
Universidad de La Laguna

Departamento de Ingenieŕıa Informática

Tesis Doctoral

Ajuste de Parámetros en Algoritmos Evolutivos
Secuenciales y Paralelos

Un Enfoque basado en Hiper-heuŕısticas y
Estrategias de Control de Parámetros

Parameter Setting in Sequential and Parallel
Evolutionary Algorithms

An approach based on Hyper-heuristics and
Parameter Control Strategies

Eduardo Manuel Segredo González

Dirigida por Dra. Coromoto León Hernández y Dr. Carlos Segura González

- 2014 -





Dra. Coromoto León Hernández, con N.I.F. 78605216-W, profesora titular
de la Escuela Técnica Superior de Ingenieŕıa Informática, adscrita al Departamento
de Ingenieŕıa Informática y al área de Lenguajes y Sistemas Informáticos, y Dr.
Carlos Segura González, con N.I.F. 78704244-S

C E R T I F I C A N

Que la presente memoria titulada:

“Ajuste de Parámetros en Algoritmos Evolutivos Secuenciales y Paralelos.
Un Enfoque basado en Hiper-heuŕısticas y Técnicas de Control de Parámetros”

ha sido realizada bajo su dirección por D. Eduardo Manuel Segredo González,
con N.I.F. 78564242-Z, y constituye su Tesis para optar al grado de Doctor por la
Universidad de La Laguna.

Y para que aśı conste, en cumplimiento de la legislación vigente y a los efectos
oportunos firman la presente en La Laguna, a 13 de junio de 2014.





Doctoral Dissertation

Parameter Setting in Sequential
and Parallel Evolutionary

Algorithms

An Approach based on Hyper-heuristics and
Parameter Control Strategies

Author

Eduardo Manuel Segredo González

Supervised by

Dr. Coromoto León Hernández

Dr. Carlos Segura González

June 2014





Acknowledgements

I would like to thank my advisors Coromoto León and Carlos Segura for their time
and constant support. I would also like to acknowledge Gara Miranda and Casiano
Rodŕıguez for their advice and encouragement.

I dedicate this work to my parents, my sister, and my girlfriend for their encour-
agement, love, and patience, and in general to every member of my family for their
full support during all these years.

I am also grateful to my friends and workmates for all those nice moments that
have made things easier.

I would like to thank the Spanish Ministry of Science and Innovation for grant
fpu-ap2009-0457. This work was also funded by the European Commission (feder)
and the Spanish Ministry of Science and Innovation as part of the ‘Plan Nacional de
i+d+i’, with contract numbers tin2005-08818-c04-04, tin2008-06491-c04-02, and
tin2011-25448. The Government of the Canary Islands also funded this work
through project pi2007/015. I am also grateful to the hpc-europa2 Project (num-
ber: 228398) supported by the European Commission—Capacities Area—Research
Infrastructures. Part of this work made use of the hector facilities, the uk’s na-
tional high-performance computing service, which is provided by uoe hpcx Ltd at
the University of Edinburgh, Cray Inc and nag Ltd, and funded by the Office of
Science and Technology through the epsrc’s High End Computing Programme. Fi-
nally, I would like to acknowledge the usage of the computational facilities provided
by the ‘Servicio de Apoyo Informático a la Investigación’ (saii), which belongs to
the University of La Laguna.

Eduardo Manuel Segredo González

i





Abstract

In recent decades a wide range of algorithmic approaches have been designed to solve
both single-objective and multi-objective optimisation problems. The application
of exact methods allows the optimal solutions of these optimisation problems to be
obtained. However, exact methods are generally not affordable for many complex
applications; as a result, a wide variety of approximate algorithms have been devel-
oped with the aim of obtaining high-quality solutions in a reasonable amount of time
that might be quite close to the optimal solutions. Among the groups of approximate
algorithms, the family of heuristics and meta-heuristics is worth mentioning.

Meta-heuristics are a set of approximate techniques that have become popular for
solving optimisation problems. They are high-level problem-independent strategies
that guide a set of heuristics in the search of an optimum. A large variety of
meta-heuristics have been proposed in the literature. Among them, Evolutionary
Algorithms (EAs) are one of the most popular strategies. They are population-based
meta-heuristics inspired by biological evolution. EAs have shown great promise
for calculating solutions to large and difficult single-objective and multi-objective
optimisation problems. Nevertheless, even with the application of meta-heuristics
like EAs, the resolution of some complex optimisation problems could involve using
a vast amount of computational resources and time. As a result, the parallelisation
of EAs has been proposed in order to speed up the process of obtaining high-quality
solutions, and consequently deal with such complex problems. Among the different
parallel EAs proposed in the literature, the island-based model is one of the most
frequently used schemes, because it is suitable for parallel architectures and it can
be combined with both single-objective and multi-objective methods.

One of the main drawbacks of EAs is that, for some problems, they exhibit a
tendency to converge towards local optima due to diversity loss in populations with
a finite size—also called genetic drift. Genetic drift is the main reason for the ap-
pearance of premature convergence in EAs. One of the proposals that has gained
some popularity in recent years to address the problem of premature convergence

iii



relies on applying multi-objective schemes to single-objective optimisation prob-
lems. Several ways of applying the multi-objective concepts have been devised, with
diversity-based Multi-Objective Evolutionary Algorithms (MOEAs) being one of the
most promising schemes. In these algorithms, a metric of the diversity introduced
by each individual is used as an auxiliary objective, whereas the original objective
function of the optimisation problem being solved is kept.

Besides the problem of premature convergence, finding the appropriate setting for
an EA remains one of the persistent challenges for Evolutionary Computation (EC).
In order to completely define a configuration of an EA several symbolic parameters,
such as the variation or parent selection operators, and different numeric parameters,
such as the mutation and crossover rates, must be set. In general, the performance of
an EA and, consequently, the quality of the resulting solutions, is highly dependent
on these parameters. As a result, it is essential that the parameters of an EA
be suitably determined. Parameter setting strategies are commonly divided into
two categories: parameter tuning and parameter control. In parameter tuning the
objective is to identify the best set of values for the parameters of a given EA,
which is then executed using these values, which remain constant for the duration
of the run. In contrast, the aim of parameter control is to design control strategies
that select the most suitable values for the parameters at each stage of the search
process while the algorithm is being executed. In recent years, parameter tuning
approaches have exhibited some disadvantages with respect to parameter control
methods, so recent research developments have focused on control strategies, since
it has been theoretically and empirically demonstrated that the most appropriate
parameter values change depending on the stage of the optimisation procedure.

Thus, in this dissertation the main aim is twofold. Firstly, to design and study
diversity-based MOEAs as methods for dealing with premature convergence in EAs.
In this regard, several diversity metrics with parameters are proposed as novel aux-
iliary objectives, as well as a novel diversity-based survivor selection mechanism
which preserves diversity in a population of individuals. Secondly, to design sev-
eral parameter control strategies with the final aim of being able to simultaneously
adapt numeric and symbolic parameters of an EA. These parameter control schemes
are based on the usage of Fuzzy Logic Controllers and Hyper-heuristics, and they
are applied, respectively, to adapt numeric and symbolic parameters belonging to
the proposed diversity-based MOEAs. Additionally, in order to more quickly ob-
tain high-quality solutions and to enable the usage of some of these techniques in
parallel environments, they are integrated with an island-based model. Finally, the
validation of the different proposals is carried out by measuring their performance
over a set of well-known benchmark problems and real-world complex applications.

iv



Contents

Acknowledgements i

Abstract iii

I Foundations, Background, and Contributions 1

1 Introduction 3

1.1 Optimisation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Single-objective Optimisation Problems . . . . . . . . . . . . . 4
1.1.2 Multi-objective Optimisation Problems . . . . . . . . . . . . . 5

1.2 Optimisation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Approximate Algorithms . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Premature Convergence . . . . . . . . . . . . . . . . . . . . . 19
1.2.5 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.6 Performance Measurement . . . . . . . . . . . . . . . . . . . . 25

1.3 Parallel and Distributed Computing . . . . . . . . . . . . . . . . . . . 26
1.3.1 Parallel Architectures . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Parallel Programming Models . . . . . . . . . . . . . . . . . . 33
1.3.3 Performance Measurement in Parallel Applications . . . . . . 36

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Evolutionary Algorithms 45

2.1 A Brief Historical Introduction . . . . . . . . . . . . . . . . . . . . . 45
2.2 Basic Concepts for Evolutionary Algorithms . . . . . . . . . . . . . . 49

v



2.2.1 Parent Selection Mechanisms . . . . . . . . . . . . . . . . . . 52
2.2.2 Crossover Operators . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.3 Mutation Operators . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.4 Survivor Selection Methods . . . . . . . . . . . . . . . . . . . 60

2.3 Single-objective Evolutionary Algorithms . . . . . . . . . . . . . . . . 61
2.3.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Multi-objective Evolutionary Algorithms . . . . . . . . . . . . . . . . 64
2.4.1 Dominance-based Multi-objective Evolutionary Algorithms . . 65

2.5 Memetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6 Parallel Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . 73

2.6.1 Island-based Model . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Background in MOEAs for Single-objective Optimisation 79

3.1 Diversity-based Multi-objective Evolutionary Algorithms . . . . . . . 80
3.1.1 Encoding-independent Measures . . . . . . . . . . . . . . . . . 81
3.1.2 Genotypic and Phenotypic Measures . . . . . . . . . . . . . . 82
3.1.3 Behavioural Measures . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Multi-objectivisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 State of the Art in Parameter Setting in Evolutionary Algorithms 89

4.1 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Parameter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Synergy between Fuzzy Systems and Evolutionary Algorithms . . . . 95

4.3.1 Adapting Evolutionary Algorithms using Fuzzy Logic Con-
trollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Hyper-heuristics as Parameter Control Methods . . . . . . . . . . . . 104

II Algorithmic Proposals 111

5 Advances in Diversity-based MOEAs 113

5.1 Diversity-based Objectives with Parameters . . . . . . . . . . . . . . 113
5.2 Diversity-based Survivor Selection Scheme . . . . . . . . . . . . . . . 116

6 Innovations in Parameter Control Schemes 121

6.1 Fuzzy Logic Controllers with Multiple Rule Bases . . . . . . . . . . . 121
6.2 Hyper-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 Dynamic-mapped Island-based Model . . . . . . . . . . . . . . . . . . 131
6.4 Hybrid Control Scheme based on FLCs and Hyper-heuristics . . . . . 132

vi



III Validation of the Algorithmic Proposals: Benchmark
Problems and Complex Applications 135

7 Benchmark Problems 137

7.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2 Optimisation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1 Single-objective Genetic Algorithms . . . . . . . . . . . . . . . 140
7.2.2 Diversity-based Multi-objective Evolutionary

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3 Parameter Control Schemes . . . . . . . . . . . . . . . . . . . . . . . 141

7.3.1 Fuzzy Logic Controllers and Hyper-heuristics . . . . . . . . . . 142
7.3.2 Self-adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3.3 Hybrid Control Scheme based on Fuzzy Logic Controllers and

Hyper-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . 144

7.4.1 Performance of the Diversity-based Multi-objective Evolution-
ary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.2 On the Application of Diversity-based Objectives with Param-
eters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4.3 Improving the Robustness of the Diversity-based
Multi-objective Evolutionary Algorithm . . . . . . . . . . . . 152

7.4.4 Analysis of the Parameter Control Schemes Over a Short Eval-
uation Timeframe . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4.5 Analysis of the Parameter Control Schemes Over a Long Eval-
uation Timeframe . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4.6 Comparison between Short and Long Evaluation Periods . . . 159
7.4.7 Comparing Parameter Control and Parameter Tuning . . . . . 160
7.4.8 Analysis of the Hybrid Control Scheme based on Fuzzy Logic

Controllers and Hyper-heuristics . . . . . . . . . . . . . . . . . 164
7.4.9 Analysis of the Diversity-based Survivor Selection Operator . 168

8 Antenna Positioning Problem 175

8.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.2 Optimisation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.2.1 Single-objective Iterated Local Search . . . . . . . . . . . . . . 177
8.2.2 Diversity-based Multi-Objective Evolutionary Algorithms . . . 180
8.2.3 Parallel Homogeneous Island-based Models . . . . . . . . . . . 180

8.3 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . 181
8.3.1 On the Comparison of Diversity-based Objectives . . . . . . . 181

vii



8.3.2 Diversity-based Multi-Objective Evolutionary Algorithms vs.
Single-objective Iterated Local Search . . . . . . . . . . . . . . 184

8.3.3 Analysing the Robustness of the Homogeneous Island-based
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.3.4 Analysing the Scalability of the Homogeneous Island-based
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9 Frequency Assignment Problem 191

9.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2 Optimisation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.2.1 Evolutionary Algorithm with Increasing Population Size . . . 196
9.2.2 Diversity-based Multi-objective Memetic Algorithm and Multi-

objectivisation by Aggregation . . . . . . . . . . . . . . . . . . 198
9.2.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . 199
9.2.4 Individual Learning Strategy . . . . . . . . . . . . . . . . . . . 200

9.3 Parameter Control Schemes . . . . . . . . . . . . . . . . . . . . . . . 202
9.3.1 Fuzzy Logic Controllers and Hyper-heuristics . . . . . . . . . . 203
9.3.2 Dynamic-mapped Island-based Model . . . . . . . . . . . . . . 203

9.4 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . 204
9.4.1 On the Comparison of Sequential Memetic Algorithms . . . . 205
9.4.2 Long-term Analysis of the Sequential Memetic Algorithms . . 209
9.4.3 Analysing the Robustness of the Dynamic-mapped Island-

based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.4.4 Analysing the Scalability of the Dynamic-mapped

Island-based Model . . . . . . . . . . . . . . . . . . . . . . . . 215
9.4.5 Adapting the parameter pm of the Neighbour-based Mutation

Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.4.6 Adapting the parameter R of the Neighbour-based Mutation

Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

10 Two-dimensional Packing Problem 231

10.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2 Optimisation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 234

10.2.1 Evolutionary Algorithm with Increasing Population Size . . . 234
10.2.2 Diversity-based Multi-objective Memetic Algorithms and Multi-

objectivisation by Aggregation . . . . . . . . . . . . . . . . . . 234
10.2.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . 236
10.2.4 Individual Learning Strategy . . . . . . . . . . . . . . . . . . . 236
10.2.5 Parallel Homogeneous Island-based Models . . . . . . . . . . . 238

viii



10.3 Parameter Control Schemes . . . . . . . . . . . . . . . . . . . . . . . 238
10.3.1 Dynamic-mapped Island-based Model . . . . . . . . . . . . . . 239

10.4 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . 239
10.4.1 Comparison of the Sequential Memetic Algorithms . . . . . . 240
10.4.2 Analysis of the Parallel Homogeneous Island-based Models . . 243
10.4.3 On the comparison of the Memetic Algorithms based on the

Non-Dominated Sorting Genetic Algorithm II and the Strength
Pareto Evolutionary Algorithm 2 . . . . . . . . . . . . . . . . 246

10.4.4 Analysing the Robustness of the Dynamic-mapped Island-
based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10.4.5 Analysing the Scalability of the Dynamic-mapped Island-based
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

IV Conclusions and Future Lines of Research 261

V Appendices 267

A List of Publications 269

B Fuzzy Rule Bases 273

B.1 Fuzzy Rule Bases for the fuzzy-a and fuzzy-a-tsk Approaches . . 273
B.2 Fuzzy Rule Bases for the fuzzy-b and fuzzy-b-tsk Approaches . . 281

Bibliography 285

ix



x



List of Algorithms

1 Generic pseudocode for an evolutionary algorithm . . . . . . . . . . . 50
2 Pseudocode of the different single-objective genetic algorithms . . . . 63
3 Pseudocode of the Non-Dominated Sorting Genetic Algorithm II . . . 67
4 Pseudocode of the Strength Pareto Evolutionary Algorithm 2 . . . . . 69
5 Generic pseudocode for a memetic algorithm . . . . . . . . . . . . . . 72
6 Pseudocode of the novel diversity-based survivor selection scheme . . 119
7 Pseudocode of the novel fuzzy logic controller . . . . . . . . . . . . . 123
8 Generic pseudocode for an iterated local search . . . . . . . . . . . . 178
9 Pseudocode of the Evolutionary Algorithm with Increasing Popula-

tion Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10 Pseudocode of the memetic algorithm based on the Non-Dominated

Sorting Genetic Algorithm II . . . . . . . . . . . . . . . . . . . . . . . 199
11 Pseudocode of the individual learning strategy designed for the Fre-

quency Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . 201
12 Pseudocode of the memetic algorithm based on the Strength Pareto

Evolutionary Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . 235

xi





List of Figures

1.1 Graphical representation of the Pareto dominance concept . . . . . . 7
1.2 Relationship between different complexity classes (p 6= np) . . . . . . 12
1.3 Classification of optimisation methods . . . . . . . . . . . . . . . . . 14
1.4 General architecture of a shared-memory system . . . . . . . . . . . . 29
1.5 Architecture of a uniform memory access system with m processors

and n cores each . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6 Architecture of a non-uniform memory access system with m proces-

sors and n cores each . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.7 General architecture of a distributed-memory system . . . . . . . . . 32

2.1 Flow chart representing an evolutionary algorithm generation . . . . . 51
2.2 Parent selection based on a deterministic binary tournament . . . . . 54
2.3 Operation of the Uniform Crossover . . . . . . . . . . . . . . . . . . . 55
2.4 Operation of the One Point Crossover . . . . . . . . . . . . . . . . . . 55
2.5 Operation of the Two-Dimensional Sub-String Crossover . . . . . . . 58
2.6 Operation of the bit flip mutation . . . . . . . . . . . . . . . . . . . . 59

4.1 Three-layer hierarchy of parameter tuning . . . . . . . . . . . . . . . 90
4.2 Taxonomy of parameter setting in evolutionary algorithms . . . . . . 94
4.3 General architecture of a fuzzy logic controller . . . . . . . . . . . . . 100
4.4 Membership functions for the linguistic variable fan speed . . . . . . . 101
4.5 General framework of a hyper-heuristic . . . . . . . . . . . . . . . . . 108

5.1 Behaviour of the Non-Dominated Sorting Genetic Algorithm II and
the Strength Pareto Evolutionary Algorithm 2 combined with diversity-
based objectives without threshold (left-hand side) and with threshold
(right-hand side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Simple function where diversity preservation problems arise . . . . . . 117

6.1 Membership functions for the input and output variables . . . . . . . 125

xiii



6.2 Multi-level architecture of the novel hybrid parameter control scheme 133

7.1 Chromosome representing an individual for the self-adaptive schemes 143

7.2 Mean of the original objective value achieved by the parameter control
methods and by fixed values of the threshold ratio . . . . . . . . . . . 161

7.3 Median of the original objective value achieved for different threshold
ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.4 Box plots for the worst-behaved executions considering different stop-
ping criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5 Box plots considering a population size equal to 500 individuals . . . 174

8.1 Evolution of the mean original objective value for different diversity-
based objective functions . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.2 Run-length distributions for quality level L1 . . . . . . . . . . . . . . 185

8.3 Run-length distributions for quality level L2 . . . . . . . . . . . . . . 186

8.4 Evolution of the mean original objective value for the homogeneous
island-based models executed with 4 islands . . . . . . . . . . . . . . 187

8.5 Run-length distributions for the homogeneous island-based models
executed with 4 islands . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.6 Run-length distributions for the homogeneous island-based models
executed with 4, 8, and 16 islands . . . . . . . . . . . . . . . . . . . . 189

9.1 Generating a new neighbour by reassigning the frequencies belonging
to a certain sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9.2 Evolution of the mean original objective value for the different memetic
approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.3 Box plots for the best configurations of the memetic approaches . . . 209

9.4 Run-length distributions for the best configurations of the memetic
approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.5 Evolution of the mean original objective value for the dynamic-mapped
island-based model executed with 4 islands . . . . . . . . . . . . . . . 212

9.6 Box plots for the dynamic-mapped island-based model executed with
4 islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

9.7 Run-length distributions for the dynamic-mapped island-based model
executed with 4 islands . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.8 Box plots for the best (left-hand side) and worst (right-hand side)
migration stages for the Seattle instance – 4, 8, 16, and 32 islands . . 218

9.9 Box plots for the best (left-hand side) and worst (right-hand side)
migration stages for the Denver instance – 4, 8, 16, and 32 islands . . 218

xiv



10.1 Assignment of the objective function value for the Two-Dimensional
Packing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.2 Generation of new neighbours by the learning process . . . . . . . . . 237
10.3 Evolution of the mean original objective value for the different memetic

approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
10.4 Box plots for the homogeneous island-based models executed with 4

islands for 12 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
10.5 Box plots for the homogeneous island-based models executed with 4

islands and considering a fixed computational effort . . . . . . . . . . 244
10.6 Run-length distributions for the homogeneous island-based models

executed with 4 islands for 12 hours . . . . . . . . . . . . . . . . . . . 245
10.7 Evolution of the mean original objective value for the dynamic-mapped

island-based model executed with 4 islands . . . . . . . . . . . . . . . 250
10.8 Box plots for the dynamic-mapped island-based model executed with

4 islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.9 Box plots for the dynamic-mapped island-based model with the best

(left-hand side) and worst (right-hand side) migration stages for the
first instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.10Box plots for the dynamic-mapped island-based model with the best
(left-hand side) and worst (right-hand side) migration stages for the
second instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.11Run-length distributions for the dynamic-mapped island-based model
with the best (left-hand side) and worst (right-hand side) migration
stages for the first instance . . . . . . . . . . . . . . . . . . . . . . . . 255

10.12Run-length distributions for the dynamic-mapped island-based model
with the best (left-hand side) and worst (right-hand side) migration
stages for the second instance . . . . . . . . . . . . . . . . . . . . . . 256

10.13Box plots for the dynamic-mapped island-based model with the best
migration stage for the first and second instances . . . . . . . . . . . 258

10.14Long-term evolution of the mean original objective value for the
dynamic-mapped island-based models . . . . . . . . . . . . . . . . . . 259

xv



xvi



List of Tables

2.1 Implementation details for the canonical evolutionary algorithms . . . 47

2.2 Evolutionary process versus resolution of an optimisation problem . . 49

5.1 Assignment of the non-domination rank by a diversity-based opti-
miser using the Non-Dominated Sorting Genetic Algorithm II . . . . 118

6.1 Rule bases designed for fuzzy-a and fuzzy-a-tsk (left-hand side);
and for fuzzy-b and fuzzy-b-tsk (right-hand side) . . . . . . . . . 127

7.1 Definition of the F1–F11 benchmark functions . . . . . . . . . . . . . 138

7.2 Properties of the F1–F11 benchmark functions . . . . . . . . . . . . . 139

7.3 Definition of the F12–F19 hybrid composition benchmark functions . 139

7.4 Best configurations for the single-objective and the diversity-based
approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5 Median of the error achieved by the best configurations of both opti-
misation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.6 Percentage of evaluations saved by the best configuration of the diversity-
based multi-objective evolutionary algorithm . . . . . . . . . . . . . . 148

7.7 Statistical comparison between different values of the threshold ratio 148

7.8 Number of evaluations required by different threshold ratios to attain
a given quality level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.9 Statistical comparison among different threshold values for each op-
timisation stage – F4 benchmark function . . . . . . . . . . . . . . . 150

7.10 Statistical comparison among different threshold values for each op-
timisation stage – F5 benchmark function . . . . . . . . . . . . . . . 150

7.11 Statistical comparison among different threshold values for each op-
timisation stage – F11 benchmark function . . . . . . . . . . . . . . . 151

7.12 Number of evaluations required by the hyper-heuristic to attain a
given quality level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xvii



7.13 Resources assigned by the hyper-heuristic for benchmark problems
with no variability in the threshold ratio . . . . . . . . . . . . . . . . 153

7.14 Statistical comparison between the hyper-heuristic and different low-
level configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.15 Parameterisation of the diversity-based multi-objective evolutionary
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.16 Parameterisation of the hh-eli and hh-prob hyper-heuristics . . . . 155

7.17 Parameterisation of the fuzzy-a and fuzzy-b fuzzy logic controllers 155

7.18 Mean original objective value for the best parameter control schemes
after 5 · 105 evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.19 Mean original objective value for the best parameter control schemes
after 2.5 · 106 evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.20 Maximum number of evaluations required to attain the specified qual-
ity level and percentage of evaluations saved by each approach . . . . 163

7.21 Parameterisation of the diversity-based multi-objective evolutionary
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.22 Parameterisation of the hh-prob hyper-heuristic . . . . . . . . . . . 165

7.23 Parameterisation of the fuzzy-a fuzzy logic controller . . . . . . . . 165

7.24 Values for the parameters of the best fixed configuration . . . . . . . 166

7.25 Median of the error attained by the hybrid control scheme and by the
best fixed configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.26 Probability of selecting the best individuals . . . . . . . . . . . . . . . 171

7.27 Evaluations saved by not using the diversity-based survivor selection
scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.28 Statistical comparison considering different stopping criteria . . . . . 173

8.1 Statistical comparison among different diversity-based objectives . . . 183

8.2 Amount of additional resources invested by the diversity-based multi-
objective evolutionary algorithm with respect to the iterated local
search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.1 Statistical comparison among different memetic approaches for the
Seattle instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.2 Statistical comparison among different memetic approaches for the
Denver instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.3 Statistical comparison among different configurations of the variation
stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.4 Statistical comparison among different migration stages for the Seat-
tle instance – 4 islands . . . . . . . . . . . . . . . . . . . . . . . . . . 214

xviii



9.5 Statistical comparison among different migration stages for the Den-
ver instance – 4 islands . . . . . . . . . . . . . . . . . . . . . . . . . . 214

9.6 Speedup factors achieved by the dynamic-mapped island-based model
for the Seattle instance – 4 islands . . . . . . . . . . . . . . . . . . . . 215

9.7 Speedup factors achieved by the dynamic-mapped island-based model
for the Denver instance – 4 islands . . . . . . . . . . . . . . . . . . . 215

9.8 Speedup factors achieved by the dynamic-mapped island-based model
for the Seattle instance – 8, 16, and 32 islands . . . . . . . . . . . . . 216

9.9 Speedup factors achieved by the dynamic-mapped island-based model
for the Denver instance – 8, 16, and 32 islands . . . . . . . . . . . . . 216

9.10 Statistical comparison among different migration stages for the Seat-
tle instance – 32 islands . . . . . . . . . . . . . . . . . . . . . . . . . 217

9.11 Statistical comparison among different migration stages for the Den-
ver instance – 32 islands . . . . . . . . . . . . . . . . . . . . . . . . . 217

9.12 Parameterisation of the diversity-based multi-objective memetic al-
gorithm for different values of the parameter pm . . . . . . . . . . . . 219

9.13 Parameterisation of the hyper-heuristics hh-eli and hh-prob to con-
trol the parameter pm . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9.14 Parameterisation of the fuzzy logic controllers fuzzy-a, fuzzy-b,
fuzzy-a-tsk, and fuzzy-b-tsk to control the parameter pm . . . . 220

9.15 Control and tuning of the parameter pm – Seattle instance . . . . . . 221

9.16 Control and tuning of the parameter pm – Denver instance . . . . . . 222

9.17 Number of fixed configurations outperformed by the parameter con-
trol approaches by adapting the parameter pm – Seattle instance . . . 223

9.18 Number of fixed configurations outperformed by the parameter con-
trol approaches by adapting the parameter pm – Denver instance . . . 223

9.19 Parameterisation of the diversity-based multi-objective memetic al-
gorithm for different values of the parameter R . . . . . . . . . . . . . 224

9.20 Parameterisation of the hyper-heuristics hh-eli and hh-prob to con-
trol the parameter R . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.21 Parameterisation of the fuzzy logic controllers fuzzy-a, fuzzy-b,
fuzzy-a-tsk, and fuzzy-b-tsk to control the parameter R . . . . . 225

9.22 Control and tuning of the parameter R – Seattle instance . . . . . . . 227

9.23 Control and tuning of the parameter R – Denver instance . . . . . . . 228

9.24 Number of fixed configurations outperformed by the parameter con-
trol approaches adapting the parameter R – Seattle instance . . . . . 229

9.25 Number of fixed configurations outperformed by the parameter con-
trol approaches by adapting the parameter R – Denver instance . . . 229

xix



10.1 Statistical comparison among different memetic approaches for the
first instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

10.2 Statistical comparison among different memetic approaches for the
second instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

10.3 Original objective function for the memetic algorithms considering
the first instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10.4 Original objective function for the memetic algorithms considering
the second instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

10.5 Statistical tests for the dynamic-mapped island-based model – 16
islands – 5 hours – First instance . . . . . . . . . . . . . . . . . . . . 252

10.6 Statistical tests for the dynamic-mapped island-based model – 32
islands – 5 hours – First instance . . . . . . . . . . . . . . . . . . . . 252

10.7 Statistical tests for the dynamic-mapped island-based model – 4 is-
lands – 11.5 hours – Second instance . . . . . . . . . . . . . . . . . . 253

10.8 Statistical tests for the dynamic-mapped island-based model – 8, 16,
32 islands – 11.5 hours – Second instance . . . . . . . . . . . . . . . . 253

10.9 Speedup factors for the dynamic-mapped island-based model with the
best and worst migration stages – First instance . . . . . . . . . . . . 255

10.10Speedup factors for the dynamic-mapped island-based model with the
best and worst migration stages – Second instance . . . . . . . . . . . 256

10.11Speedup factors for the dynamic-mapped island-based model with the
best migration stage for both instances . . . . . . . . . . . . . . . . . 258

B.1 Rule base number 0 (left-hand side) and number 1 (right-hand side) to
control the mutation rate pm, and the parameter R of the Neighbour-
based Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

B.2 Rule base number 2 (left-hand side) and number 3 (right-hand side) to
control the mutation rate pm, and the parameter R of the Neighbour-
based Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

B.3 Rule base number 4 (left-hand side) and number 5 (right-hand side) to
control the mutation rate pm, and the parameter R of the Neighbour-
based Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

B.4 Rule base number 6 to control the mutation rate pm, and the param-
eter R of the Neighbour-based Mutation . . . . . . . . . . . . . . . . 276

B.5 Rule base number 0 (left-hand side) and number 1 (right-hand side)
to control the threshold ratio th of the diversity-based objectives with
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

xx



B.6 Rule base number 2 (left-hand side) and number 3 (right-hand side)
to control the threshold ratio th of the diversity-based objectives with
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

B.7 Rule base number 4 (left-hand side) and number 5 (right-hand side)
to control the threshold ratio th of the diversity-based objectives with
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

B.8 Rule base number 6 to control the threshold ratio th of the diversity-
based objectives with parameters . . . . . . . . . . . . . . . . . . . . 280

B.9 Rule base number 0 (left-hand side) and number 1 (right-hand side)
to control the mutation rate pm, the parameter R of the Neighbour-
based Mutation, and the threshold ratio th of the diversity-based
objectives with parameters . . . . . . . . . . . . . . . . . . . . . . . . 281

B.10 Rule base number 2 (left-hand side) and number 3 (right-hand side)
to control the mutation rate pm, the parameter R of the Neighbour-
based Mutation, and the threshold ratio th of the diversity-based
objectives with parameters . . . . . . . . . . . . . . . . . . . . . . . . 282

B.11 Rule base number 4 (left-hand side) and number 5 (right-hand side)
to control the mutation rate pm, the parameter R of the Neighbour-
based Mutation, and the threshold ratio th of the diversity-based
objectives with parameters . . . . . . . . . . . . . . . . . . . . . . . . 283

B.12 Rule base number 6 to control the mutation rate pm, the parameter
R of the Neighbour-based Mutation, and the threshold ratio th of the
diversity-based objectives with parameters . . . . . . . . . . . . . . . 284

xxi





List of Acronyms

2DPP Two-Dimensional Packing Problem
ABC Artificial Bee Colony
ACO Ant Colony Optimisation
ADI Average Distance to all Individuals
ADI-THR Average Distance to all Individuals with Threshold
AFP Automatic Frequency Planning
AIS Artificial Immune System
ALL All to All Connected Topology
ANOVA Analysis of Variance
APP Antenna Positioning Problem
AX Arithmetical Crossover
BBOB Black-Box Optimization Benchmarking
BER Bit Error Rate
BS Base Station
BSTL Base Station Transmitters Location
CA Cultural Algorithm
CAP Channel Assignment Problem
CEA Coevolutionary Algorithm
C/I Carrier-to-Interference
CMA-ES Covariance Matrix Adaptation Evolution Strategy
COW Clusters of Workstations
CPU Central Processing Unit
CV Coefficient of Variation
DBI Distance to Best Individual
DBI-THR Distance to Best Individual with Threshold
DCN Distance to Closest Neighbour
DCN-THR Distance to Closest Neighbour with Threshold
DCN-REF Distance to Closest Neighbour based on Reference Set
DE Differential Evolution

xxiii



DNA Deoxyribonucleic Acid
DYN Dynamic-mapped Island-based Model
EA Evolutionary Algorithm
EAIPS Evolutionary Algorithm with Increasing Population Size
EC Evolutionary Computation
EDA Estimation of Distribution Algorithm
ELI-M Elitist Migration Scheme
ELI-R Elitist Ranking Replacement Scheme
EP Evolutionary Programming
ER Evolutionary Robotics
ES Evolution Strategies
FAP Frequency Assignment Problem
FLC Fuzzy Logic Controller
FRBS Fuzzy Rule-based System
GA Genetic Algorithm
GCC GNU Compiler Collection
GECCO Genetic and Evolutionary Computation Conference
GEN-S Elitism-based Generational Survivor Selection
GLS Guided Local Search
GMSK Gaussian Minimum Shift Keying
GP Genetic Programming
GPU Graphics Processing Unit
GRASP Greedy Randomised Adaptive Search Procedure
GSM Global System for Mobile Communications
HAM-R Hamming-based Replacement Scheme
IA Interactive Analysis
IBEA Indicator-Based Evolutionary Algorithm
ILS Iterated Local Search
IX Interference-based Crossover
JSP Job-Shop Scheduling Problem
LAN Local Area Network
LS Local Search
MA Memetic Algorithm
METCO Metaheuristic-based Extensible Tool for Cooperative

Optimisation
µGA2 Micro GA-MOEA
MIFAP Minimum Interference Frequency Assignment Problem
MIMD Multiple Instruction Multiple Data
MISD Multiple Instruction Single Data

xxiv



MOEA Multi-Objective Evolutionary Algorithm
MOFAP Minimum Order Frequency Assignment Problem
MOGA Multi-Objective Optimisation Genetic Algorithm
MOP Multi-objective Optimisation Problem
MSFAP Minimum Span Frequency Assignment Problem
MPI Message Passing Interface
NM Neighbour-based Mutation
NOW Networks of Workstations
NPGA Niched Pareto Genetic Algorithm
NPGA2 Niched Pareto Genetic Algorithm 2
NSGA Non-Dominated Sorting Genetic Algorithm
NSGA-II Non-Dominated Sorting Genetic Algorithm II
NUMA Non-Uniform Memory Access
OpenMP Open Multi-Processing
OPX One Point Crossover
PAES Pareto Archived Evolution Strategy
PBX-α Parent-centric Blend Crossover
PM Polynomial Mutation
POSIX Portable Operative System Interface
PSO Particle Swarm Optimisation
PVM Parallel Virtual Machine
QoS Quality of Service
REVAC Relevance Estimation and Value Calibration
RING Unidirectional Ring Topology
RLD Run-Length Distribution
RND Radio Network Design
RND-M Random Migration Scheme
RND-R Random Replacement Scheme
R&S Ranking and Selection
RW-S Replace Worst Survivor Selection
SA Simulated Annealing
SBX Simulated Binary Crossover
SD Standard Deviation
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SS Scatter Search
SSX Two-Dimensional Sub-String Crossover
SPEA Strength Pareto Evolutionary Algorithm
SPEA2 Strength Pareto Evolutionary Algorithm 2

xxv



SPMD Single-Program Multiple-Data
SPO Sequential Parameter Optimisation
SS-S Steady-State Survivor Selection
SUS Stochastic Universal Sampling
TS Tabu Search
TSK Takagi-Sugeno-Kang
TSP Travelling Salesman Problem
UM Uniform Mutation
UMA Uniform Memory Access
UMD Uniform Mutation with Domain Information
UX Uniform Crossover
VEGA Vector Evaluated Genetic Algorithm
VNS Variable Neighbourhood Search
VRP Vehicle Routing Problem
WAN Wide Area Network

xxvi



Part I

Foundations, Background, and

Contributions





Chapter

1

Introduction

This chapter presents the basic concepts and the nomenclature that will be used
throughout the rest of this dissertation. Particularly, the description and formal
definition of an optimisation problem in both the single-objective and the multi-
objective fields are given. Moreover, a taxonomy which classifies the optimisation
schemes available for dealing with optimisation problems is provided. Since in this
thesis some approaches are enabled for use in parallel environments, some basic
notions on parallel and distributed computing are also described. Finally, the set of
research questions posed at the beginning of this work are exposed, together with
the main contributions and the synopsis of the rest of this thesis.

1.1 Optimisation Problems

Optimisation is one of the most important topics for a wide range of fields in sci-
ence and technology, such as computer science, operational research, and artificial
intelligence [75], as well as in other areas like finance, business, and medicine [209].
Given an optimisation problem, there exist different feasible solutions, and there-
fore the main aim of optimisation is to find the best possible solution to a problem
from among all feasible solutions. Hence, solving an optimisation problem requires
finding said best solution by taking into consideration certain objectives while at
the same time satisfying certain constraints.

In order to obtain a solution for an optimisation problem, several decisions involving
the problem domain must be made. For example, consider a variant of the knapsack
problem [225, 233] in which a set of items, each with its corresponding profit and



CHAPTER 1. Introduction

weight, is given. The optimisation problem consists of deciding which items from
the set of candidate items will be stored into the knapsack so that the global profit
is maximised, while at the same time satisfying the constraint of maximum weight
that the knapsack is able to support. Different decisions are represented by a set
of decision variables, which is usually called the decision vector, and decisions are
carried out by assigning values to each variable belonging to the decision vector.
Continuing with the example of the knapsack problem, a possible decision vector
could contain a set of ones and zeros indicating whether an item is selected to be
stored or not.

The quality of a decision vector or solution has to be determined using certain crite-
ria, which are expressed as a computable function of the decision variables. Consid-
ering this function, optimisation problems can be classified as Single-objective Op-
timisation Problems or Multi-objective Optimisation Problems (MOPs). In single-
objective optimisation problems a scalar function is defined, while in the multi-
objective field a vector or multiple objective function is applied. In the knapsack
example, if a unique knapsack is considered, a scalar function is defined, and there-
fore a single-objective variant of the knapsack problem is addressed. This function
might compute, for instance, the sum of the profits of the stored items. Thus,
for a given feasible solution which satisfies the maximum weight constraint of the
knapsack, the higher the value of this function, the better the quality of the solution.

1.1.1 Single-objective Optimisation Problems

The single-objective optimisation problem, as described in Definition 1 [70], can be
handled using a wide variety of optimisation schemes.

Definition 1 A general single-objective optimisation problem is defined as
minimising—or maximising—f(x) subject to gi(x) ≤ 0, i = {1, . . . , m} and hj(x) =
0, j = {1, . . . , p} x ∈ Ω.

A solution or decision vector x = (x1, . . . , xn), which is an n-dimensional vector
belonging to some universe Ω, minimises—or maximises—the scalar f(x). It is
important to note that x can be a vector of continuous or discrete decision variables,
whereas the scalar function f can also be continuous or discrete. Moreover, gi(x) ≤
0 and hj(x) = 0 are inequality and equality constraints that must be satisfied
while optimising—minimising or maximising—f(x). Hence, Ω contains all feasible
solutions x that satisfy an evaluation of f(x) and its constraints.

4



1.1. Optimisation Problems

The process of finding the global optimum—or global optima—of any function is
referred to as Global Optimisation. From now on, and without loss of generality, a
single-objective optimisation problem to be minimised will be considered. Taking
this into account, the global minimum of a single-objective problem [16] is presented
in Definition 2.

Definition 2 Given a function f : Ω ⊆ Rn → R, Ω 6= ∅ for x∗ ∈ Ω the value

f ∗ △

= f(x∗) > −∞ is called a global minimum if and only if

∀x ∈ Ω : f(x∗) ≤ f(x) (1.1)

Thus, x∗ is called the global minimum solution, f is denoted as the objective func-
tion, and Ω is the set that determines the feasible region. Note that the inequality
in Equation 1.1 indicates that several global minimum solutions could exist for a
single-objective optimisation problem. The aim of obtaining the global minimum
solution—or solutions—is therefore known as the global optimisation problem.

1.1.2 Multi-objective Optimisation Problems

A Multi-objective Optimisation Problem—also called multi-criteria optimisation,
multi-performance, or vector optimisation problem—can be defined [272] as the prob-
lem of finding “a vector of decision variables which satisfies constraints and optimises
a vector function whose elements represent the objective functions. These functions
form a mathematical description of performance criteria that are usually in conflict
with one another. Hence, the term ‘optimise’ means finding a solution that would
give the values of all the objective functions acceptable to the decision maker”.

In order to give the formal definition of a MOP, the Definition 1 shown in Sec-
tion 1.1.1 for single-objective problems must be expanded to consider several ob-
jective functions instead of dealing with a unique objective function. Thus, when
a MOP is optimised, a set of solutions must be found by using the concepts es-
tablished by the Pareto Optimality Theory [103]. All the objective functions must
be optimised simultaneously, and this fact could involve minimising every objective
function, maximising every objective function or any possible combination thereof.
The mathematical formulation of a MOP used in this dissertation [69] is shown in
Definition 3.

5



CHAPTER 1. Introduction

Definition 3 A general MOP is defined as minimising—or maximising—F (x) =
(f1(x), . . . , fk(x)) subject to gi(x) ≤ 0, i = {1, . . . , m} and hj(x) = 0, j = {1, . . . , p}
x ∈ Ω.

A solution or decision vector x = (x1, . . . , xn), which is an n-dimensional vector
belonging to some universe Ω, minimises—or maximises—the components of a vector
F (x). Note that gi(x) ≤ 0 and hj(x) = 0 are inequality and equality constraints that
must be satisfied while optimising—minimising or maximising—F (x). Moreover, Ω
contains all feasible solutions x that satisfy an evaluation of F (x) and its constraints.

It can therefore be observed that a MOP consists of a set of k objectives correspond-
ing to the k objective functions, m + p constraints on the objective functions, and
n decision variables. The k objective functions can be continuous or discrete and
linear or non-linear. In addition, every decision variable of a decision vector x can
also be continuous or discrete. Finally, it is important to remark that the function
F maps a vector of decision variables x = (x1, . . . , xn) to an output objective vector
u = (u1, . . . , uk), where ui = fi(x). In other words, the function F establishes a
mapping between the decision space and the objective space.

Since for a MOP several objective functions are defined, the notions of optimal-
ity have to be altered. The most frequently used notions of optimality were first
proposed by Francis Ysidro Edgeworth [101], and afterwards generalised by Vil-
fredo Pareto [276]. Although some authors use the term Edgeworth-Pareto optimal-
ity [318], the most widely accepted term is Pareto optimality [69]. Pareto optimality
constitutes by itself the origin of research in multi-objective optimisation. In fact,
the main aim of multi-objective optimisation is to identify the set of Pareto optimal
solutions.

In order to define a Pareto optimal solution, the concept of Pareto dominance must
first be discussed. Pareto dominance is formalised in Definitions 4 and 5. From
now on, and without loss of generality, a MOP where every objective function is
minimised will be considered.

Definition 4 An objective vector u = (u1, . . . , uk) dominates another objective
vector v = (v1, . . . , vk) (this is denoted by u � v) if and only if ∀i ∈ {1, . . . , k} :
ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

In words, an objective vector u dominates another vector v if and only if u performs
better than v in at least one component and, at the same time, u performs as well
as v in the remaining components.

6



1.1. Optimisation Problems

Figure 1.1: Graphical representation of the Pareto dominance concept

Definition 5 An objective vector u = (u1, . . . , uk) strictly dominates another
objective vector v = (v1, . . . , vk) (this is denoted by u ≺ v) if and only if ∀i ∈
{1, . . . , k} : ui < vi

In order to distinguish between both kinds of dominances, some authors refer to
the 4 Definition of dominance as weak dominance. In this dissertation, the term
dominance always refers to weak dominance.

Figure 1.1 describes the concept of Pareto dominance by representing the objective
space. Note that k = 2 objective functions are defined for this example. The
point represents the corresponding objective vector—the values of the objective
functions—of a certain solution. If minimisation is considered for both objective
functions, three possible cases arise:

• Area B includes all objective vectors dominated by the objective vector rep-
resented by the point, which has a better—lower—value assigned for at least
one objective.

• In contrast, area C includes all the objective vectors that dominate the ob-
jective vector represented by the point, which has a worse—higher—value
assigned for at least one objective.

• Finally, the remaining areas—A and D—include objective vectors that do not
dominate and are not dominated by the objective vector represented by the
point, which has a better value assigned for one objective and a worse value
for the other objective.

7



CHAPTER 1. Introduction

It is worth mentioning that the aforementioned three cases change depending on
the combinations of minimisation and maximisation selected for each of the two
objective functions.

Definition 6 A solution x ∈ Ω is Pareto optimal with respect to Ω if and only if
∄y ∈ Ω: v = F (y) � u = F (x)

A Pareto optimal solution x is optimal in the sense that no other solution in the
feasible region is able to outperform x when all objectives are considered, i.e. there
does not exist any solution y in the feasible region that performs better than x
in at least one objective, and performs as well as x for the remaining objectives.
Pareto optimal solutions are also known as non-inferior, admissible, efficient, or
non-dominated solutions, and their corresponding objective vectors are usually called
non-dominated vectors [69]. It is common for practitioners to refer to the set of
solutions obtained by an optimisation scheme as the set of non-dominated solutions.
This means that the optimisation scheme has not been able to find any solution that
dominates them. However, if the feasible region were better explored, a solution that
dominates any of those solutions could probably be found.

The set that includes all Pareto optimal solutions belonging to the feasible region
is called the Pareto optimal set, whereas the Pareto front—also called the Pareto
optimal front or the Pareto frontier—includes every objective vector obtained from
every Pareto optimal solution that belongs to the Pareto optimal set. The Pareto
front is obtained by applying the function F to every solution in the Pareto optimal
set, i.e. the Pareto front is the image in the objective space of the Pareto optimal
set. This transformation is used to identify the Pareto optimal solutions. The formal
definitions of the Pareto optimal set and the Pareto front are as follows.

Definition 7 For a given MOP the Pareto optimal set, P∗, is defined as:

P∗ := {x ∈ Ω | ∄ y ∈ Ω : v = F (y) � u = F (x)} (1.2)

Definition 8 For a given MOP and a Pareto optimal set, P∗, the Pareto front,
PF∗, is defined as:

PF∗ := {u = F (x) | x ∈ P∗} (1.3)

8



1.2. Optimisation Schemes

The definition of a global optimum in the multi-objective field is not as trivial as in
the case of single-objective optimisation. This is due to the fact that the best com-
promise solution, which is selected from P∗, depends on the particular features of
the MOP being solved and on the preferences of the human decision maker. Hence,
there is no universally accepted definition for the MOP global optimisation prob-
lem. However, a MOP global minimum can be formally described, as Definition 9
shows [69].

Definition 9 Given a function F : Ω ⊆ Rn → Rk, Ω 6= ∅, k ≥ 2, the set

PF∗ △

= {F (x∗) = (f1(x
∗) > −∞, . . . , fk(x

∗) > −∞) | x∗ ∈ P∗} is called the
global minimum if and only if

∀x ∈ Ω : F (x∗) � F (x) (1.4)

In fact, every solution from P∗ satisfies Equation 1.4 because they are Pareto optimal
solutions. Thus, P∗ is called the global minimum solution set. Moreover, F is
denoted as the multiple objective function, and Ω is the set that determines the
feasible region. Finally, the problem of determining the global minimum solution
set is called the MOP global optimisation problem.

1.2 Optimisation Schemes

A wide range of optimisation schemes has been designed for dealing with opti-
misation problems. These optimisation schemes can be classified using different
taxonomies. The classification proposed in [326] is considered and exposed herein.
It differentiates between exact algorithms and approximate algorithms. In order to
use this classification, some notions regarding complexity theory are first given in
this section. Among the approximate algorithms, meta-heuristics emerge as general
optimisation techniques and yield solutions of acceptable quality in a reasonable
execution time frame when solving a wide range of complex optimisation prob-
lems. Meta-heuristics, in turn, can be divided into trajectory-based methods and
population-based schemes. Trajectory-based methods only have to consider a unique
solution, whereas population-based approaches have to maintain a set of candidate
solutions during the entire optimisation procedure. Since this dissertation focuses
on population-based meta-heuristics, two of the main issues that arise during their

9



CHAPTER 1. Introduction

use—premature convergence and parameter setting—are described. Finally, a few no-
tions concerning measuring the performance of optimisation schemes are presented
at the end of this section.

1.2.1 Complexity Theory

Optimisation problems can be decidable or undecidable. This latter category—also
known as uncomputable problems—includes problems for which an algorithm that
solves them will never exist, even having an unlimited amount of computational
resources and time [322]. An example of an undecidable problem is the halting
problem [332]. In this dissertation only decidable problems are considered.

Algorithm Complexity

Algorithms need time and space—memory—as resources for solving an optimisation
problem. An algorithm’s complexity can prove useful when analysing its limitations
and predicting its resource requirements with a view to terminating its execution.
If the time frame is considered, the complexity of an algorithm is the number of
steps required to solve a problem whose size is equal to n, and is usually defined
considering the worst-case analysis. Knowing the exact number of steps is not
necessary, but an asymptotic bound of this number is required. The O-notation [39]
(Definition 10) is one of the most frequently used when analysing algorithms. It is
based on the asymptotic analysis and it can be used to compute the time and/or
space complexity of an algorithm. The asymptotic analysis of algorithms allows
characterising the growth rate of their complexity as a function of the problem size.
It is important to note that there exist two other well-known notations for analysing
algorithms. They are the Ω-notation and the Θ-notation [39].

Definition 10 If we consider the O-notation, an algorithm has a complexity f(n) =
O(g(n)) if there exist positive constants n0 and c such that ∀n > n0, f(n) ≤ c · g(n)

In other words, the function g(n) is an upper bound for the function f(n), i.e. f(n)
grows asymptotically no higher than g(n).

Definition 11 An algorithm is a polynomial-time algorithm if its time com-
plexity is O(p(n)), where p(n) is a polynomial function of n.

10



1.2. Optimisation Schemes

Hence, a polynomial-time algorithm has a polynomial time complexity of O(nk),
where k is the degree of the upper bound polynomial function.

Definition 12 An algorithm is an exponential-time algorithm if its time com-
plexity is O(cn), where c > 1 is a real constant.

Problem Complexity

A problem is tractable if there exists a polynomial-time algorithm that solves it. In
contrast, a problem is intractable if no polynomial-time algorithm exists that solves
it. Complexity theory deals with decision problems—whose solutions are “yes” or
“no”—and not with optimisation problems. However, any optimisation problem can
always be reduced to a decision problem. One of the main objectives of computa-
tional theory is to categorise problems into complexity classes. A complexity class
includes every problem that can be solved using a given amount of computational
resources. Thus, problems can be classified into two main complexity classes: P and
NP .

Definition 13 The complexity class P contains all decision problems which can
be solved by a deterministic algorithm in polynomial time.

Deterministic algorithms solve the problem without using any random component
to carry out their decisions, i.e. given the same input, the same output is always
obtained. A deterministic algorithm is polynomial for a decision problem A if its
complexity, assuming the worst-case, is bounded by a polynomial function p(n)
where n is the input size of certain instance α. Examples of problems belonging
to the complexity class P are minimum spanning tree, shortest path problems, or
maximum flow networks, among others [74].

Definition 14 The complexity class NP contains all decision problems which
can be solved by a non-deterministic algorithm in polynomial time.

Non-deterministic algorithms—also called stochastic algorithms—have at least one
fork in which the decision is usually made considering randomness and probabilities.
Hence, given the same input, the same output is not always obtained.

We should note that P ⊆ NP . However, whether or not P ⊂ NP is an open
research question [72]. In other words, it has been shown that for every problem
belonging to the class P there exists a non-deterministic algorithm that can solve it

11



CHAPTER 1. Introduction

Figure 1.2: Relationship between different complexity classes (p 6= np)

in polynomial time. However, it is not known whether for every problem belonging
to the class NP there exists a deterministic algorithm that solves it in polynomial
time.

Definition 15 A decision problem A is reduced polynomially to a decision prob-
lem B if, for all input instances α for A, an input instance β for B can be built in
polynomial time, such that the answer to the instance α is “yes” if and only if the
answer to the instance β is “yes”.

Definition 16 A decision problem A ∈ NP is NP -complete if all other problems
that belong to the class NP can be reduced polynomially to A.

A direct claim of this definition is that if a deterministic polynomial-time algorithm
exists to solve an NP -complete problem, then all problems of class NP might be
solved in polynomial time. NP -complete problems are the hardest NP problems to
solve.

Definition 17 A problem A is NP -hard if and only if there exists an NP -complete
problem B that can be reduced polynomially to A.

12



1.2. Optimisation Schemes

Informally, NP -hard problems are at least as hard as NP -complete problems. How-
ever, it is important to note that NP -hard problems do not have to be included in
the class NP , since not all of them are decision problems—they can be optimisation
problems. Moreover, some NP -hard problems are not included in the NP class,
despite being decision problems. For instance, the halting problem is an NP -hard
problem. It is also a decision problem, but since it is undecidable, it is outside
the class NP . Finally, if an optimisation problem has an associated NP -complete
decision problem, said optimisation problem is NP -hard. Figure 1.2 shows the
relationships among the classes P , NP , NP -complete and NP -hard, considering
P 6= NP .

NP -hard problems usually require exponential-time algorithms—unless P = NP—
in order to obtain the optimal solutions. Most real complex applications are cat-
egorised as NP -hard optimisation problems. Examples of NP -hard problems are
scheduling problems, routing and covering problems, or knapsack and cutting prob-
lems, among others [74]. This dissertation considers NP -hard optimisation prob-
lems.

Depending on a problem’s complexity, it can be solved by exact algorithms or by
approximate algorithms. Exact approaches are able to obtain solutions whose opti-
mality is ensured. However, for NP -complete problems exact algorithms cannot be
applied—unless P = NP—since they become non-polynomial-time algorithms, and
therefore they are not able to provide optimal solutions in a reasonable time. In con-
trast, approximate or heuristic schemes are able to generate high-quality solutions,
even optimal ones, in a reasonable time. However, using approximate algorithms
does not guarantee that the optimal solution will be found. Figure 1.3 shows a
possible taxonomy [326] which classifies optimisation methods into exact and ap-
proximate schemes.

1.2.2 Exact Algorithms

Exact methods can be classified into the following groups: dynamic programming,
branch and bound methods, constraint programming, and A* search algorithms. All
these approaches can be categorised as enumerative methods [270], where the search
for solutions involves exploring the whole feasible region and dividing the optimisa-
tion problem into smaller sub-problems by using the divide and conquer strategy [74].
When these sub-problems are solved, their solutions are combined in order to obtain
the complete solution of the initial problem.

13



CHAPTER 1. Introduction

Figure 1.3: Classification of optimisation methods

Dynamic Programming

Dynamic programming [30] is based on dividing a problem into smaller sub-problems
that are then easier to solve. The optimal solution to the initial problem is thus
provided by obtaining the optimal solutions for each of the sub-problems, which
result from a sequence of partial decisions. In dynamic programming, the solution
to every solved sub-problem is stored in memory. In this way, solutions that have
been previously computed do not have to be recalculated. In addition, the procedure
does not enumerate the whole search space, since the partial decision sequences that
do not lead to the optimal solution are pruned.

Branch and Bound and A* Search

Branch and bound [196] and A* search [153] algorithms are based on an implicit
enumeration of all feasible solutions for a certain optimisation problem. In order
to explore the feasible region, a search tree with the following characteristics is
dynamically constructed:

• The root represents both the optimisation problem to be solved and, the whole
search space.

• The leaves represent the problem’s candidate solutions.

14



1.2. Optimisation Schemes

• The remaining nodes represent sub-problems.

In branch and bound algorithms, a bounding function is used to prune some of the
sub-trees. This function ensures that the search areas represented by these sub-trees
do not have to be searched in order to obtain the optimal solution to the problem.

Constraint Programming

Constraint programming [289] models optimisation problems as a set of variables
linked by a set of constraints. The variables take their values from a finite domain
of integers, with the constraints possibly having mathematical or symbolic forms.
Constraint programming is based on alternating propagation with search methods to
find a feasible solution. A propagation algorithm reduces—from variable domains—
the values that do not involve a feasible solution. Afterwards, a search algorithm
based on a search tree is executed in order to remove possible inconsistent values in
the variable domains. This search algorithm performs a branching step to divide the
current problem into sub-problems. Branching can instantiate a variable to a feasible
value or can add a new constraint. Thus, the problem of optimising an objective
function can be reduced to one of solving certain types of feasibility problems.

1.2.3 Approximate Algorithms

Approximate methods can be divided into two sub-classes (Figure 1.3): approx-
imation algorithms and heuristic algorithms. Approximation algorithms provide
demonstrable solution quality and provable run-time bounds. In contrast, heuristics
usually find reasonably good solutions in a reasonable time. Heuristics can there-
fore be applied to large and difficult instances of a wide range of complex problems.
Heuristics can in turn be categorised into tailored heuristics and meta-heuristics.
Tailored heuristics are algorithms specifically designed to solve a particular prob-
lem and/or instance, whereas meta-heuristics are general methods applicable for
solving a wide variety of optimisation problems. Meta-heuristics can be used as ap-
proaches that guide the design of underlying heuristics in order to solve particular
optimisation problems.

15



CHAPTER 1. Introduction

Approximation Algorithms

Approximation algorithms [158] guarantee that the solutions obtained are enough
close to the global optimum. An ǫ-approximation algorithm [335] is able to generate
an approximate solution s that is not less than ǫ times the optimum solution g.
Generally, ǫ is called the approximation factor and it is used to establish the relative
performance of the algorithm. This approximation factor can be a constant or a
function which depends on the size of the instance.

Approximation algorithms can be analysed to gain more knowledge regarding the
difficulty of problems, as a consequence of which more efficient heuristics can be
designed. Nevertheless, approximation algorithms are tailored approaches which
depend on the problem at hand. In addition, these algorithms are not very useful
for complex applications because the approximated solutions are usually far from
the global optimum.

Heuristic Algorithms

Definition 18 “A heuristic is a criterion, method, or principle for deciding which
of several alternative courses of action promises to be the most effective in order to
achieve some goal” [278].

In order to design a heuristic, two main requirements have to be considered. Firstly,
a heuristic has to be simple and require a low consumption of computational re-
sources and time. Secondly, it has to make correct decisions instead of selecting
bad choices. Heuristics are usually tailor-made approaches that rely on information
on the problem or instance being solved to carry out their decisions. Consequently,
their design and implementation might become a difficult task. Moreover, once a
tailored heuristic is designed, it usually cannot be applied to other optimisation
problems and/or instances of the same problem.

In general, there are two main ways to apply heuristics: they can be used as stand-
alone optimisation techniques; or, they can be integrated together with other ap-
proaches. In the second case, heuristics can help to improve the behaviour of other
methods, such as exact algorithms, by recommending the next set of candidate
solutions to be explored by the exact algorithm, for instance. In contrast, other ap-
proaches can be used to improve the behaviour of heuristics, like restarting, which
as its name implies, restarts the heuristic when a certain situation is detected—
stagnation over a certain number of iterations, for example. Finally, it is important

16



1.2. Optimisation Schemes

to note that the combination of different heuristics might improve the solutions
obtained. However, this task is not easy and it might yield improper results [139].

Definition 19 “Meta-heuristics are top-level general strategies which guide other
low-level heuristics to search for feasible solutions in difficult domains” [70].

In recent decades, meta-heuristics have been applied to a wide range of fields, such
as engineering design, aerodynamics, telecommunications, machine learning, data
mining, system modelling, signal processing, and planning and scheduling problems,
among others [326]. Meta-heuristics are general purpose strategies that, in general,
do not make use of problem-dependent information. However, they can consider
problem specific knowledge in the form of low-level heuristics controlled by the
top-level strategy. The success of meta-heuristics stems from their ability to deal
with large instances of complex problems for which there are no applicable exact
approaches. Hence, the main aim of a meta-heuristic is to obtain solutions with
“acceptable” quality—close to the global optimum—in a reasonable time. Meta-
heuristics must therefore be designed with the aim of exploring the solution space in
a very efficient manner. However, unlike exact or approximation algorithms, meta-
heuristics are not able to guarantee that global optima or even bounded solutions will
be obtained. Another drawback, which has become a significant research topic [287,
360], is to design effective stopping criteria for meta-heuristics. Ideally, the execution
would finish when convergence is detected, though actually detecting this situation
is an arduous task. The most common stopping criterion is based on using an
amount of resources that is fixed before the execution starts. In this dissertation, two
different stopping criteria are considered: execution time and number of evaluations
carried out on the objective functions of the problem being solved.

One of the main issues that arise when designing meta-heuristics is striking the right
balance between the exploration of the whole search space—or diversification—and
the exploitation of its most promising regions—or intensification [140]. Promising
regions are determined by the best solutions found at any given moment of the search
procedure. Diversification tries to ensure that unexplored regions of the search space
are visited so that the search process is not bound to a reduced number of regions.
Hence, meta-heuristics try to generate solutions that differ from those previously
obtained. In contrast, intensification allows for a more exhaustive exploration of the
search space and thus aims to improve the quality of the best solutions found by
examining their neighbours.

A wide variety of meta-heuristics has been proposed [37], with the following be-
ing among the most important: Ant Colony Optimisation (ACO) [97], Artificial

17



CHAPTER 1. Introduction

Bee Colony (ABC) [181], Artificial Immune System (AIS) [31], Cultural Algorithms
(CAs) [286], Coevolutionary Algorithms (CEAs) [157], Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) [152], Differential Evolution (DE) [319], Estima-
tion of Distribution Algorithms (EDAs) [24], Evolutionary Programming (EP) [121],
Evolution Strategies (ES) [295], Genetic Algorithms (GAs) [160], Guided Local
Search (GLS) [341], Genetic Programming (GP) [190], Greedy Randomised Adap-
tive Search Procedure (GRASP) [115], Iterated Local Search (ILS) [235], Particle
Swarm Optimisation (PSO) [183], Simulated Annealing (SA) [186], Scatter Search
(SS) [137], Tabu Search (TS) [138], and Variable Neighbourhood Search (VNS) [250].

It is important to note that this dissertation focuses on the study of a family of
meta-heuristics that includes some of the aforementioned approaches. This family
is called Evolutionary Algorithms (EAs) and it comprises a set of population-based
meta-heuristics inspired on biological evolution. The family of EAs mainly includes
GAs, ES, EP, and GP, although EDAs, DE, CEAs, and CAs are also categorised as
EAs. Finally, Memetic Algorithms (MAs) are hybrid meta-heuristics that combine
a population-based approach with a Local Search (LS) procedure.

A large number of taxonomies for classifying meta-heuristics have been devised [61].
In keeping with the taxonomy described in [326], five different criteria can be used to
classify meta-heuristics. The first one classifies them using nature-inspired methods
and non-nature-inspired approaches. Most meta-heuristics are inspired by natural
processes, such as EAs, which are inspired by biological evolution, or ACO, ABC
and PSO, which are inspired by swarm intelligence.

Meta-heuristics can also be grouped into deterministic and stochastic methods. De-
terministic meta-heuristics, like LS or TS 1, make their decisions considering deter-
ministic rules, i.e. given the same input instance for an optimisation problem, the
same output is achieved. In contrast, stochastic meta-heuristics, like SA or EAs, use
randomness when making some decisions, meaning that if the same input instance
of an optimisation problem, is given, the same output is not always obtained. It is
important to note that this feature significantly determines the way in which the
performance of meta-heuristics is be measured.

Another criterion classifies meta-heuristics depending on whether they do not use
information dynamically extracted from the search process, such as LS or GRASP,
or they do, like TS for example, which is based on using short-term and long-term
memories in order to avoid visiting already explored areas of the search space.

1In essence, these meta-heuristics do not rely on chance [99], though every meta-heuristic might
include some kind of stochastic procedure to carry out its decisions.

18



1.2. Optimisation Schemes

The most frequently used classification [37] groups meta-heuristics into trajectory-
based approaches and population-based methods. Trajectory-based schemes, like
SA, have to deal with a unique solution during the whole optimisation process,
while population-based meta-heuristics, such as PSO or EAs, have to maintain a
set of solutions. In trajectory-based algorithms the term trajectory refers to the
“path” established by the single solution in the search space during the optimisation
procedure. Consequently, trajectory-based meta-heuristics are also called single-
solution meta-heuristics. We should mention that trajectory-based meta-heuristics
are more oriented toward intensification, while population-based meta-heuristics are
more explorative methods.

Finally, meta-heuristics can be grouped depending on whether they are iterative or
greedy techniques. Iterative meta-heuristics—EAs and ILS, for example—start with
a unique solution or a set of solutions and iteratively modify them by using certain
operators until the optimisation procedure ends. Greedy meta-heuristics such as
GRASP, on the other hand, build solutions from scratch, assigning a value to each
decision variable at each step of the optimisation procedure until complete solutions
are obtained.

1.2.4 Premature Convergence

Meta-heuristics have shown great promise to obtain solutions to difficult and com-
plex applications in a wide range of fields. However, they exhibit a tendency to
converge towards local optima for some problems, with the likelihood of this occur-
rence depending on the shape of the fitness landscape [56]. Several methods have
been designed with the aim of dealing with local optima stagnation [139]. Some
of the simplest techniques rely on restarting the approach when stagnation is de-
tected [230]. In other cases, a component that inserts randomness or noise into
the search is used [66]. Maintaining some memory, as TS does, in order to avoid
exploring the same areas several times is also a typical approach [140]. Finally,
population-based strategies intrinsically try to maintain the diversity of a solution
set. By recombining these solutions, a wider area of the decision space might be
explored.

In the particular case of population-based meta-heuristics, like EAs, premature con-
vergence is one of the most frequent drawbacks to be addressed. It appears when
every member of the population is in a sub-optimal region of the search space, and
therefore the optimisation scheme is not able to generate new individuals that out-
perform their corresponding ancestors, i.e. there exists a loss of diversity caused

19



CHAPTER 1. Introduction

by the use of a finite population size. This phenomenon is also known as genetic
drift [108], and it is the main reason for the appearance of premature convergence.
Several methods have been devised for dealing with premature convergence. Most of
them preserve the diversity in a set of solutions [337]. Some of the most frequently
used are the following:

• Increase the population size to avoid genetic drift [108].

• Apply mating restrictions such as incest prevention [306], i.e., keep very similar
individuals from mating. This is also known as speciation.

• Perform cataclysmic mutation [111]—highly disruptive mutations—when di-
versity has been lost.

• Perform selection applying fitness sharing [267]. In this case, highly similar
individuals are clustered and penalised by sharing the obtained fitness values
among the members of the group that lie in the same niche (i.e., those that are
very close to each other either in the decision space or the objective space).

• Apply crowding-based selection where each offspring replaces similar individ-
uals in the parent population [227].

• Use complex population structures, such as the island-based model [19] or the
cellular approaches [263].

Diversity can help the optimisation procedure in two ways. Firstly, there exists a re-
lationship between diversity and the diversification and intensification capabilities of
EAs [337]. Among other advantages, as previously stated, a proper balance between
diversification and intensification might allow the search space to be explored more
efficiently. Secondly, maintaining proper diversity might allow combining different
building blocks in crossover operations [175].

When dealing with single-objective optimisation problems, one of the diversity
preservation strategies that has gained some popularity in recent years lies in using
multi-objective methods to solve them [297]. Multi-objectivisation [188] refers to
the reformulation of originally single-objective problems into multi-objective ones,
the goal being to open up monotonically increasing paths to the global optimum
that are not available under the single-objective formulation. Note that, when us-
ing multi-objectivisation, a multi-objective optimisation scheme has to be applied
since a MOP has to be solved. Because multi-objectivisation changes the fitness
landscape, it can often make it easier to find optimal solutions by avoiding local
optima [151], although it has been noted that in some instances it can also pro-
duce a harder problem [43]. An alternative to this scheme—which has also been

20



1.2. Optimisation Schemes

referred to as multi-objectivisation in other works [255]—is based on considering
diversity as an auxiliary objective function [2, 45, 330]. However, there is an impor-
tant difference between these new kinds of approaches and the original definition of
multi-objectivisation, since in the new proposal the calculation of the auxiliary ob-
jectives depends on the other individuals in the population. That is why these new
approaches are called diversity-based multi-objective schemes so as to differentiate
them from multi-objectivisation methods.

The application of a diversity-based multi-objective scheme to a single-objective op-
timisation problem requires defining a set of at least two objective functions. The
first one is the original objective associated with the single-objective problem being
solved. The remaining objectives—most of the proposals consider only one addi-
tional objective—are measures of the diversity introduced by an individual itself
with respect to the population. Since the use of diversity-based auxiliary objectives
has yielded high-quality results in both benchmark problems [330] and real-world ap-
plications [130], diversity-based multi-objective schemes offer a promising approach
for avoiding premature convergence. Finally, let us note that this dissertation will fo-
cus on the application of EAs. Multi-Objective Evolutionary Algorithms (MOEAs)
are the adaptation of EAs for dealing with MOPs, and are one of the most com-
monly applied multi-objective meta-heuristics. Thus, this dissertation consider the
application of diversity-based MOEAs to single-objective optimisation problems.

1.2.5 Parameter Setting

In addition to avoiding the problem of premature convergence, another arduous task
involves setting the parameters of a meta-heuristic. The problems of parameter set-
ting and premature convergence are closely related. If the parameter values of a
population-based meta-heuristic are chosen poorly, the balance between diversifica-
tion and intensification might become disproportionate, producing a loss of diver-
sity and, as a result, premature convergence. To configure a meta-heuristic, several
components and/or parameters must be specified. For instance, EAs have different
components [108], such as the mutation and crossover operators, which must be
defined. In addition, some parameters like the mutation and crossover rates—the
probabilities used to apply the aforementioned operators—must be also fixed. In
general, the performance of any meta-heuristic, and consequently the quality of the
solutions obtained, are highly dependent on these components and parameters. As
a result, it is vital that the parameters be properly set. In order to completely
configure a meta-heuristic, two types of information are required [26, 239]:

21



CHAPTER 1. Introduction

• Symbolic—also referred to as qualitative, categoric or structure parameters—
like the crossover and mutation operators of an EA.

• Numeric—also referred to as quantitative or behavioural parameters—such as
the crossover and mutation rates of an EA.

For both kinds of parameters, the different elements of the domain are known as
parameter values, and a parameter is instantiated by assigning it a value. The
main difference between the two types of parameters lies in the size and structure
of their respective domains. Symbolic parameters, like the crossover operator of an
EA, have a finite domain in which order is not established and a distance metric
is not defined. In contrast, numeric parameters, such as the mutation rate of an
EA, have an infinite domain in which a distance metric and an order can be defined
for the values. Thus, optimisation and search methods can readily be used to look
for the appropriate values of numeric parameters. However, in the case of symbolic
parameters, as noted above, distance metrics cannot be applied between two values,
and therefore optimisation schemes are not able to profit from the definition of these
types of metrics for setting said parameters.

Parameter setting strategies are commonly divided into two categories: parameter
tuning and parameter control. In parameter tuning [107]—also called offline or en-
dogenous setting—the objective is to identify the best set of parameters for a given
meta-heuristic. Once a suitable parameter set is identified, an algorithm is executed
using the selected parameter values, which remain fixed for the full run. Tradi-
tionally, parameter tuning has involved performing different executions of the same
meta-heuristic using different parameterisations. Afterwards, the parameterisation
that provides the best performance, i.e. the best solutions for the optimisation prob-
lem in question, is selected. The main disadvantages of parameter tuning based on
this systematic approach are the following [106]:

• Since the parameters interact, systematically testing all of their possible com-
binations is practically impossible.

• The amount of computational resources and time invested in the process of
parameter tuning is huge, even if the parameters are independently optimised
regardless of their interactions.

• For a given problem, the selected parameter values are not necessarily optimal
for every stage of the optimisation procedure, even if the previous effort made
to tune them was significant.

22



1.2. Optimisation Schemes

In past decades, research into parameter tuning mainly focused on looking for a gen-
eral set of optimal values for the parameters of a specific algorithm, which allowed
promising results to be obtained across several optimisation problems [88, 143].
However, it is now generally accepted by the research community that a single set
of parameters is unlikely to be optimal across a range of problems and that an
algorithm has to be specifically configured in order to successfully solve a given op-
timisation problem [19]. In fact, the No Free Lunch theorem [351] provided evidence
from a theoretical point of view that a given optimisation method is not appropri-
ate for all optimisation problems. Hence, this has given rise to a significant field
of research in automated parameter tuning to enable an algorithm to be suitably
tuned for the optimisation problem at hand. Tuning methods have been applied to
a large number of meta-heuristics, including AISs [3], GAs [251] GLS [6], MAs [353]
or SA [3], for instance. Moreover, a wide variety of parameter tuning approaches
used in different fields have been proposed [107], including the sampling [260] and
racing [231] methods. Regardless of the tuning method chosen, it is crucial to recog-
nise that parameters usually interact in highly non-linear ways, meaning they should
ideally be tuned simultaneously rather than independently [106, 105]. However, si-
multaneously tuning several parameters requires a huge amount of experimentation
and is likely to be computationally infeasible. As a result, parameter tuning is often
performed considering the parameters independently, though this is likely to lead
to a sub-optimal set of parameters for the reasons given above. Moreover, several
studies have concluded that the use of a static set of parameters during a complete
run seems to be inappropriate [13, 14, 15, 84, 106, 105, 156]. In fact, it has been
empirically and theoretically demonstrated that different values of parameters might
be optimal at different stages of the optimisation process [13, 316]. As a result, it
seems more appropriate to apply strategies that allow the parameter values to adapt
or change during the course of a run.

This is precisely the goal of parameter control [106]—also known as online or ex-
ogenous setting—which is based on designing a control strategy that dynamically
selects the most suitable parameter values to use at every stage of the search pro-
cess. A wide range of parameter control methods has been proposed in the liter-
ature [106]. They have been successfully applied to different meta-heuristics, such
as ES [191], DE [280], GAs [117], GRASP [221] or PSOs [355, 359]. Most of them
are tailor-made methods, however, and depend on the specific meta-heuristic and its
parameters. Thus, it would be desirable to design generic parameter control schemes
that can be directly applied to different meta-heuristics and/or parameters. Fuzzy
Logic Controllers (FLCs) and Hyper-heuristics can be used as generic parameter
control approaches. In fact, novel proposals for both approaches are analysed in

23



CHAPTER 1. Introduction

this dissertation.

Fuzzy Logic Controllers

In recent years, our knowledge regarding the performance of meta-heuristics has
significantly increased due to the large number of empirical analyses conducted
on a wide range of applications in different areas. It would be desirable to profit
from this human knowledge by encapsulating it within an algorithm to automate
the task of improving the behaviour and performance of meta-heuristics. However,
this sort of knowledge is usually incomplete, imprecise, and/or not well organised.
Consequently, the application of fuzzy logic-based methods would appear to offer a
promising approach for handling this kind of knowledge. One application of fuzzy
logic is the design of FLCs.

FLCs let us define control approaches to which human knowledge can be incorpo-
rated intuitively. By using an FLC to control the parameters of a meta-heuristic,
we can use any combination of performance measures and current parameter values
as the input to the controller to compute new parameter values, which can be ab-
solute or relative values with respect to the current values. If every component of
an FLC is designed bearing in mind its general application—for example, selecting
the proper performance measures—then an FLC can be used as a way to adapt
different parameters belonging to different meta-heuristics. It is worth noting that
FLCs have been successfully applied to adaptively adjust the parameters of different
meta-heuristics, including ACO [63], GAs [210], or PSO [241], among others.

Hyper-heuristics

A hyper-heuristic can be viewed as a method that iteratively chooses between a set
of candidate low-level heuristics or meta-heuristics in order to solve an optimisation
problem [50]. The motivation behind using a hyper-heuristic is two-fold. Firstly,
the hyper-heuristics has no knowledge of the problem domain being solved—the
same hyper-heuristic can be used in a new domain by swapping in a new set of
low-level heuristics or meta-heuristics. Secondly, it ought to be possible to improve
the performance of any single heuristic or meta-heuristic in the low-level candidate
set by properly combining them during the course of the search [46].

Hyper-heuristics are closely related to parameter control schemes [309]. If the low-
level approaches represent different configurations of the same heuristic or meta-
heuristic, then the hyper-heuristic might select the most suitable configuration

24



1.2. Optimisation Schemes

continuously during the search procedure. It is important to remark that hyper-
heuristics have been successfully applied as parameter control techniques in different
meta-heuristics for several problem domains [193, 285].

1.2.6 Performance Measurement

After applying any optimisation scheme to a particular optimisation problem, its
performance must be measured in order to check whether the optimisation method is
suitable for the optimisation problem at hand. In the case of exact algorithms, since
they guarantee that the optimal solutions will be obtained, the most frequently used
metric to measure their performance is the time invested in obtaining said optimal
solutions. However, in the case of approximate algorithms, and particularly when
meta-heuristics are applied, other indicators have to be considered to measure their
performance. This is because meta-heuristics do not ensure that the optimal solu-
tions will be obtained. Moreover, a large number of meta-heuristics are stochastic
approaches. Considering the classification carried out in [25], performance metrics
can be classified based on the following criteria: quality of the solutions, computa-
tional effort, and robustness.

As concerns the quality of the solutions, performance metrics are generally based on
calculating the distance or the error between the solutions obtained and the optimal
ones. However, for a large number of optimisation problems the optimal solutions
are not known. For these cases, other solutions can be used as the reference set. The
most frequently used are lower/upper bound solutions, the best-known solutions or
solutions defined by the human decision maker considering any kind of requirement
for the problem at hand. This dissertation deals with problems for which the optimal
solutions are known, while it also considers other problems for which the best-known
solutions are used as the reference set so as to make comparisons based on the quality
of the solutions.

From the point of view of the computational effort, the metrics are closely related
to the stopping criterion selected for the meta-heuristic at hand. Among the most
widely applied metrics, it is important to mention the time invested in achieving
a certain stopping criterion. However, this metric depends on the hardware and
software present in the machine where the optimisation scheme is executed. As a
result, another frequently used metric measures the number of function evaluations
needed to reach a certain stopping criterion. The main drawback of this indicator
is that it is not suitable for optimisation problems whose objective functions are
not computationally expensive. Since stochastic meta-heuristics are considered in

25



CHAPTER 1. Introduction

this dissertation, Run-Length Distributions (RLDs) [116] are used as the metric
for comparisons based on the computational effort. RLDs—also called Run-Time
Distributions or Time-to-Target Plots—show the relationship between the success
rate and the run time or the number of function evaluations. The success rate is
defined as the probability of achieving a certain preset quality level within the given
run time or number of function evaluations. Hence, different optimisation schemes
are compared based on the run time or the number of function evaluations invested
by each approach to achieve some quality level and some success rate, both of which
are predefined. Finally, it is important to note that the use of RLDs has been
suggested as a suitable performance metric for making comparisons based on the
computational effort [162].

The robustness of a meta-heuristic is another possible criterion for grouping perfor-
mance metrics. The term robustness can be defined in several different ways. Firstly,
a meta-heuristic is robust if the variability of the results does not significantly in-
crease even if its parameters are modified. Another criterion defines a meta-heuristic
as robust if it performs reasonably well among a large set of problems and/or in-
stances with the same parameterisation. Lastly, if a stochastic meta-heuristic is
applied, a low deviation from the average in the results obtained by the stochastic
approach over several runs indicates that it is robust. In this dissertation, the three
above definitions of robustness are used to a greater or lesser extent. Since most
of the meta-heuristics applied herein are stochastic methods, well-known statistical
indicators, such as the Standard Deviation (SD) or the Coefficient of Variation (CV)
are used to measure the robustness of the proposals.

Finally, in order to determine whether the results obtained by different stochastic
methods present statistically significant differences, an statistical analysis is manda-
tory. For this reason, in this dissertation the following statistical procedure [92, 302]
is applied in an effort to assign statistical confidence to the results. First, a Shapiro-
Wilk test is performed to check whether the values of the results follow a normal
(Gaussian) distribution or not. If so, the Levene test checks for the homogeneity of
the variances. If samples have equal variances, an Analysis of Variance (ANOVA)
is done; otherwise, a Welch test is performed. For non-Gaussian distributions, the
non-parametric Kruskal-Wallis test is used. In every case, a significance level of 5%
is considered.

26



1.3. Parallel and Distributed Computing

1.3 Parallel and Distributed Computing

The increase in computational power has contributed to some of the greatest ad-
vances in different areas of science and technology. This increase in computational
power, however, also means that the number of problems that can be solved has also
grown, which in turn requires much more computational power. Examples of this
kind of challenging problem can be found in the fields of climate modelling, energy
research, medicine, data analysis, and many more. These and other future problems
will be solved only if the performance of processors continues to improve.

In recent decades the performance of processors has increased exponentially. As
expressed by Moore’s Law [252], the number of transistors that could be integrated
onto a circuit doubled every two years, i.e. a growth rate equal to 50% per year.
This fact meant that users and programmers only had to wait until the next gener-
ation of processors to obtain better performance from their applications. However,
things have changed, and nowadays the growth rate has decreased to 20% per year,
approximately. Transistor speed, and consequently processing speed as a whole,
grows as a consequence of a reduction in transistor size. This increase in speed
requires a higher consumption of power by the processor, the majority of which is
dissipated in the form of heat. The main drawback is that the amount of heat which
must be dissipated is greater than the ability of the existing devices responsible for
carrying out this task [277]. Moreover, the process of transistor miniaturisation is
also reaching its limits. These are the two main reasons why the speed of processors
cannot be increased any further. As a result, processor manufacturers have started
to use parallelism as a way to improve the performance of processors. Instead of in-
tegrating a larger number of circuits in the next generation of processors and thereby
increase their speed, the tendency now is to include several complete processors or
cores on a single chip, thus providing multi-core architectures. From now on, and
for the sake of simplicity, the traditional monolithic processor will be referred to as
a “single-core processor”.

Hence, a challenging task for programmers has arisen, since the sequential appli-
cations that have traditionally been designed for single-core processors have to be
adapted to deal with multi-core architectures if their performance is to be improved.
Ideally, a set of tools would be available for converting sequential programs into par-
allel programs. Although some research has been done in this area [94], the process
of transforming common sequential programming constructs into efficient parallel
programming constructs is quite difficult [275], and even more so if complex se-
quential programs are involved. Consequently, programmers must be able to write
parallel programs directly instead of writing sequential programs and parallelising

27



CHAPTER 1. Introduction

them by using some kind of automatic tool.

In order to write parallel programs the processing work must be divided among the
available cores. The work can be distributed in the form of either tasks or data.
In task parallelism the problem being solved is divided into tasks, and every task is
assigned to a core. In contrast, in data parallelism the data of the problem being
solved is distributed among the various cores in blocks, and every core executes
the same program on its corresponding block of data. The most common way to
write parallel programs is to use explicit parallel constructs, available as extensions
to languages like Fortran or C++. Another option might be to use a higher-level
language which, while facilitating the development task, will also reduce the applica-
tion’s performance. This section aims to provide some basic information on parallel
and distributed computing. Firstly, the most widely used parallel architectures are
presented using a taxonomy that adheres to different criteria. Afterwards, the most
important parallel programming models are described. Finally, some common met-
rics used to evaluate the performance of parallel approaches are defined.

1.3.1 Parallel Architectures

In parallel computing one of the most frequently used taxonomies for classifying
parallel computer architectures is the one proposed by Flynn [119]. In this taxonomy
two different criteria are considered: the number of instruction streams and the
number of data streams. Hence, four possible groups emerge from the combination
of these two criteria:

• Single Instruction Single Data (SISD). This group includes systems that ex-
ecute a single instruction at a time and fetch or store a single data item at a
time. Traditionally, this class has represented machines with a single-core pro-
cessor executing a sequential program. The SISD architectures is disappearing,
however, since most processors are currently based on multi-core architectures.
For instance, the classical Von Neumann architecture [275] is a SISD system.

• Single Instruction Multiple Data (SIMD). This group contains parallel systems
where a single instruction stream is executed on multiple streams of data, i.e.
the same instruction is applied to different pieces of data. SIMD architectures
are well-suited, for example, for tasks like parallelising iterative programming
sentences involving large data sets. Data is divided among the processors and
each one executes the same instruction on its corresponding block of data.
Thus, SIMD architectures are suited to exploiting parallelism in data. Vector
processors [109] are an example of SIMD systems. Graphics Processing Units

28



1.3. Parallel and Distributed Computing

(GPUs) [262] are not pure SIMD systems, even though they make use of some
elements of SIMD architectures [185].

• Multiple Instruction Single Data (MISD). Systems categorised in this group
are able to execute multiple instruction streams on a single stream of data,
although no practical implementation of this kind of architecture exists.

• Multiple Instruction Multiple Data (MIMD). This group, which represents the
most general model of a parallel architecture, contains systems that are able to
simultaneously execute multiple instruction streams on multiple data streams.
Thus, MIMD architectures usually consist of a set of processing units or cores
that act independently, i.e. they are asynchronous, unlike SIMD systems,
which are synchronous systems. For example, GPUs are regarded as MIMD
machines nowadays. Finally, it is worth mentioning that shared-memory sys-
tems and distributed-memory systems are the main types of systems based on
the MIMD architecture.

Shared-memory Systems

In shared-memory systems there are several independent processors—single-core or
multi-core—connected to the main memory via an interconnection network such as,
a bus or a crossbar. Hence, every processor is able to access every position available
in the memory. In this kind of parallel system, communications among processors
are handled implicitly by accessing shared data structures. Shared-memory systems
are easy to program, but they have poor scalability. When the number of processors
increases in shared-memory systems, the number of accesses to the communica-
tion network also grows, meaning a higher memory bandwidth is required. Other
common problems in shared-memory parallel systems are cache coherence and false
sharing [275]. Figure 1.4 shows the general architecture of a shared-memory system.

When a shared-memory system consists of multi-core processors, two possible ways
exist to access memory. On the one hand, the interconnection network can connect
every multi-core processor directly to the main memory. As a result, every pro-
cessor is able to access every memory address with the same access time. In this
cases, the shared-memory system is called a Uniform Memory Access (UMA) system
(Figure 1.5). On the other hand, the interconnection network of a shared-memory
system can connect every multi-core processor to a certain block of the main mem-
ory. Thus, every multi-core processor is able to access another processor’s memory
block by using the built-in hardware specifically designed for this purpose. In this
kind of system the access time varies depending on whether a processor is accessing a

29



CHAPTER 1. Introduction

Figure 1.4: General architecture of a shared-memory system

Figure 1.5: Architecture of a uniform memory access system with m processors and
n cores each

memory position located in its corresponding memory block or the memory block of
another processor. In this cases, the shared-memory system is called a Non-Uniform
Memory Access (NUMA) system (Figure 1.6). UMA systems are even easier to pro-
gram than NUMA systems. This is because the programmer does not have to worry
about access time concerns. However, since the scalability of NUMA systems is
usually better than that of UMA systems, the amount of memory is consequently
larger in NUMA systems than in UMA systems.

Distributed-memory Systems

In pure distributed-memory systems, there are several single-core processors and a
private memory associated with each. Moreover, different processors are connected

30



1.3. Parallel and Distributed Computing

Figure 1.6: Architecture of a non-uniform memory access system with m processors
and n cores each

by a communication network with a certain topology, such as hypercubes or toroidal
meshes, among others. Communications among processors are carried out by send-
ing explicit messages or by making usage of special functions which allow a given
processor to access the private memory of another. Distributed-memory systems are
harder to program than shared-memory systems, since the programmer has to ex-
plicitly distribute data and work among processors. However, a distributed-memory
system is much more scalable in terms of the number of processors than a shared-
memory system. Consequently, distributed-memory systems are better suited than
shared-memory systems to problems with huge data transfer and/or computational
requirements. Figure 1.7 shows the general architecture of a distributed-memory
system.

Clusters of Workstations (COW), or simply clusters, are one of the most popular
distributed-memory systems. A cluster consists of a set of machines or nodes in-
terconnected by a communication network. The main aim of a cluster is to obtain
a good ratio between its cost and its performance. The first clusters were based
on the architecture known as “Beowulf”. It consists of a set of nodes—built from
cheap standard components—commonly interconnected by an Ethernet network at
10 Mb/s. Nowadays, the nodes of a cluster are interconnected by faster communi-
cation networks like Gigabit Ethernet or Infiniband.

Finally, it is worth mentioning that every node in a distributed-memory system
might be a shared-memory machine, with one or several multi-core processors. These
systems are called hybrid distributed-shared memory systems in order to differentiate
them from pure distributed-memory systems. Hybrid machines are the most widely
used nowadays due to their flexibility and to their applicability to a wide range of

31



CHAPTER 1. Introduction

Figure 1.7: General architecture of a distributed-memory system

problems.

Other Criteria for Grouping Parallel Systems

Due to the large number of parallel systems that have emerged in recent decades,
each with its own features, the taxonomy proposed by Flynn is not appropriate [334].
This is the reason why other criteria should be used to classify parallel systems [326]:

• Homogeneous/Heterogeneous parallel architectures. Parallel systems can be
classified based on the homogeneity of their components, i.e. processors, in-
terconnection networks, software, etc. For example, a cluster in which all the
nodes use the same architecture is a homogeneous parallel system. In contrast,
an example of a heterogeneous parallel system might be a laptop, with its own
multi-core processor and a GPU added on. Currently, much more powerful
machines and much faster networks have emerged, leading to the appearance
of heterogeneous Networks of Workstations (NOW). The main differences be-
tween a NOW and a COW lie in the cost of the communications and in the
workload of the machines, which are higher in the former.

• Shared/non-shared parallel architectures. In a non-shared system the resources
are dedicated to executing a single application belonging to a single user. In
contrast, in a shared system resources are shared by different users and/or
applications. For instance, a NOW is usually a shared parallel system, while
a COW is generally a non-shared parallel system.

• Strongly/weakly coupled parallel architectures. This criterion classifies parallel
architectures depending on the distance between the processing units. In a

32



1.3. Parallel and Distributed Computing

strongly-coupled parallel system, the processing units are interconnected by
a Local Area Network (LAN), while in a weakly-coupled parallel system, the
processing units are usually interconnected by a Wide Area Network (WAN),
and consequently the communications cost is higher than in strongly-coupled
systems. A COW is, in general, a strongly-coupled machine, whereas a com-
putational grid is a weakly-coupled system. A computational grid is a scalable
system that consists of a set of dynamic heterogeneous resources distributed
in different geographic locations across multiple domains and administrated
by different organisations [124].

• Volatile/non-volatile parallel architectures. In volatile systems, the availabil-
ity of the resources is dynamic since they have a high probability of failure.
Volatile parallel systems have to deal with issues such as dynamic resource
discovery and fault tolerance. Examples of volatile systems might be a large
NOW or some computational grids.

1.3.2 Parallel Programming Models

As was stated in the previous section, ideally there would be tools for automatically
converting sequential programs into efficient parallel programs. However, such tools
do not exist, and programmers have to write parallel code directly by using parallel
programming models. Parallel programming models can be grouped by considering
the architecture of the underlying parallel system as a criterion for classifying them.
As a result, since the most important taxonomy divides parallel architectures into
shared-memory systems and distributed-memory systems, the most frequently used
models can be classified as shared-memory programming models and distributed-
memory programming models [275]. Before explaining the classification of these
models, it is important to explain some of the terminology used in this section.
When a parallel program is executed on a shared-memory system, the program
generally starts its execution in the form of a process that forks a certain number of
threads—light-weight processes—which are run simultaneously. In contrast, when
a parallel program is run on a distributed-memory system, the program is usually
executed as a set of different processes that are executed simultaneously.

In shared-memory programs all threads can access every memory address asyn-
chronously, and the main problem facing programmers is the appearance of race
conditions, which can be avoided by the use of mutual exclusive locks, semaphores or
monitors, among other mechanisms [275]. The main shared-memory programming
models are multi-threading and the use of compiler directives. In multi-threading,

33



CHAPTER 1. Introduction

a process forks into several threads that share the same memory address space. In
single-core architectures, only one thread can be executed at a time, while in multi-
core architectures every thread can be executed on one core. The most widely used
library which allows multi-threading to be implemented is Portable Operative System
Interface (POSIX) Threads [52]. The use of compiler directives can be viewed as an-
other shared-memory parallel programming model, the most representative example
of which is Open Multi-Processing (OpenMP) [65, 271, 275]. OpenMP is a specifica-
tion that consists of a set of routines, environment variables, and compiler directives
in the form of pragmas that can be included in programs written in Fortran, C, or
C++. Pragmas are included in the program source code and indicate the parallel re-
gions that the compiler has to consider. There are several compilers that implement
the OpenMP specification, such as GNU Compiler Collection (GCC) [328].

In distributed-memory systems, processors can only access their private memory.
The most prominent distributed-memory programming model is message passing.
In this programming model, communications among processes involves the send-
ing and receiving of messages synchronously or asynchronously. The most impor-
tant specification based on the message passing model is Message Passing Interface
(MPI) [244, 275], whose most widely spread implementations are MPICH [11] and
Open MPI [329]. Another important library is Parallel Virtual Machine (PVM) [134].
Libraries based on the MPI specification are very powerful tools for developing par-
allel programs. However, since it is not a high-level programming library, the de-
veloper has to specify a large number of details. In fact, MPI has been called “the
assembly language of parallel programming” [275].

Finally, it is important to note that applications for hybrid systems—a cluster of
multi-core nodes, for instance—may be programmed by using a shared-memory li-
brary for intra-node communication, such as OpenMP, and a distributed-memory
library like MPI for internode communication. This is usually done when the ap-
proach at hand requires the highest performance. However, managing two different
libraries places even more demands on the programmer, meaning that only one
library, for example MPI, might be used for both intra-node and internode commu-
nications. Similarly, OpenMP could be used in a pure distributed-memory system
thanks to the use of libraries that are able to emulate a shared memory.

Algorithmic Skeletons

Another criterion that can be used to classify parallel programming models relies
on the problem decomposition to yield different parallel programming paradigms or

34



1.3. Parallel and Distributed Computing

algorithmic skeletons [350]. In this section, the term process refers to a process or
a thread indistinctly. In the task-farming paradigm two different types of processes
are defined: a master process and a set of worker processes. Firstly, the master
is responsible for decomposing the problem into several sub-tasks, which are dis-
tributed among workers. Then, every worker executes its corresponding sub-task
and when it finalises, sends the results to the master. Finally, the master gathers all
the results provided by the workers and combines them to create the final solution
to the problem.

The Single-Program Multiple-Data (SPMD) paradigm is one of the most widely used.
Data is divided into different blocks and every block is assigned to a process. Then,
every process executes the same program but on its corresponding block of data. In
this paradigm it is usual for data dependencies among different processes to appear,
i.e. a process cannot continue with its execution until another process ends and
sends its results. This might require the use of communication and synchronisation
mechanisms.

The pipeline paradigm is based on decomposing the tasks of the parallel program
into several sub-tasks that are executed at different stages. The efficiency of this
paradigm depends on the ability to properly balance the load across the stages of
the pipeline. The communication pattern is usually very simple because data flows
only between adjacent stages.

Programs based on the parallel divide and conquer paradigm use an extension of
the well-known sequential divide and conquer strategy. A problem is recursively
reduced to a set of smaller sub-problems. When the sub-problems are small enough,
they are solved and the results are subsequently merged until a complete solution is
obtained for the initial problem. Since each sub-problem is independent, it might be
assigned to different processes. It is important to note that, although this paradigm
seems to exploit task parallelism, it in fact exploits data parallelism since the code
used to solve every sub-problem is the same but the associated data are not.

In the speculative parallelism paradigm some processes execute some pieces of code
by speculating on the results that other processes might obtain. In some cases their
assumptions are invalid, and the computed data must be discarded. However, when
their assumptions turn out to be correct, the completed computation might improve
the overall performance. This paradigm is usually applied when other paradigms
are not suitable.

Sometimes, parallel programs need to combine various features from different par-
adigms. In these cases, they are said to follow a hybrid paradigm. For instance,

35



CHAPTER 1. Introduction

there are cases where data and task parallelism are simultaneously applied. This
is closely related to nested algorithmic skeletons. An example could be a pipeline
consisting of different algorithmic skeletons, one for each stage.

1.3.3 Performance Measurement in Parallel Applications

The main aim of a parallel program is to improve performance. As a result, in-
dicators that measure this performance are required [275, 194]. Among the most
important are the speedup and the efficiency indicators. Scalability is also a de-
sirable feature of parallel programs. This section first presents the definition of
these two metrics. Then, an observation made by Amdahl [8] concerning the maxi-
mum theoretical speedup that a parallel program can provide is described. Finally,
an extension of the metrics exposed herein to evaluate the performance of parallel
meta-heuristics is explained.

Speedup, Efficiency, and Scalability

Given a certain sequential program and its equivalent parallel version, the ideal case
would be to have Tpar = Tseq/p, where Tpar is the time invested by the parallel
program, Tseq the time invested by the sequential program, and p the number of
cores—one thread/process per core—used to run the parallel version. This would
mean that our parallel approach is able to run p times faster than the sequential
version. When the ideal case arise, it is said that a linear speedup is obtained.
Sometimes Tseq is referred to as the time needed by the fastest sequential program
to complete an execution on the fastest processor available. In a large number
of cases, however, the fastest sequential program is not known, and therefore the
sequential program is the one on which the parallel program is based. Furthermore,
said sequential program is executed on a single processor of the parallel machine.

This is unlikely to yield a linear speedup due to the overhead introduced by the use
of multiple processes/threads. For instance, in a shared-memory program there will
probably exist race conditions among different threads, meaning that some mutual
exclusion mechanism will be needed to resolve them. The use of mutual exclusion
mechanisms introduces certain overhead in the run time of the parallel program.
Another example might be the intensive usage of the communication network by
the different processes in a distributed-memory program. Moreover, the larger the
number of processes/threads, the higher the overhead. It is important to note that
sequential programs do not have to deal with this overhead. As a result, obtaining

36



1.3. Parallel and Distributed Computing

the ideal equality S = p is unusual if the speedup of a parallel program is defined as
shown in Equation 1.5.

S =
Tseq

Tpar

(1.5)

Note that as p grows, S should becomes a smaller and smaller fraction of the ideal
linear speedup. In other words, the ratio S/p will likely become smaller and smaller
as p increases. This ratio is commonly called the efficiency of a parallel program—
Equation 1.6.

E =
S

p
=

( Tseq

Tpar
)

p
=

Tseq

p · Tpar

(1.6)

It is clear that E, S, and Tpar depend on the number of processes/threads p. How-
ever, it is also necessary to bear in mind that E, S, Tseq, and Tpar depend on the size
of the problem being solved. Many parallel programs are built by distributing the
work of the sequential program among different processes/threads, and adding the
parallel overhead due to synchronisation and/or communication. Hence, if Toverhead

is the time resulting from the parallel overhead, the execution time of the parallel
program can be defined as shown in Equation 1.7.

Tpar =
Tseq

p
+ Toverhead (1.7)

Note that when the problem size increases, Toverhead does not grow as fast as Tseq.
This is because when the problem size grows, every process/thread has to perform a
larger amount of work, whereas the relative amount of time invested in coordinating
processes/threads should be smaller. Consequently, is quite common for the speedup
and the efficiency of a parallel program to increase when the size of the problem being
solved grows.

Ideally, a parallel program is scalable if the efficiency remains constant when the
number of processes/threads and the problem size increase at the same rate. How-
ever, it is also scalable if the efficiency is unchanged as the processes/threads in-
crease without a corresponding increase in the problem size. The first definition is
also known as weak scalability, whereas the second one is called strong scalability.
Scalability analyses can be used to check whether a parallel program is scalable or

37



CHAPTER 1. Introduction

not. In scalability analyses several executions are carried out by altering the num-
ber of processes/threads and/or the problem size. In this dissertation, scalability
analyses are performed in order to evaluate the performance of parallel approaches.

Amdahl’s Law

Amdahl’s law says that a parallel program is able to provide a maximum speedup,
which is frequently very limited, regardless of the number of cores available. Thus,
let us consider a sequential program where a fraction r cannot be parallelised. This
fraction is also called the “inherently serial” fraction of a sequential program. Am-
dahl’s law therefore indicates that the parallel version of the program will never
provide a speedup better than 1/r, i.e. S ≤ 1/r, regardless of the number of cores
used. For instance, suppose that a sequential program has a inherently serial frac-
tion r = 1 ·10−2. This means that the associated parallel program will not be able to
provide a speedup better than 100 even if thousands of cores are available. Amdahl’s
law, however, does not take into account aspects such as the size of the problem be-
ing solved. For a large number of cases, as the problem size increases the inherently
serial fraction of the program decreases, and consequently a larger number of cores
can be used in order to improve the speedup, as stated by Gustafson’s law [145].

Performance Evaluation in Parallel Meta-heuristics

The metrics presented in previous sections, as well as Amdahl’s law, are suited
to exact and deterministic algorithms. However, the use of parallel approximate
algorithms, like parallel meta-heuristics, which are usually stochastic approaches,
might be able to provide super-linear speedups, i.e. S > p, for some problems. This is
because some parallel meta-heuristics might be able to explore the search space more
efficiently than the corresponding sequential meta-heuristics, thus yielding similar
or even better solutions than the sequential methods in less time. In contrast, it
is possible for parallel meta-heuristics to suffer from stagnation and thus exhibit a
worse behaviour than sequential meta-heuristics, which would yield unsatisfactory
speedups. This is why measuring the performance of parallel meta-heuristics is an
arduous task.

In this dissertation, speedup and efficiency indicators are computed by applying the
following procedure. Firstly, RLDs—Section 1.2.6—are calculated for both sequen-
tial and parallel approaches by pre-specifying a certain quality level. It is important
to recall that RLDs provide an indication of the relationship between success rates

38



1.4. Research Questions

and the run time or the number of function evaluations. Then, for different success
rates, the time or the number of function evaluations invested by both sequential and
parallel schemes are obtained. Finally, Equations 1.5 and 1.6 are applied to calcu-
late the speedup and the efficiency, respectively, of the parallel schemes considering
the different success rates. Once the speedup and efficiency metrics are calculated,
scalability analyses can be carried out. Additionally, the procedure presented in
Section 1.2.6 is also used to assign statistical confidence to the results.

1.4 Research Questions

“The field of Evolutionary Computation (EC) has grown dramatically and matured
into a well-established discipline” [178]. The main reason is that EAs have been
applied to a wide range of complex applications in numerous fields of science and
technology, providing high-quality results and thus demonstrating their high perfor-
mance and general applicability. EAs have awoken the interest of many researchers,
which has given rise to a large number of still-open research questions [212]. Since
the majority of these questions are general, they can be extended to other meta-
heuristics. Some of these questions, if answered, would help these optimisation
schemes to provide even better results. Furthermore, their application might be
easier to put into practice. Most of these open research topics are directly or indi-
rectly related to the problems of premature convergence and parameter setting in
EAs.

Due to diversity loss in the population, EAs usually converge towards local optima.
It is this loss of diversity that is the main reason for the appearance of premature
convergence in EAs. Several methods have been designed in an effort to deal with
the problem of premature convergence. One of the most novel proposals is based
on applying multi-objective schemes to single-objective optimisation problems, with
diversity-based MOEAs being one of the most promising schemes. In these methods,
a metric of the diversity introduced by each individual is used as an auxiliary objec-
tive, while the original objective function of the optimisation problem being solved is
maintained. Some diversity metrics define their own parameters, thus incrementing
the number of parameters of the optimisation scheme as a whole. Another drawback
of EAs, which is closely related to the problem of premature convergence, is finding
their appropriate parameter setting. If the parameter values of an EA are chosen
poorly, a loss of diversity might result, giving rise to the appearance of premature
convergence. Hence, the performance of an EA, and consequently the quality of
the resulting solutions, is highly dependent on these parameters. As a result, it is

39



CHAPTER 1. Introduction

essential that the parameters of an EA be properly determined. Finally, even if the
parameters were suitably chosen and premature convergence was mitigated, there
are optimisation problems for which the time required to obtain high-quality solu-
tions is prohibitive. For this reason, it would be desirable to enable the use of EAs
in parallel environments so as to speedup the rate at which high-quality results are
obtained for these types of complex applications.

The main aim of this research work is to shed some light on these topics, which
are analysed together in this dissertation. Thus, the main research questions to be
answered in this thesis are the following:

• Can general diversity-based approaches be designed that avoid the premature
convergence of an EA or is it necessary to make use of problem-dependent
information in order to deal with this problem?

• Is it possible to provide better performance if these diversity-based methods
incorporate the use of parameters?

• Do these extra parameters hinder the setting of an EA?

• Is it desirable to dynamically alter the values for the parameters of an EA
during its run instead of prefixing them before the run starts?

• Can general control approaches be designed that simultaneously adapt the
numeric and symbolic parameters of an EA?

• Are these control methods applicable to different parameters of an EA?

• How can parameter control strategies and diversity-based methods be enabled
for use in parallel environments?

• Are all these techniques suitable for solving complex real-world applications?

1.5 Main Contributions

This thesis mainly deals with the problems of premature convergence and parameter
setting in EAs. The main contributions to these fields are the following:

• A set of novel diversity-based objectives are proposed to address the problem of
diversity preservation, and consequently the problem of premature convergence
in EAs. Additionally, a new diversity-based survivor selection operator is also
introduced. Some of the novel diversity-based approaches have parameters

40



1.5. Main Contributions

which must be set. This was done by applying the various parameter control
methods proposed in this dissertation.

• The different diversity-based objectives, as well as the diversity-based survivor
selection operator, are integrated together with several MOEAs to comprise
a set of novel diversity-based MOEAs. Very promising results are obtained
by applying the proposed diversity-based MOEAs to different single-objective
optimisation problems, thus demonstrating the validity of the proposals by
mitigating the problem of premature convergence.

• Several novel parameter control schemes based on the use of FLCs are pre-
sented in order to address the problem of parameter setting in EAs. The
novelty of these schemes lies in the definition of different fuzzy rule bases and
on a score function which allows the most promising set of rules to be enabled
at every instant during the optimisation process. They have been designed tak-
ing into consideration the generality on their application, meaning they can
be used to adapt different numeric—discrete and continuous—parameters be-
longing to different meta-heuristics. In this dissertation, they are used to suc-
cessfully control different numeric parameters of the diversity-based MOEAs,
including the parameters defined for the novel diversity-based objectives.

• Both sequential and parallel hyper-heuristics are also applied herein as param-
eter control approaches. The parallel hyper-heuristic is based on the use of
an island-based model, a well-known parallel EA. In order to analyse their
behaviour as parameter control schemes, they are used to adapt different pa-
rameters of the diversity-based MOEAs. We demonstrate that both sequential
and parallel hyper-heuristics provide high-quality results. Additionally, the
scalability and robustness analyses performed on the parallel hyper-heuristic
prove its good performance.

• An extensive experimental evaluation to compare the control schemes based
on FLCs and hyper-heuristics is carried out. High-quality solutions are ob-
tained for several single-objective optimisation problems by the application of
both types of strategies to different diversity-based MOEAs. Moreover, the
advantages of dynamically adjusting the parameters of an algorithm during its
run instead of executing it with preset values, i.e. the benefits of parameter
control over parameter tuning, are also shown.

• A novel hybrid parameter control scheme based on FLCs and hyper-heuristics
is proposed. This hybrid control method is able to simultaneously adapt nu-
meric and symbolic parameters. The validity of this proposal is demonstrated

41



CHAPTER 1. Introduction

by using it to adapt numeric and symbolic parameters of a diversity-based
MOEA applied to a set of well-known benchmark functions.

• Different optimisation problems are considered not only to validate the dif-
ferent aforementioned proposals, but also to show that the resolution of this
set of problems is important from a practical point of view. Both benchmark
functions and real-world complex applications are addressed, namely:

– The F1–F19 benchmark functions [220] are a set of scalable continuous
optimisation problems, which combine different properties involving the
modality, the separability, and the ease of optimisation dimension by
dimension, i.e. whether the objective value can be optimised by inde-
pendently adjusting each variable or not. The proper behaviour of the
different proposed control schemes and diversity-based MOEAs is illus-
trated with this set of functions.

– The Antenna Positioning Problem (APP) [5, 348] is an optimisation prob-
lem that arises in the engineering of mobile telecommunication networks.
The APP is defined as the problem of identifying the infrastructure re-
quired to establish a wireless network. In this case, high-quality results
are reported by using the novel diversity-based MOEAs.

– The Frequency Assignment Problem (FAP) [222] is an optimisation prob-
lem of great importance in the telecommunications field. It is one of the
key issues in the design of Global System for Mobile Communications
(GSM) networks. The main aim of the FAP is to assign the set of fre-
quencies that must be used in the different antennas of the network in
order to minimise the loss of signal quality. For this problem a tailored
local search method is defined. The currently best published frequency
maps for two real cities are improved upon by combining the various
control strategies proposed with the diversity-based MOEAs.

– The Two-Dimensional Packing Problem (2DPP) is a variant of a pack-
ing problem proposed in the Genetic and Evolutionary Computation
Conference (GECCO) 2008 competition. The problem definition pro-
posed is different from the traditional definition of a packing problem.
However, this problem is complex enough to measure the performance
of an optimisation scheme. For this problem, a tailor-made local search
method is also defined. As in the case of the previous optimisation prob-
lem, the currently best published results for several instances are im-
proved upon combining the different control techniques proposed with

42



1.6. Synopsis

the diversity-based MOEAs.

• Metaheuristic-based Extensible Tool for Cooperative Optimisation (METCO)
[206] is a framework that supports the implementation and execution of se-
quential and parallel meta-heuristics. Its functionality can be extended by
defining new plugins. Since in this thesis some of the above algorithmic pro-
posals and optimisation problems are integrated as novel plugins into METCO,
the contribution to the improvement of this tool is significant.

1.6 Synopsis

The contents of this dissertation are grouped into five main parts:

• Part I: Foundations, Background, and Contributions. The aim of this part
is to establish the basic notions and nomenclature used over the course of
this dissertation, as well as to provide some background into the main topics
discussed, and to enumerate the contributions of the research work contained
herein. Particularly, Chapter 2 describes the set of EAs that have been applied
in this thesis. Then, Chapter 3 and Chapter 4 describe the state of the art on
the application of multi-objective schemes as single-objective optimisers, and
on parameter setting in EAs.

• Part II: Algorithmic Proposals. The contents of this part focus on the novel
schemes that are proposed in this work. Firstly, Chapter 5 introduces the nov-
elties of the diversity-based MOEAs designed for single-objective optimisation.
Lastly, Chapter 6 exposes the design of the novel parameter control strategies
based on FLCs and hyper-heuristics, including the hybrid parameter control
method based on these two approaches.

• Part III: Validation of the Algorithmic Proposals: Benchmark Problems and
Complex Applications. This part presents the experimental evaluation con-
ducted on the algorithmic proposals so as to analyse their behaviour with
both benchmark problems and complex applications. Chapter 7 describes the
experimental evaluation with the benchmark functions, whereas Chapters 8, 9,
and 10 respectively do the same for the APP, the FAP, and the 2DPP.

• Part IV: Conclusions and Future Lines of Research. The aim of this part is to
share the main conclusions extracted from this research. Moreover, the most
promising lines of future work are discussed.

43



CHAPTER 1. Introduction

• Part V: Appendices. This last part contains an appendix with the set of pub-
lications that emerged from the different topics considered in this dissertation,
as well as an appendix with the complete set of rule bases defined for the FLCs
proposed herein.

44



Chapter

2

Evolutionary Algorithms

This chapter focuses on the description of the family of meta-heuristics that are
applied throughout this dissertation: Evolutionary Algorithms (EAs). This chapter
starts with a brief historical introduction to these types of algorithms. Then, the
common concepts and features shared by all EAs are discussed. Afterwards, the
different approaches used herein for both the single-objective and the multi-objective
fields are presented, including the definition of MAs, which are considered hybrid
meta-heuristics based on the combination of a population-based meta-heuristic, such
as EAs, and a LS procedure. Finally, one of the most frequently used models for
defining parallel EAs, the island-based model, is explained.

2.1 A Brief Historical Introduction

Early work on EC was based on the application of evolutionary systems such as
optimisation methods, feedback-control approaches, or automatic tools to generate
computer programs. In this dissertation, evolutionary system refers to Darwinian
evolutionary systems, and consists of the following features [179]:

• There exists a population of individuals which compete for limited resources.

• Due to the birth and death of individuals, the population changes dynamically.

• The ability of an individual to reproduce and survive is called fitness.

• The fact that offspring are similar, but not identical, to their parents is known
as variational inheritance.



CHAPTER 2. Evolutionary Algorithms

One of the first studies that influenced the emergence of EC was provided by Sewell
Wright in the 1930s [352]. Wright explained evolution as a process where the genetic
information of species is continuously changing by a trial and error mechanism. The
effect of this procedure is to optimise the adaptation of species to their environ-
ment. During the same period, Walter Cannon also noted that natural evolution
was a learning process that proceeds by random trial and error [58]. Nevertheless,
it was not until the late 1950s that Hans Bremermann proposed the relationship be-
tween evolution and mathematical optimisation [40, 41]. Hence, Bremermann can be
considered as one of the first practitioners of EC in the field of optimisation. Nowa-
days, optimisation continues to be the largest area of application of EC. Other
early works were based on the usage of evolutionary systems as feedback-control
approaches, which altered their responses dynamically depending on the feedback
obtained from the system being controlled. From this point of view, an example was
the usage of an evolutionary system to evolve the control circuits of a robot [126].
Finally, evolutionary systems were also used in an attempt to generate computer
programs automatically. An example of this type of application was the design of
a “Learning Machine” that evolved sets of machine language instructions [125]. All
this early research work was the origin of several sub-areas of EC, like EP and GAs.
A deeper insight into the origins of EC can be found in [120].

In the 1960’s, the availability of “cheap” computers boosted the idea of implementing
evolutionary systems as computational algorithms to solve complex problems, thus
triggering a revolution in the field of EC. Among the most important contributions
were the ideas put forth by Rechenberg and Schwefel, Fogel, and Holland:

• Rechenberg and Schwefel formulated some ideas on how evolutionary processes
could be used to deal with real-valued optimisation problems [283]. ES were
born from these ideas.

• Fogel’s research work was based on applying the ideas of evolutionary pro-
cesses to the field of artificial intelligence [122]. His first works were based on
representing intelligent agents as finite state machines, which were evolved to
even more intelligent agents. His ideas allowed EP methods to emerge.

• Holland started to apply evolutionary processes so as to implement problem-
independent robust adaptive systems, whose decisions were carried out by tak-
ing into consideration the feedback received from interacting with a particular
environment [159]. These ideas set the stage for the modern-day GAs.

Afterwards, the aim of most research activities during the 1970’s was twofold.
Firstly, to characterise the behaviour of the three aforementioned approaches, and

46



2.1. A Brief Historical Introduction

Table 2.1: Implementation details for the canonical evolutionary algorithms
EP ES GAs

Parent pop. size µ = N µ = 1 µ = N

Offspring pop. size λ = N λ λ = N

Representation Finite State Machines Real-valued vectors Binary string
Crossover - - One-Point
Mutation Add/Delete states/arcs Adaptive Gaussian Bit Flip
Parent Selection Deterministic - Random
Survivor Selection N fittest (1 + λ) Generational

secondly, to better understand the way they could be used to solve problems. De-
cisions on how best to implement these approaches were also investigated, such as
how to manage the population of individuals, or how to select the parents in order
to obtain the offspring, among other topics. As a result, three canonical EAs—EP,
ES, and GAs—resulted from all the research work performed during this decade.
The implementation differences among these canonical EAs are shown in Table 2.1.

In the case of EP, starting from a population of N parents, N offspring were gen-
erated with each iteration of the algorithm. The fittest N individuals among the
parents and offspring were selected as the parent population for the next iteration
of the algorithm. The selection of the parents was deterministic, and each parent
evolved in order to produce a single offspring. Since the individuals were represented
by finite state machines, the offspring were obtained by the usage of a mutation op-
erator that was responsible for adding/deleting states/arcs.

With regard to ES, individuals were represented by a vector of real variables, be-
cause this approach originated with the aim of optimising real-valued functions. The
original proposal was named (1 + λ)-ES. In each iteration of the algorithm, λ off-
spring was created starting from a single parent, and the fittest individual between
the parent and the offspring was selected as the unique parent for the next itera-
tion. In order to obtain the offspring, an adaptive mutation operator based on a
Gaussian distribution with a mean equal to zero and a standard deviation equal to
σ—G(0, σ)—was applied. So as to deal with this adaptive mutation operator, the
representation consisted of D real variables of the problem and D real values for the
standard deviation σ. Each value σi, i = 1, . . . , D was used in order to perturbate
the variable i through a Gaussian distribution G(0, σi), and since these values were
incorporated into the representation of the individual, they changed during the op-
timisation procedure. To modify these values, the famous “1/5 rule” proposed by
Rechenberg [284] was used. This is why these EAs are called Evolution Strategies,

47



CHAPTER 2. Evolutionary Algorithms

since the strategy parameters are evolved together with the individuals.

In GAs, the individuals were represented by means of a binary string. Variation
operators—crossover and mutation—were applied to obtain N offspring starting
from N parents, and all offspring survived as the parent population for the next
iteration of the algorithm, i.e. no parents were selected to survive. This is known
as a generational survivor selection method. To generate the offspring, parents were
randomly selected, but proportionately to their fitness.

While the canonical EAs emerged from the 1970’s, the 1980’s were focused on apply-
ing this set of algorithms to more complex problems, and on defining new algorith-
mic proposals based on them. In the particular case of ES, different problems arose
when dealing with high-dimensional and multi-modal problems. Consequently, sev-
eral variants of the original ES algorithm were proposed, like the (µ+ λ)-ES, which
generates λ offspring starting from µ parents, and selects the best µ from (µ + λ)
individuals as the parent population for the next iteration. Another proposal was
the (µ, λ)-ES, in which µ parents produce λ offspring, and the best µ individuals to
survive are selected from the λ offspring, i.e. no parents survive. In the case of GAs,
something similar happened, since they were widely applied to different optimisa-
tion problems. The most common difficulties that emerged from the application
of GAs involved the convergence to global optima and stagnation in sub-optimal
regions. As a result, different solutions were proposed, such as the use of tourna-
ment selection as a novel parent selection mechanism [141], or the use of elitism in
the survivor selection methods [88]. Another important topic of research was the
modification of the internal representation of individuals for GAs, by experimenting
with other binary representations, or by changing the original representation based
on a binary string for a real-valued representation. Moreover, some research topics
remained open, such as the application of GAs to other fields, like classifier systems
or neural networks, the definition of non-linear representations of variable size in or-
der to address other types of problems with GAs, or even the parallelisation of GAs.
Finally, a large amount of tailor-made EAs, which incorporated problem-dependent
information in the form of representations or operators specifically designed for the
problem at hand, were also proposed during this decade.

Until the 1990’s the research on ES, EP, and GAs had been carried out indepen-
dently. However, in the late 1980’s and early 1990’s a significant number of confer-
ences on this topic were held that allowed different research groups to exchange their
ideas and points of view. As a consequence, an agreement on the term Evolutionary
Computation was reached, and the first journal on the subject, also called Evolution-
ary Computation, emerged. Due to this exchange of ideas, different modifications

48



2.2. Basic Concepts for Evolutionary Algorithms

Table 2.2: Evolutionary process versus resolution of an optimisation problem
Evolutionary process Resolution of an optimisation problem

Population Set of solutions
Individual Solution
Fitness Objective function
Environment Optimisation problem
Genotype, Phenotype, Chromosome Internal representation of a solution
Gene Decision variable
Allele Value of a decision variable
Locus Position of a decision variable

at the implementation level were investigated for the canonical EAs. In the case
of ES, different crossover operators that improved the performance of this EA were
proposed [20]. With regard to GAs, the use of problem-dependent representations
and operators improved the behaviour of these types of algorithms [247]. Finally,
with the incorporation of internal representations and operators from the field of
ES, the application of EP was extended to other areas such as optimisation. As a
result, several novel EAs, like GP [190], were born. Moreover, many of the funda-
mental assumptions and underlying theories were revised in order to strengthen and
generalise the basis for the different paradigms based on EAs. Finally, by the late
1990’s the field of EC had become a mature scientific discipline.

2.2 Basic Concepts for Evolutionary Algorithms

In the previous section some features of EAs were introduced indirectly. This section
provides a detailed discussion of the basic terms and concepts that different variants
of these types of approaches share. EAs are a family of population-based meta-
heuristics inspired by natural evolution. They have been successfully applied to a
large number of complex applications in different scientific and technological fields.
In natural evolution, a given environment is filled with a population of individuals
that compete in order to survive and reproduce. Hence, since the environment
can only contain a limited number of individuals, survivor selection mechanisms
are required to keep the population from growing uncontrollably. Natural selection
promotes the most competitive individuals, i.e. those that adapt better to the
environment. This phenomenon is also known as the survival of the fittest. Some
of these survivors will be able to reproduce with the aim of obtaining even fitter
individuals.

49



CHAPTER 2. Evolutionary Algorithms

Algorithm 1 Generic pseudocode for an evolutionary algorithm
1: Initialisation. Generate the initial parent population.
2: Evaluation. Evaluate all individuals in the initial parent population by applying the

objective function in order to assign a fitness value to every individual.
3: while (not stopping criterion) do
4: Parent selection. Select the individuals from the parent population to build the

mating pool.
5: Variation. Apply the variation operators to the mating pool so as to create the

offspring population.
6: Evaluation. Evaluate the generated offspring via the objective function so as to

assign a fitness value to every offspring.
7: Survivor selection. Select individuals from among the parents and offspring to

survive as the new parent population for the next generation.
8: end while

Continuing with metaphor between an evolutionary process and the resolution of
an optimisation problem—Table 2.2—a structure or an individual is an encoded
solution to some problem. The codification of an individual or its internal repre-
sentation is known as the genotype, which is decoded to obtain the phenotype, or
decoded solution. If a direct encoding of the individuals is used, the genotype and
the phenotype are similar. A genotype is usually composed of one or more chromo-
somes, and every chromosome in turn consists of several independent genes, which
take on certain values or alleles. A locus identifies the position of a gene within the
chromosome, and a set of chromosomes is called a population. Generally, an EA
requires both an objective function and a fitness function. The objective function
is located in the problem domain, and defines the optimality condition of the EA.
In contrast, the fitness function is situated in the algorithm domain, and measures
if a particular solution satisfies said optimality condition. Both functions, however,
are usually identical [70], at least in the single-objective case. Hence, an objective
function assigns a fitness value to every individual. This fitness value measures the
ability of the corresponding individual to survive and reproduce in the environment,
i.e. whether the solution is appropriate for the optimisation problem at hand. We
should note that in this dissertation a direct encoding of the individuals is always
used. In addition, genotypes consist of a unique chromosome. Consequently, the
terms genotype and chromosome refer to the internal representation of an individual.

As was stated in previous sections, several EAs exist. However, they share the
same generic framework. Algorithm 1 shows the generic pseudocode of an EA.
During the initialisation stage—line 1—individuals are generated to fill the initial
parent population. This initial parent population is evaluated—line 2—through the

50



2.2. Basic Concepts for Evolutionary Algorithms

Figure 2.1: Flow chart representing an evolutionary algorithm generation

application of the objective function so as to assign a fitness value to every individual.
Then, at each iteration or generation of the EA, a set of steps is repeated. Firstly, the
parents that comprise the mating pool—line 4—are selected via the parent selection
or mating selection mechanism. Then, the variation operators are applied to the
mating pool to generate the offspring population—line 5. Particularly important
among the different variation operators are the recombination operator—or crossover
operator—and the mutation operator. Once the offspring are obtained, they have
to be evaluated—line 6—by means of the objective function in order to assign them
a fitness value. Finally, a replacement or survivor selection operator is applied—line
7—in order to determine the set of individuals from among the parents and the
offspring that are going to survive as the parent population for the next generation.
These four steps are repeated until a stopping criterion—line 3—is satisfied. A flow
chart representing a generation of an EA is shown in Figure 2.1.

From the above content, it can be observed that different components, such as the
survivor selection strategy or the variation operators, among others, have to be spec-
ified in order to completely design an EA. Additionally, some of these components
incorporate the use of parameters—mutation and crossover rates, or the population
size, for instance—and consequently they must be also fixed in order to execute the
EA as designed. In particular, decisions regarding the following components must
be made during the design of an EA:

• Individual’s representation, genotype, or chromosome. The structure which is
going to be used in order to represent a solution to the problem being solved
is a common component not only among different EAs, but also for all meta-
heuristics. In the case of EAs, the method for decoding the genotype into the
phenotype must also be considered at this point. In this dissertation, three
main representations are used depending on the problem at hand: binary
string, vector of discrete values—integer values, for instance—and vector of

51



CHAPTER 2. Evolutionary Algorithms

real values. Additionally, since a direct encoding is always used, it is not
necessary to specify a method to transform genotypes into phenotypes.

• Population initialisation. This component is also shared by all population
based meta-heuristics, and therefore by all EAs. In this thesis, the initial
population is always filled with randomly generated individuals.

• Parent selection mechanism. This is a component that must be selected ex-
clusively for EAs. This method is responsible for selecting the individuals
from the parent population for the purpose of reproducing. It is important
to remark that in this research work, the well-known Binary Tournament op-
erator [108] is always used as the parent selection strategy. Its operation is
detailed in Section 2.2.1.

• Variation operators. As in the previous case, the variation operators are
components that are specifically taken into account during the design of an
EA. The objective of the variation operators is to generate offspring start-
ing from the mating pool. The most widely applied variation approaches are
the crossover and mutation operators. The different crossover and mutation
operators that are used throughout this thesis are described in Sections 2.2.2
and 2.2.3.

• Survivor selection strategy. This is another specific component whose proper
selection must be determined during the design of an EA. The survivor selec-
tion mechanism is responsible for choosing, from among the current parents
and offspring, the individuals which survive for the next generation. Sec-
tion 2.2.4 is devoted to describing the particular survivor selection strategies
addressed herein.

• Stopping criterion. This component is also common to all meta-heuristics. As
was stated in the previous chapter, in this thesis, two main stopping criteria
are considered: execution time and number of evaluations carried out involving
the objective functions of the problem being solved.

2.2.1 Parent Selection Mechanisms

The main aim of the parent selection strategy is to select the individuals from
the parent population that are going to reproduce in order to generate the offspring.
Usually, these strategies are based on the fitness assigned to every individual. Hence,
the better the fitness of an individual, the greater its likelihood of being selected.
This is known as the selection pressure, and it is used to guide the search procedure

52



2.2. Basic Concepts for Evolutionary Algorithms

towards better individuals. The higher the selection pressure, the higher the prob-
ability that the fittest individuals survive. Nevertheless, some individuals with a
poor fitness should be considered for their selection, because they might contribute
with their genetic material to guide the search process to unexplored areas where
the global optimum could be found. The fitness can be assigned in two different
ways:

• Direct fitness assignment. The fitness values are directly associated with indi-
viduals.

• Rank-based fitness assignment. Each individual in the population is assigned
a rank, with this rank generally depending on its fitness value. For instance,
suppose a list in which individuals are sorted in descending order depending on
their fitness values. Hence, an individual is associated with its corresponding
rank in this list.

There exist different types of parent selection mechanisms. Some of them are based
on a direct fitness assignment, while other approaches are based on a rank-based
fitness assignment in order to carry out the selection. The most important ones
are Fitness Proportional selection, also called Roulette Wheel selection, Stochastic
Universal Sampling (SUS), Rank-based selection, and Tournament selection [108].

In this dissertation, a tournament selection strategy, which selects one individual
from the parent population, is always applied. If n parents have to be selected, the
operator has to be applied n times. Tournament selection consists of two main steps.
Firstly, k individuals are randomly selected from the current parent population using
a uniform distribution. This random selection can be performed with replacement
or without replacement. If no replacement is considered, the k selected individuals
are discarded from subsequent tournaments, whereas with replacement, the k se-
lected individuals might be randomly selected again in future tournaments. In the
second step, a probability p is used to determine the winner of the tournament from
among the k possible candidates. The value of p represents the probability that the
fittest individual from among the k possible candidates will win the tournament. If
a deterministic tournament is carried out—p = 1—the fittest individual, i.e. the one
with the best fitness, is always selected as the winner of the tournament. However,
stochastic variants of this selection operator can be defined by letting p < 1. Par-
ticularly, in this dissertation a deterministic binary tournament—k = 2—is always
applied as the parent selection strategy [108]. Whether replacement is used or not
depends on the specific EA. Figure 2.2 shows its operation. Each circle represents an
individual and the corresponding number refers to its fitness value. In this example,
the higher the fitness value, the fitter the individual.

53



CHAPTER 2. Evolutionary Algorithms

Figure 2.2: Parent selection based on a deterministic binary tournament

One of the main benefits of tournament selection is that it does not require any global
knowledge about the population, since it is based on a direct fitness assignment.
As a result, it is conceptually simple and easy to implement. Additionally, the
selection pressure can be controlled by means of the tournament size k. The larger
the tournament size, the higher the number of randomly picked individuals, and
therefore the lower the probability that an individual with a poor fitness will be
selected. Thus, as the tournament size increases, the selection pressure grows.

2.2.2 Crossover Operators

Recombination or crossover operators are responsible for generating new offspring
by the inheritance of features belonging to different parents. Crossover operators are
usually binary, i.e. one or more offspring are obtained from two parents. However,
there exist variants of n-ary crossovers, in which n parents are used to produce the
offspring. Since crossover operators are applied to the chromosome of an individual,
the internal representation selected mainly determines the way in which a particular
crossover operator is designed. The most important aspects that a crossover operator
has to address are [326]:

• Inheritance. The crossover operator should be able to promote the inheritance
of features that belong to both parents.

• Validity. The crossover should be able to produce valid offspring, i.e. solutions
that belong to the feasible region of the optimisation problem in question.

In this dissertation different binary crossover operators are applied with a probability
pc ∈ [0, 1], also called crossover rate. These operators are as follows:

• Uniform Crossover (UX) [323]. This crossover works by treating every gene
independently and randomly selecting from which of the two parents a partic-
ular gene is inherited. To do so, first a vector R = (r1, . . . , rD) with D random

54



2.2. Basic Concepts for Evolutionary Algorithms

values ri ∈ [0, 1] is generated using a uniform distribution, where D is the
number of genes in a chromosome. Second, if ri is below a given threshold—in
general, 0.5—the gene i of the offspring is inherited from the first parent; oth-
erwise it is inherited from the second parent. This second step is performed
for every gene of the offspring. In order to generate the second offspring, an
inverse mapping is used. Figure 2.3 shows the above process. This crossover
operator is suitable for binary string, real-valued, and discrete chromosomes.

Figure 2.3: Operation of the Uniform Crossover

• One Point Crossover (OPX) [160]. First, this operator randomly chooses a
locus from the chromosome using a uniform distribution. Both parents are
then split at this point, thus yielding two offspring by the exchange of the
parents’ tails. This operation is shown in Figure 2.4. It can be used with binary
string, real-valued, and discrete chromosomes. However, its main drawback is
the disruptive effect that it can have.

Figure 2.4: Operation of the One Point Crossover

• Simulated Binary Crossover (SBX) [89]. This operator is classified as a parent-
centric crossover. With parent-centric crossover operators, offspring are gen-
erated closer to their parents. Particularly, this operator simulates the opera-

55



CHAPTER 2. Evolutionary Algorithms

tion of the OPX operator when it is applied to binary string representations.
However, the SBX operator was specifically designed to deal with real-coded
chromosomes. It is based on a probability distribution function that can be
adapted to the problem at hand by means of the distribution index η:

P (β) =

{

0.5 · (η + 1) · βη if β ≤ 1
0.5 · (η + 1) · 1

βη+2 if β > 1
(2.1)

A value for βi is obtained so that the area under the probability curve is
equal to a randomly generated number µi in the range [0, 1] using a uniform
distribution. Hence, βi can be calculated as follows:

βi =







(2 · µi)
1

η+1 if µi ≤ 0.5
[

1
2·(1−µi)

]
1

η+1

if µi > 0.5
(2.2)

Finally, if X = (x1, . . . , xD) and Y = (y1, . . . , yD) are the parents, V =
(v1, . . . , vD) and Z = (z1, . . . , zD) are the offspring, and D is the number
of genes in a chromosome, the values of the genes vi and zi are calculated as
follows:

vi = 0.5 · [(1 + βi) · xi + (1− βi) · yi]
zi = 0.5 · [(1− βi) · xi + (1 + βi) · yi] (2.3)

Note that vi and zi might be outside the range [ai, bi], which delimits the
possible values that can be assigned to the gene situated at position i. In this
case, vi and zi have to be confined to this range. The above process is repeated
for every gene assuming a probability equal to 0.5. Therefore, there will be
cases in which the genes of both offspring directly inherit the alleles of the
parents’ genes without performing the aforementioned procedure. Finally, we
note that in this dissertation a distribution index η = 5 is always used.

• Arithmetical Crossover (AX) [248]. This operator is classified as a mean-
centric crossover, where offspring are created closer to the centroid of their
parents. The AX operator was designed to work with real-valued chromo-
somes. Its operation is as follows. First, a value w in the range [0, 1] is ran-
domly generated by using a uniform distribution. Then, if X = (x1, . . . , xD)
and Y = (y1, . . . , yD) are the parents, and D is the number of genes in the

56



2.2. Basic Concepts for Evolutionary Algorithms

chromosomes, the offspring V = (v1, . . . vD) and Z = (z1, . . . , zD) are produced
by applying Equation 2.4.

vi = w · xi + (1− w) · yi
zi = w · yi + (1− w) · xi

(2.4)

• Parent-centric Blend Crossover (PBX-α) [219]. As its name indicates, this
operator is classified as as parent-centric operator, and therefore it is suited
to real-valued chromosomes. Although it was proposed to yield a unique off-
spring, in this research work it is modified so as to produce two offspring.
The original version produces an offspring in the following manner. If D is
the number of genes of a chromosome, X = (x1, . . . , xD) is the female par-
ent, and Y = (y1, . . . , yD) is the male parent, this operator generates the
offspring Z = (z1, . . . , zD) where zi is a randomly selected value, using a
uniform distribution, from the range [li, ui] with li = max{ai, xi − I · α},
ui = min{bi, xi + I · α}, and I = |xi − yi|. Moreover, ai and bi respectively
are the lower and upper bounds which delimit the possible values that can be
assigned to the gene located at position i. It is important to note that the
value of the parameter α allows the spread associated with the probability
distribution to be altered, which usually takes values from the range [0.5, 1].
In this dissertation a value α = 0.5 is always applied. Finally, in order to gen-
erate two offspring instead of producing a single one as the original proposal
does, the second offspring is generated by exchanging the roles of the parents,
i.e. X becomes the male parent and Y becomes the female parent.

• Two-Dimensional Sub-String Crossover (SSX) [161]. This operator is suitable
for two-dimensional chromosomes based on real, discrete, or binary values. Its
operation is as follows. First, a locus within the two-dimensional chromosome
is selected as the division point. Second, the operator randomly decides to
carry out a vertical or a horizontal recombination. Hence, the two-dimensional
chromosome is transformed into a one-dimensional chromosome by sorting the
genes by rows or by columns. Lastly, the OPX operator is applied consider-
ing the one-dimensional transformed chromosome and the selected locus. The
operation of this crossover operator is graphically shown in Figure 2.5. Note
that the offspring H1 and H2 are generated through a horizontal recombina-
tion, whereas the offspring V 1 and V 2 are produced by the application of a
vertical recombination. For both cases, the locus (3, 2) has been selected as
the division point. This crossover operator might have a disruptive effect.

57



CHAPTER 2. Evolutionary Algorithms

Figure 2.5: Operation of the Two-Dimensional Sub-String Crossover

Finally, crossover operators which have been specifically designed to deal with some
of the optimisation problems addressed herein are also applied. They will be de-
scribed in the corresponding chapters on optimisation problems.

2.2.3 Mutation Operators

Besides the crossover operator, another widely applied variation approach can be
used in the form of a mutation operator. The main difference with crossover op-
erators is that mutation operators are unary, i.e. they produce a single offspring
starting from a unique parent. In general, pm refers to the mutation probability ap-
plied to every gene in a chromosome, and it is also called mutation rate. pm might
also refer to the mutation probability for a unique gene, however. Mutation opera-
tors are used to effect small changes in the selected individuals. This is why they
are usually applied with low values for pm. Otherwise, mutation operators might
produce a highly disruptive effect. One of the most common practices is to assign
the value 1/D to the probability pm, D being the number of genes in a chromosome.
In this way, a single gene is mutated on average. The most important aspects which
must be considered during the design of a mutation operator are [326]:

• Ergodicity. A mutation operator should be able to produce every solution from
the search space.

• Validity. The offspring generated should be a valid solution belonging to the
feasible region of the search space.

58



2.2. Basic Concepts for Evolutionary Algorithms

• Locality. Locality refers to the effect produced on the phenotype when the
genotype is altered. If small changes are performed at the genotype level,
small changes should be produced at the phenotype level. This is also known
as strong locality. In contrast, if a small change is produced in the genotype
that results in a large modification in the phenotype, then the locality is weak.
Strong locality is a desirable feature in a mutation operator. In cases where a
direct encoding is used, locality is ensured if small changes are carried out by
the mutation operator.

In this thesis the following mutation operators are applied:

• Bit flip mutation [108]. This mutation operator, which is suitable for binary
string chromosomes, allows an offspring to be obtained by flipping the alleles of
the parent’s genes. Every gene in the parent is mutated with a probability pm.
In cases where the gene of the parent takes the value zero, the corresponding
gene of the offspring will be assigned a one, and vice-versa. An example is
graphically shown in Figure 2.6. Only two bits are mutated due to pm.

Figure 2.6: Operation of the bit flip mutation

• Uniform Mutation (UM) [108]. The UM operator was specifically designed
to deal with real-valued representations. Given a gene xi of the parent X =
(x1, . . . , xD), where D is the number of genes in the chromosomes, it is mutated
to obtain the gene zi of the offspring Z = (z1, . . . , zD) as follows. In the
first place, a value µi ∈ [0, 1] is randomly generated by means of a uniform
distribution. Afterwards, the mutated gene zi of the offspring is given by:

zi = µi · (bi − ai) + ai (2.5)

In Equation 2.5, ai and bi respectively are the minimum and maximum values
that can be assigned to the gene i. It is important to note that two different
variants of the UM operator are applied in this dissertation. The first one mu-
tates every parent gene with probability pm, while the second version mutates
a unique gene with probability pm.

• Polynomial Mutation (PM) [90]. As in the case of the UM operator, the
PM operator is also appropriate for real-valued chromosomes. Given a parent

59



CHAPTER 2. Evolutionary Algorithms

X = (x1, . . . , xD) where D is the number of genes in a chromosome, the gene
xi is mutated to obtain the gene zi belonging to the offspring Z = (z1, . . . , zD)
as follows:

zi = xi + (bi − ai) · δi (2.6)

In the above Equation, ai and bi are the lower and upper bounds that determine
the possible values that can be assigned to the gene i. Moreover, the value of
δi can be calculated from the polynomial probability distribution:

P (δ) = 0.5 · (η + 1) · (1− |δ|)η (2.7)

δi =

{

(2 · µi)
1

η+1 − 1 if µi < 0.5

1− [2 · (1− µi)]
1

η+1 if µi ≥ 0.5
(2.8)

In Equations 2.7 and 2.8, µi is a random number that is generated in the range
[0, 1] using a uniform distribution, and η denotes the distribution index. We
should note that two different versions of the PM operator are applied herein.
The first variant mutates every parent gene with probability pm, whereas the
second variant mutates a unique parent gene with probability pm. Finally, a
distribution index η = 20 is always used with both versions.

Other mutation operators that have been specifically designed to deal with some of
the optimisation problems addressed here are also applied. They will be described
in the corresponding chapters devoted to optimisation problems.

2.2.4 Survivor Selection Methods

As its name indicates the survivor selection scheme is responsible for choosing the
individuals from among the parents and the offspring that will form a part of the
parent population for the next generation. The different survivor selection methods
that are applied in this research work are the following:

• Steady-State Survivor Selection (SS-S). In the case of this survivor selection
strategy, a single offspring is generated in every generation. If no individ-
ual from the parent population is worse than the new offspring, the latter is

60



2.3. Single-objective Evolutionary Algorithms

discarded. In contrast, if several individuals belonging to the parent popula-
tion are worse than the new offspring, the worst one is replaced by the new
offspring.

• Elitism-based Generational Survivor Selection (GEN-S). In this dissertation
a variant of the survivor selection scheme incorporated into the GA proposed
by Holland [159] is used. In every generation, N − 1 offspring are generated
starting from a parent population with N members. Then, all parents, except
the fittest one, are discarded and replaced by the new offspring.

• Replace Worst Survivor Selection (RW-S). This survivor selection mechanism
selects the N fittest individuals from among N parents and N new offspring
produced in every generation. This survivor selection approach was the one
used in the EP algorithm proposed by Fogel [122]. If ES-like nomenclature is
used, then we note that the RW-S scheme is a (µ+λ) selection method, where
µ = λ = N .

When considering these three schemes, we see that all of them allow overlapping-
generation EAs to be implemented. This means that survivors are selected from
among parents and offspring, instead of only choosing survivors from the offspring
population, as is the case with non-overlapping-generation EAs [179]. Examples
of non-overlapping EAs would be the traditional GA based on a pure generational
survivor selection operator or the (µ, λ)-ES, among others. The selection pressure in
an overlapping-generation EA is much higher than in the non-overlapping-generation
version of the same EA. This is because in the former EA, the number of possible
candidates to be selected is usually larger than in the latter EA. Additionally, as the
evolutionary procedure progresses, the individuals become increasingly competitive
in overlapping-generation EAs.

2.3 Single-objective Evolutionary Algorithms

This section describes the EAs, and particularly, the GAs that are applied as single-
objective optimisers throughout this dissertation.

2.3.1 Genetic Algorithms

As was mentioned in Section 2.1, GAs originated as problem-independent adaptive
systems [159]. In early versions of GAs, individuals were represented by binary

61



CHAPTER 2. Evolutionary Algorithms

string chromosomes. This kind of representation was independent from the problem
at hand. Additionally, problem-independent crossover and mutation operators were
applied in order to obtain the offspring in every generation, with probabilities pc and
pm, respectively. The most frequently used crossover operator was the OPX, while
the mutation operator was based on a bit flip. Parents were selected by a fitness
proportional selection method, and only offspring survived for the next generation,
since a generational selection strategy was used.

However, some components that were originally proposed for other EAs have been
incorporated into GAs over the years, due to a convergence of ideas in the different
sub-areas belonging to EC. As a result, for instance, it is not unusual to use a real-
valued chromosome to represent the individuals nowadays. Consequently, crossover
and mutation operators specifically designed to deal with this type of chromosome
are also applied. Furthermore, other types of parent and survivor selection schemes
are usually incorporated into GAs.

In this dissertation, GAs are based on some of the different components described
in the last section. Their operation is shown in Algorithm 2. During the initialisa-
tion stage—line 1—the initial parent population is randomly generated. This initial
population is then evaluated by using the objective function—line 2—so as to assign
a fitness value to every individual. Afterwards, as long as the stopping criterion of
the GA is not satisfied—line 3—the following steps are carried out in every gener-
ation. Firstly, M offspring must be generated—lines 4–9. To do so, three different
steps have to be carried out for as long as the offspring population is not filled with
M new individuals—line 5. During the first step—line 6—a deterministic binary
tournament selection with replacement is used as the parent selection strategy in
order to choose two parents from the current parent population. It is important
to note that both parents might be the same individual. In the second step—line
7—the crossover operator is applied with probability pc to both parents in order to
generate two new offspring. If the crossover operator is not used, the two parents
become the two new offspring. Afterwards, in the third and last step—line 8—
the mutation operator is applied with probability pm to both offspring. Therefore,
some offspring will be produced by the application of the crossover and mutation
operators, whereas other offspring will be generated only by the application of the
mutation operator. Once the offspring population is generated, if M is odd, the
worst individual from the offspring population is discarded, since M + 1 offspring
have been produced—lines 10–13. Then, the offspring population is evaluated—line
14—by means of the objective function to assign a fitness value to every offspring.
Finally, the survivor selection mechanism is applied to parents and offspring—line
15—in order to determine the parent population for the next generation.

62



2.3. Single-objective Evolutionary Algorithms

Algorithm 2 Pseudocode of the different single-objective genetic algorithms
1: Initialisation. Create the initial parent population by filling it with N randomly

generated individuals.
2: Evaluation. Evaluate all individuals in the initial parent population by applying the

objective function in order to assign a fitness value to every individual.
3: while (not stopping criterion) do
4: Offspring population generation:
5: while (offspring population is not filled with M individuals) do
6: Parent selection. Apply deterministic binary tournament selection with re-

placement on the current parent population in order to select two parents.
7: Recombination. Apply the crossover operator with probability pc to both par-

ents in order to produce two offspring. If crossover operator is not applied, both
parents become the two new offspring.

8: Mutation. Apply the mutation operator with probability pm to both generated
offspring.

9: end while

10: Offspring population truncation:
11: if (M is odd) then
12: Discard the worst individual from the offspring population.
13: end if

14: Evaluation. Evaluate theM generated offspring by means of the objective function
so as to assign a fitness value to every offspring.

15: Survivor selection. Select individuals from among N parents and M offspring
that will constitute the parent population for the next generation.

16: end while

Three different variants of the aforementioned GA are proposed in this research work.
Each of them is based on one of the three survivor selection strategies exposed in
Section 2.2.4. The choice for the remaining components, i.e. the parent popula-
tion size N , the internal representation of individuals, the crossover and mutation
operators, and their rates of application—pc and pm—depends on the optimisation
problem in question. Additionally, the stopping criterion must also be determined.
The offspring population size M depends on the parent population size N and/or
on the survivor selection method of the GA. For example, if the survivor selection
method SS-S is taken into account, the offspring population size is fixed to M = 1,
and with every generation a unique offspring is generated.

63



CHAPTER 2. Evolutionary Algorithms

2.4 Multi-objective Evolutionary Algorithms

EAs specifically designed for solving MOPs are known as MOEAs. Since MOEAs are
population-based meta-heuristics, which are able to deal with a set of solutions, their
application to MOPs allows the Pareto front to be obtained in a single execution.
Furthermore, MOEAs are suitable for difficult shapes of the Pareto front. Providing
the exact Pareto front of a MOP is an arduous task. Nevertheless, obtaining a
reasonably good approximation of the Pareto front in a reasonable time frame is
possible by the application of a MOEA. The main objectives of a MOEA are the
following [70]:

• Preserve a set of non-dominated vectors in the objective space and their cor-
responding non-dominated solutions in the decision space.

• Guide the search process towards the Pareto front in the objective space.

• Maintain the diversity of the Pareto front—objective space—and/or of Pareto
optimal solutions—decision space.

• Provide a set of non-dominated solutions such that the best compromise solu-
tion can be selected depending on the features of the MOP being solved and
on the preferences of the human decision maker.

A MOEA was first implemented in 1984 by Schaffer, who proposed the Vector Eval-
uated Genetic Algorithm (VEGA) [292] in order to solve problems in the field of ma-
chine learning. Since then, different MOEAs have been proposed [357]. The most im-
portant ones include Multi-Objective Optimisation Genetic Algorithm (MOGA) [123],
Niched Pareto Genetic Algorithm (NPGA) [163], Non-Dominated Sorting Genetic
Algorithm (NSGA) [317], Strength Pareto Evolutionary Algorithm (SPEA) [363],
Pareto Archived Evolution Strategy (PAES) [187], Niched Pareto Genetic Algo-
rithm 2 (NPGA2) [110], Non-Dominated Sorting Genetic Algorithm II (NSGA-
II) [91], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [362], Micro GA-
MOEA (µGA2) [331], and Indicator-Based Evolutionary Algorithm (IBEA) [361].

In general, the solutions to a MOP result, on the one hand, from an optimisation
process carried out by a certain optimisation scheme, and on the other hand, from
a decision process performed by the decision maker, in which the most suitable
compromise solutions are selected. The latter process is also referred to as the multi-
criteria decision making process. MOEAs are usually grouped by the definition of
three different variants of the decision process [71]. Thus, the final solutions depend
on the preferences of the decision maker, which can be specified before, during

64



2.4. Multi-objective Evolutionary Algorithms

or after the optimisation process. Consequently, MOEAs can be classified in the
following groups [70]:

• A priori methods. In this case, the decision process is performed before the
optimisation process. Lexicographic ordering, linear aggregating functions,
and non-linear aggregating functions can be grouped into this category.

• Progressive or interactive methods. These types of techniques are based on
carrying out the decision process at the same time as the optimisation pro-
cess. This group includes progressive techniques and interactive computational
steering.

• A posteriori methods. A posteriori approaches perform the decision process
once the optimisation process finalises. The most important techniques be-
longing to this group are independent sampling, criterion selection, aggrega-
tion selection, ǫ-constraint methods, and Pareto sampling.

The main difference between single-objective EAs and MOEAs lies in the fitness
assignment strategy. The most important fitness assignment methods for MOEAs
can be classified as scalar approaches, criterion-based approaches, indicator-based
approaches, and dominance-based approaches [326]. The next section provides a de-
scription of the different MOEAs applied in this research work to solve MOPs. Par-
ticularly, the well-known NSGA-II and SPEA2, which can be classified as dominance-
based approaches, are considered herein.

2.4.1 Dominance-based Multi-objective Evolutionary Algo-

rithms

Dominance-based MOEAs make use of the Pareto dominance concepts when as-
signing fitness. This idea was first proposed by Goldberg in 1989 [141]. Ranking
approaches, which are based on the concepts of Pareto dominance and Pareto opti-
mality, allow an order among different solutions to be established. The most popular
dominance-based ranking methods are as follows [70]:

• Dominance rank. The rank associated with a particular solution is based on
the number of solutions that dominate the solution being considered. MOGA
and NPGA are examples of MOEAs that incorporate this dominance-based
ranking method.

• Dominance count. In this case, the rank associated with a specific solution is
based on the number of solutions dominated by the solution being considered.

65



CHAPTER 2. Evolutionary Algorithms

For instance, the SPEA2 makes use of this type of dominance-based ranking
approach.

• Dominance depth. This type of dominance-based ranking approach decom-
poses the population of individuals into different fronts. The non-dominated
solutions in the population are assigned to the first front. Afterwards, the
non-dominated solutions in the population without considering the solutions
belonging to the first front are assigned to the second front, and so on. Thus,
the rank associated with a solution is given by the depth of its front. An
example of a MOEA which incorporates this kind of dominance-based ranking
method is the NSGA-II.

Since the fitness assigned by the above schemes consists of a scalar value, dominance-
based MOEAs follow the generic pseudocode shown in Algorithm 1. Nevertheless,
instead of directly using the value of the objective function as the measure of fit-
ness, such as in a single-objective EAs, one of the aforementioned dominance-based
ranking methods is incorporated into the MOEA as the fitness assignment strategy.
Hence, the different components exposed in previous sections, like the crossover,
mutation, and selection operators, can be applied together with these MOEAs.

Non-dominated Sorting Genetic Algorithm II

The NSGA-II [91] is one of the most widely used MOEAs. One of its most important
features is that it uses a fast non-dominated sorting approach with reduced com-
putational complexity. In addition, it applies a selection operator which combines
previous populations with newly generated ones to ensure elitism in the approach.
The fast non-dominated approach, as well as the selection operator, require defining
a partial order for the individuals. The crowded comparison operator (≥n) is used
to establish such an order. This operator assigns two different attributes to every
individual i in the parent population: the non-domination rank (ranki) and the
local crowding distance (distancei).

The non-domination rank makes use of the Pareto dominance concept. The proce-
dure to calculate it is as follows. First, the set of non-dominated individuals in the
parent population is assigned to the first rank. Then the process is repeated consid-
ering only the individuals that do not have a rank assigned. The rank assigned in
each step is increased by one. The process ends when every individual in the parent
population has its corresponding rank established.

The local crowding distance is used to estimate the density of solutions surrounding

66



2.4. Multi-objective Evolutionary Algorithms

Algorithm 3 Pseudocode of the Non-Dominated Sorting Genetic Algorithm II
1: Initialisation. Randomly generate the initial parent population P0 with N individ-

uals. Assign t = 0.
2: Evaluation. Evaluate all the individuals in the initial parent population by calculat-

ing the objective functions.
3: while (not stopping criterion) do
4: Fitness assignment. Calculate the fitness values of individuals in Pt. Use the

non-domination rank in the first generation, and the crowded comparison operator
in remaining generations.

5: Parent selection. Perform deterministic binary tournament selection with re-
placement on Pt in order to fill the mating pool with N parents.

6: Variation. Apply the crossover and mutation operators with probabilities pc and
pm, respectively, to the individuals of the mating pool in order to create the offspring
population CP with M = N new individuals.

7: Evaluation. Evaluate every offspring in CP by computing the objective functions.
8: Survivor selection. Select the N fittest individuals from among N parents and

M offspring by using the crowded comparison operator so as to constitute Pt+1.
9: t = t+ 1

10: end while

a particular individual. First, the size of the largest cuboid enclosing the individual i
without including any other individual that belongs to its rank is calculated. Then,
the crowding distance is given by the mean side-length of the cuboid. It is important
to note that the local crowding distance of the boundary individuals in every rank is
assigned an infinite value. Finally, the partial order given by the crowded comparison
operator ≥n is as follows:

i ≥n j if







(ranki < rankj)
or
((ranki = rankj) and (distancei > distancej))

(2.9)

The pseudocode of the NSGA-II is shown in Algorithm 3. During the initialisation
stage—line 1—the initial parent population is filled with N randomly generated indi-
viduals, which are evaluated by calculating the objective functions—line 2. Then, as
long as the stopping criterion of the NSGA-II is not satisfied—line 3—several steps
are carried out in every generation. Firstly, the fitness is computed and assigned
to every individual in the parent population—line 4. In the first generation, the
non-domination rank is used, while the crowded comparison operator is applied in
remaining generations. Secondly, N parents are selected from the parent population
so as to fill the mating pool—line 5—by performing deterministic binary tourna-

67



CHAPTER 2. Evolutionary Algorithms

ment selection with replacement. In order to select parents, the fitness assigned
to every individual in the previous step is considered. Then, a crossover operator
and a mutation operator are applied to the mating pool—line 6—with the aim of
building the offspring population, which consists of M = N individuals. Crossover
and mutation operators are applied with probabilities pc and pm, respectively. Af-
terwards, the offspring population—line 7—is evaluated by calculating the objective
functions. Lastly, the fittest N individuals from among N parents and M offspring
are selected—line 8—to create the parent population for the next generation. The
crowded comparison operator is applied to select the fittest survivors.

The parent population sizeN , the internal representation of individuals, the crossover
and mutation operators, as well as their rates of application, pc and pm, depend on
the MOP in question. Furthermore, the stopping criterion must also be specified.

Strength Pareto Evolutionary Algorithm 2

The SPEA2 [362] is another well-known MOEA. One of its main features is that it
makes use of an external archive to store the fittest individuals found. Furthermore,
it establishes an order among the individuals using a fine-grained fitness assignment
strategy. The fitness value of each individual—which must be minimised—is calcu-
lated as the sum of its raw fitness plus a density estimate. In order to calculate the
raw fitness, the strength strengthi of each individual i is calculated as the number
of individuals that it dominates considering both the parent population Pt and the
archive Pt:

strengthi = |{j|j ∈ Pt ∪ Pt ∧ i � j}| (2.10)

Therefore, the raw fitness rawi of each individual i is calculated as follows:

rawi =
∑

j∈Pt∪Pt,j�i

strengthj (2.11)

It is important to note that a minimisation problem arises when defining both equa-
tions above. In addition, note that the raw fitness of an individual is determined
by the strengths of its dominators in both the parent population and the archive.
Consequently, the lower the raw fitness the fitter the individual. A high raw fitness

68



2.4. Multi-objective Evolutionary Algorithms

Algorithm 4 Pseudocode of the Strength Pareto Evolutionary Algorithm 2
1: Initialisation. Generate the initial parent population P0 with N individuals, and

create the empty archive P 0. Assign t = 0.
2: while (not stopping criterion) do
3: Evaluation. Evaluate all individuals in the parent population by calculating the

objective functions.
4: Fitness assignment. Calculate the fitness values of individuals in Pt and P t. For

each individual i, calculate the raw fitness rawi and the density estimate densityi.
5: Environmental Selection. Copy non-dominated individuals which belong to Pt

and P t to P t+1. If |P t+1| > N reduce P t+1 by means of the truncation operator.
Otherwise, if |P t+1| < N , fill P t+1 with dominated individuals belonging to Pt and
Pt, considering their fitness.

6: Parent selection. Perform deterministic binary tournament selection with re-
placement on P t+1 to fill the mating pool with N parents.

7: Variation. Apply crossover and mutation operators, with probabilities pc and pm,
to the mating pool so as to obtain M = N offspring.

8: Survivor selection. Set Pt+1 to the offspring population.
9: t = t+ 1

10: end while

implies that the corresponding individual is dominated by a large number of indi-
viduals, which in turn also dominate many individuals. In contrast, a raw fitness
equal to zero implies that the individual is not dominated by any other individual.

The raw fitness is not appropriate when most individuals do not dominate one other.
As a result, density information is incorporated to discriminate among individuals
with identical raw fitness values. The density estimator is an adaptation of the k-th
nearest neighbour method [305]. For each individual i, the distances—considering
the objective space—to each individual j from the parent population and the archive
are calculated and stored in a list. Then, this list is sorted by increasing order,
and the k-th item gives the desired distance, which is designated σk

i . Finally, k =
√

N +N is usually applied, where N is the parent population size and N the archive
size. The density estimate for the individual i—densityi—is therefore given by:

densityi =
1

σk
i + 2

(2.12)

Algorithm 4 shows the pseudocode for the SPEA2. During the initialisation stage—
line 1—the initial parent population is filled with N randomly generated individuals,
and an empty archive is also created. Then, for as long as the stopping criterion of

69



CHAPTER 2. Evolutionary Algorithms

the SPEA2 is not satisfied—line 2—several steps are repeated for every generation
of the algorithm. Firstly, the objective functions are computed to evaluate the
individuals in the parent population—line 3. Secondly, the fitness assignment is
carried out—line 4. To do so, the raw fitness and the density estimate are calculated
for every individual in the current parent population and the archive. Then, the
non-dominated individuals in the parent population and the archive are used to
build an updated archive taking into account the fitness calculated in the previous
step. If the number of non-dominated individuals in this updated archive is greater
than the archive size, a truncation operator is applied. The truncation operator is
based on the k-th nearest neighbour method. If, on the other hand, the number
of non-dominated individuals in the updated archive is lower than the archive size,
dominated individuals from the parent population and the old archive are used
to fill the updated archive. Moreover, the updated archive becomes the current
archive. The above procedure is known as the environmental selection—line 5.
Then, deterministic binary tournament selection with replacement is performed on
the archive—line 6—so as to create the mating pool with N parents. Afterwards, the
crossover and mutation operators are applied to the mating pool with probabilities pc
and pm in order to yieldM = N offspring—line 7. Finally, the offspring population—
line 8—is used as the parent population for the next generation. We should note that
when the stopping criterion of the SPEA2 is satisfied, the non-dominated individuals
in the current archive are returned as the best found solutions.

The parent population size N , the archive size N , the internal representation of in-
dividuals, the crossover and mutation operators, as well as their rates of application,
pc and pm, depend on the MOP in question. Additionally, the stopping criterion
must also be specified.

2.5 Memetic Algorithms

A MA consists of the combination of a population-based approach with a Local
Search (LS) procedure [253]. The term “memetic”, which comes from the word
“meme”, was first introduced by Richard Dawkins [85]. A meme is a “unit of
imitation” in cultural transmission. Consequently, a MA tries to mimic cultural
evolution rather than biological evolution. The main difference is that memes are
typically adapted by the individual who transmits them, while genes are transmitted
intact, as is the case with EAs. MAs are of great value because they execute several
orders of magnitude faster than traditional EAs for certain problem domains [131,
274]. Additionally, these types of algorithms have been successfully applied in both

70



2.5. Memetic Algorithms

the single-objective [177, 266] and the multi-objective [127, 308, 343] fields.

In the literature, the local search procedure is also known as the individual learning
strategy [200], which can be based on sophisticated approaches, such as TS [345]
or SA [269], or on other, “simpler” techniques, like hill climbing methods [57] or
other search procedures. The individual learning strategy can be classified into
two main groups as per the taxonomy proposed by Whitley [349]. On the one
hand, in Lamarckian learning the locally improved individual is placed back into the
population to compete for reproduction. Hence, the result of the improvements made
during the learning stage is reflected in the individual’s genotype. On the other hand,
in Baldwinian learning only the objective functions of the individuals are updated
and the locally improved individual is not placed back into the population. As a
result, MAs are also referred to in the literature as Lamarckian EAs or Baldwinian
EAs. It is worth mentioning that both types of individual learning procedures
have been successfully applied to different optimisation problems [208, 356]. In this
thesis, Lamarckian learning is always applied in the form of stochastic hill climbing
approaches, which were specifically designed for the optimisation problem at hand.

Apart from the type of individual learning procedure they incorporate, MAs can
be classified according to other characteristics. For instance, MAs can be grouped
by different generations [265]. First generation MAs comprise the traditional ap-
proaches, which combine a population-based scheme with an individual learning
strategy. Second generation MAs contain some types of hyper-heuristics, among
other schemes. In this case, the aim of the hyper-heuristic is to constantly select
the most promising individual learning strategy or meme from among a set of pos-
sible candidates during the optimisation process. In order to make its decisions,
the hyper-heuristic considers historical information on the behaviour of the differ-
ent candidate individual learning strategies. Finally, third generation MAs include
approaches that are able to dynamically produce the pool of memes during the
optimisation process, instead of previously specifying it as in the case of second gen-
eration MAs. It is important to note that first generation MAs are applied in this
dissertation. Hyper-heuristics are also applied herein, but they cannot be classified
as second generation MAs, since they do not select from a set of candidate individ-
ual learning procedures, instead choosing from a set of different configurations of
certain meta-heuristics.

Algorithm 5 shows a generic pseudocode for a first-generation MA that combines an
EA with an individual learning process. During the initialisation stage—line 1—the
initial parent population is created. Then, the parent population is evaluated—line
2—through the computation of the objective function so as to assign a fitness value

71



CHAPTER 2. Evolutionary Algorithms

Algorithm 5 Generic pseudocode for a memetic algorithm
1: Initialisation. Generate the initial parent population.
2: Evaluation. Evaluate all individuals in the initial parent population by applying the

objective function in order to assign a fitness value to every individual.
3: while (not stopping criterion) do
4: Parent selection. Select the individuals from the parent population to build the

mating pool.
5: Variation. Apply the variation operators to the mating pool in order to generate

the offspring population.
6: Learning process. Carry out the individual learning process in the offspring

population with probability pl.
7: Evaluation. Evaluate the generated offspring via the objective function so as to

assign a fitness value to every offspring.
8: Survivor selection. Select individuals from among the parents and offspring as

the new parent population for the next generation.
9: end while

to every individual. Afterwards, in every generation of the MA, a set of steps is
carried out until a stopping criterion is satisfied—line 3. Firstly, individuals are
selected from the parent population—line 4—to create the mating pool. Secondly,
the variation operators are applied to the mating pool—line 5—so as to produce
the offspring population. The main difference between a MA with respect to an
EA—Algorithm 1—is the addition of a step to carry out the learning process—
line 6. Usually, this step makes use of information that depends on the optimisation
problem at hand, and therefore it is specifically designed to deal with such a problem.
However, general approaches are also considered as individual learning strategies.
Note that the learning process is applied to the offspring population with probability
pl. Once the individual learning strategy is applied, the offspring are evaluated—
line 7—by calculating the objective function in order to assign them a fitness value.
Lastly, the survivors are selected—line 8—from among the parents and offspring to
create the parent population for the next generation of the MA.

In [168], the effect of the probability pl was studied considering a set of benchmark
problems. This work concluded that the performance of a MA might be significantly
improved by dynamically adjusting the probability pl. However, there are other
references in which the individual learning strategy is successfully applied in every
generation of the MA [131]. In this dissertation, the individual learning procedure
is always applied in every generation of the MAs in question. The main reason
for selecting pl = 1 is that the offspring obtained after the variation operators are
applied might not attain a minimum level of quality. Moreover, the individual

72



2.6. Parallel Evolutionary Algorithms

learning procedures applied herein were designed bearing in mind their efficiency,
and therefore they are able to improve the quality of the individuals in a reasonable
time frame.

We should note that these individual learning procedures are combined with the
NSGA-II and the SPEA2—Section 2.4.1—so as to create the multi-objective MAs
applied in this research work. Furthermore, other single-objective MAs are also
taken into account, but they were specifically designed to deal with certain prob-
lems. As a result, these MAs, as well as the individual learning strategies, will be
introduced in the chapters devoted to optimisation problems.

2.6 Parallel Evolutionary Algorithms

As was stated in previous sections, meta-heuristics, and EAs in particular, yield
high-quality, if not optimal, solutions, in a reasonable time frame. However, opti-
misation problems and real-world applications are becoming increasingly complex
and a vast amount of computational resources and time are required for existing
optimisation schemes, even EAs, to find a solution. Additionally, the emergence
of multi-core architectures and faster communication networks has expanded the
interest in parallel and distributed computing. As a result, researchers have focused
on increasing the effectiveness and efficiency of EAs by parallelising them.

The main objective of a parallel EA is to explore a broader area of the search space
in order to find better solutions in less, or at least the same time as that invested
by a sequential version of the EA, i.e. to improve the quality of the solutions, as
well as to speed up the search process. Furthermore, increasing the robustness of
an EA, in terms of its ability to successfully solve different optimisation problems
and/or instances, or in terms of its sensitivity to modifications of its parameters, is
another aim of this parallelisation. Finally, another goal of parallel EAs is to solve
large-scale optimisation problems for which a sequential EA is not able to provide
solutions in a reasonable time.

Several classifications and surveys have been proposed in the literature for parallel
EAs [59, 70, 82, 173, 189, 326]. Considering the classification proposed by Talbi [326],
the parallelisation of an EA can be performed at three different levels:

• Solution level. The parallelisation is carried out on a particular component of
the EA, such as a variation operator or the evaluation of the objective func-
tions. The parallelisation at this level speeds up the search process. However,

73



CHAPTER 2. Evolutionary Algorithms

the behaviour of the EA is not modified, and therefore, the quality of the
solutions is not improved.

• Iteration level. At this level, every generation of an EA is parallelised, thus
speeding up the search process. As in the case of parallel implementations at
the solution level, the behaviour of the EA is not altered.

• Algorithmic level. In this case, a set of different EAs are executed in parallel.
If the different EAs are independent, the quality of the solutions will be the
same as in the case of separately executing the sequential versions of the EAs.
In contrast, if some type of collaboration scheme is enabled among different
EAs, an improvement in the quality of the solutions might be produced.

Parallel EAs are normally useful for optimisation problems in which the cost of
evaluating the objective functions is very expensive from the standpoint of the com-
putational resources invested [70]. For this reason, it is desirable to speed up the
search process by parallelising the computation of the objective functions. In keep-
ing with the above classification, this parallelisation is performed at the solution
level. Different techniques have been developed to address this issue. One of the
most widely applied methods is based on decomposing the objective function and
distributing the different components among several cores. In this case, every core
is responsible for executing one of the components so as to evaluate one of the ob-
jective functions of a single individual. Therefore, the above procedure has to be
repeated with every objective function—if a MOP is considered—for every individual
in the whole population. Another frequently used approach involves decomposing
the population of individuals and distributing the sub-populations among the dif-
ferent cores. Thus, every core is responsible for computing the objective functions
of the individuals in its sub-population. A third possibility, which is suitable only
for MOPs, consists of assigning each of the objective functions to a particular core.
Hence, the evaluation of an individual is also carried out by several cores, with ev-
ery core being responsible for evaluating one of the objective functions. The above
process has to be repeated for every individual in the population. The objective
function is not the unique component of an EA that can be parallelised at the so-
lution level. For instance, variation operators might also be parallelised. However,
if the time invested by a variation operator is compared to the time invested by
the evaluation of computationally expensive objective functions, the parallelisation
of the variation operators is not worth the effort. Something similar happens with
parent and survivor selection schemes.

Considering the parallelisation at the iteration level and recalling the generic pseu-
docode of an EA—Algorithm 1—we can see that the parent selection, the variation

74



2.6. Parallel Evolutionary Algorithms

stage, the evaluation of individuals, and the survivor selection must be executed
sequentially. Each step requires the completion of the preceding one before it can
start. That is why it is not possible to implement an efficient parallel EA in which
each of the aforementioned steps is executed by one core. Since there are depen-
dencies among different tasks, cores increase their idle time, and consequently the
performance of the parallel EA diminishes. Nevertheless, another parallel imple-
mentation at the iteration level considers the decomposition of the population and
the distribution of sub-populations among several cores. Thus, each core performs
different operations on the corresponding sub-population.

Parallel implementations at the solution and iteration levels do not modify the be-
haviour of the EA; they only speed up the search procedure. However, it is also
desirable to improve the quality of the solutions, and therefore the only possibility
lies in parallelising at the algorithmic level, where different EAs are simultaneously
executed by different cores, and where the results obtained by the EAs are com-
bined using some type of collaboration scheme so as to explore the search space
more efficiently [338]. Parallelisation at the algorithmic level is considered in this
dissertation.

Another famous taxonomy for parallel EAs was the one proposed by Coello [70].
Four major parallel computational paradigms are identified:

• Master-worker paradigm. In this paradigm, the evaluations of the objective
functions are distributed among a set of worker cores, while a master core is
responsible for executing the variation and selection operators, among other
tasks. The evaluations can be distributed using one of the methods mentioned
in a previous paragraph. Models that follow this paradigm speed up the search
process, but they do not improve the quality of the solutions. Finally, it is
important to note that the parallelism is implemented at the solution and
iteration levels in the master-worker paradigm.

• Island paradigm. The approaches belonging to this paradigm are also called
distributed, multiple-population, multiple-deme or coarse-grained models. In
this case, the population is decomposed into a number of independent and
separate sub-populations or demes, i.e. there exist small, separate, and simul-
taneously executing EAs—one per core or island. Thus, each island evolves
in isolation for the majority of the execution, but occasionally, some individ-
uals can be migrated between neighbouring islands based on some selection
or fitness criteria. In this type of paradigm, the parallelism is located at
the algorithmic level. In addition, since some implementations make use of
collaborative schemes, the search space can be explored more efficiently and

75



CHAPTER 2. Evolutionary Algorithms

consequently better solutions might be found.

• Diffusion paradigm. This paradigm is also known as the fine-grained or cellular
paradigm. Models belonging to this group deal with one conceptual population
in which every core holds only between one and a few individuals. In diffu-
sion models a topological structure must be established between the different
cores, which defines a neighbourhood. Variation and selection operators are
applied exclusively to this neighbourhood. As in the case of the master-worker
paradigm, the parallelism is located at the solution and iteration levels.

• Hierarchical or hybrid paradigm. This type of paradigm can be seen as a
combination of the three above paradigms. For instance, Cantú-Paz proposed
three different island-based hybrid models [59]: each island contains a diffusion
parallel EA, each island comprises a master-worker parallel EA, and each
island consists of an island parallel EA.

2.6.1 Island-based Model

In this research work, parallel EAs are implemented starting from the island-based
model. The island-based model, when compared to the other parallel approaches,
offers two main benefits: it maps easily onto the parallel architectures—thanks to
its distributed and coarse-grained structure—and it extends the search area—due
to multiplicity of islands—thus reducing the problem of local optima stagnation.
Coello provided a classification for island-based models that considers MOEAs [70].
This classification is also suitable for single-objective EAs. Four basic island-based
schemes exist according to this classification: all islands execute identical EAs with
the same parameterisation (homogeneous), all islands execute different EAs and/or
parameterisations (heterogeneous), each island evaluates different objective function
sub-sets, and each island represents a different region of the genotype or phenotype
domains. The first two variants are usually known as standard island-based models.
In both the population located on every island represents solutions to the same
problem. In the third variant, which is only suitable for MOPs, every island focuses
on some of the objective functions considered. The last variant isolates each core
to solve specific, non-overlapping regions of the genotype/phenotype domain space.
In these four types of island-based models, populations are evolved in isolation on
every island. However, the islands are occasionally able to exchange individuals.
This exchange of individuals is called migration.

The standard island-based models, in which every island is associated with the com-
plete search space, seem to be more efficient and easier to implement [338], although

76



2.6. Parallel Evolutionary Algorithms

they do not guarantee optimality. Generally, the benefit with the implementation
of standard island-based models lies in the fact that in these models every island
executes a sequential version of an EA.

In island-based models the configuration of the migration stage is particularly im-
portant, since it allows for cooperation among different islands. Therefore, the
migration policy must be carefully designed in order to guarantee the best perfor-
mance of the parallel EA. Some of the most common migration stages were analysed
in [60]. In order to configure the migration stage, it is necessary to establish the
migration topology—where to migrate the individuals—and the migration rate—how
many individuals to migrate and how often. In synchronous schemes migrations are
periodically performed every fixed number of generations. In asynchronous models
a probability of migration has to be established. Then, when a generation finishes, a
migration is performed based on this probability. In this dissertation, asynchronous
migrations are taken into consideration. Furthermore, individuals that are going
to be migrated and those that are going to be replaced must be selected. This
selection is performed by using the migration scheme and the replacement scheme,
respectively.

With regard to the migration topologies, the following are considered in this research
work:

• All to All Connected Topology (ALL). In this topology every island connects
with and sends its individuals to every other island.

• Unidirectional Ring Topology (RING). In this case, every island connects to
exactly two other islands, constituting a logical ring. If there exist np islands,
labelled from 0 to np − 1, every island γ sends its individuals to the island
(γ + 1) mod np, and receives individuals from the island (γ + np − 1) mod np.

Several migration and replacement schemes have been proposed for both the single-
objective [60] and the multi-objective [338] fields. Particularly, the following ap-
proaches are considered in this thesis:

• Elitist Migration Scheme (ELI-M). An individual from an island’s population
is migrated when its fitness is better than the fitness of any member of its
previous generation. Note that the migration rate is implicitly defined for this
migration scheme.

• Random Migration Scheme (RND-M). The individual that is migrated is ran-
domly selected.

• Elitist Ranking Replacement Scheme (ELI-R). This replacement scheme ranks

77



CHAPTER 2. Evolutionary Algorithms

all Pareto fronts and replaces an individual randomly selected from the worst
ranked front with the immigrant. This scheme was specifically designed for
the multi-objective field and it provides a high selection pressure.

• Random Replacement Scheme (RND-R). The individual that is replaced is
randomly selected.

• Hamming-based Replacement Scheme (HAM-R). This replacement scheme
first checks whether or not the immigrant has a better fitness than all the
individuals on the destination island. If so, the immigrant replaces the indi-
vidual with the lowest Hamming distance to it, considering the decision space.
If not, the immigrant is discarded. This replacement scheme was proposed
for binary representations of the individuals, and its aim is to maintain the
diversity of the population, since it is based on selecting individuals that are
quite similar to the immigrants.

78



Chapter

3
Background in Multi-objective Evolu-

tionary Algorithms for Single-objective

Optimisation

As was stated in the previous chapter, one of the goals of most MOEAs is to maintain
a proper diversity of individuals in both the objective and decision spaces so as to
minimise the premature convergence problem. Due to this implicit feature that the
majority of MOEAs share, their application to solving single-objective optimisation
problems might be helpful [2]. Three different types of mechanisms are seen to exist
for solving single-objective optimisation problems by means of MOEAs [297].

• Methods that transform a constrained single-objective problem into an uncon-
strained MOP [246]. On the one hand, the constrained single-objective prob-
lem can be transformed into an unconstrained bi-objective problem where the
second objective is a measure of the constraint violations. On the other hand,
the constrained single-objective problem can also be transformed into an un-
constrained MOP with N objectives. In this last case, the original objective
and the constraints are treated as separate objective functions. Hence, N − 1
is the number of constraints. In addition to the above classification, another
taxonomy [297] considers an additional dimension that is used to group this
type of mechanism into feasible-compliant methods, which prefer a feasible so-
lution over an unfeasible solution, and non-feasible-compliant methods, which
treat feasible and unfeasible solutions equally.

• Methods that consider diversity in the definition of auxiliary objective func-
tions [188].

• Methods known as multi-objectivisation, which transform a single-objective
problem into a multi-objective one by altering its fitness landscape [45].



CHAPTER 3. Background in MOEAs for Single-objective Optimisation

This chapter is devoted to providing a background for the second and third types
of methods, i.e. diversity-based MOEAs—Section 3.1—and multi-objectivisation—
Section 3.2—as techniques for solving single-objective problems, since these mecha-
nisms are applied throughout this thesis.

3.1 Diversity-based Multi-objective Evolutionary

Algorithms

The application of MOEAs to guarantee the appropriate diversity when tackling
single-objective optimisation problems is a promising idea. Multi-objective schemes
try to optimise several objective functions simultaneously; consequently, the use
of diversity measures to define auxiliary objective functions might provide a suit-
able balance between the exploration and exploitation abilities of a MOEA. Such
auxiliary objective functions are also called diversity-based objectives in the litera-
ture [297]. It is important to remark that what is required to define the diversity-
based objective is not an indicator that measures the diversity of the whole pop-
ulation, but rather one that measures the amount of diversity introduced into the
population by an individual itself. Furthermore, since diversity-based objectives are
used together with the original objective of the single-objective problem in question,
one of the main advantages of using this kind of approach is that the Pareto front
always contains an objective vector whose value for the original objective is optimal.

In keeping with the taxonomy provided by Segura et al. [297], diversity-based ob-
jectives can be grouped depending on the diversity measures used to define them:

• Encoding-independent measures. These types of measures can be applied re-
gardless of the chromosome used to represent individuals.

• Genotypic and phenotypic measures. These kinds of measures take into ac-
count the values of the genes either in the genotypic or the phenotypic space.

• Behavioural measures. This group of measures considers the behaviour of the
individuals.

We should note that diversity-based objectives can be used not only to deal with
single-objective problems, but also with MOPs. For instance, a bi-objective prob-
lem might be solved by the application of a MOEA that simultaneously optimises
three objective functions—two objective functions belonging to the original defini-
tion of the bi-objective problem, and an additional diversity-based objective [87].

80



3.1. Diversity-based Multi-objective Evolutionary Algorithms

Additionally, several diversity-based objectives could be defined and simultaneously
optimised together with the original objectives. Nevertheless, this last approach is
rarely applied since the resulting MOP might have many objectives. In this disser-
tation, encoding-independent and genotypic measures are taken into consideration
when defining diversity-based objective functions. They are incorporated into some
of the multi-objective optimisers described in Chapter 2. Hence, since diversity-
based MOEAs are used to solve single-objective optimisation problems, two differ-
ent objective functions are simultaneously optimised herein: the original objective
function corresponding to the single-objective optimisation problem at hand, and
an additional diversity-based objective.

3.1.1 Encoding-independent Measures

The codification of the individuals is not considered in the design of this type of
diversity measure. As a result, they are not direct measures of the diversity. Nev-
ertheless, they can indirectly maintain the diversity of a population of individuals.
Different encoding-independent measures have been proposed with the aim of defin-
ing diversity-based objective functions. In this thesis, the encoding-independent
diversity-based objectives proposed by Abbass and Deb [2] are considered:

• Random. A random value is assigned as the diversity-based objective. Smaller
random values may be assigned to some low-quality individuals, thus giving
them a chance to survive. This diversity-based objective must be minimised.

• Inversion. In this particular case, the optimisation direction of the original
objective function is inverted and used as the diversity-based objective. As
a result, both objective functions will assign the same value to an objective
vector. However, one of the objectives will be maximised, while the other
objective will be minimised. The main feature of this diversity-based objective
is that it significantly decreases the selection pressure. In fact, every member
of the population is a non-dominated solution.

• Time stamp. This diversity-based objective is calculated as a time stamp
for every individual. Every individual in the initial population is assigned a
different time stamp represented by a counter which is increased every time a
new individual is generated. Afterwards, starting with the second population,
all newly generated individuals are assigned the same time stamp, which is set
as the population size plus the generation index. As in the case of the first
approach, this diversity-based objective must be minimised.

81



CHAPTER 3. Background in MOEAs for Single-objective Optimisation

3.1.2 Genotypic and Phenotypic Measures

This type of diversity measure is designed by considering differences among individ-
uals at the genotypic or phenotypic domains. The most frequently used genotypic
and phenotypic diversity measures are based on the calculation of distance met-
rics [337]. To do this, the values of the genes have to be used in order to calculate
the distance metrics, and different approaches can be taken into consideration—
Hamming distance, Euclidean distance or edit distance, among others. Thus, these
diversity measures are also known as direct diversity measures. A large number
of diversity measures have been proposed for both the genotypic [76, 337] and the
phenotypic [77, 337] spaces.

One of the first diversity-based objective functions to use a direct measure of di-
versity was based on a distance metric suitable for tree representations [87]. In
this case, the diversity-based objective of an individual was calculated as its mean
distance to the remaining individuals in the population. This diversity-based objec-
tive was incorporated into a multi-objective GP algorithm and optimised together
with two other objective functions. Another example is a diversity-based objective
specifically designed for working with a multi-objective version of a Vehicle Routing
Problem (VRP) [130], in which the distance between two individuals is calculated
as the number of shared edges. As in the previous approach, the mean distance
to the remaining individuals in the population is used as the diversity-based objec-
tive. In [300], a bi-objective formulation of a problem aimed at optimising compliant
mechanisms—flexible elastic structures—is addressed by the definition of a diversity-
based objective. In this case, individuals are encoded using a binary string. The
original objective belonging to the single-objective definition of the problem consists
of minimising the weight of the structure. The diversity-based objective involves
maximising the Hamming distance between the individual at hand and the refer-
ence design. The structure produced after the optimisation of the single-objective
variant of the problem, i.e. after minimising the weight of the compliant mecha-
nism, is considered as the reference design. Lastly, other diversity-based objectives
have been specifically designed to deal with real-valued encodings of the individ-
uals [45, 330]. The following diversity-based objectives belonging to this class are
applied herein:

• Average Distance to all Individuals (ADI). This diversity-based objective pro-
posed by Toffolo and Benini [330] is calculated as the mean Euclidean distance
in the genotypic space to the remaining individuals in the population. It has
to be maximised.

82



3.1. Diversity-based Multi-objective Evolutionary Algorithms

• Distance to Closest Neighbour (DCN). This diversity-based objective was
proposed by Bui et al. [45] considering the ideas exposed by Toffolo and
Benini [330]. The diversity-objective is calculated as the Euclidean distance
in the genotypic space to the closest neighbour in the population. It has to be
maximised.

• Distance to Best Individual (DBI). This diversity-based objective was pro-
posed together with the DCN approach [45]. In this case, it is calculated
as the Euclidean distance in the genotypic space to the best individual in the
population, with this best individual being determined by its original objective
value. This diversity-based objective has to be maximised.

It is important to note that among the aforementioned diversity-based objectives,
the ADI and the DCN approaches take more time to calculate, because they need
to compute O(N2) distances, where N is the population size. However, since in
real-world applications the time invested in evaluating an individual is usually high,
the time required to calculate distances is insignificant in comparison to the time
required to evaluate an individual.

3.1.3 Behavioural Measures

Behavioural measures are used in fields where calculating distance metrics in the
genotypic or the phenotypic spaces is an arduous task. For instance, in the field of
Evolutionary Robotics (ER), these types of measures are usually applied. In ER,
EAs allow neural networks to be evolved. These neural networks operate as robot
controllers. Since the computation of distances among neural networks in the geno-
typic or phenotypic spaces is quite difficult, Mouret and Doncieux have proposed the
usage of behavioural diversity as an alternative to calculate distances [96, 256, 258],
and therefore to define diversity-based objectives. Behavioural diversity defines
diversity-based objectives which evaluate the difference in terms of the behaviour of
an individual with regard to the current population. The behaviour of a robot results
from its interaction with a given environment. In the particular case of controlling
a mobile robot [256], the currently evolved neural networks—individuals—are eval-
uated by using them in order to simulate the behaviour of a mobile robot in the
environment. Afterwards, differences or distances among individuals are computed
by means of the status of the environment at the end of the simulations. For exam-
ple, if the problem consists of moving several items in the environment, a possibility
might be to calculate the differences among the positions of the different items in
the environment at the end of the simulations. In this way, a distance metric among

83



CHAPTER 3. Background in MOEAs for Single-objective Optimisation

individuals might be calculated, and consequently diversity-based objectives could
be defined.

Behavioural novelty [202, 203] is another frequently used concept to define diversity-
based objectives in ER [255, 257]. In behavioural novelty, distance metrics are
similar to those applied in behavioural diversity. However, the novelty of an indi-
vidual takes into consideration the set of all previously found behaviours—including
the current population—and not only the current population, as in the case of be-
havioural diversity. To do so, an archive is used to store all the previous novel
individuals and an individual is stored in the archive if its novelty is above some
minimal threshold. As a result, different variants are seen to exist so as to compute
distances among individuals. Distances can be calculated by using just the members
of the archive, or by using both the members of the archive and the members of the
current population.

Finally, another line of research involves calculating distances as the differences of the
values coming from the sensors and the actions being sent to the effectors belonging
to the robot [95], rather than using behavioural diversity and/or behavioural novelty.

3.2 Multi-objectivisation

Multi-objectivisation is a technique which also considers several objective functions
in order to transform a single-objective optimisation problem into a MOP [188].
Nevertheless, the objective functions are not based on diversity measures, which
require information about the remaining individuals in the population so as to cal-
culate them. Quite the opposite, the additional objective functions are calculated by
only considering the chromosome of the individual at hand. Hence, this is the main
difference with the diversity-based objective functions introduced in the previous
section.

Research has uncovered several ways in which multi-objectivisation leads to im-
proved performance [213]. Firstly, multi-objectivisation might allow optimisation
schemes to escape from local optima through avoiding confounding interactions
within the search space. This process is called the breakage of epistasis. It implies
that multi-objectivisation allows optimisation schemes to cover regions of the search
space that would have been difficult to explore in light of the single-objective defini-
tion of the problem. Secondly, multi-objectivisation might increase the recognition
of important fitness improvements. Changes in the decision space might produce a
significant improvement in one of the newly considered objective functions. While

84



3.2. Multi-objectivisation

such an improvement might be easily detected by multi-objective approaches, this
is not the case for single-objective optimisers.

In one of the first applications of multi-objectivisation [217]—this term was not yet
used—a deceptive single-objective function that consisted of the sum of two different
components was multi-objectivised by considering each of the two components as
two independent objective functions. This work demonstrated the benefits of using
Pareto-based selection to solve a single-objective problem. However, these ideas
were abandoned during a decade approximately, until the term multi-objectivisation
was introduced by Knowles et al. [188]. Multi-objectivisation can be performed
using two approximations: decomposition and aggregation. As its name indicates,
in multi-objectivisation by decomposition the original objective is decomposed into
several components. Afterwards, every component is treated as an independent
objective function, all of which are optimised such that the original optimum is a
Pareto optimum in the multi-objective variant. In order to achieve this feature, the
most widely applied method is to consider the original objective function as a sum
of several components. In contrast, in multi-objectivisation by aggregation some
additional objective functions are defined and optimised together with the original
objective function. Since the original objective is kept, the Pareto front of the new
formulation of the problem always contains an objective vector whose value for the
original objective is optimal.

The first work carried out by Knowles et al. [188] focused on multi-objectivisation by
decomposition. The advantages of this type of multi-objectivisation were demon-
strated by addressing some small instances of the Travelling Salesman Problem
(TSP) and a benchmark function. Multi-objectivisation by decomposition might re-
move some local optima from the original single-objective formulation of the prob-
lem [217, 188]. Furthermore, some plateaus might be incorporated in the fitness
landscape by the usage of this kind of multi-objectivisation. Plateaus are useful for
destroying deceptive regions, and offer the possibility of escaping from sub-optimal
areas of the search space. A deeper analysis on multi-objectivisation by decom-
position concluded that Pareto selection in a decomposed problem has the unique
effect of creating plateaus containing incomparable solutions [150]. Nevertheless,
the incorporation of plateaus into the search space might produce a beneficial or a
counter-productive effect on the whole optimisation procedure.

Theoretical research has also been carried out that takes into consideration multi-
objectivisation by aggregation of objective functions. The different benefits that
multi-objectivisation by aggregation might yield include avoiding the stagnation of
local optima, preserving diversity and identifying promising building blocks [176].

85



CHAPTER 3. Background in MOEAs for Single-objective Optimisation

It is worth noting that these benefits can be also achieved via multi-objectivisation
by decomposition. Additional objectives are also called helper-objectives in the lit-
erature [176]. Helper-objectives can be defined as novel objectives [144] or as de-
composed components of the original objectives [176]. In addition, they can be
generated by considering problem-dependent [347] or problem-independent infor-
mation [144]. The main advantage of the latter approach is its generality. The use
of helper-objectives together with Pareto-based selection could lead to two different
effects [44]. Firstly, comparable solutions could become incomparable, since a re-
gion of the search space with a certain search direction could be transformed into a
plateau. Secondly, incomparable solutions could become comparable, transforming
a plateau into a region with a clear search direction. It is important to note that
the removed/added search direction might be deceptive or it could guide the search
procedure towards the global optimum; consequently, multi-objectivisation by ag-
gregation of helper-objectives may have a positive or a negative effect. Throughout
this dissertation, multi-objectivisation by aggregation of helper-objectives is car-
ried out. These helper-objectives are components of the original objective function.
Since they are based on information that depends on the problem being solved, their
description will be given in those sections relevant to the optimisation problems con-
sidered.

Multi-objectivisation, and particularly helper-objectives, can be applied using dif-
ferent guidelines. The use of dynamic helper-objectives, where the helper-objective
applied changes depending on the stage of the optimisation process, was proposed
in [176]. In this particular case, helper-objectives were randomly chosen. Following
this approach, it was concluded that the structure of the search space might be mod-
ified, thus facilitating the avoidance of being trapped in local optima. An example
of applications in which helper-objectives are dynamically selected is the generation
of performance test cases for programming challenge tasks [53, 54]. In the first work,
the dynamic selection is adaptive and based on reinforcement learning, whereas in
the second, the dynamic selection is performed randomly. The use of dynamic se-
lection approaches yielded better results than the selection of helper-objectives by
hand.

The simultaneous application of several helper-objectives was also studied in [176].
However, applying different helper-objectives simultaneously does not offer any ad-
vantages because the selection pressure is almost completely removed from the opti-
misation scheme. Studies on the order in which helper-objectives have to be applied
have also been carried out not only for complex applications [214], but also for
benchmark problems [215]. In both cases, the results were significantly altered by
applying the appropriate sequence of helper-objectives. Multi-objectivisation has

86



3.2. Multi-objectivisation

also been applied to optimise scalarizing functions [166, 170]. Scalarizing functions
are used to transform a MOP into a single-objective problem [249]. Since a single-
objective variant of an optimisation problem is considered, multi-objectivisation
techniques can be applied in these cases. Finally, the application of the principles
of multi-objectivisation to solve MOPs has also been proposed. In these schemes,
the selection pressure is generally decreased significantly due to the large number
of objective functions. Nevertheless, there exist some MOPs which have been suc-
cessfully solved by the application of multi-objectivisation approaches [167]. In this
specific application, a bi-objective problem is converted into a problem with four
objective functions. The two added objectives are linear combinations of the two
original objective functions.

With regard to multi-objectivisation methods applied to real-world complex prob-
lems, it is important to note the reduction of bloat in GP algorithms [36], the predic-
tion of protein structures [132, 133, 149, 151], the optimisation of VRPs [347], or an
optimisation problem which considers the design of structures [144], among others.
For instance, in the case of reducing the bloat in GP, the size of the trees is considered
as an additional helper-objective. In the original definition of the problem which
deals with the prediction of protein structures, an energy function must be min-
imised. Several studies have proposed different ways of decomposing such an energy
function into different components. Additionally, other typical problems, such as
the TSP [172, 176, 188] or the Job-Shop Scheduling Problem (JSP) [176, 214], have
also been addressed by the use of multi-objectivisation by decomposition and/or by
aggregation, as have graph problems, like the shortest path problem [293] or the
minimum spanning tree problem [264].

87



CHAPTER 3. Background in MOEAs for Single-objective Optimisation

88



Chapter

4
State of the Art in Parameter Setting in

Evolutionary Algorithms

This chapter provides some background on parameter setting in EAs. Parameter
setting strategies are usually divided into parameter tuning and parameter control
schemes. Sections 4.1 and 4.2 describe the main features of tuning and control
schemes, and classify the most important proposals for both types of setting methods
using well-known taxonomies given in the literature. Afterwards, the combination
of fuzzy systems and EAs, including the application of FLCs as methods to adapt
the numeric parameters of an EA, is discussed in Section 4.3. Lastly, the usage of
hyper-heuristics as parameter control approaches is detailed in Section 4.4.

4.1 Parameter Tuning

Parameter tuning can be viewed as a particular case of algorithm design [107]. One
of the most challenging tasks for EA designers is given by the fact that the val-
ues selected for the parameters greatly determine the performance of the algorithm.
Therefore, the proper choice of parameter values for an EA is an optimisation prob-
lem in and of itself. In parameter tuning, parameter values are fixed before the run
of a particular EA starts, and do not change while the EA is running. Two different
types of parameter tuning exist. In structural tuning symbolic parameters are tuned,
while in parametric tuning numeric parameters are tuned.

Figure 4.1 shows the control flow—left-hand side—and the information flow—right-
hand side—through a three-level hierarchy for parameter tuning. The three dif-
ferent layers are the application layer, the algorithm layer, and the design layer.
Additionally, two different parts are also considered: the problem solving part and



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

Figure 4.1: Three-layer hierarchy of parameter tuning

the parameter tuning part. On the one hand, the problem solving part consists of
an optimisation problem involving the application layer, and an EA involving the
algorithm layer whose task is to look for optimal solutions—with the best fitness—
for the optimisation problem in question. On the other hand, the parameter tuning
part consists of a tuning method involving the design layer that searches for optimal
parameter values—with the best utility—for the EA located in the algorithm layer.
The utility of a set of parameters allows the performance of an EA executed with
said set of parameters to be measured. Hence, the problem of parameter tuning
can be viewed as an optimisation problem in a search space of parameter sets given
some utility function. The main difference between utility and fitness functions lies
in the fact that the latter is closely related to the objective functions of the optimi-
sation problem involving the application layer, whereas the former is related to the
indicators used to measure the performance of the EA at the algorithm level.

Performance and robustness are the two main factors that determine the quality of
an EA. With regard to performance, combinations of solution quality and algorithm
speed metrics are the most commonly used. Solution quality is generally expressed
by means of the fitness function incorporated into the EA in question. Algorithm
speed is usually measured through the number of function evaluations or by the
Central Processing Unit (CPU) time, for instance. Moreover, due to its stochastic
nature, several runs must be performed in order to estimate the performance of an
EA with sufficient statistical confidence. As a result, some of the most frequently
applied metrics to measure the performance of an EA are the mean best fitness
achieved at the end of the executions, the average number of evaluations or time
invested to achieve a minimum fitness level, and the success rate, which indicates the
percentage of successful runs. A run succeeds if a minimum fitness level is achieved
within a maximum amount of evaluations or time. Other measures rely on using the
median instead of the mean of the data. With respect to the robustness of an EA,

90



4.1. Parameter Tuning

different interpretations of this term exist. However, robustness relates to the vari-
ance in the algorithm’s performance over some dimension. Usually, the performance
of an EA depends on its parameter values, on the problem instance being solved, or
on the random seed used to provoke a stochastic behaviour. Consequently, robust-
ness can be defined as the variance in the performance of an EA when changes are
made to its parameters, when it is applied to different problems and/or instances,
or when it is executed with different random seeds.

Several taxonomies have been introduced in order to group tuning methods [107].
One of the most recent classifications, which was proposed by Eiben and Smit [107],
considers the different interpretations of robustness. Based on this distinction, the
authors group tuning approaches in the following four classes:

• Sampling methods. These approaches reduce the search effort by reducing the
number of parameter sets tested with respect to a full factorial design. The
most commonly used sampling methods are Latin-Square [260] and Taguchi
Orthogonal Arrays [324]. The output of these schemes needs to be analysed
to predict which parameter values are the best and the most robust. As a
result, sampling methods are not usually applied as independent tuning ap-
proaches. They are applied as initialisation methods or as a starting point for
model-based methods. In general, these approaches yield low-quality param-
eter values due to a lack of search refinement. Another variant of sampling
methods are iterative sampling methods. The difference with respect to the
standard sampling methods is that the iterative variants are able to refine the
area from which new points are sampled. Thus, iterative sampling approaches
can be used as independent tuning techniques. One of the most famous itera-
tive sampling methods is CALIBRA [4]. In order to determine the promising
areas to be resampled a quality measure is considered, meaning that iterative
sampling methods are suitable for improving the performance of an EA but
not its robustness.

• Model-based methods. In the field of parameter tuning, meta-models or sur-
rogate models allows building a model of the utility landscape. Firstly, dif-
ferent tests with different parameter sets are executed, for instance, by us-
ing a sampling method. Afterwards, the utility of each tested parameter set
is calculated. Lastly, the utility information is used to generate the model
via a regression method [83]. This model is applied to predict the utility of
an untested parameter set. As in the case of sampling methods, low-quality
parameter sets are obtained by model-based methods. Iterative model-based
methods try to mitigate this problem through a more fine-grained exploration

91



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

of the parameter search space. Coy’s procedure [81] is one of the most basic
iterative model-based methods. It consists of applying a standard model-based
method followed by a local search procedure. Another widely used iterative
model-based method is Sequential Parameter Optimisation (SPO) [27], where
the model is continuously refined.

• Screening methods. These methods try to identify the best parameter set while
employing a minimum number of tests. The selected parameter sets are re-
tested and the whole process is repeated until no more testing is required.
Hence, screening methods are either able to provide the best parameter set
with less computational effort than sampling methods, or they are able to test
a larger number of parameter sets by investing the same amount of computa-
tional resources. In the last case, the quality of the best parameter set found is
usually higher and the information on the robustness to changes in parameter
values is also more extensive. Screening methods are influenced by the field of
system selection [142]. Among the most important system selection approaches
are Interactive Analysis (IA) [294] and Ranking and Selection (R&S) [288].
In the field of parameter tuning, the term racing has been adopted to refer
to screening methods. One of the most frequently applied racing schemes is
F-RACE [33]. Iterative screening methods are also available. For instance I/F-
RACE [23] is the iterative variant of F-RACE, which is based on combining a
screening method with a fine-grained search.

• Meta-EAs. The notion of meta-EAs was introduced by Mercer and Samp-
son [243]. However, the meta-GA proposed by Grefenstette [143] was the first
practical method, since previous proposals were computationally expensive.
In a meta-EA every individual encodes a different parameter set correspond-
ing to the EA being tuned, and individuals are evolved by the meta-EA. The
(meta-)fitness value of an individual represents its utility, which is computed
by executing the tuned EA with the parameter set encoded by said individual.
The two main problems that arise when applying a meta-EA are the exist-
ing noise in the utility values, and the high cost of the evaluations needed to
calculate them. As a result, some schemes have been proposed that generally
make use of screening approaches to reduce the number of tests required. For
instance, in [354] a racing method is combined with a meta-GA so as to tune
symbolic and numeric parameters. Other approaches have been proposed in
an effort to provide models of the utility landscape, as well as a deeper insight
into the different types of robustness. One of these approaches is Relevance
Estimation and Value Calibration (REVAC) [261]. It is a meta-EA whose pop-
ulation approximates the probability density function of the most promising

92



4.2. Parameter Control

areas of the utility landscape. It is combined with racing methods to deal with
the existing noise in the utility values [309]. Finally, some meta-EAs have been
proposed to deal with multi-function tuning problems. They are termed multi-
objective meta-EAs. In these schemes, each performance measure and fitness
function is treated as a different objective. As a result, a multi-objective opti-
miser must be employed as the meta-EA. Hence, the Pareto front can be used
to evaluate robustness in terms of changes in problem definition, as well as to
measure the performance using several metrics. An example of multi-objective
meta-EA is M-FETA [310].

4.2 Parameter Control

Parameter control schemes, unlike parameter tuning methods, allow the parameter
values of a given algorithm to be modified during its execution. The ideas of pa-
rameter control were first incorporated in early work in EAs [84, 284]. For instance,
Rechenberg proposed its “1/5 success rule” [284] to adapt the mutation parameters
of ES during their run. Nevertheless, recent research has seen a marked increase in
proposals for methods to achieve parameter control in EAs. Control methods have
been successfully applied to a wide range of EAs such as ES [191], GAs [117], or
DE [280].

In order to classify parameter control approaches, several taxonomies have been
proposed [9, 105, 106, 315]. Considering the one given by Eiben et al. [106], four
criteria are used. Firstly, parameter control approaches can be classified depending
on the parameter or component that they change. Specific methods exist to control
the representation of individuals, the variation operators, the evaluation function,
or the selection operators, among other parameters and components. A second
classification can be performed according to the manner in which parameter values
are changed. Hence, control methods are classified in three main groups—Figure 4.2:

• Deterministic parameter control. Parameter values are altered by a determin-
istic rule without using any feedback from the search procedure.

• Adaptive parameter control. Parameter values are updated by a mechanism
which uses some feedback from the search process. Such a mechanism is ex-
ternally supplied.

• Self-Adaptive parameter control. Parameters are encoded into the chromosome
and their values are modified by the variation operators. The main difference

93



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

Figure 4.2: Taxonomy of parameter setting in evolutionary algorithms

between adaptation and self-adaptation lies in the fact that the mechanism
that updates the parameter values in the latter approach is implicit, i.e. is
given by the selection and variation operators of the EA itself. Good reviews
on this type of parameter control methods are provided in [17, 245].

Some authors have introduced other terminologies to classify control approaches
based on this second criterion. For instance, Angeline [9] proposed classifying control
schemes into absolute and empirical methods, which refer to the uncoupled and
tightly-coupled approaches given by Spears [315]. The absolute/uncoupled group
refers to deterministic and adaptive methods, whereas the empirical/tightly-coupled
schemes correspond to self-adaptive techniques.

Another additional criterion for classifying parameter control approaches is the in-
formation or evidence that is used to apply the change to the parameter [311, 312].
For instance, control methods might be based on information regarding the perfor-
mance of the variation operators, or on a measure of the population diversity. From
this point of view, there exist two main categories:

• Absolute evidence. The value of a parameter is altered by some rule that
is fired when a predefined event happens. The main difference with respect
to deterministic parameter control is that feedback from the search process
is taken into account. An example might be changing the crossover or the
mutation rate according to a fuzzy system whose inputs are given by different
metrics calculated for the population [201].

• Relative evidence. Parameter values are compared considering the fitness of
the offspring they produce, thus rewarding the best values. The direction
and/or magnitude of the change is not specified in a deterministic way, but
relative to the performance of other values. For instance, consider an EA

94



4.3. Synergy between Fuzzy Systems and Evolutionary Algorithms

applying several crossover operators during a generation and assume that the
sum of the crossover rates is 1. These rates are then modified taking into
consideration the performance of the different crossover operators in terms of
the offspring they generate. The update of these rates might be adaptive or
self-adaptive.

Finally, a fourth classification can be carried out considering the scope or level that is
affected by the change [9, 312, 315]. Hence, a change can affect a gene, an individual,
the whole population, other components, such as the selection operators, or even
the evaluation function.

Within each of these four classifications, a wide variety of approaches can be found
in the literature. For instance, the delta coding algorithm introduced in [237] per-
forms an adaptive adjustment of the individuals’ representation based on absolute
evidence. Another example is given in [192], where the Boltzmann selection mecha-
nism [19] is used to dynamically alter the selection pressure in the individual learning
stage of a MA. It is worth noting, however, that the majority of work on parameter
control in EAs is focused on the variation operators—mutation and crossover—the
population size, or combinations of all three [10, 13, 18, 84, 106, 156].

4.3 Synergy between Fuzzy Systems and Evolu-

tionary Algorithms

Our knowledge of EAs has significantly increased in recent years due to the vast
amount of theoretical and empirical studies conducted on a large number of com-
plex problems in different fields. It would be desirable to profit from this human
knowledge by encapsulating it within an algorithm so as to automate the task of
improving the behaviour and performance of EAs. However, this sort of knowledge
is usually incomplete, imprecise, and it is not well organised. Consequently, the ap-
plication of fuzzy systems would seem to offer a promising approach for dealing with
this kind of knowledge. Fuzzy systems can be regarded as universal approximators
of real continuous functions in a compact set to arbitrary accuracy [112]. They have
been applied to several fields, such as control [100], classification [169], regression [73]
and general data mining problems, due to their ability to manage imprecision and
uncertainty, as well as to describe the behaviour of complex systems without requir-
ing a precise mathematical model. The most common fuzzy models consist of a set
of logical fuzzy rules and are known as Fuzzy Rule-based Systems (FRBSs). The
two most popular FRBSs are linguistic fuzzy models, which are also referred to as

95



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

Mamdani [228] fuzzy models, and Takagi-Sugeno-Kang (TSK) [325] fuzzy models.
The main difference between these two types of fuzzy models lies in the form that
the consequents of their fuzzy rules take. More details on the two kinds of fuzzy
models will be given in Section 4.3.1.

A considerable body of research on fuzzy systems and EAs already exists [112, 154,
165, 303]. EAs have been used to automatically design fuzzy systems, and partic-
ularly FRBSs, since the design process can be viewed as an optimisation problem.
Hybrid approaches that combine the use of an EA to design a fuzzy system are
known as evolutionary fuzzy systems. When using GAs, these kinds of approaches
are called genetic fuzzy systems [154], whereas if a MOEA is used as the optimiser,
the methods are then termed multi-objective evolutionary fuzzy systems [112].

Fuzzy Logic Controllers (FLCs) are FRBSs designed to carry out control tasks.
There is no set procedure for designing an FLC. Furthermore, the fuzzy parameters
corresponding to the FLC must be properly selected in light of the control objective.
In order to deal with these issues, the application of EAs has been proposed for
designing FLCs [174]. The design of an FLC by means of an EA could be based
on [112]:

• Learning a structure for the controller. Learning the set of fuzzy rules, which
is also referred to as the rule base.

• Identifying the numeric parameters of the controller. Tuning the parameters
belonging to the membership functions and/or performing rule selection as a
post-processing method.

Different EAs, including MOEAs, have been used to identify the parameters of FLCs,
as well as to design their structure, taking into account different applications [62,
67, 128, 129, 146, 199, 259, 290, 301, 333]. For instance, in [62] a GA is used
to design an FLC for a mobile robot. In [333], a DE algorithm is employed to
systematically tune the optimal parameters of an FLC whose aim is to control a
power system stabiliser. Another example is given in [301], where an ES approach
is used to optimise an FLC designed to deal with the optimal antiviral therapy
problem of infectious diseases. Lastly, in [129], a tuning process is combined with
a rule selection process to improve the performance of an FLC to control heating,
ventilating, and air conditioning systems. The approach is based on the SPEA2.

In this dissertation, the reverse of the above type of application is analysed; namely,
the design of FLCs that adapt the parameters of an EA is studied to provide an
adaptive control technique that utilises feedback from the search process to adapt
these parameters. These hybrid systems, where an FLC is used to adapt the pa-

96



4.3. Synergy between Fuzzy Systems and Evolutionary Algorithms

rameters of an EA, are also termed fuzzy adaptive EAs, and in the particular case
of controlling GAs, fuzzy adaptive GAs [155]. Both Mamdani-type and TSK-type
FLCs are employed herein as adaptive parameter control methods, that dynamically
change the parameters of an EA. Unlike other FLCs, an error feedback signal does
not directly exist in the approaches proposed throughout this research work, since
their goal is to optimise as much as possible. However, these systems have to include
some way of measuring performance, which makes them atypical since the desired
objective is not known beforehand. Despite this fact, these kinds of schemes are also
called FLCs in the literature [114, 155], which is why this term has been adopted
here. The main benefit of using FLCs to adapt the parameters of an EA is that the
possible values that can be assigned to certain parameters are infinite, in contrast to
other techniques that can only use certain values from a finite set. The main draw-
back is that FLCs cannot be directly applied to control the symbolic parameters of
an EA. Hence, in this thesis FLCs are applied to adapt numeric parameters of EAs.

Several methods have been proposed for controlling the parameters of an EA through
FLCs. The principle behind these schemes is to use an FLC to compute new pa-
rameter values by considering any combination of performance measures and cur-
rent parameter values as the input to the controllers. This idea was first proposed
in [201]. In this scheme, the population size and the mutation and crossover rates
were adapted considering the best, the mean, and the worst fitness values of the
individuals in the population. Subsequently, a large number of variants have been
proposed [135]. Some of the schemes that are more closely related to the FLCs
applied in this dissertation are briefly summarised below.

A survey of several optimisation schemes, including EAs, which relied on an FLC to
control their internal parameters, was presented in [135]. Some of the simplest ap-
proaches adapted the crossover and mutation rates of a GA by considering the mean
fitness of the last two generations as input variables to the controller [344]. Basically,
depending on the improvements obtained in the last generation, the crossover and
mutation probabilities were modified so as to change the perturbation strength of
the variation scheme. Using only two generations might not be enough, so in some
schemes the mean fitness values of the last three generations were considered [210].
A similar idea was proposed in [211] to adapt the parameters of a DE approach.
Specifically, two FLCs were used to adapt the mutation scale factor and the crossover
rate. In this case, the input variables not only consisted of measures in the objective
space, but the decision space was also considered.

More advanced FLCs take into account diversity metrics as inputs to the FLCs in
order to carry out their decisions. For instance, a fuzzy adaptive search method for

97



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

parallel GAs based on the use of diversity measures was proposed in [226]. In [42]
the frequency of the best individual, as well as the rate of duplicate individuals were
used to control the mutation, crossover and surviving individual rates. In addition,
an input variable that estimated the quality of the resulting fitness was used. Thus,
as in some of the other schemes described, knowledge was assumed regarding the
supposed optimal values. Another example is given in [207], where a diversity metric
was calculated by considering the difference between the maximum and mean fitness
of the population.

From the perspective of MOEAs, it is apparent that the body of research is much
smaller than in the case of single-objective EAs. However, FLCs have also been
used to control the parameters of different MOEAs [68, 114]. For example, in [114]
an FLC is used to dynamically adapt the greediness and the perturbation scale
factor belonging to the reproduction operator of a multi-objective DE approach.
We should note that even though in this dissertation diversity-based MOEAs are
applied, the original objective of the problem being solved is the only one considered.
As a result, most of the ideas proposed for controlling multi-objective schemes with
FLCs cannot be directly implemented into the approaches being proposed here.

It is also worth noting that FLCs have been successfully used to adapt different EAs
applied to real-world applications, demonstrating their efficiency and reliability even
for complex problems [68, 113, 291, 313, 321]. For instance, in [313] two FLCs are
used to adaptively adjust the crossover and mutation rates of a GA that is applied
to a power system environmental/economic dispatch. Another example is detailed
in [291], where a MOEA is used to solve a complex multi-objective power market
clearing problem for the competitive electricity market environment. An FLC is
used to dynamically update the crossover and mutation rates.

Summarising, the feature common to most of the research described in the literature
is that FLCs are used to adapt the parameters of GAs [155]. Specifically, the
crossover and mutation rates, the population size, or combinations of all three [147,
155, 240, 320] are controlled. Moreover, these FLCs are usually tailor-made methods
for a particular EA and/or parameters, and they only make use of a single rule base.
Chapter 6 will be devoted to discussing innovations on the FLCs proposed in this
research work with respect to the most common approaches present in the literature.
Lastly, the next section will go into detail on the different components that an FLC
consists of, as well as on the set of steps required in order to design an FLC that
can be used to adaptively adjust the parameters of an EA.

98



4.3. Synergy between Fuzzy Systems and Evolutionary Algorithms

4.3.1 Adapting Evolutionary Algorithms using Fuzzy Logic

Controllers

FLCs are useful for complex applications that are difficult to analyse by quantitative
methods, or in cases where the sources of information are interpreted qualitatively,
inexactly, or uncertainly. One of the main advantages of an FLC is that it is modelled
in linguistic terms. Hence, the human knowledge can be easily represented. As a
result, using them to dynamically control the parameters of an EA seems to be a
very promising idea. An FLC consists of the following components [155]:

• Knowledge base. This contains the human knowledge in the form of linguistic
fuzzy control rules.

• Fuzzification interface. This transforms crisp input data into fuzzy sets.

• Fuzzy inference engine. This element is in charge of performing inference based
on the knowledge base and the fuzzy sets given by the fuzzification interface.

• Defuzzification interface. Responsible for transforming fuzzy control actions
to real control actions by using a defuzzification approach.

Figure 4.3 shows the general architecture of an FLC. The knowledge base has two
different parts. On the one hand, a data base, which includes the definitions of the
membership functions of the linguistic terms for each input and output linguistic
variable. And on the other hand, a rule base constituted by the collection of fuzzy
rules, which represents the human knowledge.

Input and output linguistic variables are expressed by a set of linguistic terms.
For instance, a variable called fan speed might be represented by means of the
linguistic terms low, medium, and high. The set of terms belonging to a given
variable is a fuzzy set when each value of the linguistic variable belongs with degrees
of membership to one or more of its linguistic terms based on their corresponding
membership functions. For instance, suppose that the linguistic variable fan speed is
modelled as shown in Figure 4.4. From left to right, triangular-shaped membership
functions represent the linguistic terms low, medium, and high. If this linguistic
variable takes the crisp value f = 25, then the corresponding fuzzy set will be
f̄ = 0.5/low + 0.5/medium+ 0/high.

A fuzzy control rule is a conditional statement of the form “IF a set of conditions
are satisfied THEN a set of consequences can be inferred” [155]. The antecedent can
include different conditions, while the consequent is a collection of control actions
to be applied to the controlled system, and both antecedent and consequent are

99



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

Figure 4.3: General architecture of a fuzzy logic controller

associated with fuzzy concepts, i.e. linguistic terms. Usually, the input variables
are located in the antecedents of the fuzzy rules, whereas the output variables are
located in the consequents. In this thesis, where an FLC has multiple inputs and a
single output, fuzzy rules take the following form:

R1 : IF x is A1, . . . , AND/OR y is B1 THEN z is C1

R2 : IF x is A2, . . . , AND/OR y is B2 THEN z is C2

. . .
Rn : IF x is An, . . . , AND/OR y is Bn THEN z is Cn

(4.1)

In the above equation, x, . . . , y are input variables, while z is the output variable.
Ai, . . . , Bi, and Ci are linguistic terms defined for the linguistic variables x, . . . , y,
and z, respectively. Furthermore, the importance of a rule can be determined by a
weight in the range [0, 1], which is equal to 1 if omitted. In a more general variant
of a fuzzy rule, the consequent is represented by a function of the input variables
x, . . . , y:

100



4.3. Synergy between Fuzzy Systems and Evolutionary Algorithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  25  50  75  100

f

Membership Functions - Fan speed

Figure 4.4: Membership functions for the linguistic variable fan speed

Ri : IF x is Ai, . . . , AND/OR y is Bi THEN z = fi(x, . . . , y) (4.2)

Note that in the above definitions of fuzzy rules, the different conditions or prepo-
sitions in the antecedents can be connected by the conjunctive fuzzy logic operator
AND or by the disjunctive fuzzy logic operator OR. A fuzzy logic operator defines
an operation between two values. It can be a T-norm when it models conjunction or
an S-norm when it models disjunction. A simple example of a fuzzy rule set might
be the following, where the input variable temperature and the output variable fan
speed are taken into account:

R1 : IF temperature is low THEN fan speed is low
R2 : IF temperature is medium THEN fan speed is medium
R3 : IF temperature is high THEN fan speed is high

(4.3)

Configuration of a Fuzzy Logic Controller

It is important to remark that the current and the following sections will consider
Mamdani-type FLCs. However, since in this dissertation TSK-type FLCs are also
applied, their differences with respect to Mamdani-type FLCs will be discussed when
needed. In order to design an FLC to adapt the parameters of an EA, the following
steps are required:

101



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

1. Define the input and output variables. Input variables should be robust metrics
which indicate the behaviour and performance of the EA at each stage of the
optimisation process. Several metrics, including diversity measures, have been
proposed [155]. Outputs are defined as absolute or relative values for the
parameters that are being controlled.

2. Define the data base. Firstly, a range of possible values—the universe of
discourse—has to be assigned to every input and output variable. Then, the
set of membership functions for every input and output variable has to be
defined over its corresponding range. To do so, the shape of each membership
function has to be selected. There are different types of shapes for the mem-
bership functions, such as singleton, triangular, or trapezoidal shapes, among
others. Lastly, each membership function must be associated with a linguistic
term.

3. Obtain the rule base. The fuzzy rules describing the human knowledge have
to be obtained. They can be created by using the knowledge of an expert in
EAs, or by some automatic approach. Automatic approaches can be grouped
into offline learning methods and online learning methods [155].

Additionally, there are some components that must be specified in order to com-
pletely define an FLC. They are the following:

• Fuzzy logic operators. A T-norm and an S-norm must be selected for the fuzzy
logic operators AND and OR, respectively. Examples of T-norms are the
minimum and the algebraic product, whereas the maximum and the algebraic
sum are instances of S-norms.

• Implication or activation method. It allows the consequents of the fuzzy rules
to be reshaped. It has to be a T-norm.

• Aggregation or accumulation method. It allows the fuzzy outputs of the fuzzy
rules to be aggregated. It has to be an S-norm.

• Defuzzification interface. As in the case of the aforementioned components,
there are several defuzzification interfaces that can be selected by the user. One
of the most frequently used approaches is the centroidmethod, which computes
a crisp value from the centre of mass of a fuzzy set. Other widely applied
methods are the bisector, the middle of maximum, the largest of maximum,
and the smallest of maximum.

102



4.3. Synergy between Fuzzy Systems and Evolutionary Algorithms

Fuzzy Inference Process

Considering the different components that must be specified so that an FLC works,
the following set of steps is defined for use during the fuzzy inference process:

1. Fuzzify input variables. This step consists of taking the crisp values of the
input variables and determining the degree of membership to each linguistic
term by means of the membership functions. The input to the fuzzification
interface is always a crisp value, while the output is a number representing the
degree of membership to the corresponding linguistic term. This fuzzification
step must be performed for each existing preposition in the antecedent of every
fuzzy rule.

2. Apply the fuzzy logic operator. Once the inputs are fuzzified, the degree of
membership to which each preposition of the antecedent is satisfied for each
rule is known. If more than one preposition exists in the antecedent of a rule,
the fuzzy logic operator is then applied to obtain one value that represents the
result of the antecedent for that rule. The input to the fuzzy logic operator
consists of two or more degrees of membership calculated during the fuzzifi-
cation of the input variables, whereas the output is a single truth value. This
step has to be repeated for each fuzzy rule.

3. Apply the implication method. Before applying the implication method, the
activation degree for each fuzzy rule must be determined. It is important to
recall that every rule has an importance weight assigned, which is multiplied
by the value of the antecedent obtained after the application of the fuzzy
logic operator so as to determine the activation degree. In this dissertation,
importance weights are omitted, and consequently the activation degree and
the value of the antecedent are equal. Once the activation degree is calculated,
the implication method is applied and the consequent of a given fuzzy rule is
reshaped using certain functions together with the activation degree. The
input to the implication method is the activation degree, and the output is a
reshaped fuzzy set. The implication method has to be applied for each fuzzy
rule.

4. Aggregate all outputs. All the fuzzy rules must be combined so as to make a
decision. By using the aggregation method, the fuzzy sets representing the
outputs of each rule are combined into a single fuzzy set. The input to the
aggregation method is the list of reshaped fuzzy sets given for each rule by the
implication method. The output is one aggregated fuzzy set for each output
variable.

103



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

5. Defuzzify. After the aggregation method obtains a single fuzzy set, it is used
as the input to the defuzzification interface, whose output is a single number.
This step must be performed for each output variable.

The aforementioned inference process is suitable for Mamdani-type FLCs. The
inference process used by TSK-type FLCs is very similar. The first two steps—
fuzzification of the input variables and application of the fuzzy logic operator—are
exactly the same. However, the implication method is a little different, and an
aggregation method is not taken into consideration. Moreover, in TSK-type FLCs,
the linguistic terms of the output variables are represented by polynomial functions
that depend on the input variables, instead of using membership functions as in
the case of Mamdani-type FLCs. As a result, in TSK-type FLCs, fuzzy rules take
the form shown in Equation 4.2. The order of a TSK-type FLC is given by the
maximum degree of the polynomial functions used to represent the linguistic terms
of the output variables. Note that zero-order TSK-type FLCs, where the linguistic
terms belonging to the output variables are described by zero-order—constant—
functions, are assumed in this thesis. Continuing with the example of the output
variable fan speed, it might be modelled as low = 0, medium = 50, and high = 100,
considering a zero-order TSK-type FLC. It can be observed that in this example,
the linguistic terms are represented by constant functions.

The defuzzification method is also different because the outputs of the implication
method are not reshaped fuzzy sets, but are instead values given by the polynomial
functions. The typical defuzzification approaches are the weighted average and the
weighted sum. The weighted average and weighted sum are computed from the
values given by the polynomial functions using the activation degrees as weights.
Recall that in the case of this research work, the activation degrees are equal to
the values of the antecedents since importance weights are omitted. Therefore, the
weights used to compute the weighed average and the weighted sum are given by
the values of the antecedents.

4.4 Hyper-heuristics as Parameter Control Meth-

ods

Hyper-heuristics are methods whose goal—in part—is to automate the design and
tuning of heuristic approaches to solve complex search problems [50]. The term
hyper-heuristic was introduced by Cowling et al. [80] to describe “heuristics to choose
heuristics” in the field of optimisation. Hyper-heuristics operate on a search space

104



4.4. Hyper-heuristics as Parameter Control Methods

of heuristics instead of directly operating on a search space of solutions to the
underlying problem being solved. As a result, hyper-heuristics are designed bearing
in mind the generality of their application to different problem domains, rather than
being developed to deal with a particular application. Hyper-heuristics were founded
on two main premises. Firstly, the process of selecting or generating heuristics
can be treated as an optimisation problem itself. Secondly, optimisation schemes
might be improved by the incorporation of learning mechanisms that allow the
search process to be guided. Hyper-heuristics can be classified into two main groups:
hyper-heuristics based on heuristic selection, and hyper-heuristics based on heuristic
generation [48]. Hence, the following definition of a hyper-heuristic was proposed
by Burke et al. [48].

Definition 20 “A hyper-heuristic can be viewed as a search method or learn-
ing mechanism for selecting or generating heuristics to solve computational search
problems”.

Most of the research on hyper-heuristics has been carried out considering single-
objective optimisation problems [46]. For instance, in [171] a selection hyper-
heuristic was proposed for dealing with single-objective variants of six different
problems: boolean satisfiability, one dimensional bin packing, personnel schedul-
ing, permutation flow shop, the VRP, and the TSP. One of the most widely applied
type of hyper-heuristics includes approaches inspired by certain meta-heuristics. For
instance, a TS-based hyper-heuristic was proposed in [51]. In this hyper-heuristic,
every low-level approach represents a definition of a neighbourhood that, when un-
able to provide any improvement, is inserted into a tabu list. Another example
was given in [98], where a hyper-heuristic inspired by a SA algorithm was intro-
duced. Lastly, a GA-based hyper-heuristic was presented in [78]. Every individual
in the population is encoded as a sequence of heuristic choices that indicate the
low-level approach to be applied at any given moment in the search procedure. The
most common approach for designing hyper-heuristics that automatically generate
heuristics is GP. GP is an EC technique that evolves a population of individuals
that encode programs. If these programs represent heuristics that are then applied
to solve a given problem, then GP can be viewed as a hyper-heuristic based on
heuristic generation. In a recent research paper [47], a GP-based hyper-heuristic,
which generates highly efficient local search methods for dealing with cutting and
packing problems, was introduced. Other frequently used hyper-heuristics are de-
signed by means of choice functions [34, 79, 180, 182, 198, 339]. In these cases a
scoring function assigns to each low-level approach a score that usually represents its
historical performance. Therefore, more resources—usually in the form of compu-

105



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

tational time—are allocated to the low-level approach, which maximises the scoring
function. For example, a hyper-heuristic that incorporates a choice function to carry
out its decisions was used to deal with problems in the field of financial forecast-
ing [180]. Another hyper-heuristic based on choice functions, which was applied to
predict Deoxyribonucleic Acid (DNA) sequences, was proposed in [34]. In this par-
ticular case, different configurations of a TS algorithm are treated as the low-level
approaches. In [339] a hyper-heuristic built on choice functions was applied. In that
paper the assignment of resources was probabilistic rather than deterministic. Thus,
the higher the score assigned to a low-level approach, the higher the probability that
said approach will receive a larger number of resources.

The amount of work on hyper-heuristics specifically designed for MOPs is not very
extensive [46]. Nevertheless, there are some hyper-heuristics specifically designed
to deal with multi-objective approaches [86, 268, 336]. In [336], a GA-based hyper-
heuristic was employed to solve a multi-objective variant of the JSP. In this scheme,
individuals are represented as sequences of dispatching rules that are called one at a
time and used to sequence a number of operations onto machines. The approach si-
multaneously searches for the best sequence of rules and for the number of operations
to be handled by each rule. Another example is given in [86], where a hyper-heuristic
based on a choice function chooses from a set of different encodings incorporated
into several MOEAs to solve multi-objective versions of two-dimensional strip pack-
ing and cutting stock problems. Finally, a multi-objective GP-based hyper-heuristic
to automate the design of scheduling policies in JSP environments was presented
in [268].

With respect to parallel, cooperative or distributed hyper-heuristics, some schemes
have been proposed [32, 273, 282]. Nevertheless, the amount of research in this
area is not very expansive. For instance, in [273], a cooperative hyper-heuristic
framework was proposed. Different low-level heuristic methods perform a search
in the same solution space and cooperate synchronously or asynchronously through
the cooperative hyper-heuristic, which is responsible for selecting the best-behaved
low-level approaches depending on the solutions provided, as well as for exchanging
solutions among said low-level methods.

Several taxonomies have been presented in the literature for grouping the existing
hyper-heuristics [21, 22, 49, 64, 314]. The classification proposed by Burke et al. [48]
offers a unified view of these taxonomies by taking into consideration two different
aspects to classify hyper-heuristics: the search space of heuristics and the feedback
source. According to the search space of heuristics, hyper-heuristics can be grouped
into:

106



4.4. Hyper-heuristics as Parameter Control Methods

• Hyper-heuristics based on heuristic selection. This type of approach tries to
identify and select the most promising method—from among a set of candidate
low-level heuristics—to be applied at any point in the search process in order
to solve a particular optimisation problem.

• Hyper-heuristics based on heuristic generation. This kind of method tries
to automatically generate heuristics to solve a specific optimisation problem.
Usually, the heuristics are generated by combining different components.

A distinction is also made at this level between constructive and perturbation hyper-
heuristics in that hyper-heuristics can be used to select or generate constructive or
perturbation low-level heuristics. Constructive heuristics incrementally build solu-
tions from scratch, while perturbation or improvement heuristics start with complete
solutions and at each step, try to improve the solutions by modifying them.

With respect to the feedback source, hyper-heuristics can be categorised into three
groups:

• Online learning hyper-heuristics. They learn to select or to generate heuristics
while solving an instance of a problem.

• Offline learning hyper-heuristics. They typically learn a mapping between
characteristics of a problem—or partially solved problem—during a training
phase which can then be applied to unsolved instances.

• No-learning hyper-heuristics. They do not use feedback from the search pro-
cedure and generally apply a prefixed sequence of heuristics.

In this dissertation, online learning hyper-heuristics based on heuristic selection are
applied. Hence, from now on, the term hyper-heuristic will refer to methods that it-
eratively choose from among a set of candidate low-level heuristics or meta-heuristics
to solve an optimisation problem [50]. These methods learn to carry out their choices
while solving the optimisation problem at hand. Hyper-heuristics operate at a higher
level of abstraction than traditional heuristics because they have no knowledge of
the problem domain. The underlying principle in using hyper-heuristics is that dif-
ferent heuristics or meta-heuristics have different strengths and weaknesses, and it
makes sense to combine them intelligently. The motivation behind the approach
is that, ideally, once a hyper-heuristic is designed, several optimisation problems
and/or instances of a problem might be addressed by only replacing the set of low-
level heuristics or meta-heuristics. As a result, the aim of using a hyper-heuristic is
to raise the level of generality at which the majority of current heuristic approaches
operate [50]. Finally, it is worth mentioning that by properly combining the advan-

107



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

Hyper-heuristic

Domain Barrier

Low-level meta-heuristics

. . .h2h1 hn

Objective function(s)

Non-domain data f low

Non-domain data f low

Figure 4.5: General framework of a hyper-heuristic

tages provided by the different low-level approaches, a hyper-heuristic might obtain
better results than those given by any of the low-level methods executed separately.

Figure 4.5 shows the general framework of a hyper-heuristic [50] It shows a problem
domain barrier between the low-level meta-heuristics and the hyper-heuristic. The
data flow received by the hyper-heuristic might include data on the quality of the
solutions or on the resources employed to achieve those solutions, for instance. The
hyper-heuristic uses this information to carry out its decisions. The data flow coming
from the hyper-heuristic might contain data on the meta-heuristic that must be
applied, or even on its parameterisation, for example.

Hyper-heuristics are highly correlated to the problem of parameter control [309].
For example, the low-level approaches might represent different configurations of
the same meta-heuristic. The hyper-heuristic then would select the configuration
with the most appropriate set of parameters at each point in the search. In fact,
hyper-heuristics can be further classified as adaptive parameter control techniques if
they receive some kind of feedback from the optimisation process in order to intelli-
gently select the most suitable low-level method. Hyper-heuristics are independent
of the methods adapted, and therefore they can be designed to control a wide range
of approaches. In those cases where the best configuration, in terms of performance,
of the same meta-heuristic varies depending on the current stage of the optimisation
process, the hyper-heuristics could be used to select the most suitable configuration
for each stage. Thus, it seems reasonable to expect the results obtained by the
hyper-heuristic to be better than those obtained by any of the candidate low-level

108



4.4. Hyper-heuristics as Parameter Control Methods

configurations executed independently. Furthermore, the use of a hyper-heuristic
would permit low-level configurations to have variations in both their numeric and
symbolic parameters, thus providing a straightforward mechanism for symbolic pa-
rameter control. However, the main drawback of the hyper-heuristic approach is
the need to specify the set of candidate low-level configurations. Moreover, since
the size of the set of candidate low-level approaches is generally fixed and finite, in
the case of controlling numeric parameters, the number of possible values that can
be assigned to the numeric parameters is therefore also finite. Despite this, hyper-
heuristics have successfully been applied as adaptive parameter control methods in
several problem domains. For instance, in [193], a hyper-heuristic was used to dy-
namically select which EA to apply—between a GA and a DE approach—and which
operator to employ—from a total amount of five operators for the GA and four op-
erators for the DE—so as to generate improved solutions. The method was tested
on a large set of complex benchmark functions. Another research paper proposed
a hyper-heuristic whose novelty lay in the fact that the parameters of the low-level
approaches, along with the automatic control of which low-level approach was ex-
ecuted at any point in the search process, were dynamically changed during the
optimisation procedure [285]. In order to validate this proposal, several instances of
the p-median problem were considered.

We should note that in this research work, although the parameters of different
MOEAs are controlled, the hyper-heuristics applied are suitable for single-objective
schemes. Diversity-based objectives and multi-objectivisation by aggregation are
used herein as techniques for dealing with single-objective optimisation problems.
As a result, the optimisation problems consist of two objective functions: the orig-
inal objective function belonging to the single-objective problem and an auxiliary
objective function. However, the hyper-heuristics used throughout this dissertation
only take into account the original objective function when making their decisions.
In Section 6.2, their functioning will be explained.

109



CHAPTER 4. State of the Art in Parameter Setting in Evolutionary Algorithms

110



Part II

Algorithmic Proposals





Chapter

5
Advances in Diversity-based Multi-

Objective Evolutionary Algorithms

This chapter is focused on describing the novel diversity-based approaches that are
proposed in this dissertation. First, a set of completely new diversity-based objec-
tives is introduced in Section 5.1. These diversity-based objectives are integrated
with some of the multi-objective optimisation schemes detailed in Chapter 2 to pro-
vide a set of novel diversity-based MOEAs for single-objective optimisation. The
main benefit of these new diversity-based objectives with respect to the existing pro-
posals in the literature is the inclusion of parameters that improve the performance
of the whole diversity-based MOEA. The main disadvantage is that these param-
eters must be fixed by the user, and their values depend on the problem and/or
instance at hand. This issue, however, can be mitigated by using the parameter
control schemes presented in Chapter 6. Second, and considering some of the no-
tions exposed in the first section of this chapter, a novel diversity-based survivor
selection scheme is presented in Section 5.2. Although diversity-based MOEAs are
proposed as an efficient method for preserving diversity in a population of individ-
uals, some combinations of certain MOEAs with certain diversity-based objectives
might involve the appearance of premature convergence issues. The novel survivor
selection mechanism proposed herein aims to avoid this drawback.

5.1 Diversity-based Objectives with Parameters

In Section 3.1.2, different diversity-based objectives that make use of the Euclidean
distance in the genotypic space as a measure of diversity were introduced. These
diversity-based objectives are ADI, DBI, and DCN. These approaches have been in-



CHAPTER 5. Advances in Diversity-based MOEAs

tegrated with various meta-heuristics and applied to different optimisation problems
to yield high-quality results in almost every case. As stated earlier, these diversity-
based objectives have to be maximised. Consequently, diversity is promoted in the
population because individuals are far from each other in the decision space. Nev-
ertheless, a greater distance does not involve a higher quality of individuals. As a
result, if the quality of the individuals is very low, the convergence speed of the
whole optimisation scheme might be delayed by the use of these diversity-based
objectives, even if the diversity of the population is maintained.

In this dissertation, extensions to the ADI, DBI, and DCN approaches are proposed
in an effort to deal with the aforementioned drawback, while simultaneously bear-
ing in mind the aim of promoting good diversity among individuals. The novelty
of these extensions lies in the fact that they attempt to limit survival of individ-
uals of very low quality through the use of a threshold ratio th ∈ [0, 1], which
has to be specified by the user. These new diversity-based objective functions are
called Average Distance to all Individuals with Threshold (ADI-THR), Distance to
Best Individual with Threshold (DBI-THR), and Distance to Closest Neighbour with
Threshold (DCN-THR). From now on, and without loss of generality, the diversity-
based objective DCN-THR will be considered to explain the operation of the new
proposals.

Firstly, it is important to recall that in this research work two different objective
functions are concurrently optimised through the application of a diversity-based
MOEA: the original objective function belonging to the single-objective problem at
hand and the diversity-based objective function. Taking this into account, the DCN-
THR scheme defines a threshold v, which is used to penalise individuals that have low
quality with respect to the original objective function by assigning a diversity-based
objective value of 0 to such individuals. The threshold v is calculated as follows.
If bestObjectiveV alue is the original objective value of the fittest individual in the
population, and shift is a value that ensures that bestObjectiveV alue− shift ≥ 0
during the whole optimisation procedure, then the threshold value v is defined as:

v =
(bestObjectiveV alue− shift)

th
+ shift (5.1)

Note that the above equation is suitable for an optimisation problem where the
original objective has to be minimised. For problems where the original objective
has to be maximised, the threshold value v is calculated by means of the following
equation:

114



5.1. Diversity-based Objectives with Parameters

Figure 5.1: Behaviour of the Non-Dominated Sorting Genetic Algorithm II and the
Strength Pareto Evolutionary Algorithm 2 combined with diversity-based objectives
without threshold (left-hand side) and with threshold (right-hand side)

v = (bestObjectiveV alue− shift) · th+ shift (5.2)

After the threshold value is calculated, all individuals whose original objective
value is worse than v—higher for a minimisation problem; lower for a maximisa-
tion problem—have the value of their diversity-based objective assigned to 0. For
the remaining individuals, their diversity-based objective value is calculated as DCN,
i.e. the distance to the closest neighbour. Consequently, individuals that are not
able to attain the fixed threshold are penalised. In the special case where th = 0,
individuals are never penalised. Therefore, DCN-THR with th = 0 behaves like the
DCN approach.

In this thesis, diversity-based objectives are combined with the NSGA-II and the
SPEA2, which were described in Section 2.4.1. The left-hand side of Figure 5.1 shows
the behaviour of the ADI, DBI, and DCN schemes when they are integrated with
both MOEAs. The maximisation of the original and the diversity-based objective
functions is assumed. To the left of every candidate solution is a label showing the
rank assigned by the NSGA-II. Hence, the label Ri means that the corresponding
candidate solution has a rank number i. Moreover, the corresponding raw fitness
assigned by the SPEA2 is also shown to the right of every candidate solution. The
right-hand side of Figure 5.1 shows the effect of incorporating the threshold to
the ADI, DBI, and DCN diversity-based objectives. The dashed line represents
the threshold value v. Note that every candidate solution that does not fulfil the

115



CHAPTER 5. Advances in Diversity-based MOEAs

minimum quality level established by the threshold value is shifted in the objective
space. Specifically, a value equal to 0 is assigned to the diversity-based objective.
The effect of the shift is that the corresponding candidate solution will usually belong
to a worse rank in the case of the NSGA-II. In the case of the SPEA2, a higher
raw fitness will be assigned to the corresponding candidate solution, thus usually
decreasing its survival probability.

Through the appropriate use of the threshold ratio th, poor quality individuals can
be discarded while and at the same time the goal of ensuring good diversity in
the population can be satisfied. The main disadvantage of these novel approaches,
however, is that the most adequate values for the threshold ratio th might differ
depending on the problem and/or instance being solved. Additionally, as is the
case with other parameters belonging to EAs, the most suitable values for th might
depend on the current stage of the optimisation process. As a result, a fixed value
of th might not be suitable, meaning that this parameter might have to be adjusted
dynamically to yield high-quality results. To carry out this task, different param-
eter control schemes are applied in this dissertation so as to control the threshold
ratio th. Particularly, this parameter is adapted by the application of FLCs, hyper-
heuristics, and self-adaptation. Moreover, a considerable number of configurations
of the diversity-based MOEAs with fixed values for the parameter th are also con-
sidered in an effort to carry out a broad comparison between parameter tuning and
parameter control.

5.2 Diversity-based Survivor Selection Scheme

Applying the diversity-based objectives proposed in the previous section might yield
high-quality solutions. Different analyses should still be carried out, however, in
order to reveal whether premature convergence problems persist when employing
them.

For instance, consider the single-objective function with one decision variable shown
in Figure 5.2. Each black dot represents an individual belonging to the current
generation of a certain diversity-based MOEA. Every individual could be a member
of the parent population or a member of the offspring population. This simple
function, which must be minimised, presents two local maxima that separate the
fitness landscape into three different regions. Furthermore, note that every region
is covered by two individuals, meaning that proper diversity is maintained by the
diversity-based optimisation scheme, at least for now. Assuming that the parent

116



5.2. Diversity-based Survivor Selection Scheme

Figure 5.2: Simple function where diversity preservation problems arise

population size N is fixed to three individuals, the survivor selection mechanism
is then responsible for selecting three individuals, among the current parents and
offspring, which will form part of the parent population for the next generation.
Consequently, an individual from every region should be selected so as to preserve
diversity in the population. Finally, with the aim of keeping the example as simple as
possible, note that the original objective—f(x)—of every individual in Figure 5.2 has
the same value. However, similar situations would occur even if the original objective
values of the individuals in question were different. Hence, in this particular example,
the diversity-based objective determines which individuals are selected through the
survivor selection scheme.

In the case of applying the NSGA-II in combination with one of the diversity-based
objectives, DCN or DCN-THR, the distance to the closest neighbour, which must
be maximised, has to be computed. Bearing this in mind, the crowded compari-
son operator of the NSGA-II assigns the individuals C and D to the first front—
Table 5.1—since the diversity-based objective value of both individuals takes the
value d = 5.8, which is in fact the maximum distance to the closest neighbour in
this example. Afterwards, in the same way, the individuals E and F—those with the
second largest distance—are assigned to the second front, and finally, the individuals
A and B are assigned to the last front. Therefore, the three individuals selected by
the crowded comparison operator are C, D, and E or F. We can thus see that proper
diversity is not maintained in some cases, since no individual belonging to the first

117



CHAPTER 5. Advances in Diversity-based MOEAs

Table 5.1: Assignment of the non-domination rank by a diversity-based optimiser
using the Non-Dominated Sorting Genetic Algorithm II

Individual Closest Neighbour Distance Non-domination Rank

A B 0.8 3
B A 0.8 3
C D 5.8 1
D C 5.8 1
E F 2.8 2
F E 2.8 2

region survives until the next generation, a fact that might lead to the appearance
of premature convergence problems.

The main reason for the improper behaviour of the NSGA-II with the DCN and
DCN-THR approaches is that these diversity-based objectives are built upon a direct
measure of the diversity introduced by every individual in the current generation.
As a result, individuals should not be selected without considering the previously
selected survivors.

In order to overcome this drawback and improve diversity, a novel survivor selection
scheme called Distance to Closest Neighbour based on Reference Set (DCN-REF)
is proposed in this dissertation. Its operation is shown in Algorithm 6. First, the
fittest individual in the population, i.e. the one with the best original objective
value among parents and offspring, is selected to survive, thus ensuring elitism in
the approach—lines 1–4. In case of a tie, the fittest individual is randomly selected.
Afterwards, while the population of the next generation—NewPop—is not filled
with N individuals—line 5—the following steps are repeated. First, the diversity-
based objective DCN or DCN-THR is recalculated—line 6. This recalculation pro-
cedure considers the currently selected individuals as the reference set, i.e. for each
non-selected individual in CurrentMembers, the distance to its closest neighbour
in NewPop is calculated. It is important to remark that in order to update the
diversity-based objective of the individuals belonging to CurrentMembers, only the
distances between these individuals and the last individual introduced in NewPop
have to be computed. Then, the non-dominated individuals from CurrentMembers
are calculated—line 7. Finally, one non-dominated individual is randomly chosen to
survive for the next generation—lines 8–10. Therefore, the stochastic behaviour of
the new survivor selection scheme might contribute even more to avoid the problem
of premature convergence.

In order to show the proper behaviour of the novel survivor selection scheme DCN-

118



5.2. Diversity-based Survivor Selection Scheme

Algorithm 6 Pseudocode of the novel diversity-based survivor selection scheme
1: Initialise CurrentMembers with every individual belonging to the current parent and

offspring populations
2: Best = Individual with the best original objective value from CurrentMembers. In

case of a tie, it is randomly selected
3: NewPop = {Best}
4: CurrentMembers = CurrentMembers− {Best}
5: while (|NewPop| < N) do
6: Calculate the DCN or DCN-THR diversity-based objective for every individual in

CurrentMembers considering NewPop as the reference set
7: ND = Non-dominated individuals from CurrentMembers

8: Selected = Randomly select an individual from ND

9: NewPop = NewPop ∪ {Selected}
10: CurrentMembers = CurrentMembers− {Selected}
11: end while

REF, its application to the example of the single-objective function—Figure 5.2—is
described in the following lines. Since every individual takes the same value for
the original objective function, the first individual is randomly selected. Assuming
that the first individual selected is E, then since A is the farthest individual from
E, this individual is selected in second place. Finally, the individual C is chosen
because it is far enough from both A and E. Hence, an individual from each region
is selected. In fact, independently of the individual selected in the first place, the
proposed approach always chooses an individual from each region.

119



CHAPTER 5. Advances in Diversity-based MOEAs

120



Chapter

6

Innovations in Parameter Control

Schemes

This chapter is devoted to describing the novel parameter control schemes which
are applied throughout this dissertation. In particular, a novel FLC that can be
used to dynamically adapt different discrete and continuous numeric parameters be-
longing to different EAs is described in Section 6.1. Afterwards, the hyper-heuristic
that is implemented in this thesis as an approach to parameter control is detailed
in Section 6.2. So as to enable the use of this hyper-heuristic in parallel environ-
ments, its combination together with a parallel island-based model is depicted in
Section 6.3. Finally, a novel hybrid control scheme that combines the use of the pro-
posed FLC and hyper-heuristic is exposed in Section 6.4. Its main aim is to combine
the benefits that both approaches provide, thus introducing a control mechanism
for simultaneously adapting symbolic and numeric parameters.

6.1 Fuzzy Logic Controllers with Multiple Rule

Bases

As was previously stated in Section 4.3, the feature common to most of the research
described in the literature is that FLCs are applied to adapt the parameters of
the crossover and mutation operators, the population size or combinations of all
three. Additionally, they are designed as tailored methods for a specific EA and/or
parameters, and they only make use of a unique rule base. The main novelties of
the FLC proposed in this dissertation with respect to the schemes that can be found
in the literature are therefore the following:



CHAPTER 6. Innovations in Parameter Control Schemes

• The approach is general in that it can be used to adapt any numeric parameters
of any EAs.

• The proposed system contains multiple rule bases. A rule base is enabled
at a certain moment depending on historical information extracted from the
optimisation process. This historical data is used to guide the adjustment of
the parameter being considered.

• It is the first time that an FLC is used to control the parameters of a diversity-
based MOEA, including the parameters of the novel diversity-based objectives
described in Section 5.1.

The FLC is based on the general architecture depicted in Figure 4.3. In what follows,
the parameter that is going to be controlled is denoted by p. The pseudocode of the
proposal is shown in Algorithm 7.

First, the initialisation and learning stages—lines 1–4—are carried out. During the
initialisation stage, different sample values are generated for the parameter p and
distributed uniformly in its corresponding range. In order to generate them, a value
∆ is considered as the difference between two consecutive samples. Although ∆
might be considered as a parameter of the FLC, in this dissertation it is assigned
a constant value regardless of the problem instance being solved. Then, in the
learning stage, the optimisation scheme—in the particular case of this thesis, the
diversity-based MOEA being controlled—is executed for numGen generations for
each of the generated samples in order to gather sufficient information. Once these
two stages are complete, the FLC infers the change to be applied over the parameter
p—lines 6–13—taking into account the values of the input variables and the selected
rule base. Then, the optimisation scheme is executed for numGen generations—line
14—with the new value of p. This process is repeated until the stopping criterion
of the controlled optimisation scheme is reached.

After step 13 of Algorithm 7, a continuous value for the parameter p is obtained,
meaning that in order to deal with discrete numeric parameters, this value must be
defined. Equation 6.1 shows the function used to transform a continuous value into a
discrete one. The random value r is sampled from a continuous uniform distribution
defined in the range [0, 1]. Therefore, if the continuous value of p is, for instance,
equal to 12.3, there is a 70% probability that the discrete value will be 12 and a
30% probability that it will be 13.

p =

{

⌈p⌉ if r ≤ p− ⌊p⌋
⌊p⌋ if r > p− ⌊p⌋ (6.1)

122



6.1. Fuzzy Logic Controllers with Multiple Rule Bases

Algorithm 7 Pseudocode of the novel fuzzy logic controller
1: Initialisation: Generate sample values for the parameter p distributed uniformly in

its corresponding range considering a certain value ∆ as the difference between two
consecutive samples

2: for (each generated sample value of the parameter p) do
3: Learning: Execute numGen generations of the optimisation scheme with this value

for the parameter p in order to gather knowledge
4: end for

5: while (the stopping criterion of the optimisation scheme is not satisfied) do
6: Transformation of the parameter p. If the range of parameter p is different

from the range [0, 1], the current value of this parameter is scaled to the range [0, 1]
and called p′

7: Calculation of input variables. Set the values for the input variables imp, var,
p-in, best-p-in

8: Selection of the rule base. Select the most suitable rule base considering the last
k decisions carried out by the FLC and the scoring function shown in Equation 6.3

9: Fuzzification. Transform the crisp values of the input variables to fuzzy sets using
the fuzzification interface

10: Mamdani’s Fuzzy inference. Apply the fuzzy logic operator and (min), the
implication method (min), and the aggregation method (max) using the selected
rule base to obtain the fuzzy set of the output variable p-out

11: Defuzzification: Transform the fuzzy set of the output variable p-out to a crisp
value ∆p using the defuzzification interface (centroid method)

12: Parameter update: p′ = p′ +∆p. The value of p′ is enclosed in the range [0, 1]
13: Transformation of the parameter p′. If the range of the parameter p is different

from the range [0, 1], the current value of p′ is scaled to the range of p
14: Execution: Execute numGen generations of the optimisation scheme with the new

value of p
15: end while

For the fuzzy inference process—lines 9–11—note that Mamdani’s fuzzy inference
method is used. In addition, the fuzzy logic operator AND 1 uses the minimum T-
norm, the implication method uses the minimum T-norm, the aggregation method
applies the maximum S-norm, and the centroid algorithm is applied as the defuzzi-
fication method. All of these components were selected because they are usually
implemented together with Mamdani-type FLCs. Nevertheless, it is worth pointing
out that a zero-order TSK-type FLC is also considered herein. Its main difference
with respect to the Mamdani-type FLC lies in the fact that it applies the weighted
average as the defuzzification method. Furthermore, it does not require the use of

1Only the fuzzy logic operator and is used in the antecedents of the fuzzy rules.

123



CHAPTER 6. Innovations in Parameter Control Schemes

an aggregation method. The remaining components of the fuzzy inference process
are the same as those selected for the Mamdani-type FLC.

The input variables of the FLCs—line 7—are the following:

• IMP. Calculated as the improvement in the original objective value of the best
individual achieved by the optimisation scheme—line 14 of Algorithm 7—over
the last numGen generations. This input variable is normalised to delimit it
to the range [0, 1].

• VAR. A measure of the diversity of the population in the decision space. The
higher its value, the more diverse the population. The calculation of this input
variable with no normalisation is shown in Equation 6.2. The values of the
decision variable i of individuals j and k are given by xj [i] and xk[i]. The total
number of decision variables is represented by D and N is the population size.
The value of VAR∗ is normalised to enclose the variable VAR in the range
[0, 1].

V AR∗ =
D−1
∑

i=0





N−1
∑

j=0

[

xj[i]−
1

N
·
(

N−1
∑

k=0

xk[i]

)]2


 (6.2)

• P-IN. Defined as the current value of parameter p within the range [0, 1].

• BEST-P-IN. Defined as that value of parameter p that has yielded the maxi-
mum improvement in the original objective value considering the last k values
of the parameter p inferred by the FLC. Its value is also in the range [0, 1].

Two different versions of the Mamdani-type and the TSK-type FLCs are defined.
The first one makes use of the input variables IMP, VAR, and P-IN. This variant
is called FUZZY-A for the Mamdani-type FLC and FUZZY-A-TSK in the case of
the TSK-type FLC. The second version utilises the input variables IMP, P-IN, and
BEST-P-IN. It is called FUZZY-B for the Mamdani-type FLC and FUZZY-B-TSK
for the TSK-type FLC. For all the above variants of FLCs, only one output variable
is defined, referred to as P-OUT, which represents the increment or decrement to be
applied to the parameter p in order to change its value. The membership functions
for both the input and output variables are shown in Figure 6.1. Due to the compu-
tational simplicity and efficiency advantages they offer, triangular-shaped member-
ship functions were selected for the input and output variables. The linguistic terms
represented by the membership functions—from left to right in Figure 6.1—are as
follows:

124



6.1. Fuzzy Logic Controllers with Multiple Rule Bases

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Membership Functions - IMP, VAR, and BEST-P-IN

 0

 0.2

 0.4

 0.6

 0.8

 1

0.167 0.334 0.5 0.667 0.834 1

Membership Functions - P-IN

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.45 -0.36 -0.27 -0.18 -0.09  0  0.09  0.18  0.27  0.36  0.45

Membership Functions - P-OUT

Figure 6.1: Membership functions for the input and output variables

• IMP, VAR, and BEST-P-IN: low (L), medium (M) and high (H).

• P-IN: low (L), low-medium-b (LMB), low-medium-a (LMA), medium (M),
medium-high-a (MHA), medium-high-b (MHB), and high (H).

• P-OUT: neg-giant (NG), neg-huge (NU), neg-high (NH), neg-medium (NM),
neg-low (NL), zero (Z), pos-low (PL), pos-medium (PM), pos-high (PH), pos-
huge (PU), and pos-giant (PG).

In the case of the TSK-type FLCs, the linguistic terms of the output variable P-OUT
are described by zero-order—constant—functions, instead of being represented by
the aforementioned membership functions. These functions are neg-giant = -0.45,
neg-huge = -0.36, neg-high = -0.27, neg-medium = -0.18, neg-low = -0.09, zero = 0,
pos-low = 0.09, pos-medium = 0.18, pos-high = 0.27, pos-huge = 0.36, and pos-giant
= 0.45.

125



CHAPTER 6. Innovations in Parameter Control Schemes

For each FLC different rule bases are defined. The reason for using different rule
bases is that different fuzzy rules will be applicable depending on the behaviour
exhibited during the previous execution. For instance, if the best results were his-
torically obtained by low values of the parameter p, the fuzzy rules should promote
the use of such low values. Every rule base is composed of different fuzzy rules. The
left-hand side of Table 6.1 shows one of the rule bases defined for the FUZZY-A and
FUZZY-A-TSK approaches, while the right-hand side shows another one for the
FUZZY-B and FUZZY-B-TSK schemes. Only the fuzzy logic operator AND is used
in the antecedents of these fuzzy rules. Generally, every fuzzy rule considers three
input and one output variables. In those cases where a ‘-’ is shown, the correspond-
ing fuzzy rule has no dependency on the corresponding variable. The remaining rule
bases are not shown due to space constraints but are similar to those shown here 2.

In order to select the most suitable set of rules, in this dissertation a novel scoring
function is proposed. It relies on a weighted average that considers historical data for
both the improvement in the original objective value and the degrees of membership
of parameter p to each term defined for the input variable P-IN.

The value of k is defined as the amount of historical knowledge considered by the
FLC, i.e. information on the last k decisions made by the FLC is taken into account.
In contrast, d is the total number of decisions that the FLC has carried out, and
numTerms is the number of linguistic terms defined for the input variable P-IN. The
score assigned to each linguistic term i ∈ [0, numTerms−1] is given by Equation 6.3.
The improvement achieved during execution d− j of the optimisation scheme—line
14 of Algorithm 7—is given by γ[d − j]. In addition, the degree of membership of
parameter p to the linguistic term i during execution d−j is represented by δ[i][d−j].
Thus, the linguistic term i will be assigned a higher score if the values of parameter
p have larger degrees of membership to said linguistic term, and if, at the same time,
the values of parameter p are able to achieve higher improvements in the original
objective value. Finally, we note that the scoring function assigns more importance
to the last decisions inferred by the FLC. Thus, for each linguistic term the equation
represents a weighted average of its improvement, where greater importance is given
to the last executions in which values of the controlled parameter have a high degree
of membership to the corresponding linguistic term.

2The complete specifications for all of the rule bases are available in Appendix B.

126



6.1. Fuzzy Logic Controllers with Multiple Rule Bases

Table 6.1: Rule bases designed for fuzzy-a and fuzzy-a-tsk (left-hand side); and
for fuzzy-b and fuzzy-b-tsk (right-hand side)

Rules Inputs Output

id p-in imp var p-out

1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pg
5 lmb m - pl
6 lmb h - z
7 lma l - pg
8 lma m - pl
9 lma h - z
10 m l - pu
11 m m - pl
12 m h - z
13 mha l - ph
14 mha m - pl
15 mha h - z
16 mhb l - pm
17 mhb m - pl
18 mhb h - z
19 h l l pl
20 h l m pl
21 h l h nl
22 h m - z
23 h h - z

Rules Inputs Output

id p-in imp best-p-in p-out

1 l l l nl
2 l l m pl
3 l l h pl
4 l m - z
5 l h - z
6 lmb l - nm
7 lmb m - nl
8 lmb h - z
9 lma l - nh
10 lma m - nl
11 lma h - z
12 m l - nu
13 m m - nl
14 m h - z
15 mha l - ng
16 mha m - nl
17 mha h - z
18 mhb l - ng
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

score[i] =

min(k,d)
∑

j=1

γ[d− j] · δ[i][d− j] · (min(k, d)− j + 1)

min(k,d)
∑

j=1

δ[i][d− j] · (min(k, d)− j + 1)

(6.3)

Note that if numTerms linguistic terms are defined for the variable P-IN, numTerms
rule bases have to be implemented such that the FLC works with the proposed scor-
ing function. Figure 6.1 shows that seven linguistic terms are defined for the input
variable P-IN, thus seven different rule bases are implemented. Different numbers

127



CHAPTER 6. Innovations in Parameter Control Schemes

of fuzzy rule bases were tested and it was found that the higher the number of rule
bases, the smoother the variations in the parameter p inferred by the FLC, and thus
the steadier the FLC. However, when considering more than seven fuzzy rule bases,
the performance started to degrade somewhat, as was also the case with a lower
number of fuzzy rule bases. Thus, seven rule bases were selected as this yielded
the best performance for the FLC. This fact also justifies the use of seven linguis-
tic terms for the input variable P-IN, instead of using three linguistic terms as in
the case of the remaining input variables. For the remaining input variables, three
linguistic terms are used so as to maintain the rule bases as simple as possible.

Once the scores are calculated, the linguistic term with the maximum score is se-
lected. This means that those values of parameter p with a large enough degree
of membership to this linguistic term should provide better performance than the
other values. Therefore, if the linguistic term i is selected as the most appropriate
one, rule base i is enabled. This selected rule base is responsible for adapting the
value of parameter p so that it approaches the values represented by term i. For
instance, assume that the current value of parameter p is 0.01 and the most suitable
rule base—considering the scoring function—is the one represented by the linguistic
term high of the input variable P-IN. This means that historically high values of
parameter p have yielded good improvements in the original objective value. Thus,
the rule base to be applied in this case is precisely the one shown in the left-hand
side of Table 6.1, considering, for instance, the FUZZY-A approach. If a fuzzy set
for the variable IMP, which has a large degree of membership to the term low, since
P-IN—with value 0.01—is represented by a fuzzy set with a large degree of member-
ship to the term low, then the output fuzzy set—the one corresponding to the output
variable P-OUT—will have a large degree of membership to the linguistic term pos-
giant. Consequently, the value of parameter p will be considerably increased so that
it will tend towards higher values.

Finally, it is worth mentioning that although in this dissertation the parameters of
diversity-based MOEAs are adapted, only the improvement in the original objective
is considered by the variable IMP and by Equation 6.3 to measure the performance
of the optimisation scheme at all times, thus discarding the information given by the
diversity-based objective. For this reason, indicators that measure the performance
of multi-objective optimisers are not required. Nevertheless, if the improvement
were measured by some multi-objective performance metric rather than by using
the original objective, the FLCs proposed herein might be applied to control the
parameters of “pure” multi-objective approaches.

128



6.2. Hyper-heuristics

6.2 Hyper-heuristics

An extension of the hyper-heuristic first described in [339], which is based on the
usage of choice functions and a probabilistic selection scheme, is implemented in
this thesis as an approach to parameter control. Recall that in choice functions, a
scoring method assigns a score to each low-level method that typically represents
its historical performance. As a result, more resources are granted to the low-level
approach that maximises this scoring function.

Traditionally, choice functions have been applied to select from among a set of can-
didate neighbourhood definitions. Moreover, they usually make use of some kind of
memory mechanism. For instance, considering a tabu memory mechanism, the low-
level methods that have not been able to improve upon a certain solution will not
be applied anymore until the whole optimisation scheme escapes from the solution.
However, it was discovered that for many problems, the low-level approaches gen-
erally improve on the initial solutions, independently of their performance. Hence,
it makes no sense to use a tabu memory mechanism that avoids the application of
methods with a poor past performance. This is why the hyper-heuristic applied
herein as a parameter control technique is based on the idea of choice functions, but
it attempts to mitigate the above drawback, which stems from using certain memory
mechanisms. Finally, it is worth pointing out that instead of selecting the most suit-
able neighbourhood definition from among a set of candidates, this hyper-heuristic
is used to adapt the parameters belonging to EAs.

The hyper-heuristic implemented in this dissertation, which is called HH-PROB, is
based on using a scoring strategy and a probabilistic selection strategy for choosing
the most appropriate low-level configuration for the algorithm to be executed. Once
a low-level configuration is selected, only that configuration is executed until a local
stopping criterion is achieved. When this happens, another low-level configuration
is selected and executed, and the final population of the last low-level configura-
tion used becomes the initial population of the new low-level configuration. This
process continues until a global stopping criterion is satisfied. At the beginning of
an execution, every low-level configuration is run one time. The order in which
the different low-level configurations are executed during this initialisation stage is
randomly determined. Once the initial stage is finished, the low-level configuration
that must be executed is selected as follows.

First, the scoring strategy assigns a score to each low-level configuration. This score
estimates the improvement that each low-level configuration can achieve starting
from the current solution set. Thus, larger values are assigned to more promising

129



CHAPTER 6. Innovations in Parameter Control Schemes

schemes in light of their historical behaviour. In order to calculate this estimate, the
previous improvements achieved by each low-level configuration are used. Since in
this thesis diversity-based MOEAs are controlled by this hyper-heuristic, the score of
a certain low-level configuration is computed through the improvements achieved in
the original objective, thus discarding the information given by the diversity-based
objective. As a result, the improvement γ is defined as the difference, in terms of the
original objective value, between the best resulting individual and the best initial
individual. Considering a configuration conf that has been executed j times, the
score s(conf) is calculated as the weighted average of the last k improvements, as
Equation 6.4 shows. Note that if the improvement γ was given by a multi-objective
performance metric, instead of taking into account the original objective value, this
hyper-heuristic might be used to control the parameters of “pure” multi-objective
schemes. In fact, this idea is addressed in [296].

s(conf) =

min(k,j)
∑

i=1

(min(k, j) + 1− i) · γ[conf ][j − i]

min(k,j)
∑

i=1

i

(6.4)

In Equation 6.4, γ[conf ][j−i] represents the improvement achieved by configuration
conf in execution number j − i. The adaptation level of the hyper-heuristic, i.e.
the total amount of historical knowledge that it considers in order to perform its
decisions, can be varied depending on the value of k. Finally, note that the weighted
average assigns a greater importance to the most recent executions.

The score s(conf) is used to calculate the probability of selecting a particular low-
level configuration. However, the stochastic behaviour of the low-level EAs involved
may lead to variations in the results they yield. Therefore, the probability calcula-
tion also enables a fraction of selections based on a random scheme and is imple-
mented as follows. Specifically, the hyper-heuristic can be tuned by means of the
parameter β, which represents the minimum selection probability that should be
assigned to a low-level configuration. If nh is the number of low-level configurations
involved, a random selection based on a uniform distribution is performed in β · nh

percent of the cases. Therefore, the probability of selecting each configuration conf
is defined as shown in Equation 6.5.

130



6.3. Dynamic-mapped Island-based Model

prob(conf) = β + (1− β · nh) ·













s(conf)
nh
∑

i=1

s(i)













(6.5)

Another variant of the above hyper-heuristic is also implemented in this dissertation.
As in the case of the previous version, the scoring function is given by Equation 6.4.
However, instead of resorting to a probabilistic selection strategy, an elitist selection
strategy is used. In this case, the low-level configuration with the maximum score
s(conf) is always selected, in addition to the random selections performed following
a uniform distribution in β ·nh percent of the cases. This variant is named HH-ELI.

6.3 Dynamic-mapped Island-based Model

The hyper-heuristic presented in the previous section is combined together with a
parallel island-based model so as to enable its usage in parallel environments. This
hybrid approach is known as Dynamic-mapped Island-based Model (DYN). The
architecture of the dynamic-mapped model is similar to the island-based model de-
tailed in Section 2.6.1. The population is decomposed into a number of independent
and separate sub-populations, each belonging to a worker island, in which the cor-
responding sub-population is evolved in isolation by applying a certain low-level
configuration of an EA. Furthermore, as in the island-based model, a tuneable mi-
gration stage allows for the occasional exchange of individuals among neighbouring
islands. In this dissertation, different migration stages are tested with the DYN
model.

In the standard island-based model there exists a static mapping between the is-
lands and configurations, i.e. each island executes the same configuration over the
course of the complete run. In a homogeneous island-based model, there is only one
configuration that is executed by every worker island. In a heterogeneous island-
based model, the configurations executed by worker islands are different. However,
in the model in question, a dynamic mapping among the islands and configurations
is applied. Thus, the configurations executed in each island over the course of the
run can vary. This dynamic mapping is performed using the hyper-heuristic ex-
posed in the last section. So as to manage the dynamic mapping, i.e. to apply the
hyper-heuristic, a new special island, called the master island, is introduced into the

131



CHAPTER 6. Innovations in Parameter Control Schemes

scheme. In order to implement it, two kinds of stopping criteria are defined. First, a
local stopping criterion is fixed for the execution of the configurations on the worker
islands. When a local stopping criterion is reached, the island’s execution is stopped.
The local results are then sent to the master island. At this point, the master is-
land applies the hyper-heuristic in order to decide which low-level configuration is
going to be applied in the idle island. This configuration is applied by taking as the
initial population the final population obtained by the previous configuration. The
above process is repeated until a global stopping criterion is satisfied. When this
global stopping criterion is reached, every worker island sends its local solution to
the master and the run ends.

An additional modification is introduced into the DYN model with the aim of adapt-
ing the hyper-heuristic to parallel environments. In island-based models, the mi-
gration stage might completely change the quality of a given sub-population. Since
the hyper-heuristic evaluates the performance of the configurations by considering
the members of their sub-populations, it must take into account the effect caused
by the immigrants. Particularly, the improvements obtained during the migration
stage are calculated and subtracted from the overall improvement that has been
obtained. In this way, the migration stage is kept, but its effect on the decisions
performed by the hyper-heuristic is minimised. Finally, it is important to remark
that the same local stopping criterion is fixed for every worker island. This facili-
tates the operation of the hyper-heuristic because it does not need to consider the
time invested by each low-level configuration to carry out its decisions. In addition,
the hyper-heuristic completely ignores the features of the underlying architecture.
When considering a homogeneous architecture, this fact does not present any prob-
lems. For heterogeneous architectures, however, the resources might not be properly
assigned.

6.4 Hybrid Control Scheme based on Fuzzy Logic

Controllers and Hyper-heuristics

In this section, a novel hybrid control approach based on FLCs and hyper-heuristics
is proposed. It combines the FLC presented in Section 6.1 with the hyper-heuristic
detailed in Section 6.2. Recall that the main advantage of this hyper-heuristic is
that it is able to control symbolic and numeric parameters. However, since the size
of the set of low-level candidate configurations is generally fixed and finite, in the
case of controlling numeric parameters, the number of possible values that can be

132



6.4. Hybrid Control Scheme based on FLCs and Hyper-heuristics

Figure 6.2: Multi-level architecture of the novel hybrid parameter control scheme

assigned to these numeric parameters is therefore also finite. In contrast, the main
benefit of using the proposed FLC as a control scheme is that the possible values
that can be assigned to a certain parameter are not selected from a finite set. Its
main drawback lies in the fact that it cannot be directly applied to control symbolic
parameters. In order to avoid this drawback, and to profit from the strong points
of the two aforementioned approaches, a completely new hybrid control scheme is
proposed in this dissertation that provides a parameter control mechanism that is
able to simultaneously adapt symbolic and numeric parameters.

Figure 6.2 shows the multi-level architecture of this hybrid control scheme when it is
applied to a diversity-based MOEA. In the first level, the hyper-heuristic described
in Section 6.2 is used to control the symbolic parameters. To do so, it selects the
most promising low-level configuration from among a set of candidates, depending on
their past performance. A low-level configuration in this case refers to an instance of
a diversity-based MOEA—other EAs might be controlled by means of this scheme—
with a particular setting for the symbolic parameters that are controlled, such as
the variation operators. All of the algorithm’s other parameters remain constant,
except for the numeric parameters, which are adapted by the second-level FLC.
Once a low-level configuration is selected, only that configuration is executed until
the local stopping criterion established by the hyper-heuristic is satisfied. When

133



CHAPTER 6. Innovations in Parameter Control Schemes

this happens, another low-level configuration, which could be the same as the last
execution, is selected and executed. This process is repeated until a global stopping
criterion is reached.

In the second level, the FLC introduced in Section 6.1 is used to adapt numeric
parameters. The FLC carries out its decisions by considering historical information
on the values of the parameters inferred in past executions. It is important to recall
that, in this level, the low-level configuration is executed until the local stopping
criterion established by the hyper-heuristic is achieved. However, the FLC also
infers changes over the parameters periodically, so another local stopping criterion
is established by the FLC. In order to clarify this last fact, consider for instance a
global stopping criterion equal to 2.5 ·106 function evaluations, and 2.5 ·104 function
evaluations for the local stopping criterion established by the hyper-heuristic. This
means that the hyper-heuristic is able to carry out 1 ·102 decisions during the whole
optimisation process, changing the values for the symbolic parameters, and that
every selected low-level configuration is executed for 2.5 · 104 function evaluations.
If the local stopping criterion established by the FLC is equal to 5 · 102 function
evaluations, then the FLC infers 50 changes over the numeric parameters during
every execution of a low-level configuration.

134



Part III

Validation of the Algorithmic

Proposals: Benchmark Problems

and Complex Applications





Chapter

7

Benchmark Problems

The goal of this chapter is to validate the different algorithmic proposals introduced
throughout this dissertation by conducting a comprehensive experimental evaluation
involving a set of single-objective benchmark problems. The main benefit of using
benchmark functions is that the main features and properties of these problems,
such as their global optimum, are usually known. Hence, the performance of a
certain optimisation scheme can be directly measured. Additionally, the time used
to evaluate an individual that represents a solution to a benchmark problem is
significantly shorter than the time needed to evaluate an individual that represents
a solution belonging to a real-world problem. As a result, by considering benchmark
problems, a vast number of computational tests can be performed. One of the main
drawbacks, however, is that the number of problems available might not be large
enough, which could hamper the extraction of general conclusions.

There have been several attempts to define test suites or toolkits for building test
suites. For instance, the DeJong test suite [88], which consists of five benchmark
functions, was very popular for several years. However, some more novel test func-
tions that incorporate additional features have since been defined. These include
the OneMax problem, the Sphere Model, the Schwefel function, and the Generalised
Rastrigin function [104]. Another well-known compendium of benchmark functions
is that provided in the Black-Box Optimization Benchmarking (BBOB) test suite 1.
It was proposed and has been used in recent years in a competition session organ-
ised at the GECCO conference. In the particular case of this dissertation, a set of
19 benchmark functions that was recently proposed in a special issue of the Soft
Computing journal [220] is considered. One of the main advantages of this test suite

1http://coco.gforge.inria.fr/doku.php?id=bbob-2013



CHAPTER 7. Benchmark Problems

Table 7.1: Definition of the F1–F11 benchmark functions
Function Name Range Optimum

F1 Shif. Sphere [−100, 100]D -450

F2 Shif. Schwefel 2.21 [−100, 100]D -450

F3 Shif. Rosenbrock [−100, 100]D 390

F4 Shif. Rastrigin [−5, 5]D -330

F5 Shif. Griewank [−600, 600]D -180

F6 Shif. Ackley [−32, 32]D -140

F7 Shif. Schwefel 2.22 [−10, 10]D 0

F8 Shif. Schwefel 1.2 [−65.536, 65.536]D 0

F9 Shif. Extended f10 [−100, 100]D 0

F10 Shif. Bohachevsky [−15, 15]D 0

F11 Shif. Schaffer [−100, 100]D 0

is that all its functions are scalable, i.e. the user can define the number of decision
variables for each. These problems are called the F1–F19 benchmark functions.

The rest of this chapter is organised as follows. In Section 7.1 the mathematical
formulation of the F1–F19 benchmark problems is described. Then, the different
optimisation schemes defined for dealing with this set of problems are presented
in Section 7.2. Afterwards, the control approaches that are proposed to adapt the
parameters of said optimisation schemes are introduced in Section 7.3. Finally,
Section 7.4 details the experimental evaluation conducted using the proposed opti-
misation schemes and parameter control approaches on the F1–F19 functions.

7.1 Formal Definition

The F1–F19 benchmark functions are scalable continuous single-objective optimi-
sation problems that combine different properties involving modality—a function
is multi-modal if it has multiple local optima, and is uni-modal if it has a single
global optimum—separability—a function is separable if it can be expressed as a
product of sub-functions, each depending on a single decision variable—and the
ease of dimension-by-dimension optimisation—whether or not the function can be
optimised by independently adjusting each decision variable.

A summary of the main features of the F1–F11 functions is shown in Table 7.1, while
its properties are shown in Table 7.2. In this thesis, the value for the parameter
D—the number of decision variables in the problems—is generally fixed to 500.

138



7.1. Formal Definition

Table 7.2: Properties of the F1–F11 benchmark functions
Function (U)nimodal/ Shifted Separable Easily optimised

(M)ultimodal dimension by dimension

F1 U Y Y Y
F2 U Y N N
F3 M Y N Y
F4 M Y Y Y
F5 M Y N N
F6 M Y Y Y
F7 U Y Y Y
F8 U Y N N
F9 U Y N Y
F10 U Y N N
F11 U Y N Y

Table 7.3: Definition of the F12–F19 hybrid composition benchmark functions
Function Fns F

′

mns Range Optimum

F12 NS-F9 F1 0.25 [−100, 100]D 0

F13 NS-F9 F3 0.25 [−100, 100]D 0

F14 NS-F9 F4 0.25 [−5, 5]D 0

F15 NS-F10 NS-F7 0.25 [−10, 10]D 0

F16 NS-F9 F1 0.5 [−100, 100]D 0

F17 NS-F9 F3 0.75 [−100, 100]D 0

F18 NS-F9 F4 0.75 [−5, 5]D 0

F19 NS-F10 NS-F7 0.75 [−10, 10]D 0

Table 7.3 shows the definition of the F12–F19 benchmark problems. These are built
by combining a non-separable function Fns with another function F

′

. It is important
to remark that F

′

can also be a non-separable function. The following functions were
considered when building the F12–F19 problems:

• Non-Separable Functions:

– F3: Shifted Rosenbrock

– NS-F9: Non-shifted Extended f10

– NS-F10: Non-shifted Bohachevsky

• Other Component Functions:

139



CHAPTER 7. Benchmark Problems

– F1: Shifted Sphere

– F4: Shifted Rastrigin

– NS-F7: Non-shifted Schwefel 2.22

The following steps are required to obtain a hybrid composition function Fns ⊕ F
′

:
divide the solution into two parts, evaluate each part with a different function, and
finally, combine the two results. A parameter mns is used to specify the rate at
which variables are evaluated by Fns. If a higher value of mns is used, the hybrid
function becomes more difficult to optimise dimension by dimension.

Finally, we should note that some of the experiments were performed using only the
F1–F11 functions. For other cases, however, all 19 benchmark problems were taken
into account.

7.2 Optimisation Schemes

This section is devoted to describing the optimisation schemes that are applied
herein to deal with the F1–F19 benchmark functions. Specifically, the optimisation
methods considered are different variants of a single-objective GA, as well as separate
versions of a diversity-based MOEA based on the well-known NSGA-II.

7.2.1 Single-objective Genetic Algorithms

In this chapter, three different variants of the single-objective GA proposed in Sec-
tion 2.3.1 are considered for solving the benchmark functions. Each of them is based
on one of the three survivor selection strategies exposed in Section 2.2.4, i.e. the
SS-S, the GEN-S, and the RW-S survivor selection mechanisms. For these three
variants of the GA, individuals were encoded through a vector of D real values,
with D being the number of decision variables in the benchmark problems in ques-
tion. The mutation operator used was the UM and the crossover operator was the
SBX, the operations of which was described in Sections 2.2.3 and 2.2.2, respectively.

140



7.3. Parameter Control Schemes

7.2.2 Diversity-based Multi-objective Evolutionary

Algorithms

The novel diversity-based MOEA, which is used here to tackle the benchmark prob-
lems, is based on the NSGA-II—Section 2.4.1. Since a diversity-based MOEA is ap-
plied, an additional diversity-based objective function must be considered together
with the objective function of every benchmark in question. Different genotypic
diversity-based objectives were taken into account. In particular, the diversity-
based objectives tested were ADI, DBI, and DCN—Section 3.1. Moreover, the
diversity-based objective with parameters DCN-THR—Section 5.1—was also ap-
plied. Finally, it is also important to remark that some experiments were carried
out with the novel DCN-REF diversity-based survivor selection scheme proposed in
Section 5.2.

Finally, so as to completely define this diversity-based MOEA, individuals were
represented by means of a vector of D real numbers, where D is the number of
decision variables of the benchmark problems at hand. The mutation and crossover
operators used were also the UM and the SBX, respectively.

7.3 Parameter Control Schemes

This section focuses on introducing the different parameter control approaches that
are used herein to adapt some of the parameters contained in the optimisation
schemes detailed in preceding sections. First, FLCs and hyper-heuristics are used as
external parameter control approaches to adapt some of the parameters belonging
to the diversity-based MOEA described in Section 7.2.2. Particularly, the threshold
ratio th of the DCN-THR diversity-based objective, which was introduced in Sec-
tion 5.1, is dynamically adjusted during the course of a run. Furthermore, a novel
proposal based on self-adaptation, which was specifically designed to deal with said
parameter, is used as the comparison approach. Finally, a novel hybrid control
scheme based on FLCs and hyper-heuristics is also applied to simultaneously adjust
different symbolic and numeric parameters belonging to the diversity-based MOEA.
Said parameters are the crossover and mutation operators, as well as the mutation
rate pm.

141



CHAPTER 7. Benchmark Problems

7.3.1 Fuzzy Logic Controllers and Hyper-heuristics

The novel FLCs proposed in Section 6.1, as well as the hyper-heuristics described in
Section 6.2, are used herein to control the parameter th of the diversity-based objec-
tive DCN-THR. The main novelty of the FLCs proposed lies in the incorporation
of a set of different rule bases that are enabled depending on historical information
extracted from the optimisation process. Recall that two different variants of the
Mamdani-type and TSK-type FLCs were defined. Particularly, the FUZZY-A and
FUZZY-B Mamdani-type FLCs, as well as the FUZZY-A-TSK and FUZZY-B-TSK
TSK-type FLCs, were considered when carrying out the experimental evaluation.
However, the differences between the Mamdani-type and the TSK-type FLCs were
not statistically significant. That is the why only data involving the FUZZY-A and
FUZZY-B Mamdani-type FLCs are shown in Section 7.4. Hence, the conclusions
presented in that section for the Mamdani-type FLCs are also valid for the TSK-type
FLCs. On the other hand, the HH-PROB and HH-ELI hyper-heuristics approaches
are used for comparison purposes. It is important to remark that this is the first time
that parameter control techniques based on FLCs and hyper-heuristics have been
applied to a diversity-based MOEA in which the parameters of the diversity-based
objective are adapted.

One of the main drawbacks of the threshold ratio th is that the most suitable val-
ues might depend on the problem being solved or even on the current stage of
the optimisation process, meaning that modifying it during the execution could be
beneficial. Consequently, the application of parameter control techniques to auto-
matically adapt this parameter ought to significantly improve both the behaviour
and the robustness of the diversity-based MOEAs proposed. This idea seems to be
very promising and is addressed in detail in this thesis.

7.3.2 Self-adaptation

In order to enable the parameter th of the DCN-THR diversity-based objective to
undergo self-adaptation, it is encoded within the chromosome of individuals and is
thus subjected to mutation and crossover operators that change its value during the
optimisation process. This relies on the premise that better values of the parameter
th will produce better individuals, which in turn will have more opportunities to
survive, and consequently propagate better parameter values. This is “the idea of
the evolution of evolution” [106]. In the case of self-adaptive approaches to parameter
control, the selection and variation operators of the EA are responsible for changes
in the parameter values, i.e. the updating mechanism that adapts the parameters

142



7.3. Parameter Control Schemes

Figure 7.1: Chromosome representing an individual for the self-adaptive schemes

is implicit. This differentiates the method from the previously described FLCs and
hyper-heuristics, in which the adaptation mechanism is external to the EA used.

Figure 7.1 shows the chromosome of an individual that considers the self-adaptation
of the threshold ratio th. For an individual representing a solution to a problem with
D decision variables, the values x[i], i ∈ [0, D−1] represent these decision variables.

Three completely novel versions of the self-adaptive approach are proposed herein:

• SELF-A. The value of the parameter th belonging to the best individual in
the population—the one with the lowest original objective value—is applied to
each generation to calculate the diversity-based objective of every individual.

• SELF-B. The mean value of the parameter th considering all individuals in the
population is used at each generation to calculate the diversity-based objective
value of every individual.

• SELF-C. The corresponding encoded value of the parameter th is applied to
each individual at each generation in order to calculate its own diversity-based
objective value.

With respect to the classifications proposed in [9, 315], SELF-A and SELF-B act at
the population level, while the SELF-C approach acts at an individual level. Thus,
the encoding of parameter th into the chromosome can be interpreted differently,
supplying different algorithm variants in which the scope of the parameter varies.

7.3.3 Hybrid Control Scheme based on Fuzzy Logic Con-

trollers and Hyper-heuristics

The novel hybrid control scheme proposed in Section 6.4, which is based on FLCs
and hyper-heuristics, is applied herein so as to adapt the crossover and mutation
operators, as well as the mutation rate pm of the diversity-based MOEA described
in Section 7.2.2. Recall that the hyper-heuristic controls the symbolic parameters,
while the FLC adapts the numeric parameters. Hence, the hyper-heuristic is re-
sponsible for controlling the crossover and mutation operators, whereas the FLC

143



CHAPTER 7. Benchmark Problems

is responsible for adapting the mutation rate pm. Specifically, the approaches con-
sidered to constitute the hybrid control scheme were the FUZZY-A FLC and the
HH-PROB hyper-heuristic. Lastly, we should note that this is the first time that
FLCs and hyper-heuristics are combined into a hybrid parameter control scheme.

7.4 Experimental Evaluation and Discussion

In this section the experiments performed on the F1–F19 functions using the afore-
mentioned optimisation schemes and parameter control approaches are presented.

Experimental Method. The different optimisation schemes, as well as the pa-
rameter control approaches, were implemented using METCO. The tests were run
on a Debian GNU/Linux computer with four 1.7 GHz AMD R© Opteron TM proces-
sors (model number 6164HE) and 64 Gb RAM. The compiler was the GCC 4.7.2,
while the FLCs were implemented using the fuzzylite 3.1 library [281]. Since every
experiment applied stochastic algorithms, every execution was repeated 32 times.
As a result, comparisons were performed by applying the statistical analysis detailed
in Section 1.2.6.

7.4.1 Performance of the Diversity-based Multi-objective

Evolutionary Algorithm

The goal of the first experiment is to measure the performance of the proposed
diversity-based MOEA. Particularly, it would be interesting to discover if the use of
such a diversity-based MOEA offers any benefits over using a single-objective GA.
To do so, a comparison between the diversity-based MOEA described in Section 7.2.2
and the single-objective GA detailed in Section 7.2.1 was carried out. The following
configurations for both optimisation schemes were considered:

• 9 configurations of the diversity-based MOEA, which were created by combin-
ing three separate diversity-based objective functions and three values for the
population size.

• 9 configurations of the single-objective GA, which were defined by the use of
three different survivor selection mechanisms and three values for the popula-
tion size.

144



7.4. Experimental Evaluation and Discussion

All the above configurations for the two optimisation schemes were applied to solve
the F1–F11 benchmark functions with D = 500 decision variables. The values for
the parameters of the diversity-based MOEA were set as follows:

• Population size N fixed to 5, 10, and 20 individuals.

• Diversity-based objectives ADI, DBI, and DCN.

• The UM operator was applied with pm = 1
D
= 0.002.

• The SBX operator was applied with pc = 1.

• Stopping criterion fixed to a total number of 5000 · D = 2.5 · 106 function
evaluations.

In the case of the single-objective GA, its parameterisation was the following:

• Population size N fixed to 5, 10, and 20 individuals.

• Survivor selection mechanisms SS-S, GEN-S, and RW-S.

• The UM operator was applied with pm = 1
D
= 0.002.

• The SBX operator was applied with pc = 1.

• Stopping criterion fixed to a total number of 5000 · D = 2.5 · 106 function
evaluations.

Table 7.4 shows, for each population size and benchmark function considered, the
best configurations of the single-objective GA and the diversity-based MOEA. Com-
parisons were made in terms of the median of the original objective value achieved
by every configuration at the end of the executions. Note that the superiority of the
GEN-S approach in the case of the single-objective GA, and of the DCN scheme for
the case of the diversity-based MOEA, is clear for most of the problems. In a small
number of test cases, however, they were not able to provide the best results.

Table 7.5 shows the median of the error attained by the best configurations of the
single-objective GA and the diversity-based MOEA for each population size and
benchmark function considered. The error was defined as the difference between the
original objective value and the global optimum of the benchmark function at hand—
Table 7.1. It was calculated assuming an accuracy equal to 1 · 10−6. In addition,
a statistical comparison between the best configurations of the single-objective GA
and the diversity-based MOEA was carried out for each population size and test
case. For cases where differences were statistically significant, the data for the best

145



CHAPTER 7. Benchmark Problems

Table 7.4: Best configurations for the single-objective and the diversity-based ap-
proaches

F1 F2 F3 F4 F5 F6

Single 5 GEN-S RW-S GEN-S GEN-S GEN-S GEN-S
Single 10 GEN-S RW-S GEN-S GEN-S GEN-S GEN-S
Single 20 GEN-S RW-S GEN-S GEN-S SS-S GEN-S

Multi 5 DCN ADI DCN DCN DCN DCN
Multi 10 DCN DCN DCN DCN DCN DCN
Multi 20 DCN DCN DCN DCN DCN DCN

F7 F8 F9 F10 F11
Single 5 GEN-S GEN-S GEN-S GEN-S GEN-S
Single 10 GEN-S GEN-S GEN-S GEN-S GEN-S
Single 20 GEN-S GEN-S GEN-S GEN-S GEN-S
Multi 5 DCN DCN DCN DCN DCN
Multi 10 DCN DCN DCN DCN DCN
Multi 20 DCN DCN DCN DCN DCN

of the two approaches are shown in bold 2. Note that, in general, the optimisation
schemes configured with a lower population size obtained a lower median for the
error. Furthermore, it can be observed that the diversity-based MOEA provided
statistically better results than the single-objective GA in a significant amount of
test cases. In other cases, however, the best configuration of the single-objective
GA statistically outperformed the best configuration of the diversity-based MOEA.
From a total number of 33 statistical tests, in 19 of them the best configuration
of the diversity-based MOEA was statistically better than the best configuration of
the single-objective GA. In contrast, the best configuration of the single-objective
GA was statistically superior in 6 statistical tests. Finally, 8 statistical tests did not
show statistically significant differences between both strategies.

It is important to know which kinds of problems are better suited to be solved by
the diversity-based MOEA. We should note that it provided more benefits when it
was applied to a uni-modal problem. For instance, for a population size equal to
5 individuals, the best configuration of the diversity-based MOEA was statistically
better than the best configuration of the single-objective GA for all the uni-modal
benchmark problems, i.e. F1, F2, and F7–F11. However, when multi-modal prob-

2Throughout this dissertation scheme A is said to be statistically better than scheme B if the
differences between them are statistically significant, and if the mean and median obtained by A
are better—one of the metrics might be equal—than the mean and median obtained by B.

146



7.4. Experimental Evaluation and Discussion

Table 7.5: Median of the error achieved by the best configurations of both optimi-
sation schemes

F1 F2 F3 F4 F5 F6
Single 5 3.00 · 10−3 1.67 · 101 1.32 · 103 3.00 · 10−3 8.00 · 10−3 3.00 · 10−3

Multi 5 < 1 · 10−6 1.14 · 101 1.26 · 103 3.00 · 10−3 < 1 · 10−6 1.00 · 10−3

Single 10 2.00 · 10−3 1.41 · 101 1.47 · 103 3.95 · 10−2 < 1 · 10−6 3.00 · 10−3

Multi 10 5.00 · 10−3 1.81 · 101 1.48 · 103 1.00 · 100 1.00 · 10−3 4.00 · 10−3

Single 20 6.50 · 10−2 1.54 · 101 1.78 · 103 9.28 · 10−1 8.00 · 10−3 1.70 · 10−2

Multi 20 3.70 · 10−2 2.23 · 101 1.87 · 103 8.95 · 10−2 4.50 · 10−3 1.30 · 10−2

F7 F8 F9 F10 F11
Single 5 4.02 · 10−2 1.93 · 1011 7.53 · 101 1.84 · 10−3 7.40 · 101
Multi 5 1.37 · 10−2 1.41 · 1011 4.49 · 101 3.46 · 10−4 4.44 · 101

Single 10 2.57 · 10−2 1.83 · 1011 8.42 · 101 1.32 · 10−3 8.24 · 101
Multi 10 2.99 · 10−2 1.58 · 1011 6.30 · 101 4.60 · 10−3 6.19 · 101

Single 20 1.77 · 10−1 2.04 · 1011 2.08 · 102 6.24 · 10−2 2.08 · 102
Multi 20 3.83 · 10−2 1.73 · 1011 7.78 · 101 2.76 · 10−2 7.63 · 101

lems were considered, the best configuration of the diversity-based MOEA was able
to statistically outperform the best configuration of the single-objective GA only in
the case of the F6 benchmark problem. For the remaining multi-modal benchmark
functions, i.e. F3–F5, the best configurations of both optimisation schemes did not
present statistically significant differences.

The above analyses demonstrate the validity of the diversity-based MOEA in terms
of the quality attained. However, it is important to quantify the improvement that
can be achieved by using the diversity-based MOEA in terms of the number of eval-
uations invested. To do this, the RLDs described in Section 1.2.6 were applied. The
quality level was fixed such that 100% of the executions carried out by the best con-
figurations of both optimisation schemes were able to attain it. The number of eval-
uations required to achieve a 50% success rate were calculated for the best-behaved
configurations of the single-objective GA and the diversity-based MOEA, regardless
of the population size. Table 7.6 shows the percentage of saved evaluations by the
best configuration of the diversity-based MOEA with respect to the best configura-
tion of the single-objective GA. A negative value means that the single-objective
GA was able to converge on the defined quality level faster than the diversity-based
MOEA. Once more, we should note the superiority of the diversity-based MOEA.
Its best-behaved configuration provided benefits in 9 test cases from a total number
of 11. Furthermore, for most of the benchmark functions, the percentage of saved
evaluations was significant. For instance, the diversity-based MOEA was able to
save 38.7% of the function evaluations in comparison to the single-objective GA for
the particular case of the F8 benchmark problem.

147



CHAPTER 7. Benchmark Problems

Table 7.6: Percentage of evaluations saved by the best configuration of the diversity-
based multi-objective evolutionary algorithm

Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

% 26.9 -7.7 25.0 -21.2 29.4 28.0 25.9 38.7 29.4 35.3 29.4

Table 7.7: Statistical comparison between different values of the threshold ratio
Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

th 0 0.8 0.2, 0.4 0.4, 0.6 0 0, 0.2 0.2 0, 0.2 0.8 0 0.8

7.4.2 On the Application of Diversity-based Objectives with

Parameters

This section focuses on analysing the performance of the diversity-based objectives
with parameters. Since in the previous experiment the diversity-based MOEA con-
figured with the DCN diversity-based objective provided the best results for most
of the problems, the current experiment takes into consideration the combination of
the diversity-based MOEA with the DCN-THR diversity-based objective. The main
aim of this experiment is therefore to determine the relationship that exists between
the values of the threshold ratio th and the quality of the solutions produced. To
do so, five configurations of the diversity-based MOEA were applied by considering
five different values for the parameter th of the DCN-THR diversity-based objec-
tive. These five configurations were applied to the F1–F11 benchmark problems
with D = 500 decision variables. The parameter values of these configurations were
set as follows:

• Since a lower median of the error was achieved by the configurations with
lower population sizes in the previous experiment, the population size N was
set to 5 individuals.

• Threshold ratio th equal to 0, 0.2, 0.4, 0.6, and 0.8 for the DCN-THR diversity-
based objective.

• The UM operator was applied with pm = 1
D
= 0.002.

• The SBX operator was applied with pc = 1.

• Stopping criterion fixed to a total number of 2 · 107 function evaluations.

Table 7.7 shows, for each benchmark problem, the threshold ratio of the configu-
ration that attained the lowest median of the original objective value in 1.25 · 106
evaluations. It also shows the threshold ratios of those configurations which had no

148



7.4. Experimental Evaluation and Discussion

Table 7.8: Number of evaluations required by different threshold ratios to attain a
given quality level

th = 0 th = 0.2 th = 0.4 th = 0.6 th = 0.8

F1 1.25 · 106 2.20 · 106 3.05 · 106 4.70 · 106 6.05 · 106
F2 1.35 · 106 1.35 · 106 1.40 · 106 1.40 · 106 1.25 · 106
F3 1.75 · 106 1.25 · 106 1.35 · 106 1.70 · 106 1.80 · 106
F4 2.15 · 106 1.45 · 106 1.25 · 106 1.25 · 106 1.50 · 106
F5 1.25 · 106 4.00 · 106 5.15 · 106 6.90 · 106 1.74 · 107
F6 1.25 · 106 1.20 · 106 1.95 · 106 2.50 · 106 3.75 · 106
F7 2.30 · 106 1.25 · 106 2.00 · 106 3.85 · 106 8.60 · 106
F8 1.25 · 106 1.30 · 106 1.45 · 106 1.40 · 106 1.45 · 106
F9 1.90 · 106 1.85 · 106 1.75 · 106 1.65 · 106 1.25 · 106
F10 1.25 · 106 1.80 · 106 2.40 · 106 3.25 · 106 5.00 · 106
F11 1.85 · 106 1.85 · 106 1.85 · 106 1.60 · 106 1.25 · 106

statistically significant differences compared to the best-behaved one. We should
note that the most suitable values of the parameter th depends on the benchmark
function at hand. Hence, in order to decide on the proper value to use, a priori
information of the optimisation problem being solved is required.

In order to measure the impact on performance, RLDs were calculated. In this case,
the quality level was fixed as the median of the original objective value achieved by
the best configuration of the diversity-based MOEA in 1.25·106 function evaluations.
Table 7.8 shows, for each threshold ratio, the number of evaluations needed to attain
a 50% success rate taking into account the above quality level. For each benchmark
function, the lowest number of evaluations required by the corresponding threshold
value is shown in bold. Considering the number of evaluations invested by sub-
optimal configurations of the diversity-based MOEA, the importance of correctly
setting the parameter th is clear. For instance, for the F5 benchmark problem, the
number of evaluations required by the best-behaved configuration represents about
7.18% of the evaluations invested by the worst one.

Another open research issue is whether the proper value of th depends on the stage
of the optimisation process or not. With the aim of answering this question the
following experiment was performed. First, four different optimisation stages were
defined for each benchmark function. To define these stages the median of the origi-
nal objective value achieved by the best configuration of the diversity-based MOEA
for the benchmark problem at hand was calculated using 2.5 · 105, 5 · 105, 7.5 · 105,
and 1 · 106 evaluations. Then, for each of these four median values, 32 individuals
with a similar original objective value to the median value in question were gener-

149



CHAPTER 7. Benchmark Problems

Table 7.9: Statistical comparison among different threshold values for each optimi-
sation stage – F4 benchmark function

Stage 0 Stage 1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↓
0.2 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↓
0.4 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↔ ↔ ↔
0.8 ↑ ↑ ↑ ↔ ↔ ↑ ↑ ↔ ↔ ↔

Stage 2 Stage 3

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↑ ↑
0.2 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.4 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.8 ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔

Table 7.10: Statistical comparison among different threshold values for each opti-
misation stage – F5 benchmark function

Stage 0 Stage 1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↑ ↑
0.2 ↔ ↔ ↔ ↑ ↑ ↔ ↔ ↔ ↑ ↑
0.4 ↔ ↔ ↔ ↔ ↑ ↓ ↔ ↔ ↔ ↔
0.6 ↔ ↓ ↔ ↔ ↔ ↓ ↓ ↔ ↔ ↔
0.8 ↔ ↓ ↓ ↔ ↔ ↓ ↓ ↔ ↔ ↔

Stage 2 Stage 3

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↑ ↑ ↑ ↑ ↔ ↑ ↑ ↑ ↑
0.2 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.4 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.6 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔
0.8 ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔

ated. In order to produce these 32 individuals, the best-behaved configuration for
the benchmark at hand was executed 32 times. For each of these 32 executions,
the first individual able to attain an original objective value lower than the median
value calculated for the optimisation stage in question was selected. After doing
this, for each stage and for each benchmark problem, the diversity-based MOEA

150



7.4. Experimental Evaluation and Discussion

Table 7.11: Statistical comparison among different threshold values for each opti-
misation stage – F11 benchmark function

Stage 0 Stage 1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.2 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.4 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.6 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
0.8 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

Stage 2 Stage 3

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.2 ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔ ↓
0.4 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.6 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓
0.8 ↔ ↑ ↔ ↔ ↔ ↑ ↑ ↑ ↑ ↔

was executed for different values of the parameter th. Considering a certain test
case, for each optimisation stage, every execution of the diversity-based MOEA in-
cluded in its initial population one of the corresponding 32 individuals generated by
the above procedure. The remaining individuals in the population were randomly
generated. In this way, the performance of the diversity-based MOEA configured
with different threshold values was tested when it started from different quality lev-
els. The stopping criterion was fixed to 5 · 105 function evaluations. Lastly, the
separate configurations of the diversity-based MOEA were compared in terms of the
original objective value attained at the end of the executions.

Tables 7.9, 7.10, and 7.11 show the comparison of the threshold values used for the
F4, F5, and F11 benchmark functions, respectively. For each optimisation stage,
they show whether the scheme located in a given row is statistically better (↑),
not different (↔), or worse (↓) than the corresponding scheme situated in a certain
column. For each benchmark problem, the statistical tests demonstrate that differ-
ences among configurations depend on the stage of the optimisation process. For
instance, for stage number 0 in problem F4, the configuration that used th = 0.8
is better than the configuration where th = 0. In the optimisation stage number
3, however, the configuration with th = 0 performed better than the configuration
with th = 0.8. In the case of problem F5, th = 0 seems to be the most appropriate
value for the whole run because there was no better value in any of the analysed
stages. For these same reasons, the value th = 0.8 seems to be the most appropriate

151



CHAPTER 7. Benchmark Problems

Table 7.12: Number of evaluations required by the hyper-heuristic to attain a given
quality level

F1 F2 F3 F4 F5 F6

HH-PROB 1.45 · 106 1.35 · 106 1.30 · 106 1.15 · 106 1.40 · 106 1.25 · 106

F7 F8 F9 F10 F11
HH-PROB 1.50 · 106 1.40 · 106 1.55 · 106 1.20 · 106 1.55 · 106

for problem F11.

7.4.3 Improving the Robustness of the Diversity-based

Multi-objective Evolutionary Algorithm

In the preceding section, it was shown that the appropriate value for the parameter
th of the DCN-THR diversity-based objective not only depends on the optimisation
problem considered, but also on the current stage of the optimisation process. As a
result, this experiment is devoted to analysing whether the application of a hyper-
heuristic that controls the threshold ratio th belonging to the DCN-THR diversity-
based objective is able to improve both the behaviour and the robustness of the
diversity-based MOEA. To do so, the HH-PROB hyper-heuristic was applied to the
F1–F11 benchmark functions with D = 500 decision variables. It was configured
with an adaptation level k = ∞, and the value of β was set such that 10% of its
decisions used a uniform distribution, i.e. β · nh = 0.1. The low-level approaches
consisted of nh = 5 configurations of the diversity-based MOEA defined in the
previous section. Recall that the values 0, 0.2, 0.4, 0.6, and 0.8 were considered for
the threshold ratio th. Hence, the low-level configurations only differ in the value
that this parameter takes. Finally, the local stopping criterion of the HH-PROB
hyper-heuristic was fixed to 1 ·104 function evaluations, whereas the global stopping
criterion was set to 2.5 · 106 evaluations.

Table 7.12 shows, for each benchmark function, the number of evaluations required
by the hyper-heuristic to attain a 50% success rate. The same quality level as
that applied to obtain the results shown in Table 7.8 was used, i.e. for each test
case, it was fixed as the median of the original objective value achieved by the
best-behaved low-level configuration of the diversity-based MOEA after 1.25 · 106
evaluations. Note that the advantages of controlling the parameter th by means of
the HH-PROB scheme are clear. In fact, it was the only approach able to reach
the specified quality level in under 1.55 · 106 evaluations for all the benchmark

152



7.4. Experimental Evaluation and Discussion

Table 7.13: Resources assigned by the hyper-heuristic for benchmark problems with
no variability in the threshold ratio

th = 0 th = 0.2 th = 0.4 th = 0.6 th = 0.8

F5 56.98% 15.77% 10.82% 9.79% 6.64%
F11 15.96% 16.05% 13.82% 20.89% 33.28%

problems considered. In addition, for two benchmark functions—F4 and F10—it
was the approach that required the fewest number of evaluations to achieve the
specified quality level. This means that the hyper-heuristic was able to allocate
more resources to the most suitable low-level configuration for each optimisation
stage. Furthermore, for the remaining benchmark functions, the HH-PROB hyper-
heuristic was able to reach the specified quality level in a number of evaluations
similar to that required by the best low-level configuration. Lastly, considering that
the hyper-heuristic provides its solutions in a single run, the benefits are even more
noticeable, since it provides similar or even better results than those obtained by
several low-level configurations executed independently.

Usually, the hyper-heuristic requires a certain amount of time to determine which
configuration is the fittest approach for each stage of the optimisation process. More-
over, it ensures that every low-level configuration considered will be executed with
a probability higher than or equal to β · nh. Thus, by the end of the executions,
every low-level configuration will have been executed several times. Consequently,
in cases where the same threshold value is better than the remaining ones in every
stage, the hyper-heuristic is not able to converge to high-quality solutions as fast as
the best-behaved low-level configuration. It would be interesting to know, however,
the amount of resources allocated to the best low-level configuration for these types
of problems. Table 7.13 shows the percentage of resources allocated to each low-
level configuration for the F5 and F11 benchmark problems. These problems were
selected because for both cases there is a value for the parameter th that behaves
properly in all the optimisation stages studied. As was stated in the preceding sec-
tion, the best-behaved low-level configuration used th = 0 for the F5 benchmark.
More than 50% of the resources were allocated to this configuration. For the F11
test case, the best-behaved low-level approach used th = 0.8. In this case, the hyper-
heuristic allocated the largest amount of resources to this configuration. However,
in no case was the difference among the resources allocated to each configuration as
significant as in the case of F5. The reason is that the statistical differences among
the low-level approaches were not so clear, as shown in Table 7.11. Therefore, the
hyper-heuristic allocated more resources to other configurations.

153



CHAPTER 7. Benchmark Problems

Table 7.14: Statistical comparison between the hyper-heuristic and different low-
level configurations

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

↑ 4 1 2 5 4 3 4 0 4 5 4
↔ 0 3 3 0 0 2 0 3 0 0 0
↓ 1 1 0 0 1 0 1 2 1 0 1

Finally, in order to better analyse the benefits of the HH-PROB hyper-heuristic,
the original objective value was statistically compared to that obtained at the end
of the executions. Table 7.14 compares the HH-PROB scheme against its five cor-
responding low-level configurations. For each benchmark function, it shows the
number of cases where the hyper-heuristic was statistically better (↑), not different
(↔), or worse (↓) than the low-level configurations. We should note that in four
problems—F3, F4, F6, and F10—none of the low-level configurations was able to
statistically outperform the hyper-heuristic. In fact, for the F4 and F10 benchmark
functions, the hyper-heuristic was statistically better than every low-level approach.
In six problems—F1, F2, F5, F7, F9, and F11—only one low-level configuration
was able to statistically outperform the HH-PROB approach. Lastly, two low-level
configurations were statistically better than the hyper-heuristic in the case problem
F8. However, as was previously stated, the HH-PROB hyper-heuristic was able to
provide solutions of a quality similar to that produced by the best low-level config-
urations for these benchmark problems.

7.4.4 Analysis of the Parameter Control Schemes Over a

Short Evaluation Timeframe

In the previous section, a hyper-heuristic was applied as a control approach to adapt
the parameter th of the DCN-THR diversity-based objective. As was stated, the
use of this hyper-heuristic was able to significantly improve the performance of the
proposed diversity-based MOEA. In the current experiment, the different parameter
control schemes described in Sections 7.3.1 and 7.3.2 are applied to the parameter
th of the DCN-THR diversity-based objective in order to solve each of the F1–F19
benchmark functions with D = 500 decision variables. The main aim of this study,
therefore, is to carry out a broad comparison among different kinds of parameter
control techniques using a relatively short period of 5 · 105 function evaluations.

The experiments conducted used a common parameterisation for the diversity-based
MOEA and the different parameter control schemes. Table 7.15 shows the pa-

154



7.4. Experimental Evaluation and Discussion

Table 7.15: Parameterisation of the diversity-based multi-objective evolutionary
algorithm

Parameter Value Parameter Value

Stopping criterion 2.5 · 106 evals. Mutation rate (pm) 0.002
Population size (N) 5 individuals Crossover rate (pc) 1

Table 7.16: Parameterisation of the hh-eli and hh-prob hyper-heuristics
Parameter Value Parameter Value

Local stopping criterion 2.5 · 103 evals. Minimum selection rate (β) 0.1
Low-level configs. (nh) 6 Historical knowledge (k) 5

Table 7.17: Parameterisation of the fuzzy-a and fuzzy-b fuzzy logic controllers
Parameter Value Parameter Value

Number of generations (numGen) 5 · 102 Difference among samples (∆) 0.1
Linguistic terms (numTerms) 7 Historical knowledge (k) 5

rameterisation of the diversity-based MOEA. The parameterisations of the dif-
ferent parameter control approaches are shown in Tables 7.16 and 7.17 for the
hyper-heuristics and the FLCs, respectively. The parameter values for the con-
trol methods—minimum selection rate, historical knowledge, number of low-level
configurations, number of linguistic terms, etc.—were the same regardless of the
benchmark problem considered. This means that the control approaches proposed
herein are robust, since promising results can be obtained for a wide range of test
cases without changing these parameter values. Thus, the parameters of the con-
trol methods do not impose additional configuration burdens on the diversity-based
MOEA.

The HH-ELI and HH-PROB hyper-heuristics were applied using nh = 6 low-level
configurations. Generally, having a high number of low-level configurations leads
to lower quality solutions because the hyper-heuristic is not able to make the right
decisions when a large set of candidate approaches is defined. For this reason,
six low-level configurations were selected instead of setting a larger value for the
parameter nh. The only difference among the low-level configurations was the value
assigned to the parameter th. The values were distributed uniformly in the range
[0, 1]. Hence, the low-level configurations were defined with values for the parameter
th equal to 0, 0.2, 0.4, 0.6, 0.8, and 1. The remaining parameters of the low-level
configurations took the same values as those shown in Table 7.15. Describing the
parameterisation of the self-adaptive parameter control approaches is not necessary.

155



CHAPTER 7. Benchmark Problems

Table 7.18: Mean original objective value for the best parameter control schemes
after 5 · 105 evaluations
Problem SELF HH-ELI HH-PROB FUZZY-A FUZZY-B
F1 -4.478003e+02 -4.478371e+02 -4.474119e+02 -4.483882e+02* -4.481555e+02

F2 -3.976507e+02 -4.002689e+02* -3.995730e+02 -3.977567e+02 -3.984597e+02
F3 7.860950e+03 6.307528e+03* 6.892168e+03 7.114925e+03 7.206458e+03
F4 -2.788402e+02 -3.106858e+02* -3.054929e+02 -3.050468e+02 -3.054261e+02
F5 -1.798369e+02 -1.798284e+02 -1.798023e+02 -1.798794e+02 -1.798873e+02*

F6 -1.399212e+02 -1.399205e+02 -1.399115e+02 -1.399267e+02 -1.399412e+02*

F7 3.740799e-01 2.928847e-01 3.744123e-01 2.395465e-01* 2.492768e-01

F8 3.570116e+05 3.664986e+05 3.720928e+05 3.563382e+05* 3.647259e+05

F9 2.968789e+02 2.957150e+02 3.014180e+02 2.928711e+02 2.866811e+02*

F10 1.812262e+00* 2.249266e+00 2.478268e+00 2.140365e+00 1.893920e+00

F11 2.949134e+02* 3.035599e+02 3.073306e+02 2.963466e+02 2.999489e+02

F12 4.009808e+01 3.308254e+01* 3.481530e+01 3.874683e+01 3.827866e+01
F13 1.017289e+04 3.860397e+03* 4.409750e+03 7.421083e+03 8.632196e+03
F14 4.569614e+01 3.072660e+01* 3.281441e+01 3.343408e+01 3.537184e+01
F15 4.122504e+00 2.468268e+00* 2.646807e+00 3.470253e+00 3.276949e+00
F16 1.114501e+02 9.613186e+01* 1.033108e+02 1.109923e+02 1.092793e+02
F17 2.689799e+03 1.287036e+03* 1.564690e+03 2.383842e+03 2.068250e+03
F18 5.346952e+01 5.112424e+01 5.419024e+01 4.860644e+01* 5.111202e+01
F19 2.062142e+00 1.619345e+00* 1.982881e+00 2.149803e+00 2.119459e+00

Since no additional parameters are defined for them, their parameterisation was the
same as that applied with the diversity-based MOEA—Table 7.15. Finally, note
that in order to compare the different control approaches, all the methods were
run using a stopping criterion equal to 2.5 · 106 function evaluations, as shown in
Table 7.15.

Table 7.18 shows, for each benchmark function, the mean of the original objective
value achieved by the different parameter control approaches after 5·105 evaluations.
In the case of the different versions of the self-adaptive approach, only the data for
the scheme that attained the lowest mean of the original objective value after 5 · 105
evaluations are shown. Those parameter control approaches whose data are shown
in bold with an asterisk obtained the lowest mean of the original objective value.
It is important to remark that said approaches exhibited statistically significant
differences compared to the control methods whose data are not shown in bold. If the
data belonging to several parameter control approaches are shown in bold without
an asterisk, then those schemes did not exhibit statistically significant differences
relative to those that achieved the lowest mean of the original objective value. The
following observations apply:

• One or both of the FUZZY-A and FUZZY-B FLCs were statistically better
than the remaining parameter control approaches in four problems: F1, F5,
F6, and F7.

156



7.4. Experimental Evaluation and Discussion

• One or both of the HH-ELI and HH-PROB hyper-heuristics were statistically
better than the remaining parameter control schemes in eight problems: F2,
F3, F4, F12, F13, F15, F16, and F17.

• In five problems—F8, F9, F10, F14, and F18—there were no statistically
significant differences between both types of external controllers, i.e. between
hyper-heuristics and FLCs.

• The self-adaptive approaches did not provide any statistically significant ad-
vantage on their own in any of the benchmarks.

Hence, following a short evaluation period, the hyper-heuristics, and in particular the
HH-ELI approach, appear better able to adapt the parameter th than the parameter
control approaches based on FLCs and self-adaptation. This could be due to the fact
that the hyper-heuristic-based methods only have to select the most suitable value
for the parameter th from amongst a finite set of candidate values that coarsely cover
the parameter space. In contrast, the FLCs are able to select from an infinite range
of possible values. Thus, given only a short learning period, the hyper-heuristics
outperform the other methods as they are able to exploit existing values that may
lie close to the optimal ones, rather than having to explore the space for suitable
values. As a result, the methods based on hyper-heuristics are able to provide
better solutions than the FUZZY-A and/or FUZZY-B schemes in the short term for
many problems. With respect to the self-adaptive approaches, although they did
not outperform either of the other control approaches, for some problems they were
able to achieve the same quality level as the other parameter control methods. In
the case of the F19 problem, they outperformed the FLCs together with the hyper-
heuristics, whereas in the case of the F11 benchmark function, they outperformed
the hyper-heuristics together with the FLCs.

7.4.5 Analysis of the Parameter Control Schemes Over a

Long Evaluation Timeframe

In this section, the parameter control schemes are analysed over a longer evaluation
period of 2.5 ·106 evaluations, i.e. at the end of the executions. Table 7.19 shows the
same information as Table 7.18, but for 2.5 · 106 function evaluations. The following
observations apply:

• One or both of the FUZZY-A and FUZZY-B FLCs were statistically better
than the remaining parameter control approaches in four problems: F3, F7,
F12, and F14.

157



CHAPTER 7. Benchmark Problems

Table 7.19: Mean original objective value for the best parameter control schemes
after 2.5 · 106 evaluations
Problem SELF HH-ELI HH-PROB FUZZY-A FUZZY-B
F1 -4.499892e+02 -4.499992e+02* -4.499988e+02 -4.499988e+02 -4.499992e+02*

F2 -4.341193e+02 -4.350975e+02* -4.349620e+02 -4.340944e+02 -4.341680e+02
F3 1.427243e+03 1.807100e+03 1.718612e+03 1.282274e+03* 1.547327e+03

F4 -3.299951e+02 -3.300000e+02* -3.299999e+02 -3.299998e+02 -3.299998e+02
F5 -1.799766e+02 -1.799713e+02 -1.799836e+02* -1.799717e+02 -1.799792e+02

F6 -1.399978e+02 -1.399990e+02 -1.399988e+02 -1.399991e+02* -1.399991e+02*

F7 7.065683e-03 4.597348e-03 5.994893e-03 2.057316e-03* 2.533643e-03
F8 1.668117e+05 1.676752e+05 1.690159e+05 1.624589e+05* 1.706433e+05
F9 3.248838e+01 1.681051e+01 2.372986e+01 1.617945e+01 1.613916e+01*

F10 3.394049e-03 2.852807e-04* 3.736034e-04 5.373773e-04 3.173994e-04

F11 3.371631e+01 1.598078e+01* 2.490122e+01 1.728919e+01 1.728853e+01

F12 9.409282e-01 9.932408e-01 1.060437e+00 5.706366e-01* 5.746609e-01

F13 1.948127e+03 1.782808e+03 1.290099e+03* 1.473589e+03 1.581966e+03

F14 3.839717e-01 1.958826e-01 3.125988e-01 1.418254e-01 1.371941e-01*

F15 1.514281e-02 6.026768e-03* 7.459278e-03 6.769493e-03 6.590881e-03

F16 3.635383e+00 2.254722e+00 3.054237e+00 2.237479e+00 2.185866e+00*

F17 8.514682e+02 5.468047e+02 5.769930e+02 7.511799e+02 5.339560e+02*

F18 3.500672e+00 1.813913e+00* 2.260901e+00 2.039246e+00 1.859091e+00

F19 5.165002e-03 9.889879e-04 1.524792e-03 1.077074e-03 9.886900e-04*

• One or both of the HH-ELI and HH-PROB hyper-heuristics were statistically
better than the remaining parameter control schemes in two problems: F2
and F4.

• In thirteen problems, there were no statistically significant differences be-
tween both types of external controllers: F1, F5, F6, F8, F9, F10, F11, F13,
F15, F16, F17, F18, and F19.

• The self-adaptive approaches did not provide any statistically significant ad-
vantage on their own in any of the benchmarks.

It is clear that given a long enough evaluation time, the parameter control methods
become less distinguishable. In 13 test cases in the long evaluation period, no
statistically significant differences in the external methods were observed, compared
to 5 cases in the short evaluation period. It is also clear that given a longer runtime,
the FLCs were able to provide the best results in a higher number of problems than
the hyper-heuristics. Regarding the self-adaptive approaches, as in the short term,
again they did not provide any benefit for any benchmark in the long term, and in
fact were outperformed by the FLCs and hyper-heuristics for all problems, except
for the F5 and F8 benchmark functions.

158



7.4. Experimental Evaluation and Discussion

7.4.6 Comparison between Short and Long Evaluation Pe-

riods

It is illuminating to compare the change in the performance of the control methods
for each of the problems under the two different evaluation scenarios, short term
and long term. The winning method is defined herein as the parameter control
method that statistically outperforms each of the other control methods. Hence, the
winner is either self-adaptation, hyper-heuristic, FLC or none if no single method
differs statistically from all of the others. If we then examine the change in the
winning method as we switch from short-term to long-term evaluation, the following
observations can be made:

• For eight problems—F4, F7, F8, F9, F10, F11, F18, and F19—changing the
length of the evaluation period had no impact on the winning control method.

• For seven problems—F1, F5, F6, F13, F15, F16, and F17—while there was a
clear winner in the short-term evaluation experiment, there was no significant
difference between methods when evaluated for a longer time period.

• For two problems—F3 and F12—the best method switched from the hyper-
heuristic in the short-term evaluation to the FLCs in the long-term evaluation
experiment.

• For one problem—F14—while there was no significant difference in method
in the short term, the FLCs was the best method in the long term.

• For one problem—F2—while there was no significant difference in method in
the short term, the hyper-heuristic was the best method in the long term.

These results suggests that the coarse-grained approach of the hyper-heuristic, which
defines a fixed set of possible values for the parameter th spread uniformly across
the full range of possible values, provides sufficient variety in this parameter to yield
high quality results for most of the problems. The results also suggest that the
FLCs select similar values to those already defined by the hyper-heuristics and that
the problems are relatively robust to the exact value of th over some interval. This
is evidenced by the fact that in 7 problems, the performance of the hyper-heuristic
and FLCs converged given a long enough evaluation time. In addition, for 13 test
cases, hyper-heuristics and FLCs did not present statistically significant differences
at the end of the executions.

For 3 problems—F3, F12, and F14—in the long term the FLC emerged as the
winner while in the short term, either the hyper-heuristic was the clear winner or

159



CHAPTER 7. Benchmark Problems

no method dominated. This suggests that these problems are particularly sensitive
to the parameter th, and that the FLC is able to find a value not present in any of
the hyper-heuristic configurations that gives better results.

In contrast, for only one problem, while no method arose as a winner when only
evaluated for a short time period, the hyper-heuristic method dominated in the
long evaluation period. This can perhaps be explained by the fact that finding
good solutions for this problem is more challenging, though given a long enough
evaluation period, the hyper-heuristic is able to eventually dominate. It is possible
that in this case, running the experiment for an even longer period would enable
the FLCs to catch up.

To sum up, the most appropriate parameter control approach depends on the opti-
misation problem being solved. However, for a significant number of cases, FLCs or
hyper-heuristics can be applied to obtain promising results, whereas the self-adaptive
approaches are not able to provide any advantage over the other control methods
when the parameter th is adapted. The results appear to verify the statement made
by Eiben [106]: “self-adaptive methods are efficient methods when applicable ... but
are outperformed by clever adaptive methods”.

7.4.7 Comparing Parameter Control and Parameter Tuning

The parameter control methods applied in preceding sections adapt the value of the
parameter th during the course of an evolutionary run; thus, a single run of the
optimisation algorithm may utilise many different values over the entire execution.
In this section, we assess the benefit of adapting the value of the parameter over
the course of the run as opposed to simply choosing a single value that remains
fixed throughout. The latter approach requires a suitable value for th to be defined;
21 different configurations of the diversity-based MOEA with the same parameter-
isation as that used in previous experiments—Table 7.15—were defined, in which
each configuration differs only in the value of th. The 21 values of th tested were
distributed uniformly in the range [0, 1].

Figure 7.2 shows the mean of the original objective value achieved in 2.5 · 106 eval-
uations by the parameter control approaches and by the diversity-based MOEA
executed with a range of fixed values of the parameter th—FIXED—for several of
the benchmark functions. The conclusions drawn from the plots shown are general-
isable to the remaining test cases.

Observing the plots, at least one of the parameter control methods was able to

160



7.4. Experimental Evaluation and Discussion

-437

-436.5

-436

-435.5

-435

-434.5

-434

-433.5

-433

-432.5

 0  0.2  0.4  0.6  0.8  1

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F2

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0  0.2  0.4  0.6  0.8  1

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F3

-180

-179.99

-179.98

-179.97

-179.96

-179.95

-179.94

-179.93

-179.92

-179.91

-179.9

 0  0.2  0.4  0.6  0.8  1

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F5

-140

-139.995

-139.99

-139.985

-139.98

-139.975

-139.97

 0  0.2  0.4  0.6  0.8  1

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F6

 0

 10

 20

 30

 40

 50

 0  0.2  0.4  0.6  0.8  1

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F9

 0

 5

 10

 15

 20

 25

 30

 0  0.2  0.4  0.6  0.8  1

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F16

Best SELF
HH-ELI

HH-PROB
FUZZY-A
FUZZY-B

FIXED

Figure 7.2: Mean of the original objective value achieved by the parameter control
methods and by fixed values of the threshold ratio

161



CHAPTER 7. Benchmark Problems

obtain either similar or better results than any configuration of the FIXED scheme
in 12 of the 19 problems, namely in problems F3, F6, and F16 shown in Figure 7.2,
and also in benchmarks F1, F4, F7, F10, F12, F13, F14, F15, and F19. Hence, it
appears that the majority of the benchmarks benefitted from an approach in which
th could be varied during the course of the run and an optimal fixed value of th
could not be found.

In contrast, in 7 of the 19 test cases—F2, F5, F8, F9, F11, F17, and F18—some
configurations of the FIXED approach yielded better results than the parameter
control approaches, suggesting that there exists some fixed value for the parameter th
that is adequate during the whole optimisation process. An alternative explanation
however might lie in the fact that adapting th may improve the algorithm but that
the changes in the values of the parameter th take place so fast that parameter
control approaches are not able to detect these changes at the rate required. In this
case, fixing the parameter to a suitable value produces more robust behaviour in
the diversity-based MOEA. Despite this fact, the results obtained by the control
techniques were close to those provided by the best configurations of the FIXED
approach for this set of 7 problems.

It is crucial to note that finding a suitable fixed value for th required 21 separate
runs of the optimisation algorithm. These results are in comparison to a single run
of the parameter control methods. Consequently, in addition to the fact that the
parameter control methods obtain high quality solutions in the majority of problems,
the savings in computational resources and time required to produce a good solution
are significant across all benchmark functions.

In order to quantify these savings, an additional analysis was conducted involving
the RLDs. In this case, the quality level was set as the highest median of the original
objective value achieved by the schemes in question at the end of the executions,
i.e. after 2.5 · 106 evaluations.

We further calculate the percentage of evaluations p saved by a certain scheme, in
comparison to the approach that required the largest number of evaluations. This
savings was calculated using Equation 7.1, where the number of evaluations per-
formed by the scheme considered is denoted by numEvals, and maxEvals is the
largest number of evaluations performed by any approach, for a particular bench-
mark function.

p =

(

1− numEvals

maxEvals

)

· 100 (7.1)

162



7.4. Experimental Evaluation and Discussion

Table 7.20: Maximum number of evaluations required to attain the specified quality
level and percentage of evaluations saved by each approach

Problem SELF HH-ELI HH-PROB FUZZY-A FUZZY-B FIXED

F1 2.45e+06 36.73% 30.61% 38.78% 40.82% 42.86%

F2 2.50e+06 6.00% 6.00% 2.50e+06 2.50e+06 20.00%

F3 16.00% 4.00% 2.50e+06 34.00% 22.00% 22.00%
F4 12.50% 39.58% 31.25% 33.33% 39.58% 2.40e+06
F5 6.67% 42.22% 2.25e+06 46.67% 53.33% 53.33%

F6 2.40e+06 27.08% 18.75% 37.50% 31.25% 50.00%

F7 2.50e+06 16.00% 8.00% 42.00% 36.00% 44.00%

F8 2.00% 2.00% 2.00% 10.00% 2.50e+06 12.00%

F9 2.50e+06 24.00% 12.00% 24.00% 24.00% 28.00%

F10 2.50e+06 32.00% 30.00% 36.00% 42.00% 28.00%
F11 2.50e+06 28.00% 12.00% 26.00% 22.00% 28.00%

F12 6.00% 6.00% 2.50e+06 32.00% 28.00% 34.00%

F13 2.50e+06 72.00% 64.00% 54.00% 52.00% 80.00%

F14 2.50e+06 26.00% 20.00% 28.00% 32.00% 14.00%
F15 2.50e+06 18.00% 12.00% 16.00% 14.00% 20.00%

F16 2.50e+06 16.00% 8.00% 16.00% 18.00% 10.00%
F17 2.50e+06 72.00% 68.00% 46.00% 48.00% 82.00%

F18 2.50e+06 24.00% 12.00% 16.00% 24.00% 28.00%

F19 2.50e+06 28.00% 20.00% 28.00% 30.00% 26.00%

Mean 2.27% 27.35% 18.66% 29.70% 29.31% 32.75%

The results are shown in Table 7.20. For each benchmark problem, the table gives
the actual number of evaluations taken by the method that required the highest
number to achieve a 50% success rate. In every other column, the percentage of
evaluations saved by the corresponding method is shown. In order to calculate the
values, in the case of the self-adaptive control scheme, the variant that obtained the
lowest mean of the original objective at the end of the executions was used. The
single value of the threshold ratio th that was found to be optimal in the experiments
performed with the FIXED approach was also taken into account. The data in bold
highlight the approaches that were able to save the highest number of evaluations for
each problem. Finally, the last row shows the mean percentage of saved evaluations
for all the test cases.

Note that for the majority of the benchmarks, the self-adaptive approach required
the highest number of evaluations to achieve a 50% success rate. The FIXED ap-
proach provided the most savings in evaluations in 13 benchmark functions. How-
ever, it is important to note that in order to find the appropriate value of th to

163



CHAPTER 7. Benchmark Problems

use in this experiment, 21 separate configurations had to be executed, a significant
hidden cost that is not apparent in this table. Quite the opposite, parameter control
methods based on FLCs and hyper-heuristics obtained the largest number of saved
evaluations in 8 test cases and required only a single run of the algorithm. In 6 of
these 8 test cases, the FUZZY-B FLC provided the largest savings.

We should note that the size of the savings in the case of the control approaches
was also significant for the 13 test cases where the FIXED scheme provided the
greatest savings. For instance, for the F1 benchmark problem the FIXED approach
resulted in 42.86% fewer evaluations, while the FUZZY-B scheme provided a 40.82%
of savings. This fact is also evidenced by the mean percentages of saved evaluations.
It can be observed that the FLCs obtained mean percentages quite close to the mean
percentage provided by the FIXED scheme. This demonstrates the advantages
of using the proposed control approaches over searching for a fixed value for the
parameter th, i.e. the advantages of parameter control against parameter tuning.

7.4.8 Analysis of the Hybrid Control Scheme based on Fuzzy

Logic Controllers and Hyper-heuristics

In preceding experiments, different parameter control approaches based on FLCs,
hyper-heuristics and other methods were compared. The main advantage of hyper-
heuristics is that they are able to control symbolic and numeric parameters. The size
of the set of low-level configurations is generally fixed and finite, however, meaning
that in the case of controlling numeric parameters, the number of possible values
that can be assigned to them is therefore also finite. In contrast, the main benefit of
using the FLCs is that the possible values that can be assigned to a certain parameter
are not selected from a finite set. Its main drawback lies in the fact that it cannot be
directly applied to control symbolic parameters. In order to avoid their drawbacks,
and to profit from the strong points of the two approaches, the hybrid control scheme
described in Section 7.3.3 is applied herein to simultaneously adapt symbolic and
numeric parameters. The main aim of this experiment is twofold. First, to study
the performance of the proposed hybrid control scheme. Second, to analyse whether
parameter control offers any benefits with regard to tuning the crossover and mu-
tation operators, and the mutation rate pm belonging to the diversity-based MOEA
depicted in Section 7.2.2. We will proceed by considering the F1–F19 benchmark
functions with D = 500 decision variables.

Table 7.21 shows the parameterisation of the diversity-based MOEA. First, 72 differ-
ent configurations of the diversity-based MOEA with fixed values for the parameters

164



7.4. Experimental Evaluation and Discussion

Table 7.21: Parameterisation of the diversity-based multi-objective evolutionary
algorithm

Parameter Value Parameter Value
Stopping criterion 2.5 · 106 evals. pc 1
Population size (N) 5 individuals pm – UM-ONE, PM-ONE 0.2, 0.36, 0.52, 0.68, 0.84, 1
Crossover operators SBX, AX, PBX-α pm – UM-ALL, PM-ALL 0.0002, 0.00056, 0.00092,

0.00128, 0.00164, 0.002
Mutation operators UM-ONE, PM-ONE Diversity-based objective DCN-THR

UM-ALL, PM-ALL

Table 7.22: Parameterisation of the hh-prob hyper-heuristic
Parameter Value Parameter Value
Local stopping criterion 2.5 · 104 evals. Minimum selection rate (β) 0.1
Number of low-level configs. (nh) 12 configs. Historical knowledge (k) 5

Table 7.23: Parameterisation of the fuzzy-a fuzzy logic controller

Parameter Value Parameter Value
Local stopping criterion (numEvals) 5 · 102 evals. Difference among samples (∆) 0.1
Number of linguistic terms (numTerms) 7 Historical knowledge (k) 5
Range of pm – UM-ONE, PM-ONE [0.2, 1] Range of pm – UM-ALL, PM-ALL [0.0002, 0.002]

were executed for each benchmark function. The configurations were obtained by
combining the values shown in Table 7.21 for the crossover and mutation operators,
and for the mutation rate pm. Two different variants of the UM and PM operators
were used. The variants UM-ONE and PM-ONE mutate a unique parent gene with
probability pm, whereas the variants UM-ALL and PM-ALL mutate every parent
gene with probability pm. The values assigned to pm differed depending on the muta-
tion operator applied. In addition, the hybrid control scheme was executed for each
benchmark problem to adapt the values of the crossover and mutation operators,
and the mutation rate pm of the diversity-based MOEA. The remaining parameters
were kept as shown in Table 7.21. The hyper-heuristic and the FLC parameterisa-
tions are shown in Tables 7.22 and 7.23, respectively. Note that the hyper-heuristic
of the hybrid scheme had to select among nh = 12 low-level configurations. This is
because twelve possible combinations resulted from using the three crossover opera-
tors and the four variants of the mutation operators shown in Table 7.21. Therefore,
the differences among the low-level configurations lied in the particular values given
to the crossover and mutation operators. Lastly, depending on the mutation oper-
ator defined for each low-level configuration, the range of possible values that the
FLC was able to infer for pm was different.

Table 7.24 shows, for each benchmark function, the parameter values of the best
configuration—the one that achieved the lowest median of the error with respect

165



CHAPTER 7. Benchmark Problems

Table 7.24: Values for the parameters of the best fixed configuration
Problem Crossover Mutation pm
F1 SBX UM-ALL 0.0002
F2 PBX-α UM-ALL 0.00092
F3 PBX-α UM-ALL 0.00056
F4 SBX UM-ONE 0.68
F5 SBX UM-ONE 0.2
F6 PBX-α PM-ALL 0.00056
F7 PBX-α PM-ALL 0.0002
F8 AX PM-ALL 0.00128
F9 PBX-α UM-ALL 0.0002
F10 SBX UM-ALL 0.0002
F11 PBX-α UM-ALL 0.0002
F12 PBX-α UM-ALL 0.0002
F13 SBX UM-ALL 0.0002
F14 PBX-α UM-ALL 0.0002
F15 PBX-α PM-ALL 0.0002
F16 PBX-α UM-ALL 0.0002
F17 SBX UM-ALL 0.0002
F18 PBX-α UM-ALL 0.0002
F19 SBX UM-ALL 0.0002

to the original objective value—of the diversity-based MOEA executed with fixed
parameters. Recall that 72 different configurations of the diversity-based MOEA
with fixed parameters were executed for each function. With regard to parameter
tuning, the PBX-α crossover operator seems to be the most suitable, while the most
appropriate values for the mutation operator and its rate pm seem to be the UM-ALL
operator and 0.0002, respectively, for a wide range of benchmark functions. However,
the most appropriate values for the crossover and mutation operators, and for the
mutation rate pm, change depending on the benchmark function in question. As a
result, it would be interesting to check whether the novel hybrid control approach
is able to provide similar results without the need to execute a large amount of
configurations of the diversity-based MOEA in order to look for its best parameter
values. For benchmarks where different parameter values are the most appropriate
depending on the stage of the search process, the hybrid control scheme might
provide even better results than those given by the best fixed configuration of the
diversity-based MOEA, as was stated in previous sections.

Table 7.25 shows, for each problem, the median of the error achieved by the hybrid
parameter control scheme and by the best fixed configuration of the diversity-based

166



7.4. Experimental Evaluation and Discussion

Table 7.25: Median of the error attained by the hybrid control scheme and by the
best fixed configuration

Problem Hybrid Scheme Best Fixed Conf. ↑ ↓ ↔
F1 1.3281037e-06 3.4106051e-13 66 5 1
F2 7.6975000e+00 1.0592500e+01 72 0 0
F3* 9.4457000e+02 2.9075500e+02 40 18 13
F4 3.0795973e-05 7.8476094e-04 72 0 0
F5* 2.6413124e-07 8.3753093e-10 68 0 2
F6 8.3838312e-05 7.5147903e-05 71 0 1
F7 1.6071950e-04 2.1048950e-04 72 0 0
F8 4.7819750e+04 3.2891500e+04 55 15 2
F9 3.5459550e+00 5.5819750e+00 72 0 0
F10 1.5165250e-06 5.1276500e-13 65 5 2
F11 3.6804850e+00 5.6666000e+00 72 0 0
F12 1.5824200e-01 1.1245450e-01 71 1 0
F13* 7.8921500e+02 2.9386450e+02 62 2 4
F14 5.1547950e-02 7.4521000e-02 72 0 0
F15 1.3515900e-04 9.6688000e-05 71 1 0
F16 1.0623750e+00 1.7717600e+00 72 0 0
F17 9.0679350e+01 7.1111250e+01 67 0 5
F18 4.2261050e-01 6.4425800e-01 72 0 0
F19 3.0685100e-05 3.0367050e-08 67 5 0

MOEA—the one shown in Table 7.24. For benchmarks where differences were statis-
tically significant, data belonging to the approach that obtained the lowest median
and mean of the error are shown in bold. In contrast, if differences between the
hybrid control scheme and the best fixed configuration were not statistically sig-
nificant, the data for both approaches are not shown in bold. This was the case
for three benchmark problems: F5, F6, and F17. Furthermore, for each problem,
the hybrid control scheme was statistically compared to the 72 fixed configurations
of the diversity-based MOEA. Hence, Table 7.25 also shows the number of fixed
configurations which were statistically outperformed (↑) by the hybrid scheme, the
number of fixed configurations that statistically outperformed the hybrid scheme
(↓), and the number of fixed configurations which did not present statistically sig-
nificant differences with the hybrid method (↔). Finally, for test cases where an
asterisk is shown, some fixed configurations of the diversity-based MOEA presented
statistically significant differences with the hybrid scheme. However, one of the two
approaches obtained the lowest mean of the error, while the other obtained the
lowest median of the error, so the winning approach could not be determined.

167



CHAPTER 7. Benchmark Problems

It is worth mentioning that for eight benchmark functions—F2, F4, F7, F9, F11,
F14, F16, and F18—the hybrid control scheme was able to statistically outperform
every fixed configuration of the diversity-based MOEA. This can be explained by the
fact that depending on the stage of the optimisation process, the most appropriate
values for the controlled parameters are different, and the hybrid control scheme is
able to detect these changes. Thus, the hybrid scheme provides better results since
it is able to adapt the parameters of the diversity-based MOEA while it is being
executed, whereas the fixed configurations are executed with the same parameter
values during the whole run without considering any adaptation.

In contrast, note that for eight test cases—F1, F3, F8, F10, F12, F13, F15, and
F19—some fixed configurations of the diversity-based MOEA obtained statistically
significant better results than the hybrid parameter control scheme, indicating that,
for these benchmarks, there exist some fixed values for the parameters that are
suitable for the entirety of the optimisation process. For these cases, fixing the
parameters to suitable values produces more robust behaviour in the diversity-based
MOEA. Despite this fact, the results obtained by the hybrid control scheme were
also competitive for this set of eight problems.

Lastly, it is worth pointing out that the benefits of the hybrid control approach are
even greater if we consider the fact that 72 different configurations of the diversity-
based MOEA were executed in order to look for the best set of values for its param-
eters, while only a single run of the hybrid control scheme was required. Therefore,
besides the fact that the hybrid scheme obtained high quality results for most of
the problems, the savings in computational resources and time required to produce
good solutions were significant across all benchmarks when using it.

7.4.9 Analysis of the Diversity-based Survivor Selection Op-

erator

This experiment, unlike the preceding one, does not deal with parameter control
approaches. Instead, its main aim is to study the behaviour of the novel DCN-REF
diversity-based survivor selection operator, which was proposed in Section 5.2. The
F1–F11 benchmark functions with D = 50 decision variables were used to carry out
two types of analyses. The first one focused on studying the average behaviour of
the new proposed scheme, whereas the aim of the second one was to analyse the
properties of said approach with respect to premature convergence. To perform the
latter analysis, the behaviour of the worst executions obtained by the proposal were
studied.

168



7.4. Experimental Evaluation and Discussion

In the first analysis, two different variants of the diversity-based MOEA described
in Section 7.2.2 were executed. Both variants apply the DCN-THR diversity-based
objective. The main difference between them, however, lies in the fact that the
first one does not make use of the DCN-REF survivor selection operator, while the
second one does. In order to differentiate them, the first variant will be called NO-
REF, while the second one will be referred to as REF. Different configurations of
both variants were considered by defining different values for the parameter th of
the DCN-THR diversity-based objective. In addition, for each benchmark function,
every configuration was executed 100 times. The values for the remaining parameters
of both schemes were fixed as follows:

• Population size N fixed to 100 individuals.

• Values for the threshold ratio th of the DCN-THR diversity-based objective:
0, 0.2, 0.4, 0.6, and 0.8.

• The PM operator was applied with probability pm = 1
D
= 0.02.

• The SBX operator was applied with probability pc = 1.

• The stopping criterion was fixed to 1 · 105 function evaluations.

Figure 7.3 shows, for each benchmark problem, the median of the original objective
value attained by the approaches at the end of the executions. In cases where the
differences between the results obtained with the NO-REF and the REF schemes
were statistically significant, a vertical line joining their medians is shown. In most
of the test cases—F2 and F3 are the exceptions—the REF model provided a higher
median of the original objective value than the NO-REF scheme. Additionally,
differences were statistically significant for most of the problems considered. The
reason is that maintaining a proper diversity might reduce the convergence speed of
the average case. In fact, the aim of maintaining a proper diversity is not to improve
the convergence speed of the average case, but to prevent the occurrence of highly
sub-optimal results in the worst executions.

In order to better understand the reasons why the novel proposal exhibits a sub-
optimal behaviour, the probability of survival of the fittest individuals was exper-
imentally calculated when using the REF and the NO-REF approaches using a
threshold ratio th = 0. Table 7.26 shows the mean probability of survival of the 10
and 20 best individuals for both schemes. In every case, the probability of selecting
the individuals with the best original objective values was higher for the NO-REF
than for the REF approach. This means that the former focuses on the fittest in-
dividuals, while the latter performs a more diverse selection. As a result, for cases

169



CHAPTER 7. Benchmark Problems

-440

-420

-400

-380

-360

-340

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F1

REF
NO-REF

-441

-440

-439

-438

-437

-436

-435

-434

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F2

REF
NO-REF

 0

 200000

 400000

 600000

 800000

 1e+06

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F3

REF
NO-REF

-280

-270

-260

-250

-240

-230

-220

-210

-200

-190

-180

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F4

REF
NO-REF

-179.5

-179

-178.5

-178

-177.5

-177

-176.5

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F5

REF
NO-REF

-121.4

-121.2

-121

-120.8

-120.6

-120.4

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F6

REF
NO-REF

 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F7

REF
NO-REF

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 5e+09

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F8

REF
NO-REF

 220

 230

 240

 250

 260

 270

 280

 290

 300

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F9

REF
NO-REF

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F10

REF
NO-REF

 210

 220

 230

 240

 250

 260

 270

 280

 0  0.2  0.4  0.6  0.8

O
ri
g

in
a

l 
O

b
je

c
ti
v
e

th

Problem F11

REF
NO-REF

Figure 7.3: Median of the original objective value achieved for different threshold
ratios

where premature convergence does not occur—the majority of the executions—the
NO-REF scheme converges faster. We should note that other values for the thresh-
old ratio th were considered in order to calculate the probabilities. For these cases,
the NO-REF scheme also yielded higher probabilities than the REF model.

The above analysis demonstrated the superiority of the NO-REF scheme for the av-
erage case. In order to quantify its improvement, RLDs were calculated. Table 7.27
shows the percentage of evaluations that were saved by the NO-REF scheme in com-

170



7.4. Experimental Evaluation and Discussion

Table 7.26: Probability of selecting the best individuals
Prob. of 10 best ind. Prob. of 20 best ind.

NO-REF REF NO-REF REF

F1 90.01% 79.68% 85.02% 72.17%
F2 94.44% 87.73% 89.89% 83.37%
F3 91.05% 86.57% 85.10% 79.37%
F4 92.11% 91.04% 87.02% 86.35%
F5 89.97% 79.86% 84.03% 72.42%
F6 99.50% 97.12% 94.52% 92.93%
F7 90.84% 84.32% 84.80% 78.04%
F8 92.63% 90.24% 84.60% 85.62%
F9 93.16% 90.64% 90.46% 87.37%
F10 91.09% 82.52% 85.11% 74.03%
F11 92.75% 90.56% 88.44% 87.79%

Table 7.27: Evaluations saved by not using the diversity-based survivor selection
scheme

th = 0 th = 0.2 th = 0.4 th = 0.6 th = 0.8

F1 20% -5% -40% 5% -17.5%
F2 -17.5% -17% -17.5% -15% -17.5%
F3 30% -22.5% -27.5% -27.5% 5%
F4 32.5% 35% 32.5% 37.5% 27.5%
F5 25% 25% 30% 2.5% -25%
F6 35% 40% 45% 40% 35%
F7 17.5% 25% 28.20% 7.89% 40%
F8 10% 10% 12.5% -2.5% 12.5%
F9 35% 23.07% 27.5% 37.5% 30%

F10 45% 42.5% 37.5% 32.5% 22.5%
F11 30% 32.5% 37.5% 30% 32.5%

parison to the REF model using a 50% success rate. For each benchmark function
and for each threshold value, the quality level was set as the highest median of the
original objective value attained at the end of the executions by either of the two
schemes. The negative values indicate that the REF scheme saved a larger number
of evaluations. Finally, for each problem, the data belonging to the threshold ratio
that achieved the lowest median of the original objective value are shown in bold.
Note that, on average, the number of additional evaluations required by the REF
approach was noticeable.

In the second analysis, the worst-case behaviour of the schemes considered above

171



CHAPTER 7. Benchmark Problems
0

5
0

0
0

1
0

0
0

0
1

5
0

0
0

Problem F1

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

−
4

2
0

−
4

0
0

−
3

8
0

−
3

6
0

Problem F2

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

0
e

+
0

0
2

e
+

0
9

4
e

+
0

9

Problem F3

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

−
1

0
0

0
1

0
0

2
0

0

Problem F4

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

−
1

5
0

−
1

0
0

−
5

0
0

Problem F5

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

−
1

2
0

.3
−

1
2

0
.1

−
1

1
9

.9
−

1
1

9
.7

Problem F6

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Problem F7

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

5
.0

e
+

0
9

1
.0

e
+

1
0

1
.5

e
+

1
0

2
.0

e
+

1
0

Problem F8

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

3
0

0
3

4
0

3
8

0
4

2
0

Problem F9

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

0
1

0
0

3
0

0
5

0
0

7
0

0

Problem F10

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

3
0

0
3

5
0

4
0

0

Problem F11

O
ri

g
in

a
l 
O

b
je

c
ti
ve

NO−REF

25K

REF

25K

NO−REF

50K

REF

50K

NO−REF

100K

REF

100K

Figure 7.4: Box plots for the worst-behaved executions considering different stopping
criteria

was studied. For each benchmark function, the threshold value th that yielded the
best results in the preceding analysis was used. The remaining parameter values
were the same as those previously used, although the two approaches were executed

172



7.4. Experimental Evaluation and Discussion

Table 7.28: Statistical comparison considering different stopping criteria
2.5 · 104 5 · 104 1 · 105

F1 ↑ ↑ ↑
F2 ↑ ↑ ↑
F3 ↑ ↑ ↑
F4 ↓ ↓ ↔
F5 ↑ ↑ ↑
F6 ↓ ↓ ↓
F7 ↓ ↑ ↑
F8 ↓ ↓ ↑
F9 ↓ ↓ ↓
F10 ↑ ↑ ↑
F11 ↓ ↓ ↓

3, 000 times. The executions were arranged into groups of 100 executions, and the
worst of each group—the one with the worst individual in terms of the original
objective value achieved at the end of the executions—was stored. This yielded a
set of 30 results for each approach and benchmark. The data represent the worst
results obtained considering a probability equal to 1%.

Figure 7.4 shows the box plots of the original objective values obtained by the NO-
REF and the REF approaches at the end of the worst executions. Three different
stopping criteria were set: 2.5 · 104, 5 · 104, and 1 · 105 evaluations. Note that the
advantages of using the REF model are clear for most of the problems. Table 7.28
shows the statistical comparison between the two schemes. The symbol ↑ is used
to denote that differences between the models were statistically significant and that
the REF approach obtained a lower median and mean of the original objective value
than the NO-REF scheme. In cases where the opposite is true, the symbol ↓ is used.
Lastly, for cases in which differences between both models were not statistically
significant, the symbol ↔ is used. The REF scheme was statistically better than
the NO-REF model in 7 test cases when the stopping criterion was set to 1 · 105
function evaluations.

A more in-depth analysis was performed for those problems where the REF ap-
proach did not provide any benefits in the latter study: F4, F6, F9, and F11. For
these benchmark problems, convergence was not reached after carrying out 1 · 105
evaluations. The NO-REF and the REF schemes were executed considering a longer
stopping criterion of 2.5·106 evaluations. For the F4 benchmark, the REF model sta-
tistically outperformed the NO-REF model. For the remaining functions, however,
the results obtained by both models were similar. In fact, the statistical analyses

173



CHAPTER 7. Benchmark Problems
−

1
4

0
−

1
3

6
−

1
3

2
−

1
2

8

Problem F6

O
ri

g
in

a
l 
O

b
je

c
ti
ve

REF

Worst

NO−REF

Worst

REF

All

NO−REF

All

0
5

0
1

0
0

1
5

0
2

0
0

Problem F9

O
ri

g
in

a
l 
O

b
je

c
ti
ve

REF

Worst

NO−REF

Worst

REF

All

NO−REF

All

0
5

0
1

0
0

1
5

0

Problem F11

O
ri

g
in

a
l 
O

b
je

c
ti
ve

REF

Worst

NO−REF

Worst

REF

All

NO−REF

All

Figure 7.5: Box plots considering a population size equal to 500 individuals

showed that any differences between them were not significant.

Finally, with the aim of avoiding sub-optimal results in the functions F6, F9, and
F11, both schemes were executed using a population size of 500 individuals. Fig-
ure 7.5 shows the box plots obtained with both approaches after 2.5 ·106 evaluations.
The data tagged with the label Worst were produced by grouping the executions
into sets of 100 items, and selecting the worst ones. Data tagged with the label All
consider the complete set of 3,000 executions. Note that the REF model is clearly
superior in every case. The sub-optimal results obtained with a population of 100
individuals was avoided by increasing it to 500 individuals. In fact, the statisti-
cal comparison demonstrated the superiority of the REF approach. Furthermore,
the benefits of the latter apply not only to the worst-behaved executions, since the
advantages are also clear when considering the complete set of executions.

174



Chapter

8

Antenna Positioning Problem

This chapter aims to describe the solution to an optimisation problem involving the
engineering of wireless telecommunication networks. This problem is called the An-
tenna Positioning Problem (APP), although in the literature it is also known as the
Radio Network Design (RND) or the Base Station Transmitters Location (BSTL)
problem. The goal of the APP is to locate a set of Base Stations (BSs) or antennas
at potential sites, so as to fulfil certain goals while satisfying specific constraints.
Several objectives can be considered when designing a network. The most fre-
quently used are minimising the number of antennas, maximising the amount of
traffic carried by the network, maximising the quality of service, and/or maximis-
ing the coverage area. The APP has been analysed by many researchers and been
shown to be an NP -hard optimisation problem [136]. The APP plays a major role
in various engineering, industrial, and scientific applications because its outcome
usually affects cost, profit, and other high-impact business performance metrics. As
a result, the performance of the optimisation schemes considered has a direct effect
on financial planning for industry.

The rest of this chapter is organised as follows. In Section 8.1 the mathematical
formulation of the APP used in this thesis is described. Then, the different opti-
misation schemes defined for dealing with this problem are detailed in Section 8.2.
Finally, Section 8.3 shows the experimental evaluation of the proposed optimisation
schemes for several instances of the APP. The results obtained from the experiments
are also discussed in this section.



CHAPTER 8. Antenna Positioning Problem

8.1 Formal Definition

The APP is defined as the problem of identifying the infrastructure required to es-
tablish a wireless network. Several mathematical formulations for the APP have
been proposed [5, 327]. In some cases, a network simulator that incorporates a wave
propagation model is used to estimate the quality of a certain solution. Examples of
these models are the free space, the Okumura-Hata and the Walfisch-Ikegami mod-
els [299]. In other cases, the canonical formulation of the APP is applied [348]. The
main advantage of considering this canonical variant lies in the fact that the formu-
lation is independent of the technology considered, and consequently new instances
of the problem can be easily analysed. This canonical mathematical formulation
of the APP is the one addressed throughout this thesis. It comprises two different
objective functions:

• Maximising the coverage—Coverage—of a given geographical area.

• Minimising the amount of BSs—Transmitters—deployed.

Hence, the APP is defined as a MOP. A BS is a radio signal transmitting device
that is able to irradiate some type of wave model. The area covered by a BS is
called a cell. Furthermore, in this definition of the APP, BSs can only be situated
at certain potential locations. In [5, 348], a single-objective version of the APP
was proposed as an attempt to simplify the problem. This single-objective variant
is considered herein. Its original objective function, which must be maximised, is
defined as follows:

f(solution) =
Coverageα

Transmitters
(8.1)

The practitioner must select a value for the parameter α shown in Equation 8.1. This
parameter is tuned considering the importance given to the coverage with respect
to the number of BSs deployed. In this dissertation, α = 2 is used, since this value
has been widely applied in previous research [5, 348].

The geographical area G where a network is deployed is divided into a finite number
of points or locations. Tamx and Tamy are the number of vertical and horizontal
sub-divisions, respectively. They are selected by experts in the communications
field depending on various features of the region and of the transmitters. U =
{(x1, y1), (x2, y2), ..., (xn, yn)} is the set of locations where a BS can be deployed.
U [i] refers to the location i. The coordinates x and y belonging to the location i
are labelled U [i]x and U [i]y, respectively. When a BS is located at position i, its

176



8.2. Optimisation Schemes

corresponding cell is covered. This cell is termed C[i]. In the canonical mathematical
formulation, an isotropic radiating model is assumed for each cell. The set P =
{(∆x1,∆y1), (∆x2,∆y2), ..., (∆xm,∆ym)} determines the locations covered by a BS.
Thus, if the BS i is deployed, the locations covered are given by the set C[i] =
{(U [i]x+∆x1, U [i]y+∆y1), (U [i]x+∆x2, U [i]y+∆y2), ..., (U [i]x+∆xm, U [i]y+∆ym)}.
If B = [b0, b1, ..., bn] is the binary vector describing the BSs deployed, the following
equations hold for the APP:

Transmitters =

n
∑

i=0

bi Coverage =

tamx
∑

i=0

tamy
∑

j=0

covered(i, j) (8.2)

where:

covered(x, y) =

{

1 If ∃ i | {(bi = 1) ∧ ((x, y) ∈ C[i])}
0 Otherwise

(8.3)

8.2 Optimisation Schemes

In this section we define the different optimisation schemes that are applied herein
for dealing with the APP. Specifically, the optimisation methods considered are a
single-objective ILS algorithm, several diversity-based MOEAs, as well as different
parallel homogeneous island-based models.

8.2.1 Single-objective Iterated Local Search

The main idea behind an Iterated Local Search (ILS) [218] is that a sequence of
solutions iteratively built by a certain heuristic, usually in the form of a local search
procedure, might provide better solutions than those obtained by different indepen-
dent executions of this heuristic approach. This idea was initially proposed in [29]
but it has been rediscovered by many authors, resulting in many different names
like Iterated Descent [28], Large-step Markov Chain [235], and Chained Local Opti-
misation [234]. The two main features of an ILS are the following:

• There exists a single chain that must be followed.

• The intensification is performed in a reduced space defined by the output of a
black-box heuristic, which is usually based on a local search procedure.

177



CHAPTER 8. Antenna Positioning Problem

Algorithm 8 Generic pseudocode for an iterated local search
1: s0 = generateInitialSolution();
2: s = localSearch(s0);
3: updateBestSolution(s)
4: while (not stopping criterion) do
5: s′ = perturbation(s, history)
6: s′′ = localSearch(s′)
7: s = acceptanceCriterion(s, s′′, history)
8: updateBestSolution(s′′)
9: end while

ILS is a trajectory-based meta-heuristic that iteratively applies a local search pro-
cedure to the current solution. Additionally, it usually outperforms “simpler” local
search methods since it is able to escape from local optima and continue searching
for better potential solutions.

Algorithm 8 shows the generic pseudocode for an ILS. At the beginning of the
algorithm—line 1—an initial solution s0 is generated. Afterwards, a new solution
s is produced—line 2—by applying the local search procedure to s0, and the best
solution is updated if required—line 3. Then, until a given stopping criterion is
satisfied—line 4—a set of steps is repeated. First, a diversification step is applied
by perturbing s to obtain s′—line 5. Second, an intensification step is performed—
line 6—over s′ by applying the local search procedure so as to obtain a new solution
s′′. Then, if s′′ satisfies a given acceptance criterion, it replaces s and the next
iteration is carried out starting from this new solution—line 7. The best solution
found is updated—line 8—at every iteration if needed. Lastly, when the stopping
criterion is satisfied, the best solution found is returned.

In order to obtain a particular configuration of an ILS, some components have to
be specified. For the particular case of the APP, they are the following:

• Generation of the initial solution. In this thesis, the following steps are carried
out to produce the initial solution. First, the grid representing the terrain is
divided into a set of sub-grids or windows. All windows have size W ×W ,
where W is randomly selected from the range [(R−9) ·2, R ·2], where R is the
coverage radius of the BSs. Then, the centre of every sub-grid is calculated and
every coordinate is shifted considering random values in the range [−5, 5]. The
nearest BS to every computed position is inserted into the current solution.

• Local search procedure. In this dissertation, a hill climbing method is used
as the local search procedure. The neighbourhood of a solution is defined as

178



8.2. Optimisation Schemes

follows:

1. For every available location that has not been considered in the solution,
a neighbour that includes a BS in this location is generated.

2. For every available location where a BS has been placed, a neighbour
that does not consider this BS in the solution is generated.

3. For every available location where a BS has been placed, a neighbour
that replaces this BS by the nearest one is generated.

During the local search, the complete neighbourhood is generated. The best
neighbour is selected from among the different neighbours generated. The
local search finishes when it reaches a local optimum or when it iterates a
maximum number of ms times.

• Perturbation strategy. In this thesis, a random perturbation mechanism is
applied. It selects, on the one hand, a set of deployed BSs to be removed from
the current solution, and on the other hand, a set of locations where to include
an extra BS. The number of BSs that are removed and inserted is randomly
determined by a Gaussian distribution of mean µ ∗ strength and standard
deviation σ. The BSs that are removed and inserted are randomly selected
from among the available locations using a uniform distribution. Once these
modifications have been introduced into the solution, a final step is performed.
For every location, the fitness of the solution including the BS—if it is not
considered—or excluding the BS—if it is—is computed and the best choice
is selected as the final solution. The ILS controls the value of the parameter
strength. Initially, it is set to 1. If the best solution is not improved during
the last k iterations, strength is increased. Finally, if the search remains
trapped in a local optimum after strength is increased t times, the algorithm
is restarted from a new generated initial solution. It is important to note that
the perturbation scheme might make use of historical data on the execution,
as Algorithm 8 shows.

• Acceptance criterion. This component is responsible for deciding which solu-
tion between s and s′′ is going to be used in the next iteration of the ILS. In
this dissertation, a predefined rule that involves selecting the fittest of both
solutions is always applied. This decision, however, might be also based on
historical information concerning the optimisation process.

In order to completely define the specific ILS applied to the APP, we should note
that individuals were encoded through binary strings with n items, where n is the

179



CHAPTER 8. Antenna Positioning Problem

number of candidate BSs. Every gene determines whether or not the corresponding
BS is deployed in the network.

8.2.2 Diversity-based Multi-Objective Evolutionary Algo-

rithms

The novel diversity-based MOEA, which is used here to tackle the APP, is based on
the NSGA-II—Section 2.4.1. Since a diversity-based MOEA is applied, an additional
diversity-based objective function must be considered together with the original ob-
jective function of the APP defined in Equation 8.1. Different encoding-independent
and genotypic diversity-based objectives were taken into account. In particular, the
diversity-based objectives tested were time stamp, random, inversion, ADI, DBI,
and DCN—Section 3.1. Moreover, the diversity-based objective with parameters
DBI-THR—Section 5.1—was also applied.

So as to completely define this diversity-based MOEA, it is worth pointing out that
individuals were represented by means of binary strings with n items, where n is
the number of candidate BSs. Every gene determines whether the corresponding
BS is deployed or not. Additionally, the mutation operator used was the bit flip
mutation—Section 2.2.3. Finally, the crossover operator employed was the Geo-
graphic Crossover (GC) [327], which exchanges the BSs that are located within a
given radius r from a randomly selected BS.

8.2.3 Parallel Homogeneous Island-based Models

The parallelisation of the diversity-based MOEA described in the previous section
is also considered herein through the use of a homogeneous island-based model—
Section 2.6.1. Recall that in a homogeneous island-based model, every island exe-
cutes the same algorithm with the same parameterisation. Therefore, in this case,
the same parameterisation of the diversity-based MOEA introduced in the preceding
section is executed by every island.

Different migration stages were tested with this homogeneous island-based model.
These migration stages were obtained by combining two different migration schemes
with two different replacement schemes, thus yielding four different migration stages.
Particularly, the migration schemes were ELI-M and RND-M, whereas the replace-
ment schemes were ELI-R and RND-R—Section 2.6.1. So as to differentiate the
migration stages, the nomenclature migration–replacement is employed. Hence, for

180



8.3. Experimental Evaluation and Discussion

instance, the migration stage ELI-M–RND-R applies the migration scheme ELI-
M and the replacement scheme RND-R. Lastly, the migration topology ALL—
Section 2.6.1—was used to define the four migration stages. With this topology,
when a generation of the algorithm located on a certain island finishes, a set num-
ber of individuals—migration rate—is sent from the island to the remaining ones as
determined by a given migration probability.

8.3 Experimental Evaluation and Discussion

In this section we present the different experiments conducted on the aforementioned
optimisation schemes using different instances of the APP.

Experimental Method. The different optimisation schemes were implemented
using METCO. Tests were run on a Debian GNU/Linux computer with four
AMD R© Opteron TM processors (model number 6164HE) at 1.7 GHz and 64 Gb
RAM. The compiler was the GCC 4.4.5. Communications among different islands
of the homogeneous island-based model were implemented asynchronously using the
MPICH library. Since every experiment used stochastic algorithms, every execution
was repeated 32 times. As a result, the comparisons were performed by applying
the statistical analysis detailed in Section 1.2.6.

APP Instances. Studies were conducted using two different instances. The first
was a real world-sized problem instance defined by the geographical layout of the
city of Malaga in Spain, which covers an urban area of 27.2 Km2. The terrain
was modelled using a 450× 300 grid, where each point represents a surface area of
approximately 15×15m2. The dataset contains n = 1000 candidate sites for the BSs.
The second instance, which was artificially generated, represents a hypothetical city.
In this case, the terrain was modelled using a 287× 287 grid. The dataset contains
n = 349 candidate sites for the BSs.

8.3.1 On the Comparison of Diversity-based Objectives

In this first experiment the different diversity-based objective functions are compared
by using the diversity-based MOEA presented in Section 8.2.2 in combination with

181



CHAPTER 8. Antenna Positioning Problem

 113

 113.5

 114

 114.5

 115

 115.5

 116

 116.5

 117

 0  2000  4000  6000  8000  10000  12000  14000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Artificial Instance

DBI
DBI-THR

ADI
DCN

 150

 152

 154

 156

 158

 160

 162

 164

 0  2000  4000  6000  8000  10000  12000  14000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Malaga Instance

DBI
DBI-THR

ADI
DCN

Figure 8.1: Evolution of the mean original objective value for different diversity-
based objective functions

every diversity-based objective considered. The parameterisation of the diversity-
based MOEA was the following:

• Population size N = 100 (Malaga instance) and N = 50 (artificial instance).

• Mutation rate pm = 1
n
, with n being the number of candidate BSs.

• Crossover rate pc = 1.

• Radius of the GC operator r = 30.

• Diversity-based objectives time stamp, random, inversion, ADI, DBI, DCN,
and DBI-THR.

• Threshold value th = 0.7 for the diversity-based objective DBI-THR.

• Stopping criterion set to 4 hours.

This analysis was carried out in terms of the performance achieved in the original
objective. Hence, the evolution of the mean original objective value achieved by
the diversity-based MOEA for every diversity-based objective function considered is
shown in Figure 8.1. Only the results for the best-behaved diversity-based objective
functions are shown. Firstly, note that the information on diversity-based objectives
built upon an encoding-independent measure is not shown. The reason is that the
time stamp, random, and inversion approaches yielded poor results with respect to
the schemes that make use of measures in the genotypic space. Considering the
genotypic diversity-based objectives, the worst results were provided by the ADI
and DCN schemes for both instances. In contrast, the best results were obtained by
the DBI method, with the differences being even more noticeable in the case of the

182



8.3. Experimental Evaluation and Discussion

Table 8.1: Statistical comparison among different diversity-based objectives
Artificial Instance Malaga Instance

DBI DBI-THR ADI DCN DBI DBI-THR ADI DCN

DBI ↔ ↔ ↑ ↑ ↔ ↑ ↑ ↑
DBI-THR ↔ ↔ ↑ ↑ ↓ ↔ ↑ ↑

ADI ↓ ↓ ↔ ↑ ↓ ↓ ↔ ↔
DCN ↓ ↓ ↓ ↔ ↓ ↓ ↔ ↔

Malaga instance. The DBI-THR diversity-based objective also achieved high-quality
solutions. The expected behaviour was for the DBI-THR scheme to outperform
the DBI approach. This was not so, however, and the reason why might be the
improper selection of the parameter th. This parameter was selected by performing
a preliminary study in which different configurations of the diversity-based MOEA
and the DBI-THR approach were executed with fixed values for this parameter. The
best results were achieved by the configuration with the value th = 0.7. The most
appropriate value for the parameter th can change, however, depending on the stage
of the optimisation procedure, so keeping a fixed value during the whole execution
could be counterproductive. Since in this first experiment the main goal was to
compare different diversity-based objectives and not to look for the most suitable
value for the parameter th of the DBI-THR scheme, no special consideration was
given to this issue. Consequently, more attention should be paid to the proper
selection of this parameter for the particular case of the APP. Despite this, other
analyses carried out in this dissertation in the field of different optimisation problems
revealed that applying certain parameter control methods to this parameter provides
high-quality results that are even better than those given by configurations of the
corresponding optimisation schemes executed with fixed values for th.

In order to perform a statistical comparison, Table 8.1 shows the statistical differ-
ences among the best-behaved diversity-based objective functions. Particularly, the
table shows whether the scheme located in a given row is statistically better (↑),
not different (↔), or worse (↓) than the corresponding scheme situated in a certain
column. This table confirms that the conclusions extracted from the data shown
in Figure 8.1 are valid from a statistical point of view. In the case of the artificial
instance, the DBI and DBI-THR approaches were statistically better than the ADI
and DCN schemes, and the ADI scheme outperformed the DCN approach. However,
the DBI approach did not exhibit any statistically significant differences from the
DBI-THR approach. Considering the Malaga instance, the DBI diversity-based ob-
jective was statistically better than every other scheme, while the DBI-THR method
outperformed the ADI and DCN approaches, which did not present any significant

183



CHAPTER 8. Antenna Positioning Problem

differences between them. In summary, the statistical analyses conclude that the
DBI diversity-based objective was able to provide the best results for both instances,
as was stated earlier.

At this point, it is also important to remark that the diversity-based objective
functions proposed as the best ones in [45, 330] do not match the best-behaved
diversity-based objective functions studied in this experiment. It is also true that
other optimisation problems were tackled in those research papers. Consequently,
the proper diversity-based objective depends on the problem and/or even on the
instance in question. Finally, it is worth noting that for both instances considered,
the original objective value was still increasing after 4 hours of execution, demon-
strating the ability of the proposed diversity-based MOEA to avoid the problem of
premature convergence.

8.3.2 Diversity-based Multi-Objective Evolutionary Algo-

rithms vs. Single-objective Iterated Local Search

The results obtained by the diversity-based MOEA in the previous experiment were
better than those provided by the single-objective optimisers introduced in [242].
These single-objective optimisation schemes do not make use of problem-dependent
information. However, the solutions given by the diversity-based MOEA did not
achieve the same quality as that attained by the problem-dependent approaches
proposed in [242]. The aim of this second experiment is therefore twofold. Firstly,
to study whether the diversity-based MOEA is able to yield, in the long term,
the same high-quality solutions obtained by the best-behaved problem-dependent
approach proposed in [242]. Secondly, to quantify the run-time behaviour of the
diversity-based MOEA with respect to the problem-dependent approach.

In order to carry out this experiment, the diversity-based MOEA combined with the
DBI diversity-based objective was compared against the single-objective algorithm
that returned the best results in [242], which is the ILS described in Section 8.2.1.
In the case of the diversity-based MOEA, the parameterisation was the one used
in the previous experiment. The parameterisation of the ILS was the one applied
in [242]. Particularly, the values R = 30, µ = 3, σ = 1, ms = 100, k = 250, and
t = 2 were used. For both approaches, a stopping criterion equal to 24 hours of
execution was fixed.

The run-time behaviour of both approaches was analysed through the application
of RLDs, which were described in Section 1.2.6. Two different quality levels were

184



8.3. Experimental Evaluation and Discussion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Artificial Instance

ILS
DBI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Malaga Instance

ILS
DBI

Figure 8.2: Run-length distributions for quality level L1

considered so as to compute the RLDs. These quality levels were defined as the
original objective value belonging to the worst individual in the population given
by the ILS considering 1 and 2 hours of execution. They are referred to as L1 and
L2, respectively. Figure 8.2 shows the RLDs for the diversity-based MOEA and
the ILS for quality level L1. The same information is shown in Figure 8.3, but for
quality level L2. Note that, since ILS is an approach that considers a large amount
of problem-dependent information, all executions—a 100% success rate—were able
to attain both fixed quality levels very fast for both instances. In contrast, the
diversity-based MOEA showed a slower convergence, but a considerable amount of
its executions were able to yield the same high-quality results. This fact was even
more noticeable for the Malaga instance, where all executions of the diversity-based
MOEA achieved both fixed quality levels.

So as to quantify the slower convergence of the diversity-based MOEA, Table 8.2
shows, for both instances, the amount of additional resources—time—that this ap-
proach invested in comparison to the ILS to attain quality levels L1 and L2, consid-
ering different success rates. For instance, for a 50% success rate, the diversity-based
scheme invested 4.70 times more resources than the ILS to achieve quality level L1
in the case of the artificial instance. If quality level L2 is considered, 14.75 times
more resources were required by the diversity-based MOEA. It can be observed
that for this particular instance the higher the success rate the greater the amount
of additional time that the diversity-based MOEA required with respect to the ILS
to attain the two quality levels. In the case of the Malaga instance, the diversity-
based MOEA needed 10.14 times more resources than the ILS to reach quality level
L1, while for L2, the factor was equal to 10.12 at a 50% success rate. For this
instance, the higher the success rate the lower the amount of additional time that

185



CHAPTER 8. Antenna Positioning Problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Artificial Instance

ILS
DBI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Malaga Instance

ILS
DBI

Figure 8.3: Run-length distributions for quality level L2

Table 8.2: Amount of additional resources invested by the diversity-based multi-
objective evolutionary algorithm with respect to the iterated local search

Success Rate 50% 60% 70%

Quality Level L1 L2 L1 L2 L1 L2

Artificial Instance 4.70 14.75 6.18 15.69 6.91 31.16
Malaga Instance 10.14 10.12 10.12 8.00 8.07 7.57

the diversity-based MOEA needed to reach the two quality levels in comparison to
the ILS. Therefore, the diversity-based scheme seemed to converge somewhat faster
for the Malaga instance than for the artificial instance.

Finally, we should note that although the diversity-based MOEA was slower to
converge than the ILS, in the long term, the former was able to obtain the same
high-quality solutions as the latter, thus mitigating the problem of premature conver-
gence. In fact, executing the diversity-based MOEA together with the DBI approach
for 24 hours improved on the best-known solutions published in [242]. Furthermore,
note that the diversity-based MOEA does not use problem-dependent information,
whereas a significant number of components belonging to the ILS applied herein
were specifically designed to deal with the APP. Therefore, the contribution of the
diversity-based MOEA is even greater if this last fact is considered.

186



8.3. Experimental Evaluation and Discussion

 116.5

 116.6

 116.7

 116.8

 116.9

 117

 117.1

 117.2

 117.3

 0  5000  10000  15000  20000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Artificial Instance

ELI-M--RND-R
ELI-M--ELI-R

RND-M--RND-R
RND-M--ELI-R

SEQ
 156

 158

 160

 162

 164

 0  5000  10000  15000  20000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Malaga Instance

ELI-M--RND-R
ELI-M--ELI-R

RND-M--RND-R
RND-M--ELI-R

SEQ

Figure 8.4: Evolution of the mean original objective value for the homogeneous
island-based models executed with 4 islands

8.3.3 Analysing the Robustness of the Homogeneous Island-

based Model

In the previous section, we showed that the diversity-based MOEA was able to
attain the same high-quality solutions as those provided by the best single-objective
approach available in the literature. However, due to its slow convergence, the
time required by the diversity-based MOEA was considerably longer than the time
invested by the single-objective method. In order to reduce this convergence time,
this third experiment relies on a homogeneous island-based model to parallelise the
diversity-based MOEA. Furthermore, the robustness of the homogeneous island-
based model in terms of the applied migration stage is also analysed.

To this end, the homogeneous island-based model described in Section 8.2.3 was
executed considering 4 islands and a stopping criterion of 6 hours. Additionally,
as was stated earlier, four different migration stages were tested. For all them,
the migration rate was fixed to 1 individual, whereas the migration probability was
set to 0.01. Since a homogeneous island-based model was considered, every island
executed the best-behaved configuration of the diversity-based MOEA applied in
previous experiments, i.e. the configuration that makes use of the DBI approach.
The values for the remaining parameters of the diversity-based MOEA were the
same as those used in the first experiment—Section 8.3.1.

Figure 8.4 shows, for both instances, the evolution of the mean original objective
value achieved by the homogeneous island-based model executed with each of the
four different migration stages. The sequential version of the diversity-based MOEA
combined with the DBI approach, which is referred to as SEQ, is also shown in

187



CHAPTER 8. Antenna Positioning Problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Artificial Instance

ELI-M--RND-R
ELI-M--ELI-R

RND-M--RND-R
RND-M--ELI-R

SEQ
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Malaga Instance

ELI-M--RND-R
ELI-M--ELI-R

RND-M--RND-R
RND-M--ELI-R

SEQ

Figure 8.5: Run-length distributions for the homogeneous island-based models exe-
cuted with 4 islands

this figure. For both instances, note that the parallel models were able to clearly
improve the results obtained by the sequential strategy. With regard to the four
migration stages, they all yielded similar results. In fact, the statistical analysis
revealed that there were no significant differences between them. This thus proves
the robustness of the homogeneous island-based model, since high-quality results
were obtained regardless of the migration stage. We should mention, however, that
for both instances the highest mean original objective value was obtained by the
homogeneous island-based model executed with the ELI-M–RND-R migration stage.

Given that the parallel island-based models made use of a larger amount of com-
putational resources than the sequential diversity-based MOEA, the gap in the im-
provement between the two approaches should be quantified. To do so, RLDs were
calculated for the four homogeneous island-based models and for the sequential strat-
egy. In the case of the artificial instance, since every parallel island-based model was
able to achieve the best-known original objective value, this value was selected as
the quality level. In the case of the Malaga instance, the variance in the results was
higher than for the artificial instance. Hence, if the best-known original objective
value for this instance had been fixed as the quality level, very low success rates
would have been obtained. As a result, the quality level was selected as the origi-
nal objective value that allowed every homogeneous island-based model to attain a
success rate of at least 60%.

Figure 8.5 shows, for both instances, the RLDs for the homogeneous island-based
model executed with each of the four migration stages, and for the sequential variant
of the diversity-based MOEA. In the case of the sequential model, a maximum exe-
cution time of 24 hours was used. For the parallel schemes, the maximum execution

188



8.3. Experimental Evaluation and Discussion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Artificial Instance

PAR-16
PAR-8
PAR-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Malaga Instance

PAR-16
PAR-8
PAR-4

Figure 8.6: Run-length distributions for the homogeneous island-based models exe-
cuted with 4, 8, and 16 islands

time was set to 6 hours. Observing the RLDs, the superiority of the homogeneous
island-based models with respect to the sequential version of the diversity-based
MOEA is confirmed. The main reason for this behaviour might be the ability of the
island-based model to explore the search space more efficiently, and consequently to
deal with stagnation in local optima. With regard to the different migration stages,
there were no significant differences in their run-times, though if a high success rate
is considered, the best performance was exhibited by the ELI-M–RND-R migration
stage.

8.3.4 Analysing the Scalability of the Homogeneous Island-

based Model

The fourth experiment aims to analyse the scalability of the homogeneous island-
based model. In order to conduct this experiment, the homogeneous island-based
model combined with the ELI-M–RND-R approach—from now on referred to as
PAR-4—which was the best-behaved migration stage in the previous analysis, was
executed with 8 islands—PAR-8—and 16 islands—PAR-16.

Figure 8.6 shows the RLDs of the aforementioned parallel schemes for both instances
and a maximum execution time of 6 hours. Speedup factors with respect to PAR-4
were calculated for different success rates ranging from 25% to 75%. In the case
of the artificial instance, the speedup factors corresponding to PAR-8 ranged from
1.57 to 1.88. In the case of the homogeneous island-based model PAR-16, the
speedup factors ranged from 1.62 to 3.57. Although these speedup factors show

189



CHAPTER 8. Antenna Positioning Problem

the benefits of adding a larger amount of islands, some unusual scalability issues
were detected for the PAR-16 scheme. In fact, PAR-8 and PAR-16 provided similar
speedup factors when considering success rates ranging from 40% to 60%. However,
when other success rates were used, the PAR-16 approach achieved the highest
speedup factors, thus demonstrating its advantages. Some scalability problems were
also exhibited by the Malaga instance. For example, no benefit was obtained by
executing the homogeneous island-based model with 8 islands—PAR-8. In fact, we
can see that the RLDs belonging to PAR-4 and PAR-8 are quite similar. However,
when 16 islands were used—PAR-16—the speedup factors increased significantly.
In particular, the speedup factors given by PAR-16 in comparison to PAR-4 ranged
from 1.42 to 1.9.

190



Chapter

9

Frequency Assignment Problem

The Frequency Assignment Problem (FAP) is a well-known NP -hard combinato-
rial optimisation problem of great importance to the design of communication net-
works [1]. Several variants of the FAP have emerged based on different wireless
technologies. Specifically, the FAP is one of the crucial issues in the design of
Global System for Mobile Communications (GSM) networks [254]. This problem is
also known as the Automatic Frequency Planning (AFP) problem and the Channel
Assignment Problem (CAP) in the literature. Although the FAP has led to many
different mathematical and engineering models, all of them share two common fea-
tures:

• A set of antennas must be assigned frequencies such that data transmissions
between the two end points of each connection are possible.

• Depending on the frequencies assigned to the antennas, they might interfere
with one another, resulting in loss of signal quality.

This dissertation focuses on the FAP that arises in the design of GSM networks. In
this particular case, the available frequency band is slotted into channels that have
to be allocated to the elementary transceivers installed in the base stations of the
network. In GSM networks, the assignment of frequencies is a difficult design task
because the usable radio spectrum is very scarce and frequencies have to be reused
throughout the network, thus resulting in some degree of interference. The main
aim of the designer is therefore to minimise the interferences in the network, i.e. to
minimise the loss of signal quality.

The FAP emerges in different network environments and involves different objec-
tives, features, and constraints. Therefore, several mathematical formulations have



CHAPTER 9. Frequency Assignment Problem

been defined for dealing with this problem [1]. In recent years, the basic FAP for-
mulation has been widely extended in order to address real-world issues [195]. Most
of the FAP models differ in the way that the interference is measured. Computing
the level of interference is an arduous task that depends on the channels, the radio
signals and many other features of the environment. The quantification of the in-
terference results in an interference matrix, which is usually denoted by M . Some
theoretical methods for computing M have been proposed [1]. Theoretical methods
offer the advantage of allowing for new instances to be computed with less effort.
However, these methods ignore some features of the environment, which makes it
difficult to determine the consequences that their use might involve. As a result, in
other research works [195], extensive network measurements are performed in order
to calculate the interference matrix, which relies on more accurate values, resulting
in more realistic frequency plans. Using this method to calculate the interference
matrix associated with a new network is, however, very expensive.

The FAP can be classified based on different criteria, such as the size of the frequency
spectrum, its goals, and the specific technological constraints, among others. In [1],
three main FAP models were described: the Minimum Order Frequency Assignment
Problem (MOFAP), the Minimum Span Frequency Assignment Problem (MSFAP),
and the Minimum Interference Frequency Assignment Problem (MIFAP). These
models have appeared in the literature over time as demanded by the working con-
ditions imposed by technology, national regulations, and markets. The MOFAP is
aimed at reducing the number of frequencies used in a given network. It assumes
that different frequencies do not interfere with each other. The MSFAP focuses on
searching for an assignment of frequencies that minimises the difference between the
largest and the smallest frequencies assigned, i.e. the frequency span. It assumes
that frequencies are assigned by regulators in continuous slots. Finally, the MIFAP
tries to minimise a measure of the overall interference in the network. The MIFAP is
the model that has been most frequently addressed in the recent literature, mainly
due to its direct applicability to the resolution of large instances corresponding to
real-world GSM networks [38]. The version of the FAP considered in this disserta-
tion [222] follows the MIFAP model. In this particular case, the interference matrix
includes the interference among cells by giving the entire probability distribution of
the Carrier-to-Interference (C/I) ratio [342]. This information is directly imported
from real world GSM frequency planning as is currently conducted in the indus-
try, instead of being generated in a computer by sampling random variables. As
a result, this MIFAP variant allows not only the computation of high performance
frequency plans, but also the prediction of the Quality of Service (QoS). Indeed,
both the definition of the interference matrix and the subsequent computations car-

192



ried out to obtain the cost values are motivated by real-world GSM networks, since
they are related to the computation of the Bit Error Rate (BER) performance of
Gaussian Minimum Shift Keying (GMSK), the modulation scheme used in GSM
networks [307]. Finally, it is important to remark that besides these three main
models of the FAP, other variants have been proposed [1].

Several optimisation methods have been applied to solve the various aforementioned
versions of the FAP. Among them, some exact algorithms have been proposed [12,
118, 229]. However, since most of the FAP models involve the resolution of an
NP -hard optimisation problem [148], approximate algorithms are mandatory when
considering instances that represent vast networks [1]. Meta-heuristics have been
shown to yield very accurate solutions to the FAP [7]. Specifically, MAs have been
successfully applied to this problem [164, 184, 238].

In [222], an ACO algorithm was adapted to the FAP variant considered herein.
Furthermore, a comparative study using a large set of meta-heuristics, including
this ACO algorithm, was conducted in [223]. It included population-based and
trajectory-based meta-heuristics. This research revealed the good performance of
a MA that includes a method to increase the population size when stagnation is
detected. This algorithm, which is called Evolutionary Algorithm with Increasing
Population Size (EAIPS), is a modified version of an EA combined with a (1+1) sur-
vivor selection operator and an individual learning procedure specifically designed to
deal with the FAP formulation addressed in this thesis. This optimisation scheme
made it possible to obtain high-quality frequency plans for different network in-
stances. However, before solving a particular instance, the algorithm’s parameters
must first be set. In order to more quickly obtain high-quality solutions, several
parallel approaches have also been applied. In [298], a parallel hyper-heuristic that
makes use of the EAIPS was proposed. The hyper-heuristic was applied with the
aim of avoiding the parameter setting of the memetic approach. It made it possible
to obtain high-quality frequency plans in a single run. However, the quality of the
frequency plans obtained was not as high as that provided by the grid-based GA
proposed in [224]. Note that this approach used approximately 300 processors.

The rest of this chapter is organised as follows. In Section 9.1 the mathematical for-
mulation of the FAP variant considered herein is described. Then, the different opti-
misation schemes defined for dealing with this problem are presented in Section 9.2.
Afterwards, the control approaches that are proposed to adapt the parameters of
said optimisation schemes are introduced in Section 9.3. Finally, Section 9.4 details
the experimental evaluation conducted using the proposed optimisation schemes and
parameter control approaches on several instances of the FAP.

193



CHAPTER 9. Frequency Assignment Problem

9.1 Formal Definition

The FAP formulation applied in this dissertation was proposed in [222]. Let T =
{t1, t2, . . . , tn} be a set of n transceivers, and let Fi = {fi1, . . . , fiki} ⊂ N be the set
of valid frequencies that can be assigned to a transceiver ti ∈ T , i = 1, . . . , n. Note
that ki—the cardinality of Fi—is not necessarily the same for every transceiver. Fur-
thermore, let S = {s1, s2, . . . , sm} be a set of given sectors—or cells—of cardinality
m. Each transceiver ti ∈ T is installed in exactly one of the m sectors. From now on
we denote the sector in which a transceiver ti is installed by s(ti) ∈ S. Finally, the
matrix M = {(µij, σij)}m×m

is denoted as the interference matrix. The two elements
µij and σij of a matrix entry M (i, j) = (µij , σij) are numeric values greater than or
equal to zero. The values of µij and σij represent the mean and the standard de-
viation, respectively, of a Gaussian probability distribution describing the C/I ratio
when sectors i and j operate on the same frequency. The higher the mean value, the
lower the interference and thus the better the communication quality. Note that the
interference matrix is defined at the sector—or cell—level because the transceivers
installed in each sector serve the same area.

A solution is obtained by assigning to each transceiver ti ∈ T one of the frequencies
from Fi. Consequently, a candidate solution—or frequency plan—is denoted by
p ∈ F1×F2×· · ·×Fn, where p(ti) ∈ Fi is the frequency assigned to the transceiver ti.
The objective is to find a solution p that minimises the following cost—objective—
function:

C(p) =
∑

t∈T

∑

u∈T,u 6=t

Csig(p, t, u) (9.1)

In order to define the function Csig(p, t, u)—Equation 9.2—let st and su be the
sectors in which the transceivers t and u are installed, i.e. st = s(t) and su = s(u),
respectively. Moreover, let µstsu and σstsu be the two elements of the entry M(st, su)
of the interference matrix with respect to sectors st and su.

Csig (p, t, u) =















K if st = su, |p(t)− p(u)| < 2
Cco(µstsu , σstsu) if st 6= su, µstsu > 0, |p(t)− p(u)| = 0
Cadj(µstsu , σstsu) if st 6= su, µstsu > 0, |p(t)− p(u)| = 1
0 otherwise.

(9.2)

The parameter K in Equation 9.2 represents the cost associated with the use of the
same or adjacent frequencies in the same sector. In real networks, it is unfeasible

194



9.1. Formal Definition

to operate with more than one transceiver with the same or adjacent frequencies
serving the same sector. Thus, K is defined as a very large constant. Function
Cco(µ, σ) is defined as follows:

Cco(µ, σ) = 100

(

1.0−Q

(

cSH − µ

σ

))

(9.3)

where

Q(z) =

∫ ∞

z

1√
2π

e
−x2

2 dx (9.4)

is the tail integral of a Gaussian probability distribution function with zero mean
and unit variance, and cSH is a minimum quality signalling threshold. The Q function
is widely used in digital communication systems because it characterises the error
probability performance of digital signals [307]. This means that Q

(

cSH−µ

σ

)

is the
probability of the C/I ratio being greater than cSH, and therefore Cco(µstsu , σstsu)
computes the probability of the C/I ratio in the service area of sector st being below
the quality threshold due to the interference caused by sector su. If this probability
is low, the C/I ratio in sector st is not likely to be degraded by the interfering signal
coming from sector su, and thus the resulting communication quality is high. Note
that this is compliant with the definition of a minimisation problem. In contrast, a
high probability—and consequently a high cost—mostly causes the C/I ratio to be
below the minimum threshold cSH, and thus results in low-quality communications.

Since function Q has no closed integral form, it has to be evaluated numerically. To
do so, the complementary error function E is used:

Q(z) =
1

2
E

(

z√
2

)

(9.5)

In [279], a numerical method was presented that allows computing the value of E
with a fractional error smaller than 1.2 · 10−7. Analogously, function Cadj(µ, σ) is
defined as:

Cadj(µ, σ) = 100
(

1.0−Q
(

cSH−cACR−µ

σ

))

= 100
(

1.0− 1
2
E
(

cSH−cACR−µ

σ
√
2

))

(9.6)

195



CHAPTER 9. Frequency Assignment Problem

The only difference between functions Cco and Cadj is the additional constant cACR >
0 (Adjacent Channel Rejection) in the definition of function Cadj. This hardware
specific constant measures the receiver’s ability to receive the desired signal in the
presence of an unwanted signal in an adjacent channel. The effect of constant cACR

is that Cadj(µ, σ) < Cco(µ, σ). This is to be expected since using adjacent frequencies
does not result in interference as strong as when the same frequency is used.

9.2 Optimisation Schemes

This section focuses on defining the different optimisation schemes that are applied
in this thesis to solve the FAP. Particularly, the EAIPS proposed in [223] is consid-
ered. Moreover, several diversity-based objectives, as well as a multi-objectivisation
method, are used together with a novel multi-objective MA. All the above opti-
misation schemes incorporate an individual learning procedure that was specifically
designed to deal with the FAP.

9.2.1 Evolutionary Algorithm with Increasing Population

Size

The EAIPS is a single-objective MA that combines an EA with a (1 + 1) survivor
selection operator and the individual learning procedure detailed in Section 9.2.4.
The algorithm starts its execution as a trajectory-based approach. Nevertheless,
it increases the population size to escape from local optima when stagnation is
detected, thus behaving as a population-based algorithm.

Algorithm 9 shows the pseudocode of the EAIPS. During the initialisation stage—
line 1—the initial parent population P is filled with N0 randomly generated indi-
viduals, and the individual learning procedure is applied to each of them—line 2.
Then, all individuals in P are evaluated—line 3—by computing the objective func-
tion defined in Equation 9.1, so that a fitness value is assigned to every individual.
Afterwards, until the stopping criterion of the algorithm is satisfied—line 4—a set of
steps is repeated for each generation. First, a variation stage is applied to the par-
ent population—line 5—so as to produce the offspring population CP with M = N
new individuals. We should note that at this point, a new offspring is generated
for each parent. The variation phase considered herein is described in Section 9.2.3.
Once the variation stage is complete, the individual learning procedure is applied to
every individual in CP—line 6—all of which are subsequently evaluated using the

196



9.2. Optimisation Schemes

Algorithm 9 Pseudocode of the Evolutionary Algorithm with Increasing Popula-
tion Size
1: Initialisation. Randomly generate the initial parent population P with N0 individ-

uals. Assign N = N0.
2: Learning process. Apply the individual learning process to every individual in P .
3: Evaluation. Evaluate all individuals in P by computing the objective function in

order to assign a fitness value to every individual.
4: while (not stopping criterion) do
5: Variation. Apply the variation operators to the parent population so as to create

the offspring population CP with M = N individuals.
6: Learning process. Apply the individual learning process to every individual in

CP .
7: Evaluation. Evaluate all individuals in CP using the objective function in order

to assign a fitness value to every offspring.
8: for i = 1 to N do

9: if P (i) has been blocked for SoftBloq generations then
10: P (i) ← CP (i)
11: else

12: P (i) ← bestFitness(P (i), CP (i))
13: end if

14: end for

15: if P has been blocked for HardBloq generations then
16: if N < Nmax then

17: N = N + 1
18: end if

19: end if

20: end while

objective function—line 7—so as to assign a fitness value to every offspring. The
(1+1) selection operator is deterministic and selects the fittest individual between a
certain parent and its corresponding offspring. In order to better handle stagnation
at local optima, two main features are incorporated into the algorithm. First, if af-
ter SoftBloq generations the fitness value of a given parent has not been improved
by its corresponding offspring, a (1, 1) survivor selection operator is applied during
the current generation, i.e. the offspring is selected to survive independently of its
fitness value—lines 8–14. Additionally, if after HardBloq generations the fitness
value of none of the individuals in the parent population has been improved by
their corresponding offspring, an additional individual is introduced into the parent
population—lines 15–19—thus increasing the population size N for the next gen-
eration. So as to avoid the uncontrolled growth of the population, its maximum

197



CHAPTER 9. Frequency Assignment Problem

size is limited to Nmax individuals. Finally, to completely define the EAIPS, the
individuals were encoded using arrays with n integer values (p1, p2, . . . , pn), where n
is the total number of transceivers in the network, and pi is the frequency assigned
to the transceiver i.

9.2.2 Diversity-based Multi-objective Memetic Algorithm

and Multi-objectivisation by Aggregation

The novel diversity-based multi-objective MA used herein to address the FAP is
based on the NSGA-II—Section 2.4.1. The main difference with respect to the
original NSGA-II is that the individual learning strategy detailed in Section 9.2.4
is applied to every generation after the variation phase. This is evident in the
Algorithm 10. Since a diversity-based multi-objective MA is used, an additional
diversity-based objective function must be considered together with the original ob-
jective function of the FAP defined in Equation 9.1. Different encoding-independent
and genotypic diversity-based objectives were taken into account. In particular, the
diversity-based objectives tested were random, inversion, ADI, DBI, and DCN—
Section 3.1. Additionally, the diversity-based objective with parameters DBI-THR—
Section 5.1—was also applied. So as to completely define the diversity-based multi-
objective MA, individuals were encoded by means of arrays with n integer values
(p1, p2, . . . , pn), where n is the number of transceivers deployed in the network and pi
is the frequency assigned to the transceiver i. Finally, the genetic operators applied
during the variation stage of the diversity-based multi-objective MA are described
in Section 9.2.3.

In addition to the application of the diversity-based multi-objective MA described
above, multi-objectivisation by aggregation of helper-objectives is also employed
herein to deal with the FAP. To do so, the multi-objective MA described in Algo-
rithm 10 is combined together with a helper-objective, instead of using a diversity-
based objective function. This helper-objective makes use of problem-dependent
information and it is called Dependent. In order to calculate this helper-objective,
the original objective function of the FAP, denoted by f , is decomposed into two
independent functions, f0 and f1, such that f = f0 + f1. The decomposition is
performed as follows. First, a table containing all possible interferences between
each pair of transceivers is generated. Then, this table is sorted based on the cost
of the appearance of each pair ρ. The resultant position of each pair ρ in the sorted
table is denoted by iρ. The cost associated with each pair ρ is taken into account in
the function fobj where obj = iρ mod 2. Hence, f0 is used as the helper-objective.

198



9.2. Optimisation Schemes

Algorithm 10 Pseudocode of the memetic algorithm based on the Non-Dominated
Sorting Genetic Algorithm II
1: Initialisation. Randomly generate the initial parent population P0 with N individ-

uals. Assign t = 0.
2: Evaluation. Evaluate all the individuals in the initial parent population by calculat-

ing the objective functions.
3: while (not stopping criterion) do
4: Fitness assignment. Calculate the fitness values of individuals in Pt. Use the

non-domination rank in the first generation, and the crowded comparison operator
in remaining generations.

5: Parent selection. Apply deterministic binary tournament selection with replace-
ment to Pt in order to fill the mating pool with N parents.

6: Variation. Apply the crossover and mutation operators with probabilities pc and
pm, respectively, to the individuals in the mating pool in order to create the offspring
population CP with M = N new individuals.

7: Learning process. Apply the individual learning process to every individual in
the offspring population CP .

8: Evaluation. Evaluate every offspring in CP by computing the objective functions.
9: Survivor selection. Select the N fittest individuals from among N parents and

M offspring by using the crowded comparison operator so as to constitute Pt+1.
10: t = t+ 1
11: end while

Likewise, f1 could have been used as the helper-objective. Lastly, all the remaining
components, such as the encoding of the individuals, the genetic operators, and the
individual learning procedure, are the same as those applied with the diversity-based
multi-objective MA.

9.2.3 Genetic Operators

A variation phase that involves applying a crossover operator, and then a mutation
operator, is performed in every generation of the MAs described in the previous
sections. Recall that these operators are applied with probabilities pc and pm, re-
spectively. Two different crossover operators, a random one and a novel proposal
that takes into account problem-dependent information, are tested. The first one is
the UX operator—Section 2.2.2—while the second one is called Interference-based
Crossover (IX). It operates as follows. First, a transceiver tx is randomly selected.
Every gene associated with a transceiver that interferes with tx or is interfered with
by tx, including the gene corresponding to tx, is inherited from the first parent.

199



CHAPTER 9. Frequency Assignment Problem

The offspring’s remaining genes are inherited from the second parent. The second
offspring is generated by using an inverse mapping.

Once one of the above crossover operators is applied, the Neighbour-based Mutation
(NM) is always applied as the mutation operator, since it yielded the best perfor-
mance in [298]. Its operation is as follows. First, a random transceiver tx is randomly
reassigned. Then, the transceivers that interfere with tx, or are interfered with by
tx, are included in a list called affected and are mutated with a probability pm. The
previous step is repeated R times, but in the subsequent iterations the transceiver
is selected from among those that are included in the list affected. Hence, the NM
operator focuses on one area of the network.

9.2.4 Individual Learning Strategy

The individual learning procedure described in this section, which is based on a
stochastic hill climbing local search, was specifically designed to deal with the FAP
variant addressed herein. It is used in every generation of the MAs introduced in
Sections 9.2.1 and 9.2.2. Given its importance, a considerable effort was made to
make this procedure as efficient as possible. The application of local search methods
allows for admissible solutions to be obtained in relatively short times. This is a
typical requirement within commercial tools, this being the context within which
the FAP resides.

The operation of the local search—Algorithm 11—is based on optimising the assign-
ment of frequencies to transceivers in a given sector, without modifying the remain-
ing network assignments. Every neighbour of a candidate solution is obtained by
replacing the frequencies in a sector’s transceivers. Therefore, the neighbourhood
size is the number of sectors in the network. The frequencies within a sector are
reassigned as follows. First, the available frequencies for the sector are sorted by
their corresponding cost. Then, two possibilities are considered. Either assign the
frequency with the lowest associated cost to a transceiver that is permitted to use
that frequency, or assign its two adjacent frequencies to two different transceivers
that are allowed to use these frequencies. For each of the newly generated partial
solutions, the same process is repeated until every transceiver in the sector is as-
signed a frequency. The complete solution with the lowest associated cost becomes
the new neighbour, while the other ones are discarded.

Figure 9.1 illustrates the generation of a new neighbour. In this example, the sector is
assumed to contain three transceivers, where each transceiver can use any frequency
slot. For every node, the cost associated with each slot is shown. The children of a

200



9.2. Optimisation Schemes

Algorithm 11 Pseudocode of the individual learning strategy designed for the
Frequency Assignment Problem
1: Input: current solution S

2: nextSectors← {1, ..., numberOfSectors}
3: while (nextSectors ! = ∅) do
4: currentSectors← nextSectors

5: nextSectors← ∅
6: while (currentSectors != ∅) do
7: sec← extract a random sector from currentSectors

8: neighbour ← reassign frequencies of S in sector sec
9: if (neighbour improves S) then

10: S ← neighbour

11: nextSectors ← nextSectors ∪ {sectors interfered with by sec}
12: nextSectors ← nextSectors ∪ {sectors that interfere with sec}
13: end if

14: end while

15: end while

16: return S

node are generated in accordance with the rules detailed earlier. The slots assigned
to the transceivers are bolded. The nodes with three slots assigned are complete
solutions, while the other ones are partial solutions. The complete solution identified
by the number 3 is the new neighbour because it is the one with the lowest cost. All
other solutions generated are discarded.

The neighbours are analysed in random order—line 7 of Algorithm 11—while try-
ing to avoid the generation of neighbours that do not improve the current solu-
tion. This is done by using a set called currentSectors containing the sectors
that might improve the current solution. Initially, all the sectors are input into
currentSector—lines 2 and 4. In order to generate a new neighbour, a sector sec is
randomly extracted from currentSectors—line 7—and its frequencies reassigned as
discussed above—line 8. The local search moves to the first new generated neighbour
that improves the current solution—lines 9–10—adding all the sectors that interfere
with or are interfered with by sec to the set of the next sectors—nextSectors—
to be considered—lines 11–12. When the set currentSectors becomes empty—line
6—sectors in nextSectors are transferred to the current set—line 4—and the set
nextSectors is cleared—line 5. The local search stops—line 3—when no neighbour
improves the current solution.

In cases where the network satisfies a set of properties, the neighbour generation

201



CHAPTER 9. Frequency Assignment Problem

Figure 9.1: Generating a new neighbour by reassigning the frequencies belonging to
a certain sector

process ensures that the frequency assignment inside the analysed sector will be
optimal while keeping the rest of the network intact. An sketch of the proof was
presented in [298]. These properties are:

1. All transceivers in a given sector are allowed to use the same frequency ranges.

2. It is possible to make assignments that do not use the same frequency or
adjacent frequencies in any two transceivers serving the same area.

3. The optimal assignment does not use the same frequency or adjacent frequen-
cies in any two transceivers located in the same sector.

9.3 Parameter Control Schemes

This section is devoted to describing the different parameter control approaches
that are used herein to adapt some of the parameters contained in the optimisa-
tion schemes detailed in preceding sections. First, FLCs and hyper-heuristics are
used to control certain parameters of the diversity-based multi-objective MA de-
scribed in Section 9.2.2. In particular, the parameters of the NM operator, which
was introduced in Section 9.2.3, are dynamically adjusted during the course of a
run. Second, the DYN model is applied herein to control some of the components
and parameters corresponding to the diversity-based multi-objective MA and the
multi-objective MA based on multi-objectivisation by aggregation presented in Sec-
tion 9.2.2. In addition, by applying the DYN model, both of the aforementioned
memetic approaches are enabled for use in parallel environments.

202



9.3. Parameter Control Schemes

9.3.1 Fuzzy Logic Controllers and Hyper-heuristics

The novel FLCs proposed in Section 6.1, as well as the hyper-heuristics described
in Section 6.2, are used herein to control the parameters of the NM operator. The
main novelty of the FLCs proposed lies in the incorporation of a set of different
rule bases that are enabled depending on historical information extracted from the
optimisation process. Recall that two different variants of the Mamdani-type and
TSK-type FLCs were defined. Particularly, the FUZZY-A and FUZZY-B Mamdani-
type FLCs, as well as the FUZZY-A-TSK and FUZZY-B-TSK TSK-type FLCs, are
considered when carrying out the experimental evaluation. Additionally, the HH-
PROB and HH-ELI hyper-heuristics approaches are used for comparison purposes.
It is important to remark that this is the first application of parameter control
techniques based on fuzzy logic and hyper-heuristics that adapts the parameters of
a mutation operator specifically designed to address the FAP.

One of the main drawbacks of applying this operator is that two different parameters
must be set. One of these parameters—pm—is continuous and the other one—
R—is discrete. In addition, the most suitable values for these parameters could
depend on the problem and/or instance being solved or even on the current stage
of the optimisation process, and therefore modifying them during the execution
might be beneficial. Consequently, the application of parameter control techniques
to automatically adapt these parameters ought to significantly improve both the
behaviour and the robustness of the diversity-based multi-objective MA proposed
to deal with the FAP. This idea seems to be very promising and is addressed in
detail herein. Finally, we should note that only one of the above parameters is
controlled during the execution, while the other remains constant, as a result of
which two independent studies are carried out, one for each parameter of the NM
operator.

9.3.2 Dynamic-mapped Island-based Model

The DYN model introduced in Section 6.3 is used herein as a parameter control
approach. Recall that in the DYN model a hyper-heuristic is combined together
with a parallel island-based model in order to dynamically map the low-level con-
figurations involved to the islands, rather than performing a static mapping as is
the case with standard island-based models. In this case, the DYN model is based
on the HH-PROB hyper-heuristic, which was detailed in Section 6.2. In order to
deal with the FAP, the set of low-level configurations was defined starting from the

203



CHAPTER 9. Frequency Assignment Problem

diversity based multi-objective MA and the multi-objective MA based on multi-
objectivisation by aggregation, which were described in Section 9.2.2. Hence, the
aim is to control certain components and parameters of these memetic approaches
while enabling their use in parallel environments.

Furthermore, several migration stages were tested with the DYN model. In particu-
lar, four different migration stages were defined by combining two different replace-
ment schemes with two separate migration topologies. The replacement schemes
were HAM-R and ELI-R, whereas the migration topologies were ALL and RING—
Section 2.6.1. The ELI-M migration scheme—Section 2.6.1—was used to define
the four migration stages. In order to identify the different migration stages, the
Replacement–Topology nomenclature is used. For example, the migration stage that
uses the ELI-R replacement scheme and the RING topology is called ELI-R–RING.

9.4 Experimental Evaluation and Discussion

In this section the different experiments performed with the aforementioned optimi-
sation schemes and parameter control approaches on different instances of the FAP
are presented.

Experimental Method. The different optimisation schemes, as well as the pa-
rameter control approaches, were implemented using METCO. The tests were run
on a Debian GNU/Linux computer with four AMD R© Opteron TM processors (model
number 6164HE) at 1.7 GHz and 64 Gb RAM. The compiler was the GCC 4.7.2,
while the FLCs were implemented using the fuzzylite 3.1 library. Communications
among different islands of the DYN model were implemented asynchronously using
the MPICH library. Since every experiment applied stochastic algorithms, every ex-
ecution was repeated 32 times. As a result, comparisons were performed by applying
the statistical analysis detailed in Section 1.2.6.

FAP Instances. The studies were conducted considering two different instances
representing two real cities in the USA: Seattle and Denver. The Seattle instance
has n = 970 transceivers and 15 different frequencies to be assigned. The Denver
instance is larger, consisting of n = 2, 612 transceivers and 18 frequencies. In both
cases, the constants used in the formal definition of the FAP presented in Section 9.1
were set to K = 1 · 105, cSH = 6 dB, and cACR = 18 dB. The matrix M contains

204



9.4. Experimental Evaluation and Discussion

59,169 items in the Seattle network, while it contains 20,638 items for the Denver
instance.

9.4.1 On the Comparison of Sequential Memetic Algorithms

In this first experiment the aim is to discover whether the use of the proposed
diversity-based multi-objective MA, as well as the use of the proposed multi-objective
MA based on multi-objectivisation by aggregation Dependent, offers any benefits
over using the best-behaved single-objective MA available in the literature, i.e. the
EAIPS. To do this, the following configurations of the three optimisation schemes
above were compared:

• 3 configurations of the EAIPS, which were constituted by defining three dif-
ferent configurations for the variation stage.

• 18 configurations of the diversity-based multi-objective MA, which were con-
stituted by combining six diversity-based objectives with three different con-
figurations of the variation stage.

• 3 configurations of the Dependent approach, which were constituted by defining
three different configurations for the variation phase.

The three configurations of the variation stage were defined as follows. In the first
configuration, the UX operator with a probability pc = 1 was used. In the second
one, the IX operator with a probability pc = 1 was applied. Finally, in the third
configuration, the crossover operator was disabled, i.e. pc = 0. All the above config-
urations of the variation stage applied the NM mutation operator with a probability
pm = 0.9 and R = 7.

The values for the remaining parameters of the EAIPS were set as follows:

• Initial population size N0 = 1.

• Maximum population size Nmax = 5.

• SoftBloq = 50.

• HardBloq = 300.

• Stopping criterion fixed to 4 hours.

In the case of the diversity-based multi-objective MA, the following parameterisation
was considered:

205



CHAPTER 9. Frequency Assignment Problem

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0  2500  5000  7500  10000  12500

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Seattle Instance

Random-UX
Dependent-UX

DBI
ADI-UX
EAIPS

DCN-UX
DBI-THR-UX

 85500

 86000

 86500

 87000

 87500

 88000

 88500

 89000

 89500

 90000

 0  2500  5000  7500  10000  12500

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Denver Instance

Random-IX
Dependent

DCN-IX
ADI
DBI

DBI-THR
EAIPS-IX

Figure 9.2: Evolution of the mean original objective value for the different memetic
approaches

• Population size N = 10.

• Diversity-based objectives random, inversion, ADI, DBI, DCN, and DBI-THR.

• Threshold value th = 0.9 for the diversity-based objective DBI-THR.

• Stopping criterion fixed to 4 hours.

Finally, the Dependent scheme was applied with a population size N = 10 and a
stopping criterion equal to 4 hours.

This analysis was carried out in terms of the performance achieved in the original
objective function. Hence, Figure 9.2 shows, for both instances, the evolution of
the mean original objective value achieved by the memetic optimisation schemes
considered. In order to differentiate the variants of these memetic approaches, the
approach–crossover nomenclature is used. For instance, the configuration of the
diversity-based multi-objective MA Random–UX applies the diversity-based objec-
tive Random and the UX operator in the variation stage, while the EAIPS–IX
configuration uses the IX operator in the variation phase of the EAIPS. In cases
where only the name of the approach is shown, such as Dependent, the crossover op-
erator is disabled, and only the NM operator is applied in the variation stage. Since
the Inversion diversity-based objective obtained poor results, its data is not shown.
For the remaining optimisation schemes, the data corresponding to the configura-
tion that yielded the best-behaved variation stage, in terms of the mean original
objective value achieved at the end of the executions, is shown.

It can be thus observed that for the Seattle instance, the DBI-THR–UX and DCN–
UX approaches obtained the lowest mean of the original objective value at the end

206



9.4. Experimental Evaluation and Discussion

Table 9.1: Statistical comparison among different memetic approaches for the Seattle
instance

DBI-THR-UX DCN-UX EAIPS ADI-UX DBI Dependent-UX Random-UX
DBI-THR-UX ↔ ↔ ↑ ↑ ↑ ↑ ↑

DCN-UX ↔ ↔ ↑ ↑ ↑ ↑ ↑
EAIPS ↓ ↓ ↔ ↑ ↑ ↔ ↑
ADI-UX ↓ ↓ ↓ ↔ ↔ ↔ ↔
DBI ↓ ↓ ↓ ↔ ↔ ↔ ↔

Dependent-UX ↓ ↓ ↔ ↔ ↔ ↔ ↔
Random-UX ↓ ↓ ↓ ↔ ↔ ↔ ↔

Table 9.2: Statistical comparison among different memetic approaches for the Den-
ver instance

EAIPS-IX DBI-THR DBI ADI DCN-IX Dependent Random-IX
EAIPS-IX ↔ ↔ ↔ ↔ ↑ ↑ ↑
DBI-THR ↔ ↔ ↔ ↔ ↑ ↑ ↑

DBI ↔ ↔ ↔ ↔ ↔ ↑ ↑
ADI ↔ ↔ ↔ ↔ ↑ ↑ ↑

DCN-IX ↓ ↓ ↔ ↓ ↔ ↔ ↑
Dependent ↓ ↓ ↓ ↓ ↔ ↔ ↔
Random-IX ↓ ↓ ↓ ↓ ↓ ↔ ↔

of the executions. The worst results, however, were provided by the Random–UX
and Dependent–UX schemes. Furthermore, for this instance, note that in general
the best-behaved variation stage applied the UX operator. In the case of Denver,
the EAIPS–IX approach was able to attain the lowest mean of the original objective
value at the end of the executions, followed by the DBI-THR scheme, whereas the
worst results were given by the Random–IX approach. Generally, for this instance,
the best-behaved variation stage did not use any crossover operator.

In order to perform a statistical comparison, Table 9.1 shows, for the Seattle in-
stance, the statistical differences among the different memetic approaches. Partic-
ularly, the table shows whether the scheme located in a given row is statistically
better (↑), not different (↔), or worse (↓) than the corresponding scheme situated
in a certain column. Table 9.2 shows the same information for the Denver instance.
It is worth mentioning that in the case of Seattle, the DBI-THR–UX and DCN–UX
approaches, which obtained the lowest mean of the original objective value at the
end of the executions, were able to statistically outperform the EAIPS scheme, thus
demonstrating the advantages provided by the diversity-based multi-objective MA
with respect to the best single-objective MA available in the literature.

For the Denver instance, the lowest mean of the original objective value at the end of
the executions was achieved by the EAIPS–IX approach, followed by the DBI-THR
scheme. However, the differences between the EAIPS–IX method and the DBI-THR,

207



CHAPTER 9. Frequency Assignment Problem

Table 9.3: Statistical comparison among different configurations of the variation
stage

Seattle Denver

UX No Crossover IX UX No Crossover IX

UX ↔ ↔ ↔ ↔ ↓ ↓
No Crossover ↔ ↔ ↔ ↑ ↔ ↔

IX ↔ ↔ ↔ ↑ ↔ ↔

DBI, and ADI approaches were not statistically significant. It can thus be concluded
that both the single-objective MA and the diversity-based multi-objective MA were
able to provide solutions of similar quality for this particular instance. As a result,
it is important to remark that there exist test cases for which the diversity-based
multi-objective MA is able to provide similar results to those given by the single-
objective MA, but there are other test cases where the former yields even better
results than the latter.

Finally, if the diversity-based multi-objective MA and the multi-objective MA based
on multi-objectivisation by aggregation are taken into consideration, we should note
that the results given by the former clearly outperform those obtained by the latter.
Consequently, for the particular case of the FAP, the use of a helper-objective that
takes into account problem-dependent information provided no benefit over more
general problem-independent diversity-based objectives.

Taking into account the configuration of the diversity-based multi-objective MA
that showed the best performance for both instances, i.e. the DBI-THR approach,
Table 9.3 shows a statistical comparison among the three variation stages tested
for Seattle and Denver. For the Seattle instance, there were no significant differ-
ences between the different variation stages. Consequently, for this particular case,
modifying the variation stage does not alter the performance of the diversity-based
multi-objective MA. In the case of the Denver instance, the IX operator was statis-
tically better than the UX operator but not statistically different from the variation
scheme in which the crossover operator was not applied. As a result, a more in-
depth analysis with other instances should be carried out in order to shed light on
the potential benefits that the IX operator is able to provide.

208



9.4. Experimental Evaluation and Discussion
6
0
0

7
0
0

8
0
0

9
0
0

Seattle Instance

O
ri

g
in

a
l 
O

b
je

c
ti
ve

DBI−THR−UX

4 hours

EAIPS

4 hours

DBI−THR−UX

24 hours

EAIPS

24 hours

8
4
0
0
0

8
5
0
0
0

8
6
0
0
0

8
7
0
0
0

Denver Instance

O
ri

g
in

a
l 
O

b
je

c
ti
ve

DBI−THR

4 hours

EAIPS−IX

4 hours

DBI−THR

24 hours

EAIPS−IX

24 hours

Figure 9.3: Box plots for the best configurations of the memetic approaches

9.4.2 Long-term Analysis of the Sequential Memetic Algo-

rithms

The goal of the second experiment is to check the behaviour of the diversity-based
multi-objective MA and the EAIPS in the long term. To do so, the configurations of
the diversity-based multi-objective MA that provided the best results in the previous
experiment—DBI-THR–UX for Seattle and DBI-THR for Denver—were executed
using a stopping criterion of 24 hours. The configurations of the EAIPS that were
able to achieve the best results in the previous experiment—EAIPS for Seattle and
EAIPS–IX for Denver—were also run during 24 hours. Both optimisation schemes
applied the same parameter values than those used in the first experiment.

Figure 9.3 shows, for both instances, the box plots of the original objective val-
ues achieved by the different executions in 4 and 24 hours. In the case of Seattle,
the DBI-THR–UX approach was statistically better than the EAIPS scheme con-
sidering both stopping criteria. For the particular case of Denver, and taking into
account 4 hours of execution, the DBI-THR and EAIPS–IX approaches provided
similar results. In fact, differences between them were not statistically significant.
Regarding the stopping criterion of 24 hours, most of the executions belonging to
the EAIPS–IX scheme obtained better results than those given by the executions of
the DBI-THR approach. Nevertheless, it is worth noting that some executions of
the latter were able to better deal with premature convergence issues. In fact, the
diversity-based multi-objective MA was able to obtain the best frequency plans for
both instances, as it can be observed in the box plots.

209



CHAPTER 9. Frequency Assignment Problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Seattle Instance

DBI-THR-UX
EAIPS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Denver Instance

DBI-THR
EAIPS-IX

Figure 9.4: Run-length distributions for the best configurations of the memetic
approaches

In order to quantify the run-time behaviour of the approaches considered in this
experiment, the RLDs described in Section 1.2.6 were applied. The quality level
was set as the mean original objective value achieved by the EAIPS configuration
for Seattle and the EAIPS–IX configuration for Denver over an 8-hour execution.
Figure 9.4 shows the RLDs for both instances. In the case of Seattle, note that 50%
of the executions performed using the DBI-THR–UX approach reached the specified
quality level in less than 7,440 seconds. For the EAIPS configuration, 50% of its
executions invested 30,840 seconds in order to achieve the same quality level. Hence,
the EAIPS configuration required 4.15 times more resources—time—than the DBI-
THR–UX approach to achieve the pre-determined quality level. Nevertheless, the
EAIPS scheme was able to attain a higher success rate than the DBI-THR–UX
configuration after a 24-hour execution.

Taking into account the Denver instance and a 50% success rate, the EAIPS–IX
approach was 1.97 times faster than the DBI-THR scheme in reaching the speci-
fied quality level. Additionally, considering the results after 24 hours of execution,
the EAIPS–IX configuration obtained a higher success rate than the DBI-THR ap-
proach. However, the latter was able to attain higher success rates than the former
when execution times under 5.5 hours were considered. As a result, in terms of
the quality level specified for this analysis, the most suitable optimisation scheme
depends on the time constraints.

Finally, note that the best frequency plans for the instances considered were reported
in [298, 224]. However, the configurations of the diversity-based multi-objective MA
applied in this experiment were able to improve on said frequency plans. In the
case of Seattle, the original objective value decreased from 654.5 to 564.3, whereas

210



9.4. Experimental Evaluation and Discussion

the original objective value for Denver decreased from 83, 991.3 to 83, 725.6. The
configurations of the EAIPS used herein yielded the values 594.6 and 84, 276.8 for
Seattle and Denver, respectively.

9.4.3 Analysing the Robustness of the Dynamic-mapped

Island-based Model

The diversity-based multi-objective MA was able to provide the best solutions in
the previous experiment. However, as was stated, the main drawback of this ap-
proach is that several components and parameters have to be tested in order to
obtain high-quality solutions, which also requires very long execution times. Since
the optimal parameterisation depends on the instance being solved, the parameter
setting involves a large computational and user effort. Thus, the aim of the current
experiment is threefold. First, to adaptively adjust some of the components and
parameters of the multi-objective MAs applied in previous experiments, as well as
to enable their use in parallel environments, by applying the DYN model. Second,
to analyse the robustness of the DYN model in terms of the migration stage used.
Finally, to study the ability of the DYN model to obtain high-quality results in a
single run while using a low number of processors.

To do so, the DYN model was executed with the four migration stages described
in Section 9.3.2. The migration rate for all was set to 1 individual, whereas the
migration probability was set to 0.01. A total amount of np = 4 islands was con-
sidered. The global stopping criterion was set to 11.5 hours of execution, while the
local stopping criterion was set to 10 minutes. The HH-PROB hyper-heuristic of
the DYN model was applied with an adaptation level k = 10, and the value of β
was set such that 10% of the decisions made by the hyper-heuristic used a uniform
distribution, i.e. β · nh = 0.1. Moreover, nh = 21 low-level configurations of the
multi-objective MAs depicted in Section 9.2.2 were used as the low-level configura-
tions. These low-level approaches were the 18 configurations of the diversity-based
multi-objective MA and the 3 configurations of the multi-objective MA based on
multi-objectivisation by aggregation Dependent applied in the first experiment—
Section 9.4.1. Their parameter values were also the same as those used in said
experiment. So as to compare the results obtained by the DYN model, the sequen-
tial versions of the above 21 low-level configurations were also executed for 11.5
hours. They were sorted based on the mean original objective value achieved at the
end of their executions, and an index based on this order was assigned to each one.
The best sequential low-level configuration, i.e. the one that achieved the lowest

211



CHAPTER 9. Frequency Assignment Problem

 650

 700

 750

 800

 850

 900

 950

 0  5000  10000  15000  20000  25000  30000  35000  40000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Seattle Instance - 4 islands

HAM-R--RING
ELI-R--RING
HAM-R--ALL

ELI-R--ALL
SEQ1

 85000

 85500

 86000

 86500

 87000

 0  5000  10000  15000  20000  25000  30000  35000  40000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Denver Instance - 4 islands

HAM-R--RING
ELI-R--RING
HAM-R--ALL

ELI-R--ALL
SEQ1

Figure 9.5: Evolution of the mean original objective value for the dynamic-mapped
island-based model executed with 4 islands

mean original objective value at the end of the executions, is referred to as SEQ1,
whereas the worst one is referred to as SEQ21.

The executions conducted as part of this experiment were performed on the HECToR
machine [102], the UK’s National Supercomputing Service. The Phase 3 (Cray
XE6) system of HECToR is contained in 30 cabinets and comprises of a total of 704
compute blades. Each blade contains four compute nodes, each with two 16-core
AMD R© Opteron TM 2.3 GHz Interlagos processors. This amounts to a total of
90,112 cores, offering a theoretical peak performance of over 800 Tflops. Each 16-
core socket is coupled with a Cray Gemini routing and communications chip, and
shares 16 Gb of memory. Finally, due to restrictions in the computational resources
available, 24 executions, and not 32, were performed for each of the aforementioned
optimisation schemes.

Figure 9.5 shows, for both instances, the evolution of the mean original objective
value obtained by the DYN model combined together with the four migration stages,
and by the best-behaved low-level configuration. In the case of the Seattle instance,
note that although the DYN model used a larger amount of computational resources
than the best sequential configuration, three parallel models were able to obtain
better results than SEQ1, in terms of the original objective value achieved at the end
of the executions. As a result, it is worth pointing out that by using the DYN model,
the requirement to test each of the 21 low-level configurations under consideration
can be avoided, thus considerably reducing the amount of computational resources
invested. Executing a single run of the DYN model yields better frequency plans
than those provided by a significant number of low-level configurations executed
independently. In addition, since the parameter setting stage is alleviated, the effort

212



9.4. Experimental Evaluation and Discussion
5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

Seattle Instance − 4 islands − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

HAM−R

RING

ELI−R

RING

HAM−R

ALL

ELI−R

ALL SEQ1

8
4
0
0
0

8
5
0
0
0

8
6
0
0
0

Denver Instance − 4 islands − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

HAM−R

RING

ELI−R

RING

HAM−R

ALL

ELI−R

ALL SEQ1

Figure 9.6: Box plots for the dynamic-mapped island-based model executed with 4
islands

required by the user to solve a new network instance is also reduced. For the Denver
instance, three parallel models were also able to improve on the results achieved by
SEQ1, and consequently the same conclusions as those given for the Seattle instance
can also be drawn for this particular case. Finally, we should note that the lowest
mean of the original objective value was achieved by the ELI-R–RING scheme for
both instances considered.

In order to better analyse the results, the box plots of the original objective values
obtained by every model at the end of the runs are shown in Figure 9.6 for both
instances. Note that the results yielded by all of the approaches were very similar
for both test cases. Table 9.4 shows, for the Seattle instance, whether the scheme
located in a given row is statistically better (↑), not different (↔), or worse(↓) than
the corresponding scheme situated in a certain column after 11.5 hours of execu-
tion. This table reveals that the ELI-R–RING scheme was statistically better than
the ELI-R–ALL approach, while the differences for the remaining schemes were not
statistically significant. The same information is shown in Table 9.5 for the Denver
instance. In this case, no statistically significant differences appeared among the
different approaches. Therefore, the DYN model was able to yield competitive fre-
quency plans for the instances considered, regardless of the migration stage applied,
thus demonstrating its robustness.

This analysis compared the different parallel models in terms of the quality achieved
after fixed execution times. It is important, however, to quantify the improvement
achieved by these parallel approaches in terms of the amount of time saved. To

213



CHAPTER 9. Frequency Assignment Problem

Table 9.4: Statistical comparison among different migration stages for the Seattle
instance – 4 islands

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL SEQ1

HAM-R–RING ↔ ↔ ↔ ↔ ↔
ELI-R–RING ↔ ↔ ↔ ↑ ↔
HAM-R–ALL ↔ ↔ ↔ ↔ ↔
ELI-R–ALL ↔ ↓ ↔ ↔ ↔

SEQ1 ↔ ↔ ↔ ↔ ↔

Table 9.5: Statistical comparison among different migration stages for the Denver
instance – 4 islands

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL SEQ1

HAM-R–RING ↔ ↔ ↔ ↔ ↔
ELI-R–RING ↔ ↔ ↔ ↔ ↔
HAM-R–ALL ↔ ↔ ↔ ↔ ↔
ELI-R–ALL ↔ ↔ ↔ ↔ ↔

SEQ1 ↔ ↔ ↔ ↔ ↔

do so, RLDs were calculated for the different optimisation schemes considered in
this experiment. For each instance, the quality level was set as the median of the
original objective value obtained by SEQ5 at the end of its executions, i.e. at 11.5
hours. Figure 9.7 shows, for both instances, the RLDs for the parallel schemes, as
well as for the SEQ1, SEQ3, and SEQ5 sequential configurations. Note the existing
similarities between the parallel models and SEQ1, thus validating the conclusions
drawn by the statistical comparison carried out in the previous study. Some parallel
models, however, were able to achieve higher success rates than the SEQ1 approach.
Additionally, the RLDs show the clear superiority of the parallel models with respect
to the remaining sequential configurations.

Table 9.6 shows the speedup factors obtained by the parallel models required to at-
tain a 50% success rate for the Seattle instance in comparison to the SEQ1, SEQ3,
and SEQ5 approaches. The ELI-R–ALL parallel scheme was clearly outperformed
by the remaining approaches. In fact, considering a 50% success rate, it took four
times longer than SEQ1 and SEQ3 to achieve the pre-set quality level. The remain-
ing parallel schemes, however, behaved noticeably better, even yielding super-linear
speedup factors with respect to SEQ5. In these cases, the hyper-heuristic proba-
bly granted more computational resources to the best-behaved low-level configura-
tions, meaning the decision space was explored more efficiently. Table 9.7 shows the
speedup factors for the Denver instance. Similar conclusions can be drawn for this

214



9.4. Experimental Evaluation and Discussion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5000  10000  15000  20000  25000  30000  35000  40000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Seattle Instance - 4 islands

HAM-R--RING
ELI-R--RING
HAM-R--ALL

ELI-R--ALL
SEQ1
SEQ3
SEQ5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5000  10000  15000  20000  25000  30000  35000  40000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Denver Instance - 4 islands

HAM-R--RING
ELI-R--RING
HAM-R--ALL

ELI-R--ALL
SEQ1
SEQ3
SEQ5

Figure 9.7: Run-length distributions for the dynamic-mapped island-based model
executed with 4 islands

Table 9.6: Speedup factors achieved by the dynamic-mapped island-based model for
the Seattle instance – 4 islands

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL

SEQ1 1.23 1.23 1.33 0.28
SEQ3 1.23 1.23 1.33 0.28
SEQ5 4.92 4.92 5.33 1.14

Table 9.7: Speedup factors achieved by the dynamic-mapped island-based model for
the Denver instance – 4 islands

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL

SEQ1 1.28 1.63 0.72 1.63
SEQ3 2.64 3.36 1.48 3.36
SEQ5 3.64 4.63 2.04 4.63

particular case. The HAM-R–ALL approach obtained the worst results. Consider-
ing a 50% success rate, it took longer than SEQ1 to reach the pre-set quality level.
However, the ELI-R–RING and ELI-R–ALL parallel models were able to provide
super-linear speedup factors in comparison to SEQ5.

9.4.4 Analysing the Scalability of the Dynamic-mapped

Island-based Model

In the previous experiment the DYN model was executed assuming np = 4 islands.
As was stated, the differences among the results obtained by the different migration

215



CHAPTER 9. Frequency Assignment Problem

Table 9.8: Speedup factors achieved by the dynamic-mapped island-based model for
the Seattle instance – 8, 16, and 32 islands

8 Islands 16 Islands 32 Islands

HAM-R–RING 6.37 12.75 17.00
ELI-R–RING 5.66 10.20 12.75
HAM-R–ALL 0.75 5.66 7.28
ELI-R–ALL 1.02 4.25 2.68

Table 9.9: Speedup factors achieved by the dynamic-mapped island-based model for
the Denver instance – 8, 16, and 32 islands

8 Islands 16 Islands 32 Islands

HAM-R–RING 11.50 13.80 17.25
ELI-R–RING 11.50 17.25 23.00
HAM-R–ALL 8.62 13.80 5.75
ELI-R–ALL 6.90 7.66 9.85

stages considered were not statistically significant. However, for a larger number of
islands, the differences might be more evident. We should note that in the RING
migration topology a certain island sends its solutions to another island, whereas in
the ALL migration topology a given island sends its solutions to np − 1 islands. As
np increases, so do the differences between the two migration topologies. Hence, the
goal of this fourth experiment is to to analyse the scalability of the DYN model, in
terms of the effect on performance caused by the different migration stages, as the
number of islands grows. To do this, the DYN model was executed with the same
parameterisation and four migration stages as those used in the previous experiment,
but considering 8, 16, and 32 islands. The experiments, consisting of 24 repetitions,
were also carried on the HECToR machine.

The speedup factors for the different parallel schemes, using SEQ1 as the reference
approach, are shown in Table 9.8 for the Seattle instance. They were calculated
considering the time required to attain a 50% success rate, with the quality level set
as the lowest median of the original objective value achieved by any of the parallel
models at the end of their executions, i.e. after 11.5 hours. The differences among
the different parallel approaches were noticeable. For instance, using 32 islands, the
speedup values ranged from 2.68 to 17.00. Additionally, the parallel models that
used the RING migration topology achieved the pre-set quality level faster than the
models that applied the ALL migration topology. In fact, specifying 32 islands and
a stopping criterion of 11.5 hours, the statistical tests shown in Table 9.10 confirm
the superiority of the parallel models based on the RING topology. The same

216



9.4. Experimental Evaluation and Discussion

Table 9.10: Statistical comparison among different migration stages for the Seattle
instance – 32 islands

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL SEQ1

HAM-R–RING ↔ ↔ ↑ ↑ ↑
ELI-R–RING ↔ ↔ ↑ ↑ ↑
HAM-R–ALL ↓ ↓ ↔ ↔ ↑
ELI-R–ALL ↓ ↓ ↔ ↔ ↔

SEQ1 ↓ ↓ ↓ ↔ ↔

Table 9.11: Statistical comparison among different migration stages for the Denver
instance – 32 islands

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL SEQ1

HAM-R–RING ↔ ↔ ↑ ↑ ↑
ELI-R–RING ↔ ↔ ↑ ↑ ↑
HAM-R–ALL ↓ ↓ ↔ ↔ ↑
ELI-R–ALL ↓ ↓ ↔ ↔ ↑

SEQ1 ↓ ↓ ↓ ↓ ↔

analysis was carried out for the Denver instance. The speedup factors are shown in
Table 9.9 for this test case. Differences among the different parallel approaches were
also obvious. For instance, for 32 islands, the speedup values ranged from 5.75 to
23.00. Furthermore, as was also the case with Seattle, the superiority of the parallel
models that applied the RING migration topology was also clear with respect to the
parallel models that used the ALL migration topology. The statistical tests shown
in Table 9.11 confirm this last fact. In summary, the scalability analysis revealed
that as the number of islands increases, the performance of the DYN model is more
sensitive to the setting of the migration stage, and consequently the practitioner
must carefully select its components.

In this experiment, the quality of the frequency plans achieved by the parallel models
using a high number of islands was also analysed. For the Seattle instance, the
box plots of the best and worst parallel models, in terms of the speedup values
obtained with 32 islands, are shown in Figure 9.8. In the case of the DYN model
executed with the HAM-R–RING migration stage, the addition of extra islands into
the scheme produced a clear decrease in the original objective value. In contrast,
when the ELI-R–ALL migration stage was incorporated, the DYN model was unable
to profit from the addition of more islands. In the case of Denver, the box plots for
the best and worst parallel models are shown in Figure 9.9. For this network, the
same conclusions can be drawn. However, the best and worst migration stages were

217



CHAPTER 9. Frequency Assignment Problem
5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

Seattle Instance − HAM−R−−RING − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 islands 8 islands 16 islands 32 islands

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

Seattle Instance − ELI−R−−ALL − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 islands 8 islands 16 islands 32 islands

Figure 9.8: Box plots for the best (left-hand side) and worst (right-hand side) mi-
gration stages for the Seattle instance – 4, 8, 16, and 32 islands

8
3
5
0
0

8
4
5
0
0

8
5
5
0
0

8
6
5
0
0

Denver Instance − ELI−R−−RING − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 islands 8 islands 16 islands 32 islands

8
3
5
0
0

8
4
5
0
0

8
5
5
0
0

8
6
5
0
0

Denver Instance − HAM−R−−ALL − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 islands 8 islands 16 islands 32 islands

Figure 9.9: Box plots for the best (left-hand side) and worst (right-hand side) mi-
gration stages for the Denver instance – 4, 8, 16, and 32 islands

ELI-R–RING and HAM-R–ALL, respectively.

Finally, we should note that the best frequency plans for both instances, which
were previously obtained in the second experiment described in Section 9.4.2, were
improved upon in this experiment. Said best frequency plans were obtained by the
DYN model executed with the ELI-R–RING migration stage and 32 islands. In the
case of Seattle the original objective value decreased from 564.3 to 486.6, while the

218



9.4. Experimental Evaluation and Discussion

Table 9.12: Parameterisation of the diversity-based multi-objective memetic algo-
rithm for different values of the parameter pm

Parameter Value Parameter Value
Stopping criterion 1.5 · 105 evals. Crossover rate (pc) 1
Population size (N) 10 individuals Mutation rate (pm) 0, 0.1, 0.2, ..., 0.9, 1
Crossover operator UX (Seattle), IX (Denver) NM operator steps (R) 7
Auxiliary objective DCN (Seattle), ADI (Denver)

Table 9.13: Parameterisation of the hyper-heuristics hh-eli and hh-prob to control
the parameter pm

Parameter Value Parameter Value
Local stopping criterion 1.5 · 103, 3 · 103 evals. Minimum selection rate (β) 0.1
Number of low-level configs. (nh) 11 configs. Historical knowledge (k) 2, 5

original objective value for Denver decreased from 83, 725.6 to 83, 340.2.

9.4.5 Adapting the parameter pm of the Neighbour-based

Mutation Operator

In this experiment the parameter control approaches based on FLCs and hyper-
heuristics described in Section 9.3.1 were applied to the parameter pm of the NM
operator to solve both of the FAP instances considered. The diversity-based multi-
objective MA presented in Section 9.2.2 was also executed with different values for
the parameter pm, while the value of R was kept constant. The main aim was to
analyse the performance of the different parameter control approaches and to study
whether parameter control offers any benefits in regard to tuning the parameter pm.

A common parameterisation was used for the diversity-based multi-objective MA
and the different parameter control schemes. Table 9.12 shows the parameterisation
of the diversity-based multi-objective MA. Different configurations—exactly 11—
were defined by modifying the value of the parameter pm. Moreover, the diversity-
based objectives and the crossover operator considered for each of the two instances
were different. This is because, depending on the instance, the most appropriate
values for these components change.

The parameterisations of the different parameter control approaches are shown in
Tables 9.13 and 9.14 for the hyper-heuristics and the FLCs, respectively. Note
that four different configurations for the HH-ELI and HH-PROB hyper-heuristics
were applied by combining different values for the local stopping criterion and the
parameter k. Similarly, four configurations of the FUZZY-A, FUZZY-B, FUZZY-

219



CHAPTER 9. Frequency Assignment Problem

Table 9.14: Parameterisation of the fuzzy logic controllers fuzzy-a, fuzzy-b,
fuzzy-a-tsk, and fuzzy-b-tsk to control the parameter pm

Parameter Value Parameter Value
Number of generations (numGen) 1.5 · 102, 3 · 102 Difference among samples (∆) 0.1
Number of linguistic terms (numTerms) 7 Historical knowledge (k) 2, 5
Range of the parameter pm [0, 1]

A-TSK, and FUZZY-B-TSK FLCs were defined by setting different values for the
number of generations and the parameter k. Finally, the hyper-heuristics were
applied with nh = 11 low-level configurations. Low-level configurations used the
parameterisation shown in Table 9.12, with each one using a different value for the
parameter pm.

Tables 9.15 and 9.16 show the statistics for the different configurations of the HH-
ELI and HH-PROB hyper-heuristics, the FUZZY-A, FUZZY-B, FUZZY-A-TSK,
and FUZZY-B-TSK FLCs and the diversity-based multi-objective MA—FIXED—
for the Seattle and Denver instances, respectively, including dispersion measures
like the Standard Deviation (SD) and the Coefficient of Variation (CV). The data
in bold show, for each method, the configuration that achieved the lowest mean of
the original objective value at the end of the executions. Moreover, the remaining
configurations of a given method that are shown in bold did not exhibit statistically
significant differences in comparison to the method that achieved the lowest mean
for the original objective value. In contrast, the configurations of a given method
which do not appear in bold presented statistically significant differences from the
configuration with the lowest mean of the original objective value. In order to
identify a given approach’s particular configuration, the values of its parameters
reflect the name of the approach. For example:

• HH-PROB 1500 5 is a configuration of the HH-PROB hyper-heuristic with a
local stopping criterion equal to 1,500 evaluations and historical knowledge k
equal to 5 decisions.

• FUZZY-A 300 2 is a configuration of the FUZZY-A FLC that uses 300 gen-
erations as the local stopping criterion and historical knowledge equal to 2
decisions.

• FIXED 0.9 is a configuration of the diversity-based multi-objective MA which
applies the NM operator with probability pm equal to 0.9.

We should note the following observations. With regard to parameter tuning, in the
case of the Seattle instance, the configuration of the FIXED approach that obtained
the lowest mean for the original objective value used the value 0.5—FIXED 0.5—

220



9.4. Experimental Evaluation and Discussion

Table 9.15: Control and tuning of the parameter pm – Seattle instance
Approach Min. First Qu. Median Mean Third Qu. Max. SD CV
HH-ELI 1500 2 547.1 589.1 624.3 644.5 675.3 889.2 84.4 13.1
HH-ELI 3000 2 506.0 594.9 655.1 651.7 698.8 870.8 87.2 13.4
HH-ELI 1500 5 511.0 610.9 672.4 662.8 726.4 799.6 72.7 11.0
HH-ELI 3000 5 525.9 595.8 637.3 646.2 686.8 896.8 79.6 12.3
HH-PROB 1500 2 530.9 629.2 668.2 669.8 708.0 855.4 74.7 11.1
HH-PROB 3000 2 523.6 578.2 650.3 644.0 695.5 775.1 71.4 11.1
HH-PROB 1500 5 515.6 608.2 665.4 675.2 749.5 888.4 88.8 13.1
HH-PROB 3000 5 534.5 590.1 642.9 647.2 686.7 790.8 65.5 10.1
FUZZY-A 150 2 529.7 610.2 664.1 669.5 720.8 785.2 68.8 10.3
FUZZY-A 300 2 504.1 564.5 645.2 643.1 680.0 882.8 89.4 13.9
FUZZY-A 150 5 517.4 584.6 636.7 643.0 691.0 780.0 69.0 10.7
FUZZY-A 300 5 505.3 602.2 646.3 658.7 687.8 851.9 81.3 12.3
FUZZY-B 150 2 463.0 609.2 651.1 659.2 721.4 814.1 87.6 13.3
FUZZY-B 300 2 471.7 619.0 678.2 669.8 712.6 807.4 77.4 11.6
FUZZY-B 150 5 519.9 616.7 658.3 660.7 701.9 804.5 70.0 10.6
FUZZY-B 300 5 497.6 616.3 673.4 663.8 704.1 795.5 68.5 10.3
FUZZY-A-TSK 150 2 468.8 603.9 653.1 669.7 729.3 939.0 97.9 14.6
FUZZY-A-TSK 300 2 475.8 569.7 641.9 636.4 691.7 810.2 78.9 12.4
FUZZY-A-TSK 150 5 536.4 620.1 662.1 685.0 741.0 854.6 88.5 12.9
FUZZY-A-TSK 300 5 502.0 629.8 668.7 667.1 706.7 834.6 78.6 11.8
FUZZY-B-TSK 150 2 526.5 605.4 645.6 655.3 691.0 876.0 78.0 11.9
FUZZY-B-TSK 300 2 474.0 587.0 649.4 645.0 701.1 815.9 88.2 13.7
FUZZY-B-TSK 150 5 533.1 622.6 672.8 677.6 736.2 862.7 87.4 12.9
FUZZY-B-TSK 300 5 452.7 613.4 668.7 668.6 713.2 855.7 86.3 12.9
FIXED 0 587.9 684.6 736.3 740.4 775.3 974.4 84.4 11.4
FIXED 0.1 525.5 660.7 712.7 716.2 785.0 878.6 92.2 12.9
FIXED 0.2 547.9 631.1 687.4 684.8 727.3 797.8 62.4 9.1
FIXED 0.3 562.7 613.0 664.9 688.7 748.5 941.1 90.4 13.1
FIXED 0.4 515.2 631.8 680.9 679.3 736.2 809.2 72.1 10.6
FIXED 0.5 521.3 607.7 667.4 667.3 714.3 842.6 76.7 11.5
FIXED 0.6 557.9 650.9 676.6 694.1 723.6 834.7 65.4 9.4
FIXED 0.7 551.8 642.1 686.6 678.0 717.4 813.2 62.2 9.2
FIXED 0.8 504.1 649.2 676.9 679.7 716.1 806.0 60.8 8.9
FIXED 0.9 541.5 638.0 695.4 697.0 751.5 893.5 78.1 11.2
FIXED 1.0 546.6 683.5 705.9 713.6 750.8 864.6 62.9 8.8

for the parameter pm of the NM operator, while in the case of the Denver instance
this value was equal to 0.8—FIXED 0.8. This fact confirms that the most suitable
value for a parameter changes depending on the problem and/or instance being
solved. Moreover, these configurations exhibited statistically significant differences
as compared to others. In the case of the Seattle instance, there were statistically
significant differences with 3 configurations, while for the Denver instance, there
were differences with 5 configurations. We can therefore observe that the parameter
pm is more sensitive to changes in its value when the NM operator is applied to the
Denver instance, so it is even more important to select the appropriate values in this
particular case.

Considering the control methods applied to the Seattle instance, the only statisti-
cally significant difference appeared among the configurations of the FUZZY-A-TSK

221



CHAPTER 9. Frequency Assignment Problem

Table 9.16: Control and tuning of the parameter pm – Denver instance
Approach Min. First Qu. Median Mean Third Qu. Max. SD CV
HH-ELI 1500 2 84228.4 84811.6 85099.4 85285.8 85798.8 86742.7 673.9 0.8
HH-ELI 3000 2 84019.6 84840.6 85113.6 85137.3 85373.8 86446.6 579.7 0.7
HH-ELI 1500 5 83996.6 84792.3 85170.2 85251.3 85531.2 87590.5 790.0 0.9
HH-ELI 3000 5 83933.5 84840.5 85246.2 85229.9 85565.8 86405.4 625.6 0.7
HH-PROB 1500 2 83833.4 84918.7 85306.4 85397.2 85818.7 87083.6 805.7 0.9
HH-PROB 3000 2 84274.6 84916.2 85455.6 85560.5 86213.6 87661.3 874.5 1.0
HH-PROB 1500 5 83789.9 84599.5 85013.2 85058.1 85380.7 87005.8 714.7 0.8
HH-PROB 3000 5 84257.9 84929.5 85660.6 85529.5 85965.6 87215.7 761.1 0.9
FUZZY-A 150 2 84442.6 84884.3 85218.1 85364.2 85783.4 86857.3 701.7 0.8
FUZZY-A 300 2 84277.6 84877.2 85139.4 85323.3 85812.7 88066.0 814.3 1.0
FUZZY-A 150 5 84194.4 84992.8 85356.4 85413.8 85690.5 86863.9 647.3 0.8
FUZZY-A 300 5 83594.4 84508.5 84979.9 85136.9 85445.8 87149.7 803.8 0.9
FUZZY-B 150 2 84000.7 84937.9 85567.4 85509.3 85995.9 87174.2 808.1 0.9
FUZZY-B 300 2 84245.1 84774.4 85066.2 85194.8 85625.7 87106.1 622.5 0.7
FUZZY-B 150 5 84118.2 84627.1 84975.1 85190.6 85559.6 87213.2 841.0 1.0
FUZZY-B 300 5 84004.6 84493.2 85035.4 84986.1 85407.6 85794.5 536.4 0.6
FUZZY-A-TSK 150 2 84190.2 85019.9 85342.9 85609.9 86099.7 87926.5 897.2 1.0
FUZZY-A-TSK 300 2 84455.0 84938.8 85432.2 85403.1 85611.6 87481.4 646.2 0.8
FUZZY-A-TSK 150 5 84098.0 84787.6 85245.9 85375.6 85921.6 87115.1 790.0 0.9
FUZZY-A-TSK 300 5 84149.1 84764.2 84975.3 85196.7 85440.2 87088.2 681.3 0.8
FUZZY-B-TSK 150 2 84342.0 84844.9 85157.6 85487.2 85776.0 88404.1 1006.3 1.2
FUZZY-B-TSK 300 2 83993.9 84755.4 85113.0 85169.1 85471.8 86655.7 661.8 0.8
FUZZY-B-TSK 150 5 83774.2 84690.4 85140.4 85087.2 85392.3 86347.5 553.3 0.7
FUZZY-B-TSK 300 5 84104.5 84830.8 85250.9 85426.2 86104.6 86974.6 759.2 0.9
FIXED 0 85243.4 86554.4 87230.3 87071.1 87572.1 88744.8 838.7 1.0
FIXED 0.1 84765.0 85682.4 86444.1 86475.8 87050.8 88501.1 980.1 1.1
FIXED 0.2 84552.3 85955.6 86276.4 86392.5 86867.1 89207.3 952.2 1.1
FIXED 0.3 84432.4 85293.9 85796.1 85946.2 86550.9 88072.8 924.0 1.1
FIXED 0.4 84447.7 85236.0 85824.9 85809.0 86155.5 87545.7 771.5 0.9
FIXED 0.5 84055.0 84924.4 85552.8 85704.0 86210.9 87405.7 961.4 1.1
FIXED 0.6 83969.0 84940.1 85429.2 85541.8 86073.9 88281.3 977.2 1.1
FIXED 0.7 84075.3 84836.5 85478.0 85481.3 85950.7 87432.7 748.9 0.9
FIXED 0.8 83400.7 84820.1 85295.2 85367.0 85750.7 87628.2 829.2 1.0
FIXED 0.9 84441.6 85233.9 85569.0 85603.4 85816.2 87884.8 673.6 0.8
FIXED 1.0 84292.5 85178.5 85409.2 85418.6 85683.7 87152.4 498.5 0.6

FLC. For the Denver instance, the only statistically significant differences appeared
among the configurations of the HH-PROB hyper-heuristic and the FUZZY-B and
FUZZY-A-TSK FLCs. This means that both the hyper-heuristics and the FLCs
are robust enough from the point of view of their parameters. If these parameters
are modified, these changes are not going to greatly determine the performance of
the control strategy. Thus, the parameters of the control methods do not add more
burdens to the configuration of the diversity-based multi-objective MA.

If for each of the six control methods exposed herein the corresponding configura-
tion that achieved the lowest mean of the original objective value is considered, no
statistically significant differences are evident among them. This was the case for
both the Seattle and Denver instances. As a result, hyper-heuristics or FLCs can
be applied indistinctly to control the parameter pm without drastically affecting the

222



9.4. Experimental Evaluation and Discussion

Table 9.17: Number of fixed configurations outperformed by the parameter control
approaches by adapting the parameter pm – Seattle instance

Approach Number of configurations

HH-ELI 10
HH-PROB 9
FUZZY-A 10
FUZZY-B 3
FUZZY-A-TSK 10
FUZZY-B-TSK 6

Table 9.18: Number of fixed configurations outperformed by the parameter control
approaches by adapting the parameter pm – Denver instance

Approach Number of configurations

HH-ELI 10
HH-PROB 10
FUZZY-A 8
FUZZY-B 11
FUZZY-A-TSK 8
FUZZY-B-TSK 10

quality of either city’s frequency plans.

In order to compare parameter control and parameter tuning, Tables 9.17 and 9.18
show the number of configurations for the FIXED approach that exhibited statis-
tically significant differences with each of the six control schemes for Seattle and
Denver, respectively. To carry out the statistical comparison, the configuration for
each control method that obtained the lowest mean of the original objective value
at the end of the executions was used.

For the Seattle instance, the HH-ELI hyper-heuristic and the FUZZY-A and FUZZY-
A-TSK FLCs were able to outperform 10 configurations of the FIXED approach,
while in the case of Denver, both hyper-heuristics and the FUZZY-B-TSK FLC out-
performed 10 configurations, whereas the FUZZY-B FLC was able to outperform
11 configurations. Moreover, no configuration of the FIXED scheme was able to
statistically outperform any control method for either instance. Consequently, the
advantages of using parameter control instead of parameter tuning are clear. Just
one execution of the control schemes was needed to yield similar or even better solu-
tions than those obtained using the best-behaved configuration of the diversity-based
multi-objective MA. It is important to note that in order to find the best-behaved

223



CHAPTER 9. Frequency Assignment Problem

Table 9.19: Parameterisation of the diversity-based multi-objective memetic algo-
rithm for different values of the parameter R

Parameter Value Parameter Value
Stopping criterion 1.5 · 105 evals. Crossover rate (pc) 1
Population size (N) 10 individuals Mutation rate (pm) 0.5 (Seattle), 0.8 (Denver)
Crossover operator UX (Seattle), IX (Denver) NM operator steps (R) 1, 2, 3, ..., 14, 15
Auxiliary objective DCN (Seattle), ADI (Denver)

Table 9.20: Parameterisation of the hyper-heuristics hh-eli and hh-prob to control
the parameter R

Parameter Value Parameter Value
Local stopping criterion 1.5 · 103, 3 · 103 evals. Minimum selection rate (β) 0.1
Number of low-level configs. (nh) 15 configs. Historical knowledge (k) 2, 5

configuration of the diversity-based multi-objective MA, 11 different parameterisa-
tions were tested by varying the value of the parameter pm. With this in mind, the
benefits of parameter control over parameter tuning are even higher.

Finally, it is worth mentioning that the best-known frequency plan for Seattle, which
was obtained during the fourth experiment performed in Section 9.4.4, was improved
upon by the FUZZY-B-TSK control scheme when the parameter pm was adapted,
with the original objective value decreasing from 486.6 to 452.7, as shown in Ta-
ble 9.15.

9.4.6 Adapting the parameter R of the Neighbour-based

Mutation Operator

This experiment was based on the application of the control approaches based on
FLCs and hyper-heuristics detailed in Section 9.3.1 to the parameter R of the NM
operator in order to solve the FAP. As was the case with the previous experiment,
the diversity-based multi-objective MA presented in Section 9.2.2 was also run.
Nevertheless, its configurations were obtained by varying the parameter R while
holding the value of pm constant. The main objective was to analyse the behaviour
of the different control schemes when adapting the parameter R. These control
techniques were also compared to parameter tuning.

The same parameterisations from the previous experiment were used, though in this
case the value of parameter pm was held constant. Several values for the parameter
R were also tested. Table 9.19 shows the parameterisation of the diversity-based
multi-objective MA for this experiment. In this case, 15 different configurations of

224



9.4. Experimental Evaluation and Discussion

Table 9.21: Parameterisation of the fuzzy logic controllers fuzzy-a, fuzzy-b,
fuzzy-a-tsk, and fuzzy-b-tsk to control the parameter R

Parameter Value Parameter Value
Number of generations (numGen) 1.5 · 102, 3 · 102 Difference among samples (∆) 1
Number of linguistic terms (numTerms) 7 Historical knowledge (k) 2, 5
Range of the parameter R [1, 15]

this approach were executed using different values for the parameter R.

The parameterisations of the control approaches are shown in Tables 9.20 and 9.21
for the hyper-heuristics and the FLCs, respectively. As in the previous experiment,
four different configurations of each control method were applied. In the case of the
hyper-heuristics, they were defined with nh = 15 low-level configurations, with each
one taking on a different value for the parameter R and using the parameterisation
shown in Table 9.19.

Tables 9.22 and 9.23 show the statistics obtained for the Seattle and Denver in-
stances, respectively, by the different configurations of the hyper-heuristics, the
FLCs, and the diversity-based multi-objective MA. Note the following regarding
the setting of parameter R: In terms of parameter tuning, the configuration of
the FIXED approach that yielded the lowest mean for the original objective value
for the Seattle instance used the NM operator with the parameter R equal to 7—
FIXED 7. In the case of Denver, FIXED 6 was the most suitable configuration of
the diversity-based multi-objective MA. Both configurations exhibited statistically
significant differences as compared to other configurations of the FIXED scheme. In
the case of Seattle, there were differences with 7 configurations, while for Denver,
the number of statistically significant differences was equal to 6.

Similar conclusions to those extracted for parameter pm can be drawn for param-
eter R. The study involving parameter tuning reveals that the most appropriate
value for R depends on the problem and/or instance being solved. A statistical
comparison shows that for this particular parameter, the number of statistical dif-
ferences between the FIXED scheme configuration that obtained the lowest mean
for the original objective value and other FIXED configurations is noticeable for
both instances. As a result, we can conclude that the parameter R is also sensitive
to changes in its value, as was the case with pm.

With regard to parameter control, and considering the Seattle instance, the con-
figurations did not exhibit statistically significant differences among them, while in
the case of Denver, only statistically significant differences appeared between the
configurations of the HH-ELI hyper-heuristic and the FUZZY-A-TSK FLC. Once

225



CHAPTER 9. Frequency Assignment Problem

more, both hyper-heuristics and FLCs demonstrated their robustness, with R be-
ing adapted in this case, since their performance was not significantly affected by
changes in their parameter values, as occurred when pm was adapted.

No statistically significant differences appeared among the configurations that ob-
tained the lowest mean for the original objective value for each of the six control
schemes. This was the case for both instances. Consequently, not only can the
parameter pm be controlled by hyper-heuristics or FLCs indistinctly, but so can the
parameter R. Thus, we can confirm the generality of both control methods, which
can adapt continuous and discrete numeric parameters successfully.

In order to compare parameter control and parameter tuning, Tables 9.24 and 9.25
show, for Seattle and Denver respectively, the number of FIXED scheme configura-
tions that exhibited statistically significant differences with each of the six control
techniques. To statistically compare each of the six control methods, the configura-
tion that obtained the lowest mean for the original objective value was selected. For
Seattle, the HH-ELI hyper-heuristic was able to outperform 13 FIXED scheme con-
figurations, followed by the FUZZY-B-TSK approach, which was able to outperform
12 configurations. In the case of Denver, the superiority of the control techniques
is clear as they were able to outperform every FIXED scheme configuration. As in
the previous experiment, no configuration of the FIXED scheme was able to sta-
tistically outperform any control method for either instance. Consequently, as was
the case with the parameter pm, the benefits of adapting the parameter R instead
of tuning it are also clear. A single execution of the hyper-heuristics or the FLCs
yielded frequency plans for the two cities in question that were similar to or even
better than those provided by the best-behaved configurations of the diversity-based
multi-objective MA. To find the best-behaved configuration, 15 different parame-
terisations of the diversity-based multi-objective MA were tested by modifying the
value of R. Taking this fact into consideration, the benefits of parameter control
over parameter tuning are even greater.

Finally, we would like to note that the best-known frequency plan for Denver, which
was obtained during the fourth experiment performed in Section 9.4.4, was improved
upon by the FUZZY-B control scheme when the parameter R was adapted, with the
original objective value decreasing from 83, 340.2 to 83, 280.9, as shown in Table 9.23.

226



Table 9.22: Control and tuning of the parameter R – Seattle instance
Approach Min. First Qu. Median Mean Third Qu. Max. SD CV
HH-ELI 1500 2 496.5 591.6 636.1 634.8 675.8 738.4 61.2 9.6
HH-ELI 3000 2 558.2 593.5 646.4 656.3 711.1 825.0 70.7 10.8
HH-ELI 1500 5 534.3 588.7 635.6 644.2 680.7 813.5 72.1 11.2
HH-ELI 3000 5 501.8 590.0 635.2 650.7 704.8 845.8 81.7 12.6
HH-PROB 1500 2 527.1 603.4 629.4 645.1 697.6 775.3 64.2 10.0
HH-PROB 3000 2 540.6 611.8 649.5 674.5 750.2 819.4 80.5 11.9
HH-PROB 1500 5 514.5 620.8 634.1 646.6 697.7 764.4 63.9 9.9
HH-PROB 3000 5 522.6 597.9 646.1 653.9 704.6 854.6 80.4 12.3
FUZZY-A 150 2 486.5 587.1 627.2 641.4 694.9 821.1 77.4 12.1
FUZZY-A 300 2 503.6 596.3 644.5 649.4 696.7 794.5 74.6 11.5
FUZZY-A 150 5 508.8 585.2 627.4 647.7 697.0 820.5 88.0 13.6
FUZZY-A 300 5 543.0 597.1 635.2 655.9 698.2 880.3 79.7 12.2
FUZZY-B 150 2 473.9 563.4 617.8 638.7 701.7 832.2 95.4 14.9
FUZZY-B 300 2 516.0 582.8 654.8 650.6 706.4 834.0 82.3 12.7
FUZZY-B 150 5 496.2 607.2 642.4 639.1 683.6 809.1 65.9 10.3
FUZZY-B 300 5 520.9 590.3 623.9 642.0 701.2 794.4 73.6 11.5
FUZZY-A-TSK 150 2 494.4 596.1 634.1 657.9 715.4 881.0 91.5 13.9
FUZZY-A-TSK 300 2 522.6 614.8 647.9 659.9 722.1 781.2 70.5 10.7
FUZZY-A-TSK 150 5 514.4 605.3 641.9 645.5 706.4 787.0 76.9 11.9
FUZZY-A-TSK 300 5 550.7 622.8 662.2 660.7 701.7 757.3 52.2 7.9
FUZZY-B-TSK 150 2 452.9 589.2 621.2 635.9 689.4 775.9 74.3 11.7
FUZZY-B-TSK 300 2 484.0 594.3 642.8 646.6 692.9 813.7 72.4 11.2
FUZZY-B-TSK 150 5 504.7 609.2 663.9 662.6 702.1 841.8 70.9 10.7
FUZZY-B-TSK 300 5 466.8 560.9 632.5 643.7 705.2 795.8 94.9 14.7
FIXED 1 549.1 673.6 728.6 744.6 814.0 949.0 97.9 13.2
FIXED 2 592.5 675.1 726.7 727.8 778.7 887.7 74.4 10.2
FIXED 3 550.6 667.7 707.7 725.3 767.8 968.0 83.0 11.4
FIXED 4 566.6 644.0 687.8 689.5 722.7 893.6 73.8 10.7
FIXED 5 566.8 640.5 681.7 693.9 721.0 908.3 80.4 11.6
FIXED 6 547.0 635.4 670.0 675.8 709.5 806.9 60.6 9.0
FIXED 7 580.3 624.1 641.6 658.4 683.4 830.4 57.3 8.7
FIXED 8 529.8 637.1 682.5 668.2 713.5 782.7 69.9 10.5
FIXED 9 555.0 619.4 667.2 662.1 709.5 771.1 59.5 9.0
FIXED 10 533.3 629.1 682.8 684.2 723.3 843.7 74.4 10.9
FIXED 11 543.8 634.9 667.3 678.9 732.4 863.0 76.2 11.2
FIXED 12 525.9 647.6 683.0 681.6 728.1 833.6 73.2 10.7
FIXED 13 597.7 665.3 698.9 712.2 737.5 982.5 74.2 10.4
FIXED 14 621.5 674.8 731.2 738.5 795.2 894.2 80.0 10.8
FIXED 15 613.7 709.6 737.3 739.8 780.6 879.2 63.8 8.6



Table 9.23: Control and tuning of the parameter R – Denver instance
Approach Min. First Qu. Median Mean Third Qu. Max. SD CV
HH-ELI 1500 2 83780.7 84658.2 85041.6 85064.2 85568.1 86324.1 609.5 0.7
HH-ELI 3000 2 83876.2 84446.8 84856.4 84846.1 85196.2 86552.9 638.7 0.8
HH-ELI 1500 5 84037.3 84593.2 84899.0 85090.5 85412.7 87154.3 731.3 0.9
HH-ELI 3000 5 83740.6 84784.8 84974.7 85184.5 85610.9 86783.9 654.8 0.8
HH-PROB 1500 2 83914.2 84568.8 85127.7 85240.3 85715.4 87159.4 844.1 1.0
HH-PROB 3000 2 84352.3 84667.8 84962.4 85177.4 85660.6 86766.0 691.9 0.8
HH-PROB 1500 5 83796.0 84441.5 84876.1 84973.9 85335.6 86323.2 614.8 0.7
HH-PROB 3000 5 83548.0 84639.6 85026.2 84965.3 85269.4 86455.1 619.5 0.7
FUZZY-A 150 2 83829.4 84615.1 84956.8 85081.4 85354.6 86533.0 634.9 0.7
FUZZY-A 300 2 83750.1 84533.9 84988.5 85044.9 85432.5 87192.5 750.9 0.9
FUZZY-A 150 5 83852.6 84534.0 84962.4 84967.1 85313.5 86897.6 696.0 0.8
FUZZY-A 300 5 83335.4 84545.0 85102.9 85032.9 85524.4 86584.4 792.8 0.9
FUZZY-B 150 2 83280.9 84446.4 85033.5 84881.4 85380.0 86181.9 694.2 0.8
FUZZY-B 300 2 83377.4 84515.4 84888.5 84915.7 85359.1 86106.8 592.1 0.7
FUZZY-B 150 5 83955.2 84549.1 85145.9 85228.5 85749.9 87100.4 831.0 1.0
FUZZY-B 300 5 83727.2 84481.1 84939.1 84942.2 85313.6 86433.9 660.5 0.8
FUZZY-A-TSK 150 2 83506.5 84567.6 84930.4 84932.3 85338.2 85976.4 583.9 0.7
FUZZY-A-TSK 300 2 83445.6 84407.0 84753.3 84898.6 85291.9 87418.1 773.8 0.9
FUZZY-A-TSK 150 5 84195.8 84687.3 84973.2 85117.3 85357.1 86971.2 652.1 0.8
FUZZY-A-TSK 300 5 83442.2 84748.0 85083.4 85220.6 85577.7 87000.9 768.0 0.9
FUZZY-B-TSK 150 2 83402.6 84488.6 84843.3 84936.9 85290.2 86678.3 725.2 0.9
FUZZY-B-TSK 300 2 83878.6 84478.1 84962.6 85034.4 85423.3 86530.3 737.4 0.9
FUZZY-B-TSK 150 5 83672.0 84485.3 84937.9 85029.2 85678.6 86965.0 785.8 0.9
FUZZY-B-TSK 300 5 83702.2 84376.8 84888.1 84923.2 85416.3 86759.9 728.7 0.9
FIXED 1 84885.9 85695.1 86231.9 86206.7 86667.4 87291.9 681.1 0.8
FIXED 2 83747.4 85352.1 85747.4 85716.0 86282.5 86894.6 718.9 0.8
FIXED 3 84558.3 84876.7 85325.8 85610.8 86334.2 87403.0 872.4 1.0
FIXED 4 84001.3 85083.5 85225.4 85423.6 85848.8 87109.2 768.8 0.9
FIXED 5 84760.0 85151.6 85631.0 85588.6 85981.8 86745.8 503.2 0.6
FIXED 6 84483.9 84888.0 85254.9 85333.7 85751.2 86899.4 606.2 0.7
FIXED 7 84051.4 85088.9 85528.4 85505.9 85938.8 87282.4 726.6 0.8
FIXED 8 84296.1 85052.9 85382.1 85449.0 85820.9 87139.2 574.2 0.7
FIXED 9 84357.2 85129.6 85339.9 85428.5 85655.3 87110.0 595.5 0.7
FIXED 10 84693.2 85277.0 85434.1 85652.1 86066.5 87222.2 585.1 0.7
FIXED 11 84771.0 85388.2 85560.2 85671.2 86077.8 86910.9 558.9 0.7
FIXED 12 84345.7 85203.1 85500.4 85538.7 85819.2 86688.2 590.3 0.7
FIXED 13 84587.0 85268.0 85516.4 85621.5 85869.9 86981.9 606.5 0.7
FIXED 14 84627.3 85159.4 85740.0 85703.3 85979.4 87857.6 676.3 0.8
FIXED 15 84955.6 85768.8 86036.3 86154.7 86550.7 87522.7 649.9 0.8



9.4. Experimental Evaluation and Discussion

Table 9.24: Number of fixed configurations outperformed by the parameter control
approaches adapting the parameter R – Seattle instance

Approach Number of configurations

HH-ELI 13
HH-PROB 10
FUZZY-A 10
FUZZY-B 10
FUZZY-A-TSK 9
FUZZY-B-TSK 12

Table 9.25: Number of fixed configurations outperformed by the parameter control
approaches by adapting the parameter R – Denver instance

Approach Number of configurations

HH-ELI 15
HH-PROB 15
FUZZY-A 15
FUZZY-B 15
FUZZY-A-TSK 15
FUZZY-B-TSK 15

229



CHAPTER 9. Frequency Assignment Problem

230



Chapter

10

Two-dimensional Packing Problem

Packing problems are a class of optimisation problems that involve packing a set
of objects together as densely as possible. They are highly related to cutting prob-
lems, whose main goal is to cut large stock sheets into a set of smaller pieces. In
many cases, both problems have been analysed together, being referred to as cut-
ting and packing problems. Both problems have been shown to be combinatorial
NP -hard problems. Therefore, obtaining high-quality solutions is a complex task.
However, there is considerable interest in solving them because they are related to
real-life packaging, storage, and transportation issues. Therefore, they have many
applications and are widely used within more complex systems, such as filling con-
tainers and trucks, loading pallets, and optimising the layout of electrical circuits,
among others. Cutting and packing problems can be classified [216, 346] according
to several characteristics, including: the number of dimensions—1D, 2D, 3D—, the
number of available patterns, the shape of the patterns—regular or irregular—, the
orientation, and the objective to be optimised. Depending on these features, several
variants of the problem can be defined. Some of the most popular ones are 2D strip
packing [93], constrained 2D cutting stock [340], knapsack problems [233], packing
with cost [55], and online packing [304]. Within each category there are also several
different formulations. In the GECCO 2008 competition session1, a variant of a
Two-Dimensional Packing Problem (2DPP) was proposed. It was a reformulation
of a packing problem designed with the aim of hindering the achievement of opti-
mal values and increasing the size of the search space. While it may be difficult
to imagine direct practical applications of this particular variant of a 2D packing
problem, it is hard and complex enough that it can be used to check the advan-

1http://www.isgec.org/gecco-2008/competitions.html



CHAPTER 10. Two-dimensional Packing Problem

tages and drawbacks of a given optimisation scheme. This was the main reason for
considering this formulation of the problem in this dissertation. Moreover, previous
results obtained using different optimisation methods can be used for comparison
purposes [205].

There are many proposals designed to deal with packing problems. Among them,
several exact approaches have been proposed [232]. Usually, the time associated
with these algorithms is very large. Therefore, in order to reduce the execution
time, some parallel exact approaches have also been designed [35, 204]. However,
since packing problems usually involve a large search space, exact approaches are
practically unaffordable for many real-world instances. In order to handle large
instances, a wide variety of approximate algorithms have been tested. For instance,
an approach based on an ACO algorithm was used to deal with a multi-objective
version of a packing problem in [197], whereas in [236] a GA was applied to a
single-objective variant. MAs have also yielded very promising results for packing
problems [358]. Regarding the 2DPP defined in the GECCO 2008 competition
session, several proposals have also been tested. During the contest, the two best-
behaved approaches were based on MAs. Prior to the proposals defined herein, the
approach that had yielded the best results for the competition session instance was
the EAIPS, which was described in Section 9.2.1. However, the individual learning
process considered was specifically designed to deal with the 2DPP. In [205], the
DYN model was executed considering different low-level configurations of the EAIPS
in an effort to obtain high-quality results faster. It was able to attain the best-known
solution for the competition instance.

The rest of the chapter is organised as follows. In Section 10.1 the mathematical for-
mulation of the 2DPP is described. Then, the different optimisation schemes defined
for dealing with this problem are presented in Section 10.2. Afterwards, the control
approaches that are proposed to adapt the parameters of said optimisation schemes
are introduced in Section 10.3. Finally, Section 10.4 details the experimental eval-
uation conducted using the proposed optimisation schemes and parameter control
approaches on several instances of the 2DPP, including the competition instance.

10.1 Formal Definition

The 2DPP is a two-dimensional variant of a packing problem. Since the problem
has been tackled using many different approaches and its search space is vast, it can
be used as a benchmark problem. Problem instances are described by:

232



10.1. Formal Definition

Figure 10.1: Assignment of the objective function value for the Two-Dimensional
Packing Problem

• The sizes of a rectangular grid: X , Y .

• The maximum number which can be assigned to a grid position: M . The
value assigned to each grid location is an integer in the range [0,M ].

• The score or value associated with the appearance of each pair (a, b) where
a, b ∈ [0,M ]: v(a, b). Note that v(a, b) is not necessarily equal to v(b, a).

A candidate solution is obtained by assigning a number to each grid position. Thus,
the search space consists of (M + 1)X·Y candidate solutions. The aim of the problem
proposed is to best pack a grid so that the sum of the point scores for every pair of
adjacent numbers is maximised. Two positions are considered to be adjacent if they
are neighbours in the same row, column, or diagonal of the grid. Once a particular
pair is collected, it cannot be collected a second time in the same grid.

Mathematically, the goal of the problem is to find the grid G which maximises the
following objective function f :

f =

M
∑

a=0

M
∑

b=0

v2(a, b) (10.1)

where

v2(a, b) =

{

0 if (a, b) are not adjacent in G
v(a, b) if (a, b) are adjacent in G

(10.2)

233



CHAPTER 10. Two-dimensional Packing Problem

Figure 10.1 illustrates the assignment of the objective function value for a candidate
solution of a 2× 2 grid. Note that although the pairs (1, 2) and (2, 1) are repeated
in the grid, they are only considered once when computing the objective function.

10.2 Optimisation Schemes

This section is devoted to defining the different optimisation schemes that are applied
in this thesis to solve the 2DPP. Particularly, the EAIPS is considered. Moreover,
several diversity-based objectives, as well as a multi-objectivisation method, are
used together with novel multi-objective MAs based on the well-known NSGA-II
and SPEA2. All the above optimisation schemes incorporate an individual learning
procedure that was specifically designed to deal with the 2DPP. Lastly, different
parallel homogeneous island-based models are also taken into account.

10.2.1 Evolutionary Algorithm with Increasing Population

Size

The EAIPS detailed in Section 9.2.1, which was applied as an optimisation scheme
to deal with the FAP in the previous chapter, is considered herein to address the
2DPP. Recall that the EAIPS is a single-objective MA that combines an EA with a
(1 + 1) survivor selection operator. Additionally, it applies the variation phase and
the individual learning procedure described in Sections 10.2.3 and 10.2.4, respec-
tively. The algorithm starts its execution as a trajectory-based approach, though
it increases the population size to escape from local optima when stagnation is de-
tected, thus behaving as a population-based algorithm. In order to complete the
definition of the EAIPS, the individuals were encoded as two-dimensional arrays of
integer values G, where G(x, y) is the number assigned to the grid position (x, y).

10.2.2 Diversity-based Multi-objective Memetic Algorithms

and Multi-objectivisation by Aggregation

The novel diversity-based multi-objective MAs used herein to address the 2DPP are
based on the NSGA-II and the SPEA2, which were described in Section 2.4.1. The
main difference with respect to the original MOEAs is that the individual learning
strategy detailed in Section 10.2.4 is applied to every generation after the variation

234



10.2. Optimisation Schemes

Algorithm 12 Pseudocode of the memetic algorithm based on the Strength Pareto
Evolutionary Algorithm 2
1: Initialisation. Generate the initial parent population P0 with N individuals, and

create the empty archive P 0. Assign t = 0.
2: while (not stopping criterion) do
3: Evaluation. Evaluate all individuals in the parent population by calculating the

objective functions.
4: Fitness assignment. Calculate the fitness values of individuals in Pt and P t. For

each individual i, calculate the raw fitness rawi and the density estimate densityi.
5: Environmental Selection. Copy non-dominated individuals which belong to Pt

and P t to P t+1. If |P t+1| > N reduce P t+1 by means of the truncation operator.
Otherwise, if |P t+1| < N , fill P t+1 with dominated individuals belonging to Pt and
Pt, considering their fitness.

6: Parent selection. Perform deterministic binary tournament selection with re-
placement on P t+1 to fill the mating pool with N parents.

7: Variation. Apply crossover and mutation operators, with probabilities pc and pm,
to the mating pool so as to obtain M = N offspring.

8: Learning process. Apply the individual learning process to every individual in
Pt+1.

9: Survivor selection. Set Pt+1 to the offspring population.
10: t = t+ 1
11: end while

phase. This is evident in the Algorithms 10 and 12, which show the operation of
the MAs based on the NSGA-II and the SPEA2, respectively. Since diversity-based
multi-objective MAs are used, an additional diversity-based objective function must
be considered together with the original objective function of the 2DPP defined in
Equation 10.1. Different encoding-independent and genotypic diversity-based ob-
jectives were taken into account for both MAs. In particular, the diversity-based
objectives tested were random, inversion, ADI, DBI, and DCN—Section 3.1. Addi-
tionally, the diversity-based objectives with parameters DBI-THR and DCN-THR—
Section 5.1—were also applied. We should note that in the case of the NSGA-II,
the diversity-based objectives are calculated using the individuals in the popula-
tion. When the SPEA2 is applied, however, the individuals in the population and
the archive are taken into account. So as to completely define the diversity-based
multi-objective MAs, individuals were encoded by means of two-dimensional arrays
of integer values G, where G(x, y) is the number assigned to the grid position (x, y).
Finally, the genetic operators applied during the variation stage of the diversity-
based multi-objective MAs are described in Section 10.2.3.

235



CHAPTER 10. Two-dimensional Packing Problem

In addition to the application of the diversity-based multi-objective MAs described
above, multi-objectivisation by aggregation of helper-objectives is also employed
herein to solve the 2DPP. To do so, the multi-objective MAs described in the
Algorithms 10 and 12 are combined together with a helper-objective, instead of using
a diversity-based objective function. This helper-objective makes use of problem-
dependent information and is called Dependent. In order to calculate this helper-
objective, the original objective function of the 2DPP, denoted by f , is decomposed
into two separate functions, f0 and f1, such that f = f0 + f1. The decomposition
is performed as follows. First, a table containing all possible pairs whose score is
not equal to zero is calculated. Then, this table is sorted based on the score of the
appearance of each pair ρ. The resultant position of each pair ρ in the sorted table
is denoted by iρ. The value associated with each pair ρ is taken into account in
the function fobj , where obj = iρ mod 2. Hence, f0 is used as the helper-objective.
Likewise, f1 could have been used as the helper-objective. Finally, all the remaining
components, such as the encoding of the individuals, the genetic operators, and the
individual learning procedure, are the same as those applied with the diversity-based
multi-objective MAs.

10.2.3 Genetic Operators

A variation phase that involves applying a crossover operator and then a mutation
operator is performed in every generation of the MAs described in the previous
sections. Several variation operators were tested in [205]. The best-behaved ones are
considered herein. On the one hand is the crossover operator SSX, whose operation
was explained in Section 2.2.2. Recall that this operator is applied with probability
pc. On the other hand is the mutation operator Uniform Mutation with Domain
Information (UMD). Every gene is mutated with a probability between min pm
and max pm. Additionally, in order to make a new assignment to a certain gene, a
random value is selected from among those that produce a non-zero increase in the
original objective value.

10.2.4 Individual Learning Strategy

The individual learning procedure described in this section, which is based on a
stochastic hill climbing local search, was specifically designed to deal with the
2DPP [205]. It is used in every generation of the MAs introduced in Sections 10.2.1

236



10.2. Optimisation Schemes

Figure 10.2: Generation of new neighbours by the learning process

and 10.2.2. As a result, a significant effort was made to make this procedure as
efficient as possible.

The operation of this individual learning strategy is as follows. For each pair of
adjacent grid positions (i, j) and (k, l), a neighbour is considered. This is illustrated
in Figure 10.2. Every neighbour is constituted by assigning the best possible values
to the positions (i, j) and (k, l)—shaded positions in Figure 10.2—while leaving
intact the assignments in any other grid location. In order to assign the best values
to both locations, the trivial solution consists of enumerating all possible pairs so
that the best one can subsequently be chosen. This approach is computationally
too expensive, so a mechanism is used to prune the values explored. First, all the
possible assignments n ∈ [0,M ] to the grid position (i, j) are considered, and the
contribution of each assignment vij(n), assuming position (k, l) is unassigned, is
calculated. The same process is performed for position (k, l), assuming position
(i, j) is unassigned, which thus calculates vkl(n). The contribution to the original
objective function obtained by assigning a value a to position (i, j), and a value b
to position (k, l), is given by:

vij(a) + vkl(b) + v′(a, b)− vrep (10.3)

where v′(a, b) = v(a, b) + v(b, a) if the pair (a, b) was not already in the grid, or 0 if
it was, and vrep is the value associated with pairs that are constituted by both the
assignment of the value a to (i, j) and the assignment of the value b to (k, l), which
must be considered only once. An upper bound for this contribution is given by:

vij(a) + vkl(b) +min(bestV (a), bestV (b)) (10.4)

where bestV (n) is the maximum value associated with any pair (n,m), m ∈ [0,M ],
i.e.:

237



CHAPTER 10. Two-dimensional Packing Problem

bestV (n) = max{(v(n,m) + v(m,n)} (10.5)

If bestObj is the best original objective value currently achieved for an assignment
of the positions (i, j) and (k, l), the only values a′, b′ that must be considered are
those that satisfy the following inequality:

vij(a
′) + vkl(b

′) +min(bestV (a′), bestV (b′)) > bestObj (10.6)

Omitting the values at which the above inequality is not satisfied drastically reduces
the neighbourhood to be considered, resulting in significant time savings.

Since stochastic hill climbing is used, the order in which neighbours are analysed is
determined randomly. The local search moves to the first newly generated neighbour
that improves the current solution. Finally, the learning process stops when none
of the neighbours improves the current solution.

10.2.5 Parallel Homogeneous Island-based Models

The parallelisation of the EAIPS described in Section 10.2.1, as well as the paralleli-
sation of the diversity-based multi-objective MA built upon the NSGA-II introduced
in Section 10.2.2, is also considered herein through the use of homogeneous island-
based models—Section 2.6.1. Recall that in a homogeneous island-based model,
every island executes the same algorithm with the same parameterisation.

As a result, two different types of homogeneous island-based models are taken into
account. The first one, in which every island executes the same parameterisation
of the EAIPS, is referred to as Single-Island. In this case, the migration stage
applies the ALL migration topology, whereas the ELI-M migration scheme is used.
Additionally, a replacement only takes place when the migrated individual is fitter
than every individual in the destination island. The second homogeneous island-
based model, in which every island executes the same configuration of the diversity-
based multi-objective MA, is called Multi-Island. The migration stage is the same
as that applied by the Single-Island approach. The replacement scheme selected,
however, is the ELI-R approach.

238



10.3. Parameter Control Schemes

10.3 Parameter Control Schemes

This section focuses on describing the parameter control approach that is used herein
to adapt some of the parameters contained in the optimisation schemes detailed in
preceding sections. Particularly, the DYN model is applied to control some of the
components and parameters corresponding to the diversity-based multi-objective
MAs and the multi-objective MAs based on multi-objectivisation by aggregation
presented in Section 10.2.2. Moreover, by applying the DYN model, the aforemen-
tioned memetic approaches are enabled for use in parallel environments.

10.3.1 Dynamic-mapped Island-based Model

The DYN model introduced in Section 6.3 is also used herein as a parameter control
approach. Recall that in the DYN model a hyper-heuristic is combined together
with a parallel island-based model in order to dynamically map the low-level con-
figurations involved to the islands, rather than performing a static mapping as is
the case with standard island-based models. In this case, the DYN model is based
on the HH-PROB hyper-heuristic, which was detailed in Section 6.2. In order to
solve the 2DPP, the set of low-level configurations was defined starting from the
diversity based multi-objective MAs and the multi-objective MAs based on multi-
objectivisation by aggregation, which were described in Section 10.2.2. Thus, the
goal is to control certain components and parameters of these memetic approaches
while enabling their use in parallel environments.

In addition, several migration stages were tested with the DYN model. In particu-
lar, four different migration stages were defined by combining two different replace-
ment schemes with two separate migration topologies. The replacement schemes
were HAM-R and ELI-R, whereas the migration topologies were ALL and RING—
Section 2.6.1. The ELI-M migration scheme—Section 2.6.1—was used to define
the four migration stages. In order to identify the different migration stages, the
Replacement–Topology nomenclature is used. For example, the migration stage that
uses the HAM-R replacement scheme and the ALL topology is called HAM-R–ALL.

10.4 Experimental Evaluation and Discussion

In this section, the set of experiments performed with the above optimisation schemes
and parameter control approaches on several instances of the 2DPP is presented.

239



CHAPTER 10. Two-dimensional Packing Problem

Experimental Method. The different optimisation schemes, as well as the pa-
rameter control approaches, were implemented using METCO. The tests were run
on a Debian GNU/Linux computer with four AMD R© Opteron TM processors (model
number 6164HE) at 1.7 GHz and 64 Gb RAM. The compiler was the GCC 4.7.2.
Communications among different islands of the homogeneous island-based models,
as well as the DYN model, were implemented asynchronously using the MPICH
library. Since every experiment applied stochastic algorithms, every execution was
repeated 32 times. As a result, comparisons were performed by applying the statis-
tical analysis detailed in Section 1.2.6.

2DPP Instances. The analyses were conducted considering two different in-
stances of the 2DPP. The first one is characterised by the following parameters:
X = 10, Y = 10, M = 99, and 9, 032 possible pair scores. The second one is
the instance proposed in the competition session. Its parameters are the following:
X = 20, Y = 20, M = 399, and 15,962 possible pair scores.

10.4.1 Comparison of the Sequential Memetic Algorithms

In this first experiment the goal is to discover whether the use of the proposed
diversity-based multi-objective MA, as well as the use of the proposed multi-objective
MA based on multi-objectivisation by aggregation Dependent, offers any benefits
over using the best-behaved single-objective MA available in the literature, i.e. the
EAIPS. We should note that the multi-objective MAs are based on the NSGA-II.
To carry out this experiment, the following configurations of the three optimisation
schemes above were compared:

• 1 configuration of the EAIPS.

• 6 configurations of the diversity-based multi-objective MA, which were consti-
tuted by the use of six different diversity-based objective functions.

• 1 configuration of the Dependent approach.

The values for the parameters of the EAIPS were set as follows:

• Initial population size N0 = 2.

• Maximum population size Nmax = 10.

• SoftBloq = 50.

240



10.4. Experimental Evaluation and Discussion

 5.08e+08

 5.09e+08

 5.1e+08

 5.11e+08

 5.12e+08

 5.13e+08

 0  15000  30000  45000  60000  75000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

First Instance

ADI
DBI-THR

DCN
DBI

EAIPS
Dependent

Inversion
Random

 9.6e+08

 9.7e+08

 9.8e+08

 9.9e+08

 1e+09

 1.01e+09

 0  15000  30000  45000  60000  75000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Second Instance

EAIPS
DBI-THR

DCN
DBI
ADI

Dependent
Random

Inversion

Figure 10.3: Evolution of the mean original objective value for the different memetic
approaches

• HardBloq = 300.

• The UMD operator was applied with min pm = 0.1 and max pm = 0.15.

• Crossover rate pc = 1.

• Stopping criterion fixed to 24 hours.

In the case of the diversity-based multi-objective MA, the following parameterisation
was considered:

• Population size N = 10.

• Diversity-based objectives random, inversion, ADI, DBI, DCN, and DBI-THR.

• Threshold value th = 0.99 for the diversity-based objective DBI-THR.

• The UMD operator was applied with min pm = 0.1 and max pm = 0.15.

• Crossover rate pc = 1.

• Stopping criterion fixed to 24 hours.

Finally, the Dependent scheme was applied with the same parameterisation as that
used with the diversity-based multi-objective MA.

This analysis was carried out in terms of the performance achieved in the original
objective function. Thus, Figure 10.3 shows, for both instances, the evolution of the
mean original objective value achieved by the memetic schemes considered. In the
case of the first instance, the ADI approach obtained the highest mean of the original
objective value at the end of the executions. In addition, four configurations of the

241



CHAPTER 10. Two-dimensional Packing Problem

Table 10.1: Statistical comparison among different memetic approaches for the first
instance

ADI DBI-THR DCN DBI EAIPS Dependent Inversion Random
ADI ↔ ↔ ↔ ↑ ↑ ↑ ↑ ↑

DBI-THR ↔ ↔ ↔ ↔ ↑ ↑ ↑ ↑
DCN ↔ ↔ ↔ ↔ ↑ ↑ ↑ ↑
DBI ↓ ↔ ↔ ↔ ↔ ↑ ↑ ↑

EAIPS ↓ ↓ ↓ ↔ ↔ ↑ ↑ ↑
Dependent ↓ ↓ ↓ ↓ ↓ ↔ ↔ ↔
Inversion ↓ ↓ ↓ ↓ ↓ ↔ ↔ ↔
Random ↓ ↓ ↓ ↓ ↓ ↔ ↔ ↔

Table 10.2: Statistical comparison among different memetic approaches for the sec-
ond instance

EAIPS DBI-THR DCN DBI ADI Dependent Random Inversion
EAIPS ↔ ↑ ↑ ↑ ↑ ↑ ↑ ↑

DBI-THR ↓ ↔ ↔ ↔ ↑ ↑ ↑ ↑
DCN ↓ ↔ ↔ ↔ ↑ ↑ ↑ ↑
DBI ↓ ↔ ↔ ↔ ↔ ↑ ↑ ↑
ADI ↓ ↓ ↓ ↔ ↔ ↑ ↑ ↑

Dependent ↓ ↓ ↓ ↓ ↓ ↔ ↑ ↑
Random ↓ ↓ ↓ ↓ ↓ ↓ ↔ ↑
Inversion ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↔

diversity-based multi-objective MA achieved a higher mean of the original objective
value than the EAIPS. The worst results, however, were given by the Dependent,
Inversion, and Random schemes. Considering the second instance, the EAIPS was
able to attain the highest mean of the original objective value at the end of the
executions, followed by the DBI-THR scheme, while the worst results were given
once more by the Dependent, Random, and Inversion approaches.

In order to carry out a statistical comparison, Table 10.1 shows, for the first instance,
the statistical differences among the different memetic approaches. Particularly, the
table shows whether the scheme located in a given row is statistically better (↑),
not different (↔), or worse (↓) than the corresponding scheme situated in a certain
column. Table 10.2 shows the same information for the second instance. It is
important to remark that in the case of the first instance, the ADI, DBI-THR, and
DCN approaches, which obtained the highest mean of the original objective value
at the end of the executions, were able to statistically outperform the EAIPS, thus
demonstrating the advantages provided by the diversity-based multi-objective MA
with respect to the best single-objective MA available in the literature.

For the second instance, the highest mean of the original objective value at the end
of the executions was achieved by the EAIPS, which was also able to statistically
outperform all the remaining memetic approaches. As a result, there exist test cases

242



10.4. Experimental Evaluation and Discussion
5
.1

0
e
+

0
8

5
.1

3
e
+

0
8

5
.1

6
e
+

0
8

First Instance − 4 islands − 12 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

Multi−Island ADI Single−Island EAIPS

1
.0

0
0
e
+

0
9

1
.0

1
0
e
+

0
9

1
.0

2
0
e
+

0
9 Second Instance − 4 islands − 12 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

Single−Island EAIPS Multi−Island DBI−THR

Figure 10.4: Box plots for the homogeneous island-based models executed with 4
islands for 12 hours

for which the diversity-based multi-objective MA is able to provide better results
than those given by the single-objective MA, but there are other test cases where the
latter yields better results than the former. Hence, the most suitable optimisation
scheme depends on the 2DPP instance being solved.

Finally, if the diversity-based multi-objective MA and the multi-objective MA based
on multi-objectivisation by aggregationDependent are taken into consideration, then
the results given by the former clearly outperform those obtained by the latter for
both instances. Consequently, as was the case with the FAP in the previous chapter,
for the case of the 2DPP, the use of a helper-objective that considers problem-
dependent information provided no benefit over more general problem-independent
diversity-based objectives.

10.4.2 Analysis of the Parallel Homogeneous Island-based

Models

The main aim of the second experiment is twofold. First, to study the behaviour
of different homogeneous island-based models when they are compared against the
sequential memetic approaches that obtained the best performance in the previous
section. Second, to analyse whether the application of a diversity-based multi-
objective MA offers any benefits over the application of the EAIPS when both
schemes are enabled for use in parallel environments. To do so, the two homogeneous

243



CHAPTER 10. Two-dimensional Packing Problem
5
.1

0
e
+

0
8

5
.1

3
e
+

0
8

5
.1

6
e
+

0
8

First Instance − 4 islands

O
ri

g
in

a
l 
O

b
je

c
ti
ve

Multi−Island

6 hours

ADI

24 hours

Single−Island

6 hours

EAIPS

24 hours

1
.0

0
0
e
+

0
9

1
.0

1
0
e
+

0
9

Second Instance − 4 islands

O
ri

g
in

a
l 
O

b
je

c
ti
ve

Single−Island

6 hours

EAIPS

24 hours

Multi−Island

6 hours

DBI−THR

24 hours

Figure 10.5: Box plots for the homogeneous island-based models executed with 4
islands and considering a fixed computational effort

island-based models proposed in Section 10.2.5 were executed with 4 islands and
considering a stopping criterion of 12 hours. For both models, the migration rate
was set to 1 individual, whereas the migration probability was set to 0.01. Every
island in the Single-Island model executed the same configuration of the EAIPS.
Every island in the Multi-Island model, however, applied the same configuration of
the diversity-based multi-objective MA that provided the best results in the previous
experiment, i.e. the ADI approach for the first instance and the DBI-THR scheme
for the second instance. The parameterisation of the EAIPS and the diversity-based
multi-objective MA was the same as that considered in the previous experiment.

Figure 10.4 shows, for both instances, the box plots of the original objective val-
ues achieved by the different sequential and parallel models in 12 hours. In the
case of the first instance, note that both parallel models clearly outperformed their
corresponding sequential variants. Furthermore, for this particular test case, the
Multi-Island parallel model improved the results achieved by the remaining optimi-
sation schemes considered. Hence, taking into account this first instance, the use of
the diversity-based multi-objective MA, and in particular its parallelisation through
the Multi-Island scheme, provided a clear advantage with respect to the applica-
tion of the approaches based on the EAIPS. Finally, considering both sequential
schemes, differences between them were more noticeable than in the case of both
parallel models. For the second instance, both parallel models were also able to
outperform their corresponding sequential versions. Nevertheless, the Single-Island
parallel model provided better results than all the remaining optimisation schemes

244



10.4. Experimental Evaluation and Discussion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000

S
u
c
c
e
s
s
 R

a
te

Time (s)

First Instance - 4 islands

Multi-Island
Single-Island

ADI
EAIPS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Second Instance - 4 islands

Single-Island
Multi-Island

EAIPS
DBI-THR

Figure 10.6: Run-length distributions for the homogeneous island-based models ex-
ecuted with 4 islands for 12 hours

for this test case. Consequently, as was stated in the first experiment, the use of
the diversity-based multi-objective MA—and its parallelisation—did not yield any
benefits over the use of the schemes based on the EAIPS for this test case.

The previous analysis showed that the parallel models yielded better solutions than
those obtained by their corresponding sequential schemes when considering a stop-
ping criterion equal to 12 hours for all the approaches. In order to check whether the
parallel models make a more appropriate use of the computational resources than
the sequential approaches, Figure 10.5 shows, for both instances, the box plots of
the original objective values attained by the different sequential and parallel schemes
considering the same amount of computational effort for all them. Since the parallel
models were executed with 4 islands, the results obtained by the sequential schemes
are shown assuming a stopping criterion equal to 24 hours, whereas for the parallel
approaches the stopping criterion was fixed to 6 hours. Note that the parallel models
and their corresponding sequential approaches made a similar use of the computa-
tional resources, since similar solutions were obtained by them. In the case of the
first instance, the Single-Island scheme made even better use of the computational
resources than the EAIPS, since the former was able to provide solutions of better
quality than the latter.

We should note that the homogeneous island-based models use the computational
resources in a parallel way. Although the parallel models considered a stopping
criterion equal to 6 hours, they were able to provide similar or even better solu-
tions than their corresponding sequential versions executed for 24 hours. This is
because the parallel schemes were executed with 4 islands. Therefore, the validity
of the homogeneous island-based models, in terms of the proper exploitation of the

245



CHAPTER 10. Two-dimensional Packing Problem

computational resources available, is demonstrated.

So as to quantify the improvement of the parallel models with respect to the sequen-
tial schemes, the RLDs described in Section 1.2.6 were applied. In order to establish
a sufficiently high quality level for each instance, it was set as the lowest mean orig-
inal objective value achieved by any of the sequential and parallel models taken into
account after 6 hours of execution. Figure 10.6 shows the RLDs calculated with the
above quality level for both instances considered. Note the superiority of the paral-
lel schemes in the case of the first instance. In fact, considering the time required
to attain a 50% success rate, super-linear speedups were obtained by the parallel
schemes using their corresponding sequential models as the reference approaches.
The main reason for the super-linear speedups is probably the use of a larger pop-
ulation in the case of the parallel schemes, thus allowing stagnation in local optima
to be avoided more efficiently. In addition, since the EAIPS essentially behaves
as a trajectory-based algorithm, its parallelisation through the Single-Island model
had an even greater impact on performance. This outcome was expected, since for
the same computational effort, the Single-Island parallel model was able to provide
better solutions than those given by the EAIPS, as was shown in Figure 10.5.

In the case of the second instance, the benefits of the parallel schemes can also
be appreciated. Considering the time needed to achieve a 50% success rate, the
speedup factor for the Single-Island parallel scheme was equal to 1.95, taking the
EAIPS as the reference model. The speedup factor for the Multi-Island parallel
approach was equal to 2.42, taking DBI-THR as the reference scheme. Finally, it is
worth mentioning that the speedup factors changed when the success rates ranged
from 25% to 75%. In the case of the schemes based on the EAIPS, the speedup
factors ranged from 1.95 to 2.13. The speedup factors ranged from 1.89 to 3.58 for
the approaches built upon the diversity-based multi-objective MA.

10.4.3 On the comparison of the Memetic Algorithms based

on the Non-Dominated Sorting Genetic Algorithm II

and the Strength Pareto Evolutionary Algorithm 2

The objective of this third experiment is to compare the behaviour of the novel
MAs based on the NSGA-II and the SPEA2, which were proposed in Section 10.2.2,
from the point of view of robustness. Particularly, the goal is to study whether the
quality of the solutions provided depends on the MA applied and/or on the auxiliary
objective—diversity-based objective or helper-objective—considered. Furthermore,
additional analyses are also conducted with the aim of determining whether the

246



10.4. Experimental Evaluation and Discussion

most suitable approach depends on the instance of the 2DPP considered. To this
end, 16 different configurations of the MAs were defined:

• 14 configurations of the diversity-based multi-objective MAs, obtained by com-
bining the NSGA-II and the SPEA2 with seven diversity-based objectives.

• 2 configurations of the multi-objective MAs based on multi-objectivisation by
aggregation, where the first one is based on the NSGA-II and the second one
is based on the SPEA2.

Every configuration of the diversity-based multi-objective MAs applied the following
parameterisation:

• Population size N = 10 and archive size N = 10.

• Diversity-based objectives random, inversion, ADI, DBI, DCN, DBI-THR,
and DCN-THR.

• Threshold value th = 0.99 for the diversity-based objectives DBI-THR and
DCN-THR.

• The UMD operator was applied with min pm = 0.1 and max pm = 0.15.

• Crossover rate pc = 1.

• In the case of the first instance, the stopping criterion was set to 5 hours, while
for the second one a stopping criterion of 11.5 hours was used.

Both configurations of the multi-objective MAs based on multi-objectivisation by
aggregation were applied with the above parameterisation, but using the Dependent
helper-objective instead of considering a diversity-based objective. The executions
carried out as part of this experiment were performed on the HECToR machine.
Due to restrictions in the computational resources available, 24 executions, and not
32, were performed for each of the aforementioned configurations.

Table 10.3 shows, for the first instance and for each configuration of the MAs tested,
the mean, the median, and the maximum of the original objective value attained at
the end of the executions. The configurations of the MAs were sorted in terms of the
mean original objective value achieved at the end of the executions. An index based
on this order was assigned to every configuration. Thus, the first configuration, i.e.
the one which achieved the highest mean of the original objective value, is referred
to as SEQ1, while the last one is referred to as SEQ16. The differences among the
configurations were noticeable and revealed the importance of correctly selecting
the appropriate parameterisation. In fact, the differences between SEQ1 and the

247



CHAPTER 10. Two-dimensional Packing Problem

Table 10.3: Original objective function for the memetic algorithms considering the
first instance

Name MA Aux. Obj. Mean Median Max

SEQ1 SPEA2 DBI 5.130 · 108 5.134 · 108 5.152 · 108
SEQ2 SPEA2 DBI-THR 5.129 · 108 5.129 · 108 5.157 · 108
SEQ3 NSGA2 ADI 5.126 · 108 5.125 · 108 5.152 · 108
SEQ4 NSGA2 DCN 5.124 · 108 5.127 · 108 5.142 · 108
SEQ5 SPEA2 DCN 5.120 · 108 5.121 · 108 5.145 · 108
SEQ6 SPEA2 DCN-THR 5.120 · 108 5.118 · 108 5.137 · 108
SEQ7 NSGA2 DBI-THR 5.118 · 108 5.119 · 108 5.143 · 108
SEQ8 NSGA2 DCN-THR 5.118 · 108 5.115 · 108 5.146 · 108
SEQ9 SPEA2 ADI 5.117 · 108 5.112 · 108 5.144 · 108
SEQ10 NSGA2 DBI 5.117 · 108 5.119 · 108 5.139 · 108
SEQ11 NSGA2 Dependent 5.105 · 108 5.102 · 108 5.149 · 108
SEQ12 SPEA2 Dependent 5.104 · 108 5.105 · 108 5.133 · 108
SEQ13 NSGA2 Random 5.103 · 108 5.103 · 108 5.131 · 108
SEQ14 SPEA2 Random 5.099 · 108 5.097 · 108 5.126 · 108
SEQ15 NSGA2 Inversion 5.095 · 108 5.093 · 108 5.127 · 108
SEQ16 SPEA2 Inversion 5.095 · 108 5.097 · 108 5.117 · 108

remaining configurations were statistically significant, except for the configurations
SEQ2–SEQ4. Statistical tests also confirmed that both the auxiliary objective func-
tion and the MA used affected the quality of the solutions. For instance, SEQ1
was significantly different from SEQ10. These configurations are based on the same
diversity-based objective—DBI—but they consider a different MA. Therefore, prop-
erly selecting the MA affects the quality of the solutions. Similarly, SEQ1 and SEQ5,
which are both based on the SPEA2, were statistically different. Since they only
differ in the diversity-based objective used, the importance of properly selecting this
component is also demonstrated. Finally, the incorporation of a threshold value in
the diversity-based objectives tested did not affect the quality of the results. The
configurations that used the DBI-THR and DCN-THR diversity-based objectives
were not statistically different from their non-threshold counterparts, i.e. DBI and
DCN, for this particular instance.

Table 10.4 shows the same information for the second instance. In this case, differ-
ences among the configurations considered were also noticeable. The results obtained
by SEQ1 were statistically different from those obtained by the other configurations,
apart from the SEQ2 and SEQ3 configurations. In addition, changing the MA used
did not yield significant differences in the results. For example, the differences
between SEQ1 and SEQ2 were not statistically significant. In this case, both con-

248



10.4. Experimental Evaluation and Discussion

Table 10.4: Original objective function for the memetic algorithms considering the
second instance

Name MA Aux. Obj. Mean Median Max

SEQ1 NSGA2 DCN-THR 1.008 · 109 1.007 · 109 1.017 · 109
SEQ2 SPEA2 DCN-THR 1.007 · 109 1.006 · 109 1.015 · 109
SEQ3 SPEA2 DBI-THR 1.006 · 109 1.007 · 109 1.015 · 109
SEQ4 NSGA2 DBI-THR 1.005 · 109 1.005 · 109 1.015 · 109
SEQ5 SPEA2 DCN 1.004 · 109 1.005 · 109 1.013 · 109
SEQ6 NSGA2 DCN 1.004 · 109 1.005 · 109 1.015 · 109
SEQ7 NSGA2 ADI 1.004 · 109 1.002 · 109 1.015 · 109
SEQ8 SPEA2 ADI 1.002 · 109 1.002 · 109 1.013 · 109
SEQ9 NSGA2 DBI 1.001 · 109 1.001 · 109 1.011 · 109
SEQ10 SPEA2 DBI 9.997 · 108 9.992 · 108 1.009 · 109
SEQ11 SPEA2 Random 9.961 · 108 9.995 · 108 1.004 · 109
SEQ12 NSGA2 Random 9.950 · 108 9.945 · 108 1.004 · 109
SEQ13 NSGA2 Dependent 9.946 · 108 9.952 · 108 1.001 · 109
SEQ14 SPEA2 Dependent 9.946 · 108 9.956 · 108 1.001 · 109
SEQ15 SPEA2 Inversion 9.864 · 108 9.861 · 108 9.938 · 108
SEQ16 NSGA2 Inversion 9.851 · 108 9.850 · 108 9.923 · 108

figurations applied the same diversity-based objective but used different MAs. This
happened for every pair of configurations in which the auxiliary objective function
applied was the same and the MA applied was different. However, the auxiliary ob-
jective function applied did affect the quality of the solutions. For instance, SEQ1
was statistically different from SEQ4, with the two configurations applying the DCN-
THR and the DBI-THR diversity-based objectives, respectively. Finally, we should
note that configurations applying a diversity-based objective with threshold were
statistically different from their non-threshold counterparts. Consequently, the in-
corporation of a threshold value in the diversity-based objectives tested improved
the quality of the results.

For both instances tested, the most suitable configurations of the MAs were different.
For example, the configuration SEQ1 for the first instance was the configuration
SEQ10 for the second instance. Similarly, the configuration SEQ1 for the second
instance was the configuration SEQ8 for the first one. Hence, the clear conclusion
is that the most suitable configurations depend on the features of the instance in
question, resulting in some robustness problems. Given a new instance, it is difficult
to predict which configuration will provide the best results. In addition, if the
number of configurations considered is very large, testing each one of them might
not be feasible. Therefore, the application of parameter control approaches seems

249



CHAPTER 10. Two-dimensional Packing Problem

 5.095e+08

 5.1e+08

 5.105e+08

 5.11e+08

 5.115e+08

 5.12e+08

 5.125e+08

 5.13e+08

 5.135e+08

 5.14e+08

 0  3000  6000  9000  12000  15000  18000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

First Instance - 4 islands

HAM-R--RING
ELI-R--RING
HAM-R--ALL

ELI-R--ALL
SEQ1

 9.65e+08

 9.7e+08

 9.75e+08

 9.8e+08

 9.85e+08

 9.9e+08

 9.95e+08

 1e+09

 1.005e+09

 1.01e+09

 1.015e+09

 0  6000  12000  18000  24000  30000  36000

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (s)

Second Instance - 4 islands

HAM-R--RING
ELI-R--RING
HAM-R--ALL

ELI-R--ALL
SEQ1

Figure 10.7: Evolution of the mean original objective value for the dynamic-mapped
island-based model executed with 4 islands

very promising. Lastly, since the sequential models do not converge even after a very
long period of time, the usage of parallel models also seems a promising approach.

10.4.4 Analysing the Robustness of the Dynamic-mapped

Island-based Model

The main drawback of the MAs applied in the preceding experiment is that their
performance depend on several components and parameters, which have to be tested
in order to obtain promising results. Since the optimal parameterisation depends on
the instance being solved, the parameter setting requires a large computational and
user effort. Thus, the aim of the current experiment is twofold. First, to adaptively
adjust some of the components and parameters of the multi-objective MAs applied
in the previous experiment, as well as to mitigate their robustness issues, by applying
the DYN model. Second, to analyse the robustness of the DYN model in terms of
the migration stage used.

To do so, the DYN model was executed with the four migration stages described in
Section 10.3.1. The migration rate for every migration stage was set to 1 individual,
whereas the migration probability was set to 0.01. A total number of np = 4 islands
was considered. The global stopping criterion was set to 5 hours for the first instance
and 11.5 hours for the second one. For both instances, the local stopping criterion
was set to 10 minutes. The HH-PROB hyper-heuristic of the DYNmodel was applied
with an adaptation level k = ∞, and the value of β was set such that 10% of the
decisions made by the hyper-heuristic used a uniform distribution, i.e. β · nh = 0.1.

250



10.4. Experimental Evaluation and Discussion
5
.1

0
e
+

0
8

5
.1

2
e
+

0
8

5
.1

4
e
+

0
8

5
.1

6
e
+

0
8

First Instance − 4 islands − 5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

HAM−R

RING

ELI−R

RING

HAM−R

ALL

ELI−R

ALL SEQ1

1
.0

0
0
e
+

0
9

1
.0

1
0
e
+

0
9

Second Instance − 4 islands − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

HAM−R

RING

ELI−R

RING

HAM−R

ALL

ELI−R

ALL SEQ1

Figure 10.8: Box plots for the dynamic-mapped island-based model executed with
4 islands

The nh = 16 configurations of the MAs applied in the previous experiment were used
as the low-level approaches. Finally, we should note that this experiment, consisting
of 24 repetitions, was also carried out on the HECToR machine.

Figure 10.7 shows, for the first and second instances, the evolution of the mean
original objective value for the DYN model combined together with the four migra-
tion stages. In order to compare the results obtained by the parallel approaches,
also shown are the data of the best-behaved sequential configuration—SEQ1 in the
previous experiment—for each of the two instances considered. For both test cases,
the parallel models were able to achieve a higher mean of the original objective value
than the corresponding best-behaved sequential approach. Moreover, the differences
between the parallel model which yielded the highest mean of the original objective
value and the best sequential approach for each instance considered were statistically
significant. In the case of the first instance, the best parallel approach relied on the
HAM-R–ALL migration stage, whereas for the second instance, the best-behaved
parallel model applied the ELI-R–RING migration stage. Consequently, depending
on the features of the instance in question, the most suitable migration stage must
be properly selected. The box plots of the DYN model executed with the separate
migration stages, which are shown in Figure 10.8, confirm the above conclusions.

The DYN model avoided the need to check for the most suitable configuration of
an algorithm for a given instance. The solutions obtained from the parallel model
applying the best migration stage were of higher quality than that obtained by the
best sequential approach. Thus, high quality solutions can be achieved by a single

251



CHAPTER 10. Two-dimensional Packing Problem

Table 10.5: Statistical tests for the dynamic-mapped island-based model – 16 islands
– 5 hours – First instance

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL

HAM-R–RING ↔ ↔ ↑ ↔
ELI-R–RING ↔ ↔ ↑ ↔
HAM-R–ALL ↓ ↓ ↔ ↔
ELI-R–ALL ↔ ↔ ↔ ↔

Table 10.6: Statistical tests for the dynamic-mapped island-based model – 32 islands
– 5 hours – First instance

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL

HAM-R–RING ↔ ↔ ↑ ↔
ELI-R–RING ↔ ↔ ↔ ↔
HAM-R–ALL ↓ ↔ ↔ ↔
ELI-R–ALL ↔ ↔ ↔ ↔

execution of this parallel model, resulting in lower use of computational resources.
This process thus mitigates the robustness problems of the MAs applied in the
preceding section. Finally, the DYN model facilitates the application of said MAs in
terms of their parameter setting, while enabling their use in parallel environments.

10.4.5 Analysing the Scalability of the Dynamic-mapped

Island-based Model

The goal of this fifth experiment is to analyse the scalability of the DYN model
in terms of the effect on performance caused by the different migration stages as
the number of islands grows. To do this, the DYN model was executed with the
same parameterisation and four migration stages as those used in the preceding
experiment, but considering 8, 16, and 32 islands. The experiments, consisting of
24 repetitions, were performed on the HECToR machine.

In the first instance, the statistical differences among the different migration stages
were not significant when the DYN model was applied with 4 and 8 islands. With
16 and 32 islands, however, statistical differences among the migration stages did
appear. This means that the importance of properly selecting the migration stage
increases with the number of islands. Tables 10.5 and 10.6 show the statistical signif-
icances for the different migration stages considering 16 and 32 islands, respectively.
Every cell shows whether the row model is statistically better (↑), not different (↔),

252



10.4. Experimental Evaluation and Discussion

Table 10.7: Statistical tests for the dynamic-mapped island-based model – 4 islands
– 11.5 hours – Second instance

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL

HAM-R–RING ↔ ↔ ↔ ↔
ELI-R–RING ↔ ↔ ↑ ↔
HAM-R–ALL ↔ ↓ ↔ ↔
ELI-R–ALL ↔ ↔ ↔ ↔

Table 10.8: Statistical tests for the dynamic-mapped island-based model – 8, 16, 32
islands – 11.5 hours – Second instance

HAM-R–RING ELI-R–RING HAM-R–ALL ELI-R–ALL

HAM-R–RING ↔ ↔ ↑ ↑
ELI-R–RING ↔ ↔ ↑ ↑
HAM-R–ALL ↓ ↓ ↔ ↔
ELI-R–ALL ↓ ↓ ↔ ↔

or worse(↓) than the corresponding column model.

In the case of the second instance, Table 10.7 shows the results of the statistical
tests for the different migration stages considering 4 islands. Similarly, Table 10.8
shows the same information when 8, 16, and 32 islands were used. The number of
significant statistical differences was larger when 8, 16, and 32 islands were applied.
As was the case with the first instance, the importance of selecting the appropriate
migration stage increases as a higher number of islands is used.

In order to better quantify the importance of selecting the appropriate migration
stage for the DYN model, another analysis was conducted. Considering the mean
of the original objective value achieved by the parallel models with 32 islands at the
end of the executions, the best and worst models were selected for each instance.
Figure 10.9 shows, for the first instance, the box plots of the original objective values
achieved by the best and worst parallel models when they were run with up to 32
islands. The same information is shown in Figure 10.10 for the second instance. For
both cases, the trend towards obtaining better objective values as the number of
islands increases is clear when the best migration stage is considered. However, this
did not happen when considering the worst migration stage.

The above analysis compared different parallel models in terms of the quality at-
tained at set intervals. However, it is important to quantify the improvement
achieved by these parallel approaches in terms of the amount of time saved. To
do so, an additional study that relied on RLDs was conducted. Figure 10.11 shows,

253



CHAPTER 10. Two-dimensional Packing Problem
5
.1

2
e
+

0
8

5
.1

4
e
+

0
8

5
.1

6
e
+

0
8

First Instance − HAM−R−−RING − 5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 islands 8 islands 16 islands 32 islands

5
.1

1
e
+

0
8

5
.1

3
e
+

0
8

5
.1

5
e
+

0
8

First Instance − HAM−R−−ALL − 5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 islands 8 islands 16 islands 32 islands

Figure 10.9: Box plots for the dynamic-mapped island-based model with the best
(left-hand side) and worst (right-hand side) migration stages for the first instance

1
.0

0
5
e
+

0
9

1
.0

1
5
e
+

0
9

1
.0

2
5
e
+

0
9

Second Instance − ELI−R−−RING − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 islands 8 islands 16 islands 32 islands

1
.0

0
0
e
+

0
9

1
.0

1
0
e
+

0
9

1
.0

2
0
e
+

0
9

Second Instance − HAM−R−−ALL − 11.5 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 islands 8 islands 16 islands 32 islands

Figure 10.10: Box plots for the dynamic-mapped island-based model with the best
(left-hand side) and worst (right-hand side) migration stages for the second instance

for the first instance, the RLDs of the best and worst parallel models with up to 32
islands. It also includes the RLDs of the sequential configurations SEQ1 and SEQ3
so as to compare the results obtained by the parallel models. The same information
is shown in Figure 10.12 for the second instance. In order to calculate the RLDs
for both instances, the quality level was set as the median of the original objective
value achieved by the SEQ3 configuration at the end of the executions. In the case
of the first instance, the parallel models that used the best migration stage clearly

254



10.4. Experimental Evaluation and Discussion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  2000  4000  6000  8000  10000 12000 14000 16000 18000

S
u
c
c
e
s
s
 R

a
te

Time (s)

First Instance - HAM-R--RING

32 islands
16 islands
8 islands
4 islands

SEQ1
SEQ3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  2000  4000  6000  8000  10000 12000 14000 16000 18000

S
u
c
c
e
s
s
 R

a
te

Time (s)

First Instance - HAM-R--ALL

32 islands
16 islands
8 islands
4 islands

SEQ1
SEQ3

Figure 10.11: Run-length distributions for the dynamic-mapped island-based model
with the best (left-hand side) and worst (right-hand side) migration stages for the
first instance

Table 10.9: Speedup factors for the dynamic-mapped island-based model with the
best and worst migration stages – First instance

Best Worst

4 islands 1.71 1.61
8 islands 3.98 1.07
16 islands 6.29 1.21
32 islands 15.73 7.26

outperformed the sequential configurations, obtaining the same or higher success
rates in less time. In addition, not only were high quality solutions yielded by the
best parallel model, but they were obtained in less time when the number of islands
increased. For example, the best parallel models with 16 and 32 islands were able
to achieve a 100% success rate, i.e. every execution reached the set quality level,
although the best parallel model with 32 islands obtained this success rate in less
time. The solutions yielded by the parallel models that used the worst-behaved mi-
gration stage were of a lower quality than those obtained by the best parallel models.
Moreover, none of the worst parallel models was able to reach a 100% success rate.

In the case of the second instance, the same conclusions as for the first instance can
be extracted for the parallel model using the best migration stage. The behaviour
of the parallel models when using the worst migration stage, however, was poor.
For example, the parallel model with 4 islands was able to attain certain success
rates in less time than the same model using 32 islands. In summary, for both
instances, selecting the appropriate migration stage does not only affect the quality

255



CHAPTER 10. Two-dimensional Packing Problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5000  10000  15000  20000  25000  30000  35000  40000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Second Instance - ELI-R--RING

32 islands
16 islands
8 islands
4 islands

SEQ1
SEQ3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5000  10000  15000  20000  25000  30000  35000  40000

S
u
c
c
e
s
s
 R

a
te

Time (s)

Second Instance - HAM-R--ALL

32 islands
16 islands
8 islands
4 islands

SEQ1
SEQ3

Figure 10.12: Run-length distributions for the dynamic-mapped island-based model
with the best (left-hand side) and worst (right-hand side) migration stages for the
second instance

Table 10.10: Speedup factors for the dynamic-mapped island-based model with the
best and worst migration stages – Second instance

Best Worst

4 islands 2.30 1.64
8 islands 4.10 2.57
16 islands 5.70 1.36
32 islands 18.81 2.90

of the solutions provided, but also the total amount of time and processors required
to achieve said quality.

In order to quantify the effects that the migration stage has on the scalability of
the DYN model, speedup factors were calculated using the data provided by the
RLDs. Table 10.9 shows the resulting speedup factors obtained by the DYN model
when applied to the first instance with the best and worst migration stages, taking
SEQ1 as the reference scheme. In order to calculate these factors the following
steps were performed. Firstly, given a model with np islands, a relative speedup
factor spr[np] was calculated with respect to the model with np ÷ 2 islands. In the
case of the parallel models with np = 4 islands, the best sequential configuration—
SEQ1—was used as the reference approach. For this instance, and for each relative
speedup factor, the quality level was set as the lowest median of the original objective
value achieved in 5 hours by the two models considered. The relative speedup was
calculated by dividing the time invested by the model using a lower number of
processors by the time invested by the model using a higher amount of processors.

256



10.4. Experimental Evaluation and Discussion

These times were obtained by considering a 50% success rate. Once the relative
speedup factors were calculated, the resulting speedup factor sp[np] for the model
with np processors was calculated as follows:

sp[np] =

{

spr[np] · sp[np÷2] if np 6= 4
spr[4] if np = 4

(10.7)

The resulting speedup factors for the second instance are shown in Table 10.10. The
aforementioned procedure was also used to calculate these factors, but instead of
using 5 hours, 11.5 hours were considered.

For both instances, the speedup factors increased when the best parallel model
was applied with a larger amount of islands. For example, in the case of the first
instance, the best parallel model with 16 islands obtained a speedup factor equal to
6.29, while the same model considering 32 islands achieved a speedup factor equal
to 15.73. In this case, the relative speedup factor calculated for both models was
greater than one. This means that 50% of the executions performed by the model
with 32 islands achieved the set quality level in less time than the model with 16
islands. However, this was not the case when the corresponding worst parallel model
was applied to each instance. For example, in the case of the second instance, the
worst parallel model with 8 islands obtained a speedup factor equal to 2.57, while
the worst parallel model with 16 islands yielded a speedup factor equal to 1.36. In
this case, the relative speedup factor calculated for both models was lower than
one. This means that 50% of the executions carried out with the model with a
lower number of islands attained the specified quality level in less time than the
model which considered a higher number of islands. Therefore, incorporating a
larger number of processors to the worst-behaved parallel model for each instance
in question did not provide good results.

In order to study the scalability of the DYN model with a larger number of pro-
cessors, it was executed using the best-behaved migration stage for each instance
considering 64 and 128 islands. However, the global stopping criterion was set to
2 hours for both instances due to restrictions on the amount of computational re-
sources available.

Figure 10.13 shows the box plots for the DYN model with up to 128 islands, apply-
ing the corresponding best-behaved migration stage for each instance. Even with
a large number of islands, the quality of the solutions obtained by the DYN model
kept increasing as more resources were considered. In general, the larger the num-
ber of islands, the higher the quality of the solutions obtained. Table 10.11 shows

257



CHAPTER 10. Two-dimensional Packing Problem
5
.1

1
e
+

0
8

5
.1

4
e
+

0
8

5
.1

7
e
+

0
8

First Instance − HAM−R−−RING − 2 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 isl. 8 isl. 16 isl. 32 isl. 64 isl. 128 isl.

9
.9

5
0
e
+

0
8

1
.0

0
5
e
+

0
9

1
.0

1
5
e
+

0
9

Second Instance − ELI−R−−RING − 2 hours

O
ri

g
in

a
l 
O

b
je

c
ti
ve

4 isl. 8 isl. 16 isl. 32 isl. 64 isl. 128 isl.

Figure 10.13: Box plots for the dynamic-mapped island-based model with the best
migration stage for the first and second instances

Table 10.11: Speedup factors for the dynamic-mapped island-based model with the
best migration stage for both instances

64 islands 128 islands

First instance 12.58 41.90
Second instance 20.51 25.02

the speedup factors for the DYN model using the best migration stage for each
instance, applying 64 and 128 islands, and considering SEQ1 as the reference ap-
proach. Speedup factors were obtained following the same procedure used above.
In order to obtain the relative speedup factors for both instances, the quality level
was set at the lowest median of the original objective value obtained by the two
models in question in 2 hours. Note that the calculated speedup factors confirm the
benefits of adding a larger amount of processors. The benefits were more noticeable
in the case of the first instance. Finally, we should note that the use of the DYN
model avoids the requirement of independently executing each low-level configura-
tion considered. Hence, the total amount of time that can be saved is greater than
that shown by the speedup factors calculated.

The executions carried out with np = 128 islands were able to provide better results
than the best previously known solution for the first instance, which was obtained
in the second experiment described in Section 10.4.2. The previous best solution
was obtained by the Multi-Island homogeneous island-based model. Recall that it
was applied considering 4 islands and 12 hours of execution. In order to apply this

258



10.4. Experimental Evaluation and Discussion

 9.6e+08

 9.7e+08

 9.8e+08

 9.9e+08

 1e+09

 1.01e+09

 1.02e+09

 1.03e+09

 1.04e+09

 0  50  100  150  200  250  300  350

O
ri
g
in

a
l 
O

b
je

c
ti
v
e

Time (h)

Second Instance - 32 islands

Multi-objective MAs
EAIPS

Figure 10.14: Long-term evolution of the mean original objective value for the
dynamic-mapped island-based models

homogeneous parallel model, the best low-level configuration for a given instance
had to be identified, requiring many computational experiments beforehand. A
larger number of islands was used in the current experiment to improve on the best
previous solution. Note that, however, the improvement was achieved after only two
hours of execution. Specifically, the original objective value rose from 516, 202, 152
to 517, 199, 441. Furthermore, the use of a larger number of islands was offset by
the reduced time and computational resources needed by the DYN model, since
the preliminary analysis to identify the best low-level configuration required by the
Multi-Island parallel approach was not necessary.

Since the second instance is harder than the first one, larger executions were needed
to improve on the best-known solution for this test case. The previous best solution
was obtained by the DYN model executed with separate low-level configurations
of the single-objective EAIPS [205]. It was applied considering 4 islands and a 6-
hour run time. For this particular test case, the use of multi-objective MAs did not
provide benefits in the short term, as was stated in Section 10.4.2. However, it would
be interesting to determine whether said multi-objective MAs can avoid long-term
stagnation. To do so, the DYN model was executed with 32 islands and considering
the same parameterisation as that used throughout the current experiment. The
ELI-R–RING migration stage was used, while the global stopping criterion was set
to 15 days. Due to the availability of resources, a larger number of processors
was not considered and only one execution was performed. The DYN model based
on the EAIPS was also run for 15 days. Figure 10.14 shows the evolution of the
original objective value for both schemes. Note that, in the short term, the DYN
model based on the EAIPS was superior. In the medium term, both approaches

259



CHAPTER 10. Two-dimensional Packing Problem

behaved similarly. Finally, in the long term, the DYN model based on the multi-
objective MAs provided the best solution. Since only one execution was performed,
the superiority of the latter can not be ensured. However, the original objective
value increased from 1, 032, 619, 547 to 1, 038, 329, 890.

260



Part IV

Conclusions and Future Lines of

Research





Conclusions and Future Lines of

Research

Meta-heuristics, and particularly EAs, have shown their ability to provide high-
quality solutions to a wide range of complex applications. For some optimisation
problems, though, EAs could exhibit the phenomenon called genetic drift—a loss
of diversity in a finite population of individuals—which is the main reason for the
appearance of premature convergence. In this dissertation, various proposals have
been introduced in order to mitigate this issue. First, several novel diversity-based
MOEAs, including diversity-based multi-objective MAs, which are based on well-
known algorithms, such as the NSGA-II and the SPEA2, have been proposed to
deal with the problem of premature convergence when solving single-objective opti-
misation problems. Recall that in diversity-based MOEAs, a metric of the diversity
introduced by each individual is used as an additional objective function, which has
to be simultaneously optimised together with the original objective function of the
single-objective problem in question. Different encoding-independent and genotypic
diversity measures have been taken into account in order to design the diversity-
based objective functions considered. In addition, novel genotypic diversity-based
objectives that incorporate parameters have been proposed. While they are able
to provide better results than those yielded by diversity-based objectives without
parameters, their main drawback lies in the fact that said parameters must be
properly set depending on the problem and/or instance at hand. Second, multi-
objectivisation by aggregation of helper-objectives has also been considered as a
technique to prevent premature convergence. Since the helper-objectives are com-
ponents of the original objective function, they make use of information that de-
pends on the optimisation problem being solved, unlike diversity-based objectives,
which are more general problem-independent approaches. Finally, a novel diversity-
based survivor selection scheme has also been proposed herein. In this scheme the
diversity-based objective is calculated progressively while the individuals to survive
for the next generation are selected.



Besides the drawback of premature convergence, finding the appropriate setting for
an EA remains one of the persistent challenges for EC. Different approaches have
been proposed in this thesis to address this problem. First, a set of novel parame-
ter control schemes based on FLCs has been introduced herein. They incorporate
different rule bases and a score function that allows the most promising set of rules
to be enabled at every instant during the optimisation process. Additionally, they
are able to control different discrete and continuous numeric parameters belonging
to different meta-heuristics, including the parameters defined for the novel geno-
typic diversity-based objective functions. Second, several sequential and parallel
hyper-heuristics have also been applied as parameter control methods. The parallel
hyper-heuristic—the DYN model—is built upon an island-based model, and allows
the candidate low-level configurations to be mapped to the available islands dynam-
ically. Lastly, a novel hybrid control scheme that combines the use of FLCs and
hyper-heuristics has also been introduced in this dissertation. It is able to simulta-
neously adapt symbolic and numeric parameters by combining the benefits of both
types of methods while trying to avoid their drawbacks.

A vast experimental evaluation has been performed by not only considering bench-
mark problems, but also different complex, real-world applications. The results ob-
tained from this extensive experimental evaluation have demonstrated the validity
of the aforementioned proposals. In regard to the diversity-based objective func-
tions considered, it was shown that the genotypic diversity-based objectives were
able to outperform the schemes based on multi-objectivisation by aggregation, i.e.
more general problem-independent approaches provided better performance than
problem-dependent schemes. This is a clear advantage, since the more general tech-
niques can be directly applied to different optimisation problems. Moreover, the
genotypic diversity-based objectives also outperformed the encoding-independent
schemes. With respect to the novel diversity-based objectives with parameters,
they were able to attain better solutions than the diversity-based objectives without
parameters. However, it was proved that the values for these parameters not only
depend on the optimisation problem in question, but also on the current stage of
the optimisation process. Therefore, said parameters must be properly set—and
changed during the execution—in order to obtain promising results. Finally, in gen-
eral, the diversity-based MOEAs provided better results than those obtained by the
single-objective optimisers used as the comparison approaches, thus demonstrating
the advantages of solving single-objective problems by the application of diversity-
based schemes, which were able to mitigate the problem of premature convergence.
Furthermore, the high-quality results yielded by the diversity-based MOEAs offered
significant savings in the computational resources and time invested.

264



At this point, we should note that maintaining a proper diversity might reduce the
convergence speed of the whole optimisation scheme, as was stated with the use of
the novel survivor selection approach. In fact, it was shown that by applying this
survivor selection operator, the convergence speed in the average case decreased; in
exchange, highly sub-optimal results were unavailable in the worst executions. For
some cases, a slower convergence was also detected when diversity-based MOEAs
were compared against some single-objective optimisers, such as the ILS. For these
cases, a homogeneous island-based model was considered in order to speed up the
achievement of high-quality solutions by the diversity-based MOEAs, while enabling
their use in parallel environments. The robustness analysis of this homogeneous
island-based model showed that high-quality results can be obtained regardless of
the migration stage considered. In addition, the scalability analysis revealed the
benefits of adding a larger number of islands to this parallel approach. Lastly,
by applying the homogeneous island-based model, the savings in computational
resources and time were noticeable with respect to the corresponding sequential
variants of the diversity-based MOEAs.

In regard to the different control approaches proposed to deal with the problem
of parameter setting in EAs, we should note that both FLCs and hyper-heuristics
can be applied to obtain promising results. They were successfully used to control
different parameters in the novel diversity-based MOEAs, including the parameters
of the diversity-based objectives presented herein, thus showing their general appli-
cability. Additionally, both types of control schemes can be also used to control the
parameters belonging to other meta-heuristics, and not only to the diversity-based
MOEAs. For a considerable number of problems, both FLCs and hyper-heuristics
did not present statistically significant differences, meaning they can be applied
indistinctly. Other control schemes, such as self-adaptation, did not provide any
benefits with respect to them. It is worth pointing out that the parameter values
of the FLCs and the hyper-heuristics were the same regardless of the optimisation
problem considered. This means that these control approaches are robust, since
for a wide range of problems promising results were obtained without changing the
parameter values. Hence, the parameters of said control methods do not add more
burdens to the configuration of the diversity-based MOEAs, thus facilitating the
application of the latter.

Regarding the hybrid control scheme based on FLCs and hyper-heuristics, it is im-
portant to remark that it was successfully applied to simultaneously adapt several
symbolic and numeric parameters of the diversity-based MOEAs. In addition, we
should note that this was the first time that FLCs and hyper-heuristics were com-
bined into a hybrid control scheme.

265



With respect to the use of parallel control schemes, the DYN model was also able to
adaptively adjust some of the parameters belonging to the diversity-based MOEAs
with success, thus avoiding the need to check for the most suitable configuration
for a certain problem and/or instance. The robustness analyses, in terms of the
migration stage used, revealed that the DYN model is robust when a low number of
islands is considered, since differences among the different migration stages defined
were not statistically significant. For a higher number of processors, however, the
practitioner must carefully select the components used to define the migration stage.
In fact, the scalability studies showed that as the number of islands increases, the
performance of the DYN model is more sensitive to the setting of the migration
stage. The addition of extra islands yielded the best results in the best-behaved
migration stage. In the worst-behaved stage, however, the DYN model did not
profit from the addition of more islands.

The advantages of dynamically altering the parameter values of an EA during its
run, instead of prefixing them before the run starts, i.e. the advantages of parameter
control versus parameter tuning, were demonstrated for most of the problems. For
several cases, the above control schemes yielded superior or at least similar results
to those given by any of the fixed configurations considered, thus showing the clear
superiority of parameter control. Additionally, in every case, a single run of the pa-
rameter control schemes was able to provide similar or even better results than those
obtained by a considerable number of configurations independently executed with
fixed parameter values. Since finding the most suitable fixed values for the param-
eters is a computationally demanding task, the savings in computational resources
and time are evident when using the control approaches proposed throughout this
dissertation.

Finally, it is worth pointing out that by applying the diversity-based approaches
and parameter control schemes proposed in this thesis, the best previously known
solutions for the the FAP and the 2DPP were improved upon.

These results suggest several lines of future work. Only the parameters belonging to
diversity-based MOEAs were adapted by the use of the different parameter control
approaches introduced herein. As a result, it would be interesting to apply the
control schemes to other types of meta-heuristics and/or EAs. Another promising
line of research could be the application of the control approaches to “pure” multi-
objective optimisers. Lastly, enabling the hybrid control scheme based on FLCs and
hyper-heuristics for use in parallel environments would be another interesting line
of future work.

266



Part V

Appendices





Appendix

A

List of Publications

This appendix introduces the set of publications that emerged from the different
topics considered in this dissertation. The listing includes book chapters, articles
published in international journals of relevance to the particular research field, and
contributions to international conferences reviewed by committees to ensure the
quality and validity of the works selected.

Book Chapters

[1] C. Segura, E. Segredo, and C. León. Analysing the robustness of multiobjectivi-
sation approaches applied to large scale optimisation problems. In E. Tantar,
A.-A. Tantar, P. Bouvry, P. Del Moral, P. Legrand, C. A. Coello Coello, and
O. Schütze, editors, EVOLVE- A Bridge between Probability, Set Oriented Nu-
merics and Evolutionary Computation, volume 447 of Studies in Computational
Intelligence, pages 365–391. Springer Berlin Heidelberg, 2013.

International Journals

[1] E. Segredo, C. Segura, and C. León. Fuzzy logic-controlled diversity-based multi-
objective memetic algorithm applied to a frequency assignment problem. Engi-
neering Applications of Artificial Intelligence, 30(0):199 – 212, 2014.



INTERNATIONAL CONFERENCES

[2] E. Segredo, C. Segura, and C. León. Memetic algorithms and hyperheuristics
applied to a multiobjectivised two-dimensional packing problem. Journal of
Global Optimization, 58(4):769–794, 2014.

[3] C. Segura, C. A. Coello Coello, E. Segredo, and C. León. On the adaptation of
the mutation scale factor in differential evolution. Optimization Letters, pages
1–10, 2014.

[4] C. Segura, E. Segredo, and C. León. Scalability and robustness of parallel hy-
perheuristics applied to a multiobjectivised frequency assignment problem. Soft
Computing, 17(6):1077–1093, 2013.

International Conferences

[1] R. Batista, E. Segredo, C. Segura, C. León, and C. Rodŕıguez. Solving the
unknown complexity formula problem with genetic programming. In I. Rojas,
G. Joya, and J. Gabestany, editors, Advances in Computational Intelligence,
volume 7902 of Lecture Notes in Computer Science, pages 232–240. Springer
Berlin Heidelberg, 2013.

[2] C. León, G. Miranda, E. Segredo, and C. Segura. Parallel hypervolume-guided
hyperheuristic for adapting the multi-objective evolutionary island model. In
N. Krasnogor, B. Melián-Batista, J. A. Moreno, J. M. Moreno-Vega, and
D. Pelta, editors, Nature Inspired Cooperative Strategies for Optimization
(NICSO 2008), volume 236 of Studies in Computational Intelligence, pages
261–272. Springer Berlin Heidelberg, 2009.

[3] C. León, G. Miranda, E. Segredo, and C. Segura. Parallel library of multi-
objective evolutionary algorithms. In 2009 17th Euromicro International Con-
ference on Parallel, Distributed and Network-based Processing (PDP), pages
28–35, Feb 2009.

[4] E. Segredo, C. Rodŕıguez, and C. León. Solving the parameter setting in multi-
objective evolutionary algorithms using Grid::Cluster. In A. Leon F. de Car-
valho, S. Rodŕıguez-González, J. Paz Santana, and J. Corchado, editors, Dis-
tributed Computing and Artificial Intelligence, volume 79 of Advances in Intel-
ligent and Soft Computing, pages 489–496. Springer Berlin Heidelberg, 2010.

[5] E. Segredo, C. Segura, and C. León. Analysing the adaptation level of parallel
hyperheuristics applied to mono-objective optimisation problems. In D. Pelta,

270



INTERNATIONAL CONFERENCES

N. Krasnogor, D. Dumitrescu, C. Chira, and R. Lung, editors, Nature Inspired
Cooperative Strategies for Optimization (NICSO 2011), volume 387 of Studies
in Computational Intelligence, pages 169–182. Springer Berlin Heidelberg, 2011.

[6] E. Segredo, C. Segura, and C. León. A multiobjectivised memetic algorithm
for the frequency assignment problem. In 2011 IEEE Congress on Evolutionary
Computation (CEC), pages 1132–1139, June 2011.

[7] E. Segredo, C. Segura, and C. León. On the comparison of parallel island-
based models for the multiobjectivised antenna positioning problem. In
A. König, A. Dengel, K. Hinkelmann, K. Kise, R. Howlett, and L. Jain, editors,
Knowledge-Based and Intelligent Information and Engineering Systems, volume
6881 of Lecture Notes in Computer Science, pages 32–41. Springer Berlin Hei-
delberg, 2011.

[8] E. Segredo, C. Segura, and C. León. Analysing the robustness of multiobjec-
tivisation parameters with large scale optimisation problems. In 2012 IEEE
Congress on Evolutionary Computation (CEC), pages 1–8, June 2012.

[9] E. Segredo, C. Segura, and C. León. Control of numeric and symbolic param-
eters with a hybrid scheme based on fuzzy logic and hyper-heuristics. In 2014
IEEE Congress on Evolutionary Computation (CEC), June 2014. In Press.

[10] C. Segura, A. Cervantes, A. Nebro, M. Jaráız-Simón, E. Segredo, S. Garćıa,
F. Luna, J. Gómez-Pulido, G. Miranda, C. Luque, E. Alba, M. Vega-Rodŕıguez,
C. León, and I. Galván. Optimizing the DFCN broadcast protocol with a
parallel cooperative strategy of multi-objective evolutionary algorithms. In
M. Ehrgott, C. Fonseca, X. Gandibleux, J.-K. Hao, and M. Sevaux, editors,
Evolutionary Multi-Criterion Optimization, volume 5467 of Lecture Notes in
Computer Science, pages 305–319. Springer Berlin Heidelberg, 2009.

[11] C. Segura, C. A. Coello Coello, E. Segredo, and C. León. An analysis of the
automatic adaptation of the crossover rate in differential evolution. In 2014
IEEE Congress on Evolutionary Computation (CEC), June 2014. In Press.

[12] C. Segura, C. A. Coello Coello, E. Segredo, G. Miranda, and C. León. Improving
the diversity preservation of multi-objective approaches used for single-objective
optimization. In 2013 IEEE Congress on Evolutionary Computation (CEC),
pages 3198–3205, June 2013.

[13] C. Segura, E. Segredo, Y. González, and C. León. Multiobjectivisation of
the antenna positioning problem. In A. Abraham, J. Corchado, S. Rodŕıguez-
González, and J. Paz Santana, editors, International Symposium on Distributed

271



INTERNATIONAL CONFERENCES

Computing and Artificial Intelligence, volume 91 of Advances in Intelligent and
Soft Computing, pages 319–327. Springer Berlin Heidelberg, 2011.

[14] C. Segura, E. Segredo, and C. León. Analysing the robustness of multi-
objectivisation approaches applied to large scale optimisation problems. In
EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolu-
tionary Computation, pages 1–4, May 2011.

[15] C. Segura, E. Segredo, and C. León. Parallel island-based multiobjectivised
memetic algorithms for a 2D packing problem. In Proceedings of the 13th An-
nual Conference on Genetic and Evolutionary Computation, GECCO ’11, pages
1611–1618, New York, NY, USA, 2011. ACM.

[16] C. Segura, E. Segredo, and C. León. Analysing the adaptation level of paral-
lel hyperheuristics applied to multiobjectivised benchmark problems. In 2012
20th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP), pages 138–145, Feb 2012.

[17] C. Segura, E. Segredo, and C. León. Parallel hyperheuristics for a multiobjec-
tivised 2D packing problem. In Proceedings of the 9th ESICUP meeting, pages
20–20, March 2012.

272



Appendix

B

Fuzzy Rule Bases

B.1 Fuzzy Rule Bases for the fuzzy-a and fuzzy-

a-tsk Approaches

Table B.1: Rule base number 0 (left-hand side) and number 1 (right-hand side) to
control the mutation rate pm, and the parameter R of the Neighbour-based Mutation

Rules Inputs Output
id p-in imp var p-out
1 l l l pl
2 l l m pl
3 l l h nl
4 l m - z
5 l h - z
6 lmb l - nm
7 lmb m - nl
8 lmb h - z
9 lma l - nh
10 lma m - nl
11 lma h - z
12 m l - nu
13 m m - nl
14 m h - z
15 mha l - ng
16 mha m - nl
17 mha h - z
18 mhb l - ng
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp var p-out
1 l l - pm
2 l m - pl
3 l h - z
4 lmb l l pl
5 lmb l m pl
6 lmb l h nl
7 lmb m - z
8 lmb h - z
9 lma l - nm
10 lma m - nl
11 lma h - z
12 m l - nh
13 m m - nl
14 m h - z
15 mha l - nu
16 mha m - nl
17 mha h - z
18 mhb l - ng
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z



CHAPTER B. Fuzzy Rule Bases

Table B.2: Rule base number 2 (left-hand side) and number 3 (right-hand side) to
control the mutation rate pm, and the parameter R of the Neighbour-based Mutation

Rules Inputs Output
id p-in imp var p-out
1 l l - ph
2 l m - pl
3 l h - z
4 lmb l - pm
5 lmb m - pl
6 lmb h - z
7 lma l l pl
8 lma l m pl
9 lma l h nl
10 lma m - z
11 lma h - z
12 m l - nm
13 m m - nl
14 m h - z
15 mha l - nh
16 mha m - nl
17 mha h - z
18 mhb l - nu
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp var p-out
1 l l - pu
2 l m - pl
3 l h - z
4 lmb l - ph
5 lmb m - pl
6 lmb h - z
7 lma l - pm
8 lma m - pl
9 lma h - z
10 m l l pl
11 m l m pl
12 m l h nl
13 m m - z
14 m h - z
15 mha l - nm
16 mha m - nl
17 mha h - z
18 mhb l - nh
19 mhb m - nl
20 mhb h - z
21 h l - nu
22 h m - nl
23 h h - z

274



B.1. Fuzzy Rule Bases for the fuzzy-a and fuzzy-a-tsk Approaches

Table B.3: Rule base number 4 (left-hand side) and number 5 (right-hand side) to
control the mutation rate pm, and the parameter R of the Neighbour-based Mutation

Rules Inputs Output
id p-in imp var p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pu
5 lmb m - pl
6 lmb h - z
7 lma l - ph
8 lma m - pl
9 lma h - z
10 m l - pm
11 m m - pl
12 m h - z
13 mha l l pl
14 mha l m pl
15 mha l h nl
16 mha m - z
17 mha h - z
18 mhb l - nm
19 mhb m - nl
20 mhb h - z
21 h l - nh
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp var p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pg
5 lmb m - pl
6 lmb h - z
7 lma l - pu
8 lma m - pl
9 lma h - z
10 m l - ph
11 m m - pl
12 m h - z
13 mha l - pm
14 mha m - pl
15 mha h - z
16 mhb l l pl
17 mhb l m pl
18 mhb l h nl
19 mhb m - z
20 mhb h - z
21 h l - nm
22 h m - nl
23 h h - z

275



CHAPTER B. Fuzzy Rule Bases

Table B.4: Rule base number 6 to control the mutation rate pm, and the parameter
R of the Neighbour-based Mutation

Rules Inputs Output
id p-in imp var p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pg
5 lmb m - pl
6 lmb h - z
7 lma l - pg
8 lma m - pl
9 lma h - z
10 m l - pu
11 m m - pl
12 m h - z
13 mha l - ph
14 mha m - pl
15 mha h - z
16 mhb l - pm
17 mhb m - pl
18 mhb h - z
19 h l l pl
20 h l m pl
21 h l h nl
22 h m - z
23 h h - z

276



B.1. Fuzzy Rule Bases for the fuzzy-a and fuzzy-a-tsk Approaches

Table B.5: Rule base number 0 (left-hand side) and number 1 (right-hand side) to
control the threshold ratio th of the diversity-based objectives with parameters

Rules Inputs Output
id p-in imp var p-out
1 l l l nl
2 l l m nl
3 l l h pl
4 l m - z
5 l h - z
6 lmb l - nm
7 lmb m - nl
8 lmb h - z
9 lma l - nh
10 lma m - nl
11 lma h - z
12 m l - nu
13 m m - nl
14 m h - z
15 mha l - ng
16 mha m - nl
17 mha h - z
18 mhb l - ng
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp var p-out
1 l l - pm
2 l m - pl
3 l h - z
4 lmb l l nl
5 lmb l m nl
6 lmb l h pl
7 lmb m - z
8 lmb h - z
9 lma l - nm
10 lma m - nl
11 lma h - z
12 m l - nh
13 m m - nl
14 m h - z
15 mha l - nu
16 mha m - nl
17 mha h - z
18 mhb l - ng
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

277



CHAPTER B. Fuzzy Rule Bases

Table B.6: Rule base number 2 (left-hand side) and number 3 (right-hand side) to
control the threshold ratio th of the diversity-based objectives with parameters

Rules Inputs Output
id p-in imp var p-out
1 l l - ph
2 l m - pl
3 l h - z
4 lmb l - pm
5 lmb m - pl
6 lmb h - z
7 lma l l nl
8 lma l m nl
9 lma l h pl
10 lma m - z
11 lma h - z
12 m l - nm
13 m m - nl
14 m h - z
15 mha l - nh
16 mha m - nl
17 mha h - z
18 mhb l - nu
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp var p-out
1 l l - pu
2 l m - pl
3 l h - z
4 lmb l - ph
5 lmb m - pl
6 lmb h - z
7 lma l - pm
8 lma m - pl
9 lma h - z
10 m l l nl
11 m l m nl
12 m l h pl
13 m m - z
14 m h - z
15 mha l - nm
16 mha m - nl
17 mha h - z
18 mhb l - nh
19 mhb m - nl
20 mhb h - z
21 h l - nu
22 h m - nl
23 h h - z

278



B.1. Fuzzy Rule Bases for the fuzzy-a and fuzzy-a-tsk Approaches

Table B.7: Rule base number 4 (left-hand side) and number 5 (right-hand side) to
control the threshold ratio th of the diversity-based objectives with parameters

Rules Inputs Output
id p-in imp var p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pu
5 lmb m - pl
6 lmb h - z
7 lma l - ph
8 lma m - pl
9 lma h - z
10 m l - pm
11 m m - pl
12 m h - z
13 mha l l nl
14 mha l m nl
15 mha l h pl
16 mha m - z
17 mha h - z
18 mhb l - nm
19 mhb m - nl
20 mhb h - z
21 h l - nh
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp var p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pg
5 lmb m - pl
6 lmb h - z
7 lma l - pu
8 lma m - pl
9 lma h - z
10 m l - ph
11 m m - pl
12 m h - z
13 mha l - pm
14 mha m - pl
15 mha h - z
16 mhb l l nl
17 mhb l m nl
18 mhb l h pl
19 mhb m - z
20 mhb h - z
21 h l - nm
22 h m - nl
23 h h - z

279



CHAPTER B. Fuzzy Rule Bases

Table B.8: Rule base number 6 to control the threshold ratio th of the diversity-
based objectives with parameters

Rules Inputs Output
id p-in imp var p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pg
5 lmb m - pl
6 lmb h - z
7 lma l - pg
8 lma m - pl
9 lma h - z
10 m l - pu
11 m m - pl
12 m h - z
13 mha l - ph
14 mha m - pl
15 mha h - z
16 mhb l - pm
17 mhb m - pl
18 mhb h - z
19 h l l nl
20 h l m nl
21 h l h pl
22 h m - z
23 h h - z

280



B.2. Fuzzy Rule Bases for the fuzzy-b and fuzzy-b-tsk Approaches

B.2 Fuzzy Rule Bases for the fuzzy-b and fuzzy-

b-tsk Approaches

Table B.9: Rule base number 0 (left-hand side) and number 1 (right-hand side) to
control the mutation rate pm, the parameter R of the Neighbour-based Mutation,
and the threshold ratio th of the diversity-based objectives with parameters

Rules Inputs Output
id p-in imp best-p-in p-out
1 l l l nl
2 l l m pl
3 l l h pl
4 l m - z
5 l h - z
6 lmb l - nm
7 lmb m - nl
8 lmb h - z
9 lma l - nh
10 lma m - nl
11 lma h - z
12 m l - nu
13 m m - nl
14 m h - z
15 mha l - ng
16 mha m - nl
17 mha h - z
18 mhb l - ng
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp best-p-in p-out
1 l l - pm
2 l m - pl
3 l h - z
4 lmb l l nl
5 lmb l m pl
6 lmb l h pl
7 lmb m - z
8 lmb h - z
9 lma l - nm
10 lma m - nl
11 lma h - z
12 m l - nh
13 m m - nl
14 m h - z
15 mha l - nu
16 mha m - nl
17 mha h - z
18 mhb l - ng
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

281



Table B.10: Rule base number 2 (left-hand side) and number 3 (right-hand side) to
control the mutation rate pm, the parameter R of the Neighbour-based Mutation,
and the threshold ratio th of the diversity-based objectives with parameters

Rules Inputs Output
id p-in imp best-p-in p-out
1 l l - ph
2 l m - pl
3 l h - z
4 lmb l - pm
5 lmb m - pl
6 lmb h - z
7 lma l l nl
8 lma l m pl
9 lma l h pl
10 lma m - z
11 lma h - z
12 m l - nm
13 m m - nl
14 m h - z
15 mha l - nh
16 mha m - nl
17 mha h - z
18 mhb l - nu
19 mhb m - nl
20 mhb h - z
21 h l - ng
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp best-p-in p-out
1 l l - pu
2 l m - pl
3 l h - z
4 lmb l - ph
5 lmb m - pl
6 lmb h - z
7 lma l - pm
8 lma m - pl
9 lma h - z
10 m l l nl
11 m l m z
12 m l h pl
13 m m - z
14 m h - z
15 mha l - nm
16 mha m - nl
17 mha h - z
18 mhb l - nh
19 mhb m - nl
20 mhb h - z
21 h l - nu
22 h m - nl
23 h h - z



Table B.11: Rule base number 4 (left-hand side) and number 5 (right-hand side) to
control the mutation rate pm, the parameter R of the Neighbour-based Mutation,
and the threshold ratio th of the diversity-based objectives with parameters

Rules Inputs Output
id p-in imp best-p-in p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pu
5 lmb m - pl
6 lmb h - z
7 lma l - ph
8 lma m - pl
9 lma h - z
10 m l - pm
11 m m - pl
12 m h - z
13 mha l l nl
14 mha l m nl
15 mha l h pl
16 mha m - z
17 mha h - z
18 mhb l - nm
19 mhb m - nl
20 mhb h - z
21 h l - nh
22 h m - nl
23 h h - z

Rules Inputs Output
id p-in imp best-p-in p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pg
5 lmb m - pl
6 lmb h - z
7 lma l - pu
8 lma m - pl
9 lma h - z
10 m l - ph
11 m m - pl
12 m h - z
13 mha l - pm
14 mha m - pl
15 mha h - z
16 mhb l l nl
17 mhb l m nl
18 mhb l h pl
19 mhb m - z
20 mhb h - z
21 h l - nm
22 h m - nl
23 h h - z



Table B.12: Rule base number 6 to control the mutation rate pm, the parameter R
of the Neighbour-based Mutation, and the threshold ratio th of the diversity-based
objectives with parameters

Rules Inputs Output
id p-in imp best-p-in p-out
1 l l - pg
2 l m - pl
3 l h - z
4 lmb l - pg
5 lmb m - pl
6 lmb h - z
7 lma l - pg
8 lma m - pl
9 lma h - z
10 m l - pu
11 m m - pl
12 m h - z
13 mha l - ph
14 mha m - pl
15 mha h - z
16 mhb l - pm
17 mhb m - pl
18 mhb h - z
19 h l l nl
20 h l m nl
21 h l h pl
22 h m - z
23 h h - z



Bibliography

[1] K. I. Aardal, S. P. M. V. Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sas-
sano. Models and solution techniques for frequency assignment problems.
Annals of Operations Research, 153(1):79–129, 2007.

[2] H. A. Abbass and K. Deb. Searching under multi-evolutionary pressures. In
Proceedings of the Fourth Conference on Evolutionary Multi-Criterion Opti-
mization, pages 391–404. Springer-Verlag, 2003.

[3] K. Abdi, M. Fathian, and E. Safari. A novel algorithm based on hybridization
of artificial immune system and simulated annealing for clustering problem.
International Journal of Advanced Manufacturing Technology, 60(5-8):723–
732, 2012.

[4] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional
experimental designs and local search. Oper. Res., 54(1):99–114, Jan. 2006.

[5] E. Alba. Evolutionary algorithms for optimal placement of antennae in radio
network design. In Proceedings of the 18th International Parallel and Dis-
tributed Processing Symposium, page 168, April 2004.

[6] A. Alsheddy and M. Kampouridis. Off-line parameter tuning for guided local
search using genetic programming. In 2012 IEEE Congress on Evolutionary
Computation (CEC), pages 1–5, June 2012.

[7] E. Amaldi, A. Capone, F. Malucelli, and C. Mannino. Optimization problems
and models for planning cellular networks. In Handbook of Optimization in
Telecommunication, pages 917–939. Springer, 2006.

[8] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York,
NY, USA, 1967. ACM.



BIBLIOGRAPHY

[9] P. J. Angeline. Adaptive and self-adaptive evolutionary computations. In
Computational Intelligence: A Dynamic Systems Perspective, pages 152 – 163.
IEEE Press, 1995.

[10] J. Arabas, Z. Michalewicz, and J. Mulawka. GAVaPS-a genetic algorithm
with varying population size. In Proceedings of the First IEEE Conference on
Evolutionary Computation, 1994. IEEE World Congress on Computational
Intelligence, pages 73–78 vol.1, Jun 1994.

[11] Argonne National Laboratory. MPICH User’s Guide. Version 3.0.4, 2013.
http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4-userguide.pdf.

[12] A. Avenali, C. Mannino, and A. Sassano. Minimizing the span of d-walks
to compute optimum frequency assignments. Mathematical Programming,
91(2):357–374, 2002.

[13] T. Bäck. The interaction of mutation rate, selection, and self-adaptation
within a genetic algorithm. In R. Männer and B. Manderick, editors, Proceed-
ings of the 2nd Conference on Parallel Problem Solving from Nature. North-
Holland, Amsterdam, 1992.

[14] T. Bäck. Self-adaptation in genetic algorithms. In Proceedings of the First
European Conference on Artificial Life, pages 263–271. MIT Press, 1992.

[15] T. Bäck. Optimal mutation rates in genetic search. In Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 2–8. Morgan Kauf-
mann, 1993.

[16] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University
Press, Oxford, UK, 1996.

[17] T. Bäck. Self-adaptation. In T. Bäck, D. Fogel, and Z. Michalewicz, editors,
Evolutionary Computation 2: Advanced Algorithms and Operators, chapter 21,
pages 188 – 211. Institute of Physics Publishing, Bristol, 2000.

[18] T. Bäck, A. E. Eiben, and N. A. L. van der Vaart. An empirical study on
gas ”without parameters”. In Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature, PPSN VI, pages 315–324, London,
UK, UK, 2000. Springer-Verlag.

[19] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation. Institute of Physics Publishing, Bristol, UK, 1st edition, 1997.

286



BIBLIOGRAPHY

[20] T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms for pa-
rameter optimization. Evol. Comput., 1(1):1–23, Mar. 1993.

[21] M. Bader-El-Den and R. Poli. Generating SAT Local-Search Heuristics Using
a GP Hyper-Heuristic Framework. In N. Monmarché, E.-G. Talbi, P. Collet,
M. Schoenauer, and E. Lutton, editors, Artificial Evolution, volume 4926 of
Lecture Notes in Computer Science, pages 37–49. Springer Berlin / Heidelberg,
2008.

[22] R. Bai. An Investigation of Novel Approaches for Optimising Retail Shelf
Space Allocation. PhD thesis, School of Computer Science and Information
Technology, University of Nottingham, Nottingham, United Kingdom, 2005.

[23] P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for
the f-race algorithm: Sampling design and iterative refinement. In T. Bartz-
Beielstein, M. J. Blesa Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph,
and M. Sampels, editors, Hybrid Metaheuristics, volume 4771 of Lecture Notes
in Computer Science, pages 108–122. Springer Berlin Heidelberg, 2007.

[24] S. Baluja. Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Technical
report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

[25] R. Barr, B. Golden, J. Kelly, M. Resende, and J. Stewart, WilliamR. Designing
and reporting on computational experiments with heuristic methods. Journal
of Heuristics, 1(1):9–32, 1995.

[26] T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M.Preuss, editors. Ex-
perimental Methods for the Analysis of Optimization Algorithms. Springer,
2010.

[27] T. Bartz-Beielstein, M. Parsopoulos, and M. Vrahatis. Analysis of particle
swarm optimization using computational statistics. In Chalkis, editor, Pro-
ceedings of the International Conference of Numerical Analysis and Applied
Mathematics, ICNAAM 2004, pages 34–37. Wiley, 1994.

[28] E. B. Baum. Towards practical ‘neural’ computation for combinatorial opti-
mization problems. In AIP Conference Proceedings 151 on Neural Networks
for Computing, pages 53–58, Woodbury, NY, USA, 1987. American Institute
of Physics Inc.

[29] J. Baxter. Local optima avoidance in depot location. The Journal of the
Operational Research Society, 32(9):pp. 815–819, 1981.

287



BIBLIOGRAPHY

[30] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[31] H. Bersini and F. Varela. Hints for adaptive problem solving gleaned from
immune networks. In H.-P. Schwefel and R. Männer, editors, Parallel Problem
Solving from Nature, volume 496 of Lecture Notes in Computer Science, pages
343–354. Springer Berlin Heidelberg, 1991.

[32] M. Biazzini, B. Banhelyi, A. Montresor, and M. Jelasity. Distributed hyper-
heuristics for real parameter optimization. In Proceedings of the 11th An-
nual conference on Genetic and evolutionary computation, GECCO ’09, pages
1339–1346, New York, NY, USA, 2009. ACM.

[33] M. Birattari. F-race for tuning metaheuristics. In Tuning Metaheuristics,
volume 197 of Studies in Computational Intelligence, pages 85–115. Springer
Berlin Heidelberg, 2009.

[34] J. Blazewicz, E. K. Burke, G. Kendall, W. Mruczkiewicz, C. Oguz, and
A. Swiercz. A hyper-heuristic approach to sequencing by hybridization of
DNA sequences. Annals of Operations Research, 207(1):27–41, 2013.

[35] J. Blazewicz and R. Walkowiak. A new parallel approach for multi-dimensional
packing problem. In 4th International Conference on Parallel Processing and
Applied Mathematics (PPAM), volume 2328 of LNCS, pages 194–201. Nalec-
zow, Poland, Springer Berlin, September 2002.

[36] S. Bleuler, J. Bader, and E. Zitzler. Reducing Bloat in GP with Multiple Ob-
jectives. In J. Knowles, D. Corne, K. Deb, and D. Chair, editors, Multiobjec-
tive Problem Solving from Nature, Natural Computing Series, pages 177–200.
Springer Berlin Heidelberg, 2008.

[37] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison. ACM Computing Surveys, 35(3):268–
308, 2003.

[38] R. Borndörfer, A. Eisenblätter, M. Grötschel, and A. Martin. Frequency as-
signment in cellular phone networks. Annals of Operations Research, 76:73–93,
1998.

[39] G. Brassard and P. Bratley. Fundamentals of Algorithms. Prentice-Hall, New
Jersey, 1996.

[40] H. J. Bremermann. The evolution of intelligence. The nervous system as a
model of its environment. Technical Report 1, Contract No. 477(17), Depart-
ment of Mathematics, University of Washington, Seattle, July 1958.

288



BIBLIOGRAPHY

[41] H. J. Bremermann. Optimization through evolution and recombination. In
M. C. Yovits, G. T. Jacobi, and G. D. Goldstein, editors, Self-Organizing
Systems, pages 93–106. Spartan Books, Washington, D.C., 1962.

[42] F. H. Brito, A. N. Teixeira, O. N. Teixeira, and R. C. L. Oliveira. A fuzzy
intelligent controller for genetic algorithms’ parameters. In L. Jiao, L. Wang,
X.-b. Gao, J. Liu, and F. Wu, editors, Advances in Natural Computation,
volume 4221 of Lecture Notes in Computer Science, pages 633–642. Springer
Berlin Heidelberg, 2006.

[43] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and E. Zit-
zler. Do additional objectives make a problem harder? In Proceedings of the
9th annual conference on Genetic and evolutionary computation, GECCO ’07,
pages 765–772, New York, NY, USA, 2007. ACM.

[44] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and E. Zit-
zler. On the Effects of Adding Objectives to Plateau Functions. IEEE Trans.
Evol. Comput., 13(3):591–603, 2009.

[45] L. T. Bui, H. Abbass, and J. Branke. Multiobjective optimization for dynamic
environments. In The 2005 IEEE Congress on Evolutionary Computation,
volume 3, pages 2349–2356 Vol. 3, Sept 2005.

[46] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
R. Qu. Hyper-heuristics: a survey of the state of the art. J Oper Res Soc,
64(12):1695–1724, Dec 2013.

[47] E. K. Burke, M. Hyde, and G. Kendall. Grammatical evolution of local search
heuristics. IEEE Transactions on Evolutionary Computation, 16(3):406–417,
June 2012.

[48] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Wood-
ward. A classification of hyper-heuristic approaches. In M. Gendreau and
J.-Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of Interna-
tional Series in Operations Research & Management Science, pages 449–468.
Springer US, 2010.

[49] E. K. Burke and G. Kendall. Search Methodologies. Springer US, 2014.

[50] E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg.
Hyper-heuristics: An emerging direction in modern search technology. In
F. Glover and G. A. Kochenberger, editors, Handbook of Metaheuristics, vol-

289



BIBLIOGRAPHY

ume 57 of International Series in Operations Research & Management Science,
pages 457–474. Springer US, 2003.

[51] E. K. Burke, G. Kendall, and E. Soubeiga. A Tabu-Search Hyperheuristic for
Timetabling and Rostering. Journal of Heuristics, 9(6):451–470, 2003.

[52] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[53] M. Buzdalov and A. Buzdalova. Adaptive selection of helper-objectives for
test case generation. In 2013 IEEE Congress on Evolutionary Computation
(CEC), pages 2245–2250, 2013.

[54] A. Buzdalova, M. Buzdalov, and V. Parfenov. Generation of tests for pro-
gramming challenge tasks using helper-objectives. In G. Ruhe and Y. Zhang,
editors, Search Based Software Engineering, volume 8084 of Lecture Notes in
Computer Science, pages 300–305. Springer Berlin Heidelberg, 2013.

[55] C. L. Li and Z.L. Chen. Binpacking Problem with Concave Costs of Bin
Utilization. Naval Research Logistics, 53:298–308, 2006.

[56] P. Caamaño, A. Prieto, J. Becerra, F. Bellas, and R. Duro. Real-valued multi-
modal fitness landscape characterization for evolution. In K. Wong, B. Mendis,
and A. Bouzerdoum, editors, Neural Information Processing. Theory and Al-
gorithms, volume 6443 of Lecture Notes in Computer Science, pages 567–574.
Springer Berlin / Heidelberg, 2010.

[57] J. Caldeŕın, A. Masegosa, A. Suárez, and D. Pelta. Adaptation schemes and
dynamic optimization problems: A basic study on the adaptive hill climbing
memetic algorithm. Studies in Computational Intelligence, 512:85–97, 2014.

[58] W. B. Cannon. The Wisdom of the Body. The Norton Library, 1932.

[59] E. Cantú-Paz. A survey of parallel genetic algorithms. Technical report,
University of Illinois at Urbana-Champaign, 1997.

[60] E. Cantú-Paz. Migration policies, selection pressure, and parallel evolutionary
algorithms. Journal of Heuristics, 7:311–334, 2001.

[61] M. Caserta and S. Voß. Metaheuristics: Intelligent problem solving. In
V. Maniezzo, T. Stützle, and S. Voß, editors, Matheuristics, volume 10 of
Annals of Information Systems, pages 1–38. Springer US, 2010.

[62] O. Castillo, A. Melendez, P. Melin, and L. Astudillo. Neuro-fuzzy fitness in
a genetic algorithm for optimal fuzzy controller design. In The 2013 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 1–5, 2013.

290



BIBLIOGRAPHY

[63] O. Castillo, H. Neyoy, J. Soria, M. Garćıa, and F. Valdez. Dynamic fuzzy
logic parameter tuning for ACO and its application in the fuzzy logic control
of an autonomous mobile robot. International Journal of Advanced Robotic
Systems, 10, 2013.

[64] K. Chakhlevitch and P. I. Cowling. Hyperheuristics: Recent developments.
In C. Cotta, M. Sevaux, and K. Sörensen, editors, Adaptive and Multilevel
Metaheuristics, volume 136 of Studies in Computational Intelligence, pages
3–29. Springer, 2008.

[65] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming. The MIT Press, 2007.

[66] I. Charon. The noising methods: A generalization of some metaheuristics.
European Journal Of Operational Research, 135(1):86–101, 2001.

[67] A. Chatterjee. Differential evolution tuned fuzzy supervisor adapted extended
kalman filtering for slam problems in mobile robots. Robotica, 27(3):411–423,
May 2009.

[68] C.-L. Chen and C.-P. Weng. A fuzzy multi-objective genetic algorithm ap-
proach to optimal parameter design for laser electrophotographic systems. In
Proceedings of the 4th IEEE Conference on Industrial Electronics and Appli-
cations, 2009. ICIEA 2009, pages 2786 –2791, may 2009.

[69] C. A. Coello Coello. Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: a survey of the state of the art. Computer
Methods in Applied Mechanics and Engineering, 191:1245–1287, 2002.

[70] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Basic concepts.
In Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic and
Evolutionary Computation Series, pages 1–60. Springer US, 2007.

[71] J. L. Cohon and D. H. Marks. A review and evaluation of multiobjective
programing techniques. Water Resources Research, 11(2):208–220, 1975.

[72] S. Cook. The P versus NP problem. In Clay Mathematical Institute; The
Millennium Prize Problem, 2000.

[73] O. Cordon, F. Herrera, and P. Villar. Generating the knowledge base of a fuzzy
rule-based system by the genetic learning of the data base. IEEE Transactions
on Fuzzy Systems, 9(4):667–674, 2001.

291



BIBLIOGRAPHY

[74] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT Press, 2009.

[75] D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V.
Price, editors. New ideas in optimization. McGraw-Hill Ltd., UK, Maidenhead,
UK, England, 1999.

[76] G. Corriveau, R. Guilbault, A. Tahan, and R. Sabourin. Review and study
of genotypic diversity measures for real-coded representations. IEEE Trans-
actions on Evolutionary Computation, 16(5):695–710, 2012.

[77] G. Corriveau, R. Guilbault, A. Tahan, and R. Sabourin. Review of phenotypic
diversity formulations for diagnostic tool. Applied Soft Computing Journal,
13(1):9–26, 2013.

[78] P. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic
genetic algorithm applied to a trainer scheduling problem. In Proceedings of
the 2002 IEEE Congress on Evolutionary Computation (CEC 2002), pages
1185–1190, Honolulu, Hawaii, 2002. IEEE Computer Society.

[79] P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic for
scheduling a sales summit. In Proceedings of 4th Metahuristics International
Conference (MIC 2001), pages 127–131, Porto Portugal, July 16-20 2001.

[80] P. I. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to
scheduling a sales summit. In Selected papers from the Third International
Conference on Practice and Theory of Automated Timetabling III, PATAT
’00, pages 176–190, London, UK, UK, 2001. Springer-Verlag.

[81] S. Coy, B. Golden, G. Runger, and E. Wasil. Using experimental design to find
effective parameter settings for heuristics. Journal of Heuristics, 7(1):77–97,
2001.

[82] T. Crainic and M. Toulouse. Parallel Meta-Heuristics. Technical Report
CIRRELT-2009-22, Interuniversity Research Centre on Enterprise Networks,
Logistics and Transportation (CIRRELT), May 2009.

[83] A. Czarn, C. MacNish, K. Vijayan, B. Turlach, and R. Gupta. Statistical
exploratory analysis of genetic algorithms. IEEE Transactions on Evolutionary
Computation, 8(4):405–421, 2004.

[84] L. Davis. Adapting operator probabilities in genetic algorithms. In Proceedings
of the Third International Conference on Genetic Algorithms, pages 61–69,
San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

292



BIBLIOGRAPHY

[85] R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 1990.

[86] J. de Armas, G. Miranda, and C. León. Hyperheuristic encoding scheme for
multi-objective guillotine cutting problems. In Proceedings of the 13th an-
nual conference on Genetic and evolutionary computation, GECCO ’11, pages
1683–1690, New York, NY, USA, 2011. ACM.

[87] E. D. de Jong, R. A. Watson, and J. B. Pollack. Reducing Bloat and Promot-
ing Diversity using Multi-Objective Methods. In L. Spector, E. D. Goodman,
A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. K. Burke, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO’01, pages 11–18, San Francisco,
California, USA, 2001. Morgan Kaufmann.

[88] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

[89] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search
space. Complex Systems, 9:115–148, 1995.

[90] K. Deb and M. Goyal. A Combined Genetic Adaptive Search (GeneAS) for
Engineering Design. Computer Science and Informatics, 26(4):30–45, 1996.

[91] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2002.

[92] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[93] T. Dereli and G. S. Das. A hybrid simulated-annealing algorithm for two-
dimensional strip packing problem. In 8th International Conference on Adap-
tive and Natural Computing Algorithms, volume 4431 of LNCS, pages 508–516.
Warsaw, Poland, Springer Berlin, April 2007.

[94] R. Ding, R. Zhao, and L. Fu. Code generation for accurate array redistri-
bution on automatic distributed-memory parallelization. In Proceedings of
the 14th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, pages 267–274,
2013.

[95] S. Doncieux and J. B. Mouret. Behavioral diversity measures for Evolutionary
Robotics. In 2010 IEEE Congress on Evolutionary Computation, CEC’10,
pages 1–8, 2010.

293



BIBLIOGRAPHY

[96] S. Doncieux and J. B. Mouret. Behavioral diversity with multiple behavioral
distances. In 2013 IEEE Congress on Evolutionary Computation, CEC 2013,
pages 1427–1434, 2013.

[97] M. Dorigo. Optimization, learning and natural algorithms. PhD thesis, Po-
litecnico di Milano, Italy, 1992.

[98] K. Dowsland, E. Soubeiga, and E. K. Burke. A Simulated Annealing Hyper-
heuristic for Determining Shipper Sizes. European Journal of Operational
Research, 179(3):759–774, June 2007.

[99] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard. Metaheuristics for Hard
Optimization. Springer Berlin Heidelberg, 2006.

[100] D. Driankov, H. Hellendoorn, and M. Reinfrank. An Introduction to Fuzzy
Control. Springer Berlin Heidelberg, 1996.

[101] F. Y. Edgeworth. Mathematical Psychics. History of Economic Thought
Books. McMaster University Archive for the History of Economic Thought,
1881.

[102] Edinburgh Parallel Computing Centre (EPCC). HECToR: UK National Su-
percomputing Service, 2014. http://www.hector.ac.uk/.

[103] M. Ehrgott. Efficiency and nondominance. In Multicriteria Optimization,
pages 23–64. Springer Berlin Heidelberg, 2005.

[104] A. E. Eiben and T. Bäck. An empirical investigation of multi-parent recombi-
nation operators in evolution strategies. Evolutionary Computation, 5(3):347–
365, 1997.

[105] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in
evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
3(2):124 –141, jul 1999.

[106] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith. Parameter control
in evolutionary algorithms. In F. G. Lobo, C. F. Lima, and Z. Michalewicz,
editors, Parameter Setting in Evolutionary Algorithms, volume 54 of Studies
in Computational Intelligence, pages 19–46. Springer Berlin Heidelberg, 2007.

[107] A. E. Eiben and S. K. Smit. Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation, 1(1):19 – 31,
2011.

294



BIBLIOGRAPHY

[108] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Natural
Computing Series. Springer Berlin Heidelberg, 2003.

[109] A. Emmen. A survey of vector and parallel processors for numerical applica-
tions. Advances in Water Resources, 13(3):103–116, 1990.

[110] M. Erickson, A. Mayer, and J. Horn. The Niched Pareto Genetic Algorithm
2 applied to the design of groundwater remediation systems. In E. Zitzler,
L. Thiele, K. Deb, C. A. Coello Coello, and D. Corne, editors, Evolution-
ary Multi-Criterion Optimization, volume 1993 of Lecture Notes in Computer
Science, pages 681–695. Springer Berlin Heidelberg, 2001.

[111] L. Eshelman. The CHC adaptive search algorithm. In G. Rawlins, editor,
Foudations of Genetic Algorithms, pages 265–283. Morgan Kaufmann, 1990.

[112] M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, and F. Herrera. A review of
the application of multiobjective evolutionary fuzzy systems: Current status
and further directions. IEEE Transactions on Fuzzy Systems, 21(1):45–65,
2013.

[113] D. Feng, X. Wang, M. Fei, and T. Chen. Tuning parameters of pid controller
based on fuzzy logic controlled genetic algorithms. In Proceedings of the 6th
International Symposium on Instrumentation and Control Technology, volume
6358, pages 635849–635849–6, 2006.

[114] X. Feng, A. C. Sanderson, P. P. Bonissone, and R. J. Graves. Fuzzy logic con-
trolled multi-objective differential evolution. In The 14th IEEE International
Conference on Fuzzy Systems, 2005. FUZZ ’05, pages 720 –725, may 2005.

[115] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computation-
ally difficult set covering problem. Oper. Res. Lett., 8(2):67–71, Apr. 1989.

[116] T. A. Feo, M. G. C. Resende, and S. H. Smith. A greedy randomized adap-
tive search procedure for maximum independent set. Operations Research,
42(5):pp. 860–878, 1994.

[117] A. Fialho. Adaptive Operator Selection for Optimization. PhD thesis, Univer-
sité Paris-Sud XI, Orsay, France, December 2010.

[118] M. Fischetti, C. Lepschy, G. Minerva, G. Romanin-Jacur, and E. Toto. Fre-
quency assignment in mobile radio systems using branch-and-cut techniques.
European Journal of Operational Research, 123(2):241 – 255, 2000.

295



BIBLIOGRAPHY

[119] M. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901–1909, 1966.

[120] D. B. Fogel. Evolutionary Computation: The Fossil Record. Wiley-IEEE Press,
1st edition, 1998.

[121] L. J. Fogel. Toward inductive inference automata. In Proceedings of Inter-
national Federation for Information Processing Congress, pages 395 – 399,
1962.

[122] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. Wiley, Chichester, UK, 1966.

[123] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective op-
timization: Formulation, discussion and generalization. In S. Forrest, editor,
Proceedings of the 5th International Conference on Genetic Algorithms, pages
416–423, San Mateo, California, 1993. Morgan Kaufmann Publishers.

[124] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1999.

[125] R. M. Friedberg. A Learning Machine: Part I. IBM Journal of Research and
Development, 2(1):2–13, 1958.

[126] G. Friedman. Select feedback computers for engineering synthesis and nervous
system analogy. Master’s thesis, University of California, Los Angeles, USA,
1956.

[127] M. Frutos and F. Tohmé. A multi-objective memetic algorithm for the job-
shop scheduling problem. Operational Research, 13(2):233–250, 2013.

[128] M. J. Gacto, R. Alcalá, and F. Herrera. Adaptation and application of multi-
objective evolutionary algorithms for rule reduction and parameter tuning of
fuzzy rule-based systems. Soft Computing, 13(5):419–436, Dec. 2008.

[129] M. J. Gacto, R. Alcalá, and F. Herrera. A multi-objective evolutionary algo-
rithm for an effective tuning of fuzzy logic controllers in heating, ventilating
and air conditioning systems. Applied Intelligence, 36(2):330–347, 2012.

[130] A. Garćıa-Nájera. Preserving population diversity for the multi-objective ve-
hicle routing problem with time windows. In Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation Confer-

296



BIBLIOGRAPHY

ence: Late Breaking Papers, GECCO ’09, pages 2689–2692, New York, NY,
USA, 2009. ACM.

[131] P. Garg. A comparison between memetic algorithm and genetic algorithm
for the cryptanalysis of simplified data encryption standard algorithm. Inter-
national Journal of Network Security & Its Applications, 1(1):34 – 42, April
2009.

[132] M. Garza-Fabre, E. Rodriguez-Tello, and G. Toscano-Pulido. An improved
multiobjectivization strategy for HP model-based protein structure prediction.
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 7492 LNCS(PART
2):82–92, 2012.

[133] M. Garza-Fabre, G. Toscano-Pulido, and E. Rodriguez-Tello. Locality-based
multiobjectivization for the HP model of protein structure prediction. In
Proceedings of the fourteenth international conference on Genetic and evolu-
tionary computation conference, GECCO’12, pages 473–480, New York, NY,
USA, 2012. ACM.

[134] A. Geist. Advanced Tutorial on PVM 3.4: New Features and Capabilities,
1997. http://www.csm.ornl.gov/pvm/EuroPVM97/.

[135] M. Gen and Y. Yun. Soft computing approach for reliability optimization:
State-of-the-art survey. Reliability Engineering & System Safety, 91(9):1008 –
1026, 2006.

[136] C. Glaßer, S. Reith, and H. Vollmer. The complexity of base station positioning
in cellular networks. Discrete Applied Mathematics, 148(1):1–12, 2005.

[137] F. Glover. Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8(1):156–166, 1977.

[138] F. Glover. Future paths for integer programming and links to artificial intel-
ligence. Comput. Oper. Res., 13(5):533–549, May 1986.

[139] F. Glover and G. A. Kochenberger. Handbook of Metaheuristics, volume 57 of
International Series in Operations Research & Management Science. Springer
US, 2003.

[140] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1998.

297



BIBLIOGRAPHY

[141] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edition, 1989.

[142] D. Goldsman, B. Nelson, and B. Schmeiser. Methods for selecting the best
system [for simulation]. In Proceedings of the 23rd Conference on Winter
Simulation, pages 177–186, Dec 1991.

[143] J. Grefenstette. Optimization of control parameters for genetic algorithms.
IEEE Transactions on Systems, Man and Cybernetics, 16(1):122–128, Jan
1986.

[144] D. Greiner, J. M. Emperador, G. Winter, and B. Galván. Improving Computa-
tional Mechanics Optimum Design Using Helper Objectives: An Application
in Frame Bar Structures. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu,
and T. Murata, editors, Evolutionary Multi-Criterion Optimization, volume
4403 of Lecture Notes in Computer Science, pages 575–589. Springer Berlin
Heidelberg, 2007.

[145] J. L. Gustafson. Reevaluating Amdahl’s law. Commun. ACM, 31(5):532–533,
May 1988.

[146] E. Hadavandi, H. Shavandi, A. Ghanbari, and S. Abbasian-Naghneh. Devel-
oping a hybrid artificial intelligence model for outpatient visits forecasting in
hospitals. Applied Soft Computing Journal, 12(2):700–711, 2012.

[147] S. Hajri, N. Liouane, S. Hammadi, and P. Borne. A controlled genetic algo-
rithm by fuzzy logic and belief functions for job-shop scheduling. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics, 30(5):812
–818, oct 2000.

[148] W. Hale. Frequency assignment: Theory and applications. Proceedings of the
IEEE, 68(12):1497 – 1514, dec. 1980.

[149] J. Handl, D. B. Kell, and J. Knowles. Multiobjective Optimization in Bioinfor-
matics and Computational Biology. IEEE/ACM Trans. Comput. Biol. Bioin-
forma., 4(2):279–292, 2007.

[150] J. Handl, S. C. Lovell, and J. Knowles. Investigations into the Effect of Mul-
tiobjectivization in Protein Structure Prediction. In G. Rudolph, T. Jansen,
S. Lucas, C. Poloni, and N. Beume, editors, Parallel Problem Solving from
Nature - PPSN X, volume 5199 of Lecture Notes in Computer Science, pages
702–711. Springer Berlin Heidelberg, 2008.

298



BIBLIOGRAPHY

[151] J. Handl, S. C. Lovell, and J. Knowles. Multiobjectivization by decomposition
of scalar cost functions. In Proceedings of the 10th international conference on
Parallel Problem Solving from Nature: PPSN X, pages 31–40, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[152] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distribu-
tions in evolution strategies: the covariance matrix adaptation. In Proceedings
of IEEE International Conference on Evolutionary Computation, 1996, pages
312–317, May 1996.

[153] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[154] F. Herrera. Genetic fuzzy systems: taxonomy, current research trends and
prospects. Evolutionary Intelligence, 1(1):27–46, 2008.

[155] F. Herrera and M. Lozano. Fuzzy adaptive genetic algorithms: design, taxon-
omy, and future directions. Soft Computing, 7(8):545–562, 2003.

[156] J. Hesser and R. Männer. Towards an optimal mutation probability for genetic
algorithms. In H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving
from Nature, volume 496 of Lecture Notes in Computer Science, pages 23–32.
Springer Berlin Heidelberg, 1991.

[157] W. D. Hillis. Co-evolving parasites improve simulated evolution as an opti-
mization procedure. Phys. D, 42(1-3):228–234, June 1990.

[158] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. Interna-
tional Thomson Publishing, 1996.

[159] J. H. Holland. Outline for a logical theory of adaptive systems. J. ACM,
9(3):297–314, July 1962.

[160] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA, USA, 1992.

[161] T.-P. Hong, M.-W. Tsai, and T.-K. Liu. Two-dimensional encoding schema
and genetic operators. In JCIS. Atlantis Press, 2006.

[162] H. Hoos and T. Stützle. Stochastic local search: foundations and applications.
The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann
Publishers, 2005.

299



BIBLIOGRAPHY

[163] J. Horn, N. Nafpliotis, and D. Goldberg. A niched Pareto genetic algorithm
for multiobjective optimization. In Proceedings of the First IEEE Confer-
ence on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, volume 1, pages 82–87, 1994.

[164] L. Idoumghar and R. Schott. A new hybrid GA-MDP algorithm for the fre-
quency assignment problem. In Proc. of the 18th IEEE Int. Conf. on Tools
with Artificial Intelligence (ICTAI’06), pages 18 – 25, 2006.

[165] H. Ishibuchi. Multiobjective genetic fuzzy systems: Review and future research
directions. In Proceedings of the 2007 IEEE International Conference on Fuzzy
Systems, 2007.

[166] H. Ishibuchi, T. Doi, and Y. Nojima. Incorporation of Scalarizing Fitness
Functions into Evolutionary Multiobjective Optimization Algorithms. In Pro-
ceedings of the 9th international conference on Parallel Problem Solving from
Nature, PPSN’06, pages 493–502, Berlin, Heidelberg, 2006. Springer-Verlag.

[167] H. Ishibuchi, Y. Hitotsuyanagi, Y. Nakashima, and Y. Nojima. Multiobjec-
tivization from Two Objectives to Four Objectives in Evolutionary Multi-
Objective Optimization Algorithms. In Nature and Biologically Inspired Com-
puting (NaBIC), 2010 Second World Congress on, pages 502–507, 2010.

[168] H. Ishibuchi, Y. Hitotsuyanagi, and Y. Nojima. An empirical study on
the specification of the local search application probability in multiobjective
memetic algorithms. In Proceedings of the 2007 IEEE Congress on Evolution-
ary Computation, CEC 2007, pages 2788 –2795, sept. 2007.

[169] H. Ishibuchi, T. Nakashima, and M. Nii. Classification and Modeling with
Linguistic Information Granules. Advanced Information Processing. Springer
Berlin Heidelberg, 2005.

[170] H. Ishibuchi and Y. Nojima. Optimization of Scalarizing Functions through
Evolutionary Multiobjective Optimization. In Proceedings of the 4th inter-
national conference on Evolutionary multi-criterion optimization, EMO’07,
pages 51–65, Berlin, Heidelberg, 2007. Springer-Verlag.

[171] W. Jackson, E. Özcan, and J. Drake. Late acceptance-based selection hyper-
heuristics for cross-domain heuristic search. In Proceedings of the 13th UK
Workshop on Computational Intelligence, UKCI 2013, pages 228–235, 2013.

[172] M. Jähne, X. Li, and J. Branke. Evolutionary Algorithms and Multi-
Objectivization for the Travelling Salesman Problem. In Proceedings of the

300



BIBLIOGRAPHY

11th Annual conference on Genetic and evolutionary computation, GECCO’09,
pages 595–602, New York, NY, USA, 2009. ACM.

[173] D. Jakobović, M. Golub, and M. Čupić. Asynchronous and implicitly parallel
evolutionary computation models. Soft Computing, pages 1–12, 2013.

[174] M. Jamshidi, R. A. Krohling, L. d. S. Coelho, and P. J. Fleming. Robust
Control Systems with Genetic Algorithms. Control Series. CRC, Boca Raton,
FL, 2003.

[175] T. Jansen and I. Wegener. Real royal road functions – where crossover prob-
ably is essential. Discrete Applied Mathematics, 149(1-3):111 – 125, 2005.

[176] M. T. Jensen. Helper-objectives: Using multi-objective evolutionary algo-
rithms for single-objective optimisation. Journal of Mathematical Modelling
and Algorithms, 3:323–347, 2004.

[177] Y. Jin, J.-K. Hao, and J.-P. Hamiez. A memetic algorithm for the minimum
sum coloring problem. Computers and Operations Research, 43:318–327, 2014.

[178] K. Jong. Parameter setting in EAs: a 30 year perspective. In F. G. Lobo,
C. F. Lima, and Z. Michalewicz, editors, Parameter Setting in Evolutionary
Algorithms, volume 54 of Studies in Computational Intelligence, pages 1–18.
Springer Berlin Heidelberg, 2007.

[179] K. A. D. Jong. Evolutionary computation - a unified approach. MIT Press,
2006.

[180] M. Kampouridis. An initial investigation of choice function hyper-heuristics
for the problem of financial forecasting. In Proceedings of the 2013 IEEE
Congress on Evolutionary Computation, CEC 2013, pages 2406–2413, 2013.

[181] D. Karaboga and B. Basturk. Artificial Bee Colony (ABC) optimization algo-
rithm for solving constrained optimization problems. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 4529 LNAI:789–798, 2007.

[182] G. Kendall, P. Cowling, and E. Soubeiga. Choice function and random hy-
perheuristics. In Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution And Learning (SEAL 2002), pages 667–671, Singapore, Nov 2002.

[183] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of the IEEE International Conference on Neural Networks, volume 4, pages
1942–1948 vol.4, 1995.

301



BIBLIOGRAPHY

[184] S.-S. Kim, A. E. Smith, and J.-H. Lee. A memetic algorithm for channel
assignment in wireless FDMA systems. Computers & Operations Research,
34:1842 – 1856, 2007.

[185] D. B. Kirk and W.-m. W. Hwu. Programming Massively Parallel Processors:
A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 2010.

[186] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[187] J. D. Knowles and D. W. Corne. Approximating the nondominated front using
the Pareto Archived Evolution Strategy. Evol. Comput., 8(2):149–172, June
2000.

[188] J. D. Knowles, R. A. Watson, and D. Corne. Reducing local optima in single-
objective problems by multi-objectivization. In Proceedings of the First Inter-
national Conference on Evolutionary Multi-Criterion Optimization, EMO ’01,
pages 269–283, London, UK, 2001. Springer-Verlag.

[189] D. Knysh and V. Kureichik. Parallel genetic algorithms: A survey and problem
state of the art. Journal of Computer and Systems Sciences International,
49(4):579–589, 2010.

[190] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[191] O. Kramer. Evolutionary self-adaptation: a survey of operators and strategy
parameters. Evolutionary Intelligence, 3:51–65, 2010.

[192] N. Krasnogor and J. E. Smith. A memetic algorithm with self-adaptive local
search: TSP as a case study. In L. D. Whitley, D. E. Goldberg, E. Cantú-Paz,
L. Spector, I. C. Parmee, and H.-G. Beyer, editors, GECCO, pages 987–994.
Morgan Kaufmann, 2000.

[193] E. Krempser, A. Fialho, and H. J. C. Barbosa. Adaptive operator selection
at the hyper-level. In C. A. Coello Coello, V. Cutello, K. Deb, S. Forrest,
G. Nicosia, and M. Pavone, editors, Parallel Problem Solving from Nature -
PPSN XII, volume 7492 of Lecture Notes in Computer Science, pages 378–387.
Springer Berlin Heidelberg, 2012.

[194] V. Kumar, A. Grama, A. Gupta, and G. Karypis, editors. Introduction to
Parallel Computing. Addison-Wesley, 2003.

302



BIBLIOGRAPHY

[195] A. M. J. Kuurne. On GSM mobile measurement based interference matrix
generation. In IEEE 55th Vehicular Technology Conference, VTC Spring 2002,
pages 1965 – 1969, 2002.

[196] A. Land and A. Doig. An automatic method for solving discrete programming
problems. In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R.
Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50 Years of
Integer Programming 1958-2008, pages 105–132. Springer Berlin Heidelberg,
2010.

[197] O. Lara and M. Labrador. A multiobjective ant colony-based optimization
algorithm for the bin packing problem with load balancing. In Proceedings of
the 2010 IEEE Congress on Evolutionary Computation, CEC 2010, pages 1
–8, july 2010.

[198] M. Lassouaoui and D. Boughaci. A choice function hyper-heuristic for the win-
ner determination problem. Studies in Computational Intelligence, 512:303–
314, 2014.

[199] H. C. W. Lau, C. X. H. Tang, G. T. S. Ho, and T. M. Chan. A fuzzy genetic
algorithm for the discovery of process parameter settings using knowledge
representation. Expert Syst. Appl., 36(4):7964–7974, May 2009.

[200] M. N. Le, Y.-S. Ong, Y. Jin, and B. Sendhoff. Lamarckian memetic algo-
rithms: local optimum and connectivity structure analysis. Memetic Comput-
ing, 1(3):175–190, 2009.

[201] M. A. Lee and H. Takagi. Dynamic control of genetic algorithms using fuzzy
logic techniques. In Proceedings of the Fifth International Conference on Ge-
netic Algorithms, pages 76–83. Morgan Kaufmann, 1993.

[202] J. Lehman and K. O. Stanley. Exploiting Open-Endedness to Solve Prob-
lems Through the Search for Novelty. In Proc. of the Eleventh Intl. Conf. on
Artificial Life, Cambridge, MA, 2008. MIT Press.

[203] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evol. Comput., 19(2):189–223, June 2011.

[204] C. León, G. Miranda, C. Rodŕıguez, and C. Segura. 2D Cutting Stock Prob-
lem: A New Parallel Algorithm and Bounds. In Proceedings of Euro-Par,
volume 4641 of LNCS, pages 795–804. Springer-Verlag, 2007.

[205] C. León, G. Miranda, and C. Segura. A memetic algorithm and a parallel
hyperheuristic island-based model for a 2D packing problem. In Proceedings of

303



BIBLIOGRAPHY

the 11th Annual conference on Genetic and evolutionary computation, GECCO
’09, pages 1371–1378, New York, NY, USA, 2009. ACM.

[206] C. León, G. Miranda, and C. Segura. METCO: A Parallel Plugin-Based
Framework for Multi-Objective Optimization. International Journal on Arti-
ficial Intelligence Tools, 18(4):569–588, 2009.

[207] Q. Li and Y. Maeda. Distributed adaptive search method for genetic algorithm
controlled by fuzzy reasoning. In IEEE International Conference on Fuzzy
Systems, 2008. FUZZ-IEEE 2008, pages 2022 –2027, june 2008.

[208] Z.-f. Z. Li-xiao Ma, Kun-qi Liu and N. Li. Exploring the effects of Lamarckian
evolution and Baldwin effect in differential evolution. In Communications in
Computer and Information Science, volume 107 of Computational Intelligence
and Intelligent Systems, pages 127–136. Springer, 2010.

[209] R. F. Linton and T. B. Carroll. Computational Optimization: New Research
Developments. Nova Science Publishers Inc, 2010.

[210] D. Liu and X. Liu. The improved genetic algorithm based on fuzzy controller
with adaptive parameter adjustment. In M. Zhu, editor, Information and
Management Engineering, volume 235 of Communications in Computer and
Information Science, pages 491–497. Springer Berlin Heidelberg, 2011.

[211] J. Liu and J. Lampinen. A fuzzy adaptive differential evolution algorithm.
Soft Computing, 9:448–462, 2005.

[212] F. G. Lobo, C. F. Lima, and Z. Michalewicz. Parameter Setting in Evolution-
ary Algorithms, volume 54 of Studies in Computational Intelligence. Springer
Berlin Heidelberg, 2007.

[213] D. F. Lochtefeld. Multi-objectivization in Genetic Algorithms. PhD thesis,
Wright State University, 2011.

[214] D. F. Lochtefeld and F. W. Ciarallo. Helper-objective optimization strategies
for the job-shop scheduling problem. Applied Soft Computing, 11(6):4161 –
4174, 2011.

[215] D. F. Lochtefeld and F. W. Ciarallo. Multiobjectivization via helper-objectives
with the tunable objectives problem. IEEE Trans. on Evol. Comput.,
16(3):373–390, 2012.

304



BIBLIOGRAPHY

[216] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A
survey. European Journal of Operational Research, 141(2):241–252, September
2002.

[217] S. J. Louis and G. Rawlins. Pareto Optimality, GA-easiness and Deception.
In Proceedings of the Fifth International Conference on Genetic Algorithms,
pages 118–123. Morgan Kaufmann, 1993.

[218] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, vol-
ume 57 of International Series in Operations Research & Management Science,
pages 320–353. Springer US, 2003.

[219] M. Lozano, F. Herrera, N. Krasnogor, and D. Molina. Real-coded memetic
algorithms with crossover hill-climbing. Evol. Comput., 12(3):273–302, Sept.
2004.

[220] M. Lozano, D. Molina, and F. Herrera. Editorial Scalability of Evolutionary
Algorithms and Other Metaheuristics for Large-scale Continuous Optimization
Problems. Soft Computing - A Fusion of Foundations, Methodologies and
Applications, pages 1–3, 2010.

[221] F. Luiz Usberti, P. Morelato França, and A. L. M. França. GRASP with evo-
lutionary path-relinking for the capacitated ARC routing problem. Computers
and Operations Research, 40(12):3206–3217, 2013.

[222] F. Luna, C. Blum, E. Alba, and A. Nebro. ACO vs EAs for solving a real-
world frequency assignment problem in GSM networks. In Proceedings of the
2007 Genetic and Evolutionary Computation Conference, pages 94–101, 2007.

[223] F. Luna, C. Estébanez, C. León, J. Chaves-González, A. Nebro, R. Aler,
C. Segura, M. Vega-Rodŕıguez, E. Alba, J. Valls, G. Miranda, and J. Gómez-
Pulido. Optimization algorithms for large-scale real-world instances of the
frequency assignment problem. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 15:975–990, 2011.

[224] F. Luna, C. Estébanez, C. León, J. M. Chaves-González, E. Alba, R. Aler,
C. Segura, M. A. Vega-Rodŕıguez, A. J. Nebro, J. M. Valls, G. Miranda, and
J. A. Gómez-Pulido. Metaheuristics for solving a real-world frequency assign-
ment problem in GSM networks. In Proceedings of the 10th annual confer-
ence on Genetic and evolutionary computation, GECCO ’08, pages 1579–1586.
ACM, 2008.

305



BIBLIOGRAPHY

[225] T. Lust and J. Teghem. The multiobjective multidimensional knapsack prob-
lem: A survey and a new approach. International Transactions in Operational
Research, 19(4):495–520, 2012.

[226] Y. Maeda and Q. Li. Fuzzy adaptive search method for parallel genetic al-
gorithm tuned by evolution degree based on diversity measure. In P. Melin,
O. Castillo, L. Aguilar, J. Kacprzyk, and W. Pedrycz, editors, Foundations of
Fuzzy Logic and Soft Computing, volume 4529 of Lecture Notes in Computer
Science, pages 677–687. Springer Berlin Heidelberg, 2007.

[227] S. W. Mahfoud. Crowding and preselection revisited. In R. Männer and
B. Manderick, editors, PPSN, pages 27–36. Elsevier, 1992.

[228] E. Mamdani. Application of fuzzy algorithms for control of simple dynamic
plant. Electrical Engineers, Proceedings of the Institution of, 121(12):1585–
1588, 1974.

[229] C. Mannino and A. Sassano. An enumerative algorithm for the frequency
assignment problem. Discrete Appl. Math., 129(1):155–169, June 2003.

[230] E. Marchiori. Genetic, iterated and multistart local search for the maximum
clique problem. In Proceedings of the Applications of Evolutionary Comput-
ing on EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN, pages
112–121, London, UK, UK, 2002. Springer-Verlag.

[231] O. Maron and A. W. Moore. The racing algorithm: Model selection for lazy
learners. Artif. Intell. Rev., 11(1-5):193–225, Feb. 1997.

[232] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing
problem. INFORMS Journal on Computing, 15(3):310–319, 2003.

[233] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. John Wiley & Sons Ltd, 1990.

[234] O. C. Martin and S. W. Otto. Combining simulated annealing with local
search heuristics. Annals of Operations Research, 63:57–75, 1996.

[235] O. C. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for
the traveling salesman problem. Complex Systems, 5:299–326, 1991.

[236] M. Matayoshi. Two dimensional rectilinear polygon packing using genetic
algorithm with a hierarchical chromosome. In Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, pages 989–996, 2011.

306



BIBLIOGRAPHY

[237] K. E. Mathias and L. D. Whitley. Changing representations during search: A
comparative study of delta coding. Evol. Comput., 2(3):249–278, Sept. 1994.

[238] S. Matsui, I. Watanabe, and K.-I. Tokoro. Application of the parameter-
free genetic algorithm to the fixed channel assignment problem. Systems and
Computers in Japan, 36(4):71 – 81, 2005.

[239] J. Maturana, F. Lardeux, and F. Saubion. Controlling behavioral and struc-
tural parameters in evolutionary algorithms. In P. Collet, N. Monmarché,
P. Legrand, M. Schoenauer, and E. Lutton, editors, Artificial Evolution, vol-
ume 5975 of Lecture Notes in Computer Science, pages 110–121, Strasbourg,
France, October 26-28 2009. Springer.

[240] S. McClintock, T. Lunney, and A. Hashim. A fuzzy logic controlled genetic
algorithm environment. In IEEE International Conference on Systems, Man,
and Cybernetics, 1997, volume 3, pages 2181 –2186 vol.3, oct 1997.

[241] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez. Opti-
mal design of fuzzy classification systems using PSO with dynamic parameter
adaptation through fuzzy logic. Expert Systems with Applications, 40(8):3196
– 3206, 2013.

[242] S. P. Mendes, G. Molina, M. A. Vega-Rodŕıguez, J. A. Gómez-Pulido, Y. Sáez,
G. Miranda, C. Segura, E. Alba, P. Isasi, C. León, and J. M. Sánchez-
Pérez. Benchmarking a wide spectrum of metaheuristic techniques for the
radio network design problem. IEEE Transactions on Evolutionary Computa-
tion, 13(5):1133–1150, Oct. 2009.

[243] R. E. Mercer and J. R. Sampson. Adaptive search using a reproductive meta-
plan. Kybernetes, 7(3):215–228, 1978.

[244] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard. Version 3.0, 2012. http://www.mpi-forum.org/docs/mpi-3.0/mpi30-
report.pdf.

[245] S. Meyer-Nieberg and H.-G. Beyer. Self-adaptation in evolutionary algorithms.
In F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors, Parameter Setting in
Evolutionary Algorithms, volume 54 of Studies in Computational Intelligence,
pages 47–75. Springer Berlin Heidelberg, 2007.

[246] E. Mezura-Montes and C. A. Coello Coello. Constrained Optimization via
Multiobjective Evolutionary Algorithms. In J. Knowles, D. Corne, K. Deb,

307



BIBLIOGRAPHY

and D. Chair, editors, Multiobjective Problem Solving from Nature, Natural
Computing Series, pages 53–75. Springer Berlin Heidelberg, 2008.

[247] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer Berlin Heidelberg, 1996.

[248] Z. Michalewicz, D. Dasgupta, R. G. L. Riche, and M. Schoenauer. Evolution-
ary algorithms for constrained engineering problems. Evolutionary Computa-
tion, 4:1–32, 1996.

[249] K. Miettinen and M. M. Mäkelä. On scalarizing functions in multiobjective
optimization. OR Spectrum, 24(2):193–213, 2002.

[250] N. Mladenovic. A variable neighborhood algorithm – a new metaheuristic for
combinatorial optimization. In Abstracts of Papers Presented at Optimization
Days, 1995.

[251] E. Montero, M.-C. Riff, and B. Neveu. An evaluation of off-line calibration
techniques for evolutionary algorithms. In Proceedings of the 12th Annual
Genetic and Evolutionary Computation Conference, GECCO ’10, pages 299–
300, 2010.

[252] G. Moore. Cramming more components onto integrated circuits. Proceedings
of the IEEE, 86(1):82–85, 1998.

[253] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts. Towards Memetic Algorithms. Technical Report 158-79, Cal-
tech Concurrent Computation Program, California Institute of Technology,
Pasadena, California, September 1989.

[254] M. Mouly and M. B. Paulet. The GSM System for Mobile Communications.
Mouly et Paulet, Palaiseau, 1992.

[255] J. B. Mouret. Novelty-based multiobjectivization. In S. Doncieux,
N. Bredèche, and J. B. Mouret, editors, New Horizons in Evolutionary
Robotics, volume 341 of Studies in Computational Intelligence, pages 139–154.
Springer Berlin / Heidelberg, 2011.

[256] J. B. Mouret and S. Doncieux. Overcoming the bootstrap problem in evolu-
tionary robotics using behavioral diversity. In 2009 IEEE Congress on Evolu-
tionary Computation, CEC’09, pages 1161–1168, 2009.

[257] J. B. Mouret and S. Doncieux. Using Behavioral Exploration Objectives to
Solve Deceptive Problems in Neuro-evolution. In Proceedings of the 11th An-

308



BIBLIOGRAPHY

nual conference on Genetic and evolutionary computation, GECCO’09, pages
627–634, New York, NY, USA, 2009. ACM.

[258] J. B. Mouret and S. Doncieux. Encouraging behavioral diversity in evolution-
ary robotics: An empirical study. Evol. Comput., 20(1):91–133, 2012.

[259] M. Mucientes, D. Moreno, A. Bugaŕın, and S. Barro. Design of a fuzzy con-
troller in mobile robotics using genetic algorithms. Applied Soft Computing
Journal, 7(2):540–546, 2007.

[260] R. Myers and E. R. Hancock. Empirical modelling of genetic algorithms. Evol.
Comput., 9(4):461–493, Dec. 2001.

[261] V. Nannen and A. E. Eiben. A method for parameter calibration and rele-
vance estimation in evolutionary algorithms. In Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’06, pages
183–190, New York, NY, USA, 2006. ACM.

[262] C. Navarro, N. Hitschfeld-Kahler, and L. Mateu. A survey on parallel com-
puting and its applications in data-parallel problems using GPU architectures.
Communications in Computational Physics, 15(2):285–329, 2014.

[263] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. Design is-
sues in a multiobjective cellular genetic algorithm. In S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion
Optimization. 4th International Conference, EMO 2007, volume 4403 of Lec-
ture Notes in Computer Science, pages 126–140. Springer, 2007.

[264] F. Neumann and I. Wegener. Minimum spanning trees made easier via multi-
objective optimization. Nat. Comput., 5(3):305–319, 2006.

[265] Q. H. Nguyen, Y. S. Ong, and M. H. Lim. Non-genetic transmission of memes
by diffusion. In Proceedings of the 10th annual conference on Genetic and evo-
lutionary computation, GECCO ’08, pages 1017–1024, New York, NY, USA,
2008. ACM.

[266] Q. H. Nguyen, Y. S. Ong, and M. H. Lim. A Probabilistic Memetic Framework.
IEEE Transactions on Evolutionary Computation, 13(3):604–623, 2009.

[267] Q. U. Nguyen, X. H. Nguyen, M. O’Neill, and A. Agapitos. An investigation of
fitness sharing with semantic and syntactic distance metrics. In A. Moraglio,
S. Silva, K. Krawiec, P. Machado, and C. Cotta, editors, EuroGP, volume
7244 of Lecture Notes in Computer Science, pages 109–120. Springer, 2012.

309



BIBLIOGRAPHY

[268] S. Nguyen, M. Zhang, M. Johnston, and T. K. Chen. A coevolution genetic
programming method to evolve scheduling policies for dynamic multi-objective
job shop scheduling problems. In X. Li, editor, Proceedings of the 2012 IEEE
Congress on Evolutionary Computation, pages 3332–3339, Brisbane, Australia,
10-15 June 2012.

[269] J. Ni, L. Li, F. Qiao, and Q. Wu. A novel memetic algorithm and its application
to data clustering. Memetic Computing, 5(1):65–78, 2013.

[270] J. Nievergelt. Exhaustive search, combinatorial optimization and enumera-
tion: Exploring the potential of raw computing power. In Proceedings of the
27th Conference on Current Trends in Theory and Practice of Informatics,
SOFSEM ’00, pages 18–35, London, UK, 2000. Springer-Verlag.

[271] OpenMP Architecture Review Board. OpenMP Application Program Inter-
face. Version 4.0, 2013. http://www.openmp.org.

[272] A. Osyczka. Multicriteria optimization for engineering design. In J. S. Gero,
editor, Design Optimization, pages 193 – 227. Academic Press, 1985.

[273] D. Ouelhadj and S. Petrovic. A cooperative hyper-heuristic search framework.
Journal of Heuristics, 16(6):835–857, 2010.

[274] E. Özcan and C. Basaran. A case study of memetic algorithms for constraint
optimization. Soft Computing - A Fusion of Foundations, Methodologies and
Applications, 13(8):871–882, 2009.

[275] P. S. Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2011.

[276] V. Pareto. Cours d’Économie Politique, volume I and II. Lausanne, 1896.

[277] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[278] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Addison-Wesley, New York, April 1984.

[279] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
New York, NY, USA, 1988.

[280] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution algo-
rithm with strategy adaptation for global numerical optimization. Trans. Evol.
Comp, 13(2):398–417, Apr. 2009.

310



BIBLIOGRAPHY

[281] J. Rada-Vilela. Fuzzylite: a fuzzy logic control library in C++, 2013.
http://www.fuzzylite.com.

[282] P. Rattadilok, A. Gaw, and R. Kwan. Distributed choice function hyper-
heuristics for timetabling and scheduling. In E. Burke and M. Trick, editors,
Practice and Theory of Automated Timetabling V, volume 3616 of Lecture
Notes in Computer Science, pages 51–67. Springer Berlin / Heidelberg, 2005.

[283] I. Rechenberg. Cybernetic solution path of an experimental problem. In
Library Translation 1122, Farnborough: Royal Aircraft Establishment, 1965.

[284] I. Rechenberg. Evolutionsstrategie: optimierung technischer systeme nach
prinzipien der biologischen evolution. Frommann-Holzboog-Verlag, Stuttgart,
1973.

[285] Z. Ren, H. Jiang, J. Xuan, and Z. Luo. Hyper-heuristics with low level pa-
rameter adaptation. Evol. Comput., 20(2):189–227, June 2012.

[286] R. G. Reynolds. An introduction to cultural algorithms. In A. V. Sebald and
F. L. J., editors, Proceedings of the Third Annual Conference on Evolutionary
Programming, pages 131 – 139. World Scientific, 1994.

[287] C. Ribeiro, I. Rosseti, and R. Souza. Probabilistic stopping rules for GRASP
heuristics and extensions. International Transactions in Operational Research,
20(3):301–323, 2013.

[288] Y. Rinott. On two-stage selection procedures and related probability-
inequalities. Communications in Statistics - Theory and Methods, 7(8):799–
811, 1978.

[289] F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,
USA, 2006.

[290] O. Rui, A. Hajizadeh, and T. M. Undeland. Parameter optimization of a
fuzzy logic controller for a power electronics boost converter using genetic
algorithms. In Proceedings of the 9th WSEAS International Conference on
Artificial Intelligence, Knowledge Engineering, and Data Bases, AIKED’10,
pages 120–124, Stevens Point, Wisconsin, USA, 2010. World Scientific and
Engineering Academy and Society (WSEAS).

[291] A. Saini and A. Saraswat. Multi-objective reactive power market clearing
in competitive electricity market using HFMOEA. Applied Soft Computing,
13(4):2087 – 2103, 2013.

311



BIBLIOGRAPHY

[292] J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. PhD thesis, Vanderbilt University, Nashville, Tennessee, 1984.

[293] J. Scharnow, K. Tinnefeld, and I. Wegener. The Analysis of Evolutionary
Algorithms on Sorting and Shortest Paths Problems. J. of Math. Model. and
Algorithms, 3(4):349–366, 2005.

[294] B. Schmeiser. Simulation experiments. In D. P. Heyman and M. J. Sobel,
editors, Stochastic Models, volume 2 of Handbooks in Operations Research and
Management Science, chapter 7, pages 295–330. Elsevier, July 1990.

[295] H.-P. Schwefel. Kybernetische evolution als strategie der experimentellen
forschung in der strömungstechnik. PhD thesis, Technische Universität Berlin,
Berlin, Germany, 1965.

[296] C. Segura. Parallel Optimisation Schemes. A Hybrid Scheme based on Hy-
perheuristics and Evolutionary Computation. PhD thesis, Universidad de La
Laguna, La Laguna, Spain, November 2012.

[297] C. Segura, C. A. Coello Coello, G. Miranda, and C. León. Using multi-
objective evolutionary algorithms for single-objective optimization. 4OR,
11(3):201–228, 2013.

[298] C. Segura, G. Miranda, and C. León. Parallel Hyperheuristics for the Fre-
quency Assignment Problem. Memetic Computing, 3(1):33–49, 2010.

[299] J. Seybold. Introduction to RF Propagation. Wiley-Interscience, 2005.

[300] D. Sharma, K. Deb, and N. Kishore. Customized evolutionary optimization
procedure for generating minimum weight compliant mechanisms. Engineering
Optimization, 46(1):39–60, 2014.

[301] M. Sheikhan and S. Ghoreishi. Antiviral therapy using a fuzzy controller
optimized by modified evolutionary algorithms: A comparative study. Neural
Computing and Applications, 23(6):1801–1813, 2013.

[302] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Proce-
dures. Chapman & Hall/CRC, 5 edition, 2007.

[303] Y. Shi. Combinations of evolutionary algorithms and fuzzy systems: A sur-
vey. In Proceedings of the Annual Conference of the North American Fuzzy
Information Processing Society - NAFIPS, pages 610–614, 1999.

[304] Y. Shi and D. Ye. On-line bin packing with arbitrary release times. In First
International Symposium on Combinatorics, Algorithms, Probabilistic and Ex-

312



BIBLIOGRAPHY

perimental Methodologies, volume 4614 of LNCS, pages 340–349. Hangzhou,
China, Springer Berlin, April 2007.

[305] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chap-
man & Hall/CRC, 1986.

[306] A. Simões and E. Costa. Memory-based CHC algorithms for the dynamic
traveling salesman problem. In Proceedings of the 13th annual conference on
Genetic and evolutionary computation, GECCO ’11, pages 1037–1044, New
York, NY, USA, 2011. ACM.

[307] M. K. Simon and M.-S. Alouini. Digital Communication Over Fading Chan-
nels: A Unified Approach to Performance Analysis. John Wiley & Sons, Inc.,
New York, USA, 2002.

[308] K. Sindhya, A. Sinha, K. Deb, and K. Miettinen. Local search based evolution-
ary multi-objective optimization algorithm for constrained and unconstrained
problems. In Proceedings of the Eleventh Congress on Evolutionary Computa-
tion, CEC’09, pages 2919–2926, Piscataway, NJ, USA, 2009. IEEE Press.

[309] S. K. Smit and A. E. Eiben. Comparing parameter tuning methods for evo-
lutionary algorithms. In Proceedings of the Eleventh Congress on Evolution-
ary Computation, CEC’09, pages 399–406, Piscataway, NJ, USA, 2009. IEEE
Press.

[310] S. K. Smit, A. E. Eiben, and Z. Szlávik. An MOEA-based method to tune
EA parameters on multiple objective functions. In J. Filipe and J. Kacprzyk,
editors, IJCCI (ICEC), pages 261–268. SciTePress, 2010.

[311] J. E. Smith. Self Adaptation in Evolutionary Algorithms. PhD thesis, Univer-
sity of the West of England, Bristol, UK, 1998.

[312] J. E. Smith and T. C. Fogarty. Operator and parameter adaptation in genetic
algorithms. Soft Computing, 1:81–87, 1997.

[313] Y. H. Song, G. Wang, P. Wang, and A. Johns. Environmental/economic
dispatch using fuzzy logic controlled genetic algorithms. IEE Proceedings –
Generation, Transmission and Distribution, 144(4):377–382, Jul 1997.

[314] E. Soubeiga. Development and application of hyperheuristics to personnel
scheduling. PhD thesis, School of Computer Science and Information Technol-
ogy, University of Nottingham, Nottingham, United Kingdom, 2003.

313



BIBLIOGRAPHY

[315] W. M. Spears. Adapting crossover in evolutionary algorithms. In Proceedings
of the Fourth Annual Conference on Evolutionary Programming, pages 367 –
384. MIT Press, 1995.

[316] M. Srinivas and L. Patnaik. Adaptive probabilities of crossover and mutation
in genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics,
24(4):656 –667, apr 1994.

[317] N. Srinivas and K. Deb. Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[318] W. Stadler. Fundamentals of multicriteria optimization. In W. Stadler, edi-
tor, Multicriteria Optimization in Engineering and the Sciences, pages 1–25.
Plenum Press, New York, 1988.

[319] R. Storn and K. Price. Differential Evolution: A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces. J. of Global Optimization,
11(4):341–359, Dec. 1997.

[320] R. J. Streifel. Dynamic fuzzy control of genetic algorithm parameter coding,
1999.

[321] R. Subbu, A. Sanderson, and P. Bonissone. Fuzzy logic controlled genetic al-
gorithms versus tuned genetic algorithms: an agile manufacturing application.
In Intelligent Control (ISIC), 1998, pages 434 –440, sep 1998.

[322] T. A. Sudkamp. Languages and Machines: An Introduction to the Theory of
Computer Science. Addison-Wesley, 2006.

[323] G. Sywerda. Uniform crossover in genetic algorithms. In Proceedings of the
third international conference on Genetic algorithms, pages 2–9, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[324] G. Taguchi and T. Yokoyama. Taguchi Methods: Design of Experiments. ASI
Press, 1993.

[325] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications
to modeling and control. IEEE Transactions on Systems, Man and Cybernet-
ics, SMC-15(1):116–132, 1985.

[326] E.-G. Talbi. Metaheuristics - From Design to Implementation. Wiley, 2009.

[327] E.-G. Talbi and H. Meunier. Hierarchical parallel approach for GSM mobile
network design. J. Parallel Distrib. Comput., 66(2):274–290, 2006.

314



BIBLIOGRAPHY

[328] The GCC team. The GNU Compiler Collection, 2013. http://gcc.gnu.org/.

[329] The Open MPI Project. Open MPI v1.6.4 documentation, 2013.
http://www.open-mpi.org/doc/v1.6/.

[330] A. Toffolo and E. Benini. Genetic diversity as an objective in multi-objective
evolutionary algorithms. Evolutionary Computation, 11:151–167, May 2003.

[331] G. Toscano Pulido and C. A. Coello Coello. The Micro Genetic Algorithm
2: Towards online adaptation in evolutionary multiobjective optimization. In
C. Fonseca, P. Fleming, E. Zitzler, L. Thiele, and K. Deb, editors, Evolution-
ary Multi-Criterion Optimization, volume 2632 of Lecture Notes in Computer
Science, pages 252–266. Springer Berlin Heidelberg, 2003.

[332] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–
265, 1937.

[333] V. Vakula and K. Sudha. Design of differential evolution algorithm-based ro-
bust fuzzy logic power system stabiliser using minimum rule base. Generation,
Transmission Distribution, IET, 6(2):121–132, 2012.

[334] Van Der Steen, A. and Dongarra, J. Overview of recent supercomputers, 2007.

[335] V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg, 2003.

[336] J. A. Vázquez-Rodŕıguez and S. Petrovic. A new dispatching rule based genetic
algorithm for the multi-objective job shop problem. Journal of Heuristics,
16(6):771–793, Dec. 2010.

[337] M. Črepinšek, S.-H. Liu, and M. Mernik. Exploration and exploitation in
evolutionary algorithms: A survey. ACM Comput. Surv., 45(3):35:1–35:33,
July 2013.

[338] D. A. V. Veldhuizen, J. B. Zydallis, and G. B. Lamont. Considerations in en-
gineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evo-
lutionary Computation, 7(2):144–173, 2003.

[339] T. Vinkó and D. Izzo. Learning the best combination of solvers in a distributed
global optimization environment. In Proceedings of Advances in Global Opti-
mization: Methods and Applications (AGO), pages 13–17, Mykonos, Greece,
June 2007.

315



BIBLIOGRAPHY

[340] K. V. Viswanathan and A. Bagchi. Best-First Search Methods for Constrained
Two-Dimensional Cutting Stock Problems. Operations Research, 41(4):768–
776, 1993.

[341] C. Voudouris. Guided local search – an illustrative example in function opti-
misation. BT Technology Journal, 16(3):46–50, 1998.

[342] B. H. Walke. Mobile Radio Networks: Networking, protocols and traffic per-
formance. John Wiley & Sons, Ltd., West Sussex, England, 2002.

[343] P. Wang, K. Tang, T. Weise, E. Tsang, and X. Yao. Multiobjective genetic
programming for maximizing ROC performance. Neurocomputing, 125:102–
118, 2014.

[344] P. Wang, G. Wang, and Z. Hu. Speeding up the search process of genetic
algorithm by fuzzy logic. In Proceedings of the 5th European Congress on
Intelligent Techniques and Soft Computing, pages 665–671, 1997.

[345] Y. Wang, J.-K. Hao, F. Glover, and Z. Lü. A tabu search based memetic
algorithm for the maximum diversity problem. Engineering Applications of
Artificial Intelligence, 27:103–114, 2014.

[346] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of
cutting and packing problems. European Journal of Operational Research,
183(3):1109–1130, December 2007.

[347] S. Watanabe and K. Sakakibara. A multiobjectivization approach for vehi-
cle routing problems. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and
T. Murata, editors, Evolutionary Multi-Criterion Optimization, volume 4403
of Lecture Notes in Computer Science, pages 660–672. Springer Berlin / Hei-
delberg, 2007.

[348] N. Weicker, G. Szabo, K. Weicker, and P. Widmayer. Evolutionary multi-
objective optimization for base station transmitter placement with frequency
assignment. IEEE Transactions on Evolutionary Computation, 7(2):189–203,
April 2003.

[349] L. D. Whitley, V. S. Gordon, and K. E. Mathias. Lamarckian evolution, the
Baldwin effect and function optimization. In Proceedings of the International
Conference on Evolutionary Computation. The Third Conference on Parallel
Problem Solving from Nature: Parallel Problem Solving from Nature, PPSN
III, pages 6–15, London, UK, 1994. Springer-Verlag.

316



BIBLIOGRAPHY

[350] G. V. Wilson. Practical Parallel Programming. MIT Press, Cambridge, MA,
USA, 1996.

[351] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[352] S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in
evolution. In Proceedings of the VI International Congress of Genetrics, pages
356–366, 1932.

[353] F. Xhafa, B. Duran, L. Barolli, V. Kolici, R. Miho, and M. Takizawa. Tuning of
operators in memetic algorithms for independent batch scheduling in compu-
tational grids. In Proceedings of the 6th International Conference on Complex,
Intelligent, and Software Intensive Systems, CISIS 2012, pages 335–342, 2012.

[354] B. Yuan and M. Gallagher. Combining Meta-EAs and Racing for Difficult
EA Parameter Tuning Tasks. In F. G. Lobo, C. F. Lima, and Z. Michalewicz,
editors, Parameter Setting in Evolutionary Algorithms, volume 54 of Studies in
Computational Intelligence, pages 121–142. Springer Berlin Heidelberg, 2007.

[355] Z.-H. Zhan and J. Zhang. Adaptive particle swarm optimization. In Pro-
ceedings of the 6th international conference on Ant Colony Optimization and
Swarm Intelligence, ANTS ’08, pages 227–234, Berlin, Heidelberg, 2008.
Springer-Verlag.

[356] C. Zhang, J. Chen, and B. Xin. Distributed memetic differential evolution with
the synergy of Lamarckian and Baldwinian learning. Applied Soft Computing
Journal, 13(5):2947–2959, 2013.

[357] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang. Mul-
tiobjective evolutionary algorithms: A survey of the state of the art. Swarm
and Evol. Comp., 1(1):32 – 49, 2011.

[358] Y. Zhou, Y. Rao, G. Zhang, and C. Zhang. An adaptive memetic algorithm
for packing problems of irregular shapes. Advanced Materials Research, 314-
316:1029–1033, 2011.

[359] K. Zielinski and R. Laur. Adaptive parameter setting for a multi-objective
particle swarm optimization algorithm. In The 2007 IEEE Congress on Evo-
lutionary Computation, pages 3019 –3026, sept. 2007.

[360] K. Zielinski and R. Laur. Stopping criteria for differential evolution in con-
strained single-objective optimization. In U. Chakraborty, editor, Advances in

317



BIBLIOGRAPHY

Differential Evolution, volume 143 of Studies in Computational Intelligence,
pages 111–138. Springer Berlin / Heidelberg, 2008.

[361] E. Zitzler and S. Künzli. Indicator-Based Selection in Multiobjective Search.
In VIII Conference on Parallel Problem Solving from Nature, volume 3242 of
LNCS, pages 832–842. Springer, 2004.

[362] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization. In Evolution-
ary Methods for Design, Optimization and Control, pages 19–26, Barcelona,
Spain, 2002. CIMNE.

[363] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a compar-
ative case study and the strength Pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

318


