundary of the rectangle and compute the winding number µ(g, γR).
Remove all rectangles R from Rk−1 for which µ(g, γR) = 0.

(ii) Search step Search for a zero inside each rectangle R ∈ Rk−1 with µ(g, γR) =
2πi using Newton’s method with a starting point inside R. If a zero is found
then store this point and remove the rectangle R from the collection Rk−1.

(iii) Adaptive subdivision step Construct from Rk−1 a new system R̂k of rect-
angles according to a certain specified subdivision strategy satisfying (4.3.2).
Then additionally subdivide each rectangle inside R̂k which is a subset of a
rectangle R ∈ Rk−1 with the property that µ(g, γR)/2πi > 2. Let Rk be the
resulting collection of boxes.

As in the case of the basic subdivision scheme the QZ-40 algorithm produces a
nested sequence of compact sets Zk covering the (remaining) zeros of g. Since the
diameter of the boxes is shrinking to zero we have the following result:

Proposition 4.3.3 Suppose that all the zeros of g inside the rectangle R are simple.
Then the QZ-40 algorithm applied to the rectangle R = R0 terminates after finitely
many steps returning a complete list of all the zeros of g inside R.

44

Remarks 4.3.4 (a) It is an easy task to modify the algorithm in such a way that
also zeros of higher multiplicity can be found.

(b) One has to expect that in general in the first subdivision steps the integers
µ(g, γR)/2πi will be greater than two for almost every rectangle within the
selected box collections. From this point of view it would seem natural to
modify the subdivision step (iii) in such a way that additional subdivisions are
just considered from a certain subdivision level k > 1 on. We have performed
several numerical experiments along these lines, and these indicated that –
somewhat counter–intuitively – the most efficient strategy is indeed to consider
additional subdivisions right from the beginning.

Numerical Realization

A crucial part in the numerical realization of the QZ-40 algorithm is the computation
of the integral (4.2.1) for the different rectangles. In our current implementation the
computation of µ(g, γR) is done via an adaptive Romberg quadrature as described
in [28] along the four different edges of the rectangle. More precisely we perform
the three steps of the QZ-40 algorithm as follows:

• In a first step we parametrize each of the edges Rj of a rectangle by γj (j =
1, 2, 3, 4) and compute the value of

Ij ≈ ℜ

1

2πi

∫

γj

g′(z)

g(z)
dz

 (j = 1, 2, 3, 4)

via an adaptive Romberg quadrature, see Figure 4.1. Then

µ(g, γR) ≈ 2πi

4∑

j=1

Ij .

Observe that the value of the tolerance in the adaptive Romberg scheme can
be chosen quite large since we only have to decide whether or not the approx-

imation of
4∑

j=1

Ij is zero or a nonvanishing integer.

• In the search step we perform a search for a zero of g using the classical Newton
method. This method either terminates with a zero inside the rectangle under
consideration or the iteration is stopped if an iterate is more than a specified
distance away from the center of the rectangle. In the examples which we
considered it turned out to be quite efficient to choose at random a few (five,
say) starting points for Newton’s method inside the rectangle.

• The subdivision rule used in the adaptive subdivision step is simply given by
bisection alternating between the two different coordinate directions. That is,
if a rectangle is created via bisection with respect to the z1-direction then, if
necessary, it will be bisected in the next step with respect to the z2-direction
and vice versa. Obviously by this rule the condition (4.3.2) is satisfied.

45

-γ1

R1

6

γ2 R2

� γ3

R3

?

γ4R4

Figure 4.1: Boundary of the rectangle R and its parametrization γR = γ1 + γ2 +
γ3 + γ4.

4.4 Numerical Results

The following examples indicate both the efficiency and in particular the robustness
of the QZ-40 algorithm.

4.4.1 Academic Example

We consider the function

g1 : C→ C, g1(z) = z50 + z12 − 5 sin(20z) cos(12z) − 1,

and compute its zeros inside the rectangle [−20.3, 20.7]× [−20.3, 20.7]. A couple of
coverings of the zeros of g1 produced by the QZ-40 algorithm are shown in Figure 6.7.
The computations indicate that there are precisely 424 zeros of g inside the initial
rectangle.

We have compared the numerical effort of the QZ-40 algorithm with the one
obtained by two alternative approaches namely

• the classical Newton method performing at most 100 iterations with a certain
number of initial points chosen at random. The numbers in Table 4.1 are
averages over 20 different computations.

• the zero finding procedure c05pbc of the NAG library with a certain number
of initial points chosen at random. In these computations we have specified a
tolerance of 1e-15.

It can be observed, see Table 4.1, that the QZ-40 algorithm is much more efficient
than these two approaches.

4.4.2 Stability of a Ring Oscillator

In [117] the detection of Hopf bifurcations in a ring consisting of coupled oscillators
has been investigated. Taking the symmetry of the problem into account – i.e. by

46

−25 −20 −15 −10 −5 0 5 10 15 20 25
−6

−4

−2

0

2

4

6

(a) 6 subdivisions

−25 −20 −15 −10 −5 0 5 10 15 20 25
−6

−4

−2

0

2

4

6

(b) 8 subdivisions

−25 −20 −15 −10 −5 0 5 10 15 20 25
−5

−4

−3

−2

−1

0

1

2

3

4

5

(c) 10 subdivisions

−25 −20 −15 −10 −5 0 5 10 15 20 25
−5

−4

−3

−2

−1

0

1

2

3

4

5

(d) 18 subdivisions

Figure 4.2: Box coverings of the set of zeros of g1 obtained by the QZ-40 algorithm.

47

Table 4.1: Performance of the different zero finding procedures.

Method # initial points # function calls # derivative calls # zeros
Classical Newton 1500 140.130 140.130 153

5.000 470.038 470.038 322
7.000 655.879 655.879 361

10.000 938.136 938.136 403
15.000 1.405.903 1.405.903 419

NAG c05pbc 1500 454.856 6.966 177
5.000 735.214 23.672 292
7.000 1.033.345 32.209 336

10.000 1.481.284 47.653 378
15.000 2.238.868 71.276 406

QZ-40 – 89.619 89.619 424

restricting to the bifurcation of so–called discrete rotating waves – one has to find
all the zeros of the following function:

g2 : C→ C,
g2(λ) = det

(

−0.0166689 − 2.12 · 10−14λ 1
60

+ 6.0 · 10−16e−τλλ

0.0166659 + e−τλ(−0.000037485 + 6.0 · 10−16λ) −0.0166667 − 6.0 · 10−16λ

)

,

where we have chosen the delay to be τ = 2.0. The result is shown in Figure 4.3.
For more detailed information concerning this problem we refer to [117].

−12 −10 −8 −6 −4 −2 0
−40

−30

−20

−10

0

10

20

30

40

Figure 4.3: All the roots of g2 within the rectangle R = [−12, 0] × [−40, 40].

48

4.4.3 Stability of an Annular Combustion Chamber

Within a project at the Corporate Technology Department of Siemens1 (Munich),
the stability of a flow inside an annular combustion chamber had to be analyzed.
This lead to a model which can be written in the following compact form

ẋ(t) = Ax(t) + Bx(t− τ), (4.4.4)

where A,B ∈ Rn×n and τ ∈ R+
0 . The so–called characteristic function ∆ of this

system is given by
∆(λ) = det(λI −A− Be−τλ). (4.4.5)

It is well known (see e.g. [31]) that the trivial solution of (4.4.4) is asymptotically
stable if

sup{Re(λ) : ∆(λ) = 0} < 0.

Thus, if a reliable stability analysis has to be performed, the structure of the set of
zeros of the function ∆ has to be investigated.

In a first simplified model this lead to the problem of finding all the zeros of the
following holomorphic function:

∆1 : C→ C
∆1(z) = z2 + Az +Be−Tz + C,

where A,B,C and T are real parameters. Motivated by the actual underlying model
for the combustion chamber we choose the values

A = −0.19435, B = 1000.41, C = 522463 and T = 0.005.

In Figure 4.4 all the roots of ∆1 found by the QZ-40 algorithm inside the rectangle
R = [−15000, 5000] × [−15000, 15000] are shown.

More sophisticated considerations of the system lead to models of the form (4.4.4)
with dimensions up to n = 128. When all roots within a prescribed region of interest
are located, the next question arises: can the delay τ be adjusted in order to stabilize
the system and, if possible, how can this be done. Figure 4.5 shows all the roots of
a particular system (the (rescaled) underlying characteristic function is denoted by
∆2) within R = [−200, 600] × [0, 3000] varying τ ∈ [0, 0.006]. Note that standard
pathfollowing techniques are not suitable in this context since it can occur that a
root of the characteristic function enters the region of interest when varying τ , as
shown in Figure 4.4 for ∆2 (Im(λ) ≈ 1200).

Figure 4.6 shows the movement of two zeros varying τ . The quasi–cyclic motion
is due to the periodicity of the exponential function. For more information concern-
ing the detection of the stability regions of parameter–dependent delay differential
equations we refer to the next chapter.

1The author would like to thank the department, in particular Dr. Utz Wever and Dr. Qinghua
Zheng, for the cooperation.

49

−2500 −2000 −1500 −1000 −500 0
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Figure 4.4: All the roots of ∆1 inside R = [−15000, 5000] × [−15000, 15000].

−30 −20 −10 0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

1600

1800

2000

Re(λ)

Im
(λ

)

Figure 4.5: All the roots of ∆2 inside R = [−200, 600] × [0, 3000] varying
τ ∈ [0, 0.006].

50

1 2 3 4 5 6 7

1740

1750

1760

1770

1780

1790

1800

1810

Re(λ)

Im
(λ

)

τ = 0

τ = 0.006

38 40 42 44 46 48 50 52

1700

1720

1740

1760

1780

1800

1820

1840

1860

1880

Re(λ)

Im
(λ

)

τ = 0.006

τ = 0

Figure 4.6: A zoom into Figure 4.5: localization of zeros varying τ ∈ [0, 0.006].

4.5 Conclusion

In this chapter we have presented a robust method for the localization of all zeros
of a holomorphic function within a prescribed rectangle R ⊂ C which is based on a
combination of the argument principle and the subdivision algorithm. Further, we
have demonstrated its applicability to an academic example and two models which
arise in applications. In the latter case the problem became apparent that one needs
to locate the stability region of parameter–dependent delay differential equations.
This will be the topic of the next chapter.

51

Chapter 5

Computing the Stability Regions
of Delay Differential Equations

5.1 Introduction

In engineering and biological sciences, often systems with delays are studied. In
most cases, the first step to understand the effect of the delay is to study the linear
stability of the system. One way to do this is to analyse the characteristic function
(see Section 5.2) of the system. Having a robust criterion for the stability of a par-
ticular adjustment of the system, the next question is to locate all possible stable
settings of the system, which is the topic of this chapter.

Let us assume we are given a system of delay differential equations (DDEs) of
the following form:

dx

dt
= F (x(t), x(t− τ1), . . . , x(t− τm), λ), (5.1.1)

where λ ∈ Rn is a vector of parameters. The task is to locate the region S ⊂ Rn of
parameters for which the trivial solution x = 0 is asymptotically stable.

As an introductory example let us consider balancing a stick (for details see [49]
or [106]). Figure 5.1 shows the underlying mechanical model, which is the simplest
possible model describing the ”man–machine” system when somebody places the
end of a stick on his fingertip and tries to move the lowest point of the stick in a
way that its upper position should be stable.

Let the actual control force FC be given in the form

FC(t) = Aẋ(t− τ) +Bx(t− τ), (5.1.2)

where τ is the delay of the human reflexes. Mathematically speaking, the task here
is to choose the parameters A and B properly, that is, to determine A and B such
that the upper position of the stick (x = 0) is stable. This is the case when all roots
of the underlying characteristic function have a negative real part. We will come
back to this example in Section 5.4.3, where we also show the proper values of A
and B for all delays τ ∈ R+.

52

x

l

m

FC

Figure 5.1: A mechanical model of the stick balancing problem.

In the literature there can be found a huge variety of algorithms for the compu-
tation of the stability regions of DDEs. One way to investigate the stability is to
use Lyapunov’s direct method (see references [8], [47] or [66]). In addition, there
exist many methods which are based on the stability analysis of the characteristic
function. The most common approaches to locate the stability domain are based on
the works of Nyquist ([82]), Pontryagin ([86]) and Neimark ([80]). A good survey
on these and further methods is given in [31] or [106]. Common to these different
methods is that they are very effective on a particular class of DDEs but none of
them can be used generally.

The numerical algorithm which is presented here fits in principle to the second
branch. In particular we utilize the stability criterion which uses the characteristic
function. To be more precise, we present a scheme which attacks the more general
problem of the approximation of arbitrary subsets S ⊂ Q within a compact set
Q ⊂ Rn. This can be done since the stability regions can be formulated explicitly as
a definite set. The resulting method uses subdivision techniques and is thereby global
and very robust. Furthermore, since no particular structure of the DDE (5.1.1) is
taken into account, the algorithm allows for the computation of the stability regions
of a broad class of problems. On the other hand, it cannot compete with any of the
algorithms mentioned above when applied to DDEs from their particular domains.

5.2 Theoretical Background

For sake of completeness we briefly state in this section the notations and facts
which are required for the algorithm. For details we refer e.g. to [31] or [30].

The examples which are considered in this chapter are linear differential equa-
tions with constant coefficients and constant delays which can be stated in its general

53

form as follows:
n∑

p=0

m∑

j=0

λpjx
(p)(t− τj) = 0, (5.2.3)

where λpj and τj are constants with τm > τm−1 > .. > τ1 > τ0 = 0.
The characteristic function of (5.2.3) is given by

∆λ(z) =

n∑

p=0

m∑

j=0

λpjz
pe−τjz (5.2.4)

The trivial solution x = 0 of (5.2.3) is asymptotically stable if

Zλ := {z ∈ C : ∆λ(z) = 0 and Re(z) ≥ 0} = ∅. (5.2.5)

Hence the stability region of DDE (5.2.3) can be stated explicitly as the following
set:

SD =
{
λ ∈ R(n+1)×(m+1) : Zλ = ∅

}
. (5.2.6)

5.3 The Algorithm

In this section we present an algorithm for the computation of the stability regions
of parameter dependent DDEs. As described in the previous section, this problem
can be formulated by the the more general problem of computing an (arbitrary)
subset of a given domain. In the following we will present an adaptive scheme
for the approximation of sets S ⊂ Q, where Q ⊂ Rn is compact. We start with
the formulation of an abstract subdivision scheme and will afterwards address its
numerical realization.

Basic Subdivision Scheme

Let B0 be an initial collection of finitely many boxes. Further let all boxes be marked
for subdivision. Then Bk is inductively obtained from Bk−1 in two steps:

(1) Subdivision step

(a) subdivide all marked boxes B ∈ Bk−1 and denote the resulting
box collection by B̂k.

(b) mark all boxes B ∈ B̂k that were subdivided in step (1a).

(c) Bk := {B ∈ Bk−1 : B is not marked}.

(2) Selection step
for all marked boxes B ∈ B̂k:

(a) unmark B.

(b) if ∃x1 ∈ B ∩ S:

54

– Bk := Bk ∪B.

– if further ∃x2 ∈ B : x2 6∈ S: mark B.

Denote by Sk the union of all boxes of Bk, i.e.

Sk =
⋃

B∈Bk

B,

and let SQ := S ∩Q. For simplicity of further statements let Q be a box. Note that
lim
k→∞

Sk does exist in the Hausdorff–sense since the Sk form a nested sequence of

compact sets. The following result is obvious by the construction of the algorithm.

Proposition 5.3.1 An application of the basic subdivision scheme to the set B0 =
Q yields a sequence of collections Bk such that

lim
k→∞

h(Sk,SQ) = 0,

where h(·, ·) denotes the standard Hausdorff distance.

In the course of the computation, the box collections Bk get refined on the
boundary of the set of interest S. Since S can in general not be described via
a collection of boxes, it is crucial to have an effective strategy to mark the boxes
which contain a part of S but are not contained in that set. In practice, the following
implementation of the selection step turned out to be most effective. Here, TP (B)
denotes a set of test points (see Section 2.3) within a box B with |TP (B)| ≥ 2.

Selection step (alternate version)
for all marked boxes B ∈ B̂k:

(a) unmark B.

(b) if ∃x1 ∈ TP (B) ∩ S:

– Bk := Bk ∪B.

– if further ∃x2 ∈ TP (B) : x2 6∈ S: mark B.

else

mark all boxes Bn ∈ Bk : Bn ∩ B 6= ∅
mark all boxes B̂n ∈ B̂k : B̂n ∩ B 6= ∅

Before we continue we have to make some

Remarks 5.3.2 (a) The test points of TP (B) can in general be chosen as de-
scribed in Section 2.3. However, it was observed that there have to be taken
more test points than e.g. in the root finding context since the set of interest
S is not described as an attractor of a dynamical system. Further, by the
same reason, S should have positive Lebesgue measure since otherwise the
algorithm is not applicable.

55

(b) In the context of the localization of the stability regions of parameter depen-
dent DDEs the set of interest is given by (5.2.6). A practical test which checks
if a particular value of λ is a member of this set can be performed by computing
all the zeros of the characteristic function ∆λ within a suitable problem specific
rectangle Q ⊂ C, e.g. by the use of the algorithm QZ40 which is described in
the previous chapter. Hence, no particular structure of the underlying DDE
is required.

To make the approach more transparent let us consider a trivial example. As-
sume we want to detect the set S1 which is defined as follows

S1 :=

{

x ∈ [1, 2] × [0, 1] : x2 ≥
1

x2
1

}

. (5.3.7)

Figure 5.2 shows appoximations of S1 for three different iteration steps starting with
B0 = [1, 2] × [0, 1]. It can be seen that boxes which are completely contained in S1

remain untouched in the course of the computation from a certain iteration depth.
Moreover, it can be observed that the covering is beeing refined adaptively along
the boundary of S1 (in the inside of B0).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) 4 steps

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(b) 10 steps

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(c) 18 steps

Figure 5.2: Adaptive refinement of the set S1 which is defined in (5.3.7).

5.4 Numerical Results

In this section we show approximations of the stability regions which are computed
by the algorithm described above for three examples.

5.4.1 Example A

First we consider the following DDE (see [31]):

ẍ(t) + Aẋ(t− 1) +Bx(t− 1) = 0, (5.4.8)

56

where λ = (A,B) ∈ R2 has to be chosen such that the trivial solution is asymptot-
ically stable. The characteristic function of (5.4.8) is given by

∆1(z) = z2 + Aze−z +Be−z

Figure 5.3 shows box collections for different iteration steps.

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

A

B

(a) 6 steps

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

A
B

(b) 9 steps

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

A

B

(c) 22 steps

Figure 5.3: Approximation of the stability region of (5.4.8).

5.4.2 Example B

Next, we consider the following DDE which is taken from [106]:

...
x (t) + Aẋ(t) +Bx(t− 1) = 0 (5.4.9)

Here, condition (5.2.5) has to be checked using the characteristic function

∆2(z) = z3 + Az +Be−z = 0.

Figure 5.4 and Figure 5.5 show the approximated stability region for the delays
τ = 1 and τ = 2. In a next step one may ask how these two approximations are
connected under variation of τ . For this, the delay τ can be viewed as another free
parameter of (5.4.9). The result can be seen in Figure 5.6.

5.4.3 Example C

Finally we consider the motivating stick balancing problem of the beginning of this
chapter. We refer to [106] and [49] for more information about this example, e.g.
the derivation of the underlying model:

ẍ(t) − 6g

l
x(t) +

6

ml
Aẋ(t− τ) +

6

ml
Bx(t− τ) = 0 (5.4.10)

Figure 5.7 shows the stability regions within the domain

(τ, A,B) ∈ [0, 0.3] × [0, 10] × [0, 30],

57

0 20 40 60 80 100 120 140
−20

0

20

40

60

80

100

120

140

160

180

A

B

(a) 10 steps

0 20 40 60 80 100 120 140
−20

0

20

40

60

80

100

120

140

160

180

A

B

(b) 15 steps

Figure 5.4: Two coverings of the stability region of Example B for the delay τ = 1.

0 20 40 60 80 100 120 140
−20

0

20

40

60

80

100

120

A

B

Figure 5.5: Approximated stability region for Example B and for the delay τ = 2.

where the constants were chosen as follows:

m = 1, l = 1, g = 9.81.

It can be seen that there is no chance to balance the stick for someone whose reaction
is slower than τ = 0.14 – assuming this model to be realistic enough.

5.5 Conclusion

In this chapter we have presented a set oriented method for the approximation
of arbitrary subsets S ⊂ Q of a given domain Q ⊂ Rn. Furthermore, we have
demonstrated its applicability on the computation of stability regions of parame-
ter dependent delay differential equations by some examples. Since no particular

58

Figure 5.6: Covering of the stability region after 14 steps for Example B and τ ∈
[0, 2].

59

Figure 5.7: Stability region of the stick balancing problem (Example C).

60

structure of the underlying characteristic function has to be taken into account, the
method can be applied on a broad class of models.

Acknowledgement The author wants to thank Dr. Qinghua Zheng for calling
his attention to this interesting field.

61

Chapter 6

Multi–Objective Optimization

6.1 Introduction

In a variety of applications in industry and finance a problem arises that several
objective functions have to be optimized concurrently. For instance, for a perfect
economical production plan, the ultimate desire would be to simultaneously mini-
mize cost and maximize quality. This example already illustrates a natural feature of
these problems namely that the different objectives typically contradict each other
and therefore certainly do not have identical optima. Thus, the question arises how
to approximate the ”optimal compromises” – and this leads to a multi–objective
optimization problem (MOP).

To get a first impression about multi–objective optimization and the correspond-
ing decision–making problem we start with an example:
Let us consider that a client is interested in buying a new motorcycle. More con-
cretely, the client is interested in a bike which should be fast and cheap. This leads
directly to the optimization of both the cost and the maximum speed of a motor-
cycle in the (finite) set of available motorcycles. Let us assume that a shop offers
(amongst each others) the motorcycles A, B and C as shown in Figure 6.1. The
motorcycles A and B are not comparable according to the underlying optimization
problem because bike A is (much) slower than bike B but on the other hand it is less
expensive. Bike C is immediately discarded, because, according to the optimization
model, it is slower and more expensive than bike B (C is said to be dominated by
B). Hence the optimal motorcycles are bikes A and B. We will see later that this
situation is typical for multi–objective optimization because the solution is not given
by just one element but by a whole set of optimal compromises. When this set is
detected, the problem arises to pick one element of this set – in the present example
the client is interested in buying one motorcycle. This decision making problem can
not be solved in general but has to be done case by case. In the current motorcycle
buying problem a decision could be made with the additional information that the
client is willing to spend a given budget for the motorcycle. But in this case the
problem can also be attacked by solving a scalar optimization problem (with proper
constraints).

Mathematically speaking in an MOP there are given k objective functions

62

A

B

C
m

ax
. S

pe
ed

Cost

Figure 6.1: Hypothetical candidates for a possible motorcycle–buying decision–
making problem.

f1, . . . , fk : Rn → R which have to be minimized. The set of optimal compromises
with respect to the objective functions is called the Pareto set1. A point x ∈ Rn in
parameter space is said to be a Pareto point if there is no other point which is at
least as good as x in all the objectives and strictly better in at least one objective.
Thus, the numerical solution of an MOP consists of an approximation of the Pareto
set.

Multi–objective optimization is currently a very active area of research. By far
most of the methods for the computation of single Pareto points or the entire Pareto
set are based on a ”scalarization” of the MOP (see e.g. [97] [98] [44] [79] [108] [15]
and [38]). For a survey of these and further methods we refer to [72] and [52] for
nonlinear MOPs and to [59] and [107] in the linear case. Another way to attack the
problem is by using heuristics like Evolutionary Algorithms (see [119] [18] [19] [17]
[118] [40]) or Particle Swarm Optimization (see [12] [35] [77] [76]). These methods
are particularly advantageous in the situation where the MOP is discrete.
A method which is based on a stochastic approach is presented in [96]. In this
work the authors derive a stochastic differential equation (SDE) for which typical
solutions stay close to the Pareto set for a relatively long period of time. This
knowledge can then be used to locate the Pareto set by a solution of the SDE.
Similar to the evolutionary strategies here the idea is to directly approximate the
entire Pareto set and not just single Pareto points on the set.
Typically – that is under mild regularity conditions – the set of Pareto points is
locally a (k − 1)-dimensional manifold if there are k smooth objective functions. In

1Named after the economist Vilfredo Pareto, 1848-1923.

63

[89], [52] and also in this chapter this observation is used to construct algorithms
which allow us to compute parts of the Pareto set by numerical path following
techniques.

In this chapter we propose a global numerical method for the computation of
MOPs for different smoothness assumptions on the underlying objective functions.
We will mainly concentrate on unconstrained MOPs but will also consider (equality)
constraints for the case where the objectives are twice continuously differentiable.
The outline of this chapter is as follows: first we will give the required theoretical
background. Then we will propose three basic algorithms which can be used on gen-
eral MOPs followed by extensions both for non–smooth and for smooth objectives.
Numerical results will be presented after each of the three parts.

6.2 Theoretical Background

To succinctly summarize the theoretical background which is necessary for under-
standing our considerations in the subsequent sections, there are two different math-
ematical topics we have to address: the concept of Pareto optimality and the con-
vergence toward Pareto sets by the subdivision algorithm.

6.2.1 Pareto Optimality

Definition of Pareto Optimality

In classical scalar optimization problems one has to find the (global) minimizer of a
single real valued function f : Rn → R. In a multi–objective optimization problem
(MOP) the task is to simultaneously optimize k objective functions f1, . . . , fk : Rn →R. More precisely a general MOP can be stated as follows:

min
x∈R

{F (x)}, R := {x ∈ Rn | h(x) = 0, g(x) ≤ 0}, (MOP)

where the function F is defined as the vector of the objective functions

F : Rn → Rk, F (x) = (f1(x), . . . , fk(x)),

and h : Rn → Rm, m ≤ n, and g : Rn → Rq. Obviously we have to define what is
meant by finding the minimum of a vector valued function in (MOP). For this we
state the following definition.

Definition 6.2.1 (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w),
if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined in an analogous
way.

(b) A vector v ∈ Rk is dominated by a vector w ∈ Rk if w ≤p v and v 6= w (i.e.
there exists a j ∈ {1, . . . , k} such that wj < vj).

64

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

y
1

y
2

y
3

y
4

y
5

f
1

f 2

Figure 6.2: Dominated and non–dominated solutions: solution y2 dominates y4 and
y5. The solutions y1 and y2 (as well as e.g. y2 and y3) cannot be compared, i.e. y1

and y2 (as well as y2 and y3) are mutually non–dominating.

Since ≤p just defines a partial order on Rn, we cannot proceed as in the classical
scalar case. In fact, one cannot expect to find isolated stationary points. Rather
one has to find the set of “optimal compromises” and – following Pareto ([112]) –
these are defined in the following way.

Definition 6.2.2 (a) Consider the multi–objective optimization problem (MOP).
Then a point x̄ ∈ R is called (globally) Pareto optimal or a (global) Pareto
point if there is no y ∈ R such that

F (y) 6= F (x̄) and F (y) ≤p F (x̄). (6.2.1)

(b) A point x̄ ∈ R is a local Pareto point, if there is a neighborhood U(x̄) ⊂ R of
x̄ such that there is no y ∈ U(x̄) satisfying (6.2.1).

As a first example let us consider the following trivial MOP. Let F be given by
F (x) = (f1(x), f2(x)), where

f1, f2 : R→ R
f1(x) = (x− 1)2

f2(x) = (x+ 1)2

.

(6.2.2)

The Pareto set of MOP (6.2.2) is given by P = [−1, 1] which is the (one–dimensional)
connection between the minimizers of the objectives f1 and f2. In Figure 6.3 the
optimization problem is visualized in parameter space as well as in image space.
Figure 6.3 (b) shows the classical shape of a Pareto set of a bicriteria problem (i.e.
k = 2).

65

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

9

x

f 1, f
2

(a) Parameter Space

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

f
1

f 2

(b) Image Space

Figure 6.3: Multi–objective problem (6.2.2) and Pareto set in parameter space and
in image space, indicated by the red line.

In this chapter we develop set oriented numerical methods for the approximation
of the set of global Pareto points. Let us illustrate the notion of (global and local)
Pareto points by the following example.

Example 6.2.3 In Figure 6.4 we present an example of two objective functions
fj : R→ R, j = 1, 2. In this case the set of local Pareto points consists of the union
of the intervals [0, 1] and [1.5, 2]. However, only the points in the interval [1.5, 2] are
also globally Pareto optimal.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

x

Figure 6.4: Two objective functions fj : R→ R (j = 1, 2) on the interval [−1, 3].

66

A Necessary Condition for Optimality

In our numerical methods we are going to make use of the following theorem of
Kuhn and Tucker ([68]) which states a necessary condition for Pareto optimality for
MOPs with equality constraints. For a more general formulation of the theorem we
refer to [72] or [43].

Theorem 6.2.4 Let x∗ be a Pareto point of (MOP) with q = 0. Let furthermore
be the set of vectors {∇hi(x) | i = 1, . . . , m} linearly independent. Then there exist
vectors λ ∈ Rm and α ∈ Rk with αi ≥ 0, i = 1, . . . , k and

∑k
i=1 αi = 1 such that

k∑

i=1

αi∇fi(x
∗) +

m∑

j=1

λj∇hj(x
∗) = 0

hi(x
∗) = 0, i = 1, . . . , m.

(6.2.3)

In the unconstrained case – i.e. for m = 0 – the theorem claims that the vector
of zeros can be posed as a convex combination of the gradients of the objectives at
every Pareto point. Obviously (6.2.3) is not a sufficient condition for (local) Pareto
optimality. On the other hand points satisfying (6.2.3) are certainly ”Pareto candi-
dates” and thus, following [72], we now emphasize their relevance by the following

Definition 6.2.5 A point x ∈ Rn is called a substationary point or Karush–Kuhn–
Tucker point2 (KKT–point) if there exist scalars α1, . . . , αk ≥ 0 and λ ∈ Rm such
that (6.2.3) is satisfied.

Qualitative Description of the Pareto Set

Having stated the Theorem 6.2.4, one is in the position to give a qualitative descrip-
tion of the set of Pareto optimal solutions.
Denote by F̃ : Rn+m+k → Rn+m+1 the following auxiliary function:

F̃ (x, λ, α) =

k∑

i=1

αi∇fi(x) +
m∑

j=1

λj∇hj(x
∗)

h(x)

k∑

i=1

αi − 1

(6.2.4)

By Theorem 6.2.4 it follows that for every KKT–point x∗ ∈ Rn there exist
vectors λ∗ ∈ Rm and α∗ ∈ Rk such that

F̃ (x∗, λ∗, α∗) = 0. (6.2.5)

Hence one expects that the set of KKT–points defines a (k − 1)-dimensional man-
ifold due to the Implicit Function Theorem. This is indeed the case under certain
smoothness assumptions, see [52] for a thorough discussion of this topic.

2Named after the works of Karush [62] and Kuhn & Tucker [68] for scalar–valued optimization
problems.

67

A Descent Direction

Similar to classical iteration schemes for the numerical solution of scalar optimization
problems we need to identify a descent direction for our numerical methods. More
precisely, for a point which is not substationary we need to know a direction in Rn

in which all the k objectives are simultaneously decreasing. For this purpose we
briefly summarize in the following the main results of [96], which we will use for
our computations3. These results have to be viewed as the natural extension of the
classical underlying theory for the method of steepest descent.

First we associate with F : Rn → Rk, F (x) = (f1(x), . . . , fk(x)), the following
quadratic optimization problem:

min
α∈Rk

∥
∥
∥
∥
∥

k∑

i=1

αi∇fi(x)

∥
∥
∥
∥
∥

2

2

;αi ≥ 0, i = 1, . . . , k,

k∑

i=1

αi = 1

(QOP)

Then one can show the following result.

Theorem 6.2.6 ([96]) Let q : Rn → Rn be defined by

q(x) =
k∑

i=1

α̂i∇fi(x),

where α̂ is a solution of (QOP). Then

(i) either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x;

(ii) for each x̂ ∈ Rn there is a neighborhood U(x̂) and a constant Lx̂ ≥ 0, such
that

‖q(x) − q(y)‖2 ≤ Lx̂‖x− y‖2 for all x, y ∈ U(x̂).

By this result the initial value problem

ẋ(t) = −q(x(t)), x(0) = x0, (6.2.6)

is well posed. Let x : [0,∞[→ Rn be the unique solution of (6.2.6). Then one can
show that this solution satisfies

F (x(s)) ≥p F (x(t)) and F (x(s)) 6= F (x(t)) for all 0 ≤ s < t <∞.

In fact, suppose additionally that the set

R≤p
= {x ∈ Rn : F (x) ≤p F (x0)}

is bounded. Then the solution x(t) has to converge to a substationary point for
t→ ∞. Thus, a suitable discretization of the ”generalized gradient system” (6.2.6)
yields numerical iteration schemes converging towards substationary points.

Observe that by Theorem 6.2.6 each Pareto point is a zero of the function q.
Therefore the aim is to find the set of zeros of q. Since these zeros are not isolated
a set oriented approach turns out to be most adequate for their approximation.

3Alternatively, other descent directions can be used, for example the ones proposed in [39].

68

6.2.2 Convergence toward Pareto Sets

By Theorem 6.2.6 each Pareto point is a zero of the function q as defined in the
same theorem. In analogy to classical zero finding procedures with different step size
strategies we now prove that an appropriate discretization of the ordinary differential
equation (6.2.6) will lead to iteration schemes which generate sequences converging
towards substationary points. Here we essentially proceed along the lines of [27].
Then we can conclude – using the convergence result in Proposition 2.2.7 – that
an application of the subdivision algorithm yields a close covering of the set of
substationary points.

In order to simplify the notation we begin by defining for a nonnegative vector
b ∈ [0, 1]k the corresponding objective function (cf. (MOP))

Fb(x) = bTF (x).

We assume that the derivative of each Fb is Lipschitz continuous with (uniform)
Lipschitz constant L.

We now discretize (6.2.6) and consider the following iteration scheme

xj+1 = xj + hjpj , j = 0, 1, (6.2.7)

In the following we will sometimes denote the right hand side by P , i.e.

P (xj) = xj + hjpj , j = 0, 1, (6.2.8)

The descent direction pj is chosen such that for positive constants σ, τ > 0

− q(xj)
Tpj

‖q(xj)‖‖pj‖
≥ σ and ‖pj‖ ≥ τ‖q(xj)‖,

where q(xj) is defined in Theorem 6.2.6. The step size hj is an Armijo or a Powell
step size. Let x0 be the initial point and suppose that the iteration can be perfomed
for j → ∞ such that the sequence (xj)j=0,1,... lies within a compact set D ⊂ Rn.

Proposition 6.2.7 Suppose that x∗ is an accumulation point of the sequence
(xj)j=0,1,.... Then x∗ is a substationary point for the multi–objective optimization
problem (MOP).

Proof: First observe that if one of the xj ’s is a substationary point then we are
done (cf. Theorem 6.2.6).

Thus, without loss of generality we may assume that xj → x∗ for j → ∞
and that none of the xj ’s is substationary. Consider the corresponding sequence
aj = (αj

1, . . . , α
j
k) of solution vectors of the optimization problem (QOP) in step j

of the iteration procedure. Since αj
1, . . . , α

j
k ∈ [0, 1] we may assume that aj → a for

j → ∞. (Otherwise restrict the following considerations to a subsequence.)
We now show that the sequence (xj) converges to a stationary point for Fa(x)

and, thus, proving the desired result.

69

Using the fact that hj is an Armijo or a Powell step size in xj we have by
classical results on iteration schemes for optimization problems (see e.g. [27]) that
there exists a constant θ > 0 such that

Faj
(xj) − Faj

(xj+1) ≥ θmin

[

−∇Faj
(xj)

Tpj,

(∇Faj
(xj)

Tpj

‖pj‖

)2
]

(6.2.9)

in each step of the iteration process. Observe that θ does not depend on j by the
assumption on the uniform Lipschitz continuity of ∇Fb.

Now suppose that

Fa(xj) − Fa(xj+1) < θmin

[

−∇Fa(xj)
Tpj,

(∇Fa(xj)
Tpj

‖pj‖

)2
]

(6.2.10)

for infinitely many j. By our assumption on the descent direction we have

− ∇Fa(xj)
Tpj

‖∇Fa(xj)‖‖pj‖
≥ σ

2
and ‖pj‖ ≥ τ

2
‖∇Fa(xj)‖

for all j ≥ j0. Combining these estimates with (6.2.9) and (6.2.10) we obtain

0 = lim
j→∞

min

[

−∇Fa(xj)
Tpj ,

(∇Fa(xj)
Tpj

‖pj‖

)2
]

≥ θσ

4
min(τ, σ)‖∇Fa(x

∗)‖2

and x∗ is substationary as desired.
It remains to consider the case where

Fa(xj) − Fa(xj+1) ≥ θmin

[

−∇Fa(xj)
Tpj ,

(∇Fa(xj)
Tpj

‖pj‖

)2
]

for all j ≥ j1. Here we obtain in an analogous way

Fa(xj) − Fa(xj+1) ≥
θσ

4
min(τ, σ)‖∇Fa(xj)‖2 ≥ 0

for all j ≥ max(j0, j1). Letting j → ∞ it follows that ‖∇Fa(x
∗)‖ = 0.

For the remainder of this section we now assume that pj = q(xj) and that we
are working with s different step sizes hℓ. Then, combining Propositions 6.2.7 and
2.2.7 we immediately obtain the following result:

Corollary 6.2.8 Suppose that the set S of substationary points is bounded and let
D be a compact neighborhood of S. Then an application of the subdivision algorithm
to D with respect to the iteration scheme (6.2.7) creates a covering of the entire set
S, that is,

S ⊂ Qk for k = 0, 1, 2, . . .

in the course of the subdivision process.

70

Observe that we have shown that the covering obtained by the subdivision pro-
cess becomes ”tight”. However we cannot prove convergence towards S without
an additional assumption on its structure. We illustrate this fact by the following
example.

Example 6.2.9 Let us reconsider Example 6.2.3 (cf. Figure 6.4). In that case an
application of the subdivision algorithm to the interval D = [−1, 3] will converge to
the interval [0, 2]. Thus, we obtain a covering of the set S = [0, 1] ∪ [1.5, 2] but we
also approximate the additional part (1, 1.5).

For a proof of this fact one has to observe that a box which contains the number
1 as well as points which are bigger than 1 always has a nonzero intersection with
its image under the iteration scheme (6.2.7). Moreover the image of this box also
has a nonzero intersection with its right neighbor. Proceeding with this neighboring
box we see that all the boxes between 1 and 1.5 have preimages in other boxes in
each step of the subdivision process. Therefore the interval (1, 1.5) is never removed
in the selection step.

We will see in Section 6.3 how to overcome the problem described in the previous
example in actual realizations of the algorithm. However, these considerations in
combination with standard compactness arguments immediately lead to the follow-
ing convergence result:

Corollary 6.2.10 Suppose that the set S of substationary points is bounded and
connected. Let D be a compact neighborhood of S. Then an application of the
subdivision algorithm to D with respect to the iteration scheme (6.2.7) leads to a
sequence of coverings which converges to the entire set S, that is,

h(S, Qk) → 0 for k = 0, 1, 2, . . .,

where h denotes the usual Hausdorff distance.

The following remark addresses a straightforward but interesting consequence of
this result.

Remark 6.2.11 Under the assumptions of Corollary 6.2.10 we can conclude – in
the unconstrained case – that the set S has to have trivial homotopy. For instance,
in case of two objective functions on a (at least) two–dimensional parameter space
the set S cannot be topologically equivalent to a circle.

6.3 Basic Algorithms

In this section we propose three different algorithms for the computation of the
Pareto set of a given MOP, or, to be more precise, we present algorithms for the
computation of tight coverings of such sets. Moreover we propose some guidelines
on how to combine these algorithms in order to increase the performance of the
respective numerical schemes.

71

6.3.1 Subdivision Algorithm

The first algorithm is directly based on the theoretical considerations of the previous
section, in particular on Corollaries 6.2.8 and 6.2.10. In fact, we now discuss a con-
crete realization of the subdivision procedure for the computation of tight coverings
of the set of substationary points using the dynamical system

xj+1 = P (xj) = xj + hjpj , j = 0, 1,

Descent Direction In all the computations of unconstrained MOPs presented in
this chapter we have used the descent direction

pj = q(xj),

cf. (6.2.7) and Theorem 6.2.6.
For the specific case of (unconstrained) bicriteria optimization problems (i.e.

k = 2) one could alternatively use the following descent direction:

pj = −
(∇f1(xj)

‖∇f1(xj)‖2

+
∇f2(xj)

‖∇f2(xj)‖2

)

.

This choice is particularly useful in the case where the cost for the evaluation of
∇fi, i = 1, 2, is high. We have tested this descent direction with all the differentiable
bicriteria optimization problems presented in this chapter yielding satisfying results.

Step Length Following standard techniques for step length control – see e.g. [27] –
we have chosen a particular Armijo step size strategy in the following way: starting
with the given point xj we evaluate F along the descent direction pj in uniform
step lengths h0 as long as the values of all objectives decrease. Once one objective
function starts to increase, a ”better” iterate xj+1 with intermediate step length is
calculated via backtracking:

(i) n := 1

(ii) while F (xj + nh0pj) <p F (xj + (n− 1)h0pj) and
〈∇fi(xj + (n− 1)h0pj), pj〉 < 0 ∀i = 1, . . . , k

set n := n+ 1

(iii) choose xj+1 ∈ [xj + (n− 1)h0pj , xj + nh0pj]
such that F (xj+1) <p F (xj + (n− 1)h0pj)

Remarks 6.3.1 (a) To find an appropriate guess for the ”scanlength” h0 it is
possible to take advantage of the subdivision scheme. If a step length h̃ has
been computed for a point x̃ inside a certain box then this distance can be
chosen as the scanlength for the following points inside the same box. This
strategy works particularly well when the subdivision scheme is at a level where
all the boxes are already quite small.

72

(b) Finally we propose the following backtracking procedure in step (2) above. For
every i ∈ {1, . . . , k} with fi(xj + nh0pj) > fi(xj + (n− 1)h0pj) we determine

xi
j = xj + ((n− 1)h0 + Θi)pj , Θi ∈ (0, 1),

via quadratic backtracking. Then set

x̂j = xi
j where i is chosen such that Θi is minimal.

If F (x̂j) <p F (xj + (n− 1)h0pj) then the point x̂j is accepted and we choose
xj+1 = x̂j in step (2). Otherwise proceed in the same way to find a new iterate
between xj + (n− 1)h0pj and x̂j .

It should be mentioned that the subdivision algorithm (in the following denoted
by DS–Subdivision) could be made reliable if the Lipschitz estimates of the under-
lying dynamical system P would be taken into account, using e.g. the methods
described in [60]. In particular in the present case where P is given by a discretiza-
tion of an ODE of the following form:

xi+1 = P (xi) = xi + hG(xi).

If G is Lipschitz continuous with Lipschitz constant LG, also P is Lipschitz contin-
uous with constant LP , where

LP = 1 + hLG.

The rigorous computation of the attractor of P (i.e. the set S of substationary
points) as described in [60] would lead to two possiblities in case LG is large: (a)
a lot of test points have to be evaluated (in particular in higher dimensions) or (b)
the estimate LP could be reduced by the choice of a small steplength h. But also
this would increase the computational time significantly due to the sparse progress
of the sequences {xi}, and hence a growth of the number of boxes of the collections
– that is anyway large (see Section 2.4) – is expected. Thus, we have to find other
possible ways for the satisfying computation of the Pareto set. One possibility is
proposed in the next section.

6.3.2 Recovering Algorithm

It may be the case that in the course of the subdivision procedure boxes get lost
although they contain substationary points. This will for instance be the case when
there are not enough test points taken into account for the evaluation of F (B) for
a box B ∈ Bk (see Section 2.3). We now describe an algorithm using a kind of
”healing” process which allows to recover those substationary points which have
previously been lost.

Before we can state the algorithm we have to present some more technical details
about box collections. For theoretical purposes denote by Pk a complete partition

73

of the set Q = Bĉ,r̂ into boxes of subdivision size – or depth4 – k, which are gen-
erated by successive bisection of Q. Then there exists for every point y ∈ Q and
every depth k exactly one box B(y, k) ∈ Pk with center c and radius r such that
ci − ri ≤ yi < c+ ri, ∀i = 1, . . . , n.

s 2

s 1

s 4

s 3

B

Figure 6.5: Recovering algorithm: uncomplete covering of the Pareto set (left) and
possible choice of test points for a given box B (right).

The aim of the algorithm is to extend the given box collection step by step along
the covered parts of the set S of substationary points until no more boxes are added.
In order to find the corresponding neighboring boxes of a box B we take starting
points {si}i=1,...,l near B and compute X = {P q(si)|i = 1, . . . , l} with a suitable
power q ≥ 1 in order to obtain points both near B and S. Afterwards the box
collection is extended by the boxes B ∈ Pk which contain elements from X . In the
first step this is done for all boxes from the box collection, for the following steps
this local search has to be performed only in the neighborhood of the boxes which
were added in the preceding step.
For a given box collection Bk the algorithm reads as follows:

(i) for all B ∈ Bk

B.active := TRUE
(ii) for i = 1, . . . ,MaxStep

B̂k := Bk

for all {B ∈ Bk : B.active == TRUE}
choose starting points {si}i=1,...,l near B
X := {P q(si)|i = 1, . . . , l}
B.active := FALSE
for all y ∈ X :

if B(y, k) 6∈ Bk

4Pk and hence every box collection considered here can be identified with a set of leaves of a
binary tree of depth k, see Section 2.3.

74

Bk := Bk ∪ B(y, k)
B(y, k).active := TRUE

if B̂k == Bk STOP

Hence the recovering algorithm allows to add boxes to the given collection. The
desired covering of the set S of substationary points cannot get worse but will
improve if the parameters of the algorithm are adjusted properly. On the other
hand, the recovering algorithm does not adequately perform in the case where a
box does not contain part of S but is possibly far away. In this case the algorithm
would extend the box covering by many undesired regions on the way towards S
in the course of the iteration of test points. This observation is particularly valid
for higher dimensional parameter spaces. A method which allows to overcome this
problem can be found in Section 6.6.

Computational Effort Similar to the discussion made in Section 2.4 we can
give (rough) estimates on the computational effort of the recover algorithm. Let us
again assume we are given an m-dimensional5 manifold M in n-dimensional space
and furthermore we are given a box B ∈ Bk which contains some part of M. Then
we can assume that B has 2m−1 neighbor boxes which also contain some part of M,
hence these boxes build up an m-dimensional cube if the boxes are small enough.
By the same argument (and because M is locally diffeomorph to an m-dimensional
cube) we have to expect to extend Bk by 53 − 1 boxes around B after 2 recovering
steps, whereby 53 − 33 boxes were added in the last steps and will be ”active” in
step 3.
Starting with one single box which contains some part of M, we can assume the
following number of boxes in the first (few) iteration steps:

|B0| = 1

|Bl| = (2l − 1)m + (2l + 1)m − (2l − 1)m

︸ ︷︷ ︸

active boxes

(6.3.11)

The expected number of boxes which are needed to cover M can be estimated by:

|Bl| = (
n
√

2m)l,

where l is the insertion depth of the initial box B. For example, given an MOP
F : R3 → R3 and the insertion deph l = 15 there have to be taken approximately
(at least) 1024 boxes in order to cover M. For l = 21 about 1.6 · 104 and for l = 30
about 1.0 · 107 boxes seem to be required.

6.3.3 Sampling Algorithm

Observe that there are a couple of potential drawbacks which may occur when using
the two algorithms described above:

5In the context of multi–objective optimization it is m = k − 1.

75

(a) the gradients of the objectives are needed,

(b) the set S is generally a strict superset of the Pareto set, and

(c) the algorithms are capable of finding local Pareto points on the boundary of
the domain Q – e.g. via penalization strategies. However, it turned out in
practice that MOPs typically contain many local Pareto points on ∂Q which
are not globally optimal (see e.g. Figure 6.6).

The following sampling algorithm avoids all these problems because it takes only
the function values of the objective functions into account. On the other hand this
algorithm is not as robust to errors as the first two ones because it is only global
relative to the underlying box collection.

In the following we call a point x ∈ X ⊂ Rn nondominated with respect to F
and X if there does not exist a point y ∈ X with F (y) ≤p F (x) and F (y) 6= F (x).
Using this notion an outline of the algorithm is as follows. Given a box collection
Bk−1 the collection Bk is obtained by:

(i) Subdivision
Construct from Bk−1 a new system B̂k of subsets such that

⋃

B∈B̂k

B =
⋃

B∈Bk−1

B

and
diam(B̂k) = θk diam(Bk−1),

where 0 < θmin ≤ θk ≤ θmax < 1.
(ii) Selection
for all B ∈ B̂k

choose a set of test points XB ⊂ B
N := nondominated points of

⋃

B∈B̂k

XB

Bk :=
{

B ∈ B̂k : ∃y ∈ XB ∩N
}

The approach of this algorithm has similar characteristics to well known branch&bound
strategies used for scalar optimization e.g. described in [56] or in [104] and [10]. How-
ever, in contrast to these algorithms we have omitted any bounding strategy. This
can be done because of the special structure of the problem: the larger the number k
of objectives is the more robust the selection step of the algorithm becomes. These
observations coincide with our intuition concerning the nature of multi–objective
optimization. For the efficient realization of the nondominance test in the selection
step we basically use the data structure described in Section 6.5.

76

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

f
1

f
2

a b
| |

0
10

20
30

40 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Figure 6.6: Examples of MOPs with optima relative to the boundary. Left: the
point a is a Pareto point of the MOP given by F (x) = (f1(x), f2(x)) and Q = [a, b].
Right: a covering of the set of local Pareto points. For a detailed discussion of this
particular MOP we refer to Section 6.4.4.

6.3.4 Usage and Combination of the Algorithms

In principle each of the algorithms proposed above is applicable to an MOP on its
own. The subdivision algorithm has the advantage of being very robust with respect
to errors by the use of the descent direction. On the other hand, all the gradients of
the objectives have to be available and the algorithm is unable to distinguish between
a local and a global Pareto point. Furthermore the efficiency of the algorithm will
get worse when the MOP has optima relative to the boundary of the domain.

The recovering algorithm is able to extend the computed box covering of the set
of substationary points but it is just local in nature.

The sampling algorithm is able to detect global Pareto points even on the bound-
ary of the domain due to the fact that it works in the image space of the MOP. Nat-
urally, there remains always uncertainty due to the sampling approach, in particular
when the boxes are big and/or the dimension of the MOP is large. Nevertheless,
results have shown that this algorithm works quite well, in particular when the gra-
dients of the objectives are not available and the dimension of the MOP is moderate.

To obtain an even better performance – i.e. to compute a robust approximation
of the Pareto set and to use a moderate amount of function calls – we propose the
following combination of the three algorithms. Here we assume that the gradients
of all objectives are available.

Step 1 Start with the subdivision algorithm because of its robustness. Take a few
test points for the evaluation of the boxes via the dynamical system P .

Step 2 Apply the recovering algorithm to the box collection which has been computed
in Step 1. This fills the gaps which have possibly been generated in Step 1.

Step 3 Use the sampling algorithm to tighten the extended box collection. By using
this algorithm boxes which only contain local Pareto points can be removed
from the covering. Furthermore boxes get removed which contain no substa-
tionary points but where kept in Step 1 because of the weak convergence of P
in these regions.

77

There are of course other possible ways to combine the algorithms, e.g. it is
possible to apply again the first algorithm on the box collection obtained by the
procedure described above. In Step 2 the number of boxes which are added to the
collection is a measure for the number of test points needed in Step 1.

6.4 Numerical Results for General Models

In this section we illustrate the efficiency of our basic set oriented algorithms for the
computation of Pareto sets by several numerical examples.

6.4.1 Example G1

We begin by considering a simple example in order to illustrate the working principle
of the subdivision procedure.

The MOP is given by two objective functions f1, f2 : R2 → R,

f1(x1, x2) = (x1 − 1)2 + (x2 − 1)4,

f2(x1, x2) = (x1 + 1)2 + (x2 + 1)2.
(6.4.12)

The basic region in parameter space is chosen to be Q = [−5, 5]× [−5, 5]. In Figure
6.7 we show box coverings generated by the subdivision algorithm after several steps
indicating that these sets indeed converge to the set of Pareto points.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

f
1

f 2

Figure 6.7: Successive approximations of the Pareto set of MOP (6.4.12). Left: B2

(yellow), B4 (green), B10 (red) and B20 (black); right: the image F (B20), i.e. an
approximation of the Pareto optimal solutions in image space.

78

6.4.2 Example G2

The following example is taken from [52]:

f1, f2 : R
2 → R

f1(x1, x2) = cos(a(x)) · b(x)
f2(x1, x2) = sin(a(x)) · b(x)

where a(x) :=
2π

360
(ac + a1 · sin(2πx1) + a2 · sin(2πx2))

b(x) := 1 + d · cos(2πx1)

with ac = 45, a1 = 40, a2 = 25 und d = 0.5.

(6.4.13)

Since F = (f1, f2) is periodic, it is sufficient to consider the domain Q = [0, 1]×[0, 1].
The computed solution is shown in Figure 6.8. The covering of the set of Pareto
points (left side) reveal two regions where the convergence is slow. But in fact

Rank(DF ((0.5, 0.25)T) = Rank(DF ((0.5, 0.75)T) = 1,

i.e. the set of Pareto points is not a smooth manifold. By the global approach of the
subdivision algorithm it is practicable to calculate the whole set in one computation
while for example at least three initial Pareto points have to be known to calculate
the set using continuation methods, see [52].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.8: The box–collection B20 of MOP (6.4.13) (left) and its image (right).

6.4.3 Example G3

In this example we consider three objective functions f1, f2, f3 : R3 → R, where

f1(x1, x2, x3) = (x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2,

f2(x1, x2, x3) = (x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2,

f3(x1, x2, x3) = (x1 − 1)2 + (x2 + 1)2 + (x3 − 1)4.

(6.4.14)

79

−1.5

0

1.5

−2

0

2

−2

0

2

 x
1

 x
2

x 3

(a) 10 steps

−1
0

1

−1.5

0

1

−1.5

0

1.5

 x
1

 x
2

x 3

(b) 15 steps

−1

0

1

−1

0

1

−1

0

1

 x
1

 x
2

x 3

(c) 21 steps

Figure 6.9: Box collections B10, B15 and B21 of MOP (6.4.14).

80

Figure 6.10: The box covering B33 of MOP (6.4.14). The visualization was done by
Grape (http://www.iam.uni-bonn.de/sfb256/grape/)

The basic domain is chosen as Q = [−5, 5]3. The resulting box collections are shown
in Figures s 6.9 and 6.10.

Furthermore, this example can be taken to illustrate how the different algorithms
can be combined in order to achieve a better performance. The result shown in
Figure 6.11 was obtained by the following steps:
first the subdivision algorithm was applied for 21 steps using only the center point
of every box as the test point for the dynamical system P (Figure 6.11(a)). Using
only these few test points the computed box collection B21 already reveals the shape
of the set of Pareto points but it also contains many holes. These holes could be
filled by an application of the recovering algorithm on B21 (Figure 6.11(b)). Finally,
the covering was tightened using the sampling algorithm.

6.4.4 Example G4

We now solve an MOP which serves as a model for a problem occuring in production
planning (cf. [96]). Here we have two objective functions f1, f2 : Rn → R,

f1(x) =

n∑

j=1

xj , (6.4.15)

f2(x) = 1 −
n∏

j=1

(1 − wj(xj)), (6.4.16)

81

−1

0

1

−1

0

1

−1

0

1

 x
1

 x
2

x 3

(a) Subdivision

−1

0

1

−1

0

1

−1

0

1

 x
1

 x
2

x 3

(b) Recovering

−1

0

1

−1

0

1

−1

0

1

 x
1

 x
2

x 3

(c) Sampling Algorithm

Figure 6.11: Combination of the three algorithms.

where

wj(z) =

{

0.01 · exp(−(z
20

)2.5) for j = 1, 2

0.01 · exp(− z
15

) for 3 ≤ j ≤ n

The two objective functions have to be interpreted as follows. f1 represents the sum
of the additional cost necessary for a more reliable production of n items. These
items are needed for the composition of a certain product. The function f2 describes
the total failure rate for the production of this composed product.

The basic domain is Q = [0, 40]n. For n = 3 and n = 20 the approximations
are shown in Figure 6.12. These were obtained by the sampling algorithm which is
capable to detect Pareto optimal solutions on the boundary of the domain Q. In
comparison to this we show in Figure 6.6 a covering obtained by the subdivision
algorithm on its own combined with a penalization strategy. It can be observed that
in this case the use of the sampling algorithm is certainly advantageous.

6.4.5 Example G5 – Optimization of an Active Suspension

In this section we illustrate that the developed algorithms can be useful in ap-
plications to real world problems. The following example of optimizing an active
suspension is taken from the field of automotive engineering. As it is not the aim of
this thesis to focus on suspension technology, the problem will be dealt with only in
a reduced form.

It is common in suspension engineering to analyze basic principles of the active
suspension regarding system set–up and controller design by using quarter car mod-
els. These models consist of the proportional mass of the car body, one wheel and
the respective strut6 ([73], [37]). Due to energy considerations, the active interven-
tion of the suspension is usually restricted to lower frequencies (e.g. [9]), which are
– in good approximation – characterized by the dynamical behavior of the car body

6The link kinematics can be considered by scaling the parameters of the strut by an appropriate
translation factor.

82

0
10

20
30

40

0
10

20
30

40
0

10

20

30

40

 x
1

 x
2

x 3

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

sum of additional cost

to
ta

l f
ai

lu
re

 r
at

e
(%

)

(a) Dimension n = 3

0
10

20
30

0
10

20
30

0

10

20

30

40

 x
1

 x
2

x 3

0 200 400 600 800
0

4

8

12

16

sum of additional cost

to
ta

l f
ai

lu
re

 r
at

e
(%

)

(b) Dimension n = 20

Figure 6.12: Results for MOP (6.4.15): For dimension n = 3 after 30 iterations and
for dimension n = 20 after 100 iterations in parameter space (left) and in image
space (right).

83

only. The basic design of the active suspension can therefore be based on a simple
model as illustrated in Figure 6.13.

Figure 6.13: Simplified quarter car model

The road z0 excites the mass mB with its coordinate zB via the strut with spring
constant cstrut and damping constant dstrut. The active suspension allows for an ad-
ditional active force Factive. Using acceleration and level measurements, the car body
dynamics can be attuned to the transfer function given in (6.4.17) and described in
the Laplace–domain.7

G (s) =
zB

z0
(s) =

d s + c

mB s2 + (d+ ds) s + c
(6.4.17)

The spring constant c and the damper constant d are composed of the physical
constants cstrut and dstrut, respectively, and an additional controller part using the
relative velocity between road and car body. The additional damper term ds s in the
denominator can be obtained by using the absolute car body velocity derived from
a measurement of the acceleration.

The fundamental design problem of (6.4.17) is depicted in Figure 6.14 (a) (see
also [51]). The left–hand side shows the response of the car body to a step on the
road of height 1 cm. The spring constant c is kept constant, d and ds are varied such
that d+ ds = const. With increasing ds, the overshoot decreases, which means that
the driving comfort increases.

At the same time it becomes difficult move up a ramp – this fact is illustrated
on the right hand side of Figure 6.14 (a). The ramp excitation corresponds to a
drive with 20 m

sec
on a 15% slope. When the damping of the system is realized by ds

only (d = 0), the simulation shows a ramp error of 57 cm, which means that the car
hits the mechanical buffers while driving along the slope. Thus, in order to optimize
the suspension behavior, it is apparently necessary to consider not only a comfort
criterion but also the ramp error.

7In order to keep the example simple, actuator influences are disregarded here, as are derivative
and measurement filters. An integrating controller part is dispensed with for the same reasons.

84

Driving tests show that a body response of 1 Hz and a damping of 0.6 are per-
ceived to be particularly comfortable. This suggests (6.4.18) as a reference car body
response with respect to comfort.

Gc.o. (s) =
1

Tc.o. s2 + 2 dc.o. s + 1
| Tc.o. =

1

2 π

rad

sec
, dc.o. = 0.6 (6.4.18)

The difference between (6.4.17) and (6.4.18) can be used as a criterion for comfort.
As both functions are minimum phase, it is sufficient to compare the magnitudes of
the transfer functions. These considerations lead to (6.4.19) as the first objective
function:

f1 =
∑

j=0,...,450

(

20 log10

∣
∣
∣G
(

i10−3+ j
450

)∣
∣
∣− 20 log10

∣
∣
∣Gc.o.

(

i10−3+ j
450

)∣
∣
∣

)2

(6.4.19)

As we have already seen in Figure 6.14 (a) it is necessary to add another criterion
for the ramp error. Computing the ramp error for t → ∞, we obtain the following
second objective function

f2 = lim
s→0

s (1 −G (s))
1

s2
=
ds

c
. (6.4.20)

c, d and ds are the free parameters for the optimization, mB is set to 250 kg.
All parameters must be positive to avoid rhs–poles and zeros. f1 and f2 are both
positive penalty functions8. Thus

f1, f2 : R
+,3 → R

+.

The result of the multi–objective optimization is shown in Figure 6.14 (b).
The Pareto set can be divided into two parts: the upper part in parameter space

with ds > 0 belongs to the right hand part of the ’Objectives‘–diagram in Figure
6.14 (b). This part is magnified in the inner figure. The second part in parameter
space lies in the plane where ds = 0. The corresponding curve in image space has
an extremely steep gradient. However, from a physical point of view this branch is
irrelevant. The extremal substationary points of the multi–objective optimization
problem are therefore the points 1 and 2 (see left hand side in Figure 6.14 (b)).
Point 1 is ramp–oriented, point 2 comfort–oriented.

In Figure 6.14 (c) we show the time and frequency response of the car body
corresponding to both of these points. The comfort–oriented substationary point
yields the prescribed comfort optimum (6.4.18), which can be seen both in the
frequency and in the time domain. The ramp–oriented substationary point returns
a ramp error of 0 (only suggested by ∆zramp in Figure 6.14 (c), but it can clearly
be seen in Figure 6.14 (b)). However, with 0.26, the damping of this system is

8For numerical reasons, the parameters lie within the intervals

c ∈ [1, 20000] d ∈ [0, 5000] ds ∈ [0, 5000]

As the result shows, these restrictions have no impact on the optimization.

85

unnecessarily low9. This is due to the choice of the comfort criterion f1. The ramp–
oriented frequency response in Figure 6.14 (c) illustrates the reason: its deviation
from the comfort optimum around its peak response is weighed in the same way
as the deviation at higher frequencies far below 0 dB gain. An increase of damping
using d instead of ds (and thus improving damping without deteriorating the ramp
error) leads to a lower peak–response but also to higher gain at higher frequencies.
This problem could be dealt with by the use of penalty functions. However, further
improvements of the objective functions will be discussed elsewhere.

The optimized set of parameter values determined in the way presented here al-
lows for a controller tuning according to the target customer group. The suspension
design process can be simplified, as test drivers just need to switch between Pareto
points and thus do not have to tune all free parameters without additional support.
In addition, multi–objective optimization of suspension controllers also has the po-
tential for further suspension improvements. For instance, in [51] it is shown that
the Pareto set can be used for the self–optimization of a car.

6.5 A Data Structure for the Computation of the

Nondominance Problem

In this section we propose a data structure for the efficient computation of the non-
dominance problem which occurs in most multi–objective optimization algorithms –
such as in the Sampling Algorithm or in the algorithm ND-Cont which is described
in Section 6.8.
After a detailed description of the method we illustrated its strength by a compar-
ison both with the linear list approach and the quad tree approach on a category
of problems. The computational results indicate that the method is particularly
advantageous in the case where the proportion of the nondominated vectors versus
the total set of criterion vectors is not too large. The data structure was developed
by the author in [100].

6.5.1 Introduction and Background

In most computational algorithms for the solution of a multi–objective optimization
problem

minF : Q ⊂ Rn → Rk (6.5.21)

the problem arises to sort out the nondominated vectors from a given finite (but
large) set of criterion vectors P ⊂ Rk. A vector v is called nondominated in P if
there is no vector p ∈ P which dominates v.
The nondominance problem can be divided into two main classes. First, there is the
static nondominance problem. Here one has to find the subset N of nondominated
vectors of a given set P at once. For details we refer e.g. to [32] and [45], where the
problem is solved up to k = 4.

9But it still lies within the range of today’s suspensions.

86

(a) Step and ramp response of the car body

(b) Result of the multi–objective optimization using the sampling algorithm

(c) Time and frequency responses of the extreme Pareto points

Figure 6.14: Optimization of an active car suspension

87

Second, there is the dynamic nondominance problem which occurs in most multi–
objective optimization techniques and which we want to address in this section. We
are given a set of nondominated vectors P , and, in addition to this set, there is a
sequence of candidates (which is generated by the optimization procedure, e.g. the
Sampling Algorithm described in Section 6.3). For every vector v of this sequence
the archive P has to be updated (see Figure 6.15).

P
v

?

Figure 6.15: Scheme of the dynamic nondominance problem: a given archive P of
nondominated points has to be updated by arriving data.

There are several alternative approaches for the solution of this problem. First, if
all the candidates (and hence all elements of the archive P) lie in bounded (hyper–)
rectangles, it is suitable to use kd–trees ([5, 70]) or range trees ([6, 70]). Priority
trees ([71]) are suitable for the case where these rectangles are unbounded on a single
side. If there are no restrictions to the range of the objectives the intuitive linear
list approach (see e.g. [111]) can be used. Another way of attacking the problem is
proposed in [46], where a clever usage of the data structure quad tree (see [36]) is
utilized. These techniques were refined in [111] and [110]. We refer to [78] for the
extensions of the quad tree approach to multi–objective evolutionary algorithms.
Furthermore, there exists the composite point approach which is presented in [34].
The data structure we are proposing here is – like all the methods mentioned above
except the linear list approach – tree–based.

6.5.2 Attacking the Nondominance Problem

Let us assume that we have a dynamic nondominance problem, i.e. a sequence of
candidates vj ∈ Rk for which a given archive P ⊂ Rk has to be updated.
The basis for our approach is to store the nondominated vectors from P in the
following tree:

Definition A k-ary tree T is called a dominance decision tree, if for every node
p = (p1, . . . , pk) ∈ T and for each existing i-th son s = (s1, . . . , sk) from p the
following holds:

sj ≤ pj ∀j = 1, .., i− 1 (6.5.22)

si > pi (6.5.23)

A simple example of a dominance decision tree for three objectives is shown in
Figure 6.16.

88

10
10
10

�����

HHHHH

11
9
10

1
11
2

6
2
12

Figure 6.16: Example of a dominance decision tree for k = 3.

For a given archive P and a new candidate v ∈ Rk the following steps have to
be performed:

1.) If there exists one vector D ∈ P which dominates v, then STOP, else go to
step 2.

2.) Detect and delete all elements d ∈ P which are dominated by v.

3.) Insert v into the archive P .

In the following we describe how to realize these steps and how to take advantage
of the structure of the dominance decision tree.
ad 1.) Assume that a vector v and an archive P – stored in a dominance decision
tree with root r – are given. First, v has to be compared to the root r. If r domi-
nates v, we stop and v has to be discarded. If v and r are mutually non–dominating,
then the algorithm has to make the comparisons recursively in some subtrees of r.
Due to (6.5.23) this comparison has to be made only in the i-th subtrees of r where
ri ≤ vi. The algorithm DetectDomination reads as follows:

Algorithm DetectDomination

Input: root r, vector v ∈ Rk.

Task: returns 1, if there exists a vector p ∈ P (given by root r) which dominates v,
else 0.

DetectDomination (root r,node v)

if r dominates v
return 1

for i = 1, . . . , k
if ri ≤ vi AND the i-th son of r exists (denote it by r → soni)

if DetectDomination(r → soni, v) == 1

89

return 1
return 0

ad 2.) Assume again that a vector v and a dominance decision tree P are given.
First we have to discuss which nodes have to be checked for domination, i.e. in which
subtrees of P the algorithm has to look for dominated points. With given p ∈ P
it follows by conditions (6.5.22) and (6.5.23) that the search has to be continued in
the first i subtrees of k where i ∈ {1, . . . , k} is the smallest index where vi > pi. In
order to see this let s be a vector from the l-th subtree where i < l ≤ k. Then by
construction of the dominance decision tree:

si

(6.5.22)

≤ pi < vi,

and hence s cannot dominate v.
We illustrate this by an example: let p, v1, v2 and v3 be given by

p =

10
10
10

 , v1 =

12
8
5

 , v2 =

2
12
1

 , v3 =

3
3
3

 .

In case of v = v1 the search has only to be continued in the first subtree of v1, whereas
with the choice of v = v2 the algorithm has to search in the first two subtrees of v2.
Eventually in case of v = v3 the data structure has no advantage because all three
subtrees have to be scanned.
A deletion of a node p ∈ P can be done as follows: if one son s of p does exist, then
it can be moved to the position of p. The other nodes of the subtree of p have to
be reinserted – into the lifted subtree with root s. The deletion of the dominated
nodes can be done via one postorder run through the tree:

Algorithm DeleteDominated

Input: root r, vector v ∈ Rk.

Task: deletes every vector p ∈ P which is dominated by v.

DeleteDominated (root r, vector v)

for i = 1, . . . , k
if the i-th son of r exists (denote it by r → soni)

DeleteDominated (r → soni, v)
if vi > ri

break
if v dominates r

if r is leave
delete r and STOP

j := arg min { the j-th son of r exists (denote it by r → sonj) }
Move r → sonj to the position of r
for l = j + 1, . . . , k

90

if the l-th son of r exists (denote it by r → sonl)
TreeInsert (r → sonl)

delete r

The algorithm TreeInsert used above reads as follows:

Algorithm TreeInsert

Input: root r, root s.

Task: inserts every vector of the tree given by root s into the tree given by root r.

TreeInsert (root r, root s)

for i = 1, . . . , k
if the i-th son of s exists (denote it by s→ soni)

TreeInsert (r, s→ soni)
Insert (r, s)
delete s

ad 3.) By its definition there is only one possible way for the insertion of a vector
v into a given dominance decision tree P (given by root r):

Algorithm Insert

Input: root r, vector v.

Task: inserts v into the archive P (given by root r).

Insert(root r, vector v)

i := arg min {vi > ri}
if the i-th son of r exists (denote it by r → soni)

Insert(r → soni,v)
else
r → soni := v

Now the main algorithm for the update of an archive P (with root r) by a
candidate v can be stated. Note that the root of the dominance decision tree can
be changed in the algorithm DeleteDominated.

Algorithm Update

Input: root r, vector v.

Task: updates the archive P (given by root r) by the candidate v.

91

Update (root r, vector v)

if(P is empty)
P := {v} (r := v)
STOP

if DetectDomination (r, v) == 1
STOP

DeleteDominated (r, v)
Insert ((root of the archive P), v);

The algorithm presented above has the average case complexity of O(n2) for
vector comparisons. However, since there is no algorithm with a provable complex-
ity better than O(n2), we will discuss the particular advantages of the dominance
decision tree approach in the following section.

6.5.3 Computational Results

Here we make a comparison of the approaches which need no restrictions to the
range of the objective values. We compare the linear list approach, the quad tree
approach and the dominance decision tree approach.
For the comparison we proceed as in [111] and take test points generated by an
annulus as criterion vectors because by this category of problems the particular
advantages of the three approaches can be demonstrated.
We choose a sequence of vectors vj ∈ Rk which have to be inserted to the archive
P given by the nondominated vectors of the set {v1, .., vj−1}. The components of
every vector vj = (v1, .., vk) are of the following form:

vi := − r̃i

‖w‖wi, (6.5.24)

where r̃i ∈ [r, 1] and w ∈ Rk
+ are chosen at random. This choice of criterion vectors

allows to adjust not only the number k of ”objectives” but also the proportion pn of
the nondominated vectors versus the total number of criterion vectors: it is easy to
see that the larger the value of r ∈ [0, 1) is the larger the value of pn will typically
be. Exactly this proportion is important for the comparison of the two tree based
approaches: the computational results indicate that the dominance decision tree
approach is advantageous in the case where the proportion pn is ”moderate”. The
larger the value of pn the better is the performance of the quad tree approach and
it gets eventually faster than the dominance decision tree approach. Of course it is
barely possible to detect an exact ”balance proportion” pb

n where the two approaches
have the same running time, but at least it seems to be possible to give some
guidelines.
In Figure 6.17 and Table 6.1 we show that for k = 3 the proportion where the
running time of the two approaches is basically the same is approximately pb

n = 1/3
(with rb = 0.95). That means that the dominance decision tree approach is faster
when the optimization algorithm generates in average at most every third time a
nondominated vector, otherwise the quad tree approach is faster.

92

Table 6.1: Annulus generated test problem results for k = 3

N 2000 4000 6000 8000 10000

r = 0.3 TLL 0.01 0.02 0.03 0.05 0.06
TQT 0.01 0.03 0.04 0.06 0.07

TDDT 0.01 0.01 0.02 0.03 0.03
pn 0.07 0.04 0.04 0.03 0.03

r = 0.5 TLL 0.01 0.03 0.05 0.07 0.10
TQT 0.02 0.03 0.06 0.09 0.10

TDDT 0.01 0.02 0.03 0.04 0.05
pn 0.10 0.07 0.06 0.05 0.04

r = 0.7 TLL 0.02 0.06 0.10 0.16 0.21
TQT 0.03 0.06 0.10 0.15 0.21

TDDT 0.02 0.03 0.05 0.06 0.08
pn 0.15 0.11 0.09 0.07 0.07

r = 0.9 TLL 0.09 0.28 0.56 0.90 1.29
TQT 0.08 0.19 0.31 0.42 0.62

TDDT 0.05 0.11 0.19 0.26 0.33
pn 0.37 0.28 0.23 0.20 0.18

rb = 0.95 TLL 0.29 0.85 1.66 2.66 3.91
TQT 0.13 0.41 0.69 1.05 1.33

TDDT 0.15 0.40 0.65 0.95 1.31
pn 0.61 0.47 0.41 0.36 0.33

For k = 4 the proportion pb
n seems to be 0.5 (see Figure 6.18 and Table 6.2), but

because of the higher dimension the limit radius rb ≈ 0.85 is lower than for k equals
3. A similar observation was made for k = 5 (pb

n ≈ 0.5 but rb ≈ 0.7). This means
that the efficiency of the quad tree approach increases with growing k in comparison
to the dominance decision tree approach.
In the case where k equals 2 we figured out that the linear list approach is faster
than the dominance decision tree approach as well as the quad tree approach. This
is possibly due to the overhead given by the tree based approaches.

93

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.02

0.04

0.06

LL
DDT
QT

(a) r=0.1

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.02

0.04

0.06

LL
DDT
QT

(b) r=0.2

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LL
DDT
QT

(c) r=0.3

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

LL
DDT
QT

(d) r=0.4

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

LL
DDT
QT

(e) r=0.5

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.05

0.1

0.15

LL
DDT
QT

(f) r=0.6

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

LL
DDT
QT

(g) r=0.7

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

LL
DDT
QT

(h) r=0.8

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LL
DDT
QT

(i) r=0.9

Figure 6.17: Annulus generated test problem results for k = 3. In the Fig-
ures the number N of criterion points versus the running time of the three ap-
proaches is plotted for different values of the radius r. Here we have chosen
N = {1000, 2000, . . . , 10000}. For details see Table 6.1.

94

Table 6.2: Annulus generated test problem results for k = 4.

N 2000 4000 6000 8000 10000

r = 0.3 TLL 0.05 0.11 0.21 0.30 0.39
TQT 0.06 0.12 0.19 0.28 0.38

TDDT 0.03 0.07 0.11 0.16 0.20
pn 0.18 0.14 0.12 0.10 0.10

r = 0.5 TLL 0.08 0.21 0.38 0.55 0.77
TQT 0.09 0.21 0.34 0.40 0.52

TDDT 0.05 0.12 0.19 0.25 0.32
pn 0.26 0.20 0.17 0.15 0.14

r = 0.7 TLL 0.17 0.47 0.88 1.38 1.98
TQT 0.14 0.34 0.53 0.72 1.06

TDDT 0.10 0.22 0.38 0.52 0.68
pn 0.42 0.32 0.28 0.25 0.22

rb = 0.85 TLL 0.20 0.71 1.80 3.36 5.25
TQT 0.13 0.29 0.56 0.76 1.20

TDDT 0.11 0.30 0.51 0.74 1.05
pn 0.68 0.56 0.50 0.46 0.43

r = 0.9 TLL 0.45 1.68 3.82 6.98 11.16
TQT 0.23 0.64 1.15 1.65 2.54

TDDT 0.26 0.81 1.49 2.29 3.11
pn 0.85 0.77 0.71 0.66 0.63

95

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

LL
DDT
QT

(a) r=0.1

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

LL
DDT
QT

(b) r=0.2

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
r=0.2

LL
DDT
QT

(c) r=0.3

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

LL
DDT
QT

(d) r=0.4

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LL
DDT
QT

(e) r=0.5

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

LL
DDT
QT

(f) r=0.6

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

LL
DDT
QT

(g) r=0.7

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

LL
DDT
QT

(h) r=0.8

1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

LL
DDT
QT

(i) r=0.9

Figure 6.18: Annulus generated test problem results for k = 4. For details see Figure
6.17 and Table 6.2.

96

6.6 Extensions for Non–Smooth Models

6.6.1 Introduction

This section introduces some modifications on the basic algorithms (see Section 6.3)
which are advantageous in case the derivatives of the objectives of the MOP are
not available. The state of the work presented here is under investigation and the
algorithms have to be refined in the future. The content of this section is partly
developed by the author in [101].

6.6.2 A Short Introduction to MOEA’s

Evolutionary algorithms (EAs) are iterative stochastic search methods that are
based on the two concepts of generate and evaluate [13]. Up to now, there are
many Multi–objective Optimization methods that are based on this idea of EAs
(MOEAs). MOEAs have demonstrated the advantage of using population–based
search algorithms for solving multi–objective optimization problems. In all of these
methods converging to the Pareto–optimal front and maintaining a spread of solu-
tions (diversity) are the most important factors.
MOEAs can be divided into two groups. The first group contains the MOEAs that
always keep the best solutions of each generation in an archive, and they are called
MOEAs with elitism. It is proved by Rudolph ([94, 93, 95]) that in some cases
elitism will provide converging to the true Pareto–optimal front.
In the second group, there is no archive for keeping best solutions and MOEA may
lose them during generations. MOEAs with elitism are studied in several methods
like Rudolph’s Elitist MOEA, Elitist NSGA–II, SPEA, PAES (see [17] for all) and
SPEA2 [119].

Figure 6.19 shows the typical structure of a MOEA with elitism, where t denotes
the number of the generation, Pt the population, and At the archive at generation t.
The aim of function Generate is to generate new solutions in each iteration t which

BEGIN
Step 1: t = 0;
Step 2: Generate the initial population P0 and initial archive A0

Step 3: Evaluate Pt

Step 4: At+1 := Update(Pt, At)
Step 5: Pt+1 := Generate(Pt, At)
Step 6: t = t + 1
Step 7: Unless a termination criterion is met, goto Step 3

END

Figure 6.19: Typical structure of an archive–based MOEA.

is done through selection, recombination and mutation. The function Evaluate
calculates the fitness value of each individual in the actual population Pt. Fitness

97

assignment in MOEA is done in different ways such as by Pareto–ranking [42], non–
dominated sorting [18], or by calculating Pareto–strengths [120]. Since only the
superior solutions must be kept in the archive, it must be updated after each gener-
ation. The function Update compares whether members of the current population
Pt are non–dominated with respect to the members of the actual archive At and how
and which of such candidates should be considered for insertion into the archive and
which should be removed. Thereby, an archive is called domination–free if no two
points in the archive do dominate each other. Obviously, during execution of the
function Update, dominated points must be deleted in order to keep the archive
domination–free.

These three phases of an elitist MOEA are iteratively repeated until a termina-
tion criterion is met such as a maximum number of generations or when there has
been no change in non–dominated solutions found for a given number of generations.
The output of an elitist MOEA is the set of non–dominated solutions stored in the
final archive. This set is an approximation of the Pareto–set and often called quality
set.

The above algorithm structure is common to most elitist MOEAs. In some of
these methods (e.g. Rudolph and Agapie’ Elitist GA, NSGA2, ...), in the case of
inadequate available space in the archive to store all of the non–dominated solutions,
only those non–dominated solutions that are maximally apart from their neighbors
are chosen. Therefore a crowding method is done to select the solutions in less
crowded areas. However, the true convergence property cannot be achieved, since an
existent Pareto–optimal solution may get replaced by a non–Pareto–optimal during
the crowding selection operation. In some other methods (e.g., SPEA) when the
size of the archive exceeds, clustering method is done among the archive members.
The use of clustering among the archive members guarantees spread among them.
However, these algorithms lack a convergence proof, simply because of the same
reason as in crowding methods, during the clustering procedure an existent Pareto–
optimal archive member may get replaced by a non–Pareto–optimal.

Discussion: As it is explained, the elitist MOEAs are suitable candidates to find
Pareto–fronts for different kinds of multi–objective problems ([120], [119], [18], [95],
· · ·). But we have to consider that convergence and diversity are not satisfied
by these methods when solving some test functions. For example in the explained
methods, updating the archive causes difficulties in convergence. On the other hand,
keeping a good spread of solutions in the Pareto–front, for gaining more diversity
emphasizes the regions in the front that are less crowded, which may cause to loose
the better convergence.
Anyway, having a good spread of solutions in the Pareto–front together with a
good convergence is always desired and makes the investigators to compare the
performance of their methods according to theses metrics [65].

98

6.6.3 The Algorithms

Basic idea The algorithms proposed in this section are all based on the following
observation:

MOEAs (typically) generate very quickly some
very good approximations of Pareto points.

Let this be indicated by an example. Figure 6.20 shows the Pareto set of MOP
(6.4.12) which is also used for the illustration of the algorithms proposed in this
section:

f1, f2 : Q ⊂ R2 → R
f1(x) = (x1 − 1)2 + (x2 − 1)4

f2(x) = (x1 + 1)2 + (x2 + 1)2

(6.6.25)

Figure 6.20 (a) shows a start population consisting of 10 randomly chosen points
in the domain Q = [−3, 3] × [−3, 3]. The following two figures show the resulting
populations after 5 and 10 generations using SPEA. It is evident that even after
only 5 generations there are some individuals close to the Pareto set.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) initial population

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b) 5 generations

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(c) 10 generations

Figure 6.20: One advantage of EAs is to find some good solutions quickly. The solid
line indicates the actual Pareto set.

This property makes it possible to improve the sampling algorithm described
above: instead of using many test points to evaluate a (high–dimensional) box, it is
better to take just a few test points as the initial population of a ”short” MOEA10.
The EA only has to run for a short time because a box is kept if it contains at least
only one ”good” point (in this case a nondominated point).

The Algorithms

10A short MOEA is characterized by a short running time; that means small initial population
and few generations

99

EA–subdivision The discussion made above leads directly to the first algorithm:
use the sampling algorithm combined with a ”short” MOEA for the evaluation of
every box. The only modification to the sampling algorithm described in Section
6.3.3 is given by:

PB := final population of ”short” MOEA

The only task of the MOEA is to find as fast as possible one good approximation
of a Pareto point relative to the given domain. So here no diversity or even clustering
are needed. But special attention should be paid so that the MOEA does not get
stuck on local minima. ”Hill climbers” have not been tested successfully in some
cases.

Example 6.6.1 Figure 6.21 shows the coverings of the set of Pareto points after
4, 8 and 12 subdivision steps. The black ”line” indicating the Pareto set is in fact
the resulting box collection after 20 subdivision steps (compare to Example G1). In
this example the population size and the number of generations were chosen as 5.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) 4 steps

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b) 8 steps

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(c) 12 steps

Figure 6.21: Application of EA–subdivision

Recovering As in most of the subdivision algorithms, in the EA–subdivison al-
gorithm the problem remains that boxes which contain a part of the Pareto set can
be sorted out in the selection step, e.g. when the MOEA is too short. As a kind of
”healing” process we describe two algorithms in this section to recover the Pareto set.

Let us first consider the case where the covering is not complete but every box
contains a part of the Pareto set (like box B1 in Figure 6.22). The aim of the al-
gorithm is to extend the given box collection step by step along the covered parts
of the Pareto set until no more boxes are added. In order to find the corresponding
neighboring boxes of a given box B with center c and radius r we run a MOEA
in the extended box B̂ given by center c and radius λ · r with λ > 1, say λ = 3.
Afterwards the box collection is extended by the boxes B ∈ Pk which contain points
from the resulting population (see Figure 6.23). In the first step this is done for

100

all boxes from the box collection, for the following steps this local search has to be
done only in the neighborhood of the boxes which were added in the preceeding step.

With a given box collection Bk the complete algorithm StaticRecover reads as
follows:

Algorithm StaticRecover

1.) for all B ∈ Bk

B.active := TRUE
2.) for i = 1, ..,MaxStep

B̂k := Bk

for all B ∈ Bk : B.active == TRUE
compute MOEA in extended universe B̂ := (B.c, λ ·B.r)
P := final population
B.active = FALSE
for all p ∈ P :

if B(p, k) 6∈ Bk

Bk := Bk ∪ B(p, k)
B(p, k).active = TRUE

if B̂k == Bk STOP

Hence StaticRecover only allows the addition of boxes into the given collec-
tion. The desired covering of the set of Pareto points cannot get worse, but will
improve if the parameters of the algorithm are adjusted properly. On the other
hand, StaticRecover does not treat adequately the case where a box does not con-
tain some part of the Pareto set but is possibly far away (e.g. box B2 in Figure
6.22). In this case the algorithm would extend the box covering by many undesired
regions on their way towards the Pareto set (in particular in higher dimensions).
Thus, when there are ”good” and ”bad” boxes like in Figure 6.22 we propose the
application of the following algorithm.

Algorithm DynamicRecover

1.) for all B ∈ Bk

B.active := TRUE
2.) for i = 1, ..,MaxStep

B̂k := Bk, Bk := ∅
for all B ∈ B̂k : B.active == TRUE

compute MOEA in extended universe B̂ := (B.c, λ ·B.r)
PB := final population

P := nondominated points of
⋃

B∈B̂k

PB

for all p ∈ P :
Bk := Bk ∪ B(p, k)
if B(p, k) ∈ Bk B(p, k).active := FALSE
else B(p, k).active := TRUE

101

if B̂k == Bk STOP

In contrast to StaticRecover this algorithm has again the disadvantage that
good boxes can be deleted while they have been computed once. This will be ad-
dressed in the next subsection. The speed of the algorithm depends – besides of the
MOEA – on the choice of the extension factor λ. A larger value of λ yields faster
convergence but lower robustness. In general, the number of generations and the size
of the initial population should increase with λ. For this local covering of the part of
the Pareto set the MOEA has to preserve diversity. Furthermore the convergence of
the MOEA should be good enough in order not to insert too many superfluous boxes.

B1

B2

P

Figure 6.22: Different problems for recovering

P

(a) covering

P

(b) local search

P

(c) recovering

Figure 6.23: Working principle of StaticRecover

Example 6.6.2 Here again the MOP (6.6.25) is considered. The algorithm Dy-
namicRecover was applied to a chosen initial box collection (see Figure 6.24). The
algorithm stops after two iterations with a total covering of the Pareto set.

6.6.4 Using Archives

So far in this chapter we have developed algorithms for the covering of Pareto sets.
This works particularly well in case the objectives are smooth and/or the dimension

102

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) given ”covering”

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(b) recover step 1

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(c) recover step 2

Figure 6.24: Application of DynamicRecover on MOP (6.6.25).

of the MOP is moderate: in a (not infinitesimal small) neighborhood of an optimal
solution there are typically other points which have similar properties, in particular
in the context of multi–objective optimization. Furthermore, having computed a
tight covering, the set of interest which is contained in the boxes can be retrieved
at any time with negligible computational effort.
This does not hold when the objectives are ”rough”. In this case it can happen more
often that boxes which contain optimal solutions and which were even selected once
to be relevant can get lost in the course of the computation. Thus, for the numerical
treatment of these problems it seems advisable to capture the best solutions which
are detected so far, i.e. to store the nondominated points in an archive.
In the following we give an extension of the algorithm DynamicRecover which carries
out this idea. Roughly speaking, the algorithm DynamicRecover with Archiving

(DRA) performs DynamicRecover on the box collection Bi resulting from the current
archive Ai, which is itself permanently updated by the result of the local search of
DynamicRecover.

Given an initial set of (nondominated) points A0, R0 := A0, and an insertion
depth d the algorithm DRA reads as follows:

Algorithm DynamicRecover with Archiving

for i = 0, 1, 2, . . .

(i) Bi :=
⋃

a∈Ai

B(a, d)

(ii) for all B ∈ Bi : ∃a ∈ B ∩ Ai ∩ Ri−1 (∗)
compute MOEA in extended universe B̂ := (B.c, λ · B.r)
PB := final population

Ri := nondominated points of
⋃

B∈Bi

PB

(iii) Ai+1 := nondominated points of Ai ∪Ri

103

If in addition to the procedure described above a global optimization algorithm
(e.g. a MOEA with elitism) is run on the archive, it is possible to prove convergence
to the Pareto set11. To do this, we now formulate the (basic) algorithm DRA II.

Algorithm DRA II

P0 ⊂ S0 drawn at random
A0 := nondominated points of P0

for j = 0, 1, 2, . . .
Pj+1 := generate (Pj)
Rj+1 := DynamicRecover (Aj)
Aj+1 := nondominated points of Aj ∪ Pj+1 ∪ Rj+1

For convenience of the reader, we recall in the following three required definitions
before we state some convergence results.

Definition 6.6.3 Let a MOP F : Rn → Rk be given. A point x ∈ Rn is weakly
Pareto optimal if there does not exist another point y ∈ Rn such that F (y) <p F (x).

Definition 6.6.4 Let u ∈ Rn and A,B ⊂ Rn. The semi-distance dist(·, ·) and the
Hausdorff distance d(·, ·) are defined as follows:

(a) dist(u,A) := inf
v∈A

‖u− v‖

(b) dist(B,A) := sup
u∈B

dist(u,A)

(c) d(A,B) := max {dist(A,B), dist(B,A)}

Definition 6.6.5 Let X,X1, X2, . . . be random variables on a probability space
(Ω,Σ, µ). If

lim
n→∞

Xn(ω) = X(ω)

for µ-almost all ω ∈ Ω, we say that

lim
n→∞

Xn = X with probability one.

Theorem 6.6.6 Let an MOP F : Q ⊂ Rn → Rk be given, where
Q = [a1, b1] × . . .× [an, bn] ⊂ Rn, ai, bi ∈ R, ai ≤ bi, and F is continuous. Further
let

∀j ∈ N and ∀B ∈ P(Q, j) : P (∃lB ∈ N : PlB ∩ B 6= ∅) = 1 (6.6.26)

Then an application of the algorithm DRA II leads to a sequence of archives {Ai}i∈N,
such that

lim
i→∞

dist(F (PQ), F (Ai)) = 0 with probability one,

where PQ denotes the Pareto set of the given MOP.

11In case the state space is discrete, convergence results can be found [93] and [95].

104

Proof: Let x ∈ PQ. Since (6.6.26) holds, for every i ∈ N there exists a point
xi ∈ B(x, i) such that there is with probability one a ji ∈ N with xi ∈ Pji

(i.e. the
box B(x, i) gets ”’visited”’ by generate() with probability one after finitely many
steps). Hence there exists a point di ∈ Aji

with F (di) ≤p F (xi). By construction of
the archives, for all N > ji there is a point dN

i ∈ AN with

F (dN
i) ≤p F (di). (6.6.27)

Since limi→∞ xi = x and F is continuous it follows that limi→∞ F (xi) = F (x).
Further, since x ∈ PQ we can deduce that

lim
i→∞

F (di) = F (x). (6.6.28)

Combining (6.6.27) and (6.6.28) it follows that

lim
i→∞

dist(F (x), F (Ai)) = 0 with probability one,

and we are done.

Remark 6.6.7 Crucial for the convergence of the algorithm DRA II is the condition
(6.6.26). In case a MOEA is used for the process generate(), this property should
easily be provided if a suitable mutation strategy is applied and if the family of
(finite) state spaces Sj , j ∈ N, for the populations Pj are e.g. characterized by

• Sj ⊂ Q

• Sj ⊃ Sj−1, if j ≥ 1, and

• ∀B ∈ P(Q, j) : ∃x ∈ Sj ∩ B

The next example shows that weak Pareto points which are not properly Pareto
optimal can cause problems for the convergence of the Aj ’s toward the Pareto set if
the state space of the MOP is continuous:
Consider the bicriteria optimization problem which is illustrated in Figure 6.25.
Once the weak Pareto point x1 is added to the archive, this point will only be
discarded when x2 is taken into account, since x2 is the only point which dominates
x1.

Theorem 6.6.8 In addition to the assumptions of Theorem 6.6.6 assume that there
is no weak Pareto point in Q\PQ.
Then the algorithm described above generates a sequence of archives {Ai}i∈N, such
that

lim
i→∞

d(F (PQ), F (Ai)) = 0 with probability one,

where d(·, ·) denotes the Hausdorff distance.

105

| |

x
1
=0 x

2
=π

f
1

f
2

Figure 6.25: The weak Pareto point x1 is only dominated by x2.

Proof: Using Theorem 6.6.6 it remains to show that

lim
i→∞

dist(F (Ai), F (PQ)) = 0 with probability one. (6.6.29)

To see this let x ∈ Q\PQ. Since x is no weak Pareto point there exists a point
p ∈ PQ such that F (p) <p F (x). Since F is continuous there exists a neighborhood
U(p) of p with

F (y) <p F (x) ∀y ∈ U(p).

Further there exists a jp ∈ N with B(p, jp) ⊂ U(p). Since (6.6.26) holds, there exists
with probability one a point d ∈ B(p, jp) and an index j ∈ N with d ∈ Pj . By this
it follows that

x 6∈ AN ∀N ≥ j with probability one,

and the proof is complete.

Remark 6.6.9 It is known that one problem of the application of MOEAs with
elitism is to achieve a satisfying distribution of the entries of the archive (see [95]
or [69]). It was observed that this problem is reduced by using the boxes as a tool
for the localization of the desired area and for further search; see Figure 6.27 for a
(trivial) example. The above condition (∗) ensures that the solutions in the archive
Ai do not seperate into clusters. In addition, the number of entries in an archive
which are contained in a box B can be restricted.

6.7 Numerical Results for Non–Smooth Models

Here we present two MOPs which were computed by the algorithms described in the
last section. The objectives of both models contain a huge number of local minima
which makes them hard to solve by ”gradient–based” algorithms.

106

Ri

Ai

Ai

f1

f2

x1

x2

DynamicRecover Archive

Figure 6.26: Scheme of algorithm DynamicRecover with Archiving (DRA).

6.7.1 Example N1

Now we consider the following MOP

f1, f2 : [−5.12, 5.12]n → R

f1(x) =
n−1∑

i=1

(−10e−0.2
√

x2
i +x2

i+1)

f2(x) =

n∑

i=1

(|xi|0.8 + 5 sin(xi)
3)

(6.7.30)

Figure 6.28 shows a final population using SPEA (size of initial population: 200;
number of generations: 300) and the local improvement by an application of Dy-
namicRecover on this result.

6.7.2 Example N2

Next we consider an MOP which arises in antenna design ([61]):

min

−4π2

∣
∣
∣
∣

n∑

ν=−n

(−i)νJν(k)(xν + iyν)

∣
∣
∣
∣

2

max
η=0,..,5

(

4π2

∣
∣
∣
∣

n∑

ν=−n

(−i)νJν(k)(xν + iyν)e
iνsη

∣
∣
∣
∣

)

(6.7.31)

subject to the constraints

xν , yν ∈ R (ν ∈ Z, |z| ≤ n),

2π
n∑

ν=−n

(x2
ν + y2

ν) ≤ 1
(6.7.32)

with the special discretization points sη = 3
4
π + η π

10
. Here Jν denotes the Bessel

function of ν-th order (hence the antenna was modeled by a hollow cylinder). We
have tested the model for n = 5 and k = 10. Since Jν(x) = (−1)νJ−ν(x) and

107

C ∼= R2 this leads to a model with 12 (real) free parameters. We have applied
recovery techniques on two different SPEA results. Figure 6.29 shows an application
on SPEA result with 200 initial individuals and 300 generations. Figure 6.30 for
1000 initial individuals and 500 generations (total running time: 7.5 hours). A
comparison of both results shows that the recovering techniques improve existing
results but these improvements are local.

Conclusion and Future Work

We have presented algorithms for the computation of the Pareto set of a given multi–
objective optimization problem. Furthermore, we have discussed how to combine
them to increase the performance and have shown its efficiency on several examples.
In future work we have to improve the design of the MOEAs for the special require-
ments of the different algorithms. Further other optimization metaheuristics like
partical swarm optimization have to be tested for the applicability of our methods.

6.8 Extensions for Smooth Models

6.8.1 Introduction

In this section we present improvements of the recovering techniques (see Section
6.3) which can be made when the underlying MOP is smooth enough.
Recall that the substationary points of an MOP are contained in the zero set of
the function F̃ which is defined in (6.2.4). If the objectives – in case the MOP is
constrained, also the constraints – are twice continuously differentiable, the tangent
space TzM (where M = F̃−1(0) and F̃ (z) = 0) can be computed in a numerically
stable way. Using the tangent space of M at a substationary point z = (x, α, λ)
with x ∈ Bx, predictors z̄ = (x̄, ᾱ, λ̄) of further substationary points can be gener-
ated where x̄ is contained in a neighbor box of Bx. Since we use a Gauss–Newton
method starting with these predictors to obtain new zeros of F̃ , the following re-
covering techniques can be viewed as a variant of a predictor–corrector method for
the computation of general implicitly defined manifolds. The boxes serve as a tool
for the (uniform) spread of solutions of M. We will see in the next section that the
particular advantage of the data structure is that also higher dimensional problems
can be solved.

There exist some methods for the computation of differentiable m-manifolds.
For m = 1 these are the well known pathfollowing methods (see e.g. [2] or [91]
and references therein). For m > 1 there exist the moving frame algorithms (see
[92], [90], [7] or [55]), the piecewise linear algorithms (see [3], [4] and [41]) and the
method presented in [50]. In the context of multi–objective optimization homotopy
techniques have been considered in [89] and [52].

108

6.8.2 The Algorithms

Here we propose two algorithms for the computation of smooth multi–objective op-
timization problems. The aim of the first algorithm is the approximation of the
connected components of substationary points which contain ”representatives” in
an initial box collection B. It can also be applied to the computation of general im-
plicitly defined manifolds. The second algorithm uses in addition a nondominated
sorting strategy in order to compute the set of points which are globally optimal –
according to the box collection which is generated by the procedure.

To reduce the computational effort we associate with every box B which is added
to the collection B an approximation aB ∈ Rn+m+1 of a substationary point12

aB = (xB, αB, λB) and F̃ (xB, λB, αB) ≈ 0,

where xB ∈ B, which is being computed during the course of the algorithm.
Given a box collection B containing the corresponding boxes of some initial substa-
tionary points of the underlying MOP and a depth d the algorithm CONT–Recover
reads as follows:

Algorithm CONT–Recover

(1) mark all boxes B ∈ B.

(2) for all marked boxes B ∈ B:

(a) unmark box

(b) compute a set of orthonormal vectors {q1, . . . , qk−1} such that
span{q1, . . . , qk−1} = T(xB ,αB ,λB)M.

(c) generate predictors s1, . . . , snB
∈ T(xB ,αB,λB)M.

(d) for i = 1, . . . , nB:
starting with si, compute (xF , αF , λF) with F̃ (xF , αF , λF) ≈ 0.
If B(xF , d) 6∈ B: add B(xF , d) to the collection B, mark the box,
and set aB(xF ,d) := (xF , αF , λF).

Repeat (2) while new boxes are added to B or until a prescribed maximal
number of steps is reached.

Before we can state the next algorithm we have to make several

Remarks 6.8.1 (a) The orthonormal vectors q1, . . . , qk−1 can be computed via
a QR-decomposition of F̃ ′, for details see [52]. If dim T(xB ,αB,λB)M < k − 1,
then M is not a (k − 1)-dimensional manifold in the neighborhood of the
substationary point (xB, αB, λB). In this case we continue the search in all
coordinate directions, i.e. we take qi = ei, i = 1, . . . , n, where ei is the ith unit
vector of Rn.

12To be more precise, we only allow the addition of a box to the collection if it contains a
substationary point.

109

(b) A note on the predictor step: for an approximation aB = (xB, αB, λB), which
is associated to a box B, we select predictors s = (xs, αs, λs) where xs is
contained in a neighbor box of B, i.e. in a box B̂ with B ∩ B̂ 6= ∅.

(c) A note on the corrector step: for unconstrained MOPs we have used the
iteration function P which is defined in (6.2.8) due to its global convergence.
In the constrained case we have used a Gauss–Newton method (see e.g. [28]).

(d) Since no particular structure of F̃ is taken into account the algorithm is able
to compute general implicitly defined sets H−1(0) of functions

H : Rn → Rm.

In case H is only continuous the algorithm stated above can still be applied
successfully using the following modifications:

– the predictors can be chosen e.g. as qi = ei as described in part (a) of
this remark.

– for the corrector any derivative free minimization algorithm applied on
‖H(x)‖ can serve as e.g. the downhill simplex method of Nelder and
Mead, see [81] or [88].

By the following obvious estimation it follows that the current box collection
B and all neighboring boxes of B13 are contained in the basin of attraction of the
corrector14 – if all boxes are sufficiently small.

Fact 6.8.2 Let B = (c, r) ∈ Bk and let there exist a substationary point p ∈ B,
i.e. there exists an ᾱ ∈ Rk with ᾱi ≥ 0 and

∑k

i=1 ᾱi = 1 and λ̄ ∈ Rm such that
F̃ (p, ᾱ, λ̄) = 0. Furthermore, let F̃ be Lipschitz continuous on a neighborhood U of
B × {ᾱ} × {λ̄} ⊂ Rn+k+m:

‖F̃ (x1, α1, λ1) − F̃ (x2, α2, λ2)‖2 ≤ L‖(x1, α1, λ1) − (x2, α2, λ2)‖2

∀(x1, α1, λ1), (x2, α2, λ2) ∈ U .

Then
‖F̃ (x, ᾱ, λ̄)‖2 ≤ L4‖r‖2 ∀x ∈ {x ∈ Rn|B ∩ B(x, k) 6= ∅}

Proof: Let x ∈ {x ∈ Rn|B ∩B(x, k) 6= ∅}. Then

‖F̃ (x, ᾱ, λ̄)‖2 = ‖F̃ (x, ᾱ, λ̄) − F̃ (p, ᾱ, λ̄)‖2

≤ L‖(x, ᾱ, λ̄) − (p, ᾱ, λ̄)‖2 ≤ L‖x− p‖2 ≤ L4‖r‖2.

The algorithm CONT–Recover generates a box collection which covers all sub-
stationary points which can be reached by the continuation process starting with the

13That is, all boxes B̂ ∈ Pk such that there exists a B ∈ B with B̂ ∩ B 6= ∅.
14Here we assume that the corrector converges locally. This is e.g. the case when a Gauss-Newton

method ([28]) is used.

110

initial box collection B. In the context of multi–objective optimization this leads to
two problems. First, the task is to compute substationary points on every connected
component of M. Therefore, typically any (global) multi–objective optimization al-
gorithm can serve. Unfortunately, it is nearly impossible to compute some optimal
solutions on every connected compontent – without computing the entire Pareto set
– and thus it is reasonable that B contains points which are not globally optimal15.
Furthermore, it can occur that even within one connected component of M there
exist global and local Pareto points (see e.g. Example S4). Hence the second prob-
lem is to discard the obtained solutions which are not globally optimal. Since it is
not efficient to compute every connected component first and then to evaluate the
resulting domain we propose to combine the continuation method with a nondomi-
nated sorting strategy in the following way:
First we build up an archive A using the representative points xB of the initial
box collection B. In the further recovering steps every ”candidate box” B which is
computed in step (2d) of the preceeding algorithm is added to the box collection
if it can compete with all boxes in B, i.e. if xB is not dominated by any vector in
A according to the underlying MOP. This has to be continued until no more boxes
are added to B or a prescribed number of steps is reached. Finally, all boxes have
to be rechecked because it it possible that B contains boxes which cannot compete
with boxes which were added later to the collection. Afterwards, the algorithm has
hopefully computed a suitable covering of the Pareto set. Subsequently, the archive
A can be viewed as a (point–wise) representation of the box collection and thus as
a discretization of the Pareto set.

Given a box collection B and a depth d the algorithm ND–Cont reads as follows:

ND–Cont

(1) (a) A := ∅
(b) for all boxes B ∈ B:

mark box
update the archive A by (xB, F (xB))

(2) (i) for all marked boxes B ∈ B:

(a) unmark box
(b) compute a set of orthonormal vectors {q1, . . . , qk−1} such that

span{q1, . . . , qk−1} = T(xB ,αB ,λB)M.
(c) generate predictors s1, . . . , snB

∈ T(xB ,αB,λB)M.
(d) for i = 1, . . . , nB:

starting with si, compute (xF , αF , λF) with F̃ (xF , αF , λF) ≈ 0.
If B(xF , d) 6∈ B: add B(xF , d) to the collection B, mark the
box, set aB(xF ,d) := (xF , αF , λF), and update the archive A by
(xF , F (xF)).

15To be more precise: B can contain boxes which itself contain no Pareto optimal solutions.

111

(ii) for all marked boxes B ∈ B:

if (xB, F (xB)) 6∈ A: B := B\B
Repeat (2) while new boxes are added to B or until a prescribed maximal
number of steps is reached.

(3) for all boxes B ∈ B:

if (xB, F (xB)) 6∈ A: B := B\B
When the MOP is unconstrained we take in addition to xB further sample points

of a box B to stabilize the selection process. In this case ND–Cont can be viewed
as a combination of the Recover algorithm and the Sampling algorithm which are
described in Section 6.3.

6.8.3 Uniform Distribution of Solutions

The fundamental task of all algorithms presented in this chapter is to provide the
applicator with a sufficient survey of the set of Pareto points. Since the archive
remains finite, the request is that the solutions which are stored in the archive are
distributed uniformly and do not resolve into several clusters. In the following we
give a strategy for the adaptive choice of the size of the boxes which are added to
the collection B, since B is the basis for the archive.

The adaption of the box size is motivated by the following estimation.

Fact 6.8.3 Let x∗ ∈ Bx∗ = (c, r) ∈ B be a substationary point and let the radii of
all neigboring boxes of Bx∗ be equal to r. Furthermore, if F is Lipschitz continuous
with Lipschitz constant L, the following estimation holds:

‖F (y)− F (x∗)‖2 ≤ 4‖r‖2L ∀y ∈ B ∈ B : B ∩ Bx∗ 6= ∅ (6.8.33)

If a prescibed tolerance can be given for every objective – e.g. the smallest
change of the function value which is physically relevant – the size of box Bx∗ = (c, r)
which contains the substationary point x∗ of the rescaled16 problem can be chosen
as follows:

‖r‖2 ≈
tol

4L
(6.8.34)

If the boxes are small enough, one may estimate the Lipschitz constant L by
‖DF (c)‖, which is similar in spirit to [52].

Example 6.8.4 Let us consider the following MOP :

min
x∈R2

F (x)

F (x) =

(

f1(x)

f2(x)

)

=

(

(x1 − 1)4 + (x2 − 1)4

(x1 + 1)2 + (x2 + 1)2

) (6.8.35)

16The important rescalization problem and the related problem of finding appropriate norms for
the treatment of MOPs will not be discussed in this work. For this we refer to [72].

112

The Pareto set of MOP (6.8.35) is given by

P =

{

λ

(
−1
−1

)

+ (1 − λ)

(
1
1

)

: λ ∈ [0, 1]

}

.

Figure 6.32 shows two different discretizations of P. In Figure 6.32 (a) the
Pareto set is approximated by points xi, i = 1, . . . , N , which are placed equidistant
in parameter space:

xi =

(
−1
−1

)

+
2i

N

(
1/
√

2

1/
√

2

)

.

Next, the Pareto set was discretized using the adaptive step size control which
is proposed above:

x0 =

(
−1
−1

)

, xi+1 = xi + hi

(
1/
√

2

1/
√

2

)

,

where hi = tol

L̃i
and

L̃i := ‖DF (xi)‖∞ = max{‖∇f1(xi)‖1, ‖∇f2(xi)‖1}.

Figure 6.32 (b) shows the discretization points xi for tol = 1 yielding a satisfying
distribution of the solution set.

Having computed an approximation of the entire Pareto set P using the strategy
described above the so–called knee of P can easily be determined. The knee of a
Pareto set will be defined here17 as follows:

K(P) := min
x∈P

‖DF (x)‖∞ = min
x∈P

(max{‖∇f1(x)‖1, ‖∇f2(x)‖1}). (6.8.36)

For bicriteria optimization problems K(P) can be interpreted as the maximal bulge
of the solution curve. The knee is interesting in applications because it serves quite
often as the starting point of the decision making process. Figure 6.33 shows the
values of ‖DF (x)‖∞ along the Pareto set P of MOP (6.8.35) as well as K(P).
It has to be mentioned that K(P) is not invariant under the scalarization of the
objectives. However, this seems to be in the nature of the decision making problem
for the author’s opinion.

6.9 Numerical Results for Smooth Models

In this section we illustrate the efficiency of the algorithms which are constructed
for MOPs which are at least twice continuously differentiable by several examples.

17An alternative definition of the knee can be found in [14].

113

6.9.1 Example S1

First we consider the following unconstrained MOP:

f1, f2, f3 : Rn → R
fi(x) =

n∑

j=1

j 6=i

(xj − ai
j)

2 + (xi − ai
i)

4, (6.9.37)

where
a1 = (1, 1, 1, 1, . . .) ∈ Rn

a2 = (−1,−1,−1,−1, . . .) ∈ Rn

a3 = (1,−1, 1,−1, . . .) ∈ Rn

Figure 6.34 shows (once more) how the recovering techniques are working. In
that case, the algorithm CONT–Recover was started with only two initial boxes
which contain substationary points (Figure 6.34 (a)). The algorithm could also be
applied successfully on higher dimensional problems, see Figure 6.35.

6.9.2 Example S2

Next we consider a multi–objective optimization problem consisting of four objec-
tives. In fact, it is an augmented model of MOP (6.9.37):

f1, f2, f3, f4 : Rn → R
fi(x) =

n∑

j=1

j 6=i

(xj − ai
j)

2 + (xi − ai
i)

4, (6.9.38)

where
a1 = (1, 1, 1, 1, . . .) ∈ Rn

a2 = (−1,−1,−1,−1, . . .) ∈ Rn

a3 = (1,−1, 1,−1, . . .) ∈ Rn

a4 = (1, 1,−1,−1, . . .) ∈ Rn

Figures 6.36 and 6.37 show computational results for dimension n = 10 in pa-
rameter space and in image space. The latter figure indicates that the decision
making process may be a challenging task for a ”real world problem”. This problem
is typically yet hard enough for k ≤ 3, but for four objectives there seems to miss
the general view on the set of optimal solutions, even when they are all computed.

6.9.3 Example S3

The recovering techniques which are presented in the last section can also be applied
on general implicitly defined manifolds. In this example we make an insertion from
the field of multi–objective optimization and attend to the computation of H−1(0)

114

of a continuously differentiable function H : Rn → Rm.
In the following we consider the two functions

H1, H2 : R3 → R1

H1(x, y, z) := x4 − 3xy − cos(4z) + cos(xy)

H2(x, y, z) := r2 − z2 − (
√

x2 + y2 − R)2

(6.9.39)

The coverings of the 2-manifolds H−1
1 (0) and H−1

2 (0) are shown in Figure 6.38. The
recovering techniques can be viewed as a particular version of well–known predictor–
corrector methods (see e.g. [90] or [2]). The improvement of this technique will be
one topic for the author for further studies.

6.9.4 Example S4

Now we turn our attention to the following constrained MOP:

minF (x) :=

(x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2

(x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2

(x1 − 1)2 + (x2 + 1)2 + (x3 − 1)4

subject to the equality constraint

h(x) = r2 − z2 − (
√

x2 + y2 −R)2 = 0,

The set of substationary points are thus contained in F̃−1(0), where

F̃ : R3+1+3 → R3+1+1

F̃ (x, α, λ) :=

∑k
i=1 αi∇fi(x) + λ∇h(x)

h(x)
∑k

i=1 αi − 1

Figure 6.39 shows both the set of substationary points (via CONT-Recover) and the
Pareto set (via ND-Cont) for the following values:

Q = [−1, 1]3, z = 0, r = 0.3, R = 0.5.

6.9.5 Example S5

Finally we consider parameter dependent models of the following form:

minFλ : Rn → Rk, λ ∈ Rd

This particular kind of problem e.g. occurs when λ is given data for the underly-
ing system which is modelled by F and can change during the optimization process.

115

(see e.g. [87]) In case λ changes quickly it is not advisable to compute the entire
Pareto set for every value of λ but it may be more efficient to approximate the set
F̃−1(0), where

F̃ : Rn+d+k → Rn+1

F̃ (x, λ, α) :=

k∑

i=1

αi
∂fi

∂x
(x, λ)

k∑

i=1

αi − 1

.

(6.9.40)

When the auxiliary system is computed, the set of substationary points for every
value λ̄ are given by the projection F̃−1(0)|λ=λ̄, which can easily be identified in the
corresponding box collection.
Now we consider the following parameter dependent MOP:

Fλ(x) := (1 − λ)F1(x) + λF2(x), (6.9.41)

where

F1, F2 : R2 → R2

F1(x1, x2) =

(
(x1 − 1)4 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

)

,

F2(x1, x2) =

(
(x1 − 1)2 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

)

.

(6.9.42)

Figure 6.41 shows the set F̃−1(0) of (6.9.41). Two ”classical” Pareto sets particular
values of λ – using the according parts of the box collection for the auxiliary system
– can be seen in Figure 6.42.

6.10 Conclusion and Future Work

In this chapter we have proposed global set oriented methods for the computation
of the Pareto set of MOPs for different smoothness assumptions. The algorithms
can in principle be divided into two categories. First, there are algorithms which are
based on the subdivision techniques presented in Chapter 2. These algorithms are
global in nature but restricted to ”moderate” dimensions of the parameter space.
Furthermore, there are the recovering algorithms which allow the computation of
higher dimensional MOPs. Here, the boxes serve as a surprisingly efficient data
structure for the storage and the distribution of the substationary points due to the
simplicity of its construction. The drawback of these techniques is that they can
perform only locally. In order to increase the total performance – i.e. to obtain
robust algorithms for the computaton of the Pareto set which are not restricted to
low dimensional MOPs – we have given possible ways to overcome this problem by

116

combining the algorithms and/or by involving archiving stategies.

A comparison of the methods for the computation of MOPs is a difficult task
since the different solutions obtained by these methods are not easy to compare.
In the case one can measure the importance of all the objectives of an underlying
MOP an algorithm of the (large) class of weighting sum methods has certainly to
be preferred. But in applications the proper choice of these weights is typically the
crucial problem and the main reason why there is the desire to obtain the entire
Pareto set.
For the comparison of different approximations of the set of Pareto points of a par-
ticular MOP there exist a variety of performance indices (see [17] and references
therein). Since the author shares the opinion of [83] that many performance indices
may be misleading in that they fail to truly reflect the quality of the solution sets
we will not use one of these techniques but will try to classify the set oriented algo-
rithms to other existing methods in a more general way.
The subdivision techniques seem to be advantageous in particular for continuous,
moderate dimensional MOPs due to the global approach. In case the MOP is not
continuous and/or the dimension of the parameter space is large, heuristics like evo-
lutionary algorithms or particle swarm optimization seem to be the best existing
methods so far for the approximation of the Pareto set. For these models the recov-
ering techniques can merely be applied to improve the results which are obtained
by these heuristic algorithms locally and to improve the diversity of the solution
set. This changes when the underlying MOP is at least twice continously differen-
tiable. In this case the recovering techniques can be used to compute the connected
components of the substationary points according to an initial set of solutions very
efficiently due to the knowledge of the structure of the MOP. The results which can
be obtained by the recovering techniques and the method presented in [15] – also
the method described in [38] in case the MOP is convex – seem to be similar for two
and for three objectives. For more than three objectives the recovering techniques
seem to be the solitary method which can produce solutions quickly and reliably.

There are some topics which will be addressed in futher studies. First, there is
the general improvement of the algorithms. For instance, some work has to be done
for the computation of non–smooth models. Here, a combination of the set oriented
methods with a particle swarm approach seems to be very promising and has to
be tested in future. Furthermore, the computation of general implicitly defined
manifolds is under investigation and has to be advanced.
Another important challenge is the decision making process which is the next logical
step after the computation of the Pareto set since the applicator has to choose one
setting of the system. An example, where the knowledge of the entire Pareto set is
advantageous for the (online–)adjustment of such a system is given in [87].

117

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Figure 6.27: Application of algorithm DRA II: the figures show box coverings Bi

and archives Ai of MOP (6.4.12) for i = 6, 8, 10, 12, 18.

118

−90 −85 −80 −75 −70 −65 −60 −55
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Figure 6.28: Local improvement of MOEA result on MOP (6.7.30) by using
DynamicRecover.

−300 −250 −200 −150 −100 −50 0
0

20

40

60

80

100

120

140

160

180

200

−300 −250 −200 −150 −100 −50 0
0

20

40

60

80

100

120

140

160

180

200

Figure 6.29: Computation of MOP (6.7.31): SPEA result (left) and application of
DynamicRecover (right).

119

−300 −250 −200 −150 −100 −50 0
0

50

100

150

200

250

(a) SPEA Result

−300 −250 −200 −150 −100 −50 0
0

50

100

150

200

250

(b) StaticRecover

−280 −270 −260 −250 −240 −230

120

130

140

150

160

170

180

190

200

210

(c) Comparison

Figure 6.30: Computation of MOP (6.7.31): Application of StaticRecover on a
SPEA result and a comparison in a selected area.

A = {x0}
B = {B0}

x0

B0

(a)

B = {B0}
A = {x0, x1, x2}

x0

x1

x2
B0

s1

s2

(b)

A = {x0, x1, x2}
B = {B0, B1, B2}

x0

x1

x2 B0

B1

B2

(c)

Figure 6.31: Possible assignment of a box collection B and archive A by the use of
ND–Cont. The black line indicates the set of substationary points.

120

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

f
1

f 2
(a) fixed step size

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

f
1

f 2

(b) adaptive step size

Figure 6.32: Discretizations of the Pareto set of MOP (6.8.35) with (a) fixed step
size and (b) adaptive step size control.

121

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

f
1

f 2

−1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

70

x
1
 = x

2

||D
F

(x
)|

| ∞

Figure 6.33: The knee of MOP (6.8.35) at x ≈ (0.165, 0.165)T .

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x
1x

2

x 3

(a) initial box collection

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x
1

x
2

x 3

(b) 6 homotopy steps

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x
1

x
2

x 3

(c) 12 homotopy steps

Figure 6.34: Computation of MOP (6.9.37) for dimension n = 3. The figures show
the initial box collection and two extensions. The algorithm stops after 12 homotopy
steps with a perfect covering of the Pareto set.

122

0

100

200

300

400

0 50 100 150 200 250 300 350 400 450

0

20

40

60

80

100

120

140

160

180

200

(a) Dimension n = 100

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

500

1000

1500

2000

2500

f
1

f
2

f 3

(b) Dimension n = 1000

Figure 6.35: Pareto sets of MOP (6.9.37) in image space.

−1

−0.5

0

0.5

1

−1.5
−1

−0.5
0

0.5
1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1x

2

x 4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x
2

x
4

x 6

Figure 6.36: Computation of MOP (6.9.38): The figures show two projections of the
covering of the Pareto set in parameter space for n = 10.

123

0
10

20
30

40
50

0

10

20

30

40

50
0

5

10

15

20

25

30

f
1

f
2

f 3

0
10

20
30

40
50

0

10

20

30

40

50
0

5

10

15

20

25

f
1

f
2

f 4

0
10

20
30

40
50

0
5

10
15

20
25

30

0

5

10

15

20

25

f
1f

3

f 4

0
10

20
30

40
50

0
5

10
15

20
25

30

0

5

10

15

20

25

f
2

f
3

f 4

Figure 6.37: Computation of MOP (6.9.38): The figures show all projections of the
Pareto set in the image space for n = 10.

(a) H−1

1 (0) (b) H−1

2 (0)

Figure 6.38: Computation of implicitly defined manifolds (see (6.9.39)). For H2 we
have chosen r = 1 and R = 4.

124

Figure 6.39: Computation of MOP (6.9.4): set of substationary points (above) and
Pareto points (below).

125

2

4

6

8

2

4

6

8

1

1.5

2

2.5

3

3.5

4

4.5

5

f
1f

2

f 3

Figure 6.40: Computation of MOP (6.9.4): set of Pareto points in image space.

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

λ

Figure 6.41: Family of Pareto sets, see (6.9.41).

126

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

(a) λ = 0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

(b) λ = 1

Figure 6.42: Pareto sets for two values of λ of MOP (6.9.41).

127

Chapter 7

Conclusion

In this thesis we have presented a variety of set oriented algorithms for the compu-
tation of several well-known classes of (global) optimization problems.
To be more precise, we have developed methods for the localization of roots within
a prescribed compact region in Rn and in particular in C. Based on these results
we have derived algorithms for the computation of scalar optimization problems
and for the localization of the stability regions of delay differential equations. In
the main part of this thesis, we have developed techniques for the computation of
multi-objective optimization problems for different assumptions of smoothness on
the underlying models – including equality constraints.
Though we have presented a convergence result of the subdivision algorithm in a
general and abstract form, the quality of all the different algorithms have mainly
been proven on numerous numerical results on models which are of academic nature
and also on models which arise in real world applications.
Overall, it turned out that the set oriented methods presented in this thesis are well
suited for the computation of many classes of global optimization problems and are
not always restricted to a moderate number of dimensions.

The algorithms designed in this thesis were implemented in the software package
GAIO1. It provides flexible and universal interfaces, in order to be easily used for
the application to ”real world” problems.

1http:www-math.upb.de/~agdellnitz/gaio

128

List of Figures

1.1 Roots of the characteristic function of a model of an annular com-
bustion chamber under variation of a critical parameter. See Section
4.4.3 for further information. 8

1.2 Approximation of the stability region of a parameter dependent delay
differential equation with three free parameters (see Section 5.4.3). . . 9

1.3 Pareto set of a multi–objective optimization problem containing an
equality constraint (see Section 6.9.3). 10

2.1 The data structure used for the subdivision techniques. 17
2.2 Example: two subboxes of B cover some part of M after two iteration

steps. 19

3.1 Application of the subdivision algorithm using Newton’s method as
the only dynamical system. The box collections B5,B8 and B11 are
shown. 25

3.2 (a) The box collection B20 consisting of 40648 boxes; (b) the number of
boxes increases permanently with each subdivision step up to depth
20. Note that the box collection is not perfectly symmetric with
respect to the x-axis. This is due to the occurrence of round off
errors in the numerical computation of Ng. 25

3.3 Schematic description of Algorithm B. bk denotes the number of boxes
in the box collection Bk and lk the chosen step length. 28

3.4 Application of Algorithm B: the box collections B15, B18 and the
number of boxes during the subdivision process are shown. 29

3.5 (a) The box collection B20 containing 114 boxes obtained by the adap-
tive algorithm. (b) Number of boxes in the box collections using the
adaptive strategy. 31

3.6 A comparison of the proposed algorithms: the respective number of
boxes in the subdivision procedure is shown (classical Newton (solid),
Algorithm B (dash-dotted) and the adaptive algorithm (dotted)). . . 31

3.7 Numerical results for Example (a). 33
3.8 All the roots of g3. A projection onto the first two coordinates is shown. 35
3.9 Typical chart for the number of boxes vs. the iteration step: a peak

appears in the ”middle” part of the computation. 37

129

3.10 Coverings of the four minima of Example 1 for different iteration steps
generated by algorithm DSBB. It can be observed that the roots ∇f
which are not relevant in the optimization context get discarded soon
in the course of the computation (compare to Figure 3.1). 39

3.11 A comparison of the number of boxes which were produced in every
iteration step by the different methods. 40

4.1 Boundary of the rectangle R and its parametrization γR = γ1 + γ2 +
γ3 + γ4. 46

4.2 Box coverings of the set of zeros of g1 obtained by the QZ-40 algorithm. 47
4.3 All the roots of g2 within the rectangle R = [−12, 0] × [−40, 40]. . . . 48
4.4 All the roots of ∆1 inside R = [−15000, 5000] × [−15000, 15000]. . . . 50
4.5 All the roots of ∆2 inside R = [−200, 600]×[0, 3000] varying τ ∈ [0, 0.006]. 50
4.6 A zoom into Figure 4.5: localization of zeros varying τ ∈ [0, 0.006]. . . 51

5.1 A mechanical model of the stick balancing problem. 53
5.2 Adaptive refinement of the set S1 which is defined in (5.3.7). 56
5.3 Approximation of the stability region of (5.4.8). 57
5.4 Two coverings of the stability region of Example B for the delay τ = 1. 58
5.5 Approximated stability region for Example B and for the delay τ = 2. 58
5.6 Covering of the stability region after 14 steps for Example B and

τ ∈ [0, 2]. 59
5.7 Stability region of the stick balancing problem (Example C). 60

6.1 Hypothetical candidates for a possible motorcycle–buying decision–
making problem. 63

6.2 Dominated and non–dominated solutions: solution y2 dominates y4

and y5. The solutions y1 and y2 (as well as e.g. y2 and y3) cannot
be compared, i.e. y1 and y2 (as well as y2 and y3) are mutually non–
dominating. 65

6.3 Multi–objective problem (6.2.2) and Pareto set in parameter space
and in image space, indicated by the red line. 66

6.4 Two objective functions fj : R→ R (j = 1, 2) on the interval [−1, 3]. 66
6.5 Recovering algorithm: uncomplete covering of the Pareto set (left)

and possible choice of test points for a given box B (right). 74
6.6 Examples of MOPs with optima relative to the boundary. Left: the

point a is a Pareto point of the MOP given by F (x) = (f1(x), f2(x))
and Q = [a, b]. Right: a covering of the set of local Pareto points.
For a detailed discussion of this particular MOP we refer to Section
6.4.4. 77

6.7 Successive approximations of the Pareto set of MOP (6.4.12). Left:
B2 (yellow), B4 (green), B10 (red) and B20 (black); right: the image
F (B20), i.e. an approximation of the Pareto optimal solutions in image
space. 78

6.8 The box–collection B20 of MOP (6.4.13) (left) and its image (right). . 79
6.9 Box collections B10, B15 and B21 of MOP (6.4.14). 80

130

6.10 The box covering B33 of MOP (6.4.14). The visualization was done
by Grape (http://www.iam.uni-bonn.de/sfb256/grape/) 81

6.11 Combination of the three algorithms. 82
6.12 Results for MOP (6.4.15): For dimension n = 3 after 30 iterations

and for dimension n = 20 after 100 iterations in parameter space
(left) and in image space (right). 83

6.13 Simplified quarter car model . 84
6.14 Optimization of an active car suspension 87
6.15 Scheme of the dynamic nondominance problem: a given archive P of

nondominated points has to be updated by arriving data. 88
6.16 Example of a dominance decision tree for k = 3. 89
6.17 Annulus generated test problem results for k = 3. In the Figures the

number N of criterion points versus the running time of the three
approaches is plotted for different values of the radius r. Here we
have chosen N = {1000, 2000, . . . , 10000}. For details see Table 6.1. . 94

6.18 Annulus generated test problem results for k = 4. For details see
Figure 6.17 and Table 6.2. 96

6.19 Typical structure of an archive–based MOEA. 97
6.20 One advantage of EAs is to find some good solutions quickly. The

solid line indicates the actual Pareto set. 99
6.21 Application of EA–subdivision . 100
6.22 Different problems for recovering . 102
6.23 Working principle of StaticRecover 102
6.24 Application of DynamicRecover on MOP (6.6.25). 103
6.25 The weak Pareto point x1 is only dominated by x2. 106
6.26 Scheme of algorithm DynamicRecover with Archiving (DRA). . . . 107
6.27 Application of algorithm DRA II: the figures show box coverings Bi

and archives Ai of MOP (6.4.12) for i = 6, 8, 10, 12, 18. 118
6.28 Local improvement of MOEA result on MOP (6.7.30) by using DynamicRecover.119
6.29 Computation of MOP (6.7.31): SPEA result (left) and application of

DynamicRecover (right). 119
6.30 Computation of MOP (6.7.31): Application of StaticRecover on a

SPEA result and a comparison in a selected area. 120
6.31 Possible assignment of a box collection B and archive A by the use

of ND–Cont. The black line indicates the set of substationary points. 120
6.32 Discretizations of the Pareto set of MOP (6.8.35) with (a) fixed step

size and (b) adaptive step size control. 121
6.33 The knee of MOP (6.8.35) at x ≈ (0.165, 0.165)T 122
6.34 Computation of MOP (6.9.37) for dimension n = 3. The figures show

the initial box collection and two extensions. The algorithm stops
after 12 homotopy steps with a perfect covering of the Pareto set. . . 122

6.35 Pareto sets of MOP (6.9.37) in image space. 123
6.36 Computation of MOP (6.9.38): The figures show two projections of

the covering of the Pareto set in parameter space for n = 10. 123

131

6.37 Computation of MOP (6.9.38): The figures show all projections of
the Pareto set in the image space for n = 10. 124

6.38 Computation of implicitly defined manifolds (see (6.9.39)). For H2

we have chosen r = 1 and R = 4. 124
6.39 Computation of MOP (6.9.4): set of substationary points (above) and

Pareto points (below). 125
6.40 Computation of MOP (6.9.4): set of Pareto points in image space. . . 126
6.41 Family of Pareto sets, see (6.9.41). 126
6.42 Pareto sets for two values of λ of MOP (6.9.41). 127

132

List of Tables

2.1 Approximate (round up) numbers of boxes e(n,m, d) which have to
be evaluated for several dimensions of the dynamical system f (n)
and of the set M (m) for several iteration steps. Here one bisection
per iteration step was used (i.e. b = 1). 19

2.2 Optimal number b of bisection steps for different values of the expan-
sion factor χ. Here it is assumed that the expansion is fixed for the
next d steps. 21

2.3 Number of boxes e2(n,m, d), i.e. b = 2, which have approximately to
be evaluated for several dimensions of the dynamical system f (n) and
of the set M (m) for several iteration steps. Note that the difference
to the values of e1(n,m, d) is hardly noticable when the fraction m

n
is

small. 21

3.1 Performance of the different zero finding procedures. In the table #
IP denotes the number of test points per box (subdivision procedure)
or the total number of initial points (NAG solver). # FC denotes the
number of function calls and # DC the number of derivative calls.
The computations have been done on a SUN Ultra 10 Workstation. . 34

3.2 Comparison for the test function g3. The notation is the same as in
Table 3.1. 35

3.3 Comparison for the test function g4. The notation is the same as in
Table 3.1. 35

4.1 Performance of the different zero finding procedures. 48

6.1 Annulus generated test problem results for k = 3 93
6.2 Annulus generated test problem results for k = 4. 95

133

Bibliography

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, 1983.

[2] E. L. Allgower and K. Georg. Numerical Continuation Methods. Springer, 1990.

[3] E. L. Allgower and S. Gnutzmann. An algorithm for piecewise linear approximation
of implicitly defined two-dimensional surfaces. SIAM Journal of Numerical Analysis,
24:452–469, 1987.

[4] E. L. Allgower and P. H. Schmidt. An algorithm for piecewise-linear approximation
of an implicitly defined manifold. SIAM Journal of Numerical Analysis, 22:322–346,
1987.

[5] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, pages 509–517, 1975.

[6] J. L. Bentley and J. H. Friedmann. Data structures for range searching. Computing
Surveys, 4:398–409, 1979.

[7] M. L. Brodzik and W.C. Rheinboldt. The computation of simplicial approximations
of implicitly defined two- dimensional manifolds. Comput. Math. Appl., 9:9–21, 1994.

[8] T. A. Burton. Lyapunov’s direct method for delay equations. In Proceedings of the
11th International Conference on Nonlinear Oszillations, 1987.

[9] G. Castiglioni, K. Jäker, and F. Schlüter. Das aktive Fahrwerk mit elektrischen
Aktuatoren. AT Automatisierungstechnik, 07 1996.

[10] I. Chauduri, S. Sertl, H. Zoltán, M. Dellnitz, and T. Fraunheim. Global optimization
of silicon nanoclusters. Submitted to Applied Surface Science, 2003.

[11] S. N. Chow, J. Mallet-Paret, and J. A. Yorke. Finding zeros of maps. Math. Comp.,
32:887–899, 1978.

[12] C. A. Coello Coello and M. S. Lechunga. MOPSO: A proposal for multiple objec-
tive particle swarm optimization. In Proceedings of the IEEE World Congress on
Computational Intelligence, IEEE Press, 2002.

[13] D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimization. Mc Graw Hill,
1999.

[14] I. Das. On characterizing the ”knee” of the Pareto curve based on n normal-boundary
intersection. Structural Optimization, 2/3:107–115, 1999.

134

[15] I. Das and J. Dennis. Normal-boundary intersection: A new method for generating
the pareto surface in nonlinear multicriteria optimization problems. SIAM Journal
of Optimization, 8:631 – 657, 1998.

[16] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, 2001.

[17] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, 2001.

[18] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel
Problem Solving from Nature VI (PPSN-VI), pages 849–858, 2000.

[19] K. Deb, S. Pratap, and A. Meyarivan. A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-II. In Proceedings of the Parallel
Problem Solving from Nature VI Conference, pages 849–858. Springer, 2000.

[20] K. Deimling. Nichtlineare Gleichungen und Abbildungsgrad. Springer, 1974.

[21] M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of un-
stable manifolds and global attractors. Numerische Mathematik, 75:293–317, 1997.

[22] M. Dellnitz and O. Junge. An adaptive subdivision technique for the approximation
of attractors and invariant measures. Comput. Visual. Sci., 1:63–68, 1998.

[23] M. Dellnitz, O. Junge, R. Strzodka, and M. Rumpf. The computation of an invariant
set inside a cylinder with a knotted flow. Proc. of Equadiff99, pages 1053 – 1059,
2000.

[24] M. Dellnitz, O. Schütze, and T. Hestermeyer. Covering pareto sets by multilevel
subdivision techniques. To appear in J. Opt. Th. Appl., 2004.

[25] M. Dellnitz, O. Schütze, and St. Sertl. Finding zeros by multilevel subdivision
techniques. IMA Journal of Numerical Analysis, 22(2):167–185, 2002.

[26] M. Dellnitz, O. Schütze, and Q. Zheng. Locating all the zeros of an analytic func-
tion in one complex variable. Journal of Computational and Applied Mathematics,
138:325–333, 2002.

[27] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, 1983.

[28] P. Deuflhard and A. Hohmann. Numerische Mathematik. de Gruyter, 1991.

[29] R. Devaney. Chaotic Dynamical Systems. Addison-Wesley, 1989.

[30] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H.-O. Walther. Delay
Equations. Springer, 1995.

[31] L. E. El’sgol’ts and S. B. Norkin. Introduction to the Theory and Application of
Differential Equations with Deviating Arguments. Academic Press, 1973.

[32] F. P. Preparata and M. I. Shamos. Computational Geometry - An Introduction.
Springer Verlag, 1988.

135

[33] K. Falconer. Fractal Geometry. John Wiley & Sons, 1990.

[34] J. Fieldsend, R.M. Everson, and S. Singh. Using unconstrained elite archives for
multi-objective optimisation. to appear, 2003.

[35] J. E. Fieldsend and S. Singh. A multi-objective algorithm based upon particle swarm
optimization, an efficient data structure and turbulence. In Proceedings of the 2002
U.K. Workshop on Computational Intelligence, 2002.

[36] R. A. Finkel and J. L. Bentley. Quad trees, a datastructure for retrieval on composite
keys. Acta Informatica, 4:1–9, 1974.

[37] D. Fischer, M. Börner, and R. Isermann. Control of mechatronic semi-active vehicle
suspensions. In 2nd IFAC Conference on Mechatronic Systems, Berkeley, Ca. IFAC,
2002.

[38] J. Fliege and A. Heseler. Constructing approximations to the efficient set of convex
quadratic multiobjective problems. University of Dortmund, Germany, Technical
Report, 2003.

[39] J. Fliege and B. F. Svaiter. Steepest descent methods for multicriteria optimization.
Mathematical Methods of Operations Research, 51(3):479–494, 2000.

[40] C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele. Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003. Springer,
2003.

[41] S. Gnutzmann. Stückweise lineare Approximation implizit definierter Mannig-
faltigkeiten. PhD thesis, University of Hamburg, 1989.

[42] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Inc., 1989.

[43] A. Göpfert and R. Nehse. Vektoroptimierung. BSB Teubner Verlagsgesellschaft,
Leipzig, 1990.

[44] G. Grübel and H. D. Joos. Multi-objective parameter synthesis (MOPS). In J. F.
Magni, S. Bennani, and J. Terlouw, editors, Robust Flight Control, Lecture Notes in
Control and Information Sciences 224, Springer, London, 1997.

[45] P. Gupta, R. Janardan, M. Smid, and B. Dasgupta. The rectangle enclosure and
point-dominance problems revisited. Int. J. Comput. Geom. Appl., 5:437–455, 1997.

[46] W. Habenicht. Quad trees, a datatructure for discrete vector optimization problems.
Lecture Notes in Economics and Mathematical Systems, 209:136–145, 1983.

[47] J. K. Hale. Theory of Functional Differential Equations. Springer Verlag, New York,
1977.

[48] E. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, 1992.

[49] H. Hemami, F.C. Weimer, C.S. Robinson, W.C. Stockwell, and V.S. Cvetkovic.
Biped stability considerations with vestibular models. IEEE Trans. Automatic Con-
trol, 23:1074–1079, 1978.

136

[50] M. E. Henderson. Multiple parameter continuation: Computing implicitly defined
k-manifolds. International Journal of Bifurcation and Chaos, 12:451–476, 2002.

[51] T. Hestermeyer and O. Oberschelp. Selbstoptimierende Fahrzeugregelung - Ver-
haltensbasierte Adaption. In Intelligente mechatronische Systeme, volume 122 of
HNI-Verlagsschriftenreihe. Heinz Nixdorf Institut, 2003.

[52] C. Hillermeier. Nonlinear Multiobjective Optimization - A Generalized Homotopy
Approach. Birkhäuser, 2001.

[53] D. M. Himmelblau. Applied Nonlinear Programming. McGraw Hill Book Company,
1972.

[54] M. W. Hirsch and S. Smale. On algorithms for solving f(x) = 0. Communications
on Pure and Applied Mathematics, 32:281–312, 1979.

[55] A. Hohmann. An adaptive continuation method for implicitly defined manifolds.
Konrad-Zuse-Zentrum Berlin, Technical Report, 1991.

[56] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer,
1993.

[57] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer,
1996.

[58] H. Hsu. Global analysis by cell mapping. Int. J. Bif. Chaos, 2:727–771, 1992.

[59] J. Jahn. Mathematical Vector Optimization in Partially Ordered Linear Spaces.
Verlag Peter Lang GmbH, Frankfurt am Main, 1986.

[60] O. Junge. Mengenorientierte Methoden zur numerischen Analyse dynamischer Sys-
teme. PhD thesis, University of Paderborn, 1999.

[61] A. Jüschke and J. Jahn. A bicriterial optimization problem of antenna design. Comp.
Opt. Appl., 7:261–276, 1997.

[62] W. E. Karush. Minima of functions of several variables with inequalities as side
conditions. PhD thesis, Master’s Dissertation, University of Chicago, 1939.

[63] B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, 1996.

[64] R. B. Kellogg, T. Y. Li, and J. Yorke. A constructive proof of the brouwer fixed-point
theorem and computational results. SIAM J. Numer. Anal., 13:473–483, 1976.

[65] J. Knowles and D. Corne. On metrics for comparing nondominated sets. In Congress
of Evolutionary Computation (CEC2002), pages 711–716, 2002.

[66] V. B. Kolmanovskii and V. R. Nosov. Stability of Functional Differential Equations.
Academic Press, London, 1986.

[67] P. Kravanja, M. Van Barel, O. Ragos, M.N. Vrahatis, and F. A. Zafirpoulos. ZEAL:
A mathematical software package for computing zeros of analytic functions. Com-
puter Physics Communications, 124:212–232, 2000.

137

[68] H. Kuhn and A. Tucker. Nonlinear programming. Proc. Berkeley Symp. Math.
Statist. Probability, (J. Neumann, ed.), pages 481–492, 1951.

[69] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. On the convergence and diversity-
preservation properties of multi-objective evolutionary algorithms. TIK-Report No.
108, ETH Zürich, 2001.

[70] M. de Berg and M. van Kreveld and M. Overmars and O. Scharzkopf. Computational
Geometry: algorithms and applications. Springer Verlag, 1997.

[71] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257–276,
1985.

[72] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,
1999.

[73] M. Mitschke. Dynamik der Kraftfahrzeuge, volume C: Fahrverhalten. Springer
Verlag, 2nd edition, 1990.

[74] J. Moré, B. Garbow, and K. Hillstrom. Testing unconstrained optimization software.
ACM Trans. Math. Soft., 7:17–41, 1981.

[75] A. Morgan. A homotopy for solving general polynomial systems that respects m-
homogenuous structures. Appl. Math. Comp., 24:101–113, 1987.

[76] S. Mostaghim. Multi-Objective Evolutionary Algorithms, Data Structures, Conver-
gence and Diversity. PhD thesis, University of Paderborn, 2004.

[77] S. Mostaghim and J. Teich. Strategies for finding good local guides in multi-objective
particle swarm optimization. In IEEE 2003 Swarm Intelligence Symposium, IEEE
Press, 2003.

[78] S. Mostaghim, J. Teich, and A. Tyagi. Comparison of data structures for storing
pareto-sets in moeas. Int. J. Comput. Geom. Appl., 5:437–455, 2002.

[79] E. Münch. Mehrgrößenoptimierung - Algorithmusentwicklung an der Spurführung
der NPB (Neue Bahntechnik Paderborn). Diploma Thesis, University of Paderborn,
2004.

[80] Yu. I. Neimark. The structure of the D-partitioning of the space of quasipolynomials
and the diagramms of Vishnegradskii and Nyquist. Dok. Adad. Sci. USSR, 60:1503–
1506, 1948.

[81] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

[82] H. Nyquist. Regeneration theory. Bell Syst. Tech. J., 11(1):126–147, 1932.

[83] T. Oktabe, Y. Jin, and B. Sendhoff. A critical survey of performance indices
for multi-objective optimization. In IEEE Congress on Evolutionary Computation,
IEEE Press, 2003.

138

[84] H.-O. Peitgen and M. Prüfer. The Leray-Schauder continuation method is a con-
structive element in the numerical study of nonlinear eigenvalue and bifurcation
problems. In H.-O. Peitgen and H.O. Walther, editors, Functional Differential Equa-
tions and Approximation of Fixed Points, volume 730 of Lecture Notes in Mathe-
matics, 1979.

[85] H. O. Peitgen, M. Prüfer, and K. Schmitt. Global aspects of the continuous and
discrete Newton method: a case study. Acta. Appl. Math., 13:123–202, 1988.

[86] L. S. Pontryagin. On the zeros of some elementary transcendental functions. AMS
Transl., 1:545–552, 1955.

[87] A. Pottharst, K. Baptist, O. Schütze, J. Böcker, N. Fröhlecke, and M. Dellnitz. Op-
erating point assignment of a linear motor driven vehicle using multiobjective op-
timization methods. Proceedings of the 11th International Conference EPE-PEMC
2004, Riga, Latvia., 2004.

[88] R. P. Brent. Algorithms for Minimization without Derivatives. Englewood Cliffs,
NJ, 1973.

[89] J. Rakowska, R. T. Haftka, and L. T. Watson. Tracing the efficient curve for
multi-objective control-structure optimization. Computing Systems in Engineering,
2(6):461–471, 199.

[90] W. Rheinboldt. On the computation of multi-dimensional solution manifolds of
parametrized equations. Numer. Math., 53:165–181, 1988.

[91] W. C. Rheinboldt. Numerical Analysis of Parametrized Nonlinear Equations. Wiley,
1986.

[92] W. C. Rheinboldt. On a moving frame algorithm and the triangulation of equilibrium
manifolds. In T. Küpper, R. Seydel, and H. Troger, editors, Bifurcation: Analysis,
Algorithms, Applications, Birkhäuser, Basel, 1987.

[93] G. Rudolph. Finite Markov chain results in evolutionary computation: A tour
d’horizon. Fundamenta Informaticae, 35:67–89, 1998.

[94] G. Rudolph. On a Multi-Objective Evolutionary Algorithm and Its Convergence
to the Pareto Set. In 5th IEEE Conference on Evolutionary Computation, pages
511–516, 1998.

[95] G. Rudolph and A. Agapie. On a multi-objective evolutionary algorithm and its con-
vergence to the Pareto set. In Congress on Evolutionary Computation (CEC2000),
pages 1010–1016, 2000.

[96] S. Schäffler, R. Schultz, and K. Weinzierl. A stochastic method for the solution
of unconstrained vector optimization problems. J. Opt. Th. Appl., 114(1):209–222,
2002.

[97] K. Schittkowski. EASY-OPT: An interactive optimization system with automatic
differentiation - user’s guide. Department of Mathematics, University of Bayreuth,
Technical Report, 1999.

139

[98] K. Schittkowski. NLPJOB version 2.0: A Fortran code for multicriteria optimiza-
tion - user’s guide. Department of Mathematics, University of Bayreuth, Technical
Report, 2003.

[99] O. Schütze. Zur globalen Lösung nichlinearer Gleichungssysteme mit Hilfe von Un-
terteilungsalgorithmen. Diploma Thesis, University of Bayreuth, 1999.

[100] O. Schütze. A new data structure for the nondominance problem in multi-objective
optimization. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele,
editors, Evolutionary Multi-Criterion Optimization (EMO 03), volume 2 of Springer,
2003.

[101] O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich. Covering Pareto sets by multi-
level evolutionary subdivision techniques. In C. M. Fonseca, P. J. Fleming, E. Zitzler,
K. Deb, and L. Thiele, editors, Evolutionary Multi-Criterion Optimization, Lecture
Notes in Computer Science, 2003.

[102] S. Sertl. Parallele Algorithmen zur Analyse dynamischer Systeme. Diploma Thesis,
University of Bayreuth, 1998.

[103] S. Sertl. Parallele Algorithmen zur globalen Optimierung. PhD Thesis, University
of Paderborn (unpublished), 2004.

[104] S. Sertl and M. Dellnitz. Global optimization using a dynamical systems approach.
Submitted to J. Glob. Optim., 2003.

[105] M. Shub. Global Stability of Dynamical Systems. Springer, 1987.

[106] G. Stépán. Retarded Synamical Systems: Stability and Characteristic Functions.
Longman Scientific & Technical, 1989.

[107] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation, and Applica-
tions. John Wiley & Sons, Inc., 1986.

[108] R. E. Steuer, editor. Multiple Criteria Decision Making and Risk Analysis Using Mi-
crocomputers, chapter The Tchebycheff Procedure of Interactive Multiple Objective
Programming, pages 235–249. Springer, Berlin, 1989.

[109] I. Stewart, T. Elmhirst, and J. Cohen. Symmetry-breaking as an origin of species.
To appear, 2000.

[110] M. Sun and R. E. Steuer. InterQuad: An interactive quad tree based procedure
for solving the discrete alternative multiple criteria problem. European Journal of
Operational Research, 89:462–472, 1996.

[111] M. Sun and R.E. Steuer. Quad-trees and linear lists for identifying nondominated
criterion vectors. INFORMS J. Comput., 4:367–375, 1996.

[112] V. Pareto. Cours d’Economie Politique. Libraire Droz, Genève, 1964 (first edition
in 1896).

[113] J. Verschelde and A: Haegemans. Homotopies for solving polynomial systems within
a bounded domain. Theoretical Comp. Sci. A., 133(3):165–185, 1994.

140

[114] A. Wolf. Zur numerischen Berechnung des Abbildungsgrades. Diploma Thesis, Uni-
versity of Paderborn, 2002.

[115] X. Ying and N. Katz. A reliable argument principle algorithm to find the number
of zeros of an analytic function in a bounded domain. Numerische Mathematik,
53:143–163, 1988.

[116] X. Ying and N. Katz. A simple reliable solver for all the roots of a nonlinear function
in a given domain. Computing, 41:317–333, 1989.

[117] Q. Zheng and M. Dellnitz. Schwingungen eines Ringoszillators – eine numerische
Behandlung unter Berücksichtigung der Symmetrie. ZAMM, 70:T135 – T138, 1990.

[118] E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne. Evolutionary Multi-
Criterion Optimization. First International Conference, EMO 2001. Springer, 2001.

[119] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto evo-
lutionary algorithm. In Evolutionary Methods for Design, Optimisation and Control
with Applications to Industrial Problems, 2002.

[120] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and and the strength Pareto approach. IEEE Trans. on Evolutionary
Computation, 3(4):257–271, 1999.

141

