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Abstract

This dissertation research emphasizes explicit Building Block (BB) based MOEA per-

formance and detailed symbolic representations. An explicit BB-based MOEA for solving

constrained and real-world MOPs is developed, the Multiobjective Messy Genetic Algo-

rithm II (MOMGA-II) to validate symbolic BB concepts. The MOMGA-II provides insight

into solving difficult MOPs that is generally not realized through the use of implicit BB-

based MOEA approaches. This insight is necessary to increase the effectiveness of all

MOEA approaches.

Parallel MOEA (pMOEA) concepts are presented to potentially increase MOEA

computational efficiency and effectiveness. Communications in a pMOEA implementation

is extremely important, hence innovative migration and replacement schemes are detailed

and tested. These parallel concepts support the development of the first explicit BB-based

pMOEA, the pMOMGA-II. MOEA theory is also advanced through the derivation of the

first MOEA population sizing theory. The sizing theory presented derives a conservative

estimate of the MOEA population size necessary to achieve good results with a specified

level of confidence. Validated results illustrate insight into building block phenomena, good

efficiency, excellent effectiveness, and motivation for future research in the area of explicit

BB-based MOEAs.
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EXPLICIT BUILDING-BLOCK MULTIOBJECTIVE

GENETIC ALGORITHMS:

THEORY, ANALYSIS, AND DEVELOPMENT

I. Introduction and Overview

Optimization problems are encountered daily in each of our lives. While most of us

may fail to recognize the structure of these problems, they exist at many levels of com-

plexity. Such optimization problems can vary from relatively simple, single input variable,

single objective (SO) problems (e.g. how do I get to the grocery store in the least amount of

time) to multivariate, multiobjective optimization problems (MOPs) of great complexity

(e.g. advanced logistics planning problems concerning resource allocation). While obtain-

ing the optimal solution to an MOP and hence solving it is the ultimate goal of any attempt

to optimize an MOP, the desire of most researchers is to find an acceptable solution to

MOPs. Since many real world problems are MOPs, this investigation concentrates on find-

ing acceptable solutions to MOPs using a relatively new, innovative, evolutionary search

approach.

Generating acceptable solutions to MOPs is an area of increased interest by re-

searchers in many disciplines, including Computer Engineering, Operations Research, and

Computer Science to name a few. As the computational power of personal computers and

supercomputers continues to increase, with processor speeds just about doubling every cou-

ple of years according to Moore’s Law, problems that were previously too computationally

complex to tackle become more manageable. 1 The increased computational capability

of today’s computers encourages researchers to attempt to solve problems that previously

were untractable and use increased levels of precision. These facts contribute to an increas-

ing interest in the solving of MOPs, as they typically provide a more realistic formulation

1Moore’s Law is the common name for Gordon E. Moore’s observation in 1965 that there shall continue
an exponential growth in the number of transistors able to be placed on an integrated circuit at least every
two years [147].
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of the problem. Increasingly, evolutionary algorithms based upon biological models are

used to accomplish this task, as seen in numerous conference proceedings and published

papers [26, 62, 63, 109, 120, 175, 202] 2.

Multiobjective Evolutionary Algorithms (MOEAs) are contemporary algorithms to

solve MOPs and are part of the ‘soft computing’ umbrella of search algorithms. This in-

cludes Genetic Algorithms, Evolution Strategies, Evolutionary Programming, and Genetic

Programming and their extension to MOEA implementations. As more researchers use

MOEAs, many analyze the variety of such algorithms in an attempt to understand how

and why they work. Even though SO Evolutionary Algorithms (EA) have existed for a few

decades, the theoretical analysis of EAs is not complete, and hence, neither is the theoret-

ical analysis of MOEAs. These statements illustrate the need for additional development,

and theoretical analyses of MOEAs.

1.1 MOEA Overview

MOEAs are relatively new algorithms, but over the past few years there has been an

explosion with respect to the interest in MOEAs and the number of publications generated

each year [26, 62, 63, 109, 120, 175, 202]. To further illustrate this fact, in the year 2001,

the first International Conference on Multi-Criterion Optimization using MOEAs was held

in Zurich, Switzerland. This was an entire conference dedicated to MOEAs; theory, design,

analysis, and applications. Also there have been many Multi-Criterion conferences in other

pedagogical communities, including Operations Research, that employ a variety of other

MOP solution techniques [96]. These points illustrate the intense interest in MOEAs for

solving academic and real-world MOPs.

Since the MOEA field is no longer in its infancy, the use of MOEAs is accepted

among researchers as being able to produce efficient and effective results for various real-

world problems. Someone might question Are there any contributions that remain to be

made? The answer to this question is YES! There are always improvements and theoretical

2Dr. Carlos Coello Coello maintains a database of MOEA publications at the web address
http://www.lania.mx/ ccoello/EMOO/EMOObib.html. Many researchers in the EA and MOEA fields
recognize this database as one of the most complete listings of publications in the MOEA field. Currently
this database is updated multiple times a year and contains well over 1000 MOEA citations.
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developments that can be made. Contributions can come in the form of new MOEA

operators, theoretical developments and more. Additionally, many researchers are delving

into different aspects of MOEAs in pursuit of increasing MOEA efficiency and effectiveness.

Efficiency is defined as a measure of resource use, such as memory requirements, CPU

utilization, network bandwidth, and file storage as well as the total wall clock time required

for an MOEA to execute. Effectiveness is defined as a measure of the quality of the solutions

that are generated by the MOEA.

MOEA researchers are categorized into two groups, the researchers interested in

understanding the inner workings, operators, development, and theory of MOEAs and the

researchers interested in solely applying MOEAs to generate MOP solutions. The major

emphasis of this research effort places it into the former category. An understanding of the

inner workings of MOEAs is presented and this understanding is capitalized on in order

to advance the state-of-the-art with respect to MOEAs.

Many researchers in the MOEA field have recognized the need for additional the-

oretical contributions [31, 44, 85, 167, 184]. Researchers have accepted MOEAs as valid

search algorithms but additional theoretical contributions can still be made. Theoretical

contributions in conjunction with analyses of different MOEAs leads to a deeper under-

standing of the reasons why certain MOEAs perform the same or better than others. This

research makes substantial theoretical and practical contributions to the field of MOEAs.

This theoretical contribution is made through addressing the development of a population

sizing equation for MOEAs.

Specifically, the analysis of explicit Building Block (BB) based MOEAs is conducted

to illustrate the advantages and disadvantages of this rarely used approach. Additionally,

there is a valid need for guidance as to setting MOEA parameter values and understanding

MOEA operators. Symbolic formulations of MOEA operators and an analysis of the effect

of explicit BBs on overall solution quality is presented. Additionally, a clear procedure

for the use of parallel concepts in MOEAs is presented to aid MOEA researchers in using

this relatively new resource to the MOEA field. As a whole, this research effort presents

practical methods that may increase the efficiency and effectiveness of MOEAs.
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Various MOPs are presented to attempt and solve via the use of the MOEA ap-

proach presented. These problems include high dimensional, real-world applications that

EAs, and by extension, MOEAs are suited to solve. Many MOEA publications address

attempts to solve small pedagogical examples but larger problems that are considered more

realistic of real-world applications are typically missing [29, 46, 102, 107, 130, 191]. While

pedagogical examples are useful for evaluating the performance of MOEAs on MOPs with

known solutions, they are not truly indicative of the anticipated performance of MOEAs

as applied to real-world or high dimensionality application MOPs. Real-world problems

may be of various classes including those of high dimensionality in both the genotype or

input variables and the phenotype or number of fitness functions. Many times real-world

application MOPs are constrained and hence may be more difficult for an MOEA to solve.

The Pareto fronts (phenotype solution sets) have varying characteristics and those of high-

est interest include - disconnected, connected, continuous, discrete, concave, and convex

characteristics. Specifically, a real-world Air Force application, the Advanced Logistics

problem, is analyzed and used to test the performance of the MOEA of interest. Research

into solving real-world MOPs through the use of MOEAs is of direct benefit to the Air

Force and the MOEA community.

1.2 Research Goals and Specific Objectives

The primary goal of this research is to advance the state-of-the-art with respect to

explicit BB-based MOEAs. The research goal is accomplished through MOEA development

and analysis. BBs are considered by many to be an important aspect of any evolutionary

approach and are a focus of this effort. Limited research into BB-based evolutionary

approaches [184, 187, 191, 192] has shown promising results, and hence, the focus of this

effort is on extending MOEA BB concepts as reflected in the following research goal:

Research Goal: Advance the state-of-the-art with re-
spect to explicit Building Block Based MOEAs.

The research presented in this dissertation advances the theory, design, and imple-

mentation of MOEAs as well as the analysis of MOPs. Contributions are made in the
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MOEA research area of explicit manipulation of BBs, which has not been addressed in de-

tail in the current MOEA literature. This effort has five objectives and the contributions of

this effort arise out of meeting each of the five objectives. The objectives are presented in

the order in which they are addressed in this dissertation and not in terms of importance.

The first objective is to present a clear symbolic formulation of MOEA operators and

the algorithm. Such a formulation can aid in understanding MOEA operators and provide

researchers a clear definition to use when implementing these operators. A good under-

standing of MOEA operators aids researchers in correctly implementing MOEA operators

and in developing new MOEAs and operators with improved performance over existing

implementations.

Objective 1: Present a symbolic formulation of
MOEA operators and algorithm details.

A detailed summary of many contemporary MOEAs is presented to illustrate the

difference in MOEAs and summarize the contributions that have been made in the field.

This is useful for the design of new MOEAs or a validation of current MOEAs. This effort

categorizes MOEAs as either explicit BB-based or implicit BB-based MOEAs. Explicit

BB-based MOEAs analyze the population of individuals to explicitly identify the BBs or

partial strings that lead to the generation of good solutions. Explicit BB-based MOEAs

use evolutionary operators to capitalize on the identification of good BBs and subsequently

manipulate those good BBs in order to generate good solutions. The term implicit BB-

based MOEA defines an MOEA that does not explicitly identify the “good” BBs, (the

ones and zeros) or partial strings, in the population. Implicit BB-based MOEAs assume

that the good BBs are present in the population and through evolutionary operators these

BBs are implicitly manipulated in a necessary fashion to obtain good results.

Previous to the research completed in this effort, all of the existing MOEAs in the

community were implicit BB-based MOEAs with the exception of the MOMGA [184, 190].

The MOMGA explicitly finds the “best” BBs in the population and then exploits these

BBs through the use of evolutionary operators (EVOPs) to generate “better” solutions.

This research effort makes contributions to the MOEA community through presenting a
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thorough analysis of the effect of the explicit manipulation of BBs on solution quality in

MOEAs. Since most other researchers only implicitly address BBs, the potential exists for

these researchers to overlook certain aspects of MOEA development and MOP solutions

that are found through the use of explicit BB-based MOEAs.

In testing MOEAs, parallel MOEAs, and other associated BB concepts, different

MOPs and metrics should be used in order to compare their performance [42, 43, 52, 53,

54, 113, 114, 184, 188, 189, 192, 194, 195, 208, 209, 212, 214]. A number of constrained

MOPs are used to analyze the performance of the MOMGA-II. The constrained MOPs

selected to evaluate the performance of the MOMGA-II contain characteristics that differ

from MOPs contained in other test suites. MOP Test suites are only useful if the test suite

MOPs reflect the characteristics and class of MOP that an MOEA is designed to attempt

and solve. The MOMGA-II is used to attempt and solve constrained MOPs formulated

with integer based decision variables. Considering that existing MOP test suites typically

do not contain MOPs of these characteristics, a real-world and NP -Complete MOP are

selected and proposed for test suite inclusion. Many real-world MOPs are formulated with

constraints and integer based decision variables and hence optimizing an MOEA for this

class of problems.

The second objective is to develop an explicit BB-based MOEA for solving real-

world applications including real-world Air Force MOPs and constrained MOPs with inte-

ger based decision variables. The literature shows that an explicit BB-based MOEA can

achieve the performance that matches or exceeds that of implicit BB-based MOEAs in

terms of effectiveness, but the efficiency of the explicit BB-based MOEAs degrades rapidly

with increased problem sizes [184]. The degradation of the efficiency and execution time

of explicit BB-based MOEAs as problem sizes increase makes these MOEAs impractical to

apply to MOPs of high dimensionality and time consuming fitness evaluations, the charac-

teristics of many real-world MOPs. Hence an explicit BB-based MOEA, the MOMGA-II,

is another advancement in illustrating the usefulness of BBs in MOEAs. The MOMGA-II

is developed to use explicit BB concepts to attempt and solve real-world application MOPs

in much less time than previous explicit BB-based approaches. The performance of this
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new MOEA is analyzed through the use of various MOPs and metrics to present a limited

statistical comparison to other MOEA approaches.

Objective 2: Develop an explicit BB-based MOEA
for solving constrained and real-world MOPs.

The third objective is to demonstrate that explicit BB-based MOEAs may provide

insight into MOPs that otherwise is not found with implicit BB approaches. The effect of

attempting to solve MOPs with different BB sizes is analyzed. Related to this objective

is analyzing BBs applied to various MOPs to determine if a trend exists, i.e., Do “hard”

MOPs typically require larger BB sizes to find the optimal solution set? In the context

of this effort, a hard MOP is one in which an MOEA has difficulty in attempting to find

good potential solutions to the MOP. The use of an explicit BB-based MOEA allows one

to conduct an analysis of the relationship between BB sizes and the difficulty of MOPs.

Objective 3: Demonstrate that explicit BB-based
MOEAs may provide insight into solving difficult
MOPs.

Parallelization of MOEAs is a relatively new concept. Parallel evolutionary algo-

rithms (pEA) have existed over three decades. Due to the relatively recent development of

MOEAs, the parallel MOEA (pMOEA) field is a new field within the MOEA area. There

exists room for meaningful contributions to the MOEA community through the analysis

of parallel concepts as applied to MOEAs. The fourth objective is to describe parallel con-

cepts for MOEAs, present innovative migration and replacement schemes for use in parallel

MOEA paradigms, and develop the first explicit BB-based parallel MOEA. A description

of pMOEA concepts provides insight into pMOEAs and aids researchers in the develop-

ment of pMOEAs. Migration and replacement schemes are used during the communication

processes that occurs in a pMOEA and directly effect the overall pMOEA performance.

Since the goals of parallelization are typically to improve the efficiency and/or effectiveness

of a serial MOEA, it is important to develop effective migration and replacement schemes

for use in pMOEAs.
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The three major parallel MOEA paradigms, Master-Slave, Island, and Diffusion are

concentrated on in the discussion of parallel MOEA concepts. 3 Implementation details in

generating pMOEAs is important to identify and understand as the pMOEA field is new

and largely undefined. Details of the implementation of a pMOEA are extremely impor-

tant to MOEA researchers for use in determining how to design a new parallel MOEA,

identifying issues that must be addressed in the design process, recognizing considera-

tions that must be made when deciding whether to design a pMOEA from scratch or to

parallelize an existing MOEA, and realizing the differences between pEAs and pMOEAs.

pMOEA implementation details must be understood in order to develop efficient and ef-

fective pMOEAs. Additionally, the communication process that occurs within the parallel

implementation is critical to achieving the desired pMOEA performance. As a discussion

of migration and replacement schemes is missing from pMOEA publications, this research

effort clearly identifies these schemes and discusses the advantages and disadvantages of

each scheme. Considering that explicit BB-based MOEAs have been shown to achieve

good performance, an effort is made to improve the performance of an explicit BB-based

MOEA through the integration of parallel concepts.

Objective 4: Describe parallel concepts for
MOEAs, present innovative migration and replace-
ment schemes for use in parallel MOEA paradigms,
and develop the first explicit BB-based parallel
MOEA.

The fifth objective of this effort is to advance the theory of MOEAs, in particular,

the theory of MOEA population sizing. A generic population sizing equation for MOEAs

is developed. It is difficult to determine an initial population size to use in MOEAs that

provides a level of confidence that an MOEA will generate good solutions. The population

sizing theory presented in support of this objective determines with statistical confidence

the initial population size to use in MOEAs. This is an important step in advancing the

theory of MOEAs and their application to MOPs.

3It is noted that other parallel paradigms exist in support of other disciplines [119]. In the context of this
research effort, the three major parallel EA and MOEA paradigms, Master-Slave, Island, and Diffusion,
are discussed.
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Objective 5: Enhance MOEA theory by deriving
MOEA population sizing theory.

To summarize, the research focuses on finding “good” solutions to scientific and

engineering MOPs. This effort uses MOEAs, pMOEA concepts, and population sizing

theoretical developments in order to find “good” solutions to MOPs. The concepts pre-

sented are validated through the application of the MOMGA-II to various test suite MOPs

and a statistical analysis of the results.

1.3 Research Approach

Accomplishing the goal and objectives of this research effort involves the use of good

engineering principles. A haphazard approach is sure to fail considering the difficulty and

complexity associated with each objective. In order to advance the state-of-the-art of

MOEAs, one must become an expert in the areas of EAs and MOEAs.

An extensive analysis of the existing literature in the areas of EAs, MOEAs, and

parallel processing techniques was completed to achieve this expertise. The knowledge and

insight gained from this literature review was used to design and develop a new innovative

MOEA, the MOMGA-II, for use by researchers in solving real-world MOP applications. A

number of MOPs are identified and proposed for test suite inclusion and these real-world

MOPs are used in testing and analyzing the performance of the MOMGA-II.

In order to discuss with any certainty the quality of the results obtained, various

metrics are analyzed. A subset of the metrics presented are selected for analyzing MOEA

performance. Hypothesis testing is used to analyze the results of the MOMGA-II and state

with statistical certainty how the results compare to existing methods.

As large improvements over existing methods are always welcomed, it is recognized

that even small improvements can result in large cost savings to the warfighter effort. The

algorithmic results of this effort can be integrated with existing methods to attempt and

find the solution to complex MOPs. The Air Force has a direct interest in this research as it

is sponsored by the Information Technology Division of the Air Force Research Laboratory

1-9



at Wright-Patterson AFB in Ohio. This research presents concepts and new ideas that

directly support the Air Force and the solving of real-world Air Force applications.

1.4 Document Organization

This document is organized as follows. The following chapter, Chapter II, presents

necessary background and historical information in the form of key EA and MOEA defi-

nitions and terminology. Different optimization approaches are discussed in order to illus-

trate the rationale for the selection of an evolutionary approach over other approaches. A

discussion of BBs follows as BBs are integral to this effort. Multiobjective optimization

terminology and the algorithm domain formulation is presented to aid the reader’s under-

standing of the basic concepts used. Finally a discussion of MOEA operators and theory

completes the chapter.

Contemporary MOEA development as well as the metrics necessary to evaluate the

performance of MOEAs follows in Chapter III. The results of an extensive literature review

of MOEAs is presented and provides specific details of the design and functionality of some

popular and highly referenced MOEAs. Most importantly, the MOEA metrics selected for

use are discussed and compared to the other metrics presented.

Chapter IV discusses MOP test suites and the MOPs selected for testing the per-

formance of the MOMGA-II. MOPs of various classes are presented in this chapter and

some of these MOPs are proposed for use by other researchers. The proposed MOPs con-

tain various characteristics that differ from MOPs contained in other MOP test suites,

thereby illustrating their usefulness for MOEA testing. The following chapter, Chapter V,

discusses symbolic formulations for MOEA operators and an MOEA. Chapter VI presents

the overall design approach, testing, results, and analysis of the MOMGA-II, the MOEA

chosen for use. The MOMGA-II is applied to unconstrained, constrained, NP-Complete,

and real-world MOPs and the associated results and analyses are presented. Chapter VII

discusses parallel concepts and their application to MOEAs, as well as the design and test-

ing considerations necessary when applying parallel concepts to MOEAs. Chapter VIII

presents the theoretical analysis conducted for developing an MOEA population sizing
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equation to obtain “good” results given some specified level of confidence. The conclusions

and recommendations for future work follow.

1-11



II. Multiobjective Evolutionary Algorithm Introduction

This chapter presents background information to aid the reader in understanding the

necessary knowledge supporting this dissertation. A brief description of Evolutionary

Algorithms (EAs) is presented followed by a discussion of Multiobjective Evolutionary

Algorithms (MOEAs) and other approaches to solving Multiobjective Optimization Prob-

lems (MOPs). The Building Block Hypothesis (BBH), MOP and MOEA terminology and

definitions are presented. Various classes of MOPs (unconstrained and constrained) are

discussed in this chapter. Complex MOPs are a focus of this document and the termi-

nology associated with these problems and different solution methods are described in

some detail. An MOEA algorithm domain formulation is presented detailing a consistent

terminology that is used throughout this effort. Since a number of MOPs that are the

focus of this research effort are constrained MOPs, a discussion of constraint handling in

MOEAs is presented. This chapter concludes with a table of MOEA theoretical areas that

other researchers have addressed through various publications and identifies an area of

theoretical development that is currently lacking in the literature. The theoretical area

of MOEA population sizing is largely unaddressed in the current literature and is a focus

of this research effort. The following sections present discussions of topics to provide an

extensive foundation for the research.

2.1 Evolutionary Algorithm Overview

Various techniques exist to solve optimization problems (OP). These techniques

can be grouped into three categories: enumeration, deterministic, and stochastic tech-

niques [140, 159]. Each of these techniques has advantages and disadvantages. While it is

not within the scope of this effort to detail all the possible techniques for solving OPs, an

explanation of the categories and motivation for using these approaches is presented. Enu-

meration techniques involve conducting a total enumeration of the search space in order

to look at every possible solution to the OP and be guaranteed to generate the optimal so-

lution(s). While this technique results in the research objective, generation of the optimal

solution, enumeration techniques are generally infeasible when applied to large problems,

and are best applied to problems containing a few discrete decision variables [159, 205].
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A total enumeration of the search space is not the best approach if the enumeration of

the space is too complex to finish within a reasonable amount of time or if the problem

is constrained (enumeration techniques typically do not detect infeasible combinations of

decision variables prior to computing their fitness value). These are just two reasons that

enumeration techniques are not always a good technique to use. One would like to gener-

ate solutions to an OP within a reasonable amount of time and enumeration approaches

cannot meet this requirement for complex, large scale OPs.

Deterministic techniques for solving OPs include: Divide and Conquer, Dynamic

Programming, Hill Climbing, Branch and Bound, Depth-First (Greedy, Backtracking),

Breadth-First, and Best-First (A∗, Z∗) search and tabu search to name a few. These

approaches typically incorporate problem domain knowledge to reduce the size of the search

space that is actually analyzed [140]. Throughout the deterministic search process, certain

paths may be deemed inferior to others, and only paths of potentially better solution

quality are fully explored. Many deterministic search techniques proceed to search the

space through through a tree or graph like process. While these techniques are typically

more efficient than conducting an enumeration of the space, they are still time consuming

when applied to large scale OPs.

Divide and conquer takes the approach of decomposing a difficult problem into mul-

tiple, manageable smaller problems. The manageable subproblems are solved recursively

to yield a solution to the original OP [140]. Dynamic programming uses a recursive pro-

cedure to solve a problem. The main idea is to decompose a large problem into small, one

stage, incremental subproblems. The subproblems are solved and the solutions to these

subproblems are used to solve larger and larger subproblems. Eventually the original prob-

lem is solved [205]. Hill Climbing uses a greedy approach that compares multiple solutions

and chooses the best of those compared. This approach assumes that the path to the

optimal solution is one that involves selecting the best solution at each step of the search

process [140].

Breadth-first, depth-first, and best-first search solve a problem through a tree like

structured search process. Breadth-first search generates all nodes at a specific level of

the tree structure prior to the generation of nodes at the next lower level of the tree [140].
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Depth-first search is similar to breadth-first search but generates all of the nodes, down

to the lowest depth or level, of a specific branch of the tree prior to solving the next

branch [159]. Backtracking is used to go back if a previously promising node turns out to

yield a poor solution. Backtracking allows one to get back to a previous promising node

and continue the search process down an alternate path [148]. Best-first search always

selects the next most promising node to evaluate and is a greedy based approach [57].

A∗ and Z∗ are special cases of best-first search algorithms. A∗ and Z∗ use the cost and

estimates of the cost to continue searching until the solution is found in order to select a

path to evaluate [140].

Branch and bound is a heuristic that works on the concept that continually parti-

tioning the search space and finding the lower bound on any solution can be used to find

the optimal solution. The bound of each of the nodes is used to determine which node

is the most promising and the algorithm branches to that node [140]. A heuristic search

method uses all of the available information in order to follow the most promising path

to a final solution [148]. Tabu search takes a different approach to solving optimization

problems. In tabu search a finite (tabu) list is maintained of previous movements within

the search space. The purpose of this list is to prevent or penalize the search process when

moves are selected that yield a solution already visited in the search space. The tabu list

aids the search process in visiting unexplored areas of the search space and the tabu list

itself is updated as the search progresses [73, 159]. Tabu search uses information gained

from its movement throughout the search space to explore new regions of the search space

and move back to previously explored regions that are of high quality.

The final category of search technique discussed is that of stochastic techniques, the

focus of this effort. Stochastic searching techniques make use of some type of randomness

or random process in the search process [140]. Stochastic techniques include: Random

Search, Simulated Annealing, Monte Carlo, and Evolutionary Algorithms to name a few.

These approaches use a random process and maintain some type of record of good solutions

found. This information is used in the search process to generate better solutions as the

search progresses.
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A purely random search randomly generates solutions until some stopping criteria is

met [140]. At the conclusion of the search, the best solution found is presented to the user.

As this process is entirely random, knowledge of good solutions or promising areas of the

search space are not recorded and hence one cannot always expect this method to yield

solutions of high quality. A Monte Carlo search randomly generates solutions to a problem

multiple times. When a large enough sample size is used, the distribution of values found

approximates the true output distribution [159].

Simulated annealing is an approach that mimics the process of annealing metals to

improve their overall strength. The simulated annealing search process moves throughout

the search space to areas of improved solution quality. Areas of the the search space

that do not improve the overall solution quality are also explored based on a randomly

generated probability that is typically small. The exploration of areas of the solution space

of lesser quality may prevent premature convergence to a local optima. As the algorithm

progresses, a temperature like coefficient is used to “cool” or change the probability with

which solutions of lower quality are accepted [148, 159].

Since these techniques typically do not search the entire space for very large OPs,

they are not guaranteed to find the optimal solution unless they are executed for an in-

finite amount of time. However, these approaches typically generate good solutions for

problems in which the search space is not totally chaotic. This research effort is concerned

with attempting to solve difficult OPs, that may have multimodal landscapes, are time

consuming to solve, are of high dimensionality, and require an acceptable solution within a

reasonable amount of time. This means that the landscape is not totally chaotic, but that

there may be multiple local optima and a single or multiple global optima. OPs having

these characteristics are difficult to solve but evolutionary approaches are suited to solve

this type of OP [74]. Hence an evolutionary approach is the focus of this effort.

Evolutionary Algorithms (EA) have been a focus of development for a number of

years [74]. EAs are a population based class of algorithm that have a direct link to biology

and the concept of optimal processes. These algorithms can be decomposed into four

main sub-classes, Evolutionary Strategies (ES), Evolutionary Programming (EP), Genetic

Programming (GP), and Genetic Algorithms (GAs). The difference in these approaches
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lies in the operators and representation used. Genetic algorithms typically use a binary

representation for the population members and crossover but little to no mutation whereas

evolutionary programming uses a real-valued or symbolic representation for the population

members and primarily uses a mutation operator to generate solutions. Evolutionary

strategies use a real-valued representation for the population along with a combination of

crossover and mutation. Genetic programming solves an optimization problem through a

tree like structure consisting of programs that are randomly altered. A number of problems

exist with the implementation of GP including the details of randomly altering a computer

program while maintaining a correct implementation [13]. The reader is directed to the

work of Thomas Bäck [13] for a more historical and theoretical discussion concerning the

background of ES, EP, and GAs. The discussion presented primarily concentrates on GAs.

The motivation for use of EAs originated from attempts to find more efficient and

effective methods of solving optimization problems. A further motivation is to solve prob-

lems that cannot currently be solved to optimality due to a lack of computing power

necessary to find the optimal solution in a reasonable amount of time. EAs can be useful

when applied to problems in which the search space is large, is not known to be smooth or

unimodal (the optimal solution lies in a single peak or valley), a solution of good quality

must be found very quickly, if the fitness functions exhibit noise, or if the problem is not

well understood and hence a better optimization method is not known to work well on this

problem [146]. EAs are not guaranteed to find the optimal solution unless given an infinite

amount of time, but they offer the ability to find a “good” solution, and sometimes the

optimal solution to optimization problems in an acceptable amount of time. It is impor-

tant to understand that there may be more than one optimal solution as often occurs in

real-world MOPs. These optimization problems involve the maximization or minimization

of an objective or fitness function, where the fitness function allows one to compare the

quality of a solution to other solutions. The overall goal of this optimization is to find the

global optimum over the entire search space.

Genetic Algorithms date back to John Holland’s original work in 1962 on the the-

ory of adaptive systems [90], and his work on adaptive and reproductive plans [91]. This

is considered by many to be the starting point of most implementations of Genetic Al-
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gorithms [13, 14, 74, 140, 201]. Theoretical analysis and symbolic formulations of single

objective GAs has been discussed in numerous publications, with some of the predominant

sources being Thomas Bäck [13] and David Goldberg [74].

The basic concept behind EAs is that of evolution through time. To expand on this,

evolution is defined as “a process of continuous change from a lower, simpler, or worse

to a higher, more complex, or better state [136].” EAs are stochastic, population based

algorithms designed to “evolve” a population over time (generations). “Evolution” occurs

through the use of selection and recombination operators [201]. Generic pseudocode for

an EA is presented in Figure 2.1.

Randomly Initialize the Population
Evaluate the Fitness Function Values
For i = 1 to Maximum Number of Generations

Perform Recombination
Perform Crossover Based on pc
Perform Mutation Based on pm

Evaluate the Fitness Function Values
Perform Selection to Generate the Next Population

End Loop

Figure 2.1 Evolutionary Algorithm Pseudocode [74]

A typical EA begins with a random generation of bit strings of a specified length.

Each bit string a is referred to as an individual and the collection of all µ individuals

represents the parent population P . Each bit position within a population member is

referred to as the gene position or locus. The value in any gene position is referred to as

the gene value or allelic value, a 1 or 0 for a binary EA.

The random generation of a population of individuals is meant to uniformly distribute

the initial population throughout the landscape. Most EAs are binary and this effort con-

centrates on the binary class of EAs. However, real-valued and other variants exist. Once

generated, the parent individuals {a1, . . . , aµ} are evaluated to determine their objective

function values f(a). It is noted that an EA has both an objective function and a fitness

function. The objective function is defined by the problem of interest whereas the fitness

function is a measure of the quality of the candidate solution [13, 132, 184]. Following the
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evaluation of the population members, a selection operator is applied. Various selection

operators exist. Some of the most popular ones are presented in Table 2.1 [13, 74, 201].

Table 2.1: Types of Selection

Selection Type Description

Tournament n individuals chosen at random, the one best of the n

is selected.

Roulette Wheel (Fit-

ness Proportionate)

Each population member is assigned a proportion of

the roulette wheel equal to the ratio of its fitness to the

sum of the entire population’s fitness

Elitist Choose the best population members (“Survival of the

Fittest”).

Once the selection process is complete, the population P enters the recombination or

“mating” phase of the algorithm. In the recombination process, individuals are typically

randomly selected from the population with a probability of crossover, pc. In the case

of a binary EA with one-point crossover, a crossover point is randomly chosen and two

population members are “crossed over” at that location. All of the bits following the

crossover point are exchanged between the two population members. Crossover continues

until an intermediate population P ′ of size µ is generated. Many types of crossover exist;

a partial listing is presented in Table 2.2 and the interested reader is referred elsewhere for

a more detailed description [13, 78, 201].

Table 2.2: Types of Crossover

Crossover Type Description

Single Point Random crossover point chosen, all bits following the

crossover point are exchanged

2-point (n-point) 2 (n) crossover points are randomly chosen. The seg-

ment of the string between the 2 (n) points is ex-

changed.

Uniform Choose each bit randomly from each of the parents,

with equal probability. Each bit is independent of other

bits and the crossover point.
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Original

Strings

Case 1 Case 2

Case 3 Case 4

Figure 2.2 Cut and Splice

Table 2.2: (continued)

Crossover Type Description

Cut and Splice Crossover operator for variable length string encodings.

Different crossover points are chosen in each parent

with bits following the crossover points exchanged.

Figure 2.2 illustrates an example of the Cut and Splice operation, or crossover for

variable string length encodings. Some EAs allow the individual string lengths to vary

throughout the evolutionary process but do maintain a maximum possible string length.

In conducting cut and splice, one uses two probabilities during the operation, a probability

that each string is cut at a random point and a probability that each string is spliced.

Four potential results from a cut and splice operation performed on two selected strings

are illustrated. Case 1 illustrates the result of performing two cut and two splice operations.

Case 2 illustrates the result of a single cut and splice operation, Case 3 illustrates this same

situation in the reverse order, and Case 4 illustrates the results of zero cut and two splice

operations.

Following the crossover process, mutation occurs on each population member with

a probability of mutation pm. The mutation process involves a random choice of a bit

position or loci to flip from a 1 to a 0 or vice-versa (for a binary representation). The

mutation process yields an intermediate population P ′′ of size µ.
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Following crossover and mutation, a selection mechanism is applied to generate the

next generation’s population. Some of the the most popular selection mechanisms are

presented in Table 2.1. The purpose of the selection mechanism is to keep the “best”

population members, which in essence contain the “best” Building Blocks (BBs), in the

population as the generations progress. An elitist tournament selection mechanism would

implement a “survival of the fittest” concept where x population members would be ran-

domly chosen from the population and their fitness values compared to each other, only

the “fittest” member of the x being compared would survive and be placed into the next

generation’s population P (t + 1). A random selection mechanism randomly selects mem-

bers from the population to be placed into the next population. A roulette wheel selection

operator assigns each population member a probability of being selected based on the

percentage of the total population fitness that each member represents. The selection

mechanism is executed µ times so that the population remains constant from generation

to generation.

Numerous single objective EAs have been designed, implemented, and tested using

various metrics and test suites optimization problems. Two examples are presented to aid

the reader’s understanding of a simple EA. One of the most referenced single objective EAs

is the Simple Genetic Algorithm (SGA) originally created by Goldberg [74] and sometimes

referred to as a canonical GA [201]. The main concept of this algorithm is fairly basic

and easy to implement. A starting population of individuals is randomly created using a

binary string of a specified length. Following the generation of the initial population, the

members are evaluated. Selection is then applied to the population in order to generate an

intermediate population of individuals. Tournament selection is one of the most popular

and is often used. Recombination operators are applied to this intermediate population

with their respective probabilities of crossover and mutation. Recombination operators

are used to “move” the population towards better solutions to the fitness function being

solved. The resultant population following the recombination operators becomes the next

generation’s population. The algorithm then executes until it reaches the stopping criteria,

typically a user specified number of generations.
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Another simplistic GA that can be used is the steady state GA [201]. The steady

state GA was designed to converge slowly to a final solution and hence the GA operators

are only applied to a single individual at a time. The population is randomly created as

in the simple GA and the fitness values are calculated according to rank. Recombination

occurs between two individuals; the resultant child is put back into the parent population,

and mutation follows. The child replaces the worst individual in the population, thereby

maintaining a constant population size. This process allows for a much slower rate of

convergence than the simple GA and others like it since only one population member is

modified at a time. This slow convergence allows for the potential to explore different

areas of the landscape.

2.2 Building Block Hypothesis

This section discusses the background of BBs. The cornerstone of many of the

GAs to date is the Building Block Hypothesis (BBH), also referred to as the Schema

Theorem [13, 74, 184, 201]. A schema or BB is a partial string in which certain allelic

values are present in specific loci positions. These schema are defined to be strings of length

l drawn from the alphabet {0,1,*}. An example of this is the schema 0*1, which represents

the set of all 3-bit binary strings containing a 0 in the first position and a 1 in the last

position; 0*1 = {001,011}. Further, a BB is a partial string that an epistatic relationship

exists between the BB alleles in their loci positions (genes). Epistatic relationships reflect

the fact that one gene value may mask the effect of another gene [154]. In other words, if

two specific genes are present within a string, then the two genes interact with each other,

effecting the overall fitness value.

A good BB is a BB that when combined with other genes, to generate a fully specified

individual, typically yields a fitness value of high quality. A fully specified individual is one

in which all of the gene values are present. It is important to understand that a BB can only

be evaluated when combined with other gene values to generate a fully specified individual.

As multiple combinations of genes can be combined with a BB, a BB that typically yields

a high fitness value when evaluated with various combinations of genes is designated a

good BB. The evaluation of a good BB typically yields fitness values that are of higher
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quality than the evaluation of the fitness value obtained for strings containing different

allelic values in the same gene positions. Depending on the actual optimization problem,

only one good BB may exist or many may exist that lead to the global optima. The overall

concept is that the identification of the good BBs by an EA or MOEA leads to a higher

probability for the EA or MOEA to generate the optimal solution to the problem versus

an algorithm that does not find the good BBs. Hence explicit BB-based EAs and MOEAs

may have an advantage over implicit BB-based EAs and MOEAs in finding solutions to

problems.

Two measures that are of importance in determining the probability that a particular

schema (H) survives within a GA population when subjected to crossover and mutation

are the defining length and the order of the schema. The defining length δ(H) of a schema

H is the distance between the first and last positions in the string that are specified. In the

example presented, the defining length is 3-1=2. The last term of importance is the order

of a schema. The order o(H) is defined to be the overall number of specified positions

within the schema. In the example, the order is 2 since positions 1 and 3 are specified.

An order o BB is defined by Merkle as:

Definition 1 ((Order-o) potential building block [132]): Let A be a non-empty
set (the genic alphabet), ` ∈ Z+ (the nominal string length), L , {1, . . . , `} (the loci),

and S , {(a1, l1), . . . , (ao, lo)} ∈ 2A×L a set of genes. If the loci of S are distinct, i.e., S
satisfies i = j ⇐⇒ li = lj, then it is called an order-o potential building block or simply a

potential building block. 2

A specific schema increases its presence in the population based on the ratio of the

average fitness f(H) of the schema to the average fitness of the population f̄ , i.e., a schema

with an average fitness above the average fitness of the population (f(H) > f̄) receives

an increasing number of copies within the population through reproduction. Essentially,

reproduction increases the number of above average schema and decreases the number of

below average schema, driving the population to converge to a good solution. Therefore
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the schema growth equation is:

m(H, t+ 1) = m(H, t) ∗ f(H)

f̄
(2.1)

Where m(H, t + 1) represents the schema H in the population at time t + 1, f(H) is the

average fitness of the strings representing H at time t, and f̄ is the average fitness of the

population. This yields the number of schema H expected to be present in the subsequent

generation.

Crossover and mutation may have the effect of disrupting schema in the population

or the positive effect of combining and manipulating good BBs to yield good solutions.

Crossover has a disruptive effect if the crossover point falls within the defining length of

the schema and mutation has this effect if a defined bit is mutated. If single-point crossover

is used, choosing a random crossover point pc, then the probability of a schema surviving

is ps. Single point crossover is used for illustration purposes, other crossover schemes may

be used and require the equations to be adjusted accordingly.

ps ≥ 1− pc ∗
δ(H)

l − 1
(2.2)

To add the effect of crossover to the effect of reproduction, assuming independence

of reproduction and crossover operators, the following estimate for the number of schema

H expected in the next generation is obtained [74]:

m(H, t+ 1) ≥ m(H, t) ∗ f(H)

f̄
∗
[

1− pc ∗
δ(H)

l − 1

]

(2.3)

The estimate of the combined effect of crossover and reproduction is obtained by mul-

tiplying the expected number of schema following reproduction by the survival probability

of crossover with reproduction. Mutation effects a single bit position with probability pm.

In order for mutation to disrupt a particular schema, it must effect one of the specified

bit positions. In order to determine this, the probability that a particular allele survives

is (1− pm) and since each mutation event is independent, a schema survives if each of the

specified bits o(H) remains unchanged, and hence the probability of survival is (1−pm)o(H),
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which can be approximated by 1 − o(H) ∗ pm if pm << 1 [74, 201]. A particular schema

receives an expected number of copies in the next generation when subject to reproduction,

crossover, and mutation as stated:

m(H, t+ 1) ≥ m(H, t) ∗ f(H)

f̄
∗
[

1− pc ∗
δ(H)

l − 1
− o(H) ∗ pm

]

(2.4)

2.3 Multiobjective Evolutionary Algorithm Overview

Since single objective problems were the initial focus of EA researchers, there exist a

large number of publications concerning the theory, implementation and results of single

objective EA research [13, 14, 74, 132]. With the increased processing power of modern

computers, researchers gained the ability to find better solutions to many of the single

objective problems that were previously too time consuming to optimize. This led the

EA community and many researchers in industry to begin applying EAs to real-world

optimization problems [25, 27, 28, 49, 51, 93, 117, 193], of which there are hundreds of

application based publications in the literature [26]. In using EAs to attack these problems

and combining them with parallel concepts, researchers found that they were now able to

find solutions for their problems quite rapidly when compared to previous use of EAs.

One of the issues encountered when attempting to solve real-world optimization prob-

lems is in choosing a method to optimize the problem which takes into account all of the

objectives. In the past, EA researchers combined the objective functions into one single

objective function and used a single objective EA to find an acceptable solution. As more

and more researchers from industry became interested in the power of EAs, many recog-

nized the need to explicitly employ individual objective functions. The use of individual

objective functions means that problems formulated in this manner do not encounter the

need to determine weights for each of the objectives as is done in the combined objective

function aggregation formulation. The decreased execution time of the EA, a desire to

develop good, feasible solutions to real-world optimization problems, and Multiobjective
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Optimization Theory led some EA researchers to begin experimenting with more than just

the basic single objective optimization problem [78, 170]. 1

Results achieved via use of Single-Objective EAs (SOEAs) as applied to MOPs lacked

efficiency and were not effective for many continuous MOPs. For example, SOEA ap-

proaches using aggregated MOP objective functions (e.g., weighted sum) generate only a

single solution per run and require multiple executions varying weight aggregations in order

to generate multiple solutions. Although it is possible to use SOEAs in solving an MOP,

these methods are typically not as effective or efficient as MOEAs, which are designed to

return a small number of MOP solutions per run. Additionally, some traditional SOEA

approaches are known to be unable to identify the complete Pareto front if certain problem

constraints exist [31]. However, many MOEAs have been successfully applied to real-world

design and constrained optimization problems, leading to their increased visibility and use,

but MOEA efficiency objectives still exist.

The development and analysis of single objective EAs has motivated the development

of MOEAs. MOEAs are of particular interest to engineers, scientists, and problem solvers

due to the fact that many of the real-world problems that exist today are multiobjective

and in many cases constrained. An example of this is the Advanced Logistics Problem [216]

which involves logistic research into resource allocation. The Advanced Logistics Problem

is a constrained real-world multiobjective optimization problem. A more detailed list of

real-world MOPs can be found in [26, 31, 44].

If a generic MOEA can be designed, implemented, and its performance validated,

this would be of great interest to researchers and those in industry attempting to solve

MOPs. The development of a generic evolutionary algorithm for MOPs has been a goal of

MOEA researchers that has produced a number of publications. The most widely known

and referenced algorithms are discussed in some detail in Section 3.1. However, the No

Free Lunch (NFL) Theorem [204] states that it is not possible to find one algorithm that

outperforms every other algorithm in the attempted solving of all classes of optimization

problems. Does this mean that the goal of finding a generic MOEA to solve MOPs is

1It is noted that the concept of Multiobjective Optimization Theory has existed since the early 1940s
in investment problems and was extended outside this problem domain area in the 1960s [31].
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pointless? No, this research advances the theory of MOEAs and the development of better

operators. These advances can lead to the development of better MOEAs suited to partic-

ular classes of MOPs. While the design of an MOEA that outperforms every other MOEA

on all classes of MOPs may not be possible, it is possible to design a generic MOEA that

performs better than other MOEAs on a particular class of MOP or on average performs

well across a variety of MOPs.

Many of the existing MOEAs incorporate a variety of genetic operators and are based

on a range of evolutionary methods and operators. Prior to discussing the validation of any

MOEA, the formulation of that algorithm and its comparison to a generic MOEA’s formu-

lation must be addressed. This helps to clarify the underlying concepts of the respective

algorithm and aid in understanding the theory associated with it.

2.4 Other Approaches to Solving MOPs

Multiobjective optimization problems can be solved through the use of many differ-

ent methods. Each of these methods has advantages and disadvantages that typically are

dependent on the specific problem being solved, the characteristics of the decision variable

or genotype space and the subsequent characteristics of the objective function or pheno-

type space. Some of the approaches found in the Operations Research (OR) community

include aggregation methods, knowledge based methods, mathematical programming and

constrained optimization methods to list a few [159].

Aggregation methods sum or aggregate the fitness functions together into a single

objective function, typically with different weighting factors applied to each of the objective

functions to show a preference towards a particular objective [148]. The difficulty in

utilizing this method is in determining the correct weighting factor(s) to use [67].

Knowledge based methods, sometimes referred to as Surrogate methods, incorporate

knowledge about the objective function values found up to a point in time to predict

whether or not a particular solution can improve on the best solutions found so far [148].

Another method of handling multiple objectives in a single objective algorithm is to treat

one objective as a single objective optimization problem and treat the other objectives as
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constraints [31]. This method can work very well but may involve additional overhead in

the handling of infeasible points in the space. Iterative methods are also popular, and in

this approach, the decision maker watches the search process progress and interactively

guides the search into different areas of the landscape that he or she may be most interested.

Lexicographic methods consider the objectives one at a time [159]. The order in

which the objectives are considered is the order of importance specified by the researcher.

The most important objective is optimized first, followed by the second most important

and so on until all of the objectives are optimized. Mathematical programming methods

refer to linear and nonlinear programming approaches, as well as others, to optimization

problems. Linear programming procedures solve problems consisting of objective functions

and constraints that are linear in the decision variables. Nonlinear programming is similar

except the decision variables are nonlinear in nature [57].

In the late 1800s, the mathematical foundations were laid for the infinite dimensional

ordered spaces necessary to understand MOPs [177]. Around 1944, John von Neumann

and Oskar Morgenstern mentioned an optimization problem that contained conflicting

objectives [197]. This was the start of the idea of MOPs. However, neither they, nor anyone

else, elaborated on this problem until the 1950s when Tjalling C. Koopmans discussed the

idea of “efficient” in his book [118]. When the concept of vector maximization problems was

presented by Kuhn and Tucker in 1951, multiobjective optimization became a discipline

of its own [31]. By the 1960s, MOPs became more common in the field of economics and

“trade-off” became a common term to use [32]. The interest in this area grew and the

application of multiobjective optimization to other areas began to increase.

Multi-Criteria Decision Making (MCDM) is a term used by operational researchers to

describe the process of choosing a solution from the set of Pareto optimal points. The two

main ideas of MCDM are based on outranking concepts and utility functions [92]. In the

outranking concept, comparisons are made based on the goal of determining if a preference,

indifference, or incomparability exists between the pair of objects. This approach may be

computationally expensive. The utility function approach, based on the Multi Attribute

Utility Analysis (MAUA), assumes that a utility function is available to identify the set

of solutions [92, 93]. MCDM is a very important aspect of solving MOPs. The solution
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of an MOP is a set of solution vectors that the Decision Maker (DM) must analyze to

see which one of the vectors should be chosen. Once a solution set is generated, the issue

becomes how to choose the final solution and when does the DM specify their preference.

This preference specification may be done prior to, during, or after execution of the search.

Additionally, the DM aspect of the search may take as much execution time as the search

procedure [92].

Multiobjective Combinatorial Optimization (MOCO) is another term used by the

OR community to reference multiobjective works. Some of the approaches used in OR in-

clude Multiobjective Simulated Annealing, Evolutionary Algorithms, Tabu Search, Linear

Programming, etc [59]. As some authors have stated, a more involved effort between the

OR and EA communities may benefit both communities as more MOEA researchers are

attempting to integrate decision analysis concepts into their MOEAs [34].

The last method to be discussed is that of using a Pareto based approach. A French-

Italian economist named Vilfredo Pareto (1848-1923) first developed the principle of Mul-

tiobjective optimization for use in economics. His theories became collectively known as

Pareto’s optimality concept [31]. These principles allow one to analyze the results of a

simultaneous optimization of multiple objectives and determine the set of points that are

optimal with respect to all of the other points generated. The work presented in this

research uses the concepts of Pareto since this method does not require the researcher

to determine an optimal weight for the objective functions. Nor does it require a selec-

tion of one objective function that is of greatest importance. This method allows for a

simultaneous optimization of multiple objective functions that lends itself to utilization in

MOEAs.

2.5 MOP Domain Formalization

Some of the methods that exist to solve OPs and MOPs are discussed in previous

sections of this chapter. This research effort uses an MOEA to attempt and find solutions

to MOPs as well as integrating parallel processing concepts and addressing MOEA the-

ory. Prior to discussing what an MOP consists of and presenting formal definitions, some

terminology must be discussed. MOPs require a method of evaluating the quality of a
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solution. In SO optimization, one can compare two potential solutions to each other and

through the single fitness value determine which of the solutions is of higher quality. The

comparison of two potential MO solutions presents the challenge of determining the same

objective, which solution is better, but with the addition of multiple fitness values. Pareto

Optimality is used to determine the quality of multiple MO solutions in this effort.

2.5.1 Pareto Terminology. The concept of Pareto Optimality is integral to the

theory and analysis of MOPs. Pareto Optimality Theory and the associated Pareto con-

cepts are used as a way to determine if one solution is “better” than another in a multiob-

jective comparison. Although single-objective optimization problems may have a unique

optimal solution, continuous MOPs usually have a possibly uncountable set of solutions,

which when evaluated produce vectors whose components represent trade-offs in decision

space. Some key Pareto concepts, for minimization of continuous MOPs, are defined math-

ematically as [17]:

Definition 2 (Pareto Dominance): A vector ~u = (u1, . . . , uk) is said to domi-

nate another vector ~v = (v1, . . . , vk) if and only if u is partially less than v, i.e., ∀i ∈
{1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. 2

Definition 3 (Pareto Optimality): A solution x ∈ Ω is said to be Pareto optimal

with respect to Ω if and only if there is no x′ ∈ Ω for which ~v = F (x′) = (f1(x
′), . . . , fk(x

′))

dominates ~u = F (x) = (f1(x), . . . , fk(x)). 2

The phrase “Pareto optimal” is taken to mean with respect to the entire decision

variable space unless otherwise specified. The variable x represents a vector of decision

variables and F represents a vector of objective function values.

Definition 4 (Pareto Optimal Set): For a given MOP F (x), the Pareto optimal set

(P∗) is defined as:

P∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω F (x′) ¹ F (x)}. (2.5)

2
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Definition 5 (Pareto Front): For a given MOP F (x) and Pareto optimal set P∗, the

Pareto front (PF∗) is defined as:

PF∗ := {~u = F (x) = (f1(x), . . . , fk(x)) | x ∈ P∗}. (2.6)

2

Pareto optimal solutions are those solutions within the search space whose corre-

sponding objective vector components cannot be simultaneously improved. These solutions

are also termed non-inferior, admissible, or efficient solutions, with the entire solution set

represented by P∗ [190, 219]. Their corresponding vectors are termed nondominated; se-

lecting a vector(s) from this nondominated vector set (the Pareto front set PF ∗) implicitly

indicates acceptable Pareto optimal solutions (genotypes). These solutions may have no

clearly apparent relationship besides their membership in the Pareto optimal set. It is

simply the set of all solutions whose associated vectors are nondominated; these solutions

are placed into the set of Pareto optimal solutions based on their phenotypical expression.

Their expression (the nondominated vectors), in phenotype space, is known as the Pareto

front [190, 219].

2.5.2 MOP Formulation. The process of finding the global minimum or max-

imum of any single objective function is referred to as Global Optimization. In general,

this is presented in Definition 6 as stated in Bäck and others [13, 114, 184]:

Definition 6 (Global Minimum): Given a function f : Ω ⊆ Rn → R, Ω 6= ∅, for
~x ∈ Ω the value f∗ , f(~x∗) > −∞ is called a global minimum if and only if

∀~x ∈ Ω : f(~x∗) ≤ f(~x) . (2.7)

Then, ~x∗ is the global minimum solution(s), f is the objective function, and the set Ω is

the feasible region. The problem of determining the global minimum solution(s) is called

the global optimization problem. 2
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In Definition 6, the n-dimensional decision variable space Ω and the objective function

space, denoted as R, are both shown to be subsets of real values in the definition. These two

spaces may not be restricted to the same subset of real values. For example, the decision

variable space may be restricted to integer values whereas the fitness function space may

be restricted to real values. This is dependent on the mapping of the objective function.

The point is that the decision variable and objective function spaces may or may not be of

the same type or have the same characteristics (continuous, disconnected, discrete, etc.).

This single objective formulation must be modified to reflect the nature of multi-

objective problems where there may be a set of solutions found through the analysis of

associated Pareto Optimality Theory. Many times multiobjective problems require the

decision maker to make a choice, which is essentially a tradeoff, of one solution over an-

other in objective space [31, 44, 74, 184, 207]. Prior to presentation of the associated

multiobjective definition, an MOP must be defined.

Multiobjective problems are those where the intent is to optimize k objective func-

tions simultaneously. This may involve the maximization of all k functions, the mini-

mization of all k functions or a combination of maximization and minimization of the

k functions. An MOP and an MOP global minimum (or maximum) is formally defined

as [31, 44, 114, 184, 207]:

Definition 7 (General MOP): In general, an MOP minimizes (or maximizes) F (~x) =

(f1(~x), . . . , fk(~x)) subject to gi(~x) ≤ 0, i = 1, . . . ,m, ~x ∈ Ω. An MOP solution minimizes

the components of a vector F (~x) where ~x is a n-dimensional decision variable vector (~x =

x1, . . . , xn) from some universe Ω. The vector function F (~x) maps the set Ω into the set

Λ which represents all of the possible values of the objective functions. 2

Definition 8 (MOP Global Minimum): Given a function F : Ω ⊆ Rn → Rk, Ω 6= ∅,
k ≥ 2, for ~x ∈ Ω the set PF∗ , F (~x∗i ) > (−∞, . . . ,−∞) is called the global minimum if

and only if

∀~x ∈ Ω : F (~x∗i ) ¹ F (~x) . (2.8)
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Then, ~x∗i , i = 1, . . . , n is the global minimum solution set (i.e., P∗), F is the multiple

objective function, and the set Ω is the feasible region. The problem of determining the

global minimum solution set is called the MOP global optimization problem. 2

An MOP consists of k objectives reflected in the k objective functions, m constraints

on the objective functions and n decision variables. The k objective functions may be linear

or nonlinear in nature [31, 44]. The evaluation (fitness) function, F : Ω −→ Λ, is a mapping

from the decision variables (~x = x1, . . . , xn) into output vectors (~y = a1, . . . , ak), where

F (~x) = ~y [114, 184, 207]. The same statement holds as it does for the single objective

optimization problem; the two spaces, Ω and Λ, are subsets of the real values, and the

characteristics of the spaces may be connected, disconnected, continuous, discrete, etc.

MOPs typically consist of competing objective functions [65, 114, 207]. The compet-

ing objective functions may be independent or dependent on each other. An example MOP

is a company’s quest to purchase a backbone for their computer network that provides the

greatest throughput at the least monetary cost. The objectives of maximizing throughput

and minimizing cost are highly dependent on each other as increased cost typically results

in increased throughput and vice-versa.

Van Veldhuizen validated the concept that BBs exist and are useful in the multiob-

jective domain [184]. Even though the Schema Theorem was originally developed in terms

of single objective functions, the applicability of the Schema Theorem is easily extended to

multiobjective functions. Van Veldhuizen states that BBs are not handled differently by

MOEAs as compared to EAs. Even though an MOEA simultaneously optimizes multiple

fitness functions, the genotypical (decision variable) representation of potential solutions

(population members) in an MOEA is no different than the genotypical representation

used in a single objective EA. Since the same genotype structure is used in both single

objective EAs and MOEAs, MOEA BBs are defined the same as single objective EA BBs.

A symbolic definition of a single objective BB is presented in Definition 1 and defines a

BB as a combination of gene values (alleles) that are located in distinct but not necessar-

ily adjacent locations (loci). The definition of a good single objective BB is presented in

Definition 9
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Definition 9 (Good Single Objective Building Block): A good single objective BB,

meets the requirements of Definition 1 and the mean fitness value of the BB evaluates to a

good fitness value over a number of different allelic combinations placed in the unspecified

loci. 2

Even though single and multiobjective BBs are identically defined, good BBs are

not identical in the single objective and multiobjective domains. The difference lies in the

comparison conducted in order to determine which of two selected population members

have the best fitness. In a single objective problem, a direct comparison of the two fitness

values is conducted and one clearly can determine which of the two fitness values is better

or the fitness values may be equal. In the context of multiobjective optimization and

MOEAs, Pareto dominance criteria is used to determine the nondominated population

member(s). Hence a good multiobjective BB is presented in Definition 10.

Definition 10 (Good Multiobjective Building Block): A good multiobjective BB,

meets the requirements of Definition 1 and the mean fitness value of the BB dominates

(evaluate to a good fitness value as compared to) the fitness values of other BBs or popu-

lation members in comparison testing based on Pareto dominance criteria. The evaluation

of a multiobjective BB is conducted over a number of different allelic combinations placed

in the unspecified loci. 2

Therefore the structure of a multiobjective BB is identical to a single objective BB

but the determination of the quality of a multiobjective BB is based upon Pareto domi-

nance criteria. In the remainder of this effort, the statement ‘a good BB’ refers to either

Definition 9 or Definition 10 dependent on the domain of interest, i.e., a discussion of good

BBs in MOEAs implicitly refers to Definition 10 as defining a good BB.

It is necessary to define additional terminology to remain consistent with the ter-

minology used in the EA field. The term objective is defined as the goal of the MOP to

be achieved and is represented by the functions fk. The objective space, Λ, refers to the

coordinate space within which vectors, fk(~x), resulting from the MOP evaluation of the k

objective functions, are plotted [184].
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The genotype and phenotype spaces are important to understand and characterize

when discussing any MOP. The characteristics of the genotype and phenotype spaces of

an MOP may directly effect the search process and the ability of an MOEA to generate

high quality results. This is especially important when analyzing why a particular MOEA

performs poorly in solving various MOPs. In classifying MOPs, two broad categories exist:

unconstrained and constrained MOPs. Besides these two broad categories, MOPs can be

analyzed in terms of the characteristics of their spaces and the solution sets generated.

In general, one initially selects an MOP mathematical model with (P∗, PF∗) and

then discretizes this model. This discretization leads to a computational model (discrete

algorithmic formulation with finite word length data structures) that an MOEA can process

in order to attempt to solve the problem. The set PFtrue is defined by the functions

composing an MOP; it is of fixed size, fixed resolution, does not change, and represents

the solution set that the MOEA is attempting to find. The set PFtrue can be considered a

subset of the theoretical true solution, PF ∗, of potential infinite resolution and cardinality.

The theoretical P∗ and PF∗ sets in many MOPs cannot be characterized since their spaces

may encompass the reals (R) or a subset of the reals as specified in the previous definitions.

Since one cannot represent solutions of infinite precision on a computer, P∗ and PF∗

cannot be truly realized. An example requiring infinite precision decision variables is seen

in the attempt to represent π on a computer; π cannot be represented at its true, infinite

resolution.

The discrete genotype solution set Ptrue of an MOP may be connected, disconnected,

symmetric or scalable. The discrete phenotype solution set, PFtrue , of an MOP may

have the characteristics of being connected, disconnected, concave, or convex. A discrete,

connected Pareto front consists of points that form a single curve or surface in which there

are no discontinuities between points. Since the Pareto front is discretized, gaps may exist

between individual points points cannot exist between these gaps due to the resolution of

the decision variables used. MOP attributes can be determined through a visualization

of the solution sets. An increase or decrease in the resolution of the MOP formulation,

as explicitly specified in the MOEA, may result in a change in the characteristics of the

solution sets [190].
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Additionally, a continuous MOP must be discretized when formulated on any current

computer system. This discretization is based on the hardware limitations of the computer

system used. Since the resolution of the decision variables can have an effect on the

solutions generated, this illustrates the importance of reporting both the genotype and

phenotype resolutions used when attempting to solve an MOP on any real-world computer

system. It must also be recognized that an MOEA may perform well at a given resolution

but that does not guarantee “good” performance at other resolutions when applied to a

given MOP.

Unconstrained MOPs are the class of MOPs most frequently referenced in the liter-

ature in terms of test suites and testing of MOEAs [31, 44, 114, 184, 207]. Unconstrained

MOPs are those MOPs in which the k objective functions are solved simultaneously with

no additional constraints. Unconstrained MOPs vary in levels of complexity but gener-

ally may be easier for an MOEA to search and solve than constrained MOPs since all of

the search space consists of feasible solutions [31, 44]. Constrained MOPs are typically

more difficult problems for MOEAs to attempt to find solutions to than unconstrained

MOPs [31, 44, 46, 138, 141, 160, 213, 215]. Constrained MOPs may have multiple con-

straints on each of the k objective functions and these constraints may be strict equality

and/or inequality constraints. The constraints, which can be linear or non-linear, restrict

the feasible area of the search space, in some cases so that the percentage of feasible solu-

tions is << 0.001% of the total search space. It is important to understand the definitions

of feasible and optimal solutions:

Definition 11 (Feasible Solution): A feasible solution is a solution containing the

choice of decision variable values that satisfies all of the constraints [159]. 2

Definition 12 (Optimal Solution): An optimal solution is a feasible solution that

obtains objective function values as good as those of any other feasible solutions [159]. 2

MOPs in which the feasible search space is greatly restricted due to constraints

imposed on the problem may pose a challenge for an MOEA to generate any feasible so-

lutions. This brings up an interesting dilemma. If a larger percentage of the search space

is infeasible than feasible, how does the algorithm handle this infeasibility? Additionally,
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how can the MOEA ever find a feasible solution besides by pure chance and the stochas-

tic nature of EAs? The answer to these two questions lie in the ingenuity of computer

engineers and computer scientists in constraint handling techniques. A limited number of

MOEA researchers have addressed constraint handling issues and have proposed a vari-

ety of methods for implementation [31, 44, 46, 138, 141, 160, 213, 215]. These constraint

handling techniques are described in detail in Section 2.8.

2.6 MOEA Algorithm Domain Formulation

An MOEA’s complex structure can lead to confusion in discussing the algorithmic

process that takes place. To prevent further inconsistencies in discussions of MOEAs, Van

Veldhuizen [184, 190] refined Pareto terminology to clarify MOEA discussions. He stated

at any given generation of an MOEA, a “current” set of Pareto optimal solutions (with

respect to the current MOEA generational population) exists and is termed Pcurrent (t),

where t represents the generation number. The set PFcurrent represents the Pareto optimal

solutions found within the current generation when analyzing the current population in

isolation of the other generations and the entire search space. These solutions may not be

optimal with respect to the entire search space, and hence may not be globally optimal

but are the best solutions currently existing in the population. Because of the manner in

which Pareto optimality is defined, Pcurrent (t) is always a non-empty solution set [184].

The sets Pcurrent (t), Pknown , and Ptrue are solution sets of MOEA genotypes where

each set’s respective phenotypes form a Pareto front. We term the associated Pareto

front, the solution set in phenotype domain, for each of these solution sets as PFcurrent (t),

PFknown , and PFtrue . In the remainder of this document, the Pareto front is presented

as the solution set since Pareto dominance criteria is used and the process of finding

the solution sets takes place in the phenotype domain. Knowledge of the respective

Pareto optimal set is implied as the search process manipulates genotypical information

in order to generate “better” solutions. When using an MOEA to solve MOPs, the im-

plicit assumption is that one of the following holds: Pknown = Ptrue, Pknown ⊂ Ptrue, or

PFknown ∈ [PFtrue, PFtrue + ε] (PFknown is within some ε distance of PFtrue ) over some

norm (Euclidean, RMS, etc.) [31, 184].
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Solutions on the Pareto front represent optimal solutions in the sense that improving

the value in one dimension of the objective function vector leads to a degradation in at least

one other dimension of the objective function vector. The decision maker makes a tradeoff

decision when presented with a number of optimal solutions for the MOP at hand, i.e., the

Pareto front. There exists a difference in terminology between an acceptable compromise

solution and a Pareto Optimal Solution [70]. The decision maker typically chooses only one

of the associated Pareto optimal solutions, ~u ∈ P∗, as being the acceptable compromise

solution, even though all of the solutions in P∗ are nondominated. In reality the decision

maker chooses a solution ~u ∈PFknown as the acceptable compromise solution. The set P∗

may only be realizable when utilizing decision variables at a comparable resolution to the

hardware chosen that result in fitness values that remain within the hardware precision

limitations. This is a result of our inability to represent real-valued solutions of infinite

resolution on current computing platforms.

In the execution of an MOEA, the decision maker chooses a solution from the solution

set provided by the MOEA, i.e., a solution from the set Pknown , since finding the set P∗

may not be achievable. The decision maker takes into account the human’s preference

in selecting a solution from the set of solutions Pknown . The human preference factor

encourages engineers and scientists to attempt to find a good distribution of points, as well

as all of the points, in the Pareto optimal set (Ptrue , which is realizable on the computing

platforms used) since the decision maker’s preferences may not be known a-priori or may

change over time. Even though the decision maker’s preferences may change over time

or all points may not be considered equally preferred in the decision maker’s mind, the

set Ptrue (and Pknown ) cannot change unless the objective functions and corresponding

constraints are modified (or the MOEA is modified and executed again). Therefore one

can conclude that if the MOEA finds a large number of, and a good distribution of, points

along Pknown (and ideally Pknown = Ptrue ), the decision maker can change their preferences

and still select a good tradeoff solution (which may be an optimal solution).
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2.7 MOEA Archiving

Most MOEAs use a secondary population, also referred to as an archive or an ex-

ternal archive, to store a cumulative set of nondominated solutions found throughout the

generations of an MOEA [184, 186]. 2 Many MOEAs store points into an archive for

post-processing while others actively use this set of points throughout the search process.

Maintaining the good solutions generated throughout MOEA execution illustrates the need

for an efficient method of storing points in the archive and a detailed description of the

process of adding and removing points from the archive.

In many MOEA implementations, an MOEA stores the current Pareto front points,

PFcurrent (t), found with respect to the population of generation t into the archive at

the conclusion of generation t. Different secondary population storage strategies exist;

the simplest is to maintain a running archive of members from PFcurrent , to which the

set PFcurrent (t) is appended following each generation. At the conclusion of the MOEA

execution, the archive contains the combination of all of the PFcurrent sets found at the

conclusion of each generation. The archive must be analyzed in order to determine which

of the PFcurrent members in the archive are members of the final set of solutions found by

the MOEA, PFknown .

It is important to understand that each PFcurrent (t) set generated and stored into

the archive is optimal only with respect to the population members it was compared to in

generation t. As additional PFcurrent sets are included in the archive, equivalent, better,

or even worse solutions may be present in these sets. Since the points in each PFcurrent set

most likely have not been compared to all of the other points in the archive prior to

inclusion, a comparison between all of the points in the archive must be conducted. This

comparison must be made in order to determine which of the points present in the archive

are nondominated and belong in the final solution set generated by the MOEA, PFknown .

Another method of handling the inclusion of new points into the archive is to conduct

the Pareto analysis prior to the addition of points to the archive. If the comparison is

completed each time a point is considered for placement into the archive, the archive is

2A secondary population is referred to as an archive throughout the remainder of this document.
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denoted as Pknown (t) and contains the known Pareto front points generated from generation

1 through generation t. This is not to be confused with PFknown , the known Pareto front

found through termination of the MOEA. As nondominated points are found and included

in the archive, the points present in the archive and the cardinality of the archive changes.

Following each generation, t, the population members in PFcurrent (t) and the archive are

analyzed. This Pareto analysis is conducted to determine which of the combined members

are elements of PFknown (t) and should remain in the archive. The archive is modified

to reflect only the set of nondominated members (PFknown (t)). At the conclusion of any

generation in the MOEA search process, a set, PFknown (t), exists explicitly defining the

“best” or nondominated solutions generated by the MOEA. This strategy of continually

analyzing the points considered for inclusion into the archive may be necessary if an MOEA

is required to select members from PFknown (t) throughout the search process.

At the conclusion of an MOEA search process, both archiving strategies result in the

exact same solution set, PFknown . The difference in the archiving strategies lies in the point

in time in which the processing to find the nondominated solution set takes place. Most

MOEAs keep an archive so that “good” solutions found throughout the search process

are not lost. An external archive allows the number of nondominated solutions stored

to be greater than the population size. If an archive is not used, then the MOEA can

only store a maximum number of nondominated solutions equal to the population size

specified in the MOEA. An archive can use dynamically allocated memory so as to prevent

a restriction on the cardinality of PFknown . At termination of the search process PFknown is

presented as the final solution set. Additionally, PFknown (0) is defined as the empty set

(∅) and PFknown alone as the final set of Pareto optimal solutions returned by the MOEA

at termination [184, 219].

2.8 Constraint Handling in MOEAs

Many of the problems discussed in the literature are unconstrained MOPs. Uncon-

strained problems may be easier for MOEAs to solve as the feasible search space is not

restricted and these MOPs may require less processing than constrained MOPs. This is

due to the additional overhead of calculating the constraints, which can be substantial if
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a highly complex, nonlinear constraint set is used. Soft constraints (inequality) or hard

constraints (strict equality) may be imposed on the MOPs. Additionally these problems

may be continuous or discrete, contain disjoint Pareto fronts or continuous Pareto fronts,

be integer based or real-valued, etc. All of these factors that be considered in deciding how

the MOEA should handle the constraints. With the increased use of MOEAs for solving

MOPs, constrained MOPs are an area of great interest. This is especially true since there

exists no one best MOEA method of handling constraints in all MOPs.

A number of constraint handling methods have been implemented in single objec-

tive optimization problems solved by EAs but much less development has been done with

MOEAs. Additionally, discrete optimization problems with hard constraints are difficult

problems to solve with MOEAs [213, 215, 216, 218]. This is especially true if the con-

straints drastically reduce the size of the feasible space. Three approaches to dealing with

constraints and infeasible solutions are presented and include the discarding of the infea-

sible population members, penalizing the fitness values of the infeasible members and the

repair of infeasible members.

One method, that is an extension from the single objective EA area, is discarding all

of the infeasible members in the population, sometimes referred to as the death penalty

method [140]. This appears to be an acceptable method but in fact does not always yield

good results, dependent on the size of the feasible space in relation to the total size of the

search space. If the size of the feasible space is extremely small with respect to the size of

the infeasible space, an MOEA may have to discard whole populations of individuals prior

to finding one feasible solution. In this situation, it is possible for the MOEA to execute

for an extremely long time before generating even a single feasible solution. This method

may be extremely ineffective and may generate solutions that exhibit a poor fitness. The

goal of utilizing an MOEA is to generate solutions in an efficient and effective manner. In

highly constrained MOPs, the discarding of infeasible solutions can be detrimental to the

efficiency and effectiveness of the algorithm [216].

Another easily implemented method is to execute the MOEA without regard to the

constraints and then post-process the solution sets to remove the infeasible solutions. This

method assumes that through the search process that an MOEA finds a large portion of
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feasible members even though the MOEA is attempting to solve a different optimization

problem, the unconstrained MOP. An assumption is also made that the feasible points

are nondominated with respect to infeasible points. If infeasible solutions dominate the

feasible solutions, PFknown would not contain any feasible solutions. In order to obtain the

feasible points found, the MOEA must store the entire population after each generation to

an archive or check for feasible solutions to store after each generation. This method may

be ineffective as the MOEA is attempting to solve the unconstrained MOP even though

the researcher would like to obtain the solution(s) to the constrained MOP. However, this

method does not require a large amount of overhead but assumes that the constrained and

unconstrained fronts are relatively close to one another or identical. If the constrained and

unconstrained fronts are not close to each other, one might expect the performance of the

MOEA using this method to be unpredictable and the search process may be wasted.

Penalty functions have been used in the single objective area [140] to penalize po-

tential solutions that are infeasible. Penalty functions degrade the fitness values of the

infeasible population members, but still allow their BBs to remain in the population and

potentially influence the final solution. Penalty functions are typically based on some type

of distance measure in which a member that is further from the feasible region is penal-

ized more than a member that is closer to the feasible region. Static and dynamic penalty

functions exist. Static methods penalize the constraint violations an identical amount each

time the constraint is violated. Dynamic penalties vary the amount of the penalty based

on the number of generations that have been completed [140].

Michalewicz used the annealing concept of simulated annealing to penalize infeasible

population members [138]. In this annealing penalty function, a temperature parameter

is used to decrease the amount of penalty inflicted on infeasible members over time. This

is similar to the annealing process used in simulated annealing in which the temperature

is lowered over time. The lowering of the temperature increases the selective pressure

and hence results in a lower probability of choosing infeasible solutions as the algorithm

executes. This is the traditional exploration versus exploitation tradeoff. One would

like the algorithm to explore as much as possible at the start and migrate to exploiting
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as much as possible towards the termination of the algorithm and hence generate good

solutions [140].

Adaptive or dynamic penalties are yet another alternative to the fixed decreasing

penalty term used in the simulated annealing penalty function. Adaptive penalties can

be implemented in different ways but one method is to adapt the penalty based on the

feasibility of the population [140]. In this adaptive scheme, if the best members of the

population remain feasible, then the penalty term is slowly decreased, whereas if the best

members of the population are infeasible, then the penalty term is increased. The difficulty

in using penalty functions for MOPs is in deciding which criteria to use in implementing a

penalty function. Optimal parameter settings for penalty functions are sometimes difficult,

if not impossible, to determine.

Another penalty technique involves the use of a modified binary tournament selection

operation to compare two solutions. This operation results in the feasible solution always

being selected [101]. In this technique, if both solutions are infeasible then the one “closest,”

in terms of a distance metric, to the constraint boundary is selected. If both solutions

are feasible, then Horn’s Niched Pareto MOEA is employed (discussed in Chapter III,

Section 3.1.1.3).

Ray, Kang, Chye’s penalty approach is yet another method to handle constraints in a

Pareto fashion [160]. Ray, Kang, Chye’s method is described as performing a nondominated

check of the constraint violations. Three different checks are made of the entire population.

In the first, a Pareto ranking is performed using the k objective function values and then

storing these in a vector Robj . A second Pareto ranking is performed using the J constraints

without the objective function values and stored in the vector Rcon. A feasible solution has

zero constraint violations and thus obtains a Rcon value of 1. The third Pareto ranking,

Rcom combines information from the other two rankings. The objective function and

constraint violations are used together but there is no need for a penalty parameter as the

criteria are compared individually in a domination check. Following the computation of

all of the ranks, the feasible solutions with the best rank in Rcom are placed into the new

population. If there remains available space, crossover and selection are applied to the

remaining solutions based on the rank Robj for selection and Rcon for crossover.
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Deb presents an alternate approach to the constraint handling issue in MOEAs,

presented in Definition 13 [46, 50]:

Definition 13 (Pareto Based Constraint Handling Selection):

In comparing two solutions, i and j:

1. If both solutions, i and j, are feasible, choose the solution with the “better” value.

2. If solution i is feasible and solution j is not, choose solution i.

3. If neither solution, i or j, is feasible, but solution i has a smaller overall constraint

violation, choose solution i.

2

Deb’s approach combines the concepts of Pareto dominance with that of constraint

handling. This approach is conceptually straight forward as the selection process is similar

to that of a Pareto based selection mechanism. The problem with this method appears

when analyzing the third case, if neither solution, i or j, is feasible, but solution i has a

smaller overall constraint violation, choose solution i. The issue that arises is in deter-

mining which of the members has the overall higher constraint violation. For example,

consider an MOEA selected to solve a two objective constrained MOP with constraints.

Assume that two population members are compared and they are both infeasible. If there

are three constraints and both members violate two of the constraints, it is difficult to

determine which member should be selected.

A problem also arises in a situation where the three constraints are of different orders

of magnitude and resolution. If population member 1 violates the constraints by 3.40 and

1299.45 for constraints 1 and 2, and population member 2 violates the constraints by

1313.65 and 127.32 for constraints 2 and 3, one might assume that population member 1 is

better since the sum of the violation is less. The problem is that population member 1 may

be very close to violating constraint 3 but population member 2 is very far from violating

constraint 1. It appears that population member 1 is preferred but overall population

member 2 is further from a constraint violation due to its value with respect to constraint

1. Additionally, in terms of actual distances from the constraint, a value of 127.32 may
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only be two “steps” away from the constraint boundary whereas a value of 3.40 may

be 100 “steps” away from the constraint boundary due to the resolution of the decision

variables and constraints. A step is defined as the number of feasible solutions that exist

in a straight line from the constraint boundary to the population member in question at

the given resolution. The situation described above can lead to an incorrect choice of the

“better” population member. However, note that this method may be one of the easiest to

implement with non-linear real-valued constraints where utilizing a mechanism to repair

(mutate a population member until it is feasible) a population member is not possible. It is

also possible to normalize the constraint values to obtain a better indication of differences

in constraint violations. In [46], Deb compares his method, in Definition 13, to Ray, Kang,

Chye’s penalty approach and shows that his Pareto Based Constraint Handling Selection

performs better on a limited test suite.

Laumanns, Thiele, Deb, and Zitzler propose an approach to solving MOPs through

the use of ε approximations and the formation of ε-approximate and ε-Pareto front sets [122].

The authors provide the pseudocode for implementation of these concepts into an algorithm

but never actually implement them. The idea is that if one can find an approximation of

an area in the phenotype space that may move towards the Pareto front set, this approx-

imated set would be more useful to provide the decision maker than just providing an

enormous set of points (PFknown ) to sift through. The approximation can then be used

by the decision maker to isolate regions of the Pareto front to further explore and reduce

the size of the Pareto front set. Additionally with an approximation, it is conceivable that

through subsequent generations of the MOEA, PFtrue can be found. ε-Dominance, the

ε-approximate Pareto front Set and the ε-Pareto front Set are defined as [122]:

Definition 14 (ε-Dominance): Let f, g ∈ R+m . Then f is said to ε-dominate g for
some ε > 0, denoted as f Âε g, iff ∀i ∈ {1, . . . ,m}:

(1 + ε) · fi ≥ gi (2.9)

2
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Definition 15 (ε-approximate Pareto front Set): Let F ∈ R+m be a set of vectors
and ε > 0. Then a set Fε ⊆ F is called an ε-approximate Pareto front Set, if any vector

g ∈ F is ε-dominated by at least one vector f ∈ Fε, i.e.,

∀g ∈ F : ∃f ∈ Fε such that f Âε g. (2.10)

The set of all ε-approximate Pareto front Sets of F is denoted as Pε(F ). 2

Definition 16 (ε-Pareto front Set): Let F ∈ R+m be a set of vectors and ε > 0.

Then a set Fε ⊆ F is called an ε-Pareto front Set of F if:

1. F ∗
ε is an ε-approximate Pareto front Set of F , i.e., F

∗
ε ∈ Pε(F ), and

2. F ∗
ε contains Pareto front Points of F only, i.e., F

∗
ε ⊆ F ∗.

The set of all ε-Pareto front sets of F is denoted as P ∗
ε (F ). 2

Laumanns, et al., state that the concept of ε-Pareto front sets is not new [122]. The

problem of reducing the number of points that the decision maker must analyze is one

that is of great importance and looked at more extensively in the OR and decision making

fields. ε-Pareto front sets may be useful in situations where the researcher is seeking to

reduce the number of points presented to the decision maker. In difficult MOPs, many

MOEAs do not find points that are close to PFtrue . In these cases the ε Pareto front

set concept may yield worse solutions than a standard Pareto Set implementation. The

goal of the ε-Pareto front set approach is to reduce the number of points found, but this

may not be a worthwhile goal for those MOPs where very few solutions are found or only

solutions of “low” quality are found. Hence the ε-Pareto front set approach is useful once

the search process is somewhat fine-tuned and a large number of solutions are generated.

In other cases, this approach may be ineffective. In the context of this dissertation, the

ε-approximate approach is not considered since a good distribution of, and a large number

of, points on the front are the objective.

Repairing infeasible population members may be a useful alternative to the other

constraint handling approaches if a large portion of the initial population is infeasible [140].

Repair is the process of mutating a population member so as to meet the constraints
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imposed on the objective functions. As previously mentioned, the death penalty method

could cause the removal of the entire population in a problem with a large infeasible space.

In a problems with small feasible regions, a repair of the infeasible population members

may be less time consuming then re-initializing the population in the hope of generating

a feasible member.

The GENOCOP III system [22, 23, 138, 140, 141] repairs infeasible solutions through

the use of a reference set. In this implementation, a set of feasible population members

is stored. Once an infeasible solution is encountered, a feasible solution is selected from

the feasible reference set. The system randomly generates points on a line between the

infeasible and feasible solution until a new feasible solution is generated. The new feasible

solution replaces the infeasible individual in the population. The disadvantage of this

method is that it requires a feasible reference set to begin with. In problems where a feasible

point is not known a-priori and the feasible space is much smaller than the infeasible space,

this method could be inefficient. Other possibilities for repairing population members may

be more problem and encoding specific. One example of this is the repair of population

members when using integer based decision variables and strict equality constraints [216].

One can randomly choose decision variables to repair and adjust their value until the

constraints are satisfied. It is also noted that the incorporation of additional problem

domain information is useful in aiding the search process [74] and hence should be useful

in aiding the repair process versus the use of a generic repair mechanism.

Each of the aforementioned methods for handling constraints have advantages and

disadvantages. The use of any one method may be based on the characteristics of the MOP

or the computational requirements to implement a particular method. To obtain effective

results when utilizing constraint handling techniques, one must have a good understanding

of the characteristics of the MOP and then make an intelligent choice as to the constraint

handling method to use. In any MOP, a constraint handling method that takes into account

problem domain information typically may yield “better” solutions than a method that

is not tailored to the specific MOP or class of MOP. Additionally, the overhead of the

constraint handling method is an important factor to consider. Many real-world highly

constrained MOPs take a considerable amount of CPU time to calculate their objective
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function values and the additional overhead of some of the mentioned constraint handling

approaches may not be desired. The constraint handling approach that is used in this

research effort involves analyzing the MOP and the potential constraint handling methods

to make an intelligent decision as to the method that appears to offer the best potential to

obtain good results. In situations where problem specific methods have been designed and

tested, these problem specific methods are selected over the generic methods previously

mentioned.

2.9 MOEA Ranking

Many MOEAs operate using a standard Pareto dominance analysis of the population

but there are others that use a ranking scheme. Rank based fitness assignments were first

proposed by Goldberg [74] and later used in a number of MOEAs [61, 64, 66, 68, 92, 176,

183, 213]. The specific rank assigned to each population member is dependent on the

scheme used. The rank assignment may be based on the ranked front that each population

member is assigned to [74], or the number of population members that dominate a specific

point [64].

The Pareto ranking scheme proposed by Goldberg involves calculating the Pareto

front, assigning members of the front rank 1, calculating the Pareto front of the remaining

dominated members, assigning the new front the next incremented rank and repeating the

process. At the conclusion of the ranking process, each population member has an assigned

rank from 1 to the number of fronts found. Fonseca’s method involves assigning population

members a rank equal to the number of points that dominate it [64]. This scheme assigns

nondominated points a rank of 0 and the dominated members a rank equivalent to the

number of points that dominate them. Zitzler and Thiele use a more complex ranking

scheme [213, 215]. Their method uses a secondary population and calculates the rank of

a population member based off of the proportion of evaluated members that it dominates.

However, this scheme does not assign all of the Pareto front points the same rank as is done

in other ranking schemes. Once ranking is complete, all of the MOEA operators execute

as they would in an MOEA that does not implement ranking. Analyzing the efficiency
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shows that Goldberg’s [74] and Zitzler’s [183] method are the least efficient but an in-depth

effectiveness study has not been completed.

2.10 MOEA Niching, Fitness Sharing, and Mating Restrictions

Niching and fitness sharing are MOEA operators for which a fair amount of research

has been conducted. The main idea is that EAs tend to converge to a single solution over

time. In the case of MOEAs, convergence to a single solution is undesirable as one would

like to find as many points on the Pareto front, PFknown , as possible. Further, one would

like these points to be evenly distributed across the front if one cannot generate the entire

Pareto front. The concepts of niching and fitness sharing attempt to prevent an MOEA

from converging to a single solution or a small, localized area of the Pareto front. Niching

operators can operate in the genotype or phenotype spaces and attempt to restrict the

generation of points within a certain distance of existing points [64]. Niching operators are

also referred to as crowding operators and many MOEAs use these operators [47, 64, 69,

93, 94, 176, 184].

In an MOP with a large number of points contained in PFtrue , where the Pareto front

forms a continuous curve or surface, one would like to obtain a final solution set, Pknown ,

consisting of points evenly spaced along the curve or surface. This is true of MOPs of

varying characteristics. Even if an MOEA does not find all of the points in PFtrue , or any

for that matter, one would like the MOEA to generate a good distribution of points across

the Pareto surface(s) found versus a tight cluster of points existing in only one area of the

surface.

Niching can be accomplished through the use of a parameter, σshare, which specifies

how close solutions in Rn (genotype) or Rk (phenotype) can be [93, 94]. If an MOEA gen-

erates two points that are within this σshare distance, one of these points is replaced in the

population with another point that does not violate this distance constraint. A difficulty

with implementing niching is in determining the value to use for σshare. If knowledge exists

as to the number of niches (areas of local optimum), ni, that exist in the solution set for

the MOP, this parameter can be set fairly easily, otherwise this setting is not so obvious.
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In most real-world problems, the number of local optima is not known, and setting niching

parameters is difficult.

Niching can also be used in conjunction with a selection operator to aid in obtaining a

good distribution of points along the Pareto surface. In this method, the next generation’s

population is restricted to only solutions that meet the niching requirements. A distance

metric D is used in order to determine how far apart population members reside in relation

to other population members. The distance metric can be the Hamming Distance (first

norm), the Euclidean distance (second norm) or the Max-based distance (∞-norm) [64] to

name a few possibilities. A distance metric can be used in isolation or can be used with a

niche count, ni to allow up to a certain number of solutions to reside in a specific area of

the space [94].

Fitness sharing is similar to niching in that its goal is to keep a good distribution of

points along the front but completes this through a modification of the fitness values. The

population members’ are assigned fitness values based on the distance between members

and the average fitness values of the entire population [93]. Integration of niching into the

fitness function maintains the genetic material of the population members that would have

been removed by other niching schemes but instead induces a type of penalty in the fitness

value assignment.

Goldberg [74], and later Fonseca and Fleming [64], presented the use of mating

restrictions to avoid competition between population members that are a large distance

from each other. The mating restriction assumes that population members close to each

other, defined by some Euclidean distance metric, are similar in the genotype domain.

A parameter σmating is presented for mating restrictions. σshare and σmating are useful

in reducing the size of the Pareto front set while maintaining a uniform distribution of

population members across the front.

Typical mating restriction operators disallow mating between individuals that are

further apart than a predefined σmate value in terms of their phenotype distance from each

other. While this is one idea of what a mating restriction should be, there are others.

Some researchers feel that instead of generating distinct species by isolating the mating
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between those of similar attributes, they should be preventing incest by allowing mating

only between individuals that are different enough [31].

A few MOEA researchers have developed niching and fitness sharing variants for use

in MOEAs with the goal of finding equidistantly spaced points on PFknown . Fonseca and

Flemming [69] proposed the use of fitness sharing in conjunction with ranking. In this

method, the fitness sharing occurs in the phenotype space and only between solutions with

the same rank. They compare the distance between two points to an a-priori specified

σshare parameter. If the distance is less than the σshare value, then the niche count is

adjusted. Srinivas and Deb [176] implement a similar scheme but calculate the distance in

genotype space instead.

Horn [93, 94] implements niching in an entirely different manner, referred to as

equivalence class sharing. In his implementation, the selection operator is a modified

Pareto based binary tournament selection. This operator selects a solution if it dominates

other population members randomly selected and it dominates a randomly selected set of

population members of size tdom. He further states that fitness sharing only occurs if neither

of the two solutions dominate each other. In this situation, the niche count is computed

by counting the number of population members that are within a σshare distance of the

member in question. The solution containing the smaller niche count (has fewer members

in its immediate area) is selected.

A few other variants can be found in the literature. One uses the ranking scheme

in Goldberg [74] combined with a phenotype sharing, another uses both phenotype and

genotype distances to calculate the niche count, and in yet another variant, ranking is im-

plemented but the sharing is not restricted to solutions containing the same rank. Deb [47]

presents a niching scheme, referred to as crowding that does not use a σshare parameter.

Other authors have proposed various methods that use different hypervolumes in deter-

mining if two points are close to each other

The selection of the σshare parameter directly effects the performance of the niching

method, as does the population size. There is no clear evidence to support the use of one

niching scheme over another, although niching as a whole typically improves the results of
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MOEAs [47, 64, 69, 93, 94, 176, 184]. Like many of the other operators discussed, there is

no one best niching method identified in the literature.

2.11 MOEA Theory

In order to attempt and solve MOPs efficiently and effectively, an in-depth under-

standing of EAs, MOEAs, and their associated theory is necessary. With an understanding

of the underlying theory, one has the ability to evaluate and compare the various ap-

proaches, or one’s own approach for efficiency and effectiveness when applied to a variety

of problems. Additionally, one may need an effective approach for only one class of problem

or a generalized approach to solve a variety of problems with varying characteristics. This

is a problem for researchers as the amount of developed theory for EAs is rather large but

that for MOEAs is not quite as large.

One important concept, not given vary much attention in the MOEA community, is

that of BBs and their applicability to the MOEA domain [26]. Van Veldhuizen’s work is

the only published research discussing the usefulness and advantages of explicitly finding

and manipulating BBs in this domain [184, 190]. Using his work as an initial starting

point into explicit BB-based MOEAs, this research effort concentrates on the concept of

explicit manipulation of BBs. A large number of MOEA publications use implicit BB-based

MOEAs as compared to explicit BB-based MOEAs as Van Veldhuizen and this research

addresses [26]. The explicit use of BBs in an MOEA involves the MOEA identifying good

BBs and combining those good BBs to yield good solutions to the MOP. The identifica-

tion of BBs and their effect on the end results of the MOEA, Pknown and PFknown , is an

important analysis to make when attempting to advance the theory of MOEAs and MOP

problem solving.

The theoretical foundation of MOEAs is based on single objective EA theory with the

integration of Pareto concepts. While both of these areas have existed for some time now,

the combination of the two fields leave a gap in some of the developed theory. Until re-

cently, there has been little published theory related to MOEAs, convergence of MOEAs,

convergence rates of MOEAs, population sizing of MOEAs, and parallel MOEAs. The

major published theoretical analysis conducted for MOEAs is limited to publications by
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Van Veldhuizen [184, 189], Deb [44], Hanne [85], Coello Coello, Van Veldhuizen and La-

mont [31], Laumanns [122], and Rudolph [162, 163, 164, 165, 166, 167]. While several

researchers have made contributions to MOEA theory [31, 44, 85, 163, 164, 167, 184], the

field is not fully defined and additional theoretical contributions are needed and welcomed.

The works mentioned contain MOEA theory in the form of definitions, corollaries, the-

orems, and proofs. Some researchers continue to develop their own MOEAs without a

discussion of the underlying theory and without answering the basic questions, Why is my

MOEA better than another? And is my MOEA theoretically different than others?

These questions are not easy to answer, and in some cases, the MOEA theory may

not yet be developed enough to support such conclusions. This reinforces the need for

theoretical research and advancement in the area of MOEAs. Additionally, the number

of application based publications is much greater than that of theoretical publications

as solving MOPs is the goal of many MOEA researchers [26, 184]. This is an area of

concern as more and more researchers are utilizing MOEAs to solve real-world MOPs. The

concern is warranted as many of the application based publications do not describe how the

parameter values used in the MOEAs are selected or why certain operators are chosen over

other operators. This is disconcerting as MOEA researchers are attempting to increase the

efficiency and effectiveness of their MOEAs, yet some do not explain, theoretically, why

certain modifications to their algorithms increase or decrease performance.

Much of the theoretical work related to MOEAs has to deal with that of MOEA

convergence to the solution sets, Ptrue and PFtrue . Rudolph [163, 166, 167] presents a

convergence theorem for MOEAs using a stochastic transition matrix to define a chain of

population movements and based on the generalization of finding optimal elements within a

partially ordered set. He later presented a hypothesis and corollary for MOEA convergence

when the population size is held constant and shows for a particular ES that the MOEA

converges with probability 1 to Ptrue . Hanne presents another convergence theorem, that

concentrates on continuous objective functions, through the use of cones, efficient sets, and

other mathematics [84, 86].

The major areas of theoretical contributions have dealt with convergence to the

Pareto front [85, 163], relations and partially ordered sets [162, 164, 166], and Markov
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chain relations to MOEA convergence [167, 184]. There is limited work dealing with the

area of fitness functions, and test problem generators which is discussed in Chapter IV.

The major theoretical contributions published in the MOEA community, according to [31],

are summarized in Table 2.3.

Table 2.3: MOEA Theory [31]

Researcher(s) Paper Focus

Fonseca and Fleming [68] MOEA mathematical formulations

Rudolph [163], Rudolph & Agapie [167] MOEA convergence

Van Veldhuizen and Lamont [185] MOEA convergence and Pareto ter-

minology

Van Veldhuizen and Lamont [189] MOEA benchmark test problems

Hanne (1999) [85] MOEA convergence and Pareto ter-

minology

Deb & Meyarivan [48], Deb et al. [52] Constrained test problems

Rudolph [162, 164] MOEA search under partially or-

dered sets

Ehrgott [58] Analysis of the computational com-

plexity of multiobjective combinato-

rial optimization problems

Rudolph [166] Limit theory for EAs under partially

ordered fitness sets

Laumanns et al. [121] Mutation control

Hanne [86] Convergence to the Pareto optimal

set

Contributions to to the MOEA field in terms of Pareto ranking schemes, niching

and crowding (σshare ), and restrictions on mating are more common [184]. Many of the

currently available publications discuss various implementations of the concepts aforemen-

tioned and present mostly validation studies with few proofs. One reason for the limited

number of proofs is the complexity associated with proving these conjectures and the over-

all difficulty in generalizing the concepts to all MOEAs. It is also noted that MOEA

population sizing theory is undeveloped and is a focus of this research effort.
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2.12 Summary

This chapter presents the EA background, MOEA background, and definitions nec-

essary to understand the results of this research effort. An overview of Evolutionary Al-

gorithms is presented to help the reader develop a good understanding of the evolutionary

process. A discussion of other optimization approaches is presented to illustrate the utility

of using an evolutionary approach to attempt and solve the types of problems that are

concentrated on, real-world MOPs of varying levels of complexity. The BBH is presented

to provide the reader with an understanding of what BBs are and how useful they can be

in the attempted solving of MOPs.

A discussion of MOPs is followed by a detailed overview of Multiobjective Evolu-

tionary Algorithms and their associated operators. The problem and algorithm domains

are discussed to clarify the notation that is used in the discussion presented. Approaches

for handling constrained MOPs are discussed to help the reader understand the rationale

for using specific methods in the testing and results presented from this research effort.

MOEA operators are discussed in detail in this chapter as these operators are an integral

part of generating good solutions. This leads into the next chapter and a more detailed

discussion of MOEAs and the metrics to evaluate their performance.

Theoretical analyses into the workings of MOEAs has been conducted and is sum-

marized in this chapter. This aids a researcher in identifying areas in the MOEA field

that have not been fully explored in terms of theoretical development. Deb states that

“the construction of all these test problems has been done without much knowledge of how

multiobjective GAs work” [43:25]. This statement illustrates the need for further theoret-

ical research to be done in the area of understanding how and why MOEAs work. This is

an area of active interest to the community for the reason that Deb states as well as the

goal of fully understanding MOEAs. A fuller understanding of MOEAs can lead to new

and potentially better MOEAs. Understanding the theory and the reasons why MOEAs

work and have certain properties leads to even more advances in the field. It is noted that

population sizing theory has not been developed for MOEAs as of yet. This research effort

makes, what is seen as, the first contribution towards MOEA population sizing theory and

is discussed in detail in Chapter VIII.
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III. Contemporary MOEA Development

A focus of this research effort is on the advancement of explicit BB-based MOEA ap-

proaches. The advancement of such approaches and their associated operators aids in the

development of an explicit BB-based MOEA that achieves increased efficiency or effec-

tiveness over other approaches to solving certain classes of MOPs. The current chapter

focuses on understanding MOEA approaches and metrics for evaluating MOEA results.

An understanding of MOEAs and MOEA metrics leads to improvements to explicit BB-

based MOEA approaches, operators, and theory which in turn leads to improvements to

the efficiency and effectiveness of such MOEAs. Prior to discussing the MOEA used to

conduct experimental data runs and validate associated concepts, a thorough discussion

of contemporary and recently implemented MOEAs is necessary. While some may view

contemporary MOEAs as just that, contemporary, and no longer used, that is not true in

the MOEA community. Contemporary MOEA approaches and associated operators are

still in use and appear in many recently implemented MOEAs.

This chapter presents a summary of some of the popular and highly referenced con-

temporary and recent MOEAs from the literature and a discussion of MOEA metrics [26].

Knowledge of contemporary and recent MOEA developments is important for MOEA re-

searchers to recognize and understand. Such knowledge aids a researcher in obtaining a

good understanding of the differences and similarities between various MOEA implementa-

tions and their associated operators. From this understanding one may develop new ideas

and insight into increasing the performance of his/her own MOEA. This background discus-

sion is provided as a resource to the reader to aid his/her understanding of the differences

between various MOEA approaches and ideas for incorporation into new MOEAs. This

understanding then leads to new developments or new breakthroughs in the advancement

of the state-of-the-art for the MOEA community.

The discussion presented in this chapter decomposes the MOEA field into implicit

and explicit BB-based MOEA implementations. Since the majority of MOEAs implicitly

manipulate BBs, explicit BB concepts are not typically discussed in the literature. This

chapter presents a clear and concise discussion of explicit BB-based concepts, and insight

into the advantages of explicit BB manipulation. Further, the discussion present in this
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chapter illustrates the limited amount of research conducted, previous to this effort, into

explicit BB-based MOEAs.

The second half of this chapter presents a summary and discussion of MOEA metrics.

The choice of a single or multiple metrics to use in the evaluation or comparison of the

performance of various MOEA approaches is an important issue to the MOEA community.

As a multitude of MOEA metrics exist to choose from, a researcher must be able to justify

the selection of specific metrics for use. Additionally, a researcher must also be aware of the

advantages and disadvantages of using certain metrics. A thorough summary of MOEA

metrics is presented followed by an evaluation of each metric and a selected set of metrics

recommended for use in the evaluation and comparison of MOEA approaches.

3.1 Multiobjective Evolutionary Algorithms

The first recognized MOEA is the Vector Evaluated Genetic Algorithm (VEGA)

implemented by Schaffer and published in 1984 [169]. Following Schaffer’s work, little re-

search into MOEAs was published until the mid 1990s when a number of new, “improved”

MOEAs began to appear in the literature [64, 93, 176]. The large gap in the time between

Schaffer’s work and the next published MOEA research may be attributed to the low com-

putational power, by today’s standards, of the computers available in the mid 1980s and

the fact that the MOEA field was in its infancy. The lack of computational power and

memory available in computers of the mid 1980s may have discouraged researchers from

conducting additional research into MOEAs as the MOEA field was largely unproven and

few publications existed. As computers became more powerful, more researchers began

to experiment with the concept of MOEAs but processing power and memory constraints

remained. Even in the early 1990s, EAs and MOEAs were typically implemented in a

fashion so as to conserve as much memory as possible but many times remained time

consuming algorithms to use. Many EA implementations performed bit manipulations

and stored population members in unsigned integer representations to conserve valuable

memory. The mGA and fmGA are two EAs that were engineered in a fashion to conserve

as much memory as possible [77, 78]. Considering that EA researchers were conserving as

much memory as possible to make it feasible to use such algorithms, it is understandable
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that little MOEA research was conducted. MOEAs typically require additional compu-

tational power and memory as multiple functions are evaluated and their values stored.

As computers with increased processing power and available memory became available in

the 1990s, MOEA research became more feasible and additional MOEA implementations

began to surface.

Initially, the first MOEAs were simple extensions to single objective EAs. Such

implementations typically were extensions of the SGA [93, 170, 176]. Extending the SGA

is the first logical step into implementing an MOEAs and there are a number of advantages

of this approach, including the reuse of existing code as well as using code that has been

thoroughly debugged through years of use. The interest in extending the SGA drew from

what appears to be a goal of implementing an MOEA that is conceptually “easy” to

understand, does not require substantial code modifications to an existing algorithm, and

is efficient in memory utilization. More recently, new and innovative ideas in engineering

MOEAs as well as improvements to existing MOEAs have been accomplished and resultant

research has drifted from the SGA [29, 30, 115, 213].

Some authors have looked to classifying MOEAs and MOPs. Van Veldhuizen presents

one of the most complete analyses of MOEA literature up to and including work completed

in 1999 [184]. Recently Deb has published a book on MOEAs and real-world applica-

tions [44] and more recently, Coello Coello et al. [31] have published a book containing

one of the most complete discussions on MOEAs. These publications address the theoret-

ical aspects of MOEAs as well as discuss a number of highly referenced MOEAs, issues

surrounding the use of MOEA metrics and test suites, and discuss the use of MOEAs in

real-world applications.

The classification of MOEAs and MOPs is an important benefit to the commu-

nity. A classification provides insight for researchers to determine which combination of

MOEA operators and parameter settings perform efficiently and effectively when applied

to MOPs of certain characteristics. While it is impossible to classify every MOEA and

MOP, general information about the algorithms, their operators and the characteristics of

the MOPs is useful information. A current listing of popular and highly referenced con-

temporary and recent MOEAs is presented in this chapter, classified by the method used in
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the MOEA to manipulate BBs. Figure 3.1 presents a generic MOEA pseudocode reflective

of the more common MOEAs found in the literature (e.g., Multi-Objective Genetic Algo-

rithm (MOGA), Niched Pareto GA (NPGA), Nondominated Sorting GA I & II (NSGA-I

& II), Strength Pareto EA (SPEA), Pareto Archive Evolutionary Strategy (PAES) and

Multi-Objective messy GA I & II (MOMGA-I & II)). This generic MOEA structure aids

researchers in understanding the structure and basic operators that comprise an MOEA.

Additionally, a generic MOEA provides insight into the inner workings of an MOEA and

identifies areas of improvement or areas where new operators or combinations of operators

may increase MOEA performance.

Perform Population Initialization (Size P )
Compute Each Population Member’s Fitness

(w.r.t. k functions)
Loop

Perform Clustering/Niching/Crowding
Execute EVOPs)
Compute Each Population Member’s Fitness

(w.r.t. k functions)
Conduct Selection
Generate PFcurrent (t); Update PFknown (t)

End Loop
Conduct Local Search (If Specified)
Generate PFknown ; Present As Final Solutions

Figure 3.1 Generic MOEA Pseudocode [31]

“Good” BBs are defined in this document as a combination of gene values (not

necessarily in adjacent locations (loci) and typically a substring of the population member)

that upon evaluation, tend to produce “good” solutions, independent of the other gene

values in the string. An in-depth discussion of BBs is presented in Chapter II, Section 2.2.

BBs and the Schema Theorem have been identified by a number of authors as being the key

to identifying “good” solutions to optimization problems for a number of years [78, 79, 80,

201]. Hence this research effort recognizes and classifies MOEAs into two categories, those

that implicitly manipulate BBs and those that explicitly manipulate BBs. A discussion of

the MOEAs contained in each category follows.
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3.1.1 Implicit Building Block Manipulating MOEAs. MOEAs that implicitly

manipulate BBs are the most common form and most commonly referenced MOEA [26,

62, 120]. Implicit BB-based MOEAs do not attempt to explicitly identify the “good” BBs

present in the population. The identification and manipulation of “good” BBs is based

entirely on the idea that recombination and selection operators perform well enough such

that MOEAs indirectly find these BBs and in turn generate “good” solutions. In many

cases, implicit BB-based MOEAs find the good BBs present in the population but this is

generally unknown to both the user and the MOEA. The following listing of implicit BB-

based MOEAs encompasses a broad spectrum of MOEAs and includes MOEAs that are

highly referenced in the literature. The information presented in this chapter about each

MOEA can lead to new, innovative ideas and the design of new MOEAs with increased

performance over existing MOEAs.

3.1.1.1 Vector Evaluated Genetic Algorithm. Schaffer created the Vector

Evaluated Genetic Algorithm (VEGA) as a modification of the single objective SGA [64,

170]. The VEGA consists of the original SGA with a modification of the selection mech-

anism to reflect the multiple objective functions. A proportional selection mechanism is

used during MOEA execution to create a subpopulation of individuals for each objective

function. This means that the application of the VEGA to a k objective function MOP

leads to the generation of k subpopulations of size N/k created by the algorithm, where

N is the overall population size.

The approach used in the VEGA has the inherent disadvantage that the subpopula-

tions typically produce individuals that are extremely fit in one of the k objective functions

but typically not as fit in the other objective functions [170]. This result means that the

population is split and may have the same effect as executing a single objective EA using

a linear combination of the k objective functions, i.e., results in finding the extreme (end)

points of the Pareto front [93]. While the approach used in the VEGA may not yield a large

number or good distribution of points along the front, an advantage of the VEGA is that

it yields the endpoints or extreme points of the curve or surface representing the Pareto

front. The endpoints are identified by many MOEA researchers as being difficult points to
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generate [100, 123, 215]. A single objective EA may generate the best solution in any one

objective of an MOP and hence the VEGA may generate the extreme points of each ob-

jective. Some heuristics are used in the VEGA to attempt and prevent the Pareto optimal

members of the population from converging only to the extreme points on the front [170].

These heuristics are integrated into the selection operator. The heuristic methods used in

the VEGA are random preference selection, a method based on weighting nondominated

points above dominated points for selection, and a method of promoting mating between

subpopulations. Through testing each of the heuristic approaches, the authors note that

the best results were obtained from the random preference selection [170].

3.1.1.2 Multiple Objective Genetic Algorithm. Carlos Fonseca and Peter

Flemming created the Multiple Objective Genetic Algorithm (MOGA) to effectively han-

dle MOPs using a generalized GA approach [64]. The MOGA uses a rank-based fitness

assignment mechanism. A rank is associated with each of the population members accord-

ing to the number of individuals that dominate it. All individuals on the Pareto front are

assigned a rank of 1 whereas the remaining members are assigned a rank based upon the

number of individuals that dominate them. The fitness assignment method used in the

MOGA takes into account the rank of the population member and the average fitness value

of the population. The process for assigning the fitness values is as follows: the population

is sorted by rank; fitness values are assigned to individuals based on an interpolation of

the best rank to the worst rank according to some specified function. Finally, individuals

assigned the same rank receive an averaged fitness value. This ensures that all the popula-

tion members of the same rank are sampled with an identical frequency. This information

is used to maintain a constant global population fitness with an appropriate amount of

selective pressure [64].

Additionally, the MOGA implements the concept of fitness sharing, also referred to

as crowding, or niching, and uses a σshare parameter. The σshare parameter is referred to

as the niche count and must be set carefully. Fonseca and Flemming use niching in the

context of the phenotype domain to attempt to obtain a uniform distribution of points

along the Pareto front.
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A restriction on mating is also encoded into the MOGA. Goldberg originally stated

that the purpose of restricted mating is to avoid excessive competition of population mem-

bers that are not within a specified neighborhood [74]. Additionally, goals of the decision

maker are integrated into the fitness function. Since the decision maker ultimately chooses

a subset of solutions from the Pareto front, it is useful to a priori determine a region of

the Pareto front that is of the most interest. This allows external preferences, in the form

of problem domain information, to be inserted into the MOGA almost as a local search

operator. The authors proceed to insert this modified fitness function, referred to as a

“Goal Attainment Method” into the algorithm and further modify the ranking scheme to

include “goal preferences.” Goal preference is essentially a weighting approach. A further

generalization is made to allow the decision maker preferences, or goals to be implemented

through a utility function. The utility function serves the purpose of attempting to illus-

trate the method that the decision maker would use to select one Pareto front point over

another.

The MOGA makes use of Gray Coded population members, two point reduced sur-

rogate crossover and binary mutation. All of the nondominated points found are stored

into an archive. This archive is used to determine the σshare value to use in subsequent

generations and the MOGA execution continues. Nondominated points are continually

written to the archive until the algorithm reaches its stopping criteria.

3.1.1.3 Niched Pareto Genetic Algorithm. Around the same time as the

development of the MOGA, Horn, Nafpliotis and Goldberg designed and implemented the

Niched Pareto Genetic Algorithm (NPGA) [93]. The main differences between the the

SGA and the NPGA lie in the selection mechanism and fitness assignment. The NPGA

implements tournament selection with Pareto domination. During non-dominant tourna-

ments, fitness sharing is implemented. To introduce a controlled, increased domination

pressure over the standard tournament selection operator, the concept of a comparison set

is used. The comparison set is a randomly chosen set in which each member is compared

against two randomly selected members from the population. The dominance of the ran-

domly selected population members with respect to all of the members in the comparison
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set determines if that member is chosen for reproduction. A parameter, tdom, is introduced

to specify the size of the comparison set. In the cases where neither or both members are

dominated by the comparison set, a crowding mechanism is implemented.

The crowding mechanism used is a fitness sharing method mentioned earlier for

members on the Pareto front. This mechanism takes into account continuously updating

fitness sharing along with a niche count parameter to try and obtain an even distribution

of population members along the front. The niche count looks only at members in the

partially filled next generation versus the current generation of members. In the case

where neither or both population members are dominated by the comparison set, the

niching mechanism is used to select the better candidate. This is done by selecting the

member with the smallest niche count and is referred to as equivalence class sharing. The

authors note success with this algorithm and the importance of the tdom parameter on

convergence.

3.1.1.4 Nondominated Sorting Genetic Algorithm. In 1994 Srinivas and

Deb created the Nondominated Sorting Genetic Algorithm (NSGA) [176]. This algorithm

is identical to the SGA with the exception of the selection operator. A similar concept

is applied as was used in the NPGA and MOGA, use of a ranking scheme for selection.

Prior to selection, the population is ranked based on each individual’s classification of

nondominated or dominated point. Subsequent to ranking, the nondominated points found

are given a large dummy fitness value and are referred to as the first nondominated front.

Since each of these members are Pareto optimal, they are assigned the same fitness value

so as to give each member an equal chance at reproduction.

Sharing is used to maintain diversity in the population. Each nondominated member

is shared with the dummy fitness value assigned to it. The sharing mechanism performs

selection on what the authors refer to as a degraded fitness value. This degraded value

is obtained by dividing the individual’s original fitness by a number proportional to the

number of individuals surrounding the member. After the sharing mechanism is executed,

the remaining population members are processed in the same manner to identify the next

front of nondominated points. The next set of points are assigned a lower dummy fitness

3-8



value than the minimum shared dummy fitness of the previous set. This effectively means

that each front contains a “better” shared fitness value than the preceding front.

Once the whole population is partitioned into the various fronts, reproduction occurs

using the dummy fitness values. Specifically, stochastic remainder proportionate selection

is used. Individuals within the first front have the largest fitness value and have more

copies placed into the population. This allows for a quicker convergence of the population

while sharing helps to distribute the population over the front. Sharing is implemented by

calculating a sharing function value between individuals within the same ranked front and

the niche count is calculated by summing the sharing values of all the population members

on a specific front. The shared fitness value is calculated by dividing the individual’s

dummy fitness value by its respective niche count.

3.1.1.5 Mendelian Multiobjective Simple Genetic Algorithm. The Mendelian

Multiobjective Simple Genetic Algorithm (MMOSGA) created by Kadrovach, Michaud,

Zydallis and Lamont takes a different approach than most MOEAs to attempt to solve

complex MOPs [106, 107]. The MMOSGA uses the concept of dominant and recessive

genes as part of the recombination procedure. The MMOSGA is based on the SGA with

the data structure of the SGA augmented to reflect a diploid chromosome structure. This

diploid structure is used in conjunction with a dominance table to determine which allele

values pass on to the child population member. The recombination procedure selects two

parents at random and uses a dominance table when there exist competing allele values to

determine which of the parent’s genes propagate to the child. As this process executes, the

values within the dominance table are updated based on the allele values that generate the

best/worst individuals, i.e., a reward/penalize method is implemented in the dominance

table for each locus position and allele value. The dominance table aids in the convergence

of the population towards the Pareto front.

A (µ + λ) approach is used in the selection process, where µ is the parent population

size and λ is the child population size. An individual is chosen for mating by randomly

choosing two individuals from the population and selecting the individual with the best

fitness based on Pareto dominance. The individuals are then evaluated, the dominance
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table updated, and the process repeats itself until the user specified number of child popu-

lation members are created. There is no mutation operator present in the MMOSGA and

the algorithm keeps an external archive of Pareto Optimal solutions.

The MMOSGA differs from almost all other MOEAs in its diploid chromosome struc-

ture and the dominance table that is used to add selective pressure to the population. The

authors propose a number of modifications to the current algorithm to increase the ef-

ficiency and effectiveness of the algorithm. A thorough theoretical analysis of why the

meiotic process with a diploid chromosome works was not conducted.

3.1.1.6 Micro Genetic Algorithm. Coello Coello and Pulido present a micro

genetic algorithm in [29, 30]. The authors propose using a GA with a small population size

and a re-initialization (also referred to as re-hope) process to prevent premature conver-

gence. While the concept of micro-GAs is not new, this is the first application to MOPs.

The MOEA executes by randomly creating a small population. The concept of memory

is used in two variants, a replaceable and a non-replaceable memory. The non-replaceable

portion of the memory does not change throughout the execution of the MOEA and is

used to maintain diversity in the algorithm. The replaceable portion is modified after each

“cycle” of the MOEA.

Any given cycle of the micro-GA takes a portion of the population from both sec-

tions of memory. The following operators are then used: tournament selection, two-point

crossover, and uniform mutation. Following each cycle, two nondominated members are

chosen from the population and compared to the external memory. If they remain non-

dominated, they are then included in the active population. This external memory acts as

an archive for Pareto front points. The same two members are compared to two members

of the replaceable memory and added if they continue to be nondominated. An adaptive

grid approach, similar to that contained in [116], is used to keep diversity in PFknown .

The authors state that they obtain better convergence rates than the NSGA-II and PAES,

better values for a specific metric, and better timing but they need to improve the overall

results of the micro-GA for constrained MOPs.
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3.1.1.7 Niched Pareto Genetic Algorithm 2. To improve the performance

of the original NPGA, Erickson, Mayer and Horn modified the NPGA to create the Niched

Pareto Genetic Algorithm 2 (NPGA2) [61]. The main goal of this effort was to lessen the

noise present in the Pareto domination tournament selection process. A degree of dom-

ination term is used as the ranking of an individual to make the Pareto ranking process

deterministic. The degree of domination is a count of the total number of population mem-

bers that dominate the member being checked. If the member is nondominated then the

degree of domination (rank) is set to 0. Tournament selection is maintained throughout the

algorithm with the ranking mechanism used for determining the winner of the tournament.

Ties are resolved using fitness sharing and niche counts as in the original NPGA.

Following the ranking of population members, the deterministic tournament selection

routine is used to select members for reproduction. A parameter, k, is used to specify the

size of the tournament. k population members are randomly chosen. The member that

has the lowest rank is the “winner” of the tournament. If there is no one “winner” of the

tournament, a tie breaking scheme is applied. In the tie breaking process, as in the original

NPGA, the niche count is used to determine the winner of the tournament and this count

is based on the partially filled next generation of population members.

3.1.1.8 Nondominated Sorting Genetic Algorithm II. In 2000, Deb, Agrawal,

Pratab, and Meyarivan suggested an improvement to the original NSGA, creating the

Nondominated Sorting Genetic Algorithm II (NSGA-II) [46]. The first modification to

the original NSGA implements a “better” book-keeping strategy in terms of creating the

various nondominated fronts to decrease the execution time of the algorithm. The authors

implement a density estimation and a crowding comparison operator as part of this mod-

ified algorithm. The density estimation operator estimates the overall population density

surrounding a particular population member by calculating the average distance of two

points on either side of the member, along each of the objectives. This calculation results

in what the authors term a crowding distance which represents the largest cuboid that can

be placed around a specific point without including any other points.
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The crowding comparison operator seeks to produce a uniformly distributed Pareto

front. This has a similar effect to the sharing implemented in the original NSGA except

that a niching parameter is no longer necessary. The crowding comparison requires the

calculation of each population member’s non-domination rank and crowding distance. Once

these values are obtained, a partial ordering is completed. This ordering states that if two

solutions of differing non-domination ranks are compared, the lower ranked solution is

chosen. Otherwise, a comparison of two solutions of the same front results in a choice of

the solution with a larger cuboid, i.e., a solution whose neighbors are further away. The

remainder of the algorithm is the same as the original NSGA.

3.1.1.9 (1 + 1) - Pareto Archived Evolution Strategy. The (1 + 1) - Pareto

Archived Evolution Strategy ((1 + 1)-PAES) is another popular MOEA cited in the lit-

erature [115]. (1 + 1)-PAES uses a single parent and single child to search the space.

Knowles and Corne introduce what they refer to as a simpler approach to Multiobjective

Optimization (MOO). PAES is a (1 + 1) local search based evolutionary strategy using a

population of size one and a “history” of previously found solutions. PAES does not use

crossover but obtains “good” solutions through the exclusive use of a mutation operator.

The authors note that PAES may be a good baseline approach to compare to other pop-

ulation based MOEAs. The motivation for engineering PAES was based on the fact that

in many cases a local search algorithm, for example simulated annealing or tabu search,

performs much quicker than the population based GA approaches for single objective

problems [115]. PAES attempts to bring a local search mechanism to the multiobjective

optimization world.

The main objectives of PAES are to conduct local search operations and to handle all

Pareto optimal solutions in the same manner. PAES begins by creating a single individual

and evaluating it with respect to all of the objective functions. This evaluation function

is a dominance based evaluation. The population member is then copied and mutation

is applied. The new, mutated population member is compared to the parent and the

nondominated member of the two is selected. If neither solution dominates, then the new

member is compared with the previously archived solutions. Since this approach restricts
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the population to only contain a single parent and child, if one solution still is not favored

over the other, the solution in the least crowded area is selected.

The archive keeps a current population of Pareto points found and is used to help

guide the selection mechanism by providing the current Pareto front found. The archive

allows (1 + 1)-PAES to have some pressure towards finding a better front as time goes on.

The archive also has an a priori specified maximum size that allows the user to specify how

many solutions are desired. In order to obtain a good distribution of points along the front,

a k-dimensional grid crowding mechanism is implemented in the phenotype space, where k

is the number of objectives. This grid is used in a different fashion than in other crowding

or niching methods. In PAES, once a nondominated solution is found and is ready to be

placed into the full archive, it replaces a member in the archive with the highest grid count

as long as its own grid count is lower.

3.1.1.10 (µ + λ) - Pareto Archived Evolution Strategy. Modifications to

the original (1 + 1)-PAES algorithm produced two variants: the (1 + λ)-PAES and the

(µ+λ)-PAES, which are both referred to as (µ+λ)-PAES [116], where µ is the size of the

parent population and λ is the child population size. These varieties of the original PAES

MOEA are population based schemes that continue to use only the mutation operator (no

crossover).

The selection mechanism is modified as there are λ potential solutions to choose for

the next current solution(s). This is accomplished through a fitness assignment that is

based on the grid location of the member and a comparison to the archive. Each of the

population members are compared to the archive and assigned a dominance value based on

whether the member dominates a solution in the archive or is dominated by that solution.

The members are then assigned a fitness based on the dominance value assigned. Members

of the same dominance value receive a fitness based on the number of population members

in that particular grid location.

The archive is updated in the same format as the original PAES MOEA. The λ

potential solutions are generated through a mutation of members chosen via a binary tour-

nament selection of current solutions. The (1+λ)-PAES and the (µ+λ)-PAES approaches
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are compared to (1+1)-PAES, the NPGA, and the NSGA. The authors state that (1+1)-

PAES appears to be the quickest and most reliable approach [116]. (1+λ)-PAES does not

do as well as the original PAES and (µ+λ)-PAES is a little better than this variant. Over-

all the results indicate that (1 + 1)-PAES performs well when compared to other MOEAs

on the limited test suite and metrics used.

3.1.1.11 Memetic PAES. Memetic PAES (M-PAES) is a population based

variant of the original PAES algorithm [115] developed by Knowles and Corne to include

the use of recombination operators [112]. M-PAES is based on the local search PAES

but includes the use of a population along with a crossover operator to recombine local

optima. Mutation is used as in the original algorithm. A difference from the original PAES

algorithm is the use of a second archive for Pareto front solutions. One of the archives is

used as a global archive, referred to as G and the other as a local archive for comparisons

referred to as H. At the start of each local search, archive H is emptied and filled with

solutions from archive G that do not dominate the current solution c. At this point H

is continually used as a comparator while G is updated to reflect the current global front

found.

The local search mechanism is identical to the procedure used in PAES, with the

exception that the termination criteria is modified. Termination now occurs once the spec-

ified maximum number of local search operations occur, l opt, or if the specified maximum

number of local search failures, l fails, are achieved. The #fails parameter is initialized to

0 and is incremented each time a mutated member is dominated by the current solution

and is returned to 0 once a mutated member dominates the current solution, i.e., #fails ef-

fectively counts the number of mutation moves that are detrimental in between improving

moves. Once #fails ≥ l fails, the stopping criteria has been met.

Recombination occurs through the random selection of two parent population mem-

bers from the population, prior to the local search mechanism being employed, and the

global archive. A child is accepted if it is not dominated by any members of the global

archive or in a less crowded region than one or more of its parents. The size of the crowd-

ing region is user specified. This occurs until a child is accepted or a specified number of
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attempts are exceeded. In the second case, binary tournament selection is used to put a

member of the global archive into the population.

3.1.1.12 The Strength Pareto Evolutionary Algorithm. The Strength Pareto

Evolutionary Algorithm (SPEA) was developed by Zitzler and Thiele [213]. This algorithm

incorporates many of the concepts of previous MOEAs into one MOEA, the SPEA. SPEA

keeps an external archive of Pareto optimal solutions, uses Pareto dominance concepts

in the fitness assignment scheme and uses a clustering concept to reduce the number of

non-dominated solutions that must be stored while maintaining the structure of Pareto

front. The fitness assignment scheme is unique in that it is designed to use the archive to

determine the fitness of any given solution, whether it is Pareto optimal or not. The selec-

tion mechanism uses all of the solutions in the Pareto archive and niching is implemented

without distance measurements. A standard binary tournament selection operator is used

with a standard mutation operator.

Individuals are evaluated based on the number of Pareto points that dominate them

or are equal to them (the authors refer to this as covering the points). A different approach

to niching is presented in Zitzler et al. [213]. This approach makes use of Pareto dominance

to keep niches. The goal of this approach is to maintain a uniform distribution of Pareto

front members that cover the same number of individuals as any other Pareto front member.

The Pareto archive contains all of the Pareto Optimal points found up to the current point

in time. This ensures no loss of Pareto points found and further imposes no restrictions

on the size of the archive.

The algorithm begins by assigning each member of the population a strength value,

s. This is a real value proportional to the number of population members that it covers and

is also the fitness of the individual. In the next step, the individuals are ranked according

to the calculated strengths, i.e., the fitness of a population member is calculated by taking

the sum of the fitnesses of all the archived Pareto front solutions that cover it and adding

one to this value. In the event that all of the Pareto solutions have the same strength value,

the fitness is calculated by taking the sum of the number of Pareto points that cover it. If
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the population is unbalanced, the Pareto front points that cover the “least” fit individuals

are assigned the greatest strength.

The size of the Pareto archive is unrestricted, therefore a clustering method is applied

to reduce the size of this set while maintaining the original attributes of the Pareto archive.

The general idea of clustering is to partition the archive of size p into q groupings, where

q < p and all of the points within any of the q groups have the same characteristics.

The SPEA implements a hierarchical clustering method referred to as the average linkage

method.

The clustering approach begins by making each element of the initial Pareto archive a

cluster. Following this, two clusters are chosen via a distance measurement to combine into

one cluster. The distance is calculated as average distance between pairs of individuals

across the clusters. At the completion of the cluster approach, the new Pareto archive

consists of the centroid members of each cluster. The authors show favorable results

compared to other MOEAs.

3.1.1.13 The Strength Pareto Evolutionary Algorithm 2. Zitzler, Lau-

manns, and Thiele modified the SPEA and released the “improved” SPEA2 in 2001 [211].

In modifying the original SPEA, a fine-grained fitness assignment method, a density estima-

tion technique, and a new archiving method are introduced. The “new” fitness assignment

method is similar to that of the NSGA-II, PAES, PESA, and others. The fitness assign-

ment for a population member is based off of the number of individuals the population

member dominates and the number that dominated it. Additionally a k-th nearest neigh-

bor mechanism is present to differentiate between individuals which have the same fitness

values. Modifications were made to the archival update process to keep the size of the

archive constant and because of this prevent the removal of “end points” from the archive.

The authors state that the incorporation of these changes provides better results

than the original SPEA over a limited test suite and metric set. When compared to the

NSGA-II and PESA, the SPEA2 and NSGA-II yield the best overall performance.
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3.1.1.14 Pareto Envelope-Based Selection Algorithm. The Pareto Envelope-

Based Selection Algorithm (PESA) was developed by Corne, Knowles and Oates as an

MOEA that controls the selection and diversity of solutions via a hyper-grid scheme [34].

PESA introduces some of the ideas presented in the SPEA and PAES from Sections 3.1.1.10

and 3.1.1.12. The PESA MOEA uses a small population size and maintains an external

archive of PFknown solutions. Niching is accomplished through an implicit hyper-grid divi-

sion of the phenotype space, and the selection mechanism is based on crowding. Crossover

and mutation are both implemented in the PESA algorithm. Additionally two other pa-

rameters must be set, the size of the population and the maximum size of the archive.

Population members enter the archive through Pareto dominance checks so that only

nondominated points remain in the archive. Crowding is implemented through a hyper-

grid structure that divides the phenotype space in hyper-boxes. The number of points

within each hyper-box is referred to as the “squeeze” factor and is used for selective fitness

calculations and archive updating. Tournament selection is used with the squeeze factor

to select members from the archive for directing the search in subsequent generations. The

authors obtain favorable results in comparing their algorithm against SPEA and PAES.

3.1.1.15 Pareto Envelope-Based Selection Algorithm II. Corne et al. im-

proved the PESA algorithm and developed the PESA-II [33]. PESA-II differs from PESA

in a few areas. First the selective fitness assignment has been modified to assign a value

to the hyperbox in the phenotype space instead of directly to each individual. As hyper-

boxes are chosen, individuals are randomly selected from them. The authors state that

this method of selection (referred to as region based selection) is better at distributing the

members in the archive more evenly across the Pareto front. All of the other operators

remain the same from PESA to PESA-II. The authors compare PESA-II to PAES, SPEA

and PESA to illustrate “good” results are obtained with this new selection method over a

limited test suite and set of metrics.

3.1.1.16 The Multiple-Objective Genetic Local Search Algorithm. A local

search based MOEA referred to as the Multiple-Objective Genetic Local Search Algorithm

(MOGLS) was implemented by Jaszkiewicz [100]. This algorithm is exclusively applied
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to the Modified Multiobjective Knapsack Problem (See Chapter IV, Section 4.4.1) and

compared to other MOEAs applied to this problem. The Genetic Local Search (GLS)

algorithm, also referred to as a memetic or hybrid GA, hybridizes recombination operators

with other local heuristics. These types of algorithms have been shown to find the best

known solutions to a number of problem domains to include the traveling salesman problem,

graph coloring problem, and quadratic assignment problem, hence the motivation of the

authors to use it for the multiobjective knapsack problem [100].

The author states that the goal of multiobjective metaheuristics is to generate good

approximations to the nondominated set. In order to understand the process used in

MOGLS, some terminology must be presented. The approximation to the nondominated

set is defined as:

Definition 17 (Approximation to the Nondominated Set): A set A of points (and

corresponding solutions) such that ¬∃z1, z2 ∈ A such that z1 Â z2 i.e., set A is composed

of mutually nondominated points. 2

Point z1 dominates z2 is represented by z1 Â z2 and the point z∗, composed of the

best attainable objective function values is called the ideal point.

Definition 18 (Ideal Point): z∗j = max {fi(x)x ∈ D}, j = 1, . . . , J . 2

Definition 19 (Approximation of the Ideal Point): z∗∗(A) is an approximation of

the ideal point based on set A, i.e., z∗∗j = max {zj |z ∈ A}, j = 1, . . . , J . 2

The author further defines:

Definition 20 (Range Equalization Factors): πj = 1
Rj
, j = 1, . . . , J where Rj is

the approximate range of objective j. The range is calculated by taking the minimum and

maximum values from the set D, A, or the nondominated set and can also be estimated

through using objective function values in a relaxed problem. 2

Normalized objective function values are defined as objective function values multi-

plied by range equalization factors.
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Definition 21 (Weighted Linear Scalarizing Functions): sl(z,Λ) =
∑J

j=1 λjzj =
∑J

j=1 λjfj(x) . Each weighted linear scalarizing function has at least one global optimum

(maximum) belonging to the set of efficient solutions. 2

Definition 22 (Weighted Tchebycheff Scalarizing Functions): s∞(z, z0,Λ) =

maxj{(λj(z0j − zj)} = maxj{λj(z0j − fj(x))} where z0 is a reference point and Λ =

[λ1, . . . , λJ ] is a weight vector such that λj ≥ 0 ∀j. 2

Minimization of the weighted Tchebycheff scalarizing function corresponds to a min-

max problem. The author states that for each efficient solution x, there exists a weighted

Tchebycheff scalarizing function s such that x is a global optimum (minimum) of s [100].

Definition 23 (Normalized Weight Vectors): Weight vectors that meet the condi-

tions ∀jλj ≥ 0,
∑J

j=1 λj . 2

Jaszkiewicz also notes that all weighted Tchebycheff and all weighted linear scalar-

izing functions have optima in the nondominated set. Further, he states that finding

the whole nondominated set is equivalent to finding optima of all Tchebycheff and all

weighted linear scalarizing functions. Hence the goal of multiobjective metaheuristics is

reformulated as simultaneous optimization of all weighted Tchebycheff or all weighted lin-

ear scalarizing functions (it is enough to consider scalarizing functions with normalized

weight vectors) [100].

In the application to the MMOKP MOP, MOGLS simultaneously optimizes all

weighted Tchebycheff or all weighted linear scalarizing functions with normalized weight

vectors by random choice of a scalarizing function optimized in each iteration [100]. Each

iteration of MOGLS is defined as a single recombination of a pair of solutions and applica-

tion of a local heuristic, taking into account the value of the current scalarizing function.

MOGLS attempts to improve the value of a randomly selected scalarizing function.

MOGLS proceeds to initially generate a set of feasible solutions. Solutions are then

selected based on being best on a scalarizing function and then recombination and mutation

operators generate new solutions. A local heuristic is applied to the generated solution

and the process repeats. The outcome is an approximation to the nondominated set
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that contains all potentially nondominated points. In this method a repair procedure is

used that differs from the common procedure of removing items in increasing order of the

profit/weight ratio. In the modified procedure, items are removed that locally decrease

the weights in the knapsacks at the lowest cost of the current scalarizing functions.

The results of MOGLS are compared to a number other MOEAs by allowing MOGLS

to simultaneously optimize weighted Tchebycheff functions representative of the MMOKP

objectives. However, the MMOKP MOP formulation is modified to allow the decision

variables to take on continuous values between 0 and 1. This new formulation of the

MMOKP problem is referred to as the Relaxed multiple-objective 0/1 knapsack problem.

As stated in Chapter IV, Section 4.4.1, this formulation is not the correct formulation of the

multiobjective knapsack problem. While the author attempts to make a fair comparison

of MOGLS to other MOEAs, one must question this comparison as MOGLS is applied to

a different formulation of the MMOKP MOP.

3.1.2 Explicit Building Block Manipulating MOEAs. MOEAs that explicitly ma-

nipulate BBs are the least common form of EA and MOEA as illustrated by the limited

number of publications of this class of MOEA [26, 62, 120]. Explicit BB-based MOEAs ex-

plicitly look for “good” BBs throughout execution of the MOEA and manipulate those BBs

to generate “good” solutions. Researchers who have designed explicit BB-based MOEAs

typically are knowledgeable in the theory of what is happening “behind the scenes” of the

MOEA.

Explicit BB-based MOEAs are designed around the Schema Theorem and the concept

that “good” BBs are vital to solving optimization problems [201]. A detailed discussion of

BBs and the BBH is presented in Chapter II, Section 2.2. This class of MOEAs attempt

to find the “good” BBs for the particular MOP at hand and exploit those BBs in order

to generate “good” solutions to the problem. These MOEAs typically have a higher com-

plexity in terms of understanding how they operate and hence many researchers do not

use them [26]. A discussion of the explicit BB-based MOEAs can lead to new, innovative

ideas and the design of new MOEAs with increased performance over existing MOEAs as

well as an increased interest in this class of MOEAs.
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3.1.2.1 Multiobjective Messy Genetic Algorithm. The Multiobjective Messy

Genetic Algorithm (MOMGA) is an explicit BB-based MOEA, created by Van Veldhuizen

and Lamont, based off of the concepts of the single objective messy Genetic Algorithm

(mGA) [78, 184]. The authors of the MOMGA took the building block ideas of the mGA

and extended them into the multiobjective domain. The MOMGA is considerably different

from all of the other MOEAs discussed in the literature in that it is the only algorithm

to explicitly manipulate BBs. The MOMGA consists of three phases, the initialization,

primordial, and juxtapositional phases.

In the initialization phase, the MOMGA completes a total enumeration of all user

specified BB sizes in initializing its population. The population is generated through

a process of analyzing the specified BB size, generating all of the BBs necessary, and

evaluating the objective function values for the strings. Therefore the starting population

size is based upon the BB size, string length and cardinality of the alphabet used. BBs

are underspecified, meaning that they are partial strings, having some bit values, alleles

and loci, missing. The MOMGA is a variable string length MOEA that makes use of

competitive templates to evaluate population members missing bits or allele values. The

templates are fully specified individuals that do not get modified throughout one iteration

of the algorithm. The “steady-state” templates allow for a good comparison basis when

evaluating population members. The initial population members are “overlayed” on top of

the competitive templates to determine their fitness values. In this overlay process, only

bits that are missing from the population member are copied from the selected template

for evaluation. The copied bits do not remain with the population member subsequent to

its evaluation.

The MOMGA does not implement mutation. Following the initialization phase,

the primordial phase executes. The number of generations of this phase is dynamically

determined based on the proportion of good BBs in the population. During this phase,

binary tournament thresholding selection is used along with a population reduction method

to enrich the population with a good BBs.

The last phase, the juxtapositional phase, is used to perform recombination. This

phase consists of the use of a cut-and-splice operator along with tournament thresholding
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selection. The cut-and-splice operator is a crossover operator for variable length strings

and its continued use builds up strings from their underspecified BB size to the fully

specified string length. Cut and splice randomly chooses a point to cut a string, then

subsequently splices the string with another cut string. Repeating this process allows

the population members to grow in length when used in conjunction with a large enough

splice probability. During the intermediate evaluations, competitive templates are used to

evaluate the underspecified strings. The templates are fully specified population members

that are not modified until the completion of the juxtapositional phase. Following the

juxtapositional phase, the competitive templates are updated with the best individuals

found with respect to each objective function and the process repeats itself utilizing the

next user-specified BB size. In the case of an overspecified individual, or one that specifies

an allelic value for a particular gene multiple times, a first encountered method is used

meaning that the first allele value encountered for a specific locus (gene), when scanning

the bit string, is the one used.

During all of the selection routines, Pareto dominance based selection is used. In

order to expand the mGA to multiple objective functions, there are k competitive templates

used for a k objective function MOP. The template is randomly chosen when evaluating

a population member so as to avoid convergence to one of the objective function solution

sets. Additionally niching is implemented based off of the method used by Horn in the

NPGA. The MOMGA achieves favorable performance when compared to a limited set of

other MOEAs.

3.1.2.2 Multiobjective Messy Genetic Algorithm II. The Multiobjective

Messy Genetic Algorithm II (MOMGA-II) is designed and implemented through this re-

search effort. The MOMGA-II is the second known explicit BB-based MOEA. The details

of this algorithm are discussed in Chapter VI.

Table 3.1 presents a summary of the aforementioned MOEAs, along with the coding

method used by each, their Evolutionary Operators (EVOPs), fitness assignment scheme,

niching, and population size.
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Table 3.1: MOEA Characteristics

Algorithm Coding EVOPs Fitness

Assignment

Sharing and

Niching

Population

MMOSGA [107] Binary Crossover, implicit mutation through the dominance

table, Tournament Selection, External Archive

Standard fitness

assignment

None Randomly

initialized;

N = 100

micro-

GA [29, 30]

Binary 2 Point Crossover, uniform mutation, Tournament Se-

lection, Memory (similar to the concept of an archive)

Standard fitness

assignment

Phenotypic

(adaptive grid)

Randomly

initialized;

N = 4,

External

memory

N = 100,

Population

memory

N = 50

MOGA [64] Gray 2 Point Surrogate Crossover and Mutation (pc = 1,

pm = 1
0.042

), Tournament Selection, Mating Restric-

tion Utilized

Linear interpola-

tion using Fon-

seca’s [64] Pareto

ranking

Phenotypic

(σshare - Fitness)

Randomly

initialized;

N = 80

MOMGA [184] Binary “Cut and splice” (pcut = 0.02, psplice = 1), no muta-

tion, Tournament Selection, External Archive

Tournament

(tdom = 3)

Phenotypic

(σshare - Domina-

tion)

Randomly

initialized;

Determinis-

tic Size
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Table 3.1: (continued)

Algorithm Coding EVOPs Fitness

Assignment

Sharing and

Niching

Population

MOMGA-

II [217, 219]

Binary “Cut and splice” (pcut = 0.02, psplice = 1), no muta-

tion, Tournament Selection, External Archive

Tournament

(tdom = 3)

Phenotypic

(σshare - Domina-

tion)

Randomly

initialized;

Determinis-

tic Size

MOGLS [100] Binary Crossover, Mutation, use of a Temporary Elite Popu-

lation

Tchebycheff and

weighted lin-

ear scalarizing

functions

None Random,

N =

150− 350

M-

PAES [115]

Binary Crossover, Mutation, Tournament Selection, External

Archives (Local and Global)

Standard fitness

assignment

Phenotypic

(Crowding)

N > 1

NPGA [93] Binary Crossover, Mutation (pc = 1, pm = 1
0.042

), Tourna-

ment Selection with comparison set (Pareto ranking)

Tournament

(tdom = 5)

Phenotypic

(σshare - Domina-

tion)

Randomly

initialized;

N = 100

NPGA2 [61] Binary Crossover, Mutation (pc = 1, pm = 1
0.042

), Tour-

nament Selection with comparison set (Deterministic

Pareto ranking)

Tournament

(tdom = 5)

Phenotypic

(σshare - Domina-

tion)

Randomly

initialized;

N = 50, 100

NSGA [176] Binary Crossover, Mutation (pc = 1, pm = 1
0.042

) “Dummy” fitness

using Gold-

berg’s [78] Pareto

ranking

Genotypic

(σshare - Fitness)

Randomly

initialized;

N = 100
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Table 3.1: (continued)

Algorithm Coding EVOPs Fitness

Assignment

Sharing and

Niching

Population

NSGA-II [46] Real Val-

ued

Simulated Binary Crossover (SBX), Real Parameter

Mutation, Tournament Selection based on niching

Dominance Based

Fitness Assign-

ment, Pareto

ranking

Phenotypic

(Crowding)

Randomly

initialized;

N = 100

PAES(1+1) [115]Binary No Crossover, Mutation, Niching Based Selection, Ex-

ternal Archive (Fixed Size)

Dominance Based

fitness assignment

Phenotypic

(Crowding based

on a grid)

N = 1

PAES(µ +

λ) [116]

Binary No Crossover, Mutation, Niching Based Selection, Ex-

ternal Archive (Fixed Size)

Dominance Based

fitness assignment

Phenotypic

(Crowding based

on a grid)

N = µ

PESA [34] Binary Crossover, Mutation, Tournament Selection from

archive, External Archive (Fixed Size and selection

based on degree of dominance used in the archive)

Selective fitness

assignment

Phenotypic

(Crowding based

on a hyper-grid)

N = 10

PESA-II [33] Binary Crossover, Mutation, Region Based Tournament Se-

lection from archive(implicit phenotype crowding),

External Archive (Fixed Size)

Selective fitness

assignment

Implicit Pheno-

typic (Through

region based

selection and

grid)

N = 10
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Table 3.1: (continued)

Algorithm Coding EVOPs Fitness

Assignment

Sharing and

Niching

Population

SPEA [213] Binary Crossover, Mutation, Tournament Selection, External

Archive, Pareto Ranking

Dominance based

fitness assignment

(based on exter-

nal archive only)

Phenotypic (den-

sity based nich-

ing)

N = 100

SPEA2 [211] Binary Crossover, Mutation, Tournament Selection, External

Archive (Fixed Size), Pareto Ranking

Dominance based

fitness assign-

ment (based on

external archive

and current

population)

Phenotypic (den-

sity based nich-

ing)

N = 250-2

objective,

N = 300-

3 obj,

N = 400-

4 obj

VEGA [170,

64]

Binary Crossover, Mutation, Subpopulation based Standard fitness

assignment

None Randomly

initialized;

N = 30
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3.1.3 MOEA Summary. This discussion of popular and highly referenced con-

temporary and recent MOEAs provides a historical perspective for the reader in terms

of MOEA development from the first MOEA, the VEGA to recent MOEA developments

like the NSGA-II, NPGA 2, SPEA 2, MOMGA-II, and others. The interested reader is

referred to [26], a continuously updated website of MOEA references for new additions.

The question of Which is the best MOEA to use in solving MOPs? has no one

answer. According to the NFL Theorem [204] there is no correct answer to this question.

Hence, a single MOEA cannot be the best MOEA for solving all classes of MOPs. In the

case where a researcher tunes an MOEA for one class of problem, or more specifically for

one instantiation of that problem class, an MOEA has the potential to perform better than

all other MOEAs on that one problem instantiation. However, this does not mean that

continued efforts to develop a generic MOEA should not be continued.

The development of any MOEA should employ the use of sound software engineering

practices. These practices include the use of a standard structure to code, the code should

be well documented and user-friendly as well as robust enough to operate on a number

of popular hardware and software environments. Good software engineering practices can

reduce the number of coding errors and decrease the difficulty of debugging the code. The

MOEA developed in this research effort is the MOMGA-II and these principles were used

to guide the development of the code. While it is difficult to follow these practices, the

time expended up front leads to drastic savings in debugging time expended later.

A good guideline to use when selecting another researcher’s MOEA, or an optimiza-

tion approach in general, is to make sure that the problem is clearly stated and understood

and that the MOEA is fully understood. The discussion of BBs presented in Chapter II as

well as this chapter illustrate the usefulness of explicit BB approaches for solving MOPs.

The area of explicit BB-based MOEAs is still relatively new and unexplored. An efficient

and effective explicit BB-based approach is explored.
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3.2 MOEA Metrics

Evaluating the efficiency and effectiveness of any MOEA is a difficult task to ac-

complish. Efficiency is a measure of resource use, such as memory requirements, CPU

utilization, network bandwidth, file storage and more, as well as the total wall clock time

required for an algorithm to execute. Effectiveness is a measure of the quality of the solu-

tions that are generated by the MOEA. Metrics are used in an attempt to determine if a

difference exists and how much of a difference exists between two measured sets and hence

allow researchers the ability to report on the performance of MOEA approaches. Some

researchers attempt to compare the results of their MOEA to other MOEAs in terms of

analyzing the performance of a specific MOEA across a broad range of MOPs or just one

specific problem area. In either case, a set of defined metrics is necessary to compare the

performance of the MOEAs. Besides comparing the performance of MOEAs, the use of

metrics allows researchers the ability to report the performance of his/her MOEA when

applied to a specific application for which no existing data on the performance of other

MOEAs exists. This again is a difficult problem and creates the need for a set of metrics

to measure the efficiency and effectiveness of an MOEA.

Comparisons of various MOEA approaches and measures of efficiency and effec-

tiveness are desired goals by those who conduct research and development of MOEAs.

Standardized metrics for MOEAs were somewhat lacking in the field until recently when

Srinivas and Deb [176], Schott [172], Czyżak and Jaszkiewicz [35], Zitzler and Thiele [213],

and Van Veldhuizen and Lamont [184, 190] proposed a number of metrics. More re-

cently Knowles and Corne summarized and evaluated many of the metrics in one of

the most complete evaluations to date [113, 114]. The metrics proposed by the au-

thors [35, 113, 114, 172, 176, 184, 190, 213] are genotypic and phenotypic based and

provide a foundation for comparing the performance of various MOEAs. Prior to the

introduction of these metrics, there was no standardized way of comparing MOEAs be-

sides the qualitative comparison of the true Pareto front PFtrue versus the known Pareto

front PFknown that the MOEA finds. This standardization of metrics allows for statistical

comparisons between various MOEA approaches and associated parameter values.
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Some authors have recognized a problem associated with existing metrics [31, 113,

114, 184]. Typically metrics take a multidimensional set of data, PFknown , and map it into

a reduced dimensional form, many times a scalar value. Thus a single scalar value cannot

convey the same amount of information found in the multidimensional Pareto front. In

analyzing the metrics discussed in this chapter, one must determine whether or not the

associated metric is viable to be applied to the MOP being solved.

Test problems exist in the MOEA community in which PFtrue is known and hence

metrics have been developed to measure the performance of MOEAs applied to these

MOPs. However, in many real-world MOPs PFtrue is often unknown and these same

metrics cannot be used. Similar issues arise when applying certain metrics to MOPs of

varying characteristics, in terms of the shape of the front and the connectedness. These

issues make the analysis of MOEA results sometimes more challenging then the design of

an MOEA.

A number of researchers [31, 44, 114, 210] have recognized three main goals to be

achieved when analyzing MOEA performance. In particular, the goals of an MOEA should

include:

• The distance from PFknown to PFtrue should be minimized.

• A uniform distribution of points across the Pareto front should be found. The points

found should be evenly spaced across the front even though all of the points on the

front may not be found.

• A large number of solutions should be found across the entire front, in which no area

of the front should be lacking unless that is the characteristic of PFtrue .

Some authors feel that a generic goal would include only the first item as finding the true

Pareto front has been identified as a goal of MOEAs [114].

Knowles and Corne presented a thorough analysis of many of the metrics from the

current literature, evaluated them in terms of their Pareto Compatibility, pros, and cons.

For each of the metrics presented in this chapter that Knowles and Corne analyzed [113,

114], their assessment of the quality of each nondominated set comparison metric (NDSCM)

follows. Prior to discussing the metrics, one must understand the details used by Knowles

3-29



and Corne to conduct their analysis. Knowles and Corne in part used the outperformance

relations from Hansen et al. [87]. These relations express the relationship between two

sets of nondominated objective function vectors, A and B, where ND(S) identifies the

nondominated points in S.

Definition 24 (Weak Outperformance): A OW B ⇐⇒ ND(A∪B) = A and A 6= B

i.e., A weakly outperforms B if all points in B are ‘covered’ by those in A (where ‘covered’

means is equal to or dominates) and there is at least one point in A that is not contained

in B. 2

Definition 25 (Strong Outperformance): A OS B ⇐⇒ ND(A ∪ B) = A and

B \ND(A∪B) 6= 0 i.e., A strongly outperforms B if all points in B are ‘covered’ by those

in A and there is some point in B dominated by a point in A. 2

Definition 26 (Complete Outperformance): A OC B ⇐⇒ ND(A ∪ B) = A and

B ∩ND(A ∪B) 6= 0 i.e., A completely outperforms B if each point in B is dominated by

a point in A. 2

Of these relations, it is important to notice that complete outperformance is the

strongest of the relations and weak outperformance is the weakest, i.e., A OC B =⇒
A OS B =⇒ A OW B. Knowles states that these definitions can be used to describe the

relationships between approximations to PFtrue since they are only dependent on standard

Pareto dominance relations [114]. He further explains that these are not metrics and there-

fore provide no information if each set contains points that are not covered or dominated

by the other set. Any metric that is not compatible with these relations is not guaranteed

to provide meaningful results in isolation. Further, Hansen et al. [87], present the following

definitions of compatibility and outperformance relations:

Definition 27 (Weak Compatibility): A comparison metric R is weakly compatible

with an outperformance relation O if for each pair of nondominated sets A, B with A O B,

R evaluates A as being no worse than B. 2
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Definition 28 (Compatibility): A comparison metric R is compatible with an out-

performance relation O if for each pair of nondominated sets A, B such that A O B, R

evaluates A as being better than B. 2

Knowles uses the outperformance relations to compare various metrics. He catego-

rizes metrics into direct comparative metrics; those metrics that compare two sets using

a scalar measure, reference metrics; those metrics that must use a reference set to yield a

value, and independent metrics; those metrics that measure a property of a set without

requiring a comparison to another set or a reference set. Additionally, Knowles states if a

metric induces a complete ordering, which allows one to state set A is better than set B,

set B is better than set C, and hence set A is better than set C [114].

Knowles uses Pareto compatibility to state whether a metric is misleading. Pareto

compatibility is defined to be the compatibility of a metric with the outperformance rela-

tions. He states that the hardest relation to be compatible with is OW and the easiest is

OC . Knowles further defines two desirable features of a metric; monotony and relativity

as [114]:

Definition 29 ((Weak) Monotony): Given a nondominated set A, adding a nondom-

inated point improves the value of the metric. 2

Definition 30 ((Weak) Relativity): The evaluation of Z∗ is (non)-uniquely optimal,

i.e., all other nondominated sets have a strictly inferior evaluation. 2

Compatibility with OW is necessary and sufficient for ensuring monotony and not

necessary but sufficient for ensuring relativity.

3.2.1 Chi-Square-Deviation Metric. Srinivas and Deb [176] present a metric to

evaluate the performance of MOEAs. They use a chi-square-like deviation form distribution

measure shown in Equation (3.1)

ι =

√

√

√

√

q+1
∑

i=1

(

ni − n̄i
σi

)2

(3.1)
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where q is the number of desired optimal points and (q+1)-th sub-region is the dominated

region, ni is the actual number of individuals serving the i-th sub-region of the nondom-

inated region, and σ2i is the variance of the individuals serving the i-th sub-region of the

nondominated region. The authors state that an algorithm with a good distribution capa-

bility is characterized by a low deviation measure [176]. This metric was not evaluated by

Knowles but one can see a disadvantage is in the requirement of one to select a number of

desired solution points (q). In problems in which one does not know the cardinality of the

solution set, this metric is not easily applied. Since in most real-world application MOPs,

one does not know the cardinality of the solution set, this metric is not typically useful.

3.2.2 Conservative Distance Convergence Metric. In [46], Deb presents two

metrics for adoption. The first is based on the consecutive distances among the solutions

of the best nondominated front in the final population. Deb proposes finding a set of 500

uniformly spaced solutions from PFtrue . Then one takes the points found, PFknown , and

computes the minimum Euclidean distance of them from the 500 solutions. The average of

these distances is referred to as the convergence metric, Υ. Deb suggests using the average,

Ῡ, and variance, σΥ of the convergence metric to evaluate an MOEA’s convergence to

PFtrue . He states that even if PFknown converges to PFtrue , the metric only realizes a

zero value when all of the points lie on all of the PFtrue points.

Deb suggests using a second metric, ∆ to measure the spread of points along the front.

This metric consists of a calculation of the Euclidean distance, di of each consecutive point

on PFknown and then calculating the average of the distances, d̄. Using these values, one

can compute the spread of solutions along the front, as shown in Equation (3.2)

∆ =
df + dl +

∑N−1
i=1 |di − d̄|

df + dl + (N − 1)d̄
(3.2)

where df and dl are the Euclidean distances between the extreme solutions and the bound-

ary solutions respectively, and N is the number of solutions. Deb states that for the most

widely spaced solutions, the numerator would be zero, yielding a zero value for the metric.
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These two metrics have not been analyzed by Knowles. The first metric, the consec-

utive distance metric requires the use of a comparison set containing points on PFtrue and

hence cannot typically be used. In some cases PFtrue is known but in many others it is

not and hence limits the useability of this metric. Deb’s ∆ metric is similar to other

spacing metrics that exist in the literature and attempts to measure the distribution and

uniformness of the spread of solutions in PFtrue .

3.2.3 Error Ratio Metric. Van Veldhuizen [184] defines Error Ratio (ER) as the

error in PFknown when compared to PFtrue .

ER ,

∑n
i=1 ei
n

, (3.3)

where n is the number of vectors in PFknown and

ei =











0 if vector i, i = (1, . . . , n) ∈ PFtrue ,

1 otherwise.

(3.4)

For example, E = 0 indicates every vector reported by the MOEA in PFknown is actually

in PFtrue ; E = 1 indicates that none are. Also note that a similar metric [213, 214, 215]

measures the “percentage of solutions” in some set (e.g., Pknown or PFknown ) dominated

by another solution set’s members (e.g., Ptrue or PFtrue ) as presented next.

Knowles states that this metric is only weakly compatible with OC , incompatible

with the outperformance relations, induces a total ordering, and violates monotony as well

as relativity [114]. Another disadvantage of this metric is in its requirement of a reference

set and that the addition of other members into the set being measured may lead to a

worse metric value even if they are closer to PFtrue (but not elements of PFtrue ) than the

current members in the set.

3.2.4 Relative Coverage Metric. Zitzler et al. [210] present an MOEA metric

which is referred to as a relative coverage comparison of two sets. Consider X ′, X ′′ ⊆ X ′

as two sets of phenotype decision vectors. CS is defined as the mapping of the order pair
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(X ′, X ′′) to the interval [0, 1] per Equation (3.5).

CS(X ′, X ′′) ,
|{a′′εX ′′; ∃a′εX ′ : a′ º a′′}|

|X ′′| (3.5)

If all points in X ′ dominate or are equal to all points in X ′′, then by definition CS = 1.

CS = 0 implies the opposite. In general, CS(X ′, X ′′) and CS(X ′′, X ′) both have to be

considered due to set intersections not being empty. Additionally, this metric can be used

for X = Pknown or PFknown .

Knowles states that this metric is complicated to analyze in reference to the compat-

ibility relations he uses [114]. In general he states that the relative coverage metric is not

compatible with OW but is compatible with OS and OC . A disadvantage of this metric lies

in the complex analysis sometimes necessary to determine what is indicated by the metric

result. In cases where the sets being compared are of differing cardinalities and contain

unevenly distributed points along the front, the metric result is somewhat different from

the result that one would expect, further indicating the care that must be given when in-

terpreting the result of the relative coverage metric. An advantage of this metric is that it

does not rely on a reference set. The complexities associated with interpreting the results

of this metric discourage its use.

3.2.5 Maximum Pareto Front Error Metric. Comparing two sets to determine

which one contains “better” solutions is a typical occurrence in the MOEA community.

One may attempt to determine how far apart and how similar two sets, PFknown and

PFtrue are. The maximal Pareto front error metric determines a maximum error band,

that when considered with respect to PFknown , encompasses every vector in PFtrue [184].

Put another way, this is the largest minimum distance between each vector in PFknown and

the corresponding closest vector in PFtrue . This metric is defined as:

ME , max
j

(min
i
| f i1(~x)− f j1 (~x) |2 + | f i2(~x)− f j2 (~x) |2)1/2 , (3.6)
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where i = 1, . . . , n1 and j = 1, . . . , n2 index vectors, respectively, in PFknown

and PFtrue . A result of 0 indicates PFknown ⊆ PFtrue ; any other value indicates at least

one vector in PFknown is not in PFtrue .

This metric requires the use of a reference set. Knowles states that this metric induces

a complete ordering but is not compatible with any of the outperformance relations [114].

It meets the criteria for weak relativity and violates weak monotony. An advantage of this

metric is the ease of computation. This metric’s disadvantage is that it does not always

result in a value that one would expect given the PFknown set obtained. For example, a

set containing mostly members in PFtrue but a single or few members relatively far away

from PFtrue may be considered of lesser quality than a set consisting of members very close

to PFtrue but not containing any members in PFtrue . This possibility makes this metric

relatively difficult to interpret and hence it must be used with multiple other metrics in

order to lend insight into the results. The potential difficulty of interpreting the results of

the maximum Pareto front error metric discourages its use.

3.2.6 Average Pareto Front Error Metric. The average Pareto front error at-

tempts to measure the convergence of an MOEA by using the distance of PFknown to

PFtrue . From each solution in PFknown , its perpendicular distance to PFtrue is deter-

mined by approximating PFtrue as a combination of piece-wise linear segments with the

average of these distances defining the metric value [31].

This metric was not analyzed by Knowles but exhibits similar properties to the

maximum Pareto front error metric. A disadvantage of this metric is its approximation of

PFtrue versus use of the real PFtrue . The quality of this metric is dependent on the quality

of the approximation. Additionally multiple researchers could apply this metric to the same

MOEA and MOP and generate different results if they did not use the same approximation.

Hence this metric is somewhat easy to understand but requires the reporting of multiple

parameters in order to ensure that the results are comparable to other researcher’s results.

Without the exact approximation, one cannot compare the results of multiple MOEAs over

the same MOPs with any confidence in the metric values. Due to the disadvantages and
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possibility for incorrect comparisons of this metric value among researchers, this metric is

not recommended for use.

3.2.7 Hyperarea Metric. Zitzler and Thiele, propose an MOEA comparative

metric which can be termed hyperarea [214]. Hyperarea defines the area of objective

value space covered by PFknown (i.e., the “area under the curve”). For example, a vec-

tor in PFknown for a two-objective MOP defines a rectangle bounded by an origin and

(f1(~x), f2(~x)). The union of all such rectangles’ area defined by each vector in PFknown is

then the comparative measure and is defined as [184]:

H , {
⋃

i

ai | vi ∈ PFknown }, (3.7)

where vi is a nondominated vector in PFknown and ai is the hyperarea determined by the

components of vi and the origin.

Zitzler et al., note that this metric may be misleading if PFknown is non-convex.

They also assume the MOP’s objective space origin coordinates are (0, . . . , 0), which is not

always the case. In addition, they propose a hyperarea ratio metric defined as:

HR ,
H1
H2

, (3.8)

where H1 is the hyperarea of PFknown and H2 that of PFtrue . In a minimization problem,

this ratio is 1 if PFknown = PFtrue and greater than one if PFknown ’s hyperarea is larger

than PFtrue ’s.

The hyperarea metric may yield confusing and misleading results when applied to

maximization MOPs and non-convex MOPs. This metric was meant for analyzing convex

minimization MOPs. Since the properties of many real-world MOPs are unknown, this

metric is more useful when applied to MOPs in which the Pareto front is known to be

convex. The hyperarea ratio requires the use of a reference set and the conclusions drawn

for the hyperarea metric apply to hyperarea ratio.
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Knowles states that the hyperarea metric is compatible with OW provided that the

upper boundary of the dominated region is set so that all of the feasible nondominated

points are always positive [114]. He states that the advantages of this metric are that it

is compatible with the outperformance relations, it is an independent metric, and it can

distinguish between different levels of outperformance. The disadvantage of this metric is

that it requires the upper boundary of the feasible region to be defined. This boundary

directly effects the ordering of the nondominated sets and he states it is difficult to justify

any specific setting for this boundary. This metric also has a large computational overhead,

hence making an analysis of a PFknown set of large cardinality a time consuming process.

For PFknown sets of high dimensionality or large cardinality, this metric is unusable. Due

to the overhead and disadvantages of this metric, it is not recommended for use.

3.2.8 Generational Distance Metric. Van Veldhuizen defines the Generational

Distance as a value representing in the average how “far” PFknown is from PFtrue [184]:

GD ,
(
∑n

i=1 d
p
i )
1/p

n
, (3.9)

where n is the number of vectors in PFknown , p = 2, and di is the Euclidean distance

(in objective space) between each vector and the nearest member of PFtrue . A re-

sult of 0 indicates PFtrue = PFknown ; any other value indicates PFknown deviates from

PFtrue . In the case of a disconnected Pareto front, for any p value, regions of the Pareto

front can use the same equation and then a weighted sum can be obtained across the

entire Pareto front. Figure 3.2 presents example PFtrue and PFknown sets. The gener-

ational distance for PFknown in Figure 3.2 has: d1 =
√

(1.2− 1)2 + (7− 7)2 = 0.200,

d2 =
√

(1.5− 1.5)2 + (4− 4)2 = 0.000, and d3 =
√

(3− 2)2 + (2− 2)2 = 1.000.

G =

√
0.2002 + 0.0002 + 1.0002

3
=

1.020

3
= 0.340

Knowles states that this metric induces a total ordering [114]. This metric also

requires the use of a reference set in order to determine the distance from the reference

set. Generational distance is relatively easy to compute, which makes it desirable to use.
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A disadvantage of this metric is its incompatibility with OW and it cannot be used reliably

with sets that are changing in cardinality, hence this metric is not a good measure of the

progress of an MOEA from generation to generation. This metric also cannot differentiate

between different levels of complete outperformance but when used in conjunction with

other metrics can provide useful information. This metric yields useful information as it

states how close an MOEA comes to the actual solution of an MOP and hence this metric

is recommended for use in conjunction with other metrics and in MOPs where PFtrue is

known.
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Figure 3.2 Example Minimization MOP PFtrue and PFknown

3.2.9 7-Point Average Distance Metric. Schott defines a “7-Point” average dis-

tance measure that is similar to generational distance [172]. In his experiments, neither

Ptrue or PFtrue are known, so he generates seven points in objective space for comparison.

Assuming a two objective minimization MOP and an (f1, f2) coordinate system with origin

at (0,0), first determine the maximum value in each objective dimension. Two equidis-

tantly spaced points are then computed between the origin and each objective’s maximum

value (on the objective axis). The metric value is then created by averaging the Euclidean

distances from each of the seven axis points to the member of PFknown closest to each

point. In a general 2 objective function minimization MOP F (~x) = (f1(~x), f2(~x)), the
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seven points are:

{(0, (max f2(~x))/3), (0, 2 ∗ (max f2(~x))/3), (0, (max f2(~x))), (0, 0),

((max f1(~x))/3, 0), (2 ∗ (max f1(~x))/3, 0), ((max f1(~x)), 0)}. (3.10)

This metric was not analyzed by Knowles. The 7-Point average distance metric pro-

vides a method to attempt and find how close a solution set is to PFtrue when one does not

have knowledge of PFtrue . The disadvantage of this method lies in the determination of

the maximum value within each objective dimension. In non-linear optimization problems,

this may not be readily available and hence one may expend a large amount of compu-

tational resources in attempting to generate those points. Additionally, calculating the

points that are equidistant from the origin to the maximum values may also be intensive.

In such cases, one may be better off solving for PFtrue and then using the generational

distance metric. This metric also does not have knowledge of PFtrue and hence distances

are only calculated from the seven axis points to a single member of PFknown . Hence this

metric does not present a good measure of how far PFknown is from PFtrue but instead an

average measure of the distance from a single point in PFknown to seven generated points

in objective space, not guaranteed to be in PFtrue . This metric is not recommended for

use.

3.2.10 Spacing (Range) Metric. In some operational settings, one desires to

measure the spread of points across PFknown . Most experimental MOEAs perform fit-

ness sharing (niching or crowding) in an attempt to spread each generational population

(PFcurrent (t)) evenly along the known front. Since one has knowledge of PFknown and its

endpoints at the conclusion of the MOEA, a spacing metric can define how well PFknown (or

PFtrue ) is distributed. Schott proposes such a metric measuring the range (distance) vari-

ance of neighboring vectors in PFknown [172]. Called spacing, he defines this metric as:

S ,

√

√

√

√

1

n− 1

n
∑

i=1

(d− di)2 , (3.11)
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where di = minj(| f i1(~x) − f j1 (~x) | + | f i2(~x) − f j2 (~x) |), i, j = 1, . . . , n, d is the mean of all

di, and n is the number of vectors in PFknown . A value of zero for this metric indicates

all members of PFknown are equidistantly spaced. Spacing for PFknown in Figure 3.2 has:

d1 = |1.2−1.5|+ |7−4| = 3.300, d2 = |1.5−1.2|+ |4−7| = 3.300, d3 = |3−1.5|+ |2−4| =
3.500, and d = 3.300+3.300+3.500

3 = 3.367.

n
∑

i=1

(d− di)
2 = (3.367− 3.300)2 + (3.367− 3.300)2 + (3.367− 3.500)2 = 0.027

S =

√

1

3− 1
0.027 = 0.115

Some MOPs (e.g., MOP3, MOP4, and MOP6 discussed in Chapter IV) have PFtrue ’s

that are composed of two or more Pareto curves. Including the distance between the

endpoints of two successive curves may skew Schott’s range metric. Thus, for MOPs

with this characteristic, the distance corresponding to the “breaks” in the front should be

removed from the spacing computation.

Knowles states that this metric is incompatible with OW , is incompatible with the

outperformance relations, and does not meet the criteria for monotony or relativity [114].

However, this metric is useful when used in conjunction with other metrics. If one is aware

of the structure of the front, as the structure of PFknown is known once the MOEA com-

pletes, then one can interpret the result of this metric correctly. Blindly using this metric,

as is the case with many of the other metrics, can lead to an incorrect interpretation of the

results. This metric requires low computational resources and can easily be generalized to

multiple dimensions making this a favorable metric to use.

3.2.11 Overall Nondominated Vector Generation and Ratio Metric. This met-

ric (ONVG) measures the total number of nondominated vectors found during MOEA

execution and is defined as [184]:

ONV G ,| PFknown | . (3.12)
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Schott uses this metric (although defined over the Pareto optimal set, i.e., | Pknown |) [172].
Genotypically or phenotypically defining this metric is just a matter of preference, but

note that multiple solutions may map to an identical vector | Pknown |≥| PFknown |, hence
it is important to identify whether this metric is measuring the genotype or phenotype.

Although counting the number of nondominated solutions gives some feeling for how ef-

fective the MOEA is in generating desired solutions, it does not reflect on how “far” from

PFtrue the vectors in PFknown are. Only a comparison between PFtrue and PFknown as well

as a spacing value can illustrate whether or not a particular ONVG value is “good.” With-

out other information, one cannot determine if an ONVG value of 10 or 1000 is “good.”

This metric used in conjunction with a spacing and distance metric as well as a visualization

of the Pareto front can yield a clear analysis of the MOEA results.

Van Veldhuizen defines the ratio (ONVGR) between the cardinalities of PFknown and

PFtrue as [184]:

ONV GR ,
| PFknown |
| PFtrue |

. (3.13)

A value of 1 indicates that the MOEA has found the same number of nondominated

vectors as exists in PFtrue . It is important to recognize that the ratio also requires the

use of other metrics in order to make a correct analysis of the results. It is possible

for the cardinality of PFtrue and PFknown to be identical yet PFknown be nowhere close to

PFtrue . Hence this metric must be used in conjunction with other metrics. The use of

ONVG along with spacing, generational distance, and a visualization of the front is a good

combination of metrics. ONVG and ONVGR for PFknown in Figure 3.2 is ONV G = 3 and

ONV GR = 3
4 = 0.750.

Knowles states that ONVG induces a complete ordering on the set, but it is not

weakly compatible with any of the outperformance relations, nor does it have the property

of weak monotony or weak relativity [114]. An advantage of this metric is its ease of

computation and the fact that it does not require the use of a reference set. As stated

earlier, this metric is useful when used in conjunction with other metrics. Knowles’ analysis

of the ONVG metric is representative of his discussion of ONVGR.
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3.2.12 Progress Measure Metric. Progress measure is a metric originally used in

the single objective area to assess the convergence of an EA. This metric was defined by

Bäck [13] and it attempts to measure relative, instead of absolute convergence improvement

P , ln

√

fmax(0)

fmax(t)
, (3.14)

where fmax(i) is the best objective function value in the parent population at generation

i.

Van Veldhuizen modified this metric so as to present a method for using progress

measure to evaluate the performance of MOEAs [184]. This metric is defined as:

RP , ln

√

G1
Gt

, (3.15)

where G1 is the generational distance at generation 1, and Gt the distance at generation t.

This metric has not been evaluated by Knowles, but one can see that this metric can

yield useful information about the convergence of an MOEA. However a disadvantage of

this metric is that it only measures the progress between two specific generations of MOEA

execution. In most MOEAs, the overall solution found throughout the entire MOEA

execution is presented to the user. This metric only compares the progress between two

generations and not the contribution of each generation to the overall solution set presented

at MOEA termination. This metric is therefore not recommended for use.

3.2.13 Generational Nondominated Vector Generation Metric. (GNVG) This

metric tracks how many nondominated vectors are produced at each MOEA generation

and is defined as:

GNV G ,| PFcurrent (t) | . (3.16)

This metric is useful when used in conjunction with the progress measure for eval-

uating the MOEA performance from generation to generation. Knowles states that this

metric exhibits the same advantages and disadvantages as the ONVG metric it is based

off of [114].
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3.2.14 Nondominated Vector Addition Metric. This metric evaluates the change

in the cardinality of PFknown (t) as the generations progress. As the MOEA is executed,

one would like the cardinality of PFknown (t) to increase and hence generate a PFknown set

of high cardinality. This metric is then defined as:

NV A ,| PFknown(t) | − | PFknown(t− 1) | . (3.17)

This metric may be useful when used in conjunction with GNVG and progress mea-

sure to evaluate the MOEA performance from initialization to termination. This metric

can be misleading if one does not use it along with other metrics and conduct a thorough

analysis of PFknown (t). This is important as the addition of a potential solution to the

PFknown (t) set may result in the removal of many members of that set. This may occur

if the new member dominates existing members. While one does not know how often this

may occur, in most cases, an MOEA yields better solutions, that dominate previous so-

lutions, as it progresses. Hence the cardinality of PFknown (0) may be larger than that of

PFknown , yet all of the solutions in PFknown may dominate those in PFknown (0). Hence

this metric only presents a change in the cardinality of the set and not in the quality of

solutions and therefore is not recommended for use. Therefore this metric must be used

with care and in conjunction with other metrics. Knowles states that this metric exhibits

the same advantages and disadvantages as the ONVGR metric as it is based off of it.

3.2.15 D1R. This metric measures the mean distance, over the points in a

reference set, of the nearest point in an approximation set [35]. The definition of this

metric is:

D1R(A,Λ) ,
1

|R|
∑

r∈R

minz∈A{d(r, z)} (3.18)

where A is the approximation set, R is the reference set, d(r, z) = maxk{λk(rk − zk)} and
Λ = [λ1, λ2, . . . , λK ], λk = 1/Rk, k = 1 . . .K with Rk representing the range of objective

k in set R.

Knowles states that this metric induces a complete ordering, is weakly compatible

with OW , and incompatible with OC [114]. The disadvantage of this metric is that it
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calculates a weighted average dependent on the reference set. This calculation is similar

to Schott’s 7-Point average distance metric. An advantage of this metric is that it is easy

to compute and it can differentiate between different levels of complete outperformance.

This metric is not recommended for use as it requires one to select a good approximation

set which is not known a priori for real-world MOPs.

3.2.16 R1 and R1R. The R1 metric calculates the probability that a set A is

better than a set B over a set of utility functions and R1R is identical to R1 when it is

used with a reference set [88].

R1(A,B,U, p) =
{

∫

u∈U C(A,B, u)p(u)du , where (3.19)

C(A,B, u) =



















1 if u∗(A) > u∗(B)

1/2 if u∗(A) = u∗(B)

0 if u∗(A) < u∗(B)

(3.20)

where A and B are two approximation sets, U is a set of utility functions, u : <K → <
which maps each point in objective space into a measure of utility, p(u) expresses the

probability density of the utility u ∈ U , and u∗(A) = maxz∈A{u(z)} and also for u∗(B).

Knowles states that these metrics require a set of utility functions which must be

defined [114]. They also use low computational resources and can differentiate between

different levels of complete outperformance if given a reference set. These are good metrics

to use but are somewhat complex to understand and require the use and determination

of utility functions, reducing the attractiveness of the metric. Since the selection of util-

ity functions may not be possible and may be difficult to complete, this metric is not

recommended for use.

3.2.17 R2 and R2R. The R2 metric is an improvement over R1 by taking into

account the expected values of the utility functions. It calculates the expected difference

in the utility of an approximation A with another approximation B [88]. The symbology
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is the same as for R1 and R2 is defined as:

R2(A,B,U, p) = E(u∗(A))− E(u∗(B)) =

∫

u∈U
(u∗(A)− u∗(B))p(u)du (3.21)

Knowles states that these metrics require that it makes sense to add the values of

different utility functions from the set U meaning that each utility function must be ap-

propriately scaled [114]. He further discusses that these metrics can differentiate between

different levels of complete outperformance. These are good metrics to use but are some-

what complex to understand and require the use and determination of utility functions,

reducing the attractiveness of using them. Since the selection of utility functions may not

be possible and may be difficult to complete, this metric is not recommended for use.

3.2.18 R3 and R3R. The R3 metrics are similar to the R2 metrics but instead

of calculating the difference of the utility values, the ratio of the best utility values is

used [88]. The analysis of this metric is similar to the previous two metrics generated by

Hansen and Jaszkiewicz. Again, these are good metrics to use but are somewhat complex

to understand and require the use and determination of utility functions, reducing the

attractiveness of using them. Since the selection of utility functions may not be possible

and may be difficult to complete, this metric is not recommended for use.

3.2.19 Visualization. The visualization of MOEA statistical results is an impor-

tant issue to address and deserves attention. One of the most basic and simplest ways

to analyze the results of an MOEA is to visualize the Pknown and PFknown sets. A sim-

ple plot of these sets is useful in determining what a number of the characteristics of the

PFknown set are. For example, a visualization can illustrate the cardinality of the set, the

number of disjoint fronts that appear, the structure of the front and more information.

The advantage of conducting a visual analysis and comparison of MOEA results is that

all of the data is present to the naked eye for analysis. A researcher can readily see the

structure of the results of a visualization of PFknown . This is an advantage over some of

the metrics discussed as single metric results can be misleading and the use of multiple

metrics is important.
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Visualization of MOEA results provides an easy mechanism to see the general MOEA

performance and is recommended for use. A more detailed analysis using other metrics is

necessary to compare the performance of multiple MOEAs. A visual comparison can easily

illustrate complete outperformance but cannot as easily distinguish between MOEA results

indicating mixed performance (MOEA 1 has some points better than MOEA 2 and vice-

versa). Visualization of MOEA results also becomes more difficult if not impossible when

analyzing the results of an MOP containing a large number of dimensions. Since three

dimensions is typically the maximum that one can easily visualize, MOPs with greater

than three dimensions require the plotting of only three of the dimensions at a time or the

use of other metrics.

3.3 MOMGA-II Performance Metrics

Many of the metrics discussed in this chapter are described in the genotype or phe-

notype domains only, but these metrics can be equally applicable in either domain (applied

to Pknown or PFknown ). Each of the metrics discussed attempts to map multiple points ex-

isting on the Pareto front to a single metric value. As is known in other academic fields and

mathematics, such a mapping is lossy and hence a single metric typically cannot indicate

overall performance. The metrics are referred to as lossy since the mapping of multiple

points (the Pareto front) to a single metric value results in a loss of information. Which

combination of metrics can provide the best analysis of a solution set? The answer to that

question is still highly debated.

The metrics discussed in this chapter have been accepted and adopted by the MOEA

community in limited or wide spread use. The summary presented in support of this

research effort is meant to provide an overview of currently known MOEA metrics. This

metric overview is used to select metrics for evaluating the research conducted in support

of the objectives presented in Chapter I.

In order to quantitatively compare the results of the MOMGA-II with other MOEAs,

statistical analysis of the experimental results and associated observations are presented

in Chapter VI. Since no single metric can represent total MOEA performance, a series of

appropriate metrics is used to measure the performance in the phenotype domain. MOEA
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metrics should consist of comparisons of 1) the PFknown values to the PFtrue values to

calculate generational distances, 2) spacing along the PFknown Pareto front, and 3) the

range of values for each objective function [191, 210]. In cases where PFtrue is unknown, it

is important that metrics are selected that result in the measurement of the distribution

of points along PFknown , and the cardinality of PFknown . These attributes are important

to consider when evaluating the performance of an MOEA. Metrics that address the dis-

tribution of points and the cardinality of the known Pareto front are important to provide

insight into the performance of an MOEA.

Knowles recommends the use of the hyperarea, R1, R2, and R3 metrics [114]. While

Knowles states that these metrics are “good” metrics to use, this statement is highly

dependent on the characteristics of the PFknown sets that one is measuring. In this dis-

sertation, an analysis is made of MOEA performance as applied to MOPs some of which

PFtrue is known and others where PFtrue is unknown. Additionally, the characteristics of

the PFknown sets generated through this effort vary greatly. Some of the characteristics

of the PFknown sets generated by the MOMGA-II include connected fronts, disconnected

fronts, are of large and small cardinality, and are of varying dimensionality in Ptrue and

PFtrue . This makes the selection of metrics challenging. While Knowles makes the state-

ment that the hyperarea, R1, R2, and R3 metrics are recommended for use, this statement

should take into consideration the characteristics of the PFknown sets generated by the

MOEA. For example, Knowles states that the hyperarea metric is unusable for PFknown sets

of large cardinality. Since some of the PFknown sets generated in this research effort ex-

hibit this characteristic, his recommended metric is not applicable. The R1, R2, and R3

metrics have many advantages but they all require the ability to define a set of utility

functions. This is a time consuming process and is not always possible. The definition of

utility functions is not completed in this research effort and hence these metrics are not

applicable.

The metrics selected for use in this effort (Chapter VI), to evaluate and compare the

performance of the MOMGA-II are generational distance, spacing, overall nondominated

vector generation, and a visual comparison of Pareto front results. Of these, the only metric

that requires one to have knowledge of PFtrue is generational distance. Although other
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metrics such as error ratio, max error, hyperarea ratio, progress measure, and others are

discussed in this chapter and have been employed for MOEA testing, the four metrics (G, S,

ONVG, visualization) used together are quantitatively quite adequate for statistical MOEA

comparison. G, S, and ONVG allow a researcher the ability to make statistical statements

about the performance of MOEAs and require low computational resources. These metrics

along with a visual analysis of the PFknown sets provides the necessary insight into MOEA

performance as applied to given MOPs with respect to the goals addressed in the beginning

of this section.

A software package for calculating all of the discussed metrics is not readily available

and hence researchers must either search for existing code or generate their own code. As

the use of existing code is preferable, there are numerous statistical packages that may be

used to analyze an MOEA’s results.

Note that the discretization of the continuous decision variable domain can be critical

in generating the MOP’s Pareto front. That is, if only a very few decision variable values

relate to a particular objective function optima, the statistical chance of generating these

values is small assuming a uniform distribution of values. The resulting PFknown could

thus be a considerable distance from PFtrue resulting in an unacceptable solution. Some

say that this is a deception problem, but in reality, it is a numerical analysis problem.

One also should observe that some authors use straight-line approximations to the

continuous Pareto front if PFtrue is functionally unknown in generating metric values [210].

A better method, which is employed (for MOP-C1 in Chapter VI), is to use high-order

polynomial approximations minimizing the error over the discrete PFtrue segments which

gives more realistic results.

3.4 Summary

Throughout the past decade the number of MOEA publications has greatly increased.

While many of these publications discuss new approaches and operators, many more discuss

the application of an existing MOEA to a real-world or new MOP. This chapter presents

a discussion of the most popular and highly referenced contemporary and recent MOEAs.
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This serves as a good summary of the what could be considered the best MOEAs in the

field. Through an understanding of the literature, one can improve an existing MOEA or

develop a new, efficient and effective MOEA. An objective of this research is the latter of

the two. The literature review presented illustrates the lack of interest, or understanding

of explicit BB-based MOEAs by the MOEA community as a whole. This is an area that

can yield great results and is the focus of this research.

The complexity and computational cost of an MOEA somewhat drive its utility in

the real-world. While the cost of the fitness function calculation is typically dependent on

the hardware of the machine, the cost of the MOEA in terms of execution time, memory

utilization and complexity is left to the programmer. The most efficient MOEAs are sure

to be used more often than those of lower efficiency, where efficiency includes the memory

and processing requirements as well as the required time to execute. The same is true of

complexity; typically researchers want to use the least complex approach, that yields the

most accurate results. This process has a higher probability of researchers understanding

the approach and improving upon it. That is not to say that complex MOEAs are not

useful. One example of this is the MOMGA [184] and the MOEA developed through this

research, the MOMGA-II. The MOMGA is a complex MOEA that takes an approach no

other MOEA researches have used, yet it parallels the performance of other MOEAs and

performs better on selected MOPs. The good performance realized by the MOMGA is

one of the motivations of conducting research in the area of explicit BB-based MOEAs.

The complexity and computational cost are important attributes of an MOEA but are

also difficult to compare as many MOEAs make use of different operators, are coded by

different researchers and therefore may be difficult to compare. However, the efficiency

and effectiveness of these approaches can be analyzed and compared.

Once a researcher has implemented and tested what they feel is a well-engineered,

efficient and effective MOEA, the researcher must have a method to evaluate the results

obtained from the MOEA. A well-engineered MOEA is one in which a researcher has taken

the time to address the issue of complexity, followed good software engineering practices

and analyzed available literature to incorporate promising ideas. The latter part of this

chapter presents a summary of many metrics used in the MOEA community to evaluate
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the MOEA performance or compare and contrast the performance of multiple MOEAs.

Evaluations of each of the metrics illustrate that there is no one best metric to use, but

through a visual analysis of the characteristics of the MOEA results, one can make an

intelligent decision as to which metrics can accurately evaluate the performance of the

MOEA tested. Generational distance, ONVG, spacing, and visualization of the Pareto

front are selected as the metrics to evaluate the performance of the MOEAs compared.
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IV. MOEA MOP Test Suites

Throughout the previous two chapters, a detailed discussion of BBs and the MOEAs that

incorporate BB concepts is presented. In the latter part of the last chapter, MOEA metrics

are presented to analyze MOEA performance. Having presented the metrics, this chapter

addresses the MOPs selected for use in evaluating MOEA performance. Additionally, a

discussion of MOPs and associated MOP test suites is presented. This includes a discussion

of a few unconstrained MOPs as well as constrained, NP -Complete, and real-world MOPs

of varying characteristics. These MOPs are presented to aid researchers in evaluating the

performance of MOEAs.

The selection of MOPs for inclusion into MOEA MOP test suites has been dis-

cussed in the MOEA literature and problems from standardized MOP test suites are se-

lected [31, 43, 52, 189, 188]. Each MOP selected for use is described in this chapter. The

MOP test problems used in this effort are selected from standardized standardized MOP

test suites suggested and used by MOEA researchers. The use of standard test problem

sets is recommended by Jackson, Boggs, Nash, and Powell to allow for comparisons of

results presented by different researchers [97]. Different motivations exist for the selection

of test MOPs. One of the motivations is to analyze general MOEA performance over a

variety of classes of MOPs. While the selected MOEA may not have the best performance

out of any given method over all of the MOPs, there may be a particular class of MOP that

it performs the best on compared to the classes tested. Testing an MOEA over a number of

classes of MOPs can illustrate the class of MOP that a given MOEA obtains the best per-

formance over. Another motivation of testing an MOEA is to tune it to perform well over

a single class of MOP. This is more indicative of the type of testing conducted by MOEA

researchers attempting to solve a specific real-world problem. Researchers may choose to

incorporate problem domain knowledge and tune their MOEA to a class or instantiation

of this problem. These are two motivations for the selection of test MOPs. The motivation

of this chapter is on the selection of test MOPs for analyzing the performance of MOEAs

over multiple problem classes.

While a few unconstrained test functions from another test suite are discussed, the

contribution of this effort is the addition of a real-world and constrained MOPs with integer
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based decision variables into a test suite. Additional details of other researchers’ test suite

MOPs is presented in Appendix B. The specific MOPs selected for use represent MOPs of

varying characteristics. The selection of MOPs and MOP test suites is just as important

as the selection of an MOEA to apply to a problem. Researchers must ensure that they

understand the MOP and the formulation used. This understanding is advantageous in

tuning and selecting an MOEA that can perform well on the particular class of MOP

selected. A researcher may also attempt to solve an MOP that no prior knowledge of the

structure or characteristics of the Pareto front exists. In this case, a researcher can look at

all of the available MOEAs for one that performs the best over that class of MOP. While

knowledge of the characteristics of the Pareto front may be unknown for an MOP, the

mathematical representation of the MOP is known. Using the mathematical formulation

of the MOP, a researcher can determine which other MOEAs have performed well when

applied to similar problems.

Test suites are integral to the presentation of an unbiased comparison of different

MOEA approaches. This chapter is organized as follows: unconstrained test function

MOPs are presented in Section 4.1, followed by a discussion of constrained test function

MOPs, discrete MOPs and real-world MOPs in Sections 4.2 through 4.5. The constrained

test suite MOP section contains theNP -Complete and real-world MOPs that are presented

for use by other researchers in evaluating the performance of an MOEA against constrained

MOPs formulated with integer based decision variables. Real-world MOPs of interest to

industry and the government are also discussed. Test suite generators and other proposals

are discussed in Section 4.2 to aid a researcher in creating a good design of experiments

when testing the efficiency and effectiveness of their MOEA. These discussions are useful for

generating a good test of an MOEA as well as identifying problem domain characteristics

that, if addressed, can improve MOEA performance when applied to problems of this class.

4.1 Unconstrained Test Suite MOPs

The purpose of a test suite is to objectively determine the efficiency and effectiveness

of an MOEA [43, 52, 189, 188]. The selection of MOPs for testing is a necessity to analyze

or compare the performance of a single or multiple MOEA approaches. A researcher’s mo-
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tivation for applying an MOEA to an MOP from a test suite is to illustrate the performance

of that MOEA as applied to the class of MOP selected or to compare the performance of

multiple MOEAs as applied to the same MOP. It is also prudent to remember that an

MOEA may perform better than other approaches over one or more classes of MOPs, but

this does not prove that the MOEA performs better over all classes of MOPs it encounters.

The No Free Lunch (NFL) Theorem states that one algorithm cannot outperform every

other algorithm over every possible class of test problem [204].

EAs are generally accepted as “good” search methods when applied to problems in

which the search space is extremely large, the search space is known to be neither flat

nor chaotic, the fitness function is noisy, another tuned method for solving the MOP is

nonexistent, or the MOP is not well understood [148]. Problems in which there are a large

number of dimensions in the genotype or phenotype spaces may also be good problems for

application by an evolutionary approach. It is important to apply an MOEA to problems

that meet these criteria. The application of an MOEA to MOPs that do not meet the

aforementioned criteria and hence are not challenging enough for an MOEA, likely result

in poor performance.

Van Veldhuizen and others have selected MOPs for inclusion in test suites based in

part on the guidelines that Whitley suggested [203]. These guidelines were stated in the

context of single objective problems but apply to the MOPs also. The guidelines state

that test suites should contain problems (MOPs) that [203]:

1. are difficult for simple search strategies to solve

2. are nonlinear, nonseparable, and nonsymmetric, requiring increased computational

resources

3. are scalable

4. contain a large number of dimensions

Many of the researchers who have suggested MOP test suites have also suggested

that the MOPs within these test suites include functions of varying characteristics: con-

tinuous, discontinuous, connected, disconnected, convex, concave, unimodal, multimodal,

quadratic, and nonquadratic [74, 138]. Van Veldhuizen included historical MOPs that were
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referenced in the literature in his test suite [184]. He created a standardized test suite to

use based on MOPs with a variety of desired characteristics. It is important to include

multiple classes of MOPs, with varying characteristics in order to test an MOEA’s ability

to solve problems of these classes.

Five unconstrained MOPs from Van Veldhuizen’s standard test suite, which represent

both minimization and maximization functions with varying complexity levels and Pareto

front (phenotype) characteristics, are selected for use in this research effort. Two objective

problems are used for ease of presentation and to provide critical insight to MOEA perfor-

mance. The five MOPs selected are presented in Table 4.1 and are Schaffer’s #1 labeled

as MOP1, Fonseca’s # 2 labeled as MOP2, Poloni’s labeled as MOP3, Kursawe’s labeled

as MOP4, and Deb’s labeled as MOP6 [184]. These MOPs are selected for testing based

on the fact that they meet the criteria described above in terms of being good test MOPs

for comparing MOEA approaches and are presented in Table 4.1. Additionally, other re-

searchers have used a subset of these five MOPs to test their MOEAs [46, 47]. Other

researcher’s use of these MOPs allows for a comparison between the algorithm of interest

in this research, the MOMGA-II, and other MOEAs that have already been applied to

these test MOPs.

An analysis of the MOPs present in existing test suites reveals a generalized problem

exists in terms of the dimensionality [43, 44, 50, 52, 53, 54, 184, 188, 189, 192]. Van

Veldhuizen, Deb, and others chose MOPs for inclusion based on varying characteristics.

However, many of these problems contain only two objective functions and only two or

three decision variables, which is not typical of real-world application problems. These

MOPs are of low dimensionality and may not be fully testing the capabilities of an MOEA.

Additional MOPs are selected for use in this effort. These additional MOP formulations

contain constraints, integer based decision variables, and characteristics non-existent in

the other selected MOPs.
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Table 4.1: MOEA Test Suite Functions [184]

MOP Definition Constraints

MOP1
Ptrue con-
nected,
PFtrue convex

F = (f1(x), f2(x)), where

f1(x) = x2,

f2(x) = (x− 2)2

−105 ≤ x ≤ 105

MOP2
Ptrue con-
nected,
PFtrue concave,
number of
decision vari-
ables scalable

F = (f1(~x), f2(~x)), where

f1(~x) = 1− exp(−
n

∑

i=1

(xi −
1√
n
)2),

f2(~x) = 1− exp(−
n

∑

i+1

(xi +
1√
n
)2)

−4 ≤ xi ≤ 4; i = 1, 2, 3

MOP3
Ptrue dis-
connected,
PFtrue dis-
connected (2
Pareto curves)

Maximize F = (f1(x, y), f2(x, y)), where

f1(x, y) = −[1 + (A1 −B1)
2 + (A2 −B2)

2],

f2(x, y) = −[(x+ 3)2 + (y + 1)2]

−3.1416 ≤ x, y ≤ 3.1416,

A1 = 0.5 sin 1− 2 cos 1 +

sin 2− 1.5 cos 2,

A2 = 1.5 sin 1− cos 1 +

2 sin 2− 0.5 cos 2,

B1 = 0.5 sinx− 2 cosx+

sin y − 1.5 cos y,

B2 = 1.5 sinx− cosx+

2 sin y − 0.5 cos y

MOP4
Ptrue dis-
connected,
PFtrue discon-
nected (3
Pareto
curves), num-
ber of decision
variables
scalable

F = (f1(~x), f2(~x)), where

f1(~x) =

n−1
∑

i=1

(−10e(−0.2)∗
√

x2
i
+x2

i+1),

f2(~x) =
n

∑

i=1

(|xi|0.8 + 5sin(xi)
3)

−5 ≤ xi ≤ 5; i = 1, 2, 3

MOP6
Ptrue dis-
connected,
PFtrue discon-
nected (4
Pareto
curves),
number of
Pareto curves
scalable

F = (f1(x, y), f2(x, y)), where

f1(x, y) = x,

f2(x, y) = (1 + 10y) ∗
[1− (

x

1 + 10y
)α − x

1 + 10y
sin(2πqx)]

0 ≤ x, y ≤ 1,

q = 4,

α = 2
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4.2 Constrained Test Suite MOPs

Constrained numeric MOPs should also be included in any comprehensive MOEA

test function suite. Suitable linear and nonlinear constrained MOPs are presented as

drawn from the published literature [43, 44, 50, 52, 53, 54, 184, 188, 189, 192]. Many

of the constrained problems presented in the literature use linear constraints and have

similar characteristics to other constrained MOPs. In order to select constrained problems

of varying characteristics, Binh’s constrained MOP from Van Veldhuizen [184] is selected

as well as a modification of Tanaka’s constrained MOP [182]. Table 4.2 presents the

formulation for these two MOPs. Binh’s MOP contains a single convex Pareto curve, uses

linear constraints, and is labelled MOP-C1.

Table 4.2: Constrained MOEA Test Suite Functions

MOP Definition Constraints

MOP-C1

Binh(2)

F = (f1(x, y), f2(x, y)), where

f1(x, y) = 4x2 + 4y2,

f2(x, y) = (x− 5)2 + (y − 5)2

0 ≤ x ≤ 5, 0 ≤ y ≤ 3,

0 ≥ (x− 5)2 + y2 − 25,

0 ≥ −(x− 8)2 −

(y + 3)2 + 7.7

MOP-CT

Tanaka Test

Function

Generator

F = (f1(x, y), f2(x, y)), where

f1(x, y) = x,

f2(x, y) = y

0 < x, y ≤ π,

0 ≥ −(x2)− (y2) + 1 +

(a cos(b arctan(x/y)))

a = 0.1

b = 16

A modification of Tanaka’s two objective function is proposed by this research effort

as MOP-CT with a and b tuning parameters [182]. The original Tanaka MOP formula-

tion does not contain the a and b terms in the constraint but instead uses the constants

a = 0.1 and b = 16. Thes original formulation has already been proposed as a test func-

4-6



tion [182, 184]. The original formulation of the Tanaka MOP is modified to include the

a and b parameters in the constraints. These are tuning parameters that allow one to

modify the characteristics of the Pareto optimal set and the Pareto front. The nonlin-

ear constraints can be modified to change the characteristics of the Pareto front from a

continuous front of five disconnected sections to multiple continuous disconnected fronts

to multiple disconnected fronts where each disconnected section consists of a single point.

Each of these possible MOP formulations have a different number of infeasible points be-

tween the feasible points and hence varying levels of difficulty. MOP-CT allows a researcher

to easily change the characteristics and level of difficulty of a single MOP without having

to code an entirely different MOP for testing various MOP characteristics.

MOPs with a continuous Pareto front are typically easier for an MOEA to generate

solutions compared to MOPs with multiple disconnected Pareto fronts [31]. This is due to

the dispersion in phenotype space of the disconnected fronts. Once an MOEA generates

a solution on the Pareto front of an MOP with a continuous front, it may be easy for the

MOEA to find other solutions that are within a small perturbation of the decision variable

values to this solution in phenotype space. To generate other solutions on the Pareto front

may just require a single mutation event if the Pareto front solutions are close together in

terms of a distance metric in phenotype space and reflect the same distance characteristic

in genotype space. In MOPs with disconnected fronts, it is more difficult for an MOEA to

generate a solution on each of the separate Pareto fronts and continue to generate these

solutions as the MOEA must find the good BBs required to generate solutions on each

of the fronts. In the previous example, if solutions that are close in phenotype space

reflect solutions that are a small perturbation away in genotype space, then one can see

that disconnected fronts reflect a larger distance between solutions. This larger distance

translates to multiple perturbations being required to generate a Pareto front solution on

a different portion of the Pareto front starting with a solution from another portion of the

Pareto front. This characteristic of a similar distance relationship between the genotype

and phenotype spaces is problem dependent but illustrates how the characteristic of a

connected or disconnected Pareto front may pose difficulty for MOEAs.
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Constrained MOPs present additional difficulties over unconstrained MOPs for MOEAs

as potential solutions that are close in phenotype space may be feasible or infeasible and

directly effect the search process. Considering the previous example of a similar relation-

ship between the distances of solutions in the genotype and phenotype spaces, one can see

that infeasible points between feasible solutions can pose difficulty for the MOEA search

process. Small perturbations to feasible solutions may yield infeasible points, whereas a

larger perturbation yields a feasible solution. This makes the search somewhat difficult

and this is especially true if some of the good BBs necessary to generate solutions on the

front also generate infeasible points in the space.

Figures 4.1 through 4.6 reflect six different resultant characteristics of MOP-CT.

These variations are generated through varying the MOP constraints and were generated

through a total enumeration of the space and a Pareto analysis of the resultant feasible

solutions at a specific resolution. In each of these figures, the feasible region is reflected

by the shaded area and the *s represent the Pareto front. As the a and b parameters are

modified, one can see the effect on the characteristics of the Pareto front and the feasible

region. The characteristics of the six variants of the Tanaka function are as follows:

• Standard Tanaka phenotype with a = .1 and b = 16. The Pareto front represents 5

disconnected curves and is symmetric about the line x = y. (Figure 4.1)

• Smaller continuous phenotype regions with a = .1 and b = 32 with larger infeasible

regions between Pareto front points as compared to the standard settings. The

Pareto front represents 8 disconnected curves and is symmetric about the line x = y.

(Figure 4.2)

• Decreased distance between Pareto front regions with, a = .1 and b = 16 as compared

to the standard settings. The Pareto front represents 8 disconnected curves and is

symmetric about the line x = y. (Figure 4.3)

• Increased distance between Pareto front regions with, a = .15 and b = 32 with larger

infeasible regions between Pareto front points as compared to the standard settings.

The Pareto front represents 16 disconnected curves (some are individual points) and

is symmetric about the line x = y. (Figure 4.4)
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• Increased distance between Pareto front regions with, a = .1(x2 + y2 + 5xy) and

b = 32 with deeper infeasible regions between Pareto front points as compared to

the standard settings. The Pareto front represents 16 disconnected curves (some are

individual points) and is symmetric about the line x = y. (Figure 4.5)

• Increased distance between Pareto front regions with, a = .1(x2 + y2 + 5xy) and

b = 8(x2+y2) with deeper non-periodic infeasible regions between Pareto front points

as compared to the standard settings. The Pareto front represents 6 disconnected

curves (some are individual points) and is not symmetric about the line x = y.

(Figure 4.6)

Figure 4.1 MOP-CT (Tanaka),
a = .1, b = 16, Original
PFtrue (Ptrue ) regions

Figure 4.2 MOP-CT (Tanaka),
a = .1, b = 32, PFtrue (Ptrue ) re-
gions

Figure 4.3 MOP-CT (Tanaka),
a = .1, b = 16, PFtrue (Ptrue ) re-
gions

Figure 4.4 MOP-CT (Tanaka),
a = .15, b = 32, PFtrue (Ptrue ) re-
gions
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Figure 4.5 MOP-CT (Tanaka),
a = .1(x2 + y2 + 5xy), b = 32,
PFtrue (Ptrue ) periodic regions

Figure 4.6 MOP-CT (Tanaka),
a = .1(x2+y2+5xy), b = 8(x2+y2),
PFtrue (Ptrue )

The center sections of the Pareto front shown in Figure 4.1 are difficult to find

numerically because of the near horizontal or vertical slope encountered in this portion of

the front. Besides modifying the tuning parameters, increasing or decreasing the resolution

of the decision variables may cause the characteristics of the Pareto front presented in

Figures 4.1 through 4.6 to change.

In general the “tuning” parameters a and b control the length of the continuous

portion of the Pareto front and the number of infeasible points. Increasing the b parameter

has the effect of increasing the number of infeasible solutions between the feasible solutions

on the front. Increasing the a parameter has the effect of decreasing the continuous portion

of the front and in some areas yielding discrete points versus a continuous section. This

MOP is a contribution to the area of MOP test suites as a researcher can code one function

into their MOEA and vary the characteristics of this function. A researcher thereby gains

detailed insight into the operation of their MOEA while expending less effort on finding

MOPs of varying characteristics.

Numerous constrained MOPs exist in the literature and each of these can be modified

in a way similar to what is done for the Tanaka MOP (MOP-CT) to vary the character-

istics of the solution sets Ptrue and PFtrue . Since many of these problems have similar

characteristics or can be tuned to exhibit similar characteristics, each of these problems is

not presented. One may select an MOP that reflects the class of MOP that they are most

interested in solving and modify the MOP in the same manner as MOP-CT proposed.
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This allows one to evaluate MOEA performance over a single class of MOP without the

researcher having to identify multiple MOPs of this class but instead to identify one MOP

of interest and modify it. It is important that researchers test their MOEAs against prob-

lems of the class in which they are interested in solving. Additional real-world constrained

problems are presented in Sections 4.4 and 4.5 of this chapter.

The best test suite to use in evaluating MOEA performance is one that contains

MOPs of similar characteristics to the MOPs that an MOEA is designed for and is being

applied to. MOPs 1, 2, 3, 4, and 6 are used for their varying genotype and phenotype

characteristics and MOP-CT, the Tanaka test function generator, can be tuned to yield

constrained test problems with varying characteristics. The selection of test problems is

difficult and there is no best test suite to use. A researcher must understand the problems

used to test an MOEA and ensure that these MOPs are testing the MOEA over the

types of problems it is designed for. For example, if a researcher has designed an MOEA

for solving a single MOP, then the MOEA should be tested against other MOPs with

similar characteristics. While the MOPs described up till this point contain relatively low

dimensionality, they are useful for comparing the performance of an MOEA against the

true solution. Other, larger MOPs are describes and used for testing the performance of

the MOMGA-II.

4.3 Deceptive MOPs

An MOEA must identify and manipulate good BB(s) in order to generate PFtrue .

In order to understand the definition of a deceptive MOP used, one must understand the

single objective definitions of deception. In single objective EAs, deceptive functions are

discussed in terms of BBs [74, 75, 77, 78]. A single objective deceptive function is defined

as one in which the global optima is fairly isolated and the local optima is surrounded

by good solutions a hamming distance away [76]. Additionally, the deceptive BB is a

maximum distance away from the BB necessary to find the global optima.

A deceptive MOP is defined as:
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Definition 31 (Deceptive MOP): A deceptive MOP is one in which at least one of

the k objective functions is deceptive. 2

where a single objective function is identified as deceptive if the global optima is fairly

isolated and the local optima is surrounded by good solutions a hamming distance away.

An example of a deceptive maximization MOP is presented. Figure 4.7, generated for

this dissertation, illustrates a deceptive function, Function 2, and a non-deceptive function,

Function 1. The decision variable x is restricted to be an integer and the equations for

this MOP are presented.

f1 =



















0.75− 3
48x 0 ≤ x ≤ 12

1− 1
3(xmod12) 12 < x < 15

1 x = 15

(4.1)

f2 =
{

1− 1
15x 0 ≤ x ≤ 15 (4.2)

Graphically, the two objective functions are shown in Figure 4.7 with each plotted

as a single objective problem for ease of illustrating the deceptive function. In function

1, an x-value of 0 contains the deceptive BB that leads to a locally optimal value of 0.75;

however, an x-value of 15 contains the BB that leads to the global optima of 1.0. The

deceptive BB is of order 1 and is represented by the schema *0**. The schema *0** leads

to solutions on the left side of Figure 4.7, solutions that lead to the locally optimal solution

of 0.75, whereas the BB necessary to find the global optima is of order 2, and is the schema

11**. The schema 11** generates solutions on the right side of Figure 4.7, solutions that

lead to the globally optimal solution of 1.0. Since function two is non-deceptive, a BB of

order 1, containing the schema *0** leads to the globally optimal solution of 1.0.

Deb also presents an alternate definition of a deceptive MOP [43]. Prior to discussing

his definition of a deceptive MOP, it is necessary to present Deb’s definition of a local

Pareto optimal set. Deb defines both a local and global Pareto optimal set, where the

global Pareto optimal set is equivalent to Ptrue . The local Pareto optimal set is defined

as [43]:
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Figure 4.7 Pedagogical Deceptive MOP

Definition 32 (Local Pareto Optimal Set:): Given some Pareto optimal set P, if
∀x ∈ P, ¬∃y satisfying ‖ y − x ‖∞ ≤ ε, where ε is a small positive number (in principle,

y is obtained by perturbing x in a small neighborhood), and for which F (y) ¹ F (x), then

the solutions in P constitute a local Pareto optimal set. 2

This implies that if a set of Pknown (t) is perturbed slightly, no new nondominated

points are found [43]. The definition describes the case where the local front is a physical

distance from the true front. The local front is dependent upon the ε selected within which

solutions are perturbed. Too small an ε may result in multiple local fronts being found

and too large an ε prevents the identification of a local Pareto front.

Deb defines the terms multimodality and deception (known single-objective EA is-

sues) in the multiobjective domain [42]. Deb defines a multimodal MOP as one with

multiple local Pareto fronts [42]. This definition is confusing since the term multimodal

is defined with respect to single objective optimization when referring to an optimization

function containing both local and global minima [184].

Deb defines a deceptive MOP as one in which there are at least two optima (PFlocal

and PFtrue ) and where the majority of the search space favors finding points on PFlocal.
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This concept depends on finding PFlocal. If PFlocal does not exist or cannot be found,

based on the ε chosen, Deb would state that the MOP is not deceptive. However, the

existence of PFlocal is inconsequential to the determination if the MOP is deceptive or

not. This determination is based on Definition 31 and the analysis to determine if at least

one of the objective functions is deceptive. As long as this criteria is met, the MOP is

declared deceptive. This is important as finding the deceptive BBs is necessary to finding

the solution to a deceptive MOP. The definition of deception used is consistent with the

single objective definition of deception.

Deb states that an MOEA has a hard time finding points on PFtrue since it gets stuck

in the local optima of PFlocal. Coello Coello et al., state that this may be more an effect

of the discretized genotype space than that of the phenotype [31]. This is possible in many

MOPs when the discretization process causes the global optima to have fewer local optima

near it than another decision variable resolution choice. The issue of discretizing an MOP

illustrates the point made in Section 2.5.1 that the discretization process may change the

shape of the front or increase the difficulty in finding the front. Additionally, a uniform

sampling or discretization of the genotype space does not imply uniform mappings into

phenotype space and hence the resultant phenotype space may have all of the solutions

concentrated in a single area of the space.

4.4 Discrete MOPs

Discrete MOPs have their own characteristics and may require the use of special-

ized operators to solve. MOPs containing discrete points on the Pareto front and those

containing integer based decision variables can present additional challenges for MOEAs

especially when these MOPs are also constrained, as they typically are. The phenotype

space of these MOPs is discrete and offers only isolated points, even though when plotted

the appearance is given of a continuous front. As only a finite number of solutions exist,

only a finite number of corresponding vectors can result.

Nondeterministically polynomial (NP ) problems are those problems that a conjec-

tured answer to the problem can be verified in polynomial time but the problem cannot be

solved in polynomial time [174]. NP -Hard problems are those problems that are at least
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Table 4.3 Possible Multiobjective NP -Complete Functions [31]

NP -Complete Problem Example

Traveling Salesperson Min energy, time, and/or distance; Max ex-
pansion

Coloring Min number of colors, number of each color

Set/Vertex Covering Min total cost, over-covering

Maximum Independent Set (Clique) Max set size; Min geometry

Vehicle Routing Min time, energy, and/or geometry

Scheduling Min time, missed deadlines, waiting time, re-
source use

Layout Min space, overlap, costs

NP -Complete Problem
Combinations Vehicle scheduling and routing

0/1 Knapsack - Bin Packing Max profit; Min weight

as hard as any other problem in NP . NP -Complete problems are those problems that

are NP -Hard and also in NP . Skienna also notes that most NP -Hard problems are also

NP -Complete [174].

An MOP test suite of combinatorial problems to include NP -Complete MOPs is a

useful concept since some real world MOPs are constrained MOPs utilizing integer based

decision variables. Research into solving these NP -Complete MOPs can aid in solving

real-world MOPs containing the same characteristics and a NP -Complete test suite is

useful to the MOEA community. Table 4.3 outlines a subset of the possible NP -Complete

MOPs. Just like other MOPs, NP -Complete MOPs have varying characteristics in their

genotype and phenotype domains that make them interesting and useful test problems.

4.4.1 Modified Multiobjective Knapsack Problem. MOPs with integer based deci-

sion variables are lacking in current test suites and this makes the Modified Multiobjective

Knapsack Problem (MMOKP) a good problem for test suite inclusion. The MMOKP is

modeled off of the single objective knapsack problem [174]. In the single objective knap-

sack problem, a soldier must decide what items to take with him in his knapsack (defined

as a rucksack). The soldier has a rucksack to place the items in, where each item has a

particular weight and value associated with it and the rucksack has a specific capacity. A

value is assigned to each item based on how important it is for the soldier to have that

item with him/her in combat. The objective of the soldier is to maximize the value of the
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items in the rucksack while meeting the constraint that he or she can only carry a certain

amount of weight within the rucksack and that only whole items may be placed within the

rucksack. Dependent on the mission, carrying additional water may be of more value than

carrying additional ammunition. The multiobjective formulation of this problem uses an

arbitrary number of rucksacks where the objective is to maximize the value of each of the

rucksacks simultaneously while meeting the constraints.

The modified multiobjective form of this problem, MMOKP, consists of a similar

formulation with the exception that there are an arbitrary number of rucksacks [215] as

well as associated weights and profits of items with respect to each rucksack. Zitzler refers

to this as the extended 0/1 knapsack problem [215] and states that this formulation has

been previously used by Sakawa [168]. In reality, this is not an extended version of the

knapsack problem as, in the model Zitzler used, each item must be placed into all of the

knapsacks or none of the knapsacks. This is not representative of a true formulation of the

multiobjective knapsack problem as defined in OR texts [159].

The extended multiobjective knapsack problem is renamed the MMOKP MOP, in

this effort, as it does not accurately reflect the traditional multiobjective knapsack problem

formulation. In the traditional multiobjective knapsack problem formulation, an item can

be placed into only one of the knapsacks and cannot be placed into all of the knapsacks.

However the MMOKP formulation constrains each of the items to either be placed into all

of the knapsacks or none of the knapsacks, hence each decision variable is referred to as an

item type. The MMOKP does, however, reflect some real-world optimization problems.

For example, consider the movement of cargo by the military for contingency operations in

different parts of the world. In this scenario, there are multiple tanks, artillery, weapons,

people and other support items that must be moved. Consider the use of the Air Force to

move all of this necessary equipment and personnel for a contingency operation. A number

of aircraft (C-17, C-5, C-130 and C-141) are available and used to move the various item

types (sets of tanks, equipment, groups of people and additional support equipment).

Each of the aircraft have different cargo and fuel storage capabilities as well as different

operating costs associated with the number of pilots, co-pilots, load-masters, and other

associated support personnel required for operation of the aircraft at the destination and
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arrival points. A specific aircraft, the C-17 cargo plane, is selected for movement of the

cargo. Additionally it is important to recognize that all of the C-17s used are not located

at the same departure point and all of the equipment is not located at the same place as

the C-17 used to move the equipment. Therefore, some of the C-17 aircraft are located

closer to the starting location of the cargo than others while other C-17 aircraft may be

located closer to the destination point of the required cargo. Since the cost of operating

each of the aircraft varies greatly as each C-17 is a different distance from the cargo and the

contingency location, each of the associated item types to be moved is assigned a weight

and value associated with placement into a specific aircraft.

The weight of an item type takes into account the weight of the item type, the

amount of fuel required to move the cargo plane from its current location to pick up the

cargo, as well as the weight of the fuel required to move the item type in the respective

aircraft to its associated destination (how much fuel must be expended to move the aircraft

to the cargo location and how much fuel must be expended to move the aircraft to the

contingency location). As the item types and aircraft are all located at different locations,

the movement of an item type requires a different amount of fuel dependent on the aircraft

it is placed in. The method described of defining weights results in a different weight value

for each item type dependent on the aircraft it is placed on. The overall weight of all the

items placed into an aircraft must not exceed the capacity of that aircraft.

The value of an item type represents how integral that item type or group of people

is to the contingency operation along with a measure of the on-time delivery of the item

type. For example, assume that it is extremely important for type 1 tanks to arrive at

the destination by 2300 hours on Tuesday. A type 1 tank placed into aircraft A, which

is destined to complete the cargo movement by 0800 on Tuesday would receive a higher

profit than a type 1 tank placed into aircraft B, which does not arrive at the destination

until 1 week from Tuesday. Since this example problem requires the movement of as much

of each item type as possible, a type 1 tank placed into aircraft A is also placed into all of

the aircraft even if the tanks are delivered late. This constraint is dictated by the fact that

multiple sets of cargo are required at the destination and they must be sent even if they

are received late. Hence one can see that identical items are placed into all of the C-17s
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which are represented as knapsacks in the MMOKP. The objective is to simultaneously

maximize the value of each aircraft while meeting the weight constraints of the aircraft

and the constraint that as much of each item type as possible must be moved. Therefore

it is important to place an item into all or none of the knapsacks.

The objective of the MMOKP is to maximize the value of the item types placed into

each knapsack while simultaneously satisfying the weight constraint of each knapsack. A

commander requests the movement of more item types (items) than can physically fit into

the number of planes (knapsacks) available. Therefore one is attempting to determine the

set of item types that maximize the profit of each of the airplanes. This is just one example

of a potential real-world problem that the MMOKP represents.

In Zitzler’s formulation, a weight and profit exists for each item with respect to the

specific knapsack it is placed into, i.e., item 21 may be better placed in knapsack 1 versus

knapsack 2. The overall goal is to maximize the profit obtained from all of the knapsacks

while meeting the weight constraints imposed on each knapsack, where:

pi,j = profit of item j according to knapsack i,

wi,j = weight of item j according to knapsack i,

ci = capacity of knapsack i

For the MMOKP problem with n knapsacks and m items, the objectives are to maximize

f(x) = (f1(x), ...fn(x)) (4.3)

where

fi(x) =
m
∑

j=1

pi,jxj (4.4)

and where xj = 1 if item j is selected, 0 otherwise [215]. The constraints are:

m
∑

j=1

wi,jxj ≤ ci∀ i (4.5)
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4.5 Real World MOPs

The classification and analysis of real-world, highly-dimensional genotype and pheno-

type MOPs allows for the addition of a real-world MOP to the test suite presented in this

chapter for MOEAs. The usefulness of this test suite is in determining the characteristics

of real-world problems on which an MOEA performs well.

Researchers have conducted a performance analysis of MOEAs utilizing the test

suites currently referenced in the literature and mentioned in the this chapter. The prob-

lem with this approach is that many of these test MOPs are not realistic when compared

to the MOPs encountered in different application areas or in the real-world. A limited test

suite that reflects some of the characteristics of MOPs in varying problem areas would be

beneficial to the community. The selection of the problem areas and highly dimensional

problems would take a thorough analysis of the problem domain aspects and is specific to

the objective of a researcher. If a researcher is interested in solving nonlinear real-world

problems of a specific application, then the researcher should use MOPs that are indicative

of the characteristics of this problem. The classification of every real-world MOP based on

the MOPs’ varying characteristics and complexity of their fitness functions and constraints

is impossible. Too many MOPs exist in the real-world to solve. Some of the application ar-

eas include Unmanned Aerial Vehicle (UAV), Unmanned Combat Aerial Vehicle (UCAV),

Micro Aerial Vehicle (MAV) Routing and Control, Groundwater Problem, Image Com-

pression, Antenna Design, Target Tracking, Advanced Logistics Problem (ALP), MEMs

Applications, and Intrusion Detection.

The work presented is of interest to the Air Force and other organizations. As

stated previously, optimization problems exist in any operational setting. Many of the

applications and methods that are used to complete tasks are not currently solved to an

optimal solution. Generating good solutions to many real-world optimization problems

would benefit a wide variety of organizations including the Air Force. A limited number

of application areas are presented in this section with the mathematical model included to

illustrate the complexity associated with these problems.
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Currently, good solutions have been found to many real-world problems but better

solutions may exist. The difference between the current known good solution and a better

one may be only 1% or may be 50% or more. This can translate to a huge dollar savings

depending on the application or a huge savings in the amount of time it takes to complete

a task.

Defining accurate models of the real-world application of interest is extremely im-

portant. First the level of accuracy or resolution of the solution required must be known

(i.e., how many bits to use to represent a decision variable) or else there is no way to

compare the results that the MOEA finds to other methods. Additionally the model must

be correct and validated in order to ensure the solutions found are feasible and the MOEA

is given an opportunity to find the real solutions at the desired resolution. The complexity

of the model directly effects the execution time (efficiency) of the MOEA, therefore the

least complex model that produces valid results is what must be chosen.

A real-world application, the Advanced Logistics Problem MOP, is selected for in-

clusion in an MOP test suite. A description of the problem domain is provided to aid

the reader in obtaining an understanding of the characteristics of the ALP problem. This

problem is selected as it is a real-world problem with a large number of decision variables,

it is constrained, and it is a discrete MOP. Discrete MOPs are lacking in other proposed

test suites. Since many real-world problems involve the use of discrete decision variables,

this is a good MOP to use in a test suite.

4.5.1 Advanced Logistics Problem (ALP). The Advanced Logistics Problem

(ALP) involves logistics research in resource allocation. ALP is an effort by the Defense

Advanced Research Projects Agency (DARPA) to develop a distributed computing archi-

tecture linking current and future logistics information systems to the crisis action planning

processes [21]. This is the development of a real-time end-to-end system linking operations

and logistics. The goal is to develop a system which gives planners the ability to review

multiple plans in relation to real-time up to date data and effectively choose the best plan

for the situation. Essentially a choice must be made by a commander, given the operational

situation, of which mix of resources is preferred to support the operation.
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A mission ready resource (MRR) is a combination of an asset type and its associated

resources. This includes aircraft, tanks, support personnel and equipment. These resources

are assigned a suitability value for use in a specific plan [199]. An example of an MRR

is a C-130 aircraft. This MRR is available in a number of different configurations, where

each configuration is a MRR type, and the number of times that an MRR can be used in

a given day is also important. This information is used to assign the MRR a suitability

value. A combination ofMRR types is defined to be aMRR set or resource mix. Different

MRR combinations provide different capabilities and suitability values to the commander

as well as require different amounts of lift resources to operate. Two of the objectives of

this problem are to maximize asset suitability and minimize lift consumption [199, 216].

The ALP problem formulation is based on Swartz’s work on the ALP Pilot prob-

lem [180]. The mathematical MOP Formulation is given m tasks and n MRR types, and

the solution set is an m x n matrix. A matrix element is an integer based decision variable,

xi,j , that represents the number of MRRs of type j allocated to task i. Assuming that

each task is satisfied by exactly one MRR, and that no interactions exist between differing

MRR types, then the suitability, S, for all MRRs is defined by [31, 199, 216]:

S =
n
∑

j=1

m
∑

i=1

ai,j xi,j (4.6)

where ai,j is the suitability ofMRR j for Task i and xi,j is the number ofMRRs j allocated

to task type i.

Since the desired capability for a task is set by the decision maker and defined to be

static, Equation (4.7) is an equality constraint. The requirement that all tasks i = 1, . . . , n

must be satisfied at a particular resource level (RL) k is:

n
∑

j=1

xi,j = RLtaskk,i (4.7)

In this application, the decision variables are allowed to take on any non-negative integer

value so long as they do not exceed the specified resource level. Therefore Equation (4.8)

is an inequality constraint. The requirement that all of the MRR types, j = 1, 2, . . . , n,
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do not exceed their available number at a particular resource level k is:

m
∑

i=1

xi,j ≤ RLmrrk,j (4.8)

The maximum number of efforts per day for a particular asset is A and A has P configu-

rations corresponding to P MRR types.

It is difficult to determine what the actual logistical footprint is for a given asset

set [199]. At the very least, it is clear that for each additional asset deployed, there is a

corresponding increase in cost for additional resources such as fuel and supplies. Assum-

ing that consumption is linear and without interaction, the weight consumption, W , and

volume consumption, V , for all MRRs are

W =
n
∑

j=1

m
∑

i=1

βj xi,j (4.9)

and

V =
n
∑

j=1

m
∑

i=1

λj xi,j (4.10)

where βj and λj are the weight and volume consumed by a single MRR j.

The form of the suitability maximizing / lift minimizing MOP with A asset types,

m tasks, n MRR types, at a resource level k, and decision variables (x1,1, xi,j , . . . , xm,n) is

to maximize:

S =
n
∑

j=1

m
∑

i=1

ai,j xi,j (4.11)

minimize:

W =
n
∑

j=1

m
∑

i=1

βj xi,j (4.12)

and minimize:

V =
n
∑

j=1

m
∑

i=1

λj xi,j (4.13)
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subject to:

n
∑

j=1

xi,j = RLtaskk,i for i = 1 . . .m (4.14)

m
∑

i=1

xi,j ≤ RLmrrk,j (4.15)

for A = 1 . . . a and Pa = number MRR types for a

The number of constraints resulting from Equation (4.14) is equal to the number of

tasks. These constraints ensure that the total number of efforts for Task i is exactly the

desired capability at that resource level. The maximum value for any decision variable

is found by using Equation (4.14) and allocating all task capability to one MRR type.

The number of constraints resulting from Equation (4.15) is equal to the number of MRR

types. These constraints ensure that no MRR type can be allocated a number of efforts

that exceeds the given resource level. These constraints are also used when there are

restrictions on the available number of any MRR type, e.g. attrition or changes in asset

turn rate. It is important to note that each constraint refers to a single MRR type.

The specific number of tasks in Table 4.4 and MRR types in Table 4.8, along with

their task suitabilities, are defined. The suitabilities reflect notional but reasonable values

that clearly differentiate theMRR types. The same can be said for the consumption values

in Table 4.8. To keep the number of task capability decisions by the decision maker at

a reasonable level, five resource levels in Table 4.5 are specified, equating to 15 separate

task preference decisions as specified in Wakefield [199]. These preferences are reflected in

Table 4.6. When the ratios are applied to their respective resource level values, the result

is the capability matrix in Table 4.6. The values are rounded to a whole number so that

the sum across tasks is equal to the resource level. The values of the resource levels were

chosen to create solution spaces of increasing size. Given three tasks and five MRR types

and a resource level of 300 efforts per day, the worst case number of possible resource mixes

is approximately 9.72 x 1019. Wakefield’s formulation is such that for the target MOP,

it is assumed that there is no restriction on the available number of any MRR type; no

attrition; and that each asset has one associated MRR type, i.e., one effort per day [199].
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These simplifying assumptions are made to provide an opportunity to explore the solution

and complexity.

Table 4.4 Tasks

Index Nomenclature

1 Air-to-Air (AA)

2 Air-to-Ground (AG)

3 Precision Locating (PL)

Table 4.5 Resource Levels

Index RL (efforts per day)

1 16

2 32

3 75

4 150

5 300

Table 4.6 Desired Task Capability Ratios

Percent to Task

Index AA AG PL

1 60 30 10

2 30 60 10

3 25 60 15

4 20 50 30

5 20 30 50

The complete MOP formulation is as follows: Decision variables - Number of MRR j

assigned to Task i = (x1,1, . . . , xi,j)

Maximize:

S = 0.8x1,1 + 0.3x1,2 + 0.6x1,3 + 0.001x1,4 + 0.001x1,5 (4.16)

+ 0.4x2,1 + 0.8x2,2 + 0.6x2,3 + 0.001x2,4 + 0.001x2,5

+ 0.001x3,1 + 0.001x3,2 + 0.1x3,3 + 0.8x3,4 + 0.4x3,5
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Table 4.7 Desired Capability Matrix

TASK (efforts per day)

Index AA AG PB Decision Space Cardinality

1 10 5 1 630,630

2 10 20 2 159,549,390

3 19 45 11 ≈ 2.56x1012

4 30 75 45 ≈ 1.48x1016

5 60 90 150 ≈ 4.37x1019

Table 4.8 Task Suitability / Lift Consumption Matrix
footnotesize

Task Suitability Lift Consumption

Index MRR Type AA AG PL Weight (Short Tons) Volume (Cubic feet)

1 FA 0.800 0.400 0.001 20.2 1650.0

2 FB 0.300 0.800 0 001 28.5 2475.0

3 FC 0.600 0.600 0.100 35.7 2887.5

4 B1 0.001 0.001 0.800 19.9 1705.0

5 B2 0.001 0.001 0.400 22.5 2200.0

Minimize:

W = 20.2(x1,1 + x2,1 + x3,1) + 28.5(x1,2 + x2,2 + x3,2) (4.17)

+ 35.7(x1,3 + x2,3 + x3,3) + 19.9(x1,4 + x2,4 + x3,4)

+ 22.5(x1,5 + x2,5 + x3,5)

and minimize:

V = 1650(x1,1 + x2,1 + x3,1) + 2475(x1,2 + x2,2 + x3,2) (4.18)

+ 2887.5(x1,3 + x2,3 + x3,3) + 1705(x1,4 + x2,4 + x3,4)

+ 2200(x1,5 + x2,5 + x3,5)
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subject to:

(x1,1, . . . x3,5) ≥ 0 (4.19)

(x1,1, . . . x3,5) ∈ I(integers) (4.20)

x1,1 + x1,2 + x1,3 + x1,4 + x1,5 = RLtaskm,1 (4.21)

x2,1 + x2,2 + x2,3 + x2,4 + x2,5 = RLtaskm,2 (4.22)

x3,1 + x3,2 + x3,3 + x3,4 + x3,5 = RLtaskm,3 (4.23)

x1,1 + x2,1 + x3,1 ≤ RLmrrm,1 (4.24)

x1,2 + x2,2 + x3,2 ≤ RLmrrm,2 (4.25)

x1,3 + x2,3 + x3,3 ≤ RLmrrm,3 (4.26)

x1,4 + x2,4 + x3,4 ≤ RLmrrm,4 (4.27)

x1,5 + x2,5 + x3,5 ≤ RLmrrm,5 (4.28)

where m is the Resource Level index for the current problem.

4.6 Summary

MOPs, their characteristics, and real-world applications are all important to under-

stand. An understanding of these MOPs allows a researcher the ability to evaluate an

MOEA’s performance over a class of problems indicative of those the MOEA is applied

to. This chapter presents constrained, discrete, NP -Complete and real-world MOPs for

inclusion in an MOP test suite. These constrained MOPs are largely missing from existing

test suites. Constrained problems have only recently been considered for testing MOEAs.

A constrained test function generator is included in the MOP test suite. This MOP, MOP-

CT, is formulated in a manner that makes it relatively easy to modify the characteristics

and the difficulty that MOEAs have in attempting to solve this MOP.

Discrete problems are another class of MOP missing from existing MOP test suites.

The MMOKP and ALP problems are both included in the MOP test suite. These problems

are constrained and have a large number of integer based decision variables. Both of these

MOPs are indicative of real-world MOPs. Additionally, a discussion of existing MOP test
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suites and MOP test suite generators is included. The MOPs included in the test suite

presented in this chapter are important. The application of MOEAs to this test suite

can provide good information about the MOP characteristics that yield good results from

various MOEAs.

The use of MOP test suites and metrics aids in understanding the effect that BBs

have on solving MOPs and in defining a level of MOP difficulty based on the types and

sizes of BBs that must be found in order to generate a “good” solution to an MOP. Using

the concept of BBs, one can develop equations to determine the population sizes that

are necessary to obtain “good” solutions for an MOP utilizing a BB-based approach. The

development of an MOEA population sizing equation advances the theoretical contribution

of this work to the MOEA community. This equation must be defined to support and

retain the use of good BBs in the population. MOEA population sizing is discussed in

Chapter VIII. The next chapter discusses the existing MOEA theory and identifies areas in

which the current theoretical development is lacking. Additionally, symbolic formulations

are presented for various MOEA operators.
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V. MOEA Symbolic Formulations

The design of an MOEA and advancement of MOEA theory requires an in-depth under-

standing of the existing theory and background. Previous chapters discuss MOEA termi-

nology and current MOEA theory. In this chapter, symbolic formulations are presented

for MOEA operators. To advance the state of the art and contribute to increasing the effi-

ciency and effectiveness of MOEAs, a researcher must analyze the foundation of MOEAs,

determine what leads to good or bad performance, and develop a clear understanding of

MOEA operators. Currently, there is only a limited amount of published theoretical anal-

ysis of MOEAs, which mostly concentrates on the area of MOEA convergence properties

[85, 163, 167, 184]. The advancement of MOEA theory can yield a better understanding

of how and why MOEAs work and improve their overall performance. A first step to

advance the theory involves the understanding of MOEA operators. To aid researchers in

understanding these operators, symbolic formulations of MOEA operators is presented.

This chapter presents generalized symbolic representations for MOEAs and associ-

ated MOEA operators. The general concepts presented in Chapters II and III are used to

classify MOEAs and present symbolic formulations of their operators. Development of a

symbolic representation for MOEAs is necessary to understand and develop efficient and

effective MOEAs. This chapter presents new symbolic formulations for MOEAs to serve

as a basis for the research conducted and increase the understanding of MOEAs.

5.1 Multiobjective Evolutionary Algorithm Operators

Symbolic formulations of MOEAs and their associated operators are rarely, if at all,

discussed. In order to develop a deeper understanding of MOEAs, the symbolic formula-

tions of MOEAs and a subset of their operators are developed and presented, utilizing the

notation of Bäck [13], Merkle [132], and Van Veldhuizen [184] for consistency and ease of

understanding. The usefulness of symbolic formulations of MOEA operators and algorithm

definitions lies in providing a deeper understanding of the MOEAs. Researchers who un-

derstand the symbology hopefully use it in the design of their MOEAs. The mapping from
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the symbolic notation to the actual MOEA implementation can yield more efficient and

effective MOEAs. The single objective symbolic definitions are presented in Appendix A.

An MOEA’s foremost difference from a single objective EA is the k objectives that

are to be optimized simultaneously. MOEAs typically differ from EAs in their use of a

modified selection mechanism to reflect a Pareto based selection and the use of niching

and crowding mechanisms to obtain a good distribution of points on the Pareto front [44].

All of these issues can result in additional processing requirements.

Recombination, selection, and mutation are the main operators currently used in

MOEAs. Other operators, in addition to the recombination, selection, and mutation op-

erators, may have a substantial effect on the results of the algorithm [46, 48]. Some of the

operators that must be analyzed include secondary population storage schemes, subpop-

ulations, niching mechanisms and mating restrictions. This section presents the symbolic

formulations for each of these operators. A more in-depth description of MOEA operators

is presented in Chapter II, Sections 2.6 through 2.10.

Archiving or storing a secondary population is typical in MOEAs to prevent the loss

of “good” solutions generated throughout the search process. Archiving strategies involve

the process of identifying nondominated points in the current population of each genera-

tion t of an MOEA. A Pareto selection operator is presented in Definition 33. Following

recombination and mutation, the Pareto selection operator is responsible for identifying

the nondominated points that exist in the current population and are members of the set

PFcurrent (t). Pareto selection analyzes the current population of size µ in generation i and

selects the nondominated population members for inclusion in the set PFcurrent (t). The

Tp operator determines which population members are nondominated.

Definition 33 (Pareto Selection):

s(i) : X(i)s × T (I,Rk) −→ T
(

Ω(i)s , Tp
((

Iµ
′(i)+χµ(i)

)

, PFcurrent(t)
))

,

Tp
((

Iµ
′(i)+χµ(i)

)

, PFcurrent(t)
)

=

{~um
∣

∣~um ¹ ~ungiven~um, ~un ∈
(

Iµ
′(i)+χµ(i)

)

} .
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2

One method of storing population members in an archive is to append the nondomi-

nated points from the current generation t, PFcurrent (t), into the archive set. The archive

contains the nondominated points found from the beginning of MOEA execution through

the previous generation t − 1. After appending the population members, one must de-

termine the points in this combined archive that are nondominated. The nondominated

points in the archive are identified as PFknown (t − 1). This process is repeated at the

conclusion of each generation (i.e., PFcurrent (t) ∪ PFknown (t− 1) and Pareto Selection is

applied to this combined intermediate set). Definition 33 illustrates the process of identify-

ing the points that belong in the set PFcurrent (t) for generation t. Subsequently, all of the

points in PFcurrent (t) are combined with the points in PFknown (t− 1) and the combined

set is analyzed to identify the nondominated points. Definition 34 presents the symbolic

formulation for the Pareto front set combination operator (PFSCO).

Definition 34 (Pareto Front Set Combination Operator):

PFO := T
((

PFknown(i− 1)
⋃

PFcurrent(t)
)

, PFknown(t)
)

PFknown(t) :=

{~um
∣

∣~um, ~un ∈
(

PFknown(t− 1)
⋃

PFcurrent(t)
)

, ~um ¹ ~un}

2

The PFSCO combines the known Pareto front through generation t−1, PFknown (t−
1) with the current Pareto front for generation t, PFcurrent (t). The new archive set,

after application of the PFSCO operator, contains only the nondominated members found

through generation t, PFknown (t), and this set becomes the new archive set. The PFSCO

operator can be used for combining any two sets and identifying the points in the combined

set that are nondominated.

At any given point in time, one can analyze the archive to determine the nondomi-

nated points that the MOEA has found through generation t, PFknown (t). Another archiv-

5-3



ing option is to append all of the population members from each generation, P (t) or the

current nondominated points from each generation, PFcurrent (t), into an archive for post-

processing. At the termination of the MOEA, the archive must be analyzed to determine

which of the members are nondominated and belong in the set PFknown . Remember that

the set PFknown contains the best points that the MOEA generated throughout its search

process. This archiving method (post-processing) results in a PFknown set identical to the

previous method of constantly analyzing new population members for inclusion in the

archive.

The difference between the two archiving methods lies in the overall memory re-

quirements of archiving. The post processing method typically requires more memory as

duplicated points as well as dominated points remain in the archive until the termina-

tion of the MOEA. At termination, the duplicate points as well as the dominated points

are removed and the nondominated points are presented in the set, PFknown . Since the

duplicate and dominated points remain in the archive until MOEA termination, this can

take up a substantial amount of memory dependent on the archive size. The archiving

method that continuously removes duplicate and dominated population members from the

archive typically requires less memory as only the nondominated points are present in the

archive at any given time. The two archiving methods described require the same amount

of memory in the situation where every point generated is a nondominated point and du-

plicate points are not found. In this example, both archiving strategies would store the

same number of points in the archive each generation and and use the same amount of

memory resources. Overall, the selection of an archiving method to use is dependent on

the resources available and if a requirement exists for knowledge of PFknown (t) following

each generation as both methods result in an identical solution set, PFknown .

5.2 Subpopulation Based Approaches

In comparison to a single objective EA, the greatest difference between an EA and

an MOEA is the use of multiple fitness functions and a multiobjective selection mechanism

in the MOEA. Multiple options exist for handling the k fitness functions existing in an

MOP formulation. In the simplest case, as in the VEGA of Section 3.1.1.1, an MOEA uses
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multiple subpopulations of individuals. This is a natural evolution from the aggregated

fitness function approach and may be considered a similar type of approach. Each of the k

subpopulations maintain a population of individuals that have high quality fitness values

with respect to one fitness function. In the VEGA, the same number of individuals, j,

of high fitness value for each of the fitness functions, are selected from the results of the

previous generation. These subpopulations are then shuffled, followed by crossover and

mutation and the process repeats. The selection mechanism for this class of algorithms is

modeled off of the VEGA [170]:

Definition 35 (Subpopulation Based Pareto Selection):

s(i) : X(i)s × T (I,Rk) −→ T



Ω(i)s , T





k
⋃

j=1

(

Iµ
′
j
(i)+χµ

(i)
j

)

, Iµ
(i+1)







 ,

where Iµ
′
j
(i)

and Iµ
(i)
j are equal to Iµ

′(i)

k and Iµ
(i)

k , i.e., each of the k subpopulations are of

the same cardinality. 2

One can see that this is almost identical to the single objective selection mechanism. A

single objective elitist (individuals with the highest quality fitness values are chosen first)

selection mechanism is applied k times, where the number of individuals selected for each

fitness function is equal to the offspring population size divided by the number of fitness

functions. All of the selected individuals are subsequently combined and form the next

population, upon which the evolutionary operators are applied.

Disadvantages exist in this approach. A separation of the fitness functions does not

allow for a simultaneous optimization of all of the fitness functions as a Pareto based

approach achieves. Additionally, the survival pressure is only exerted on one dimension

of the k objective functions within each subpopulation. This may lead to the creation of

species within each subpopulation and can yield similar results to optimizing each fitness

function individually and then combining the results [170]. Hence a Pareto based approach

with the use of archiving is recommended for attempting to solve MOPs.
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5.3 Ranking

Rank based fitness assignments were first proposed by Goldberg [74] and have since

been used in a number of MOEAs [61, 64, 66, 68, 92, 176, 213, 183]. In general, this form of

fitness assignment assigns a rank to each individual based on the number of individuals that

dominate it. There are a number of MOEAs that use this method or a slightly modified

method for calculating the ranks. Definition 36 presents a general symbolic formulation for

ranking, in which a rank is assigned to each individual based on the number of individuals

that dominate it, as proposed by Fonseca [64]. This definition can be easily modified to

reflect the slight differences in calculating the rank seen in other MOEAs.

Definition 36 (Rank Assignment): Let am ∈ P (i) where P (i) := {a1(i), a2(i), . . . , aµ(i)} ∈
Iµ

(i)
and m < µ (am is an individual of the current population with fitness vector ~um),

The rank of population member am, present in generation i, is:

Ri(am) =

µi−1
∑

n=1

∣

∣ (~um ¹ ~un)
∣

∣

The rank of am is equal to the cardinality of population members in population Pi that

dominate member am. 2

5.4 Niching Based Approaches

Niching operators have been used in a number of MOEAs [47, 64, 69, 93, 94, 176, 184].

Niching operators are used in an attempt to generate a uniform distribution of points

across the Pareto surface they form. Niching can be integrated with the fitness function in

fitness sharing to penalize solutions that are within a certain distance of each other. The

symbolic formulation for fitness sharing with niching, as used in Horn [93], is presented in

Definition 37.

Definition 37 (Fitness Sharing and Niching): If a and b ∈ P (i) and D(a, b) ≤
σsharei, where D is the genotype or phenotype distance between points a and b, then the
fitness is modified such that Φi(a) = Φi(a) − X and Φi(b) = Φi(b) − X, where X is

determined by the distance D between the two population members. 2
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Typically niching is used in conjunction with the selection operator to aid in obtaining

a good distribution of points along the Pareto surface. A distance metric D is used in order

to determine how far apart population members reside in relation to other population

members. A distance metric can be used in isolation as presented in the fitness sharing

definition, Definition 37, or can be used with a niche count, ni to allow up to a specified

number of solutions to reside in a specific area of the space as used by Horn [94].

Definition 38 (Niche Count): ni is a count of the number of population members

within a portion (niche number i) of a Rn (genotype) or Rk (phenotype) dimensional

space. i.e., A count of the number of population members within a specified portion of the

Pcurrent (t), Pknown , PFcurrent (t), or PFknown space. 2

Use of the niching operator in conjunction with the selection operator restricts which

solutions are allowed to pass to the next generation [94]. Niching based selection is defined

as:

Definition 39 (Niching Based Selection): Two nondominated population members

a and b are considered for niching based selection. The population member assigned the

lowest niche count (min (ni(a), ni(b))) is selected. ni(a) is the niche count of the niche in

which population member a resides. The population member with the lowest niche count is

selected. 2

Definition 39 applies to the genotype or phenotype domains. Niching can also be used

to reduce the size of the final PFknown set that the MOEA generates, in which members

are only added to PFknown if they would enter an uncrowded niche or they have a lower

niche count than at least one member of PFknown . If the cardinality of PFknown is equal to

its maximum size, an element with a larger niche count must be removed from PFknown .

This is useful in conjunction with a fixed size archive and is defined as:

Definition 40 (Niche Based Archiving): Let population member am ∈ Iµ
(i)
having

fitness vector ~um be considered for placement into PFknown . If PFknown is restricted in

size to PFknown max and
∣

∣PFknown

∣

∣ < PFknown max, PFknown = (PFknown
⋃

am); else
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PFknown = (PFknown
⋃

am) iff:

{~um
∣

∣n = {1, . . . , µi}, ~un ∈ PFknown, ~um ¹ ~un}

and:

1. am ∈ of an empty niche OR

2. am is placed into a non-empty niche, N , given ni(a) < max(ni)

and population member b is removed, where ni(b) = max(ni). 2

5.5 Mating Restrictions and Comparison Sets

Restricted mating of MOEA population members is yet another area of interest. The

concept is to restrict the mating between individuals within a population unless they are

“close” enough or “far” enough away from each other with respect to their genotype or

phenotype values [64]. Restricting the mating process creates different “species” within

the population. Horn presented the idea of using a portion of the population, tdom, as

a comparison set [93]. This comparison set is used in cases where the selection operator

must decide between two nondominated individuals. Definition 41 presents this concept.

Definition 41 (Pareto Comparison Set Based Selection): am, aj , {pctdom ⊆
P (i)} ∈ Iµ

(i)
are randomly chosen, where pc is the randomly selected comparison set and

tdom =
∣

∣{pc}
∣

∣ ≤
∣

∣P (i)
∣

∣. If n = {1, . . . , tdom},~an ∈ Iµ
(i)
,

~um ¹ ~un and ~uj ± ~un then select am

Else if

~um ¹ ~un and ~uj ¹ ~un or ~um ± ~un and ~uj ± ~un

Then use Definition 39 to select am or aj 2

Similar mating restriction methods are presented in the literature and discussed in

Coello Coello et al. [31]. Some accomplish this through the use of a grid based structure,
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only allowing mating to occur within some area, while others label the population members

by sex and only allow sexual reproduction to occur.

5.6 Multiobjective Evolutionary Algorithm Formulation

One can present a generalized symbolic formulation for an MOEA once a symbolic

formulation for the operators used in an MOEA is defined. Such a formulation aids re-

searchers in implementing an MOEA correctly by following the predefined description.

Additionally the formulation clarifies any misunderstandings of the MOEA operators.

A generic MOEA formulation is presented, using consistent notation with the EA

formulation presented in Section A.2:

Definition 42 (Multiobjective Evolutionary Algorithm): Let

• I be a non-empty set (the individual space),

• {µ(i)}i∈N a sequence in Z+ (the parent population sizes),

• {µ′(i)}i∈N a sequence in Z+ (the offspring population sizes),

• Φ : I −→ Rk (k fitness functions),

• ι :
⋃∞
i=1(I

µ)(i) −→ {true, false} (the termination criterion),

• χ ∈ {true, false},

• r a sequence {r(i)} of recombination operators
r(i) : X(i)r −→ T

(

Ω
(i)
r , T

(

Iµ
(i)
, Iµ

′(i)
))

,

• m a sequence {m(i)} of mutation operators
m(i) : X(i)m −→ T

(

Ω
(i)
m , T

(

Iµ
′(i)

, Iµ
′(i)
))

,

• s a sequence {s(i)} of selection operators
s(i) : X(i)s × T (I,Rk) −→ T

(

Ω
(i)
s , Tp

((

Iµ
′(i)+χµ(i)

)

, Iµ
(i+1)

))

,

• Θ
(i)
r ∈ X(i)r (the recombination parameters),

• Θ
(i)
m ∈ X(i)m (the mutation parameters), and

• Θ
(i)
s ∈ X(i)s (the selection parameters).
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Then the algorithm shown in Figure 5.1 is called a Multiobjective Evolutionary Algorithm.

2

t := 0;

initialize P (0) := {a1(0), . . . ,aµ(0)} ∈ Iµ(0)
;

while (ι({P (0), . . . , P (t)}) 6= true) do

recombine: P ′(t) := r
(t)

Θ
(t)
r

(P (t));

mutate: P ′′(t) := m
(t)

Θ
(t)
m

(P ′(t));

select:
if χ

then P (t+ 1) := s
(t)

(θ
(t)
s ,Φ)

(P ′′(t));

else P (t+ 1) := s
(t)

(θ
(t)
s ,Φ)

(P ′′(t) ∪ P (t));
fi

t := t+ 1;
od

Figure 5.1 Multiobjective Evolutionary Algorithm Outline

Definition 42 differs from the single objective definition, Definition 54, in the basic

sense that there are k objectives to be solved and therefore there are k fitness functions.

Additionally, the MOEA selection operator uses the concept of Pareto dominance and

niching to aid in obtaining an even distribution of points across the Pareto front. A

generic formulation of an MOEA aids researchers in understanding the basic structure

of an MOEA. The formulations of each MOEA operator provides for a more in-depth

understanding of MOEAs and their operators.

5.7 Summary

This chapter presents symbolic formulations in the form of definitions of MOEA

operators. These definitions are important and aid researchers in correctly implementing

MOEA operators. A generic MOEA formulation is presented using the definitions de-

veloped earlier in this chapter. The associated definitions aid in developing an in-depth

understanding of MOEA operators and a fuller understanding of the operation of MOEAs.

Once a researcher reaches this level of understanding, he or she has the ”tools” necessary to

develop MOEAs as well as their operators and potentially contribute to advancing MOEA
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theory. The next chapter builds upon the understanding developed through the previous

chapters to develop a new explicit BB-based MOEA. An understanding of the background

information presented is crucial in designing, implementing, and testing MOEAs.
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VI. MOMGA-II Development

The goal of this research effort is to advance the state of the art with respect to explicit BB-

based MOEAs. This goal requires an in-depth understanding of existing explicit BB-based

approaches in order to recognize the advantages and disadvantages of such approaches and

subsequently improve upon them. Two of the objectives of this effort are addressed: the

development of an explicit BB-based MOEA for solving real-world constrained MOPs, and

the demonstration that explicit BB-based MOEAs provide insight into difficult MOPs that

other approaches may not provide.

The first objective can be satisfied either through the use of existing MOEAs or

through the development of an entirely new MOEA. Since many MOEAs exist, choosing

an existing MOEA would be of some utility as most of the coding would already be

completed. Creating a new MOEA from scratch involves possibly re-creating existing code

or implementing new code but has the advantage that inefficiencies in existing approaches

can be addressed and improved upon. The second objective is more difficult to realize and

involves the testing of various MOPs in order to demonstrate that additional insight is be

gained into difficult MOPs through the use of explicit BB-based MOEAs.

6.1 Introduction

Many EAs and one MOEA follow the concepts in the Building Block Hypothe-

sis (BBH) presented in Chapter II. To summarize, the BBH states that BBs exist in

a population of individuals. If an EA (MOEA) can identify the “good” BBs and ma-

nipulate them through the use of Evolutionary Operators (EVOPS), the EA (MOEA)

has an increased probability of generating “good” solutions to the problem. Consider-

able research has been conducted into the explicit identification of BBs in single objective

EAs [36, 77, 78, 111, 132, 142] and recently limited research into their use in MOEAs [184].

These EA and MOEA approaches have shown impressive results and hence conducting ad-

ditional research into explicit BB-based MOEAs is justified.

In order to meet the objectives of this work, an explicit BB-based MOEA must be

used. The only existing explicit BB-based MOEA, the MOMGA, could be used or an
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entirely new MOEA could be created. While the MOMGA has been shown to be effective

across a wide variety of classes of MOPs [184], the execution time and resource requirements

(efficiency) of this MOEA require improvement. Since the efficiency of the MOMGA is not

sufficient to solve large scale real-world MOP applications [184], a new explicit BB-based

MOEA is created, the Multiobjective Messy Genetic Algorithm II (MOMGA-II).

Considering the objectives of this research, the choice was made to develop the

MOMGA-II based upon the concepts and findings from research into the MOMGA. The

MOMGA illustrated effective performance when applied to a variety of classes of pedagog-

ical MOPs but is somewhat lacking in its overall efficiency. In order to achieve the level

of effectiveness of the MOMGA and improved efficiency in the MOMGA-II for application

to real-world MOPs, a thorough literature search revealed a number of possibilities for

obtaining efficiency gains in the MOMGA-II. The SO fmGA [77] is chosen as a template to

use for realizing those efficiency gains. The best concepts of the fmGA and the MOMGA

are incorporated and extended to yield the MOMGA-II. The motivation is to attempt to

solve MOPs of classes similar to real-world, Air Force MOP applications efficiently and

effectively. Using an efficient and effective explicit BB-based MOEA is crucial to meeting

the objectives of this research effort to include solving real-world, Air Force MOP appli-

cations, extending the analysis of explicit BB-based MOEAs as applied to MOPs, and

gaining insight into difficult MOPs.

This chapter is organized as follows: a discussion of the MOMGA is presented in

Section 6.2 to aid the reader’s understanding of the differences between the MOMGA and

the MOMGA-II. A detailed discussion of the MOMGA-II and the design of experiments

follows. The results and analysis of the application of the MOMGA-II to unconstrained

and constrained MOPs as well as real-world MOPs appears in Section 6.5. The MOEA

BB testing is the final topic addressed in this chapter and is presented in Section 6.6.

6.2 Background of the MOMGA

In order to understand the MOMGA-II, its operators, and its implementation, one

must understand the predecessor of this algorithm, the MOMGA. The MOMGA is de-

scribed in Chapter III, Section 3.1.2.1. The MOMGA is an extension of the single objec-
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tive mGA, that explicitly manipulates BBs of a user specified size in constructing “good”

solutions. The MOMGA explicitly creates a population of BBs, containing every possible

BB of the user specified size. Increasing the BB sizes and string lengths in the MOMGA

results in an increase in the initial population size. The main disadvantage of the MOMGA

is the exponentially increasing population sizes required for use as the BB size increases.

This detriment previously prevented the MOMGA from being applied to large, real-world

MOPs. In order to attempt to solve these MOPs, as well as other real-world MOPs, im-

provements over the original MOMGA are a necessity. The fmGA was designed to combat

the large population sizes encountered in the mGA while producing “good” results when

compared with the mGA and other single objective EAs and hence these concepts are of

use in the MOMGA-II [77].

Designing and implementing an efficient and effective explicit BB-based MOEA in-

volves the integration of various concepts from various algorithms as well as new ideas. To

improve on the efficiency of the MOMGA and the fmGA, the code representing the con-

cepts and ideas taken from these approaches was rewritten. In cases where efficient code

existed, the existing code was used. A detailed description of the MOMGA is presented

to explain the background operators used to create the MOMGA-II.

The MOMGA implements a deterministic process to generate an enumeration of

all possible BBs, of a user specified size, for the initial population. This process is re-

ferred to as Partially Enumerative Initialization (PEI). Thus, the MOMGA explicitly

uses these building blocks in combination to attempt to solve for the optimal solutions

in multiobjective problems. While finding the optimal solution is never guaranteed by

an MOEA, the MOMGA statistically finds the optimal solutions or solutions close to the

optimal solutions in phenotype space to the functions presented in our standard MOP test

suite [184, 189, 191, 192]. The pseudocode for the MOMGA is presented in Figure 6.1.

The original messy GA consists of three distinct phases: Initialization Phase, Pri-

mordial Phase, Juxtapositional Phase. The MOMGA uses these concepts and extends

them where necessary to handle k > 1 objective functions. In the initialization phase,

the MOMGA produces all building blocks of a user specified size. The population size

grows exponentially with an increase in the BB size (also referred to as the order of the
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For n = 1 to o
Perform Partially Enumerative Initialization
Evaluate Each Population Member’s Fitness (w.r.t. k Templates)

// Primordial Phase
For i = 1 to Maximum Number of Primordial Generations

Perform Tournament Thresholding Selection
If (Appropriate Number of Generations Accomplished)

Then Reduce Population Size
Endif

End Loop
//Juxtapositional Phase

For i = 1 to Maximum Number of Juxtapositional Generations
Cut-and-Splice
Evaluate Each Population Member’s Fitness (w.r.t. k Templates)
Perform Tournament Thresholding Selection and Fitness Sharing
Pknown(t) = Pcurrent (t) ∪ Pknown(t− 1)

End Loop
Update k Competitive Templates (Using Best Value Known in Each Objective)
End Loop

Figure 6.1 MOMGA Pseudocode

BB), o, as shown in Equation (6.1). This yields a population size determined by Equa-

tion (6.1) [78, 184].

N = Ck

(

l

k

)

(6.1)

In Equation (6.1) N represents the population size, C is the cardinality of the alpha-

bet that is used in the GA (binary C = 2), l is the length in bits of the chromosome and o

is the BB size. The MOMGA uses Equation (6.1) to determine the necessary population

size in order to create every possible BB of size o. At the end of the initialization phase,

the population consists of all of the possible strings of length o, i.e., all of the BBs. Since

the population members are underspecified, a mechanism must exist for determining the

fitness of the partial strings or BBs. To evaluate the fitness of a BB, a competitive template

is used to fill in the unspecified or missing bits, prior to evaluation. This ensures that each

evaluation is of a fully specified string, through the BB alone or in conjunction with the

competitive template if necessary. In extending the mGA, the MOMGA incorporates k

competitive templates, each initially generated randomly, and each later optimized for one

of the respective k objectives.
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The primordial phase performs tournament selection on the population and reduces

the population size if necessary. The population size is adjusted based on the percentage

of “high” fitness BBs that exist. In some cases, the “lower” fitness BBs may be removed

from the population to increase this percentage. In the juxtapositional phase, BBs are

combined through the use of a cut and splice recombination operator. Cut and splice is a

recombination (crossover) operator used with variable string length chromosomes. The cut

and splice operator is used with tournament thresholding selection to generate the next

population. As the MOEA progresses through the generations, the number of specified

bits within the chromosomes increases. With this increase in the number of specified bits

comes a decrease in the dependence on the competitive template. The process continues

for a user specified number of generations to yield strings with high fitness values for each

fitness function. The combination of the three phases produces one era [77, 78]. The

MOMGA continues for the user specified number of eras or BBs. Observe that an epoch

refers to the execution of the algorithm through all of the eras.

The competitive templates are initially created randomly. Following each era, the

best found individual in the population, for each objective function, becomes the new

competitive template for that objective function. The era is incremented and the next BB

size is executed using the same process as described above. A more detailed discussion of

the MOMGA architecture is presented in [184, 190].

One objective of the MOMGA was to illustrate the fact that explicit BB concepts

apply to the multiobjective problem domain. The MOMGA was designed to illustrate

the usefulness of BBs in MOEAs and not necessarily to be a robust algorithm. The

MOMGA lacks generalizations necessary to easily transition between attempting to solve

MOPs of different sizes and decision variable resolutions. In most of the MOMGA code,

the number of fitness functions and decision variables are hard coded into the algorithm.

Hard coding numerous parameters makes it difficult to apply the MOMGA to MOPs of a

different number of decision variables or fitness functions than those coded into the MOEA.

Additionally, the MOMGA has only been applied to unconstrained MOPs and hence does

not contain constraint handling code or feasibility measures. While the data structure of

the MOMGA mirrored that of the mGA, these algorithms were not designed and coded
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with parallelization in mind. Although not an objective of the research into the MOMGA,

parallelization is an objective of this research effort. These factors along with coding errors

present in the mGA/MOMGA motivated a new effort at coding the appropriate operators

present in the MOMGA for use in the MOMGA-II. Existing MOMGA code was utilized

when possible.

6.3 MOMGA-II - Development

The MOMGA has been shown to yield effective performance when applied to a

variety of MOPs and compared to other well-engineered MOEAs [184, 190]. A similar

level of effectiveness is desired in the MOMGA-II with increased efficiency. The results

of the MOMGA-II are compared to the results of the MOMGA in order to validate the

research objectives of this effort. Efficiency improvements over the MOMGA are necessary

to decrease the execution time and system resources required. A thorough description of

the MOMGA-II and its differences from the explicit BB-based MOMGA is presented in

this section.

The main bottleneck in the mGA and the MOMGA is the initialization phase. This

phase requires the enumeration of every possible BB, of user specified size, as denoted in

Equation (6.1). In the original testing of the MOMGA, only two objective function MOPs

were used with bit strings of length 24 and BB sizes one through three. In this config-

uration, the population sizes required to attempt and solve these MOPs were somewhat

manageable but larger than used in most MOEAs, requiring a maximum population size

of 16,192 individuals. Using longer string lengths or larger BB sizes leads to enormous,

unmanageable population sizes that make other EAs and MOEAs more attractive. As

many real-world MOPs require the use of strings longer than 24 bits, the MOMGA is not

a feasible MOEA to use when attempting to solve such MOPs. The fmGA was designed to

remedy the population size issue encountered with the mGA [77]. Integrating some of the

concepts of the fmGA and MOMGA into the MOMGA-II creates an effective and efficient

explicit BB-based MOEA.

A probabilistic approach is used in initializing the population of the fmGA. The ap-

proach is referred to as Probabilistically Complete Initialization (PCI) [77]. PCI initializes
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the population by creating a controlled number of BBs based on the user specified BB

size and string length. The fmGA’s initial population size is smaller than the mGA (and

MOMGA by extension) and grows at a smaller rate as a total enumeration of all BBs of

size o is not necessary. These BBs are then “filtered,” through a Building Block Filtering

(BBF) phase, to probabilistically ensure that all of the desired good BBs from the initial

population are retained in the population. The BBF approach effectively reduces the com-

putational bottlenecks encountered with PEI through reducing the initial population size

required to obtain “good” statistical results. The fmGA concludes by executing a number

of juxtapositional phase generations in which the BBs are recombined to create strings of

potentially better fitness. The pseudocode for the MOMGA-II is presented in Figure 6.2.

For n = 1 to o
Perform Probabilistically Complete Initialization
Evaluate Each Population Member’s Fitness (w.r.t. k Templates)

// Building Block Filtering Phase
For i = 1 to Maximum Number of Building Block Filtering Generations

If (Building Block Filtering Required Based Off of Input Schedule)
Then Perform Building Block Filtering

Else
Perform Tournament Thresholding Selection

Endif
End Loop

//Juxtapositional Phase
For i = 1 to Maximum Number of Juxtapositional Generations

Cut-and-Splice
Evaluate Each Population Member’s Fitness (w.r.t. k Templates)
Perform Tournament Thresholding Selection and Fitness Sharing
Pknown(t) = Pcurrent (t) ∪ Pknown(t− 1)

End Loop
Update k Competitive Templates (Using Best Value Known in Each Objective)
End Loop

Figure 6.2 MOMGA-II Pseudocode

The MOMGA-II mirrors the fmGA and consists of the following phases: Initial-

ization, Building Block Filtering, and Juxtapositional. The MOMGA-II differs from the

MOMGA in the Initialization and Primordial phase, which is referred to as the Building

Block Filtering phase. The initialization phase of the MOMGA-II uses PCI instead of the

PEI implementation used in the MOMGA and randomly creates the initial population.
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The size of the population suggested to obtain “good” results for the fmGA is shown in

Equation (6.2) [77].

n =

(

l
l′

)

(

l−k
l′−k

) ∗ 2c(α) ∗ β2 ∗ (m− 1) ∗ 2k , (6.2)

where l is the total number of genes, l′ is the string length, o is the BB size, c(α) is

used to determine the acceptable amount of error, β2 is the signal to noise ratio, and

m is the number of subfunctions. A detailed description of this equation is presented

in [77]. Equation (6.2) provides a means of determining the initial population size to use

in the fmGA in order to statistically generate the good BBs for the problem being solved.

However the population sizing equation (Equation (6.2)) makes the assumption that the

BBs are independent, and does not apply to MOPs unless the objective functions are

all independent. In this chapter, a much smaller maximum population size is used in the

MOMGA-II as compared to the MOMGA (250 population members for the MOMGA-II as

compared to 16,192 for identical MOPs) to illustrate that the MOMGA-II obtains a similar

level of effectiveness but with greater efficiency than the MOMGA. A smaller population

size requires less system resources and hence is more efficient. Additionally, the evaluation

of fewer population members leads to a reduction in execution time. These statements are

validated through the MOMGA-II results presented in Section 6.5 of this chapter.

In the PCI initialization of the population in the MOMGA-II, all possible BBs of

the user specified size are not created but instead the population is created randomly,

with strings of length l. Fully specified population members are generated in which the

allelic values are randomly selected as well as the positions (loci) to place these values.

The size of the population is specified by the user. Following the generation of the initial

population, the population members are all evaluated with respect to each of the objective

functions in the same manner as the MOMGA. A random choice of one of the k competitive

templates is conducted and overlayed by the bits stored in the population member. This is

completed in order to generate a fully specified individual and conduct fitness evaluations

on that individual. The competitive templates are handled in the same manner as used in

the MOMGA, i.e., they are initially randomly created. After each BB size is executed, the
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MOMGA-II updates each of the templates with the best population member found with

respect to each individual fitness function.

The BBF phase reduces the lengths of the strings generated in the initialization phase

through a systematic process. A user generated filtering schedule specifies the generations

to conduct a random deletion of bits and the number of bits to delete from each chro-

mosome. The schedule also specifies the number of juxtapositional generations to execute

and can be automated by the MOMGA-II. The MOMGA-II uses the filtering schedule rec-

ommended in [77], in which the strings are halved in length with each filtering operation

until they are reduced to the specified BB size. This is but one method to use for the

schedule and has been shown to perform well [77]. Other scheduling methods exist but

an optimal method has not been identified in the literature [108, 132]. The MOMGA-II

does not use a mutation operator directly but the BBF operator can be classified as a

mutation operator. The BBF operator does not randomly choose a string to mutate based

on the probability of mutation, as does a traditional mutation operator. Instead, each

string is filtered (mutated) and hence the probability of mutation can be viewed as 100%.

Since the BBF operation is sufficiently different from the standard concept of mutation,

the probability of mutation of the MOMGA-II is stated as 0%.

The filtering process consists of a random deletion of f bits from each of the pop-

ulation members. Therefore, after the first filtering operation, the strings are reduced in

length from l bits to l− fi bits where fi specifies the number of bits to remove in filtering

step i. Each subsequent filtering operation randomly deletes additional bits. This filtering

typically does not delete the same number of bits with each operation.

The filtering operation is alternated with tournament selection. The purpose of

using a selection mechanism is to yield a competition between the building blocks. This

competition is used to yield a new population containing the best population members

found and hence by extension the best BBs. At the conclusion of the BBF phase, the entire

population consists of individuals of the specified BB length. The population essentially

consists of the best BBs found. The goal of the entire BBF process is to yield a similar

result to the primordial phase of the MOMGA, a population consisting of a sufficient

number of “good” BBs to be recombined in the juxtaposition phase of the algorithm.
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The juxtapositional phase proceeds in the same manner as it did in the MOMGA.

During this phase, the building blocks found through the Initialization phase and BBF

phase are recombined through the use of a cut and splice operator alternated with tourna-

ment selection with thresholding. This process results in a gradual increase in the length of

the population members towards becoming fully specified or having an allelic value stored

in each locus position. The recombination operator is alternated with tournament selection

in order to maintain a population of the best individuals found. Competitive templates

are used to evaluate the fitness values of underspecified population members. In the event

of overspecification, where a loci location has multiple allele values, a scan conducted of

the population member upon which the first value encountered to specify the gene location

becomes the allele value for that gene. As the juxtapositional phase continues, the pop-

ulation members gradually increase in length and are less dependent on the competitive

templates to fill in unspecified alleles.

Following the juxtapositional phase, the BB size is incremented and the population

member with the best fitness value, for each individual fitness function, replaces the respec-

tive competitive template. The MOMGA-II executes all three phases for each BB size and

presents PFknown as the solution set generated. The MOMGA-II can be applied to MOPs

with theoretically any number of decision variables and fitness functions, constrained only

by the system resources of the platform used. The application of the MOMGA-II to

real-world and constrained MOPs is discussed in more detail later in this chapter. The

integration of problem domain information is necessary to effectively generate solutions

to these MOPs. Additionally, constraint handling approaches are integral to finding good

solutions to the constrained MOPs tested.

To evolve the MOMGA-II, the original MOMGA code was used as a guideline.

Whenever possible, existing, logically correct, code from the MOMGA was used in the

MOMGA-II coding; otherwise, new code was written. Considering that the original fmGA

code was unavailable, large portions of the MOMGA-II had to be written from scratch.

The MOMGA-II is written in ANSI C and therefore can be executed on many computing

platforms. Testing of the MOMGA-II was conducted on systems using the Linux operating

system.
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The combination of existing code and new code made non-trivial modifications to the

operation of the MOMGA in the initialization and primordial phases. A sound software

engineering approach was used. This approach involved taking the time to develop a design

process for coding and implementing the MOMGA-II. Additionally, debugging code was

integrated into the MOMGA-II to aid in locating and correcting coding bugs. Since Objec-

tive 5 (see Chapter I) of this research is to analyze parallel concepts as applied to MOEAs,

parallelism was kept in mind during the coding process. Much of the existing MOMGA

code could not be parallelized without considerable modifications to the data structures.

In the coding of the MOMGA-II, data structures were used that support parallelization.

This involved the removal of a linked list data structure and replacement with dynamically

allocated, multidimensional array data structures. Additionally, the MOMGA was coded

explicitly for application to MOPs of low dimensionality in the genotype and phenotype

spaces, use of a maximum of three competitive templates, and application to unconstrained

MOPs only. The MOMGA-II coding process addressed these issues and generalized most

parameters and variables to allow for increased functionality. This included the ability to

easily apply the MOMGA-II to MOPs of any number of decision variables or fitness func-

tions without having to rewrite a substantial portion of the code, the ability to specify any

number of competitive templates, the addition of multiple constraint handling approaches

and many other generalizations that allow for multiple parameter settings constrained only

by the hardware limitations of the computing platform chosen.

Initially code optimization was not addressed but logical correctness and a good

design to provide increased functionality over the MOMGA and fmGA were paramount.

Following the implementation and testing of a working code and the desire for paral-

lelization, code optimization issues were addressed. This is an important fact since a fair

comparison of the MOMGA and MOMGA-II is desired to discuss the differences in effi-

ciency and effectiveness of the two MOEAs. The code optimization issues were addressed

following the comparison of the MOMGA to the MOMGA-II.
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6.4 Design of Experiments

To conduct a thorough evaluation of the performance of any MOEA, a good design

of experiments must be conducted prior to testing the algorithm. Two of the objectives

of this chapter are to develop an efficient explicit BB-based MOEA for solving real-world

applications and real-world Air Force MOPs and to demonstrate that explicit BB-based

MOEAs provide insight into difficult MOPs that otherwise could not be found. These

objectives must be taken into account when conducting the design of experiments.

To make a fair comparison of the results of the MOMGA-II to the MOMGA and

other MOEAs, over a class of MOPs, these algorithms must all be tested over the same

MOPs. In comparing the MOMGA-II to the MOMGA, the objective is to illustrate an

improved efficiency at a similar or better statistical level of effectiveness. Efficiency is used

in the context of system resources and execution time. In comparing the MOMGA-II to

other MOEAs, the objective is to illustrate statistically similar, or better, effectiveness of

the MOMGA-II.

The guidelines suggested by Jackson et al. [97] and Barr, Golden, Kelly, Resende,

and Stewart [16] are used to conduct a good design of experiments. Specifically, the 5

experimentation steps presented by Barr et al. [16] are followed throughout this research

effort to ensure that the experiments and results are meaningful. These steps consists of:

1) Define the goals of the experiment (Chapter I); 2) Choose measures of performance

and factors to explore (Chapter III); 3) Design and execute the experiment (Chapter VI);

4) Analyze the data and draw conclusions (Chapter VI) and 5) Report the experiment’s

results (Chapter VI) [16]. The results are analyzed and statistical tests are used to provide

useful insight into MOMGA-II performance.

The selection of test MOPs for comparing the MOMGA-II to the MOMGA and other

MOEAs, including the MOGA, NSGA, NPGA, SPEA, PAES, and NSGA-II, is a difficult

task. A more in-depth discussion of the possible MOPs to test these algorithms against

is presented in Chapter IV. In the comparison of the MOMGA-II to the MOMGA, the

same MOPs are chosen as were used for testing the MOMGA in Van Veldhuizen’s original

work [184]. These five MOPs were meticulously selected from numerous MOPs existing in
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the literature and represent different classes of MOPs with varying characteristics. While

it is impossible to evaluate the performance of any algorithm over every class of problem,

the selected MOPs have characteristics that are representative of many real-world applica-

tion problems. The genotype and phenotype characteristics vary as well as the structure of

Ptrue and PFtrue , which includes connected and disconnected, concave, convex, and a scal-

able number of decision variables and Pareto curves. These selected MOPs represent both

minimization and maximization functions. Additionally, other researchers have recently

used a subset of these MOPs to evaluate and compare the performance of their MOEAs to

others [29, 43, 46, 116]. Two fitness function MOPs are used for ease of presentation and

to provide critical insight to MOEA performance. The five unconstrained MOPs selected

from Chapter IV are MOP 1, MOP 2, MOP 3, MOP 4, and MOP 6.

In comparison testing of the MOMGA and MOMGA-II, all of the parameter settings

were kept constant across the two algorithms in order to illustrate the improvement in

execution time of the MOMGA-II. These parameter values allow for a fair comparison of the

MOMGA-II to other MOEAs, which were executed with comparable parameter settings.

The parameter settings are discussed in Section 6.5 of this chapter. In order to make

statistically accurate statements about the results of the MOEAs tested, various metrics

must be used. The metrics used are drawn from the discussion presented in Chapter III,

Section 3.2. While numerous metrics exist, a subset of these are selected in order to

evaluate the results of the MOEAs tested. In general, one would like to use metrics that

are computationally feasible to compute, allow for a clear interpretation of the metric

results (are not misleading) and metrics that complement each other in providing the

researcher with a good overall idea of the performance of the MOEA on the tested MOP.

Error ratio, spacing, generational distance, maximum error, hyperarea ratio, ONVGR and

ONVG as well as a visual comparison are selected for use in comparing the MOMGA-II

to the MOMGA results.

The five MOPs used in the comparison testing of the MOMGA-II and MOMGA

represent unconstrained MOPs with varying characteristics. Additional MOPs are selected

to conduct a more thorough analysis of the performance of the MOMGA-II. These MOPs

include constrained, discrete, and real-world MOPs. A constrained MOP, MOP-C1 is used,
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as well as MOP-CT, a constrained test function generator that allows a researcher to modify

parameters and change the characteristics (and difficulty) of the MOP. Four variants of

MOP-CT are tested in order to illustrate the performance of the MOMGA-II across a

variety of constrained problem characteristics. A real-world MOP, the Advanced Logistics

Problem, and the Modified Multiobjective Knapsack Problem are also used to illustrate

the performance of the MOMGA-II as applied to discrete MOPs formulated with a large

number of decision variables. The three metrics used to compare and contrast results for

these MOPs are generational distance, spacing and ONVG as discussed in Chapter III.

These three metrics are selected as they complement each other and provide data that can

clearly indicate MOEA performance. The use of the three selected metrics in conjunction

with a visual analysis of PFknown (compared to PFtrue if possible) provides a clear view of

the performance of the MOMGA-II.

The application of the MOMGA-II to the unconstrained test problems is straight

forward; however, constrained problem solving poses more of a challenge. In the solving

of constrained MOPs, one has multiple options to consider for constraint handling. The

simplest option is to ignore the constraints until MOEA completion and then remove all

of the infeasible population members. This option has the advantage that the constraints

do not need to be continually checked as the MOEA executes. However, the disadvantage

of this approach is that there is no guarantee that the MOEA is going to find any feasible

solutions. In some constrained MOPs, the majority of the search space is infeasible (as

occurs in the ALP MOP) and there is a low probability that feasible solutions are gener-

ated using this approach. Additionally, ignoring the constraints until MOEA completion

requires the researcher to store every population member generated throughout MOEA ex-

ecution. Storing the entire population is required since one does not check the constraints

until MOEA termination and hence all population members must be stored in order to

have a greater probability of generating a feasible solution. This approach can perform

well if the MOEA finds BBs that lead to feasible solutions throughout the search process.

Another option for constraint handling is to penalize the fitness values of infeasible

population members. Penalty approaches are sometimes difficult to implement as a re-

searcher must determine the amount of penalty to apply to infeasible solutions. Repair
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mechanisms are yet another option for attempting to solve constrained MOPs. A repair

mechanism mutates infeasible individuals to generate feasible solutions. This approach

ensures that the population always contains feasible individuals. A repair approach is used

for both of the discrete constrained integer MOPs, the ALP and MMOKP MOPs.

Other researchers have applied their MOEAs to the identical MOPs selected in this

effort for testing. In many cases, these MOEAs have been executed with comparable

parameter settings and in some cases their statistical results have been published. In

cases where statistical results are available, a statistical comparison is made between these

MOEAs and the MOMGA-II. In cases where the same MOPs are used but the statistical

results are not available, a visual comparison is made between the MOMGA-II results and

these MOEAs.

6.5 MOMGA-II Results and Statistical Analysis

Relative comparison performance data for a set of MOEAs and MOPs can be pre-

sented in a number of formats. They include but are not limited to individual line and

bar graphs of metric values illustrating average, median, standard deviation, maximum

and minimum values. Additionally, tables listing explicit values of the metrics or their

averages, compact scatter diagrams, or Pareto fronts and Pareto solutions are effective for

illustrating MOEA performance. In any case, the use of explicit hypothesis testing should

be conducted when possible to enforce the statistical analysis made.

In the analysis of MOEA results, parametric comparisons can be made in situations

where normal distributions of the data exist and other criteria is met. Since the results

obtained in this research effort are not normally distributed and do not meet the criteria

of parametric testing, nonparametric statistical techniques are discussed and used where

applicable. As a wide variety of MOPs are tested in this research effort, situations exist

where statistical comparisons of the MOMGA-II to other MOEAs are warranted. In other

situations, statistical data for the comparison MOEAs is not available but a visualization

of the Pareto front is. In such situations, visual comparisons are made as appropriate. In

cases where real-world, Air Force specific MOPs are tested, that other MOEAs have not
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been applied to, comparison data is not available and hence only the results of the metrics

are presented.

6.5.1 Standard MOP Test Suite Experimental Results. In applying the MOMGA-

II to the unconstrained MOPs, each experiment was executed ten times. Ten data runs

are conducted for the MOMGA-II as the comparison MOEAs were also executed ten times

and this allows for a statistical comparison to be made between the MOEAs. Additionally,

a visual comparisons is made between the MOMGA and MOMGA-II for these MOEAs.

The following sections present the results obtained in applying the MOMGA-II to the five

unconstrained MOPs.

The primary objective of testing the unconstrained MOPs is to illustrate that the

MOMGA-II obtains statistically similar results (or better) than the MOMGA in terms

of effectiveness over the selected metrics. Additionally, it is shown that the MOMGA-

II obtains similar or better effectiveness results as compared to the comparison MOEAs,

and greatly improved timing results over the MOMGA. As Van Veldhuizen previously

compared the results of the MOGA, MOMGA, NPGA, and NSGA to each other, the

analysis presented in this section is concerned with comparing the MOMGA-II to each of

these MOEAs and hence does not cover the other comparisons that can be made between

the remaining MOEAs. The reader is referred to [184] for a more detailed discussion of

these comparisons.

In each of the five MOPs tested, the PFtrue was determined through a total fine-

resolution grid enumeration of the search space. A program was constructed and run on

powerful, high-performance computer systems to find Ptrue and PFtrue for each of the five

MOPs tested [184]. This program conducted a total enumeration of the MOPs’ search space

in order to find the true solution to the MOPs at a 24 bit decision variable computational

resolution.

The results presented reflect the output of each MOEA using the default parameter

values. The statistical comparisons completed are based on the maximum, minimum, me-

dian, average, and standard deviation calculations for each metric. Additionally, advanced

nonparametric statistics, including the Kruskal-Wallis Hypothesis Test and the pairwise
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Wilcoxon Rank Sum Test (MannWhitney Test) are used to illustrate a statistical difference

or indifference between the various MOEA’s sampled results.

The MOMGA-II and MOMGA runs consist of executing each MOEA for 3 eras of 20

generations each. A string length of 24 bits, BB sizes of 1-3, a cut probability of 2% and

a splice probability of 100% are used in the MOMGA and MOMGA-II. The MOMGA-II

differs from the MOMGA by the BBF schedule that dictates the number of generations

that BBF must take place. The MOMGA uses the mGA calculation to determine the

number of primordial generations to execute, while the MOMGA-II always executes 9 gen-

erations of the BBF and tournament selection operations. Hence the MOMGA-II only

executed 11 generations of the juxtapositional phase. The MOMGA on the other hand

executes between 17 and 19 generations of the juxtapositional phase. The number of jux-

tapositional generations executed per MOEA is important to note since the generation

of the solution strings takes place through the cut and splice operation of the juxtaposi-

tional phase. The larger number of juxtapositional generations executed by the MOMGA

favors the MOMGA over the MOMGA-II since it yields a more thorough mixing of the

BBs. However, the MOMGA-II obtains statistically similar results to the MOMGA with

much fewer juxtapositional generations. The results illustrate that the MOMGA-II finds

the same “good” building blocks that the MOMGA finds and does this in less overall

execution time.

The seven metrics used for comparison of the MOGA, MOMGA, MOMGA-II, NPGA,

and NSGA as applied to MOPs 1-6 are error ratio, spacing, generational distance, maxi-

mum error ratio, hyperarea ratio, ONVGR and ONVG. Additional metrics are used beyond

the generational distance, spacing and ONVG metrics suggested for use in Chapter III as

results are available to compare the MOMGA-II and MOMGA with these metrics. It is

desired that the error ratio, generational distance, and maximum error be as close to 0 as

possible to illustrate that the MOEA finds all of the points contained in PFtrue . Finding all

of the points in PFtrue would yield a value of 1 for the hyperarea ratio and ONVGR, hence

the closer these metrics are to a value of 1 versus 0, the larger the number of PFknown points

that also exist in PFtrue . The spacing and ONVG metric are problem dependent and their

measures vary with respect to the spacing between points and cardinality of PFtrue . In
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general, a small distance between points on the front is desired as well as the generation

of a large number of points on the front. The metrics and the rationale for selecting each

of them is discussed in detail in Chapter III.

The results for each of the MOEAs as applied to MOPs 1, 2, 3, 4, and 6 are presented

in Figures 6.3 through 6.9, which illustrate a visual comparison of PFknown and PFtrue .

Figures 6.13 through 6.17 present the metric values calculated for each MOEA applied to

each MOP. The first set of figures, Figures 6.3 through 6.9, represent the combination of

the ten PFknown results found for the MOMGA-II and MOMGA. Figures 6.13 through 6.17

appear at the end of this section and present the metric results of the five MOEAs (on

the x-axis) as applied to the respective MOP selected from the test suites. A dot (.)

denotes the metric value (the y-axis) for each of the ten runs executed per MOEA. Error

bars are overlayed on each MOEA’s data points to illustrate the variance present in the

results. These error bars represent one standard deviation about the mean (µ ± σ). The

abbreviations M-I and M-II denote the MOMGA and MOMGA-II results, respectively.

Details of the MOGA, MOMGA, NPGA, and NSGA are necessary in order to conduct

a fair comparison of the MOMGA-II to these MOEAs. The results for the four comparison

MOEAs are taken from Van Veldhuizen [184]. He states that the error ratio metric may be

misleading as the MOGA and NPGA use a different binary to real-value mapping than the

NSGA and MOMGA (also the MOMGA-II) and are executed on different hardware archi-

tectures. Additionally, the calculation of Ptrue and PFtrue was conducted on a comparable

architecture to that used to execute the NSGA and MOMGA (as well as the MOMGA-II).

This causes subtle differences in the results of the MOGA and NPGA as compared to

the other MOEAs which may in turn manifest itself in an incorrect error ratio for these

MOEAs. This may occur since the MOGA and NPGA are susceptible to different round-

off or truncation errors as they are implemented using different programming languages on

different machine architectures. Van Veldhuizen does not state it, but by extension, the

same truncation problem may effect the generational distance and maximum error ratio

metrics as they require the explicit computation of distances from vectors in PFknown to

PFtrue .
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Statistically, the results of the MOMGA-II are compared to other MOEAs through

the use of maximum, minimum, average, and median results in conjunction with the as-

sociated standard deviation and variances. The statistical results are discussed following

the visual comparisons. Mann-Whitney and Kruskal-Wallis hypothesis testing are used

together to make statistically significant statements about the results of the MOMGA-II.

The combined use of these statistical comparison techniques is integral to the presentation

of meaningful results and analyses of these results.

6.5.1.1 MOP 1 Results. Figure 6.3 illustrates the PFknown set generated by

the MOMGA-II and MOMGA over ten data runs and compared to PFtrue . The MOMGA-

II generates a good distribution of points which covers the entire front. Visually it appears

that the MOMGA-II and MOMGA find all of the solutions in PFtrue and obtain identical

results when compared to each other. The statistical results comparing the effectiveness

of these algorithms is presented in Figure 6.13 and shows slight differences between the

generated values and PFtrue . Statistical data for comparing the NSGA-II and PAES is

unavailable; therefore, a visual comparison between the MOMGA-II and these MOEAs is

made.

Figure 6.4 illustrates the visual results of the NSGA-II and PAES as applied to MOP1

for one data run [46]. The NSGA-II and PAES are executed with similar parameter settings

to the MOMGA-II which allows for a comparison to be conducted. Both the NSGA-II

and PAES are executed with an equivalent population size of 100 for 250 generations.

This favors these MOEAs as the MOMGA-II uses a population size of 250 and only 60

generations. The parameter settings indicate that the NSGA-II and SPEA evaluate more

population members than the MOMGA-II over the course of execution and hence search

more of the space. Since the statistical results are not available, an exact comparison of

the MOEAs cannot be made. However, one can see that the MOMGA-II visually performs

better than both of these MOEAs. Since the MOMGA-II finds a better spread of solutions

across the front and more overall solutions, equivalent or better statistical performance is

expected from the MOMGA-II as compared to the NSGA-II and PAES.
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Figure 6.3 MOP1 PFknown Comparison

The metric values for each MOEA are presented in Figure 6.13. The results of

the MOMGA-II as compared to the MOMGA are favorable. For each metric, with the

exception of the error ratio, the two algorithms obtain results in which the mean and

standard deviations overlap hence illustrating similar statistical performance in terms of

effectiveness. The results of the MOMGA-II generally illustrate better effectiveness over

the remaining MOEAs. The NPGA and NSGA typically only generate one or two solutions

in PFknown each data run, and due to this, the spacing results for these MOEAs must be

discounted. Overall, the MOMGA-II and MOMGA are more effective than the other

MOEAs based on the selected metrics.

While this MOP formulation only uses one decision variable, some MOEAs have

difficulty generating solutions close to PFtrue . The bounds on the decision variable make

MOP 1 difficult for some approaches as the cardinality of PFtrue is small compared to

the overall size of the search space. The MOMGA-II and MOMGA find the good BBs

necessary to generate good solutions to this MOP and the MOMGA-II obtains results

that compare to the effectiveness of the MOMGA.
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Figure 6.4 MOP1 NSGA-II and PAES Results [46]

6.5.1.2 MOP 2 Results. The visual comparison of the Pareto fronts gen-

erated by the MOMGA-II and MOMGA in Figure 6.5 illustrate minor differences in the

lower right section of the front. The results for these two MOEAs are almost identical but

the MOMGA finds a few more points than the MOMGA-II in the lower right section of

the front. Both MOEAs find a good distribution of points across PFknown and these points

appear to be very close if not identical to those in PFtrue and cover the entire front.

Statistically the results comparing the effectiveness of these algorithms is presented in

Figure 6.14. The statistical data illustrates overlapping error bars between metric values

for the MOMGA-II and the MOMGA with the exception of the error ratio, in which

the MOMGA-II obtains better results. These overlapping error bars illustrate similar

performance in terms of the effectiveness of the MOMGA-II and the MOMGA.

The NPGA is the only other MOEA to find solutions contained in PFtrue besides

the MOMGA-II. The spacing results show similar performance between all of the MOEAs

with the exception of the NSGA which does not obtain the same quality of so