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Abstract

The use of airplanes for Mars exploration is a new and attractive approach because

it provides high resolution power and large spatial coverage. However, it is also a

challenging approach in engineering viewpoint. Mars airplanes are required to fly in

lower Reynolds number and higher subsonic Mach number conditions due to thinner

atmosphere and smaller speed of sound on the Mars, compared to typical commer-

cial Earth airplanes. Some studies of Mars exploratory airplanes have been already

reported by many researchers. However, these airplanes were designed only by uti-

lizing and modifying existing design approaches for conventional Earth airplanes.

Therefore, the use of a design optimization approach is desirable to realize more

effective and global search for better design of Mars airplane and establish a new

design concept for Mars airplanes. In addition, it is well known that there exist large

wind variations on the Mars. Such wind variations may lead to drastic deterioration

in performance, and thus failure in expected Mars exploratory mission. Therefore,

it is desirable to consider not only the performance at design point but also robust-

ness of performance against wind variations for more realistic and reliable design

of Mars airplane. One of solutions to realize such design is use of a robust design

optimization approach. However, traditional robust optimization approaches had

lack of capability to reveal trade-off information between optimality and robustness

which is useful for real-world robust designs.

In this dissertation, a new robust design optimization approach “design for multi-

objective six sigma (DFMOSS)” has been developed to solve the drawbacks of a

conventional robust optimization approach “design for six sigma (DFSS)” for more

efficient and more useful robust design optimizations, and applied to simple robust

optimization problems to investigate efficiency and usefulness of the DFMOSS. This

study showed that the DFMOSS has some advantages over the DFSS. First, the

DFMOSS does not require the advance specification of input parameters such as

weighting factors and sigma level. Second, the DFMOSS obtains multiple robust
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optimal solutions effectively by only one optimization run and reveals trade-off in-

formation between optimality and robustness. Third, satisfied sigma level of each

robust optimal solution can be evaluated easily and flexibly in post-processing of the

robust optimizations.

Then, aerodynamic design optimizations of Mars exploratory airplane wing con-

sidering the effects of wind variations were realized by using the DFMOSS and the

computational fluid dynamics (CFD) simulation. Realistic design information about

the trade-off relation between the optimality and the robustness of aerodynamic per-

formance of Mars exploratory airplane has been discussed based on the numerical

results.

First, three robust aerodynamic design optimizations of airfoil configuration for

Mars exploratory airplane considering the effects of wind variations were carried out.

In all cases, the robust aerodynamic design optimization using the DFMOSS revealed

the trade-off relation between the optimality and the robustness in aerodynamic per-

formance. In the first case considering the robustness of lift to drag ratio against

the variation of flight Mach number, it was shown that an airfoil configuration with

smaller maximum camber can improve the robustness in lift to drag ratio against

the variation of flight Mach number. This is because such airfoil can suppress the

growth of shock wave, i.e., realize smaller increment in pressure drag (wave drag)

against increment in flight Mach number. In the second case considering the robust-

ness of pitching moment coefficient against the variation of flight Mach number, it

was shown that an airfoil configuration with larger curvature in the front part can

improve the robustness of pitching moment coefficient against the variation of flight

Mach number. This is because such airfoil can suppress the backward movement

of shock wave occurred over the upper surface of airfoil against increment in flight

Mach number, and eventually it results in smaller change in pitching-down moment

produced in the rear part of airfoil against increment in flight Mach number. In

the third case considering the robustness of lift to drag ration against the variation

of angle of attack, it was shown that an airfoil configuration with blunter leading

edge can improve the robustness of lift to drag ratio against the variation of angle

of attack. This is because such airfoil configuration can suppress the growth of the

separation bubble generated near the leading edge against increment in angle of at-

tack. It leads to gentler change of negative pressure level in the front part near the

leading edge, i.e., smaller change of drag against increment in angle of attack, and

eventually it results in smaller change of lift to drag ratio against the variation of
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angle of attack.

Second, robust aerodynamic design optimization of airfoil and wing planform

configurations for Mars exploratory airplane considering effects of wind variations

was carried out. The present robust aerodynamic design optimization found the

solutions with robust characteristic in aerodynamic performance parameters against

wind variations, and revealed qualitative trade-off information between the optimal-

ity and the robustness in aerodynamic performance parameters. This result showed

that the DFMOSS is an effective approach even in large-scale robust design opti-

mizations with many design variables and objective functions. Among the robust

optimal solutions obtained in the present study, the solution with robust character-

istic of lift against wind variations had the wing configuration with supercritical-like

airfoil and larger twist-up angle locally at the mid-span section. Such wing con-

figuration involved the leading-edge separation, which leaded to small local lift and

large local drag, at the twisted-up section at the design point. Such extreme solution

with leading-edge separation seems to be undesirable and unrealistic to be used in

real-world design. Therefore, more detailed investigation of the obtained trade-off

information without such extreme solutions may be useful for more realistic designs

of Mars exploratory airplane. In addition, the present CFD simulation approach

based on the Favre-averaged Navier-Stokes equations with the Baldwin-Lomax al-

gebraic turbulence model did not have accuracy enough to simulate the flowfields

involving large-scale separation phenomena. Therefore, further investigation of the

CFD simulation approach for large-scale separation phenomena may lead to more

realistic and more reliable future designs of Mars exploratory airplane.
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Chapter 1

Introduction

1.1 Backgrounds

The exploration of various planets in the solar system has been an academically

interesting and attracting research topic in space science field because it may pro-

vide an important clue for understanding physical and biological early histories of

the solar system evolution including the Earth. Mainly two approaches have been

adopted to observe the planet directly; orbiting satellite around the focused planet,

and rover moving on the surface of focused planet. Up to the present, each approach

have been investigated by many researchers, and actually various orbiting satellites

and rovers have been delivered or will be delivered from the Earth to various planets

in the solar system by several research institutes in countries all over the world.

Orbiting satellites can provide large spatial coverage over the focused planet.

Up to the present, several exploration missions of planets in the solar system using

orbiting satellites have been already conducted and many observed data have been

provided. National Aeronautics and Space Administration (NASA) delivered the

orbiting satellite “Mars Global Suyveyor,”1 as shown in Fig. 1.1(a), to the Mars

and started collecting image data of the Martian surface in 1997. European Space

Agency (ESA) also started exploring the Mars by using the orbiting satellite “Mars

Express,”2 as shown in Fig. 1.1(b), in 2003. However, these orbiting satellites still

have lack of resolution of observed image data. For example, NASA’s Mars Global

Surveyor has telephoto lens cameras with 1.4 m resolution power and wide-angle

lens cameras with 250 m resolution power on board. Therefore, it is difficult for the

orbiting satellites to explore the focused planet in detail.

Rovers, on the other hand, can provide detailed data of the focused planet because

the rovers move while touching the surface of the planet. NASA succeeded in putting

1
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(a) NASA’s “Mars Global Surveyor.”1 (b) ESA’s “Mars Express.”2

Figure 1.1 Mars orbiting satellites.

the rovers “Spirit” and “Opportunity,”3 as shown in Fig. 1.2, onto the Martian

surface and getting high resolution data in 2003. However, rover’s spatial exploratory

coverage is limited to a very small area. For example, NASA’s Spirit can only move

at normal speed of 1 cm/s and maximum speed of 5 cm/s, and actually it was

reported that NASA’s Spirit had realized only 108 m travel per 45 Martian days and

3,605 m per 225 Martian days (1 Martian day corresponds to 24.6 Earth’s hours).

Figure 1.2 NASA’s Mars rover “Spirit.”3

As for in Japan, Japan Aerospace Exploration Agency (JAXA) has been actively

exploring the solar system by its unique approach. Currently, the scientific satellite

“HAYABUSA”4 is approaching to the asteroid which was named as “ITOKAWA”

to bring back samples of the asteroid’s surface to the Earth. Also, the Venus

Climate Orbiter project “PLANET-C,”5 the third Japanese solar physics satellite

“SOLAR-B,”6 the Japanese lunar satellite “SELENE”7 and penetrator “LUNAR-

A”8 projects, and the joint Mercury exploration project between Japan and Europe
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“BepiColombo”9 are ongoing. As in JAXA long-term visions10 announced in April

2005, JAXA is aiming at further exploration of the solar system in the next 20 years.

Especially in the long-term visions of JAXA, it is notable that Mars exploration using

an aircraft is proposed instead of conventional approaches using orbiting satellites

or rovers.

The use of aircrafts is expected to be a new and attractive approach to observe

the Mars directly and get academically interesting information about the Martian

surface and atmosphere because aircrafts can get higher resolution data than orbiting

satellites and can provide larger spatial coverage over large region than rovers. How-

ever, it is also a challenging approach in engineering viewpoint. There exist several

options for Mars exploration using an aircraft; airplane with fixed wing, helicopter,

airplane with flapping wing, etc., and each option has already been investigated by

many researchers, as described in Sec. 1.2.

1.2 Past Studies of Mars Exploratory Airplanes

As for airplanes with fixed wing, NASA proposed “Airplane for Mars Exploration

(AME),”11 as shown in Fig. 1.3(a), and “Aerial Regional-scale Environmental Survey

of Mars (ARES),”12–14 as shown in Fig. 1.3(b). AME aims at exploring geological

features over a large geographic area including mountains and craters. The span

length and area of main wing of AME are 12.44 m and 12.24 m2, respectively,

and the total mass of AME is 203.8 kg. The AME aims to fly at cruising Mach

number of 0.4735 and with a range of 3,500 km, using propeller propulsion whose

power is supplied by a fuel cell. On the other hand, ARES is one of the proposed

Mars Scout missions using an airplane to provide high-value science measurements

in the areas of atmospheric chemistry, surface geology and mineralogy, and crustal

magnetism. The overall length and wing span length of ARES are 4.4 m and 6.25 m,

respectively, and the total mass of ARES is 175 kg. The ARES can fly at cruising

Mach number of 0.65 and with a range of 500 km, using rocket propulsion. Both AME

and ARES are planned to be delivered to the Mars by using existing launchers such

as Viking rockets of the United States, compactly folded into a protective aeroshell.

Then, these airplanes will be emerged from its aeroshell and start to fly over the

Mars through the entry, descent and deployment sequence of events, as shown in

Fig. 1.4. In addition, there exists another interesting case of conceptual design of

Mars airplane with fixed wing that master students of the University of Tokyo in
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Japan designed a canard-type Mars airplane using a propeller propulsion, as shown

in Fig. 1.3(c), in 2005.15

(a) NASA’s “Airplane for Mars Ex-

ploration (AME).”11
(b) NASA’s “Aerial Regional-scale
Environmental Survey of Mars
(ARES).”12–14

(c) Mars airplane designed at the Univer-

sity of Tokyo.15

Figure 1.3 Mars exploratory airplanes with fixed wing.

As for the Mars exploratory helicopter, “Martian Autonomous Rotary-Wing Ve-

hicle (MARV),”16 as shown in Fig. 1.5, was designed at the University of Maryland

in the United States in 2000. MARV was designed in response to the request for

proposals (RFP) from the American Helicopter Society as part of their 2000 student

design competition. The final design of the MARV satisfies all these requirements;

the MARV can carry 10.8 kg of payload over a range of 25 km in 39 minutes, make a

soft landing, shutdown, re-start, and take off again and fly a short distance. In addi-

tion, Tsuzuki17 conducted the feasibility study and conceptual design of a miniature

rotary-wing vehicle for Mars exploration with a rotor radius of 0.10 ∼ 0.15 m class
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(a) Atmospheric entry. (b) Parachute deploy-
ment.

(c) Heatshield release.

(d) Aircraft ejection. (e) Aircraft release. (f) Tail deployment
start.

(g) Tail deployment
complete.

(h) Wings deployment
start.

(i) Aircraft pull-up
start.

(j) Aircraft pull-up com-
plete.

(k) Mars exploration
start.

Figure 1.4 Entry, descent and deployment sequence of events of NASA’s
ARES.12
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and a flight endurance of 1/12 hour class in 2005.

Figure 1.5 Mars exploratory helicopter “Martian Autonomous Rotary-
Wing Vehicle (MARV)” designed at the University of Maryland.16

Finally, as for the Mars exploratory airplane with flapping wing, NASA pro-

posed “Planetary Exploration Using Biomimetics” which is called “Entomopter,”18

as shown in Fig. 1.6. In this mission, it is assumed that two Entomopters fly up from

a rover, and bring back samples of the Martian surface to the rover. Entomopter

can fly by flapping two pairs of wings with a Reciprocating Chemical Muscle (RCM)

with a range of 40 km and an endurance of 48 minutes. On the rover, the samples

are analyzed and also the fuel of RCM is supplied for the next flight.

Figure 1.6 NASA’s Mars exploratory airplane with flapping wing
“Entomopter.”18

Each option for Mars exploration described above has different advantages and

disadvantages. The airplane with fixed wing has larger spatial coverage, easier con-

trollability and larger feasibility of automatic flight, but also has difficulties in storage

into an aeroshell and structural problems. The helicopter has capability of take-off,

landing and fixed-point observation, but has difficulties in automatic flight and stor-
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age into an aeroshell and structural problems. Finally, the airplane with flapping

wing has advantage in storage into an aeroshell, but its basic technologies such as

hovering have not been established yet. In the present study, the airplane with fixed

wing is considered as approach for Mars exploration because airplanes with fixed

wing are established technologies. Also from a scientific viewpoint, only the airplane

with fixed wing can globally and accurately explore the structure of remnant mag-

netic fields and lower atmosphere, which are important clues for understanding the

early history of Mars evolution, because the airplane with fixed wing can fly near the

Martian surface with large spatial coverage and then reduce undesirable absorption

of signal rays by the atmosphere.14

However, it is undesirable to design the Mars airplane just like the Earth air-

planes. One of the reasons is that the flight conditions on the Mars are very different

from those on the Earth. Table 1.1 shows the physical properties of the Earth’s and

Martian atmospheres. The density on the Mars is very small and about 1/100 of

that on the Earth. In addition, the size of Mars airplane is restricted to be small

because the airplane must be stored into an aeroshell delivered by a launcher. Con-

sequently, the Reynolds number based on the chord length of Mars airplane becomes

about 105, while that of typical commercial airplanes on the Earth is about 107. In

addition, an airplane must fly with higher velocity on the Mars than that on the

Earth because it is required to get lift, i.e., dynamic pressure enough to support the

airplane weight in the thin Martian atmosphere. Furthermore, the speed of sound

on the Mars is about 2/3 of that on the Earth. It results in the need for an airplane

to fly at higher Mach number on the Mars than that on the Earth. For example, the

aircraft with the total mass of 1,500 kg, the wing area of 20 m2 and lift coefficient

of 0.785 must fly at cruising Mach number of 0.12 on the Earth to get lift enough

to support the aircraft weight. On the other hand, the same aircraft must fly at

cruising Mach number of 0.95 on the Mars when it is assumed that lift coefficient

is constant on both the Earth and the Mars. Therefore, it is required to design an

airplane in the flight conditions with low Reynolds number and high subsonic Mach

number for the Mars airplane mission.

However, the Earth airplanes corresponding to similar flight conditions to the

Mars airplane are limited to high-altitude airplanes, and currently the design con-

cept of such airplanes has not been established sufficiently yet. Actually, NASA’s

AME11 and ARES12–14 were designed only by utilizing and modifying existing de-

sign approaches for conventional Earth airplanes and it may not have found a design
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Table 1.1 Physical properties of the Earth’s and the Martian
atmospheres.19

Earth
Mars

(on equator)

Gas composition
(volume ratio [%])

N2

O2

Ar
H2O

78.1
20.9
0.9

0 ∼ 2

CO2

N2

Ar

95.3
2.7
1.6

Temperature [K] 298 270
Pressure [Pa] 1.014 × 105 6.0 × 102

Density [kg/m3] 1.17 1.18 × 10−2

Speed of sound [m/s] 345 220
Viscosity coefficient [Pa·s] 1.86 × 10−5 1.36 × 10−5

Acceleration of gravity [m/s2] 9.8 3.78
Ratio of specific heats 1.4 1.34

with the best performance on the Mars exactly in these studies. Actually, it is known

that the aerodynamic performance of an airfoil changes drastically at low Reynolds

number condition. Figure 1.7 compares the polar curves of three configurations

(traditional airfoil, flat plate and curved plate) between two cases of low Reynolds

number conditions (40,000 and 120,000). In each case, the freestream velocity is

about 0.67 m/s. In the case of Reynolds number as 120,000, the traditional airfoil

has the best aerodynamic performance. In the case of Reynolds number as 40,000, on

the other hand, curved plate and flat plate have the better aerodynamic performance

than the traditional airfoil. In addition, Liebeck20 reported that an thin airfoil like a

curved plate has good aerodynamic performance at low Reynolds number condition

from his study using an inverse design approach. Therefore, it is required to search

the best design more globally in such low Reynolds number condition corresponding

to the flight condition of Mars airplane. Furthermore, not only aerodynamic perfor-

mance but also other performances such as structure, propulsion, control, etc. must

be considered simultaneously in the design of Mars airplane. Therefore, so-called

multidisciplinary design of Mars airplane will be required in the future. However, it

is not effective and not realistic to find the best design of Mars airplane consider-

ing various performances by changing many design parameters many times through

trial and error based on only human knowledge, intuition and experience. The use

of a design optimization approach, as described in Sec. 1.3, is one of good solutions

to realize more global and effective search for better design of Mars airplane and
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establish a new design concept for Mars airplanes.

C
D

C
D

C
L

Figure 1.7 Comparison of polar curves of traditional airfoil, flat plate and
curved plate between two cases of low Reynolds number conditions.21

Another reason why it is undesirable to design the Mars airplane just like the

Earth ones is that the Mars airplane mission is very risky because this mission has

no precedent and only one available chance to try flying over the Mars, and the

Mars airplane must be controlled without a pilot. Therefore, it is desirable to expect

and avoid every critical situation possible to occur during the Mars airplane mission

in the initial design and development phases for success in completing this mission

safely.

One of the most critical situations which must be avoided is the drastic deteri-

oration in performance due to large wind variations on the Mars. It is well known

that there exist large dairy and seasonal climate changes on the Mars because the

Mars does not have the sea absorbing solar radiation heat, the Mars has large orbital

eccentricity, and the Martian surface is undulating hardly with many mountains and

craters, differently from the Earth. Figure 1.8 shows the mean meridional cross sec-

tions of east-westward gradient wind speeds, so-called the westerly speeds, in the

northern hemisphere fall equinox and winter solstice on the Mars. This figure shows

that the maximum westerly speed is more than 100 m/s at the altitude of about 30

km of high latitude regions, and also there exist relatively high wind speeds (about

20 m/s) near the Martian surface (at the altitude of several kilometers) where it is

assumed for the Mars airplane to fly for exploring the structure of remnant magnetic
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fields and lower atmosphere. Actually, it will be required for the Mars airplane to fly

in both east-westward and north-southward directions for various Mars exploratory

missions under the situation where the westerlies blow hard. In addition, comparing

Figs. 1.8(a) and 1.8(b), it is clear that the westerly speeds change drastically in all

seasons. Actually, it is not guaranteed that the Mars airplane can reach the Mars

on schedule by a launcher in all missions, and some Mars airplanes may have to fly

in unexpected season. Furthermore, it is known that the westerlies can produce not

only the change of east-westward wind speeds but also that of vertical wind speeds

caused by so-called the forced planetary wave, as shown in Fig. 1.9, when these

blow over an hardly undulating Martian surface with mountains and craters. Some

researchers in planetary meteorology say that the vertical wind speeds produced

by the forced planetary wave may extend to about 20 m/s maximum on the Mars.

Therefore, it is required to consider the effect of various possible wind variations

which lead to various variations of flight conditions, such as Mach number, the angle

of attack and the angle of side slip, for more realistic and reliable design of Mars

airplane.

Figure 1.10 illustrates an example of the effect on aerodynamic performance by

the variations of flight conditions. The solution A has the largest lift to drag ratio

at design point. However, the lift to drag ratio of solution A decreases drastically

with the increment in flight Mach number, and its decrement extends to the infea-

sible range. That is, it can be said that the solution A has the best but not robust

aerodynamic performance against wind variations. On the other hand, the solutions

B and C have slightly worse at the design point but much more robust aerodynamic

performance against the wind variations than the solution A. The previous studies

on NASA’s AME11 and ARES,12–14 aimed at only improving the performance at

design point (cruising flight conditions) and did not consider the effect on the aero-

dynamic performance by possible wind variations sufficiently. These facts indicate

that NASA’s AME and ARES may not have good performance at off-design points,

like the solution A in Fig. 1.10, and may not be able to fly over the Mars well enough

to complete these exploratory missions safely when wind variations are large on the

Mars and the flight conditions of Mars airplane get off the assumed design point.

As described above, it is desirable to use a design optimization approach for more

global and effective search of the best design of Mars airplane. In addition, it is de-

sirable to focus on not only the performance at design point but also the robustness

of performance against wind variations for more realistic and reliable design of Mars
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Figure 1.8 Mean meridional cross sections of east-westward gradient wind
speeds on the Mars (positive wind speeds represent eastward).22
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Figure 1.9 Forced planetary wave.23

airplane, like the solutions B and C in Fig. 1.10, too. One of solutions to realize such

design is the use of a robust design optimization approach, as described in Sec. 1.4.
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Sol. A
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Sol. C

Feasible

Figure 1.10 Example of the effect on aerodynamic performance by the
variations of flight conditions

1.3 Past Studies of Design Optimization Approaches

A design optimization is a computer-aided design tool to search the design with

the best performance globally and automatically. Up to the present, various design

optimization approaches have been developed by many researchers, and applied to

various engineering design problems about structure, dynamics, aerodynamics, etc.

by many designers. As for aerodynamic design optimizations, it was the most con-

ventional way to utilize theoretical formulas or experimental data for the evaluation
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of aerodynamic performance carried out many times in an optimization process. Re-

cently, the use of computational fluid dynamics (CFD) simulation24,25 becomes pop-

ular for the evaluation of aerodynamic performance. Essentially, CFD simulations,

especially viscous Navier-Stokes simulations, need much larger computation time and

resources compared to the simulations of other engineering fields. However, now the

aerodynamic design optimization using the CFD simulations has already reached at

a practicable level according to recent fast improvement in computer power.

One of famous examples of aerodynamic design optimizations is the study con-

ducted by Reuther et al..26,27 In their study, applications of an adjoint method28

to the aerodynamic designs of transonic business jet configuration and supersonic

transport configuration using an inviscid Euler flow solver were reported. The ad-

joint method is a kind of gradient-based methods (GM)29,30 which are the most

conventional design optimization approaches, and based on control theory. In this

method, the gradient information at a single design point with respect to an arbi-

trary number of design variables: N can be obtained with the equivalent two flow

calculations (one flow or state solution and one adjoint or costate solution), instead

of the N + 1 flow calculations required in conventional GMs. Therefore, the use of

adjoint method can reduce computation time drastically compared to the other kinds

of GMs. Consequently, in their aerodynamic design optimization using the adjoint

method where the total drag at cruising Mach number of 2.2 with lift coefficient of

0.105 must be minimized, the total pressure drag could be reduced by 8 % success-

fully. However, GMs such as the adjoint method can not guarantee that an obtained

design is global optimal. Therefore it is required to carry out the optimizations using

GMs many times with different initial designs to obtain a global optimal design.

Instead of the adjoint method, a genetic algorithm (GA)31 has been paid at-

tention to in the field of aerodynamic design optimization. A GA is a design op-

timization approach which imitates biological evolution process, and has superior

capability of searching a global optimal design independently of initial designs com-

pared to GMs. Essentially, however, GAs have poor convergency to a global optimal

design. Oyama32 engaged in the development of new efficient GA, called a real-coded

adaptive range genetic algorithm (ARGA), and its application to the aerodynamic

designs of airfoil configuration using viscous Navier-Stokes flow solver. In his study,

it was shown that the real-coded ARGA can realize faster convergence to a global

optimal design than conventional GAs in a test function problem, and transonic and

supersonic aerodynamic design optimization problems of airfoil configuration. As for
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the transonic aerodynamic design optimization using the ARGA where lift to drag

ratio must be maximized and the constraint on bending moment must be satisfied at

cruising Mach number of 0.8 and the angle of attack of 0 deg, the optimized design

had better lift to drag ratio of 18.91, and also could satisfy the constraint on bending

moment.

Usually, however, there exist not only a single objective, as described above, but

also multiple objectives in real-world design problems. In general multi-objective

design optimization problems, an improvement of one objective requires a compro-

mise of the other objective, and such trade-off relation can be represented by the

curve which consists of multiple Pareto-optimal solutions. GMs can not treat multi-

objective optimization problems effectively. On the other hand, GAs can be applied

to the multi-objective optimization problems easily. A multi-objective genetic al-

gorithm (MOGA)33 was developed for efficient multi-objective design optimizations

and acquisition of realistic design information about trade-off relation among com-

peting objectives. One of good examples of aerodynamic design optimizations using

a MOGA is conducted by Sasaki.34 In his study, a real-coded adaptive range multi-

objective genetic algorithm (ARMOGA) was developed and validated in test function

problems, and it was applied to aerodynamic designs of low pressure compression

system, supersonic transport wing-fuselage configuration, and supersonic transport

canard-wing-fuselage configuration using viscous Navier-Stokes flow solver. In the

aerodynamic design optimization of canard-wing-fuselage configurations of super-

sonic transport, drag coefficient had to be minimized and equivalent area distribution

had to matched Darsen’s theoretical distribution which can achieve low sonic boom

at cruising Mach number of 1.6 with fixed lift coefficient of 0.125. Consequently, this

study could reveal trade-off relation between minimizations of drag coefficient and

sonic boom, and then obtain design information about configuration for reduction

in sonic boom and that for reduction in drag coefficient successfully.

1.4 Past Studies of Robust Design Optimization Ap-

proaches

Instead of a traditional design optimization considering only optimality as described

in Sec. 1.3, a new design optimization called a robust design optimization has been

proposed in recent years. In real-world engineering designs, inevitably there exist

errors and uncertainties in design process, manufacturing process, and operating
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condition. Therefore, a design optimized by a traditional design optimization ap-

proach may not be able to achieve its expected performance due to such errors and

uncertainties, like the solution A in Fig. 1.10. A robust design optimization consid-

ers both optimality and robustness, and can find the design with moderately good

performance at design point and also robust performance against the errors and

uncertainties, like the solutions B and C in Fig. 1.10.

Optimality and robustness are usually competing in real-world design problems.

Therefore, there exist multiple compromised solutions between the optimality and

the robustness, as shown in Fig. 1.11, in robust design optimization problems. Ob-

jectives of robust design optimizations are to find these compromised solutions to

reveal trade-off information, and to give chance to the upper-level decision maker to

select one solution from these compromised solutions with other considerations.

Optimality

R
ob

us
tn

es
s

Figure 1.11 Example of trade-off relation between optimality and robust-
ness.

Up to the present, some robust optimization approaches have been proposed

and investigated to obtain robust optimal solutions. Youn and Choi35 basically

categorized robust design optimization approaches (called reliability-based design

optimization (RBDO) methods in their article) into three; the approximate moment

approach (AMA), the reliability index approach (RIA), and the performance measure

approach (PMA). They recommended PMA among these approaches in terms of

accuracy and stability. However, actually PMA is still not popular in real-world

engineering design field because it is not easy for users to understand the essence of

the formulation of PMA.

On the other hand, the design for six sigma (DFSS),36 which belongs to an
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AMA category, is one of popular robust design optimization approaches in real-world

engineering design field. The formulation of DFSS is very simpler than that of other

approaches, and can be understood easily and intuitively by users. In fact, DFSS

has been successfully applied to various robust optimization problems.37,38 However,

DFSS has some drawbacks. First, DFSS finds only one robust optimal solution by

one case. Second, DFSS does not guarantee that the obtained robust optimal solution

satisfies the user-specified sigma level which is one of the very popular and useful

measures of robustness to the designers in reliability engineering field. Therefore,

users must repeat many cases by using DFSS with different input parameter set

until a satisfactory robust optimal solutions, and eventually many robust optimal

solutions are obtained enough to reveal trade-off information between optimality and

robustness, as shown in Fig. 1.11. Deb and Gupta39 also proposed other robust design

optimization approach. In their study, a traditional design optimization problem

was converted to a robust design optimization problem where the mean value of

objective function must be minimized and also the perturbation of the value of

objective function must be smaller than user-specified limit against the variation of

design variables. This approach was almost similar to DFSS because of the need

of specification of the advance constraint limit, therefore it can be said that this

approach is also not effective and not useful to obtain trade-off information between

optimality and robustness.

Rai40 reported a new idea of robust design optimization approach. He treated a

robust design optimization problem of turbine rotor airfoil shape as a multi-objective

design optimization problem with two separate measures of optimality and robust-

ness; to maximize the wedge angle at the trailing edge, and to minimize the variance

in pressure against small airfoil shape change. As a result, many robust optimal solu-

tions enough to reveal trade-off relation between these measures had been obtained.

In his study, however, he discussed only the extreme solutions and detailed discus-

sion about the obtained trade-off relation, which is very useful design information

from the designer’s viewpoint, was not conducted sufficiently. In his approach, in

addition, only the variation of dispersive performance against the variation of design

variables was used as the measure of robustness. However, there exist other kinds

of measures of robustness or reliability which are very important and often used in

real-world designs, e.g., the safety probability where the dispersive performance is

included in the acceptable range. In his study, further discussion about the measures

of robustness except for the variation of dispersive performance was not conducted
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sufficiently.

As the examples of robust aerodynamic design optimizations against the vari-

ation of configuration, flight condition, etc., some studies have been reported by

some researchers.40–44 In any of those studies, however, each proposed approach was

applied to only idealized design problems, and investigated in terms of not a real-

world design tool but a numerical algorithm. In addition, the detailed discussions

about efficiency, usefulness and versatility of the proposed approaches were not con-

ducted sufficiently. Unfortunately, most of the proposed robust design optimization

approaches are not applicable easily and flexibly to various real-world engineering

designs. Anyway, undoubtedly it can be said that a robust design optimization is

now in a developing stage and has not reached a practicable level for the designers

in various real-world engineering fields yet.

1.5 Research Objectives

Based on the backgrounds and past studies on Mars exploratory airplane, design

optimization and robust design optimization, as described above, now I formulate

my research objectives of this dissertation as follows:

• To develop a new efficient and useful robust design optimization

approach.

Firstly, I develop a new robust optimization approach “design for multi-objective

six sigma (DFMOSS)” to solve the drawbacks of a traditional robust optimiza-

tion approach. DFMOSS does not require to specify input parameters carefully

in advance, and can obtain trade-off information between optimality and ro-

bustness efficiently. Then, the new robust optimization approach is applied to

some robust design optimization problems to investigate the efficiency and the

usefulness of the proposed approach.

• To realize aerodynamic design optimizations of Mars exploratory

airplane wing considering the effects of wind variations.

Secondly, I perform robust aerodynamic design optimizations of Mars ex-

ploratory airplane wing considering the effects of wind variations by using the

DFMOSS. I start from robust design problems of airfoil configuration where

the aerodynamic performance against the variations of flight Mach number or

angle of attack must be optimized, and then extend to more realistic robust
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design problem of airfoil and wing planform configurations where the aero-

dynamic performance against the variations of flight Mach number, angle of

attack, and angle of side slip must be optimized.

• To obtain realistic design information about the trade-off relation

between the optimality and the robustness of aerodynamic perfor-

mance of Mars exploratory airplane.

Finally, I try to obtain detailed design information about the trade-off relation

between the optimality and the robustness of aerodynamic performance of Mars

exploratory airplane from the obtained robust optimal solutions, and reveal the

physical principles under this trade-off relation. Final goal of the present study

is to provide one of useful guides to more reliable design of Mars exploratory

airplanes with fixed wing and more reliable Mars exploratory missions using

the airplanes.

1.6 Outline of Dissertation

The outline of this dissertation is as follows. In Chap. 2, the numerical methodolo-

gies for the present robust aerodynamic design optimization are described. Firstly,

design optimization approaches are described in Sec. 2.2. Traditional design opti-

mization approaches considering only optimality such as a gradient-based method

(GM), a genetic algorithm (GA) and a multi-objective genetic algorithm (MOGA)

are described in Subsec. 2.2.1. Then, robust design optimization approaches consid-

ering not only optimality but also robustness are described in Subsec. 2.2.2. In the

present study, a new robust design optimization approach “design for multi-objective

six sigma (DFMOSS)” is developed to solve the drawbacks of a traditional robust de-

sign optimization approach “design for six sigma (DFSS)”. Secondly, computational

fluid dynamics (CFD) simulation approach used for the evaluation of aerodynamic

performance in the design optimization process is described in Sec. 2.3.

In Chap. 3, the newly developed robust optimization approach DFMOSS is ap-

plied to four simple examples of robust design optimization problems. In each ex-

ample, the numerical results obtained by using the DFMOSS are compared to those

obtained by using the DFSS to investigate the efficiency and the usefulness of the

DFMOSS.

In Chap. 4, robust aerodynamic design optimizations of airfoil configuration for

Mars exploratory airplane considering the effects of wind variations are performed
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by using the DFMOSS and the CFD simulation approach. In the present study,

three robust aerodynamic design optimizations of airfoil configuration are carried

out. In each case, the numerical results obtained by the robust optimization using

DFMOSS are compared to those obtained by a traditional one-point optimization

or those obtained by the robust optimization using the DFSS to investigate effi-

ciency and usefulness of the DFMOSS, and the differences in optimized designs.

Then, the obtained trade-off relations between the optimality and the robustness of

aerodynamic performance of airfoil configuration for Mars exploratory airplane are

discussed.

In Chap. 5, the robust aerodynamic design optimizations of airfoil and wing

planform configurations for Mars exploratory airplane are performed to obtain more

realistic and more useful trade-off information between the optimality and the ro-

bustness of aerodynamic performance from the designer’s viewpoint. The numerical

results obtained by the robust optimization using DFMOSS are compared to those

obtained by a traditional one-point optimization in order to investigate efficiency

and usefulness of the DFMOSS and the differences in optimized designs. Then, the

obtained trade-off relations between the optimality and the robustness of aerody-

namic performance of airfoil and wing planform configurations of Mars exploratory

airplane are discussed. Furthermore, one of useful guides to more reliable design

of Mars exploratory airplanes with fixed wing and more reliable Mars exploratory

missions using the airplanes is provided.

And finally in Chap. 6, the numerical results of this dissertation are summarized

with conclusions.



Chapter 2

Numerical Methodology for
Robust Aerodynamic Design
Optimization

2.1 Introduction

In this chapter, numerical methodology for the robust aerodynamic design opti-

mization of Mars exploratory airplane wing is described. The present methodology

consists of mainly two components; optimizer and evaluator. In the optimizer, firstly,

a design problem where the values of the values of certain performance parameters

must be improved is defined, and initial values of input design parameters of each

design candidate are generated. For each design candidate, corresponding output

performance parameters are evaluated by using the evaluator. These input design

parameters of each design candidate are modified so that the values of these per-

formance parameters will be improved more by using a certain design optimization

approach. Iterating these processes, finally, the design candidate which has the best

performance parameters is obtained. Traditional design optimization approaches are

describes in Subsec. 2.2.1, and robust design optimization approaches are described

in Subsec. 2.2.2. In the evaluator, input design parameters are received from the op-

timizer, and corresponding output performance parameters are evaluated and sent

back to the optimizer. In the present aerodynamic design optimization, computa-

tional fluid dynamics (CFD) simulations24,25 are used for the evaluation of aero-

dynamic performance of Mars exploratory airplane. The present CFD simulation

approach is described in Sec. 2.3.

20
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2.2 Design Optimization Approaches

2.2.1 Traditional Design Optimization Approaches

2.2.1.1 General Theory of Traditional Design Optimization

Here, for example, consider the design problem where we aim at finding wing config-

uration parameters (thickness, camber, aspect ratio, sweepback angle, etc.) which

has minimum drag in a certain flight condition. Here in this problem, consider in

terms of structural strength that the bending moment of wing must not exceed an

acceptable upper limit to avoid destruction, too. Firstly, note that the drag changes

depending on the wing configuration parameters, i.e., the drag can be represented as

the function of wing configuration parameters. Therefore, the drag can be minimized

by searching the direction to reduce the drag and changing the wing configuration

parameters in this direction. Secondly, note that the bending moment can be also

represented as the function of wing configuration parameters. Therefore, the wing

configuration parameters must be changed within the range that the bending mo-

ment does not exceed an acceptable upper limit. In the design optimization field,

the wing configuration parameters of this problem which must be changed is called

the design variables, the drag which must be minimized is called the objective func-

tion, and the bending moment which must not exceed the upper limit is called the

constraint. That is, it can be said that the design optimization problem aim at find-

ing the values of design variables which have minimum value of objective function

defined as the function of design variables, and also satisfies the constraint defined

as the function of design variables.

General formulation of traditional optimization problem is written as follows:

Minimize: f(x)

Subject to: g(x) ≤ 0
(2.1)

This formulation represents that we aim at finding a solution x which minimizes

f(x) and also satisfies g(x) ≤ 0. x is the vector of n design variables: x =

[x1, x2, · · · , xn]T . f(x) and g(x), defined as the functions of x, are the vector of

M objective functions: f(x) = [f1(x), f2(x), · · · , fM (x)]T , and that of L inequality

constraint functions: g(x) = [g1(x), g2(x), · · · , gL(x)]T , respectively.

The optimization problems can be classified in terms of the number of peaks

of objective function, as shown in Fig. 2.1. In the case of the single-peak problem

where the value of objective function must be maximized, as shown in Fig. 2.1(a),
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an optimal solution necessarily can be found by simply searching the direction to

improve the value of objective function and changing the design variables in this

direction, independently of initial value of solution. In the case of the multi-peak

problem, which is more realistic case, as shown in Fig. 2.1(b), on the other hand, it

may be possible to mistake right direction which should be searched and consequently

find not a right solution which is global optimal but a wrong solution which is local

optimal, depending on the initial value of solution. Therefore, it is most important

to avoid local optimal solutions and find a global optimal solution for accurate design

optimizations.
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(b) Multi-peak objective function.

Figure 2.1 Classification of optimization problems in terms of the number
of peaks of objective function.

In addition, the optimization problems can be classified in terms of the number

of objective functions, as shown in Fig. 2.2, too. In the case of single-objective

optimization problem where drag must be minimized, as shown in Fig. 2.2(a), it

is clear that there exists only one optimal solution B. Next, consider the case of

multi-objective optimization problem, which is more realistic case, where not only

drag must be minimized but also lift must be maximized as shown in Fig. 2.2(b).

Comparing four solutions A, B, C and D, the solution A has smallest drag but

smallest lift. The solution B has larger lift but larger drag than the solution A,

and the solution C has even larger lift but even larger drag than the solution B.

Therefore, these three solutions A, B and C can be considered as good solutions



2.2 Design Optimization Approaches 23

because these solutions are better in terms of either lift or drag and not worse in

terms of both lift and drag than one another, i.e., we can not determine which is the

best in terms of both lift and drag among the solutions A, B and C. The solution D,

on the other hand, has not only larger drag but also smaller lift than the solution B.

Therefore, the solution D can be considered as a bad solution because this solution

is worse in terms of both lift and drag than the solution B. In the optimization

field, the solutions A, B and C in Fig. 2.2(b) are said to be not dominated by any

other solution, and such non-dominated solutions are called Pareto-optimal solutions.

The terms ”dominance” and ”Pareto-optimality” can be defined mathematically for

multi-objective optimization problems as follows:33

Definition 1: Dominance In the multi-objective optimization problem where mul-

tiple objective functions f(x) = [f1(x), f2(x), · · · , fM (x)]T must be mini-

mized, a solution xi is said to dominate the other solution xj if all the following

inequalities are satisfied:

fk(xi) ≤ fk(xj), ∀k = 1, 2, · · · ,M

fk(xi) < fk(xj), ∃k = 1, 2, · · · ,M
(2.2)

Definition 2: Pareto-Optimality A solution xi ∈ Ω is said to be Pareto-optimal

if there is no other solution xj ∈ Ω which dominates xi.

In general multi-objective optimization problems, an improvement of one objective

function requires a compromise of the other objective function, and such trade-off

relation can be represented by the curve which consists of multiple Pareto-optimal

solutions, as shown in Fig. 2.3. Therefore, it is most important to compare multi-

ple solutions based on the Pareto-optimality concept, find multiple various Pareto-

optimal solutions, and reveal the trade-off information among multiple objective

functions for realistic multi-objective design optimizations.

There exist mainly two kinds of numerical approaches to solve optimization prob-

lems; one is a deterministic or mathematical approach such as the gradient-based

method described in Subsubsec. 2.2.1.2, and the other is a heuristic or statistical

approach such as the genetic algorithm described in Subsubsec. 2.2.1.3.

2.2.1.2 Gradient-Based Method

Among the optimization approaches, the gradient-based method (GM)29,30 has been

most widely used. GM is based on a simple concept so-called hill-climbing strategy



24 2 Numerical Methodology for Robust Aerodynamic Design Optimization

Wing Configuration

D
ra

g

Sol. A

Sol. B
Sol. C

Optimal

(a) Single-objective.

Lift

D
ra

g

Sol. B

Sol. C

Sol. A

Sol. D

(b) Multi-objective.

Figure 2.2 Classification of optimization problems in terms of the number
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that we can reach the top of hill from a certain point by climbing the hill in the steep-

est direction at this point. Generally in GM, an optimal solution x is consequently

obtained by iterating a following equation:

xk+1 = xk + αd (2.3)

where •k represents the iteration number. d is a vector search direction and α is

the distance that we want to move in the direction d. The flowchart of basic GM

is shown in Fig. 2.4. The optimization process using GM consists of mainly three

components; picking of search direction d, decision of distance α, and convergence

check. In the case of constrained optimization problems, d and α must be set so that

x can be included in the feasible region at each iteration, such as an modified method

of feasible direction (MMFD),29,30 a sequential linear programming (SLP)29,30 a

sequential quadratic programming (SQP),29,30 etc..

Start
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Figure 2.4 Flowchart of gradient-based method.

A global optimum solution can be obtained by GM if objective and constraint

functions are differentiable and convex, i.e., have only one smooth peak. In practi-

cal, however, it is very difficult to prove differentiability and convexness. The final

solution obtained by GM depends on the initial values of solution, and GM only

can guarantee that the obtained solution is local optimal in the neighborhood of the

initial solution. Therefore, the optimizations using GM must be carried out many

times with different initial solutions to obtain a global optimal solution. In addition,

it is required to calculate gradients of objective and constraint functions with respect

to design variables in GM. This means that the total number of evaluations depends



26 2 Numerical Methodology for Robust Aerodynamic Design Optimization

on the number of design variables seriously, and GM needs even more computation

time as the number of design variables becomes larger. In this sense, GM is not prac-

tical in real-world design problems which have multi-peak objective and constraint

functions and many design variables.

2.2.1.3 Genetic Algorihm

Evolution is a phenomenon of adapting to a certain environment and passing genes to

next generations. Darwin, who did not know about the underlying genetics, identified

three basic principles driving natural evolution; reproduction, natural selection and

diversity of individuals, maintained by variations from one to the next generation.45

The genetic algorithms (GA) was originally proposed by Holland to understand

adaptation phenomena in both natural and artificial systems by imitating biological

evolution process.46 Then, GA was developed by Goldberg as a numerical approach

to solve optimization problems.31

The flowchart of basic GA is shown in Fig. 2.5. GA simulates the mechanism

of natural evolution where a biological population which consists of multiple indi-

viduals 1, 2, · · · , N evolves over generations to adapt to an certain environment by

genetic operators such as selection and reproduction, and consequently can bear the

best individual adapting to the environment, i.e., produce an optimal solution in

a design optimization problem. Fitness, individual and genes in the evolutionary

theory correspond to the objective function, solution (design candidate) and design

variables in design optimization problems, respectively.

In recent years, GA has been applied to various design optimization problems

due to some advantages which GA has. First, GA can be applied to any design

optimization problem independently of differentiability and convexness of objective

and constraint functions. Second, GA can solve the optimization problems without

any special knowledge of the problems if only the objective and constraint functions

are given mathematically. These advantages are due to the characteristic that the

optimizations using GA have only to evaluate the values of objective and constraint

functions, while those using GM need to calculate the gradients of these functions,

too. Third, GA can avoid local optimal solutions and find a global optimal solution

independently of initial values of solution because GA deals with multiple solutions

simultaneously during the optimization process.

Details of GA are described as follows.
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Figure 2.5 Flowchart of genetic algorithm.

Coding and Decoding GA requires both phenotype and genotype of design vari-

ables. The phenotype represents actual design variables, and the genotype represents

the design variables transformed like genes. The transformation from phenotype

into genotype is called coding and the inverse transformation is called decoding.

Traditionally, GA represent the genotype by bit string (binary GA), as shown in

Fig. 2.6(a). In the binary GA, however, there exist some problems; a discrete geno-

type can not correspond to any continuous phenotype, simulation accuracy is reduced

due to rounding error produced at coding and decoding, and it becomes difficult to

control the scale of variation of design variables by genetic operators, etc.. There-

fore, it is desirable to represent the genotype by a real number (real-coded GA), as

shown in Fig. 2.6(b), for more accurate and effective genetic operators in the physical

sense. In the real-coded GA, the i-th design variable (phenotype) xi is coded into

the genotype ri, which is normalized in [0, 1]:

ri =
xi − ximin

ximax − ximin
(2.4)

where ximax and ximin are the upper and lower limits of i-th design variable, respec-

tively.

Initialization An initial population which consists of multiple individuals is gen-

erated. This is often accomplished by sampling values of design variables randomly
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Figure 2.6 Coding and decoding methods.

within the design space.

Evaluation For each individual i = 1, 2, · · · , N in the population, objective and

constraint function values f(xi) and g(xi) are evaluated. Then, the fitness value Fi,

which is the measure of superiority and inferiority in the population, is evaluated

from f(xi) and g(xi) for all individuals. Larger Fi indicates a better individual

than the other ones. In the single-objective non-constrained optimizations where a

objective function f(x) must be minimized, Fi is simply given by f(xi), e.g., as

Fi = −f(xi) (2.5)

How to evaluate the fitness value in the case of multi-objective or constrained opti-

mizations is described in Subsubsec. 2.2.1.4.

Selection GA selects better individuals as parents to generate new individuals for

the next generation. Therefore, the type of selection method has a large influence

on search performance of GA. Usually, the probability Probi where each individual

i = 1, 2, · · · , N is selected is assigned on the bias of its fitness value Fi as

Probi =
Fi∑N

j=1 Fj

(2.6)

Then, the parents are selected according to Probi by either roulette-wheel selec-

tion (RWS)31 as shown in Fig. 2.7(a), or stochastic universal sampling (SUS)47 as

shown in Fig. 2.7(b). The RWS simply selects N individuals by creating N random
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numbers individually, therefore the same individual may be selected many times if

the individual has larger fitness value. The SUS, on the other hand, requires only

one random number for whole selection process. A set of N equi-spaced numbers is

created so that many different individuals will be selected to maintain diversity.

Individual Fitness
value

Selection
probability [%]

1 4 40
2 3 30
3 2 20
4 1 10

Indiv. 1

Indiv. 2

Indiv. 3

Indiv.
4

(a) Roulette-wheel selection.

Individual Fitness
value

Selection
probability [%]

1 4 100
2 3 100
3 2 80
4 1 40

Indiv. 1

Indiv. 2

Indiv. 3

Indiv.
4

(b) Stochastic universal sampling.

Figure 2.7 Selection methods.

Reproduction Based on the selected parents, new individuals are generated for

the next generation. The reproduction operator consists of two operators; crossover

and mutation.

Crossover Crossover is a operator which exchanges part of genotype of the

selected parents and produces new individuals with the intent of improving the fitness

value of the next generation. The type of crossover method remarkably affects the
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search performance of GA.

For binary GA, crossover exchanges part of bit string of the selected parents with

more than one cross sites. Figure 2.8 shows the example of two-point crossover. In

the two-point crossover, two different cross sites are selected at random, and the bit

string is divided into three substrings, and finally new bit strings of two children are

generated by exchanging the middle substring between two parents.

1 01 0 0 00 1

1 0 010 1 1 1

1

0

1 0 0 0

0

1

1 0 010

1 1

1

Parent 1

Parent 2

Child 1

Child 2

Figure 2.8 Two-point crossover.

For real-coded GA, many crossover methods are proposed. A well-known is the

blended crossover (BLX-α) method.48 The BLX-α generates the genotypes of i-th

design variable of two children: C1i and C2i, from those of two parents: P1i and P2i,

as

C1i = γP1i + (γ − 1) P2i

C2i = (γ − 1) P1i + γP2i

(2.7)

where

γ = U (1 + 2α) − α (2.8)

U is a uniform random number in [0, 1]. The children generated by the BLX-α

exist in the rectangular region whose diagonal is the axis between the parents with

Euclidean length of d and may be extended equally on both sides determined by a

user-specified parameter α, as shown in Fig. 2.9.

Mutation Mutation maintains diversity and expands the search space by chang-

ing part of genotype of the generated child. If the mutation rate is high, a GA search

is close to a random search and results in slow convergence. Therefore, an adequate

value is required for the mutation rate.
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Figure 2.9 Blended crossover.

For binary GA, mutation is performed to reverse bit numbers. Figure. 2.10 shows

the bit-wise mutation which reverses each bit number with a certain probability.

1 01 0 0 00 1Child

Mutated
Child 11 0 0 00 11

Figure 2.10 Bit-wise mutation.

For real-coded GA, mutation is realized by adding perturbations to the geno-

types. The simplest is the random mutation49 which reproduces a new genotype Ci
′

in the whole design space, as shown in Fig. 2.11(a):

Ci
′ = U (rimax − rimin) (2.9)

This operator is independent of the original child and is equivalent to a random ini-

tialization. Instead of generating Ci
′ in the whole design space, Ci

′ can be also gener-

ated in the vicinity of the original child Ci with a uniform probability distribution,33

as shown in Fig. 2.11(b):

Ci
′ = Ci +

(
U − 1

2

)
∆i (2.10)

where ∆i is a user-specified maximum perturbation allowed in the genotype of the

i-th design variable.
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Figure 2.11 Mutation methods.

Alternation of Generations From both the parents and children of the present

generation, the individuals surviving in the next generation are selected. In the

present study, the best-N selection50,51 is used to model the alternation of genera-

tions. The best-N selection constructs the population of the next generation which

consist of N better individuals selected from total 2N individuals which consist of

N parents and N children of the present generation. This selection brings selec-

tion pressure according to their fitness values. In general, GA can not guarantee a

monotonic improvement in fitness value without some elitist strategies.52 The use of

best-N selection ensures a monotonic improvement in fitness value because the best

individual in the all past generations can necessarily survive in the next generation.

2.2.1.4 Multi-Objective Genetic Algorithm

In the case of multi-objective deign optimizations, it is required to compare multi-

ple solutions based on Pareto-optimality concept, as described in Subsubsec. 2.2.1.1.

When using GM to solve multi-objective optimization problems, the original multi-

objective problem (Eq. 2.1) must be transformed into the single-objective optimiza-

tion problem, because GM can treat only single-objective optimization problems, as

follows:

Minimize: f ′(x) =
M∑
i=1

wifi(x)

Subject to: g(x) ≤ 0

(2.11)
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where wi is a user-specified weighting factor of the i-th objective function fi(x) and

represents the measure of evaluation balance of each fi(x). However, such weighted

summation method has some difficulties. First, it is required to specify appropri-

ate values of weighting factors wi in advance. Obtained solution depends on the

values of wi, but the trade-off information among multiple objective functions is

unknown. Therefore, users can not help specifying the values of wi without any

trade-off information. Second, only one Pareto-optimal solution is obtained by one

case because this method is based on the formulation of single-objective optimization

problem. Therefore, users must carry out many cases with different values of wi or

initial solution to obtain the trade-off information among multiple objective func-

tions. Third, this method can not guarantee uniformity of obtained Pareto-optimal

solutions. Fourth, this method can not search whole region of Pareto-optimal front

in the case of non-convex Pareto-optimal front.

On the other hand, GA can be extended easily to an effective optimization ap-

proach to solve multi-objective optimization problems. As described in Subsub-

sec. 2.2.1.1, it is required to compare multiple solutions based on Pareto-optimality

concept in multi-objective optimization problems. GA deals with multiple solutions

simultaneously and evaluates only the values of objective and constraint functions

of each individual. Therefore, GA can evolve multiple individuals adapting to the

environment with multiple objective functions without any transformation into a

single objective function as seen in GM, i.e., obtain trade-off information among the

objective functions efficiently by only one case if the individuals are compared based

on the Pareto-optimality concept in terms of the objective functions.

According to this idea, the multi-objective genetic algorithm (MOGA) was devel-

oped by Deb.33 The difference between the single-objective GA (SOGA) and MOGA

exists in how to evaluate the fitness value. Details of the evaluation of fitness value

in MOGA are described as follows.

Ranking Now consider the case of non-constrained optimizations. In SOGA, the

fitness value of each individual is simply given by the objective function value of its

individual independently of the other individuals, e.g., as Eq. 2.5. In MOGA, on

the other hand, the fitness value of each individual must be determined based on

Pareto-optimality concept, i.e., from the distribution of all treated individuals in the

objective function space, as shown in Fig. 2.3.

Fonseca and Fleming developed the Pareto-ranking method53 to assign the fitness
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value to each individual based on Pareto-optimality concept. Firstly, this method

assigns a rank Ri which is a measure of Pareto-optimality to each individual as

Ri = 1 + Ndi (2.12)

where Ndi represents the number of individuals which dominate the i-th individual.

Figure 2.12 shows the example of Pareto-ranking method. Ndi is zero and Ri is one

for Pareto-optimal solutions, while other dominated solutions have larger Ri than

one corresponding to larger Ndi than zero. Therefore, Pareto-optimal solutions can

be obtained by assigning larger fitness value to the individual which has smaller rank.

In addition, all individuals which have the same rank are assigned the same fitness

value, i.e., have the same probability to survive in the next generation. Therefore,

multiple various Pareto-optimal solutions can be obtained effectively by one case.
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Figure 2.12 Parero-ranking method.

Fitness Assignment Next, the fitness value Fi are assigned to each individual

from the assigned rank Ri. The simplest way is, e.g., to use the reciprocal of Ri as

Fi =
1
Ri

(2.13)

The use of this method, however, leads to the undesirable situation that only the

individuals of Ri = 1 are selected as parents. In the present study, Fi is assigned by

using Michaleswicz’s nonlinear function49 to maintain diversity of selected parents

as

Fi = c (1 − c)Ri−1 (2.14)

where c is a user-defined parameter which corresponds to the probability where the

individuals of Ri = 1 are selected, and this value is set to be 0.1 in the present study.
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Niching In the multi-objective optimization problems, furthermore, it is also de-

sirable to obtain Pareto-optimal solutions distributed uniformly and widely in the

whole design space for easy understanding and acquisition of rich information about

trade-off relation among multiple objective functions. Therefore, so-called niching

procedure is required to maintain uniformity of obtained solutions. In the present

study, the fitness sharing proposed by Fonseca and Fleming33,53 is used for niching.

In this method, the assigned fitness value of the i-th individual: Fi is modified to

the shared fitness value Fi
′ as

Fi
′ =

Fi

nci
(2.15)

where nci is called niche count of the i-th individual, which is summation of sharing

function Sh(dij) among all N individuals in the present generation as

nci =
N∑

j=1

Sh(dij)

Sh(dij) =

{
1 −

(
dij

σshare

)α
if dij ≤ σshare

0 otherwise

(2.16)

dij is the normalized Euclidean distance in the objective function space between the

i-th and j-th individuals as

dij =

√√√√ M∑
k=1

fki − fkj

fkmax − fkmin

(2.17)

where M is the number of objective functions, and fkmax and fkmin are the max-

imum and minimum values of the k-th objective function among all individuals in

the present generation, respectively. σshare is called the normalized niche size, and

estimated by the following equation:

(1 + σshare)
M − 1 = Nσshare

M (2.18)

In the present study, σshare is calculated by solving this equation with Newton-

Raphson method. And, α is the sharing parameter and set to be 1 in the present

study. Eq. 2.16 indicates that Sh(dij), and then nci increase to reduce Fi
′ if dij

is smaller than σshare, i.e., the fitness value of the individual close to the other

individuals within the distance of σshare in the objective function space is reduced

and this individual becomes hard to be selected as parents. Therefore, the use of

the fitness sharing can scatter the locally concentrated individuals and maintain

uniformity of obtained solutions in the whole design space.
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Constraint Handling In many real-world design optimization problems, usually

there exist some constraints. The selection of constraint handling technique is a very

important issue in GA because it is not easy for GA to solve constrained optimization

problems compared to GM.

For single-objective optimizations using GA, traditional constraint handling ap-

proach is the penalty function method.33 In the single-objective constrained opti-

mization problem where a objective function f(x) must be minimized and constraints

g(x) = [g1(x), g2(x), · · · , gL(x)]T ≤ 0 must be satisfied, this method defines the fit-

ness value of the i-th individual: Fi as weighted summation of objective function

value and the amount of constraint violation as

Fi = −f(xi) −
L∑

j=1

αj max [gj(xi), 0] (2.19)

where L is the number of constraints and αj is the positive penalty function coeffi-

cient of the j-th constraint. This method, however, requires a careful specification

of αj to obtain a feasible optimal solution. For example, if αj is too small, the ob-

tained optimal solution may not satisfy the constrains. On the other hand, if αj is

too large, the obtained optimal solution may not have satisfactory objective function

value. Not only the balance between objective and constraint functions, but also that

among multiple constraints must be tuned carefully so that the obtained optimal so-

lution can satisfy all constraints. Moreover, the penalty function method does not

intend to deal with multi-objective optimization problems, i.e., this method does not

consider how to combine multiple constraints with multiple objective functions.

Deb proposed an attracting approach for constraint-handling in multi-objective

optimizations using MOGA based on the Pareto-optimality concept.54 This method

assigns rank to each individual by using the following definition:

Definition 3: Constrain-Domination by Deb A solution xi is said to constrain-

dominate the other solution xj if any of the following conditions is true:

1. xi and xj are both feasible and xi dominates xj.

2. xi is feasible and xj is not.

3. xi and xj are both infeasible, but xi has a smaller constraint violation

than xj.

This method does not require specification of penalty function coefficient as long as

the number of constraint is one. In this sense, this method is very useful for the
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design optimization using GA. However, this method still requires careful tuning of

the weighting coefficients of the constraints when multiple constraints exist.

Another interesting approach is proposed by Coello Coello.55 Essence of this

method is usage of the following definition of constrain-domination:

Definition 4: Constrain-Domination by Coello Coello A solution xi is said

to constrain-dominate the other solution xj if any of the following conditions

is true:

1. xi and xj are both feasible and xi dominates xj.

2. xi is feasible and xj is not.

3. xi and xj are both infeasbile and xi violates less number of constraints

than xj .

4. xi and xj are both infeasible and xi and xj violate the same number of

constraints, but xi has a total amount of constraint function violation

smaller than the constraint violation of xj where the total amount of

constraint violation for the i-th individual: Gi is given by

Gi =
L∑

k=1

max [gk(xi), 0] (2.20)

Advantage of this method is that it does not use any coefficient to be tuned even if

multiple constraints exist. However, this method may not be very efficient when the

magnitudes of violation value of constraints gk(x) are significantly different because

the total amount of constraint violation of each individual is simple summation of

violation values of gk(x) without weighting coefficients.

In the present study, the Pareto-optimality-based constraint handling (PBCH)

technique developed by Oyama et al.56,57 is adopted. This method assigns rank to

each individual by using the following definition:

Definition 5: Constrain-Domination by Oyama et al. A solution xi is said

to constrain-dominate the other solution xj if any of the following conditions

is true:

1. xi and xj are both feasible and xi dominates xj in objective function

space.

2. xi is feasible and xj is not.
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3. xi and xj are both infeasible, but xi dominates xj in constraint space,

where dominance in objective function space is defined as Definition 1

while dominance in constraint space is defined as Definition 6.

Definition 6: Dominance in Constraint Space A solution xi is said to domi-

nate the other solution xj in constraint space if all the following inequalities

are satisfied.

gk
′(xi) ≤ gk

′(xj), ∀k = 1, 2, · · · , L

gk
′(xi) < gk

′(xj), ∃k = 1, 2, · · · , L
(2.21)

where

gk
′(xi) = max [gk(xi), 0] (2.22)

This method simply introduces the idea of Pareto-optimality concept in the objec-

tive function space to the constraint function space. This idea can be used for most

GAs. For example, any ranking procedure can be used for ranking among feasi-

ble individuals as well as infeasible ones. Use of stochastic ranking58 may further

improve efficiency and robustness. In addition, robustness is further improved by

applying any niching mechanism in the constraint space as well as the objective func-

tion space for severely constrained design optimization problems. This method has

a number of advantages: First, application to multi-objective multi-constraint opti-

mization problems is straightforward. Second, it is efficient and robust even when

the magnitude of violation of each constraint is very different because total amount

of constraint violation is not used. Third, it does not require any coefficient to be

specified and tuned. Fourth, number of objective functions is not increased because

non-dominance ranking is applied to feasible individuals and infeasible individuals

separately. And finally, implementation is easy.
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2.2.2 Robust Design Optimization Approaches

2.2.2.1 General Theory of Robust Design Optimization

In real-world engineering designs, inevitably there exist errors and uncertainties in

design process, manufacturing process, and operating condition. Therefore, actually

a design optimized by a traditional design optimization approach considering only

optimality, as described in Subsec. 2.2.1, may not be able to achieve its expected

performance due to such errors and uncertainties. Thus, the idea of robust opti-

mization considering both optimality and robustness has been paid attention to for

real-world design problems in recent years.

Here, robustness is defined as stability of system against uncertainties, e.g., the

dispersion of performance parameters (values of objective or constraint functions)

due to the dispersion of design parameters (values of design variables) caused by

design errors or uncertainties. Figure 2.13 illustrates comparisons between a tradi-

tional optimization and a robust optimization. First, focus on the case when con-

sidering the robustness in objective function value, as shown in Fig. 2.13(a). In the

single-objective optimization problem where the value of objective function must be

minimized, the solution A obtained by a traditional optimization is the best in terms

of the optimality because this solution has the smallest value of objective function.

However, the solution A disperses widely in terms of the objective function against

the dispersion of design variable, and this dispersion may extend to the infeasible

range. On the other hand, the solution B obtained by a robust optimization is mod-

erately good in terms of the optimality and also good in terms of the robustness

because the dispersion of objective function against that of design variable is narrow

at this solution.

Next, focus on the case when considering the robustness in constraint function

violation, as shown in Fig. 2.13(b). In the single-objective optimization problem

where the value of objective function must be minimized and also the value of con-

straint function must be smaller than zero, the solution A obtained by a traditional

optimization is the best in terms of optimality because this solution has the smallest

value of objective function within the feasible range where the value of constraint

function is smaller than zero. Here, note that usually the value of constraint function

of a traditional optimal solution becomes zero, called active, as shown in Fig. 2.13(b)

in general constrained optimization problems. Therefore, the solution A disperses

easily to the infeasible range in terms of the constraint function against the disper-
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sion of design variable. On the other hand, the solution B obtained by a robust

optimization is moderately good in terms of the optimality and also good in terms

of the robustness because the dispersion of constraint function against that of design

variable is included in the feasible range at this solution.
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Figure 2.13 Comparisons between traditional optimization and robust
optimization.

Optimality and robustness are usually competing in real-world design problems,

like competing multiple objective functions in a multi-objective optimization prob-

lem. Therefore, there exist multiple compromised solutions between the optimality

and the robustness. Objectives of robust design optimizations are to find these com-

promised solutions to reveal the trade-off information, and to give chance to the

upper-level decision maker to select one solution from these compromised solutions

with other considerations.

2.2.2.2 Design for Six Sigma

Design for six sigma (DFSS)36 is one of conventional robust design optimization ap-

proaches. Here, the term “sigma” refers to standard deviation σ, which is a measure

of dispersion. A DFSS is based on “six sigma concept”, which is one of the man-

agement reform technique aiming at the establishment of business process with very
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small dispersion such that the range of ±6σ around the mean value µ of performance

parameter is included in the acceptable range. The level of dispersion can be defined

as “sigma level n”, as shown in Fig. 2.14. Larger sigma level indicates smaller disper-

sion, i.e., more robust characteristic. Table 2.1 shows the safety probability, where

the dispersive performance is included in the acceptable range, at each sigma level

n in the case where dispersive performance follows the normal probability density

distribution. Larger sigma level indicates larger safety probability, i.e., it results in

normal operation more often. Here, note that “six sigma concept” is not limited to

the normal probability density distribution case, and also can be applied to any case

where dispersive performance follows other kind of probability density distribution.
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Figure 2.14 Characteristics of sigma level n.

Table 2.1 Safety probability at each sigma level for normal distribution.
Sigma Level n Safety Probability [%]

1 68.25
2 95.46
3 99.73
4 99.9937
5 99.999943
6 99.9999998

Now, for example, consider the traditional single-objective non-constrained op-

timization problem where the value of objective function f(x) of design variables x

must be minimized. In DFSS, when considering the robustness in objective function
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value, this traditional optimization problem is rewritten to the problem where the

weighted summation of the mean value µf and the variance σf
2 of dispersive objec-

tive function f(x) against the dispersion of design variables x must be minimized as

follow:

Minimize: wµµf + wσσf
2 (2.23)

where wµ and wσ are user-specified weighting factors of µf and σf
2, respectively. In

DFSS, in addition, following inequality constraints must be satisfied so that the sigma

level robustness quality which users expect, as shown in Fig. 2.14 and Table 2.1, will

be realized.

Subject to: µf − nσf ≥ LSL

µf + nσf ≤ USL
(2.24)

where n represents user-specified sigma level, and LSL and USL are user-specified

lower and upper specification limits, respectively.

The flowchart of robust optimization using DFSS is shown in Fig. 2.15. First,

parameters such as weighting factors wµ and wσ, sigma level n, and LSL and USL

are specified by users, and then it proceeds to the optimization block. In this block,

the mean value µf and standard deviation σf of objective function f(x) at sample

points around design variables x are estimated, and wµµf + wσσf
2 is treated as

one objective function. Then, µf − nσf − LSL(≥ 0) and µf + nσf − USL(≤ 0)

are evaluated as two constraint functions. x in next step is reproduced based on

the evaluated objective and constraint functions, and this optimization process is

iterated until x is converged. This single-objective optimization can be carried out

by using any single-objective optimization approaches.

However, DFSS as shown in Fig. 2.15 has some drawbacks as follows.

• It is necessary to set weighting factors wµ and wσ carefully in advance.

There exists arbitrariness in specification of the weighting factors in Eq. 2.23.

Users need to specify value of these parameters according to balance between

the optimality and the robustness which they expect. However, it is difficult for

users to specify value of weighting factors appropriately in advance because the

trade-off information between the optimality and the robustness is unknown.

Eventually, users can not help carrying out many cases with different weighting

factor values until satisfactory solution is obtained.
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Figure 2.15 Flowchart of robust optimization using design for six sigma.
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• It is necessary to set appropriate sigma level n in advance. Essen-

tially, the sigma level satisfying Eq. 2.24 is known only after an optimization.

However, users must specify the sigma level blindly without any information.

If users specify the sigma level too large, a robust optimal solution may not

be obtained by the optimization because the constraints on sigma level be-

come too severe. On the other hand, if users set the sigma level too small,

the robust optimal solution obtained by the optimization may have lack of

reliability. Eventually, users need to carry out robust optimization repeatedly

until a feasible robust optimal solution is found.

• Only one robust optimal solution is obtained by one case. Because

DFSS deals with the single-objective optimization problem considering the

weighted summation of the mean value and the variance of objective function

(wµµf + wσσf
2) as a new objective function, only one robust optimal solution

is obtained by one case. Therefore, users must carry out many cases with

different weighting factor values or the sigma level to obtain multiple robust

optimal solutions. Moreover, many cases can not necessarily derive trade-off

relation between the optimality and the robustness.

2.2.2.3 Design for Multi-Objective Six Sigma

Drawbacks of the DFSS are mainly come from the fact that the DFSS deals with the

single-objective optimization problem as shown in Eq. 2.23. Therefore, a new robust

optimization approach named as “design for multi-objective six sigma (DFMOSS)”

is developed in the present study. The idea of DFMOSS is to incorporate multi-

objective genetic algorithm (MOGA)33 into DFSS to solve the drawbacks of the

DFSS. In DFMOSS, the mean value µf and the standard deviation σf of dispersive

objective function f(x) against the dispersion of design variables x are treated as

new multiple objective functions and minimized separately as follows:

Minimize: µf

σf

(2.25)

Because the formulation of DFMOSS does not include the weighting factors wµ

and wσ which are seen in the formulation of DFSS (Eq. 2.23), DFMOSS does not

have difficulty in the advance specification of weighting factors. In addition, solving

this multi-objective optimization problem by using MOGA results in many robust

optimal solutions by only one case. Furthermore, DFMOSS does not consider the
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constraints on sigma level n which are seen in the formulation of DFSS (Eq. 2.24)

during optimization process. Thus, DFMOSS also does not have difficulty in the

advance specification of sigma level n. The sigma level n satisfying Eq. 2.24 can be

evaluated from the robust optimal solutions obtained by the optimization as post-

processing, as described later.

Figure 2.16 shows the flowchart of robust optimization using DFMOSS. There

is no need to specify parameters such as weighting factors wµ and wσ, sigma level

n, and lower and upper specification limits LSL and USL before optimization block,

which is seen in the DFSS (Fig. 2.15). In the optimization block using MOGA,

multiple solutions x1,x2, · · · ,xN are dealt with simultaneously. For each individual

i = 1, 2, · · · , N , the mean value µf i and the standard deviation σf i of objective func-

tion f(x) are evaluated as two separate objective functions from f(x) at the sampled

points around xi. Better solutions are selected based on the Pareto-optimality con-

cept between µf i and σf i for i = 1, 2, · · · , N . Solutions x1,x2, · · · ,xN in the next

step are reproduced by crossover and mutation from the selected solutions. This

optimization process is iterated until the trade-off relation between µf and σf is

converged, and multiple robust optimal solutions are obtained.

In DFMOSS, the sigma level n satisfying Eq. 2.24 is evaluated from the obtained

robust optimal solutions after the optimization block, as shown in Fig. 2.16. Fig-

ure 2.17 illustrates detail of post-evaluation of sigma level n. Now, it is assumed that

four robust optimal solutions A, B, C and D are obtained by a robust optimization

using DFMOSS. Painted area indicates the area satisfying the constraints on 6σ ro-

bustness quality. The solution C is included in this painted area, i.e., this solution

has more than 6σ robustness quality. If the sigma level n becomes smaller, e.g.

n = 3, the painted area becomes larger (the gradient of broken lines by which the

painted area is bound becomes steeper), as illustrated in Fig. 2.17, and the solution

B is included in the painted area, i.e., this solution has more than 3σ robust ness

quality. Thus, the satisfied sigma level n of each solution can be evaluated easily

and flexibly by using DFMOSS.

Here, it should be noted that above approach to evaluate the sigma level as post-

processing can be very useful especially for preliminary conceptual designs where

there exists no precedent and it is difficult to specify appropriate sigma level before

the optimizations. Therefore, the robust design optimizations using the DFMOSS

seem to be suitable for effective acquisition of information about robustness quality

in the robust aerodynamic design of Mars exploratory airplane wing considered in
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Figure 2.16 Flowchart of robust optimization using design for multi-
objective six sigma.
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the present study.
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Satisfying Sigma Level n
Sol. D

Figure 2.17 Post-evaluation of sigma level n in design for multi-objective
six sigma.

The above descriptions of DFSS and DFMOSS are based on the case when con-

sidering the robustness in objective function value f(x). Here, note that almost

the same descriptions can be applied to the case when considering the robustness in

constraint function violation, too. Now, consider the traditional single-objective

constrained optimization problem where the value of objective function f(x) of

design variables x must be minimized and also the values of constraint functions

g(x) = [g1(x), g2(x), · · · , gL(x)]T must be smaller than zero. In DFSS, when con-

sidering the robustness in constraint functions violation, this traditional optimization

problem is rewritten as follows:

Minimize: µf

Subject to:


µg1 + n1σg1

µg2 + n2σg2

...
µgL

+ nLσgL

 ≤ 0

g(µx) ≤ 0

(2.26)

where µx is the mean value of x, and µgi , σgi and ni are the mean value, the standard

deviation, and user-specified sigma levels of gi(x), respectively. This formulation

does not include the weighting factors which are seen in the case when considering

the robustness in objective function value (Eq. 2.23). However, this still has the

drawbacks that there exists difficulty in the advance specification of sigma levels

n1, n2, · · · , nL without any information, and only one robust optimal solution is
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obtained by one case.

In DFMOSS, on the other hand, it is proposed to use following multi-objective

formulation for the robust optimization considering the robustness in constraint func-

tions violation.

Minimize: µf

Maximize:


n1

n2
...

nL

 = −


µg1/σg1

µg2/σg2

...
µgL

/σgL


Subject to: g(µx) ≤ 0

(2.27)

Similar to the case when considering the robustness in objective function value

(Eq. 2.25), solving this multi-objective optimization problem by using MOGA results

in many robust optimal solutions by only one case. In addition, this formulation does

not have difficulty in the advance specification of sigma levels n1, n2, · · · , nL with-

out any information. The sigma levels n1, n2, · · · , nL are evaluated from the mean

values µg1, µg2 , · · · , µgL
and the standard deviations σg1, σg2 , · · · , σgL

of constraint

functions g(x) during an optimization process.

Here, it should be noted that the DFMOSS can be used for not only the robust

design optimizations where optimized design variables such as configuration param-

eters disperse, but also those where non-optimized environmental variables such as

operating condition parameters disperse. It indicates that the DFMOSS has capabil-

ity of treating various real-world design problems including errors and uncertainties

in design process, manufacturing process, and operating conditions.

2.2.2.4 Estimation of Statistical Values

In the robust optimizations using DFSS and DFMOSS, it is required to estimate sta-

tistical values such as the mean value (µf or µg1, µg2, · · · .µgL
) and the standard devi-

ation (σf or σg1 , σg2, · · · .σgL
) of dispersive objective or constraint functions against

the dispersion of design variables. In general, these statistical value can be esti-

mated by generating sample points around the focused solution x, and evaluating

the value of objective function f(x) or constraint functions g(x) at each sample

point. There exist mainly two kinds of approaches to estimate the statistical values;

one is a sensitivity-based variability estimation approach, and the other is Monte

Carlo simulation.
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Sensitivity-Based Variability Estimation A sensitivity-based variability esti-

mation approach uses gradients for objective and constraint functions with respect

to the dispersive design variables. For example, based on Taylor’s series expansions,

an objective function f(x) can be rewritten as

f(x + ∆x) = f(x) +
(

∂f

∂x

)T

∆x +
1
2
∆xT ∂2f

∂x2
∆x + O(∆x3) (2.28)

Then, the mean value µf and the standard deviation σx of objective function f(x)

can be derived from this equation. For example, neglecting higher-order terms than

the first one, µf and σf are given as

µf = f(µx)

σf =

√√√√ n∑
i=1

(
∂f

∂xi

)2

σxi
2

(2.29)

And, neglecting higher-order terms than the second one, µf and σf are given as

µf = f(µx) +
1
2

n∑
i=1

∂2f

∂xi
2
σxi

σf =

√√√√ n∑
i=1

(
∂f

∂xi

)2

σxi
2 +

1
2

n∑
i,j=1

(
∂2f

∂xi∂xj

)2

σxi
2σxj

2

(2.30)

where n is the number of dispersive design variables (note that it is not the total

number of all design variables). µx is user-specified mean values of dispersive design

variables x, and σxi is user-specified standard deviation of the i-th dispersive design

variable. For small n, Taylor’s expansion approach is more efficient than Monte Carlo

simulation because the sample points required to estimate µf and σf is small. The

first-order expansion approach requires only n + 1 sample points The second-order

approach requires (n + 1) (n + 2) /2 sample points, but this expense is reduced to

2n + 1 if cross terms in Eq. 2.30 are neglected. However, this approach becomes less

efficient with increasing n. In the present study, the second-order Taylor’s expansion

neglecting the cross terms is used for relatively accurate estimation and reduction in

computation time.

Monte Carlo Simulation Monte Carlo simulation (MCS) is implemented by

randomly generating the sample points following user-specified probability density

distribution with user-specified mean value and standard deviation of each dispersive

design variable. Simple random sampling (SRS) is the basic and most commonly
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used MCS technique. In MCS with SRS technique, as shown in Fig. 2.18(a), a defined

number of evaluations of objective function f(x) are performed by sampling design

variables around the focused solution x. The number of sample points required

for accurate estimation of mean value µf and standard deviation σf of f(x) using

SRS technique is usually more than desirable and often more than practical (often

1, 000 ∼ 10, 000 or more).

Design Variable 1

D
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ig
n 

V
ar

ia
bl

e 
2

(a) Simple random sampling.

Design Variable 1

D
es

ig
n 

V
ar
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bl
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2

(b) Descriptive sampling.

Figure 2.18 Monte Carlo simulation techniques.

As other sampling technique, descriptive sampling (DS)59 has been developed to

reduce the sample size without sacrificing the quality of the statistical description

of the behavior of system. In MCS with DS technique, as shown in Fig. 2.18(b),

the space defined by each dispersive design variable is divided into subsets of equal

probability, and the evaluation of f(x) is performed with each subset of one dispersive

design variable combined with only one subset of each dispersive design variable. The

i-th value of divided subset xdi are generated by

xdi = Φ−1

(
i − 0.5

nd

)
(2.31)

where nd is the number of divided subsets per a dispersive design variable. Φ(x), x ∈
(−∞,∞) is the cumulative distribution function of specified probability density φ(x),

i.e., Φ(x) =
∫ x
−∞ φ(u)du. When the inverse function Φ−1(U), U ∈ [0, 1] is not avail-

able, numerical or functional approximations must be required. For example, Ram-

berg and Schmeiser60 proposed the approximate inverse function for the lambda
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distribution, as

Φ−1(U) = λ1 +
Uλ3 − (1 − U)λ3

λ2
(2.32)

where, for normal distribution with the mean value of µ and standard deviation of

σ,

λ1 = µ, λ2 =
0.1975

σ
, λ3 = 0.135 (2.33)

This sampling technique is similar to Latin hypercube sampling technique.61 As

shown in Fig. 2.18(b), each row and column in the discretized two design variable

space is sampled only once at random. The number of sample points required for

accurate estimation of mean value µf and standard deviation σf of f(x) using DS

technique is smaller (often 100 ∼ 1, 000 or more) than that using SRS technique.

Even so, the computation cost of MCS for accurate estimation is generally much

higher than that of Taylor’s expansion approach. However, MCS is consequently the

most accurate.
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2.3 CFD Simulation Approach

2.3.1 Governing Equations

2.3.1.1 Navier-Stokes Equations in Cartesian Coordinate System

The governing equations of fluid dynamics are the Navier-Stokes equations. The con-

servation form of the compressible Navier-Stokes equations in the three-dimensional

Cartesian coordinate system is written as follow:

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
=

∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z
(2.34)

The independent variables are time t and the Cartesian coordinates x, y and z. Q

represents the conservative variable vector, E, F and G represent the inviscid flux

vectors in x, y and z directions, respectively, and Ev, Fv and Gv represent the

viscous flux vectors in x, y and z directions, respectively, given by

Q =


ρ
ρu
ρv
ρw
e

 , E =


ρu

ρu2 + p
ρuv
ρuw

(e + p)u

 , F =


ρv
ρvu

ρv2 + p
ρvw

(e + p) v

 , G =


ρw
ρwu
ρwv

ρw2 + p
(e + p)w

 ,

Ev =


0

τxx

τxy

τxz

βx

 , Fv =


0

τyx

τyy

τyz

βy

 , Gv =


0

τzx

τzy

τzz

βz


βx = τxxu + τxyv + τxzw − qx

βy = τyxu + τyyv + τyzw − qy

βz = τzxu + τzyv + τzzw − qz

(2.35)

The first row of Eq. 2.34 represents the conservation of mass, the second, third and

fourth ones represent that of momentums in x, y and z directions, respectively, and

the fifth one represents that of energy. u, v and w is the velocity components in x,

y and z directions, respectively, while ρ is the density and e is the total energy per

unit volume. The static pressure p is related to ρ, u, v, w and e by the equation of

state for an ideal gas:

p = ρRT

= (γ − 1)
[
e − 1

2
(
u2 + v2 + w2

)] (2.36)

where R, T , γ represent the gas constant, static temperature and ratio of specific

heats, respectively. For air at standard conditions, R = 287 [m2/(s2K)] and γ = 1.4.
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τij represents the viscous stress tensor as shown in Fig. 2.19. We assume that τij

in Eq. 2.35 is a linear function of the rate of strain tensor. This assumption is closely

satisfied in most cases of interest with possible deviation only in the flow through

very strong shock wave.62 τij for Newtonian fluid becomes

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
+ δijλ

∂uk

∂xk
(2.37)

where µ is the dynamic viscosity coefficient and λ is the second viscosity coefficient.

And, τii becomes

τii = (2µ + 3λ)
∂ui

∂xi
(2.38)

The coefficient 2µ + 3λ is called bulk viscosity coefficient, and assumed to be zero in

the Stokes’s hypothesis: (τxx + τyy + τzz) /3 = 0. Thus, λ can be written as

λ = −2
3
µ (2.39)

and, τij becomes

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
(2.40)

τxx
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τxz

τyx

τyy

τyz

τzz

τzx τzy
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z

x

Figure 2.19 Viscous stress tensor.

Similar to the viscous stress tensor, we assume a linear relation between the

heat flux qj in Eq. 2.35 and the gradient of the temperature. qj is obtained by the

Fourier’s law:

qj = −κ
∂T

∂xj

= − µ

(γ − 1) Pr

∂

∂xj

(
a2

) (2.41)
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κ is the heat conductivity coefficient. Pr is the Prandtl number defined as

Pr =
µcp

κ
(2.42)

where cp represent the specific heat at constant pressure: cp = γR/ (γ − 1). For air

at standard conditions, Pr = 0.72. a is the speed of sound:

a =
√

γRT

=
√

γp

ρ

(2.43)

In general, µ and κ are related to T , e.g., by the Sutherland’s law for viscosity

and heat conductivity. In the present study, however, µ and κ are assumed to be

constant to freestream values because we deal with only subsonic flow with small

change of T .

2.3.1.2 Non-Dimensionalization of Navier-Stokes Equations

The Navier-Stokes equations are often put into non-dimensional form because the

characteristic parameter such as Mach number, Reynolds number and Prandtl num-

ber can be varied independently. In addition, by non-dimensionalizing the equations,

the flow variables are normalized so that their values fall between certain prescribed

limits such as 0 and 1. In the present study, flow variables are non-dimensionalized

by introducing their values at freestream conditions as follows:

t∗ =
t

Lref

/
a∞

, xi
∗ =

xi

Lref
, ρ∗ =

ρ

ρ∞
, ui

∗ =
u

a∞
,

p∗ =
p

ρ∞a∞2
=

p

γp∞
, e∗ =

e

ρ∞a∞2

µ∗ =
µ

µ∞
, τij

∗ =
τij

µ∞a∞
/
Lref

, qj
∗ =

qj

µ∞a∞2
/
Lref

(2.44)

where •∗ denotes non-dimensional flow variables, •∞ denotes their values at freestream

conditions, and Lref is the reference length. By substituting these non-dimensional

variables into Eq. 2.34, the non-dimensional conservation form of the compressible

Navier-Stokes equations in the Cartesian coordinate system are obtained:

∂Q∗

∂t∗
+

∂E∗

∂x∗ +
∂F ∗

∂y∗
+

∂G∗

∂z∗
=

1
Re

(
∂Ev

∗

∂x∗ +
∂Fv

∗

∂y∗
+

∂Gv
∗

∂z∗

)
(2.45)
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where

Q∗ =


ρ∗

ρ∗u∗

ρ∗v∗

ρ∗w∗

e∗

 , E∗ =


ρ∗u∗

ρ∗u∗2 + p∗

ρ∗u∗v∗

ρ∗u∗w∗

(e∗ + p∗)u∗

 , F ∗ =


ρ∗v∗

ρ∗v∗u∗

ρ∗v∗2 + p∗

ρ∗v∗w∗

(e∗ + p∗) v∗

 ,

G∗ =


ρ∗w∗

ρ∗w∗u∗

ρ∗w∗v∗

ρ∗w∗2 + p∗

(e∗ + p∗)w∗

 , Ev
∗ =


0

τxx
∗

τxy
∗

τxz
∗

βx
∗

 , Fv
∗ =


0

τyx
∗

τyy
∗

τyz
∗

βy
∗

 , Gv
∗ =


0

τzx
∗

τzy
∗

τzz
∗

βz
∗


βx

∗ = τxx
∗u∗ + τxy

∗v∗ + τxz
∗w∗ − qx

∗

βy
∗ = τyx

∗u∗ + τyy
∗v∗ + τyz

∗w∗ − qy
∗

βz
∗ = τzx

∗u∗ + τzy
∗v∗ + τzz

∗w∗ − qz
∗

(2.46)

and

p∗ = (γ − 1)
[
e∗ − 1

2
ρ∗

(
u∗2 + v∗2 + w∗2

)]
(2.47)

Re in Eq. 2.45 represents the Reynolds number based on Lref :

Re =
ρ∞a∞Lref

µ∞

=
1

M∞
ρ∞u∞Lref

µ∞

(2.48)

where M is the Mach number: M = u/a. Here, note that Eq. 2.34 and Eq. 2.45 are

identical except for 1/Re in the right hand side. For convenience, hereafter, •∗ is

dropped from the non-dimensional variables.

2.3.1.3 General Transformation of Navier-Stokes Equations

The governing equations of fluid dynamics are valid for any coordinate system. For

practical applications to the flow in complicated and moving geometries, it is more

convenient to transform the Cartesian coordinate system (physical domain) to any

general curvilinear and moving coordinate system (computational domain) so that

the moving boundary surfaces in the physical domain can be easily mapped onto

planes in the computational domain, as shown in Fig. 2.20. The Navier-Stokes

equations can be written in terms of general coordinate system by using the general
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transformation63,64 as follows:

ξ = ξ (x, y, z, t)

η = η (x, y, z, t)

ζ = ζ (x, y, z, t)

τ = t

(2.49)

where ξ, η and ζ are the general coordinates, and τ is time. The differential form of

Cartesian coordinate systems (x, y, z, t) is


dx
dy
dz
dt

 =


xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ zτ

0 0 0 1




dξ
dη
dζ
dτ

 (2.50)

where tξ = tη = tζ = 0 and tτ = 1. Similarly, the differential form of general

coordinate system (ξ, η, ζ, τ) is


dξ
dη
dζ
dτ

 =


ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1




dx
dy
dz
dt

 (2.51)

where τx = τy = τz = 0 and τt = 1.

y

z

x

ξ
η

ζ

Physical Domain

ξ
η

ζ

Computational Domain

Figure 2.20 General transformation.

Therefore, we have the relations between (x, y, z, t) and (ξ, η, ζ, τ) from Eqs. 2.50

and 2.51, and the metrics ξx, ξy, etc., are formed from the derivatives xξ, xη, etc.,
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as follows:
ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1

 =


xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ yτ

0 0 0 1


−1

=J


yηzζ − yζzη zηxζ − zζxη xηyζ − xζyη

yζzξ − yξzζ zζxξ − zξxζ xζyξ − xξyζ

yξzη − yηzξ zξxη − zηxξ xξyη − xηyξ

0 0 0

−xτ (yηzζ − yζzη) − yτ (zηxζ − zζxη) − zτ (xηyζ − xζyη)
−xτ (yζzξ − yξzζ) − yτ (zζxξ − zξxζ) − zτ (xζyξ − xξyζ)
−xτ (yξzη − yηzξ) − yτ (zξxη − zηxξ) − zτ (xξyη − xηyξ)

1



(2.52)

Here, note that the vectors Sξ, Sη and Sζ shown as

Sξ =
1
J

ξx

ξy

ξz

 , Sη =
1
J

ηx

ηy

ηz

 , Sζ =
1
J

ζx

ζy

ζz

 (2.53)

correspond to the area vectors of the cell interface normal to ξ, η and ζ directions,

respectively, and ξt/J , ηt/J and ζt/J correspond to the volume swept by the moving

cell interface normal to ξ, η and ζ directions, respectively. J is the transformation

Jacobian from (x, y, z, t) to (ξ, η, ζ, τ):

J =
∂ (ξ, η, ζ)
∂ (x, y, z)

=
[
∂ (x, y, z)
∂ (ξ, η, ζ)

]−1

= det

xξ xη xζ

yξ yη yζ

zξ zη zζ

−1

=
1

xξyηzζ + xηyζzξ + xζyξzη − xξyζzη − xηyξzζ − xζyηzξ

(2.54)

and corresponds to the ratio of cell volume in the computational domain to that in

the physical domain.

In addition, using the chain rule of partial differentiation, Eq. 2.49 becomes
∂/∂x
∂/∂y
∂/∂z
∂/∂t

 =


ξx ηx ζx 0
ξy ηy ζy 0
ξz ηz ζz 0
ξt ηt ζt 1




∂/∂ξ
∂/∂η
∂/∂ζ
∂/∂τ

 (2.55)

By substituting these partial derivatives into Eq. 2.45, the non-dimensional conser-

vation form of the compressible Navier-Stokes equations in the general coordinate

system are obtained:

∂Q̂

∂τ
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
=

1
Re

(
∂Êv

∂ξ
+

∂F̂v

∂η
+

∂Ĝv

∂ζ

)
(2.56)
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where

Q̂ =
1
J


ρ
ρu
ρv
ρw
e

 , Ê =
1
J


ρU

ρuU + ξxp
ρvU + ξyp
ρwU + ξzp

(e + p)U − ξtp

 , F̂ =
1
J


ρV

ρuV + ηxp
ρvV + ηyp
ρwV + ηzp

(e + p)V − ηtp

 ,

Ĝ =
1
J


ρW

ρuW + ζxp
ρvW + ζyp
ρwW + ζzp

(e + p)W − ζtp

 , Êv =
1
J


0

ξxτxx + ξyτyx + ξzτzx

ξxτxy + ξyτyy + ξzτzy

ξxτxz + ξyτyz + ξzτzz

ξxβx + ξyβy + ξzβz

 ,

F̂v =
1
J


0

ηxτxx + ηyτyx + ηzτzx

ηxτxy + ηyτyy + ηzτzy

ηxτxz + ηyτyz + ηzτzz

ηxβx + ηyβy + ηzβz

 , Ĝv =
1
J


0

ζxτxx + ζyτyx + ζzτzx

ζxτxy + ζyτyy + ζzτzy

ζxτxz + ζyτyz + ζzτzz

ζxβx + ζyβy + ζzβz



(2.57)

U , V and W are the so-called contravariant velocity components in ξ, η and ζ

directions, respectively:

U = ξt + ξxu + ξyv + ξzw

V = ηt + ηxu + ηyv + ηzw

W = ζt + ζxu + ζyv + ζzw

(2.58)

The metrics and Jacobian (Eqs. 2.52 and 2.54) evaluated in the finite volume fashion

satisfy the geometric conservation law (GCL) in the discretized form of the Navier-

Stokes equations.24,65

2.3.1.4 Thin-Layer Approximation

In high Reynolds number flow, one usually has only enough grid points to resolve

viscous terms in a thin layer near body surfaces. Typically, grid lines are clustered

near a body surface and resolution along the body surface is similar to what is needed

in inviscid flow. Even though the full Navier-Stokes equations may be programmed,

viscous derivatives along the body surface are not resolved in general unless the

grid spacing along the body surface sufficiently small, in many cases of O(1/
√

Re)

based on the effective viscous coefficient. Consequently, a thin-layer approximation

approximation64 is used: all viscous derivatives in ξ and η directions (along the

body surface) are neglected, while terms in ζ direction are retained and the body

surface is mapped onto ζ = const plane. Thus, Eq. 2.56 simplifies to the thin-layer
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Navier-Stokes equations:

∂Q̂

∂τ
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
=

1
Re

∂Ĝv

∂ζ
(2.59)

where

Ĝv =
1
J


0

µm1
∂u
∂ζ + 1

3µm2ζx

µm1
∂v
∂ζ + 1

3µm2ζy

µm1
∂w
∂ζ + 1

3µm2ζz

µm1m3 + 1
3µm2 (ζxu + ζyv + ζzw)

 (2.60)

with

m1 = ζx
2 + ζy

2 + ζz
2

m2 = ζx
∂u

∂ζ
+ ζy

∂v

∂ζ
+ ζz

∂w

∂ζ

m3 =
1
2

∂

∂ζ

(
u2 + v2 + w2

)
+

1
(γ − 1) Pr

∂

∂ζ

(
a2

) (2.61)

In the thin-layer approximation, a boundary-layer-like coordinate is adopted and

the viscous terms which are dropped in the boundary-layer theory are eliminated.

It should be stressed that this approximation is valid only for high Reynolds num-

ber flows and very large turbulent viscosity coefficient could conceivably invalidate

this approximation. In the present study, the compressible thin-layer Navier-Stokes

equations are used as the governing equations of fluid dynamics.

2.3.2 Discretization of Governing Equations

A temporal and spatial discretization of governing equations is required to numer-

ically model these equations whose form is partial differential. In Eq. 2.59, firstly,

temporal difference of the conservative variable vector Q̂ is evaluated by the trape-

zoidal differencing using λ, as follow:

Q̂
n+1 − Q̂

n
= λR(Q̂

n+1
) + (1 − λ) R(Q̂

n
) (2.62)

where

R(Q̂) = −∆t

(
∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
− 1

Re

∂Ĝv

∂ζ

)
(2.63)

with ∆τ = ∆t for simplicity. The temporal accuracy of this scheme varies with λ;

λ = 0 yields the first-order Euler explicit scheme, λ = 1/2 yields the second-order

Crank-Nicolson scheme, and λ = 1 yields the first-order Euler implicit scheme. Next,
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spatial differences of the flux vectors Ê, F̂ , Ĝ and Ĝv in Eq. 2.63 are evaluated by

the central differencing, as follows:(
∂Ê

∂ξ

)
j

= Ẽj+1/2 − Ẽj−1/2,

(
∂F̂

∂η

)
k

= F̃ k+1/2 − F̃ k−1/2,(
∂Ĝ

∂ζ

)
l

= G̃l+1/2 − G̃l−1/2,

(
∂Ĝv

∂ζ

)
l

= G̃vl+1/2 − G̃vl−1/2

(2.64)

where ∆ξ = ∆η = ∆ζ = 1 for simplicity. •̃ denotes the numerical fluxes defined at

the cell interface. The spatial accuracy of this scheme depends on the evaluation of

the numerical fluxes.

2.3.3 Evaluation of Numerical Fluxes

2.3.3.1 Inviscid Terms

Flux difference splitting (FDS) by Roe66 and flux vector splitting (FVS) by van

Leer67 are widely used for the evaluation of inviscid terms of numerical fluxes Ẽ, F̃

and G̃ in Eq. 2.64, in the simulations of compressible flows. The FDS scheme gives

good resolutions to both shock waves and boundary layers because the numerical

dissipation which is produced by the upwinding becomes small in boundary layers.68

This scheme is suitable for the simulation of viscous flows, but less robust and suffers

from numerical instability at the strong compression and expansion. Other way

of introducing the upwinding is the FVS. This scheme is more robust against the

strong compression and expansion and needs less computation time than the FDS.

This scheme, however, is not suitable for the simulation of viscous flows because it

produces excessive numerical dissipation in boundary layers. There is another effort

to develop less dissipative upwind schemes in which the excessive dissipation of van

Leer’s FVS scheme is reduced by introducing the flavor of Roe’s FDS into the FVS

scheme. Liou and Steffen proposed a scheme named advection upstream splitting

method (AUSM).69 The AUSM scheme not only produces small numerical dissipation

in boundary layers but also is robust enough to calculate the strong compression and

expansion. The AUSM, however, bears a slight numerical overshoot at the shock

wave. Inspired by the AUSM scheme, therefore, many schemes have been proposed

due to overcome the slight disadvantage of AUSM scheme. One of them is the simple

high-resolution upwind scheme (SHUS) by Shima and Jounouchi.70 In the present

study, the inviscid terms of numerical fluxes are evaluated by the SHUS scheme which

is a family of AUSM type schemes with sufficient grid resolution to avoid numerical



2.3 CFD Simulation Approach 61

instability at the strong compression and expansion while maintaining the resolution

of the shock wave and the boundary layer.

The AUSM scheme splits the inviscid term of numerical flux, e.g. Ẽ, into two

parts; one from the contribution of the convective term Ẽc, and the other from the

pressure term P̃ as follow:

Ẽ = Ẽc + P̃ (2.65)

where

Ec =
∣∣Sξ

∣∣ρVnΦ

P =
∣∣Sξ

∣∣pN
(2.66)

with

Vn = nxu + nyv + nzw =
U√

ξx
2 + ξy

2 + ξz
2

Φ =


1
u
v
w
H

 , N =


0
nx

ny

nz

0

 ,

nx

ny

nz

 =
1√

ξx
2 + ξy

2 + ξz
2

ξx

ξy

ξz

 (2.67)

Although only numerical flux in ξ direction is presented in Eq. 2.65, similar procedure

can be applied to the numerical fluxes in the other directions η and ζ. Ec indicates

the convection of passive scalar quantities in Φ transported by the mass flux ρVn,

therefore Ẽc is evaluated by the upwind differencing:

Ẽc =
∣∣Sξ

∣∣ [ Ṽn +
∣∣Ṽn

∣∣
2

(ρΦ)L +
Ṽn − ∣∣Ṽn

∣∣
2

(ρΦ)R

]

=
∣∣Sξ

∣∣ [M̃n +
∣∣M̃n

∣∣
2

(ρaΦ)L +
M̃n − ∣∣M̃n

∣∣
2

(ρaΦ)R

] (2.68)

where Mn = Vn/a. •L and •R denote the physical states at the left and right side

of the cell interface, respectively. According to van Leer’s FVS, M̃n is defined as

follow:

M̃n = Mn
L
+ + Mn

R
−

Mn± =

{
± (Mn ± 1)2

/
4 if |Mn| ≤ 1

(Mn ± |Mn|) /2 otherwise

(2.69)

Similarly, P̃ is defined as follow:

P̃ =
∣∣Sξ

∣∣p̃N (2.70)
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where

p̃ = βL
+pL + βR

−pR

β± =

{
(Mn ± 1)2 (2 ∓ Mn)

/
4 if |Mn| ≤ 1

(Mn ± |Mn|) / (2|Mn|) otherwise

(2.71)

The SHUS scheme evaluates the convection term Ẽc as follow:

Ẽc =
∣∣Sξ

∣∣ (m̃ + |m̃|
2

ΦL +
m̃ − |m̃|

2
ΦR

)
(2.72)

where m is the mass flux: m = ρVn, and m̃ is evaluated at the cell interface. The

difference between the other AUSM type schemes is the expression of m̃. m̃ of the

SHUS is given by Roe’s FDS scheme using the finite difference of primitive variables

as follow:

m̃ =
1
2

[
(ρVn)L + (ρVn)R − ∣∣V̄n

∣∣∆ρ −
∣∣M̄ + 1

∣∣− ∣∣M̄ − 1
∣∣

2
ρ̄∆Vn

−
∣∣M̄ + 1

∣∣ +
∣∣M̄ − 1

∣∣− 2
∣∣M̄ ∣∣

2
∆p

ā

] (2.73)

where ∆• = •R − •L and

ρ̄ =
ρL + ρR

2
, p̄ =

pL + pR

2
, V̄n =

Vn
L + Vn

R

2
,

ā =
√

γp̄

ρ̄
, M̄ =

V̄n

ā

(2.74)

ρ̄, p̄ and V̄n are arithmetic average of normal density, pressure and velocity, respec-

tively. In the SHUS scheme, the pressure term P̃ is evaluated by Eqs. 2.70 and

2.71.

The SHUS scheme (Eq.2.72) evaluates the convective term Ẽc by averaging the

mass flux m, while other AUSM type schemes (Eq.2.68) evaluate Ẽc by averaging

the Mach number Mn or velocity Vn. Therefore, the difference between the SHUS

and other AUSM type schemes is how to handle the density ρ. The difference in

the behavior between SHUS scheme and other AUSM type schemes can be clearly

understood considering the response of the mass flux m̃ (Eq. 2.73) to the pressure

difference ∆p. m̃ of other AUSM type schemes is zero if the convective velocity Ṽn

is zero. In the SHUS scheme, on the other hand, the term proportional to ∆p exists

in m̃. Therefore, the SHUS scheme can avoid a numerical overshoot at shock wave

which occurs on other AUSM type schemes.

In addition, the physical properties at the both sides of the cell interface are eval-

uated by the monotone upstream-centered schemes for conservation law (MUSCL)
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interpolation71,72 based on the primitive variables with van Albada differentiable

limiter67 to achieve a high-order spatial accuracy, as follow:

qL
j+1/2 = qj +

s

4
[(1 − κs)∆− + (1 + κs)∆+]j

qR
j+1/2 = qj+1 −

s

4
[(1 − κs)∆+ + (1 + κs)∆−]j+1

(2.75)

where q represents the primitive variable vector q = (ρ, u, v, w, p)T , and

s =
2∆+∆− + ε

∆+
2 + ∆−2 + ε

∆+j = qj+1 − qj

∆−j = qj − qj−1

(2.76)

The spatial accuracy of the scheme varies with the value of κ. κ = 1 yields the

second-order central difference scheme, κ = −1 yields the second-order fully-upwind

scheme, and κ = 1/3 yields the third-order upwind-biased scheme on an evenly

spaced grid. In the present study, κ is set to be 1/3. ε is a very small number (10−6)

to prevent division by zero in regions of null gradients, such as the uniform region

where ∆+ = ∆− = 0.

2.3.3.2 Viscous Terms

In the present study, spatial difference of the viscous flux vector Gv in Eq. 2.63

is evaluated by the second-order central differencing. That is, the inviscid term

of numerical flux G̃v is given by simply averaging and differencing the physical

properties at both grid points next to the cell interface.

2.3.4 Time Integration

There are mainly two choices of the time integration scheme; one is the explicit time

integration method, and the other is the implicit time integration method. Even the

simplest Euler explicit scheme has at least the first-order temporal accuracy, and it is

easy to extend temporal accuracy of the explicit scheme using Runge-Kutta method.

However, the time step size ∆t for the explicit scheme is strongly restricted by the

local Courant-Friedrichs-Lewy (CFL) number which indicates stability of the time

integration scheme, and the restriction becomes very strict when the grid points are

clustered near the wall to resolve the boundary layer. Consequently, this restriction

derives the long total simulation time until convergence. Therefore, from the view-

point of aerodynamic optimization which needs many evaluations of aerodynamic



64 2 Numerical Methodology for Robust Aerodynamic Design Optimization

performance, the use of implicit scheme is desirable to overcome the restriction of

∆t and shorten the simulation time required to evaluate the aerodynamic perfor-

mance.

2.3.4.1 LU-ADI Factorization Algorithm

The lower-upper alternate directional implicit (LU-ADI) factorization algorithm73 is

one of implicit time integration methods. The flowfields considered in the present

study are essentially steady, so the inner-iteration method such as Newton-Raphson

iteration method is not used.

When λ in Eq. 2.62 is set to be 1, the equations can be rewritten as

Q̂
n+1 − Q̂

n
= −∆t

(
∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ

)n+1

(2.77)

where viscous term Re−1∂Ĝv/∂ζ is neglected as treating explicitly, as described in

Subsubsec. 2.3.4.3. Then, locally linearize the inviscid fluxes Ê, F̂ and Ĝ,74 such as

Ê
n+1

= Ê
n

+

(
∂Ê

∂Q̂

)n (
Q̂

n+1 − Q̂
n
)

+ O(∆t2) (2.78)

and Eq 2.77 can be written as follow:[
I + ∆t

(
∂Â

∂ξ
+

∂B̂

∂η
+

∂Ĉ

∂ζ

)]n

∆Q̂
n

= −∆t

(
∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ

)n

= Rn

(2.79)

where ∆Q̂
n

= Q̂
n+1 − Q̂

n
and Rn is defined by Eq. 2.63. Â, B̂ and Ĉ are the

Jacobian matrices of the inviscid fluxes:

Â =
∂Ê

∂Q̂
, B̂ =

∂F̂

∂Q̂
, Ĉ =

∂Ĝ

∂Q̂
(2.80)

and given by

Â or B̂ or Ĉ

=


κt κx κy

κxφ2 − uθ κt + θ − (γ − 2) κxu κyu − (γ − 1) κxv
κyφ

2 − vθ κxv − (γ − 1) κyu κt + θ − (γ − 2) κyv
κzφ

2 − wθ κxw − (γ − 1) κzu κyw − (γ − 1) κzv

−θ
(

γe
ρ − 2φ2

)
κx

(
γe
ρ − φ2

)
− (γ − 1) θu κy

(
γe
ρ − φ2

)
− (γ − 1) θv

κz 0
κzu − (γ − 1) κxw (γ − 1) κx

κzv − (γ − 1) κyw (γ − 1) κy

κt + θ − (γ − 2) κzw (γ − 1) κz

κz

(
γe
ρ − φ2

)
− (γ − 1) θw κt + γθ



(2.81)
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where

θ = κxu + κyv + κzw

φ2 =
1
2

(γ − 1)
(
u2 + v2 + w2

) (2.82)

with κ = ξ, η or ζ for Â, B̂ or Ĉ, respectively. The implicit operator (ADI operator)

inside [•] of the left hand side of Eq. 2.79 is sparse but block non-band matrix, and

it is a tough work to inverse it. The implicit operator of Eq. 2.79 can be factored by

the approximate factorization74 as(
I + ∆t

∂Â

∂ξ

)n (
I + ∆t

∂B̂

∂η

)n (
I + ∆t

∂Ĉ

∂ζ

)n

∆Q̂
n

= Rn (2.83)

Now, each implicit operator reduces to block tridiagonal matrix when the spatial dif-

ferences are evaluated by the second-order central differencing. Thus, the equations

can be written as(
I + hδξÂ − εiJ

−1∇ξ∆ξJ
)n (

I + hδηB̂ − εiJ
−1∇η∆ηJ

)n

×
(
I + hδζĈ − εiJ

−1∇ζ∆ζJ
)n

∆Q̂
n

=Rn

(2.84)

where h = ∆t/∆ξ = ∆t/∆η = ∆t/∆ζ = ∆t. δκ• denotes the second-order central

difference operator, and ∆κ• and ∇κ• denote the first-order forward and backward

difference operators, respectively. The term including εi inserted into each implicit

operator in the left hand side of Eq. 2.84 is the implicit numerical dissipation term

to maintain the numerical stability of the simulation. Next, each implicit operator

can be written in the diagonal form,75 e.g. for ξ direction:

I + hδξÂ − εiJ
−1∇ξ∆ξJ = I + hδξ

(
TξΛξTξ

−1
)− εiJ

−1∇ξ∆ξJ

.= Tξ

(
I + hδξΛξ − εiJ

−1∇ξ∆ξJ
)
Tξ

−1
(2.85)

where Â = TξΛξTξ
−1. Λξ is the diagonal matrix of eigenvalues of Â, and Tξ is

the matrix of right eigenvectors of Â. Similar diagonalization can be applied to the

other implicit operators: B̂ = TηΛηTη
−1 and Ĉ = TζΛζTζ

−1. Λξ, Λη and Λζ are

given by

Λξ = diag
[
U,U,U,U + a

√
ξx

2 + ξy
2 + ξz

2, U − a

√
ξx

2 + ξy
2 + ξz

2

]
Λη = diag

[
V, V, V, V + a

√
ηx

2 + ηy
2 + ηz

2, V − a
√

ηx
2 + ηy

2 + ηz
2

]
Λζ = diag

[
W,W,W,W + a

√
ζx

2 + ζy
2 + ζz

2,W − a
√

ζx
2 + ζy

2 + ζz
2

] (2.86)
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Tκ and Tκ
−1 are given by

Tκ

=


κ̃x κ̃y κ̃z

κ̃xu κ̃yu − ρκ̃z κ̃zu + ρκ̃y

κ̃xv + ρκ̃z κ̃yv κ̃zv − ρκ̃x

κ̃xw − ρκ̃y κ̃yw + ρκ̃x κ̃zw[
κ̃xφ2

γ−1 + ρ (κ̃zv − κ̃yw)
] [

κ̃yφ2

γ−1 + ρ (κ̃xw − κ̃zu)
] [

κ̃zφ2

γ−1 + ρ (κ̃yu − κ̃xv)
]

α α
α (u + κ̃xa) α (u − κ̃xa)
α (v + κ̃ya) α (v − κ̃ya)
α (w + κ̃za) α (w − κ̃za)

α
(

φ2+a2

γ−1 + θ̃a
)

α
(

φ2+a2

γ−1 − θ̃a
)


Tκ

−1

=



κ̃x

(
1 − φ2

a2

)
− κ̃zv−κ̃yw

ρ
(γ−1)κ̃xu

a2
(γ−1)κ̃xv

a2 + κ̃z
ρ

κ̃y

(
1 − φ2

a2

)
− κ̃xw−κ̃zu

ρ
(γ−1)κ̃yu

a2 − κ̃z
ρ

(γ−1)κ̃yv
a2

κ̃z

(
1 − φ2

a2

)
− κ̃yu−κ̃xv

ρ
(γ−1)κ̃zu

a2 + κ̃y

ρ
(γ−1)κ̃zv

a2 − κ̃x
ρ

β
(
φ2 − θ̃a

)
−β [(γ − 1) u − κ̃xa] −β [(γ − 1) v − κ̃ya]

β
(
φ2 + θ̃a

)
−β [(γ − 1) u + κ̃xa] −β [(γ − 1) v + κ̃ya]


(γ−1)κ̃xw

a2 − κ̃y

ρ − (γ−1)κ̃x

a2

(γ−1)κ̃yw
a2 + κ̃x

ρ − (γ−1)κ̃y

a2

(γ−1)κ̃zw
a2 − (γ−1)κ̃z

a2

−β [(γ − 1) w − κ̃za] (γ − 1) β
−β [(γ − 1) w + κ̃za] (γ − 1) β



(2.87)

where

α =
ρ√
2a

, β =
1√
2ρa

κ̃x =
κx√

κx
2 + κy

2 + κz
2
, κ̃y =

κy√
κx

2 + κy
2 + κz

2
, κ̃z =

κz√
κx

2 + κy
2 + κz

2

θ̃ =
θ√

κx
2 + κy

2 + κz
2

(2.88)

and Tκ
−1Tλ is given by

Tκ
−1Tλ =


m1 m2 m3 −µm4 µm4

−m2 m1 m4 µm3 −µm3

−m3 −m4 m1 −µm2 µm2

µm4 −µm3 µm2 µ2 (1 + m1) µ2 (1 − m1)
−µm4 µm3 −µm2 µ2 (1 − m1) µ2 (1 + m1)

 (2.89)
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where

µ =
1√
2

m1 = κ̃xλ̃x + κ̃yλ̃y + κ̃zλ̃z

m2 = κ̃xλ̃y − κ̃yλ̃x, m3 = κ̃xλ̃z − κ̃zλ̃x, m4 = κ̃yλ̃z − κ̃zλ̃y

(2.90)

Then, δξΛξ in Eq. 2.85 can be decomposed to the forward and the backward differ-

encings by introducing the idea of the FVS scheme:67

I + hδξÂ − εiJ
−1∇ξ∆ξJ = Tξ

(
I + ∇ξΛξ

+ + ∆ξΛξ
−)Tξ

−1 (2.91)

where Λξ
+ and Λξ

− are the diagonal matrices with positive and negative components

of the eigenvalues of A, respectively:

Λξ
± =

h

2
(Λξ ± |Λξ|) ± J̄−1εiJ (2.92)

J̄ is taken to be the Jacobian at the central point corresponding to Eq. 2.85. The

implicit operator for ξ direction can be rewritten as

I + hδξÂ − εiJ
−1∇ξ∆ξJ = Tξ (Lξ + Mξ + Nξ)Tξ

−1 (2.93)

where Lξ, Mξ and Nξ are the left-lower triangular, the diagonal and the right-upper

triangular matrices, respectively, as

Lξj = −Λξ
+

j−1

Mξj = I + Λξ
+

j − Λξ
−

j

Nξj = Λξ
−

j+1

(2.94)

Furthermore, Lξ + Mξ + Nξ in the implicit operator of Eq. 2.93 can be factored by

the diagonally dominant factorization:76

Lξ + Mξ + Nξ = (Lξ + Mξ) Mξ
−1 (Mξ + Nξ) + O(h2) (2.95)

since Mξ = O(1) and Lξ,Nξ = O(h). Thus, the LU factorization for an ADI

operator can be obtained as

I + hδξÂ − εiJ
−1∇ξ∆ξJ = Tξ (Lξ + Mξ) Mξ

−1 (Mξ + Nξ)Tξ
−1 (2.96)

Here, note that the block tridiagonal matrix I +hδξÂ− εiJ
−1∇ξ∆ξJ is decomposed

to the block diagonal matrices Tξ and Tξ
−1, scalar diagonal matrix Mξ

−1, and lower

and upper scalar bidiagonal matrices Lξ + Mξ and Mξ + Nξ. The inversion of the
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implicit operator of Eq. 2.96 does not require any actual matrix inversion, but only

requires one forward sweep for the inversion of Lξ+Mξ, one backward sweep for that

of Mξ
−1 (Mξ + Nξ), and two matrix multiplications of Tξ and Tξ

−1. Therefore, the

LU-ADI scheme is very efficient.

Finally, the LU-ADI scheme can be described by using the similar decomposition

for the implicit operators of the other directions η and ζ in Eq. 2.84, as follow:

Tξ (Lξ + Mξ)Mξ
−1 (Mξ + Nξ)

(
Tξ

−1Tη

)
(Lη + Mη) Mη

−1 (Mη + Nη)

× (
Tη

−1Tζ

)
(Lζ + Mζ)Mζ

−1 (Mζ + Nζ) Tζ
−1∆Q̂

n

=Rn

(2.97)

The LU-ADI scheme introduces several approximations to inverse the implicit oper-

ator efficiently, and its temporal accuracy is less than the first-order. However, this

temporal accuracy is sufficient to resolve the almost steady flowfields considered in

the present study.

2.3.4.2 ADI-SGS Factorization Algorithm

The ADI-SGS factorization algorithm is the time integration method based on the

combination of the ideas of lower-upper alternate directional implicit (LU-ADI)

scheme and lower-upper symmetric Gauss Seidel (LU-SGS) scheme.77 The ADI-SGS

scheme has both efficient characteristic involved by the LU-ADI scheme and stable

characteristic involved by the LU-SGS scheme.

In the ADI-SGS scheme, we introduce the idea of the FVS scheme67 into the

implicit operators in Eq. 2.83 as[
I + ∆t

(
∂

∂ξ
Â

+
+

∂

∂ξ
Â

−
)]n [

I + ∆t

(
∂

∂η
B̂

+
+

∂

∂η
B̂

−
)]n

×
[
I + ∆t

(
∂

∂ζ
Ĉ

+
+

∂

∂ζ
Ĉ

−
)]n

∆Q̂
n

=Rn

(2.98)

where Â
+
, B̂

+
and Ĉ

+
are the Jacobian matrices with positive components of the

eigenvalues of Â, B̂ and Ĉ, and Â
−
, B̂

−
and Ĉ

−
are those with negative components

of these eigenvalues, respectively. Here, Eq. 2.98 can be rewritten by introducing

the first-order upwind differencing as[
I + h

(
∇ξÂ

+
+ ∆ξÂ

−)]n [
I + h

(
∇ηB̂

+
+ ∆ηB̂

−)]n

×
[
I + h

(
∇ζĈ

+
+ ∆ζĈ

−)]n
∆Q̂

n

=Rn

(2.99)



2.3 CFD Simulation Approach 69

where h = ∆t/∆ξ = ∆t/∆η = ∆t/∆ζ = ∆t. ∆κ• and ∇κ• denote the first-order

forward and backward difference operators, respectively. Next, each implicit operator

in the left hand side of Eq. 2.99 can be factored by the lower-diagonal-upper (LDU)

factorization, e.g. for ξ direction:

I + h
(
∇ξÂ

+
+ ∆ξÂ

−)
= Lξ + Dξ + Uξ

.= (Lξ + Dξ) Dξ
−1 (Dξ + Uξ)

(2.100)

where Lξ, Dξ and Uξ are the left-lower triangular, the diagonal and the right-upper

triangular matrices, respectively, as

Lξ = −hÂ
+

j−1

Dξ = I + h
(
Â

+
j − Â

−
j

)
Uξ = hÂ

−
j+1

(2.101)

Though there exist several ways to evaluate Â
±
, following definition is much easier

and cost effective:

Â
±

=
Â ± σξI

2
(2.102)

where σξ is the maximum eigenvalue, so-called spectral radius, of Â as

σξ = |U | + a

√
ξx

2 + ξy
2 + ξz

2 (2.103)

In Eq. 2.100, note that the block tridiagonal matrix I + h
(
∇ξÂ

+
+ ∆ξÂ

−)
is de-

composed to the scalar diagonal matrix Dξ
−1, and lower and upper scalar bidiagonal

matrices Lξ + Dξ and Dξ + Uξ. The inversion of the implicit operator of Eq. 2.100

requires only one forward sweep for the inversion of Lξ + Dξ and one backward

sweep for that of Dξ
−1 (Dξ + Uξ).

Finally, the ADI-SGS scheme can be described by using the similar decomposition

for the other implicit operators of the other directions η and ζ in Eq. 2.99, as follow:

(Lξ + Dξ) Dξ
−1 (Dξ + Uξ) (Lη + Dη)Dη

−1 (Dη + Uη)

× (Lζ + Dζ)Dζ
−1 (Dζ + Uζ) ∆Q̂

n

=Rn

(2.104)

The ADI-SGS scheme eliminates the need for the inversions of block diagonal ma-

trices, as seen in the LU-ADI scheme, without using a diagonalization procedure,

and can achieve further reduction of calculation processes compared to the LU-ADI

scheme. In addition, the ADI-SGS scheme is more diagonally dominant, i.e., more

stable than the LU-ADI scheme due to the approximation of the split Jacobian

matrices with those spectral radii.
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2.3.4.3 Treatment of Viscous Term

According to the conservation in the discretized form of the governing equations,

viscous term Re−1∂Ĝv/∂ζ should be introduced to the right hand side of Eq. 2.77.

The viscous term can be treated by defining and decomposing the Jacobian matrix

of Ĝv, and adding this matrix to the implicit operator as well as Ê, F̂ and Ĝ.63,64

However, accurate formulation of the implicit operator is not required because var-

ious approximations are introduced to the implicit operator. For simplicity and

efficiency, in the present study, the split Jacobian matrices Ĉ
±

are modified to Ĉν
±

as

Ĉν
±

= Ĉ
± ± νI

= Tζ

(
Λζ

± ± νI
)
Tζ

−1
(2.105)

where ν is the approximate operator of the viscous term introduced by Obayashi et

al.,78 which is similar to the MacCormack’s implicit scheme,79 as

ν =
2µ

(
ζx

2 + ζy
2 + ζz

2
)

Reρ∆ζ
(2.106)

2.3.4.4 Space Variable Time Stepping

As described above, the restriction on available time step size ∆t becomes very severe

near the wall where the grid points are clustered to resolve the boundary layer. If

∆t is set to be constant at all grid points, called physical time stepping technique,

the governing equations must be solved with very small ∆t at all grid points, and

it results in very long total simulation time. Therefore, it is more effective to solve

the governing equations by setting an appropriate available ∆t at each grid point

individually. The space variable time stepping technique changes the time step size

at each grid point: ∆tj,k,l according to the cell volume, as

∆tj,k,l =
∆tref

1 +
√

Jj,k,l

(2.107)

where ∆tref is the reference time step size which is given as an input parameter.

This technique reduces small ∆tj,k,l at the grid point with small cell volume (large

Jj,k,l) while large ∆tj,k,l is maintained at the grid point with large cell volume (small

Jj,k,l). Consequently, this technique can reduce the total simulation time until the

convergence to steady flowfield.



2.3 CFD Simulation Approach 71

2.3.4.5 Multigrid Method

Multigrid method has derived from the observation that many numerical methods

for solving discretized partial differential equations are adept at smoothing high

frequency error components. The early stage of convergence history shows a region

of rapid error reduction by removing high frequency components. Then, however,

a long region of slow error reduction corresponding to the slow expulsion of the

low frequency modes follows. The multigrid method dissipates the lower frequency

errors sufficiently using a sequence of grid levels. Grid level 1 is the finest grid from

which coarser grid s can be formed successively by deleting every other grid line in all

coordinate directions. On coarser grids, the fine-grid low frequency error components

are resolved as higher frequencies due to the increased grid spacing, and thus they

are damped effectively. When this correction is interpolated back to the fine grid,

high frequency errors can be generated but they are damped quickly by the fine-grid

smoothing iteration. An Example of sequence of grids is shown in Fig. 2.21

The multigrid method used in the present study is the full approximation scheme

(FAS).80, and the cycling strategy used in the present study is a V-cycle with three

grid levels as shown in Fig. 2.22. At the each grid level, two time steps proceed.

The multigrid method can be illustrated by a grid sequence between two grid

levels. The Euler or Navier-Stokes equations are solved approximately on a fine

grid level h by discretizing the computational domain into cells yielding a system of

algebraic equations as

Mh∆Q̂h = Rh(Q̂h) (2.108)

where M is the explicit or implicit relaxation operator matrix of the considered

scheme, and R(Q̂) is the explicit steady state (residual) vector corresponding the

current conservative variable (dependent variable) vector Q̂. •h indicates the ma-

trices and vectors on grid level h. After calculating Eq. 2.108, the residuals and

dependent variables on the first coarse grid level h + 1 are calculated by restrict-

ing the corresponding fine-grid values. A volume weighted restriction operator Ih+1
h

transfers values on the fine grid level h to the coarse grid level h + 1 as

Ih+1
h Q̂h =

1
Jh+1

∑
∈h Q̂∑

∈h 1/J

Ih+1
h Rh =

1
Jh+1

∑
∈h R∑

∈h 1/J

(2.109)
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(a) Level 1 (249 × 49). (b) Level 2 (125 × 25).

(c) Level 3 (63 × 13).

Figure 2.21 Example of grid sequence of multigrid method.

Grid Level

1

2

T

T

T3

Q

C

C I

I

Q
c

T: Euler / Navier-Stokes Calculation
C: Residual / Dependent Variable Collection
I: Correction Interpolation

Figure 2.22 Flowchart of multigrid method with V-cycle strategy.
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where the summations in Eq. 2.109 are taken over the entire fine grid cells which make

up the coarse grid cell and J is the Jacobian of the fine-grid cell. This restriction

operator is conservative and thus the surface integral of the fluxes crossing the cell

interfaces on the coarse grid are the same as the corresponding integral on the fine

grid. The relative truncation error vector τ on the coarse grid is calculated from

τ h+1 = Rh+1(Ih+1
h Q̂h) − Ih+1

h Rh (2.110)

On the coarse grid, a few iterations of the approximate factorization scheme can be

conducted by adding the relative errors as

Mh+1∆Q̂h+1 = Rh+1(Q̂h+1) − τh+1 (2.111)

Because τ h+1 has been previously calculated, the residuals R on the coarse grid is

calculated easily by simply calculating Rh+1(Q̂h+1) from the most current values on

the coarse grid and subtracting τ h+1, as

Rh+1 = Rh+1(Q̂h+1) − τh+1 (2.112)

The correction V on the coarse grid is calculated as

V h+1 = Q̂h+1 − Ih+1
h Q̂h (2.113)

This correction is transferred to the fine grid by using trilinear interpolation operator

Ih
h+1 as

Q̂
c
h = Q̂h + Ih

h+1V h+1 (2.114)

The fine-grid solution is fully updated by one more smoothing iteration using Eq. 2.108.

Compared to the conventional time-marching scheme, the V-cycle strategy re-

quires additional computations on coarser grids. However, on the first coarse grid

level 2, the computational efforts are reduced to 1/8 of those on the finest grid level

1 in three-dimensional cases because the number of nodes in reduced to 1/2 in each

coordinate direction. Thus, the computational cost on coarser grids is extremely

small. Similarly, it becomes 1/64 on the grid level 3. Thus, the total computational

cost of the present V-cycle strategy becomes 2 + 2/8 + 2/64 .= 2.3 while six time

steps are computed in one cycle.

Another merit of multigrid method is that the time step size limited by the CFD

number can be doubled as the grid spacing is doubled from the previous grid. Then,

the multigrid cycle proceeds the total time step size of 2×∆t+2×(2∆t)+2×(4∆t) =

14∆t compared to 6∆t for the singlegrid method, where ∆t is the time step size on

the finest grid.
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2.3.5 Turbulence Modeling

The flowfields where the Reynolds number is very high is considered to be mainly

turbulent. The minimum length scale of turbulence is much larger than the length

scale of molecular motion except for extreme cases such as the rarefied gas, therefore

the turbulent flow can be treated as continuum motion and essentially simulated by

using the unsteady Navier-Stokes equations. In practical case where the Reynolds

number is high, however, the minimum scale of turbulence, called Kolmogoroff scale,

is extremely small. Therefore, even if we use up-to-date computers, it is unpractical

to resolve the minimum scale of turbulence directly because vast simulation time and

vast memory size are required. And, statistical data processing of vast simulation

results is also required to obtain useful information from the turbulent flowfields.

As for the engineering statistical processing for turbulent flow, it is easier and more

usual to time-average the governing equations in advance before the simulations

to eliminate the irregular fluctuations associated with the turbulence because most

engineers do not treat turbulence phenomena themselves directly in general. In

the present study, therefore, the time-averaged governing equations are used for the

simulations of turbulent flow.

2.3.5.1 Reynolds Averaging

In the turbulent flow, any physical variable f(t) is decomposed into a time-averaged

value f and a fluctuation f ′(t) around f as

f(t) = f + f ′(t) (2.115)

where • denotes the time-averaged value called Reynolds average and defined, e.g.

for f , as

f =
1

∆t

∫ t+∆t

t
f(t)dt (2.116)

Here, ∆t is required to be large compared to the period of the random fluctuations

associated with the turbulence, but small with respect to the time constant for any

slow variations in the flowfield associated with ordinary unsteady flows. And, note

that f ′ = 0 by definition.

2.3.5.2 Favre Averaging

The Reynolds-averaging is reasonable for the incompressible Navier-Stokes equa-

tions. For the compressible Navier-Stokes equations, on the other hand, the Reynolds
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averaging produces the correlation terms such as ρ′uj
′ which can not be treated easily

in the simulations, and the system of the governing equations is not closed. There-

fore, mass-weighted time-averaging called Favre Averaging is convenient to eliminate

the troublesome correlation terms. Similar to the Reynolds averaging, f(t) is decom-

posed into a mass-weighted time-averaged value f̃ and a fluctuation f ′′(t) around f̃

as

f(t) = f̃ + f ′′(t) (2.117)

where •̃ denotes the Favre average and defined, e.g. for f , as

f̃ =
ρf

ρ
(2.118)

Here, note that ρf ′′ = 0 by definition. Important differences between the Reynolds

and the Favre averagings are; f ′ = 0 and ρf ′ 	= 0 for the Reynolds averaging, and

f ′′ 	= 0 and ρf ′′ = 0 for the Favre averaging.

Applying the Favre averaging to the compressible Navier-Stokes equations, sev-

eral correlation terms are produced. Among these terms, so-called Reynolds stress

term −ρui
′′uj

′′ is modeled by introducing the turbulent viscosity coefficient µt, based

on the Boussinesq approximation, as

−ρui
′′uj

′′ = µt

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− 2

3
δij

∂ũk

∂xk
(2.119)

and turbulent heat flux term ρuj
′′H ′′ is modeled by introducing the turbulent Prandtl

number Prt as

ρuj
′′H ′′ = − µt

(γ − 1) Prt

∂

∂xj

(
ã2

)
(2.120)

The other correlation terms are considered to be negligible in the present study.

Consequently, the Favre averaged compressible Navier-Stokes equations can be

solved by simply replacing the dynamic viscosity coefficient µ and the Prandtl num-

ber Pr in Eq. 2.59 with

µ = µl + µt

µ

Pr
=

µl

Prl
+

µt

Prt

(2.121)

µl and µt are the laminar and turbulent viscosity coefficients, respectively. In this

study, µl is assumed to be constant to freestream value because we deal with only

subsonic flow with small change of temperature, and µt is evaluated by the Baldwin-

Lomax algebraic turbulence model. Prl and Prt are the laminar and turbulent

Prandtl number and set to be 0.72 and 0.9, respectively.
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2.3.5.3 Baldwin-Lomax Algebraic Turbulence Model

The Baldwin-Lomax algebraic turbulence model81 is developed for the two-dimensional

attached and steady boundary layer, and evaluates the turbulent viscosity coefficient

µt from the velocity profile along the line normal to the wall. This model treats the

wall boundary layer consisting of inner and outer regions where µt is defined as

µt =

{
µtinner if y ≤ ycrossover

µtouter otherwise
(2.122)

where y is the normal distance from the wall, and ycrossover is defined as the smallest

value of y at which µtinner = µtouter.

The Prandtl-Van Driest formulation is used for µtinner:

µtinner = ρl2|ω| (2.123)

where

l = ky
[
1 − exp

(−y+/A+
)]

(2.124)

|ω| is the magnitude of the vorticity:

|ω| =

√(
∂u

∂y
− ∂v

∂x

)2

+
(

∂v

∂z
− ∂w

∂y

)2

+
(

∂w

∂x
− ∂u

∂z

)2

(2.125)

and

y+ =
√

ρwτw

µw
y (2.126)

•w denotes the properties evaluated at the wall, and τw is the skin friction at the

wall.

µtouter is given by the Clauser formulation:

µtouter = KCcpρFwakeFkleb(y) (2.127)

where K is the Clauser constant, Ccp is an additional constant, and

Fwake = min
(
ymaxFmax, Cwkymaxudif

2
/
Fmax

)
(2.128)

The quantities ymax and Fmax are determined from the function:

F (y) = y|ω| [1 − exp
(−y+

/
A+

)]
(2.129)
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In wakes, the exponential term of this equation is set equal to zero. Fmax is the

maximum value of F (y) that occurs in a profile, and ymax is the value of y at which

it occurs. Fkleb(y) is the Klebanoff intermittency factor given by

Fkleb(y) =

[
1 + 5.5

(
Ckleby

ymax

)6
]−1

(2.130)

udif is the difference between maximum and minimum total velocity in the profile:

udif =
√

u2 + v2 + w2
max −

√
u2 + v2 + w2

min (2.131)

For the flowfiled with an attached boundary layer, |ω| outside the boundary layer

is small, and F (y) takes its maximum Fmax at the outer edge of the boundary layer,

i.e., ymax represents the boundary layer thickness. In the Baldwin-Lomax algebraic

turbulence model, therefore, the distribution of vorticity is used to determine length

scale so that the necessity for finding the outer edge of the boundary layer is removed

compared with the algebraic turbulence model by Cebeci.82

The constant appearing in the foregoing relations are determined by requiring

agreement with the Cebeci formulation for constant pressure boundary layers at

transonic speeds:

A+ = 26, Ccp = 1.6, Ckleb = 0.3,

Cwk = 0.25, k = 0.4, K = 0.0168
(2.132)

2.3.6 Boundary Conditions

2.3.6.1 Solid Wall Boundary

Solid wall boundary on a body surface is treated as non-slip wall. When l = 1 plane

is a body surface, the velocity components on l = 1 are given as

ul=1 = xτ l=1, vl=1 = yτ l=1, wl=1 = zτ l=1 (2.133)

where xτ , yτ and zτ represent the velocities of the grid points on the body surface,

and these values become zero for a stationary body surface, as considered in the

present study. The density is extrapolated from the adjacent node:

ρl=1 = ρl=2 (2.134)

Static pressure is defined from the equilibrium condition of the momentum normal

to the body surface (normal momentum equation). In this case, ζ direction is normal
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to the body surface, therefore the normal momentum equation is expressed in the

generalized coordinate system as follows:

A
∂p

∂ξ
+ B

∂p

∂η
+

∂p

∂ζ
= C (2.135)

where

A =
1
D

(ξxζx + ξyζy + ξzζz)

B =
1
D

(ηxζx + ηyζy + ηzζz)

C =
1
D

[
ρ

(
∂ζt

∂τ
+ u

∂ζx

∂τ
+ v

∂ζy

∂τ
+ w

∂ζz

∂τ

)
−ρU

(
ζx

∂u

∂ξ
+ ζy

∂v

∂ξ
+ ζz

∂w

∂ξ

)
− ρV

(
ζx

∂u

∂η
+ ζy

∂v

∂η
+ ζz

∂w

∂η

)]
D =ζx

2 + ζy
2 + ζz

2

(2.136)

The first term of C in the right hand side of Eq. 2.135 is the term due to accelerated

motion and deformation of grid, and becomes zero for a stationary grid as considered

in the present study. Unknown variables in Eq. 2.135 are only differential terms of

pressure, and pressure distribution over the flowfield (l ≥ 2) is known. Applying the

second-order one-sided differencing to ∂p/∂ζ as(
∂p

∂ζ

)
l=1

=
−3pl=1 + 4pl=2 − pl=3

2∆ζ
(2.137)

then, Eq. 2.135 becomes as

−Â
∂p

∂ξ
− B̂

∂p

∂η
+ pl=1 = Ĉ (2.138)

where

Â =
2
3
∆ζA

B̂ =
2
3
∆ζB

Ĉ = −1
3

(2∆ζC − 4pl=2 + pl=3)

(2.139)

The following approximate factorization is applied to the left hand side of Eq. 2.138,

written in Matrix form, as,(
I − Âδξ

)(
I − B̂δη

)
pl=1 = Ĉ + ÂB̂δξδηpl=1 (2.140)

where δκ• denotes the second-order central difference operator. The scalar tridiag-

onal equation (Eq. 2.138) can be solved through a sequence of operations, and then

the pressures on the body surface: pl=1 are given.
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2.3.6.2 External Boundary

When l = lmax plane is an external boundary, the conditions on l = lmax are de-

cided according to freestream Mach number M∞ and the contravariant velocity in ζ

direction: W , as follows:

Subsonic Case (M∞ < 1)

Outflow Condition (Wl=lmax−1 ≥ 0) Pressure is fixed to freestream value

p∞, and the other physical properties are extrapolated from the adjacent node as

Ql=lmax =


ρ
ρu
ρv
ρw

p∞
γ−1 + 1

2ρ
(
u2 + v2 + w2

)


l=lmax−1

(2.141)

Inflow Condition (Wl=lmax−1 < 0) All physical properties are fixed to freestream

values as

Ql=lmax = Q∞ (2.142)

Supersonic Case (M∞ ≥ 1)

Outflow Condition (Wl=lmax−1 ≥ 0) All physical properties are extrapolated

from the adjacent node as

Ql=lmax = Ql=lmax−1 (2.143)

Inflow Condition (Wl=lmax−1 < 0) All physical properties are fixed to freestream

values as

Ql=lmax = Q∞ (2.144)

2.3.6.3 Symmetric Boundary

In the case without side slip flow, the flowfield around only a half of body is simulated

for the reduction in computation time. When k = 2 plane is a symmetry plane,
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physical properties on l = 1 are given by

Qk=1 =


ρ
ρu
−ρv
ρw
e


k=3

(2.145)

2.3.6.4 Wake Singularity

Two dimensional C type grid and three dimensional C-H type grid around an airfoil

used in the present study have singular points, where multiple points overlap each

other, in rear wake and side wake regions. When (j, k, 1) and (jmax − j + 1, k, 1)

points overlap each other, physical properties on these points are averaged from those

at the points adjacent to each overlapped point.

Qj,k,1 =
1
2
(
Qj,k,2 + Qjmax−j+1,k,2

)
Qjmax−j+1,k,1 =

1
2
(
Qj,k,2 + Qjmax−j+1,k,2

) (2.146)



Chapter 3

Validation of Design for
Multi-Objective Six Sigma
Approach

3.1 Introduction

In this chapter, a newly developed robust design optimization approach “design

for multi-objective six sigma (DFMOSS)” is applied to simple robust optimization

problems. The numerical results obtained by using the DFMOSS are compared to

those obtained by using a traditional robust design optimization approach “design

for six sigma (DFSS)” to investigate efficiency and usefulness of the DFMOSS. The

investigations of DFMOSS in the optimization problems considering the robustness

in objective function value against the variations of optimized design variables are

described in Sec. 3.2, and those in the optimization problems considering the ro-

bustness in constraint function violation against the variations of optimized design

variables are described in Sec. 3.3.

3.2 Case 1: Robustness in Objective Function Value

3.2.1 Case 1.1: Test Function Optimization Problem

3.2.1.1 Problem Definition

Consider the test function optimization problem where the value of objective function

f(x) of one design variable x must be minimized:

Minimize: f(x) = − exp
(
−|x|

5

)
cos

(
2πx

|x|0.1

)
(3.1)

where the range of design variable is −0.5 ≤ x ≤ 5. Now, convert this problem to the

robust optimization problem where both the mean value µf and standard deviation

81
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σf of objective function f(x) must be minimized:

Minimize: µf

σf

(3.2)

Figure 3.1 shows the test function distribution (f(x) against x). In a traditional

optimization problem (Eq. 3.1), it is clear that an optimal solution is x = 0. In

the robust optimization problem (Eq. 3.2), on the other hand, x = 0 is the best

in terms of the optimality, but not good in terms of the robustness because the

objective function f(x) disperse widely against the dispersion of design variable x

around x = 0. The optimality becomes worse but the robustness becomes better in

order of hollows x = 0, 1, 2.16, 3.38 and 4.66 because the hollow becomes shallower

and gentler. Therefore, all these five hollows can be the robust optimal solutions in

this robust optimization problem.

Figure 3.1 Test function distribution of Case 1.1.

3.2.1.2 Optimization Methods and Conditions

This robust optimization problem is solved by using the multi-objective genetic algo-

rithm (MOGA)33 coupled with the newly developed robust optimization approach

DFMOSS, and the single-objective genetic algorithm (SOGA)31 coupled with the

traditional robust optimization approach DFSS,36 respectively. In both robust op-

timizations, fitness values are evaluated by using the Pareto-ranking method,53 the

fitness sharing,33,53 and Michaleswicz’s nonlinear function.49 Parents are selected

by the roulette-wheel selection (RWS),31 children are reproduced by the blended
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crossover (BLX-0.5)48 and random mutation,49 and the alternation of generations is

performed by the Best-N selection.50,51 In the robust optimization using DFSS,

the constraints on sigma level are treated by using the Pareto-optimality-based

constraint-handling (PBCH) technique.56,57 The statistical values of objective func-

tion (µf and σf ) are evaluated by the Monte Carlo simulation (MCS) with descriptive

sampling (DS).59

Table 3.1 shows the present optimization conditions. The mean value of MCS

random design variable is set as the design variable of each solution. The standard

deviation of MCS random design variable, on the other hand, is fixed at 0.1. In

the robust optimizations using DFSS, the sigma level n is set as 3σ in advance,

and total seven cases with different combination of weighting factors wµ and wσ are

carried out. In the robust optimization using DFMOSS, on the other hand, it is not

necessary to set the sigma level in advance, and only one case is carried out without

the advance setting of weighting factors.

Table 3.1 Optimization conditions of Case 1.1.

for
SOGA/MOGA

Population size 32
Number of generations 100

Mutation rate [%] 20

for MCS random
design variable

Sample size 1000
Probability density distribution normal distribution

Mean value value of each solution
Standard deviation 0.1

for DFSS

USL −0.2
LSL N/A

Sigma level n 3σ

wµ : wσ

1 : 1000, 1 : 100, 1 : 10,
1 : 1, 10 : 1, 100 : 1,

1000 : 1

3.2.1.3 Numerical Results

Figure 3.2 shows the robust optimal solution distributions (σf against µf ) and Ta-

ble 3.2 shows the numerical data of the robust optimal solutions of the present case

obtained by using the DFSS and the DFMOSS, respectively. In the robust optimiza-

tion using DFSS, only two robust optimal solutions with more than 3σ robustness

quality (x = 1 and 3.39) are obtained though total seven-time optimizations with

different combination of weighting factors are carried out. Here note that essentially
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there exist total three robust optimal solutions with more than 3σ robustness quality

(x = 1, 2.16 and 3.38). These results indicate that the DFSS does not have enough

capability of finding all robust optimal solutions. In this study, two robust optimal

solutions can be obtained because the advance setting of sigma level as 3σ is appro-

priate by chance. However, it is not always guaranteed for the DFSS to obtain the

robust optimal solutions according to the advance setting of sigma level.

Figure 3.2 Robust optimal solution distributions of Case 1.1.

Table 3.2 Numerical data of robust optimal solutions of Case 1.1.
wµ : wσ x µf σf

DFSS

1 : 1000 3.3864 −0.44811 0.079737
1 : 100 3.3863 −0.44812 0.079737
1 : 10 0.99987 −0.69769 0.1592
1 : 1 0.99808 −0.69776 0.15927
10 : 1 0.99724 −0.69777 0.15934
100 : 1 0.99713 −0.69777 0.15935
1000 : 1 0.99712 −0.69777 0.15935

DFMOSS

0.001737 −0.73406 0.29317
1.0023 −0.69747 0.15923
2.159 −0.56617 0.11038
3.3835 −0.44815 0.079798
4.6596 −0.3499 0.058399

In the robust optimization using DFMOSS, on the other hand, all five robust

optimal solutions (x = 0, 1, 2.16, 3.38 and 4.66) can be obtained successfully and

effectively in only one calculation, and it is understood easily that the maximum
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sigma level of the obtained robust optimal solutions is more than 3σ by the post-

evaluation.

3.2.2 Case 1.2: Welded Beam Design Problem

3.2.2.1 Problem Definition

Next, the DFMOSS is applied to the welded beam design problem.83,84 The present

welded beam structure is shown in Fig. 3.3. The welded beam consists of a beam

and a weld required to secure the beam to the member. The objective of the design

is to find a feasible set of dimensions h, l, t and b (denoted by x = [x1, x2, x3, x4]
T )

to carry a certain load (P ) and still have a minimum total fabricating cost.

Figure 3.3 Welded beam structure.

The objective function f(x) is the total fabricating cost which mainly comprises

of the set-up cost, welding labor cost and material cost:

Minimize: f(x) = (1 + c1) x1
2x2 + c2x3x4 (L + x2) (3.3)

where c1 and c2 are the cost of unit volume of weld material and bar stock, respec-

tively. The associated functional constraints g(x) = [g1(x), g2(x), g3(x), g4(x), g5(x), g6(x)]T

are:

Subject to: g1(x) = τ(x) − τmax ≤ 0

g2(x) = σ(x) − σmax ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = c1x1
2 + c2x3x4 (L + x2) − 5 ≤ 0

g5(x) = δ(x) − δmax ≤ 0

g6(x) = P − Pc(x) ≤ 0

(3.4)
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where

τ(x) =
√

τ ′2 + 2τ ′τ ′′ x2

2R
+ τ ′′2, τ ′ =

P√
2x1x2

, τ ′′ =
MR

J
,

M = P
(
L +

x2

2

)
, R =

√
x2

2

4
+

(
x1 + x3

2

)2

,

J = 2

{√
2x1x2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

,

σ(x) =
6PL

x4x3
2
, δ(x) =

4PL3

Ex3
3x4

, Pc(x) =
4.013E

√
x3

2x4
6
/
36

L2

(
1 − x3

2L

√
E

4G

)
(3.5)

and

c1 = 0.10471, c2 = 0.04811,

P = 6 × 103[lb], L = 14[in], E = 3 × 107[psi], G = 1.2 × 107[psi],

δmax = 0.25[in], τmax = 1.36 × 104[psi], σmax = 3 × 104[psi]

(3.6)

where τ(x), σ(x), δ(x) and Pc(x) are weld shear stress, bar bending stress, bar end

deflection and bar buckling load, respectively. The ranges of design variables are

0.125 ≤ x1 ≤ 5[in], 0.1 ≤ x2 ≤ 10[in], 0.1 ≤ x3 ≤ 10[in] and 0.1 ≤ x4 ≤ 5[in]. Now,

convert this problem to the robust optimization problem that both the mean value

µf and the standard deviation σf of total fabricating cost f(x) must be minimized,

and also six constraint functions g(x) must be satisfied at the mean values µx =

[µx1 , µx2, µx3 , µx4 ]
T of design variables x:

Minimize: µf

σf

Subject to: g(µx) ≤ 0

(3.7)

3.2.2.2 Optimization Methods and Conditions

The optimization methods of the present case are the same as those used in Case 1.1

described in Subsec. 3.2.1. Table 3.3 shows the present optimization conditions. In

the robust optimization using DFSS, the sigma level n is set as 6σ in advance, and

total seven cases with different combinations of weighting factors wµ and wσ are

carried out. In the robust optimization using DFMOSS, on the other hand, it is not

necessary to set the sigma level in advance, and only one case is carried out without

the advance setting of weighting factors.
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Table 3.3 Optimization conditions of Case 1.2.

for
SOGA/MOGA

Population size 50
Number of generations 1000

Mutation rate [%] 20

for MCS random
design variables

Sample size 1000
Probability density distribution normal distribution

Mean value value of each solution
Standard deviation 0.01

for DFSS

USL 3
LSL N/A

Sigma level n 6σ

wµ : wσ

1 : 1000, 1 : 100, 1 : 10,
1 : 1, 10 : 1, 100 : 1,

1000 : 1

3.2.2.3 Numerical Results

Figure 3.4 shows the robust optimal solution distributions (standard deviation σf

against mean value µf of total fabricating cost f(x)) of the present case obtained by

using the DFSS and the DFMOSS. In the robust optimization using DFSS, robust

optimal solutions with more than 6σ robustness quality are obtained. However, these

solutions distribute very locally though total seven-time optimizations with different

combination of weighting factors are carried out. These results indicate that the

DFSS does not have enough capability of finding robust optimal solutions globally.

In this study, the robust optimal solutions can be obtained because the advance

setting of sigma level as 6σ is appropriate by chance. However, it should be noted

that it is not always guaranteed for the DFSS to obtain the robust optimal solutions

according to the advance setting of sigma level.

In the robust optimization using DFMOSS, on the other hand, many robust

optimal solutions can be obtained effectively in only one optimization, and these

solutions distribute globally and uniformly. Also it is understood easily that the

maximum sigma level of the obtained robust optimal solutions is more than 6σ and

total twenty-one robust optimal solutions have more than 6σ robustness quality by

the post-evaluation.
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Figure 3.4 Robust optimal solution distributions of Case 1.2.

3.3 Case 2: Robustness in Constraint Function Viola-

tion

3.3.1 Case 2.1: Test Function Optimization Problem

3.3.1.1 Problem Definition

Consider the test function problem where the value of objective function f(x) of two

design variables x = [x1, x2]
T :

Minimize: f(x) =
√

x1
2 + x2

2 (3.8)

and also the constraint function g(x) must be satisfied:

Subject to: g(x) = −x1 − x2 +
√

2 ≤ 0 (3.9)

where the ranges of design variables are 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 2. Now,

convert this problem to the robust optimization problem where the mean value µf

of objective function f(x) must be minimized, the sigma level n of constraint function

g(x) must be maximized, and also the constraint function g(x) must be satisfied at

the mean value µx = [µx1 , µx2]
T of design variable x:

Minimize: µf

Maximize: n = −µg/σg

Subject to: g(µx) ≤ 0

(3.10)

where µg and σg are the mean value and the standard deviation of constraint function

g(x).
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Figure 3.1 shows the contour plots of objective function f(x) and constraint

function g(x) on x1–x2 plane. In a traditional optimization problem (Eqs. 3.8 and

3.9), it is clear that an optimal solution is x =
[
1
/√

2, 1
/√

2
]T

and also the constraint

function g(x) is active (g(x) = 0) at the optimal solution. In the robust optimization

problem (Eq. 3.10), on the other hand, x =
[
1
/√

2, 1
/√

2
]T

is the best in terms

of the optimality, but not good in terms of the robustness because this solution

disperses easily outside the feasible region in terms of the constraint function g(x)

against the dispersion of design variables x around x =
[
1
/√

2, 1
/√

2
]T

. Therefore,

the optimality becomes worse but the robustness becomes better as the solution

shifts away from the constraint function limit along the direction where the value of

constraint function g(x) increases in this robust optimization problem.

Figure 3.5 Test function contour plots of Case 2.1.

3.3.1.2 Optimization Methods and Conditions

The optimization methods of the present case are the same as those used in Case 1.1

described in Subsec. 3.2.1. Table 3.4 shows the present optimization conditions. In

the robust optimization using DFSS, total seven cases with different sigma levels n

are carried out. In the robust optimization using DFMOSS, on the other hand, only

one case is carried out without the advance setting of sigma level.

3.3.1.3 Numerical Results

Figures 3.6 and 3.7 show the robust optimal solution distributions (n against µf )

and corresponding design variable distributions (x2 against x1), respectively, of the
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Table 3.4 Optimization conditions of Case 2.1.

for
SOGA/MOGA

Population size 32
Number of generations 100

Mutation rate [%] 20

for MCS random
design variables

Sample size 1000
Probability density distribution normal distribution

Mean value value of each solution
Standard deviation 0.3

for DFSS Sigma level n 1σ, 2σ, 3σ, 4σ, 5σ, 6σ, 7σ

present case obtained by using the DFSS and the DFMOSS. In the robust opti-

mization using DFSS, six robust optimal solutions with 1σ, 2σ, 3σ, 4σ, 5σ and 6σ

robustness quality are obtained, and the obtained solutions shift away from the con-

straint function limit with the increment of sigma level. However, a robust optimal

solution can not be found in the case when the sigma level is specified as 7σ. This re-

sult indicates that the DFSS has difficulty in the advance specification of sigma level.

In addition, the robust optimal solutions obtained by the DFSS distribute sparsely

because the specified sigma levels are discrete integers. This result indicates that the

robust optimization using DFSS is not effective to obtain robust optimal solutions

distributed uniformly in the whole design space.

Figure 3.6 Robust optimal solution distributions of Case 2.1.

In the robust optimization using DFMOSS, on the other hand, many robust

optimal solutions can be obtained effectively by only one case without the advance
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Figure 3.7 Design variable distributions of robust optimal solutions of
Case 2.1.

specification of sigma level, and these solutions distribute uniformly in the whole

design space. Also it is understood easily that this robust optimization problem has

continuous trade-off relation between the mean value of objective function and the

sigma level of constraint function from 0σ to 6σ, from the obtained robust optimal

solution distribution.

3.3.2 Case 2.2: Welded Beam Design Problem

3.3.2.1 Problem Definition

Again, the DFMOSS is applied to the welded beam design problem,83,84 as de-

scribed in Subsec. 3.2.2. In this case, convert this problem (Eqs. 3.3 and 3.4)

to the robust optimization problem where the mean value µf of total fabricating

cost f(x) must be minimized, the sigma levels n = [n1, n2, n3, n4, n5, n6]
T of six

constraint functions g(x) = [g1(x), g2(x), g3(x), g4(x), g5(x), g6(x)]T , respectively,

must be maximized, and also the constraints g(x) must be satisfied at the mean
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value µx = [µx1 , µx2, µx3 , µx4 ]
T of design variables x:

Minimize: µf

Maximize: n1 = −µg1/σg1

n2 = −µg2/σg2

n3 = −µg3/σg3

n4 = −µg4/σg4

n5 = −µg5/σg5

n6 = −µg6/σg6

Subject to: g(µx) ≤ 0

(3.11)

where µg = [µg1, µg2, µg3 , µg4, µg5 , µg6]
T and σg = [σg1, σg2 , σg3 , σg4, σg5 , σg6 ]

T are the

mean values and the standard deviations of constraint functions g(x), respectively.

3.3.2.2 Optimization Methods and Conditions

The optimization methods of the present case are the same as those used in Case‘1.1

described in Subsec. 3.2.1. Table 3.4 shows the present optimization conditions. In

the robust optimization using DFSS, total three cases with different sigma levels n

are carried out. In the robust optimization using DFMOSS, on the other hand, only

one case is carried out without the advance setting of sigma level.

Table 3.5 Optimization conditions of Case 2.2.

for
SOGA/MOGA

Population size 100
Number of generations 200

Mutation rate [%] 10

for MCS random
design variables

Sample size 1000
Probability density distribution normal distribution

Mean value value of each solution
Standard deviation 0.1

for DFSS Sigma level n 1σ, 2σ, 3σ

3.3.2.3 Numerical Results

Figure 3.8(a) shows the distributions of all robust optimal solutions (sigma level

n1 of the first constraint function g1(x) against mean value µf of total fabricating

cost f(x)) of the present case obtained by using the DFSS and the DFMOSS, and

Figs. 3.8(b) and 3.8(c) show similar distributions of robust optimal solutions whose
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all sigma levels n are larger than 1 and 2, respectively. In the robust optimization

using DFSS, two robust optimal solutions with 1σ, 2σ robustness quality are ob-

tained. However, a robust optimal solution can not be found in the case when all

sigma levels are specified as 3σ. This result indicates that the DFSS has difficulty

in the advance specification of sigma level. In addition, the robust optimal solutions

obtained by the DFSS distribute sparsely because the specified sigma levels are dis-

crete integers. This result indicates that the robust optimization using DFSS is not

effective to obtain robust optimal solutions distributed uniformly in the whole design

space.

In the robust optimization using DFMOSS, on the other hand, many robust

optimal solutions can be obtained effectively by only one case without the advance

specification of sigma levels, and these solutions distribute uniformly. In addition, it

is understood easily that this robust optimization problem has continuous trade-off

relation between the mean value of total fabricating cost and the sigma level of the

first constraint function. Furthermore, though only the trade-off relations between

µf and n1 are shown here, it is also possible to reveal the other trade-off relations

between all combinations of the sigma levels of all constraint functions by further

investigation.

3.4 Summary

In this chapter, a newly developed robust optimization approach DFMOSS was ap-

plied to simple robust optimization problems to investigate the efficiency and useful-

ness of the DFMOSS. These studies showed that the DFMOSS has some advantages

compared to the DFSS. Firstly, the DFMOSS does not have difficulty in the ad-

vance specification of input parameters such as weighting factors and sigma level.

Secondly, the DFMOSS can obtain multiple robust optimal solutions effectively by

only one case and reveal trade-off information between optimality and robustness

surely, compared to the DFSS. Thirdly, the satisfied sigma level of each obtained

robust optimal solution can be evaluated easily and flexibly as post-processing in

the robust optimizations using DFMOSS. These results indicated clearly that the

DFMOSS had more effective and more useful characteristics than the DFSS.
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(a) All solutions.

(b) Solutions with all sigma levels
larger than 1σ.

(c) Solutions with all sigma levels
larger than 2σ.

Figure 3.8 Robust optimal solution distributions of Case 2.2.



Chapter 4

Robust Aerodynamic Design of
Airfoil Configuration for Mars
Exploratory Airplane

4.1 Introduction

In this chapter, robust aerodynamic design optimizations of airfoil configuration for

Mars exploratory airplane considering the effects of wind variations are performed by

using the DFMOSS and the CFD simulation. Differently from the robust optimiza-

tion problems against the variations of optimized design variables as described in

Chap. 3, the present robust aerodynamic design optimization problems correspond

to those against the variations of non-optimized environmental variables such as wind

speeds and directions. In the present study, three cases of the robust aerodynamic

design optimizations of airfoil configuration are carried out; the robust design opti-

mization of lift to drag ratio against the variation of flight Mach number is described

in Sec. 4.2, that of pitching moment coefficient against the variation of flight Mach

number is described in Sec. 4.3, and that of lift to drag ratio against the variation

of angle of attack is described in Sec. 4.4. In each case, the numerical results ob-

tained by the robust optimization using DFMOSS are compared to those obtained

by a traditional one-point optimization or those obtained by the robust optimization

using DFSS in order to compare efficiency and usefulness of the DFMOSS and the

differences in optimized designs. Then, the obtained trade-off relations between the

optimality and the robustness of aerodynamic performance of airfoil configuration

for Mars exploratory airplane are discussed.

95
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4.2 Case 1: Robust Design Optimization of Lift to Drag
Ratio against the Variation of Flight Mach Number

4.2.1 Design Problem Definition

Firstly, consider the traditional aerodynamic design optimization problem where air-

foil configuration must be optimized so that lift to drag ratio L/D will be maximized

at design point:

Maximize: L/D (4.1)

In the present study, cruising conditions of NASA’s AME,11 as shown in Table 4.1,

is used as the design point. Now, convert this problem to the robust aerodynamic

design optimization problem where the mean value of dispersive L/D must be max-

imized and also the standard deviation of dispersive L/D must be minimized when

the flight Mach number M∞ disperses around design point:

Maximize: mean value of L/D

Minimize: standard deviation of L/D
(4.2)

This robust aerodynamic optimization problem aims at finding the airfoil configura-

tion not only with maximum L/D but also with robust L/D characteristic that the

Mars exploratory airplane can avoid failure in flying over an expected range when it

flies in east-westward direction without side and vertical winds under the situation

where westerlies as shown in Fig. 1.8 blow stably. Table 4.2 shows the assumed

statistical characteristics of dispersive flight Mach number M∞ for NASA’s AME.

The value of 0.1 as the standard deviation of M∞ corresponds to the variation of

wind speeds in the moving direction of about 22 m/s on the Mars, and it is nearly

equal to the dairy and seasonal variation of westerly speeds near the Martian surface

(at the altitude of several kilometers) where it is assumed for the Mars airplane to

fly for exploring the structure of remnant magnetic fields and lower atmosphere, as

shown in Fig. 1.8.

Table 4.1 Two-dimensional cruising conditions of NASA’s AME.11

Reynolds number Re
(based on root chord length c) 1.0 × 105

Flight Mach number M∞ 0.4735
Angle of attack α [deg] 2.0
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Table 4.2 Statistical characteristics of dispersive flight Mach number M∞
for NASA’s AME.

Mean value 0.4735
Standard deviation 0.1

Selection of how to define airfoil configuration is an important step for the design

optimization of airfoil configuraion.85 In the present study, airfoil configuration is de-

fined by the B-spline curves. The definition based on the B-spline curves has some

advantages; second-order derivative is continuous, various airfoil configurations can

be expressed, and definition of initial design space is intuitive. Figure 4.1 shows the

present definition of airfoil configuration based on the B-spline curves where x and y

are the coordinates in the chordwise and the vertical directions, respectively. Six con-

trol points of the B-spline curves are given as well as three fixed point corresponding

to the leading and trailing edges. The B-spline curves are generated by approximat-

ing x and y coordinates of these given points where the generated B-spline curves

are scaled up or down in x direction so that the minimum x coordinate on this curve

corresponding to the leading edge becomes zero. Note that x and y coordinates of

the leading edge obtained by the present definition of airfoil configuration are not

necessary [0, 0] exactly. Table 4.3 shows the design variables and those ranges of

the present aerodynamic design optimization problem. The design variables are x

and y coordinates of six control points, and the total number of design variables is

twelve. Such specification of range of design variables may leads to the intersection

of upper and lower airfoil surfaces. Therefore, a geometric constraint is imposed in

the present aerodynamic design optimization so that the upper and lower surfaces

of airfoil do not intersect each other. The structural constraint on airfoil thickness

is not considered because we want to discuss an aerodynamic effect purely in the

present study.

4.2.2 Numerical Methods and Conditions

4.2.2.1 Optimization

In the present case, four aerodynamic design optimizations are performed and the

obtained numerical results are compared:

• One-point optimization using a single-objective genetic algorithm

(SOGA)31
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Figure 4.1 Definition of airfoil configuration based on the B-spline curves
of Case 1.

Table 4.3 Design variables and corresponding ranges of Case 1.
Design variable lower limit upper limit

Coordinate x/c

B-spline control point 1 0.66667 0.99
B-spline control point 2 0.33333 0.66667
B-spline control point 3 0.01 0.33333
B-spline control point 4 0.01 0.33333
B-spline control point 5 0.33333 0.66667
B-spline control point 6 0.66667 0.99

Coordinate y/c

B-spline control point 1 −0.15 0.15
B-spline control point 2 −0.15 0.15
B-spline control point 3 −0.15 0.15
B-spline control point 4 −0.15 0.15
B-spline control point 5 −0.15 0.15
B-spline control point 6 −0.15 0.15
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When M∞ = 0.4735 and α = 2.0 [deg],

Maximize: L/D (4.3)

• Two-point optimization using a multi-objective genetic algorithm

(MOGA)33

When M∞ = 0.3735 and α = 2.0 [deg],

Maximize: L/D (4.4)

and also when M∞ = 0.5735 and α = 2.0 [deg],

Maximize: L/D (4.5)

• Robust optimization using the SOGA coupled with the DFSS36

• Robust optimization using the MOGA coupled with the DFMOSS

When M∞ disperses around 0.4735 with its standard deviation of 0.1,

Maximize: mean value of L/D

Minimize: standard deviation of L/D
(4.6)

In all optimizations, fitness value are evaluated by using the Pareto-ranking method,53

the fitness sharing,33,53 and Michaleswicz’s nonlinear function.49 Parents are selected

by the stochastic universal sampling (SUS),47 children are reproduced by the blended

crossover (BLX-0.5)48 and uniform mutation33 with 10 % of the range of each de-

sign variable as the maximum perturbation, and the alternation of generations is

performed by the Best-N selection.50,51 The constraints are treated by using the

Pareto-optimality-based constraint-handling (PBCH) technique.56,57 In the robust

aerodynamic design optimizations using DFSS or DFMOSS, the statistical values

of aerodynamic performance parameters are evaluated by the second-order Taylor’s

series expansion approach, i.e., three CFD simulations at M∞ = 0.3735, 0.4735 and

0.5735 are required for one evaluation of statistical values.

Table 4.4 shows the present optimization conditions. In the robust optimizations

using DFSS, the lower specification limit LSL and the sigma level n of L/D is set as

42 and 3σ in advance, respectively, and total three cases with different combination

of weighting factors wµ and wσ are carried out. In the robust optimization using

DFMOSS, on the other hand, it is not necessary to set the sigma level in advance,

and only one case is carried out without the advance setting of weighting factors.
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Table 4.4 Optimization conditions of Case 1.

for
SOGA/MOGA

Population size 64
Number of generations 100

Mutation rate [%] 20

for DFSS

USL N/A
LSL 42

Sigma level n 3σ
wµ : wσ 1 : 10, 1 : 1, 10 : 1

4.2.2.2 CFD Simulation

The governing equations for the CFD simulation are the two-dimensional Favre-

averaged compressible thin-layer Navier-Stokes equations. The LU-ADI factoriza-

tion algorithm73 is used for the time integration with the physical time step size

of 0.01 (maximum local CFL number of about 650) and the number of iteration

steps of 40,000. Aerodynamic performance parameters such as lift, drag and mo-

ment are evaluated by averaging these values for the last 10,000 steps. The invis-

cid terms of numerical fluxes are evaluated by the SHUS scheme.70 In the inviscid

terms, high-order accuracy is obtained by the third-order upwind-biased MUSCL

interpolation71,72 based on the primitive variables with van Albada differentiable

limiter.67 The viscous terms are evaluated by the second-order central differencing,

and the turbulent viscosity is modeled by the Baldwin-Lomax algebraic turbulence

model.81

Figure 4.2 shows the grid distributions. In the present study, C type grid is

generated algebraically around the airfoil, and grid points are clustered near the

leading edge, the trailing edge and an airfoil surface. The number of grid points is

251 in the direction around the airfoil (211 points over the airfoil surface), 51 in the

direction normal to the airfoil surface, and the total number of grid points is 12,801.

The minimum grid spacing near the airfoil surface is about 1.0 × 10−5 based on the

root chord length c.

It should be noted that a lot of grid points are required if we attempt to simulate

laminar flows accurately without the turbulence model. Unrealistic vorticities may

occur when laminar flows are simulated with not so many grid points used in the

present study. Therefore, in the present study, the flowfields are assumed to be fully

turbulent by using the Baldwin-Lomax algebraic turbulence model for the reduction

in computation time.
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(a) Overall view.

x

y

(b) Close-up view.

Figure 4.2 Grid distributions.
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The computation time required for one evaluation of aerodynamic performance

of airfoil using the CFD simulation is about five minutes with one processor of

NEC SX-6 computing system owned by the Institute of Space and Astronautical

Science (ISAS) of JAXA. In the present study, the optimizer distributes the multiple

evaluators corresponding to the multiple individuals of GA into 32 processors of this

computing system in parallel. Therefore, the total computation time required for

one case of the present robust aerodynamic design optimization using DFMOSS can

be reduced to about 56 hours.

4.2.3 Numerical Results

Figure 4.3 compares the robust optimal solution distributions (standard deviation

against mean value of L/D) obtained by using the DFSS and the DFMOSS with the

optimal solution distributions obtained by the one-point and the two-point optimiza-

tions neglecting the robustness of L/D. Compared to the robust optimal solutions,

the one-point optimal solution has larger standard deviation of L/D. It indicates

that the one-point optimization can not find a solution with robust characteristic

of L/D. The two-point optimal solutions have smaller standard deviations of L/D

than the one-point optimal solution, but still has less robust characteristics than

the robust optimal solutions. In addition, the two-point optimal solutions do not

distribute globally and can not reveal trade-off relation between optimality (mean

value of L/D) and robustness (standard deviation of L/D) sufficiently. The robust

optimizations using the DFSS can find three robust optimal solutions with smaller

standard deviation of L/D than those of one-point and two-point optimal solutions

and more than 3σ robustness quality. However, these solutions distribute narrowly

though three cases are carried out with different combination of weighting factors.

This indicates that the DFSS has lack in capability of revealing global trade-off rela-

tion between optimality and robustness. On the other hand, the robust optimization

using the DFMOSS can successfully and effectively find total eighteen robust opti-

mal solutions by only one optimization run, and these solutions distribute globally

and uniformly. Also it is understood easily that the maximum sigma level of L/D of

the obtained robust optimal solutions is more than 6σ by the post-evaluation when

the lower specification limit of L/D is set as 42. It indicates that the DFMOSS

can give rich trade-off information between optimality and robustness which vari-

ous designers can utilize flexibly. Though it appeared that the DFSS find better

robust optimal solutions than the DFMOSS, note that, in the robust design opti-
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mizations, it is important not to find the robust optimal solutions themselves, but

to reveal trade-off information between the optimality and the robustness of perfor-

mance and give chance to the upper-level decision maker to select one solution from

the obtained multiple robust optimal solutions with other considerations from the

designer’s viewpoint. Also it should be noted that the robust optimization using

the DFSS requires more cases with different combinations of weighting factors when

the number of objective functions increases, and eventually leads to unpractical vast

computation time in real-world design problems with multiple objective functions.

Figure 4.3 Robust optimal solution distributions of Case 1.

Hereafter, three robust optimal solutions with 1σ, 3σ and 6σ robustness qualities

obtained by using the DFMOSS, as shown in Fig. 4.4, are compared with the one-

point optimal solution. Figure 4.5 shows the histories of L/D against M∞ at α = 2.0

[deg]. The one-point optimal solution has the largest L/D at the design point M∞ =

0.4735. However, L/D of this solution decreases drastically with the increment in

M∞, and it falls below its lower specification limit 42 at high M∞. On the other hand,

three robust optimal solutions have slightly smaller L/D at the design point but

more stable characteristics of L/D against the increment in M∞ than the one-point

optimal solution, and keep large L/D until high M∞. In addition, comparing the

three robust optimal solutions, the solution with larger sigma level of L/D has more

stable characteristic of L/D against the increment in M∞. These results indicate

that the robust aerodynamic design optimization using the DFMOSS can actually

find the multiple designs with various robust characteristics of L/D against the

variation of M∞ by only one optimization run.
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Figure 4.4 Compared three robust optimal solutions obtained by using
the DFMOSS and one-point optimal solution of Case 1.

Figure 4.5 Histories of L/D against M∞ at α = 2.0 [deg] of three robust
optimal solutions obtained by using DFMOSS and one-point optimal so-
lution of Case 1.
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Figure 4.6 compares the airfoil configurations. In the present case without the

structural constraint on airfoil thickness, the airfoils of all these solutions have almost

zero thickness in order to produce large difference of pressure between the upper and

lower surfaces which leads to large lift. The airfoil of one-point optimal solution has

the largest maximum camber to generate strong expansion region over the upper

surface. The airfoils of three robust optimal solutions, on the other hand, have

smaller maximum camber than that of one-point optimal solution. In addition,

comparing the three robust optimal solutions, the maximum camber becomes smaller

as the sigma level of L/D becomes larger.

Figure 4.6 Airfoil configurations of three robust optimal solutions ob-
tained by using DFMOSS and one-point optimal solution of Case 1.

Figure 4.7 compares the histories of lift and drag coefficients CL and CD against

M∞ at α = 2.0 [deg], and Table 4.5 shows the ratio of aerodynamic performance

parameters L/D, CL and CD at M∞ = 0.5735 and α = 2.0 [deg] to those at M∞ =

0.3735 and α = 2.0 [deg]. Here, CL and CD are defined as

CL =
L

1
2ρ∞u∞2Sref

CD =
D

1
2ρ∞u∞2Sref

(4.7)

where L and D are lift and drag, and ρ∞ and u∞ are the density and the velocity at

freestream condition, respectively. Sref is the reference area and the wing area is used

as Sref in the present study. Qualitative tendencies of CL–M∞ and CD–M∞ histories

appear almost the same among these solutions, except for quantitative differences
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of CL and CD at the same M∞ among these solutions and the stall characteristic at

high M∞ of one-point optimal solution. However, Table 4.5 shows that the increment

in CD against the increment in M∞ becomes smaller as the solution has more robust

characteristic of L/D against the variation of M∞, while the increment in CL against

the increment in M∞ is almost the same independently of the robustness of L/D.

These results indicate that the increment in CD has more dominant effect on the

decrement in L/D against the increment in M∞, i.e., the robustness of L/D, than

that of CL.

(a) CL. (b) CD.

Figure 4.7 Histories of CL and CD against M∞ at α = 2.0 [deg] of three ro-
bust optimal solutions obtained by using DFMOSS and one-point optimal
solution of Case 1.

Table 4.5 Ratio of aerodynamic performance parameters at M∞ = 0.5735
and α = 2.0 [deg] to those at M∞ = 0.3735 and α = 2.0 [deg] of three robust
optimal solutions obtained by using the DFMOSS and one-point optimal
solution of Case 1 [%].

L/D CL CD

One-point optimization −8.2967 +11.514 +21.607

Robust optimization
using DFMOSS

1σ −6.4243 +10.781 +18.385
3σ −3.2611 +10.687 +14.416
6σ −0.55509 +9.7848 +10.393

Figure 4.8 shows the histories of the breakdown of CD (total and friction drags)

against M∞ at α = 2.0 [deg]. These solutions have the same histories of friction
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drag. On the other hand, the solutions have different histories of pressure drag

(total drag − friction drag), and the pressure drag becomes smaller over the whole

range of M∞ as the solution has more robust characteristic of L/D against the

variation of M∞. This result indicates that the pressure drag has more dominant

effect on the robustness of L/D against the variation of M∞ than the friction drag.

(a) One-point optimal solution. (b) Robust optimal solution with 1σ
obtained by using DFMOSS.

(c) Robust optimal solution with 3σ
obtained by using DFMOSS.

(d) Robust optimal solution with 6σ
obtained by using DFMOSS.

Figure 4.8 Histories of breakdown of CD against M∞ at α = 2.0 [deg] of
Case 1.

Figures 4.9 and 4.10 show the local mach number contour plots around the airfoil

of the one-point optimal solution and the robust optimal solution with 6σ robustness

quality obtained by using the DFMOSS, respectively. In the one-point optimal solu-
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tion, supersonic expansion region is generated over the upper surface and the shock

wave occurs behind this region at M∞ of higher than 0.5735. In the robust optimal

solution with 6σ robustness quality, on the other hand, supersonic expansion region

is generated at M∞ of higher than 0.6235 due to smaller maximum camber, and the

shock wave generated behind this region is weaker than that of one-point optimal

solution at the same M∞. The difference of the strength of generated supersonic

expansion region and shock wave is because the airfoil of robust optimal solution

has smaller maximum camber than that of one-point optimal solution, as shown in

Fig. 4.6.

Figure 4.11 shows the chordwise pressure coefficient Cp distributions over the

airfoil surface at various freestream Mach numbers M∞ = 0.4735, 0.5235, 0.5735

and 0.6235, and α = 2.0 [deg]. Here, Cp is defined as

Cp =
p − p∞
1
2ρ∞u∞2 (4.8)

where p is the local pressure, and p∞ is the pressure at freestream condition. In all

solutions, the expansion region over the upper surface of airfoil becomes larger, the

negative pressure peak becomes higher, and the pressure recovery behind this peak

becomes steeper, i.e., the shock wave behind the expansion region becomes stronger

with the increment in M∞. Among these solutions, the negative pressure peak

magnitude of one-point optimal solution changes the most drastically. Comparing

the three robust optimal solutions, the change of negative pressure peak becomes

smaller as the sigma level of L/D becomes larger. This result indicates that the

airfoil with more robust characteristic of L/D has weaker growth of the generated

shock wave against the increment in M∞.

It is well known that the wave drag is produced when the shock wave occurs,

and it becomes larger as the shock wave becomes stronger. It indicates that the

solution with more robust characteristic of L/D has smaller increment in wave drag

against the increment in M∞. Therefore, the whole numerical results of the present

case show that an airfoil configuration with smaller maximum camber can improve

the robustness of L/D against the variation of flight Mach number M∞ because

such airfoil can suppress the growth of shock wave, i.e., realize smaller increment in

pressure drag (wave drag) against the increment in flight Mach number M∞, and it

results in smaller decrement in L/D against the increment in M∞.
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(a) One-point optimal solution. (b) Robust optimal solution with 1σ
obtained by using DFMOSS.

(c) Robust optimal solution with 3σ
obtained by using DFMOSS.

(d) Robust optimal solution with 6σ
obtained by using DFMOSS.

Figure 4.11 Chordwise Cp distributions over the airfoil surface at various
M∞ and α = 2.0 [deg] of Case 1.
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4.3 Case 2: Robust Design Optimization of Pitching
Moment Coefficient against the Variation of Flight
Mach Number

4.3.1 Design Problem Definition

In Case 1, the robust aerodynamic design optimization of airfoil configuration con-

sidering the optimality and the robustness of dispersive lift to drag ratio L/D against

the dispersion of flight Mach number M∞ was performed. However, aerodynamic

stability is also an important issue from the designer’s viewpoint. It is well known

that the airfoil with too large lift often involves too large pitching-down moment,

and it may leads to the situation where the pitching motion of main wing can not

be controlled by a horizontal tail wing. In the present case, therefore, the robust

aerodynamic design optimization aiming at the improvements in the optimality and

the robustness of both L/D and aerodynamic stability against the dispersion of M∞
is performed.

Consider the traditional aerodynamic design optimization problem where airfoil

configuration must be optimized so that lift to drag ratio L/D will be maximized

and also the absolute value of pitching moment coefficient CMp will be lower than

the upper limit at design point:

Maximize: L/D

Subject to:
∣∣CMp

∣∣ ≤ 0.13
(4.9)

Here, CMp is defined as

CMp =
Mp

1
2ρ∞u∞2Srefcref

(4.10)

where Mp is pitching moment around the center of gravity of airplane. In the present

study, the center of gravity is assumed to be at 25% chord position ([x/c, y/c]CG =

[0.25, 0]). Sref and cref are the reference area and length, and the wing area and the

root chord length are used as Sref and cref , respectively. Similar to Case 1, cruising

conditions of NASA’s AME,11 as shown in Table 4.1, is used as the design point

in the present case, too. The upper limit of CMp as 0.13 in Eq. 4.9 indicates the

maximum value of CMp which the horizontal tail wing of NASA’s AME assumes to

be able to generate. Now, convert this problem to the robust aerodynamic design

optimization problem where the mean value of dispersive L/D must be maximized

and also the sigma level of the dispersive constraint function on pitching stability
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∣∣CMp

∣∣ ≤ 0.13 must be maximized when the flight Mach number M∞ disperses around

design point:

Maximize: mean value of L/D

sigma level of
∣∣CMp

∣∣ ≤ 0.13
(4.11)

and naturally, the constraint on pitching stability
∣∣CMp

∣∣ ≤ 0.13 must be satisfied at

the design point:

Subject to:
∣∣CMp

∣∣ ≤ 0.13 (4.12)

This robust aerodynamic optimization problem aims at finding the airfoil configu-

ration not only with maximum L/D but also with robust CMp characteristic that

the Mars exploratory airplane can avoid failure in controlling its pitching motion

by its horizontal tail wing when it flies in east-westward direction without side and

vertical winds under the situation where westerlies as shown in Fig. 1.8 blow stably.

The assumed statistical characteristics of dispersive flight Mach number M∞ of the

present case is the same as those of Case 1, as shown in Table 4.2.

Similar to Case 1, airfoil configuration is defined by the B-spline curves with

six control points as well as three fixed points, as shown in Fig. 4.1, in the present

case, too. The design variables and those ranges are the same as those of Case 1,

as shown in Table 4.3. In addition, the geometric constraint so that the upper and

lower surfaces of the airfoil do not intersect each other is imposed and the structural

constraint on airfoil thickness is not considered in the present case.

4.3.2 Numerical Methods and Conditions

In the present case, three aerodynamic design optimizations are performed and the

obtained numerical results are compared:

• One-point optimization using a single-objective genetic algorithm

(SOGA)31

When M∞ = 0.4735 and α = 2.0 [deg],

Maximize: L/D

Subject to:
∣∣CMp

∣∣ ≤ 0.13
(4.13)

• Robust optimization using the SOGA coupled with the DFSS36
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• Robust optimization using the MOGA coupled with the DFMOSS

When M∞ disperses around 0.4735 with its standard deviation of 0.1,

Maximize: mean value of L/D

sigma level of
∣∣CMp

∣∣ ≤ 0.13
(4.14)

and also when M∞ = 0.4735, α = 2.0 [deg],

Subject to:
∣∣CMp

∣∣ ≤ 0.13 (4.15)

The optimization methods of the present case are the same as those used in Case 1.

Table 4.6 shows the present optimization conditions. In the robust optimizations

using DFSS, total three cases with different sigma level n of
∣∣CMp

∣∣ ≤ 0.13: 1σ, 3σ

and 6σ are carried out. In the robust optimization using DFMOSS, on the other

hand, only one case is carried out without the advance setting of sigma level. In

addition, the methods for CFD simulation are also the same as those used in Case 1.

Table 4.6 Optimization conditions of Case 2.

for
SOGA/MOGA

Population size 64
Number of generations 100

Mutation rate [%] 20
for DFSS Sigma level n 1σ, 3σ, 6σ

4.3.3 Numerical Results

Figure 4.12 compares the robust optimal solution distributions (sigma level of
∣∣CMp

∣∣ ≤
0.13 against mean value of L/D, and standard deviation of CMp against mean value

of L/D) obtained by using the DFSS and the DFMOSS with the optimal solution

distributions obtained by the one-point optimization neglecting the robustness of

CMp . Compared to the robust optimal solutions, the one-point optimal solution has

0σ robustness quality and larger standard deviation of CMp . It indicates that the

one-point optimization can not find a solution with robust characteristic of CMp .

The robust optimizations using the DFSS can find the robust optimal solutions with

smaller standard deviation of CMp than that of one-point optimal solution, and 1σ,

3σ and 6σ robustness qualities, respectively. However these solutions distribute nar-

rowly and sparsely because the specified sigma levels are discrete integers. This
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indicates that the DFSS has lack in capability of revealing the global and uniform

trade-off relation between optimality (mean value of L/D) and robustness (standard

deviation of CMp or sigma level of
∣∣CMp

∣∣ ≤ 0.13). On the other hand, the robust op-

timization using the DFMOSS can successfully and effectively find total forty robust

optimal solutions by only one optimization run, and these solutions distribute glob-

ally and uniformly. It indicates that the DFMOSS can give rich trade-off information

between optimality and robustness which various designers can utilize flexibly.

(a) Sigma level of
˛
˛CMp

˛
˛ ≤ 0.13

against mean value of L/D.
(b) Standard deviation of CMp against
mean value of L/D.

Figure 4.12 Robust optimal solution distributions of Case 2.

Hereafter, three robust optimal solutions with 1σ, 4σ and 8σ robustness qualities

obtained by using the DFMOSS, as shown in Fig. 4.13, are compared with the one-

point optimal solution. Figures 4.14(a) and 4.14(b) show the histories of L/D and

CMp against M∞ at α = 2.0 [deg]. The one-point optimal solution has the largest

L/D over almost the whole range of M∞, and its constraint on pitching stability

becomes active, i.e., CMp = −0.13 at the design point M∞ = 0.4735. CMp of this

solution decreases with the increment in M∞ and falls below its lower limit −0.13.

Therefore, in this solution, the constraint on pitching stability is not satisfied at

high M∞. On the other hand, three robust optimal solutions have smaller L/D over

almost the whole range of M∞ but a little more stable characteristics of CMp against

the increment in M∞ than the one-point optimal solution, and also those histories

of CMp against M∞ shift up from its lower limit. Therefore, in these solutions, the

constraint on pitching stability is satisfied even at high M∞. In addition, comparing

the three robust optimal solutions, the solution with larger sigma level of
∣∣CMp

∣∣ ≤
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0.13 is easier to satisfy the constraint on pitching stability even at high M∞. These

results indicate that the robust aerodynamic design optimization using the DFMOSS

can actually find the multiple designs with various robust characteristics of CMp

against the variation of M∞ by only one optimization run.

Figure 4.13 Compared three robust optimal solutions obtained by using
the DFMOSS and one-point optimal solution of Case 2.

Figure 4.15 compares the airfoil configurations. Similar to Case 1, the airfoils

of all these solutions have small thickness and large maximum camber in order to

produce large lift. However, in the present case, it is different from Case 1 that the

airfoils with the robust optimal solutions are folded down at the front part (about

15 % chord position). In addition, comparing the three robust optimal solutions,

the airfoil is folded down more greatly as the sigma level of
∣∣CMp

∣∣ ≤ 0.13 becomes

larger.

Figure 4.16 compares the histories of lift and drag coefficients CL and CD against

M∞ at α = 2.0 [deg]. Qualitative tendencies of CL–M∞ and CD–M∞ histories are

the same among these solutions, except for quantitative differences of CL and CD at

the same M∞ among these solutions. Differently from Case 1, the increments in CL

and CD have almost the same effects on decrement in L/D against the increment in

M∞. In addition, there exists no difference in the histories of the breakdown of CD

(pressure and friction drags) against M∞ among these solutions.

Figures 4.17 and 4.18 show the local mach number contour plots around the

airfoil of the one-point optimal solution and the robust optimal solution with 8σ

robustness quality obtained by using the DFMOSS, respectively. Comparing the
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(a) L/D. (b) CMp .

Figure 4.14 Histories of L/D and CMp against M∞ at α = 2.0 [deg] of
three robust optimal solutions obtained by using DFMOSS and one-point
optimal solution of Case 2.

Figure 4.15 Airfoil configurations of three robust optimal solutions ob-
tained by using DFMOSS and one-point optimal solution of Case 2.
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(a) CL. (b) CD.

Figure 4.16 Histories of CL and CD against M∞ at α = 2.0 [deg] of three ro-
bust optimal solutions obtained by using DFMOSS and one-point optimal
solution of Case 2.

contour plots of these solutions at M∞ = 0.5735, small supersonic expansion region

is generated over the upper surface of the airfoil of the robust optimal solution with

8σ robustness quality, while there exist no supersonic region around the airfoil of

the one-point optimal solution. Comparing the contour plots of these solutions at

M∞ = 0.6235, on the other hand, supersonic expansion regions are generated over

the upper surfaces of the airfoils of both solutions, and the generated supersonic

expansion region of the one-point optimal solution is a little larger than that of

the robust optimal solution with 8σ robustness quality. From these results, it is

expected that the airfoil with more robust characteristic of CMp has smaller backward

movement of generated shock wave against the increment in M∞.

Figure 4.19 shows the chordwise pressure coefficient Cp distributions over the

airfoil surface at various freestream Mach numbers M∞ = 0.4735, 0.5235, 0.5735

and 0.6235, and α = 2.0 [deg]. Similar to Case 1, in all solutions, the expansion

region over the upper surface of airfoil becomes larger, the negative pressure peak

becomes higher, and the pressure recovery behind this peak becomes steeper, i.e.,

the shock wave behind the expansion region becomes stronger with the increment in

M∞. However, it is different from Case 1 that the changes of the negative pressure

peak magnitudes against the increment in M∞ are almost the same among these

solutions. On the other hand, the position of negative pressure peak of one-point

optimal solution moves backward the most drastically. Comparing the three robust
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optimal solutions, the backward movement of negative pressure peak becomes smaller

as the sigma level of
∣∣CMp

∣∣ ≤ 0.13 becomes larger. This is because the airfoil with

more robust characteristic of CMp against the variation of M∞ has larger curvature

locally at the front part due to its folded-down configuration, as shown in Fig. 4.15,

and it can suppress the backward movement of shock wave occurred over the upper

surface more forcedly than that of one-optimal solution.

(a) One-point optimal solution. (b) Robust optimal solution with 1σ
obtained by using DFMOSS.

(c) Robust optimal solution with 4σ
obtained by using DFMOSS.

(d) Robust optimal solution with 8σ
obtained by using DFMOSS.

Figure 4.19 Chordwise Cp distributions over the airfoil surface at various
M∞ and α = 2.0 [deg] of Case 2.

Figure 4.20 shows the chordwise pressure coefficient Cp × moment arm (x − xCG) /c

distributions over the airfoil surface at various freestream Mach numbers M∞ =

0.4735, 0.5235, 0.5735 and 0.6235, and α = 2.0 [deg] of the three robust optimal
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solutions obtained by using the DFMOSS and the one-point optimal solution. In

these figures, the area between upper and lower lines represents the pitching moment

coefficient of the airfoil, and the areas lower and greater than xCG correspond to the

pitching-up and pitching-down moments, respectively. Among these solutions, the

one-point optimal solution has the greatest increment in the pitching-down moment

produced in the rear part of airfoil with the increment in M∞ due to large move-

ment of shock wave occurred over the upper surface of the airfoil. On the other hand,

the three robust optimal solutions have smaller changes in pitching-down moments

against the increment in M∞ than that of one-point optimal solution. Comparing

the three robust optimal solutions, the solution with more robust CMp characteristic

against the variation of M∞ has smaller change in pitching-down moment.

The whole numerical results of the present case show that an airfoil configuration

which is folded-down in the front part can improve the robustness of pitching moment

coefficient CMp against the variation of flight Mach number M∞. This is because

such airfoil configuration involves large curvature locally at its folded-down position

and its locally large curvature can suppress the backward movement of shock wave

occurred over the upper surface of airfoil against the increment in flight Mach number

M∞. Eventually, it results in smaller change in pitching-down moment produced in

the rear part of airfoil against the increment in M∞.

4.4 Case 3: Robust Design Optimization of Lift to Drag

ratio against the Variation of Angle of Attack

4.4.1 Design Problem Definition

In Cases 1 and 2, the robust aerodynamic design optimizations of airfoil configu-

ration considering the optimality and the robustness of the dispersive aerodynamic

performance parameters such lift to drag ratio L/D and pitching stability against

the dispersion of flight Mach number M∞ were performed. However, there exists

not only the flight Mach number M∞ but also the angle of attack α as the disper-

sive flight condition parameters. It is known that the westerlies can produce not

only the change of east-westward wind speeds but also that of vertical wind speeds

caused by so-called the forced planetary wave, as shown in Fig. 1.9, when these

blow over an hardly undulating Martian surface with mountains and craters. It is

expected that the most robust design against the dispersion of M∞ is different from

the most robust one against the dispersion of α. Therefore, in the present case, the
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(a) One-point optimal solution. (b) Robust optimal solution with 1σ
obtained by using DFMOSS.

(c) Robust optimal solution with 4σ
obtained by using DFMOSS.

(d) Robust optimal solution with 8σ
obtained by using DFMOSS.

Figure 4.20 Chordwise Cp × moment arm distributions over the airfoil
surface at various M∞ and α = 2.0 [deg] of Case 2.
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robust aerodynamic design optimization considering the optimality and the robust-

ness of dispersive aerodynamic performance parameters against the dispersion of α

is performed.

Similar to Case 2, consider the traditional aerodynamic design optimization prob-

lem where airfoil configuration must be optimized so that lift to drag ratio L/D will

be maximized and also the absolute value of pitching moment coefficient CMp will

be lower than 0.13 at design point, as shown in Eq. 4.9. Similar to Cases 1 and 2,

cruising conditions of NASA’s AME,11 as shown in Table 4.1, is used as the design

point in the present case, too. Now, convert this problem to the robust aerodynamic

design optimization problem where the mean value of dispersive L/D must be max-

imized and also the standard deviation of dispersive L/D must be minimized when

the angle of attack α disperses around design point:

Maximize: mean value of L/D

Minimize: standard deviation of L/D
(4.16)

and naturally, the constraint on pitching stability
∣∣CMp

∣∣ ≤ 0.13 must be satisfied at

the design point:

Subject to:
∣∣CMp

∣∣ ≤ 0.13 (4.17)

This robust aerodynamic optimization problem aims at finding the airfoil configura-

tion not only with maximum L/D but also with robust L/D characteristic that the

Mars exploratory airplane can avoid failure in flying over an expected range when

it flies in east-westward direction without side winds under the situation where the

vertical winds caused by the forced planetary wave as shown in Fig. 1.9 blow sta-

bly. Table 4.7 shows the assumed statistical characteristics of dispersive angle of

attack α for NASA’s AME. The value of 3.0 deg as the standard deviation of α

corresponds to the variation of vertical wind speeds of about 5.5 m/s for NASA’s

AME with the flight Mach number of 0.4735. This value is smaller than its expected

value (maximum 20 m/s), as described in Sec. 1.2. However, there exists no evident

measurement data about the forced planetary wave on the Mars. Therefore, in the

present study, the value 3.0 deg is adopted as the standard deviation of dispersive

α to avoid overestimating the robustness of dispersive aerodynamic performance

against the dispersion of α.

Similar to Cases 1 and 2, airfoil configuration is defined by the B-spline curves

with six control points as well as three fixed points in the present case. However, it
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Table 4.7 Statistical characteristics of dispersive angle of attack α for
NASA’s AME [deg].

Mean value 2.0
Standard deviation 3.0

is different from Cases 1 and 2 that the generated B-spline curves are rotated around

the trailing edge so that x and y coordinates of leading edge become [0, 0] exactly, as

shown in Fig. 4.21. The design variables and those ranges are the same as those of

Cases 1 and 2, as shown in Table 4.3. In addition, the geometric constraint so that

the upper and lower surfaces of the airfoil do not intersect each other is imposed and

the structural constraint on airfoil thickness is not considered in the present case.

Figure 4.21 Definition of airfoil configuration based on the B-spline curves
of Case 3.

4.4.2 Numerical Methods and Conditions

In the present case, two aerodynamic design optimizations are performed and the

obtained numerical results are compared:

• One-point optimization using a single-objective genetic algorithm

(SOGA)31

When M∞ = 0.4735 and α = 2.0 [deg],

Maximize: L/D

Subject to:
∣∣CMp

∣∣ ≤ 0.13
(4.18)



126 4 Robust Aerodynamic Design of Airfoil Configuration

• Robust optimization using the MOGA coupled with the DFMOSS

When α disperses around 2.0 deg with its standard deviation of 3.0 deg,

Maximize: mean value of L/D

Minimize: standard deviation of L/D
(4.19)

and also when M∞ = 0.4735 and α = 2.0 [deg],

Subject to:
∣∣CMp

∣∣ ≤ 0.13 (4.20)

The optimization methods of the present case are the same as those used in Cases 1

and 2. In the robust aerodynamic design optimization using DFMOSS, the statistical

values of L/D are evaluated by the second-order Taylor’s series expansion approach,

i.e., three CFD simulations at α = −1.0, 2.0 and 5.0 [deg] are required for one

evaluation of statistical values. Table 4.8 shows the present optimization conditions.

In the robust optimization using DFMOSS, it is not necessary to set the sigma level

in advance, and only one case is carried out without the advance setting of weighting

factors.

Table 4.8 Optimization conditions of Case 3.

for
SOGA/MOGA

Population size 64
Number of generations 100

Mutation rate [%] 20

4.4.3 Numerical Results

Figure 4.22 compares the robust optimal solution distributions (standard deviation

against mean value of L/D) obtained by using the DFMOSS with the optimal solu-

tion distributions obtained by the one-point optimization neglecting the robustness

of L/D. Compared to the robust optimal solutions, the one-point optimal solution

has larger standard deviation of L/D. It indicates that the one-point optimization

can not find a solution with robust characteristic of L/D. On the other hand, the

robust optimization using the DFMOSS can successfully and effectively find total

forty-four robust optimal solutions by only one optimization run, and these solutions

distribute globally and uniformly. Also it is understood easily that the maximum

sigma level of L/D of the obtained robust optimal solutions is more than 1σ by the

post-evaluation when the lower specification limit of L/D is set as 20. It indicates
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that the DFMOSS can reveal rich trade-off information between optimality (mean

value of L/D) and robustness (standard deviation of L/D) which various designers

can utilize flexibly.

Figure 4.22 Robust optimal solution distributions of Case 3.

Hereafter, three robust optimal solutions with various robustness qualities (larger,

medium and smaller standard deviations of dispersive L/D against the variation of

α) obtained by using the DFMOSS, as shown in Fig. 4.23, are compared one another

with the one-point optimal solution. Figure 4.24 shows the histories of L/D against

α at M∞ = 0.4735 of. The one-point optimal solution has the largest L/D at the

design point α = 2.0 [deg]. However, L/D of this solution decreases drastically with

the increment or decrement in α from the design point, and it falls below its lower

specification limit 20 at high or low α. On the other hand, three robust optimal

solutions have smaller L/D at the design point but more stable characteristics of

L/D against the variation of α than the one-point optimal solution, and keep large

L/D over almost the whole range of α. In addition, comparing the three robust

optimal solutions, the solution with smaller standard deviation of L/D has more

stable characteristic of L/D against the variation of α. These results indicate that

the robust aerodynamic design optimization using the DFMOSS can actually find

the multiple designs with various robust characteristics of L/D against the variation

of α by only one optimization run.

Figure 4.25 compares the airfoil configurations. Similar to Cases 1 and 2, the

airfoil of one-point optimal solution has almost zero thickness and large maximum

camber in order to produce large lift. The airfoils of three robust optimal solutions,
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Figure 4.23 Compared three robust optimal solutions obtained by using
the DFMOSS and one-point optimal solution of Case 3.

Figure 4.24 Histories of L/D against α at M∞ = 0.4735 of three robust
optimal solutions obtained by using DFMOSS and one-point optimal so-
lution of Case 3.
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on the other hand, have larger thickness and blunter leading edge than that of one-

point optimal solution. In addition, comparing the three robust optimal solutions,

the leading edge of airfoil becomes blunter as the standard deviation of L/D against

the variation of α becomes smaller. Furthermore, only the robust optimal solution

has blunt trailing edge. This is to reduce the pitching-down moment produced in

the rear part of airfoil so that the constraint on pitching stability
∣∣CMp

∣∣ ≤ 0.13 will

be satisfied at the design point.

Figure 4.25 Airfoil configurations of three robust optimal solutions ob-
tained by using DFMOSS and one-point optimal solution of Case 3.

Figure 4.26 compares the histories of lift and drag coefficients CL and CD against

α at M∞ = 0.4735. Firstly, comparing CL–α histories, these solutions have almost

the same CL at the design point α = 2.0 [deg]. However, the airfoil of one-point

optimal solution stalls at high α. In the three robust optimal solutions, on the other

hand, CL keeps increasing with the increment in α. Next, comparing CD–α histories,

the one-point optimal solution has the smallest CD at the design point, but CD

increases drastically against the variation of α. The three robust optimal solutions,

on the other hand, have larger CD at the design point but more stable characteristic

of CD against the variation of α than the one-point optimal solution. In addition,

comparing the three robust optimal solutions, CD characteristic becomes more stable

as the solution has more robust characteristic of L/D against the variation of α.

Figure 4.27 shows the histories of the breakdown of CD (total and friction drags)
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(a) CL. (b) CD.

Figure 4.26 Histories of CL and CD against α at M∞ = 0.4735 of three ro-
bust optimal solutions obtained by using DFMOSS and one-point optimal
solution of Case 3.

against α at M∞ = 0.4735. The friction drag becomes a little larger at high α as

the solution has more robust characteristic of L/D against the variation of α. On

the other hand, the pressure drag becomes considerably smaller as the solution has

more robust characteristic of L/D against the variation of α. This result indicates

that the pressure drag has more dominant effect on the robustness of L/D against

the variation of α than the friction drag.

Figures 4.28 and 4.29 show the local mach number contour plots around the

airfoil, and Figs 4.30 and 4.31 show the streamline patterns near the leading edge

of the airfoil of the one-point optimal solution and the robust optimal solution with

smaller standard deviation of L/D obtained by using the DFMOSS, respectively. In

these solutions, there exists no supersonic region and no shock wave at any α, as

seen in Cases 1 and 2. In the one-point optimal solution, the flow is fully attached at

the design point α = 2.0 [deg], but the flow begins to separate from the leading edge

and reattached to the upper surface of airfoil at α = 5.0 [deg]. This phenomenon

produces the separation bubble near the leading edge, and the separation bubble

becomes longer in the downstream direction as α becomes larger. In the robust

optimal solution with smaller standard deviation of L/D, on the other hand, the

flow near the leading edge is attached and the separation bubble is not generated
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(a) One-point optimal solution. (b) Robust optimal solution with
larger standard deviation of L/D ob-
tained by using DFMOSS.

(c) Robust optimal solution with
medium standard deviation of L/D ob-
tained by using DFMOSS.

(d) Robust optimal solution with
smaller standard deviation of L/D ob-
tained by using DFMOSS.

Figure 4.27 Histories of breakdown of CD against α at M∞ = 0.4735 of
Case 3.
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at any α. This is because the airfoil of robust optimal solution has blunter leading

edge than that of one-point optimal solution.

Figure 4.32 shows the chordwise pressure coefficient Cp distributions over the

airfoil surface at various angle of attack α = 2.0, 4.0, 6.0 and 8.0 [deg], and M∞ =

0.4735. In all solutions, the expansion region over the upper surface of airfoil becomes

larger, and the negative pressure peak becomes higher with the increment in α. In

the one-point optimal solution, the negative pressure level changes drastically in the

front part near the leading edge. In the three robust optimal solutions, on the other

hand, the changes of negative pressure level in the front part near the leading edge

are gentler than that of one-point optimal solution. Comparing the three robust

optimal solutions, the change of negative pressure level in the front part near the

leading edge becomes gentler as the standard deviation of L/D against the variation

of α becomes smaller. Figure 4.33 compares the chordwise Cp distributions over the

airfoil surface at α = 2.0 and 6.0 [deg] between the robust optimal solution with

smaller standard deviation of L/D and the one-point optimal solution. This figure

clearly shows that the robust optimal solution with smaller standard deviation has

gentler change of negative pressure level in the front part near the leading edge

with the increment in α. This is because the airfoil with solution with more robust

characteristic of L/D against the variation of α has gentler leading edge, as shown

in Fig.4.25, and it can suppress the growth of separation bubble generated near the

leading edge against the increment in α.

The whole numerical results of the present case show that an airfoil configuration

with blunter leading edge can improve the robustness of lift to drag ratio L/D

against the variation of angle of attack α. This is because such airfoil configuration

can suppress the growth of the separation bubble generated near the leading edge

against the increment in α. It leads to gentler change of negative pressure level in the

front part near the leading edge against the increment in α. Higher negative pressure

level on the upper surface of airfoil involves larger drag at high α. Therefore, gentler

change of negative pressure level in the front part near the leading edge results

in smaller increment in drag, and eventually smaller change of L/D against the

variation of α.
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(a) One-point optimal solution. (b) Robust optimal solution with
larger standard deviation of L/D ob-
tained by using DFMOSS.

(c) Robust optimal solution with
medium standard deviation of L/D
obtained by using DFMOSS.

(d) Robust optimal solution with
smaller standard deviation of L/D
obtained by using DFMOSS.

Figure 4.32 Chordwise Cp distributions over the airfoil surface at various
α and M∞ = 0.4735 of Case 3.
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Figure 4.33 Comparison of chordwise Cp distributions over the airfoil sur-
face at various α and M∞ = 0.4735 between one-point optimal solution and
robust optimal solution with smaller standard deviation of L/D obtained
by using DFMOSS of Case 3.

4.5 Summary

In this chapter, three robust aerodynamic design optimizations of two-dimensional

airfoil configuration for Mars exploratory airplane were carried out considering the

effects of wind variations by using the DFMOSS and the CFD simulation. In all

cases, the robust aerodynamic design optimization using the DFMOSS revealed

trade-off relation between the optimality and the robustness of aerodynamic per-

formance sufficiently by only one optimization run without advance specification of

input parameters such as the weighting factors and the sigma level.

In the first case considering the robustness of lift to drag ratio against the vari-

ation of flight Mach number, it was shown that an airfoil configuration with smaller

maximum camber can improve the robustness of lift to drag ratio against the varia-

tion of flight Mach number. This is because such airfoil can suppress the growth of

the shock wave, i.e., realize smaller increment in pressure drag (wave drag) against

increment in flight Mach number.

In the second case considering the robustness of pitching moment coefficient

against the variation of flight Mach number, it was shown that an airfoil configura-
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tion with larger curvature in the front part can improve the robustness of pitching

moment coefficient against the variation of flight Mach number. This is because such

airfoil can suppress the backward movement of shock wave occurred over the upper

surface of airfoil against increment in flight Mach number, and eventually it results in

smaller change in pitching-down moment produced in the rear part of airfoil against

increment in flight Mach number.

Finally, in the third case considering the robustness of lift to drag ration against

the variation of angle of attack, it was shown that an airfoil configuration with blunter

leading edge can improve the robustness of lift to drag ratio against the variation of

angle of attack. This is because such airfoil configuration can suppress the growth

of the separation bubble generated near the leading edge against increment in angle

of attack. It leads to gentler change of negative pressure level in the front part near

the leading edge, i.e., smaller change of drag against increment in angle of attack,

and eventually it results in smaller change of lift to drag ratio against the variation

of angle of attack.



Chapter 5

Robust Aerodynamic Design of
Airfoil and Wing Planform
Configurations of Mars
Exploratory Airplane

5.1 Introduction

In Chap. 4, the robust aerodynamic design optimizations of two-dimensional airfoil

configuration of Mars exploratory airplane considering the effects of wind variations

were performed by using the DFMOSS and the CFD simulation. In this chapter,

robust aerodynamic design optimizations of airfoil and wing planform configurations

for Mars exploratory airplane are performed to obtain more realistic and more use-

ful trade-off information between the optimality and the robustness of aerodynamic

performance. Differently from the two-dimensional case, not only the robustness of

aerodynamic performance against the variations of flight Mach number and angle

of attack but also that against the variation of angle of side slip is considered in

the present case. In the present study, the numerical results obtained by the ro-

bust optimization using DFMOSS are compared to those obtained by the one-point

optimization in order to investigate efficiency and usefulness of the DFMOSS and

the differences in optimized designs. Then, the obtained trade-off relations between

the optimality and the robustness of aerodynamic performance of airfoil and wing

planform configurations for Mars exploratory airplane are discussed. Furthermore,

one of useful guides to more reliable designs of Mars exploratory airplanes with fixed

wing and more reliable Mars exploratory missions using the airplanes is provided.

140
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5.2 Design Problem Definition

Consider the traditional aerodynamic design optimization problem where airfoil and

wing planform configurations must be optimized so that lift L will be maximized,

drag D will be minimized, and the absolute value of pitching moment around the

center of gravity of airplane Mp will be minimized at design point:

Maximize: L

Minimize: D

|Mp|
(5.1)

In the present study, the center of gravity used for the definition of Mp is assumed

to be at 25% root chord position ([x/c, y/c, z/c]CG = [0.25, 0, 0], c is the root chord

length). Similar to the two-dimensional case as described in Chap. 4, cruising con-

ditions of NASA’S AME,11 as shown in Table 5.1, is used as the design point in

the present case. In addition, it is required to convert non-dimensional aerodynamic

coefficients obtained by the CFD simulations into the values with real units in the

present case. These conversions are performed based on the reference values as

shown in Table 5.2. These reference values are based on the real configuration data

of NASA’s AME11 and Martian meteorological data.19 Now, convert this problem

to the robust aerodynamic design optimization problem where the mean value of

dispersive L must be maximized, the standard deviation of dispersive L must be

minimized, the mean value and the standard deviation of dispersive D must be min-

imized, and the absolute mean value and the standard deviation of dispersive Mp

must be minimized when the flight Mach number M∞, the angle of attack α and the

angle of side slip β disperse around design point:

Maximize: mean value of L

Minimize: standard deviation of L

mean value of D

standard deviation of D

|mean value of Mp|
standard deviation of Mp

(5.2)

This robust aerodynamic optimization problem aims at finding the wing configura-

tion not only with maximum L, minimum D and Mp but also with robust L, D and

Mp characteristics that the Mars exploratory airplane can avoid failure in supporting
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its weight, flying over an expected range, and controlling its pitching motion by con-

trol devices such as a horizontal tail wing when it flies in various horizontal directions

under the situation where the westerlies as shown in Fig. 1.8 and the vertical winds

caused by the forced planetary wave as shown in Fig. 1.9 blow stably. Table 5.3

shows the assumed statistical characteristics of dispersive flight Mach number M∞,

angle of attack α and angle of side slip β for NASA’s AME. As described in Chap. 4,

the value of 0.1 as the standard deviation of M∞ corresponds to the variation of

wind speeds in the moving direction of about 22 m/s, and the value of 3.0 deg as the

standard deviation of α corresponds to the variation of vertical wind speeds of about

5.5 m/s for NASA’s AME with the flight Mach number of 0.4735. The value of 12.0

deg as the standard deviation of β corresponds to the variation of side wind speeds

of about 22 m/s, and it is nearly equal to the dairy and seasonal variation of westerly

speeds near the Martian surface (at the altitude of several kilometers) where it is

assumed for the Mars airplane to fly for exploring the structure of remnant magnetic

fields and lower atmosphere, as shown in Fig. 1.8.

Table 5.1 Three-dimensional cruising conditions of NASA’s AME.11

Reynolds number Re
(based on root chord length c) 1.0 × 105

Flight Mach number M∞ 0.4735
Angle of attack α [deg] 2.0

Angle of side slip β [deg] 0.0

Table 5.2 Reference values for conversions into the values with real
units.11, 19

Length
Root chord length c [m]

(NASA’s AME)
12.607

Density Martian freestream density ρ∞ [kg/m3] 1.18 × 103

Velocity Martian freestream speed of sound a∞ [m/s] 220
Acceleration Martian acceleration of gravity g [m/s2] 3.78

Figure 5.1 shows the present definition of airfoil and wing planform configura-

tions. x, y and z are the coordinates in the chordwise, the spanwise and the vertical

directions, respectively. In the present study, it is assumed that the half wing has

three folds (named as 1st, 2nd and 3rd folds in order near the root), like the main

wing of NASA’s AME, to be stored into an aeroshell delivered by a launcher from

the Earth to the Mars. Firstly, the airfoil configurations on x–z plane are defined at
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Table 5.3 Statistical characteristics of three-dimensional flight conditions
for NASA’s AME.

Flight Mach number M∞
Mean value 0.4735

Standard deviation 0.1

Angle of attack α [deg]
Mean value 2.0

Standard deviation 3.0

Angle of side slip β [deg]
Mean value 0.0

Standard deviation 12.0

five sections (root, 1st fold, 2nd fold, 3rd fold and tip), as shown in Fig. 5.1(a). For

each section, the airfoil is generated by the B-spline curves with six control points

as well as three fixed points, similar to the two-dimensional case as described in

Chap. 4, and this configuration is twisted around the 25 % chord point by giving

the twist angle. In the present case, it is assumed that the airfoil configurations are

similar at all five sections except for the twist angles. Next, 25 % chord line of wing

planform is defined as shown in Figs. 5.1(b) and 5.1(c). y coordinates of five sections

are determined by giving the span lengths of four wing divisions (root ∼ 1st fold,

1st fold ∼ 2nd fold, 2nd fold ∼ 3rd fold, and 3rd fold ∼ tip). And, x and z coordi-

nates of 25 % chord points at five sections are determined by giving the sweep and

the dihedral angles of four wing divisions. Finally, wing planform is generated by

linearly interpolating x, y and z coordinates of the generated airfoils at five sections

along the generated 25 % chord line of wing planform. Table 5.4 shows the design

variables and those ranges of the present aerodynamic design optimization problem.

The total number of design variables is 29. In the present study, the taper ratio of

each wing division is not considered as the design variable, i.e., the chord lengths are

one at all five sections. This is because smaller taper ratio leads to smaller wing area

at constant root chord length and constant wing span length and it involves smaller

lift. In addition, smaller taper ratio leads to longer wing span length at constant

root chord length and constant wing area, which is unfavorable in terms of wing

storability into an aeroshell as described later.

Similar to the two dimensional case as described in Chap. 4, a geometric con-

straint so that the upper and lower surfaces of the airfoil do not intersect each other

is imposed. In addition, another geometric constraint so that the wing can be folded

successfully without interference between the left and the right half wings, as shown

in Fig. 5.2 is considered. That is, the spanwise position of one half folded wing must
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(a) Airfoil configuration on x–z plane.

(b) Wing planform configuration
and 25 % chord line on x–y plane.

(c) 25 % chord line on y–z plane.

Figure 5.1 Definition of airfoil and wing planform configurations.
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Table 5.4 Design variables and corresponding ranges.

Design variable lower limit upper limit

for Airfoil configuration

Coordinate x/c

B-spline control point 1 0.66667 0.99
B-spline control point 2 0.33333 0.66667
B-spline control point 3 0.01 0.33333
B-spline control point 4 0.01 0.33333
B-spline control point 5 0.33333 0.66667
B-spline control point 6 0.66667 0.99

Coordinate y/c

B-spline control point 1 −0.15 0.15
B-spline control point 2 −0.15 0.15
B-spline control point 3 −0.15 0.15
B-spline control point 4 −0.15 0.15
B-spline control point 5 −0.15 0.15
B-spline control point 6 −0.15 0.15

Twist angle
[deg]

Section root −10.0 10.0
Section 1st fold −10.0 10.0
Section 2nd fold −10.0 10.0
Section 3rd fold −10.0 10.0

Section tip −10.0 10.0

for 25 % chord line of wing planform configuration

Span length
(based on root
chord length c)

Wing division root ∼ 1st fold 0.05 0.98362
Wing division 1st fold ∼ 2nd fold 0.05 1.9672
Wing division 2nd fold ∼ 3rd fold 0.05 1.9672

Wing division 3rd fold ∼ tip 0.05 1.9672

Sweep angle
[deg]

Wing division root ∼ 1st fold −89.0 89.0
Wing division 1st fold ∼ 2nd fold −89.0 89.0
Wing division 2nd fold ∼ 3rd fold −89.0 89.0

Wing division 3rd fold ∼ tip −89.0 89.0

Dihedral angle
[deg]

Wing division root ∼ 1st fold −10.0 10.0
Wing division 1st fold ∼ 2nd fold −10.0 10.0
Wing division 2nd fold ∼ 3rd fold −10.0 10.0

Wing division 3rd fold ∼ tip −10.0 10.0
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not exceed the spanwise position of 1st fold of the other half wing. Furthermore,

a geometric constraint so that the folded wing can be stored into an aeroshell, as

shown in Fig. 5.3, is also considered. Here, it is assumed that the internal diameter

of aeroshell is 2.48 m, which is that of Viking-derivarive aeroshell.13

Half Wing Folded

Feasible Infeasible

Figure 5.2 Geometric constraint on wing foldability.

Wing Folded

Aeroshell

Figure 5.3 Geometric constraint on wing storability into aeroshell.

In the present aerodynamic design optimization problem, the following structural

geometric constraint on required wing thickness to stand the bending moment due

to aerodynamic force is considered. Here, it is assumed that the wing has the beam

with thin hollow circular cross section, as shown in Fig. 5.4, along 25 % chord line. At

an arbitrary spanwise position y, the local bending moment Mb(y) can be calculated

from the local aerodynamic force in z direction per unit span length fz(y) as

d2

dy2
Mb(y) = −fz(y) (5.3)
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This equation can be rewritten to an integral form as

Mb(y) =
∫ b/2

y
fz(s)(s − y)ds (5.4)

where b is the wing span length. For simplicity, fz(y) distribution is replaced by

spanwise concentrated loads. The maximum local bending stress σmax(y) is given as

σmax(y) =
Mb

I

d

2
(5.5)

where d is the beam diameter. I is the geometrical moment of inertia, and I for the

beam with thin hollow circular cross section is given as

I =
π

8
d3t (5.6)

where t are the beam thickness. Then, the structural constraint so that σmax must

be less than its limit value σlim as

σmax(y) ≤ σlim (5.7)

Using Eqs. 5.5 and 5.6, this constraint can be rewritten as

d ≥ dreq

dreq =

√
4Mb(y)
πtσlim

(5.8)

Consequently, the structural constraint so that airfoil thickness at 25 % chord po-

sition tc/4 must be larger than the required beam diameter to stand the bending

moment is obtained:

tc/4 ≥ dreq (5.9)

In the present study, it is assumed that the wing beam is made of aluminum alloy

2024-T3 (σlim = 274.59 [MPa]), and the beam thickness is 1.0 mm.

5.3 Numerical Methods and Conditions

5.3.1 Optimization

In the present case, two aerodynamic design optimizations are performed and the

obtained numerical results are compared:
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Figure 5.4 Wing beam structure.

• One-point optimization using a multi-objective genetic algorithm

(MOGA)33

When M∞ = 0.4735, α = 2.0 [deg] and β = 0.0 [deg],

Maximize: L

Minimize: D

|Mp|
(5.10)

• Robust optimization using the MOGA coupled with the DFMOSS

When M∞ disperses around 0.4735 with its standard deviation of 0.1, α dis-

perses around 2.0 deg with its standard deviation of 3.0 deg, and β disperses

around 0.0 deg with its standard deviation of 12.0 deg,

Maximize: mean value of L

Minimize: standard deviation of L

mean value of D

standard deviation of D

|mean value of Mp|
standard deviation of Mp

(5.11)

In all optimizations, fitness value are evaluated by using the Pareto-ranking method,53

the fitness sharing,33,53 and Michaleswicz’s nonlinear function.49 Parents are selected

by the stochastic universal sampling (SUS),47 children are reproduced by the blended
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crossover (BLX-0.5)48 and uniform mutation33 with 10 % of the range of each de-

sign variable as the maximum perturbation, and the alternation of generations is

performed by the Best-N selection.50,51 The constraints are treated by using the

Pareto-optimality-based constraint-handling (PBCH) technique.56,57 In the robust

aerodynamic design optimization using DFMOSS, the statistical values of aerody-

namic performance parameters are evaluated by the second-order Taylor’s series

expansion approach, i.e., total six CFD simulations at

1. M∞ = 0.4735, α = 2.0 [deg] and β = 0.0 [deg]

2. M∞ = 0.3735, α = 2.0 [deg] and β = 0.0 [deg]

3. M∞ = 0.5735, α = 2.0 [deg] and β = 0.0 [deg]

4. M∞ = 0.4735, α = −1.0 [deg] and β = 0.0 [deg]

5. M∞ = 0.4735, α = 5.0 [deg] and β = 0.0 [deg]

6. M∞ = 0.4735, α = 2.0 [deg] and β = 12.0 [deg]

are required for one evaluation of statistical values. Here, note that the aerodynamic

performance at M∞ = 0.4735, α = 2.0 [deg] and β = −12.0 [deg] is the same as that

at M∞ = 0.4735, α = 2.0 [deg] and β = 12.0 [deg] in terms of L, D and Mp evaluated

in the present robust optimization, therefore the CFD simulations at M∞ = 0.4735,

α = 2.0 [deg] and β = −12.0 [deg] are omitted to reduce computation time.

Table 5.5 shows the present optimization conditions. In the robust optimization

using DFMOSS, only one case is carried out without the advance setting of input

parameters such as the weighting factors and sigma level. The robust optimization

using DFMOSS starts from the initial population based on the optimal solutions

obtained by the one-point optimization using MOGA to advance the convergence

to the robust optimal solutions. This is why the number of evaluations required in

robust optimization using DFMOSS is smaller than that required in the one-point

optimization using MOGA.

5.3.2 CFD Simulation

The governing equations for the CFD simulation are the three-dimensional Favre-

averaged compressible thin-layer Navier-Stokes equations. The ADI-SGS factor-

ization algorithm is used for the time integration with the total number of iteration

steps of 6,500. For the first 1,000 steps, the multigrid method80 with V-cycle strategy
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Table 5.5 Optimization conditions.

for One-point optimization
using MOGA

Population size 32
Number of generations 50

Mutation rate [%] 20

for Robust optimization
using DFMOSS

Population size 16
Number of generations 30

Mutation rate [%] 20

and three grid levels, and the space variable time stepping technique with reference

time step size of 2.0 are used for fast convergence. And then, it switches to the

usual singlegrid method with physical time step size of 0.01 (maximum local CFD

number of about 350). Aerodynamic performance parameters such as lift, drag and

moment are evaluated by averaging these values for the last 2,500 steps. The invis-

cid terms of numerical fluxes are evaluated by the SHUS scheme.70 In the inviscid

terms, high-order accuracy is obtained by the third-order upwind-biased MUSCL

interpolation71,72 based on the primitive variables with van Albada differentiable

limiter.67 The viscous terms are evaluated by the second-order central differencing,

and the turbulent viscosity is modeled by the Baldwin-Lomax algebraic turbulence

model.81

Figure 5.5 shows the grid distributions. In the present study, C–H type grid

is generated algebraically around the wing, and grid points are clustered near the

leading edge, the trailing edge, each fold, tip and a wing surface. In the case without

side wind (β = 0.0 [deg]), the grid is generated and the flowfields are simulated

around only the half wing, assuming that the flowfields are symmetric at the root.

The number of grid points for the half wing case is 249 in the direction around the

airfoil (209 points over the wing surface), 70 in the spanwise direction (54 points

over the wing surface), 41 in the direction normal to the wing surface, and the total

number of grid points is 714,630. In the case with side flow (β 	= 0.0 [deg]), on the

other hand, the grid is generated and the flowfields are simulated around the full

wing exactly. The number of grid points for the full wing case is 249 in the direction

around the airfoil (209 points over the wing surface), 137 in the spanwise direction

(105 points over the wing surface), 41 in the direction normal to the wing surface,

and the total number of grid points is 1,398,633. The minimum grid spacing near

the airfoil surface is about 1.0 × 10−4 based on the root chord length c.

The computation time required for one evaluation of aerodynamic performance
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(b) Close-up view.

Figure 5.5 Grid distributions.
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of half wing without side wind using the CFD simulation is about one hour with

one processor of NEC SX-6 computing system owned by the ISAS of JAXA. In the

present study, the optimizer distributes the multiple evaluators corresponding to the

multiple individuals of GA into 32 processors of this computing system in parallel.

Therefore, the total computation time required for one case of the present robust

aerodynamic design optimization using DFMOSS can be reduced to about 110 hours.

5.4 Numerical Results

Figures 5.6 and 5.7 compares the robust optimal solution distributions (projections

onto standard deviation against mean value of L plane, standard deviation against

mean value of D plane, and standard deviation against absolute mean value of Mp)

obtained by using the DFMOSS with the optimal solution distributions obtained by

the one-point optimization neglecting the robustness of L, D and Mp. The one-point

optimization can only reveal the distinct relations that the standard deviations of L

and D decrease with the decrements in the mean values of L and D. Such relations

are worthless from the designer’s viewpoint because it can be easily expected that

the variations of L and D against the wind variations become larger as the magni-

tude of L and D becomes larger even if the optimizations are not performed. The

robust optimization using the DFMOSS, on the other hand, can find not only such

natural relation but also the solutions which have almost the same mean value of L

and various standard deviations of L. Comparing the projections onto the standard

deviation against the mean value of L plane between the one-point optimal solutions

and the robust optimal solutions obtained by using the DFMOSS, there exist the

solutions with smaller standard deviation of L than the one-point optimal solutions

in the robust optimal solutions obtained by using the DFMOSS. The difference be-

tween the one-point optimization and the robust optimization using DFMOSS can

be seen in the projections onto the standard deviation against the mean value of D

plane. The robust optimization using the DFMOSS find the solutions with larger

mean value and larger standard deviation of D than those of one-point optimal so-

lutions. From these results, it is expected that the solutions with smaller standard

deviation of L leads to the solutions with larger mean value and larger standard

deviation of D. As for Mp, there exist the indistinct relations that the standard

deviations of Mp decrease with the decrements in the absolute mean values of Mp

in the one-optimal solutions and the robust optimal solutions obtained by using the
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DFMOSS. These relations can be expected easily due to the same reason as the sim-

ilar relations about L and D, too. However, it is different from the relations about L

and D that there exist the solutions with almost the same absolute mean value of Mp

and various standard deviations of Mp. Comparing the projections onto the stan-

dard deviation against the absolute mean value of Mp plane between the one-point

optimal solutions and the robust optimal solutions obtained by using the DFMOSS,

there exists little difference. These results indicate that the present robust aerody-

namic design optimization using the DFMOSS can find the solutions with robust

characteristic in aerodynamic performance parameters against wind variations, and

can reveal qualitative trade-off information between the optimality and the robust-

ness in aerodynamic performance parameters. In addition, these results show that

the DFMOSS is an effective approach even in large-scale robust design optimizations

with many design variables and objective functions.

Hereafter, three robust optimal solutions with almost the same optimality quality

(mean value of L of about 545 N corresponding to 144 kgf on the Mars) and various

robustness qualities (larger, medium and smaller standard deviations of L against the

wind variations) obtained by using the DFMOSS, as shown in Fig. 5.8, are compared

one another. Obviously, comparing these solutions in Figs. 5.8(a) and 5.8(b), it is

shown that there exists the distinct relation that both the optimality (mean value)

and the robustness (standard deviation) of D against the wind variations become

worse when the robustness (standard deviation) of L against the wind variations

becomes better at the constant optimality (mean value) of L. On the other hand,

the distinct tendency about Mp can not be seen among these solutions in Fig. 5.8(c).

Figure 5.9 compares the wing planform configurations. In Fig. 5.9(a), all thee

robust optimal solutions have the wing planform configurations with sweep-forward

angle. These are because Mp around the center of gravity ([x/c, y/c, z/c]CG =

[0.25, 0, 0]) can be reduced. In addition, the wing configuration with large sweep-

forward or sweep-back angle is infeasible due to the geometric constraint on the

folded wing storability into the aeroshell. Therefore, in the present case, the feasible

sweep angle does not have dominant effect on L, D, and those robustness against

the wind variations. As for the dihedral angle, the distinct tendency can not be seen

among the three robust optimal solutions in Fig. 5.9(b). In addition, the dihedral

angle also does not have dominant effect on L, D, Mp and those robustness against

the wind variations in the present case.
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(a) Standard deviation against mean
value of L.

(b) Standard deviation against mean
value of D.

(c) Standard deviation against abso-
lute mean value of Mp.

Figure 5.8 Compared three robust optimal solutions obtained by using
the DFMOSS.
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(a) Wing planform configuration on
x–y plane.

(b) 25 % chord line on y–z plane.

Figure 5.9 Wing planform configurations of three robust optimal solu-
tions obtained by using DFMOSS.

Figure 5.10 compares the airfoil configurations at five sections (root, 1st fold, 2nd

fold, 3rd fold and tip). The airfoil of all these robust optimal solutions have about

6∼8 % maximum thickness in those front parts (20∼30 % chord positions) to make

a clearance of wing beam to stand the bending moment due to aerodynamic force.

Comparing these robust optimal solutions, the thickness becomes slightly smaller

as the standard deviation of L against the wind variations becomes smaller. In

addition, the airfoil of the robust optimal solution with smaller standard deviation

of L against the wind variations is like a supercritical airfoil, while the airfoils of the

robust optimal solutions with medium and larger standard deviation of L against the

wind variations look like normal ones. This is because the use of such supercritical-

like airfoil can suppress the occurrence of strong shock waves and reduce the drastic

increment in D with the increment in flight Mach number M∞. As for the twist

angle, the airfoils of all these robust optimal solutions have small twist-up angle at

root, as shown in Fig. 5.10(a), to produce lift. At 2nd fold as shown in Fig. 5.10(c),

the airfoils of all these robust solutions have larger twist-up angle than those roots.

In addition, the solution with smaller standard deviation of L against the wind

variations has the airfoil with larger twist-up angle locally at 2nd fold. At tip as

shown in Fig. 5.10(e), the airfoils of all these robust optimal solutions have twist-

down angle to decrease the effective angle of attack and avoid the tip stall with the
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increment in angle of attack α.

Figures 5.11 and 5.12 show L and D histories against the dispersive flight con-

dition parameters M∞, α and β, respectively. As for L histories against M∞ shown

in Fig. 5.11(a), L increases monotonously with the increment in M∞ due to the in-

crement in dynamic pressure ρ∞ (M∞a∞)2 /2 in all these robust optimal solutions.

Qualitive tendencies of L–M∞ are almost the same among these robust optimal so-

lutions except that the increment in L against the increment in M∞ becomes gentler

as the standard deviation of L against the wind variations becomes smaller. On the

other hand, as for L histories against α shown in Fig. 5.11(b) and those against β

shown in Fig. 5.11(c), there exist distinct differences among these robust optimal so-

lutions. In the robust optimal solution with smaller standard deviation of L against

the wind variations, L increases monotonously with the increment in α, while the

robust optimal solutions with medium and larger standard deviations of L against

the wind variations have the drastic increments in L until α = 5.0 [deg] and then

stall at α = 8.0 [deg]. In addition, L is kept large at any β in the robust optimal

solution with smaller standard deviation of L, while L decreases monotonously with

the increment in β in the robust optimal solutions with medium and larger standard

deviations of L against the wind variations. From these results, it is shown that

the robustness of L is mainly determined by the variations of L against α and β.

As for D histories against M∞ shown in Fig. 5.12(a) and those against α shown

in Fig. 5.12(b), the robust optimal solution with smaller standard deviation of L

against the wind variations has larger D at the design point M∞ = 0.4735 and

α = 2.0 [deg], and also has more drastic increment in D with the increments in M∞
and α than the robust optimal solutions with medium and larger standard deviations

of L against the wind variations. On the other hand, as shown in Fig. 5.12(c), the

solutions with smaller standard deviation of L against the wind variations has more

drastic decrement in D with the increment in β than the robust optimal solution

with medium and larger standard deviations of L against the wind variations.

As described above, the robustness of L is mainly determined by the variations

of L against α and β. Firstly, the variations of aerodynamic performance against

α are discussed. Figures 5.13 and 5.14 show the local Mach number contour plots

around the wing and pressure contour plots over the wing surface at three different

α (2.0, 5.0 and 8.0 [deg]) of the robust optimal solution with larger and smaller

standard deviations of L against the wind variations obtained by using the DFMOSS,

respectively. In the robust optimal solution with larger standard deviation of L
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(a) Root. (b) 1st fold.

(c) 2nd fold. (d) 3rd fold.

(e) Tip.

Figure 5.10 Airfoil configurations of three robust optimal solutions ob-
tained by using DFMOSS at five wing sections.
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(a) Against M∞. (b) Against α.

(c) Against β.

Figure 5.11 L histories against dispersive flight condition parameters of
three robust optimal solutions obtained by using DFMOSS.
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(a) Against M∞. (b) Against α.

(c) Against β.

Figure 5.12 D histories against dispersive flight condition parameters of
three robust optimal solutions obtained by using DFMOSS.
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against the wind variations as shown in Fig. 5.13, the flow is almost attached over

the whole region at α less than 5.0 deg. However, suddenly it begins to separate

from the leading edges of the root and mid-span sections at α = 8.0 [deg]. Over the

upper surface at the sections where the leading-edge separation occurs, the flow can

not be expanded sufficiently and the pressure level is kept higher compared to the

attached flow. In the robust optimal solution with smaller standard deviation of L

against the wind variations as shown in Fig. 5.14, on the other hand, the leading-

edge separation already occurs at mid-span section at the design point α = 2.0 [deg].

Then, the flow begins to separate also at the root section at α higher than 5.0 deg.

Figures 5.15 and 5.16 show the streamline patterns over the upper wing surface at

three different α (2.0, 5.0 and 8.0 [deg]) of the robust optimal solution with larger and

smaller standard deviations of L against the wind variations obtained by using the

DFMOSS, respectively. In the robust optimal solution with larger standard deviation

of L against the wind variations as shown in Fig. 5.15, the flow is fully attached over

the whole upper surface at the design point α = 2.0 [deg]. At α = 5.0 [deg], the flow

slightly separates from the rear part of the upper wing surface between the root and

the mid-span sections, but leading-edge separations do not occur at any spanwise

position. At α = 8.0 [deg], suddenly vast leading-edge separation occurs over the

upper wing surface between the root and the mid-span sections. In the robust

optimal solution with smaller standard deviation of L against the wind variations as

shown in Fig. 5.16, on the other hand, the leading-edge separation occurs over the

upper surface of mid-span section at the design point α = 2.0 [deg], and then the

leading-edge separation region gradually spreads in the spanwise direction with the

increment in α. Comparing these robust optimal solutions, the growth of leading-

edge separation region with the increment in α of the robust optimal solution with

smaller standard deviation of L looks weaker than that of the robust optimal solution

with larger standard deviation of L.

Figure 5.17 shows the spanwise distributions of local L per unit span length

at various α (2.0, 5.0 and 8.0 deg). The robust optimal solutions with larger and

medium standard deviation of L against the wind variations have the ideal elliptic

spanwise local L distributions which can realize large total L at α less than 5.0 deg.

However, suddenly these distribution have dips between the root and the mid-span

sections (y/c = 0.0 ∼ 3.0) at α = 8.0 [deg] which leads to the decrement in total

L. These dips correspond to the sections where the leading-edge separations occur

because the leading-edge separation involves higher pressure level over the upper
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Flow

(a) M∞ = 0.4735, α = 2.0 [deg], β = 0.0 [deg].

Flow

(b) M∞ = 0.4735, α = 5.0 [deg], β = 0.0 [deg].

Flow

(c) M∞ = 0.4735, α = 8.0 [deg], β = 0.0 [deg].

Figure 5.15 Streamline patterns over the upper wing surface at three
different α of robust optimal solution with larger standard deviation of L
(shown for only right half wings).
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Flow

(a) M∞ = 0.4735, α = 2.0 [deg], β = 0.0 [deg].

Flow

(b) M∞ = 0.4735, α = 5.0 [deg], β = 0.0 [deg].

Flow

(c) M∞ = 0.4735, α = 8.0 [deg], β = 0.0 [deg].

Figure 5.16 Streamline patterns over the upper wing surface at three
different α of robust optimal solution with smaller standard deviation of
L (shown for only right half wings).
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wing surface and eventually the smaller difference of pressure between the upper

and lower surfaces, i.e., smaller local L compared to the attached flow. Such drastic

changes of spanwise local L distributions due to the leading-edge separation lead

to the stall at high α as shown in Fig. 5.11(b). On the other hand, the robust

optimal solution with smaller standard deviation of L against the wind variations

has the spanwise local L distribution with the dip at mid-span section (y/c = 1.5 ∼
2.5) even at the design point α = 2.0 [deg], and this dip becomes wider with the

increment in α. However, the change of spanwise local L distribution of the robust

optimal solution with smaller standard deviation of L is smaller than those of the

robust optimal solutions with larger and medium standard deviation of L. This is

because the wing configuration of the robust optimal solution with smaller standard

deviation of L has larger twist-up angle locally at the mid-span section (2nd fold),

as shown in Fig. 5.10, and the leading-edge separation phenomenon becomes more

stable against the increment in α than those of the robust optimal solutions with

larger and medium standard deviations of L. Therefore, the robust optimal solution

with smaller standard deviation of L against the wind variations can realize more

robust characteristic of total L against the variation of α.

Next, the variations of aerodynamic performance against β are discussed. Fig-

ures 5.18 and 5.19 show the local Mach number contour plots around the wing and

pressure contour plots over the wing surface at three different β (0.0, 12.0 and 24.0

[deg]) of the robust optimal solution with larger and smaller standard deviations of

L against the wind variations obtained by using the DFMOSS, respectively. In the

robust optimal solution with larger standard deviation of L against the wind varia-

tions as shown in Fig. 5.18, the flow is almost attached over the whole region at any

β. In the robust optimal solution with smaller standard deviation of L against the

wind variations as shown in Fig. 5.19, on the other hand, the leading-edge separa-

tions occur at mid-span section at the design point β = 0.0 [deg], but these become

weaker with the increment in β and then vanish at β = 24.0 [deg].

Figures 5.20 and 5.21 show the streamline patterns over the upper wing surface

at three different β (0.0, 12.0 and 24.0 [deg]) of the robust optimal solution with

larger and smaller standard deviations of L against the wind variations obtained by

using the DFMOSS, respectively. In the robust optimal solution with larger standard

deviation of L against the wind variations as shown in Fig. 5.20, the flow is fully

attached over the whole upper surface at any β. In the robust optimal solution with

smaller standard deviation of L against the wind variations as shown in Fig. 5.21,



168 5 Robust Aerodynamic Design of Airfoil and Wing Planform Configurations

(a) Robust optimal solution with
larger standard deviation of L ob-
tained by using DFMOSS.

(b) Robust optimal solution with
medium standard deviation of L ob-
tained by using DFMOSS.

(c) Robust optimal solution with
smaller standard deviation of L ob-
tained by using DFMOSS.

Figure 5.17 Spanwise distributions of local L per unit span length at
various α (shown for only right semi-spans).
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on the other hand, the leading-edge separation occurring over the upper surface of

mid-span sections at the design point α = 2.0 [deg] vanish with the increment in β.

Flow

(a) M∞ = 0.4735, α = 2.0 [deg], β = 0.0 [deg].

Flow

(b) M∞ = 0.4735, α = 2.0 [deg], β = 12.0 [deg].

Flow

(c) M∞ = 0.4735, α = 2.0 [deg], β = 24.0 [deg].

Figure 5.20 Streamline patterns over the upper wing surface at three
different β of robust optimal solution with larger standard deviation of L
(shown for full wings).

Figure 5.22 shows the spanwise distributions of local L per unit span length at

various β (0.0, 12.0 and 24.0 deg). In the robust optimal solutions with larger and

medium standard deviation of L against the wind variations, the local L decreases

monotonously with the increment in β at all the spanwise positions and it leads to the

monotonous decrement in total L against the increment in β as shown in Fig. 5.11(c).

This is because the effective angle of attack becomes smaller with the increment in β.

On the other hand, the robust optimal solution with smaller standard deviation of L

against the wind variations has the spanwise local L distribution with the dips due
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Flow

(a) M∞ = 0.4735, α = 2.0 [deg], β = 0.0 [deg].

Flow

(b) M∞ = 0.4735, α = 2.0 [deg], β = 12.0 [deg].

Flow

(c) M∞ = 0.4735, α = 2.0 [deg], β = 24.0 [deg].

Figure 5.21 Streamline patterns over the upper wing surface at three
different β of robust optimal solution with smaller standard deviation of
L (shown for full wings).
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to the leading-edge separations at mid-span sections (y/c = −2.5 ∼ −1.5, 1.5 ∼ 2.5)

at the design point β = 0.0 [deg]. However, these dips vanish and the local L at

mid-span sections becomes larger with the increment in β, contrary to the robust

optimal solutions with larger and medium standard deviations of L. This is because

fortunately the locally large twist-up angle at mid-span sections (2nd folds) of the

robust optimal solution with smaller standard deviation of L, as shown in Fig. 5.10,

can realize the attached flow and large local L at the mid-span sections when β is

high and the effective angle of attack is small, and eventually it leads to large total

L even at high β. Therefore, the robust optimal solution with smaller standard

deviation of L against the wind variations can realize more robust characteristic of

total L against the variation of β.

Here, it should be remembered that, as shown in Fig. 5.8, the solution with

better characteristic in terms of the robustness of L against the wind variations at

constant optimality of L corresponds to the solutions with worse characteristics in

terms of both the optimality and the robustness of D against the wind variations.

As described above, the wing configuration of more robust solution in terms of L has

larger twist-up angle locally at its mid-span section to stabilize the change of leading-

edge separation phenomenon against the variation of α and to vanish the leading-edge

separation at high β. However, such wing configuration with locally larger twist-up

angle also leads to larger D at the twisted-up section, and worse characteristic in

terms of the robustness of D against the wind variations. Such extreme solution

with leading-edge separation seems to be undesirable and unrealistic to be used in

real-world design. Therefore, more detailed investigation of the obtained trade-off

information without such extreme solutions may be useful for more realistic designs

of Mars exploratory airplane.

In addition, in the present study, the CFD simulation approach based on the

Favre-averaged Navier-Stokes equations with the Baldwin-Lomax algebraic turbu-

lence model is used for the reduction of computation time and resources. It is pos-

sible that the present CFD simulation does not have accuracy enough to simulate

the flowfields involving large-scale separation phenomena. Therefore, it is required

to investigate the accuracy of the present CFD simulation approach by comparing

the obtained aerodynamic data with that obtained by more accurate approach such

as a large eddy simulation (LES) and a direct numerical simulation (DNS) or cor-

responding experimental aerodynamic data. Such further investigations of the CFD

simulation approach may lead to more realistic and reliable future designs of Mars
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(a) Robust optimal solution with
larger standard deviation of L ob-
tained by using DFMOSS.

(b) Robust optimal solution with
medium standard deviation of L ob-
tained by using DFMOSS.

(c) Robust optimal solution with
smaller standard deviation of L ob-
tained by using DFMOSS.

Figure 5.22 Spanwise distributions of local L per unit span length at
various β (shown for full spans).
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exploratory airplane.

5.5 Summary

In this chapter, the robust aerodynamic design optimization of airfoil and wing

planform configurations for Mars exploratory airplane considering the effects of wind

variations was performed by using the DFMOSS and the CFD simulation. The

present robust aerodynamic design optimization found the solutions with robust

characteristic in aerodynamic performance parameters against wind variations, and

revealed qualitative trade-off information between the optimality and the robustness

in aerodynamic performance parameters. This result showed that the DFMOSS is an

effective approach even in large-scale robust design optimizations with many design

variables and objective functions.

Among the robust optimal solutions obtained in the present study, the solution

with robust characteristic of lift against wind variations had the wing configuration

with supercritical-like airfoil and larger twist-up angle locally at the mid-span sec-

tion. Such wing configuration involved the leading-edge separation, which leaded to

small local lift and large local drag, at the twisted-up section at the design point.

Such extreme solution with leading-edge separation seems to be undesirable and un-

realistic to be used in real-world design. Therefore, more detailed investigation of

the obtained trade-off information without such extreme solutions may be useful for

more realistic designs of Mars exploratory airplane. In addition, the present CFD

simulation approach based on the Favre-averaged Navier-Stokes equations with the

Baldwin-Lomax algebraic turbulence model did not have accuracy enough to sim-

ulate the flowfields involving large-scale separation phenomena. Therefore, further

investigation of the CFD simulation approach for large-scale separation phenomena

may lead to more realistic and more reliable future designs of Mars exploratory

airplane.



Chapter 6

Concluding Remarks

In this dissertation, a new robust design optimization approach “design for multi-

objective six sigma (DFMOSS)” has been developed to solve the drawbacks of a

conventional robust optimization approach “design for six sigma (DFSS)” for more

efficient and more useful robust design optimizations. Then, aerodynamic design

optimizations of Mars exploratory airplane wing considering the effects of wind vari-

ations were realized by using the DFMOSS. Finally, realistic design information

about the trade-off relation between the optimality and the robustness of aerody-

namic performance of Mars exploratory airplane has been discussed based on the

numerical results obtained by the present robust aerodynamic design optimizations.

In Chap. 3, the DFMOSS has been developed and applied to simple robust

optimization problems to investigate efficiency and usefulness of the DFMOSS. These

studies showed that the DFMOSS has some advantages over the DFSS. First, the

DFMOSS did not require the advance specification of input parameters such as

weighting factors and sigma level. Second, the DFMOSS obtained multiple robust

optimal solutions effectively by only one case and revealed trade-off information

between optimality and robustness. Third, the satisfied sigma level of each obtained

robust optimal solution was evaluated easily and flexibly as post-processing in the

robust optimizations. These results indicated clearly that the DFMOSS had more

effective and more useful characteristics than the DFSS.

In Chap. 4, three robust aerodynamic design optimizations of airfoil configura-

tion for Mars exploratory airplane considering the effects of wind variations were

carried out by using the DFMOSS and the CFD simulation. In all cases, the robust

aerodynamic design optimization using the DFMOSS revealed the trade-off relation

between the optimality and the robustness in aerodynamic performance. In the first

case considering the robustness of lift to drag ratio against the variation of flight

176
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Mach number, it was shown that an airfoil configuration with smaller maximum

camber can improve the robustness in lift to drag ratio against the variation of flight

Mach number. This is because such airfoil can suppress the growth of shock wave,

i.e., realize smaller increment in pressure drag (wave drag) against increment in flight

Mach number. In the second case considering the robustness of pitching moment

coefficient against the variation of flight Mach number, it was shown that an airfoil

configuration with larger curvature in the front part can improve the robustness of

pitching moment coefficient against the variation of flight Mach number. This is be-

cause such airfoil can suppress the backward movement of shock wave occurred over

the upper surface of airfoil against increment in flight Mach number, and eventually

it results in smaller change in pitching-down moment produced in the rear part of

airfoil against increment in flight Mach number. In the third case considering the

robustness of lift to drag ration against the variation of angle of attack, it was shown

that an airfoil configuration with blunter leading edge can improve the robustness

of lift to drag ratio against the variation of angle of attack. This is because such

airfoil configuration can suppress the growth of the separation bubble generated near

the leading edge against increment in angle of attack. It leads to gentler change of

negative pressure level in the front part near the leading edge, i.e., smaller change of

drag against increment in angle of attack, and eventually it results in smaller change

of lift to drag ratio against the variation of angle of attack.

In Chap. 5, robust aerodynamic design optimization of airfoil and wing planform

configurations for Mars exploratory airplane considering effects of wind variations

was performed by using the DFMOSS and the CFD simulation. The present robust

aerodynamic design optimization found the solutions with robust characteristic in

aerodynamic performance parameters against wind variations, and revealed qualita-

tive trade-off information between the optimality and the robustness in aerodynamic

performance parameters. This result showed that the DFMOSS is an effective ap-

proach even in large-scale robust design optimizations with many design variables

and objective functions. Among the robust optimal solutions obtained in the present

study, the solution with robust characteristic of lift against wind variations had the

wing configuration with supercritical-like airfoil and larger twist-up angle locally at

the mid-span section. Such wing configuration involved the leading-edge separation,

which leaded to small local lift and large local drag, at the twisted-up section at

the design point. Such extreme solution with leading-edge separation seems to be

undesirable and unrealistic to be used in real-world design. Therefore, more detailed
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investigation of the obtained trade-off information without such extreme solutions

may be useful for more realistic designs of Mars exploratory airplane. In addition,

the present CFD simulation approach based on the Favre-averaged Navier-Stokes

equations with the Baldwin-Lomax algebraic turbulence model did not have accu-

racy enough to simulate the flowfields involving large-scale separation phenomena.

Therefore, further investigation of the CFD simulation approach for large-scale sep-

aration phenomena may lead to more realistic and more reliable future designs of

Mars exploratory airplane.

Through the whole study of this dissertation, it became clear that the newly

developed robust design optimization approach DFMOSS has capability enough to

obtain trade-off information between optimality and robustness which is very use-

ful and important design information in real-world designs, and this approach also

is powerful design tools in the real-world aerodynamic design of Mars exploratory

airplane wing. It is hoped that the robust design optimizations using the DFMOSS

and the knowledge obtained in this dissertation contribute to further developments

of the Mars exploratory airplanes and the future Mars exploration missions.
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