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ABSTRACT 

THIS DISSERATTION focuses on developing a novel immune algorithm called for 

finding Pareto-optimal solutions simultaneously maintaining diversity to single- and 

multi-objective optimization problems (SOOPs and MOOPs) based fully on the features 

of a biological immune system. The applications in this dissertation include 

unconstrained/constrained test functions and truss-structure sizing multi-objective 

optimization, structural topology single-objective with multi-modally optimization, and 

single-objective job-shop scheduling optimization problems.  The use of proposed 

immune algorithm as opposed to the evolutionary algorithm (e.g., genetic algorithm, GA, 

evolution strategy, ES) provides this methodology with superior diversification and local 

search abilities.  Inter-relationships within the proposed algorithm resemble antibody- 

antigen relationships in terms of specificity and adaptiveness, antibody clonal 

proliferation, antigen discrimination, and the antibody memory characteristics of adaptive 

immune responses.  Besides, the features for producing antibodies in biological immune 

system such as gene fragment rearrangement and several antibody diversification 

schemes (including somatic recombination, somatic mutation, gene conversion, gene 

reversion, gene drift, and nucleotide addition) are incorporated into the proposed immune 

algorithm in order to improve the balance between exploitation and exploration.  

Moreover the concept of cytokines is also combined to algorithm for constraint handling.  

By using several performance metrics and comparison with the other approaches, the 

effectiveness of proposed immune algorithm are evaluated by unconstrained/constrained 

test functions and several engineering applications (truss sizing, structural topology, and 

scheduling).  The simulated results demonstrated that the proposed immune algorithm 

provides better effect than other methods and suitable for searching in optimizations. 



 

摘要 

 

本論文提出一個完全以生物免疫系統為基礎的演算法則-免疫演算法(Immune 

Algorithm)，並應用於多目標(multi-objective)最佳化、單目標多值域(multi-modal)最

佳化與實際工程最佳化設計問題(如: 桁架, 結構拓樸及 scheduling等)全域最佳解之

搜尋。不同於其他演化式演算法，例如遺傳演算法(Genetic Algorithms)、演化策略法

(Evolution Strategy)，本免疫演算法具有較佳的多樣性與局部搜尋能力。藉由結合生

物免疫系統中適應性免疫反應之特徵，例如抗原與抗體之專一性(specificity)與適應

性(adaptiveness) 、抗原識別(discrimination)、抗體之株落增殖(clonal proliferation)、

抗體之記憶性(memory)與抗體激素(cytokine)等，以及抗體片段重組和抗體多樣性機

制，包含自體突變(somatic mutation)、自體重組(somatic recombination)、基因轉換(gene 

conversion)、基因倒置(gene inversion)、基因飄移(gene shift)與核甘酸插入(nucleotide 

addition)等，使得本免疫演算法於最佳化搜尋時，同時兼具全域與局部搜尋之能力， 

並且能在全域與局部搜尋之間達到平衡。 

為了驗證本免疫演算法之搜尋效能，本論文以無限制條件測試函數、具限制條

件測試函數、實際工程結構設計等問題進行多目標與單目標多值域最佳解之搜尋。  

在經由與其他演化式演算法比較後其結果顯示，以本免疫演算法搜尋之結果確實優

於其他演算法，同時亦證實本論文所提之免疫演算法適用於最佳化搜尋問題。 
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NOMENCLATURE 

iAb  : ith antibody of whole population. 
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violation. 

jcount  : Total number of the jth antibody violated constraint condition. 

ijd  : The Euclidean distance between the ith and jth antibodies in objective space. 

kf  : kth objective function. 

( ikf x ) : kth objective value of the ith solution. 

ag  : The allowable constraint value. 

jg  : The equality and/or inequality constraint values. 
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CN  : Total number of equality and inequality constraint conditions. 

ir  : Rank values represent combinatorial intensity between ith antibody and all 



 

antigens. 

ir  : Rank values ( ) added by constraint violation values ( ). ir iCK

iS  : Similarity among antibodies. 

ix  : ith solution. 

Abδ   : Threshold value which illustrates the allowable difference between antibodies. 



 

CHAPTER 1 

INTRODUCTION 

 

1.1 Optimization 

 The optimization is the process of searching for one or more feasible solutions 

which correspond to extreme values of one or more objectives in a problem until no other 

superior solution can be found.  When an optimization problem modeling a physical 

system considering only one objective, the task of finding the optimal solution is referred 

to as single-objective optimization problems or SOOPs.  There exist single-objective 

optimization methods that work by using calculus-based or deterministic search principles 

such as gradient-based and heuristic-based techniques and stochastic search principles, 

which allow optimization method to find globally optimal solutions more reliably 

including.  Evolutionary algorithm and simulated annealing are two of such stochastic 

methods.  While an optimization problem involves more than one objective, the task of 

finding one or more solutions is known as multi-objective optimization problems or 

MOOPs.  Much of the current focus is on single-objective engineering optimization, 

even though most real-world problems require that several objectives be satisfied 

simultaneously.  A challenging MOOPs-related problem concerns the goodness of fit of 

a solution, since all solutions have their own range of fitness values (usually one per 



 

objective).  Trade-offs are common, since any solution may be good for some objectives 

but not for others.  The frequency of conflicting objectives has made multi-objective 

optimization an important aspect of engineering and design.   

 Over the past decades, numerous approaches such as tabu searches [Hansen, 1997; 

Gandibleux et al., 1996], simulated annealing (SA) [Suppapitnarm et al., 2000], Ant-Q 

Algorithms [Mariano and Morales, 1999], fuzzy logic [Rao et al., 1992], neural networks 

(NN) [Balicki, 1998], and evolutionary algorithms such as evolution strategies (ESs) 

[Knowles and Corne, 1999] and genetic algorithms (GAs) [Deb, 2001; Zitzler, 2001; 

Coello, 2002; Osyczka, 2002] have been developed for solving the optimization problems.  

In which Genetic algorithms — powerful tools based on biological evolution mechanisms 

and natural selection theory [Goldberg, 1989] — have received considerable attention as 

the single- and multi-objective optimal design efforts.  The genetic algorithms are based 

on the mechanism of natural selection and evolution and are applied in searching for the 

global optimum for many applications.  They combine survival of the fittest individual 

among population with a structured and randomized information exchange to form a 

search algorithm with some of the innovative flair of human search.  GAs start from a 

set of random strings to represent the individuals of population and proceed repeatedly 

from generation to generation through three basic genetic operators: reproduction (or 

selection), crossover, and mutation.  In each generation, the number of copies of every 



 

individual is reproduced in proportional to its value of fitness function for next generation.  

Because the value of fitness function represents the probability of survival, the selection 

procedure keeps strong individuals and eliminates the weak ones to emulate the evolution 

of nature.  The reproduction operator is the source of exploitation.  Crossover operator 

recombines genetic information of two individuals to produce the offspring for the next 

generatio3n.  The main purpose of crossover is to exchange genetic information between 

parent pairs without losing any important schemata. In short, crossover operator can be 

viewed as a two-step process.  In the first step, the individuals of mating pairs are chosen 

form the mating pool of population.  Then transaction of chromosome segments between 

mating pairs is performed in the second step.  The purpose of mutation is to introduce 

genetic diversity into the population.  A random number is generated for every bit in all 

chromosomes of the current population and it is checked with the probability of mutation.  

If the random number is less than the probability of mutation, the selected bit has to 

undergo mutation, i.e., change from 1 to 0 or vice versa.  The total number of bits to be 

mutated is set by the mutation rate. Both the crossover and mutation operators are the 

sources of exploration.  They will disrupt some of the schemata on which they operate.  

In the process of genetic search, there is a tradeoff between exploitation (i.e. reproduction) 

and exploration (i.e. crossover and mutation).  The difficulty of genetic algorithms is 

seeking the balance between exploitation and exploration that determine the convergence 



 

and diversity of the optimal search.  Hence, the genetic algorithms are useful in finding a 

global optimum in cases where several local optima are present.   

 Schaffer’s (1985) vector-evaluated genetic algorithm (VEGA)—the first GA 

application developed for solving MOOPs—uses GAs to find multiple trade-off solutions 

from a single simulation run.  Hajela and Lin (1992) designed a Weight-Based Genetic 

Algorithm (WBGA) for multi-criteria optimization.  A domination approach to solving 

MOOPs was used by Murata and Ishibuchi (1995), and Fonseca and Fleming (1993) in 

their Multi-Objective Genetic Algorithm (MOGA) and by Srinivas and Debs (1994) to 

create their Non-dominated Sorting Genetic Algorithm (NSGA).  Other approaches 

based on GAs include the Multi-Niche Crowding Genetic Algorithm (MNCGA) (Rao 

Vemuri and Cedeno, 1995), Niche Pareto Genetic Algorithm (NPGA) [Horn et al., 1994], 

Reduced Pareto Set Genetic Algorithm (RPSGA) [Osyczka and Kundu, 1995], Neural 

Evolution Strategy SYstem (NESSY) [Koppen and Rudlof, 1997], spatial predator-prey 

model approach (Laumanns et al., 1998), Strength Pareto Evolutionary Algorithm (SPEA) 

[Zitzler and Thiele, 1998], Hybrid GA [Lo and Chang, 2000], Diploid GA [Viennet et al., 

1996], and Multi-Sexual GA [Lis and Eiben, 1997]. 



 

1.2 Structural Optimization 

The structure optimal design is a very interesting topic in the field of engineering 

optimization. The optimal design of structures including sizing, shape (i.e. configuration) 

and topology forms the basic issues for the structural design process.  In sizing 

optimization, the parameterized shape and topology are considered as fixed, while an 

optimal set of sizing parameters, such as the cross-section areas of trusses, are found.  

With shape optimization, only changes to the boundary conditions of the design can be 

made with the topology of structure being held constant.  Different from shape 

optimization, topology optimization not only changes structural boundary but also 

modifies the interior material of structure.  In other words, holes in the interior of 

structure can be created.  Hence, the topology optimal design may be the most important 

and difficult topic in structural optimization.  In the structure optimization, optimal 

design of truss-structures has always been a fast developing area of research in the field 

of engineering optimization and has made notable progress in the last decade.  

Numerous techniques and methodologies have been developed to find optimal 

truss-structures, especially biological-inspired methods imitating natural phenomena and 

physical processes.  Among these are simulated annealing [Moh and Chiang , 2000], 

particle swarm optimization [Fourie and Groenwold, 2002], evolutionary strategy 

[Gutkowski et al., 2001], fuzzy logic [Shih and Yu, 1995], immune algorithm [Ishida et 



 

al., 1995] and genetic algorithms [Coello and Christiansen, 2000; Narayanan, 1998; Deb 

and Gulati, 2001; Erbatur et al., 2000; Ponterosso and Fox, 1999; Fadel and Li, 2002], 

the most famous of these methods being genetic algorithms.  Further, most practical 

design tasks require that the sizing of variables be chosen from a list of discrete 

commercial values as opposed to continuous values.  This results in a discrete 

optimization problem of greater complexity more difficult to solve using traditional 

methods [Templeman, 1988; Loh and Papalambros, , 1991; Loh and Papalambros, 1991].  

However, this is not an issue for genetic algorithm due to their binary-coded nature.  

Note that GA theory can be equally applied to continuous optimization problems.   

Besides, in the past decades a number of innovative approaches to structural 

topology optimization have been developed.  The domain variation (also termed 

sensitivity analysis) is the first approach proposed by Kibsgaard (1992) for topological 

optimization.  It consists of successive small variations of the initial design domain, and 

is based on the computation of the gradient of the objective function with respect to the 

domain.  This approach has two major defects: first, it requires a good initial guess, as it 

demonstrated to be unstable for large variations of the domain; second, it does not allow 

modification of the initial domain topology (e.g. add or remove holes).  Another popular 

method, the homogenization method [Bendsøe and Kikuchi, 1988; Suzuki and Kikuchim, 

1991; Tenek and Hagiwara, 1993; Lin and Chou, 1999] first proposed by Bendsøe and 



 

Kikuchi (1988) consists in dealing with a continuous density of material.  In the end of 

this method, the final density is forced toward value 1 or 0 (material present or absent).  

However, this approach requires the design of the homogenized operator, as thoroughly 

described in Allaire and Kohn (1993), and is insofar limited to the linear elasticity case.  

In addition, it cannot address loadings that apply on the actual boundary of the shape to 

be determined, and hardly handles optimization for multiple loadings [Kane and 

Schoenauer, 1996].  Recently, a simple approach to shape and topology optimization 

termed Evolutionary Structural Optimization (ESO) method has been developed by Xie 

and Steven (1993).  The original concept of ESO method is to gradually remove lowly 

stressed elements not needed from the structure after each finite element analysis, the 

element removal criteria is established by sensitivity analysis. Hence, the topology of the 

resulting design is gradually improved to achieve the optimal design.  A fundamental 

potential drawback of this method pointed out by Liu et al. (2000) is the strong 

dependence of the solution on the mesh of finite element from which it is evolved and on 

the sequence of the element removal.  Although the capability to add or reinstate 

elements has recently been added to the ESO through the Bidirectional Evolutionary 

Structural Optimization (BESO) method [Querin et al, 1998], this addition is still 

restricted to previous element positions or to the area/volume predefined by the mesh of 

finite element.   



 

A possible approach to overcome these difficulties of topological optimization 

mentioned above is to adopt stochastic optimization methods such as the simulated 

annealing [Kirkpatrick et al., 1983], the genetic algorithms [Goldberg and Samtani, 1986] 

and the immune algorithm [Bersini and Varela, 1991].  Anagnostou et al. (1992) 

developed a simulated annealing based approach for structure optimal configuration 

design.  More recently, a lot of researchers have extensively employed genetic algorithm 

based methods for structural optimization in the optimal design of discretized trusses 

sizing [Rajeev and Krishnamoorthy, 1992; Wu and Chow, 1995], shape [Jenkins, 1991; 

Woon et al., 2001], and topology [Kane and Schoenauer, 1996; Chapman, 1994; Jakiela, 

2000]. 

 

1.3 Job-Shop Scheduling Optimization 

The job-shop scheduling problem (JSSP) is one of the well-known NP-hard 

combinatorial optimization problems.  The problem can be described as: there are a list 

of j jobs and a number m of machines that perform operations on jobs.  Each job 

involves a particular collection of tasks, and each task needs to be performed on a given 

machine for a given period of time.  In general, the task of scheduling is the allocation of 

jobs over time when limited resources are available, where the objective should be 

optimized and constraints must be satisfied.  There are several constraints on jobs and 



 

machines [Blazewicz et al., 1996]: i) there are no precedence constraints among 

operations of different jobs; ii) operations cannot be interrupted and each machine can 

handle only one job at a time; iii) each job can be performed only on one machine at a 

time.  While machine sequence of the jobs is pre-assigned, the problem is to find the job 

sequences on the machines which minimize the makespan, i.e. the maximum of the 

completion times of all operations.  Since the processing time and constraints are fixed, 

and no stochastic occur, the search space consists of feasible schedules. mj )!(

 During the last three decades, various approaches have been applied to solve JSSP, 

including the following: mathematical programming (linear programming, goal 

programming, dynamic programming, etc.), branch-and-bound methods, and some 

heuristic/probabilistic search methods.  It has been recognized that scheduling 

optimization using mathematical programming is very difficult, because of lengthy 

computational time.  In addition, several branch-and-bound methods [Applegate and 

Cook, 1991; Brucker et al., 1994; Carlier and Pinson, 1989] have been developed for 

solving the JSSP to optimality.  These methods require a large amount of computation 

time and therefore it become more difficult to achieve an optimal solution when the 

variety of parameters (i.e. jobs or machines) and constraints is incremented.  In recently 

years, there has been an increasing interest and growing rapidly in methods based on 

heuristic such as simulated annealing (SA) [Van Laarhoven et al., 1992; Kolonko, 1999], 



 

tabu search (TS) [Dell’ Amico and Trubian, 1993; Ponnambalam et al., 2000], neural 

network [Foo et al., 1995], and genetic algorithms (GAs) [Davis, 1985; Cheng et al., 

1996; Maturana et al., 1997; Murata et al., 1996; Croce et al., 1995; Wang and Zheng, 

2002], which are capable of producing goodness solutions with a reasonable 

computational effort.  In the past few years, GAs have been widely applied in the 

production of scheduling field.  A GA exhibits parallelism, contains certain redundancy, 

and historical information of past solutions, and is suitable for implementation on 

massively parallel architecture. 

 

1.4 Summary 

 Even though, genetic algorithms are considered powerful in terms of global 

optimization, but they have several drawbacks regarding local searches.  Tazawa et al. 

(1996) identified two of them as i) lack of local search ability, and ii) premature 

convergence.  A number of researchers have experimented with optimization approaches 

inspired from biological immune system to overcome these particular drawbacks implicit 

in genetic algorithms.  Biological immune system (IS) is responsible for protecting the 

living body against the foreign antigens and other toxins that may be harmful.  It 

exhibits abilities to specificity, learning and memory, and adaptation and discrimination, 

and presents as a remarkable natural defense mechanism.  The immune system 



 

eliminates the harmful materials or foreign antigens mainly by producing soluble 

antibodies, which recognize and then bind the molecules of foreign antigens.  In addition, 

the immune system is capable of remembering infection, hence, a second exposure to 

identical or similar antigen is deal with more efficiently.  For these reasons, and many 

others, the biological immune system can be viewed as a mechanism of vast potential for 

inspiration in variety of domains.  Based on the features of a biological immune system, 

a new biologically inspired technique, so-called artificial immune system (AIS), has been 

developed for a computational tools and applied to a myriad of computational scenarios 

during the recently years.  The applications of AIS are various including pattern 

recognition and classification [Carter, 2000], search and optimization methods [Mori et 

al., 1993; Bersini and Varela, 1994; Hajela and Yoo, 1999; Hajela et al., 1997; Hajela and 

Lee, 1996; Endoh et al., 1998; Luh et al., 2003; Luh and Chueh, 2004], fault diagnosis 

and anomaly detection [Aisu and Mizutani, 1996; Dasgupta and Forrest, 1999], machine 

learning [Hunt and Cooke, 1996], control [Krishnakumar, 1996], scheduling [Fukuda, 

1993; Tomoyuki, 2003], nonlinear system identification [Luh and Cheng, 2001], robotics 

[Jun et al., 1999; Luh and Cheng, 2002], data mining [Knight and Timmis, 1999], 

computational security [Kephart, 1994; Kim and Bentley, 1999], and so on. 

 Based on these research efforts in the field of search and optimization methods, 

Bersini and Varela (1991) proposed a genetic immune recruitment mechanism (GIRM) to 



 

improve GA’s local search ability.  However, this mechanism takes no measures to 

counteract premature convergence.  Mori et al. (1993) developed an immune algorithm 

using the sharing-like method of GA to prevent premature convergence, but it has no 

control mechanism to balance between the local search and the global search.  Chun et 

al. (1999a) used an immune algorithm for optimizing the shape of electromagnetic 

devices.  Tazawa et al. (1996) proposed an immunity-based genetic algorithm (IGA) 

with improved and faster global convergence, and Hajela et al. (1997) followed up with a 

separate GA-based biological immune system model for enhancing the convergence 

characteristics and constraints associated with the use of GAs for structural optimization.  

Several researchers, including Fukuda et al. (1998) and Chun et al. (1999b), have 

attempted to apply immune algorithms (IAs) to multimodal and multi-objective 

optimization problems.  Chun et al. used an IA to search for diverse solutions to design 

problems for electromagnetic devices, with optimal solutions aggregating in memory 

cells.  In their modification of a GA-based search procedure for solving MOOPs in a 

structural system, Yoo and Hajela (1999) made use of a utility function and weighting 

mechanism to convert a multi-criteria problem into a single-objective problem.  It is 

important to emphasize, however, that a genetic algorithm serves as the framework for all 

of the hybrid approaches mentioned in the above literatures.  The basic role of an 

immune algorithm is to support diversity via different levels of inter-antibody; even 



 

though natural immune systems have a powerful capacity to diversify, to learn, memorize, 

and process information, and to discriminate between self and non-self when reacting to 

foreign pathogens [Dasgupt and Forrest, 1999; de Castro and Jonathan, 1999; Coren et al., 

1999].   

 To highlight the significant features of immune systems, a novel immune algorithm 

based fully on imitating of biological immune system has been developed in this 

dissertation for the purpose of optimal searching in the various optimization fields 

including single-objective, multi-objective, and multi-modally optimizations with 

different solution encoding system such as one-dimensional & two-dimensional 

binary-encoded string, and not-bit string (or integer) representations.  Within the field of 

multi- objective optimizations, numerous unconstrained/constrained test functions 

suggested by Zitzler (1998) and Deb et al. (2001) were performed to validate the 

significant effectiveness of the proposed immune algorithm, with Pareto-optimal solution 

performances quantitatively measured by five performance metrics.  Via using several 

performance metrics and comparison with different evolutionary approaches, the results 

indicated that the proposed immune algorithm in the field of multi-objective optimization 

(named MOIA) generally performs better than SPEA (strength Pareto evolutionary 

algorithm), MOGA (multi-objective genetic algorithm), NPGA (niche Pareto genetic 

algorithm), and NSGA (non-dominated sorting genetic algorithm) for these test functions.  



 

For the field of constrained multi-objective and multi-modally optimizations, two revised 

immune algorithm named CMOIA (Constrained MOIA) and MMIA (multi-modal 

immune algorithm) have also been proposed for the optimal searching in multi-objective 

truss-structure sizing optimizations and single-objective multi-modal structural topology 

optimizations considering constraints.  By comparison with some other approaches, the 

results shown that proposed immune algorithm is capable of finding accurate results and 

keeping the diverse of the solutions.  Finally, in the single-objective optimization of 

job-shop scheduling, through the validation from several benchmark problems with 

different number of jobs and machines, the proposed immune algorithm is also suitable in 

such scheduling optimization.   

 

1.5 Structure of the Dissertation 

 This dissertation is divided into eight main Chapters.  CHAPTER 1 introduces the 

goal and purpose of the dissertation, and also depicted its structure.  CHAPTER 2 

reviews a large number of works from the literatures which are most related to this 

dissertation research.  In CHAPTER 3, a general overview of How Biological Immune 

System Works is presented, considering its anatomy, molecules, organs, and main cells.  

In addition, the proposed immune algorithm and its nine major steps are presented detail 

in the CHAPTER 4.  The scheme of these steps such as the mechanisms of gene 



 

rearrangement and antibody diversity was inspired by biological immune system.  

CHAPTER 5 depicted the applications of proposed immune algorithm to the 

multi-objective optimization with antibody/solution represented by a one-dimensional 

binary-encoded string. The applications in this chapter including 

unconstrained/constrained numerical test function optimization as well as two 

truss-structure sizing multi-objective optimizations considering 10-bar plane truss with 

continuous design variables and 25-bar space truss with discrete design variables, both 

sizing optimizations subjected to the maximum allowable stresses.  The simulated 

results are compared with other algorithms and discussed in the rear of this chapter.  An 

application to the single-objective with multi-modal structural topology optimization 

using immune algorithm is depicted in CHAPTER 6.  Two 2-dimensional asymmetric 

topology problems subjected to constrained stresses are optimized in this application. 

Different antibody representation from applications in the CHAPTER 5, the antibody is 

represented by two-dimensional binary-encoded matrix.  The single-objective job-shop 

scheduling optimizations for proposed immune algorithm are illustrated in the 

CHAPTER 7.  In this chapter, the antibody is represented by the not-binary encoding 

string (i.e. integer encoding).  Several benchmark test problems with different number of 

jobs and machines were calculated and compared in this chapter.  Finally, CHAPTER 8 

makes overall conclusions in proposed immune algorithm.



 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 This dissertation focuses on developing a novel immune algorithm for optimal 

search in the areas of numerical function, structure, and scheduling.  In each of these 

areas, there is an immense body of literature.  Hence, this chapter reviews the prior work 

in these areas that is most related to this dissertation research and organized as follows.  

Section 2.2 reviews the work on the artificial immune systems (AIS) which are applied to 

optimization problems.  In section 2.3, the literature review is focused on the 

evolutionary approaches in the field of multi-objective optimization.  

 

2.2 Artificial Immune System 

 This section reviews the works on artificial immune systems specially designed to 

solve constrained, multi-modal, multi-criteria/multi-objective, and combinatorial 

optimization problems. 

 Bersini and Varela (1991) developed a search technique based on the features of 

network sensitivity and metadynamics to apply to the function optimization. This 

approach consists of an affinity measure and a fitness function.  The affinity measure 
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was used to evaluate the degree of similarity among individuals of the population, while 

the fitness function was responsible for evaluating the quality if each individual in 

relation to the environment.  Noted that the adopted of measuring the similarity among 

individuals is a process similar to fitness sharing in genetic algorithm.  In addition, 

individual candidates suffered genetic operators by crossover and mutation borrowed 

from evolutionary algorithm. The authors shown results on a simple problem using a 

binary Hamming distance among individuals and normalized fitness function. The results 

were presented by comparing their approach with the standard genetic algorithm (SGA).  

Besides, the authors also offered a genetic immune recruitment mechanism (GIRM) 

which introducing clonal selection of immune system into genetic algorithm to improve 

the local search ability of genetic algorithm, but failed to add preventive measures against 

premature convergence. 

Mori et al. (1993) proposed an immune algorithm for a multi-modal function 

optimization hybridizing ideas from idiotypic network theory, immune diversity, clonal 

selection, and genetic algorithm.  Their algorithm is based on an entropy measure to 

maintain the diversity of a receptor of antibodies.  Sharing and genetic operators – 

crossover and mutation are used to promote genetic recombination and variation in the 

antibody and prevent the premature convergence, but it has no control mechanism to 

balance between the local search and the global search.  The algorithm is of general 
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purpose as a hybrid of an evolutionary and immune-inspired approach.  Its applications 

have been several, from function optimization to scheduling. 

Tazawa et al. (1996) proposed an immunity genetic algorithm (IGA) combining 

immune system (IS) with genetic algorithm (GA).  Authors highlight two mechanisms 

of IS – the clonal selection and idiotypic network.  IGA has a fixed number of solutions 

and generates new solutions as to the GA by using crossover and mutation operators.  

After new solutions are generated, IGA selects solutions that form new population like 

clonal selection of IS.  Besides, IGA divided a population into several subpopulations 

and controls the number of similar solutions like idiotypic network in order to balance 

between the local and global search.  The algorithm was applied to floorplan design 

problem of VLSI layout and compared the results with those of GA. 

Fukuda et al. (1998) proposed an immune algorithm (IA) based upon the somatic 

theory and network hypothesis of immune system (IS) to solve the multi-modal function 

optimization problem partly using a genetic algorithm.  The somatic theory describes 

that somatic recombination and mutation contribute to increase the diversity of antibodies.  

The network hypothesis describes that a mutual recognition network among the 

antibodies contributes to control of the clonal proliferation.  The proposed algorithm is 

shown to be effective for searching for a set of solutions as well as local solutions.  Test 

functions with multi-peak and Shubert function are illustrated to show the abilities of 
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immune algorithm for multi-modal optimization. 

Chun et al. (1998) applied a slightly modified of the immune algorithm developed 

by Mori et al. (1993) to several function optimization problems and compared its 

performance with that of evolution strategy and genetic algorithm.  In addition to apply 

to function optimization, author also applied his algorithm to the optimal design of a 

surface permanent magnet synchronous motor and a pole shape of an electromagnet 

[Chun et al., 1997], and compared the performance with other methods.  Based on their 

results, the author claimed that the modified immune algorithm is very suitable for 

solving multi-modal optimizations.   

Hajela and Yoo (1999) took inspiration from the immune system to address several 

problems in optimal design: i) how to enhance the convergence speed of genetic 

algorithm (GA), ii) how to handle constraints in a GA-based search, and iii) how to adapt 

the GA search to large scale design problem.  For these reasons, author proposed an 

algorithm combined with capabilities of pattern recognition and adaptation in immune 

system to improve the performance of GA in structural optimization problems.  Like the 

majority of GA applications, authors used a binary encoding for the strings representing 

the immune components, i.e. a binary Hamming distance.  The antibodies corresponding 

to the unfeasible designs, while the antigens were equivalent to the feasible ones.  The 

goal of the algorithm was to adapt the unfeasible antibodies to feasible antigen, so as to 
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reduce the constraint violation of GA-based search.  The fitness of an individual was 

determined by its ability to recognize either a specific or a broad group of antigens, given 

by a function that measure the number of matching bits between a pair of strings. Thus, 

affinity was measured by similarity instead of complementarity.  The algorithm was 

applied to several tasks, including the optimal design of a 10-bar truss structure for 

minimum weight and with pre-defined allowable on maximum stresses of tension and 

compression in the bar elements. 

 Toma et al. (1999) proposed an algorithm based on the immune network and MHC 

peptide presentation. The immune network was used to produce adaptive behaviors for 

the n-TSP agents, and antigenic presentation by MHC molecules was employed to induce 

competitive behaviors among these agents.  The agents processed a sensor, mimicking 

MHC peptide representation by macrophages.  T cells were used to control the behavior 

of agents and B cells were used to produce behaviors.  The system operated as follows: 

first macrophages acquired a city number at random and presented to the B- and T-cells.  

If a T cell recognized this number, it tried to help B cell by sending stimulatory signals.  

If B- and T-cells both recognized the same number, the B cell produced an antibody and 

traveled, then MHC was changed. This representation was based on an integer 

shape-space, and the affinity of each agent with the environment was directly proportional 

to the distance traveled by the agent. 
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2.3 Evolutionary Algorithms 

 In this section, the reviewed literatures are focused on several evolutionary 

algorithms which are most commonly used in multi-objective optimization problems 

(MOOPs), such as VEGA, WBGA, MOGA, NSGA, NPGA, and SPEA and so on.  In 

the implementation of MOOPs, the pioneering work of applying evolutionary algorithm 

into multi-objective optimization problems is implemented by Schaffer (1985) with his 

algorithm named vector evaluated genetic algorithm or VEGA.  After Schaffer’s VEGA, 

Goldberg (1989) realized a better implementation of domination principle in an 

evolutionary algorithm and suggested a new non-dominated sorting procedure.  Since an 

evolutionary algorithm needs one fitness function for reproduction, the aim was to find a 

single metric from a number of objective functions.  Goldberg’s suggestion was to use 

the concept of the domination to assign more copies to non-dominated individuals in a 

population. Since diversity is another concern, the use of a niching strategy among 

solutions of a non-dominated class was also suggested by Goldberg.  Realizing the 

potential of a good multi-objective evolutionary algorithm which can be derived from 

Goldberg’s suggestion, at least three independent groups of researchers have developed 

different various of multi-objective evolutionary algorithm, i.e. multi-objective genetic 

algorithm (MOGA), niched Pareto genetic algorithm (NPGA), and non-dominated sorting 

genetic algorithm (NSGA).  These algorithms differ in the way a fitness is assign to each 
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individual.  In addition to VEGA, MOGA, NSGA, and NPGA, few other evolutionary 

algorithms have also been reviewed in this section. 

 

VEGA  

 The first implementation of a multi-objective evolutionary algorithm was suggested 

by Schaffer (1985) to find a set of non-dominated solutions.  He modified the simple 

genetic algorithm (SGA) with selection, crossover, and mutation by performing 

independent selection cycles according to each objective.  Hence, he called his algorithm 

as the vector evaluated genetic algorithm or VEGA.  VEGA evaluated an objective 

vector instead of a scalar objective function with each element of the vector representing 

each objective function.  Since a number of objectives have to be evaluated, he divided 

the population at every generation into O equal subpopulations, and each subpopulation is 

assigned a fitness based on a different objective function.  Then, each of the O objective 

functions is used to evaluate some members in the population.  Even though VEGA uses 

a simple idea and is easy to implement and has capability of finding non-dominated 

solutions, it has several disadvantages in maintaining a good spread of solutions and bias 

towards some solutions in the obtained non-dominated front.  In VEGA, a solution is 

evaluated only with one objective, but all of the others are also important in the context of 

multi-objective optimization.  During the simulation run, solutions near the optimum of 
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corresponding objective function would be preferred by the operators of selection and 

crossover in a subpopulation.  Such preference takes place in parallel with other 

objective functions in different subpopulation.  Therefore, even in convex search space 

problem, the operators between individual champion solutions could not find diverse 

solutions in the population, eventually, the VEGA converges to individual champion 

solutions only.  

 

MOGA 

Fonseca and Fleming (1993), whom first introduced a Multi-objective genetic 

algorithm (called MOGA), used the non-dominated classification of a GA population for 

finding non-dominated solutions and simultaneously maintaining diversity in the 

non-dominated solutions.  In the MOGA, differs from a SGA, the fitness is assigned to 

each solution in the population, while rest operators of the algorithm (e.g. stochastic 

universal selection, single-point crossover, and bit-wise mutation) are the same as that in 

a SGA.  To a solution i, its fitness is equal to one plus the number of solutions which 

dominate solution i.  In this way, the non-dominated solutions are assigned with a fitness 

value equal to 1.  In order to maintain diversity of among non-dominated solutions, they 

have also introduced a niche count calculated by summing the sharing function among 

solutions.   Finally, the shared fitness value which reduced the fitness value of each 
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solution was defined by dividing the assigned fitness value by the niche count.  Then, 

the selection with shared fitness values, crossover, and mutation were applied to create a 

new population. 

 

NSGA 

 Among the Pareto-based multi-objective evolutionary algorithm, Srinivas and Deb 

(1994) have implemented Goldberg’s concept (non-dominated sorting) more directly.  

The idea behind the non-dominated sorting procedure is that ranking selection method is 

used to obtain good solutions and niche method is employed to maintain stable 

subpopulation of good solutions.  Since, the algorithm is based on the non-dominated 

sorting procedure, they called this algorithm as the non-dominated sorting genetic 

algorithm, NSGA.  NSGA differs from SGA only in the way the selection operator 

works, while crossover and mutation operators remain as usual.  Once again, the dual 

objectives in a multi-objective optimization algorithm are maintained by using a fitness 

assignment scheme which prefers non-dominated solutions and by using a sharing 

strategy which preserves diversity among solutions of each non-dominated front.  The 

fitness assignment procedure different from MOGA begins from first/best non-dominated 

set and successively proceeds to dominate sets in current population.  Any solution i of 

the first non-dominated set is assigned a fitness equal to its population size.  Since, all 
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solutions in the first non-dominated set are equally important in terms of their closeness 

to the Pareto-optimal front.  Besides, the diversity of each solution is maintained by 

degrading the assigned fitness based on the number of neighboring solutions (i.e. niche 

count) and sharing function.  Therefore, degrading fitness of each solution is evaluated 

by its niche count and sharing function with a sharing parameter.  After the degrading 

fitness values are assigned, the roulette-wheel selection, crossover, and mutation 

operators are applied as usual to the whole population. 

 

NPGA 

 Horn, Nafpliotis, and Goldberg (1994) have proposed a multi-objective genetic 

algorithm based on the concept of Pareto dominance and they called niched-Pareto 

genetic algorithm (NPGA).  NPGA differs from VEGA, MOGA and NSGA in the 

selection operator.  NPGA use the Pareto domination tournaments instead of 

non-dominated sorting and ranking selection method in solving multi-objective 

optimization problems.  In this method, a comparison set comprising of a specific 

number of individual is chosen at random from the population at the beginning of each 

selection process.  Two random individuals are chosen from the population for selecting 

a winner in a tournament selection.  Both individuals are compared with the members of 

the comparison set for domination with respect to the objective functions.  There are two 
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scenario occurred in this tournament selection: i) If one of them is non-dominated and the 

other is dominated, then the non-dominated one is selected; ii) If both are either 

non-dominated or dominated, a niche count is found for each individual in the entire 

population.  Both individuals which with small niche count is selected.  Since, this 

non-dominance is evaluated by comparing an individual with a randomly chosen 

population set, the success of this algorithm highly depends on the number of this 

population set. 

 

WBGA 

 Hajela and Lin (1992) proposed a weight-based genetic algorithm (WBGA) for 

multi-criterion optimization.  In the WBGA, each individual in a population is assigned 

with a different weight vector, the weighted sum of the normalized objective function 

values are then added together with assigned weight vector to calculate the fitness of an 

individual.  Because each weight vector will result in one Pareto-optimal solution, the 

number of weight vector is governed by the maximum number of desired Pareto-optimal 

solutions.  Besides, a sharing strategy with niche count is proposed by computing the 

distance metric between two solutions in order to maintain diversity in the weight vector.  

Therefore, the fitness is degraded by this sharing strategy to calculate the shared fitness 

value.  Since fitness is degraded when using the sharing function concept, the 
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proportional selection method needed to be used.  The crossover and mutation operators 

are then applied on whole population as usual. 

 

SPEA 

 Zitzler and Thiele (1998) proposed an elitist evolutionary algorithm, they called the 

strength Pareto evolutionary algorithm (SPEA).  SPEA introduced elitism concept by 

explicitly maintaining an external population (elite individuals) preserved a fixed number 

of the non-dominated solutions that are found during beginning of the simulation run.  In 

each generation, newly found non-dominated solutions are compared with the external 

population and the resulting non-dominated solutions are saved in this external population.  

In order to restrict the population to over-grow, the size of external population is bound to 

a limit number.  Not all elite individuals can be preserved in the external population 

when the size of external population exceeds a limit number, elite individuals which are 

less crowded are kept by using clustering algorithm.  Besides, the elite individuals in the 

external population are also participated in the genetic operators with current population 

for the help of influencing the population towards good region in the search space.  

During the assignment of fitness, in addition to the assigning of fitness to current 

population, fitness is also assigned to the external population.  SPEA assigns a fitness to 

each elite individual i of external population first and called this fitness as the strength.  
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The strength is proportional to the number of individual in current population that an elite 

individual i dominate.  Thereafter, the fitness of individual j in current population is then 

assigned as one plus the sum of the strength values of all elite individuals which weakly 

dominate individual j.  This fitness assignment provides that a individual with a smaller 

fitness is better.  With the fitness values, a tournament selection is applied the current 

and external (combination) population to choose individuals with smaller fitness.  

Thereafter, a crossover and mutation operators are used to create the new population from 

this combination population. 
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CHAPTER 3 

HOW BIOLOGICAL IMMUNE SYSTEM WORKS 

 

3.1 Introduction 

 The biological immune system (IS) is a complex of cells, molecules and organs that 

represent an identification mechanism capable of perceiving and combating dysfunction 

from our own cells (infectious self) and the action of exogenous infectious 

microorganisms (infectious non-self) such as viruses, bacteria, and other parasites 

(so-called invading antigens) [Jerne, 1974].  The most important function of a biological 

immune system is to protect living organisms from invading antigens.  The body 

identifies foreign antigens through two inter-related systems: the innate immune system 

and the adaptive immune system.  A model of relationship among immune system 

components is depicted in Fig. 1.  Phagocytes, the main cells participated in innate 

immune system, are white blood cells capable of destroying most of antigens on first 

contact.  The adaptive immune system uses lymphocytes that can quickly change in 

order to destroy antigens that have entered the bloodstream. A major difference between 

these two systems is that adaptive cells are more antigen-specific and have greater 

memory capacity than innate cell.  B-lymphocyte (or B-cell) and T-lymphocyte (or 

T-cell), two main types of lymphocyte, play a significant role in adaptive immune system. 
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The T-cell matures in the thymus while the B-cell matures in the bone marrow.  Cells of 

the B and T lymphocyte series differ in many functional aspects but share one of the 

important properties of immune response that they exhibit specificity toward an antigen.  

Thus the major recognition and reaction functions of the immune response are contained 

within the lymphocytes.  There are two branches of adaptive immunity: humoral 

immunity and cell mediated immunity that have different sets of participants and different 

sets of purposes but with one common aim: to eliminate the antigen.  These two 

branches interact with each other and collaborate to achieve the final goal of eliminating 

the antigen.  B-cells are included in the humoral immunity to synthesize antibodies in 

the process of clonal proliferation once they are activated by antigen and Helper T-cells 

while T-cells take part in the cell mediated immunity.  T-cells do not synthesize 

antibodies but instead synthesize and release various cytokines that affect other cells.  

One class of the T-cells, named the Killer T-cells, destroys the infected cell whenever they 

recognize the infection.  The other class that trigger clonal proliferation, 

stimulate/suppress antibody formation is called the Helper T-cells.  A breakdown in any 

of their activities can result in allergic reactions and autoimmune disease.  Lymphocytes 

float freely in blood and lymph node and patrol everywhere for foreign antigens, then 

gradually drift back into the lymphatic system, to begin the cycle all over again. 
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Fig. 1 Illustration of the biological immune system 

 

3.2 Immune System Works 

 As shown in Fig. 1, when an infectious foreign pathogen attacks the human body, 

the innate immune system is activated as the first line of defense.  Innate immunity is 

not directed in any way towards specific invaders, rather against any pathogens that enter 

the body [de Castro and Jonathan, 1999].  Hence, it is so-called non-specific immune 

system.  The most important cells in the innate immunity are phagocytes such as 

macrophages, monocytes and dendritic cells.  Macrophages possess the capability of 

ingesting and digesting several microorganisms and antigenic particles.  Some 

macrophages have the ability to present antigens to other cells, thus being termed 

antigen-presenting cells (APCs).  The APC interprets the antigen appendage and extracts 

the features by processing and presenting antigenic peptides on its surface to lymphocytes.  
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These antigenic peptides are a kind of molecule called MHC (Major Histocompatibility 

Complex) to distinguish the non-self molecules (infectious non-self) from the those native 

self molecules (infectious self) and plays a leading role in inducing the expression of 

co-stimulatory signals in APCs that will lead to T-cell activation, promoting the boost of 

the adaptive immune system.  Moreover, B-cells are also affected by Helper T-cells 

during the adaptive immune responses.  The Helper T-cell plays a remarkable key role 

for deciding the immune system toward the cell mediated immunity (by Th1 Helper 

T-cells) or the humoral immunity (by Th2 Helper T-cells) [Roitt and Brostoff, 1998], and 

connects the non-specific immune response to make a more efficiency specific immune 

response.  The T cells work, primarily, by secreting soluble substances, know as 

cytokines and their relatives that constitute powerful chemical messengers.  

Lymphokines or interleukin (IL) are the cytokines secreted by lymphocytes. The 

cytokines promote cellular growth, activation and regulation.  In addition, cytokines can 

also kill target cells and stimulated macrophages.  In the other hand, B-cell becomes 

stimulated and created antibodies during clonal proliferation in the germinal center when 

a B-cell recognized an antigen.  Recognition is achieved by inter-cellular binding, which 

is determined by molecule shape and electrostatic charge.  The secreted antibodies are 

the soluble receptor on the surface of B-cell and these antibodies can be distributed 

throughout the body.  As shown in Fig. 2b, an antibody-combining site or termed 
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paratope can bind with an antigenic determinant or termed epitope.  Moreover, the 

immune system produces the diverse antibodies by recognizing the idiotype of the mutual 

receptors of the antigens between antigen and antibodies and between antibodies.  The 

strength of binding between antigens and antibodies and that amongst antibodies can be 

evaluated by the value of affinity, or degree of match. In terms of affinities, the immune 

system self-regulates the production of antibodies and diverse antibodies. 
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Fig. 2 Antibody molecule and multiple-epitope antigen 

  

3.3 Antibody Structure 

One of the major functions of the immune system is the production of soluble 

proteins that circulate freely and exhibit properties that contribute specifically to 
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immunity and protection against foreign material.  These soluble proteins are the 

antibodies, or called immunoglobulins (Ig), and expressed as secreted and 

membrane-bound forms.  Secreted antibodies are produced by plasma cells – the 

terminally differentiated B cells during clonal proliferation within germinal center.  

Membrane-bound antibody is present on the surface of B cells where it serves as the 

antigen-specific receptor.  The basic unit of an antibody molecule is composed of four 

polypeptide chains: two identical light chains and two identical heavy chains as depicted 

in Fig. 2a.  The grouping of two different types of gene fragments (VL, JL) constructs 

the light chains and the combination of three different types of gene fragments (VH, D, 

JH) forms the heavy chains.  In addition, the variable region (V-region) is responsible 

for the antigenic recognition and binding, whereas the constant region (C-region) cannot 

bind antigen, but it is responsible for the biological functions of the antibody molecule 

after antigen has been bound to the V-region.  The V- and C-region of an antibody 

molecule are coded by different gene fragments.  For the purpose of enormous diversity, 

many different V-region genes can be linked up to a single C-region.  The combining of 

V- and C-region gene fragments (rather than having a single gene coding for every 

individual antibody molecule) significantly reduces the amount of genetic information 

required to encode different antibody molecules.  Additionally, antibody gene fragments 

could move and rearrange themselves within the genome (inherited DNA) of a 
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differentiating cell.  A V-region gene fragment can be located in one position in the DNA 

of an inherited chromosome (the germ-line DNA), and then move to another position on 

the chromosome during differentiation.  This differentiation brings together an 

appropriate set of gene fragments for the V- and C-region.  The set of rearranged gene 

fragments is then transcribed and translated into a complete H or L chain.  Consequently, 

the genetic materials (gene fragments) required to produce an antibody are encoded in a 

set of antibody library named germ-line DNA library, each library containing a set of 

components or fragments of antibodies.  Besides, the V (variable), D (diversity), and J 

(joining) gene fragments are individual libraries that contribute to the production of 

functional antibody.  For each library, those can be created from the lymphocytes of 

donors who differentiate with higher affinity developed in the immune system.  Note 

that the functional genes of antibody do not exist in the germ-line DNA libraries, except 

only the gene fragments.  A functional gene is generated when germ-line DNA is 

rearranged randomly. 
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Fig. 3 Clonal selection principle 

3.4 Clonal Selection 

After binding to antibody receptors, an antigen stimulates the B cell to differentiate 

and mature into plasma cells and memory antibodies through the process known as clonal 

proliferation or clonal selection.  As shown in Fig. 3, the clonal proliferation of the B 

cell occurs inside the lymph nodes within a special microenvironment named germinal 

center where antigenic peptide is presented on the surface of the follicular dendritic cells 

(FDCs).  The proliferated B cells that are able to combine with FDCs survive and 

become plasma cells to secrete large amount of the same kind antibodies. The principle of 

clonal selection is the theory used to describe the basic properties of an adaptive 

immunity to an antigenic stimulus.  It establishes the idea that only those cells capable of 

recognizing an antigenic stimulus will proliferate and differentiate into effector cells, like 
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the plasma cells.  Therefore, the germinal center constantly selects high affinity B cells 

and simultaneously fosters the B cells apoptosis (a process of cell death) that bind the 

antigen ineffectively [Krawinkel et al., 1983].  A hypermutation mechanism takes place 

on the variable region of B cell during the process of clonal proliferation.  The 

hypermutation plays a critical role in creating diverse antibody, increasing affinity and 

enhancing specificity of antibody.  This occurs at an extremely high rate, about 5-6 

orders of magnitude higher than the normal mutation rate [Harris et al., 1999].  In 

addition to differentiating into plasma cells, B cell can as well discriminate into 

long-lived B memory cells.  When a living body is exposed to similar antigens again, the 

memory antibodies start differentiating into large amounts of lymphocytes capable of 

producing high affinity antibody by pre-selecting specific antigen [Perelson et al., 1978].  

Both mutational and selectional events in B-cell clonal proliferation processes allow these 

lymphocytes to increase their antibodies diversity and improve their capability to 

recognize the selective antigens (increasing their affinities with selective antigens).  In 

clonal proliferation, random changes (e.g. hypermutation) are introduced to the V-region 

genes, and occasionally one such change will lead to an increase in the affinity of the 

antibody.  These higher-affinity matured cells are then selected to enter the pool of 

memory cells.   The antibody is not only diversified through a hypermutation process 

but mechanisms whereby rare B-cells with high affinity mutant receptors can be selected 
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to dominate the immune response (donor of B-cell).  Due to the random nature of the 

somatic mutation process, a large proportion of mutating genes become non-functional or 

possibly develop harmful anti-self specificities which attack our own body cells.  On the 

contrary, those cells with low affinity receptors, or the self-reaction cells, must be 

efficiently eliminated.  In terms of affinities, the immune system self-regulates the 

production of antibodies and diverse antibodies. 

 

3.5 Antibody Diversity 

The number of different genes for V-region in the germ line constitutes the baseline 

from which antibody is derived and represents the minimum number of different 

antibodies that could be produced.  How B cells can develop a vast antibody of antigenic 

specificities. This explained one of the key features of the immune response: 

diversity—the ability to respond to many different epitopes, even if they had not been 

previously encountered.  Current estimates show that although the human genome 

contain about 105 genes, it is able to produce antibody repertoire that can recognize at 

least 1016 antigens.  The enormous diversity of the antibody developed by the immune 

system is the key to its antigen recognition capabilities.  Three major categories are 

reported to increase the diversity of antibodies: i) combinatorial diversity via multiple 

copies of V, D, and J gene fragments encoded in the germ-line DNA libraries, and 
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somatic recombination inaccuracy [Roitt and Brostoff, 1998]; ii) junctional diversity via 

small variations in the precise point of juncture of gene fragments and small insertions of 

nucleotides at juncture sites [Manser et al., 1987]; iii) mutational diversity via somatic 

mutation such as point mutation, short deletions and repertoire shift (gene conversion) 

which can occur within assembled antibody genes to further expand antibody diversity 

[de Castro and Von Zuben, 1999]. 

 

3.6 Summary 

The immune system is a remarkable natural defense mechanism.  It exhibits 

characteristics such as i) Specificity: the ability to discriminate among different antigenic 

epitopes, and to respond only to those that necessitate a response rather than making a 

random response.  ii) Learning and Memory: the ability to recall previous contact with a 

particular antigen, such that subsequent exposure leads to a more rapid and more effective 

immune response.  iii) Discrimination between self and non-self: the ability to response 

to those antigens that are foreign/non-self and to prevent responses to those antigens that 

are part of own body/self.  For these reasons, and many others, the immune system can 

be viewed as a mechanism of vast potential for inspiration in variety of domains including 

pattern recognition, optimization, anomaly detection, machine learning, control system, 

scheduling, fault diagnosis, nonlinear system identification, robotics, and so on.
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CHAPTER 4 

IMMUNE ALGORITHM 

 

4.1  Introduction 

                                                      (4.2) ( ikik fAbAg x≡

 In this dissertation, a novel scheme – Immune Algorithm (IA) based on emulating a 

biological immune system is developed to solve the optimization problems.  Analogous 

to the biological immune system, the proposed immune algorithm has the capability of 

seeking Pareto-optimal solutions while maintaining a high-level of diversity in the search 

space.  Corresponding to the optimization problem, the antigens ( ) and antibodies 

( ) serve as objectives ( ) and associated solutions ( ) in a computational model, 

respectively, and are expressed as follows: 

kAg

iAb kf ix
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,...,2,1                                         

,,2,1             ,,, 21
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            (4.1) 

)

where  represents the ith antibody of the whole population, or the ith solution ( ) 

composed of a set of  design variables (

iAb ix

AbNx
AbNxxx ,,, 21 ⋅⋅⋅ ), represents the kth 

antigenic epitope, or kth objective function ( ); indicates the affinity value 

between an ith antibody and an kth antigenic epitope, or equivalently the kth objective 

value of the ith solution ( ).   is the number of antibodies/solutions, whereas 

 is the number of antigens/objectives.  Fig. 5 illustrates the relative scheme of 

kAg

kf ikAbAg

( ix )kf AbN
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antibody/solution ( / ) and antigen/objective ( ) defined in this 

algorithm.  The antibodies evolve continuously to search for the fittest ones, i.e. the most 

matched with specific antigens.   

iAb ix  )(/ ikik fAbAg x

Besides, similar to the evolutionary algorithms especially the genetic algorithm, the 

proposed IA starts from a pre-defined number of random strings to represent the 

antibodies of population and proceed repeatedly from generation to generation through 

four basic immune operators: clone, donor selection, antibody rearrangement, and 

antibody diversity.  In addition, each antibody is classified into several different kind of 

gene such as light-chain and heavy-chain gene mimicking the structure of antibody in the 

biological immune system.  The clone operator proliferates the stimulated antibodies 

which presented higher combinatorial intensity with antigen in whole antibody population 

with hypermutation.  The hypermutation event only occurred on the gene of light chine 

(usually defined as lower bits of binary code if binary encoding system is used) in order 

to prevent excessive discrepancies.  After the clonal proliferation, the proliferated 

antibodies which increasing its combinatorial intensity are defined as mature antibodies 

and become plasma antibodies and memory antibodies both with identical gene structure, 

while proliferated antibodies which decreasing its combinatorial intensity are defined as 

immature antibodies and then neglected.  The plasma antibodies will combine with 

original antibody population and wait for donor selection.  The memory antibodies 
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preserve and update in the memory pool.  Besides, a part of memory antibodies will be 

induced to the germ-line DNA library for offering its gene fragment to construct new 

antibody.  The donor selection operator is the source of exploitation/convergence. By 

using of tournament selection method, the antibodies which presented higher 

combinatorial intensity with antigen will be selected as donor for constructing the 

germ-line DNA library.  Hence, the members of germ-line DNA library are composed of 

the memory and donor antibodies.  The antibody rearrangement operator rearranges the 

antibody fragment randomly chosen from germ-line DNA library for producing new 

antibody.  The purpose of antibody diversity operator is to introduce genetic diversity of 

antibody into the population thorough somatic point mutation, somatic recombination, 

gene conversion, gene inversion, gene shift, and nucleotide addition inspired from 

biological immune system.   

Therefore, according to different optimization problem, the antibody can be encoded 

by one-dimension bit-code string (e.g., test functions and truss-structure sizing 

multi-objective optimization in chapter 5), two-dimension bit-code string/matrix (e.g., 

structural topology multi-modal optimization in chapter 6), or not bit-code string (e.g., 

job- shop scheduling optimization in chapter 7).  Once the antibody has been defined, 

the combinatorial intensity between antibody and antigen is then calculated.  In the 

scenario of multi-objective, the combinatorial intensity between antibody and antigens is 
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represented by the rank value.  While in the scenario of multi-modally optimization, the 

combinatorial intensity is composed of the objective function value and similarity value 

among antibodies.  However, the combinatorial intensity is replaced by objective 

function value directly when consider the single-objective optimization.  The cytokine 

value of the antibody is treated as the penalty term for constraint violation if considering 

the constrained optimization problem.  Next, several antibodies which present higher 

combinatorial intensity (i.e., non-dominated antibodies in the multi-objective 

optimization or the best antibody in the single-objective optimization) will move to 

germinal center for clonal proliferation (or so-called clonal selection) for locally 

improving their combinatorial intensity.  Hence, the function of clonal proliferation can 

be regarded as the effect of local search.  After clone process, the matured antibody(s) 

which combinatorial intensity better than un-proliferated antibody(s) note only return to 

population (plasma antibodies) for becoming the donor antibodies by tournament 

selection method, but move to memory pool as the memory antibodies for speeding up 

the optimal search.  For producing new antibodies, different from genetic algorithm 

which crossover two individuals the antibody is rearranged by using gene fragments 

chosen randomly from the corresponding gene libraries stored in the germ-line DNA 

library.  However, the germ-line DNA library is constructed by the donor antibodies 

which express higher intensity with antigen(s) and the memory antibodies.  Finally, 
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several diversification mechanisms (e.g. somatic point mutation, somatic recombination, 

gene conversion, gene inversion, gene shift, and nucleotide addition) inspired by 

biological immune system are employed in order to match a large variety of antigens and 

prevent premature.  Noted that these mechanisms are randomly adopted in the antibody 

diversification process. 

The corresponding biological immune system, proposed immune algorithm (IA) and 

genetic algorithms (GAs) terminologies are summarized in Table 1.  In the rest of this 

chapter we will describe detailed the algorithm procedure represented by the flowchart in 

Fig. 4. 
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Table 1 Corresponding terminology of biological immune system, proposed immune 

algorithm (IA), and genetic algorithms (GAs) 

Biological immune system IA GAs 

Antigen Objective ( )  )( if x Objective 

Antibodies Antibodies/solutions ( ) ix Chromosomes/solutions 

Antibody structure Antibody length (bit-string) Chromosome length 

Number of antibody Antibody size Population size 

Affinities between antigen and antibodies Affinities/Objective values  ikAbAg Fitness values 

Affinities between antibodies Similarity between solutions ijAbAb Distance between solutions

Avidity between antigens and antibodies Avidity  iav None 

Idiotype value between antibodies Similarity of solutions  iS Niche/sharing 

Hyper-mutation Mutation with higher mutation rate Mutation 

Plasma antibodies (in clonal proliferation) Improved local search None 

Memory antibodies Pareto-optimal set None 

Germ-line DNA fragment Schemata None 

Gene fragment rearrangement 
Binary-code segment 

recombination 

Parental gene 

recombination/crossover 

Antibody diversification Six diversification schemes Mutation operator 

None None Crossover 

Cytokine Constraint conditions handling Penalty 
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Fig. 4 Immune algorithm flowchart 

 

4.2 Major Steps of Immune Algorithm 

4.2.1  [Step 1] Establishing initial antibody population 

Similar to evolutionary algorithms, the initial antibody population utilizing a 

pre-defined number of random string is generated randomly.  For a binary-encoded 

antibody, each variable ( ) in an antibody encoded by a pre-defined number of bits is 

separated into light-chain genes and heavy-chain genes mimicking the structure of 

antibody in biological immune system as depicted in the top figure of Fig. 5.  The gene 

length or gene amount of each chain is determined by the user-defined light/heavy 

ix
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chain-length ratio.  Noted that the properties of antibody such as encoding method (e.g. 

binary-encoded or not binary-encoded, and one-dimensional binary string or 

two-dimensional binary string), defining of light-chain and heavy-chain gene, and/or 

classification of genes (e.g. variable gene and constant gene) should be revised for 

applying to various optimization problems.  

con2

connc

Antigen = {                             }obj1 obj2 objno, , ,

obji=fi (Antibody)

epitopesAntigen

obj1
obj2 objno

con1
con2

connc
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Fig. 5 Antibody-antigen representation 

4.2.2  [Step 2] Calculating combinatorial intensity 

In the proposed immune algorithm, the combinatorial intensity between ith antibody 

and antigens is represented by the rank values  for the multi-objective optimization 

problems (MOOPs) and by the affinity/objective values ( ) for single-objective 

ir

ikAbAg
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optimization problems (SOOPs), expressed as: 

( )

ikik

objAbikiii

AbAgaffinity

NkNiaffinityaffinityaffinityrankr

=

==⋅⋅⋅= ,...,2,1   ,,...,2,1   ,,,, 21
   (4.3) 

where  indicates the normalized affinity/objective values (ikaffinity ).  Note that 

normalization values ikAbAg  are utilized to prevent objective values from being 

numerically dominant in the optimization process.  Besides, for used in the constrained 

optimization problems, the combinatorial intensity between ith antibody and antigens is 

replaced by the values ir , and expressed as: 

ikAbAg

iii CKrr +=                           (4.4) 

where ir  is defined as the rank values ( ) added by constraint violation values (CK ).  

However, the cytokine value (CK ) of the antibody is treated as the penalty term for 

constraint violation.  Resembling the biological immune system, the cytokine can either 

stimulate or suppress the promotion of antibodies dependent on whether the antigen is 

non-self or self (reward feasible or penalize infeasible solutions).  Computation of the 

cytokine is expressed as follows: 
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where  represents the cytokine value for ith antibody;  is the total number of iCK CN
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equality and inequality constraint conditions; amount and correspond to the 

normalized values of the summation of jth antibody violated amount and total number of 

the jth antibody violated constraint condition, respectively;  denotes the equality 

and/or inequality constraint values whereas  indicates the allowable constraint value.  

Note that the larger the cytokine value the higher degree of constraint violation.  

Obviously, the antibodies will to be well received for evolution if the cytokine values are 

equal to zero.  Consequently, non-dominated (i.e. first rank) antibodies in the MOOPs or 

the best antibody in the SOOPs will thus be selected into the germinal center for clonal 

proliferation, with the remaining dominated antibodies proceeding to Step 4 to calculate 

their avidity values (MOOPs only) or to Step 4 to wait for donor selection (SOOPs). 

j jcount

jg

ag

 

4.2.3  [Step 3] Clonal proliferation 

In biological immune systems, only antibodies stimulated by antigens enter the 

germinal center for clonal proliferation.  In the proposed immune algorithm, stimulated 

antibodies – non-dominated antibodies (MOOPs) or the best antibody (SOOPs) 

determined in [Step 2] are chosen for hypermutation during the clonal proliferation 

process, with a user-defined hypermutation rate and proliferation number (Fig. 4).  To 

prevent excessive discrepancies, hypermutation only takes place with lower bits of binary 

code - the equivalent of light chains.  After the hypermutation process, mature 
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antibodies (i.e., non-dominated or the best proliferated antibody(s)) that have a greater 

combinatorial intensity than un-proliferated antibody(s) are differentiated into plasma 

antibodies and memory antibodies preserved and updated in the memory pool.  Noted 

that, both plasma and memory antibody have identical gene structure i.e., the genes of 

plasma antibody(s) is the same with the genes of memory antibody(s).  Further, the 

resulting bad memory antibodies and immature proliferated antibodies are neglected as 

the immature cell apoptosis process in biological immune systems.  The surviving 

mature antibodies – plasma antibodies together with the dominated antibodies from 

antibody population derived from [Step 2] will undergo the next step to calculate their 

avidity values (MOOPs) or go to [Step 5] for donor antibody selection (SOOPs).  

Moreover part of the non-dominated antibodies in the memory pool would be re-induced 

to the germ-line DNA library according to the user-defined inducing ratio.   

In this step, clonal proliferation is equivalent to the local search effect in 

optimization process for finding non-dominated solutions.  Obviously, the larger number 

of proliferations is the wider space searches with trade-off of time consuming.  In 

addition, inducing memory antibodies (global non-dominated solutions) to the germ-line 

DNA library will increase the exploitation effect. 
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4.2.4  [Step 4] Calculating avidity 

,          (4.7) 

 In biological immune systems, affinity refers to the binding strength between a 

single antigenic determinants (epitope) and an individual antibody-combining site 

(paratope).  Avidity refers to the overall strength of binding between multivalent 

antigens and antibodies.  However, avidity is more than a simple sum of individual 

affinities.  In this dissertation, avidity value ( ) is the binding of affinities between 

antigens and antibodies as well as between antibodies only for multi-objective 

optimization problems.  It is computed as the inverse of the combinatorial intensity (rank 

value ) between ith antibody and all antigens multiplied by its similarity value ( ) 

with other antibodies – in other words, 

iav

ir iS
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1                                (4.6) 

where,  representing the similarity of an ith antibody with other antibodies, is 

expressed as 
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where Abδ  is a user-defined threshold value which illustrates the allowable difference 

between antibodies,  is the affinity value between the ith and jth antibodies, and 

is the Euclidean distance between the ith and jth antibodies in objective space.  Noted 

ijAbAb

ijd
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that the larger the Euclidean distance , the larger the difference between ith and jth 

antibodies.  Since,  and when = 1 (i.e. 0

ijd

10 ≤≤ ijAbAb ijAbAb =ijd ), the ith antibody 

is identical to the jth antibody. 

i

iS

 Higher avidity value means that antibody has higher activation with non-self antigen 

and lower similarity with the other antibodies.  The higher the avidity value, the higher 

probability is selected to germ-line DNA library as the donor antibodies for gene 

fragment rearrangement.  Besides,  corresponds to the convergence of solutions to 

the Pareto front and  corresponds to the diversity among obtained non-dominated 

solutions.  Hence, the algorithm prefers low rank (i.e. high affinity) and low similarity 

solutions (i.e. diverse antibodies). 

r

 

4.2.5  [Step 5] Donor antibodies selection 

Similar to the building of germ-line DNA libraries in an immune system, the 

proposed immune algorithm uses a tournament selection method to select donor 

antibodies exhibiting higher avidity values (MOOPs) or affinity values (SOOPs) to 

assemble germ-line DNA libraries.  Some antibodies (according to the predefined 

tournament size) are chosen randomly for competition and the winner is survived and 

subsequently turns into a donor antibody. 
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4.2.6  [Step 6] Germ-line DNA libraries construction 

As explained in Chapter 3, the genetic material required to produce antibody 

molecules is stored in germ-line DNA libraries, each one containing a fragment of an 

antibody gene.  In the proposed immune algorithm, the germ-line DNA library 

components include donor antibodies derived from Step 5 and part of memory antibodies 

induced from memory pool, at an inducing ratio defined by the user. 

 

4.2.7  [Step 7] Gene fragment rearrangement 

In a biological immune system, antibodies are produced through a random 

rearrangement of fragments selected from the germ-line DNA library.  As to the 

proposed immune algorithm, antibodies are established using gene fragments randomly 

selected from corresponding light- and heavy-chain libraries of each design variable.  

The gene fragment rearrangement, synthesizes the antibodies by different gene fragments 

encoded in the germ-line DNA libraries which were composed of the fragments from the 

donor and memory antibodies.  Note that the gene fragment rearrangement operator 

employed in proposed algorithm is comparable with the crossover utilized in genetic 

algorithms.  Instead of crossing over two individuals in GA, proposed algorithm 

recombine building blocks (i.e. fragments from the fittest antibodies) directly.  This 

suggests the superior capability of proposed algorithm in discovering accurate and diverse 
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non-dominated solutions rapidly.  Therefore several diversification schemes are required 

to prevent the premature effect due to schemata recombination. 

 

4.2.8  [Step 8] Antibody diversification mechanisms 

Matching a large variety of antigens requires an equal level of diversity in antibody 

type.  In the proposed immune algorithm, this was achieved by mimicking the following 

six mechanisms found in biological immune systems.  All the schemes described below 

have the exploration effect in optimization search processes.  It should be noted that the 

six diversification mechanisms described in this step are adopted randomly in the 

antibody diversity process. 

 

1. Somatic point mutation.  In terms of binary string representation, this means 

reversing a bit from 1 to 0 or vice versa according to a pre-defined diversity 

probability.  The result is a slight alteration of an antibody gene for local search 

purposes. 

2. Somatic recombination.  As shown in Fig. 6, two light chains in the variables  

and  adopted for recombination are randomly selected, after which a partial 

crossover between them was performed according to a randomly diversity 

probability. 

ix

kx
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Fig. 6 Somatic recombination illustration 

3. Gene conversion, gene inversion, and gene shift.  Following predefined diversity 

probability, gene conversion, gene inversion, and gene shift were completed using a 

randomly picked heavy chains antibody variable (see Fig. 7 - 9).  Note that the 

starting and ending sites were randomly generated, and the number of bit-shift genes 

was predefined.  This type of diversification scheme results in a global search effect.  

In gene conversion (depicted in Fig. 7), the gene segment between the starting and 

ending sites of a randomly picked heavy chain was forced to converse (mutate) their 

genes (bits) from 1 to 0 or vice versa.  As to the gene inversion operator shown in 

Fig. 8, randomly chosen gene segment inverses sequentially its gene positions from 

front to rear or from rear to front.  Fig. 9 illustrates gene shift operation.  

Following the predefined number of gene shift, the selected gene segment right-shift 

their gene locations with excessive bits being reallocated from rear to front. 
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4. Nucleotide addition.  As demonstrated in Figure 10, nucleotide insertion occurs in 

either light or heavy chains, depending on the variable.  Several bits of genetic 

material (representing the nucleotide) were randomly inserted into chains that were 

reassembled so as to discard excess bits.  The resulting nucleotide is a randomly 

created binary string with a pre-defined number of nucleotide genes.  Increasing the 

bit number will diversify the antibody population further. 

0 1 11 0 1 1 01 0 1 100 1 01 1 0 0
xix1 xNAbx2

Abi

heavy chains light chains

0 1 1 00 0 1 1 1 0 0 1 001 1 1 0 10 1 1 1

starting site ending site

0 11 1 0 0 0 1 1 0 001 1 1 0 10 1 1 10 1

gene conversion

 

Fig. 7 Gene conversion illustration 
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1
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Fig. 8 Gene inversion illustration 
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Fig. 9 Gene shift illustration 

Fig. 10 Nucleotide addition illustration 
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4.2.9 [Step 9] Stopping criterion 

The process stops when the iteration number equals a pre-defined generation.  In 

the final stage, the feasible non-dominated optimal solutions are placed in the memory 

pool, otherwise the population returns to [Step 2] for another round. 
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 All parameters used in the proposed immune are tabulated and described in the Table 

2. 

Table 2 Description of immune algorithm parameters 

Parameter name Description 
Population size The size of antibody population. 

Light/heavy chain-length ratio 

The proportion of light-chain genes to heavy-chain genes. 
Take the design variable encoded by 10-binary bit for 
example, if the ratio is 4/6, it means that there are 4 
light-chain genes and 6 heavy-chain genes in a design 
variable. Note that the classification of light- and 
heavy-chain gene is depended on the applied problems. 

Proliferation number 

The number of simulated antibody(s) (derived for Step 2) 
proliferation. The proliferated antibody(s) accompanies 
hypermutation. The number of proliferation can also be 
regarded as the frequency of local search. More number of 
proliferations, more time needed for computation. 

Hypermutation rate 

The hypermutation occurred with antibody proliferations 
and it is checked with the probability of hypermutation —
the hypermutation rate. During the process of antibody 
proliferation, a random number is generated for every 
light-chain gene in that antibody. If this random number is 
less than the hypermutation rate, the selected gene has to 
undergo hypermutation. Noted that this rate usually large 
than normal mutation rate, and more number of 
light-chain genes need more time for proliferations.  

Inducing ratio 

This parameter defines the proportion of how many 
memory antibodies move to the germ-line DNA library. 
Noted that more induced memory antibodies may speed 
up the convergence of optimal search. 

Diversity probability 

Similar to the mutation rate in the genetic algorithms this 
parameter is used in the antibody diversification (Step 8) 
for genetic diversity. A random number is generated for 
light- or heavy- chain genes in the antibody. If this random 
number is less than the diversity probability, the selected 
gene(s) has to undergo mutation. 
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Number of gene shift 

This parameter is used in the gene shift mentioned in the 
Step 8. According to this number, the selected gene 
fragment right-shift their gene locus with excessive genes 
being reallocated from rear to front. 

Number of nucleotide genes 

This parameter is used in the nucleotide addition 
mentioned in the Step 8. These randomly created genes 
represented the nucleotide are inserted in the position 
generated randomly. Also the excessive genes will be 
discarded. 

Generation 
The criterion for stopping the evolution of immune 
algorithm 

 

4.3 Summary 

The procedures mentioned in this chapter describe solving the single-objective and 

multi-objective optimization problems by employing proposed immune algorithm.    

The proposed immune algorithm will first apply to the multi-objective test function 

optimization and truss-structure sizing optimization problems considering both 

constrained and unconstrained conditions expressed in the CHAPTER 5.  In this 

multi-objective immune algorithm (or MOIA), the antibody is represented by 

one-dimensional binary-encoded string.  For different optimization problems, the 

single-objective with multi-modal structural topology optimization is the secondly 

application and described in CHAPTER 6.  In this multi-modal immune algorithm (or 

MMIA), the antibody is represented by two-dimensional binary-encoded string (or 

matrix).  The third application is to use proposed immune algorithm to single-objective 

job-shop scheduling optimization problem and shown in the CHAPTER 7.  For 
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job-shop scheduling optimization, the antibody is represented by not-bit string (integer 

encoding).  The detail procedures for different optimizations are described in 

corresponding chapters.

 60



 

CHAPTER 5 

MULTI-OBJECTIVE OPTIMIZATION 

 

5.1 Introduction 

 In this chapter, the proposed Immune algorithm will firstly apply to the numerical 

test function multi-objective optimization considering both unconstrained and constrained 

problems and two well-known benchmark of truss sizing optimization problems (i.e., 

10-bar plane truss with continuous design variables and 25-bar space truss with discrete 

design variables) considering constraints.  The proposed algorithm which handling 

unconstrained optimizations termed multi-objective immune algorithm or MOIA, while 

termed constrained MOIA or C-MOIA if it solves the constrained optimizations.  Noted 

that antibodies in these applications are all represented by one–dimensional 

binary-encoded string.  In the multi-objective test function optimizations, six test 

functions without constraint and six constrained test functions suggested by Deb et al. 

(1999; 2001) were employed to validate the proposed algorithm, each test functions have 

two objectives which needed to be minimized simultaneously for finding their 

Pareto-optimal front or Pareto-optimal solutions.  For the truss-structure sizing 

optimization, the goal is to minimize the volume (or weight) and vertical displacement of 

the structure simultaneously using the cross-sectional areas of the truss members as 
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design variables with pre-defined allowable on maximum stresses of tension and 

compression.  Such objectives are conflicting in nature since reducing the displacement 

will increase the cross-sectional area, consequently increasing the volume of the structure.  

Meanwhile, a comparison is drawn between our implementation of the C-MOIA and 

some GA-based methods for 10-bar [Fadel and Li, 2002] and 25-bar [Erbatur, F. et al., 

2000; Ponterosso and Fox, 1999; Wu and Chow, 1995a, 1995b; Rajeev, 1992] cases.  

Besides, because of the unconstrained problem, the cytokine value ( ) in calculating 

combinatorial intensity (described in CHAPTER 4, subsection 4.2.2) will be neglected.  

Hence, the antibody-to-antigen combinatorial intensity between constrained and 

unconstrained optimizations are expressed as: 

CK

noptimiatio nedunconstrai if                ,

noptimiatio dconstraine if     ,

ikik

iikik

AbAgaffinity

CKAbAgaffinity

=

+=
        (5.1) 

 

5.2 Problems Description 

5.2.1 Unconstrained test functions 

 Six minimization test functions with different shape of Pareto-optimal front (e.g. 

convex, non-convex, discrete, and so on) described by Deb (1999) were used to evaluate 

the performance of the MOIA, and shown in the following: 

1. Test function  (with convex Pareto-optimal front) ))(),(()( xxx ffF = 211

111 )( xxf =                                                   
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3. Test function  (with several non-continuous convex parts) ))(),(()( xxx ffF = 213
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where  and .  The Pareto-optimal front is formed with . 30=n ]1,0[∈ix 1=g

 

4. Test function  (multimodality) ))(),(()( xxx ffF =
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5. Test function  (binary string code and deceptive problem) ))(),(()( xxx ffF = 215
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where , , , and gives the number of 1s in the 

bit vector.  The global Pareto-optimal front is formed with 

11=n 30
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10=g , and the next-best 
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deceptive Pareto-optimal front is represented by the solutions for which .  Both 

global and local Pareto-optimal fronts are convex. 

11=g

1=g

6. Test function  (non-uniformity) ))(),(()( xxx ffF = 216
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5.2.2 Constrained test functions 

Six constrained test functions CTP2-CTP7 suggested by Deb et al. (2001) were 

employed in this study to assess the performance of the constrained multi-objective 

immune algorithm, or named C-MOIA.  In addition, these test functions were designed 

to cause two different kinds of tunable difficulties in a constrained multi-objective 

optimization algorithm: i) the difficulty in the vicinity of the Pareto-optimal front 

(CTP2-CTP5) and ii) the difficulty in the entire search space (CTP6-CTP7).  The test 

functions are shown in the following: 
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 The decision variable x1 is restricted in [0,1] and the bounds of the other variables 

depend on the chosen g(x) function.  The constraint function c(x) has six adjustable 

parameters θ, a, b, c, d, and e.  In all of the above problems, additional difficulty can be 

introduced by using a nonlinear and difficult function g(x) which causes difficulty in 

progressing towards the Pareto-optimal front.  Identical parameters and g(x) function 

applied by Deb et al. as Table 3 illustrated were employed in this paper for comparison. 

 

Table 3 Parameters and function g(x) utilized in constrained test functions 

Parameters 
Test function 

θ a b c d e 
g(x) 

CTP2 -0.2π 0.2 10 1 6 1 21 x+  
CTP3 -0.2π 0.1 10 1 0.5 1 21 x+  
CTP4 -0.2π 0.75 10 1 0.5 1 21 x+  
CTP5 -0.2π 0.75 10 2 0.5 1 21 x+  
CTP6 0.1π 40 0.5 1 2 -2 )2cos(1011 2

2
2 xx π−+

CTP7 -0.05π 40 5 1 6 0 21 x+  

 

The periodic nature of the constraint boundary makes the Pareto-optimal have a 

number of discontinuous regions.  Increasing the parameter increases the number of 
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disconnected regions and thus the difficulty in finding feasible solutions.  Parameter a 

has an effect of making the transition from continuous to discontinuous feasible region far 

away from the Pareto-optimal region.  In addition, the discrete solutions can be scattered 

non-uniformly by using c ≠ 1.  The parameter θ controls the slope of the Pareto-optimal 

regions, whereas the parameter e shifts the constraints up or down in the objective space.  

Moreover, small value of d may reduce each disconnected regions exist only one 

Pareto-optimal solution.   

 

5.2.3 10-bar plane truss with continuous design variables 

 A 10-bar plane truss with the node and element numbering illustrated in Fig. 11 is 

adopted to evaluate the performance of the proposed C-MOIA approach.  The objective 

is to minimize the volume of the structure and the vertical displacement at node 6 

simultaneously using the cross-sectional areas of the ten truss numbers as design variables 

with pre-defined allowable on maximum (extension) and minimum (compression) 

stresses.  Such objectives are conflicting in nature since reducing the displacement will 

increase the cross-sectional area, consequently increasing the volume of the structure.  

The upper and lower boundaries of each truss element are 0.1 and 30 in2, respectively.  

The location of external load is shown in Fig. 11 with P = 100,000 lb.  Material 

properties are taken as modulus of elasticity E= 1×104 ksi.  Constraints on the truss limit 
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the principal stress jσ  in each element below the maximum allowable stress, aσ , of 

 ksi.  In this dissertation, normalized constraint function is expressed as following: 25±

10,...,1   0   1 =≤−≡ jg
a

j
j σ

σ
                      (5.9) 

Note that the cross-sectional areas are assumed to be continuous numbers in this case. 
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Fig. 11 10-bar plane truss structure 

 

5.2.4 25-bar space truss with discrete design variables 

The secondary truss-structure optimization considered is a 25-bar space truss with 

discrete design variables, which has been frequently used to test numerous optimization 

techniques [Michalewicz et al., 1996; Hasanc et al., 2001; Deb et al., 2000] as Fig. 12 

shown.  Again, the problem is to find the cross-sectional area of each truss group such 

that the total structural weight and the vertical displacement at node 1 are minimized 
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concurrently.  In many design cases, structures are composed of prefabricated elements 

available on the market.  Thus, truss members are divided into eight groups, as tabulated 

in Table 4, and be selected from the following discrete set D = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 

2.8, 3.0, 3.2, 3.4) (in2).  In addition, the loading given in Table 5 is applied to the space 

truss structure.  Material properties are taken as modulus of elasticity E = 1×104 ksi and 

weight density ρ = 0.1 lb/in3.  Constraints on the truss limit principal stress jσ  in each 

element below the maximum allowable stress, σa, of ±40 ksi. 

 

Fig. 12 25-bar space truss structure 
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Table 4 Group members of the 25-bar space truss 

Group number Members Length 
1 1-2 75.0 
2 1-4, 2-3, 1-5, 2-6 130.504 
3 2-5, 2-4, 1-3, 1-6 106.80 
4 3-6, 4-5 75.0 
5 3-4, 5-6 75.0 
6 3-10, 6-7, 4-9, 5-8 181.142 
7 3-8, 4-7, 6-9, 5-10 181.142 
8 3-7, 4-8, 5-9, 6-10 133.464 

 

Table 5 Loading conditions of the 25-bar space truss 

Node Fx (lbs) Fy (lbs) Fz (lbs) 
1 1000 -10000 -10000 
2 0 -10000 -10000 
3 500 0 0 
6 600 0 0 

 

5.3 Performance Metrics 

The two primary goals of multi-objective optimization are to i) find solutions as 

close to Pareto-optimal front/solutions as possible, and ii) discover solutions in the 

obtained non-dominated front that are as diverse as possible [Deb, 2001].  For the 

purpose of comparing with other approaches, performance criteria that have been 

suggested to evaluate the effectiveness of multi-objective optimization algorithms include 

the following five metrics: generational distance [Schott, 1995], spacing [Deb et al., 

 70



 

2000], spread [Zitzler, 1999], set convergence [Zitzler et al., 2000], and the retrieved 

extreme values of the Pareto front. 

1. The generational distance (GD) metric calculates the average distance between 

obtained solutions and the true Pareto-optimal front.  It is expressed as 
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where is the number of non-dominated solutions, n N is the number of 

Pareto-optimal solutions, m  is the number of objective functions,  is the 

Euclidean distance (in terms of objective space) between solution i and the 

closest Pareto solution, and  is the mth objective function value of the jth 

member of Pareto solutions.  A smaller  value indicates better algorithm 

performance. 
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2. Schott [61] has proposed using a spacing (S) metric which calculates a relative 

distance between consecutive solutions in the obtained non-dominated set.  It is 

expressed as 

∑
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i
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where the distance measure  is the minimum value of the sum of the absolute 

difference in objective function values between the ith solution  and any other 

id

)(ifm
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solution  in the derived non-dominated set. )( j
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where d  is the mean value of the above distance measure ∑
=

=
n

i
i nd

1
/d .  This 

metric measures the standard deviation of different  values.  A small value 

indicates uniform spacing between solutions. 
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3. The spread (SP) metric calculates a relative distance measure between neighboring 

as well as between extreme solutions in a non-dominated set.  It is expressed as 
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where is the Euclidean distance between neighboring solutions, id d is the mean 

value of the  measures, and d  is the distance between the extreme Pareto front 

solutions and n  as it corresponds to the mth objective function.  An ideally 

uniform distribution produces a metric value of zero; the smaller the  value, the 

more desirable the distributions. 

id e
m
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4. The set convergence (C) metric calculates the proportion of solutions obtained 

through algorithm B as they are weakly dominated by solutions obtained through 

algorithm A, that is, 
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All algorithm B-derived solutions are weakly subordinate to algorithm A-derived 

solutions if .  1),( =BAC 0),( =BAC

)

 indicates an absence of such subordination.  

Both  and C  are required for a performance comparison. ) (B,( BAC , A

5. The extreme distance  metric calculates the Euclidean distance between the 

extremes of the derived non-dominated solutions and the actual Pareto solutions in 

the objective space.  It is expressed as follows, 
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where  is the ith extreme value of the derived kth non-dominated solutions 

employing MOIA and  is the associated ith extreme value of the kth actual 

Pareto solutions, respectively.  

)(i
kp

)(i
kf

0=∆ XTE  means that the MOIA’s non-dominated 

extremes are identical to the true objective extremes.  A smaller ∆  value 

indicates better algorithm performance. 

XTE
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Fig. 13 MOIA window simulation 

 

Table 6 SPEA and MOIA parameters 

Parameter setting SPEA MOIA 
Generation 250 250 
Population size 100 80 
Bits per variable 30 30 
External population size 20  
Crossover rate 0.8  
Mutation rate 0.01 0.05 
Selection method Tournament  Tournament 
Niche  Clustering algorithm Affinity between antibodies 
Elitist strategy Yes  No  
Hypermutation rate  0.2 
Light/heavy chain-length ratio  3/7 
Proliferation number  6 
Inducing ratio  0.1 
Threshold value Abδ   0.9 
Bit number in gene shift  2-bit 
Bit number of nucleotide  2-bit 
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5.4 Simulation Results and Discussions 

This attempt at establishing a multi-objective optimization procedure produced the 

MOIA and C-MOIA programs created with C++ programming tools and a graphical user 

interface.  The simulation window, setting parameters, and performance metrics are all 

shown in Fig. 13. 

 

5.4.1 Multi-objective test function optimization 

Unconstrained test functions 

 To evaluate the performance of the MOIA, author used several of Zitzler’s (website) 

data sets with different optimization schemes (i.e., random search algorithms, MOGA, 

NPGA, VEGA, NSGA, and SPEA) for comparison.  Since the SPEA-derived [Zitzler et 

al., 2000] results showed superior performance in terms of accuracy and diversity, author 

will limit his discussion to those solutions.  Following the procedure described by Zitzler, 

the six unconstrained test functions were executed 30 times each; the SPEA and MOIA 

parameters are shown in Table 6.  For each test function, the 30 data sets were unified 

prior to eliminating the dominated solutions.  For equitable comparison, we reduce the 

population size in Table 6 to 80 due to the clonal proliferation in the proposed immune 

algorithm.  According to the plots shown in Figure 14 through 19, the MOIA-derived 

solutions were superior to the SPEA-derived solutions in terms of accuracy and diversity, 
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with the single exception of test function F6.  Performance metrics for both schemes are 

presented as Table 7.  The data in this table validates the quality of the MOIA-based 

performance metrics Q, GD, S, and C; again, the only exceptions were metrics 

associated with test function F6.  Furthermore, the result C(MOIA,SPEA) = 0 for test 

functions F1 through F5 shows that all MOIA-derived solutions were non-dominated 

compared to the SPEA-derived solutions.  In contrast, the result C(SPEA, MOIA) = 1 

for test functions F1, F3, F4, and F5 shows that all of the SPEA-derived solutions were 

weakly dominated by the MOIA-derived solutions.  Both schemes were capable of 

reaching a local Pareto front, but incapable of discovering a global Pareto front (Fig. 19).  

Results from test function F6 indicate that the SPEA-derived solutions were more 

accurate than those derived with MOIA (Fig. 19).  Due to the small number of solutions, 

test function F6 was repeated with a twice iteration of 500 generations (twice the number 

used in the initial test) in order to more fully explore the MOIA’s potential.  The results 

of this second run indicate a significant improvement in performance (Fig. 20).  The 

performance metrics shown in Table 7 lend further support to these results. 

XTE∆
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Fig 14 Simulation results for test function  (convex) 1F
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Fig 15 Simulation results for test function  (non-convex) 2F
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Fig 16 Simulation results for test function  (discrete) 3F
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Fig 17 Simulation results for test function  (multimodal) 4F
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Fig 18 Simulation results for test function  (deceptive) 5F
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Fig 19 Simulation results for test function  with 250 generations (non-uniform) 6F
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Fig 20 Simulation results for test function  with 500 generations (non-uniform) 6F

 

Table 7 Performance metrics for the six SPEA and MOIA test functions 

Metrics Q GD S SP 1ext∆ 2ext∆ C(MOIA,SPEA) C(SPEA,MOIA)

MOIA 537 5.38e-4 0.0018 0.5085 0.0198 0.0074 0  
1F  

SPEA 204 3.10e-3 0.0043 0.6046 0.0509 0.0286  1 
MOIA 574 5.95e-4 0.0016 0.5625 0.0190 0.0157 0  2F  
SPEA 112 6.80e-3 0.0099 0.6305 0.0458 0.1139  0.991 
MOIA 477 6.69e-4 0.0040 0.7785 0.0141 0.4285 0  3F  
SPEA 202 3.60e-3 0.0048 0.7863 0.0594 0.4276  1 
MOIA 293 0.0105 0.0051 1.1099 0.5051 0.0032 0  4F  
SPEA 156 1.4320 0.0079 0.9011 2.2520 1.4566  1 
MOIA 29 0.1313 1.2253 0.4654 3.0 2.0039 0  5F  
SPEA 31 0.1639 1.2811 0.4813 4.0 0.1290  1 
MOIA 

(250 generations) 92 0.0156 0.0107 0.7659 0.1248 1.1727 0.630  

SPEA 22 2.55e-21 0.0104 1.5822 0.0019 0.0  0 

6F  
 

MOIA 
(500 generations) 142 6.18e-4 0.0056 1.3253 0.0017 0.0 0 0.4545 
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Table 8 C-MOIA parameters used in constrained optimization 

Parameter setting CTP2-CTP7 
Iteration number 500 
Population size 100 
Number of variables 2 
Bits per variable 10 
Diversity probability 0.05 
Hypermutation rate 0.07 
Light/heavy chain-length ratio 3/7 
Number of proliferation 6 
Inducing ratio 0.2 
Threshold value Abδ  0.9 
Bit number in Gene shift 2-bit 
Bit number of nucleotide 2-bit 
Tournament size 5 

 

Constrained test functions 

 The associated user-defined parameters utilized in this constrained MOIA (C-MOIA) 

are tabulated in Table 8, each with the same parameter setting.  The setting of the first 

four parameters (e.g. iteration number, population size, number of variables, and bits per 

variables) was referenced to the Deb et al. (2001) for comparison.  Figs. 21 and 22 show 

the simulation results on test functions CTP2-CTP7, Fig. 23 and 24 show the results of 

CTP2-CTP7 derived by NSGA-II reprinted from Deb et al. (2001).  Fig. 21(a) and Fig. 

21(b) show that C-MOIA is able to find all disconnected Pareto-optimal solutions on 

CTP2 and capable of finding solution very close to the true Pareto-optimal solution in 

each region on CTP3.  Same as the results derived by Deb et al., problem CTP4 caused 
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difficulty for C-MOIA to get near the true Pareto-optimal solutions as Fig. 21(c) depicted.  

However, MOIA discovers more Pareto-optimal solutions and performs much better 

compared to the results derived by Deb et al. utilizing NSGA-II.   As to the 

non-uniformity in spacing problem CTP5, it seems to be not a great difficult for C-MOIA 

to get the solutions as Fig. 21(d) illustrated.   Nevertheless, it should be noted that 

NSGA-II could not converge to the Pareto-optimal solutions in CTP2-CTP5 when f1 

approaches zero.  On the contrary, it seems cause no difficulty for MOIA to converge to 

the feasible Pareto solutions when f1 advances to zero. 

 When the entire search space consists of infeasible patches parallel (CTP-6) or 

perpendicular (CTP-7) to the Pareto-optimal front, C-MOIA is still able to converge and 

close near to the feasible patches as Fig. 22 shown.  Note that all feasible patches are 

marked with an “F”.  However, NSGA-II had the most difficulty in finding solutions 

closer to the true Pareto-optimal front in CTP-7 as Deb et al. described.  The illustrated 

demonstrations CTP-2 to CTP-7 show that CMOIA performs better than NSGA-II in the 

vicinity of Pareto-optimal front as well as the entire search space. 
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Fig. 21 Simulation results on CTP2-CTP5 
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Fig. 22 Simulation results on CTP6-CTP7 
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(a) NSGA-II results on CTP2 (b) NSGA-II results on CTP3

(c) NSGA-II results on CTP4 (d) NSGA-II results on CTP5  

Fig. 23 NSGA-II results on CTP2-CTP5  [This is a reprint from Deb et al. (2001)] 

 

(a) NSGA-II results on CTP6 (b) NSGA-II results on CTP7

Fig. 24 NSGA-II results on CTP6-CTP7  [This is a reprint from Deb et al. (2001)] 
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Table 9 CMOIA parameters in truss sizing optimization 

Parameter setting 10-bar 25-bar 
Iteration number 500 300 
Population size 100 160 
Number of variables 10 25 
Bits per variable 10 5 
Diversity probability 0.05 0.05 
Hypermutation rate 0.07 0.07 
Light/heavy chain-length ratio 4/6 3/2 
Number of proliferation 6 5 
Inducing ratio 0.2 0.2 
Threshold value Abδ  0.05 0.05 
Bit number in Gene shift 2-bit 2-bit 
Bit number of nucleotide 2-bit 2-bit 
Tournament size 5 8 

 

5.4.2 Multi-objective truss-structure sizing optimization  

The associated user-defined parameters utilized in two problems are tabulated in 

Table 9.  The setting of the first four parameters (e.g. iteration number, population size, 

number of variables, and bits per variables) was referenced to the literatures for 

comparison.  Note that number of bits per variable for the 25-bar truss case is 5 due to 

the 30 sizing variables discrete set.  The results show that the light/heavy chain-length 

ratio is the most important parameter and 4/6 is a moderate choice.  However, the ratio 

for 25-bar truss case is 3/2 because the bit number per variable is only 5.  Obviously, the 

associated number of clonal proliferation is depending on the bit length of light-chain.  

More number of proliferation means more computation time required.  Increasing 
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diversity probability, hypermutation rate, bit number in gene shift and nucleotide will 

cause diversified effect and should be determined according the optimization problem.  

On the contrary, the inducing ratio has converged effect.  The key issue is the 

appropriate balance between exploitation and exploration during optimization search.  

These parameters were determined through numerical experiments after multiple 

simulation runs. 

 For 10-bar plane truss problem, the Pareto-optimal front with 474 feasible solutions 

is presented in Fig. 25.  The two extreme objective values are [108413.542, 1.3611] and 

[17935.1162, 6.3562], respectively.  Moreover, Fig. 25 illustrates the comparison with 

the Pareto solutions derived by Fadel and Li (2002) employing the Tchebycheff, 

weighting, and ε -constraint methods.  It is important to emphasize that only 21 

solutions were derived for these methods since they employed weighting-based method 

with 21 fixed and uniform-distributed weighting ratio values.  The extreme values of 

these weighting ratios were (0.0, 1.0) and (1.0, 0.0) with interval 0.05.  Obviously 

C-MOIA is capable of finding much more satisfactory non-dominated solutions excluding 

the two extreme objective values. 

 

10-bar plane truss with continuous design variables 
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Fig. 25 feasible Pareto solutions and comparisons of 10-bar plane truss 

 

25-bar space truss with discrete design variables 

As to the 25-bar space truss problem, the two extreme objective values found are 

[977.39, 0.2363] and [99.87, 2.0281], respectively.  Fig. 26 demonstrates the Pareto- 

optimal front of the 232 feasible non-dominated solutions derived employing C-MOIA.  

In addition, numerous simulation results utilizing single-objective GAs are adopted for 

comparison and depicted in Fig. 26.  Clearly the results derived using C-MOIA 

dominate the solutions obtained from the literatures except the optimal solution attained 

by Wu (1995a) utilizing single objective GAs.  In summary the proposed C-MOIA has 
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the ability to provide a good estimate of the Pareto front for the 25-bar space truss 

optimization problem as well. 
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Fig. 26 Feasible Pareto solutions and comparisons of 25-bar space truss 

 

5.5 Summary 

In this chapter, the proposed immune algorithm was implemented to several test 

functions considering with/without constraints and two typical truss-structure sizing 

problems with a mix of discrete and continuous variables for the purpose of determining 

constrained Pareto-optimal solutions.  Overall results indicate that the proposed immune 

algorithm is capable of quickly determining accurate and diverse Pareto-optimal solutions 

to multi-objective optimization problems (MOOPs).  It is suggested that this capability 
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is due to the combination of diversification immune operators, the construction of 

germ-line library equivalents, and a process of gene fragment recombination, they are all 

the features in the immune system.  The key natural selection components (gene 

fragments) are similar to the building blocks of genetic algorithms associated with 

stimulus antibodies and memory cell pools.  In this particular immune algorithm, the 

antibodies (solutions) are the direct products of gene fragment combinations (schemata), 

rather than the antibody (analog to the role of individual in genetic algorithms) itself.  

This explains the need for several diversification schemes to prevent the premature effect 

of proposed immune algorithm.
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CHAPTER 6 

STRUCTURAL TOPOLOGY OPTIMIZATION 

 

6.1 Introduction 

In this chapter, the proposed immune algorithm will then apply to single-objective 

multi-modally optimization of structural topology.  For applying to multi-modal 

optimization, the immune algorithm described in chapter 4 needs to be modified slightly.  

The modified immune algorithm used in the chapter is called multi-modal immune 

algorithm or MMIA.  Analogous to the sharing and niching approaches in genetic 

algorithms employed by Goldberg and Richardson (1987), a similarity value (the 

relationship between antibodies) combined with antibody-to-antigen affinity is employed 

to explore the single-objective with multi-modally solutions.  Two well-studied 

benchmark topological problems considering asymmetry are used for evaluating the 

effectiveness of proposed immune algorithm in the field of multi-modal optimization.  

The goal of this application is to maximize the structure’s stiffness-to-weight ratio 

proposed by Chapman et al. (1994) subjected to maximum allowable stresses.  Because 

of different antibody representation (two-dimensional binary-encoded matrix) from 

previous chapter, steps described in Chapter 4 in section 4.2 are needed to modify for 

applying to single-objective multi-modally optimization.  The procedure of modification 
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is depicted in next section. 

Initial antibody population

Antibody representation &
gene classification

Calculating combinatorial
intensityGerminal Center

Light chain gene
hypermutation

Clonal proliferation

Immature
antibody

Mature
antibody

Cell
apoptosis

Antibody
memory pool

Decreased affinity Increased affinity

Cell
apoptosis

Bad memory

The best fit antibody

Memory antibodies

Plasma antibodies

Donor antibodies selection

Germ-line DNA library
construction

Induced memory
antibodies

Gene fragment
rearrangement

Antibody diversification

New antibody population

Stop?

End evolution

Y

N

Memory update

 

Fig. 27 Multi-modal immune algorithm (MMIA) flowchart 

 

6.2 Immune Algorithm Revision for Topological Optimization 

Corresponding to the topological optimization problems, the antigen ( ) and 

antibodies ( ) serve as objective ( ) and associated solutions (i.e. topologies) in a 

computational model and are expressed as follows: 

Ag

iAb f

fAg
NiAb Abii

≡
==≡ ,...,2,1  s, topologiepossible x

           (6.1) 

( )ii fAgAb x≡                                    (6.2) 

where  (or x ) indicates the ith antibody (or topology) while  indicates the iAb i iAgAb
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affinity (i.e. objective value, ( )if x ) between an ith antibody and antigen,  is the 

number of antibodies.  The antibodies/topologies continuously evolve until a match is 

found with the specific antigen/objective. In the rest of this section we will verbally 

describe the MMIA procedure represented by the flowchart in Fig. 27.  

AbN

 

[Step 1] Random initialization of antibody population and connectivity analysis 

 Similar to the generation of population initially in MOIA, the initial binary-encoded 

antibody population is also generated randomly.  Different antibody representation form 

MOIA (binary-encoded with one-dimensional array), the antibody used in MMIA is 

represented by a two-dimensional binary-encoded string (or matrix) with binary values of 

1 refers to as the structure materials and 0 refer to as no material presented in the design 

domain.  Fig. 28 shows how an antibody is mapped to a topology.  Once an antibody is 

converted into a topology the resulting material elements with binary values of 1 are 

analyzed for connectivity.  For any two elements in a topology to be considered as 

connected they must share at least one edge while element sharing only one corner are 

considered as disconnected.  A topology contained disconnected elements will undergo a 

structure modification procedure.  In this procedure, the removal of disconnected 

elements or the adding of elements to neighboring disconnected element will be done 

randomly until the discontinuous topology is compensated.  The continuous topology 
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will be further analyzed via the finite element computation to obtain the required 

displacements and stresses.  To reduce computation time, elements with a stress value 

lower than the user-defined level of average stress (which do not break connectivity 

requirements) will be removed from the topology, and the corresponding gene set to a 

binary value of 0. 
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Fig. 28 Mapping from antibody into topology 

 

[Step 2] Antibody representation and gene classification 

In the same manner as in biological immune systems, each antibody/topology (as 

depicted in Fig. 29) is separated into a two-dimension matrix comprising four different 

kinds of genes/elements: a constant gene (C), a heavy-chain gene (H), a light-chain gene 

(L), and a pseudo gene (0).  The genes are classified into heavy-chains or light-chains 

according to i) a default light/heavy chain-length ratio determined by the user and ii) the 

average stress of the mapped continuous topology calculated by fore-node plane stress 
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finite element analysis.  A gene is categorized into a light-chain gene if its stress is either 

(i) large than the normalized average stress multiplied by light/heavy chain-length ratio or 

(ii) small than the normalized average stress multiplied by one minus the light/heavy 

chain-length ratio.  In other words, the gene can be defined as light-chain gene if it 

receives exceeding large or small stress.  Constant genes are those genes required to 

contain material where support conditions or loads are applied.  These genes are fixed 

and cannot be changed during the whole evolution process.  Pseudo genes are those 

genes which no contain material.  The other genes will be defined as heavy-chain gene 

except light-chain, constant, and pseudo gene. 

The distribution of these genes within an antibody thus establishes the topology.  

The number of genes in each antibody equals the number of elements in the topology 

domain.  The antibody is then resolved into binary values where all constant, light-chain 

and heavy-chain genes are defined as 1, with all pseudo genes being defined as 0 (see Fig. 

28a).  The inbuilt ability for genes to mutate enables pseudo genes to evolve into light or 

heavy chain genes if they contain the material, conversely light and heavy chain genes 

may evolve into pseudo genes where no material is present.  Due to the binary coding, 

the material/void design domain typically results in a discrete, non-convex search space 

[Anagnostou et al., 1992] and serves as a good test of the capacity of MMIA in finding 

optimal solutions. 
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Fig. 29 Antibody representation for topological optimization 

 

[Step 3] Calculating combinatorial intensity 

 The antibody-to-antigen affinity value ( ) of the topology is employed to 

illustrate the combinatorial intensity between an antigen and the ith antibody expressed as 

follows:    

iAbAg

ii

i
i SCK

ObjAbAg
⋅+

=
)1(

                            

and   
ii

i Aread ⋅
= max

1Obj                           (6.3) 

where  indicates the ith topology’s stiffness-to-weight ratio with the stiffness being 

represented by the inverse of the topology’s maximum displacement (

iObj

max
1

id
) at the point 

of loading application.  The number of connected genes/elements of the topology is used 

as a qualitative measure of the topology’s weight ( ).  In addition, similar to the 

sharing or niching schemes implemented in the genetic algorithms, the relationship 

among antibodies is evaluated according to the similarity value  for the purpose of 

iArea

iS
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multi-modally optimization, and expressed as: 

∑
=

=
AbN

j
iji countS

1

, ;,...,2,1 AbNi =  AbNj ,...,2,1=                  

with  ,                         (6.4) 


 ≤

=
else

AbAbif
count Abij

ij ,0
 ,1 δ

 )()( 22 stress
j

stress
i

stress
j

stress
iij stdstdavgavgAbAb −−−=            

where Abδ  is a user-defined threshold value illustrating the allowable difference between 

antibodies.  is the affinity between ith and jth antibody and represents the 

distance between the ith and the jth antibodies in a coordinate system of average stress 

versus standard deviation stress, the larger the , the larger the difference between 

ith and jth antibodies.  Note that and  are normalized averages stress 

values, and that  and are normalized standard deviations stress values of 

the ith and the jth antibody/topology.  In addition, cytokine value of the antibody 

described in Eq. (6.3) is treated as the penalty term for constraint violation and defined 

identical to Eq. (4.5) in the CHAPTER 4 in subsection 4.2.2.   

ijAbAb

istd

ijAbAb

stress
javgstress

iavg

stressstress
jstd

CK

Because of the single-objective with multi-modally problem, the avidity value in Fig. 

4 in CHAPTER4 will be neglected in this procedure MMIA.  A higher combinatorial 

intensity – affinity value means that an antibody has a higher activation with an antigen 

and a lower similarity with other antibodies.  Therefore, the higher the affinity value, the 

higher the probability that the antibody may be selected as the donor to enter the 

germ-line DNA library for gene fragment rearrangement.  After affinity values of all 
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antibodies are calculated, the best (i.e., highest affinity) antibody will be placed into the 

germinal center for clonal proliferation with the remaining antibodies proceeding to [Step 

5] awaiting donor selection. 

 

[Step 4] Clonal proliferation 

 In the MMIA scheme, only most-matched antibody (i.e. highest affinity antibody) 

derived from [Step 3] is chosen for hypermutation during the clonal proliferation process, 

with a user-defined hypermutation rate and proliferation number.  Similar to the MOIA 

scheme, hypermutation only takes place in light-chain genes.  In this study, a gene is 

categorized into a light-chain gene if its stress is either (i) large than the normalized 

average stress multiplied by light/heavy chain-length ratio or (ii) small than the 

normalized average stress multiplied by one minus the light/heavy chain-length ratio.  In 

the process of hypermutation, a light-chain gene is likely to be deleted if its stress is 

smaller than the value calculated in (i).  On the contrary, a gene is added to the void 

neighborhood of the light-chain gene if its stress is larger than the value evaluated in (ii). 

After the hypermutation process, mature antibody that have a better affinity than 

un-proliferated antibody is differentiated into plasma antibody and memory antibody 

preserved and updated in the memory pool.  Further, the resulting bad memory 

antibodies are deleted as immature antibodies similar to the cell apoptosis process in 
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biological immune systems.  Resulting plasma antibody combined with the remaining 

antibodies derived from Step 3 are then proceed to Step 5 for donor antibody selection 

according to their affinity value.  In the memory pool, only the most diverse (determined 

by similarity value ) antibodies with high affinity survive.  On the other hand, those 

antibodies with low affinity and high similarity will be removed from the memory pool.  

In this step, diversity is evaluated by checking the average stress and standard deviation 

stress of the elements/genes in the topology/antibody.  In addition, a part of memory 

antibodies are induced into the germ-line DNA library (as per Step 6) according to a 

user-defined inducing rate.  

iS

 

[Step 5] Tournament selection for donor antibodies 

Based on the affinity values, the tournament selection method is also employed here 

for donor antibody selection. 

 

[Step 6] Germ-line DNA library construction 

As described in CHAPTER 3, the genetic material used to produce antibody 

molecules is stored in germ-line DNA libraries, each one containing a fragment of an 

antibody gene.  In the MMIA, components from the memory antibodies and the donor 

antibodies construct the germ-line DNA library. 
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[Step 7] Gene fragment rearrangement 

In the MMIA, new antibodies are created via gene fragments (or blocks) 

rearrangement as illustrated in Fig. 30.  Arbitrary gene blocks are selected randomly 

from randomly chosen sub-libraries and then integrated into a new antibody. 
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 sub-library N

block 1

block 2

block n

block n

block 2
block 1

Randomly selected
sub-libraries

Randomly generated
n blocks

New AntibodyDonor antibody

Memory antibody

 

Fig. 30 Illustration of antibody rearrangement for topological optimization 

 

[Step 8] Antibody diversification 

In the proposed MMIA, this was achieved by mimicking the following six 

diversification mechanisms found in biological immune systems.  All the schemes 

described below have the exploration effect in optimization search processes.  Because 

of different antibody representation, a part of antibody diversification mechanisms 

depicted in MOIA (subsection 4.2.8) are needed to modify for applying in this 

diversification process. 
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1. Somatic point mutation.  In terms of binary-encoded representation, this means 

reversing a bit from 1 to 0 or vice versa according to a pre-defined diversity 

probability.  The result is a slight alteration of an antibody heavy chain gene for local 

search purposes. 

2. Somatic recombination.  As shown in Fig. 31, two same-size fragments/blocks are 

randomly selected from the same antibody, after which a partial exchange is 

performed between the two fragments according to a pre-defined diversity probability. 
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Fig. 31 Somatic recombination illustration for topological optimization 
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Fig. 32 Randomly selected heavy chain gene and associated neighborhoods 
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3. Gene conversion, gene inversion, and gene shift.  Following predefined probabilities, 

gene conversion, gene inversion, and gene shift is performed using a randomly 

selected heavy-chain gene and its neighboring 8 mesh elements as depicted in Fig. 32.  

Fig. 33 illustrates the process of gene conversion where all elements within the 

selected 9 mesh elements have their binary values reversed from 1 to 0 and vice versa.  

In gene inversion as depicted in Fig. 34, each of the 8 periphery mesh elements are 

mirrored around the center element.  Fig. 35 shows the illustration of gene shift 

where each of the 9 mesh elements shift a number of position from left to right and 

top to bottom.  Note that the number of bit-shift genes is a predefined by the user.  

These diversification schemes create the desired global search effect. 

 

Fig. 33 Gene conversion illustration for topological optimization 

 101



 

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

HH
HH

H
H
H

000

00
0

00
0 0

0
0
0
0

H
H

HH0

00
0H

0 0

01
1

1

1
101

1

110

00
01

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

H
1H

1

000

00
0

0
0 0

0
0
0

0
0
1 1
1

loading loading

(a) an antibody

(b) a randomly selective H gene and
its neighboring 8 mesh elements

(c) corresponding binary
values

(e) replacement

(d) binary values
inversion  

Fig. 34 Gene inversion illustration for topological optimization 
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Fig. 35 Gene shift illustration for topological optimization 

 

4. Nucleotide addition.  As shown in Fig. 36, nucleotides insertion may be 

accomplished either in light- or heavy-chain genes.  The nucleotide is a randomly 
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created binary array of predefined block size.  In this study a 9 mesh elements is 

used to represent the nucleotide inserted at a randomly chosen point in the antibody 

locus.  Displaced genes are then shifted to the right with excessive elements out with 

the antibody boundary being discarded.   
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Fig. 36 Nucleotide addition illustration for topological optimization 

 

It should be noted that the six diversification mechanisms described in this step are 

adopted randomly in the antibody diversity process. 
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[Step 9] Stopping criterion 

The whole process will stop when the iteration equals a pre-defined number. 

Otherwise the process reverts to [Step 2] for another generation.  In the final stage, the 

best and most diverse solutions are stored in the memory pool. 

 

  Fig. 37 demonstrates the results of the procedure of MMIA described above 

employing 4 antibodies/topologies.  For simplicity, each topology contains 6×8 elements.  

Fig. 37(a) indicates the random generation of the 4 antibodies and the corresponding 

continuity analysis.  Clearly, three antibodies/topologies are discontinuous except the 

second one.  After structure modification procedure, for example removing one gray 

element from Ab3 and adding several gray elements for Ab1 and Ab4, all the elements of 

the four topologies are continuous.  Then, finite element calculation and gene 

classification (i.e. constant gene C, heavy-chain gene H, light-chain gene L, and pseudo 

gene 0) for these topologies are implemented as Fig. 37(b) shown.  Since the fourth 

antibody (Ab4) has the highest affinity value, it is chosen for clonal proliferation through 

hypermutation as Fig. 37(c) illustrated.  The best one matures as a plasma and memory 

antibody simultaneously.  Subsequently germ-line DNA library is constructed by donor 

antibodies which selected from the antibody population and plasma antibody produced 

after clonal proliferation by using tournament selection.  Note that fourth donor antibody 
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in this library is induced from memory antibodies.  Fig. 37(d) expresses the procedure of 

gene fragment rearrangement.  As step 7 described, new antibodies are created from the 

donor antibodies derived in the last step.  Finally the diversification schemes chosen 

randomly can be employed to increase the exploration of the antibody population.  Fig. 

37(e) shows one of the possible results for antibody NewAb3 since the selection of 

antibodies and their elements is a randomized procedure. 
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Fig. 37(a) Random initialization of antibody population & connectivity analysis 
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Fig. 37(b) Finite element calculation & gene classification 
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Fig. 37(c) Clonal proliferation, donor selection, and germ-line library construction 
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Fig. 37(e) Six antibody diversification schemes 

Fig. 37 Illustration of the 8 steps in MMIA using four antibodies/topologies 

 

6.3 Problems Description 

In this study, two topological optimization examples were employed to evaluate the 

effectiveness of the proposed multi-modally immune algorithm.  All the mechanical 

model and material properties are tabulated in Table 10.  Table 11 lists the associated 

parameters used in the MMIA.  These parameters were determined through numerical 

experiments after multiple simulation runs. 
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Table 10 Illustration of topological optimization examples 

 Case 1 Case 2 
Loading position Right hand side 2/5ths from  

the bottom edge  
Top right hand corner 

Fixed position Both end of left hand side Both end of left hand side 
Mechanical model 

Design
domain

0.16m

0.
1m

3KN

 

Design
domain

0.16m

0
.
1
m

3KN

 

Material properties 

mt
MPa

GPaE

001.0  thichness
200  stress allowable

33.0
200

=

=
=

υ
 

 

Table 11 Immune algorithm parameters 

Parameter  Case 1 Case 2 
Grids of elements 20×32 20×32 
Antibody length 640 640 
Antibody size 50 50 
Generations  500 500 
Proliferation number 10 10 
Tournament size 10 10 
Light/heavy chain-length ratio 0.3 0.3 
Hypermutation rate 0.4 0.4 
Diversity rate 0.05 0.05 
Inducing rate 0.2 0.2 
Threshold )( Abδ  0.1 0.1 

 

Case 1 

This example presents the optimization of a short cantilever plate (with aspect ratio 

1.6) which is subjected to a downward concentrated loading applied at an finite element 

(FE) node on its right hand side 2/5ths from the bottom edge (non-symmetric structure) 

with its stress being constrained to 200MPa.  The support nodes on both end of left hand 
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side are defined to have zero displacement in the finite element (FE) analysis.  In 

addition, the design domain is discretized according to a 20×32 plane stress element FE 

model.  One execution of the computer model requires around 250,000 functional 

evaluations (500 generations by 50 antibodies/topologies by 10 clonal proliferations per 

generation), taking approximately 3 hours with a Pentium 4 processor running at 1.5GHz.  

Numerous memory antibodies/multi-modal topologies (local optimum solutions) with 

different configurations were derived from memory pool after 500 iterations.  Fig. 38 

demonstrates 16 significant topologies and their corresponding maximum displacements 

( ), weights ( ) and objective values (obj, i.e. stiffness-to-weight ratio), 

respectively. 

maxd Area

Fig. 38 Multi-modal results of case 1 
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Case 2 
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In Case 2 the downward concentrated load is applied at an FE node positioned at the 

top right hand corner of the design domain with all other conditions being as per those in 

Case 1.  Again, the design domain is divided into a 20×32 plain stress element FE model 

and the required CPU time and functional evaluations being consistent with those in the 

previous case.  After 500 iterations, the 9 significant memory antibodies/multi-modal 

topologies with their corresponding maximum displacements ( ), weights ( ) and 

objective values (obj) were illustrated in Fig. 39. 

maxd Area

 

Fig. 39 Multi-modal results of case 2 
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6.4 Simulation Results and Discussions 

As can be seen from the diverse range of resultant topologies illustrated in Fig.38 

and 39, the structures show very well defined truss-like members of constant cross 

sectional area with large voids between members.  A high proportion of these structural 

members have straight alignment between joints and exhibit low levels of porosity.  The 

theoretical structures therefore provide the designer with a set of near-optimal solutions 

which can be easily developed into discrete truss systems.  If manufacturability is the 

prime consideration (i.e. large voids between members), the designer may choose the 

topology shown in the left-top examples in Fig. 38 or the center-top examples in Fig. 39.  

On the contrary, if stiffness is the main consideration, the right-bottom examples in Fig. 

38 and 39 (i.e. more material) are good chooses. 

It should be noted the proposed MMIA is fully capable of evaluating both symmetric 

and asymmetric structures and is therefore more flexible than the other methods only 

handle symmetric structures.  Moreover, the proposed method does not force a solution 

into a specific area of the search space, but automatically allows balanced evolution using 

features of the immune system to create diverse antibody/topology solutions.  In 

addition, the inherent local search ability of the biological immune system employing 

clonal proliferation enhances the search speed and convergence accuracy of IA, with the 

substitution of increasing computation time. 
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6.5 Summary 

In this chapter, a novel concept for applying to constrained multi-modal topological 

optimization has been presented by using an immune algorithm to imitate the features of a 

biological immune system.  The proposed methodology enhances accuracy and diversity 

via the operation of clonal proliferation and schemata recombination implemented 

through the process of gene fragment rearrangement.  Moreover, the potential of the 

proposed immune algorithm as a tool for investigating optimal topologies and for 

automatically creating innovative solutions to structural design problems has been 

illustrated in the examples presented.
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CHAPTER 7 

JOB-SHOP SCHEDULING OPTIMIZATION 

 

7.1 Introduction 

Scheduling problems exist almost ubiquitously in real-world applications including 

distribution, transportation, management, construction, engineering and manufacturing, 

especially in the industrial engineering world.  Many scheduling problems on 

manufacturing industries are quite complex and very difficult to solve using conventional 

optimization techniques.  Since the early 1950s it has been the subject of extensive 

research and captured the interest of researchers from several research communities 

including operation research and artificial intelligence, management science, as well as 

industrial engineering.  Its main focus is concerned with the allocation of finite resources 

to tasks with the objective to optimize specific cost functions.  An important issue is the 

improvement of resource utilization.  It is well known that the job-shop scheduling 

problem (JSSP) is the most complicated and typical problem of all kinds of production 

scheduling problems.  Scheduling for job shops is an important topic in production 

management.  It is concerned with finding the operations and times of a set of jobs on 

the relevant machines subject to the processing constraints.  The purpose is to improve 

the production efficiency and reduce the processing duration so as to gain as high profits 
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as possible.  The JSSP may be described as follows: given j jobs, each composed of 

several operations that must be processed on m machines.  Each operation uses one of 

the m machines with a deterministic processing time.  Each machine can process at most 

one operation at a time and once an operation initiates processing on a given machine it 

must complete processing on that machine without interruption.  Each job consists of a 

specific set of operations, which have to be processed according to a given technical 

precedence order. The operation sequences on the machines should be found to minimize 

the total time required to complete all jobs, i.e. makespan.  A comprehensive survey of 

job shop scheduling techniques can be found in Jain & Meeran (1999).  The total 

number of all possible schedules including feasible and infeasible solutions is (j!)m. 

Apparently, it is impossible to exhaust all the alternatives for finding the optimal solution 

even though very small j and m values. 

Different from previous studies, this chapter focuses on not-bit/integer string 

encoding optimization and applied the immune algorithm to the job-shop scheduling 

problems (JSSPs) with single objective.  In this application, an antibody (analogous to 

the chromosome in GA) is encoded via operation-based representation. This 

representation encodes a schedule as a sequence of operations and each gene (integer 

number) stands for one operation.  The goal of this optimization is to find the operation 

sequence on the machines in order to minimize the makespan, i.e., the time required to 
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complete all jobs, and to compare with other heuristic methods for performance 

validation.  Similar to structural topology optimization applied in the immune algorithm, 

some steps described in CHAPTER 4 were needed to revise by incorporating with some 

repairing procedures for applying to scheduling optimization problem.  The procedure of 

revision is depicted in next section.   

 

7.2 Immune Algorithm Revision for Scheduling Optimization 

Corresponding to the JSSPs, the antigen and antibodies serve as objective (i.e., 

makespan) and associated solutions (i.e., schedules).  The antibodies/schedules 

continuously evolve until a match is found with the specific antigen/objective (minimize 

the maximum makespan).  The flowchart of this optimization is analogous to the 

topological optimization one as illustrated in Fig. 27. 

 

[Step 1] Random initialization of antibody population 

 Similar to the genetic algorithms used in JSSP, the initial integer string encoding 

antibody population is randomly generated.   

 

[Step 2] Antibody representation and gene classification 

 An operation-based representation [Gen, 1994] is used to represent the genes of an 
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antibody.  This representation named all operations for a job with the same integer 

number and then interpreted it according to the order of occurrence in the given antibody.  

For a j jobs and m machines problem, an antibody contains mj ×  genes.  Each job j 

appears in the antibody m times, and each repeating gene (i.e., integer number) does not 

indicate a concrete operation of a job but refers to a unique operation.  It is easy to see 

that any permutation of operations can correspond to a feasible schedule.  For instance, 

consider a 3-job and 3-machine problem given in Table 12.  As Fig. 40 shown, suppose 

the genes of an antibody is given randomly as [3 1 2 2 1 3 1 2 3], where numbers 1, 2, and 

3 stand for jobs j1, j2, and j3, respectively.  Because each job needs three 

operations/machines, it appears exactly three times in an antibody.  Based on the 

machine sequence and processing time given in Table 12, the machine sequence for job 

j1is 1-2-3, for job j2 is 1-3-2, and for job j3 is 2-1-3, while the processing time for job j1is 

3-3-2, for job j2 is 1-5-3, and for job j3 is 3-2-3.  Therefore, the corresponding machine 

list and time list of given antibody shown in Fig. 40 are [2 1 1 3 2 1 3 2 3] and [3 3 1 5 3 2 

2 3 3], respectively. 

Table 12 Example data of 3-job and 3-machine JSSP 

Processing time operations Machine sequence 
Job 1 2 3 Job 1 2 3 
j1 3 3 2 j1 m1 m2 m3 
j2 1 5 3 j2 m1 m3 m2 
j3 3 2 3 j3 m2 m1 m3 
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Fig. 40 Antibody representation for scheduling problem 

 

In the same manner as in biological immune systems, each antibody/schedule is 

separated into two different kinds of genes: a heavy-chain gene (H) and a light-chain gene 

(L).  These genes are classified into heavy-chains or light-chains according to i) a 

default light/heavy chain-length ratio determined by the user and ii) job/gene order of 

occurrence appearing in the identical machine.  Take the 3×3 JSSP mentioned above for 

example, an antibody is given at random as [3 1 2 2 1 3 1 2 3] and its corresponding 

machine list is [2 1 1 3 2 1 3 2 3], assume that the user-defined light/heavy chain-length 

ratio is 0.3 and there are j jobs appearing in the identical machine (see from machine list).  

The number of light-chain gene is defined by the rounded of light/heavy chain-length 

ratio multiplied by number of jobs plus 0.5 (i.e., rounded of 5.0)3.0( +× j

5.0)3

) and assigned 

from later part of the jobs appearing in the same machine.  The other genes except 

light-chain gene are defined as heavy-chain.  Suppose there are 3 jobs in the JSSP, the 

number of light-chain gene is defined to 1 (integer of 3.0( +× ) and the number of 

heavy-chain gene is 2 (jobs minus the number of light-chain gene).  For machine 

number 1 in machine list, the corresponding jobs/genes are 1-2-3, therefore, its chain type 

is defined as H-H-L.  And the same manner for machine number 2, the corresponding 
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jobs/genes and chain type are 3-1-2 and H-H-L respectively, and so on.  Hence, the 

corresponding chain list of given antibody is [H H H H H L H L L] (see Fig. 40, chain 

list). 

 

[Step 3] Calculating combinatorial intensity 

 The antibody-to-antigen affinity value ( ) is employed to illustrate the 

combinatorial intensity between antigen/objective and the ith antibody/schedule.  In this 

chapter, the maximum makespan of a schedule is used as the affinity value, and it should 

be minimized.  The makespan is obtained by following decoding procedure: The first 

gene/job is scheduled/decoded first, then the second gene, and so on.  Each scheduling 

gene/job is allocated in the best available processing time for corresponding machine.  

The process is repeated until all genes are scheduled. Thus, the Gantt chart for this given 

antibody ([3 1 2 2 1 3 1 2 3]) is drawn in Fig. 41 with its maximum makespan of 14. 
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Fig. 41 Decoding for an antibody/schedule (Gantt chart) 
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[Step 4] Clonal proliferation 

 In the proposed scheme, the most-matched antibody which has minimal maximum 

makespan derived from [Step 3] is chosen for hypermutation during the clonal 

proliferation process, with a user-defined hypermutation rate and proliferation number. 

Again, hypermutation only takes place in light-chain genes (L).  For a 3 jobs JSSP, if a 

light-chain gene mutated form job j3 to j1 (j1 is generated randomly from all jobs), the 

original job j1 which has the same machine number with j3 should also be repaired to j3 

(reciprocal exchange within the same machine) in order to avoid yielding illegal or 

infeasible schedules (that is, some jobs are repeated more than once while other jobs get 

lost in the identical machine).  After the hypermutation process, the proliferated 

antibodies which have better affinity than un-proliferated antibody are differentiated into 

plasma antibody and memory antibody preserved and updated in the memory pool.  

Further, the resulting poor proliferated antibodies are neglected.  Resulting plasma 

antibodies combined with the remaining antibodies derived from [Step 3] are then 

proceed to Step 5 for donor antibody selection according to their affinity value.  In the 

memory pool, only highest affinity antibody can be survived.  On the other hand, those 

antibodies with low affinity and repeat will be removed from the memory pool.  In 

addition, a part of memory antibodies are induced into the germ-line DNA library (as per 

Step 6) according to a user-defined inducing rate. 
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[Step 5] Tournament selection for donor antibodies 

The proposed algorithm uses a tournament selection scheme to select donor 

antibodies exhibiting higher affinity values to assemble germ-line DNA libraries. 
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Fig. 42 Illustration of fragmental rearrangement for scheduling problem 
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[Step 6] Germ-line DNA library construction 

 As to MOIA, the components of germ-line DNA library are constructed from the 

memory antibodies and the donor antibodies. 

 

[Step 7] Randomly gene fragment rearrangement 

 In this optimization, new antibodies/schedules are rearranged via gene fragments 

picked randomly from germ-line DNA library.  A concept of machine-based 

rearrangement is used for producing a new antibody and as shown in Fig. 42 considering 

a 3-job 3-machine job-shop scheduling problem.  First, randomly chosen a seed 

antibody and a donor antibody from the library, and then assigned the genes/jobs of donor 

antibody with first machine number (number 1) to the seed in corresponding gene locus.  

Next, chosen a randomly donor antibody again for assigning the genes with second 

machine number (number 2) to the seed antibody in corresponding gene locus.  

Repeating processes till all machine numbers are assigned.  The new antibody is 

produced once all machine numbers are assigned.  It is easy to see that any assign of 

fragments will generate a feasible schedule without repairing procedures. 

×

 

[Step 8] Antibody diversification 

 Because of different antibody representation, the antibody diversity mechanisms are 
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needed to revise for applying to this scheduling optimization, and some of these revised 

mechanisms need repairing procedures. 

1. Somatic point mutation.  As depicted in Fig. 43, in terms of not-binary/integer 

encoding representation, this means swapping two randomly selected heavy-chain 

genes according to a pre-defined diversity probability. 

 

3 21 2 31 1 32
H HH H LH H LL

Antibodyi
Chain type:

point mutation

321 2 3 1 12Antibodyi 3

swap  
Fig. 43 Somatic point mutation illustration for scheduling problem 
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Fig. 44 Somatic recombination illustration for scheduling problem 

 

2. Somatic recombination.  As shown in Fig. 44, two heavy-chain gene fragments 

with the same length are randomly selected from an antibody.  After which a partial 
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exchange is performed between the two fragments according to a pre-defined 

diversity probability. 
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Fig. 45 Gene conversion illustration for scheduling problem 
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Fig. 46 Gene inversion illustration for scheduling problem 
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Fig.47 Gene shift illustration for scheduling problem 
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3. Gene conversion, gene inversion, and gene shift.  Following predefined 

probabilities, gene conversion, gene inversion, and gene shift is performed using a 

randomly selected heavy-chain gene (see Fig. 45 to 47).  Note that the starting and 

ending sites were randomly generated, and the number of shift genes was predefined.  

This type of diversification scheme results in a global search effect. In gene 

conversion (depicted in Fig. 45), those heavy-chain genes between the starting and 

ending site were swapped with the other heavy-chain gene chosen from antibody at 

random.  As to the gene inversion operator shown in Fig. 46, randomly chosen 

gene/job fragment inverses sequentially its gene positions from front to rear and 

from rear to front.  Fig. 47 illustrates gene shift operation.  Following the 

predefined number of shift, the selected gene/job fragment right-shift their gene 

locations with excessive positions being reallocated from rear to front. 

4. Nucleotide addition.  Nucleotides insertion may be accomplished either in light- or 

heavy-chain genes. The nucleotide is a randomly created natural number of 

predefined size representing the genes/jobs and inserted at a randomly chosen 

inserting site in the antibody locus.  Displaced genes are then shifted to the right 

with excessive genes out with the antibody boundary being repairing.  In the 

repairing process, first m of each job will be preserved and excessive part will be 

discarded as depicted in Fig. 48. 
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Fig. 48 Nucleotide addition illustration for scheduling problem 

 

It should be noted that the six diversification mechanisms described in [Step 8] are 

adopted randomly in the antibody diversity process. 

 

[Step 9] Stopping criterion 

The whole process will stop when the iteration equals a pre-defined number. 

Otherwise the process reverts to [Step 2] for another generation.  In the final stage, the 

best solutions are stored in the memory pool. 

 

7.3 Experimental Results and Discussions 

 For carrying out the necessary computations and evaluating the performance of the 

proposed immune algorithm, the program for computing JSSP was developed using C++ 

language and running with a Pentium 3 processor at 1.0GHz.  In this study, 27 

benchmark instances of different size (operations) collected from the OR-Library 
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(http://www.mscmga.ms.ic.ac.uk) including two classes of standard JSSP test problems 

[Fischer and Thompson, 1963; Lawrence, 1984] are considered to illustrate the 

effectiveness of the proposed algorithm.  These instances are widely used in the 

literatures, and each of instances is run randomly 10 times.  The associated user-defined 

parameters utilized in proposed immune algorithm for scheduling optimization are 

tabulated in Table 13, each with the same parameter setting.  Table 14 summaries the 

computational results, it lists the instance name and its size (job machine), the best 

known solution, the solution obtained by proposed immune algorithm (IA), and the 

solution computed by other algorithms such as genetic algorithms (GA) [Dorndorf and 

Pesch, 1995; Wang and Zheng, 2002; Gonçalves et al., 2002; Croce et al., 1995], stimulated 

annealing (SA) [Kolonko, 1999; Van Laarhoven, 1992], and tabu search (TS) [Dell’ Amico 

and Trubian, 1993].  Table 15 shows the corresponding best schedules obtained by 

proposed immune algorithm.  In the random runs, the compared results (Table 15) 

shown that the average relate error of the proposed immune algorithm over 10 random 

runs compared to other for the best known so far is very small, and the optimal or 

near-optimal solutions is found for 16 of the 27 instances, and apart of them are found 

very quickly for middle-size instances such as the size/operations small than 15 5.  For 

remaining large-size instances the results are also very close to that of other comparison 

algorithms. 

×

×
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Table 13 Immune algorithm parameters for scheduling problem 

Instance size (job machine) × 6x6 10x5 15x5 20x5 10x10 15x10 20x10 30x10 15x15

Iteration number 100 500 1000 

Antibody population size job× machine 2 × (job × machine) 

Antibody length 36 50 75 100 100 150 200 300 225 

Diversity probability 0.1 0.1 0.1 

Hypermutation rate 0.5 0.5 0.5 

Light/heavy chain-length ratio 6:4 5:5 5:5 

Number of proliferation 6 8 10 

Inducing ratio 0.1 0.2 0.2 

Bit number in Gene shift 2-bit 2-bit 

Bit number of nucleotide random between 1 to number of jobs 

Tournament size (job × machine)/10 (2 × job × machine)/10 
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Table 14 Computational results 

GA SA TS 

Name Size 
Best

known 
IA 

Dorndorf
and 

Pesch 
(1995)

Wang
and

Zheng
(2002)

Gonçalves

et al. 
(2002) 

Croce

et al.
(1995)

Kolonko
(1999)

Van 
Laarhoven 

et al. 
(1992) 

Dell’ 
Amico
et al.

(1993)

FT06 6x6 55 55  55  55  55 55 

FT10 10x10 930 955 960 930 936 946  930 930 

FT20 20x5 1165 1201 1249 1165 1177 1178  1165 1165

LA01 10x5 666 666 666 666 666 666  666 666 

LA02 10x5 655 659 681  666 666   655 

LA03 10x5 597 597 620  597 666   597 

LA04 10x5 590 593 620  590    590 

LA05 10x5 593 593 593  593    593 

LA06 15x5 926 926 926 926 926 926  926 926 

LA07 15x5 890 890 890  890    890 

LA08 15x5 863 863 863  863    863 

LA09 15x5 951 951 951  951    951 

LA10 15x5 958 958 958  958    958 

LA11 20x5 1222 1222 1222 1222 1222 1222  1222 1222

LA12 20x5 1039 1039 1039  1039    1039

LA13 20x5 1150 1150 1150  1150    1150

LA14 20x5 1292 1292 1292  1292    1292

LA15 20x5 1207 1207 1237  1207    1207

LA16 10x10 945 946 1008 945 977 979 945 956 945 

LA17 10x10 784 784 809  787    784 

LA18 10x10 848 855 916  848    848 

LA19 10x10 842 857 880  857  842  842 

LA20 10x10 902 911 928  910    902 

LA21 15x10 1046 1088 1139 1058 1047 1097 1046 1063 1047

LA26 20x10 1218 1257 1278 1218 1218 1231  1218 1218

LA31 30x10 1784 1784  1784 1784 1784  1784 1784

LA36 15x15 1268 1316 1373 1291 1305 1305 1268 1293 1268
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Table 15 The corresponding best schedules 

Name Size 
Best 

known 
IA Corresponding best schedule 

FT06 6x6 55 55 [3 2 3 1 4 6 2 3 6 6 4 2 5 5 3 2 4 5 1 1 5 6 4 1 2 1 3 2 5 3 4 5 4 6 1 6]

FT10 10x10 930 955 
[7 4 6 6 10 8 2 7 5 6 4 7 5 7 4 9 9 10 2 1 8 5 7 6 1 10 3 7 4 6 8 2 8 3 
1 5 9 3 10 7 9 8 6 6 6 2 3 9 7 1 4 4 7 3 4 3 5 5 9 1 8 10 1 2 2 5 6 2 9 
10 9 4 9 10 1 8 5 7 2 2 5 3 8 9 4 3 1 3 1 1 8 6 10 10 4 5 2 10 8 3] 

FT20 20x5 1165 1201 

[20 5 16 20 2 5 16 1 19 20 20 15 6 2 16 9 19 15 20 8 2 19 5 17 19 
10 12 17 15 10 5 14 10 14 17 17 18 19 6 6 1 13 9 12 5 8 11 2 18 14 
7 11 7 6 11 12 10 13 1 8 2 3 1 3 7 18 13 16 14 1 4 3 17 16 12 7 15 4 
11 10 12 3 13 8 13 7 4 15 8 11 3 9 14 6 9 18 18 4 4 9] 

LA01 10x5 666 666 
[6 7 5 10 7 5 6 10 2 2 7 9 5 6 10 3 6 5 1 1 1 4 4 9 6 9 2 2 9 10 9 1 2 
8 4 3 8 10 4 5 7 4 7 8 3 1 3 8 8 3] 

LA02 10x5 655 656 
[3 1 5 2 7 2 9 10 2 7 3 9 4 10 9 8 10 6 8 8 5 3 3 1 4 2 5 6 7 2 5 7 4 6 
10 1 3 9 7 1 1 8 5 8 9 6 6 4 4 10] 

LA03 10x5 597 597 
[4 4 2 7 8 1 8 10 6 9 6 2 3 5 7 9 7 4 1 10 9 2 3 5 4 7 1 9 6 5 6 7 1 5 8 
6 2 3 8 3 10 9 4 5 1 10 8 3 10 2] 

LA04 10x5 590 593 
[5 10 7 3 5 5 6 6 1 4 9 1 2 2 2 10 3 8 7 5 6 8 6 8 7 10 10 9 9 1 4 3 4 
3 8 5 6 7 1 7 9 8 3 2 4 1 10 2 9 4] 

LA05 10x5 593 593 
[8 2 1 9 4 6 2 9 8 6 2 3 6 1 4 3 1 8 10 4 7 7 8 4 9 7 3 5 10 9 6 1 4 3 2 
7 7 5 2 1 3 6 9 10 8 5 5 5 10 10] 

LA06 15x5 926 926 
[5 7 14 7 1 5 6 11 11 4 10 3 10 1 12 8 15 9 11 12 12 12 6 14 12 11 
10 14 10 3 5 14 10 14 5 1 2 11 6 4 4 3 8 13 9 7 4 1 1 8 5 2 4 6 6 7 8 
9 9 7 8 15 2 13 9 3 2 2 13 3 15 15 13 15 13] 

LA07 15x5 890 890 
[12 15 13 3 7 4 15 4 1 4 12 1 3 5 8 9 4 14 8 2 15 10 15 11 4 10 6 9 
10 9 14 1 6 2 5 14 14 1 13 3 11 15 7 8 7 2 13 9 13 6 3 7 2 3 13 11 11 
1 12 12 10 5 5 8 5 10 2 6 12 14 9 8 6 7 11] 

LA08 15x5 863 863 
[14 8 11 6 9 5 11 4 14 14 13 10 12 7 8 10 7 8 8 5 15 11 9 12 3 6 5 3 
5 8 1 1 4 4 9 1 6 2 2 14 9 13 13 12 4 4 15 9 13 14 6 15 10 2 1 15 7 3 
15 7 13 11 7 10 12 3 2 5 3 11 6 12 2 1 10] 

LA09 15x5 951 951 
[4 1 10 3 4 11 14 12 5 12 15 13 15 11 2 8 8 13 6 3 4 5 2 5 13 10 11 9 
15 14 7 10 10 14 6 7 7 13 6 12 2 6 1 1 1 5 9 3 12 2 15 6 3 7 4 3 8 14 
10 8 9 4 7 12 2 11 15 13 14 9 8 9 5 11 1] 

LA10 15x5 958 958 
[15 1 7 3 12 15 9 3 2 10 6 13 11 14 5 13 8 4 7 6 12 3 13 4 8 4 14 2 5 
8 7 2 11 11 7 10 10 9 9 15 10 12 9 14 14 12 2 7 13 15 1 4 14 8 5 5 6 
1 11 3 8 12 1 6 1 15 4 6 5 9 2 11 10 3 13] 
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LA11 20x5 1222 1222 

[13 11 20 11 20 8 15 1 14 2 7 18 5 11 4 9 7 20 4 12 6 9 15 7 18 3 13 
8 20 17 18 15 10 16 5 16 16 8 14 6 12 15 3 17 2 16 2 1 13 11 5 6 6 
10 5 16 9 4 3 11 14 12 1 15 18 17 18 12 6 13 4 14 19 9 10 2 1 7 8 9 
13 7 4 2 19 17 19 17 20 10 3 12 1 8 14 5 10 19 3 19] 

LA12 20x5 1039 1039 

[1 14 7 20 2 5 19 14 9 15 20 16 8 11 6 20 19 19 5 6 7 9 13 1 18 12 8 
15 4 4 13 9 3 18 18 2 5 9 11 20 3 15 9 12 11 16 10 16 13 3 11 12 4 7 
1 17 1 5 17 3 5 2 14 6 8 8 12 13 7 14 17 2 15 4 6 20 10 17 3 17 7 18 
10 18 6 19 19 15 8 12 16 16 11 4 14 10 1 2 13 10] 

LA13 20x5 1150 1150 

[7 20 8 9 6 15 17 4 5 3 12 18 11 16 17 8 3 3 2 8 7 2 19 9 11 19 6 12 
13 11 14 4 14 19 20 20 7 13 4 18 10 9 6 10 2 1 19 4 10 14 18 13 5 
17 18 16 1 12 10 12 19 17 4 13 14 17 6 15 2 15 8 7 8 7 1 15 5 6 9 1 
1 5 16 10 20 9 14 13 2 16 11 12 11 3 18 15 3 20 16 5] 

LA14 20x5 1292 1292 

[5 7 8 17 3 8 1 11 7 20 2 3 20 14 13 9 15 19 1 20 18 11 2 14 9 13 9 4 
10 14 2 15 17 2 20 12 10 11 3 2 7 18 11 13 6 17 12 6 7 7 6 14 15 11 
5 19 5 8 5 10 8 5 1 17 16 3 18 8 15 1 4 18 4 16 16 9 17 9 19 1 18 15 
6 10 16 10 13 4 19 4 19 12 3 20 16 13 14 12 6 12] 

LA15 20x5 1207 1207 

[2 7 3 13 20 14 13 2 12 11 9 15 2 11 11 7 20 12 19 12 4 13 4 20 12 4 
1 7 11 1 15 1 6 15 8 2 5 10 3 4 19 6 9 13 18 8 10 17 19 3 2 11 16 16 
6 10 8 5 12 10 18 5 8 19 6 1 1 8 19 13 7 20 14 5 18 9 15 15 14 4 14 
6 5 10 16 17 20 17 17 3 9 9 16 3 17 18 18 14 7 16] 

LA16 10x10 945 946 
[10 9 10 6 3 2 6 8 3 7 1 3 3 6 4 5 7 9 8 6 7 5 3 7 2 2 10 1 1 3 7 4 3 1 
8 6 1 4 10 5 3 9 10 4 1 2 7 5 6 5 3 8 4 9 2 5 8 4 9 1 7 10 5 4 4 6 8 6 5 
6 1 2 3 2 2 5 10 7 7 10 9 1 9 4 7 8 8 8 10 5 4 9 10 9 2 6 9 8 1 2] 

LA17 10x10 784 784 
[7 2 4 8 6 2 1 1 10 5 3 4 7 4 5 1 8 3 2 8 2 4 3 5 6 9 7 5 8 6 6 5 4 4 10 
1 2 6 7 3 9 5 9 3 9 5 1 2 10 7 3 10 6 8 2 8 2 9 3 1 2 9 8 3 10 3 9 7 1 9 
7 9 1 4 6 6 7 5 10 5 7 2 10 9 8 8 7 4 8 4 6 10 6 4 1 10 5 1 3 10] 

LA18 10x10 848 855 
[9 7 10 9 9 10 5 2 7 5 10 7 7 6 3 3 8 1 8 9 4 6 3 6 5 1 1 9 4 8 8 6 3 8 
3 10 1 6 5 10 3 9 8 9 6 1 3 3 10 3 4 3 4 10 6 7 5 1 1 2 2 1 1 4 1 4 2 5 
6 2 2 5 4 8 4 5 9 5 7 6 6 5 4 2 2 7 8 7 7 9 8 2 10 10 2 10 8 7 9 4] 

LA19 10x10 842 857 
[8 9 6 10 5 1 3 2 2 7 4 10 1 6 1 3 10 4 5 10 3 2 9 5 9 9 1 1 4 6 5 7 5 
7 8 6 2 8 1 9 4 4 4 3 4 9 2 4 5 8 5 9 10 2 9 7 1 4 7 4 7 5 6 2 7 3 8 6 5 
3 7 1 3 7 3 1 6 7 2 6 5 9 8 8 9 6 2 1 8 2 8 6 10 10 10 8 10 10 3 3] 

LA20 10x10 902 911 
[1 9 6 6 10 2 5 8 8 6 9 10 5 7 10 5 2 6 5 9 5 7 1 8 8 7 10 3 2 6 1 2 7 
10 1 9 10 1 6 3 5 9 6 6 8 9 1 10 5 2 4 3 6 4 5 9 7 3 3 7 4 4 3 8 4 1 1 6 
1 10 4 1 4 9 9 4 9 3 8 2 5 5 7 10 2 2 7 7 3 3 2 2 8 10 3 7 4 8 4 8] 
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LA21 15x10 1046 1088 

[6 7 1 2 12 7 8 5 10 7 11 3 11 11 12 15 11 8 7 3 11 6 6 13 10 9 15 15 
14 12 8 9 5 2 11 1 2 1 3 12 2 8 15 12 14 12 12 1 13 4 8 4 10 8 5 8 3 
4 7 15 4 11 2 3 12 13 7 9 14 7 5 2 4 2 13 1 14 14 2 10 5 11 6 7 10 5 
12 2 15 9 13 6 3 4 10 14 3 13 9 13 10 6 1 3 3 6 9 6 6 14 13 12 1 9 3 
5 15 4 4 10 13 14 8 11 7 15 10 4 5 4 10 2 7 6 8 15 14 5 8 9 13 15 14 
1 1 11 1 5 9 9] 

LA26 20x10 1218 1257 

[9 15 11 19 2 7 1 4 5 19 8 1 17 17 1 16 8 10 6 4 9 17 13 7 12 14 18 3 
14 4 11 5 15 5 16 3 18 19 11 10 10 18 4 10 10 19 9 7 7 4 18 4 1 2 1 
1 12 15 11 19 8 2 12 13 4 16 14 8 2 14 2 20 1 9 20 1 4 18 16 5 8 2 
13 4 1 14 18 13 8 7 19 5 17 7 16 15 10 12 15 6 17 10 3 14 3 6 4 18 
12 16 11 12 20 3 11 17 15 20 2 9 17 2 12 2 19 5 9 13 3 15 17 6 7 8 
10 18 12 13 14 7 3 6 15 18 9 3 11 15 13 10 16 5 14 6 16 6 8 3 9 11 
15 14 2 20 20 18 19 9 20 14 20 6 20 5 5 17 13 20 6 3 13 1 6 12 7 17 
10 13 19 11 12 7 16 5 8 16 11 8 9 19] 

LA31 30x10 1784 1784 

[15 25 5 4 13 25 19 26 3 19 23 29 12 20 8 14 30 21 28 4 20 2 8 27 
18 29 11 15 27 20 12 30 3 7 26 10 22 22 18 7 20 8 25 21 4 29 15 1 
29 5 24 16 28 12 4 1 3 2 16 1 4 22 25 2 9 12 15 8 18 26 6 27 29 30 
10 4 9 30 25 14 28 11 26 25 25 3 7 3 17 25 28 8 14 13 2 30 9 5 21 8 
10 22 2 14 11 14 6 18 17 20 11 12 21 15 2 21 21 29 24 10 11 16 16 
18 6 10 5 9 30 2 20 17 5 23 24 21 26 14 28 9 23 28 12 26 20 4 11 22 
18 16 24 10 29 23 6 20 15 13 7 19 3 17 19 14 22 25 12 24 10 5 23
19 5 11 17 16 16 13 1 28 13 30 1 5 22 18 1 24 17 24 13 12 8 6 17 19 
17 4 11 3 13 24 11 30 24 4 27 26 29 7 16 27 20 13 1 9 23 20 30 6 17 
5 27 23 6 29 21 6 30 22 15 2 14 28 6 16 28 24 6 2 18 10 11 3 7 26 
15 19 28 19 7 1 3 4 19 8 10 13 29 26 27 9 15 14 22 3 5 23 1 22 7 27 
12 18 1 27 27 14 13 18 9 2 8 26 19 12 8 9 15 7 21 10 16 17 21 7 23 
25 23 9] 

LA36 15x15 1268 1316 

[4 11 8 5 8 2 8 12 13 14 7 1 7 11 6 9 9 15 12 5 13 2 2 7 9 15 15 11 9 
7 11 8 13 1 7 13 1 13 6 6 5 10 8 8 5 4 12 11 4 2 12 4 15 1 10 3 5 1 
10 15 3 7 5 3 14 2 11 15 12 14 6 15 6 5 8 14 4 1 9 15 2 7 12 7 5 10 4 
9 8 10 5 3 7 10 11 15 12 11 1 10 14 9 3 15 12 13 3 3 3 1 13 15 10 4 
15 12 12 7 5 11 8 13 2 2 1 2 14 3 7 4 10 7 4 14 9 9 11 6 5 3 15 11 14 
11 6 13 4 8 6 4 14 3 2 12 12 9 14 12 15 9 8 13 1 7 4 6 8 1 6 1 6 6 10 
9 10 10 5 1 8 11 2 6 3 12 2 8 13 13 10 13 2 13 5 9 4 5 12 14 13 5 1 7 
14 14 8 15 14 11 3 10 2 11 4 2 9 3 4 6 1 3 7 10 6 9 14] 
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7.4 Summary 

 In this chapter, a novel immune algorithm emulating the features of a biological 

immune system is proposed for solving the job-shop scheduling problem.  The 

antibody/solution representation of a scheduling is based on the operation 

(operation-based representation), and the goal is to minimize the maximum makespan 

time of a scheduling.  During the optimal search of scheduling, inherent local search 

ability in immune system offered by clone process enhances the search speed and 

accuracy in large-size scheduling problem.  In addition, by integrating the features of 

biological immune system such as antibody memory, fragmental rearrangement, and 

diversity, the proposed immune algorithm provides a balance between exploring search 

space and finding optimum solutions.  Finally, numerical simulation based on the 

benchmark instances demonstrated the effectiveness of the proposed immune algorithm 

which produces optimal or near-optimal solutions on all instances tested, and has better 

performance to part of comparison methods.
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CHAPTER 8 

CONCLUSIONS 

 

In this dissertation, a novel immune algorithm emulating the biological immune 

system fully has been proposed by the author for solving the single-objective, 

single-objective with multi-modally, and multi-objective optimization problems 

considering different solution encoding system e.g. one- & two-dimensional binary- 

encoded string and integer-encoded string.  The proposed algorithm differs from the 

other hybrid algorithms which are combined immune algorithm with evolutionary 

algorithm (especially genetic algorithm) not only used the characteristics of the clonal 

selection principle and the immune diversity, but the concepts of the cytokine, the 

germ-line DNA libraries, the antibody fragment rearrangement, the antibody memory, and 

the more antibody diversity mechanisms are also employed for finding the non-dominated 

solutions and maintaining diversity in obtained non-dominated front, these are two 

remarkable things concerned when adopted the evolutionary algorithm in the optimization 

search.  Moreover, the proposed methodology enhances convergent accuracy in 

solutions via the function of clonal proliferation and schemata recombination 

implemented through the process of gene fragmental rearrangement.  The key natural 

selection components (gene fragments) are similar to the building blocks of genetic 
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algorithms associated with stimulus donor antibodies and memory antibodies.  The 

rearrangement of antibody genes involved in the production of antibodies differs 

somewhat from the recombination of parental genes in genetic algorithms.  In the former, 

antibodies (solutions) are the direct products of gene fragment (e.g. light- and heavy- 

chain gene fragments) combinations (schemata), rather than the antibody itself, while the 

latter involves the crossing-over (or chromosome mixing) from parental genetic material 

to create an offspring.  Meanwhile, the two main drawbacks of the genetic algorithms – 

the lack of local search ability and the premature convergence pointed out by Tazawa 

(1996), have also been improved in this dissertation through the use of clonal 

proliferation and antibody diversification schemes.  The inherent local search and 

memory abilities of the biological immune system employing clonal proliferation enhance 

the search speed and convergence accuracy of solutions in the proposed algorithm, with 

the substitution of increasing computation time.  In the other hand, the innate 

capabilities of specificity, distinction, and diversity using affinity, cytokine, and 

diversification mechanisms further improve the premature convergence and diversity of 

solutions. Therefore, the balance between exploration and exploitation of non-dominated 

solutions within a search space are realized in this dissertation through the integration of 

clonal proliferation, germ-line gene libraries, cytokine, gene fragment rearrangement, and 

memory antibodies, further assisted by several diversification schemes.   
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The effectiveness and adaptability of proposed immune algorithm have been proved 

by several optimization problems including multi-objective optimizations in the 

unconstrained/constrained test functions and the sizing of truss structure, single-objective 

with multi-modal optimizations in the structural topology, and single-objective 

optimizations in the job-shop scheduling problems.  In the multi-objective optimization 

of unconstrained/constrained test functions, numerous test functions were performed to 

determine the effectiveness (accuracy as well as spread of global non-dominated solutions 

or Pareto-optimal solutions) of the proposed immune algorithm, with Pareto-optimal 

solution performances quantitatively measured by five performance metrics.  The 

compared results of these tests shown that the proposed immune algorithm generally 

performs better than SPEA and NSGA-II, and by extension also better than MOGA, 

NPGA, and NSGA in several areas.  For multi-objective tress-structure sizing 

optimization considering the constraint of maximum allowable stress, the compared 

figures shown that the proposed algorithm is capable of finding acceptable feasible 

Pareto-optimal solutions in 10-bar plane truss and 25-bar space truss optimization 

problems.  In addition, during the single-objective multi- modal topological optimization 

considering the asymmetry structures and the constraint of maximum allowable stress, the 

resulting figures indicated that the potential of the proposed immune algorithm as a tool 

for investigating optimal topologies and for automatically creating innovative solutions to 
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structural design problems has been illustrated in the examples presented.  In the 

single-objective job-shop scheduling optimization, 27 benchmark instances were used for 

demonstrating the optimal search ability in such not-bit encoded system.  The 

scheduling results show that the proposed immune algorithm has ability to produce 

optimal or near-optimal solutions on all instances tested, and has better performance than 

simple methods. 

Finally, numerous compared results from various applications confirmed that the 

immune algorithm proposed in this dissertation is capable of fining acceptable 

Pareto-optimal solutions quickly meanwhile maintaining diversity among Pareto-optimal 

front and can be applied well in widely field of engineering optimal design.
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