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ABSTRACT

THIS DISSERATTION focuses on developing a novel immune algorithm called for
finding Pareto-optimal solutions simultaneously maintaining diversity to single- and
multi-objective optimization problems (SOOPs and MOOPs) based fully on the features
of a biologica immune system. The applications in this dissertation include
unconstrained/constrained test functions and truss-structure sizing multi-objective
optimization, structural topology single-objective with multi-modally optimization, and
single-objective job-shop scheduling optimization problems. The use of proposed
immune algorithm as opposed to the evolutionary algorithm (e.g., genetic algorithm, GA,
evolution strategy, ES) provides this methodology with superior diversification and local
search abilities. Inter-relationships within the proposed algorithm resemble antibody-
antigen relationships in terms of specificity and adaptiveness, antibody clonal
proliferation, antigen discrimination, and the antibody memory characteristics of adaptive
immune responses. Besides, the features for producing antibodies in biological immune
system such as gene fragment rearrangement and several antibody diversification
schemes (including somatic recombination, somatic mutation, gene conversion, gene
reversion, gene drift, and nucleotide addition) are incorporated into the proposed immune
algorithm in order to improve the baance between exploitation and exploration.
Moreover the concept of cytokinesis aso combined to algorithm for constraint handling.

By using several performance metrics and comparison with the other approaches, the
effectiveness of proposed immune algorithm are evaluated by unconstrained/constrained
test functions and several engineering applications (truss sizing, structural topology, and
scheduling). The simulated results demonstrated that the proposed immune algorithm

provides better effect than other methods and suitable for searching in optimizations.
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AbAb;
AbAg;,,
ADA;,
affinity,,
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amount i

NOMENCLATURE

- ith antibody of whole population.
. Affinity value between the ith and jth antibodies.
. Affinity value between ith antibody and kth antigenic epitope.

: Normalized affinity vakues.

: Normalized affinity vakue between ith antibody and kth antigenic epitope.

. kth antigenic epitope.

: Summation of jth antibody violated amount.

: Avidity values which binding of affinities between antigens and antibodies as

well as between antibodies only for multi-objective optimization problems.

: Cytokine value of ith antibody, treat as the penaty term for constraint

violation.

: Total number of the jth antibody violated constraint condition.

: The Euclidean distance between the ith and jth antibodies in objective space.
. kth objective function.

: kth objective value of theith solution.

: The allowable constraint value.

: The equality and/or inequality constraint values.

: Number of antibodies/solutions.

: Number of antigens/objectives.

: Total number of equality and inequality constraint conditions.

: Rank values represent combinatorial intensity between ith antibody and all



=l

antigens.

: Rank values (r,) added by constraint violation values (CK, ).
: Similarity among antibodies.
- ith solution.

: Threshold value which illustrates the allowabl e difference between antibodies.



CHAPTER 1

INTRODUCTION

1.1 Optimization

The optimization is the process of searching for one or more feasible solutions

which correspond to extreme values of one or more objectives in a problem until no other

superior solution can be found. When an optimization problem modeling a physica

system considering only one objective, the task of finding the optimal solution is referred

to as single-objective optimization problems or SOOPs. There exist single-objective

optimization methods that work by using calculus-based or deterministic search principles

such as gradient-based and heuristic-based techniques and stochastic search principles,

which allow optimization method to find globally optimal solutions more reliably

including. Evolutionary agorithm and simulated annealing are two of such stochastic

methods. While an optimization problem involves more than one objective, the task of

finding one or more solutions is known as multi-objective optimization problems or

MOOPs. Much of the current focus is on single-objective engineering optimization,

even though most real-world problems require that several objectives be satisfied

simultaneously. A challenging MOOPs-related problem concerns the goodness of fit of

a solution, since al solutions have their own range of fitness values (usually one per



objective). Trade-offs are common, since any solution may be good for some objectives

but not for others. The frequency of conflicting objectives has made multi-objective

optimization an important aspect of engineering and design.

Over the past decades, numerous approaches such as tabu searches [Hansen, 1997,

Gandibleux et al., 1996], simulated annealing (SA) [Suppapitnarm et al., 2000], Ant-Q

Algorithms [Mariano and Morales, 1999], fuzzy logic [Rao et al., 1992], neural networks

(NN) [Balicki, 1998], and evolutionary algorithms such as evolution strategies (ESs)

[Knowles and Corne, 1999] and genetic algorithms (GAs) [Deb, 2001; Zitzler, 2001,

Coedllo, 2002; Osyczka, 2002] have been developed for solving the optimization problems.

In which Genetic algorithms — powerful tools based on biological evolution mechanisms

and natural selection theory [Goldberg, 1989] — have received considerable attention as

the single- and multi-objective optimal design efforts. The genetic algorithms are based

on the mechanism of natural selection and evolution and are applied in searching for the

global optimum for many applications. They combine survival of the fittest individual

among population with a structured and randomized information exchange to form a

search algorithm with some of the innovative flair of human search. GAs start from a

set of random strings to represent the individuals of population and proceed repeatedly

from generation to generation through three basic genetic operators. reproduction (or

selection), crossover, and mutation. In each generation, the number of copies of every



individual is reproduced in proportional to its value of fitness function for next generation.

Because the value of fitness function represents the probability of survival, the selection

procedure keeps strong individuals and eliminates the weak ones to emulate the evolution

of nature. The reproduction operator is the source of exploitation. Crossover operator

recombines genetic information of two individuals to produce the offspring for the next

generatio3n. The main purpose of crossover isto exchange genetic information between

parent pairs without losing any important schemata. In short, crossover operator can be

viewed as atwo-step process. Inthefirst step, the individuals of mating pairs are chosen

form the mating pool of population. Then transaction of chromosome segments between

mating pairs is performed in the second step. The purpose of mutation is to introduce

genetic diversity into the population. A random number is generated for every bit in all

chromosomes of the current population and it is checked with the probability of mutation.

If the random number is less than the probability of mutation, the selected bit has to

undergo mutation, i.e., change from 1 to O or vice versa. The total number of bits to be

mutated is set by the mutation rate. Both the crossover and mutation operators are the

sources of exploration. They will disrupt some of the schemata on which they operate.

In the process of genetic search, there is a tradeoff between exploitation (i.e. reproduction)

and exploration (i.e. crossover and mutation). The difficulty of genetic algorithms is

seeking the balance between exploitation and exploration that determine the convergence



and diversity of the optimal search. Hence, the genetic algorithms are useful in finding a

global optimum in cases where several local optima are present.

Schaffer’'s (1985) vector-evaluated genetic algorithm (VEGA)—the first GA

application developed for solving MOOPs—uses GAs to find multiple trade-off solutions

from a single ssmulation run. Hajela and Lin (1992) designed a Weight-Based Genetic

Algorithm (WBGA) for multi-criteria optimization. A domination approach to solving

MOOPs was used by Murata and Ishibuchi (1995), and Fonseca and Fleming (1993) in

their Multi-Objective Genetic Algorithm (MOGA) and by Srinivas and Debs (1994) to

create their Non-dominated Sorting Genetic Algorithm (NSGA). Other approaches

based on GAs include the Multi-Niche Crowding Genetic Algorithm (MNCGA) (Rao

Vemuri and Cedeno, 1995), Niche Pareto Genetic Algorithm (NPGA) [Horn et al., 1994],

Reduced Pareto Set Genetic Algorithm (RPSGA) [Osyczka and Kundu, 1995], Neural

Evolution Strategy SY stem (NESSY) [Koppen and Rudlof, 1997], spatial predator-prey

model approach (Laumanns et al., 1998), Strength Pareto Evolutionary Algorithm (SPEA)

[Zitzler and Thiele, 1998], Hybrid GA [Lo and Chang, 2000], Diploid GA [Viennet et al.,

1996], and Multi-Sexual GA [Lis and Eiben, 1997].



1.2 Sructural Optimization

The structure optimal design is a very interesting topic in the field of engineering

optimization. The optimal design of structures including sizing, shape (i.e. configuration)

and topology forms the basic issues for the structural design process. In sizing

optimization, the parameterized shape and topology are considered as fixed, while an

optimal set of sizing parameters, such as the cross-section areas of trusses, are found.

With shape optimization, only changes to the boundary conditions of the design can be

made with the topology of structure being held constant. Different from shape

optimization, topology optimization not only changes structural boundary but also

modifies the interior material of structure. In other words, holes in the interior of

structure can be created. Hence, the topology optimal design may be the most important

and difficult topic in structural optimization. In the structure optimization, optimal

design of truss-structures has always been a fast developing area of research in the field

of engineering optimization and has made notable progress in the last decade.

Numerous techniques and methodologies have been developed to find optimal

truss-structures, especially biological-inspired methods imitating natural phenomena and

physical processes. Among these are ssimulated annealing [Moh and Chiang , 2000],

particle swarm optimization [Fourie and Groenwold, 2002], evolutionary strategy

[Gutkowski et al., 2001], fuzzy logic [Shih and Yu, 1995], immune algorithm [Ishida et



al., 1995] and genetic algorithms [Coello and Christiansen, 2000; Narayanan, 1998; Deb

and Gulati, 2001; Erbatur et al., 2000; Ponterosso and Fox, 1999; Fadel and Li, 2002],

the most famous of these methods being genetic algorithms. Further, most practical

design tasks require that the sizing of variables be chosen from a list of discrete

commercial values as opposed to continuous values. This results in a discrete

optimization problem of greater complexity more difficult to solve using traditional

methods [ Templeman, 1988; Loh and Papalambros, , 1991; Loh and Papalambros, 1991].

However, this is not an issue for genetic algorithm due to their binary-coded nature.

Note that GA theory can be equally applied to continuous optimization problems.

Besides, in the past decades a number of innovative approaches to structura

topology optimization have been developed. The domain variation (also termed

sengitivity analysis) is the first approach proposed by Kibsgaard (1992) for topological

optimization. It consists of successive small variations of the initial design domain, and

is based on the computation of the gradient of the objective function with respect to the

domain. This approach has two major defects: first, it requires a good initial guess, as it

demonstrated to be unstable for large variations of the domain; second, it does not allow

modification of the initial domain topology (e.g. add or remove holes). Another popular

method, the homogenization method [Bendsge and Kikuchi, 1988; Suzuki and Kikuchim,

1991; Tenek and Hagiwara, 1993; Lin and Chou, 1999] first proposed by Bendsge and



Kikuchi (1988) consists in dealing with a continuous density of material. In the end of

this method, the final density is forced toward value 1 or O (material present or absent).

However, this approach requires the design of the homogenized operator, as thoroughly

described in Allaire and Kohn (1993), and is insofar limited to the linear elasticity case.

In addition, it cannot address loadings that apply on the actual boundary of the shape to

be determined, and hardly handles optimization for multiple loadings [Kane and

Schoenauer, 1996]. Recently, a ssmple approach to shape and topology optimization

termed Evolutionary Structural Optimization (ESO) method has been developed by Xie

and Steven (1993). The origina concept of ESO method is to gradually remove lowly

stressed elements not needed from the structure after each finite element analysis, the

element removal criteriais established by sensitivity analysis. Hence, the topology of the

resulting design is gradually improved to achieve the optimal design. A fundamental

potential drawback of this method pointed out by Liu et al. (2000) is the strong

dependence of the solution on the mesh of finite element from which it is evolved and on

the sequence of the element removal. Although the capability to add or reinstate

elements has recently been added to the ESO through the Bidirectional Evolutionary

Structural Optimization (BESO) method [Querin et al, 1998], this addition is still

restricted to previous element positions or to the area/volume predefined by the mesh of

finite e ement.



A possible approach to overcome these difficulties of topological optimization

mentioned above is to adopt stochastic optimization methods such as the simulated

annealing [Kirkpatrick et al., 1983], the genetic algorithms [ Goldberg and Samtani, 1986]

and the immune algorithm [Bersini and Varela, 1991]. Anagnostou et al. (1992)

developed a simulated annealing based approach for structure optimal configuration

design. Morerecently, alot of researchers have extensively employed genetic algorithm

based methods for structural optimization in the optimal design of discretized trusses

sizing [Rajeev and Krishnamoorthy, 1992; Wu and Chow, 1995], shape [Jenkins, 1991,

Woon et al., 2001], and topology [Kane and Schoenauer, 1996; Chapman, 1994; Jakiela,

2000].

1.3 Job-Shop Scheduling Optimization

The job-shop scheduling problem (JSSP) is one of the well-known NP-hard

combinatorial optimization problems. The problem can be described as: there are a list

of | jobs and a number m of machines that perform operations on jobs. Each job

involves a particular collection of tasks, and each task needs to be performed on a given

machine for a given period of time. In general, the task of scheduling is the allocation of

jobs over time when limited resources are available, where the objective should be

optimized and constraints must be satisfied. There are several constraints on jobs and



machines [Blazewicz et a., 1996]: i) there are no precedence constraints among

operations of different jobs; ii) operations cannot be interrupted and each machine can

handle only one job at a time; iii) each job can be performed only on one machine at a

time. While machine sequence of the jobs is pre-assigned, the problem is to find the job

sequences on the machines which minimize the makespan, i.e. the maximum of the

completion times of all operations. Since the processing time and constraints are fixed,

and no stochastic occur, the search space consists of  (j!)™feasible schedules.

During the last three decades, various approaches have been applied to solve JSSP,

including the following: mathematical programming (linear programming, goal

programming, dynamic programming, etc.), branch-and-bound methods, and some

heuristic/probabilistic search methods. It has been recognized that scheduling

optimization using mathematical programming is very difficult, because of lengthy

computational time. In addition, severa branch-and-bound methods [Applegate and

Cook, 1991; Brucker et al., 1994; Carlier and Pinson, 1989] have been developed for

solving the JSSP to optimality. These methods require a large amount of computation

time and therefore it become more difficult to achieve an optimal solution when the

variety of parameters (i.e. jobs or machines) and constraints is incremented.  In recently

years, there has been an increasing interest and growing rapidly in methods based on

heuristic such as simulated annealing (SA) [Van Laarhoven et al., 1992; Kolonko, 1999],



tabu search (TS) [Del’ Amico and Trubian, 1993; Ponnambalam et al., 2000], neura

network [Foo et al., 1995], and genetic algorithms (GAs) [Davis, 1985; Cheng et al.,

1996; Maturana et al., 1997; Murata et al., 1996; Croce et al., 1995; Wang and Zheng,

2002], which are capable of producing goodness solutions with a reasonable

computational effort. In the past few years, GAs have been widely applied in the

production of scheduling field. A GA exhibits parallelism, contains certain redundancy,

and historical information of past solutions, and is suitable for implementation on

massively parallel architecture.

14 Summary

Even though, genetic algorithms are considered powerful in terms of global

optimization, but they have several drawbacks regarding local searches. Tazawa et al.

(1996) identified two of them as i) lack of local search ability, and ii) premature

convergence. A number of researchers have experimented with optimization approaches

inspired from biological immune system to overcome these particular drawbacks implicit

in genetic algorithms.  Biological immune system (1S) is responsible for protecting the

living body against the foreign antigens and other toxins that may be harmful. It

exhibits abilities to specificity, learning and memory, and adaptation and discrimination,

and presents as a remarkable natural defense mechanism. The immune system



eliminates the harmful materials or foreign antigens mainly by producing soluble

antibodies, which recognize and then bind the molecules of foreign antigens.  In addition,

the immune system is capable of remembering infection, hence, a second exposure to

identical or similar antigen is deal with more efficiently. For these reasons, and many

others, the biological immune system can be viewed as a mechanism of vast potential for

inspiration in variety of domains. Based on the features of a biological immune system,

anew biologically inspired technique, so-called artificial immune system (AlS), has been

developed for a computational tools and applied to a myriad of computational scenarios

during the recently years. The applications of AIS are various including pattern

recognition and classification [Carter, 2000], search and optimization methods [Mori et

al., 1993; Bersini and Varela, 1994; Hajela and Yoo, 1999; Hgelaet al., 1997; Hajelaand

Lee, 1996; Endoh et al., 1998; Luh et al., 2003; Luh and Chueh, 2004], fault diagnosis

and anomaly detection [Aisu and Mizutani, 1996; Dasgupta and Forrest, 1999], machine

learning [Hunt and Cooke, 1996], control [Krishnakumar, 1996], scheduling [Fukuda,

1993; Tomoyuki, 2003], nonlinear system identification [Luh and Cheng, 2001], robotics

[Jun et al., 1999; Luh and Cheng, 2002], data mining [Knight and Timmis, 1999],

computational security [Kephart, 1994; Kim and Bentley, 1999], and so on.

Based on these research efforts in the field of search and optimization methods,

Bersini and Varela (1991) proposed a genetic immune recruitment mechanism (GIRM) to



improve GA’s local search ability. However, this mechanism takes no measures to

counteract premature convergence. Mori et al. (1993) developed an immune algorithm

using the sharing-like method of GA to prevent premature convergence, but it has no

control mechanism to balance between the local search and the global search. Chun et

al. (1999a) used an immune algorithm for optimizing the shape of electromagnetic

devices. Tazawa et al. (1996) proposed an immunity-based genetic algorithm (IGA)

with improved and faster global convergence, and Hajela et al. (1997) followed up with a

separate GA-based biological immune system model for enhancing the convergence

characteristics and constraints associated with the use of GAs for structural optimization.

Several researchers, including Fukuda et al. (1998) and Chun et al. (1999b), have

attempted to apply immune agorithms (IAs) to multimodal and multi-objective

optimization problems. Chun et al. used an |A to search for diverse solutions to design

problems for electromagnetic devices, with optimal solutions aggregating in memory

cells. In their modification of a GA-based search procedure for solving MOOPs in a

structural system, Yoo and Hajela (1999) made use of a utility function and weighting

mechanism to convert a multi-criteria problem into a single-objective problem. It is

important to emphasize, however, that a genetic algorithm serves as the framework for al

of the hybrid approaches mentioned in the above literatures. The basic role of an

immune algorithm is to support diversity via different levels of inter-antibody; even



though natural immune systems have a powerful capacity to diversify, to learn, memorize,

and process information, and to discriminate between self and non-self when reacting to

foreign pathogens [ Dasgupt and Forrest, 1999; de Castro and Jonathan, 1999; Coren et al.,

1999].

To highlight the significant features of immune systems, a novel immune algorithm

based fully on imitating of biological immune system has been developed in this

dissertation for the purpose of optimal searching in the various optimization fields

including single-objective, multi-objective, and multi-modally optimizations with

different solution encoding system such as one-dimensional & two-dimensional

binary-encoded string, and not-bit string (or integer) representations.  Within the field of

multi- objective optimizations, numerous unconstrained/constrained test functions

suggested by Zitzler (1998) and Deb et al. (2001) were performed to validate the

significant effectiveness of the proposed immune algorithm, with Pareto-optimal solution

performances quantitatively measured by five performance metrics. Via using several

performance metrics and comparison with different evolutionary approaches, the results

indicated that the proposed immune algorithm in the field of multi-objective optimization

(named MOIA) generaly performs better than SPEA (strength Pareto evolutionary

algorithm), MOGA (multi-objective genetic algorithm), NPGA (niche Pareto genetic

algorithm), and NSGA (non-dominated sorting genetic algorithm) for these test functions.



For the field of constrained multi-objective and multi-modally optimizations, two revised

immune algorithm named CMOIA (Constrained MOIA) and MMIA (multi-modal

immune algorithm) have also been proposed for the optimal searching in multi-objective

truss-structure sizing optimizations and single-objective multi-modal structural topology

optimizations considering constraints. By comparison with some other approaches, the

results shown that proposed immune algorithm is capable of finding accurate results and

keeping the diverse of the solutions. Finally, in the single-objective optimization of

job-shop scheduling, through the validation from several benchmark problems with

different number of jobs and machines, the proposed immune agorithm is also suitable in

such scheduling optimization.

1.5 Sructureof the Dissertation

This dissertation is divided into eight main Chapters. CHAPTER 1 introduces the

goal and purpose of the dissertation, and also depicted its structure. CHAPTER 2

reviews a large number of works from the literatures which are most related to this

dissertation research. In CHAPTER 3, a genera overview of How Biological Immune

System Works is presented, considering its anatomy, molecules, organs, and main cells.

In addition, the proposed immune algorithm and its nine major steps are presented detail

in the CHAPTER 4. The scheme of these steps such as the mechanisms of gene



rearrangement and antibody diversity was inspired by biologica immune system.

CHAPTER 5 depicted the applications of proposed immune algorithm to the

multi-objective optimization with antibody/solution represented by a one-dimensional

binary-encoded  string.  The  applications in  this  chapter  including

unconstrained/constrained numerical test function optimization as well as two

truss-structure sizing multi-objective optimizations considering 10-bar plane truss with

continuous design variables and 25-bar space truss with discrete design variables, both

sizing optimizations subjected to the maximum allowable stresses. The simulated

results are compared with other algorithms and discussed in the rear of this chapter. An

application to the single-objective with multi-modal structural topology optimization

using immune algorithm is depicted in CHAPTER 6. Two 2-dimensional asymmetric

topology problems subjected to constrained stresses are optimized in this application.

Different antibody representation from applications in the CHAPTER 5, the antibody is

represented by two-dimensional binary-encoded matrix. The single-objective job-shop

scheduling optimizations for proposed immune algorithm are illustrated in the

CHAPTER 7. In this chapter, the antibody is represented by the not-binary encoding

string (i.e. integer encoding). Several benchmark test problems with different number of

jobs and machines were calculated and compared in this chapter. Finally, CHAPTER 8

makes overall conclusionsin proposed immune algorithm.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This dissertation focuses on developing a novel immune agorithm for optimal
search in the areas of numerical function, structure, and scheduling. In each of these
areas, there is an immense body of literature. Hence, this chapter reviews the prior work
in these areas that is most related to this dissertation research and organized as follows.
Section 2.2 reviews the work on the artificial immune systems (AIS) which are applied to
optimization problems. In section 2.3, the literature review is focused on the

evolutionary approaches in the field of multi-objective optimization.

2.2 Artificial Immune System

This section reviews the works on artificial immune systems specially designed to
solve constrained, multi-modal, multi-criteriafmulti-objective, and combinatorial
optimization problems.

Bersini and Varela (1991) developed a search technique based on the features of
network sensitivity and metadynamics to apply to the function optimization. This

approach consists of an affinity measure and a fitness function. The affinity measure
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was used to evaluate the degree of similarity among individuals of the population, while

the fitness function was responsible for evaluating the quality if each individual in

relation to the environment. Noted that the adopted of measuring the similarity among

individuals is a process similar to fitness sharing in genetic algorithm. In addition,

individual candidates suffered genetic operators by crossover and mutation borrowed

from evolutionary algorithm. The authors shown results on a simple problem using a

binary Hamming distance among individuals and normalized fitness function. The results

were presented by comparing their approach with the standard genetic agorithm (SGA).

Besides, the authors also offered a genetic immune recruitment mechanism (GIRM)

which introducing clonal selection of immune system into genetic algorithm to improve

the local search ability of genetic agorithm, but failed to add preventive measures against

premature convergence.

Mori et al. (1993) proposed an immune agorithm for a multi-modal function

optimization hybridizing ideas from idiotypic network theory, immune diversity, clonal

selection, and genetic algorithm. Thelr algorithm is based on an entropy measure to

maintain the diversity of a receptor of antibodies. Sharing and genetic operators —

crossover and mutation are used to promote genetic recombination and variation in the

antibody and prevent the premature convergence, but it has no control mechanism to

balance between the local search and the global search. The algorithm is of general
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purpose as a hybrid of an evolutionary and immune-inspired approach. Its applications

have been several, from function optimization to scheduling.

Tazawa et al. (1996) proposed an immunity genetic algorithm (IGA) combining

immune system (IS) with genetic algorithm (GA). Authors highlight two mechanisms

of IS —the clonal selection and idiotypic network. [GA has afixed number of solutions

and generates new solutions as to the GA by using crossover and mutation operators.

After new solutions are generated, |1GA selects solutions that form new population like

clonal selection of I1S. Besides, IGA divided a population into severa subpopulations

and controls the number of similar solutions like idiotypic network in order to balance

between the local and global search. The algorithm was applied to floorplan design

problem of VLS| layout and compared the results with those of GA.

Fukuda et al. (1998) proposed an immune algorithm (1A) based upon the somatic

theory and network hypothesis of immune system (1S) to solve the multi-modal function

optimization problem partly using a genetic agorithm. The somatic theory describes

that somatic recombination and mutation contribute to increase the diversity of antibodies.

The network hypothesis describes that a mutual recognition network among the

antibodies contributes to control of the clonal proliferation. The proposed algorithm is

shown to be effective for searching for a set of solutions as well aslocal solutions. Test

functions with multi-peak and Shubert function are illustrated to show the abilities of
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immune algorithm for multi-modal optimization.

Chun et al. (1998) applied a dlightly modified of the immune algorithm developed

by Mori et al. (1993) to several function optimization problems and compared its

performance with that of evolution strategy and genetic algorithm. In addition to apply

to function optimization, author also applied his algorithm to the optimal design of a

surface permanent magnet synchronous motor and a pole shape of an electromagnet

[Chun et al., 1997], and compared the performance with other methods. Based on their

results, the author claimed that the modified immune algorithm is very suitable for

solving multi-modal optimizations.

Hajela and Yoo (1999) took inspiration from the immune system to address several

problems in optimal design: i) how to enhance the convergence speed of genetic

algorithm (GA), ii) how to handle constraints in a GA-based search, and iii) how to adapt

the GA search to large scale design problem. For these reasons, author proposed an

algorithm combined with capabilities of pattern recognition and adaptation in immune

system to improve the performance of GA in structural optimization problems. Like the

majority of GA applications, authors used a binary encoding for the strings representing

the immune components, i.e. a binary Hamming distance. The antibodies corresponding

to the unfeasible designs, while the antigens were equivalent to the feasible ones. The

goa of the algorithm was to adapt the unfeasible antibodies to feasible antigen, so as to
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reduce the constraint violation of GA-based search. The fitness of an individual was
determined by its ability to recognize either a specific or a broad group of antigens, given
by a function that measure the number of matching bits between a pair of strings. Thus,
affinity was measured by similarity instead of complementarity. The algorithm was
applied to severa tasks, including the optimal design of a 10-bar truss structure for
minimum weight and with pre-defined alowable on maximum stresses of tension and
compression in the bar elements.

Toma et al. (1999) proposed an algorithm based on the immune network and MHC
peptide presentation. The immune network was used to produce adaptive behaviors for
the n-TSP agents, and antigenic presentation by MHC molecules was employed to induce
competitive behaviors among these agents. The agents processed a sensor, mimicking
MHC peptide representation by macrophages. T cells were used to control the behavior
of agents and B cells were used to produce behaviors. The system operated as follows:
first macrophages acquired a city number at random and presented to the B- and T-cells.
If aT cell recognized this number, it tried to help B cell by sending stimulatory signals.
If B- and T-cells both recognized the same number, the B cell produced an antibody and
traveled, then MHC was changed. This representation was based on an integer
shape-space, and the affinity of each agent with the environment was directly proportional

to the distance traveled by the agent.
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2.3 Evolutionary Algorithms

In this section, the reviewed literatures are focused on several evolutionary

algorithms which are most commonly used in multi-objective optimization problems

(MOOPs), such as VEGA, WBGA, MOGA, NSGA, NPGA, and SPEA and so on. In

the implementation of MOOPS, the pioneering work of applying evolutionary algorithm

into multi-objective optimization problems is implemented by Schaffer (1985) with his

algorithm named vector evaluated genetic algorithm or VEGA. After Schaffer’'s VEGA,

Goldberg (1989) realized a better implementation of domination principle in an

evolutionary algorithm and suggested a new non-dominated sorting procedure. Since an

evolutionary algorithm needs one fitness function for reproduction, the aim was to find a

single metric from a number of objective functions. Goldberg’'s suggestion was to use

the concept of the domination to assign more copies to nhon-dominated individuals in a

population. Since diversity is another concern, the use of a niching strategy among

solutions of a non-dominated class was also suggested by Goldberg. Redlizing the

potential of a good multi-objective evolutionary algorithm which can be derived from

Goldberg's suggestion, at least three independent groups of researchers have devel oped

different various of multi-objective evolutionary algorithm, i.e. multi-objective genetic

algorithm (MOGA), niched Pareto genetic algorithm (NPGA), and non-dominated sorting

genetic algorithm (NSGA). These algorithms differ in the way afitnessis assign to each
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individual. In addition to VEGA, MOGA, NSGA, and NPGA, few other evolutionary

algorithms have also been reviewed in this section.

VEGA

The first implementation of a multi-objective evolutionary algorithm was suggested

by Schaffer (1985) to find a set of non-dominated solutions. He modified the smple

genetic algorithm (SGA) with selection, crossover, and mutation by performing

independent selection cycles according to each objective. Hence, he called his algorithm

as the vector evaluated genetic algorithm or VEGA. VEGA evaluated an objective

vector instead of a scalar objective function with each element of the vector representing

each objective function. Since a number of objectives have to be evaluated, he divided

the population at every generation into O equal subpopulations, and each subpopulation is

assigned a fitness based on a different objective function. Then, each of the O objective

functions is used to evaluate some members in the population. Even though VEGA uses

a smple idea and is easy to implement and has capability of finding non-dominated

solutions, it has several disadvantages in maintaining a good spread of solutions and bias

towards some solutions in the obtained non-dominated front. In VEGA, a solution is

evaluated only with one objective, but all of the others are also important in the context of

multi-objective optimization. During the ssmulation run, solutions near the optimum of
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corresponding objective function would be preferred by the operators of selection and

crossover in a subpopulation. Such preference takes place in paralel with other

objective functions in different subpopulation. Therefore, even in convex search space

problem, the operators between individual champion solutions could not find diverse

solutions in the population, eventually, the VEGA converges to individual champion

solutions only.

MOGA

Fonseca and Fleming (1993), whom first introduced a Multi-objective genetic

algorithm (called MOGA), used the non-dominated classification of a GA population for

finding non-dominated solutions and simultaneously maintaining diversity in the

non-dominated solutions. In the MOGA, differs from a SGA, the fitness is assigned to

each solution in the population, while rest operators of the algorithm (e.g. stochastic

universal selection, single-point crossover, and bit-wise mutation) are the same as that in

a SGA. To asolution i, its fitness is equal to one plus the number of solutions which

dominate solutioni. In thisway, the non-dominated solutions are assigned with afitness

value equal to 1. In order to maintain diversity of among non-dominated solutions, they

have also introduced a niche count calculated by summing the sharing function among

solutions.  Finally, the shared fitness value which reduced the fitness value of each
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solution was defined by dividing the assigned fitness value by the niche count. Then,

the selection with shared fitness values, crossover, and mutation were applied to create a

new population.

NSGA

Among the Pareto-based multi-objective evolutionary algorithm, Srinivas and Deb

(1994) have implemented Goldberg's concept (non-dominated sorting) more directly.

The idea behind the non-dominated sorting procedure is that ranking selection method is

used to obtain good solutions and niche method is employed to maintain stable

subpopulation of good solutions. Since, the agorithm is based on the non-dominated

sorting procedure, they caled this algorithm as the non-dominated sorting genetic

algorithm, NSGA. NSGA differs from SGA only in the way the selection operator

works, while crossover and mutation operators remain as usual. Once again, the dua

objectives in a multi-objective optimization agorithm are maintained by using a fitness

assignment scheme which prefers non-dominated solutions and by using a sharing

strategy which preserves diversity among solutions of each non-dominated front. The

fitness assignment procedure different from MOGA begins from first/best non-dominated

set and successively proceeds to dominate sets in current population. Any solution i of

the first non-dominated set is assigned a fitness equal to its population size. Since, al

24



solutions in the first non-dominated set are equally important in terms of their closeness

to the Pareto-optimal front. Besides, the diversity of each solution is maintained by

degrading the assigned fitness based on the number of neighboring solutions (i.e. niche

count) and sharing function. Therefore, degrading fitness of each solution is evaluated

by its niche count and sharing function with a sharing parameter. After the degrading

fitness values are assigned, the roulette-wheel selection, crossover, and mutation

operators are applied as usual to the whole population.

NPGA

Horn, Nafpliotis, and Goldberg (1994) have proposed a multi-objective genetic

algorithm based on the concept of Pareto dominance and they called niched-Pareto

genetic algorithm (NPGA). NPGA differs from VEGA, MOGA and NSGA in the

selection operator. NPGA use the Pareto domination tournaments instead of

non-dominated sorting and ranking selection method in solving multi-objective

optimization problems. In this method, a comparison set comprising of a specific

number of individual is chosen at random from the population at the beginning of each

selection process. Two random individuals are chosen from the population for selecting

awinner in atournament selection. Both individuals are compared with the members of

the comparison set for domination with respect to the objective functions. There are two
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scenario occurred in this tournament selection: i) If one of them is non-dominated and the

other is dominated, then the non-dominated one is selected; ii) If both are either

non-dominated or dominated, a niche count is found for each individual in the entire

population. Both individuals which with small niche count is selected. Since, this

non-dominance is evaluated by comparing an individual with a randomly chosen

population set, the success of this algorithm highly depends on the number of this

population set.

WBGA

Haela and Lin (1992) proposed a weight-based genetic algorithm (WBGA) for

multi-criterion optimization.  In the WBGA, each individual in a population is assigned

with a different weight vector, the weighted sum of the normalized objective function

values are then added together with assigned weight vector to calculate the fitness of an

individual. Because each weight vector will result in one Pareto-optimal solution, the

number of weight vector is governed by the maximum number of desired Pareto-optimal

solutions. Besides, a sharing strategy with niche count is proposed by computing the

distance metric between two solutions in order to maintain diversity in the weight vector.

Therefore, the fitness is degraded by this sharing strategy to calculate the shared fitness

value. Since fitness is degraded when using the sharing function concept, the
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proportional selection method needed to be used. The crossover and mutation operators

are then applied on whole population as usual.

SPEA

Zitzler and Thiele (1998) proposed an €litist evolutionary algorithm, they called the

strength Pareto evolutionary algorithm (SPEA). SPEA introduced elitism concept by

explicitly maintaining an external population (elite individuals) preserved a fixed number

of the non-dominated solutions that are found during beginning of the smulation run.  In

each generation, newly found non-dominated solutions are compared with the external

population and the resulting non-dominated solutions are saved in this external population.

In order to restrict the population to over-grow, the size of external population is bound to

a limit number. Not al dite individuals can be preserved in the external population

when the size of external population exceeds a limit number, elite individuals which are

less crowded are kept by using clustering algorithm.  Besides, the elite individualsin the

external population are aso participated in the genetic operators with current population

for the help of influencing the population towards good region in the search space.

During the assignment of fitness, in addition to the assigning of fitness to current

population, fitness is also assigned to the external population. SPEA assigns a fitness to

each elite individual i of external population first and called this fitness as the strength.
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The strength is proportional to the number of individual in current population that an elite
individual i dominate. Thereafter, the fitness of individual j in current population is then
assigned as one plus the sum of the strength values of al elite individuals which weakly
dominate individual j. This fitness assignment provides that a individual with a smaller
fitness is better. With the fitness values, a tournament selection is applied the current
and external (combination) population to choose individuals with smaller fitness.
Thereafter, a crossover and mutation operators are used to create the new population from

this combination population.
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CHAPTER 3

HOW BIOLOGICAL IMMUNE SYSTEM WORKS

3.1 Introduction

The biological immune system (1S) is a complex of cells, molecules and organs that

represent an identification mechanism capable of perceiving and combating dysfunction

from our own cels (infectious self) and the action of exogenous infectious

microorganisms (infectious non-self) such as viruses, bacteria, and other parasites

(so-called invading antigens) [Jerne, 1974]. The most important function of a biological

immune system is to protect living organisms from invading antigens. The body

identifies foreign antigens through two inter-related systems: the innate immune system

and the adaptive immune system. A model of relationship among immune system

components is depicted in Fig. 1. Phagocytes, the main cells participated in innate

immune system, are white blood cells capable of destroying most of antigens on first

contact. The adaptive immune system uses lymphocytes that can quickly change in

order to destroy antigens that have entered the bloodstream. A major difference between

these two systems is that adaptive cells are more antigen-specific and have greater

memory capacity than innate cell. B-lymphocyte (or B-cell) and T-lymphocyte (or

T-cell), two main types of lymphocyte, play a significant role in adaptive immune system.
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The T-cell matures in the thymus while the B-cell matures in the bone marrow.  Cells of

the B and T lymphocyte series differ in many functional aspects but share one of the

important properties of immune response that they exhibit specificity toward an antigen.

Thus the major recognition and reaction functions of the immune response are contained

within the lymphocytes. There are two branches of adaptive immunity: humoral

immunity and cell mediated immunity that have different sets of participants and different

sets of purposes but with one common aim: to eliminate the antigen. These two

branches interact with each other and collaborate to achieve the final goal of eliminating

the antigen. B-cells are included in the humoral immunity to synthesize antibodies in

the process of clonal proliferation once they are activated by antigen and Helper T-cells

while T-cells take part in the cell mediated immunity. T-cells do not synthesize

antibodies but instead synthesize and release various cytokines that affect other cells.

One class of the T-cells, named the Killer T-cells, destroys the infected cell whenever they

recognize the infection. The other class that trigger clonal proliferation,

stimulate/suppress antibody formation is called the Helper T-cells. A breakdown in any

of their activities can result in allergic reactions and autoimmune disease. Lymphocytes

float freely in blood and lymph node and patrol everywhere for foreign antigens, then

gradually drift back into the lymphatic system, to begin the cycle all over again.
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Fig. 1 lllustration of the biological immune system

3.2 Immune System Works

As shown in Fig. 1, when an infectious foreign pathogen attacks the human body,
the innate immune system is activated as the first line of defense. Innate immunity is
not directed in any way towards specific invaders, rather against any pathogens that enter
the body [de Castro and Jonathan, 1999]. Hence, it is so-called non-specific immune
system. The most important cells in the innate immunity are phagocytes such as
macrophages, monocytes and dendritic cells. Macrophages possess the capability of
ingesting and digesting several microorganisms and antigenic particles.  Some
macrophages have the ability to present antigens to other cells, thus being termed
antigen-presenting cells (APCs). The APC interprets the antigen appendage and extracts

the features by processing and presenting antigenic peptides on its surface to lymphocytes.
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These antigenic peptides are a kind of molecule called MHC (Major Histocompatibility

Complex) to distinguish the non-self molecul es (infectious non-self) from the those native

self molecules (infectious self) and plays a leading role in inducing the expression of

co-stimulatory signals in APCs that will lead to T-cell activation, promoting the boost of

the adaptive immune system. Moreover, B-cells are also affected by Helper T-cells

during the adaptive immune responses. The Helper T-cell plays a remarkable key role

for deciding the immune system toward the cell mediated immunity (by Thl Helper

T-cells) or the humoral immunity (by Th2 Helper T-cells) [Roitt and Brostoff, 1998], and

connects the non-specific immune response to make a more efficiency specific immune

response. The T cells work, primarily, by secreting soluble substances, know as

cytokines and their relatives that constitute powerful chemical messengers.

Lymphokines or interleukin (IL) are the cytokines secreted by lymphocytes. The

cytokines promote cellular growth, activation and regulation.  In addition, cytokines can

also kill target cells and stimulated macrophages. In the other hand, B-cell becomes

stimulated and created antibodies during clonal proliferation in the germinal center when

aB-cell recognized an antigen. Recognition is achieved by inter-cellular binding, which

is determined by molecule shape and electrostatic charge. The secreted antibodies are

the soluble receptor on the surface of B-cell and these antibodies can be distributed

throughout the body. As shown in Fig. 2b, an antibody-combining site or termed
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paratope can bind with an antigenic determinant or termed epitope. Moreover, the
immune system produces the diverse antibodies by recognizing the idiotype of the mutual
receptors of the antigens between antigen and antibodies and between antibodies. The
strength of binding between antigens and antibodies and that amongst antibodies can be
evaluated by the value of affinity, or degree of match. In terms of affinities, the immune
system self-regulates the production of antibodies and diverse antibodies.
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Fig. 2 Antibody molecule and multiple-epitope antigen

3.3 Antibody Sructure
One of the maor functions of the immune system is the production of soluble

proteins that circulate freely and exhibit properties that contribute specifically to
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immunity and protection against foreign material. These soluble proteins are the

antibodies, or caled immunoglobulins (Ig), and expressed as secreted and

membrane-bound forms. Secreted antibodies are produced by plasma cells — the

terminally differentiated B cells during clonal proliferation within germinal center.

Membrane-bound antibody is present on the surface of B cells where it serves as the

antigen-specific receptor. The basic unit of an antibody molecule is composed of four

polypeptide chains: two identical light chains and two identical heavy chains as depicted

in Fig. 2a. The grouping of two different types of gene fragments (VL, JL) constructs

the light chains and the combination of three different types of gene fragments (VH, D,

JH) forms the heavy chains. In addition, the variable region (V-region) is responsible

for the antigenic recognition and binding, whereas the constant region (C-region) cannot

bind antigen, but it is responsible for the biological functions of the antibody molecule

after antigen has been bound to the V-region. The V- and C-region of an antibody

molecule are coded by different gene fragments. For the purpose of enormous diversity,

many different V-region genes can be linked up to a single C-region. The combining of

V- and C-region gene fragments (rather than having a single gene coding for every

individual antibody molecule) significantly reduces the amount of genetic information

required to encode different antibody molecules. Additionally, antibody gene fragments

could move and rearrange themselves within the genome (inherited DNA) of a



differentiating cell. A V-region gene fragment can be located in one position in the DNA
of an inherited chromosome (the germ-line DNA), and then move to another position on
the chromosome during differentiation.  This differentiation brings together an
appropriate set of gene fragments for the V- and C-region. The set of rearranged gene
fragments is then transcribed and trandlated into a complete H or L chain.  Consequently,
the genetic materials (gene fragments) required to produce an antibody are encoded in a
set of antibody library named germ-line DNA library, each library containing a set of
components or fragments of antibodies. Besides, the V (variable), D (diversity), and J
(oining) gene fragments are individual libraries that contribute to the production of
functional antibody. For each library, those can be created from the lymphocytes of
donors who differentiate with higher affinity developed in the immune system. Note
that the functional genes of antibody do not exist in the germ-line DNA libraries, except
only the gene fragments. A functional gene is generated when germ-line DNA is

rearranged randomly.
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3.4 Clonal Selection
After binding to antibody receptors, an antigen stimulates the B cell to differentiate
and mature into plasma cells and memory antibodies through the process known as clonal
proliferation or clonal selection. As shown in Fig. 3, the clonal proliferation of the B
cell occurs inside the lymph nodes within a special microenvironment named germinal
center where antigenic peptide is presented on the surface of the follicular dendritic cells
(FDCs). The proliferated B cells that are able to combine with FDCs survive and
become plasma cells to secrete large amount of the same kind antibodies. The principle of
clonal selection is the theory used to describe the basic properties of an adaptive

immunity to an antigenic stimulus. It establishes the idea that only those cells capable of

recognizing an antigenic stimulus will proliferate and differentiate into effector cells, like
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the plasma cells. Therefore, the germinal center constantly selects high affinity B cells

and simultaneoudly fosters the B cells apoptosis (a process of cell death) that bind the

antigen ineffectively [Krawinkel et al., 1983]. A hypermutation mechanism takes place

on the variable region of B cell during the process of clona proliferation. The

hypermutation plays a critical role in creating diverse antibody, increasing affinity and

enhancing specificity of antibody. This occurs at an extremely high rate, about 5-6

orders of magnitude higher than the norma mutation rate [Harris et al., 1999]. In

addition to differentiating into plasma cells, B cell can as well discriminate into

long-lived B memory cells. - When aliving body is exposed to similar antigens again, the

memory antibodies start differentiating into large amounts of lymphocytes capable of

producing high affinity antibody by pre-selecting specific antigen [Perelson et al., 1978].

Both mutational and selectional eventsin B-cell clonal proliferation processes alow these

lymphocytes to increase their antibodies diversity and improve their capability to

recognize the selective antigens (increasing their affinities with selective antigens). In

clonal proliferation, random changes (e.g. hypermutation) are introduced to the V-region

genes, and occasionally one such change will lead to an increase in the affinity of the

antibody. These higher-affinity matured cells are then selected to enter the pool of

memory cells.  The antibody is not only diversified through a hypermutation process

but mechanisms whereby rare B-cells with high affinity mutant receptors can be selected

37



to dominate the immune response (donor of B-cell). Due to the random nature of the
somatic mutation process, a large proportion of mutating genes become non-functional or
possibly develop harmful anti-self specificities which attack our own body cells.  On the
contrary, those cells with low affinity receptors, or the self-reaction cells, must be
efficiently eliminated. In terms of affinities, the immune system self-regulates the

production of antibodies and diverse antibodies.

3.5 Antibody Diversity

The number of different genes for V-region in the germ line constitutes the baseline
from which antibody is derived and represents the minimum number of different
antibodies that could be produced. How B cells can develop a vast antibody of antigenic
specificities. This explained one of the key features of the immune response:
diversity—the ability to respond to many different epitopes, even if they had not been
previously encountered. Current estimates show that although the human genome
contain about 10° genes, it is able to produce antibody repertoire that can recognize at
least 10" antigens. The enormous diversity of the antibody developed by the immune
system is the key to its antigen recognition capabilities. Three mgor categories are
reported to increase the diversity of antibodies: i) combinatorial diversity via multiple

copies of V, D, and J gene fragments encoded in the germ-line DNA libraries, and
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somatic recombination inaccuracy [Roitt and Brostoff, 1998]; ii) junctiona diversity via

small variations in the precise point of juncture of gene fragments and small insertions of

nucleotides at juncture sites [Manser et al., 1987]; iii) mutational diversity via somatic

mutation such as point mutation, short deletions and repertoire shift (gene conversion)

which can occur within assembled antibody genes to further expand antibody diversity

[de Castro and Von Zuben, 1999].

3.6 Summary

The immune system is a remarkable natural defense mechanism. It exhibits

characteristics such as i) Specificity: the ability to discriminate anong different antigenic

epitopes, and to respond only to those that necessitate a response rather than making a

random response. ii) Learning and Memory: the ability to recall previous contact with a

particular antigen, such that subsequent exposure leads to a more rapid and more effective

immune response. iii) Discrimination between self and non-self: the ability to response

to those antigens that are foreign/non-self and to prevent responses to those antigens that

are part of own body/self. For these reasons, and many others, the immune system can

be viewed as a mechanism of vast potential for inspiration in variety of domainsincluding

pattern recognition, optimization, anomaly detection, machine learning, control system,

scheduling, fault diagnosis, nonlinear system identification, robotics, and so on.
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CHAPTER 4

IMMUNE ALGORITHM

4.1 Introduction

In this dissertation, a novel scheme — Immune Algorithm (1A) based on emulating a
biological immune system is developed to solve the optimization problems. Analogous
to the biological immune system, the proposed immune algorithm has the capability of
seeking Pareto-optimal solutions while maintaining a high-level of diversity in the search
space. Corresponding to the optimization problem, the antigens ( Ag, ) and antibodies

(Ab ) serve as objectives ( f,) and associated solutions (x;) in a computational model,

respectively, and are expressed as follows:

Ab =, :(Xl’xz"“’XNAb)i =12 N,
(4.2)

Agk = fk k = 12 ..... Nobj
AbAg; = fk(xi) (4.2)

where Ab represents the ith antibody of the whole population, or the ith solution (x;)
composed of a set of x, ~design variables (x;,X,, - Xy, ), Ag, represents the kth
antigenic epitope, or kth objective function ( f,); AbAg, indicates the affinity value
between an ith antibody and an kth antigenic epitope, or equivalently the kth objective
value of the ith solution (. (x;)). N,, isthe number of antibodies/solutions, whereas

N, is the number of antigens/objectives. Fig. 5 illustrates the relative scheme of
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antibody/solution ( Ab /x;) and antigen/objective ( AbAg, / f, (x;) ) defined in this

algorithm.  The antibodies evolve continuously to search for the fittest ones, i.e. the most

matched with specific antigens.

Besides, similar to the evolutionary algorithms especially the genetic algorithm, the

proposed IA starts from a pre-defined number of random strings to represent the

antibodies of population and proceed repeatedly from generation to generation through

four basic immune operators. clone, donor selection, antibody rearrangement, and

antibody diversity. In addition, each antibody is classified into several different kind of

gene such as light-chain and heavy-chain gene mimicking the structure of antibody in the

biological immune system. The clone operator proliferates the stimulated antibodies

which presented higher combinatorial intensity with antigen in whole antibody population

with hypermutation. The hypermutation event only occurred on the gene of light chine

(usually defined as lower bits of binary code if binary encoding system is used) in order

to prevent excessive discrepancies. After the clonal proliferation, the proliferated

antibodies which increasing its combinatorial intensity are defined as mature antibodies

and become plasma antibodies and memory antibodies both with identical gene structure,

while proliferated antibodies which decreasing its combinatoria intensity are defined as

immature antibodies and then neglected. The plasma antibodies will combine with

original antibody population and wait for donor selection. The memory antibodies
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preserve and update in the memory pool. Besides, a part of memory antibodies will be

induced to the germ-line DNA library for offering its gene fragment to construct new

antibody. The donor selection operator is the source of exploitation/convergence. By

using of tournament selection method, the antibodies which presented higher

combinatorial intensity with antigen will be selected as donor for constructing the

germ-line DNA library. Hence, the members of germ-line DNA library are composed of

the memory and donor antibodies. The antibody rearrangement operator rearranges the

antibody fragment randomly chosen from germ-line DNA library for producing new

antibody. The purpose of antibody diversity operator is to introduce genetic diversity of

antibody into the population thorough somatic point mutation, somatic recombination,

gene conversion, gene inversion, gene shift, and nucleotide addition inspired from

biological immune system.

Therefore, according to different optimization problem, the antibody can be encoded

by one-dimension bit-code string (e.g., test functions and truss-structure sizing

multi-objective optimization in chapter 5), two-dimension bit-code string/matrix (e.g.,

structural topology multi-modal optimization in chapter 6), or not bit-code string (e.g.,

job- shop scheduling optimization in chapter 7). Once the antibody has been defined,

the combinatorial intensity between antibody and antigen is then calculated. In the

scenario of multi-objective, the combinatorial intensity between antibody and antigens is
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represented by the rank value. While in the scenario of multi-modally optimization, the

combinatoria intensity is composed of the objective function value and similarity value

among antibodies. However, the combinatorial intensity is replaced by objective

function value directly when consider the single-objective optimization. The cytokine

value of the antibody is treated as the penalty term for constraint violation if considering

the constrained optimization problem. Next, several antibodies which present higher

combinatorial intensity (i.e.,, non-dominated antibodies in the multi-objective

optimization or the best antibody in the single-objective optimization) will move to

germinal center for clona proliferation (or so-called clonal selection) for locally

improving their combinatorial intensity. Hence, the function of clonal proliferation can

be regarded as the effect of local search. After clone process, the matured antibody(s)

which combinatoria intensity better than un-proliferated antibody(s) note only return to

population (plasma antibodies) for becoming the donor antibodies by tournament

selection method, but move to memory pool as the memory antibodies for speeding up

the optimal search. For producing new antibodies, different from genetic agorithm

which crossover two individuas the antibody is rearranged by using gene fragments

chosen randomly from the corresponding gene libraries stored in the germ-line DNA

library. However, the germ-line DNA library is constructed by the donor antibodies

which express higher intensity with antigen(s) and the memory antibodies. Finally,



severa diversification mechanisms (e.g. somatic point mutation, somatic recombination,
gene conversion, gene inversion, gene shift, and nucleotide addition) inspired by
biological immune system are employed in order to match a large variety of antigens and
prevent premature. Noted that these mechanisms are randomly adopted in the antibody
diversification process.

The corresponding biological immune system, proposed immune agorithm (IA) and
genetic algorithms (GAS) terminologies are summarized in Table 1. In the rest of this
chapter we will describe detailed the agorithm procedure represented by the flowchart in

Fig. 4.



Table 1 Corresponding terminology of biological immune system, proposed immune

algorithm (1A), and genetic algorithms (GAS)

Biological immune system A

GAs

Antigen

Antibodies

Antibody structure
Number of antibody

Affinities between antigen and antibodies

Affinities between antibodies

Avidity between antigens and antibodies
| diotype value between antibodies

Hyper-mutation

Plasma antibodies (in clonal proliferation)

Memory antibodies

Germ-line DNA fragment

Objective ( f(X;) )
Antibodies/solutions (X; )
Antibody length (bit-string)
Antibody size

Affinities/Objective values ADAQ,,

Similarity between solutions  ADAD;

Avidity av,

Similarity of solutions §
Mutation with higher mutation rate
Improved local search
Pareto-optimal set

Schemata

Binary-code segment

Gene fragment rearrangement

Antibody diversification
None

Cytokine

recombination
Six diversification schemes
None

Constraint conditions handling

Objective
Chromosomes/sol utions

Chromosome length

Population size

Fitness values

Distance between solutions

None
Niche/sharing
Mutation

None

None

None

Parental gene
recombination/crossover
Mutation operator
Crossover

Penalty
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Fig. 4 Immune algorithm flowchart

4.2 Major Sepsof ImmuneAlgorithm
4.2.1 [Step 1] Establishing initial antibody population

Similar to evolutionary agorithms, the initial antibody population utilizing a
pre-defined number of random string is generated randomly. For a binary-encoded
antibody, each variable () in an antibody encoded by a pre-defined number of bits is
separated into light-chain genes and heavy-chain genes mimicking the structure of
antibody in biological immune system as depicted in the top figure of Fig. 5. The gene

length or gene amount of each chain is determined by the user-defined light/heavy
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chain-length ratio. Noted that the properties of antibody such as encoding method (e.g.

binary-encoded or not binary-encoded, and one-dimensional binary string or

two-dimensional binary string), defining of light-chain and heavy-chain gene, and/or

classification of genes (e.g. variable gene and constant gene) should be revised for

applying to various optimization problems.

[0 1]eeeeed] [1To1][a] 1 ]eeeee4] [1]0]0]ecceee [0 0feeeee] [1]1]0]eeccss [1] 1 eeoe-"] [oToJ 0]
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Fig. 5 Antibody-antigen representation

4.2.2 [Step 2] Caculating combinatorial intensity

In the proposed immune algorithm, the combinatorial intensity between ith antibody

and antigens is represented by the rank values r, for the multi-objective optimization

problems (MOOPs) and by the affinity/objective values ( AbAg, ) for single-objective



optimization problems (SOOPs), expressed as:

r, = rank(affinity,,, affinity. - -, affinity, ), i =12,..,N,, k=12..,N

obj
- SNCE)
affinity, = AbAg,,

where affinity, indicates the normalized affinity/objective values ( AbAg, ). Note that
normalization values AbAg, are utilized to prevent objective values from being
numerically dominant in the optimization process. Besides, for used in the constrained

optimization problems, the combinatorial intensity between ith antibody and antigens is

replaced by the values T, and expressed as:

n=r+CK, (4.4)
where T, is defined as the rank values (r,;) added by constraint violation values (CK,).
However, the cytokine value (CK') of the antibody is treated as the penalty term for
constraint violation. Resembling the biological immune system, the cytokine can either
stimulate or suppress the promotion of antibodies dependent on whether the antigen is
non-self or self (reward feasible or penalize infeasible solutions). Computation of the

cytokine is expressed as follows:

Nc Nc
CK, => amount, x > count;, i=12:+N (4.5)
j=1 i=1
g; .
and amount; = ‘g_a i ‘gj‘>ga
0 €se
count; = Lot ‘gj‘>ga
0 dse

where CK, represents the cytokine value for ith antibody; N, is the total number of
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equality and inequality constraint conditions; amount; and count; correspond to the
normalized values of the summation of jth antibody violated amount and total number of
the jth antibody violated constraint condition, respectively; g; denotes the equality
and/or inequality constraint values whereas g, indicates the allowable constraint value.
Note that the larger the cytokine value the higher degree of constraint violation.
Obvioudly, the antibodies will to be well received for evolution if the cytokine values are
equal to zero. Consequently, non-dominated (i.e. first rank) antibodies in the MOOPs or
the best antibody in the SOOPs will thus be selected into the germinal center for clonal
proliferation, with the remaining dominated antibodies proceeding to Step 4 to calculate

their avidity values (MOOPs only) or to Step 4 to wait for donor selection (SOOPs).

4.2.3 [Step 3] Clonal proliferation

In biological immune systems, only antibodies stimulated by antigens enter the
germinal center for clona proliferation. In the proposed immune algorithm, stimulated
antibodies — non-dominated antibodies (MOOPs) or the best antibody (SOOPS)
determined in [Step 2] are chosen for hypermutation during the clonal proliferation
process, with a user-defined hypermutation rate and proliferation number (Fig. 4). To
prevent excessive discrepancies, hypermutation only takes place with lower bits of binary

code - the equivalent of light chains. After the hypermutation process, mature
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antibodies (i.e., non-dominated or the best proliferated antibody(s)) that have a greater

combinatoria intensity than un-proliferated antibody(s) are differentiated into plasma

antibodies and memory antibodies preserved and updated in the memory pool. Noted

that, both plasma and memory antibody have identical gene structure i.e., the genes of

plasma antibody(s) is the same with the genes of memory antibody(s). Further, the

resulting bad memory antibodies and immature proliferated antibodies are neglected as

the immature cell apoptosis process in biological immune systems. The surviving

mature antibodies — plasma antibodies together with the dominated antibodies from

antibody population derived from [Step 2] will undergo the next step to calculate their

avidity values (MOOPs) or go to [Step 5] for donor antibody selection (SOOPs).

Moreover part of the non-dominated antibodies in the memory pool would be re-induced

to the germ-line DNA library according to the user-defined inducing ratio.

In this step, clonal proliferation is equivalent to the local search effect in

optimization process for finding non-dominated solutions.  Obviously, the larger number

of proliferations is the wider space searches with trade-off of time consuming. In

addition, inducing memory antibodies (global non-dominated solutions) to the germ-line

DNA library will increase the exploitation effect.

50



4.2.4 [Step 4] Calculating avidity

In biologica immune systems, affinity refers to the binding strength between a
single antigenic determinants (epitope) and an individual antibody-combining site
(paratope). Avidity refers to the overall strength of binding between multivalent
antigens and antibodies. However, avidity is more than a simple sum of individual
affinities. In this dissertation, avidity value (av,) is the binding of affinities between
antigens and antibodies as well as between antibodies only for multi-objective
optimization problems. It is computed as the inverse of the combinatorial intensity (rank

value r;) between ith antibody and all antigens multiplied by its similarity value (S)

with other antibodies —in other words,

av, = L (4.6)

I ri‘Sl

where, S representing the similarity of an ith antibody with other antibodies, is

expressed as
Nap
- count;
=g 0 1=12Ne L j=1204Ny, (4.7)
Ab
if AbAb >§
and count;; = L R
0, else

AbAb; =1/(1+d;)
where J,, is a user-defined threshold value which illustrates the allowable difference
between antibodies, AbAb; is the affinity value between the ith and jth antibodies, and

d; is the Euclidean distance between the ith and jth antibodies in objective space.  Noted
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that the larger the Euclidean distanced;, the larger the difference between ith and jth
antibodies. Since, 0< AbAb, <1 and when AbAb, =1 (i.e. d; =0), the ith antibody
isidentical to the jth antibody.

Higher avidity value means that antibody has higher activation with non-self antigen
and lower similarity with the other antibodies. The higher the avidity value, the higher
probability is selected to germ-line DNA library as the donor antibodies for gene
fragment rearrangement. Besides, r, corresponds to the convergence of solutions to
the Pareto front and S corresponds to the diversity among obtained non-dominated

solutions. Hence, the algorithm prefers low rank (i.e. high affinity) and low similarity

solutions (i.e. diverse antibodies).

4.25 [Step 5] Donor antibodies selection

Similar to the building of germ-line DNA libraries in an immune system, the
proposed immune algorithm uses a tournament selection method to select donor
antibodies exhibiting higher avidity values (MOOPs) or affinity values (SOOPs) to
assemble germ-line DNA libraries. Some antibodies (according to the predefined
tournament size) are chosen randomly for competition and the winner is survived and

subsequently turnsinto a donor antibody.
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4.2.6 [Step 6] Germ-line DNA libraries construction

As explained in Chapter 3, the genetic material required to produce antibody

molecules is stored in germ-line DNA libraries, each one containing a fragment of an

antibody gene. In the proposed immune algorithm, the germ-line DNA library

components include donor antibodies derived from Step 5 and part of memory antibodies

induced from memory pool, at an inducing ratio defined by the user.

4.2.7 [Step 7] Gene fragment rearrangement

In a biologica immune system, antibodies are produced through a random

rearrangement of fragments selected from the germ-line DNA library. As to the

proposed immune algorithm, antibodies are established using gene fragments randomly

selected from corresponding light- and heavy-chain libraries of each design variable.

The gene fragment rearrangement, synthesizes the antibodies by different gene fragments

encoded in the germ-line DNA libraries which were composed of the fragments from the

donor and memory antibodies. Note that the gene fragment rearrangement operator

employed in proposed algorithm is comparable with the crossover utilized in genetic

algorithms. Instead of crossing over two individuals in GA, proposed algorithm

recombine building blocks (i.e. fragments from the fittest antibodies) directly. This

suggests the superior capability of proposed algorithm in discovering accurate and diverse
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non-dominated solutions rapidly. Therefore several diversification schemes are required

to prevent the premature effect due to schemata recombination.

4.2.8 [Step 8] Antibody diversification mechanisms

Matching a large variety of antigens requires an equal level of diversity in antibody
type. Inthe proposed immune algorithm, this was achieved by mimicking the following
six mechanisms found in biological immune systems. All the schemes described below
have the exploration effect in optimization search processes. It should be noted that the
six diversification mechanisms described in this step are adopted randomly in the

antibody diversity process.

1. Somatic point mutation. In terms of binary string representation, this means
reversing a bit from 1 to O or vice versa according to a pre-defined diversity
probability. The result is a slight ateration of an antibody gene for local search
pUrposes.

2. Somatic recombination. As shown in Fig. 6, two light chains in the variables x
and x, adopted for recombination are randomly selected, after which a partial
crossover between them was performed according to a randomly diversity

probability.
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Fig. 6 Somatic recombination illustration

3.  Gene conversion, gene inversion, and gene shift. Following predefined diversity

probability, gene conversion, gene inversion, and gene shift were completed using a

randomly picked heavy chains antibody variable (see Fig. 7 - 9). Note that the

starting and ending sites were randomly generated, and the number of bit-shift genes

was predefined. Thistype of diversification scheme resultsin aglobal search effect.

In gene conversion (depicted in Fig. 7), the gene segment between the starting and

ending sites of arandomly picked heavy chain was forced to converse (mutate) their

genes (bits) from 1 to O or vice versa.  As to the gene inversion operator shown in

Fig. 8, randomly chosen gene segment inverses sequentially its gene positions from

front to rear or from rear to front. Fig. 9 illustrates gene shift operation.

Following the predefined number of gene shift, the selected gene segment right-shift

their gene locations with excessive bits being reallocated from rear to front.
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Nucleotide addition. As demonstrated in Figure 10, nucleotide insertion occurs in
either light or heavy chains, depending on the variable. Several bits of genetic
material (representing the nucleotide) were randomly inserted into chains that were
reassembled so as to discard excess bits. The resulting nucleotide is a randomly
created binary string with a pre-defined number of nucleotide genes.  Increasing the

bit number will diversify the antibody population further.
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4.29 [Step 9] Stopping criterion

The process stops when the iteration number equals a pre-defined generation. In

the fina stage, the feasible non-dominated optimal solutions are placed in the memory

pool, otherwise the population returns to [ Step 2] for another round.
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All parameters used in the proposed immune are tabulated and described in the Table

2.
Table 2 Description of immune algorithm parameters
Parameter name Description
Population size The size of antibody population.

Light/heavy chain-length ratio

The proportion of light-chain genes to heavy-chain genes.
Take the design variable encoded by 10-binary bit for
example, if the ratio is 4/6, it means that there are 4
light-chain genes and 6 heavy-chain genes in a design
variable. Note that the classification of light- and
heavy-chain geneis depended on the applied problems.

Proliferation number

The number of simulated antibody(s) (derived for Step 2)
proliferation. The proliferated antibody(s) accompanies
hypermutation. The number of proliferation can aso be
regarded as the frequency of local search. More number of
proliferations, more time needed for computation.

Hypermutation rate

The hypermutation occurred with antibody proliferations
and it is checked with the probability of hypermutation —
the hypermutation rate. During the process of antibody
proliferation, a random number is generated for every
light-chain gene in that antibody. If this random number is
less than the hypermutation rate, the selected gene has to
undergo hypermutation. Noted that this rate usually large
than normal mutation rate, and more number of
light-chain genes need more time for proliferations.

Inducing ratio

This parameter defines the proportion of how many
memory antibodies move to the germ-line DNA library.
Noted that more induced memory antibodies may speed
up the convergence of optimal search.

Diversity probability

Similar to the mutation rate in the genetic algorithms this
parameter is used in the antibody diversification (Step 8)
for genetic diversity. A random number is generated for
light- or heavy- chain genesin the antibody. If this random
number is less than the diversity probability, the selected
gene(s) has to undergo mutation.

58



This parameter is used in the gene shift mentioned in the
Step 8. According to this number, the selected gene
fragment right-shift their gene locus with excessive genes
being reallocated from rear to front.

Number of gene shift

This parameter is used in the nucleotide addition
mentioned in the Step 8. These randomly created genes
Number of nucleotide genes |represented the nucleotide are inserted in the position
generated randomly. Also the excessive genes will be
discarded.

The criterion for stopping the evolution of immune

Generation
algorithm

43 Summary

The procedures mentioned in this chapter describe solving the single-objective and

multi-objective optimization problems by employing proposed immune algorithm.

The proposed immune algorithm will first apply to the multi-objective test function

optimization and truss-structure sizing optimization problems considering both

constrained and unconstrained conditions expressed in the CHAPTER 5. In this

multi-objective immune algorithm (or MOIA), the antibody is represented by

one-dimensional binary-encoded string.  For different optimization problems, the

single-objective with multi-modal structural topology optimization is the secondly

application and described in CHAPTER 6. In this multi-modal immune algorithm (or

MMIA), the antibody is represented by two-dimensional binary-encoded string (or

matrix). The third application is to use proposed immune algorithm to single-objective

job-shop scheduling optimization problem and shown in the CHAPTER 7. For
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job-shop scheduling optimization, the antibody is represented by not-bit string (integer

encoding). The detail procedures for different optimizations are described in

corresponding chapters.
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CHAPTER 5

MULTI-OBJECTIVE OPTIMIZATION

5.1 Introduction

In this chapter, the proposed Immune agorithm will firstly apply to the numerical

test function multi-objective optimization considering both unconstrained and constrained

problems and two well-known benchmark of truss sizing optimization problems (i.e.,

10-bar plane truss with continuous design variables and 25-bar space truss with discrete

design variables) considering constraints. The proposed algorithm which handling

unconstrained optimizations termed multi-objective immune algorithm or MOIA, while

termed constrained MOIA or C-M OI A if it solves the constrained optimizations. Noted

that antibodies in these applications are all represented by one-dimensional

binary-encoded string. In the multi-objective test function optimizations, six test

functions without constraint and six constrained test functions suggested by Deb et al.

(1999; 2001) were employed to validate the proposed algorithm, each test functions have

two objectives which needed to be minimized simultaneously for finding their

Pareto-optimal  front or Pareto-optimal solutions.  For the truss-structure sizing

optimization, the goal is to minimize the volume (or weight) and vertical displacement of

the structure simultaneously using the cross-sectional areas of the truss members as
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design variables with pre-defined allowable on maximum stresses of tension and
compression.  Such objectives are conflicting in nature since reducing the displacement
will increase the cross-sectional area, consequently increasing the volume of the structure.
Meanwhile, a comparison is drawn between our implementation of the C-MOIA and
some GA-based methods for 10-bar [Fadel and Li, 2002] and 25-bar [Erbatur, F. et al.,
2000; Ponterosso and Fox, 1999; Wu and Chow, 1995a, 1995b; Rajeev, 1992] cases.
Besides, because of the unconstrained problem, the cytokine value (CK) in calculating
combinatorial intensity (described in CHAPTER 4, subsection 4.2.2) will be neglected.
Hence, the antibody-to-antigen combinatorial intensity between constrained and
unconstrained optimizations are expressed as:

affinity, = AbAg, +CK,, if constrained optimiation (5.1)
affinity, = AbAg,, if unconstrained optimiation '

5.2 Problems Description
5.2.1 Unconstrained test functions

Six minimization test functions with different shape of Pareto-optimal front (e.g.
convex, non-convex, discrete, and so on) described by Deb (1999) were used to evaluate
the performance of the MOIA, and shown in the following:

1. Test function F,(x) = (f,(x), f,(x)) (with convex Pareto-optimal front)

fl(xl) =X
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fz(x): g(xl """ Xn)'h( fl(X1)1g(X2 """" Xn))

and 9(Xy s X,) =1+

(5.2
h(f,.9)=1-4f./9
where X = (X, X,), N=30 and x €[01]. The Pareto-optimal front is

formed with g =1.

2. Test function F,(x) = (f,(x), f,(x)) (with non-convex Pareto-optimal front)
fl(xl) =X

fo (%) = 9(X0 X,) - DCEL(X))) G(Xp s X1))

n

S x (5.3)

and 9( Xy, X, ) =1+
-1 =

h(fl’g) =1_(f1/g)2

where x = (x,,.., x,), N=30 and x €[01]. The Pareto-optimal front is formed

with g=1.

3. Test function F,(x) = (f,(x), f,(x)) (withseveral non-continuous convex parts)
fl(xl) =X

fz(x): g(Xl ’’’’ Xn)'h( fl(Xl)lg(XZ """ Xn))

and g(x,,., x,)=1+ 9 -Zn:xi (5.4)
n-11=

63



h( fllg) =1- A/ fllg —(fl/g)sin(lOJZfl)

where n=30 and X, €[0]. The Pareto-optimal frontisformed with g=1.

4. Test function F,(x) = (f,(x), f,(x)) (multimodality)
fi(x) =%
f,(X) = G(Xg s Xg) - N(FL (X)) G(Xgremms X))
and g(x,,.,x,)=1+10(n-1)+ 2; (x? =10 cos( 47x,)) (5.5)
h(f.9)=1-4/f/9

where n=10, x €[01] and X,,...,X, €[-55]. The globa Pareto-optimal front

isformed with g =1 and the next-best local Pareto-optimal front with g =1.25.

5. Test function F,(x) = (f,(x), f,(x)) (binary string code and deceptive problem)
f,(X) =1+ u(x,)
fo(X) = g(Xysees X)) - D(F(X), 9(Xpseey X))
and g(x,,., x,) = iv(u(xi ) (5.6)
h(f,g)=1/f,

_[2+u(x) if u(x)<5
V(“(X‘»_{ 1 if u(x)=5

where n=11, x €{0L*, X,,...,x, €{01°, and u(x )gives the number of 1s in the

bit vector. The global Pareto-optimal front is formed with g =10, and the next-best
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deceptive Pareto-optimal front is represented by the solutions for which g=11. Both
global and local Pareto-optimal fronts are convex.
6. Test function F,(x) = (f,(x), f,(x)) (non-uniformity)
f,(x,) =1-exp(-4x,)sin®(6zx,)
fo(X) = 9(Xysees X)) - D (X)), (Xpseeey X))
and g(x,,., x,)=1+ 9((§n: x.) /(n —1))°% (5.7)
=
h(f,,9)=1-(f,/9)°

where n=10 and X, €[01]. The Pareto-optimal front isformed with g=1.

5.2.2 Constrained test functions

Six constrained test functions CTP2-CTP7 suggested by Deb et al. (2001) were
employed in this study to assess the performance of the constrained multi-objective
immune algorithm, or named C-MOIA. In addition, these test functions were designed
to cause two different kinds of tunable difficulties in a constrained multi-objective
optimization algorithm: i) the difficulty in the vicinity of the Pareto-optimal front
(CTP2-CTP5) and ii) the difficulty in the entire search space (CTP6-CTP7). The test

functions are shown in the following:
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Minimize f,(x)=x

Minimize f,(x) = g(x)(l—w)
9(x)

subject to c(x) = cos(8)(f,(x) —e)—sin(@) f,(x) >
a-lsin(brr(sin(6)(f,(x) - €) + cos(6) f,(x)°)

(5.8)

d

The decision variable x; is restricted in [0,1] and the bounds of the other variables

depend on the chosen g(x) function. The constraint function c(x) has six adjustable

parameters 6, a, b, ¢, d, and e. In all of the above problems, additional difficulty can be

introduced by using a nonlinear and difficult function g(x) which causes difficulty in

progressing towards the Pareto-optimal front. ldentical parameters and g(x) function

applied by Deb et al. as Table 3 illustrated were employed in this paper for comparison.

Table3 Parameters and function g(x) utilized in constrained test functions

Test function Parameters a(x)
0 a b C d e
CTP2 027 0.2 10 1 6 1 1+ X,
CTP3 027 01 10 1 05 1 1+ X,
CTP4 -02z 075 10 1 05 1 1+ X,
CTP5 -02z 075 10 2 05 1 1+ X,
CTP6 01z 40 0.5 1 2 ) 11+ x5 —10cos(27x,)
CTP7 -0.057 40 5 1 6 0 1+ X,

The periodic nature of the constraint boundary makes the Pareto-optimal have a

number of discontinuous regions. Increasing the parameter increases the number of
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disconnected regions and thus the difficulty in finding feasible solutions. Parameter a
has an effect of making the transition from continuous to discontinuous feasible region far
away from the Pareto-optimal region. In addition, the discrete solutions can be scattered
non-uniformly by using c # 1. The parameter & controls the slope of the Pareto-optimal
regions, whereas the parameter e shifts the constraints up or down in the objective space.
Moreover, smal value of d may reduce each disconnected regions exist only one

Pareto-optimal solution.

5.2.3 10-bar plane truss with continuous design variables

A 10-bar plane truss with the node and element numbering illustrated in Fig. 11 is
adopted to evaluate the performance of the proposed C-MOIA approach. The objective
is to minimize the volume of the structure and the vertical displacement a node 6
simultaneously using the cross-sectiona areas of the ten truss numbers as design variables
with pre-defined allowable on maximum (extension) and minimum (compression)
stresses.  Such objectives are conflicting in nature since reducing the displacement will
increase the cross-sectional area, consequently increasing the volume of the structure.
The upper and lower boundaries of each truss element are 0.1 and 30 in? respectively.
The location of externa load is shown in Fig. 11 with P = 100,000 |b. Material

properties are taken as modulus of elasticity E= 1x10% ksi. Constraints on the truss limit
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the principal stress o; in each element below the maximum alowable stress,o,, of

+25 ksi. Inthisdissertation, normalized constraint function is expressed as following:
o] :
gj=—-1<0 j=1..10 (5.9

a

Note that the cross-sectional areas are assumed to be continuous numbers in this case.

pi 360" — 360"

1 (1) 2 2 3
® (19
(5) (6)| 360"
U ©
X
4 ©) 5 (4 6
v v
P P

Fig. 11 10-bar plane truss structure

5.2.4 25-bar space truss with discrete design variables

The secondary truss-structure optimization considered is a 25-bar space truss with

discrete design variables, which has been frequently used to test numerous optimization

techniques [Michalewicz et al., 1996; Hasanc et al., 2001; Deb et al., 2000] as Fig. 12

shown. Again, the problem is to find the cross-sectional area of each truss group such

that the total structural weight and the vertical displacement at node 1 are minimized
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concurrently.  In many design cases, structures are composed of prefabricated elements
available on the market. Thus, truss members are divided into eight groups, as tabulated
in Table 4, and be selected from the following discrete set D = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7,08,09,10,11,1.2,13,14,15,16, 1.7,1.8,1.9, 20, 21, 2.2, 2.3, 24, 2.5, 2.6,
2.8, 3.0, 3.2, 3.4) (in%). In addition, the loading given in Table 5 is applied to the space
truss structure.  Material properties are taken as modulus of easticity E = 1x10* ksi and

weight density p = 0.1 Ib/in.  Constraints on the truss limit principal stress o; ineach

element below the maximum allowabl e stress, o,, of +40 ksi.

Fig. 12 25-bar space truss structure
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Table4 Group members of the 25-bar space truss

Group number  Members Length
1 1-2 75.0

2 1-4, 2-3, 1-5, 2-6 130.504
3 2-5,2-4,1-3, 1-6 106.80
4 3-6, 4-5 75.0

5 3-4,5-6 75.0

6 3-10, 6-7, 4-9, 5-8 181.142
7 3-8, 4-7, 6-9, 5-10 181.142
8 3-7, 4-8, 5-9, 6-10 133.464

Table 5 Loading conditions of the 25-bar space truss

Node Fx (Ibs) Fy (Ibs) Fz (Ibs)

1 1000 -10000 -10000
2 0 -10000 -10000
3 500 0 0
6 600 0 0

5.3 Performance Metrics

The two primary goals of multi-objective optimization are to i) find solutions as

close to Pareto-optimal front/solutions as possible, and ii) discover solutions in the

obtained non-dominated front that are as diverse as possible [Deb, 2001]. For the

purpose of comparing with other approaches, performance criteria that have been

suggested to evaluate the effectiveness of multi-objective optimization algorithms include

the following five metrics. generational distance [Schott, 1995], spacing [Deb et al.,

70



2000], spread [Zitzler, 1999], set convergence [Zitzler et al., 2000], and the retrieved
extreme values of the Pareto front.
1. The generational distance (GD) metric calculates the average distance between

obtained solutions and the true Pareto-optimal front. It isexpressed as

GD=\/§1“7di2/n

e (5.10)
d = mi £0) _ £())2
| rpzlln\/;( m = )

where n is the number of non-dominated solutions, N is the number of
Pareto-optimal solutions, m  is the number of objective functions, d, is the
Euclidean distance (in terms of objective space) between solution i e nand the
closest Pareto solution, and f{” is the mth objective function value of the jth
member of Pareto solutions. A smaller GD value indicates better algorithm

performance.

2. Schott [61] has proposed using a spacing (S metric which calculates a relative
distance between consecutive solutions in the obtained non-dominated set. It is
expressed as

12 —\2
S= 23, -d)? (5.12)
nisa
where the distance measure d; is the minimum value of the sum of the absolute

difference in objective function values between the ith solution ) and any other
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solution £ in the derived non-dominated set.

M ) )
d = min 3|0~ 1) (5.12)
1

jenaj=i e

where d is the mean value of the above distance measure d =>'d;/n. This
i=1

metric measures the standard deviation of different d, values. A small value

indicates uniform spacing between solutions.

The spread (SP) metric calculates a relative distance measure between neighboring

aswell as between extreme solutions in a non-dominated set. It isexpressed as

id; +i\di _a\
i=1

S:): m=1

M

3de +(n-1d

m=1

(5.13)

where d. is the Euclidean distance between neighboring solutions, d is the mean
vaue of the d. measures, and d;, isthe distance between the extreme Pareto front
solutions and n as it corresponds to the mth objective function. An idedly
uniform distribution produces a metric value of zero; the smaller the SP value, the

more desirable the distributions.

The set convergence (C) metric calculates the proportion of solutions obtained
through agorithm B as they are weakly dominated by solutions obtained through

algorithm A, that is,
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C(AB) - kbeB |Ela|1§|A:a§ b}|

(5.14)
All agorithm B-derived solutions are weakly subordinate to algorithm A-derived
solutions if C(A,B)=1. C(A,B)=0 indicates an absence of such subordination.
Both C(A,B) and C(B,A) arerequired for a performance comparison.

The extreme distance (AEXT) metric calculates the Euclidean distance between the
extremes of the derived non-dominated solutions and the actual Pareto solutions in

the objective space. It isexpressed asfollows,

AEXT = [Aeth,Aeth" : 'aAeXtNobj J

Nog; ) )
with Aextk=\/2(pﬁ')—fk('))2, k=12;-Ng (5.15)

i=1
where p{" is the ith extreme value of the derived kth non-dominated solutions
employing MOIA and f" is the associated ith extreme value of the kth actual
Pareto solutions, respectively. AEXT =0 means that the MOIA's non-dominated
extremes are identical to the true objective extremes. A smaller AEXT value

indicates better algorithm performance.
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Fig. 13 MOIA window simulation

Table6 SPEA and MOIA parameters

Parameter setting SPEA MOIA

Generation 250 250

Population size 100 80

Bits per variable 30 30

Externa population size 20

Crossover rate 0.8

Mutation rate 0.01 0.05

Selection method Tournament Tournament

Niche Clustering algorithm  Affinity between antibodies
Elitist strategy Yes No

Hypermutation rate

Light/heavy chain-length ratio

Proliferation number
Inducing ratio
Threshold value 6,

Bit number in gene shift
Bit number of nucleotide

0.2
37
6
0.1
0.9
2-bit
2-bit
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5.4 Simulation Results and Discussions

This attempt at establishing a multi-objective optimization procedure produced the

MOIA and C-MOIA programs created with C++ programming tools and a graphical user

interface. The simulation window, setting parameters, and performance metrics are all

shown in Fig. 13.

5.4.1 Multi-objective test function optimization

Unconstrained test functions

To evaluate the performance of the MOIA, author used severa of Zitzler’'s (website)

data sets with different optimization schemes (i.e., random search algorithms, MOGA,

NPGA, VEGA, NSGA, and SPEA) for comparison. Since the SPEA-derived [Zitzler et

al., 2000] results showed superior performance in terms of accuracy and diversity, author

will limit his discussion to those solutions.  Following the procedure described by Zitzler,

the six unconstrained test functions were executed 30 times each; the SPEA and MOIA

parameters are shown in Table 6. For each test function, the 30 data sets were unified

prior to eliminating the dominated solutions. For equitable comparison, we reduce the

population size in Table 6 to 80 due to the clonal proliferation in the proposed immune

algorithm.  According to the plots shown in Figure 14 through 19, the MOIA-derived

solutions were superior to the SPEA-derived solutions in terms of accuracy and diversity,
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with the single exception of test function Fs. Performance metrics for both schemes are

presented as Table 7. The data in this table validates the quality of the MOIA-based

performance metrics Q, GD, S, AEXT and C; again, the only exceptions were metrics

associated with test function Fs. Furthermore, the result C(MOIA,SPEA) = O for test

functions F; through Fs shows that al MOIA-derived solutions were non-dominated

compared to the SPEA-derived solutions.  In contrast, the result C(SPEA, MOIA) = 1

for test functions F1, F3, F4, and Fs shows that all of the SPEA-derived solutions were

weakly dominated by the MOIA-derived solutions. Both schemes were capable of

reaching aloca Pareto front, but incapable of discovering a global Pareto front (Fig. 19).

Results from test function Fg indicate that the SPEA-derived solutions were more

accurate than those derived with MOIA (Fig. 19). Due to the small number of solutions,

test function Fg was repeated with a twice iteration of 500 generations (twice the number

used in the initial test) in order to more fully explore the MOIA’s potential.  The results

of this second run indicate a significant improvement in performance (Fig. 20). The

performance metrics shown in Table 7 lend further support to these results.
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Fig 14 Simulation results for test function F, (convex)

Fig 15 Simulation results for test function F, (non-convex)
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Fig 17 Simulation results for test function F, (multimodal)
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Fig 19 Simulation results for test function F, with 250 generations (non-uniform)
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Fig 20 Simulation results for test function F, with 500 generations (non-uniform)

Table7 Performance metrics for the six SPEA and MOIA test functions

Metrics Q GD S SP Aext, Aext, C(MOIASPEA) C(SPEAMOIA)
F, MOIA 537 5384 00018 05085 00198 0.0074 0
SPEA 204 310e3 00043 06046 00509 0.0286 1
F, MOIA 574 595e4 00016 05625 00190 0.0157 0
SPEA 112 680e3 00099 06305 00458 0.1139 0.991
F, MOIA 477 6694 00040 07785 00141 0.4285 0
SPEA 202 360e3 00048 07863 0.0594 0.4276 1
F, MOIA 203 00105 00051 1.1099 05051 0.0032 0
SPEA 156 14320 00079 09011 22520 1.4566 1
F. MOIA 29 01313 12253 04654 30  2.0039 0
SPEA 31 01639 12811 04813 40  0.1290 1
Fe (250 g"ege'rgions) 9 00156 00107 0.7659 0.1248 1.1727 0.630
SPEA 22  255e21 00104 15822 0.0019 0.0 0
500 gﬂe?;gions) 142 6184 00056 1.3253 0.0017 0.0 0 0.4545
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Table8 C-MOIA parameters used in constrained optimization

Parameter setting CTP2-CTPY
Iteration number 500
Population size 100
Number of variables 2
Bits per variable 10
Diversity probability 0.05
Hypermutation rate 0.07
Light/heavy chain-length ratio 37
Number of proliferation 6
Inducing ratio 0.2
Threshold value ¢, 0.9
Bit number in Gene shift 2-hit
Bit number of nucleotide 2-hit
Tournament size 5

Constrained test functions

The associated user-defined parameters utilized in this constrained MOIA (C-MOIA)

are tabulated in Table 8, each with the same parameter setting. The setting of the first

four parameters (e.g. iteration number, population size, number of variables, and bits per

variables) was referenced to the Deb et al. (2001) for comparison.  Figs. 21 and 22 show

the simulation results on test functions CTP2-CTP7, Fig. 23 and 24 show the results of

CTP2-CTP7 derived by NSGA-II reprinted from Deb et al. (2001). Fig. 21(a) and Fig.

21(b) show that C-MOIA is able to find all disconnected Pareto-optimal solutions on

CTP2 and capable of finding solution very close to the true Pareto-optimal solution in

each region on CTP3. Same as the results derived by Deb et al., problem CTP4 caused
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difficulty for C-MOIA to get near the true Pareto-optimal solutions as Fig. 21(c) depicted.

However, MOIA discovers more Pareto-optimal solutions and performs much better

compared to the results derived by Deb et al. utilizing NSGA-II. As to the

non-uniformity in spacing problem CTP5, it seems to be not a great difficult for C-MOIA

to get the solutions as Fig. 21(d) illustrated.  Nevertheless, it should be noted that

NSGA-II could not converge to the Pareto-optimal solutions in CTP2-CTP5 when f;

approaches zero. On the contrary, it seems cause no difficulty for MOIA to converge to

the feasible Pareto solutions when f; advances to zero.

When the entire search space consists of infeasible patches parallel (CTP-6) or

perpendicular (CTP-7) to the Pareto-optimal front, C-MOIA is still able to converge and

close near to the feasible patches as Fig. 22 shown. Note that all feasible patches are

marked with an “F”. However, NSGA-Il had the most difficulty in finding solutions

closer to the true Pareto-optimal front in CTP-7 as Deb et al. described. The illustrated

demonstrations CTP-2 to CTP-7 show that CMOIA performs better than NSGA-I1 in the

vicinity of Pareto-optimal front as well as the entire search space.
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Table9 CMOIA parametersin truss sizing optimization

Parameter setting 10-bar 25-bar
Iteration number 500 300
Population size 100 160
Number of variables 10 25
Bits per variable 10 5
Diversity probability 0.05 0.05
Hypermutation rate 0.07 0.07
Light/heavy chain-length ratio 4/6 3/2
Number of proliferation 6 5
Inducing ratio 0.2 0.2
Threshold value ¢, 0.05 0.05
Bit number in Gene shift 2-bit 2-bit
Bit number of nucleotide 2-bit 2-bit
Tournament size 5 8

5.4.2 Multi-objective truss-structure sizing optimization

The associated user-defined parameters utilized in two problems are tabulated in

Table 9. The setting of the first four parameters (e.g. iteration number, population size,

number of variables, and bits per variables) was referenced to the literatures for

comparison. Note that number of bits per variable for the 25-bar truss case is 5 due to

the 30 sizing variables discrete set. The results show that the light/heavy chain-length

ratio is the most important parameter and 4/6 is a moderate choice. However, the ratio

for 25-bar truss case is 3/2 because the bit number per variableisonly 5. Obviously, the

associated number of clona proliferation is depending on the bit length of light-chain.

More number of proliferation means more computation time required. Increasing
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diversity probability, hypermutation rate, bit number in gene shift and nucleotide will

cause diversified effect and should be determined according the optimization problem.

On the contrary, the inducing ratio has converged effect. The key issue is the

appropriate balance between exploitation and exploration during optimization search.

These parameters were determined through numerical experiments after multiple

simulation runs.

10-bar planetrusswith continuous design variables

For 10-bar plane truss problem, the Pareto-optimal front with 474 feasible solutions

is presented in Fig. 25.  The two extreme objective values are [108413.542, 1.3611] and

[17935.1162, 6.3562], respectively. Moreover, Fig. 25 illustrates the comparison with

the Pareto solutions derived by Fadel and Li (2002) employing the Tchebycheff,

weighting, and & -constraint methods. It is important to emphasize that only 21

solutions were derived for these methods since they employed weighting-based method

with 21 fixed and uniform-distributed weighting ratio values. The extreme values of

these weighting ratios were (0.0, 1.0) and (1.0, 0.0) with interval 0.05. Obviousy

C-MOIA is capable of finding much more satisfactory non-dominated solutions excluding

the two extreme objective values.
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Fig. 25 feasible Pareto solutions and comparisons of 10-bar plane truss

25-bar space trusswith discrete design variables

As to the 25-bar space truss problem, the two extreme objective values found are
[977.39, 0.2363] and [99.87, 2.0281], respectively. Fig. 26 demonstrates the Pareto-
optimal front of the 232 feasible non-dominated solutions derived employing C-MOIA.
In addition, numerous simulation results utilizing single-objective GAs are adopted for
comparison and depicted in Fig. 26. Clearly the results derived using C-MOIA
dominate the solutions obtained from the literatures except the optimal solution attained

by Wu (1995a) utilizing single objective GAs. In summary the proposed C-MOIA has
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the ability to provide a good estimate of the Pareto front for the 25-bar space truss

optimization problem as well.
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Fig. 26 Feasible Pareto solutions and comparisons of 25-bar space truss
5.5 Summary

In this chapter, the proposed immune algorithm was implemented to several test
functions considering with/without constraints and two typical truss-structure sizing
problems with a mix of discrete and continuous variables for the purpose of determining
constrained Pareto-optimal solutions. Overall results indicate that the proposed immune
algorithm is capable of quickly determining accurate and diverse Pareto-optimal solutions

to multi-objective optimization problems (MOOPs). It is suggested that this capability
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IS due to the combination of diversification immune operators, the construction of

germ-line library equivalents, and a process of gene fragment recombination, they are all

the features in the immune system. The key natural selection components (gene

fragments) are similar to the building blocks of genetic algorithms associated with

stimulus antibodies and memory cell pools. In this particular immune algorithm, the

antibodies (solutions) are the direct products of gene fragment combinations (schemata),

rather than the antibody (analog to the role of individual in genetic algorithms) itself.

This explains the need for several diversification schemes to prevent the premature effect

of proposed immune agorithm.

89



CHAPTER 6

STRUCTURAL TOPOLOGY OPTIMIZATION

6.1 Introduction

In this chapter, the proposed immune algorithm will then apply to single-objective
multi-modally optimization of structural topology. For applying to multi-modal
optimization, the immune agorithm described in chapter 4 needs to be modified dlightly.
The modified immune algorithm used in the chapter is called multi-modal immune
algorithm or MMIA. Anaogous to the sharing and niching approaches in genetic
algorithms employed by Goldberg and Richardson (1987), a similarity vaue (the
relationship between antibodies) combined with antibody-to-antigen affinity is employed
to explore the single-objective with multi-modally solutions. Two well-studied
benchmark topological problems considering asymmetry are used for evaluating the
effectiveness of proposed immune algorithm in the field of multi-modal optimization.
The goa of this application is to maximize the structure’s stiffness-to-weight ratio
proposed by Chapman et al. (1994) subjected to maximum allowable stresses. Because
of different antibody representation (two-dimensional binary-encoded matrix) from
previous chapter, steps described in Chapter 4 in section 4.2 are needed to modify for

applying to single-objective multi-modally optimization. The procedure of modification
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is depicted in next section.

Initial antibody population
v

Antibody representation &

gene classification

v

- Calculating combinatorial

Germinal Center intensity
’ Clonal proliferation }4 The best fit antibody

y

L —»{ Donor antibodies selection

Light chain gene 7 N
hypermutation ibodi
P PIamaantmomes» Germ-line DNA library
Decr eased affinity In¢ affinity construction
Immature Mature | | v
antibody antibody Gene fragment
i Memoryiantibodia rearrangement

Cdl Antibody Induced memor ¥

apoptosis | memory pool pntibodies Antibody diversification
Memory update v

Bi(:jwerﬂemory New antibody population

apoptosis

Y
v

End evolution

Fig. 27 Multi-modal immune agorithm (MMIA) flowchart

6.2 ImmuneAlgorithm Revision for Topological Optimization
Corresponding to the topological optimization problems, the antigen (Ag) and
antibodies ( Ab ) serve as objective ( f ) and associated solutions (i.e. topologies) in a

computational model and are expressed as follows:

Ab =X, =possibletopologies, i =12,...,N .

Ag = f &)

AgAb = f(x,) (6.2)

where Ab (or x;) indicates the ith antibody (or topology) while AgAb indicates the
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affinity (i.e. objective value, f(x,)) between an ith antibody and antigen, N, is the
number of antibodies. The antibodies/topologies continuously evolve until a match is
found with the specific antigen/objective. In the rest of this section we will verbally

describe the MMIA procedure represented by the flowchart in Fig. 27.

[Sep 1] Random initialization of antibody population and connectivity analysis
Similar to the generation of population initially in MOIA, the initial binary-encoded
antibody population is also generated randomly. Different antibody representation form
MOIA (binary-encoded with one-dimensional array), the antibody used in MMIA is
represented by a two-dimensional binary-encoded string (or matrix) with binary values of
1 refers to as the structure materials and O refer to as no material presented in the design
domain. Fig. 28 shows how an antibody is mapped to atopology. Once an antibody is
converted into a topology the resulting material elements with binary values of 1 are
analyzed for connectivity. For any two elements in a topology to be considered as
connected they must share at least one edge while element sharing only one corner are
considered as disconnected. A topology contained disconnected elements will undergo a
structure modification procedure. In this procedure, the remova of disconnected
elements or the adding of elements to neighboring disconnected element will be done

randomly until the discontinuous topology is compensated. The continuous topology
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will be further analyzed via the finite element computation to obtain the required
displacements and stresses. To reduce computation time, elements with a stress value
lower than the user-defined level of average stress (which do not break connectivity
requirements) will be removed from the topology, and the corresponding gene set to a

binary value of 0.

Ioadingl

mapping
—>

(a) corresponding binary values (b) resulting topology
of an antibody

Fig. 28 Mapping from antibody into topology

[Step 2] Antibody representation and gene classification

In the same manner as in biological immune systems, each antibody/topology (as
depicted in Fig. 29) is separated into a two-dimension matrix comprising four different
kinds of genes/elements: a constant gene (C), a heavy-chain gene (H), alight-chain gene
(L), and a pseudo gene (0). The genes are classified into heavy-chains or light-chains
according to i) a default light/heavy chain-length ratio determined by the user and ii) the
average stress of the mapped continuous topology calculated by fore-node plane stress
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finite element analysis. A geneis categorized into alight-chain gene if its stressis either

(1) large than the normalized average stress multiplied by light/heavy chain-length ratio or

(i) small than the normalized average stress multiplied by one minus the light/heavy

chain-length ratio. In other words, the gene can be defined as light-chain gene if it

receives exceeding large or small stress. Constant genes are those genes required to

contain material where support conditions or loads are applied. These genes are fixed

and cannot be changed during the whole evolution process. Pseudo genes are those

genes which no contain material. The other genes will be defined as heavy-chain gene

except light-chain, constant, and pseudo gene.

The distribution of these genes within an antibody thus establishes the topology.

The number of genes in each antibody equals the number of elements in the topology

domain. The antibody is then resolved into binary values where al constant, light-chain

and heavy-chain genes are defined as 1, with all pseudo genes being defined as 0 (see Fig.

28a). Theinbuilt ability for genes to mutate enables pseudo genes to evolve into light or

heavy chain genes if they contain the material, conversely light and heavy chain genes

may evolve into pseudo genes where no material is present. Due to the binary coding,

the material/void design domain typically results in a discrete, non-convex search space

[Anagnostou et al., 1992] and serves as a good test of the capacity of MMIA in finding

optimal solutions.
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Fig. 29 Antibody representation for topological optimization

[Step 3] Calculating combinatorial intensity
The antibody-to-antigen affinity value ( AbAg,) of the topology is employed to

illustrate the combinatorial intensity between an antigen and the ith antibody expressed as

follows:
AbAg| — O—bj'
(1+CK,)-S
and Obj=— T+ 6.3)
d™ - Area,

where Obj; indicates the ith topology’s stiffness-to-weight ratio with the stiffness being

1
d‘max

represented by the inverse of the topology’s maximum displacement ( ) at the point

of loading application. The number of connected genes/elements of the topology is used

as a qualitative measure of the topology’s weight (Area ). In addition, similar to the

sharing or niching schemes implemented in the genetic algorithms, the relationship

among antibodies is evaluated according to the similarity value S for the purpose of
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multi-modally optimization, and expressed as:

Nap
§=>count;, i=12..,Ny; j=12..,Ny
j=1

1 if AbAQ <5,

0 e : (6.4)

with  count; :{

AbAb” — \/(aniStr% _ an?r%)z _ (Stdistre$ _ Std jstre$)2
where o, isauser-defined threshold valueillustrating the allowable difference between
antibodies.  AbAD; is the affinity between ith and jth antibody and represents the

distance between the ith and the jth antibodies in a coordinate system of average stress

versus standard deviation stress, the larger the AbAb.

1] ?

the larger the difference between
ith and jth antibodies. Note that avg™=and avg;"™ are normalized averages stress
values, and that std™* and std "™ are normalized standard deviations stress values of
the ith and the jth antibody/topology. In addition, cytokine value CK of the antibody
described in Eq. (6.3) is treated as the penalty term for constraint violation and defined
identical to Eg. (4.5) in the CHAPTER 4 in subsection 4.2.2.

Because of the single-objective with multi-modally problem, the avidity valuein Fig.
4 in CHAPTER4 will be neglected in this procedure MMIA. A higher combinatorial
intensity — affinity value means that an antibody has a higher activation with an antigen
and alower similarity with other antibodies. Therefore, the higher the affinity value, the

higher the probability that the antibody may be selected as the donor to enter the

germ-line DNA library for gene fragment rearrangement. After affinity values of all
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antibodies are calculated, the best (i.e., highest affinity) antibody will be placed into the

germinal center for clonal proliferation with the remaining antibodies proceeding to [Step

5] awaiting donor selection.

[Step 4] Clonal proliferation

In the MMIA scheme, only most-matched antibody (i.e. highest affinity antibody)

derived from [Step 3] is chosen for hypermutation during the clonal proliferation process,

with a user-defined hypermutation rate and proliferation number. Similar to the MOIA

scheme, hypermutation only takes place in light-chain genes. In this study, a gene is

categorized into a light-chain gene if its stress is either (i) large than the normalized

average stress multiplied by light/heavy chain-length ratio or (ii) small than the

normalized average stress multiplied by one minus the light/heavy chain-length ratio. In

the process of hypermutation, a light-chain gene is likely to be deleted if its stress is

smaller than the value calculated in (i). On the contrary, a gene is added to the void

neighborhood of the light-chain geneif its stressislarger than the value evaluated in (ii).

After the hypermutation process, mature antibody that have a better affinity than

un-proliferated antibody is differentiated into plasma antibody and memory antibody

preserved and updated in the memory pool. Further, the resulting bad memory

antibodies are deleted as immature antibodies similar to the cell apoptosis process in
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biological immune systems. Resulting plasma antibody combined with the remaining
antibodies derived from Step 3 are then proceed to Step 5 for donor antibody selection
according to their affinity value. In the memory pool, only the most diverse (determined
by similarity value S') antibodies with high affinity survive. On the other hand, those
antibodies with low affinity and high similarity will be removed from the memory pool.
In this step, diversity is evaluated by checking the average stress and standard deviation
stress of the elements/genes in the topology/antibody. In addition, a part of memory
antibodies are induced into the germ-line DNA library (as per Step 6) according to a

user-defined inducing rate.

[Step 5] Tour nament selection for donor antibodies
Based on the affinity values, the tournament selection method is also employed here

for donor antibody selection.

[Step 6] Germ-line DNA library construction

As described in CHAPTER 3, the genetic material used to produce antibody
molecules is stored in germ-line DNA libraries, each one containing a fragment of an
antibody gene. In the MMIA, components from the memory antibodies and the donor

antibodies construct the germ-line DNA library.
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[Sep 7] Gene fragment rearrangement
In the MMIA, new antibodies are created via gene fragments (or blocks)
rearrangement as illustrated in Fig. 30. Arbitrary gene blocks are selected randomly

from randomly chosen sub-libraries and then integrated into a new antibody.

Germ-line D Nidrarly

/

Don p ntib dy Ne Aitody

u lib ary 1 —
s Hibrary 2 i\ bdck 2] bdck 2
: —podk 29— hek 2

ub bib ary

bdck n

: My NM\
wlbay M
Y Rando rty teee ando ry bdg(neated
blib a i n s
Sub b a Ees bk

Fig. 30 Illustration of antibody rearrangement for topological optimization

[Step 8] Antibody diversification

In the proposed MMIA, this was achieved by mimicking the following six
diversification mechanisms found in biological immune systems. All the schemes
described below have the exploration effect in optimization search processes. Because
of different antibody representation, a part of antibody diversification mechanisms
depicted in MOIA (subsection 4.2.8) are needed to modify for applying in this

diversification process.
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1. Somatic point mutation. In terms of binary-encoded representation, this means

reversing a bit from 1 to O or vice versa according to a pre-defined diversity

probability. Theresult isasdlight alteration of an antibody heavy chain gene for local

search purposes.

2. Somatic recombination. As shown in Fig. 31, two same-size fragments/blocks are

randomly selected from the same antibody, after which a partial exchange is

performed between the two fragments according to a pre-defined diversity probability.

loading

—»

"block 2

~==""%_block 1(randomly selection) )
(a) corresponding binary values (b) partial crossover

of an antibody

Fig. 31 Somatic recombination illustration for topological optimization

loading| " Randomly selected
heavy chain gene

Neighboring 8
mesh elements

- H
H 0
H I

Fig. 32 Randomly selected heavy chain gene and associated neighborhoods
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3. Gene conversion, gene inversion, and gene shift.  Following predefined probabilities,

gene conversion, gene inversion, and gene shift is performed using a randomly

selected heavy-chain gene and its neighboring 8 mesh elements as depicted in Fig. 32.

Fig. 33 illustrates the process of gene conversion where all elements within the

selected 9 mesh elements have their binary values reversed from 1 to 0 and vice versa.

In gene inversion as depicted in Fig. 34, each of the 8 periphery mesh elements are

mirrored around the center element. Fig. 35 shows the illustration of gene shift

where each of the 9 mesh elements shift a number of position from left to right and

top to bottom. Note that the number of bit-shift genes is a predefined by the user.

These diversification schemes create the desired global search effect.

(e) replacement \‘

oo
0 off

o 1 1
(b) arandomly selective H geneand (c) corresponding binary (d) binary values
its neighboring 8 mesh elements values conversion

Fig. 33 Gene conversion illustration for topological optimization
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(b) arandomly selective H gene and (c) corresponding binary (d) binary values
its neighboring 8 mesh elements values inversion

Fig. 34 Gene inversion illustration for topological optimization

(a) ap‘antibody (e) replacement ‘.‘

0 ENE 0.0 0]

o I
1 1R 1 1 1

H EIE
H S i 0/ 0 1 1

(b) arandomly selective H geneand  (c) corresponding binary (d) each binary value
itsneighboring 8 mesh elements values shifts 2-bit (predefined)

—_—

Fig. 35 Gene shift illustration for topological optimization

4. Nucleotide addition. As shown in Fig. 36, nucleotides insertion may be

accomplished either in light- or heavy-chain genes. The nucleotide is a randomly
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created binary array of predefined block size. In this study a 9 mesh elements is

used to represent the nucleotide inserted at a randomly chosen point in the antibody

locus. Displaced genes are then shifted to the right with excessive elements out with

the antibody boundary being discarded.

loading

0/ 00000
insertingpoint\ilo 0/0/0 0
000 00
0/, 0|0
0/ 0|0

EXxcessive part
0 [ I Wil be discarded

1: material element, type of gene can be
decided after finite element analysis

(b) implementation of nucleotides
addition

Fig. 36 Nucleotide addition illustration for topological optimization

It should be noted that the six diversification mechanisms described in this step are

adopted randomly in the antibody diversity process.
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[Step 9] Sopping criterion

The whole process will stop when the iteration equals a pre-defined number.

Otherwise the process reverts to [Step 2] for another generation. In the final stage, the

best and most diverse solutions are stored in the memory pool.

Fig. 37 demonstrates the results of the procedure of MMIA described above

employing 4 antibodies/topologies. For simplicity, each topology contains 6x8 elements.

Fig. 37(a) indicates the random generation of the 4 antibodies and the corresponding

continuity anaysis. Clearly, three antibodies/topologies are discontinuous except the

second one. After structure modification procedure, for example removing one gray

element from Absz and adding several gray elements for Ab; and Abg, al the elements of

the four topologies are continuous. Then, finite element calculation and gene

classification (i.e. constant gene C, heavy-chain gene H, light-chain gene L, and pseudo

gene 0) for these topologies are implemented as Fig. 37(b) shown. Since the fourth

antibody (Aby,) has the highest affinity value, it is chosen for clonal proliferation through

hypermutation as Fig. 37(c) illustrated. The best one matures as a plasma and memory

antibody simultaneously. Subsequently germ-line DNA library is constructed by donor

antibodies which selected from the antibody population and plasma antibody produced

after clonal proliferation by using tournament selection. Note that fourth donor antibody
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in thislibrary isinduced from memory antibodies. Fig. 37(d) expresses the procedure of
gene fragment rearrangement.  As step 7 described, new antibodies are created from the
donor antibodies derived in the last step. Finaly the diversification schemes chosen
randomly can be employed to increase the exploration of the antibody population. Fig.
37(e) shows one of the possible results for antibody NewAbs; since the selection of

antibodies and their elements is a randomized procedure.

~
JEIEE . c H
olofo]o ofofofo|uus 0]
0 0o 0 HEI - H B H
0]o 0fo LL L L EE H
0 olofofo]o H L HEEE 0

o[ofoJofo]o olofofofo]o ofo
Ab d™ =1372mm Ab, d™ =0.963mm  Ab, d™ =6.554mm  Ab, d™ =0.665mm

Area=21 Area=24 Area =21 Area =28

\_ obj = 0.035 obj =0.04327 obj =0.0073 obj =005371 )

Fig. 37(b) Finite element calculation & gene classification
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Fig. 37(d) Randomly gene fragment/block rearrangement
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Fig. 37 lllustration of the 8 stepsin MMIA using four antibodies/topol ogies

6.3 Problems Description

two topological optimization examples were employed to evaluate the

In this study,

effectiveness of the proposed multi-modally immune algorithm. All the mechanical

model and material properties are tabulated in Table 10. Table 11 lists the associated

parameters used in the MMIA. These parameters were determined through numerical
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Table 10 Illustration of topological optimization examples

Casel Case 2
Loading position Right hand side 2/5ths from Top right hand corner
the bottom edge

Fixed position
M echanical model

Material properties

Both end of left hand side

3N

i

Both end of |eft hand side

- T D sign E
Design . -
domain 5 d main <
KNy l i
— f¢—— 01 6 m———»
f«——— 0.16m ———»
E = 200GPa
v=0.33

alowablestress 200MPa
thichness t = 0.001m

Table 11 Immune algorithm parameters

Parameter Case 1l Case 2
Grids of elements 20x32 20x32
Antibody length 640 640
Antibody size 50 50
Generations 500 500
Proliferation number 10 10
Tournament size 10 10
Light/heavy chain-length ratio 0.3 0.3
Hypermutation rate 04 04
Diversity rate 0.05 0.05
Inducing rate 0.2 0.2
Threshold (J,,) 0.1 0.1
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This example presents the optimization of a short cantilever plate (with aspect ratio
1.6) which is subjected to a downward concentrated loading applied at an finite element
(FE) node on its right hand side 2/5ths from the bottom edge (non-symmetric structure)

with its stress being constrained to 200MPa.  The support nodes on both end of left hand



side are defined to have zero displacement in the finite element (FE) analysis. In

addition, the design domain is discretized according to a 20x32 plane stress element FE

model. One execution of the computer model requires around 250,000 functional

evaluations (500 generations by 50 antibodies/topologies by 10 clona proliferations per

generation), taking approximately 3 hours with a Pentium 4 processor running at 1.5GHz.

Numerous memory antibodies/multi-modal topologies (local optimum solutions) with

different configurations were derived from memory pool after 500 iterations. Fig. 38

demonstrates 16 significant topologies and their corresponding maximum displacements

(d™), weights ( Area) and objective values (obj, i.e. stiffness-to-weight ratio),

respectively.

Y
Y
Y

d™ =0.876mm d™ =0.813mm d™ =0.619mm d™ = 0.681mm
Area =236 Area =253 Area = 269 Area =290
obj = 0.00484 obj = 0.00486 obj = 0.00601 obj = 0.00506

d™ =0.728mm d™ =0.529mm d™* =0.434mm d™ =0.178mm
Area = 268 Area =303 Area =312 Area =333
obj = 0.00513 obj = 0.00624 obj = 0.00739 obj =0.01687

v

d™ =0.633mm d™ =0.680mm d™ = 0.297mm d™ =0.670mm
Area =312 Area =281 Area = 270 Area =319
obj = 0.00506 obj = 0.00523 obj = 0.01247 obj =0.00468

Y

Y

d™ =0.565mm d™ =0.590mm d™ =0.572mm d™ =0.640mm
Area =322 Area =304 Area =319 Area =299
obj =0.0055 obj =0.00558 obj = 0.00548 obj = 0.00523

Fig. 38 Multi-modal results of case 1
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Case?

In Case 2 the downward concentrated load is applied at an FE node positioned at the

top right hand corner of the design domain with all other conditions being as per those in

Casel. Again, the design domain isdivided into a 20x32 plain stress element FE model

and the required CPU time and functional evaluations being consistent with those in the

previous case. After 500 iterations, the 9 significant memory antibodies/multi-modal

topologies with their corresponding maximum displacements (d ™), weights ( Area) and

objective values (obj) wereillustrated in Fig. 39.

\
X

d™ = 0.611mm d™* = 0.855mm d™* = 0.834mm
Area =246 Area =211 Area = 240
obj = 0.00665 obj = 0.00554 obj = 0.005

d™ = (0.779mm d™ =0.776mm d™ =0.858mm
Area =211 Area = 266 Area =233
obj = 0.00608 obj =0.00484 obj = 0.005

d™ =0.236mm d™ =0.265mm d™ =0.145mm
Area =264 Area= 252 Area =397
obj = 0.01605 obj =0.01497 obj =0.01737

Fig. 39 Multi-modal results of case 2
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6.4 Simulation Results and Discussions

As can be seen from the diverse range of resultant topologies illustrated in Fig.38

and 39, the structures show very well defined truss-like members of constant cross

sectional area with large voids between members. A high proportion of these structural

members have straight_alignment between joints and exhibit low levels of porosity. The

theoretical structures therefore provide the designer with a set of near-optimal solutions

which can be easily developed into discrete truss systems. |f manufacturability is the

prime consideration (i.e. large voids between members), the designer may choose the

topology shown in the left-top examples in Fig. 38 or the center-top examples in Fig. 39.

On the contrary, if stiffness is the main consideration, the right-bottom examples in Fig.

38 and 39 (i.e. more material) are good chooses.

It should be noted the proposed MMIA isfully capable of evaluating both symmetric

and asymmetric structures and is therefore more flexible than the other methods only

handle symmetric structures. Moreover, the proposed method does not force a solution

into a specific area of the search space, but automatically allows balanced evolution using

features of the immune system to create diverse antibody/topology solutions. In

addition, the inherent local search ability of the biological immune system employing

clonal proliferation enhances the search speed and convergence accuracy of 1A, with the

substitution of increasing computation time.
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6.5 Summary

In this chapter, a novel concept for applying to constrained multi-modal topological
optimization has been presented by using an immune algorithm to imitate the features of a
biological immune system. The proposed methodology enhances accuracy and diversity
via the operation of clona proliferation and schemata recombination implemented
through the process of gene fragment rearrangement. Moreover, the potential of the
proposed immune agorithm as a tool for investigating optima topologies and for
automatically creating innovative solutions to structural design problems has been

illustrated in the exampl es presented.
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CHAPTER 7

JOB-SHOP SCHEDULING OPTIMIZATION

7.1 Introduction

Scheduling problems exist aimost ubiquitously in real-world applications including

distribution, transportation, management, construction, engineering and manufacturing,

especialy in the industrial engineering world.  Many scheduling problems on

manufacturing industries are quite complex and very difficult to solve using conventional

optimization techniques. Since the early 1950s it has been the subject of extensive

research and captured the interest of researchers from several research communities

including operation research and artificial intelligence, management science, as well as

industrial engineering. Its main focus is concerned with the allocation of finite resources

to tasks with the objective to optimize specific cost functions. An important issue is the

improvement of resource utilization. It is well known that the job-shop scheduling

problem (JSSP) is the most complicated and typical problem of al kinds of production

scheduling problems. Scheduling for job shops is an important topic in production

management. It is concerned with finding the operations and times of a set of jobs on

the relevant machines subject to the processing constraints. The purpose is to improve

the production efficiency and reduce the processing duration so as to gain as high profits
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as possible.  The JSSP may be described as follows. given | jobs, each composed of
severa operations that must be processed on m machines. Each operation uses one of
the m machines with a deterministic processing time. Each machine can process at most
one operation at a time and once an operation initiates processing on a given machine it
must complete processing on that machine without interruption. Each job consists of a
specific set of operations, which have to be processed according to a given technical
precedence order. The operation sequences on the machines should be found to minimize
the total time required to complete all jobs, i.e. makespan. A comprehensive survey of
job shop scheduling techniques can be found in Jain & Meeran (1999). The total
number of al possible schedules including feasible and infeasible solutions is (j!)™.
Apparently, it isimpossible to exhaust all the alternatives for finding the optimal solution
even though very small j and mvalues.

Different from previous studies, this chapter focuses on not-bit/integer string
encoding optimization and applied the immune algorithm to the job-shop scheduling
problems (JSSPs) with single objective. In this application, an antibody (analogous to
the chromosome in GA) is encoded via operation-based representation. This
representation encodes a schedule as a sequence of operations and each gene (integer
number) stands for one operation. The goal of this optimization is to find the operation

sequence on the machines in order to minimize the makespan, i.e., the time required to
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complete all jobs, and to compare with other heuristic methods for performance

validation. Similar to structural topology optimization applied in the immune algorithm,

some steps described in CHAPTER 4 were needed to revise by incorporating with some

repairing procedures for applying to scheduling optimization problem. The procedure of

revision is depicted in next section.

7.2 ImmuneAlgorithm Revision for Scheduling Optimization

Corresponding to the JSSPs, the antigen and antibodies serve as objective (i.e.,

makespan) and associated solutions (i.e., schedules). The antibodies/schedules

continuously evolve until a match is found with the specific antigen/objective (minimize

the maximum makespan). The flowchart of this optimization is analogous to the

topological optimization one asillustrated in Fig. 27.

[Sep 1] Random initialization of antibody population

Similar to the genetic algorithms used in JSSP, the initia integer string encoding

antibody population is randomly generated.

[Step 2] Antibody representation and gene classification

An operation-based representation [Gen, 1994] is used to represent the genes of an
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antibody. This representation named all operations for a job with the same integer

number and then interpreted it according to the order of occurrence in the given antibody.

For aj jobs and m machines problem, an antibody contains j xm genes. Each job j

appears in the antibody m times, and each repeating gene (i.e., integer number) does not

indicate a concrete operation of a job but refers to a unique operation. It is easy to see

that any permutation of operations can correspond to a feasible schedule. For instance,

consider a 3-job and 3-machine problem given in Table 12.  As Fig. 40 shown, suppose

the genes of an antibody isgiven randomly as[3122 1 31 2 3], where numbers 1, 2, and

3 stand for jobs jl, j2, and |3, respectively. Because each job needs three

operations/machines, it appears exactly three times in an antibody. Based on the

machine sequence and processing time given in Table 12, the machine sequence for job

jlis1-2-3, for job j2 is 1-3-2, and for job 3 is 2-1-3, while the processing time for job j1is

3-3-2, for job j2 is 1-5-3, and for job |3 is 3-2-3. Therefore, the corresponding machine

list and time list of given antibody showninFig. 40 are[211321323]and[331532

2 3 3], respectively.

Table 12 Example data of 3-job and 3-machine JSSP

Processing time operations M achine sequence
Job 1 2 3 Job 1 2 3
j1 3 3 2 11 ml m2 m3
]2 1 5 3 |2 ml m3 m2
3 3 2 3 13 m2 m1 m3
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Antibody, [3]1]
Machinelist: 2
Timelist: 3
Chaintype:. H
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Fig. 40 Antibody representation for scheduling problem

In the same manner as in biological immune systems, each antibody/schedule is
separated into two different kinds of genes: a heavy-chain gene (H) and a light-chain gene
(L). These genes are classified into heavy-chains or light-chains according to i) a
default light/heavy chain-length ratio determined by the user and ii) job/gene order of
occurrence appearing in the identical machine. Take the 3x3 JSSP mentioned above for
example, an antibody is given at random as [312 2 1 31 2 3] and its corresponding
machine listis[2 1132132 3], assume that the user-defined light/heavy chain-length
ratio is 0.3 and there are | jobs appearing in the identical machine (see from machine list).
The number of light-chain gene is defined by the rounded of light/heavy chain-length
ratio multiplied by number of jobs plus 0.5 (i.e., rounded of (0.3x j)+0.5) and assigned
from later part of the jobs appearing in the same machine. The other genes except
light-chain gene are defined as heavy-chain. Suppose there are 3 jobs in the JSSP, the
number of light-chain gene is defined to 1 (integer of (0.3x 3) +0.5) and the number of
heavy-chain gene is 2 (jobs minus the number of light-chain gene). For machine
number 1 in machine list, the corresponding jobs/genes are 1-2-3, therefore, its chain type

Is defined as H-H-L. And the same manner for machine number 2, the corresponding
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jobs/genes and chain type are 3-1-2 and H-H-L respectively, and so on. Hence, the
corresponding chain list of given antibody is[HHH HH L H L L] (see Fig. 40, chain

list).

[Step 3] Calculating combinatorial intensity

The antibody-to-antigen affinity value ( AgAb ) is employed to illustrate the
combinatorial intensity between antigen/objective and the ith antibody/schedule. In this
chapter, the maximum makespan of a schedule is used as the affinity value, and it should
be minimized. The makespan is obtained by following decoding procedure: The first
gene/job is scheduled/decoded first, then the second gene, and so on. Each scheduling
gene/job is allocated in the best available processing time for corresponding machine.
The process is repeated until al genes are scheduled. Thus, the Gantt chart for this given

antibody ([312213123])isdrawn in Fig. 41 with its maximum makespan of 14.

Antibody, [3]1]2]2]1[3]1]2]3]
Machinelist: 2 1 1321323
Timeliss 331532233
—
8E 1 12 3
S8 3 1
200
= | 2 i3
2 4 6 8 10 12 14

Processing time

Fig. 41 Decoding for an antibody/schedule (Gantt chart)
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[Step 4] Clonal proliferation

In the proposed scheme, the most-matched antibody which has minimal maximum

makespan derived from [Step 3] is chosen for hypermutation during the clonal

proliferation process, with a user-defined hypermutation rate and proliferation number.

Again, hypermutation only takes place in light-chain genes (L). For a 3 jobs JSSP, if a

light-chain gene mutated form job j3 to j1 (j1 is generated randomly from all jobs), the

original job j1 which has the same machine number with j3 should also be repaired to |3

(reciprocal exchange within the same machine) in order to avoid yielding illegal or

infeasible schedules (that is, some jobs are repeated more than once while other jobs get

lost in the identical machine). After the hypermutation process, the proliferated

antibodies which have better affinity than un-proliferated antibody are differentiated into

plasma antibody and memory antibody preserved and updated in the memory pool.

Further, the resulting poor proliferated antibodies are neglected. Resulting plasma

antibodies combined with the remaining antibodies derived from [Step 3] are then

proceed to Step 5 for donor antibody selection according to their affinity value. In the

memory pool, only highest affinity antibody can be survived. On the other hand, those

antibodies with low affinity and repeat will be removed from the memory pool. In

addition, a part of memory antibodies are induced into the germ-line DNA library (as per

Step 6) according to a user-defined inducing rate.
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[Step 5] Tour nament selection for donor antibodies

The proposed algorithm uses a tournament selection scheme to select donor

antibodies exhibiting higher affinity values to assemble germ-line DNA libraries.

/ machine number 1 rearrangement

seedantibody | 3[1[2[38]2[1[1]2]3]
machinelis 2 1 1 1 3 2 3 2 3

udonorantibody‘Z‘?;‘1‘2‘2‘3‘1‘1‘3‘
machinelit 1 2 1 3 2 1 2 3 3

seedantibody | 3[2[1[3]2[1]1]2]3]
/ Germ-line DNA library \ machineliss 2 1 1 1 3 2 3 2 3
donorl‘3‘1‘2‘3‘2‘1‘1‘2‘3‘ random +$edantibody
select ;
donor, ‘1‘2‘2‘3‘1‘3‘3‘2‘1‘ / machine number 2 rearrangement
: seedantibody | 3|2|1[3[2[1]|1[2] 3]
. machinelis 2 1 1 1 3 2 3 2 3
donor, |3/3(2/112/1/2[1|3
memory, | 112/1({2/3/2/3]1|3 1\
donorantibody‘1‘2‘2‘3‘1‘3‘3‘2‘l‘
| mechinelis 1 1 3 2 2 1 3 2 3
memory, [ 2]3[1[2]2[3[1][1]3] 1
N eedaniboty [3] 2] 1]3]2[1] 1[2] 3]
kmaChi”e”Stlel32323/
+seedantibody
/ machine number 3 rearrangement

seedantibody | 312(1/3[2]1/1]2|3]
machireliss 2 1 1 1 3 2 3 2 3

'donorantibody‘1‘2‘1‘2‘3‘2‘3‘1‘3‘
machirelit 1 1 2 3 2 2 1 3 3

newantibody | 3|2|1[3[2]1]1]2][3]
KmachinelistZl]_lgzgzgj

Fig. 42 lllustration of fragmental rearrangement for scheduling problem
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[Sep 6] Germ-line DNA library construction

As to MOIA, the components of germ-line DNA library are constructed from the

memory antibodies and the donor antibodies.

[Step 7] Randomly gene fragment rear rangement

In this optimization, new antibodies/schedules are rearranged via gene fragments
picked randomly from germ-line DNA library. A concept of machine-based
rearrangement is used for producing a new antibody and as shown in Fig. 42 considering
a 3-job x 3-machine job-shop scheduling problem. First, randomly chosen a seed
antibody and a donor antibody from the library, and then assigned the genes/jobs of donor
antibody with first machine number (number 1) to the seed in corresponding gene locus.
Next, chosen a randomly donor antibody again for assigning the genes with second
machine number (number 2) to the seed antibody in corresponding gene locus.
Repeating processes till all machine numbers are assigned. The new antibody is
produced once all machine numbers are assigned. It is easy to see that any assign of

fragments will generate a feasible schedule without repairing procedures.

[Step 8] Antibody diversification

Because of different antibody representation, the antibody diversity mechanisms are
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needed to revise for applying to this scheduling optimization, and some of these revised

mechanisms need repairing procedures.

1. Somatic point mutation. As depicted in Fig. 43, in terms of not-binary/integer

encoding representation, this means swapping two randomly selected heavy-chain

genes according to a pre-defined diversity probability.

Antibody, [3]1]2]2]1[3]1][2]3]
Chaintypee HHHHHLHLL

@ point mutation

Antibody, |3[1[2/2[3[3[1]2[1]
| S

Swap
Fig. 43 Somatic point mutation illustration for scheduling problem

fragment 1 fragment 2

L Uy

Antibody, (3] 1\,[; 2(2] 1)3]1]2]3]

N N

Chaintype. HHHHHLHL L
somatic
@ recombination
Antibody, [2/1]/2|3]1[3|1[2]3]

-~ _ Y
partial exchange

Fig. 44 Somatic recombination illustration for scheduling problem

2.  Somatic recombination. As shown in Fig. 44, two heavy-chain gene fragments

with the same length are randomly selected from an antibody. After which a partial
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exchange is performed between the two fragments according to a pre-defined

diversity probability.

starting site ending site

Antibody, [3]1]2]2]1]3[1]2]3]
Chaintypee HHHHHLHLL

conversion
swap
x4
Antibody, |1/2]1[1[3[3]2|2|3]
A S
swap swap

Fig. 45 Gene conversion illustration for scheduling problem

starting site ending site

Antibody, [3]1[2[2]1]3[1]2]3]

/—\
[3]1]2[2]1]3]1]2]3]
\_/‘

inversion

Antibody. |3/3]1]2[2[1]1[2]3]

Fig. 46 Gene inversion illustration for scheduling problem

starting site ending site

Antibody, [3[1[2][2]1]3[1]2]3]

o

Antibody, [3|3]1[2[2|1]1[2]3]

Fig.47 Gene shift illustration for scheduling problem
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Gene conversion, gene inversion, and gene shift.  Following predefined

probabilities, gene conversion, gene inversion, and gene shift is performed using a

randomly selected heavy-chain gene (see Fig. 45 to 47). Note that the starting and

ending sites were randomly generated, and the number of shift genes was predefined.

This type of diversification scheme results in a global search effect. In gene

conversion (depicted in Fig. 45), those heavy-chain genes between the starting and

ending site were swapped with the other heavy-chain gene chosen from antibody at

random. As to the gene inversion operator shown in Fig. 46, randomly chosen

gene/job fragment inverses sequentialy its gene positions from front to rear and

from rear to front. Fig. 47 illustrates gene shift operation. Following the

predefined number of shift, the selected gene/job fragment right-shift their gene

locations with excessive positions being reallocated from rear to front.

Nucleotide addition. Nucleotides insertion may be accomplished either in light- or

heavy-chain genes. The nucleotide is a randomly created natura number of

predefined size representing the genes/jobs and inserted at a randomly chosen

inserting site in the antibody locus. Displaced genes are then shifted to the right

with excessive genes out with the antibody boundary being repairing. In the

repairing process, first m of each job will be preserved and excessive part will be

discarded as depicted in Fig. 48.
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Randomly nuclectide

inserting site

Y
Antibody, |3]1[2][2|1]3[12]3]

3[1]2]2]2[2/3]1]3[1]2|3

[

Antibody, [3]1]2|2]2[3|1[3]1]

Fig. 48 Nucleotide addition illustration for scheduling problem

It should be noted that the six diversification mechanisms described in [Step 8] are

adopted randomly in the antibody diversity process.

[Step 9] Sopping criterion

The whole process will stop when the iteration equals a pre-defined number.

Otherwise the process reverts to [Step 2] for another generation. In the final stage, the

best solutions are stored in the memory pool.

7.3 Experimental Resultsand Discussions

For carrying out the necessary computations and evaluating the performance of the

proposed immune algorithm, the program for computing JSSP was devel oped using C++

language and running with a Pentium 3 processor at 1.0GHz. In this study, 27

benchmark instances of different size (operations) collected from the OR-Library
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(http://www.mscmga.ms.ic.ac.uk) including two classes of standard JSSP test problems

[Fischer and Thompson, 1963; Lawrence, 1984] are considered to illustrate the

effectiveness of the proposed algorithm. These instances are widely used in the

literatures, and each of instances is run randomly 10 times. The associated user-defined

parameters utilized in proposed immune algorithm for scheduling optimization are

tabulated in Table 13, each with the same parameter setting. Table 14 summaries the

computational results, it lists the instance name and its size (jobx machine), the best

known solution, the solution obtained by proposed immune algorithm (I1A), and the

solution computed by other algorithms such as genetic algorithms (GA) [Dorndorf and

Pesch, 1995; Wang and Zheng, 2002; Gongalves et al., 2002; Croce et al., 1995], stimulated

annealing (SA) [Kolonko, 1999; Van Laarhoven, 1992], and tabu search (TS) [Dell” Amico

and Trubian, 1993]. Table 15 shows the corresponding best schedules obtained by

proposed immune algorithm. In the random runs, the compared results (Table 15)

shown that the average relate error of the proposed immune algorithm over 10 random

runs compared to other for the best known so far is very small, and the optimal or

near-optimal solutions is found for 16 of the 27 instances, and apart of them are found

very quickly for middle-size instances such as the size/operations small than 15x 5. For

remaining large-size instances the results are also very close to that of other comparison

agorithms.
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Table 13 Immune agorithm parameters for scheduling problem

Instance size (jobx machine) | 6x6 | 10x5 | 15x5 | 20x5 | 10x10 | 15x10 | 20x10 | 30x10 | 15x15
Iteration number 100 500 1000
Antibody population size jobx machine 2% (jobx machine)

Antibody length 36 [ 50 75 [ 100 [ 100 | 150 | 200 | 300 | 225
Diversity probability 0.1 0.1 0.1
Hypermutation rate 0.5 05 0.5
Light/heavy chain-length ratio 6:4 55 55

Number of proliferation 6 8 10

Inducing ratio 0.1 0.2 0.2

Bit number in Gene shift 2-bit 2-bit

Bit number of nucleotide

random between 1 to number of jobs

Tournament size

(jobx machine)/10

(2x jobx machine)/10
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Table 14 Computational results

GA SA TS

Dorndorf| Wang Van Dell’

Name| Size Best 1A and and Gongalves) Croce Kolonko|Laarhoven| Amico

known etal. etal.
Pesch |Zheng (1999) etal. etal.
(2002) {(1995)

(1995) ((2002) (1992) | (1993)

FTO6| 6x6 | 55 | 55 55 55 55 55
FT10 [{10x10| 930 | 955 | 960 930 936 946 930 930
FT20| 20x5 | 1165 |1201| 1249 | 1165 | 1177 | 1178 1165 1165
LAOl| 10x5 | 666 | 666 | 666 666 666 666 666 666
LAO2| 10x5 | 655 | 659 | 681 666 666 655
LAO3| 10x5 | 597 | 597 | 620 597 666 597
LAO4| 10x5 | 590 | 593 | 620 590 590
LAO5| 10x5 | 593 | 593 | 593 593 593
LAO6| 15x5 | 926 | 926 | 926 926 926 926 926 926
LAO7| 15x5 | 890 | 890 | 890 890 890
LAO8| 15x5 | 863 | 863 | 863 863 863
LAO9| 15x5 | 951 | 951 | 951 951 951
LA10| 15x5 | 958 | 958 | 958 958 958
LA11| 20x5 | 1222 (1222| 1222 |1222| 1222 | 1222 1222 1222
LA12| 20x5 | 1039 [1039| 1039 1039 1039
LA13| 20x5 | 1150 |1150| 1150 1150 1150
LA14| 20x5 | 1292 (1292| 1292 1292 1292
LA15| 20x5 | 1207 |1207| 1237 1207 1207
LA16|10x10| 945 | 946 | 1008 | 945 977 979 | 945 956 945
LA17|10x10| 784 | 784 | 809 787 784
LA18|10x10| 848 | 855 | 916 848 848
LA19|10x10| 842 | 857 | 880 857 842 842
LA20|10x10| 902 | 911 | 928 910 902
LA21|15x10| 1046 [1088| 1139 | 1058 | 1047 | 1097 | 1046 1063 1047
LA26|20x10| 1218 [1257| 1278 | 1218 | 1218 | 1231 1218 1218
LA31|30x10| 1784 [1784 1784 | 1784 | 1784 1784 1784
LA36|15x15| 1268 |1316| 1373 | 1291 | 1305 | 1305 | 1268 1293 1268
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Table 15 The corresponding best schedules

Best
Name | Size 1A Corresponding best schedule
known
FTO06 | 6x6 55 | 55 |[323146236642553245115641213253454616]
[7466108275647574991021857611037468283
FT10 |10x10 | 930 |955|1593107986662397144734355918101225629
109491018572253894313118610104521083]
[20516202516119202015621691915208219517 19
101217151051410141717181966113912581121814
FT20 | 20x5 | 1165 |1201
71176111210131823137181316141431716127154
1110123138137415811391469181844 9]
[6751075610227956103651114496922910912
LAOLl | 10x5 | 666 | 666
843810457478313883]
[3152729102739410981068853314256725746
LAO2 | 10x5 | 655 | 656
101397118589664410]
[4427818106962357974110923547196567158
LAO3 | 10x5 | 597 | 597
623831094511083102]
[5107355661491222103875686871010991434
LAO4 | 10x5 | 590 | 593
385671798324110294]
[8219462986236143181047784973510961432
LAO5 | 10x5 | 593 | 593
775213691085551010]
[5714715611114103101128159111212126141211
LAO6 | 15x5 | 926 |926(101410351410145121164438139741185246678
99781521393221331515131513]
[121513374154141213589414821510151141069
LAO7 | 15x5 | 890 |890(10914162514141133111578721391363723131111
11212105585102612149867 11]
[1481169511414141310127810788515119123653
LAO8 | 15x5 | 863 |8635811449162214913131244159131461510211573
1571311710123253116122110]
[41103411141251215131511288136345251310119
LAO9 | 15x5 | 951 |951(1514710101467713612261115931221563743814
108947122111513149895111]
[1517312159321061311145138476123134841425
LA10| 15x5 | 958 | 958 187211117101099151012914141227131514148556

111381216115465921110313]
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LA11

20x5

1222

1222

[13112011208151142718511497204126915718313
82017181510165161681461215317216211311566
10516943111412115181718126134141991021789
13742191719172010312181451019319]

LA12

20x5

1039

1039

[11472025191491520168116201919567913118128
154413931818259112031591211161016133111247
11715173521468812137141721546201017317718
10186191915812161611414101 213 10]

LA13

20x5

1150

1150

[7208961517453121811161783328721991119612
13111441419202071341810961021194101418135
17181611210121917413141761521587871155691
151610209141321611 121131815320 16 5]

LA14

20x5

1292

1292

[57817381117202320141391519120181121491394
101421517220121011327181113617126776141511
51958510851171631881514184161691791911815
61016101341941912320161314 126 12]

LA15

20x5

1207

1207

[273132014132121191521111720121912413420124
171111516158251034196913188101719321116 16
610851210185819611819137201451891515144 14
6510161720171739916317 1818 14 7 16]

LA16

10x10

945

946

[1091063268371336457986753722101137431
86141053910412756538492584917105446865
61232251077109194788810549109269812]

LAl7

10x10

784

784

[7248621110534745183282435697586654410
12673959395121073106828293129831039719
79146675105721098874846106411051310]

LA18

10x10

848

855

[9710991052751077633818946365119488638
31016510398961331034341067511221141425
62254845957665422787798210102108794]

LA19

10x10

842

857

[8961051322741016131045103295991146575
7862819444349245859102971474756273865
37137316726598896218286101010810103 3]

LA20

10x10

902

911

[1966102588691057105265957188710326127
10191016359668911052436459733744384116
11041499493825571022773322810374848]
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LA21

15x10

1046

1088

[67121278510711311111215118731166131091515
1412895211121312281512141212113484108583
4715411231213791475242131141421051167105
1221591363410143139131061336966141312193
51544101314811715104541027681514589131514
11111599]

LA26

20x10

1218

1257

[91511192714519811717116810649171371214183
14411515516318191110101841010199774184121
1121511198212134161482142201920141816582
134114181387195177161510121561710314364 18
12161112203111715202917212219591331517678
10181213147361518931115131016514616683911
1514220201819920142062055171320631316127 17
101319111271658 16 11 89 19]

LA31

30x10

1784

1784

[152554 132519 26 31923291220 8 1430 2128 420 2 8 27
182911152720123037261022221872082521429151
295241628124132161422252912 1581826 627 2930
104930251428112625253731725288141323095218
102221411 146181720 11 1221 152 21 21 29 24 10 11 16 16
186105930220175232421261428923281226204 11 22
181624102923 62015137 19317191422 251224 105 23
1951117 1616131281330152218124 172413128617 19
17411313241130244272629716272013192320306 17
527236292163022152142861628246218101137 26
1519281971341981013292627915142235231227 27
12181272714131892826191289157211016 17217 23
25239

LA36

15x15

1268

1316

[4118582812131471711699151251322791515119
711813171311366510885412114212415110351
10153753142111512146156581441915271275104
98105371011151211110149315121333311315104
151212751181322121437410741499116531511 14
1161348641432121291412159813174681616610
91010518112631228131310132135945121413517
141481514113102114293461371069 14]
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74 Summary

In this chapter, a novel immune algorithm emulating the features of a biological
immune system is proposed for solving the job-shop scheduling problem. The
antibody/solution representation of a scheduling is based on the operation
(operation-based representation), and the goa is to minimize the maximum makespan
time of a scheduling. During the optimal search of scheduling, inherent local search
ability in immune system offered by clone process enhances the search speed and
accuracy in large-size scheduling problem. In addition, by integrating the features of
biological immune system such as antibody memory, fragmental rearrangement, and
diversity, the proposed immune algorithm provides a balance between exploring search
space and finding optimum solutions. Finally, numerical smulation based on the
benchmark instances demonstrated the effectiveness of the proposed immune algorithm
which produces optimal or near-optimal solutions on all instances tested, and has better

performance to part of comparison methods.
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CHAPTER 8

CONCLUSIONS

In this dissertation, a novel immune algorithm emulating the biological immune

system fully has been proposed by the author for solving the single-objective,

single-objective with multi-modally, and multi-objective optimization problems

considering different solution encoding system e.g. one- & two-dimensiona binary-

encoded string and integer-encoded string. The proposed algorithm differs from the

other hybrid algorithms which are combined immune algorithm with evolutionary

algorithm (especialy genetic algorithm) not only used the characteristics of the clonal

selection principle and the immune diversity, but the concepts of the cytokine, the

germ-line DNA libraries, the antibody fragment rearrangement, the antibody memory, and

the more antibody diversity mechanisms are also employed for finding the non-dominated

solutions and maintaining diversity in obtained non-dominated front, these are two

remarkable things concerned when adopted the evolutionary algorithm in the optimization

search. Moreover, the proposed methodology enhances convergent accuracy in

solutions via the function of clonal proliferation and schemata recombination

implemented through the process of gene fragmental rearrangement. The key natural

selection components (gene fragments) are similar to the building blocks of genetic
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algorithms associated with stimulus donor antibodies and memory antibodies. The

rearrangement of antibody genes involved in the production of antibodies differs

somewhat from the recombination of parental genesin genetic algorithms. In the former,

antibodies (solutions) are the direct products of gene fragment (e.g. light- and heavy-

chain gene fragments) combinations (schemata), rather than the antibody itself, while the

latter involves the crossing-over (or chromosome mixing) from parental genetic material

to create an offspring. Meanwhile, the two main drawbacks of the genetic algorithms —

the lack of local search ability and the premature convergence pointed out by Tazawa

(1996), have aso been improved in this dissertation through the use of clonal

proliferation and antibody diversification schemes. The inherent local search and

memory abilities of the biological immune system employing clonal proliferation enhance

the search speed and convergence accuracy of solutions in the proposed algorithm, with

the substitution of increasing computation time. In the other hand, the innate

capabilities of specificity, distinction, and diversity using affinity, cytokine, and

diversification mechanisms further improve the premature convergence and diversity of

solutions. Therefore, the balance between exploration and exploitation of non-dominated

solutions within a search space are realized in this dissertation through the integration of

clonal proliferation, germ-line gene libraries, cytokine, gene fragment rearrangement, and

memory antibodies, further assisted by several diversification schemes.
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The effectiveness and adaptability of proposed immune algorithm have been proved

by several optimization problems including multi-objective optimizations in the

unconstrained/constrained test functions and the sizing of truss structure, single-objective

with multi-modal optimizations in the structura topology, and single-objective

optimizations in the job-shop scheduling problems.  In the multi-objective optimization

of unconstrained/constrained test functions, numerous test functions were performed to

determine the effectiveness (accuracy as well as spread of global non-dominated solutions

or Pareto-optimal solutions) of the proposed immune algorithm, with Pareto-optimal

solution performances quantitatively measured by five performance metrics. The

compared results of these tests shown that the proposed immune algorithm generaly

performs better than SPEA and NSGA-II, and by extension also better than MOGA,

NPGA, and NSGA in several areas. For multi-objective tress-structure sizing

optimization considering the constraint of maximum alowable stress, the compared

figures shown that the proposed algorithm is capable of finding acceptable feasible

Pareto-optimal  solutions in 10-bar plane truss and 25-bar space truss optimization

problems. In addition, during the single-objective multi- modal topological optimization

considering the asymmetry structures and the constraint of maximum allowable stress, the

resulting figures indicated that the potential of the proposed immune algorithm as a tool

for investigating optimal topologies and for automatically creating innovative solutions to
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structural design problems has been illustrated in the examples presented. In the

single-abjective job-shop scheduling optimization, 27 benchmark instances were used for

demonstrating the optimal search ability in such not-bit encoded system. The

scheduling results show that the proposed immune algorithm has ability to produce

optimal or near-optimal solutions on all instances tested, and has better performance than

simple methods.

Finally, numerous compared results from various applications confirmed that the

immune algorithm proposed in this dissertation is capable of fining acceptable

Pareto-optimal solutions quickly meanwhile maintaining diversity among Pareto-optimal

front and can be applied well in widely field of engineering optimal design.
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