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Abstract


With the increasing usage of QoS-based applications, traffic engineering in commu-
nication networks has become more crucial. For the optimal utilization of network
resources, service providers need to consider multiple criteria that can be customer-
or traffic-oriented. Multiprotocol Label Switching (MPLS) has been developed to ap-
ply more convenient traffic engineering in autonomous systems. This thesis focuses
on the multiobjective optimization of Label Switched Path design problem in MPLS
networks. Minimal routing cost, optimal load-balance in the network, and minimal
splitting of traffic form the objectives. The problem is formulated as a zero-one mixed
integer program and aims at exploring the trade-offs among the objectives. The in-
teger constraints make the problem NP-hard. In the thesis first both the exact and
heuristic multiobjective optimization approaches are discussed, and then a heuris-
tic framework based on simulated annealing is developed. Various search strategies
within the framework are investigated and experimental studies are carried out for a
performance comparison.











Zusammenfassung


Mit zunehmenden Einsatz von QoS-Anwendungen wird Traffic Engineering in
Kommunikationsnetzen immer wichtiger. Für eine optimale Ressourcenverwendung
im Netz müssen Service Provider mehrere Kriterien beachten, die kunden- oder
verkehrsorientiert sein können. Multiprotocol Label Switching (MPLS) ist entwick-
elt worden, um Traffic Engineering in autonomen Systemen bequemer zu gestalten.
Die vorliegende Dissertation konzentriert sich auf die Mehrzieloptimierung des Label
Switched Path Design-Problems in MPLS Netzen. Minimale Routingkosten, optimale
Eingabebalance im Netz und minimale Verkehrsaufspaltung sind die verfolgten Ziel-
funktionen. Die Problemformulierung führt zu einem binären gemischt-ganzzahligen
Programm, mit dem die Wechselwirkung zwischen den Zielfunktionen untersucht
werden. Wegen der Ganzzahligkeit erweist sich das Problem als NP-hart. In der vor-
liegenden Dissertation werden zunächst Ansätze zur exakten Lösung und Heuristiken
der Mehrzieloptimierung untersucht. Anschliessend werden auf Simulated Annealing
basierende heuristische Ansätze entwickelt. Hiermit werden verschiedene Suchalgo-
rithmen bezüglich ihrer Leistungsfähigkeit experimentell verglichen.
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1 Introduction


During the last ten years, the importance of the Internet has increased dramatically
due to the requirements of the global world. By the use of Internet-based applications,
people around the world can exchange data, transfer money and bonds, and are
informed by the latest news from the world.


With the introduction of QoS (Quality of Service)-based applications to the Internet,
many novel networking technologies have been developed. Traffic engineering has
become crucial within these technologies to meet the increasing demand and variety in
customers’ requests. Network optimization has become a great challenge for Internet
Service Providers (ISPs) due to the strict constraints imposed by the limited resource
capacities and customers’ demands.


Under those issues, most of the optimization problems within traffic engineering are
multiobjective in nature, as it is in real-life. The objectives aiming at the customers’
satisfaction conflict mostly with the objectives related to the utilization performances
of the network. The customers require faster and more reliable connections, whereas
the network managers prefer a more stabilized and more balanced network. Being
aware of the trade-offs existing among multiple objectives results in a more extensive
management of the network. Thus, multiobjective optimization (MOP) of networks
may bring additional competence to ISPs in the highly competitive sector.


From a theoretical point of view, an important issue is the complexity of the problems
arising in the large systems. The optimization problems within a network can be too
difficult (NP-hard), and they may require very long run times to obtain an optimal
solution. Theoretically, it has been shown for NP-hard problems that the run-times of
exact solution approaches increment dramatically with the size of the problem. Under
tight time constraints, it is more practical to develop specific algorithms which try
to locate solutions close to the optima in much shorter times. These approximate
algorithms are called heuristics in general, and their development has been a very
popular research topic in the past years.


The contributions of this thesis are around the Multiprotocol Label Switching
(MPLS) networks which have been developed to support QoS routing and to allow
more comfortable traffic engineering within an autonomous system. MPLS networks
are based on a label forwarding paradigm, which allows explicit routing additional to
classification and prioritization of the traffic. The multiobjective optimization prob-
lem studied in this thesis in detail is formulated as a mixed zero-one integer pro-
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1 Introduction


gramming problem. Three conflicting objectives are taken into consideration, namely
minimal total routing costs, optimal load balancing, and minimal traffic splitting.
The contributions of this thesis are related to this MOP problem:


• A robust mathematical model is developed, by which networks with various
characteristics can be represented.


• Discussions about the meaning and importance of load balancing are given.


• The available exact and approximate solution approaches available in the liter-
ature for MOP are investigated.


• Theoretical analyses are carried out to explore the attributes (complexity of
the problem, characteristics of the trade-off curves) of the multiobjective traffic
engineering problem.


• Based on the careful investigation of the available heuristic algorithms in the
literature, an approximate algorithm framework utilizing linear programming
(LP) and simulated annealing is developed.


• The performance consequences of various search strategies within the frame-
work are compared using four instances of the problem with different sizes.


The outline of the thesis is as follows:


The next chapter introduces the basic terminology within MOP and discusses some
of the exact solution approaches in detail.


In Chapter 3, the attributes of MPLS networks are shortly explained, the multiob-
jective traffic engineering problem and its mathematical model are introduced. This
chapter also includes some theoretical analyses about the nature and the complexity
of the problem. At the end of the chapter, an exact solution approach is applied in a
small case study.


Chapter 4 investigates the available heuristics which have been developed in the
literature for MOP. In the last part of the chapter, the performance assessment
metrics used in the thesis to evaluate the heuristics are introduced.


In Chapter 5, the heuristic framework proposed for the multiobjective traffic engi-
neering problem is explained in detail. The algorithm variants within this framework
are introduced. Experiments are carried out in the final part.


The thesis is concluded in Chapter 6.
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2 Multiobjective Optimization and
Exact Solution Approaches


Although most of the studies in operations research focus on optimization problems
with a single objective, most real-world engineering optimization problems combine
multiple objectives. In multiobjective problems, it rarely happens that all of the
objectives can be optimized simultaneously; it is generally the case that the objec-
tives conflict with each other. MOP problems occur in various engineering systems
apart from telecommunications: for instance, embedded system design [19], [23], [87],
production system management [39], [75], applications of civil and construction en-
gineering [12], [54].


In single objective optimization (SOP) problems, the feasible set is totally ordered,
i.e., we can rank all feasible solutions with regard to some objective function. Nev-
ertheless, in a problem with multiple objectives it is not possible to obtain a total
ordering of the feasible solutions (i.e., the feasible set is partially ordered). When two
solutions are compared, we may observe that one solution performs better in terms
of one objective, while the other solution scores better on another objective. So, there
exist trade-offs among the objectives and one is interested in locating the set of best
alternative solutions, the so-called Pareto optimal solutions. The decision maker can
rank this set of solutions according to his preferences. This chapter discusses the rela-
tionship of MOP with decision theory, additional to the introduction of key concepts
and terminology within the MOP.


2.1 Search versus Decision Making


MOP entails two conceptually distinct tasks: search and decision making [35]. Search
is related to the processes where the feasible solutions are visited in order to find the
Pareto optimal solutions. Decision making refers to the ranking process of alterna-
tive solutions. A rational human decision maker determines preferences among the
conflicting objectives.


The methodologies in MOP can be classified into three primary groups, depending
on how the search and decision making tasks are handled. Horn [35] discusses the
state-of-art approaches for each of these methodologies in detail.
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• Decision making before search: In this approach, the objectives are ag-
gregated into a single objective function where the preference information of
the decision maker is represented. The aggregation can be carried out in two
ways: scalar combination or lexicographical ordering (ranking according to the
importance) of the objectives. The aggregation of the objectives into a single
objective function requires domain-specific knowledge about the ranges and
the behavior of the functions. However, this kind of deep knowledge about the
functions is usually not available, since the functions and/or feasible set may
be too complex. However, this methodology has the advantage that the SOP
strategies can be applied to the problem with the aggregated objective.


• Search before decision making: The feasible set is searched to find a set of
best alternatives, without giving any information about preferences. Decision
making considers only the reduced set of alternatives. For most of the real-life
problems, gaining fundamental knowledge about the problem and alternative
solutions can be very helpful in realizing the conflicts that are inherent in the
problem. Performing the search before decision making makes this favorable
circumstances possible, however the search process becomes more difficult with
the exclusion of the preferences of the decision maker.


• Integrating search and decision making: This approach includes the in-
teractive methods where the preferences of the decision maker are used during
the search process. At each iteration, the result of the search is evaluated by
the decision maker in order to update the preferences. The search space is then
reduced and the direction of the search is restricted to some particular regions
according to the preferences of the decision maker. This last methodology in-
tegrates the theory of decision making into optimization theory.


The interest of this thesis is in the second category. The study aims at finding the set
of all Pareto optimal solutions, or the set of solutions which is a good representation
and approximation of the Pareto optimal set. This concept is sometimes called also
as vector optimization [77], or Pareto optimization [45]. In this study we will use the
term, multiobjective optimization, which is most commonly used in the literature.


Approximating the set of Pareto optimal solutions instead of locating a single solution
allows a decision maker to see the trade-offs among the objectives. As it is stated in
[19], knowing the shape of the trade-off curve can be very important to the decision
maker. Figure 2.1 illustrates an example trade-off curve for a system design problem
with two objectives: minimization of the investment cost and minimization of the
total time necessary for the task completion. An approach aiming at a compromise
solution may end up with the solution A corresponding to a system design with 40
units of total cost and 80 units of system time. However, the system designer may
probably prefer the solution B, since he/she saves in time of 30 units for a cost
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Solution B: (45, 50)
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Figure 2.1: The cognition of the trade-off curve can be important to the decision
maker.


penalty of only 5 units. Hence, locating the trade-off curve helps the decision maker
to realize the conflicts among the objectives.


Before proceeding further, some definitions are given in order to clarify the key con-
cepts and issues in MOP. The definitions, concepts and terminology presented in this
thesis are widely borrowed from the studies in [20], [45], [77] and [87].


2.2 Key Concepts and Terminology


Definition 2.1. A multiobjective optimization problem is defined as follows:


min f(v) = (f1(v), . . . , fQ(v))


subject to v ∈ Xf
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2 Multiobjective Optimization and Exact Solution Approaches


where Q ≥ 2 is the number of objectives, v and Xf denote the decision vector
and feasible set, respectively. The image of Xf under the vector valued function
f = (f1, . . . , fQ) is denoted by Zf = f(Xf ). z ∈ Zf is called the objective vector.


Without loss of generality, a problem with all of the objectives in minimization form
is assumed. Any objective function in maximization form can be converted to mini-
mization by multiplying with −1.


Definition 2.2. The component-wise order relation < between two objective
vectors is defined as follows: z1 < z2 iff z1


i ≤ z2
i , i = 1, . . . , Q and z1 6= z2.


Definition 2.3. The weak component-wise order relation ≤ between two ob-
jective vectors is defined as follows: z1 ≤ z2 iff z1


i ≤ z2
i , i = 1, . . . , Q.


Definition 2.4. The strict component-wise order relation ≤ between two ob-
jective vectors is defined as follows: z1 � z2 iff z1


i < z2
i , i = 1, . . . , Q.


Definition 2.5. For any two decision vectors v1 and v2 following relations are de-
fined:


v1 dominates v2 :


v1 ≺ v2 iff f(v1) < f(v2)


v1 weakly dominates v2 :


v1 � v2 iff f(v1) ≤ f(v2)


v1 is indifferent to v2 :


v1 ∼ v2 iff f(v1) � f(v2)


and f(v2) � f(v1).


Definition 2.6. A decision vector v∗ ∈ Xf is said to be Pareto optimal iff


@v ∈ Xf such that f(v) < f(v∗).


Stated differently, v∗ ∈ Xf is Pareto optimal iff there is no v ∈ Xf such that
fi(v) ≤ fi(v


∗) for all i = 1, . . . , Q and fj(v) < fj(v
∗) for at least one j. If v∗ is


Pareto optimal, the corresponding objective vector z∗ = f(v∗) is called efficient. The
set of all Pareto optimal solutions is called the Pareto optimal set and denoted by
Xp. Similarly, the set of all efficient points is called the efficient set and denoted
by Zp. The Pareto (optimal) front is obtained by plotting the set of all efficient
vectors in the objective space.


Definition 2.7. A decision vector v∗ ∈ Xf and its corresponding objective vector
z∗ = f(v∗) are called nondominated with regard to a set Xa ⊆ Xf iff


@v ∈ Xa such that f(v) < f(v∗).
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If Xa is equal to Xf , then v∗ and z∗ are Pareto optimal and efficient, correspond-
ingly. The plot obtained only by the nondominated objective vectors build the non-
dominated front with regard to Xa.


Remark 2.8. Since this is a topic which is newly developed, there exist slight differ-
ences in the use of above concepts in various studies. Similarly, the terminology for
the methods of MOP is not unique in the literature.


Although the studies on single objective programming usually focus on the decision
space, in multiobjective programming mostly the objective space is studied. Regard-
ing Definitions 2.6 and 2.10, while the concept of Pareto optimality corresponds to
the decision space, efficiency is related to the objective space. In this study, the con-
cept of dominance is used in both spaces. So, Definition 2.5 applies for the objective
space as well.


The subset corresponding to Definition 2.7 can be the set of feasible solutions en-
countered during a heuristic algorithm. So, the output of the algorithm will be the
nondominated solutions with regard to the set of all visited solutions.


The next discussion helps us to detect the efficient points graphically [78]. Let RQ
− be


the nonpositive orthant;
RQ


− = {z ∈ RQ | zi ≤ 0}.


To determine easily whether an objective vector is efficient or not efficient, RQ
− is


translated so that the origin coincides with the vector at hand. In fact, the whole
dominance relation of a particular point with other vectors in the feasible set can be
determined with the translated orthants. Following, the translation is achieved with
the Minkowski set addition, ⊕.


Corollary 2.9 ([78]). An objective vector z∗ is efficient iff Zf ∩ ({z∗} ⊕ RQ
−) =


{z∗}.


The corollary implies that z∗ is efficient if and only if z∗ is the only point located in
the intersection of the nonpositive orthant translated to z∗ and Zf . The nonpositive
orthant translated to z∗ includes the points which dominates z∗. In Figure 2.2, the
point at hand is efficient, since this region (shaded lightly) does not include any other
feasible point. The vectors which are dominated by z∗ are located in the nonnegative
orthant (shaded darkly) translated to z∗. The points residing in unshaded quadrants
are indifferent to z∗.


The analytical study in this chapter requires the introduction of another concept in
MOP, namely weak Pareto optimality.


Definition 2.10. A decision vector v∗ ∈ Xf is called weakly Pareto optimal if
there is no v ∈ Xf such that f(v) < f(v∗) (i.e., fi(v) < fi(v


∗) for all i = 1, . . . , Q).
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z*


z*


1f


2f


z*


dominates


Zfis dominated


Figure 2.2: The efficient points can be detected graphically.


If v∗ is weakly Pareto optimal z∗ = f(v∗) is called weakly efficient1. The set of
all weakly Pareto optimal solutions is called the weakly Pareto optimal set and
denoted with Xw. The set of all weakly efficient points is called the weakly efficient
set and denoted by Zw.


From Definition 2.6 and 2.10, it is concluded that


Xp ⊆ Xw,


and correspondingly


Zp ⊆ Zw.


To illustrate the concepts explained above, consider the following Example 2.11.


1Please note that weak efficiency and weak dominance are not same.
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Figure 2.3: Example 2.11 illustrates the definitions related with multiobjective opti-
mization.


Example 2.11. Consider the following problem with two objectives:


min (f1(v) = 2v2 − v1, f2(v) = v1 − v2)


subject to v2 − 3v1 ≤ 0,


v2 − v1 ≤ 2,


5v2 − 3v1 ≤ 0,


v1 + v2 ≤ 8,


v1, v2 ≥ 0.


The example is depicted in Figure 2.3. Figure 2.3(a) shows the feasible region in
the decision space, whereas the image of the feasible region in the objective space is
plotted in Figure 2.3(b). There are four extreme points, v0 − v4 and the following
relation exist between these points:


v0 ≺ v3 and v1 ∼ v3,


v1 ≺ v2 and v0 ∼ v2,


v0 ∼ v1.
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According to the relations we conclude that the Pareto optimal set consists of v0,
v1 and the line between these two extreme points. Correspondingly, the efficient set
includes z0, z1 and the line connecting them. The weakly Pareto optimal set includes
additionally v2 and the line between v1 and v2. The weakly efficient set includes z2


and the line between z1 and z2.


2.3 Exact Methods


Most of the exact methods find Pareto optimal solutions by converting the MOP
problem into a parameterized SOP problem. During the optimization process, the
parameters are systematically changed for different versions of the problem. Multiple
single objective searches are carried out in order to generate the Pareto optimal
solutions.


The weighted sum method, ε-constraint method, and lexicographic weighted Chebyshev
method are among the most popular exact methods [20], [77]. All of these methods
are based on solving multiple SOP problems. The weighted sum method and the
lexicographic weighted Chebyshev method aggregate the objective functions into a
single objective by weighting parameters. The ε-constraint method is distinct from
these two in the way that it transforms multiple objectives into a single objective by
restating all but one objectives as constraints in the problem. In this chapter these
three methods are discussed in detail.


2.3.1 The Weighted Sum Method


The most traditional approach in MOP is to combine the objective functions into a
single function by using a weighted mean. In order to obtain the Pareto optimal set,
the parametric SOP problem is solved for different weights (parameters) [20], [77].


In the weighted sum method, the quality of the solutions is distinguished by the
nonnegative and strictly positive weights. The strictly positive weights ensure the
Pareto optimality of the solution, whereas with nonnegative weights the method
may end up with a weakly Pareto optimal solution. The following two theorems [20,
Theorem 3.2 and 3.5] enlighten this issue.
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Theorem 2.12. Suppose v∗ is an optimal solution of the problem


min


Q
∑


i=1


δifi(v)


subject to v ∈ Xf ,


δi ≥ 0 ∀i ∈ {1, . . . , Q},
Q


∑


i=1


δi = 1.


Then v∗ ∈ Xw.


Theorem 2.13. Suppose v∗ is an optimal solution of the problem


min


Q
∑


i=1


δifi(v)


subject to v ∈ Xf ,


δi > 0 ∀i ∈ {1, . . . , Q},
Q


∑


i=1


δi = 1.


Then v∗ ∈ Xp.


The main drawback of the weighted sum method is that it cannot generate all the
Pareto optimal solutions of problems with non-convex Pareto front. Although Theo-
rem 2.13 gives a sufficient condition for Pareto optimality, it does not provide neces-
sity. When the Pareto optimal front is non-convex, there exist some Pareto optimal
solutions which are not optimal for any weighted sum optimization problem [20]. This
situation is illustrated graphically.


In Figure 2.4, the image of a feasible set in the objective space is shown. We notice
that the problem has a non-convex Pareto front and z1, z2 and z3 are efficient. z1 and
z3 correspond to the optimum solutions of the problems with objective functions,
min δ1f1(v) + δ2f2(v) and min δ′1f1(v) + δ′2f2(v), respectively. However, since the
point z2 is on the non-convex part of the Pareto frontier, there is no weight vector
for which the optimal solution yields this point.


2.3.2 The ε-Constraint Method


One of the common approaches to MOP is the ε-constraint method. It is introduced by
Haimes et al. [33]. This approach is different from the other exact methods in the way
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f
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z1


z2


z3


δδ1 + 21 2f f


1δ1
’ + δ’2 2f f


Zf


2


1


Figure 2.4: The weighted sum method fails to find the points at the non-convex part
of the Pareto front.


that it is not based on the aggregation of the component objective functions. Contrary
to the other methods, one of the objective functions is selected to be minimized, and
the remaining ones are transformed into constraints. For a detailed discussion, the
readers are pointed to [20].


For the ε-constraint method, the original MOP is translated to the following SOP
problem:


Sk(ε) : min fk(v)


subject to fi(v) ≤ εi ∀i ∈ {1, . . . , Q} \ k,


v ∈ Xf .


Here, ε ∈ RQ. Note that, the kth component of ε is of no importance in this problem.


The illustration of the method for a bi-objective problem is given in Figure 2.5. In
order to find the efficient solutions, ε is varied by the optimizer at each iteration. In
the figure, za is obtained by solving the problem S2(ε


a), whereas zb corresponds to
the solution of the problem S2(ε


b).
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Figure 2.5: The ε-constraint method utilizes single objective optimization problems.
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Figure 2.6: The ε-constraint method guarantees weak Pareto optimality.
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The ε-constraint method may fail in finding the efficient points. However, it will
guarantee at least weak Pareto optimality of the solutions (see [20, Proposition 4.1]).
Figure 2.6 illustrates a case where the ε-constraint method fails to locate the Pareto
optimal solution. The optimal set of the problem S2(ε) includes the points lying on
the line between za and zb. On this line, zb is the only efficient solution. However, the
optimizer may end up with za whose corresponding decision vector is weakly Pareto
optimal.


The ε-constraint method is superior to the weighted sum method in the way that it
does not end up only with the solutions located in the convex parts of the Pareto
front. The following theorem from [20] summarizes the conditions necessary for the
Pareto optimality.


Theorem 2.14. The solution v∗ is Pareto optimal iff there exists an ε∗ ∈ RQ such
that v∗ is an optimal solution of Sk(ε


∗) for all k = 1, . . . , Q.


According to Theorem 2.14 the ε-constraint method is able to find the whole Pareto
frontier with the appropriate choices of ε which actually corresponds to the efficient
vectors. Although the ε-constraint method ensures only weak Pareto optimality, in
the literature there are some approximation algorithms inspired by this method, e.g.,
constraint-based evolutionary algorithm in [65]. The heuristic framework introduced
later in this thesis also utilizes this method.


2.3.3 The Lexicographic Weighted Chebyshev Programming


The lexicographic weighted Chebyshev method was first introduced by Steuer and
Choo in [79]. Further information can be found in [77] and [78]. This method is more
powerful than the weighted sum method, since it is able to locate the whole Pareto
frontier regardless of its shape. It guarantees the Pareto optimality in two steps which
in turn names it lexicographic. The first step minimizes the distance to a reference
objective vector where the distance is measured by the weighted Chebyshev metric.


The reference vector is given by


zref
i = min {fi(v)|v ∈ Xf} − εi


where εi are small positive values. It is common to choose values for εi which decrease
zref


i to the nearest integer less than z∗i = min {fi(v)|v ∈ Xf}.


The weighted Chebyshev metric is then measured as


‖z− zref‖δ∞ = max
i∈{1,··· ,Q}


δi|zi − z
ref
i |


where δi ∈ R, 0 < δi < 1 ∀i ∈ {1, . . . , Q} and
∑Q


i=1 δi = 1.
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The points with the same metric value form the surfaces of a Q-hypercuboid centered
at zref . The vertices of the hypercuboid are determined by the weight vector. The
metric is minimized at the point(s) where the hypercuboid touch the border of the
feasible region.


Figure 2.7 illustrates this for a bi-objective problem. Two rectangles with different
metric values are shown. The points lying on the outer rectangle (shown with dotted
lines) have equal metric values. However, the metric is optimized with the inner
rectangle touching the border of the feasible region at za which is efficient.


In this small example, the optimal solution set consists of a single point. However,
minimizing the weighted Chebyshev metric may end up with alternative solutions in
the objective space. An example where the first step fails to locate an efficient vector
is shown in Figure 2.8. The image of optimal solutions in the objective space includes
the feasible objective vectors that lie between za and zb. zb is the only point which
is efficient in this set.


The following theorem specifies the attributes of the solution encountered at the first
step of the method:


Theorem 2.15. A feasible point v∗ is weakly Pareto optimal iff there is a weight
vector δ such that v∗ is an optimal solution of the problem


P (δ) : min α


subject to v ∈ Xf ,


α ≥ δi(fi(v)− zref
i ) i = 1, . . . , Q,


δ ∈ ∆ = {δ ∈ RQ|δi ∈ (0, 1),


Q
∑


i=1


δi = 1}.


The proof for the general case is given in [20, Theorem 4.12]. Here, we consider the
case with scaled weights where they add up to 1.


Since a Pareto optimal solution is also weakly Pareto optimal, according to Theo-
rem 2.15 it is among the optimal solution set of P (δ). However, solving P (δ) can only
guarantee the weak Pareto optimality of the solution. So, the second step aims at
locating the Pareto optimal solution among the alternative optimal solutions (in the
objective space) of P (δ). Let Xδ be the set of optimal solutions of the problem P (δ).


Theorem 2.16 (Steuer and Choo, 1983, [79]). A feasible point v∗ is Pareto
optimal, if it is an optimal solution of the problem


P (δ)
′


: min


Q
∑


i=1


fi(v)


subject to v ∈ Xδ.
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Figure 2.7: The weighted Chebyshev metric is associated with a ray extending from
a reference point.
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Figure 2.8: The first step of the lexicographic weighted Chebyshev programming
guarantees weak Pareto optimality.
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2.4 Discussion of Exact Solution Approaches


Unless the problem has a non-linear structure, two steps can be combined into one,
by multiplying the objective function of P (δ)


′
with a proper scalar ρ [77], [79]. The


reduced problem is then


min α + ρ(


Q
∑


i=1


fi(v))


subject to v ∈ Xf ,


α ≥ δi(fi(v)− zref
i ) i = 1, . . . , Q,


δ ∈ ∆ = {δ ∈ RQ|δi ∈ (0, 1),


Q
∑


i=1


δi = 1}.


2.4 Discussion of Exact Solution Approaches


The exact solution methods have been widely used in the literature. The main draw-
back within the exact approaches is their requirement for several runs of the optimizer
with different parameters to obtain the Pareto front. The weighted sum and the lexi-
cographic weighted Chebyshev method work with different weights at each iteration.
The same solution can be obtained even with different weight vectors. As a result,
the number of SOP problems to be solved is usually larger than the number of Pareto
optimal solutions obtained at the end of the optimizing process. Moreover, in order
to determine the proper weights, one needs the pre-knowledge about the scale of the
objective functions.


The main deficiency of the weighted sum method is its failure to obtain the non-
convex parts of the Pareto frontier. In [15], Das and Dennis focus on the drawbacks
of the weighted sum method. Using examples, they show that a uniform spread of
efficient points often corresponds to a nonuniform distribution of the weights. Hence, a
uniformly distributed set of weights may fail to produce solutions which are uniformly
distributed over the Pareto frontier.


With respect to others, the ε-constraint method has received less attention in the
literature. Its primary weakness is that the parameters requested in this method
correspond to the true efficient vectors. Additionally, to guarantee Pareto optimality,
it requires to solve several SOP problems.


The exact methods are not well suited for difficult MOP problems due to their inef-
ficiencies. However, the theoretical aspects within the exact approaches may help us
to develop better approximate methods.
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3 An Off-line Multiobjective Model
for MPLS Networks


As the use of the Internet spreads in both business and entertainment sectors, the no-
tion of QoS has become more critical for network service providers. Today’s standard
IP (Internet Protocol) networks support only a single service level called best-effort
service. For best-effort service, the network will try its best to forward the traffic
without giving guarantees on the routing performance in terms of loss rate, band-
width, delay, delay jitter, and so on. All packets are treated equally regardless of their
source applications. In the current Internet, some of the applications have elastic re-
quirements, e.g., they can tolerate packet losses and/or delays, or they can respond
to the congestion by decreasing their transmission rates [74]. Remote terminal (e.g.,
Telnet), file transfer protocol (e.g., FTP), and electronic mail are among the examples
for elastic applications.


Although best-effort service is acceptable for elastic applications, it is not tolera-
ble for real-time and multimedia applications such as Internet telephony and video-
conferencing. Real-time applications have more difficult requirements than the elastic
applications. Their performance is very sensitive to packet losses, delays and delay
jitters throughout the network. Moreover, they can not reduce their transmission
rates in case of a congestion.


Under the hard requirements of some specific applications, the notion of QoS has
been very popular in the Internet literature. In [14], QoS is defined as ”a set of
service requirements to be met by the network while transporting a flow”, where flow
implies a packet stream associated with a specific application. Alternatively, QoS
can be defined as the level of service measured by the user(s) of the network. QoS
requirements of a specific flow can be specified in terms of packet loss probability,
bandwidth, end-to-end delay, reliability, etc. The customers of the network may agree
with the service providers on the QoS requirements via Service Level Agreements
(SLAs).


To support QoS in today’s Internet, several new architecture models have been pro-
posed [9], [29], [84]. Traffic engineering has become a key issue within these new
architectures, as supporting QoS requires more sophisticated resource management
tools. The goal of traffic engineering is the performance evaluation and optimiza-
tion of operational networks [6]. Its functions include measurement, characterization,
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modeling and control of the traffic. One of the most novel technologies introduced
lately with the increasing need of convenient traffic engineering is Multiprotocol Label
Switching (MPLS) [5], [16], [38], [68].


This chapter first introduces the basic concepts within MPLS networks. The in-
troduction is followed with the formulation of the multiobjective traffic engineering
problem. Some theoretical analyses are carried out to investigate the basic attributes
of the problem. At the end of the chapter, an exact solution approach is applied in a
case study.


3.1 How does MPLS work?


MPLS is a high-performance technology for transporting IP packets through a net-
work. The basic idea within MPLS is assigning short and fixed length labels to the
packets at the ingress routers (the routers where the packets enter the network).
Throughout the network the packets are forwarded according to these labels. The
labels are removed at the egress routers (the routers where the packets exit the net-
work). In MPLS, it is also possible to classify the traffic by the notion of Forwarding
Equivalence Class (FEC). We clarify the forwarding paradigm of the MPLS networks
by explaining its key components:


• Label: A short and fixed length physical identifier which is assigned to the
packets at their ingress routers according to their FECs. Within the domain of
MPLS, the label switching routers (LSRs) use this label as an index to look
up their forwarding tables. Thus, the neighbor router, to which the packet is
sent, is determined with this label. Since the label is kept shorter than the
usual IP header, less overhead for the investigation of the packets exists on the
intermediate routers than in IP networks. With the introduction of labels, the
routing decisions are carried out at the source routers, rather than being under
the control of hop-by-hop behavior of the standard IP networks.


• Forwarding Equivalence Class (FEC): A group of IP packets which are
to be forwarded in the same manner with the same treatment through the
network. The FEC of an IP packet is determined at the ingress router, before
it enters the network. This task requires the analysis of the packet header to
derive the necessary information to classify the packet. The destination of the
packet, its service class, routing options, policy requirements, etc. are used for
packet classification. The ingress router assigns a label to the packet according
to its FEC and forwards it to one of its neighbors determined by its LSP.


• Label Switched Path (LSP): The path which is created by the chain of one
or more LSRs. An LSP is followed by the packets from a specific FEC. The
LSPs are built by some label distribution protocols.
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• Label Distribution Protocol (LDP): A specification to build the forward-
ing tables of the routers throughout the network. A LDP is used to reserve
the network resources (bandwidth) necessary to meet the service requirements
of the LSP. RSVP-TE (Resource Reservation Protocol-TE) [4] and CR-LDP
(Constraint-based Routing Label Distribution Protocol) [40] are among the
known label distribution protocols. These protocols build an LSP before the
first packet of the specific FEC enters the network. When the request for an
LSP arrives at the ingress router, the label distribution protocol supplies the
communication between the corresponding routers for an agreement on the la-
bels they use to forward the traffic. It is worth to note here that the label
distribution protocols do not compute routes for the traffic.


Traffic engineering in MPLS networks is similar to those arising in Asynchronous
Transfer Mode (ATM) networks. To bring guaranteed QoS (lacking in connectionless
IP networks), MPLS provides connection-oriented capabilities, as in ATM networks.
LSPs coincide with the circuit-switched paths in ATM networks.


Figure 3.1 shows how LSRs forward the packets to its neighbors. The routers only
check the labels of the packets to look up the related information in their label
forwarding tables. After they replace the current label with a new one, they forward
the packet on hand to the next router in the LSP. As it is explained before, the
forwarding tables are created by the use of some label distribution protocol.


The following features especially bring flexibilities to MPLS networks, while also
improve its capabilities for traffic engineering:


1. The routing decisions are carried out at the edge routers of the network through
manual or automated systems, whereas in traditional IP networks the routing
control by the administrator is relatively limited. In standard IP networks, the
traffic is forwarded through the shortest paths based on the static weights of
the links. However, MPLS makes it possible to define the paths explicitly.


2. MPLS networks allow for both traffic aggregation and disaggregation. In tradi-
tional networks, since all of the traffic is treated equally, it is usually not pos-
sible to disaggregate the traffic. Exceptionally, the technique called equal-cost
multipath (ECMP) allows the shortest path first routing systems in standard
IP networks to integrate a limited disaggregation mechanism [60]. With this
mechanism, the total traffic to a destination is distributed among the equal-cost
paths. ECMP is still not flexible enough, since the traffic is usually partitioned
equally only on the paths of equal costs. However, in MPLS, the concepts of
FEC and LSP make it possible to aggregate the traffic flows with similar char-
acteristics. Additionally, the whole traffic between any ingress-egress pair can
also be routed along multiple LSPs (may be of different lengths) where each
LSP is assigned to a partition of the aggregated traffic.
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Figure 3.1: A label switching router forwards the packets according to their labels.


3.1.1 Policies and Constrained-based Routing


Today, network service providers work via SLAs to guarantee levels of service to their
customers. The agreements may include some policies to impose administrative rules
such as priority assignments to the traffic flows or security regulations. For example,
a policy may state that the packets belonging to the banking applications of customer
A can not visit a list of routers due to their security leaks.


Recent traffic engineering studies have introduced the term constraint-based routing
which encompasses QoS routing and policy-based routing as subsets [5], [6]. Thus,
constraint-based routing computes routes subject to a set of constraints and require-
ments. Requirements may be due to the QoS specifications of the traffic such as the
bandwidth, delay, probability for packet loss, and the administrative policies. MPLS
networks are advantageous for constraint routing, since they work on path basis.
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3.2 Classification of Traffic Engineering


The taxonomy of traffic engineering is fully introduced in [6]. Here, we will only
review some of the traffic engineering methods related to the study in this thesis.


3.2.1 Time-dependent Versus State-dependent


State-dependent traffic engineering methods base their solutions on the current state
of the network. They intend to give quick responses to the changes in the network
conditions. State-dependent traffic engineering systems usually require intelligent in-
formation gathering systems to measure continuously the performance parameters of
the network.


On the contrary, time-dependent traffic engineering systems utilize the historical in-
formation that has been gathered over a relatively longer duration. Customer profiles,
traffic measurements based on stochastic methods can be taken as an input in this
methodology. Time-dependent systems can not respond quickly to the variability
both in the real-time traffic and in the network conditions.


3.2.2 Off-line Versus On-line


The primary aim of off-line traffic engineering systems is to carry out extensive
searches and deep analyses of the network performance. As in time-dependent traffic
engineering systems, they utilize the forecast information as input.


The decisions in on-line systems are based on the current state of the network and
the main idea is to increase the network performance by giving rapid responses to the
changes in the network, as in state-dependent systems. However, a major drawback of
on-line systems is that their solution to the problem at hand is usually sub-optimal.
They may miss the global control of the network, as they intend to provide the
network manager with fast solutions based on the current information at hand. Ex-
ample 3.1, which is also studied in [80], explains a case where an on-line routing
mechanism ends up with a relatively poor quality solution.


Example 3.1. In Figure 3.2, a simple network topology called parking lot is plotted.
There are n ingress-egress pairs and for each of them there is a flow request of
1 unit/sec. All link capacities in the network are equal to unity. Assume that the
requests arrive in the order of (S0, D0), (S1, D1), . . . , (Sn, Dn). A standard on-line
routing algorithm, such as shortest path first, will send the first request throughout
the single available path. Accepting the first request causes full utilization of n + 2
links in the network which results with the rejection of other requests. However, an
optimal routing would reject the first flow and route the remaining n flow requests.
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Figure 3.2: The performances of on-line and off-line traffic engineering may differ a
lot.


3.3 Overview of Traffic Engineering Models


This section mainly focuses on some traffic engineering studies for MPLS networks.
We categorize these studies in two main groups: on-line versus off-line. Some on-line
traffic engineering studies in MPLS networks have been carried out in [22], [48], [50]
and [80].


In [22], Elwalid et al. developed a multipath adaptive traffic engineering mechanism,
called MATE, to avoid network congestion. Their mechanism distributes the total
traffic between any two nodes across the pre-established LSPs according to the cur-
rent state of the network in a way that the traffic loads on the LSPs are balanced
and congestion is thus minimized. MATE consists of two phases: a monitoring phase
and a load balancing phase. The monitoring invokes the load balancing phase when
a change in the network state is detected. The load balancing phase first sends probe
packets to the egress node to measure the packet loss and delay. Then the opti-
mization algorithm tries to equalize the congestion measures among LSPs. Once the
measures are equalized, the algorithm moves to the monitoring phase. The authors
have experimented this methodology with small networks. The implementation of
the algorithm is based on complex analytical methods and the performance of the
algorithm is sensitive to the measurements that is obtained by the probe packets.


Kodialam and Lakshman presented a minimum interference routing algorithm
(MIRA) for the on-line routing of bandwidth guaranteed traffic flows [48]. The model
is based on the assumption that the traffic flow requests arrive one at a time and
there is no priori knowledge regarding the future requests. The main idea in the al-
gorithm is that the traffic flow on hand must follow the path which minimizes the
“interference” with the routes that may be critical to satisfy a future demand. Their
mathematical model utilizes the maximum flows that build an upperbound on the
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total amount of traffic which can be sent between a given ingress-egress pair. The
path with the minimal interference implies the one which maximizes the weighted
sum of maximum flows over all of the ingress-egress pairs. They showed that this
problem is NP-hard and provided a heuristic solution. Their algorithm works on a
fine-grained level, since it is executed each time when a single flow arrives to the
network. Their proposal is computationally expensive, since routing a single request
requires maximum flow computations for every ingress-egress pairs. Suri et al. showed
that MIRA can fail to give good results in some specific cases [80].


In [50], a mechanism was developed to distribute the traffic requests across the paths,
as in [22]. In contrast to the study of Elwalid et al., Lagoa and Che used the tool
sliding modes from nonlinear control theory in order to solve the optimization prob-
lem. For each traffic request a differentiable concave utility function is defined. The
optimization model then aims at the maximization of the sum of the utility functions
subject to the network resource constraints. Their implementation has the drawback,
that the network resources are not shared by different QoS classes; each QoS class
sees a separate logical network with dedicated resources which may not be realistic.
Furthermore, their algorithm is based on the continuous control laws, although in
real-life, measurements in the network has a discrete nature.


The on-line routing framework developed in [80] has a unique attribute among the
other studies such that their approach has an off-line pre-processing step based on
the expected bandwidth requirements between the ingress and egress pairs. In the
off-line part, a linear multicommodity flow problem is solved in order to minimize
the routing cost subject to the network resource constraints. According to the output
of the multicommodity flow problem the bandwidth is pre-allocated on each link for
each traffic. When a flow from a traffic arrives, the on-line algorithm returns a route
on the reduced graph which consists of the pre-allocated capacities corresponding to
this traffic.


Examples of off-line traffic engineering studies can be found in [59], [70], and [85].
In [59], Mitra and Ramakrishnan proposed a traffic engineering technique for data
networks which support multi priorities according to the service classes. The opti-
mization problem in this study aims at the maximization of the total throughput.
The solution approach has a hierarchical structure where the QoS traffic (high pri-
ority) is mapped first onto the network. The initial step minimizes the total resource
consumption by the QoS traffic based on the idea that decreasing the network usage
by priority traffic causes an increase in the throughput of the best-effort traffic.


In [70], Schnitter and Haßlinger investigated the solution approaches to the off-line
LSP-design problem which aims primarily at minimum utilization rate on the net-
work. As a secondary goal they consider minimum resource consumption by the
traffic. In this study, two cases are considered according to the traffic splitting rule.
When the traffic is allowed to be split through multiple paths, the problem can be
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solved by linear programming, but in case of unsplitted traffic the problem becomes
NP-hard. For the second problem they proposed a heuristic approach based on sim-
ulated annealing.


Xiao et al. described in [85] a very simple algorithm whose solution is sub-optimal. In
the off-line algorithm the LSPs for the traffic requests are built through the network
one-by-one in the order of the decreasing bandwidth requirement.


The multiobjective off-line routing problems in telecommunications have been pre-
viously studied in [8], [44], and [67]. In [8], an optimization model is introduced to
re-dimension the existing LSPs under changing traffic demands. Two objectives are
taken into consideration: maximization of the total throughput and minimization of
the sum of changes in the reserved bandwidth for LSPs. The objectives are aggregated
into a singe objective by scalars. Bessler showed how these scalars effect the quality
of the solutions. He also developed a heuristic solution approach to this problem.


Knowles et al. [44] selected the following objectives: minimization of the routing
cost, minimization of the total positive deviations from the target utilization of the
links, and minimization of the over-utilization of the links. A specific multiobjective
evolutionary algorithm is applied to approximate the Pareto optimal solutions and
its performance is investigated.


In [67], Resende and Ribeiro developed a model for permanent virtual circuit rout-
ing. The model minimizes a weighted objective function consisting of both a delay
component and a load balancing component similar to the one used in this study.


The model to be introduced shortly is first studied in [26] and further developed
in [25]. It is similar to the models in [44] and [67]. The main difference lies in the
assumption about the traffic splitting rule. In these previous studies, traffic is not
allowed to be split. On the contrary, our study considers the minimization of the
splitted traffic as a third objective, which causes a dramatic change in the nature of
the problem. Furthermore, this study supplies a more detailed discussion about load
balancing in MPLS networks.


In general, off-line traffic engineering systems operate on an“expected”traffic demand
matrix which can be either based on the SLAs or can be calculated by the stochastic
methods. In [59], it is assumed that a single flow requires an effective bandwidth from
the network which represents the characteristic of its burstiness and QoS metrics, such
as delay and loss. Since a traffic request consists of an aggregation of multiple traffic
flows of the same kind, the computation of the expected bandwidth requirements is
based on the assumption that the flows arrive as a stochastic point process and live
for randomly distributed time periods. As stated in [8], the traffic demand matrix
can also be established according to the customer profiles, and SLA(s). Discussions
about the methods for forecasting the traffic demand matrix is out of the scope of
this study.
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3.4 Problem Definition


For the ease of representation, we introduce the term traffic request.


Definition 3.2. A traffic request is the aggregation of the traffic flows from the
same class. The following attributes are necessary for a complete definition of a traffic
request:


• ingress router,


• egress router,


• expected bandwidth demand,


• constraints exposed on the available paths due to the QoS requirements and
policies.


The basic problem is to select the optimal LSPs for traffic requests from different
service classes in a capacitated network. The service classes include both traffic with
QoS requirements and best-effort traffic. Within the QoS context, it is reasonable
to put these service classes into priorities so that the traffic requests are given a
relative importance. For example, when three priority levels are defined as ”high”,
”medium” and “low”, the traffic requests for voice and video data can be given the
priority level “high”, while traffic requests for world-wide-web and best-effort data
can be assigned to “medium” and “low”, respectively. The definition of the priority
set and assignments can vary from network to network.


3.5 Model Formulation


For the mathematical model, the network is represented as a directed graph, where
V = {1, 2, ..., N} and E = {1, 2, ...,M} define the set of the routers and links,
respectively. The directed link m has capacity um (in units/sec).


The set of all traffic requests is denoted by T . The tth traffic request has a bandwidth
requirement dt. The basic model introduced in this section assumes only one level
priority. The extension of the model for the multiple priority case will be discussed
soon. As stated in Definition 3.2, the application of constraint-based routing may
expose some constraints on the LSPs. The routing performance of QoS traffic is
highly dependent on the jitter, delay and reliability. As the number of hops on an LSP
decreases, the traffic request experiences less jitter and delay. Moreover, using less
hops increases the transmission reliability of the traffic request, since the probability
of a failure on the LSP decreases. Therefore, the traffic requests from QoS classes may
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have a constraint on the number of hops on their LSP(s) [59]. In order to implement
this constraint, an alternative path set Pt = {p1


t , ..., p
Lt


t } is defined for each traffic
request, where Lt denotes the number of paths in the set. The traffic requests with
lower service classes may not have such a constraint.


S1 R1 R2


D1R3


u3


u1 u2
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Figure 3.3: The LSPs may be constrained due to the implementation of QoS and
policy-based routing.


Example 3.3. In Figure 3.3 an example topology is given for an MPLS network
with one ingress router (S1), one egress router (D1) and three core routers (R1, R2
and R3). There exist two traffic requests from S1 to D1, one for QoS traffic and
one for best-effort traffic. Two distinct paths between S1 and D1 are possible: p1 =
(S1, R1, R2, R3, D1) and p2 = (S1, R2, R3, D1). QoS traffic has a requirement that
it can be only assigned to paths with at most four hops on the path. Thus, the
admissible path sets for the traffic requests are as follows:


PBE = {p1, p2},


PQoS = {p2}.


When traffic requests, like best-effort traffic, do not have a constraint with regard to
the number of hops on their paths, they have an alternative path set that consists of all
the paths between their ingress and egress router. However, as the size of the network
increases, the number of possible paths between any two nodes grows exponentially.
In that case, the number of available paths should be limited. An approach to give
a bound on the number of available paths is to consider only k-shortest paths for
the traffic requests which do not have any constraints on their LSPs. The solution of
the k-shortest path problem returns the 1st, . . . , kth loopless shortest paths between
any two nodes according to the given link costs. In [53] an algorithm is given for this
problem. The algorithm requires O(k|V |) shortest path calculations, each of which
has computational complexity of O(|V |2).
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Three objectives are taken into consideration for the multiobjective traffic engineering
problem for the MPLS networks. The rest of this section explains these objective
functions.


Minimizing the total routing cost


The first objective in the model aims at minimizing the routing costs which is expe-
rienced by the traffic requests. Link m is assigned a value cm to represent the routing
cost on that link. The cost of the link may depend on some parameters, namely the
speed, length, and reliability of the link. The first objective of our model is traffic-
oriented rather than network-oriented. We now introduce indicator variables al


t,m,
which is equal to 1 if pl


t uses link m, and 0 otherwise. The cost of pl
t is denoted by C l


t


and is equal to the sum of its links’ costs:


C l
t =


∑


m∈E


cma
l
t,m. (3.1)


Let xl
t represent the amount of traffic that is routed on pl


t.


Lt
∑


l=1


xl
t = dt ∀ t ∈ T, (3.2)


xl
t ≥ 0 ∀ t ∈ T and ∀ l ∈ {1, . . . , Lt}. (3.3)


Constraints (3.2) ensure that the sum of the routed traffic meets the demand for each
traffic request.


The first objective function minimizes the sum of the routing costs:


min
∑


t∈T


Lt
∑


l=1


C l
tx


l
t. (3.4)


A special case occurs when all of the links have a routing cost of unity in the network.
In this case, the routing cost of a traffic request can be expressed by the sum of the
multiplication of the bandwidth allocated on its paths with the number of links on
the paths (bandwidth * links). Additionally, the sum of the routing costs under unity
can also be interpreted as a measure for the total resource consumption by the traffic
requests, and as the total flow in the network.


Balancing the load


The second objective aims at avoiding high utilization of some links while leaving
others less utilized. The utilization rate of a link is measured by the proportion of the
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Figure 3.4: The load balancing cost function is piece-wise linear increasing and con-
vex.


total traffic load on it to its capacity. Minimizing the maximum link utilization in the
network is the most widely used objective function for balancing the load. However, a
modified version of the function that was proposed in [27] is suggested in our model.
In their study, a piece-wise linear cost function is defined for each link based on the
link utilization rate. The aim is to minimize the sum of the links’ costs. The idea
behind the function is to penalize sending packets over a link as its utilization gets
higher.


The load balancing function used in this study differs from the original function in
the way that the over-utilization of the links is not allowed and it has different break
points. In fact the exact shape of the function is not critical; the more important
thing is that it is a piece-wise linear increasing and convex function [27]. The com-
plete definition of the function depends highly on the network and traffic demand.
The impact of the shape of the function on load balancing will be illustrated with
examples. The load balancing cost function for a link of capacity of 1 unit/sec is
given in Figure 3.4.


The load balancing cost depends on the total load carried on link m, which is denoted


30







3.5 Model Formulation


by gm. Constraints (3.6) imply that the links can not be over-utilized.


gm =
∑


t∈T


Lt
∑


l=1


am
t,lx


l
t ∀ m ∈ E, (3.5)


gm ≤ um ∀ m ∈ E. (3.6)


For link m with capacity um, the link utilization rate is equal to


λm = gm


um
.


The breaking points of the function are at the following utilization rates of the link:
0.5, 0.6, 0.7, 0.8 and 0.9. An auxiliary variable φm is introduced to determine the value
of the function for link m by giving upper bounds. The following constraints are used
to determine the value of the load balance cost function:


φm ≥ gm ∀ m ∈ E, (3.7)


φm ≥ 2gm −
1


2
um ∀ m ∈ E, (3.8)


φm ≥ 5gm −
23


10
um ∀ m ∈ E, (3.9)


φm ≥ 15gm −
93


10
um ∀ m ∈ E, (3.10)


φm ≥ 60gm −
453


10
um ∀ m ∈ E, (3.11)


φm ≥ 300gm −
2613


10
um ∀ m ∈ E. (3.12)


Our second objective minimizes the sum of the load balancing costs,


min
∑


m∈E


φm. (3.13)


In the studies in [67] and [27], it is observed that using the piece-wise linear increasing
cost function implies a decrease in the maximum link utilization rate in the network.
Apart from this parallel relationship between these two functions, this study also
considers the differences in their effects on the network performance. Using the bal-
ancing function can result in an LSP assignment which distributes the load in the
network in a different manner from the function which minimizes the maximum link
utilization in the network. This reasoning is illustrated in Figure 3.5. In this network
there exists 4.0 routers and 5.0 unidirectional links (e1,..., e5) which are indicated
by directed arcs. There are two traffic requests, one has a bandwidth demand of 10
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Figure 3.5: An example is given to show the performance differences between minimal
sum of the piece-wise linear increasing costs and minimal maximum link
utilization rate in the network.


units/sec from S1 to D1 and the other one has a demand of 10 units/sec from S2 to
D2. The first traffic request has to be sent through link 3, since it is the only available
path to its destination. So, the maximum utilization in the network is forced to be
1.0. Minimizing the maximum utilization as an objective would not care the rest of
the network, and transmitting all of the demand of the second request through e1 and
e4 may be its proposed solution. The solution obtained by minimizing the sum of the
specified cost functions proposes a more balanced distribution of the traffic between
the paths e1 following e4 and e2 following e5. In the solutions which are obtained
by using this function, the utilization of the corresponding links will be 0.5. Hence,
the high utilization of some links will be avoided. The total load balancing function
values for various traffic distributions between two paths are given in Table 3.1. This
type of bottleneck link problems may occur more frequently in the networks where
some traffic requests have few paths in their alternative path set.


Balancing the load of high priority traffic on the network has the advantage that it
decreases its impact on lower priority traffic. When the network is running, traffic
from higher priority level is given precedence at the router interfaces. When the rate
of high priority traffic on the link increases lower priority traffic may suffer from high
waiting times in the queue. So, it is favorable to distribute QoS traffic on the network.
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Table 3.1: As the traffic distribution becomes more unfair, the increment in the total
load balancing costs also increases.


Load on Path-1 Load on Path-2 Load Bal. Cost


10.0 0.0 774
9.0 1.0 176
8.0 2.0 58
7.0 3.0 30
4.0 6.0 22
5.0 5.0 20


On the shape of the load balancing function


As stated in the previous section, the exact shape of the load balancing function
depends on the traffic demand matrix. The sensitivity of the function to unfair traffic
distribution changes with its exact shape. It is obvious that as the number of break
points in the load balancing functions increases, the network becomes more sensitive
to the unbalanced load on the links. However, introducing more break points results
in additional constraints in the problem. The latter complicates the problem as it
becomes larger in size. Now we will discuss how the shape of the load balancing
function relates to the network performance. For the sake of the discussion, a very
simple network in Figure 3.6 is used. The network is assumed to have two routers
(one source router and one destination router) and two similar links between these
with a capacity 10 units/sec. There is a bandwidth demand of 10 units/sec from
router S to D.


DS


L2/Cap: 10 units/sec.


Demand: 10 units/sec


L1/Cap: 10 units/sec.


Figure 3.6: The sensitivity of the load balancing cost function to the unfair traffic
distribution is explained by an example.
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Table 3.2: Two load balancing functions are compared for the same problem over
some possible solutions.


Load dist. Cost for Φa Rate to optimal (Φa) Cost for Φb Rate to optimal (Φb)


10.0 - 0.0 387 38.7 389 27.8
9.0 - 1.0 88 8.8 90 6.4
8.0 - 2.0 29 2.9 31 2.2
7.0 - 3.0 15 1.5 17 1.2
6.0 - 4.0 11 1.1 14 1.0
5.0 - 5.0 10 1.0 14 1.0


For each routing problem, a target utilization rate can be defined. In our example, the
optimal solution is the equal distribution of the total demand between the paths. The
target utilization rate for this network is 0.5. To show the effect of the exact shape
of the function on the network performance, we will compare two different functions.
The first function (Φa) is the one from previous section. The second function (Φb)
has similarly 5 break points at the utilization rates 0.3, 0.6, 0.7, 0.8 and 0.9. The
derivatives of the function are kept same for the corresponding regions. Φb is defined
by the following inequalities:


φm ≥ gm ∀ m ∈ E,


φm ≥ 2gm −
3


10
um ∀ m ∈ E,


φm ≥ 5gm −
21


10
um ∀ m ∈ E,


φm ≥ 15gm −
91


10
um ∀ m ∈ E,


φm ≥ 60gm −
451


10
um ∀ m ∈ E,


φm ≥ 300gm −
2611


10
um ∀ m ∈ E.


Rate to optimal values in Table 3.2 show how much the load balancing functions
penalize the points with respect to their distance from the optimal solution. As one
deviates from the optimum, the penalty increases. When two functions are compared
in terms of their rates to optimal values, it is observed that the penalties of Φa are
usually much more effective for the unbalanced distributions. Furthermore, with Φb


there exist several solutions which have minimal load balancing cost, even though
they do not correspond to the optimal load distribution.


Another reasoning to support the first cost function can be explained as follows.
When one moves from the load distribution of 6.0− 4.0 to 7.0− 3.0, the penalty due
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to the increase in the load on one link (from 6.0 to 7.0) is weakened by the break
point at the utilization rate of 0.3. The derivative of Φb increases as one moves from
the load assignment of 3.0 to 4.0. With this observation, it is suggested that the first
break point is assigned to the target utilization rate.


(b)


* u r*


cost


load


cost


load


(a)


u r


Figure 3.7: Alternative load balancing functions are possible.


Figure 3.7 illustrates alternative load balancing functions. The function in Fig-
ure 3.7(a) is used in [44]. This function has zero values for the load assignments
less than the target r∗. It assigns positive costs proportional to the deviation from
the target. Figure 3.7(b) shows the piece-wise linear increasing version with some
break points. These functions may be more sensitive to load balancing, however they
have a more non-smooth shape compared to the ones introduced previously. The
non-smoothness results in an increase in the complexity of the problem. Since exact
solution methods are employed in this study, smoother functions are used for load
balancing.


Minimizing the number of LSPs


Our third objective is related to the number of LSPs used by the traffic requests. The
more traffic requests are split over the network, the more LSPs will be established
and the more complex the network management will be. Splitting the traffic requests
over multiple paths will bring more messaging and labeling overhead. When the traffic
flow is sent through multiple paths, the packets may experience more variant delay
from each other and need to be reordered. Thus, the model aims at minimizing the
number of LSPs assigned to the traffic requests.
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For the introduction of the third objective into the model, we introduce decision
variables yl


t, which are equal to 1, if pl
t is utilized, and 0 otherwise. For every candidate


path in the alternative set of each traffic request, the following constraint is added
to the model to settle the value of yl


t:


xl
t ≤ dty


l
t ∀ t ∈ T and ∀ l ∈ {1, . . . , Lt}, (3.14)


yl
t ∈ {0, 1} ∀ t ∈ T and ∀ l ∈ {1, . . . , Lt}. (3.15)


Hence, our third objective function has the following form:


min
∑


t∈T


Lt
∑


l=1


yl
t. (3.16)


The multiobjective zero-one mixed integer programming problem is summarized as in
Pareto (vector) optimization context:


Γ : min (
∑


t∈T


Lt
∑


l=1


C l
tx


l
t,


∑


m∈E


φm,
∑


t∈T


Lt
∑


l=1


yl
t)


subject to (3.2)− (3.3), (3.5)− (3.12), (3.14)− (3.15).


3.6 Extensions of the Model


The basic model does not take into account the multiple priority case and admission
control. The model can be extended to cover these issues.


3.6.1 Multiple Priority Case


There exist two basic approaches which handle the distribution of traffic from various
priority levels within a network. The first one is based on differentiating the links’
cost for each priority level, while all the traffic requests are mapped onto the network
at once. When the links are more expensive for traffic with higher priority, the model
attempts to assign the shorter paths to traffic with higher priority.


The other approach is to solve the model a series of times, each time for one priority
level. The model is first solved for the traffic requests with highest priority level. Then
it is executed for lower priority levels on the graph with reduced resources which are
utilized by higher priority levels. The second approach has the following advantages.
First of all, the visualization of the relationship and the trade-off between the objec-
tive functions become more apparent for each priority level. It is possible to apply
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different strategies for LSP assignments of each priority level. This approach also di-
vides the zero-one mixed integer traffic engineering problem into small subproblems.
Instead of solving a large problem with more traffic requests, a series of subprob-
lems are solved. However, this approach has the disadvantage that prior placement
of higher priority traffic may affect the performance of the lower priority traffic.
Consequently, this approach may end with a suboptimal solution.


3.6.2 Admission Control


The basic model is based on the assumption of a feasible traffic demand matrix for the
network. In case of infeasibility, the network administrator should either overprovision
the link capacities or apply an admission control mechanism to the current demand.
Since network capacity management is within a totally different context, only an
admission control mechanism is proposed here.


The expansion of the model for an admission control mechanism requires additional
decision variables. If ht represents the demand rejected from the tth traffic request,
then the following linear program leads to a feasible traffic demand matrix for the
network.


min
∑


t∈T


ht


subject to
Lt


∑


l=1


xl
t + ht = dt ∀ t ∈ T,


gm =
∑


t∈T


Lt
∑


l=1


am
t,lx


l
t ∀ m ∈ E,


gm ≤ um ∀ m ∈ E


xl
t ≥ 0 ∀ t ∈ T and ∀ l ∈ {1, . . . , Lt}.


The traffic demand matrix can be updated accordingly such that d
′


t = dt − ht for all
t ∈ T where d


′


t denotes the corrected demand. Although the rejection of the excess
demand makes the problem feasible, it fails to satisfy all customers’ demands.


3.7 Multiobjective Analysis of the Model by Exact


Methods


One of the most interesting attributes of the model is that while two of its objective
functions are continuous, the third objective is a discrete function. The counting
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property of the third objective function allows for a nice decomposition of the model.
It is removed from the original problem and is replaced as a constraint into the original
problem. Hence, we substitute the original problem with a series of the decomposed
multiobjective problems:


Γ(N) : min (
∑


t∈T


Lt
∑


l=1


C l
tx


l
t,


∑


m∈E


φm) (3.17)


subject to (3.2)− (3.3), (3.5)− (3.12), (3.14)− (3.15),


∑


t∈T


Lt
∑


l=1


yl
t ≤ N, (3.18)


where N is the bound on the used paths. The following theorem enlightens the
relationship between weakly Pareto optimal set of the original problem, stated as Γ,
and the Pareto optimal set of Γ(N). Note that any solution of the problem can be


represented by v = (x1
1, . . . , x


L|T |


|T | , g1, . . . , g|E|, φ1, . . . , φ|E|, y
1
1, . . . , y


L|T |


|T | ).


Theorem 3.4. A solution v∗ is a weakly Pareto optimal solution of Γ, if v∗ is
a Pareto optimal solution of Γ(N) where N =


∑


t∈T


∑Lt


l=1 y
∗l
t . If v∗ is a weakly


Pareto optimal solution but not a Pareto optimal solution of Γ, then there exists
another solution v


′
in the Pareto optimal set of Γ(n) (n < N) which has the same


routing and load balancing costs as v∗.


Proof. Assume that v∗ is a Pareto optimal solution of Γ(N), but not weakly Pareto
optimal for Γ. Since it is a Pareto optimal solution of Γ(N), then it is among the
optimal solutions of the following problem (see Theorem 2.14).


µ : min(
∑


m∈E


φm)


subject to
∑


t∈T


Lt
∑


l=1


C l
tx


l
t ≤


∑


t∈T


Lt
∑


l=1


C l
tx


∗l
t ,


(3.2)− (3.3), (3.5)− (3.12), (3.14)− (3.15),


∑


t∈T


Lt
∑


l=1


yl
t ≤ N.


If the solution v∗ is not weakly Pareto optimal solution of Γ, then there exists a
feasible solution v


′
with the following attributes:
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∑


t∈T


Lt
∑


l=1


C l
tx


′l
t <


∑


t∈T


Lt
∑


l=1


C l
tx


∗l
t ,


∑


m∈E


φ
′


m <
∑


m∈E


φ∗
m,


∑


t∈T


Lt
∑


l=1


y
′l
t ≤ N − 1 < N.


However, these attributes contradict the fact that v∗ is an optimal solution of µ.


The proof for the second part of the theorem is given shortly. If v∗ is a weakly Pareto
optimal solution but not a Pareto optimal solution of Γ, then three alternatives are
to be investigated:


• There exists another solution v
′


with the same number of used paths and
routing cost (load balancing cost), but with strictly less load balancing cost
(routing cost). However, this alternative is not possible, since it contradicts the
fact that v∗ is a Pareto optimal solution of Γ(N).


• There exists another solution v
′
with the same routing cost, but has strictly less


load balancing cost and uses strictly less paths. This alternative contradicts the
optimality of µ. A similar argument can be given for the possibility of another
solution which has the same load balancing cost, but has strictly less routing
cost and uses strictly less paths.


• There exists another solution v
′
which has the same routing and load balancing


costs but uses strictly less paths. This alternative is possible, and it does not
contradict the optimality of µ. Both solutions are Pareto optimal for their
corresponding subproblem.


It is interesting to note that for Γ(N) we may end up with solutions which may use
less than N paths. From this point on, without loss of generality we will assume that
the trade-off curve of Γ(N) will only include solutions which utilize exactly N paths.


Definition 3.5. A trade-off curve A is not comparable to a trade-off curve B iff
there are no f(v) ∈ A and f(w) ∈ B such that v ≺ w and w ≺ v.


Definition 3.6. A trade-off curve A completely dominates a trade-off curve B
iff for all f(w) ∈ B there exists at least one point f(v) ∈ A such that v � w.
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Definition 3.7. A trade-off curve A partially dominates a trade-off curve B iff
there exist at least one f(v) ∈ A and f(w) ∈ B such that v � w, and there are no
f(v) ∈ A and f(w) ∈ B such that w ≺ v.


Corollary 3.8. One of the following relationships is true between the trade-off curve
of Γ(N) and the trade-off curve of Γ(N − 1):


• the trade-off curve of Γ(N) completely dominates the trade-off curve of Γ(N−1),


• the trade-off curve of Γ(N) partially dominates the trade-off curve of Γ(N −1),


• both trade-off curves are incomparable to each other.


The result of Corollary 3.8 is depicted in Figure 3.8, 3.9 and 3.10. As the constraint
regarding the number of utilized paths gets tighter, the performances of the trade-off
curves in terms of the total routing cost and load balancing cost either decrease or
stay incomparable. Figure 3.8 illustrates the former case. It is also possible that two
consecutive trade-off curves intersect. These intersection points occur when there
exist multiple solutions which correspond to the same routing and load balancing
cost values, but differ in terms of the number of utilized paths. Figure 3.9 shows the
case when two consecutive trade-off curves are incomparable to each other. This may
happen when the consecutive trade-off curves do not have a common value in any of
the objective functions. Figure 3.10 gives an example where partial dominance occurs,
in which case the trade-curves perform better for a partial range of the objective
functions when the constraint relaxes.


The main interest of this chapter is to apply one of the exact methods to the mul-
tiobjective zero-one mixed integer traffic engineering problem. As already discussed
in Chapter 2, the weighted sum method can not generate the whole Pareto frontier.
To have a better representation of the Pareto frontier, the lexicographic weighted
Chebyshev method, which is explained in Chapter 2, is applied to the problem Γ(N).
For the first step of the method, the main problem is solved with a specified weight
vector δ = (δ1, δ2) to locate the points, which are at least weakly Pareto optimal.


Ch(N, δ) : minα (3.19)


subject to α ≥ δ1(
∑


t∈T


Lt
∑


l=1


C l
tx


l
t − z


ref
1 ), (3.20)


α ≥ δ2(
∑


m∈E


φm − z
ref
2 ), (3.21)


δ1, δ2 ∈ ∆, (3.22)


∆ = {δ ∈ R2
+ |


2
∑


i=1


δi = 1.0}, (3.23)


(3.2)− (3.3), (3.5)− (3.12), (3.14)− (3.15), (3.18).
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f1


f2


Γ(|Τ|+


Γ(|Τ|)


k)
Γ(|Τ|+k−1)


Γ(|Τ|+1)


Figure 3.8: The trade-off curves may perform better as the constraint on the number
of utilized paths relaxes. Notice that Γ(T + k) completely dominates all
other curves.


zref
i = z∗i − εi for i = 1, 2 where


z∗1 = min
∑


t∈T


Lt
∑


l=1


C l
tx


l
t


subject to (3.2)− (3.3), (3.5)− (3.12),


and,


z∗2 = min
∑


m∈E


φm


subject to (3.2)− (3.3), (3.5)− (3.12).


The selection of the reference points is based on the global optimal values of the
objective functions. They are kept same for each decomposed problem. ε1 and ε2 are
selected such that they decrease the reference points to the nearest integer values.


In order to find the Pareto optimal solutions among the set which is known as weakly
Pareto optimal, the problem, Ch′(N, δ) , is solved. Here, α∗ corresponds to the opti-
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f1


Γ(|Τ| + k−1)
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Figure 3.9: The trade-off curves may be
incomparable to the previous
ones as the constraint on the
number of utilized paths re-
laxes.
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Figure 3.10: The trade-off curves may
partially dominate the pre-
vious ones as the constraint
on the number of utilized
paths relaxes.


mal value of the problem Ch(N, δ).


Ch′(N, δ) : min
∑


t∈T


Lt
∑


l=1


C l
tx


l
t +


∑


m∈E


φm


subject to α = α∗


(3.2)− (3.3), (3.5)− (3.12), (3.14)− (3.15),


(3.18), (3.20)− (3.23).


It is observed that Ch(N, δ) has a non-linear objective function which further compli-
cates the problem. The original problem Γ already has its non-smooth behavior due
to the use of a piecewise increasing objective function. The application of weighted
Chebyshev norm makes the problem even harder.


3.8 Complexity Analysis


For the complexity analysis, the decomposed model, Γ(N), is specialized to a single
objective problem and called the number of paths restrained minimum cost multicom-
modity flow problem . If the single objective version of a problem is NP-complete, we
can conclude that the same problem with multiple objectives is also NP-complete.
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Let G = (V,E) be a connected digraph. Suppose that the ith commodity for the
network is given as ψi = (si, ti, di), 0 < i ≤ n; si, ti ∈ V , where si, ti, and di represent
the associated source node, target node and flow demand, respectively. Pi denotes
the set of all possible paths for the ith commodity.


Pi = {p : p is a path from si to ti}


Let xp be the flow on the path p. The capacities of the edges are shown by the vector
u. The flows assigned to the edges depend on x and are represented by a vector g(x).
Here, g is a vector valued function for load mapping. c(g(x)) is a vector valued cost
function of linear or piece-wise linear increasing convex functions depending on the
total load on the edges. The cost of a path, Cp(g(x)) is simply the sum of its edges’
costs.


Cp(g(x)) =
∑


e∈p


ce(g(x)) (3.24)


Without losing the generality, we assume that all input parameters of the problem
are integer.


The number of paths restrained minimum cost multicommodity flow problem looks
for a flow assignment satisfying the following constraints:


| S(P1) | + . . .+ | S(Pn) | ≤ N (3.25)


where S(Pi) ⊆ Pi and S(Pi) 6= ∅.
∑


p∈S(Pi)


xp = di, (3.26)


g(x) ≤ u, (3.27)
∑


p∈S(P1)∪...∪S(Pn)


Cp(g(x),u) ≤ B (3.28)


where B is the upper bound on the total cost.


Before we analyze the complexity of this problem, we introduce another problem
called the unsplittable minimum cost multicommodity flow problem. The unsplittable
minimum cost multicommodity flow problem minimizes the total routing cost ac-
cording to link costs where the commodities are not allowed to be split. Although
this problem is stated as an NP-complete problem in many studies, no formal proof
can be found in the literature by the author1.


1The general idea for the transformation is given in the lecture notes of A. Schrijver: ”A Course in
Combinatorial Optimization”, CWI, The Netherlands. However, no formal proof is carried out.
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Theorem 3.9. The unsplittable minimum cost multicommodity flow problem is NP-
complete.


Proof. The proof is based on the polynomial time transformation from the edge-
disjoint paths problem to unsplittable minimum cost multicommodity flow problem.
The edge-disjoint paths problem is a known NP-complete problem [83]:


Given a graph G and a collection of T = {(s1, t1), · · · , (sn, tn)} of pairs of sources
and destinations in G (commodities), the edge-disjoint paths problem tries to answer
whether the pairs in T can be connected by the edge-disjoint paths.


Given an instance of the edge-disjoint paths problem, we will transform it to an
instance of the unsplittable minimum cost multicommodity flow problem in polyno-
mial time. We start transformation by adding an artificial edge for each commodity,
directing from the source to the destination. These edges have a capacity of unity.
They are assigned a cost scalar c > |E|. The original edges in G are assigned to a
cost factor and a capacity of unity. Each commodity is assumed to have a demand
value of 1 unit. An example for the transformation is given in Figure 3.11.


The cost of using an edge is the product of the total load on the edge with its cost
scalar. The cost of a path is the sum of its edges’ costs. We need to show that the
edge-disjoint paths problem is solvable if and only if the unsplittable minimum cost
multicommodity flow problem has a total cost less than or equal to |E|.


”⇐”: In the solution of the unsplittable minimum cost multicommodity flow problem
with a total cost value less than or equal to |E|, it is for certain that no commodity
uses the artificial edges. Otherwise, the total cost will be larger than |E|. Since the
capacity of each edge and the demand of each commodity are equal to unity, no
commodity in the solution can use the same edge. Thus, the paths they follow are
disjoint.


”⇒”: If in the original graph the commodities can be sent through the disjoint paths,
the unsplittable minimum cost multicommodity flow problem has a solution, where
the commodities use only the original edges. The total cost is certainly less than or
equal to |E|, since in the worst case all of the edges are used.


Theorem 3.10. The number of paths restrained minimum cost multicommodity flow
problem is NP-complete.


Proof. The proof is by restriction [28]. Restriction is based on showing that a special
instance of the problem at hand is equal to one problem known as NP-complete
in the literature. The number of paths restrained minimum cost multicommodity
flow problem can be restricted to the unsplittable version by allowing only instances
having N = n. By restricting the bound on the number of paths to the number of
commodities to be transmitted on the network, we obtain the unsplittable minimum
cost multicommodity flow problem which is known to be NP-complete.
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Figure 3.11: a) Original graph, b) Transformed graph.


3.9 Case Study


The multiobjective model is implemented for the network illustrated in Figure 3.12,
which is also studied in [8]. We aim at locating the Pareto optimal solutions in order
to conceive the trade-offs between the objective functions, by solving Ch′(N, δ) for
various weight vectors and N values. In this case study, routing costs of unity are
assigned to each link. The links are unidirectional and have a capacity of 50 units/sec.
A full traffic demand matrix from a single priority is assumed, so there exist 90 traffic
requests. The traffic demand matrix is given in Figure 3.13 and all the traffic can be
accepted by the network without capacity violation. The traffic requests are allowed
to use the paths which have at most four hops. The optimal solutions are obtained
by solving the problems with the Cplex 6.6 optimizer [1].


In Figure 3.14, we show the trade-off curves for Γ(N) when N is taken as 90, 92,
94, and 96. The efficient solutions, obtained by solving Ch′(N, δ) for various δ and
each N value, are shown in the figure. The points are connected by lines in order to
increase the visual perception of the trade-off. Our first observation in Figure 3.14
is that, the trade-off curves exhibit worse performance regarding the load balancing
and routing costs, as Constraints (3.18) become more restricted. For a specific value
of the load balancing costs (routing costs), the routing costs (load balancing costs)
increase as the number of LSPs decreases.


The two objectives, minimizing the routing cost and minimizing the number of LSPs,
support each other in the sense that both objectives can be minimized to their optimal
values concurrently. However at this solution we obtain a very high load balancing
cost. This solution corresponds to the values of the routing and load balancing costs
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Figure 3.12: Example network topology consists of 10 routers and 32 links.
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Figure 3.13: A full traffic demand matrix is assumed for the case study.
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Figure 3.14: The trade-off curves perform better as the number of utilized paths
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W


 14


 16


 18


 20


 22


 24


 26


 28


 30


 32


 34


 1060  1080  1100  1120  1140  1160  1180  1200
Load Balancing Cost


Figure 3.15: The deviation of the links utilization with regard to the load balancing
function is illustrated graphically.
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of 843.5 (optimal routing cost) and 1185.2, respectively.


Interestingly, the following general observation is true for all of the curves in Fig-
ure 3.14. When the routing costs are kept at low values (especially for values less
than 852), the load balancing cost suffers dramatically. Moreover, the trade-off curves
become closer as the number of LSPs increases. This is because of the fact that we
loosen the number of LSPs constraints of the problems.


As a last remark on Figure 3.14, we observe that the shape of (some of) the trade-off
curves may include non-convex parts. This supports our choice of the lexicographic
weighted Chebyshev metric method over the weighted sum method for the trade-off
analyses.


Additionally, we have made the following observation regarding the effect of load
balancing on the network. The shape of the load balancing function allows for a
classification of the links into regions according to their utilization rates. As seen in
Figure 3.4, we have six regions: [0, 0.5] – (0.5, 0.6] – (0.6, 0.7] – (0.7, 0.8] – (0.8, 0.9]
– (0.9, 1]. During the case study we have observed that the average utilization rates
(range between 0.527 and 0.541) and the maximum utilization rates (ranges between
0.7 to 0.74) don’t change dramatically through the Pareto optimal solutions. However,
the load balancing function has a more striking effect on the distribution of the links
into the regions. When the second region is defined as the target (region of the average
utilization rates), the balanced distribution of the load will imply having as many
links as possible in the second region and having as few links as possible far away
from the second region. The following weighting function gives a general idea about
the distribution of the links around the target, i∗ = 2.


W =
6


∑


i=1


| i− i∗ | ni (3.29)


where ni denotes the number of the links in the ith region. Notice that the weights
increase as the distance from the target region becomes larger. Figure 3.15 shows the
values of W versus the load balancing function. In the figure, we observe that W
tends to increase as the load balancing function increases.


3.10 Summary


This chapter has introduced a multiobjective model for the off-line LSPs selections
for traffic requests in an MPLS network. The objectives that are selected are namely;
minimal routing cost, load balancing and minimal LSP assignment. The nature of
the model is very robust, it allows itself to represent networks which have traffic from
various priority levels.
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3.10 Summary


In this chapter, the main focus has been on the complexity of the problem and the
location of the Pareto optimal solutions to visualize the trade-off curves. For the exact
solution approach, the main problem is decomposed into a series of subproblems.
Additionally, a theoretical analysis is carried out to investigate the solution attributes
of the decomposed problems. The lexicographic weighted Chebyshev method has
been applied to the subproblems and its performance is observed for a case study.
Although this exact method allows for the representation of the whole Pareto frontier,
the method is not efficient and effective for such a large scale problem. We are mainly
interested in the development of an approximation algorithm.
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4 Modern Heuristic Approaches for
Multiobjective Optimization


In [66], heuristics are defined as techniques which seek near-optimal solutions at
reasonable computational costs without being able to guarantee the quality of the
solutions (i.e., its feasibility and/or closeness to the optimal solution).


The main challenge facing multiobjective approximation techniques is the require-
ment to obtain a set of solutions approximating the Pareto front. The techniques
based on the iterative approximations of some SOP problems constructed by the
weighted aggregation of the objectives constitute a naive heuristic category in MOP.
These techniques require multiple runs with different weights and knowledge about
the shape of the objective functions. Furthermore, they are considered to be inef-
ficient, since the Pareto optimal solutions visited during the runs are missed, and
different runs may end up with the same solution. Thus, it will be interesting to
utilize heuristic techniques for a more effective search process in MOP.


Lately in the literature, some heuristic algorithms inspired by some natural processes
(thermodynamics, evolution, etc.) have been developed. They are known as modern
(meta) heuristic techniques. This chapter first introduces the most popular modern
heuristic techniques. After investigating the key difficulties within MOP, the main
attributes of modern heuristic algorithms previously developed in the literature are
explored. This chapter concludes with the introduction of the performance assessment
metrics used in this thesis.


4.1 Overview of Modern Heuristic Approaches


Modern heuristic techniques can be classified into two main groups: heuristics based
on local (neighborhood) search and heuristics based on evolutionary methods. An
overview of some modern heuristic techniques is presented in this chapter.


The basic idea in local search is to evaluate a chain of solutions which are selected
repeatedly from the neighborhood of the current solution. Hill-climbing methods de-
scribed in [58] have the simplest form of local search. The basic structure is given in
Algorithm 1. It starts with an initial solution and proceeds with the random selec-
tion of a solution from the neighborhood of the current solution. If the child solution
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outperforms the parent one, it replaces the parent solution. The algorithm continues
similarly until some certain termination conditions are met. The algorithm can run
for a specified number of iterations or until there is no further improvement for some
iterations.


Algorithm 1 Hill-climbing
Data: vp parent solution


vc child solution
Functions: init() returns an initial solution


local(v) returns a solution from the neighborhood of v
eval(v) returns the evaluation value of v
terminate() returns true if the terminating condition is met


vp ← init()
repeat


vc ← local(vp)
if eval(vc) is better than eval(vp) then


vp ← vc


end if
until (terminate() = true)


The basic forms of local search, like hill-climbing, have the disadvantage that they
usually converge to a local optimum rather than a global one. Some approaches, like
tabu search and simulated annealing, have been developed to overcome this deficiency.


Tabu search [66, 31] utilizes the concept of memory to guide the search. There are two
types of memory: recency-based and frequency-based. The recency-based memory is
used for short term strategies. At each iteration of tabu search, a subset of the neigh-
bors of the current solution is evaluated. The neighbor with the best performance is
chosen to continue with. The recency-based memory stores the moves which are tabu
(not allowed) in the neighborhood of the current solution and is used to prevent the
revisits to the areas that have been already encountered during the local search. The
frequency-based memory is used for two types of longer-term strategies during the
whole search process. Intensification aims at generating solutions by incorporating
the attributes of the good solutions that have been encountered so far. Diversifica-
tion strategies create solutions that have the attributes diverse from those evaluated
previously and direct the search to the new regions.


Simulated annealing was first introduced by Kirkpatrick et al. in [43]. Its ideas are
based on the techniques to simulate the cooling of materials in the heat bath until
they reach a frozen state. This process is known as annealing. Simulated annealing
is capable of locating the global optimal solution rather than being trapped in a
local optima, since it may accept a neighbor as the working solution despite its
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worse performance. The acceptance depends on the control parameter (temperature),
and the magnitude of the decrease in the performance. The general algorithm for
simulated annealing is given in Algorithm 2. A child solution vc replaces the parent
solution vp with probability


π(temp,vp,vc) = min{1, exp ((eval(vp)− eval(vc))/temp)}


where temp is the current temperature.


During the early iterations, when the temperature is high, the probability of accepting
a worse solution is higher. However, as the temperature decreases, the acceptance of
a worse solution becomes more difficult. During the implementation phase, the user
should decide on some parameters. In [37], some advice is given according to the
experiences.


• Initial temperature: the initial value of the temperature should be large enough
to allow almost all transitions to be accepted.


• The cooling schedule: The user decides on the rate at which the temperature
is decreased. Typically, the temperature is multiplied by a constant r: temp =
r temp. Experiences suggest 0.8 ≤ r ≤ 0.99.


• The terminating condition: The most popular way to stop the algorithm is when
temp < tempstop where tempstop is a small value close to 0. Another possible
terminating condition is an upperbound on number of iterations at which the
evaluation value stays same.


These build only a subset of the variants of the algorithm. There are more alternative
decision choices. For example, the number of replications where the temperature stays
constant can also be dependent on the temperature. A more complete treatment of
simulated annealing and its applications to some problems are carried out in [66].


Unlike the deterministic tabu search, simulated annealing is a stochastic approach.
In the literature, a substantial amount of research has been carried out on the con-
vergence of simulated annealing algorithms. It is interesting to note here simulated
annealing is known to find the global optimum with probability of unity under certain
conditions. Interested readers are pointed to [2] and [49] concerning the convergence
issues. Due to the theoretical studies about its convergence, simulated annealing has
gained high respect in the literature and it has been widely used.


The first observation about evolutionary algorithms is that they operate on a pool of
solutions whereas local search-based methods rely on a single solution for exploration.
This property supplies the main power of evolutionary algorithms, as it is analogous
to a parallel operating machine. It can generate, evaluate and operate on multiple
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Algorithm 2 Simulated annealing for a minimization problem
Data: vp parent solution


vc child solution
temp temperature
Nrep number of replications


Functions: init() returns an initial solution
init temp() returns an initial temperature
local(v) returns a solution from the neighborhood of v
eval(v) returns the evaluation value of v
rand(0, 1) returns a random number from the range [0, 1)
new temp(temp) returns the updated temperature
terminate() returns true if the terminating condition is met


vp ← init()
temp← init temp()
repeat


for i = 1 to i = Nrep do
vc ← local(vp)
if eval(vc) ≤ eval(vp) then


vp ← vc


else if exp ((eval(vp)− eval(vc))/temp) > rand(0, 1) then
vp ← vc


end if
end for
temp← new temp(temp)


until (terminate() = true)


solutions simultaneously. However one drawback of this approach is that the user has
less control on the overall search mechanism.


An evolutionary algorithm operates on individuals (chromosomes) which represent an
encoded solution to a specific problem. After a random initial population is generated,
each individual is evaluated according to the objective function and is assigned a
fitness value. At each iteration, the population enters a selection phase where the
mating individuals are selected according to their fitness values. The chance of being
selected for mating is higher for individuals with better fitness values. The next
population is generated after applying crossover (i.e., recombination) and mutation
operators on these individuals. The stopping criteria may either be a fixed number
of generations or it can also be a user specified function (e.g., improvement from one
generation to the next one). The structure of a standard evolutionary algorithm is
given in Algorithm 3.


Genetic algorithm is a more specialized evolutionary technique which works on bit-
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Algorithm 3 Evolutionary algorithm
Data: n iteration number


P (n) population at iteration n
Functions: init() returns an initial population


eval(P ) evaluates all individuals in P
select(P ) select individuals from P for mating
recombine(P ) performs crossover operation on P
mutate(P ) performs mutation operation on P
terminate() returns true if the terminating condition is met


n← 0
P (n)← init()
eval(P (n))
repeat
n← n+ 1
P (n)← select(P (n− 1))
recombine(P (n))
mutate(P (n))


until (terminate() = true)


string chromosomes. Genetic algorithms are the most popular type of evolutionary
algorithms studied in the literature. Evolutionary and genetic algorithms are ex-
plained with some application examples in [32], [58] and [66]. Similar to simulated
annealing, in the literature many theoretical studies have been carried out on the
convergence properties of evolutionary algorithms [7], [32].


After an introduction, a short discussion and literature survey is now given on the
implementation of the heuristics for MOP. The existing literature is studied deeply
in [21], [41] and [45]. The surveys in [13], [42] and [90] focus only on evolutionary
multiobjective optimization.


4.2 Key Issues in Multiobjective Heuristic Approaches


The aim of MOP is to obtain a final set which approximates the Pareto frontier.
There are two main concerns with the approximation: accuracy and diversity.


Accuracy aims at finding solutions which are as close as possible to the Pareto optimal
solutions. The concept of diversity has two tasks [17]: extent and distribution. Extent
refers to the solutions at the extreme values of the objective functions, whereas the
distribution concerns how uniformly the obtained solutions are located in the final
set. Due to these multiple dimensions related to the performance of the final set, the
MOP algorithms are usually difficult to compare.
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Figure 4.1: Accuracy increases as the
solutions get closer to the
Pareto frontier.
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Figure 4.2: The extent of the final set is
also important for the quality
of the algorithm.


As it is illustrated in Figure 4.1, accuracy of the final set increases, as the solutions
get closer to the true Pareto front. An example final set with a high accuracy but
suffering in terms of the extent is depicted in Figure 4.2. Figure 4.3 shows a final set
which is distributed nonuniformly over the Pareto front.
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Figure 4.3: The distribution of the final set has an effect upon the quality of the
approximate set.
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Figure 4.4: The acceptance criteria in simulated annealing methods differ from each
other mainly in the regions where the child solution becomes indifferent
to the parent.


4.3 Heuristic Techniques with Multiple Objectives


4.3.1 Local Search-Based Techniques for Multiobjective


Problems


Local search methods approximate the Pareto front according to some acceptance
rules usually based on the weighted aggregation of the objective functions. The de-
termination of the weights can be a priori, guided and random [21].


Simulated annealing for MOP was first implemented by Serafini [73] to find a subset of
the nondominated solutions. Three possible relations are defined between the parent
solution vp, and the child solution vc:


Rel. (a) vc weakly dominates vp,


Rel. (b) vc and vp are indifferent to each other,


Rel. (c) vc is dominated by vp.
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In the first case, the child solution is accepted as working solution with probability
equal to one. For the third case the child solution should be accepted with probability
strictly less than 1.0. However, three alternative approaches exist for the case of
indifference, as it is depicted in Figure 4.4:


• Accept an indifferent solution with probability equal to unity. Serafini called
this approach weak criterion.


• Accept an indifferent solution with probability strictly less than one. This ap-
proach is called strong criterion, since only the dominating points are accepted
with probability equal to one. An acceptance rule based on the weighted Cheby-
shev norm of the objective function values is an example for this rule:


π(temp, δ) = min{1, exp((max
i
{δi(fi(v


p)−zref
i )}−max


i
{δi(fi(v


c)−zref
i )})/temp)}


where
∑Q


i=1 δi = 1. When the parent solution is selected as the reference point,
we obtain


π(temp, δ) = min{1, exp(− max
i∈{1,...,Q}


{δi(fi(v
c)− fi(v


p))/temp})}


= min{1, exp( min
i∈{1,...,Q}


{δi(fi(v
p)− fi(v


c))/temp})}.


In this case, the acceptance probability will be equal to one if and only if the
child weakly dominates the parent solution.


• These two approaches can be combined, i.e., the solutions indifferent to the par-
ent are subject to an acceptance probability either equal to one or strictly less
than one, depending on their objective function values and on the acceptance
rule. E.g., an acceptance rule based on the weighted sum of the objective func-
tions leads a subset of the indifferent solutions to be accepted with probability
equal to unity:


π(temp, δ) = min{1, exp(


Q
∑


i=1


δi(fi(v
p)− fi(v


c))/temp)}


where
∑Q


i=1 δi = 1.


Apart from these examples, Serafini proposed some more rules under these criteria.
These rules differ in their methods to aggregate the objective function into a weighted
norm. He proposed to determine the weight vector a priori and change it randomly
by small amounts during the run. He also analyzed the convergence properties of the
algorithm to the nondominated set under some various rules.
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Ulungu et al. [81] proposed a multiobjective simulated annealing algorithm which
is called MOSA. MOSA utilizes the combined strategy in the case of indifference
between the parent and child solution. The quality of a solution is measured by the
weighted mean of the objectives. The nondominated solutions among the ones gen-
erated during the algorithm run are collected in an external set. The main algorithm
is run several times, each time with a specific weight vector. All nondominated sets
obtained from the runs are combined into a final set which is further filtered by a
pairwise comparison process to remove the dominated solutions.


In [62], Nam and Park proposed another multiobjective simulated annealing algo-
rithm called also MOSA. The algorithm works under the weak criterion. For the
case of a dominated child generation, six different rules for the transition probabil-
ity calculations are suggested and evaluated. The proposed multiobjective simulated
annealing algorithm is compared with a multiobjective evolutionary algorithm for
a specific problem. Their preliminary results show that simulated annealing outper-
forms evolutionary algorithm for the problems with a small search space.


In [41] another simulated annealing algorithm called Pareto simulated annealing
(PSA) was presented. PSA differs dramatically from the other algorithms, since
it uses a population of generating solutions where each of them utilizes simulated
annealing to explore the search space. A specific weight vector is assigned to each
generating solution and the weights of a solution are changed in order to explore the
diverse areas in the search space. Both weak and combined acceptance approaches are
investigated in case of Rel. (b). PSA keeps an external set to record the potentially
Pareto optimal solutions. This set is updated at each iteration.


Hansen presented in [34] a tabu search multiobjective algorithm which has some
similarities with PSA. Like PSA, it works on a set of generating solutions and an
external set for the nondominated solutions encountered during the run. It assigns
a weight vector to each generating solution and updates them to explore the diverse
areas.


Another algorithm utilizing tabu search is developed by Abdelaziz and Krichen in
[3]. The algorithm works on a single solution. At each iteration the algorithm either
generates a set of solutions obtained by a diversification process, or a subset of the
neighborhood of the current solution. The first case is implemented to direct the
search to the diverse areas. The external set of potentially efficient solutions are
updated by these newly generated solutions. The next solution is selected randomly
from the generated solutions.


Knowles and Corne introduced in [46] a local search-based method called (1 + 1)
Pareto archived evolution strategy (PAES). The algorithm utilizes an archive to store
the nondominated solutions previously found. At each iteration, the child is rejected,
if it is dominated by the parent solution or it is accepted, if it is superior to the
parent. In case of indifference, the acceptance rule depends on its relation with both
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the parent solution and the solutions in the archive. The direction of the search is
guided by the external set. The solution which resides in the less occupied region of
the external set is accepted as working. The studies about the convergence of this
algorithm to the nondominated set can be found in [45].


4.3.2 Evolutionary Multiobjective Algorithms and Archiving


Strategies


Since evolutionary algorithms deal with a set of solutions simultaneously, they are
particularly suitable for MOP. Evolutionary multiobjective studies have begun with
the vector evaluated genetic algorithm (VEGA) by Schaffer [69]. In VEGA, the mat-
ing population is divided equally by the number of objectives in the problem. The
selection is carried out separately for each objective function to fill the corresponding
portion of the mating pool. After VEGA, Goldberg suggested a selection procedure
where the fitness values of the individuals are calculated according to their dominance
relations [32]. To keep diversity among the population he proposed to utilize niching
mechanisms which aim at building stable subpopulations representing different sub-
domains of the search space. Niched Pareto genetic algorithm (NPGA) by Horn et
al. [36] and (NSGA) by Srinivas and Deb [76] implemented Goldberg’s idea. These
studies have a common attribute where the last generation is accepted as the output
of the algorithm.


Evolutionary algorithms for MOP have made a great improvement, after the intro-
duction of elitism to incorporate the nondominated solutions encountered so far into
the next generation. Following some initial studies utilizing elitism (e.g., [12], [61],
[64]), a number of well-defined elitist evolutionary algorithms have been lately devel-
oped: strength Pareto evolutionary algorithm (SPEA) in [90], PAES (M-PAES)1 in
[46] and NSGA-II in [18].


In a single objective problem an elitist algorithm ensures the existence of the best
individual(s) of the current population in the next population, even though they are
not chosen at the selection process [7]. After its explicit success in the evolutionary
MOP, the concept of the elitism is reformulated in [51]. An elitist approach guarantees
a strictly positive probability for selecting at least one nondominated individual as
operand for mutation and crossover operators. Most of the elitist algorithms are
implemented with an external set (archive) storing the nondominated individuals
encountered so far. The output of these algorithms is then this archive obtained after
the last iteration, which is here denoted as the final set.


1(1+1) PAES lies in the domain of elitist methods, however elitism is developed for evolutionary
algorithms. Therefore, it is in fact not very interesting to talk about elitism for local search-based
heuristics.
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The importance of the archive has led several proposals about its maintenance. The
number of the Pareto optimal solutions can be quite large in a MOP problem. It
may not be feasible to store all of the nondominated solutions encountered during
the algorithm run. Therefore, the size of the archive should be bounded. As it is
stated in Section 4.2, an ideal final set should contain solutions as diverse as possible
over the Pareto front. Due to its active role in the guidance of the algorithm, it is of
enormous importance to decide on the individuals which will survive in the archive.
The experiments in [52] show that the effect of the size reduction operator for the
archive increases with the elitism intensity (the probability to select a mating parent
from the archive instead of the working population).


Zitzler and Thiele in [90] used a clustering approach to limit the size of the archive. At
each iteration of the algorithm the set is updated with the newly found nondominated
individuals. If the size of the external set exceeds its limit, a clustering operation is
carried out. Each of the solution builds one cluster at the beginning. Then, the
clusters are combined according to the average distances between each other. This
step is repeated until the number of clusters decreases to the limit of the external
set. For each cluster the centroid individual is selected as the representative, and, the
others are deleted from the cluster. This approach has some weaknesses: it may lose
the individuals with extreme objective function values, and, it has a high computation
overhead.


Knowles and Corne developed in [46] an archiving system denoted as adaptive grid
archiving. The system is based on the division of the objective space into some grid
regions. The lower and upper boundaries of the objective functions are automati-
cally determined by the nondominated solutions in the archive. They are updated,
if necessary, when new individuals enter the archive. Practically, all of the objective
functions have an equal number of partitions. For a problem with Q objectives and
t partitions for each objective function, the number of grid regions will be tQ. The
number of grid regions stays constant during the algorithm run, but the coordinates
of the grid regions change with the boundaries of the objective functions. When a
new nondominated solution is found by PAES, the algorithm inserts it to the archive.
If the size of the archive exceeds its limit, individuals from the most densely occupied
grid region are deleted.


This algorithm is time-effective, when usual comparison, addition and delete opera-
tions are carried out. The algorithm has the weakness that each time the boundaries
of the objective functions change, the archiving algorithm recalculates the coordinates
of the grids and the location of each individual according to the new grid regions. In
[45], the relationship between the size of the archive, the number of partitions and
the archiving performance are investigated and some proposals on the archive size
are given concerning the number of partitions and the number of objective functions.


Deb et al. introduced another approach for the density estimation to ensure diver-


61







4 Modern Heuristic Approaches for Multiobjective Optimization


sity in the population [18]. To estimate the density of the solutions surrounding a
particular point in the decision space, the distances between two closest neighbors
on either side of this point along each of the objectives are taken into consideration.
The sum of these distances over all of the objectives is called the crowding distance
of the point. A large crowding distance value indicates that the region of the cor-
responding point is relatively less occupied. The boundary points of each objective
are assigned a crowding distance of infinity, so that they are always favorable. The
crowding distance approach is computationally less expensive compared to the other
archiving mechanisms.


4.3.3 Hybrid Approaches


Hybrid heuristic techniques are founded on the integration of evolutionary algorithms
with local search-based methods. Several hybrid heuristic techniques have been de-
veloped in the past years for MOP problems. These algorithms are out of the scope
of this thesis and will not be explained in detail. Examples for multiobjective ge-
netic local search algorithms can be found in [39] and [41]. Knowles and Corne have
developed an extended version of PAES called Memetic-PAES [47].


4.4 Performance Measures to Evaluate the Heuristics


for Multiobjective Optimization


Although the algorithms for SOP problems locate a single solution, the algorithms
for MOP problems end up with a set of solutions approximating the Pareto frontier.
Several metrics have proposed in the framework of MOP to evaluate the performance
of alternative algorithms. Two main challenges exist for the quality evaluation of the
Pareto frontier approximations:


• As it has been discussed in the previous sections, the algorithms aim at sev-
eral criteria for an approximation set: closeness to the Pareto front, diversity,
uniform distribution of the solutions, etc.


• Since the main interest is on the problems of high complexity, usually the exact
nondominated solutions are not available due to the high run-time require-
ments. As a result, one needs to compare some sets of solutions, all of which
are approximations.


Under these issues, it is difficult to create a common agreement about the quality
metrics for multiobjective optimizers. Different types of metrics have been proposed
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lately in the literature. These metrics can be classified into two groups: specific-
purpose metrics, general-purpose metrics. The former includes the metrics which
evaluates only one aspect of the approximate set. The error ratio [82], coverage [89],
[87] are examples for the metrics evaluating the dominance power of the approxima-
tion set. The metrics like spacing [71] and spread [17] measure the performance of
an output set in terms of diversity. S-metric (hypervolume) [89] evaluates the overall
quality of the approximation set and belongs to the second group. For a theoretical
analysis of the available metrics and for further information, the reader is pointed to
the works [17], [45], and [88].


4.4.1 Performance Metrics used in this Thesis


Two metrics used in this thesis are explained in more detail here. These metrics have
the advantage that both of these measures do not require the existence of Pareto
optimal solutions.


The dominance metric


In this thesis, a modified version of the coverage metric is used. Coverage is used
to compare the dominance relation between two solution sets. The coverage metric
C(A,B) returns the proportion of the solutions in B, which are weakly dominated
by the solutions in A:


C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|


|B|


Since coverage is not symmetric, both of the directions should be taken into consider-
ation for the comparison of two approximate sets. Note that C(B,A) is not necessarily
equal to 1− C(A,B).


Although this metric originally aims at the comparison of approximate sets, it can
be also used to evaluate the quality of an algorithm by taking A as a set of efficient
solutions. However, in this case a perfect algorithm ending up with a set of solutions
equal to the set of Pareto optimal solutions will get a coverage value of 1. For this
reason, we changed the C-metric such that it only gives the proportion of the solutions
which are dominated by the reference set. To prevent confusion, we call it dominance
and denote it with D.:


D(A,B) =
|{b ∈ B|∃a ∈ A : a ≺ b}|


|B|
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Figure 4.5: The S-metric is based on the size of the dominated space by the nondom-
inated solutions.


The S-metric (Hyper-volume)


The S-metric calculates the size of the objective space dominated by the output of
the algorithm. This metric gives the volume enclosed by the union of the hyper-cubes
constructed for each solution in the output set with a reference point. The reference
point in the objective space is selected such that it is dominated by all of the solutions
in the approximation set. The reference point and each solution build the diagonal
corners of the hyper-cubes. Figure 4.5 illustrates these hyper-cubes for a bi-objective
problem.


This metric gives an idea about the overall quality of an algorithm. The value of the
metric grows as the solutions get closer to the Pareto frontier, and, as the diversity
between the solutions and the extent of the set increase. This metric is sensitive to
the scaling of the objectives. To overcome this issue Veldhuizen suggested to use the
ratio of the hyper-volume of the approximate set and of the efficient set [82]. Another
approach is to normalize the objective function values before the calculation. This
metric has the disadvantage that the ordering of the approximate sets may change
with the selection of the reference point [45].
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Framework for Multiobjective
Traffic Engineering


The primary aim of heuristic multiobjective optimizers is to detect a set of solutions
approximating the Pareto front. As discussed previously, the greatest challenge fac-
ing these heuristics is the requirement on the members of their output set to have a
uniform distribution through the extent of the objective functions additional to being
as accurate as possible to the Pareto front. The multiobjective modern heuristic tech-
niques well known in the literature are investigated in the previous chapter. Taking
these investigations into consideration, a heuristic framework for the multiobjective
off-line traffic engineering problem is introduced in this chapter. Its performance
under alternative search strategies is investigated.


In [24] the traffic engineering problem has been solved by the author using a hy-
brid heuristic method which combines an evolutionary algorithm with mathemat-
ical programming. The basic experimental results have shown the insufficiency of
this approach in guiding the search towards solutions using few paths. The heuristic
framework introduced here mainly utilizes simulated annealing in order to search the
feasible set for the good and possibly Pareto optimal solutions. The main algorithm
simplifies the search by dividing the feasible set into some subsets similarly to the ε-
constraint method. For each subset, an independent simulated annealing algorithm is
carried out. In order to store the nondominated solutions encountered during the run,
an archive is maintained during the whole run. The algorithm has a nested structure
where the same archive is kept during the whole run, i.e., the archive is initialized
only at the very beginning, not at each sub-run.


The neighborhood structure of the framework is based on the LP relaxation of the
original problem. Two different neighborhood functions are defined within the frame-
work. The performance of the algorithm under these functions is investigated. We
start the explanation of the framework with the discussion of its neighborhood struc-
ture. Since the neighborhood set of a solution consists of the points one simplex
pivoting move away, we will give a brief information about the simplex algorithm.
The introduction of the whole algorithm will be completed with the presentation of
its key components: Decomposition of the problem, acceptance criterion, archiving
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system, biased neighborhood function.


5.1 Zero-One Mixed Integer Programming and the


Simplex Algorithm


We recall the decision variables of the off-line traffic engineering problem introduced
in Chapter 3, and present them in a vector format for the ease of representation.


x = {x1
1, . . . , x


L|T |


|T | },


g = {g1, . . . , g|E|},


Φ = {φ1, . . . , φ|E|},


y = {y1
1, . . . , y


L|T |


|T | },


where |T | and |E| denote the number of the traffic requests and the number of the
links in the network, respectively. Lt is the number of alternative paths available for
the traffic request t.


In our problem, the decision vectors x,g and Φ are continuous, whereas y is a bi-
nary vector. Thus, our model is a linear zero-one mixed integer programming (MIP)
problem. Any zero-one MIP problem can be stated in general as follows:


MIP: min cr + ds


subject to Hr + Js ≤ b, (5.1)


s ≤ e, (5.2)


r, s ≥ 0, and s ∈ {0, 1} (5.3)


where c is 1 × n, r is n × 1, d is 1 × l, s is l × 1, H is m × n, J is m × l, and b is
m× 1. e is the vector of ones with the size of l × 1.


The off-line traffic engineering problem in MPLS network can also be represented in
this format by multiplying the ”≥” constraints with −1. The equality constraints can
be replaced by two constraints, one in ”≤” format and the other one in ”≥” format.


The problem at hand is especially difficult due to its mixed-integer nature. In the
literature, the number of modern heuristic approaches developed for MIP problems
is not as large as those for combinatorial optimization problems and general integer
programming problems. In [72], the mixed integer structure is recognized as one of
the most challenging attributes of engineering problems. Løkketangen summarizes in
[55] some of the heuristic approaches and their variants formulated for zero-one MIP
problems.
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The heuristic framework is based on the LP relaxed version of the original problem.
When the integer requirements for the zero-one variables are dropped, the problem
becomes an LP problem which is shown to be solvable in polynomial time by the
ellipsoid algorithm [63].


5.1.1 Linear Programming and the Simplex Method


A standard linear programming problem is stated as follows:


LP: min cr


subject to Hr ≤ b, (5.4)


r ≥ 0 (5.5)


where H is m× n, r is n× 1, b is m× 1.


LP problems are usually solved by the simplex method which is accepted efficient in
practice [11], [63]. The simplex method searches an optimal solution by moving from
one extreme (corner) point to another adjacent one of the polyhedron defined by the
constraints of the problem. An extreme point of the polyhedron corresponds to at
least one basic feasible solution of the problem and it is well known that an optimal
solution is located at an extreme point.


The simplex method starts after the slack variables are inserted in the non-equality
constraints to replace them with equality constraints. During the optimization pro-
cess, it operates on both the slack and regular variables.


min cr


subject to Hr = b, (5.6)


r ≥ 0 (5.7)


where r = (r1, . . . , rn, rn+1, . . . , rn+m) denotes the decision vector including the regu-
lar and slack variables.


A basic feasible solution is obtained by partitioning the decision vector into the basic
and nonbasic variables. At a basic solution, the value of each nonbasic variable is
equal to its lower or upper bound and the basic variables build the current basis.
The number of basic and nonbasic variables in any basic feasible solution is constant
and depends on the rank of the constraint matrix. The following relationship exists
between the basic and nonbasic variables:


rB = H−1
B b−H−1


B HN rN
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where B and N denote the set of the basic and nonbasic variables, respectively. HB


consists of the columns of H corresponding to the basic variables and it is singu-
lar. Similarly, HN is the matrix built by the columns of H related to the nonbasic
variables.


The simplex algorithm moves from one extreme point to an adjacent one by changing
the basis. At each iteration, it first selects a nonbasic variable which enters to the
basis. The basic variable which has to leave the basis is selected after some matrix
calculations so that the feasibility is kept. This process is known as pivoting. After
pivoting, the adjacent basis B


′
differs from B just by one variable.


B
′


= B ∪Nr \ Bs,


N
′


= N ∪ Bs \ Nr


where Nr and Bs denote the entering and leaving decision variables, respectively.


Example 5.1. Consider the following LP problem:


min 3r1 + r2


subject to r2 − r1 + r3 = 0,


r1 + r2 + r4 = 6,


r1 ≥ 2,


r2, r3, r4 ≥ 0.


In this example r3 and r4 are added as slack variables. At each iteration of the
simplex method, an extreme point of the polyhedron is visited. In Figure 5.1, all
of the extreme points are depicted by black dots. The optimal solution is found at
r1 = 2, r2 = 2. The basic variables at this extreme point are r2 and r4, whereas r1
and r3 are nonbasic. r1 is equal to its lower bound at this solution. The following
relationship exists between basic and nonbasic solutions:


r4 = 6− 2r1 + r3,
r2 = r1 − r3.


5.2 The Neighborhood Structure


In heuristics, the representation of the solutions plays an important role [58]. The
representation deals with the encoding of the candidate solutions which undergo
search operations during the run. For our local search based approach, a solution to
our original problem is represented by the basis to its relaxed LP set. It is interesting
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r(2,0)
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(3,3)
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13r  + r  = 42
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Figure 5.1: The simplex algorithm visits an extreme point at each iteration.


to note that the encoding should allow the heuristic methods to explore every possible
solution that might be optimal. In the literature, it has been proved that every feasible
solution to a general zero-one integer and zero-one MIP problem corresponds to one
of the extreme points of its relaxed LP set [10], [30], [63]. In the literature, this fact
resulted in some heuristic methods where the extreme points of the LP relaxation
of zero-one (mixed) integer programming problems are searched systematically. E.g.,
Løkketangen and Glover investigated in [56] some tabu search strategies for single
objective zero-one MIP problems where any solution to the problem is defined by a
basis of the relaxed LP set.


Following the previous short explanation, we now enlighten this fact stated in [30] in
its most general form. To this end, we need the general representation of a zero-one
MIP after the addition of the slack vectors α and β:


Hr + Js + α = b, (5.8)


s + β = e, (5.9)


r, s, α, β ≥ 0, and s ∈ {0, 1}. (5.10)


Theorem 5.2 (Glover, 1968, [30]). If there is a feasible solution to Con-
straints (5.8) - (5.10) with s = s


′
integer, then there is a basic feasible solution
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to the relaxed LP of these constraints with s = s
′
and m of the components of (r, α)


basic.


The theorem implies that we can search the extreme points of the relaxed LP set for
an optimal solution to the original problem. Please note that, the optimal solution of
the original problem does not probably coincide with the optimal solution of the LP
problem, it is hidden among the basic feasible solutions. When the binary constraints
of the original off-line traffic engineering problem are relaxed, it becomes


min(
∑


t∈T


Lt
∑


l=1


C l
tx


l
t,


∑


m∈E


φm,
∑


t∈T


Lt
∑


l=1


yl
t)


subject to (3.2), (3.5) − (3.12),


xl
t


dt


≤ yl
t ≤ 1 ∀ t ∈ T , ∀ l ∈ {1, . . . , Lt}, (5.11)


xl
t, y


l
t ≥ 0 ∀ t ∈ T , ∀ l ∈ {1, . . . , Lt}. (5.12)


Remark 5.3. In the linear programming relaxation of the off-line traffic engineering
problem, Constraints (5.11) and (5.12) are redundant.


The remark expresses the redundancy of the constraints related with yl
t and allows


to work on an LP problem with smaller size, since y is totally removed from the
problem. Its value is determined according to x.


yl
t =


{


1 if xl
t > 0,


0 otherwise.


5.3 Key Components of the Heuristic Framework


Four key components of the framework will be discussed in details: decomposition of
the problem, acceptance/rejection rules for the child solution, the archiving strategy,
and the neighborhood function. The general structure of the framework is given with
the explanation of the first component.


5.3.1 Decomposition of the problem


Due to its large scale, the main problem is divided into a series of subproblems
similarly to the ε-criterion method explained in Chapter 2.


A constraint method-based heuristic approach for MOP problems has been previously
proposed by Ranjithan et al. in [65]. The algorithm they introduced first relocates


70







5.3 Key Components of the Heuristic Framework
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Figure 5.2: The feasible region is divided into sub-regions similarly to the ε-constraint
method.


all of the objectives except one as a group of constraints. Thus, the MOP problem
is converted into a SOP problem. At each iteration, a standard (single objective)
EA is applied to obtain a single nondominated point. The constraints are updated
systematically and the final population of the current iteration is used as a seed for
the next evolutionary process with the idea that it will speed up its convergence to
the nondominated solution. The final nondominated set is obtained by storing the
best solutions found at the intermediate iterations.


Different from their approach, in our framework only one objective function is rep-
resented as a constraint. Hence, our framework operates iteratively on a series of
sub-regions of the general LP relaxed feasible set of the off-line traffic engineering
problem, where the sub-regions are specified with the addition of two constraints.


∑


t∈T


Lt
∑


l=1


C l
tx


l
t ≤ z∗1 + (k + 1)∆, (5.13)


∑


t∈T


Lt
∑


l=1


C l
tx


l
t ≥ z∗1 + k∆, (5.14)


(3.2), (3.5) − (3.12),


xl
t ≥ 0 ∀ t ∈ T , ∀ l ∈ {1, . . . , Lt},


71







5 A Simulated Annealing-Based Framework for Multiobjective Traffic Engineering


for k = 0, . . . , K−1. In Constraints (5.13) and (5.14), the objective function minimiz-
ing the sum of the routing costs is bounded from above and below, respectively. At
each main step of the framework the bounds of the constraint are shifted by ∆, as il-
lustrated in Figure 5.2. Both the stepwise shift (shown with ∆) for Constraints (5.13),
and (5.14) and the value of K representing the number of iterations are determined
by the decision maker.


Multiobjective simulated annealing is applied to direct the search for each of the
sub-feasible sets. The general framework is given in Algorithm 4.


The basic algorithm starts with an initially selected solution from the first sub-
feasible set. Constraints (5.13), and (5.14) in the LP problem are updated with the
function update cons(k) where definition of k corresponds to the related constraints.
The initial solutions are equalized to the optimal solutions which minimize the load
balancing cost under related routing constraints. The framework keeps an external
archive to store the nondominated solutions encountered during the whole algorithm
run, whereas the algorithm in [65] aims to find a single solution at each iteration.
In our framework, if a child solution is not weakly dominated by the parent, it is
compared with the archive to delete the stored solutions dominated by the child and
to find out whether the child is weakly dominated by the archive. The basic structure
of the framework is given in Figure 5.3


5.3.2 Acceptance Criterion


For the acceptance strategy of the framework, we have chosen the combined approach
introduced in Chapter 4. As it has been also emphasized in [81] and [45], a strong
strategy focuses on the intensification, while a weak acceptance criterion focuses more
on diversification. A compromise solution comes through a combined approach.


The acceptance rule is based on the weighted sum of the normalized objective function
values and, is applied by the following expression:


π(δ, temp,vp,vc) = min{1, exp(
3


∑


i=1


δi(fi(v
p)− fi(v


c))


Ri


/temp)} (5.15)


where δi and Ri are the weight vector and the range factor for the ith objective
function.


∑3
i=1 δi = 1 and range factors are used to bring all of the objectives to the


same scale: [0, 100]. R1 is based on the values of ∆, whereas R2 and R3 take into
account the global minimal values of the corresponding objectives functions and the
maximal values encountered during the algorithm run.


As we have discussed in the Chapter 2, the weighted sum method fails to locate
the solutions residing at the non-convex part of the Pareto frontier. Although the
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Algorithm 4 Simulated Annealing-based Framework


Data: archive set keeping the nondominated individuals
k index for the sub-feasible sets
K number of sub-feasible sets
temp temperature
vp parent solution
vc child solution
Nrep number of replications
δ weight vector


Functions: new cons(k) updates the constraint to define the related sub-feasible
region


init temp() returns an initial temperature
init(k) returns an initial solution from the corresponding sub-feasible


set
init arch() initializes the archive as an empty array
local(v) returns a neighbor solution of v
domoreq(v1,v2) returns true if v1 weakly dominates v2, false o.w.1


new arch(archive,v) updates the archive with v
π(δ, temp,vp,vc) function determining acceptance rule
rand(0, 1) returns a random number from the range [0, 1)
new temp(temp) returns an updated temperature
terminate() terminating condition


archive← init arch()
for k = 0 to k = K − 1 do
new cons(k)
temp← init temp()
vp ← init(k)
new arch(archive,vp)
repeat


for i = 1 to i = Nrep do
vc ← local(vp)
if domoreq(vp,vc) == false then
new arch(archive,vc)


end if
if π(δ, temp,vp,vc) > rand(0, 1) then


vp ← vc


end if
end for
temp← new temp(temp)


until (terminate() = true)
end for
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Figure 5.3: The chart displays the basic structure of the framework.


acceptance rule used here utilizes the weighted sum of the objective functions, it does
not prevent the algorithm to visit the solutions at the non-convex part. Moreover,
an acceptance rule based on the weighted Chebyshev norm coincides with a strong
acceptance criterion, as shown previously in Chapter 4. In the case study carried
out at the end of Chapter 3, we have observed that the trade-off curves are mostly
convex. These issues motivate us for the selected acceptance rule. The acceptance
rule is illustrated graphically in Figure 5.4.


5.3.3 Archiving Strategy


For the ease of maintenance, the general archive is divided into some sub-archives
according the number of LSPs utilized by the solutions. It is reasonable to limit the
number of LSPs in the final set by giving an upper-bound (shown with max lsp).
Thus, the solutions whose number of utilized LSPs is larger than this upper-bound are
not accepted into the archive. Since the minimum number of LSPs possible to use in a
solution can not be larger than the number of traffic requests (shown with min lsp),
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Figure 5.4: The acceptance rule and the iso-curves are illustrated graphically for the
case of δ1 = δ2 = 0.5 .


the number of sub-archives, maintained in the algorithm, is equal to max lsp −
min lsp+ 1.


For any MOP problem, the set of efficient solutions can be very large. Most of the
solutions visited during the algorithm run are compared with the whole archive in
order to find out the dominance relation of the solution at hand with the solutions
in the sub-archives. For the sake of efficiency, in our implementation a child solution
is compared with the archive only if it is not weakly dominated by its parent.


Furthermore, the sizes of the sub-archives should be limited. For the quality of the
final output, it is of enormous importance to obtain uniformly distributed solutions
over a wide extent of the objective functions in each sub-archive. The archiving strat-
egy in MOP has become a key issue with the current developments in multiobjective
EAs. According to the investigations in Chapter 4, the archiving strategy based on
the crowding distance is applied in our framework.


The definition of the crowding distance is illustrated in Figure 5.5. Crowding distance
of a point is based on the average distance of its two neighbors on either side of
this point along each of the objective functions [18]. Thus, crowding distance gives
the average side-length of the cuboid shown in the figure. The points with extreme
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Nondominated solutions


f


f2


1


Figure 5.5: The crowding distance of a point is based on the distances to its neighbors
along each of the objectives.


objective function values are given a crowding distance metric of infinity to keep the
extent within a sub-archive at best.


Calculating the crowding distances requires an already sorted set of nondominated
solutions. In our implementation, the order of the solutions in the sub-archives are
always preserved. When the algorithm comes across with a new nondominated so-
lution, this solution is inserted into the corresponding sub-archive by maintaining
the order. If the addition of the solution causes the corresponding sub-archive to ex-
ceed its limit, the solution with the minimum crowding distance is deleted from the
sub-archive.


The function new arch(archive,v) used in the framework is described in detail below
in Algorithm 5. The functions in the algorithm preserve the ordered structures of the
sub-archives.


5.3.4 Biased Neighborhood Function


The experiments with the multiobjective traffic engineering problem have shown that
it is more difficult to obtain solutions utilizing fewer LSPs. Therefore, the standard


76







5.3 Key Components of the Heuristic Framework


Algorithm 5 new arch(archive,v)


Data: subarch sub-archive corresponding to v
Functions: compare(archive,v) deletes solutions in archive dominated by v


& returns true if v is weakly dominated, false o.w.
insert(subarch,v) inserts v into the corresponding sub-archive
size(subarch) returns true if the size limit is exceeded, false o.w.
crowding calculate(subarch) calculates crowding distances
del min(subarch) deletes the member with min. crowding distance


if compare(archive,v) == false then
insert(subarch,v)
if size(subarch) == true then
crowding calculate(subarch)
del min(subarch)


end if
end if


neighborhood function is slightly modified such that it is biased towards the solutions
with fewer paths. The set of neighbor solutions of vi = (xi,gi,Φi) is represented by
NBi, and can be separated into two groups:


NBi
1 = {vj = (xj,gj,Φj) ∈ NBi | |Xj


>0| < |X
i
>0|},


NBi
2 = {vj = (xj,gj,Φj) ∈ NBi | |Xj


>0| ≥ |X
i
>0|}.


Here, Xi
>0 = {xi, l


t |x
i, l
t > 0, t ∈ T , l ∈ {1, . . . , Lt}}. Thus, NBi


1 includes the neigh-
bors utilizing less paths than vi.


In order to implement the biased neighborhood function, the whole neighborhood of
the point at hand has to be investigated. The members ofNBi


1 can be built practically
by the solutions which have an exiting basic variable from xi and an entering nonbasic
variable from the rest of the regular variables (gi,Φi) and the slack variables. The
rest of the neighborhood builds NBi


2. This strategy is said to be practical, since the
solutions collected according to the entering and leaving variables may cover NB i


1 as
a subset in case of degeneracy. Degeneracy is a special case of basic feasible solutions
encountered during simplex method. Degeneracy occurs when at least one of the basic
variables is equal to its lower and upper bound.


The biased neighborhood function is implemented in a way such that to select a


solution from N̂Bi
1 is given the probability θ. N̂Bi


1 and N̂Bi
2 approximate the sets


NBi
1 and NBi


2 according to the strategy explained above, respectively. Algorithm 6
shows how the biased neighborhood function of the parent solution vp is randomized.
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Algorithm 6 biased local(vp, θ)


Data: θ probability of selecting a solution from NBp
1


N̂Bp
1 set of neighbors approximating NBp


1


N̂Bp
2 set of neighbors approximating NBp


2


vc child solution
Functions: rand(0, 1) returns a random number from the range [0, 1)


local1(v) returns a random solution from N̂B1


local2(v) returns a random solution from N̂B2


if (|N̂Bp
1 | > 0) ∧ (rand(0, 1) < θ) then


vc ← local1(v
p)


else
vc ← local2(v


p)
end if
return vc


The biased neighborhood method is not very practical due to its high computation
overhead. To select a neighbor solution, it requires to investigate all the solutions in
the neighborhood. The latter increases dramatically with the size of the problem. To
overcome this drawback, we have utilized the sampling method which only takes into
account a sample of the neighborhood. The method investigates only the randomly
selected sample of the neighbor solutions for the biased application. Replication of
the same solution in the sample is allowed for the ease of implementation. The size
of the sample is set to 100 in all of the runs of our experiments.


5.4 Experiments


In the experiments, we are mainly interested in the performance of the biased neigh-
borhood application via the sampling method. The sampling method is compared
with the algorithm where no biasing is applied, which is called the unbiased method
in this study. The algorithms are coded in C, and Mersenne Twister [57], an open-
source software to generate random numbers, is integrated into the code. For the
neighborhood structure, the shareware optimizer, Cplex Callable Library 6.6, is uti-
lized [1]. Since simulated annealing is a probabilistic algorithm, 5 runs each with a
different seed of the random number generator have been carried out for each problem
and algorithm.
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Experimental problems


The experiments are carried out for four different problems. The attributes of the
problems are given in Table 5.1. The number of routers, directed links, traffic requests
are directly related to the size of the problem. The last two columns in the table give
the number of columns and rows of the relaxed LP set. The rows include also the
constraints specifying the bounds on the total routing cost (see Constraints (5.13),
and (5.14)). In order to decrease the size of the problem, the set of decision variables
represented by g are removed from the problem. Constraints (3.5) are integrated into
Constraints (3.7)-(3.12). The upperbound on gm is restated as an upperbound on φm.
Thus, the numbers in the fourth column of the table exclude gm for all m ∈ E.


Problem A is the case study investigated in Chapter 3. The other topologies are
generated with GT-ITM [86], an open-source software developed especially for mod-
eling Internet topology. The capacities of the links are assigned equally in all of the
problems. In problem A, the traffic requests are allowed to use paths with at most
4 hops, whereas in the last two problems they can use paths limited to 5 hops. The
bandwidth demands of the traffic requests are also generated randomly. Two levels of
demand ranges are assumed for the problems; one has with lower limits and the other
one with higher limits. The demands are selected randomly from the corresponding
ranges. The traffic demand is assumed to be symmetric, which means if there exists
a demand from the vertex i to vertex j, then there is also a demand from vertex j
to i, and both of the demand values are generated randomly from the same range.


Table 5.1: The experiments are carried out for 4 problems of different sizes.


# Nodes # Links # Requests # Columns # Rows


Prb. A 10 32 90 292 284
Prb. B 14 42 84 320 338
Prb. C 15 44 94 388 360
Prb. D 30 130 132 1832 914


Algorithm parameters


This section discusses the parameters of simulated annealing that are fine tuned in
the problems. The experiments are based on an initial accepting probability instead
of an initial temperature. We start with the temperature equal to 1 and increase
it according to the 10 initial solutions. The absolute differences of the objective
function values are taken into account during this heating process. The temperature
is increased in these iterations to guarantee an acceptance probability of 0.5 based


79







5 A Simulated Annealing-Based Framework for Multiobjective Traffic Engineering


on the absolute value differences. Nrep is set to 250 and the control parameter temp
is gradually decreased. We use a static reduction function temp = 0.95temp. Finally,
the search stops when temp drops under a certain value (tempstop = 0.1). The pre-
studies have shown that these values supply a good compromise between the quality
of the output and the run-time.


Table 5.2 give the parameters which are specific to the problems at hand and are
determined by the decision maker. The first column gives the lower and upper bounds
on the number of utilized paths that are acceptable to the archive. The second and
third column show the minimal routing cost and the largest bound on the routing
cost, respectively. ∆s in the last column specifies the increase in the righthandsides
of the constraints for the total routing cost (see Constraints (5.13), and (5.14)).
Different load balancing functions are used for each problem. The number of break
points in the load balancing functions is set 5 for all of the problems. However, their
break points are at different utilization rates, depending on the density of the traffic
demand matrix. The values of these parameters are not very critical in this study,
they are kept same for each algorithm variant. We are here mostly interested in the
performance comparisons of the algorithms under same conditions.


Table 5.2: The following parameters specific for each problem are used in the standard
runs.


min lsp – max lsp Minimum
Routing Cost


Largest Bound
on Routing Cost


∆s


Prb. A 90–96 843.5 867.5 4.0
Prb. B 84–90 1566.4 1580.4 2.0
Prb. C 95–112 2881.6 2913.6 4.0
Prb. D 132–170 2872.2 3016.2 24.0


It is interesting to note here that, in Problem C min lsp is 95 which is larger than
the number of traffic requests. None of the runs carried out in this section were able
to obtain any solution which uses 94 paths. Thus, we conclude that the constraint
imposing a single path for each traffic request would be infeasible for this problem.


Performance assessment metrics


As stated in Chapter 4, the D-metric is used to compare the nondominance relation
of the output sets with each other. Since the calculation of the S-metric is compu-
tationally expensive and complex for problems with 3 objectives, we calculated it
independently for the subsets of solutions which utilize the same number of LSPs.
The calculations are based on the routing and load balancing costs for each subset.
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Two kinds of S-metric are used in the studies. The first one calculates the weighted
average of the S-metrics, shown as WS. The weight increases, as the number of
utilized LSPs decreases.


WS =


∑max lsp


t=min lspw(t)S(t)
∑max lsp


t=min lsp w(t)


where w(t) is the weight for the set of solutions using t LPSs. S(t) is the S-metric
value of the set of solutions using t paths and it is calculated according to the first
two objective functions. w(max lsp) is set to 1, and, w(t) = w(t+ 1) + 1.


The second type of the S-metric is defined to evaluate the algorithms for the cases
where few paths are used. It takes the average of the S-metric values for the subsets
of the solutions which uses paths less than or equal to t∗. t∗ is selected according to
the size of the problem. This metric is represented with AS(t∗).


Higher values of WS and AS-metrics indicate algorithms with better quality. Both
kinds of S-metrics are calculated according to the normalized objective function
values. The reference points are set equal to the maximum objective function values
existing in the output sets which are compared. Since a set of exact solutions with
59 members is available for Problem A, the values of WS and AS-metrics are based
on the rates of these metrics of the output sets and the exact set.


The effect of the weight vector in the acceptance criterion


In this subsection, we analyze the effect of the weight vector in the acceptance rule
of the sampling method. The biasing factor θ is set to 0.6 in all of the runs of this
section. Three different weights are compared with each other. The first vector gives
almost equal weights to all of the objective functions. In the second one, the least
importance is given to the routing cost and the rest is shared equally between the
minimization of the number of used paths and the minimization of the total load
balancing cost. The third weight vector focuses mostly on the load balancing cost:


δ1 = (0.33, 0.33, 0.34),


δ2 = (0.05, 0.475, 0.475),


δ3 = (0.05, 0.9, 0.05).


For the ease of representation, any variant of the sampling method is denoted with
the following notation: [s, θ,∆, δ]. Through the rest of the chapter, the following
abbreviations are used:


s1← [s, 0.6,∆s, δ
1],


s2← [s, 0.6,∆s, δ
2],


s3← [s, 0.6,∆s, δ
3].
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Figure 5.6: The figure compares the performances of three different weight vectors in
the acceptance rule of the sampling method in terms of the dominance
metric. Since 5 runs are carried out for each algorithm variant, there exist
25 pairwise comparisons. y-axes show two way D-metric values of s3 with
s1 and s2. Each graph corresponds to a different problem as it is stated
in the titles.


Figure 5.6 shows the dominance metric values of s3 with s1 and s2. Since there are
5 output sets for each algorithm variant, 25 metric values are depicted in each case.
Each graph shows that the output sets obtained by s3 tend to outperform the outputs
of s1 and s2 in terms of the dominance metric. The results obtained in Problem D
are especially significant.


Figure 5.7 and 5.8 analyze the algorithms in terms of the S-metric. For Problem A
and B AS(3)-metrics are compared, whereas for Problem C AS(5), and for Problem
D AS(10) values are calculated. The values in parentheses are selected according
to the sizes of the problems. The graphs depict that three kinds of the sampling
algorithm are difficult to compare in terms of WS-metric. However, according to
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Figure 5.7: The WS-metric values of the sampling method variants are depicted in
the figure. Higher values indicate output sets with better quality.


Figure 5.8, s3 generally performs better when the number of utilized LSPs is low.
Hence, we have obtained better outputs with the sampling method which emphasizes
the total load balancing cost. The reasoning behind this observation can be explained
as follows: The sampling method takes the minimization of the total routing cost into
consideration through Constraints (5.13), and (5.14). The application of the biased
neighborhood approach directs the search to the solutions where fewer paths are used.
Hence, a sampling method with a weight vector focusing mostly on the load balancing
cost results with better outputs, especially in terms of the D and AS-metrics.


Comparison of the sampling method with the unbiased method


The analyses in this section compare the sampling method with the unbiased method.
Another interest is also in the effect of θ on the quality of outputs. Thus, the following
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Figure 5.8: The variants of the sampling method are compared in terms ofAS-metric.
The AS(3)-metric values for Problem A and B, the AS(5)-metric values
for Problem C, and the AS(10)-metric values for Problem D are shown
in the figure. Higher values indicate output sets with better quality.


types of the sampling method are compared with the unbiased method in this section.


s3 ← [s, 0.6,∆s, δ
3],


s4 ← [s, 0.4,∆s, δ
3],


s5 ← [s, 0.2,∆s, δ
3].


In the pre-studies with the unbiased method, we have performed some initial runs
with a weight vector of δ3. The results have shown us that the unbiased method
may fail to find solutions utilizing few paths, especially for Problem D which is of
large size. Thus, the standard unbiased method requires multiple runs with different
weight vectors which give more importance to the objective function considering
the minimization of the number of used paths. We repeated the unbiased method


84







5.4 Experiments


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. A


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. A


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. A


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. A


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. A


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. A


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. B


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. B


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. B


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. B


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. B


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. B


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. C


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. C


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. C


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. C


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. C


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. C


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. D


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. D


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. D


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. D


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. D


 0


 0.2


 0.4


 0.6


 0.8


 1


D
(s


5
,u


1
)


D
(u


1
,s


5
)


D
(s


4
,u


1
)


D
(u


1
,s


4
)


D
(s


3
,u


1
)


D
(u


1
,s


3
)


Dominance Metrics for Prb. D


Figure 5.9: The figure compares the dominance relations of various sampling algo-
rithms with the unbiased method.


with different weight vectors, and a single archive is maintained during all of the
repetitions. In the weight vectors, the routing cost is given the least importance. The
unbiased method is repeated for the following 4 weight vectors and a single output
set is obtained:


δ3 = (0.05, 0.9, 0.05),


δ4 = (0.05, 0.62, 0.33),


δ5 = (0.05, 0.34, 0.61),


δ6 = (0.05, 0.06, 0.89).


A variant of the unbiased method is denoted with [u,∆]. u1 = [u,∆s] represents the
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Figure 5.10: The WS-metric values of the algorithms applying the sampling method
with different θ values and the algorithm applying the unbiased method
are depicted in the figure.


standard unbiased method applied in this section.


Since Problem A was previously solved by an exact algorithm, the nondominated sets
obtained in this section are compared with the exact set in terms of D-metric. In the
average, the exact set dominates 82% of the outputs of s3, 73% of the sets of s4, 71%
of the outputs of s5, and 71% of the sets of u1. Apart from that, the approximate
sets obtained by the algorithm variants are compared also with each other in terms
of their dominance relations, and similar results are obtained.


Figure 5.9 plots the pairwise dominance metric values of the sampling method vari-
ants with the unbiased method. According to the results, for problem A, u1 tends to
perform slightly better than the sampling methods (only s5 performs almost equally
as u1). In the other problems, all kinds of the sampling method generally perform
better than the unbiased method. Particularly, in problem D, the difference is sig-
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Figure 5.11: The AS-metric values of the algorithms applying the sampling method
with different θ values and the algorithm applying the unbiased method
are compared. The AS(3)-metric values for Problem A and B, the
AS(5)-metric values for Problem C, and the AS(10)-metric values for
Problem D are plotted.


nificant. The differences between the performances of the variants of the sampling
method are not substantial.


In Figure 5.10 and 5.11, theWS and AS-metric values of the output sets are plotted.
The reference points used in the S-metric calculations are selected differently at each
type of analysis. The selection is based on the output sets at hand. Thus, the metric
values of s3 are different from the values in the previous subsection. According to
the figures, in the first three problems the performance of the unbiased method in
terms of WS and AS-metrics does not differ dramatically from the performances of
all sampling methods. However, in the last problem both s5 and u1 are outperformed
significantly by s3 and s4. Furthermore, s5 performs better than u1. These results
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Figure 5.12: The effect of an increase in ∆ is investigated in terms of the dominance
metric.


suggest that the sampling method generally ends up with better outputs, whereas
one has to be careful with the selection of θ.


The sampling method is also compared with the unbiased method in terms of run
times. A set of exact solutions is available for Problem A, which gives us an idea
how efficient the approximate algorithms are. All of the runs are carried out in an
unloaded Alphaev6-dec-osf5.0 machine with two processors at 667 MHz with 1994
Mbyte memory having Digital UNIX V5.0 as the operating system. For Problem A,
it required about 1082 minutes to run the algorithms with the weights corresponding
to the solutions in the exact set (59 members). Actually, the total run time for the
experiments with the exact method took much longer. Same solutions were obtained
with different weight vectors. In the experiment with the uniformly distributed weight


2These values are based on the two step application of the lexicographic weighted Chebyshev
method.
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Figure 5.13: The WS-metric values of the algorithms applying the sampling and
unbiased method with different ∆ values are depicted in the figure.


vectors, we have seen that it takes about 7.2 minutes for a run of the exact method.
Table 5.3 lists the average run times of s3 and u1 in minute scale. For Problem A, the
average run times of s3 and u1 are much smaller than the total run time necessary
for the exact approach. u1 usually takes less time than s3, except the first and last
problem. It is possible to decrease and increase the run time of the unbiased method
by changing the number of repetitions with different weight vectors. The run time of
the sampling method depends also on the size of the sample.


The effect of ∆ on the performances of the algorithms


The analyses in this section aim at finding out how the quality of the solutions are
affected, when the value of ∆ is increased. It is expected that, an increase in ∆ will
end up with outputs of worse quality, nevertheless it will have a positive effect on the
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Figure 5.14: The AS-metric values of the algorithms applying the sampling and un-
biased method with different ∆ values are compared. The AS(3)-metric
values for Problem A and B, the AS(5)-metric values for Problem C,
and the AS(10)-metric values for Problem D are plotted.


Table 5.3: The average run times (in minutes) of s3 and u1 are given. The algorithms
are executed on an unloaded machine.


s3 u1


Prb. A 6.9 8.7
Prb. B 14.0 9.3
Prb. C 17.7 12.8
Prb. D 19.0 23.8


run times. The updated ∆ values are shown in Table 5.4.
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Table 5.4: The effect of an increase in ∆ is analyzed.


Prb. A Prb. B Prb. C Prb. D


∆u 8.0 3.5 8.0 48


In the analyses, the following algorithms are compared with s3 and u1.


s6 ← [s, 0.6,∆u, δ
3],


u2 ← [u,∆u].


Figure 5.12 depicts the pairwise dominance relations of s3 with s6, and u1 with u2. In
the plots it is observed that the dominance power of the nondominated sets decreases,
when ∆ is increased. This effect is not very clear in Problem D. The reason may be
due the scaling of the objective functions. As stated before, the scaling of the routing
cost depends on ∆ (see Equation (5.15)).


Figure 5.13 and 5.14 show the WS and AS-metric values, respectively. According to
the figures, the increase in ∆ affects negatively the quality of the nondominated sets
in terms of these metrics. Especially for Problem D, u2 almost fails to find solutions
which use few paths (between 132 and 139).


Apart from these, the run times of s6 and u2 are investigated. The average run times
are given in Table 5.5. As expected, the run times are decreased as ∆ is increased.
Thus, there is a trade-off between the size of ∆ and the run times.


Table 5.5: The average run times (in minutes) of s6 and u2 are given. The algorithms
are executed on an unloaded machine.


s6 u2


Prb. A 4.6 4.4
Prb. B 9.4 5.7
Prb. C 10.3 6.7
Prb. D 9 11.9
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6 Conclusion


In this thesis, the multiobjective LSP-design problem in MPLS networks has been
investigated in detail. MPLS networks have received great interest during the past
few years due to their flexibility and efficiency in traffic engineering.


In the multiobjective off-line traffic engineering problem, three objectives were taken
into consideration: minimal total routing cost, optimal load balancing in the net-
work, minimal splitting of the traffic requests. The first objective is traffic oriented,
whereas the second objective is network oriented. The last objective is founded on
both a network and customer perspective. We have shown in a case study that all of
these objectives may be in strong conflict. Being aware of the trade-offs among the
objectives will help the network managers and the ISPs to realize the effects of the
decisions taken.


We have seen that exact solution approaches are inconvenient for this multiobjective
mixed zero-one integer programming problem due to its size and complexity. We have
proposed a heuristic framework using simulated annealing as the search strategy. The
algorithm works on the linear programming relaxation of the original problem. The
neighborhood structure to make moves in the search space is based on the pivoting
steps of the simplex method.


Variant strategies within this framework have been investigated and compared with
each other. We have especially focused on two kinds of neighborhood function: biased
towards the solutions which use less paths versus unbiased. The experiments carried
out in Chapter 5 have shown that methods based on biasing generally perform better
than the unbiased method. The heuristic variants are also compared in terms of
running times. There were no large differences between the running times of the
biased and unbiased approaches, whereas both perform much better than the exact
solution approach.


The future research following this thesis may be developed mainly in the following
ways:


• The mathematical model can be updated to take different aspects of networks
into consideration. Especially, different load balancing functions can be intro-
duced and its effect on the network performance can be compared with the one
currently existing in the model. It is also possible to remove the minimization
of traffic splitting from the model. When the traffic is not allowed to be split,
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6 Conclusion


the problem will be combinatorial. More effective solutions approaches can be
developed for this reduced problem.


• In this thesis, some heuristic algorithms based on only simulated annealing
are investigated. It will be highly interesting to compare the performance of
simulated annealing for the off-line traffic engineering problem with other types
of heuristics. Heuristics based on tabu search, evolutionary algorithms, etc. and
the application of different types of neighborhood structure can be compared
with the algorithms proposed in this thesis.


• We have observed that the application of the biased neighborhood structure
results in better outputs. The effect of biased neighborhood approach can also
be investigated in other types of MOP problems, e.g., multiobjective knapsack,
packing, and nonlinear problems.
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List of Acronyms


ATM Asynchronous Transfer Mode
CR-LDP Constraint-based Routing Label Distribution Protocol
ECMP Equal-Cost MultiPath
FEC Forwarding Equivalence Class
IP Internet Protocol
ISP Internet Service Provider
LP Linear Programming
LSP Label Switched Path
LSR Label Switching Router
MIP Mixed Integer Programming
MOP MultiObjective Optimization
MOSA MultiObjective Simulated Annealing


M-PAES Memetic-Pareto Archived Evolution Strategy
MPLS MultiProtocol Label Switching
NPGA Niched Pareto Genetic Algorithm
NSGA Nondominated Sorting Genetic Algorithm
PAES Pareto Archived Evolution Strategy
PSA Pareto Simulated Annealing
QoS Quality of Service


RSVP Resource Reservation Protocol
SLA Service Level Agreement
SOP Single Objective Optimization


VEGA Vector Evaluated Genetic Algorithm
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List of Symbols


Chapter 2


v decision vector
f , f(v) vector valued functions
Q number of objectives
Xf feasible decision space
z objective vector
Zf feasible objective space
iff ”if and only if”
< component-wise order relation
≤ weak component-wise order relation
� strict component-wise order relation
≺ ”dominates”
� ”weakly dominates”
∼ ”is indifferent”
Xp Pareto optimal set
Zp efficient set
Xa feasible subset
Xw weakly Pareto optimal set
Zw weakly efficient set
RQ space of real numbers in Q dimensions


RQ
− nonpositive orthant
⊕ Minkowski set addition
δ weight vector
ε a vector of real numbers


Sk(ε) a single objective optimization problem of the ε-
constraint method


zref reference objective vector
z∗ vector of optimal objective function values


P (δ), P (δ)
′


problem corresponding to the first and second steps of
the lexicographic weighted Chebyshev method


α value of the weighted Chebyshev metric
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Xδ set of optimal solutions of Pδ


ρ scalar


Chapter 3


V the set of nodes in a network
E the set of directed links in a network
G graph
um capacity of link m
T set of traffic requests
dt bandwidth demand of tth traffic request
Pt set of alternative paths of tth traffic request
pi


t ith path of tth traffic request
Lt number of paths in Pt


cm cost of link m
al


t,m equal to 1 if path pl
t uses link m, and 0 otherwise


C l
t cost of corresponding path
xl


t amount of traffic routed on the corresponding path
gm total load assigned on link m
λm utilization rate of link m
φm load balancing cost of link m


Φa, Φb load balancing cost functions
yl


t equal to 1 if corresponding path is used, otherwise 0
Γ multiobjective zero-one mixed integer programming


problem
ht demand of traffic request t not accepted to the network
d


′


t updated demand of traffic request t after admission con-
trol


Γ(N) decomposed version of Γ, where at most N paths can be
utilized


µ optimization problem introduced in the proof of Theo-
rem 3.4


w decision vector
Ch(N, δ),Ch′(N, δ) first and second steps of the lexicographic weighted


Chebyshev method corresponding to the decomposed
problem


N bound on the number of used paths
α∗ optimal value of weighted Chebyshev metric
ψi commodity in the network
si, ti source and destination node
g(x) vector valued function returning total loads on the links







u vector of capacities
c(g(x)) vector valued cost function
Cp(g(x)) cost of path p


xp amount of flow assigned to path p
x vector of decision variables representing flows assigned


to paths
B upper bound on the total cost


S(Pi) subset of Pi


W see Equation 3.29
i∗ target utilization region
ni number of links in region i


Chapter 4


vp, vc parent and child solution
eval(v) function to evaluate the performance of the solution


temp, tempstop temperature and stopping temperature
r constant


π(temp, δ) simulated annealing acceptance function
S-metric metric called also hyper-volume (see Section 4.4)


C(A,B), D(A,B) coverage and dominance metrics related with the domi-
nance relation between two nondominated sets


Chapter 5


g vector of decision variables representing total loads on
the links


Φ vector of decision variables representing load balancing
costs


y vector of zero-one decision variables
c, d objective function coefficients
r vector of continuous decision variables
s vector of zero-one decision variables
b righthandside vector
e vector of ones


H,J matrix
B,N set of basic and nonbasic variables


HN ,HB matrix built by the columns of H corresponding to N
and B


H−1
B inverse of HB







Nr nonbasic variable entering to the basis
Bs basic variable leaving the basis
z∗1 minimal total routing cost
∆ stepwise increase in the righthandsides of the constraints


imposing lower and upper bounds on the routing cost
K number of sub-feasible sets
Nrep number of replications in SA
Ri range factor for ith objective function


max lsp upperbound on the number of used paths put for the
archiving strategy


min lsp minimal number of paths possible to use
NBi, NBi


1, NB
i
2 set and subsets of the neighbor solutions of vi


θ biasing factor


N̂Bi
1, N̂B


i
2 approximated subsets of the neighbor solutions of vi


∆s, ∆u values of ∆ in runs
WS weighted average of the S-metrics
S(t) S-metric value of the set of solutions using t paths
w(t) weight for the solutions with t paths (used in the calcu-


lation of S(t))
AS(t) average of the S-metrics (see Section 5.4)


s1, . . . , s6, u1, u2 algorithm variants
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