

適用於工程最佳化之免疫演算法

An Immune Algorithm for Engineering Optimization

 研究生：闕仲輝（Chung-Huei Chueh）

指導教授：陸冠群（Prof. Guan-Chun Luh）

大同大學

機械工程研究所

博士論文

Dissertation for Ph.D. Degree

Department of Mechanical Engineering
Tatung University

中華民國九十三年七月

July 2004

ACKNOWLEDGEMENTS

I express my thanks to my dissertation advisor, Dr. Guan-Chun Luh for his

instruction. And I also would like to thank many people for their help and guidance

during my years as a graduate student at Tatung University. Most of all, I offer my

deepest thanks to my family-who believed in me, and supported me all my life.

ABSTRACT

THIS DISSERATTION focuses on developing a novel immune algorithm called for

finding Pareto-optimal solutions simultaneously maintaining diversity to single- and

multi-objective optimization problems (SOOPs and MOOPs) based fully on the features

of a biological immune system. The applications in this dissertation include

unconstrained/constrained test functions and truss-structure sizing multi-objective

optimization, structural topology single-objective with multi-modally optimization, and

single-objective job-shop scheduling optimization problems. The use of proposed

immune algorithm as opposed to the evolutionary algorithm (e.g., genetic algorithm, GA,

evolution strategy, ES) provides this methodology with superior diversification and local

search abilities. Inter-relationships within the proposed algorithm resemble antibody-

antigen relationships in terms of specificity and adaptiveness, antibody clonal

proliferation, antigen discrimination, and the antibody memory characteristics of adaptive

immune responses. Besides, the features for producing antibodies in biological immune

system such as gene fragment rearrangement and several antibody diversification

schemes (including somatic recombination, somatic mutation, gene conversion, gene

reversion, gene drift, and nucleotide addition) are incorporated into the proposed immune

algorithm in order to improve the balance between exploitation and exploration.

Moreover the concept of cytokines is also combined to algorithm for constraint handling.

By using several performance metrics and comparison with the other approaches, the

effectiveness of proposed immune algorithm are evaluated by unconstrained/constrained

test functions and several engineering applications (truss sizing, structural topology, and

scheduling). The simulated results demonstrated that the proposed immune algorithm

provides better effect than other methods and suitable for searching in optimizations.

摘要

本論文提出一個完全以生物免疫系統為基礎的演算法則-免疫演算法(Immune

Algorithm)，並應用於多目標(multi-objective)最佳化、單目標多值域(multi-modal)最

佳化與實際工程最佳化設計問題(如: 桁架, 結構拓樸及 scheduling等)全域最佳解之

搜尋。不同於其他演化式演算法，例如遺傳演算法(Genetic Algorithms)、演化策略法

(Evolution Strategy)，本免疫演算法具有較佳的多樣性與局部搜尋能力。藉由結合生

物免疫系統中適應性免疫反應之特徵，例如抗原與抗體之專一性(specificity)與適應

性(adaptiveness) 、抗原識別(discrimination)、抗體之株落增殖(clonal proliferation)、

抗體之記憶性(memory)與抗體激素(cytokine)等，以及抗體片段重組和抗體多樣性機

制，包含自體突變(somatic mutation)、自體重組(somatic recombination)、基因轉換(gene

conversion)、基因倒置(gene inversion)、基因飄移(gene shift)與核甘酸插入(nucleotide

addition)等，使得本免疫演算法於最佳化搜尋時，同時兼具全域與局部搜尋之能力，

並且能在全域與局部搜尋之間達到平衡。

為了驗證本免疫演算法之搜尋效能，本論文以無限制條件測試函數、具限制條

件測試函數、實際工程結構設計等問題進行多目標與單目標多值域最佳解之搜尋。

在經由與其他演化式演算法比較後其結果顯示，以本免疫演算法搜尋之結果確實優

於其他演算法，同時亦證實本論文所提之免疫演算法適用於最佳化搜尋問題。

TABLES OF CONTENTS

ACKNOWLEDGEMENTS .. i

ENGLISH ABSTRACT ... ii

CHINESE ABSTRACT .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ..viii

LIST OF TABLES ... x

NOMENCLATURE.. xi

CHAPTER

1 INTRODUCTION .. 1

1.1 Optimization ... 1

1.2 Structural Optimization ... 5

1.3 Job-Shop Scheduling Optimization .. 8

1.4 Summary ... 10

1.5 Structure of the Dissertation ... 14

2 LITERATURE REVIEW .. 16

2.1 Introduction ... 16

2.2 Artificial Immune System ... 16

2.3 Evolutionary Algorithms ... 21

3 HOW BIOLOGICAL IMMUNE SYSTEM WORKS 29

3.1 Introduction .. 29

3.2 Immune System Works .. 31

3.3 Antibody Structure ... 33

3.4 Clonal Selection ... 36

3.5 Antibody Diversity ... 38

3.6 Summary .. 39

I THEORY

4 IMMUNE ALGORITHM .. 40

4.1 Introduction ... 40

4.2 Major Steps of Immune Algorithm ... 46

4.2.1 Establishing initial antibody population 46

4.2.2 Calculating antibody-to-antigen affinities and cytokines 47

4.2.3 Clonal proliferation ... 49

4.2.4 Calculating avidity .. 51

4.2.5 Donor antibodies selection .. 52

4.2.6 Germ-line DNA libraries construction 53

4.2.7 Gene fragment rearrangement ... 53

4.2.8 Antibody diversification mechanisms 54

4.2.9 Stop criterion ... 57

4.3 Summary ... 59

II APPLICATIONS

5 MULTI-OBJECTIVE OPTIMIZATION 61

5.1 Introduction ... 61

5.2 Problems Description .. 62

5.2.1 Unconstrained test functions ... 62

5.2.2 Constrained test functions ... 65

5.2.3 10-bar place truss with continuous design variables 67

5.2.4 25-bar space truss with discrete design variables 68

5.3 Performance Metrics ... 70

5.4 Simulation Results and Discussions ... 75

5.4.1 Multi-objective test function optimization 75

5.4.2 Multi-objective truss-structure sizing optimization 85

5.5 Summary ... 88

6 STRUCTURAL TOPOLOGY OPTIMIZATION 90

6.1 Introduction ... 90

6.2 Immune Algorithm Revision for Topological Optimization 91

6.3 Problems Description .. 107

6.4 Simulation Results and Discussions ... 111

6.5 Summary ... 112

7 JOB-SHOP SCHEDULING OPTIMIZATION 113

7.1 Introduction ... 113

7.2 Immune Algorithm Revision for Scheduling Optimization 115

7.3 Experimental Results and Discussions ... 125

7.4 Summary ... 132

8 CONCLUSIONS ... 133

BIBLIOGRAPHY .. 137

LIST OF FIGURES

Fig. 1 Illustration of the biological immune system .. 31

Fig. 2 Antibody molecule and multiple-epitope antigen 33

Fig. 3 Clonal selection principle .. 36

Fig. 4 Immune algorithm flowchart ... 46

Fig. 5 Antibody-antigen representation ... 47

Fig. 6 Somatic recombination illustration .. 55

Fig. 7 Gene conversion illustration .. 56

Fig. 8 Gene inversion illustration ... 56

Fig. 9 Gene shift illustration .. 57

Fig. 10 Nucleotide addition illustration .. 57

Fig. 11 10-bar plane truss structure ... 68

Fig. 12 25-bar space truss structure .. 69

Fig. 13 MOIA window simulation .. 74

Fig 14 Simulation results for test function (convex) ... 77 1F

Fig 15 Simulation results for test function (non-convex) 77 2F

Fig 16 Simulation results for test function (discrete) .. 78 3F

Fig 17 Simulation results for test function (multimodal) 78 4F

Fig 18 Simulation results for test function (deceptive) 79 5F

Fig 19 Simulation results for test function with 250 generations (non-uniform) 79 6F

Fig 20 Simulation results for test function with 500 generations (non-uniform) 80 6F

Fig. 21 Simulation results on CTP2-CTP5 ... 83

Fig. 22 Simulation results on CTP6-CTP7 ... 83

Fig. 23 NSGA-II results on CTP2-CTP5 [This is a reprint from Deb et al. (2001)].. 84

Fig. 24 NSGA-II results on CTP6-CTP7 [This is a reprint from Deb et al. (2001)].. 84

Fig. 25 feasible Pareto solutions and comparisons of 10-bar plane truss 87

Fig. 26 Feasible Pareto solutions and comparisons of 25-bar space truss 88

Fig. 27 Multi-modal immune algorithm (MMIA) flowchart 91

Fig. 28 Mapping from antibody into topology .. 93

Fig. 29 Antibody representation for topological optimization 95

Fig. 30 Illustration of antibody rearrangement for topological optimization 99

Fig. 31 Somatic recombination illustration for topological optimization 100

Fig. 32 Randomly selected heavy chain gene and associated neighborhoods 100

Fig. 33 Gene conversion illustration for topological optimization 101

Fig. 34 Gene inversion illustration for topological optimization 102

Fig. 35 Gene shift illustration for topological optimization 102

Fig. 36 Nucleotide addition illustration for topological optimization 103

Fig. 37 Illustration of the 8 steps in MMIA using four antibodies/topologies 107

Fig. 38 Multi-modal results of case 1 ... 109

Fig. 39 Multi-modal results of case 2 ... 110

Fig. 40 Antibody representation for scheduling problem 117

Fig. 41 Decoding for an antibody/schedule (Gantt chart) 118

Fig. 42 Illustration of fragmental rearrangement for scheduling problem 120

Fig. 43 Somatic point mutation illustration for scheduling problem 122

Fig. 44 Somatic recombination illustration for scheduling problem 122

Fig. 45 Gene conversion illustration for scheduling problem 122

Fig. 46 Gene inversion illustration for scheduling problem 123

Fig.47 Gene shift illustration for scheduling problem .. 123

Fig. 48 Nucleotide addition illustration for scheduling problem 125

LIST OF TABLES

Table 1 Corresponding terminology of biological immune system, proposed immune

algorithm (IA), and genetic algorithms (GAs) .. 45

Table 2 Description of immune algorithm parameters .. 58

Table 3 Parameters and function g(x) utilized in constrained test functions 66

Table 4 Group members of the 25-bar space truss .. 70

Table 5 Loading conditions of the 25-bar space truss ... 70

Table 6 SPEA and MOIA parameters .. 74

Table 7 Performance metrics for the six SPEA and MOIA test functions 80

Table 8 C-MOIA parameters used in constrained optimization 81

Table 9 CMOIA parameters in truss sizing optimization 85

Table 10 Illustration of topological optimization examples 108

Table 11 Immune algorithm parameters .. 108

Table 12 Example data of 3-job and 3-machine JSSP .. 116

Table 13 Immune algorithm parameters for scheduling problem 127

Table 14 Computational results .. 128

Table 15 The corresponding best schedules ... 129

NOMENCLATURE

iAb : ith antibody of whole population.

ijAbAb : Affinity value between the ith and jth antibodies.

ikAbAg : Affinity value between ith antibody and kth antigenic epitope.

ikAbAg : Normalized affinity vakues.

ikaffinity : Normalized affinity vakue between ith antibody and kth antigenic epitope.

kAg : kth antigenic epitope.

jamount : Summation of jth antibody violated amount.

iav : Avidity values which binding of affinities between antigens and antibodies as

well as between antibodies only for multi-objective optimization problems.

iCK : Cytokine value of ith antibody, treat as the penalty term for constraint

violation.

jcount : Total number of the jth antibody violated constraint condition.

ijd : The Euclidean distance between the ith and jth antibodies in objective space.

kf : kth objective function.

(ikf x) : kth objective value of the ith solution.

ag : The allowable constraint value.

jg : The equality and/or inequality constraint values.

AbN : Number of antibodies/solutions.

objN : Number of antigens/objectives.

CN : Total number of equality and inequality constraint conditions.

ir : Rank values represent combinatorial intensity between ith antibody and all

antigens.

ir : Rank values () added by constraint violation values (). ir iCK

iS : Similarity among antibodies.

ix : ith solution.

Abδ : Threshold value which illustrates the allowable difference between antibodies.

CHAPTER 1

INTRODUCTION

1.1 Optimization

 The optimization is the process of searching for one or more feasible solutions

which correspond to extreme values of one or more objectives in a problem until no other

superior solution can be found. When an optimization problem modeling a physical

system considering only one objective, the task of finding the optimal solution is referred

to as single-objective optimization problems or SOOPs. There exist single-objective

optimization methods that work by using calculus-based or deterministic search principles

such as gradient-based and heuristic-based techniques and stochastic search principles,

which allow optimization method to find globally optimal solutions more reliably

including. Evolutionary algorithm and simulated annealing are two of such stochastic

methods. While an optimization problem involves more than one objective, the task of

finding one or more solutions is known as multi-objective optimization problems or

MOOPs. Much of the current focus is on single-objective engineering optimization,

even though most real-world problems require that several objectives be satisfied

simultaneously. A challenging MOOPs-related problem concerns the goodness of fit of

a solution, since all solutions have their own range of fitness values (usually one per

objective). Trade-offs are common, since any solution may be good for some objectives

but not for others. The frequency of conflicting objectives has made multi-objective

optimization an important aspect of engineering and design.

 Over the past decades, numerous approaches such as tabu searches [Hansen, 1997;

Gandibleux et al., 1996], simulated annealing (SA) [Suppapitnarm et al., 2000], Ant-Q

Algorithms [Mariano and Morales, 1999], fuzzy logic [Rao et al., 1992], neural networks

(NN) [Balicki, 1998], and evolutionary algorithms such as evolution strategies (ESs)

[Knowles and Corne, 1999] and genetic algorithms (GAs) [Deb, 2001; Zitzler, 2001;

Coello, 2002; Osyczka, 2002] have been developed for solving the optimization problems.

In which Genetic algorithms — powerful tools based on biological evolution mechanisms

and natural selection theory [Goldberg, 1989] — have received considerable attention as

the single- and multi-objective optimal design efforts. The genetic algorithms are based

on the mechanism of natural selection and evolution and are applied in searching for the

global optimum for many applications. They combine survival of the fittest individual

among population with a structured and randomized information exchange to form a

search algorithm with some of the innovative flair of human search. GAs start from a

set of random strings to represent the individuals of population and proceed repeatedly

from generation to generation through three basic genetic operators: reproduction (or

selection), crossover, and mutation. In each generation, the number of copies of every

individual is reproduced in proportional to its value of fitness function for next generation.

Because the value of fitness function represents the probability of survival, the selection

procedure keeps strong individuals and eliminates the weak ones to emulate the evolution

of nature. The reproduction operator is the source of exploitation. Crossover operator

recombines genetic information of two individuals to produce the offspring for the next

generatio3n. The main purpose of crossover is to exchange genetic information between

parent pairs without losing any important schemata. In short, crossover operator can be

viewed as a two-step process. In the first step, the individuals of mating pairs are chosen

form the mating pool of population. Then transaction of chromosome segments between

mating pairs is performed in the second step. The purpose of mutation is to introduce

genetic diversity into the population. A random number is generated for every bit in all

chromosomes of the current population and it is checked with the probability of mutation.

If the random number is less than the probability of mutation, the selected bit has to

undergo mutation, i.e., change from 1 to 0 or vice versa. The total number of bits to be

mutated is set by the mutation rate. Both the crossover and mutation operators are the

sources of exploration. They will disrupt some of the schemata on which they operate.

In the process of genetic search, there is a tradeoff between exploitation (i.e. reproduction)

and exploration (i.e. crossover and mutation). The difficulty of genetic algorithms is

seeking the balance between exploitation and exploration that determine the convergence

and diversity of the optimal search. Hence, the genetic algorithms are useful in finding a

global optimum in cases where several local optima are present.

 Schaffer’s (1985) vector-evaluated genetic algorithm (VEGA)—the first GA

application developed for solving MOOPs—uses GAs to find multiple trade-off solutions

from a single simulation run. Hajela and Lin (1992) designed a Weight-Based Genetic

Algorithm (WBGA) for multi-criteria optimization. A domination approach to solving

MOOPs was used by Murata and Ishibuchi (1995), and Fonseca and Fleming (1993) in

their Multi-Objective Genetic Algorithm (MOGA) and by Srinivas and Debs (1994) to

create their Non-dominated Sorting Genetic Algorithm (NSGA). Other approaches

based on GAs include the Multi-Niche Crowding Genetic Algorithm (MNCGA) (Rao

Vemuri and Cedeno, 1995), Niche Pareto Genetic Algorithm (NPGA) [Horn et al., 1994],

Reduced Pareto Set Genetic Algorithm (RPSGA) [Osyczka and Kundu, 1995], Neural

Evolution Strategy SYstem (NESSY) [Koppen and Rudlof, 1997], spatial predator-prey

model approach (Laumanns et al., 1998), Strength Pareto Evolutionary Algorithm (SPEA)

[Zitzler and Thiele, 1998], Hybrid GA [Lo and Chang, 2000], Diploid GA [Viennet et al.,

1996], and Multi-Sexual GA [Lis and Eiben, 1997].

1.2 Structural Optimization

The structure optimal design is a very interesting topic in the field of engineering

optimization. The optimal design of structures including sizing, shape (i.e. configuration)

and topology forms the basic issues for the structural design process. In sizing

optimization, the parameterized shape and topology are considered as fixed, while an

optimal set of sizing parameters, such as the cross-section areas of trusses, are found.

With shape optimization, only changes to the boundary conditions of the design can be

made with the topology of structure being held constant. Different from shape

optimization, topology optimization not only changes structural boundary but also

modifies the interior material of structure. In other words, holes in the interior of

structure can be created. Hence, the topology optimal design may be the most important

and difficult topic in structural optimization. In the structure optimization, optimal

design of truss-structures has always been a fast developing area of research in the field

of engineering optimization and has made notable progress in the last decade.

Numerous techniques and methodologies have been developed to find optimal

truss-structures, especially biological-inspired methods imitating natural phenomena and

physical processes. Among these are simulated annealing [Moh and Chiang , 2000],

particle swarm optimization [Fourie and Groenwold, 2002], evolutionary strategy

[Gutkowski et al., 2001], fuzzy logic [Shih and Yu, 1995], immune algorithm [Ishida et

al., 1995] and genetic algorithms [Coello and Christiansen, 2000; Narayanan, 1998; Deb

and Gulati, 2001; Erbatur et al., 2000; Ponterosso and Fox, 1999; Fadel and Li, 2002],

the most famous of these methods being genetic algorithms. Further, most practical

design tasks require that the sizing of variables be chosen from a list of discrete

commercial values as opposed to continuous values. This results in a discrete

optimization problem of greater complexity more difficult to solve using traditional

methods [Templeman, 1988; Loh and Papalambros, , 1991; Loh and Papalambros, 1991].

However, this is not an issue for genetic algorithm due to their binary-coded nature.

Note that GA theory can be equally applied to continuous optimization problems.

Besides, in the past decades a number of innovative approaches to structural

topology optimization have been developed. The domain variation (also termed

sensitivity analysis) is the first approach proposed by Kibsgaard (1992) for topological

optimization. It consists of successive small variations of the initial design domain, and

is based on the computation of the gradient of the objective function with respect to the

domain. This approach has two major defects: first, it requires a good initial guess, as it

demonstrated to be unstable for large variations of the domain; second, it does not allow

modification of the initial domain topology (e.g. add or remove holes). Another popular

method, the homogenization method [Bendsøe and Kikuchi, 1988; Suzuki and Kikuchim,

1991; Tenek and Hagiwara, 1993; Lin and Chou, 1999] first proposed by Bendsøe and

Kikuchi (1988) consists in dealing with a continuous density of material. In the end of

this method, the final density is forced toward value 1 or 0 (material present or absent).

However, this approach requires the design of the homogenized operator, as thoroughly

described in Allaire and Kohn (1993), and is insofar limited to the linear elasticity case.

In addition, it cannot address loadings that apply on the actual boundary of the shape to

be determined, and hardly handles optimization for multiple loadings [Kane and

Schoenauer, 1996]. Recently, a simple approach to shape and topology optimization

termed Evolutionary Structural Optimization (ESO) method has been developed by Xie

and Steven (1993). The original concept of ESO method is to gradually remove lowly

stressed elements not needed from the structure after each finite element analysis, the

element removal criteria is established by sensitivity analysis. Hence, the topology of the

resulting design is gradually improved to achieve the optimal design. A fundamental

potential drawback of this method pointed out by Liu et al. (2000) is the strong

dependence of the solution on the mesh of finite element from which it is evolved and on

the sequence of the element removal. Although the capability to add or reinstate

elements has recently been added to the ESO through the Bidirectional Evolutionary

Structural Optimization (BESO) method [Querin et al, 1998], this addition is still

restricted to previous element positions or to the area/volume predefined by the mesh of

finite element.

A possible approach to overcome these difficulties of topological optimization

mentioned above is to adopt stochastic optimization methods such as the simulated

annealing [Kirkpatrick et al., 1983], the genetic algorithms [Goldberg and Samtani, 1986]

and the immune algorithm [Bersini and Varela, 1991]. Anagnostou et al. (1992)

developed a simulated annealing based approach for structure optimal configuration

design. More recently, a lot of researchers have extensively employed genetic algorithm

based methods for structural optimization in the optimal design of discretized trusses

sizing [Rajeev and Krishnamoorthy, 1992; Wu and Chow, 1995], shape [Jenkins, 1991;

Woon et al., 2001], and topology [Kane and Schoenauer, 1996; Chapman, 1994; Jakiela,

2000].

1.3 Job-Shop Scheduling Optimization

The job-shop scheduling problem (JSSP) is one of the well-known NP-hard

combinatorial optimization problems. The problem can be described as: there are a list

of j jobs and a number m of machines that perform operations on jobs. Each job

involves a particular collection of tasks, and each task needs to be performed on a given

machine for a given period of time. In general, the task of scheduling is the allocation of

jobs over time when limited resources are available, where the objective should be

optimized and constraints must be satisfied. There are several constraints on jobs and

machines [Blazewicz et al., 1996]: i) there are no precedence constraints among

operations of different jobs; ii) operations cannot be interrupted and each machine can

handle only one job at a time; iii) each job can be performed only on one machine at a

time. While machine sequence of the jobs is pre-assigned, the problem is to find the job

sequences on the machines which minimize the makespan, i.e. the maximum of the

completion times of all operations. Since the processing time and constraints are fixed,

and no stochastic occur, the search space consists of feasible schedules. mj)!(

 During the last three decades, various approaches have been applied to solve JSSP,

including the following: mathematical programming (linear programming, goal

programming, dynamic programming, etc.), branch-and-bound methods, and some

heuristic/probabilistic search methods. It has been recognized that scheduling

optimization using mathematical programming is very difficult, because of lengthy

computational time. In addition, several branch-and-bound methods [Applegate and

Cook, 1991; Brucker et al., 1994; Carlier and Pinson, 1989] have been developed for

solving the JSSP to optimality. These methods require a large amount of computation

time and therefore it become more difficult to achieve an optimal solution when the

variety of parameters (i.e. jobs or machines) and constraints is incremented. In recently

years, there has been an increasing interest and growing rapidly in methods based on

heuristic such as simulated annealing (SA) [Van Laarhoven et al., 1992; Kolonko, 1999],

tabu search (TS) [Dell’ Amico and Trubian, 1993; Ponnambalam et al., 2000], neural

network [Foo et al., 1995], and genetic algorithms (GAs) [Davis, 1985; Cheng et al.,

1996; Maturana et al., 1997; Murata et al., 1996; Croce et al., 1995; Wang and Zheng,

2002], which are capable of producing goodness solutions with a reasonable

computational effort. In the past few years, GAs have been widely applied in the

production of scheduling field. A GA exhibits parallelism, contains certain redundancy,

and historical information of past solutions, and is suitable for implementation on

massively parallel architecture.

1.4 Summary

 Even though, genetic algorithms are considered powerful in terms of global

optimization, but they have several drawbacks regarding local searches. Tazawa et al.

(1996) identified two of them as i) lack of local search ability, and ii) premature

convergence. A number of researchers have experimented with optimization approaches

inspired from biological immune system to overcome these particular drawbacks implicit

in genetic algorithms. Biological immune system (IS) is responsible for protecting the

living body against the foreign antigens and other toxins that may be harmful. It

exhibits abilities to specificity, learning and memory, and adaptation and discrimination,

and presents as a remarkable natural defense mechanism. The immune system

eliminates the harmful materials or foreign antigens mainly by producing soluble

antibodies, which recognize and then bind the molecules of foreign antigens. In addition,

the immune system is capable of remembering infection, hence, a second exposure to

identical or similar antigen is deal with more efficiently. For these reasons, and many

others, the biological immune system can be viewed as a mechanism of vast potential for

inspiration in variety of domains. Based on the features of a biological immune system,

a new biologically inspired technique, so-called artificial immune system (AIS), has been

developed for a computational tools and applied to a myriad of computational scenarios

during the recently years. The applications of AIS are various including pattern

recognition and classification [Carter, 2000], search and optimization methods [Mori et

al., 1993; Bersini and Varela, 1994; Hajela and Yoo, 1999; Hajela et al., 1997; Hajela and

Lee, 1996; Endoh et al., 1998; Luh et al., 2003; Luh and Chueh, 2004], fault diagnosis

and anomaly detection [Aisu and Mizutani, 1996; Dasgupta and Forrest, 1999], machine

learning [Hunt and Cooke, 1996], control [Krishnakumar, 1996], scheduling [Fukuda,

1993; Tomoyuki, 2003], nonlinear system identification [Luh and Cheng, 2001], robotics

[Jun et al., 1999; Luh and Cheng, 2002], data mining [Knight and Timmis, 1999],

computational security [Kephart, 1994; Kim and Bentley, 1999], and so on.

 Based on these research efforts in the field of search and optimization methods,

Bersini and Varela (1991) proposed a genetic immune recruitment mechanism (GIRM) to

improve GA’s local search ability. However, this mechanism takes no measures to

counteract premature convergence. Mori et al. (1993) developed an immune algorithm

using the sharing-like method of GA to prevent premature convergence, but it has no

control mechanism to balance between the local search and the global search. Chun et

al. (1999a) used an immune algorithm for optimizing the shape of electromagnetic

devices. Tazawa et al. (1996) proposed an immunity-based genetic algorithm (IGA)

with improved and faster global convergence, and Hajela et al. (1997) followed up with a

separate GA-based biological immune system model for enhancing the convergence

characteristics and constraints associated with the use of GAs for structural optimization.

Several researchers, including Fukuda et al. (1998) and Chun et al. (1999b), have

attempted to apply immune algorithms (IAs) to multimodal and multi-objective

optimization problems. Chun et al. used an IA to search for diverse solutions to design

problems for electromagnetic devices, with optimal solutions aggregating in memory

cells. In their modification of a GA-based search procedure for solving MOOPs in a

structural system, Yoo and Hajela (1999) made use of a utility function and weighting

mechanism to convert a multi-criteria problem into a single-objective problem. It is

important to emphasize, however, that a genetic algorithm serves as the framework for all

of the hybrid approaches mentioned in the above literatures. The basic role of an

immune algorithm is to support diversity via different levels of inter-antibody; even

though natural immune systems have a powerful capacity to diversify, to learn, memorize,

and process information, and to discriminate between self and non-self when reacting to

foreign pathogens [Dasgupt and Forrest, 1999; de Castro and Jonathan, 1999; Coren et al.,

1999].

 To highlight the significant features of immune systems, a novel immune algorithm

based fully on imitating of biological immune system has been developed in this

dissertation for the purpose of optimal searching in the various optimization fields

including single-objective, multi-objective, and multi-modally optimizations with

different solution encoding system such as one-dimensional & two-dimensional

binary-encoded string, and not-bit string (or integer) representations. Within the field of

multi- objective optimizations, numerous unconstrained/constrained test functions

suggested by Zitzler (1998) and Deb et al. (2001) were performed to validate the

significant effectiveness of the proposed immune algorithm, with Pareto-optimal solution

performances quantitatively measured by five performance metrics. Via using several

performance metrics and comparison with different evolutionary approaches, the results

indicated that the proposed immune algorithm in the field of multi-objective optimization

(named MOIA) generally performs better than SPEA (strength Pareto evolutionary

algorithm), MOGA (multi-objective genetic algorithm), NPGA (niche Pareto genetic

algorithm), and NSGA (non-dominated sorting genetic algorithm) for these test functions.

For the field of constrained multi-objective and multi-modally optimizations, two revised

immune algorithm named CMOIA (Constrained MOIA) and MMIA (multi-modal

immune algorithm) have also been proposed for the optimal searching in multi-objective

truss-structure sizing optimizations and single-objective multi-modal structural topology

optimizations considering constraints. By comparison with some other approaches, the

results shown that proposed immune algorithm is capable of finding accurate results and

keeping the diverse of the solutions. Finally, in the single-objective optimization of

job-shop scheduling, through the validation from several benchmark problems with

different number of jobs and machines, the proposed immune algorithm is also suitable in

such scheduling optimization.

1.5 Structure of the Dissertation

 This dissertation is divided into eight main Chapters. CHAPTER 1 introduces the

goal and purpose of the dissertation, and also depicted its structure. CHAPTER 2

reviews a large number of works from the literatures which are most related to this

dissertation research. In CHAPTER 3, a general overview of How Biological Immune

System Works is presented, considering its anatomy, molecules, organs, and main cells.

In addition, the proposed immune algorithm and its nine major steps are presented detail

in the CHAPTER 4. The scheme of these steps such as the mechanisms of gene

rearrangement and antibody diversity was inspired by biological immune system.

CHAPTER 5 depicted the applications of proposed immune algorithm to the

multi-objective optimization with antibody/solution represented by a one-dimensional

binary-encoded string. The applications in this chapter including

unconstrained/constrained numerical test function optimization as well as two

truss-structure sizing multi-objective optimizations considering 10-bar plane truss with

continuous design variables and 25-bar space truss with discrete design variables, both

sizing optimizations subjected to the maximum allowable stresses. The simulated

results are compared with other algorithms and discussed in the rear of this chapter. An

application to the single-objective with multi-modal structural topology optimization

using immune algorithm is depicted in CHAPTER 6. Two 2-dimensional asymmetric

topology problems subjected to constrained stresses are optimized in this application.

Different antibody representation from applications in the CHAPTER 5, the antibody is

represented by two-dimensional binary-encoded matrix. The single-objective job-shop

scheduling optimizations for proposed immune algorithm are illustrated in the

CHAPTER 7. In this chapter, the antibody is represented by the not-binary encoding

string (i.e. integer encoding). Several benchmark test problems with different number of

jobs and machines were calculated and compared in this chapter. Finally, CHAPTER 8

makes overall conclusions in proposed immune algorithm.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 This dissertation focuses on developing a novel immune algorithm for optimal

search in the areas of numerical function, structure, and scheduling. In each of these

areas, there is an immense body of literature. Hence, this chapter reviews the prior work

in these areas that is most related to this dissertation research and organized as follows.

Section 2.2 reviews the work on the artificial immune systems (AIS) which are applied to

optimization problems. In section 2.3, the literature review is focused on the

evolutionary approaches in the field of multi-objective optimization.

2.2 Artificial Immune System

 This section reviews the works on artificial immune systems specially designed to

solve constrained, multi-modal, multi-criteria/multi-objective, and combinatorial

optimization problems.

 Bersini and Varela (1991) developed a search technique based on the features of

network sensitivity and metadynamics to apply to the function optimization. This

approach consists of an affinity measure and a fitness function. The affinity measure

 16

was used to evaluate the degree of similarity among individuals of the population, while

the fitness function was responsible for evaluating the quality if each individual in

relation to the environment. Noted that the adopted of measuring the similarity among

individuals is a process similar to fitness sharing in genetic algorithm. In addition,

individual candidates suffered genetic operators by crossover and mutation borrowed

from evolutionary algorithm. The authors shown results on a simple problem using a

binary Hamming distance among individuals and normalized fitness function. The results

were presented by comparing their approach with the standard genetic algorithm (SGA).

Besides, the authors also offered a genetic immune recruitment mechanism (GIRM)

which introducing clonal selection of immune system into genetic algorithm to improve

the local search ability of genetic algorithm, but failed to add preventive measures against

premature convergence.

Mori et al. (1993) proposed an immune algorithm for a multi-modal function

optimization hybridizing ideas from idiotypic network theory, immune diversity, clonal

selection, and genetic algorithm. Their algorithm is based on an entropy measure to

maintain the diversity of a receptor of antibodies. Sharing and genetic operators –

crossover and mutation are used to promote genetic recombination and variation in the

antibody and prevent the premature convergence, but it has no control mechanism to

balance between the local search and the global search. The algorithm is of general

 17

purpose as a hybrid of an evolutionary and immune-inspired approach. Its applications

have been several, from function optimization to scheduling.

Tazawa et al. (1996) proposed an immunity genetic algorithm (IGA) combining

immune system (IS) with genetic algorithm (GA). Authors highlight two mechanisms

of IS – the clonal selection and idiotypic network. IGA has a fixed number of solutions

and generates new solutions as to the GA by using crossover and mutation operators.

After new solutions are generated, IGA selects solutions that form new population like

clonal selection of IS. Besides, IGA divided a population into several subpopulations

and controls the number of similar solutions like idiotypic network in order to balance

between the local and global search. The algorithm was applied to floorplan design

problem of VLSI layout and compared the results with those of GA.

Fukuda et al. (1998) proposed an immune algorithm (IA) based upon the somatic

theory and network hypothesis of immune system (IS) to solve the multi-modal function

optimization problem partly using a genetic algorithm. The somatic theory describes

that somatic recombination and mutation contribute to increase the diversity of antibodies.

The network hypothesis describes that a mutual recognition network among the

antibodies contributes to control of the clonal proliferation. The proposed algorithm is

shown to be effective for searching for a set of solutions as well as local solutions. Test

functions with multi-peak and Shubert function are illustrated to show the abilities of

 18

immune algorithm for multi-modal optimization.

Chun et al. (1998) applied a slightly modified of the immune algorithm developed

by Mori et al. (1993) to several function optimization problems and compared its

performance with that of evolution strategy and genetic algorithm. In addition to apply

to function optimization, author also applied his algorithm to the optimal design of a

surface permanent magnet synchronous motor and a pole shape of an electromagnet

[Chun et al., 1997], and compared the performance with other methods. Based on their

results, the author claimed that the modified immune algorithm is very suitable for

solving multi-modal optimizations.

Hajela and Yoo (1999) took inspiration from the immune system to address several

problems in optimal design: i) how to enhance the convergence speed of genetic

algorithm (GA), ii) how to handle constraints in a GA-based search, and iii) how to adapt

the GA search to large scale design problem. For these reasons, author proposed an

algorithm combined with capabilities of pattern recognition and adaptation in immune

system to improve the performance of GA in structural optimization problems. Like the

majority of GA applications, authors used a binary encoding for the strings representing

the immune components, i.e. a binary Hamming distance. The antibodies corresponding

to the unfeasible designs, while the antigens were equivalent to the feasible ones. The

goal of the algorithm was to adapt the unfeasible antibodies to feasible antigen, so as to

 19

reduce the constraint violation of GA-based search. The fitness of an individual was

determined by its ability to recognize either a specific or a broad group of antigens, given

by a function that measure the number of matching bits between a pair of strings. Thus,

affinity was measured by similarity instead of complementarity. The algorithm was

applied to several tasks, including the optimal design of a 10-bar truss structure for

minimum weight and with pre-defined allowable on maximum stresses of tension and

compression in the bar elements.

 Toma et al. (1999) proposed an algorithm based on the immune network and MHC

peptide presentation. The immune network was used to produce adaptive behaviors for

the n-TSP agents, and antigenic presentation by MHC molecules was employed to induce

competitive behaviors among these agents. The agents processed a sensor, mimicking

MHC peptide representation by macrophages. T cells were used to control the behavior

of agents and B cells were used to produce behaviors. The system operated as follows:

first macrophages acquired a city number at random and presented to the B- and T-cells.

If a T cell recognized this number, it tried to help B cell by sending stimulatory signals.

If B- and T-cells both recognized the same number, the B cell produced an antibody and

traveled, then MHC was changed. This representation was based on an integer

shape-space, and the affinity of each agent with the environment was directly proportional

to the distance traveled by the agent.

 20

2.3 Evolutionary Algorithms

 In this section, the reviewed literatures are focused on several evolutionary

algorithms which are most commonly used in multi-objective optimization problems

(MOOPs), such as VEGA, WBGA, MOGA, NSGA, NPGA, and SPEA and so on. In

the implementation of MOOPs, the pioneering work of applying evolutionary algorithm

into multi-objective optimization problems is implemented by Schaffer (1985) with his

algorithm named vector evaluated genetic algorithm or VEGA. After Schaffer’s VEGA,

Goldberg (1989) realized a better implementation of domination principle in an

evolutionary algorithm and suggested a new non-dominated sorting procedure. Since an

evolutionary algorithm needs one fitness function for reproduction, the aim was to find a

single metric from a number of objective functions. Goldberg’s suggestion was to use

the concept of the domination to assign more copies to non-dominated individuals in a

population. Since diversity is another concern, the use of a niching strategy among

solutions of a non-dominated class was also suggested by Goldberg. Realizing the

potential of a good multi-objective evolutionary algorithm which can be derived from

Goldberg’s suggestion, at least three independent groups of researchers have developed

different various of multi-objective evolutionary algorithm, i.e. multi-objective genetic

algorithm (MOGA), niched Pareto genetic algorithm (NPGA), and non-dominated sorting

genetic algorithm (NSGA). These algorithms differ in the way a fitness is assign to each

 21

individual. In addition to VEGA, MOGA, NSGA, and NPGA, few other evolutionary

algorithms have also been reviewed in this section.

VEGA

 The first implementation of a multi-objective evolutionary algorithm was suggested

by Schaffer (1985) to find a set of non-dominated solutions. He modified the simple

genetic algorithm (SGA) with selection, crossover, and mutation by performing

independent selection cycles according to each objective. Hence, he called his algorithm

as the vector evaluated genetic algorithm or VEGA. VEGA evaluated an objective

vector instead of a scalar objective function with each element of the vector representing

each objective function. Since a number of objectives have to be evaluated, he divided

the population at every generation into O equal subpopulations, and each subpopulation is

assigned a fitness based on a different objective function. Then, each of the O objective

functions is used to evaluate some members in the population. Even though VEGA uses

a simple idea and is easy to implement and has capability of finding non-dominated

solutions, it has several disadvantages in maintaining a good spread of solutions and bias

towards some solutions in the obtained non-dominated front. In VEGA, a solution is

evaluated only with one objective, but all of the others are also important in the context of

multi-objective optimization. During the simulation run, solutions near the optimum of

 22

corresponding objective function would be preferred by the operators of selection and

crossover in a subpopulation. Such preference takes place in parallel with other

objective functions in different subpopulation. Therefore, even in convex search space

problem, the operators between individual champion solutions could not find diverse

solutions in the population, eventually, the VEGA converges to individual champion

solutions only.

MOGA

Fonseca and Fleming (1993), whom first introduced a Multi-objective genetic

algorithm (called MOGA), used the non-dominated classification of a GA population for

finding non-dominated solutions and simultaneously maintaining diversity in the

non-dominated solutions. In the MOGA, differs from a SGA, the fitness is assigned to

each solution in the population, while rest operators of the algorithm (e.g. stochastic

universal selection, single-point crossover, and bit-wise mutation) are the same as that in

a SGA. To a solution i, its fitness is equal to one plus the number of solutions which

dominate solution i. In this way, the non-dominated solutions are assigned with a fitness

value equal to 1. In order to maintain diversity of among non-dominated solutions, they

have also introduced a niche count calculated by summing the sharing function among

solutions. Finally, the shared fitness value which reduced the fitness value of each

 23

solution was defined by dividing the assigned fitness value by the niche count. Then,

the selection with shared fitness values, crossover, and mutation were applied to create a

new population.

NSGA

 Among the Pareto-based multi-objective evolutionary algorithm, Srinivas and Deb

(1994) have implemented Goldberg’s concept (non-dominated sorting) more directly.

The idea behind the non-dominated sorting procedure is that ranking selection method is

used to obtain good solutions and niche method is employed to maintain stable

subpopulation of good solutions. Since, the algorithm is based on the non-dominated

sorting procedure, they called this algorithm as the non-dominated sorting genetic

algorithm, NSGA. NSGA differs from SGA only in the way the selection operator

works, while crossover and mutation operators remain as usual. Once again, the dual

objectives in a multi-objective optimization algorithm are maintained by using a fitness

assignment scheme which prefers non-dominated solutions and by using a sharing

strategy which preserves diversity among solutions of each non-dominated front. The

fitness assignment procedure different from MOGA begins from first/best non-dominated

set and successively proceeds to dominate sets in current population. Any solution i of

the first non-dominated set is assigned a fitness equal to its population size. Since, all

 24

solutions in the first non-dominated set are equally important in terms of their closeness

to the Pareto-optimal front. Besides, the diversity of each solution is maintained by

degrading the assigned fitness based on the number of neighboring solutions (i.e. niche

count) and sharing function. Therefore, degrading fitness of each solution is evaluated

by its niche count and sharing function with a sharing parameter. After the degrading

fitness values are assigned, the roulette-wheel selection, crossover, and mutation

operators are applied as usual to the whole population.

NPGA

 Horn, Nafpliotis, and Goldberg (1994) have proposed a multi-objective genetic

algorithm based on the concept of Pareto dominance and they called niched-Pareto

genetic algorithm (NPGA). NPGA differs from VEGA, MOGA and NSGA in the

selection operator. NPGA use the Pareto domination tournaments instead of

non-dominated sorting and ranking selection method in solving multi-objective

optimization problems. In this method, a comparison set comprising of a specific

number of individual is chosen at random from the population at the beginning of each

selection process. Two random individuals are chosen from the population for selecting

a winner in a tournament selection. Both individuals are compared with the members of

the comparison set for domination with respect to the objective functions. There are two

 25

scenario occurred in this tournament selection: i) If one of them is non-dominated and the

other is dominated, then the non-dominated one is selected; ii) If both are either

non-dominated or dominated, a niche count is found for each individual in the entire

population. Both individuals which with small niche count is selected. Since, this

non-dominance is evaluated by comparing an individual with a randomly chosen

population set, the success of this algorithm highly depends on the number of this

population set.

WBGA

 Hajela and Lin (1992) proposed a weight-based genetic algorithm (WBGA) for

multi-criterion optimization. In the WBGA, each individual in a population is assigned

with a different weight vector, the weighted sum of the normalized objective function

values are then added together with assigned weight vector to calculate the fitness of an

individual. Because each weight vector will result in one Pareto-optimal solution, the

number of weight vector is governed by the maximum number of desired Pareto-optimal

solutions. Besides, a sharing strategy with niche count is proposed by computing the

distance metric between two solutions in order to maintain diversity in the weight vector.

Therefore, the fitness is degraded by this sharing strategy to calculate the shared fitness

value. Since fitness is degraded when using the sharing function concept, the

 26

proportional selection method needed to be used. The crossover and mutation operators

are then applied on whole population as usual.

SPEA

 Zitzler and Thiele (1998) proposed an elitist evolutionary algorithm, they called the

strength Pareto evolutionary algorithm (SPEA). SPEA introduced elitism concept by

explicitly maintaining an external population (elite individuals) preserved a fixed number

of the non-dominated solutions that are found during beginning of the simulation run. In

each generation, newly found non-dominated solutions are compared with the external

population and the resulting non-dominated solutions are saved in this external population.

In order to restrict the population to over-grow, the size of external population is bound to

a limit number. Not all elite individuals can be preserved in the external population

when the size of external population exceeds a limit number, elite individuals which are

less crowded are kept by using clustering algorithm. Besides, the elite individuals in the

external population are also participated in the genetic operators with current population

for the help of influencing the population towards good region in the search space.

During the assignment of fitness, in addition to the assigning of fitness to current

population, fitness is also assigned to the external population. SPEA assigns a fitness to

each elite individual i of external population first and called this fitness as the strength.

 27

The strength is proportional to the number of individual in current population that an elite

individual i dominate. Thereafter, the fitness of individual j in current population is then

assigned as one plus the sum of the strength values of all elite individuals which weakly

dominate individual j. This fitness assignment provides that a individual with a smaller

fitness is better. With the fitness values, a tournament selection is applied the current

and external (combination) population to choose individuals with smaller fitness.

Thereafter, a crossover and mutation operators are used to create the new population from

this combination population.

 28

CHAPTER 3

HOW BIOLOGICAL IMMUNE SYSTEM WORKS

3.1 Introduction

 The biological immune system (IS) is a complex of cells, molecules and organs that

represent an identification mechanism capable of perceiving and combating dysfunction

from our own cells (infectious self) and the action of exogenous infectious

microorganisms (infectious non-self) such as viruses, bacteria, and other parasites

(so-called invading antigens) [Jerne, 1974]. The most important function of a biological

immune system is to protect living organisms from invading antigens. The body

identifies foreign antigens through two inter-related systems: the innate immune system

and the adaptive immune system. A model of relationship among immune system

components is depicted in Fig. 1. Phagocytes, the main cells participated in innate

immune system, are white blood cells capable of destroying most of antigens on first

contact. The adaptive immune system uses lymphocytes that can quickly change in

order to destroy antigens that have entered the bloodstream. A major difference between

these two systems is that adaptive cells are more antigen-specific and have greater

memory capacity than innate cell. B-lymphocyte (or B-cell) and T-lymphocyte (or

T-cell), two main types of lymphocyte, play a significant role in adaptive immune system.

 29

The T-cell matures in the thymus while the B-cell matures in the bone marrow. Cells of

the B and T lymphocyte series differ in many functional aspects but share one of the

important properties of immune response that they exhibit specificity toward an antigen.

Thus the major recognition and reaction functions of the immune response are contained

within the lymphocytes. There are two branches of adaptive immunity: humoral

immunity and cell mediated immunity that have different sets of participants and different

sets of purposes but with one common aim: to eliminate the antigen. These two

branches interact with each other and collaborate to achieve the final goal of eliminating

the antigen. B-cells are included in the humoral immunity to synthesize antibodies in

the process of clonal proliferation once they are activated by antigen and Helper T-cells

while T-cells take part in the cell mediated immunity. T-cells do not synthesize

antibodies but instead synthesize and release various cytokines that affect other cells.

One class of the T-cells, named the Killer T-cells, destroys the infected cell whenever they

recognize the infection. The other class that trigger clonal proliferation,

stimulate/suppress antibody formation is called the Helper T-cells. A breakdown in any

of their activities can result in allergic reactions and autoimmune disease. Lymphocytes

float freely in blood and lymph node and patrol everywhere for foreign antigens, then

gradually drift back into the lymphatic system, to begin the cycle all over again.

 30

Cytokines

MHC

Adaptive immunityInnate immunity

Phagocyte

Helper T - cell

Killer T - cell

APC

B - cell

antigen

Humoral immunity

Cell mediated immunity

BODY

antibody

Fig. 1 Illustration of the biological immune system

3.2 Immune System Works

 As shown in Fig. 1, when an infectious foreign pathogen attacks the human body,

the innate immune system is activated as the first line of defense. Innate immunity is

not directed in any way towards specific invaders, rather against any pathogens that enter

the body [de Castro and Jonathan, 1999]. Hence, it is so-called non-specific immune

system. The most important cells in the innate immunity are phagocytes such as

macrophages, monocytes and dendritic cells. Macrophages possess the capability of

ingesting and digesting several microorganisms and antigenic particles. Some

macrophages have the ability to present antigens to other cells, thus being termed

antigen-presenting cells (APCs). The APC interprets the antigen appendage and extracts

the features by processing and presenting antigenic peptides on its surface to lymphocytes.

 31

These antigenic peptides are a kind of molecule called MHC (Major Histocompatibility

Complex) to distinguish the non-self molecules (infectious non-self) from the those native

self molecules (infectious self) and plays a leading role in inducing the expression of

co-stimulatory signals in APCs that will lead to T-cell activation, promoting the boost of

the adaptive immune system. Moreover, B-cells are also affected by Helper T-cells

during the adaptive immune responses. The Helper T-cell plays a remarkable key role

for deciding the immune system toward the cell mediated immunity (by Th1 Helper

T-cells) or the humoral immunity (by Th2 Helper T-cells) [Roitt and Brostoff, 1998], and

connects the non-specific immune response to make a more efficiency specific immune

response. The T cells work, primarily, by secreting soluble substances, know as

cytokines and their relatives that constitute powerful chemical messengers.

Lymphokines or interleukin (IL) are the cytokines secreted by lymphocytes. The

cytokines promote cellular growth, activation and regulation. In addition, cytokines can

also kill target cells and stimulated macrophages. In the other hand, B-cell becomes

stimulated and created antibodies during clonal proliferation in the germinal center when

a B-cell recognized an antigen. Recognition is achieved by inter-cellular binding, which

is determined by molecule shape and electrostatic charge. The secreted antibodies are

the soluble receptor on the surface of B-cell and these antibodies can be distributed

throughout the body. As shown in Fig. 2b, an antibody-combining site or termed

 32

paratope can bind with an antigenic determinant or termed epitope. Moreover, the

immune system produces the diverse antibodies by recognizing the idiotype of the mutual

receptors of the antigens between antigen and antibodies and between antibodies. The

strength of binding between antigens and antibodies and that amongst antibodies can be

evaluated by the value of affinity, or degree of match. In terms of affinities, the immune

system self-regulates the production of antibodies and diverse antibodies.

VH
D

JH
CH1

VL
JL

CL

CH2

CH3

-s-s-
-s-s-
-s-s-

VH
D

JH
CH1

VL
JL

CL

CH2

CH3

V :variable genes

C :constant genes
J :jointing genes
D :diversity genes

H :heavy chains
L :light chains

Antigen

epitopes
receptor

B-cell

(a) antibody molecule (b) antegen with multiple epitopes

Fig. 2 Antibody molecule and multiple-epitope antigen

3.3 Antibody Structure

One of the major functions of the immune system is the production of soluble

proteins that circulate freely and exhibit properties that contribute specifically to

 33

immunity and protection against foreign material. These soluble proteins are the

antibodies, or called immunoglobulins (Ig), and expressed as secreted and

membrane-bound forms. Secreted antibodies are produced by plasma cells – the

terminally differentiated B cells during clonal proliferation within germinal center.

Membrane-bound antibody is present on the surface of B cells where it serves as the

antigen-specific receptor. The basic unit of an antibody molecule is composed of four

polypeptide chains: two identical light chains and two identical heavy chains as depicted

in Fig. 2a. The grouping of two different types of gene fragments (VL, JL) constructs

the light chains and the combination of three different types of gene fragments (VH, D,

JH) forms the heavy chains. In addition, the variable region (V-region) is responsible

for the antigenic recognition and binding, whereas the constant region (C-region) cannot

bind antigen, but it is responsible for the biological functions of the antibody molecule

after antigen has been bound to the V-region. The V- and C-region of an antibody

molecule are coded by different gene fragments. For the purpose of enormous diversity,

many different V-region genes can be linked up to a single C-region. The combining of

V- and C-region gene fragments (rather than having a single gene coding for every

individual antibody molecule) significantly reduces the amount of genetic information

required to encode different antibody molecules. Additionally, antibody gene fragments

could move and rearrange themselves within the genome (inherited DNA) of a

 34

differentiating cell. A V-region gene fragment can be located in one position in the DNA

of an inherited chromosome (the germ-line DNA), and then move to another position on

the chromosome during differentiation. This differentiation brings together an

appropriate set of gene fragments for the V- and C-region. The set of rearranged gene

fragments is then transcribed and translated into a complete H or L chain. Consequently,

the genetic materials (gene fragments) required to produce an antibody are encoded in a

set of antibody library named germ-line DNA library, each library containing a set of

components or fragments of antibodies. Besides, the V (variable), D (diversity), and J

(joining) gene fragments are individual libraries that contribute to the production of

functional antibody. For each library, those can be created from the lymphocytes of

donors who differentiate with higher affinity developed in the immune system. Note

that the functional genes of antibody do not exist in the germ-line DNA libraries, except

only the gene fragments. A functional gene is generated when germ-line DNA is

rearranged randomly.

 35

FDC

Selective Activation

B Lymphocyte
Clonal Proliferation

Hypermutation

Plasma Cell

Antibody Synthesis

Antibody

Memory Cell

Antigen

Fig. 3 Clonal selection principle

3.4 Clonal Selection

After binding to antibody receptors, an antigen stimulates the B cell to differentiate

and mature into plasma cells and memory antibodies through the process known as clonal

proliferation or clonal selection. As shown in Fig. 3, the clonal proliferation of the B

cell occurs inside the lymph nodes within a special microenvironment named germinal

center where antigenic peptide is presented on the surface of the follicular dendritic cells

(FDCs). The proliferated B cells that are able to combine with FDCs survive and

become plasma cells to secrete large amount of the same kind antibodies. The principle of

clonal selection is the theory used to describe the basic properties of an adaptive

immunity to an antigenic stimulus. It establishes the idea that only those cells capable of

recognizing an antigenic stimulus will proliferate and differentiate into effector cells, like

 36

the plasma cells. Therefore, the germinal center constantly selects high affinity B cells

and simultaneously fosters the B cells apoptosis (a process of cell death) that bind the

antigen ineffectively [Krawinkel et al., 1983]. A hypermutation mechanism takes place

on the variable region of B cell during the process of clonal proliferation. The

hypermutation plays a critical role in creating diverse antibody, increasing affinity and

enhancing specificity of antibody. This occurs at an extremely high rate, about 5-6

orders of magnitude higher than the normal mutation rate [Harris et al., 1999]. In

addition to differentiating into plasma cells, B cell can as well discriminate into

long-lived B memory cells. When a living body is exposed to similar antigens again, the

memory antibodies start differentiating into large amounts of lymphocytes capable of

producing high affinity antibody by pre-selecting specific antigen [Perelson et al., 1978].

Both mutational and selectional events in B-cell clonal proliferation processes allow these

lymphocytes to increase their antibodies diversity and improve their capability to

recognize the selective antigens (increasing their affinities with selective antigens). In

clonal proliferation, random changes (e.g. hypermutation) are introduced to the V-region

genes, and occasionally one such change will lead to an increase in the affinity of the

antibody. These higher-affinity matured cells are then selected to enter the pool of

memory cells. The antibody is not only diversified through a hypermutation process

but mechanisms whereby rare B-cells with high affinity mutant receptors can be selected

 37

to dominate the immune response (donor of B-cell). Due to the random nature of the

somatic mutation process, a large proportion of mutating genes become non-functional or

possibly develop harmful anti-self specificities which attack our own body cells. On the

contrary, those cells with low affinity receptors, or the self-reaction cells, must be

efficiently eliminated. In terms of affinities, the immune system self-regulates the

production of antibodies and diverse antibodies.

3.5 Antibody Diversity

The number of different genes for V-region in the germ line constitutes the baseline

from which antibody is derived and represents the minimum number of different

antibodies that could be produced. How B cells can develop a vast antibody of antigenic

specificities. This explained one of the key features of the immune response:

diversity—the ability to respond to many different epitopes, even if they had not been

previously encountered. Current estimates show that although the human genome

contain about 105 genes, it is able to produce antibody repertoire that can recognize at

least 1016 antigens. The enormous diversity of the antibody developed by the immune

system is the key to its antigen recognition capabilities. Three major categories are

reported to increase the diversity of antibodies: i) combinatorial diversity via multiple

copies of V, D, and J gene fragments encoded in the germ-line DNA libraries, and

 38

somatic recombination inaccuracy [Roitt and Brostoff, 1998]; ii) junctional diversity via

small variations in the precise point of juncture of gene fragments and small insertions of

nucleotides at juncture sites [Manser et al., 1987]; iii) mutational diversity via somatic

mutation such as point mutation, short deletions and repertoire shift (gene conversion)

which can occur within assembled antibody genes to further expand antibody diversity

[de Castro and Von Zuben, 1999].

3.6 Summary

The immune system is a remarkable natural defense mechanism. It exhibits

characteristics such as i) Specificity: the ability to discriminate among different antigenic

epitopes, and to respond only to those that necessitate a response rather than making a

random response. ii) Learning and Memory: the ability to recall previous contact with a

particular antigen, such that subsequent exposure leads to a more rapid and more effective

immune response. iii) Discrimination between self and non-self: the ability to response

to those antigens that are foreign/non-self and to prevent responses to those antigens that

are part of own body/self. For these reasons, and many others, the immune system can

be viewed as a mechanism of vast potential for inspiration in variety of domains including

pattern recognition, optimization, anomaly detection, machine learning, control system,

scheduling, fault diagnosis, nonlinear system identification, robotics, and so on.

 39

CHAPTER 4

IMMUNE ALGORITHM

4.1 Introduction

 (4.2) (ikik fAbAg x≡

 In this dissertation, a novel scheme – Immune Algorithm (IA) based on emulating a

biological immune system is developed to solve the optimization problems. Analogous

to the biological immune system, the proposed immune algorithm has the capability of

seeking Pareto-optimal solutions while maintaining a high-level of diversity in the search

space. Corresponding to the optimization problem, the antigens () and antibodies

() serve as objectives () and associated solutions () in a computational model,

respectively, and are expressed as follows:

kAg

iAb kf ix

()

objkk

AbiNii

NkfAg

NixxxAb
Ab

,...,2,1

,,2,1 ,,, 21

=≡

⋅⋅⋅=⋅⋅⋅=≡ x
 (4.1)

)

where represents the ith antibody of the whole population, or the ith solution ()

composed of a set of design variables (

iAb ix

AbNx
AbNxxx ,,, 21 ⋅⋅⋅), represents the kth

antigenic epitope, or kth objective function (); indicates the affinity value

between an ith antibody and an kth antigenic epitope, or equivalently the kth objective

value of the ith solution (). is the number of antibodies/solutions, whereas

 is the number of antigens/objectives. Fig. 5 illustrates the relative scheme of

kAg

kf ikAbAg

(ix)kf AbN

objN

 40

antibody/solution (/) and antigen/objective () defined in this

algorithm. The antibodies evolve continuously to search for the fittest ones, i.e. the most

matched with specific antigens.

iAb ix)(/ ikik fAbAg x

Besides, similar to the evolutionary algorithms especially the genetic algorithm, the

proposed IA starts from a pre-defined number of random strings to represent the

antibodies of population and proceed repeatedly from generation to generation through

four basic immune operators: clone, donor selection, antibody rearrangement, and

antibody diversity. In addition, each antibody is classified into several different kind of

gene such as light-chain and heavy-chain gene mimicking the structure of antibody in the

biological immune system. The clone operator proliferates the stimulated antibodies

which presented higher combinatorial intensity with antigen in whole antibody population

with hypermutation. The hypermutation event only occurred on the gene of light chine

(usually defined as lower bits of binary code if binary encoding system is used) in order

to prevent excessive discrepancies. After the clonal proliferation, the proliferated

antibodies which increasing its combinatorial intensity are defined as mature antibodies

and become plasma antibodies and memory antibodies both with identical gene structure,

while proliferated antibodies which decreasing its combinatorial intensity are defined as

immature antibodies and then neglected. The plasma antibodies will combine with

original antibody population and wait for donor selection. The memory antibodies

 41

preserve and update in the memory pool. Besides, a part of memory antibodies will be

induced to the germ-line DNA library for offering its gene fragment to construct new

antibody. The donor selection operator is the source of exploitation/convergence. By

using of tournament selection method, the antibodies which presented higher

combinatorial intensity with antigen will be selected as donor for constructing the

germ-line DNA library. Hence, the members of germ-line DNA library are composed of

the memory and donor antibodies. The antibody rearrangement operator rearranges the

antibody fragment randomly chosen from germ-line DNA library for producing new

antibody. The purpose of antibody diversity operator is to introduce genetic diversity of

antibody into the population thorough somatic point mutation, somatic recombination,

gene conversion, gene inversion, gene shift, and nucleotide addition inspired from

biological immune system.

Therefore, according to different optimization problem, the antibody can be encoded

by one-dimension bit-code string (e.g., test functions and truss-structure sizing

multi-objective optimization in chapter 5), two-dimension bit-code string/matrix (e.g.,

structural topology multi-modal optimization in chapter 6), or not bit-code string (e.g.,

job- shop scheduling optimization in chapter 7). Once the antibody has been defined,

the combinatorial intensity between antibody and antigen is then calculated. In the

scenario of multi-objective, the combinatorial intensity between antibody and antigens is

 42

represented by the rank value. While in the scenario of multi-modally optimization, the

combinatorial intensity is composed of the objective function value and similarity value

among antibodies. However, the combinatorial intensity is replaced by objective

function value directly when consider the single-objective optimization. The cytokine

value of the antibody is treated as the penalty term for constraint violation if considering

the constrained optimization problem. Next, several antibodies which present higher

combinatorial intensity (i.e., non-dominated antibodies in the multi-objective

optimization or the best antibody in the single-objective optimization) will move to

germinal center for clonal proliferation (or so-called clonal selection) for locally

improving their combinatorial intensity. Hence, the function of clonal proliferation can

be regarded as the effect of local search. After clone process, the matured antibody(s)

which combinatorial intensity better than un-proliferated antibody(s) note only return to

population (plasma antibodies) for becoming the donor antibodies by tournament

selection method, but move to memory pool as the memory antibodies for speeding up

the optimal search. For producing new antibodies, different from genetic algorithm

which crossover two individuals the antibody is rearranged by using gene fragments

chosen randomly from the corresponding gene libraries stored in the germ-line DNA

library. However, the germ-line DNA library is constructed by the donor antibodies

which express higher intensity with antigen(s) and the memory antibodies. Finally,

 43

several diversification mechanisms (e.g. somatic point mutation, somatic recombination,

gene conversion, gene inversion, gene shift, and nucleotide addition) inspired by

biological immune system are employed in order to match a large variety of antigens and

prevent premature. Noted that these mechanisms are randomly adopted in the antibody

diversification process.

The corresponding biological immune system, proposed immune algorithm (IA) and

genetic algorithms (GAs) terminologies are summarized in Table 1. In the rest of this

chapter we will describe detailed the algorithm procedure represented by the flowchart in

Fig. 4.

 44

Table 1 Corresponding terminology of biological immune system, proposed immune

algorithm (IA), and genetic algorithms (GAs)

Biological immune system IA GAs

Antigen Objective ())(if x Objective

Antibodies Antibodies/solutions () ix Chromosomes/solutions

Antibody structure Antibody length (bit-string) Chromosome length

Number of antibody Antibody size Population size

Affinities between antigen and antibodies Affinities/Objective values ikAbAg Fitness values

Affinities between antibodies Similarity between solutions ijAbAb Distance between solutions

Avidity between antigens and antibodies Avidity iav None

Idiotype value between antibodies Similarity of solutions iS Niche/sharing

Hyper-mutation Mutation with higher mutation rate Mutation

Plasma antibodies (in clonal proliferation) Improved local search None

Memory antibodies Pareto-optimal set None

Germ-line DNA fragment Schemata None

Gene fragment rearrangement
Binary-code segment

recombination

Parental gene

recombination/crossover

Antibody diversification Six diversification schemes Mutation operator

None None Crossover

Cytokine Constraint conditions handling Penalty

 45

Initial antibody population
& antibody representation

Calculating
combinatorial intensityGerminal Center

Clonal proliferation and Light
chain gene hypermutation

Stimulated antibodies

Immature antibody Mature antibody

Cell apoptosis Antibody
memory pool

dominated antibodies
(decreased affinity)

non-dominated antibodies
(increased affinity)

Cell apoptosis

bad memory

non-dominated rank 1 antibodies (MOOPs)
or the best antibody (SOOPs)

memory antibodies

plasma antibodies

Calculate avidity value

Germ-line DNA library
construction

induced memory
antibodies

Gene fragment
rearrangement

Antibody diversification

New antibody population

Stop?

End evolution

memory update

dominated antibodies

yes
no

Donor selection
Calculating

combinatorial intensity

MOOPs

SOOPs

Fig. 4 Immune algorithm flowchart

4.2 Major Steps of Immune Algorithm

4.2.1 [Step 1] Establishing initial antibody population

Similar to evolutionary algorithms, the initial antibody population utilizing a

pre-defined number of random string is generated randomly. For a binary-encoded

antibody, each variable () in an antibody encoded by a pre-defined number of bits is

separated into light-chain genes and heavy-chain genes mimicking the structure of

antibody in biological immune system as depicted in the top figure of Fig. 5. The gene

length or gene amount of each chain is determined by the user-defined light/heavy

ix

 46

chain-length ratio. Noted that the properties of antibody such as encoding method (e.g.

binary-encoded or not binary-encoded, and one-dimensional binary string or

two-dimensional binary string), defining of light-chain and heavy-chain gene, and/or

classification of genes (e.g. variable gene and constant gene) should be revised for

applying to various optimization problems.

con2

connc

Antigen = { }obj1 obj2 objno, , ,

obji=fi (Antibody)

epitopesAntigen

obj1
obj2 objno

con1
con2

connc

heavy chains light chains

0 100 00 011 111 10 0

xi

0 1 11 0 1 1 01 0 1 000 1 01 1 0 0
xix1

x2 xNAb

Antibody ={ }xix1 x2, , , , xN, Ab

receptor

B-cell1
B-cell2 B-cellno

T-cell

T-cell

T-cell

APCs

con1

interleukin

Fig. 5 Antibody-antigen representation

4.2.2 [Step 2] Calculating combinatorial intensity

In the proposed immune algorithm, the combinatorial intensity between ith antibody

and antigens is represented by the rank values for the multi-objective optimization

problems (MOOPs) and by the affinity/objective values () for single-objective

ir

ikAbAg

 47

optimization problems (SOOPs), expressed as:

()

ikik

objAbikiii

AbAgaffinity

NkNiaffinityaffinityaffinityrankr

=

==⋅⋅⋅= ,...,2,1 ,,...,2,1 ,,,, 21
 (4.3)

where indicates the normalized affinity/objective values (ikaffinity). Note that

normalization values ikAbAg are utilized to prevent objective values from being

numerically dominant in the optimization process. Besides, for used in the constrained

optimization problems, the combinatorial intensity between ith antibody and antigens is

replaced by the values ir , and expressed as:

ikAbAg

iii CKrr += (4.4)

where ir is defined as the rank values () added by constraint violation values (CK).

However, the cytokine value (CK) of the antibody is treated as the penalty term for

constraint violation. Resembling the biological immune system, the cytokine can either

stimulate or suppress the promotion of antibodies dependent on whether the antigen is

non-self or self (reward feasible or penalize infeasible solutions). Computation of the

cytokine is expressed as follows:

ir i

Ab

N

j
j

N

j
ji NicountamountCK

CC

,,2,1 ,
11

⋅⋅⋅=×= ∑∑
==

 (4.5)

and






>=
else

ggif
g
g

amount aj
a

j

j

0



 >

=
else

ggif aj
j 0

1count

where represents the cytokine value for ith antibody; is the total number of iCK CN

 48

equality and inequality constraint conditions; amount and correspond to the

normalized values of the summation of jth antibody violated amount and total number of

the jth antibody violated constraint condition, respectively; denotes the equality

and/or inequality constraint values whereas indicates the allowable constraint value.

Note that the larger the cytokine value the higher degree of constraint violation.

Obviously, the antibodies will to be well received for evolution if the cytokine values are

equal to zero. Consequently, non-dominated (i.e. first rank) antibodies in the MOOPs or

the best antibody in the SOOPs will thus be selected into the germinal center for clonal

proliferation, with the remaining dominated antibodies proceeding to Step 4 to calculate

their avidity values (MOOPs only) or to Step 4 to wait for donor selection (SOOPs).

j jcount

jg

ag

4.2.3 [Step 3] Clonal proliferation

In biological immune systems, only antibodies stimulated by antigens enter the

germinal center for clonal proliferation. In the proposed immune algorithm, stimulated

antibodies – non-dominated antibodies (MOOPs) or the best antibody (SOOPs)

determined in [Step 2] are chosen for hypermutation during the clonal proliferation

process, with a user-defined hypermutation rate and proliferation number (Fig. 4). To

prevent excessive discrepancies, hypermutation only takes place with lower bits of binary

code - the equivalent of light chains. After the hypermutation process, mature

 49

antibodies (i.e., non-dominated or the best proliferated antibody(s)) that have a greater

combinatorial intensity than un-proliferated antibody(s) are differentiated into plasma

antibodies and memory antibodies preserved and updated in the memory pool. Noted

that, both plasma and memory antibody have identical gene structure i.e., the genes of

plasma antibody(s) is the same with the genes of memory antibody(s). Further, the

resulting bad memory antibodies and immature proliferated antibodies are neglected as

the immature cell apoptosis process in biological immune systems. The surviving

mature antibodies – plasma antibodies together with the dominated antibodies from

antibody population derived from [Step 2] will undergo the next step to calculate their

avidity values (MOOPs) or go to [Step 5] for donor antibody selection (SOOPs).

Moreover part of the non-dominated antibodies in the memory pool would be re-induced

to the germ-line DNA library according to the user-defined inducing ratio.

In this step, clonal proliferation is equivalent to the local search effect in

optimization process for finding non-dominated solutions. Obviously, the larger number

of proliferations is the wider space searches with trade-off of time consuming. In

addition, inducing memory antibodies (global non-dominated solutions) to the germ-line

DNA library will increase the exploitation effect.

 50

4.2.4 [Step 4] Calculating avidity

, (4.7)

 In biological immune systems, affinity refers to the binding strength between a

single antigenic determinants (epitope) and an individual antibody-combining site

(paratope). Avidity refers to the overall strength of binding between multivalent

antigens and antibodies. However, avidity is more than a simple sum of individual

affinities. In this dissertation, avidity value () is the binding of affinities between

antigens and antibodies as well as between antibodies only for multi-objective

optimization problems. It is computed as the inverse of the combinatorial intensity (rank

value) between ith antibody and all antigens multiplied by its similarity value ()

with other antibodies – in other words,

iav

ir iS

ii
i Sr

av
⋅

=
1 (4.6)

where, representing the similarity of an ith antibody with other antibodies, is

expressed as

iS

AbAb
Ab

N

j
ij

i NjNi
N

count
S

Ab

, ,2 ,1, , ,2 ,1 ,

1 ⋅⋅⋅=⋅⋅⋅==
∑

=

and ,
,0

 ,1



 ≥

=
else

AbAbif
count Abij

ij

δ

)1/(1 ijij dAbAb +=

where Abδ is a user-defined threshold value which illustrates the allowable difference

between antibodies, is the affinity value between the ith and jth antibodies, and

is the Euclidean distance between the ith and jth antibodies in objective space. Noted

ijAbAb

ijd

 51

that the larger the Euclidean distance , the larger the difference between ith and jth

antibodies. Since, and when = 1 (i.e. 0

ijd

10 ≤≤ ijAbAb ijAbAb =ijd), the ith antibody

is identical to the jth antibody.

i

iS

 Higher avidity value means that antibody has higher activation with non-self antigen

and lower similarity with the other antibodies. The higher the avidity value, the higher

probability is selected to germ-line DNA library as the donor antibodies for gene

fragment rearrangement. Besides, corresponds to the convergence of solutions to

the Pareto front and corresponds to the diversity among obtained non-dominated

solutions. Hence, the algorithm prefers low rank (i.e. high affinity) and low similarity

solutions (i.e. diverse antibodies).

r

4.2.5 [Step 5] Donor antibodies selection

Similar to the building of germ-line DNA libraries in an immune system, the

proposed immune algorithm uses a tournament selection method to select donor

antibodies exhibiting higher avidity values (MOOPs) or affinity values (SOOPs) to

assemble germ-line DNA libraries. Some antibodies (according to the predefined

tournament size) are chosen randomly for competition and the winner is survived and

subsequently turns into a donor antibody.

 52

4.2.6 [Step 6] Germ-line DNA libraries construction

As explained in Chapter 3, the genetic material required to produce antibody

molecules is stored in germ-line DNA libraries, each one containing a fragment of an

antibody gene. In the proposed immune algorithm, the germ-line DNA library

components include donor antibodies derived from Step 5 and part of memory antibodies

induced from memory pool, at an inducing ratio defined by the user.

4.2.7 [Step 7] Gene fragment rearrangement

In a biological immune system, antibodies are produced through a random

rearrangement of fragments selected from the germ-line DNA library. As to the

proposed immune algorithm, antibodies are established using gene fragments randomly

selected from corresponding light- and heavy-chain libraries of each design variable.

The gene fragment rearrangement, synthesizes the antibodies by different gene fragments

encoded in the germ-line DNA libraries which were composed of the fragments from the

donor and memory antibodies. Note that the gene fragment rearrangement operator

employed in proposed algorithm is comparable with the crossover utilized in genetic

algorithms. Instead of crossing over two individuals in GA, proposed algorithm

recombine building blocks (i.e. fragments from the fittest antibodies) directly. This

suggests the superior capability of proposed algorithm in discovering accurate and diverse

 53

non-dominated solutions rapidly. Therefore several diversification schemes are required

to prevent the premature effect due to schemata recombination.

4.2.8 [Step 8] Antibody diversification mechanisms

Matching a large variety of antigens requires an equal level of diversity in antibody

type. In the proposed immune algorithm, this was achieved by mimicking the following

six mechanisms found in biological immune systems. All the schemes described below

have the exploration effect in optimization search processes. It should be noted that the

six diversification mechanisms described in this step are adopted randomly in the

antibody diversity process.

1. Somatic point mutation. In terms of binary string representation, this means

reversing a bit from 1 to 0 or vice versa according to a pre-defined diversity

probability. The result is a slight alteration of an antibody gene for local search

purposes.

2. Somatic recombination. As shown in Fig. 6, two light chains in the variables

and adopted for recombination are randomly selected, after which a partial

crossover between them was performed according to a randomly diversity

probability.

ix

kx

 54

0 1 11 0 0 1 10 1 1 101 0 01 1 0 0
xkx1 xNAbxi

0 10 1 1 0 1 0 1 1 1

heavy chains light chains

1 00 0 1 0 0 1 0 0 1

heavy chains light chains

0 10 1 1 0 1 1 0 0 1

heavy chains light chains

1 00 0 1 0 0 0 1 1 1

heavy chains light chains

recombination

Abi

xi xk

Fig. 6 Somatic recombination illustration

3. Gene conversion, gene inversion, and gene shift. Following predefined diversity

probability, gene conversion, gene inversion, and gene shift were completed using a

randomly picked heavy chains antibody variable (see Fig. 7 - 9). Note that the

starting and ending sites were randomly generated, and the number of bit-shift genes

was predefined. This type of diversification scheme results in a global search effect.

In gene conversion (depicted in Fig. 7), the gene segment between the starting and

ending sites of a randomly picked heavy chain was forced to converse (mutate) their

genes (bits) from 1 to 0 or vice versa. As to the gene inversion operator shown in

Fig. 8, randomly chosen gene segment inverses sequentially its gene positions from

front to rear or from rear to front. Fig. 9 illustrates gene shift operation.

Following the predefined number of gene shift, the selected gene segment right-shift

their gene locations with excessive bits being reallocated from rear to front.

 55

4. Nucleotide addition. As demonstrated in Figure 10, nucleotide insertion occurs in

either light or heavy chains, depending on the variable. Several bits of genetic

material (representing the nucleotide) were randomly inserted into chains that were

reassembled so as to discard excess bits. The resulting nucleotide is a randomly

created binary string with a pre-defined number of nucleotide genes. Increasing the

bit number will diversify the antibody population further.

0 1 11 0 1 1 01 0 1 100 1 01 1 0 0
xix1 xNAbx2

Abi

heavy chains light chains

0 1 1 00 0 1 1 1 0 0 1 001 1 1 0 10 1 1 1

starting site ending site

0 11 1 0 0 0 1 1 0 001 1 1 0 10 1 1 10 1

gene conversion

Fig. 7 Gene conversion illustration

0 1 11 0 1 1 01 0 0 101 1 01 1 0 0
xix1 xNAbx2

Abi

heavy chains light chains

1 1 0 0 0 1 1 1 0 0 1 001 1 1 0 10 1 1 1

starting site ending site

1

1 00 1 1 1 0 0 1 0 001 1 1 0 10 1 1 11 1

gene inversion

Fig. 8 Gene inversion illustration

 56

0 1 11 0 1 1 01 0 0 101 1 01 1 0 0
xix1 xNAbx2

Abi

heavy chains light chains

1 1 1 00 0 1 1 1 0 0 1 001 1 1 0 10 1 1 1

starting site ending site

0 11 0 0 0 1 1 1 0 001 1 1 0 10 1 1 11 1

gene shift

Fig. 9 Gene shift illustration

Fig. 10 Nucleotide addition illustration

0 1 11 0
x1

01 1 0 0
xNAb

1 1 01 0
xk

Abi
0 101 1

xi

inserting site

heavy chain light chain

1 1 1 00 0 1 1 1 0 0 1 001 1 1 0 10 1 1 1

001 1 1 0 10 1 1 11 1

1 00 0 1 1 10 11

Nucleotides
1 00 0 1 1 10 11

1 1 1 0 001 1

heavy chain

0 1 0 11 0 1 0 0

light chain

inserting site

0 1010 11 1 1 0 001 1

0 1 001

Nucleotides
1 0 0

(3 bits) (2 bits)

0 0 1
discarded bits

1

discarded bits

4.2.9 [Step 9] Stopping criterion

The process stops when the iteration number equals a pre-defined generation. In

the final stage, the feasible non-dominated optimal solutions are placed in the memory

pool, otherwise the population returns to [Step 2] for another round.

 57

 All parameters used in the proposed immune are tabulated and described in the Table

2.

Table 2 Description of immune algorithm parameters

Parameter name Description
Population size The size of antibody population.

Light/heavy chain-length ratio

The proportion of light-chain genes to heavy-chain genes.
Take the design variable encoded by 10-binary bit for
example, if the ratio is 4/6, it means that there are 4
light-chain genes and 6 heavy-chain genes in a design
variable. Note that the classification of light- and
heavy-chain gene is depended on the applied problems.

Proliferation number

The number of simulated antibody(s) (derived for Step 2)
proliferation. The proliferated antibody(s) accompanies
hypermutation. The number of proliferation can also be
regarded as the frequency of local search. More number of
proliferations, more time needed for computation.

Hypermutation rate

The hypermutation occurred with antibody proliferations
and it is checked with the probability of hypermutation —
the hypermutation rate. During the process of antibody
proliferation, a random number is generated for every
light-chain gene in that antibody. If this random number is
less than the hypermutation rate, the selected gene has to
undergo hypermutation. Noted that this rate usually large
than normal mutation rate, and more number of
light-chain genes need more time for proliferations.

Inducing ratio

This parameter defines the proportion of how many
memory antibodies move to the germ-line DNA library.
Noted that more induced memory antibodies may speed
up the convergence of optimal search.

Diversity probability

Similar to the mutation rate in the genetic algorithms this
parameter is used in the antibody diversification (Step 8)
for genetic diversity. A random number is generated for
light- or heavy- chain genes in the antibody. If this random
number is less than the diversity probability, the selected
gene(s) has to undergo mutation.

 58

Number of gene shift

This parameter is used in the gene shift mentioned in the
Step 8. According to this number, the selected gene
fragment right-shift their gene locus with excessive genes
being reallocated from rear to front.

Number of nucleotide genes

This parameter is used in the nucleotide addition
mentioned in the Step 8. These randomly created genes
represented the nucleotide are inserted in the position
generated randomly. Also the excessive genes will be
discarded.

Generation
The criterion for stopping the evolution of immune
algorithm

4.3 Summary

The procedures mentioned in this chapter describe solving the single-objective and

multi-objective optimization problems by employing proposed immune algorithm.

The proposed immune algorithm will first apply to the multi-objective test function

optimization and truss-structure sizing optimization problems considering both

constrained and unconstrained conditions expressed in the CHAPTER 5. In this

multi-objective immune algorithm (or MOIA), the antibody is represented by

one-dimensional binary-encoded string. For different optimization problems, the

single-objective with multi-modal structural topology optimization is the secondly

application and described in CHAPTER 6. In this multi-modal immune algorithm (or

MMIA), the antibody is represented by two-dimensional binary-encoded string (or

matrix). The third application is to use proposed immune algorithm to single-objective

job-shop scheduling optimization problem and shown in the CHAPTER 7. For

 59

job-shop scheduling optimization, the antibody is represented by not-bit string (integer

encoding). The detail procedures for different optimizations are described in

corresponding chapters.

 60

CHAPTER 5

MULTI-OBJECTIVE OPTIMIZATION

5.1 Introduction

 In this chapter, the proposed Immune algorithm will firstly apply to the numerical

test function multi-objective optimization considering both unconstrained and constrained

problems and two well-known benchmark of truss sizing optimization problems (i.e.,

10-bar plane truss with continuous design variables and 25-bar space truss with discrete

design variables) considering constraints. The proposed algorithm which handling

unconstrained optimizations termed multi-objective immune algorithm or MOIA, while

termed constrained MOIA or C-MOIA if it solves the constrained optimizations. Noted

that antibodies in these applications are all represented by one–dimensional

binary-encoded string. In the multi-objective test function optimizations, six test

functions without constraint and six constrained test functions suggested by Deb et al.

(1999; 2001) were employed to validate the proposed algorithm, each test functions have

two objectives which needed to be minimized simultaneously for finding their

Pareto-optimal front or Pareto-optimal solutions. For the truss-structure sizing

optimization, the goal is to minimize the volume (or weight) and vertical displacement of

the structure simultaneously using the cross-sectional areas of the truss members as

 61

design variables with pre-defined allowable on maximum stresses of tension and

compression. Such objectives are conflicting in nature since reducing the displacement

will increase the cross-sectional area, consequently increasing the volume of the structure.

Meanwhile, a comparison is drawn between our implementation of the C-MOIA and

some GA-based methods for 10-bar [Fadel and Li, 2002] and 25-bar [Erbatur, F. et al.,

2000; Ponterosso and Fox, 1999; Wu and Chow, 1995a, 1995b; Rajeev, 1992] cases.

Besides, because of the unconstrained problem, the cytokine value () in calculating

combinatorial intensity (described in CHAPTER 4, subsection 4.2.2) will be neglected.

Hence, the antibody-to-antigen combinatorial intensity between constrained and

unconstrained optimizations are expressed as:

CK

noptimiatio nedunconstrai if ,

noptimiatio dconstraine if ,

ikik

iikik

AbAgaffinity

CKAbAgaffinity

=

+=
 (5.1)

5.2 Problems Description

5.2.1 Unconstrained test functions

 Six minimization test functions with different shape of Pareto-optimal front (e.g.

convex, non-convex, discrete, and so on) described by Deb (1999) were used to evaluate

the performance of the MOIA, and shown in the following:

1. Test function (with convex Pareto-optimal front)))(),(()(xxx ffF = 211

111)(xxf =

 62

)),...,(),((),...,()(xxgxfhxxgxf 21112 nn ⋅=

and ∑
=

⋅
−

+=
n

i
in x

n
xxg

2
2 1

91),..,(

(5.2)

gfgfh 1),(−= 11

where ,),...,(1 nxx=x 30=n and]1,0[∈ix . The Pareto-optimal front is

formed with . 1=g

 where =x , and 30=n]1,0[∈ix . The Pareto-optimal front is formed

with . 1=g

2. Test function (with non-convex Pareto-optimal front)))(),(()(xxx ffF = 212

111

21112 nn

)(xxf =

)),...,(),((),...,()(xxgxfhxxgxf ⋅=

and ∑
=

⋅
−

+=
n

i
in x

n
xxg

2
2 1

91),..,((5.3)

2)/(1),(gfgfh −= 11

),...,(1 nxx

3. Test function (with several non-continuous convex parts)))(),(()(xxx ffF = 213

111

21112 nn

)(xxf =

)),...,(),((),...,()(xxgxfhxxgxf ⋅=

and ∑
=

⋅
−

+=
n

i
in x

n
xxg

2
2 1

91),..,((5.4)

 63

)10sin()/(/1),(fgfgfgfh π−−= 1111

214

111

21112 nn

where and . The Pareto-optimal front is formed with . 30=n]1,0[∈ix 1=g

4. Test function (multimodality)))(),(()(xxx ffF =

)(xxf =

)),...,(),((),...,()(xxgxfhxxgxf ⋅=

and (5.5) ∑
=

−+−+=
n

i
iin xxnxxg

2

2
2))4cos(10()1(101),..,(π

gfgfh 1),(−= 11

where , and 10=n]1,0[1 ∈x]5,5[,...,2 −∈nxx . The global Pareto-optimal front

is formed with and the next-best local Pareto-optimal front with . 1=g 25.1=g

5. Test function (binary string code and deceptive problem)))(),(()(xxx ffF = 215

111

21112 nn

)(1)(xuxf +=

)),...,(),((),...,()(xxgxfhxxgxf ⋅=

and (5.6) ∑
=

=
n

i
in xuvxxg

2
2))((),..,(

11 /1),(fgfh =





=
<+

=
5)(1
5)()(2

))((
i

ii
i xuif

xuifxu
xuv

where , , , and gives the number of 1s in the

bit vector. The global Pareto-optimal front is formed with

11=n 30
1 }1,0{∈x 5

2 }1,0{,..., ∈nxx)(ixu

10=g , and the next-best

 64

2)/(1),(gfgfh −= 11

deceptive Pareto-optimal front is represented by the solutions for which . Both

global and local Pareto-optimal fronts are convex.

11=g

1=g

6. Test function (non-uniformity)))(),(()(xxx ffF = 216

1111

21112 nn

)6(sin)4exp(1)(6 xxxf π−−=

)),...,(),((),...,()(xxgxfhxxgxf ⋅=

and (5.7) 25.0

2
2))1/()((91),..,(∑

=

−+=
n

i
in nxxxg

where and . The Pareto-optimal front is formed with . 10=n]1,0[∈ix

5.2.2 Constrained test functions

Six constrained test functions CTP2-CTP7 suggested by Deb et al. (2001) were

employed in this study to assess the performance of the constrained multi-objective

immune algorithm, or named C-MOIA. In addition, these test functions were designed

to cause two different kinds of tunable difficulties in a constrained multi-objective

optimization algorithm: i) the difficulty in the vicinity of the Pareto-optimal front

(CTP2-CTP5) and ii) the difficulty in the entire search space (CTP6-CTP7). The test

functions are shown in the following:

 65

()














+−⋅

≥−−≡









−=

=

dcfefba

fefc
g
fgf

xf

))()cos())()((sin(sin(

)()sin()()cos()(subject to
)(
)(1)()(Minimize

)(Minimize

12

12

1
2

11

xx

xxx
x
xxx

x

θθπ

θθ
 (5.8)

 The decision variable x1 is restricted in [0,1] and the bounds of the other variables

depend on the chosen g(x) function. The constraint function c(x) has six adjustable

parameters θ, a, b, c, d, and e. In all of the above problems, additional difficulty can be

introduced by using a nonlinear and difficult function g(x) which causes difficulty in

progressing towards the Pareto-optimal front. Identical parameters and g(x) function

applied by Deb et al. as Table 3 illustrated were employed in this paper for comparison.

Table 3 Parameters and function g(x) utilized in constrained test functions

Parameters
Test function

θ a b c d e
g(x)

CTP2 -0.2π 0.2 10 1 6 1 21 x+
CTP3 -0.2π 0.1 10 1 0.5 1 21 x+
CTP4 -0.2π 0.75 10 1 0.5 1 21 x+
CTP5 -0.2π 0.75 10 2 0.5 1 21 x+
CTP6 0.1π 40 0.5 1 2 -2)2cos(1011 2

2
2 xx π−+

CTP7 -0.05π 40 5 1 6 0 21 x+

The periodic nature of the constraint boundary makes the Pareto-optimal have a

number of discontinuous regions. Increasing the parameter increases the number of

 66

disconnected regions and thus the difficulty in finding feasible solutions. Parameter a

has an effect of making the transition from continuous to discontinuous feasible region far

away from the Pareto-optimal region. In addition, the discrete solutions can be scattered

non-uniformly by using c ≠ 1. The parameter θ controls the slope of the Pareto-optimal

regions, whereas the parameter e shifts the constraints up or down in the objective space.

Moreover, small value of d may reduce each disconnected regions exist only one

Pareto-optimal solution.

5.2.3 10-bar plane truss with continuous design variables

 A 10-bar plane truss with the node and element numbering illustrated in Fig. 11 is

adopted to evaluate the performance of the proposed C-MOIA approach. The objective

is to minimize the volume of the structure and the vertical displacement at node 6

simultaneously using the cross-sectional areas of the ten truss numbers as design variables

with pre-defined allowable on maximum (extension) and minimum (compression)

stresses. Such objectives are conflicting in nature since reducing the displacement will

increase the cross-sectional area, consequently increasing the volume of the structure.

The upper and lower boundaries of each truss element are 0.1 and 30 in2, respectively.

The location of external load is shown in Fig. 11 with P = 100,000 lb. Material

properties are taken as modulus of elasticity E= 1×104 ksi. Constraints on the truss limit

 67

the principal stress jσ in each element below the maximum allowable stress, aσ , of

 ksi. In this dissertation, normalized constraint function is expressed as following: 25±

10,...,1 0 1 =≤−≡ jg
a

j
j σ

σ
 (5.9)

Note that the cross-sectional areas are assumed to be continuous numbers in this case.

360" 360"
(1) (2)

(3) (4)

(5) (6)

(7)

(8)

(9)

(10)

1 2 3

4 5 6

P P

360"

X

Y

Fig. 11 10-bar plane truss structure

5.2.4 25-bar space truss with discrete design variables

The secondary truss-structure optimization considered is a 25-bar space truss with

discrete design variables, which has been frequently used to test numerous optimization

techniques [Michalewicz et al., 1996; Hasanc et al., 2001; Deb et al., 2000] as Fig. 12

shown. Again, the problem is to find the cross-sectional area of each truss group such

that the total structural weight and the vertical displacement at node 1 are minimized

 68

1 2

3 4

5
6

7
8

9
10

Y

X

Z
75"

75"

100"

100"

200"

200"

concurrently. In many design cases, structures are composed of prefabricated elements

available on the market. Thus, truss members are divided into eight groups, as tabulated

in Table 4, and be selected from the following discrete set D = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,

2.8, 3.0, 3.2, 3.4) (in2). In addition, the loading given in Table 5 is applied to the space

truss structure. Material properties are taken as modulus of elasticity E = 1×104 ksi and

weight density ρ = 0.1 lb/in3. Constraints on the truss limit principal stress jσ in each

element below the maximum allowable stress, σa, of ±40 ksi.

Fig. 12 25-bar space truss structure

 69

Table 4 Group members of the 25-bar space truss

Group number Members Length
1 1-2 75.0
2 1-4, 2-3, 1-5, 2-6 130.504
3 2-5, 2-4, 1-3, 1-6 106.80
4 3-6, 4-5 75.0
5 3-4, 5-6 75.0
6 3-10, 6-7, 4-9, 5-8 181.142
7 3-8, 4-7, 6-9, 5-10 181.142
8 3-7, 4-8, 5-9, 6-10 133.464

Table 5 Loading conditions of the 25-bar space truss

Node Fx (lbs) Fy (lbs) Fz (lbs)
1 1000 -10000 -10000
2 0 -10000 -10000
3 500 0 0
6 600 0 0

5.3 Performance Metrics

The two primary goals of multi-objective optimization are to i) find solutions as

close to Pareto-optimal front/solutions as possible, and ii) discover solutions in the

obtained non-dominated front that are as diverse as possible [Deb, 2001]. For the

purpose of comparing with other approaches, performance criteria that have been

suggested to evaluate the effectiveness of multi-objective optimization algorithms include

the following five metrics: generational distance [Schott, 1995], spacing [Deb et al.,

 70

2000], spread [Zitzler, 1999], set convergence [Zitzler et al., 2000], and the retrieved

extreme values of the Pareto front.

1. The generational distance (GD) metric calculates the average distance between

obtained solutions and the true Pareto-optimal front. It is expressed as

∑

∑

=
=

=

−=

=

M

m

j
m

i
m

N

ji

n

i
i

ffd

ndGD

1

2)()(

1

1

2

)(min

 (5.10)

where is the number of non-dominated solutions, n N is the number of

Pareto-optimal solutions, m is the number of objective functions, is the

Euclidean distance (in terms of objective space) between solution i and the

closest Pareto solution, and is the mth objective function value of the jth

member of Pareto solutions. A smaller value indicates better algorithm

performance.

id

n∈

)(j
mf

GD

2. Schott [61] has proposed using a spacing (S) metric which calculates a relative

distance between consecutive solutions in the obtained non-dominated set. It is

expressed as

∑
=

−=
n

i
i dd

n
S

1

2)(1 , (5.11)

where the distance measure is the minimum value of the sum of the absolute

difference in objective function values between the ith solution and any other

id

)(ifm

 71

solution in the derived non-dominated set.)(j
mf

∑
=≠∧∈

−=
M

m

j
m

i
mijnji ffd

1

)()(min (5.12)

where d is the mean value of the above distance measure ∑
=

=
n

i
i nd

1
/d . This

metric measures the standard deviation of different values. A small value

indicates uniform spacing between solutions.

id

3. The spread (SP) metric calculates a relative distance measure between neighboring

as well as between extreme solutions in a non-dominated set. It is expressed as

dnd

ddd
SP M

m

e
m

n

i
i

M

m

e
m

)1(
1

11

−+

−+
=

∑

∑∑

=

== (5.13)

where is the Euclidean distance between neighboring solutions, id d is the mean

value of the measures, and d is the distance between the extreme Pareto front

solutions and n as it corresponds to the mth objective function. An ideally

uniform distribution produces a metric value of zero; the smaller the value, the

more desirable the distributions.

id e
m

SP

4. The set convergence (C) metric calculates the proportion of solutions obtained

through algorithm B as they are weakly dominated by solutions obtained through

algorithm A, that is,

 72

B
AB

BAC
}:|{

),(
baab ≤∈∃∈

= (5.14)

All algorithm B-derived solutions are weakly subordinate to algorithm A-derived

solutions if . 1),(=BAC 0),(=BAC

)

 indicates an absence of such subordination.

Both and C are required for a performance comparison.) (B,(BAC , A

5. The extreme distance metric calculates the Euclidean distance between the

extremes of the derived non-dominated solutions and the actual Pareto solutions in

the objective space. It is expressed as follows,

)(EXT∆

[]NobjextextextXT ∆⋅⋅⋅∆∆=∆ ,,, 21E

 with ∑
=

−=∆
ObjN

i

i
k

i
kk fpext

1

2)()()(, objNk ,,2,1 ⋅⋅⋅= (5.15)

where is the ith extreme value of the derived kth non-dominated solutions

employing MOIA and is the associated ith extreme value of the kth actual

Pareto solutions, respectively.

)(i
kp

)(i
kf

0=∆ XTE means that the MOIA’s non-dominated

extremes are identical to the true objective extremes. A smaller ∆ value

indicates better algorithm performance.

XTE

 73

window of new antibody population

window of memory cell pool

Fig. 13 MOIA window simulation

Table 6 SPEA and MOIA parameters

Parameter setting SPEA MOIA
Generation 250 250
Population size 100 80
Bits per variable 30 30
External population size 20
Crossover rate 0.8
Mutation rate 0.01 0.05
Selection method Tournament Tournament
Niche Clustering algorithm Affinity between antibodies
Elitist strategy Yes No
Hypermutation rate 0.2
Light/heavy chain-length ratio 3/7
Proliferation number 6
Inducing ratio 0.1
Threshold value Abδ 0.9
Bit number in gene shift 2-bit
Bit number of nucleotide 2-bit

 74

5.4 Simulation Results and Discussions

This attempt at establishing a multi-objective optimization procedure produced the

MOIA and C-MOIA programs created with C++ programming tools and a graphical user

interface. The simulation window, setting parameters, and performance metrics are all

shown in Fig. 13.

5.4.1 Multi-objective test function optimization

Unconstrained test functions

 To evaluate the performance of the MOIA, author used several of Zitzler’s (website)

data sets with different optimization schemes (i.e., random search algorithms, MOGA,

NPGA, VEGA, NSGA, and SPEA) for comparison. Since the SPEA-derived [Zitzler et

al., 2000] results showed superior performance in terms of accuracy and diversity, author

will limit his discussion to those solutions. Following the procedure described by Zitzler,

the six unconstrained test functions were executed 30 times each; the SPEA and MOIA

parameters are shown in Table 6. For each test function, the 30 data sets were unified

prior to eliminating the dominated solutions. For equitable comparison, we reduce the

population size in Table 6 to 80 due to the clonal proliferation in the proposed immune

algorithm. According to the plots shown in Figure 14 through 19, the MOIA-derived

solutions were superior to the SPEA-derived solutions in terms of accuracy and diversity,

 75

with the single exception of test function F6. Performance metrics for both schemes are

presented as Table 7. The data in this table validates the quality of the MOIA-based

performance metrics Q, GD, S, and C; again, the only exceptions were metrics

associated with test function F6. Furthermore, the result C(MOIA,SPEA) = 0 for test

functions F1 through F5 shows that all MOIA-derived solutions were non-dominated

compared to the SPEA-derived solutions. In contrast, the result C(SPEA, MOIA) = 1

for test functions F1, F3, F4, and F5 shows that all of the SPEA-derived solutions were

weakly dominated by the MOIA-derived solutions. Both schemes were capable of

reaching a local Pareto front, but incapable of discovering a global Pareto front (Fig. 19).

Results from test function F6 indicate that the SPEA-derived solutions were more

accurate than those derived with MOIA (Fig. 19). Due to the small number of solutions,

test function F6 was repeated with a twice iteration of 500 generations (twice the number

used in the initial test) in order to more fully explore the MOIA’s potential. The results

of this second run indicate a significant improvement in performance (Fig. 20). The

performance metrics shown in Table 7 lend further support to these results.

XTE∆

 76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

Pareto optimal front

MOIA
SPEA

Fig 14 Simulation results for test function (convex) 1F

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
MOIA
SPEA

Pareto optimal front

Fig 15 Simulation results for test function (non-convex) 2F

 77

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

MOIA
SPEA

 Pareto
optimal
f

Fig 16 Simulation results for test function (discrete) 3F

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

MOIA
SPEA

local Pareto optimal front

global Pareto optimal front

Fig 17 Simulation results for test function (multimodal) 4F

 78

f1

f2

5 10 15 20 25 30
0

2

4

6

8

10

12

14

MOIA
SPEA

global Pareto
optimal front

local Pareto optimal front

1

Fig 18 Simulation results for test function (deceptive) 5F

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Pareto optimal front

1.1

MOIA
SPEA

Fig 19 Simulation results for test function with 250 generations (non-uniform) 6F

 79

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MOIA
SPEA

Pareto optimal front

Fig 20 Simulation results for test function with 500 generations (non-uniform) 6F

Table 7 Performance metrics for the six SPEA and MOIA test functions

Metrics Q GD S SP 1ext∆ 2ext∆ C(MOIA,SPEA) C(SPEA,MOIA)

MOIA 537 5.38e-4 0.0018 0.5085 0.0198 0.0074 0
1F

SPEA 204 3.10e-3 0.0043 0.6046 0.0509 0.0286 1
MOIA 574 5.95e-4 0.0016 0.5625 0.0190 0.0157 0 2F
SPEA 112 6.80e-3 0.0099 0.6305 0.0458 0.1139 0.991
MOIA 477 6.69e-4 0.0040 0.7785 0.0141 0.4285 0 3F
SPEA 202 3.60e-3 0.0048 0.7863 0.0594 0.4276 1
MOIA 293 0.0105 0.0051 1.1099 0.5051 0.0032 0 4F
SPEA 156 1.4320 0.0079 0.9011 2.2520 1.4566 1
MOIA 29 0.1313 1.2253 0.4654 3.0 2.0039 0 5F
SPEA 31 0.1639 1.2811 0.4813 4.0 0.1290 1
MOIA

(250 generations) 92 0.0156 0.0107 0.7659 0.1248 1.1727 0.630

SPEA 22 2.55e-21 0.0104 1.5822 0.0019 0.0 0

6F

MOIA
(500 generations) 142 6.18e-4 0.0056 1.3253 0.0017 0.0 0 0.4545

 80

Table 8 C-MOIA parameters used in constrained optimization

Parameter setting CTP2-CTP7
Iteration number 500
Population size 100
Number of variables 2
Bits per variable 10
Diversity probability 0.05
Hypermutation rate 0.07
Light/heavy chain-length ratio 3/7
Number of proliferation 6
Inducing ratio 0.2
Threshold value Abδ 0.9
Bit number in Gene shift 2-bit
Bit number of nucleotide 2-bit
Tournament size 5

Constrained test functions

 The associated user-defined parameters utilized in this constrained MOIA (C-MOIA)

are tabulated in Table 8, each with the same parameter setting. The setting of the first

four parameters (e.g. iteration number, population size, number of variables, and bits per

variables) was referenced to the Deb et al. (2001) for comparison. Figs. 21 and 22 show

the simulation results on test functions CTP2-CTP7, Fig. 23 and 24 show the results of

CTP2-CTP7 derived by NSGA-II reprinted from Deb et al. (2001). Fig. 21(a) and Fig.

21(b) show that C-MOIA is able to find all disconnected Pareto-optimal solutions on

CTP2 and capable of finding solution very close to the true Pareto-optimal solution in

each region on CTP3. Same as the results derived by Deb et al., problem CTP4 caused

 81

difficulty for C-MOIA to get near the true Pareto-optimal solutions as Fig. 21(c) depicted.

However, MOIA discovers more Pareto-optimal solutions and performs much better

compared to the results derived by Deb et al. utilizing NSGA-II. As to the

non-uniformity in spacing problem CTP5, it seems to be not a great difficult for C-MOIA

to get the solutions as Fig. 21(d) illustrated. Nevertheless, it should be noted that

NSGA-II could not converge to the Pareto-optimal solutions in CTP2-CTP5 when f1

approaches zero. On the contrary, it seems cause no difficulty for MOIA to converge to

the feasible Pareto solutions when f1 advances to zero.

 When the entire search space consists of infeasible patches parallel (CTP-6) or

perpendicular (CTP-7) to the Pareto-optimal front, C-MOIA is still able to converge and

close near to the feasible patches as Fig. 22 shown. Note that all feasible patches are

marked with an “F”. However, NSGA-II had the most difficulty in finding solutions

closer to the true Pareto-optimal front in CTP-7 as Deb et al. described. The illustrated

demonstrations CTP-2 to CTP-7 show that CMOIA performs better than NSGA-II in the

vicinity of Pareto-optimal front as well as the entire search space.

 82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

f1

f2

Pareto optimal region

C-MOIA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f1

f2

Pareto-optimal
 solution

C-MOIA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C-MOIA

Pareto-optimal solution

f1

f2

()a Simulation results on CTP2 ()b Simulation results on CTP3

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pareto-optimal
 solution

C-MOIA

()c Simulation results on CTP4 ()d Simulation results on CTP5

Fig. 21 Simulation results on CTP2-CTP5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1

f2

Pareto-optimal region

C-MOIAF

F

F

F

F
F

()b Simulation results on CTP7()a Simulation results on CTP6

f1

f2

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Pareto-optimal region
F

C-MOIA

F

F

F

Fig. 22 Simulation results on CTP6-CTP7

 83

(a) NSGA-II results on CTP2 (b) NSGA-II results on CTP3

(c) NSGA-II results on CTP4 (d) NSGA-II results on CTP5

Fig. 23 NSGA-II results on CTP2-CTP5 [This is a reprint from Deb et al. (2001)]

(a) NSGA-II results on CTP6 (b) NSGA-II results on CTP7

Fig. 24 NSGA-II results on CTP6-CTP7 [This is a reprint from Deb et al. (2001)]

 84

Table 9 CMOIA parameters in truss sizing optimization

Parameter setting 10-bar 25-bar
Iteration number 500 300
Population size 100 160
Number of variables 10 25
Bits per variable 10 5
Diversity probability 0.05 0.05
Hypermutation rate 0.07 0.07
Light/heavy chain-length ratio 4/6 3/2
Number of proliferation 6 5
Inducing ratio 0.2 0.2
Threshold value Abδ 0.05 0.05
Bit number in Gene shift 2-bit 2-bit
Bit number of nucleotide 2-bit 2-bit
Tournament size 5 8

5.4.2 Multi-objective truss-structure sizing optimization

The associated user-defined parameters utilized in two problems are tabulated in

Table 9. The setting of the first four parameters (e.g. iteration number, population size,

number of variables, and bits per variables) was referenced to the literatures for

comparison. Note that number of bits per variable for the 25-bar truss case is 5 due to

the 30 sizing variables discrete set. The results show that the light/heavy chain-length

ratio is the most important parameter and 4/6 is a moderate choice. However, the ratio

for 25-bar truss case is 3/2 because the bit number per variable is only 5. Obviously, the

associated number of clonal proliferation is depending on the bit length of light-chain.

More number of proliferation means more computation time required. Increasing

 85

diversity probability, hypermutation rate, bit number in gene shift and nucleotide will

cause diversified effect and should be determined according the optimization problem.

On the contrary, the inducing ratio has converged effect. The key issue is the

appropriate balance between exploitation and exploration during optimization search.

These parameters were determined through numerical experiments after multiple

simulation runs.

 For 10-bar plane truss problem, the Pareto-optimal front with 474 feasible solutions

is presented in Fig. 25. The two extreme objective values are [108413.542, 1.3611] and

[17935.1162, 6.3562], respectively. Moreover, Fig. 25 illustrates the comparison with

the Pareto solutions derived by Fadel and Li (2002) employing the Tchebycheff,

weighting, and ε -constraint methods. It is important to emphasize that only 21

solutions were derived for these methods since they employed weighting-based method

with 21 fixed and uniform-distributed weighting ratio values. The extreme values of

these weighting ratios were (0.0, 1.0) and (1.0, 0.0) with interval 0.05. Obviously

C-MOIA is capable of finding much more satisfactory non-dominated solutions excluding

the two extreme objective values.

10-bar plane truss with continuous design variables

 86

0 20000 40000 60000 80000 100000 1200001

2

3

4

5

6

7

8

e-constraint method

weighting method
Tchebycheff method

C-MOIA method

Weight, lb

D
is

pl
ac

em
en

t,
in

0 20000 40000 60000 80000 100000 1200001

2

3

4

5

6

7

8

e-constraint method

weighting method
Tchebycheff method

C-MOIA method

Weight, lb

D
is

pl
ac

em
en

t,
in

Fig. 25 feasible Pareto solutions and comparisons of 10-bar plane truss

25-bar space truss with discrete design variables

As to the 25-bar space truss problem, the two extreme objective values found are

[977.39, 0.2363] and [99.87, 2.0281], respectively. Fig. 26 demonstrates the Pareto-

optimal front of the 232 feasible non-dominated solutions derived employing C-MOIA.

In addition, numerous simulation results utilizing single-objective GAs are adopted for

comparison and depicted in Fig. 26. Clearly the results derived using C-MOIA

dominate the solutions obtained from the literatures except the optimal solution attained

by Wu (1995a) utilizing single objective GAs. In summary the proposed C-MOIA has

 87

the ability to provide a good estimate of the Pareto front for the 25-bar space truss

optimization problem as well.

D
i
s
pl
ac
em
e
n
t
,

i
n

0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Weight, lb

480 490 500 510 520 530 540 550

0.345

0.35

0.355

C-MOIA

Rajeev [42]

Ponterosso [36]
Wu [41]

Wu [43]

Erbatur [34]

(1995b)
(1992)

(1995a)

(2000)
(1999)

Fig. 26 Feasible Pareto solutions and comparisons of 25-bar space truss

5.5 Summary

In this chapter, the proposed immune algorithm was implemented to several test

functions considering with/without constraints and two typical truss-structure sizing

problems with a mix of discrete and continuous variables for the purpose of determining

constrained Pareto-optimal solutions. Overall results indicate that the proposed immune

algorithm is capable of quickly determining accurate and diverse Pareto-optimal solutions

to multi-objective optimization problems (MOOPs). It is suggested that this capability

 88

is due to the combination of diversification immune operators, the construction of

germ-line library equivalents, and a process of gene fragment recombination, they are all

the features in the immune system. The key natural selection components (gene

fragments) are similar to the building blocks of genetic algorithms associated with

stimulus antibodies and memory cell pools. In this particular immune algorithm, the

antibodies (solutions) are the direct products of gene fragment combinations (schemata),

rather than the antibody (analog to the role of individual in genetic algorithms) itself.

This explains the need for several diversification schemes to prevent the premature effect

of proposed immune algorithm.

 89

CHAPTER 6

STRUCTURAL TOPOLOGY OPTIMIZATION

6.1 Introduction

In this chapter, the proposed immune algorithm will then apply to single-objective

multi-modally optimization of structural topology. For applying to multi-modal

optimization, the immune algorithm described in chapter 4 needs to be modified slightly.

The modified immune algorithm used in the chapter is called multi-modal immune

algorithm or MMIA. Analogous to the sharing and niching approaches in genetic

algorithms employed by Goldberg and Richardson (1987), a similarity value (the

relationship between antibodies) combined with antibody-to-antigen affinity is employed

to explore the single-objective with multi-modally solutions. Two well-studied

benchmark topological problems considering asymmetry are used for evaluating the

effectiveness of proposed immune algorithm in the field of multi-modal optimization.

The goal of this application is to maximize the structure’s stiffness-to-weight ratio

proposed by Chapman et al. (1994) subjected to maximum allowable stresses. Because

of different antibody representation (two-dimensional binary-encoded matrix) from

previous chapter, steps described in Chapter 4 in section 4.2 are needed to modify for

applying to single-objective multi-modally optimization. The procedure of modification

 90

is depicted in next section.

Initial antibody population

Antibody representation &
gene classification

Calculating combinatorial
intensityGerminal Center

Light chain gene
hypermutation

Clonal proliferation

Immature
antibody

Mature
antibody

Cell
apoptosis

Antibody
memory pool

Decreased affinity Increased affinity

Cell
apoptosis

Bad memory

The best fit antibody

Memory antibodies

Plasma antibodies

Donor antibodies selection

Germ-line DNA library
construction

Induced memory
antibodies

Gene fragment
rearrangement

Antibody diversification

New antibody population

Stop?

End evolution

Y

N

Memory update

Fig. 27 Multi-modal immune algorithm (MMIA) flowchart

6.2 Immune Algorithm Revision for Topological Optimization

Corresponding to the topological optimization problems, the antigen () and

antibodies () serve as objective () and associated solutions (i.e. topologies) in a

computational model and are expressed as follows:

Ag

iAb f

fAg
NiAb Abii

≡
==≡ ,...,2,1 s, topologiepossible x

 (6.1)

()ii fAgAb x≡ (6.2)

where (or x) indicates the ith antibody (or topology) while indicates the iAb i iAgAb

 91

affinity (i.e. objective value, ()if x) between an ith antibody and antigen, is the

number of antibodies. The antibodies/topologies continuously evolve until a match is

found with the specific antigen/objective. In the rest of this section we will verbally

describe the MMIA procedure represented by the flowchart in Fig. 27.

AbN

[Step 1] Random initialization of antibody population and connectivity analysis

 Similar to the generation of population initially in MOIA, the initial binary-encoded

antibody population is also generated randomly. Different antibody representation form

MOIA (binary-encoded with one-dimensional array), the antibody used in MMIA is

represented by a two-dimensional binary-encoded string (or matrix) with binary values of

1 refers to as the structure materials and 0 refer to as no material presented in the design

domain. Fig. 28 shows how an antibody is mapped to a topology. Once an antibody is

converted into a topology the resulting material elements with binary values of 1 are

analyzed for connectivity. For any two elements in a topology to be considered as

connected they must share at least one edge while element sharing only one corner are

considered as disconnected. A topology contained disconnected elements will undergo a

structure modification procedure. In this procedure, the removal of disconnected

elements or the adding of elements to neighboring disconnected element will be done

randomly until the discontinuous topology is compensated. The continuous topology

 92

will be further analyzed via the finite element computation to obtain the required

displacements and stresses. To reduce computation time, elements with a stress value

lower than the user-defined level of average stress (which do not break connectivity

requirements) will be removed from the topology, and the corresponding gene set to a

binary value of 0.

1 1

1

0

1

1

0 0
0
0

0
0
0
0

1

1

1
11

111
000

1
1

11
11

11

000

00
0

00
0 0

0
0
0
0

1

(a) corresponding binary values
of an antibody

(b) resulting topology

mapping

loadingloading

Fig. 28 Mapping from antibody into topology

[Step 2] Antibody representation and gene classification

In the same manner as in biological immune systems, each antibody/topology (as

depicted in Fig. 29) is separated into a two-dimension matrix comprising four different

kinds of genes/elements: a constant gene (C), a heavy-chain gene (H), a light-chain gene

(L), and a pseudo gene (0). The genes are classified into heavy-chains or light-chains

according to i) a default light/heavy chain-length ratio determined by the user and ii) the

average stress of the mapped continuous topology calculated by fore-node plane stress

 93

finite element analysis. A gene is categorized into a light-chain gene if its stress is either

(i) large than the normalized average stress multiplied by light/heavy chain-length ratio or

(ii) small than the normalized average stress multiplied by one minus the light/heavy

chain-length ratio. In other words, the gene can be defined as light-chain gene if it

receives exceeding large or small stress. Constant genes are those genes required to

contain material where support conditions or loads are applied. These genes are fixed

and cannot be changed during the whole evolution process. Pseudo genes are those

genes which no contain material. The other genes will be defined as heavy-chain gene

except light-chain, constant, and pseudo gene.

The distribution of these genes within an antibody thus establishes the topology.

The number of genes in each antibody equals the number of elements in the topology

domain. The antibody is then resolved into binary values where all constant, light-chain

and heavy-chain genes are defined as 1, with all pseudo genes being defined as 0 (see Fig.

28a). The inbuilt ability for genes to mutate enables pseudo genes to evolve into light or

heavy chain genes if they contain the material, conversely light and heavy chain genes

may evolve into pseudo genes where no material is present. Due to the binary coding,

the material/void design domain typically results in a discrete, non-convex search space

[Anagnostou et al., 1992] and serves as a good test of the capacity of MMIA in finding

optimal solutions.

 94

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

HH
HH

H

000

00
0

00
0 0

0
0
0
0

C: constant region gene (1/material)
H: heavy chain gene (1/material)
L: light chain gene (1/material)
0: pseudo gene (0/void)

H
H

loading

Fig. 29 Antibody representation for topological optimization

[Step 3] Calculating combinatorial intensity

 The antibody-to-antigen affinity value () of the topology is employed to

illustrate the combinatorial intensity between an antigen and the ith antibody expressed as

follows:

iAbAg

ii

i
i SCK

ObjAbAg
⋅+

=
)1(

and
ii

i Aread ⋅
= max

1Obj (6.3)

where indicates the ith topology’s stiffness-to-weight ratio with the stiffness being

represented by the inverse of the topology’s maximum displacement (

iObj

max
1

id
) at the point

of loading application. The number of connected genes/elements of the topology is used

as a qualitative measure of the topology’s weight (). In addition, similar to the

sharing or niching schemes implemented in the genetic algorithms, the relationship

among antibodies is evaluated according to the similarity value for the purpose of

iArea

iS

 95

multi-modally optimization, and expressed as:

∑
=

=
AbN

j
iji countS

1

, ;,...,2,1 AbNi = AbNj ,...,2,1=

with , (6.4)


 ≤

=
else

AbAbif
count Abij

ij ,0
 ,1 δ

)()(22 stress
j

stress
i

stress
j

stress
iij stdstdavgavgAbAb −−−=

where Abδ is a user-defined threshold value illustrating the allowable difference between

antibodies. is the affinity between ith and jth antibody and represents the

distance between the ith and the jth antibodies in a coordinate system of average stress

versus standard deviation stress, the larger the , the larger the difference between

ith and jth antibodies. Note that and are normalized averages stress

values, and that and are normalized standard deviations stress values of

the ith and the jth antibody/topology. In addition, cytokine value of the antibody

described in Eq. (6.3) is treated as the penalty term for constraint violation and defined

identical to Eq. (4.5) in the CHAPTER 4 in subsection 4.2.2.

ijAbAb

istd

ijAbAb

stress
javgstress

iavg

stressstress
jstd

CK

Because of the single-objective with multi-modally problem, the avidity value in Fig.

4 in CHAPTER4 will be neglected in this procedure MMIA. A higher combinatorial

intensity – affinity value means that an antibody has a higher activation with an antigen

and a lower similarity with other antibodies. Therefore, the higher the affinity value, the

higher the probability that the antibody may be selected as the donor to enter the

germ-line DNA library for gene fragment rearrangement. After affinity values of all

 96

antibodies are calculated, the best (i.e., highest affinity) antibody will be placed into the

germinal center for clonal proliferation with the remaining antibodies proceeding to [Step

5] awaiting donor selection.

[Step 4] Clonal proliferation

 In the MMIA scheme, only most-matched antibody (i.e. highest affinity antibody)

derived from [Step 3] is chosen for hypermutation during the clonal proliferation process,

with a user-defined hypermutation rate and proliferation number. Similar to the MOIA

scheme, hypermutation only takes place in light-chain genes. In this study, a gene is

categorized into a light-chain gene if its stress is either (i) large than the normalized

average stress multiplied by light/heavy chain-length ratio or (ii) small than the

normalized average stress multiplied by one minus the light/heavy chain-length ratio. In

the process of hypermutation, a light-chain gene is likely to be deleted if its stress is

smaller than the value calculated in (i). On the contrary, a gene is added to the void

neighborhood of the light-chain gene if its stress is larger than the value evaluated in (ii).

After the hypermutation process, mature antibody that have a better affinity than

un-proliferated antibody is differentiated into plasma antibody and memory antibody

preserved and updated in the memory pool. Further, the resulting bad memory

antibodies are deleted as immature antibodies similar to the cell apoptosis process in

 97

biological immune systems. Resulting plasma antibody combined with the remaining

antibodies derived from Step 3 are then proceed to Step 5 for donor antibody selection

according to their affinity value. In the memory pool, only the most diverse (determined

by similarity value) antibodies with high affinity survive. On the other hand, those

antibodies with low affinity and high similarity will be removed from the memory pool.

In this step, diversity is evaluated by checking the average stress and standard deviation

stress of the elements/genes in the topology/antibody. In addition, a part of memory

antibodies are induced into the germ-line DNA library (as per Step 6) according to a

user-defined inducing rate.

iS

[Step 5] Tournament selection for donor antibodies

Based on the affinity values, the tournament selection method is also employed here

for donor antibody selection.

[Step 6] Germ-line DNA library construction

As described in CHAPTER 3, the genetic material used to produce antibody

molecules is stored in germ-line DNA libraries, each one containing a fragment of an

antibody gene. In the MMIA, components from the memory antibodies and the donor

antibodies construct the germ-line DNA library.

 98

[Step 7] Gene fragment rearrangement

In the MMIA, new antibodies are created via gene fragments (or blocks)

rearrangement as illustrated in Fig. 30. Arbitrary gene blocks are selected randomly

from randomly chosen sub-libraries and then integrated into a new antibody.

Germ-line DNA library

 sub-library 1
 sub-library 2

 sub-library i

 sub-library N

block 1

block 2

block n

block n

block 2
block 1

Randomly selected
sub-libraries

Randomly generated
n blocks

New AntibodyDonor antibody

Memory antibody

Fig. 30 Illustration of antibody rearrangement for topological optimization

[Step 8] Antibody diversification

In the proposed MMIA, this was achieved by mimicking the following six

diversification mechanisms found in biological immune systems. All the schemes

described below have the exploration effect in optimization search processes. Because

of different antibody representation, a part of antibody diversification mechanisms

depicted in MOIA (subsection 4.2.8) are needed to modify for applying in this

diversification process.

 99

1. Somatic point mutation. In terms of binary-encoded representation, this means

reversing a bit from 1 to 0 or vice versa according to a pre-defined diversity

probability. The result is a slight alteration of an antibody heavy chain gene for local

search purposes.

2. Somatic recombination. As shown in Fig. 31, two same-size fragments/blocks are

randomly selected from the same antibody, after which a partial exchange is

performed between the two fragments according to a pre-defined diversity probability.

1 1

1

0

1

1

0 0
0
0

0
0
0
0

1

1

1
11

111
000

1
1

11
11

11

000

00
0

00
0 0

0
0
0
0

1

block 1

block 2

1 1

1

0

1

1

0 0
0
0

0
0
0
0

1

1

1
11

111
000

1
1

11
11

11

000

00
0

00
0 00

0
0
0

1

loadingloading

(a) corresponding binary values
of an antibody

(randomly selection)
(b) partial crossover

Fig. 31 Somatic recombination illustration for topological optimization

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

HH
HH

H
H
H

000

00
0

00
0 0

0
0
0
0

H
H

HH0

00
0

H

Randomly selected
heavy chain gene

Neighboring 8
mesh elements

loading

Fig. 32 Randomly selected heavy chain gene and associated neighborhoods

 100

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

HH
HH

H
H
H

000

00
0

00
0 0

0
0
0
0

H
H

HH0

00
0H 1

1

110

00
01

1 00

0
00 1

11

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

H
H

000

00
0

0 0
0
0
01 0

0
0

0
11
1

(b) a randomly selective H gene and
its neighboring 8 mesh elements

(c) corresponding binary
values

(d) binary values
conversion

loading loading

(a) an antibody (e) replacement

3. Gene conversion, gene inversion, and gene shift. Following predefined probabilities,

gene conversion, gene inversion, and gene shift is performed using a randomly

selected heavy-chain gene and its neighboring 8 mesh elements as depicted in Fig. 32.

Fig. 33 illustrates the process of gene conversion where all elements within the

selected 9 mesh elements have their binary values reversed from 1 to 0 and vice versa.

In gene inversion as depicted in Fig. 34, each of the 8 periphery mesh elements are

mirrored around the center element. Fig. 35 shows the illustration of gene shift

where each of the 9 mesh elements shift a number of position from left to right and

top to bottom. Note that the number of bit-shift genes is a predefined by the user.

These diversification schemes create the desired global search effect.

Fig. 33 Gene conversion illustration for topological optimization

 101

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

HH
HH

H
H
H

000

00
0

00
0 0

0
0
0
0

H
H

HH0

00
0H

0 0

01
1

1

1
101

1

110

00
01

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

H
1H

1

000

00
0

0
0 0

0
0
0

0
0
1 1
1

loading loading

(a) an antibody

(b) a randomly selective H gene and
its neighboring 8 mesh elements

(c) corresponding binary
values

(e) replacement

(d) binary values
inversion

Fig. 34 Gene inversion illustration for topological optimization

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

HH
HH

H
H
H

000

00
0

00
0 0

0
0
0
0

H
H

HH0

00
0H

0 00

1
11

1
1
0

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H
H

H
1H
1

000

00
0

0
0 0

0
0
000

1 1
1

(a) an antibody

(b) a randomly selective H gene and
its neighboring 8 mesh elements

1
1

110

00
01

(c) corresponding binary
values

(e) replacement

(d) each binary value
shifts 2-bit (predefined)

loading loading

Fig. 35 Gene shift illustration for topological optimization

4. Nucleotide addition. As shown in Fig. 36, nucleotides insertion may be

accomplished either in light- or heavy-chain genes. The nucleotide is a randomly

 102

created binary array of predefined block size. In this study a 9 mesh elements is

used to represent the nucleotide inserted at a randomly chosen point in the antibody

locus. Displaced genes are then shifted to the right with excessive elements out with

the antibody boundary being discarded.

C H

H

0

C

C

0 0
0
0

0
0
0
0

L

L

H
LH

LHH
000

H

HH
HH

H

H

H

000

00
0

00
0 0

0
0
0
0

H

inserting point

H
L

1

1

0
11

0

1

C H

0

C

C

0 0
0

0
0
0
0

L H
LH

LHH
000

1
0

HH

01

00

00
0 0

0
0
0

0
H

1
1

1

1

0
01

1

1

1: material element, type of gene can be
 decided after finite element analysis

0
1
1

1
1

1
1

0 0

Excessive part
will be discarded

loading

loading

(a) randomly nucleotides insert at a
randomly chosen point

(b) implementation of nucleotides
addition

Fig. 36 Nucleotide addition illustration for topological optimization

It should be noted that the six diversification mechanisms described in this step are

adopted randomly in the antibody diversity process.

 103

[Step 9] Stopping criterion

The whole process will stop when the iteration equals a pre-defined number.

Otherwise the process reverts to [Step 2] for another generation. In the final stage, the

best and most diverse solutions are stored in the memory pool.

 Fig. 37 demonstrates the results of the procedure of MMIA described above

employing 4 antibodies/topologies. For simplicity, each topology contains 6×8 elements.

Fig. 37(a) indicates the random generation of the 4 antibodies and the corresponding

continuity analysis. Clearly, three antibodies/topologies are discontinuous except the

second one. After structure modification procedure, for example removing one gray

element from Ab3 and adding several gray elements for Ab1 and Ab4, all the elements of

the four topologies are continuous. Then, finite element calculation and gene

classification (i.e. constant gene C, heavy-chain gene H, light-chain gene L, and pseudo

gene 0) for these topologies are implemented as Fig. 37(b) shown. Since the fourth

antibody (Ab4) has the highest affinity value, it is chosen for clonal proliferation through

hypermutation as Fig. 37(c) illustrated. The best one matures as a plasma and memory

antibody simultaneously. Subsequently germ-line DNA library is constructed by donor

antibodies which selected from the antibody population and plasma antibody produced

after clonal proliferation by using tournament selection. Note that fourth donor antibody

 104

in this library is induced from memory antibodies. Fig. 37(d) expresses the procedure of

gene fragment rearrangement. As step 7 described, new antibodies are created from the

donor antibodies derived in the last step. Finally the diversification schemes chosen

randomly can be employed to increase the exploration of the antibody population. Fig.

37(e) shows one of the possible results for antibody NewAb3 since the selection of

antibodies and their elements is a randomized procedure.

1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0

1 1 0 0 0 0
1 1 0 0 0 0 0 0

1 1 0 0 0 0 1 1
1 1 0 0 1 0 1 1
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0
0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1
1 0 0 0 1 0 1 1
0 1 1 0 1 1 1
0 0 1 0 1 1 0 0
0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0
0 0 0 1 1 1 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0

1 1 0 0 0 0
1 1 0 0 0 0 0 0

1 1 0 0 0 0 1 1
1 1 0 0 0 1 1
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0
0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1
1 0 0 0 1 0 1 1

1 1 0 1 1 1
0 0 1 1 1 0 0
0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0

1
1

1

0

1
1

1

1

Connectivity analysis & Structure modification procedure

1Ab 2Ab 3Ab 4Ab

0

0

Fig. 37(a) Random initialization of antibody population & connectivity analysis

C L H H H H L C
0 0 0 H 0 0 0 L
0 0 0 0 0 H H L
0 0 L L L L 0 0
0 L H 0 0 0 0 0
C L 0 0 0 0 0 0

C L H H H H L C
L L 0 0 0 0 L L
0 H H 0 0 H H 0
0 0 L L L L 0 0
0 L H 0 0 0 0
C L 0 0 0 0 0 0

C L 0 0 0 0 L C
L L 0 0 0 0 L L
0 H H 0 0 H H 0
0 0 L L L L 0 0
0 L H L 0 0 0 0
C L 0 0 0 0 0 0

C L H H H H L C
L 0 0 0 L 0 L L
H H L 0 L H H 0
0 0 L L L H 0 0
0 L H L 0 0 0 0
C L 0 0 0 0 0 0

035.0
21
372.1max

=
=

=

obj
Area

mmd

04327.0
24
963.0max

=
=

=

obj
Area

mmd

0073.0
21
554.6max

=
=

=

obj
Area

mmd

05371.0
28
665.0max

=
=

=

obj
Area

mmd4Ab3Ab2Ab1Ab

0

Fig. 37(b) Finite element calculation & gene classification

 105

Clonal expansion with hypermutation

Memory pool
.
.
.

.

.

.

C L H H H H L C
0 0 0 H 0 0 0 L
0 0 0 0 0 H H L
0 0 L L L L 0 0
0 H H 0 0 0 0 0
C L 0 0 0 0 0 0

C L H H H H L C
L L 0 0 0 0 L L
0 H H 0 0 H H 0
0 0 L L L L 0 0
0 H H 0 0 0 0
C L 0 0 0 0 0 0

C L 0 0 0 0 L C
L L 0 0 0 0 L L
0 H H 0 0 H H 0
0 0 L L L L 0 0
0 L H L 0 0 0 0
C L 0 0 0 0 0 0

C L H H H H L C
L 0 0 0 H 0 L L
H H L 0 L H H
0 0 L L L H 0 0
0 H H L 0 0 0 0
C L 0 0 0 0 0 0

memory antibody

C L H H H H L C
L L 0 0 0 0 L L
0 H H 0 0 H H 0
0 0 L L L L 0 0
0 H H 0 0 0 0
C L 0 0 0 0 0 0

Germ-line DNA library construction

donor 1 donor 2 donor 3 donor 4

induced antibody
from memory pool

C L H H H H L C
L 0 0 0 L 0 L L
H H L 0 L H H
0 0 L L L H 0 0
0 L H L 0 0 0 0
C L 0 0 0 0 0 0

C L H H H H L C
L 0 0 L 0 L
H H L 0 L H H
0 0 L L L H 0 0
0 L H L 0 0 0 0
C L 0 0 0 0 0 0

0
LL

C L H H H H L C
L 0 0 L 0 L
H H L 0 L H H
0 0 L L L H 0 0
0 L H 0 0 0 0
C L 0 0 0 0 0 0

LL

0

04608.0
28
775.0max

=
=

=

obj
Area

mmd

05354.0
28
667.0max

=
=

=

obj
Area

mmd

05371.0
28
665.0max

=
=

=

obj
Area

mmd

L

C L H H H H L C
L 0 0 L 0 L
H H L 0 L H H
0 0 L L L H 0 0

L H L 0 0 0 0
C L 0 0 0 0 0 0

0
LL

L

05473.0
29
630.0max

=
=

=

obj
Area

mmd

L

C L H H H H L C
L 0 0 L 0 L
H H L 0 L H H
0 0 L L L H 0 0

L H L 0 0 0 0
C L 0 0 0 0 0 0

0
LL

L

L

C L H H H H L C
L 0 0 L 0 L
H H L 0 L H H
0 0 L L L H 0 0

L H L 0 0 0 0
C L 0 0 0 0 0 0

0
LL

L

plasma antibody

C L H H H H L C
L 0 0 L 0 L
H H L 0 L H H
0 0 L L L H 0 0

L H L 0 0 0 0
C L 0 0 0 0 0 0

0
LL

L

C L H H H H L C
L 0 0 0 H 0 L L
H H L 0 L H H
0 0 L L L H 0 0
0 H H L 0 0 0 0
C L 0 0 0 0 0 0

L

C L H H H H L C
0 0 0 H 0 0 0 L
0 0 0 0 0 H H L
0 0 L L L L 0 0
0 L H 0 0 0 0 0
C L 0 0 0 0 0 0

4Ab

iAbMemory

) (1AbPlasma

1Ab 2Ab 3Ab 4Ab 1 AbPlasma

)(2Ab)(1Ab)(4Ab) (iAbMemory

Clonal
proliferation

0

0

Fig. 37(c) Clonal proliferation, donor selection, and germ-line library construction

C L H H H H L C
L 0 0 0 H 0 L L
H H L 0 L H H

0 0 L L L H 0 0
0 H H L 0 0 0 0
C L 0 0 0 0 0 0

L

C L H H H H L C
L L 0 0 0 0 L L
0 H H 0 0 H H 0
0 0 L L L L 0 0

0 H H 0 0 0 0
C L 0 0 0 0 0 0

C L H H H H L C
L 0 0 L 0 L
H H L 0 L H H
0 0 L L L H 0 0

L H L 0 0 0 0
C L 0 0 0 0 0 0

0
LL

L

rearrange
1 1 1 1 1 1 1 1
1 0 0 0 1 0 1 1
1 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0

C L H H H H L C
0 0 0 H 0 0 0 L
0 0 0 0 0 H H L
0 0 L L L L 0 0
0 L H 0 0 0 0 0
C L 0 0 0 0 0 0

1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
1

C L H H H H L C
L L 0 0 0 0 L L

0 H H 0 0 H H 0
0 0 L L L L 0 0
0 H H 0 0 0 0
C L 0 0 0 0 0 0

C L H H H H L C
L 0 0 L 0 L
H H L 0 L H H

0 0 L L L H 0 0
L H L 0 0 0 0

C L 0 0 0 0 0 0

0

LL

L

C L H H H H L C
0 0 0 H 0 0 0 L
0 0 0 0 0 H H L
0 0 L L L L 0 0
0 L H 0 0 0 0 0
C L 0 0 0 0 0 0

rearrange
1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 1
0 1 1 0 0 1 1
0 0 1 1 1 1 0 0

1 1 1 0 0 0

0

1 0
1 1 0 0 0 0 0 0

.

.

.

C L H H H H L C
L 0 0 L 0 L

H H L 0 L H H
0 0 L L L H 0 0

L H L 0 0 0 0
C L 0 0 0 0 0 0

0
LL

L

C L H H H H L C
0 0 0 H 0 0 0 L
0 0 0 0 0 H H L
0 0 L L L L 0 0
0 L H 0 0 0 0 0
C L 0 0 0 0 0 0

rearrange

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0 1 1 1
0 0 1 1 1 1 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0

donor 1 donor 2 donor 4 1NewAb

2NewAb

3NewAb

donor 3 donor 2 donor 4 donor 3

donor 4 donor 3

0

0

Fig. 37(d) Randomly gene fragment/block rearrangement

 106

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0 1 1 1
0 0 1 1 1 1 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0

mutation

1 1 1 1 1 1 1 1
1 0 0 01 0 1
0 0 0 0 0 1 1 1
0 0 1 1 1 1 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0

0

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0 1 1
0 0 1 1 1 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0

1
1
0

blocks
blocks crossover

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0

1
1

0
0
1 1 1 0

0 1
1

0 0 0 0 0
1 1 0 0 0 0 0 0

1
10

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0 0 0 0

11
11

0
0
000

block

1

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0 0 0 0

1
1

11

0 0
00

conversion

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0 1 1 1
0 1 1 0 0
0 0 0 0 0
1 0 0 0 01

11
11

0
0
00
block

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0 1 1 1
0 1 1 0 0
0 0 0 0 0
1 0 0 0 01

1
11

1

0 0

0
0

inversion

0

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 1 1 1
0 0 1 0 0
0 1 0 0 0
1 1 0 0 0 0 0 0

1
1 1 1

0 0

0 0

shift

0

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 1 1 1
0 0 1 0 0
0 1 0 0 0
1 1 0 0 0 0 0 0

1 11
1

0 0
0 0

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0 1 1 1
0 0 1 1 1 1 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0 1 1 1
0 0 1 1 1
0 1 1 0 0
1 1 0 0 0

0
1
1

0

0 0
1 1

1

0
1
1

0

0 0
1 1

1

insertion

1 1 1 1 1 1 1 1
1 0 0 1 01 0 1
0 0 0 0 0 1 1 1
0 0 1 1 1 1 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0

0
1
1

0

0 0
1 1

1

excessive part

randomly
nucleotide

randomly nucleotide

deletion

Fig. 37(e) Six antibody diversification schemes

Fig. 37 Illustration of the 8 steps in MMIA using four antibodies/topologies

6.3 Problems Description

In this study, two topological optimization examples were employed to evaluate the

effectiveness of the proposed multi-modally immune algorithm. All the mechanical

model and material properties are tabulated in Table 10. Table 11 lists the associated

parameters used in the MMIA. These parameters were determined through numerical

experiments after multiple simulation runs.

 107

Table 10 Illustration of topological optimization examples

 Case 1 Case 2
Loading position Right hand side 2/5ths from

the bottom edge
Top right hand corner

Fixed position Both end of left hand side Both end of left hand side
Mechanical model

Design
domain

0.16m

0.
1m

3KN

Design
domain

0.16m

0
.
1
m

3KN

Material properties

mt
MPa

GPaE

001.0 thichness
200 stress allowable

33.0
200

=

=
=

υ

Table 11 Immune algorithm parameters

Parameter Case 1 Case 2
Grids of elements 20×32 20×32
Antibody length 640 640
Antibody size 50 50
Generations 500 500
Proliferation number 10 10
Tournament size 10 10
Light/heavy chain-length ratio 0.3 0.3
Hypermutation rate 0.4 0.4
Diversity rate 0.05 0.05
Inducing rate 0.2 0.2
Threshold)(Abδ 0.1 0.1

Case 1

This example presents the optimization of a short cantilever plate (with aspect ratio

1.6) which is subjected to a downward concentrated loading applied at an finite element

(FE) node on its right hand side 2/5ths from the bottom edge (non-symmetric structure)

with its stress being constrained to 200MPa. The support nodes on both end of left hand

 108

00484.0
236
876.0max

=
=

=

obj
Area

mmd

00513.0
268
728.0max

=
=

=

obj
Area

mmd

00506.0
312
633.0max

=
=

=

obj
Area

mmd

0055.0
322
565.0max

=
=

=

obj
Area

mmd

00486.0
253
813.0max

=
=

=

obj
Area

mmd

00624.0
303
529.0max

=
=

=

obj
Area

mmd

00523.0
281
680.0max

=
=

=

obj
Area

mmd

00558.0
304
590.0max

=
=

=

obj
Area

mmd

00601.0
269
619.0max

=
=

=

obj
Area

mmd

00739.0
312
434.0max

=
=

=

obj
Area

mmd

01247.0
270
297.0max

=
=

=

obj
Area

mmd

00548.0
319
572.0max

=
=

=

obj
Area

mmd

00506.0
290
681.0max

=
=

=

obj
Area

mmd

01687.0
333
178.0max

=
=

=

obj
Area

mmd

00468.0
319
670.0max

=
=

=

obj
Area

mmd

00523.0
299
640.0max

=
=

=

obj
Area

mmd

side are defined to have zero displacement in the finite element (FE) analysis. In

addition, the design domain is discretized according to a 20×32 plane stress element FE

model. One execution of the computer model requires around 250,000 functional

evaluations (500 generations by 50 antibodies/topologies by 10 clonal proliferations per

generation), taking approximately 3 hours with a Pentium 4 processor running at 1.5GHz.

Numerous memory antibodies/multi-modal topologies (local optimum solutions) with

different configurations were derived from memory pool after 500 iterations. Fig. 38

demonstrates 16 significant topologies and their corresponding maximum displacements

(), weights () and objective values (obj, i.e. stiffness-to-weight ratio),

respectively.

maxd Area

Fig. 38 Multi-modal results of case 1

 109

Case 2

00665.0
246
611.0max

=
=

=

obj
Area

mmd

00608.0
211
779.0max

=
=

=

obj
Area

mmd

01605.0
264
236.0max

=
=

=

obj
Area

mmd

00554.0
211
855.0max

=
=

=

obj
Area

mmd

00484.0
266
776.0max

=
=

=

obj
Area

mmd

01497.0
252
265.0max

=
=

=

obj
Area

mmd

01737.0
397
145.0max

=
=

=

obj
Area

mmd

005.0
233
858.0max

=
=

=

obj
Area

mmd

005.0
240
834.0max

=
=

=

obj
Area

mmd

In Case 2 the downward concentrated load is applied at an FE node positioned at the

top right hand corner of the design domain with all other conditions being as per those in

Case 1. Again, the design domain is divided into a 20×32 plain stress element FE model

and the required CPU time and functional evaluations being consistent with those in the

previous case. After 500 iterations, the 9 significant memory antibodies/multi-modal

topologies with their corresponding maximum displacements (), weights () and

objective values (obj) were illustrated in Fig. 39.

maxd Area

Fig. 39 Multi-modal results of case 2

 110

6.4 Simulation Results and Discussions

As can be seen from the diverse range of resultant topologies illustrated in Fig.38

and 39, the structures show very well defined truss-like members of constant cross

sectional area with large voids between members. A high proportion of these structural

members have straight alignment between joints and exhibit low levels of porosity. The

theoretical structures therefore provide the designer with a set of near-optimal solutions

which can be easily developed into discrete truss systems. If manufacturability is the

prime consideration (i.e. large voids between members), the designer may choose the

topology shown in the left-top examples in Fig. 38 or the center-top examples in Fig. 39.

On the contrary, if stiffness is the main consideration, the right-bottom examples in Fig.

38 and 39 (i.e. more material) are good chooses.

It should be noted the proposed MMIA is fully capable of evaluating both symmetric

and asymmetric structures and is therefore more flexible than the other methods only

handle symmetric structures. Moreover, the proposed method does not force a solution

into a specific area of the search space, but automatically allows balanced evolution using

features of the immune system to create diverse antibody/topology solutions. In

addition, the inherent local search ability of the biological immune system employing

clonal proliferation enhances the search speed and convergence accuracy of IA, with the

substitution of increasing computation time.

 111

6.5 Summary

In this chapter, a novel concept for applying to constrained multi-modal topological

optimization has been presented by using an immune algorithm to imitate the features of a

biological immune system. The proposed methodology enhances accuracy and diversity

via the operation of clonal proliferation and schemata recombination implemented

through the process of gene fragment rearrangement. Moreover, the potential of the

proposed immune algorithm as a tool for investigating optimal topologies and for

automatically creating innovative solutions to structural design problems has been

illustrated in the examples presented.

 112

CHAPTER 7

JOB-SHOP SCHEDULING OPTIMIZATION

7.1 Introduction

Scheduling problems exist almost ubiquitously in real-world applications including

distribution, transportation, management, construction, engineering and manufacturing,

especially in the industrial engineering world. Many scheduling problems on

manufacturing industries are quite complex and very difficult to solve using conventional

optimization techniques. Since the early 1950s it has been the subject of extensive

research and captured the interest of researchers from several research communities

including operation research and artificial intelligence, management science, as well as

industrial engineering. Its main focus is concerned with the allocation of finite resources

to tasks with the objective to optimize specific cost functions. An important issue is the

improvement of resource utilization. It is well known that the job-shop scheduling

problem (JSSP) is the most complicated and typical problem of all kinds of production

scheduling problems. Scheduling for job shops is an important topic in production

management. It is concerned with finding the operations and times of a set of jobs on

the relevant machines subject to the processing constraints. The purpose is to improve

the production efficiency and reduce the processing duration so as to gain as high profits

 113

as possible. The JSSP may be described as follows: given j jobs, each composed of

several operations that must be processed on m machines. Each operation uses one of

the m machines with a deterministic processing time. Each machine can process at most

one operation at a time and once an operation initiates processing on a given machine it

must complete processing on that machine without interruption. Each job consists of a

specific set of operations, which have to be processed according to a given technical

precedence order. The operation sequences on the machines should be found to minimize

the total time required to complete all jobs, i.e. makespan. A comprehensive survey of

job shop scheduling techniques can be found in Jain & Meeran (1999). The total

number of all possible schedules including feasible and infeasible solutions is (j!)m.

Apparently, it is impossible to exhaust all the alternatives for finding the optimal solution

even though very small j and m values.

Different from previous studies, this chapter focuses on not-bit/integer string

encoding optimization and applied the immune algorithm to the job-shop scheduling

problems (JSSPs) with single objective. In this application, an antibody (analogous to

the chromosome in GA) is encoded via operation-based representation. This

representation encodes a schedule as a sequence of operations and each gene (integer

number) stands for one operation. The goal of this optimization is to find the operation

sequence on the machines in order to minimize the makespan, i.e., the time required to

 114

complete all jobs, and to compare with other heuristic methods for performance

validation. Similar to structural topology optimization applied in the immune algorithm,

some steps described in CHAPTER 4 were needed to revise by incorporating with some

repairing procedures for applying to scheduling optimization problem. The procedure of

revision is depicted in next section.

7.2 Immune Algorithm Revision for Scheduling Optimization

Corresponding to the JSSPs, the antigen and antibodies serve as objective (i.e.,

makespan) and associated solutions (i.e., schedules). The antibodies/schedules

continuously evolve until a match is found with the specific antigen/objective (minimize

the maximum makespan). The flowchart of this optimization is analogous to the

topological optimization one as illustrated in Fig. 27.

[Step 1] Random initialization of antibody population

 Similar to the genetic algorithms used in JSSP, the initial integer string encoding

antibody population is randomly generated.

[Step 2] Antibody representation and gene classification

 An operation-based representation [Gen, 1994] is used to represent the genes of an

 115

antibody. This representation named all operations for a job with the same integer

number and then interpreted it according to the order of occurrence in the given antibody.

For a j jobs and m machines problem, an antibody contains mj × genes. Each job j

appears in the antibody m times, and each repeating gene (i.e., integer number) does not

indicate a concrete operation of a job but refers to a unique operation. It is easy to see

that any permutation of operations can correspond to a feasible schedule. For instance,

consider a 3-job and 3-machine problem given in Table 12. As Fig. 40 shown, suppose

the genes of an antibody is given randomly as [3 1 2 2 1 3 1 2 3], where numbers 1, 2, and

3 stand for jobs j1, j2, and j3, respectively. Because each job needs three

operations/machines, it appears exactly three times in an antibody. Based on the

machine sequence and processing time given in Table 12, the machine sequence for job

j1is 1-2-3, for job j2 is 1-3-2, and for job j3 is 2-1-3, while the processing time for job j1is

3-3-2, for job j2 is 1-5-3, and for job j3 is 3-2-3. Therefore, the corresponding machine

list and time list of given antibody shown in Fig. 40 are [2 1 1 3 2 1 3 2 3] and [3 3 1 5 3 2

2 3 3], respectively.

Table 12 Example data of 3-job and 3-machine JSSP

Processing time operations Machine sequence
Job 1 2 3 Job 1 2 3
j1 3 3 2 j1 m1 m2 m3
j2 1 5 3 j2 m1 m3 m2
j3 3 2 3 j3 m2 m1 m3

 116

3 21 2 31 1 32

H HH H LH H LL

2 11 3 12 3 32
Antibodyi

Chain type:

Machine list:
Time list: 3 13 5 23 2 33

Fig. 40 Antibody representation for scheduling problem

In the same manner as in biological immune systems, each antibody/schedule is

separated into two different kinds of genes: a heavy-chain gene (H) and a light-chain gene

(L). These genes are classified into heavy-chains or light-chains according to i) a

default light/heavy chain-length ratio determined by the user and ii) job/gene order of

occurrence appearing in the identical machine. Take the 3×3 JSSP mentioned above for

example, an antibody is given at random as [3 1 2 2 1 3 1 2 3] and its corresponding

machine list is [2 1 1 3 2 1 3 2 3], assume that the user-defined light/heavy chain-length

ratio is 0.3 and there are j jobs appearing in the identical machine (see from machine list).

The number of light-chain gene is defined by the rounded of light/heavy chain-length

ratio multiplied by number of jobs plus 0.5 (i.e., rounded of 5.0)3.0(+× j

5.0)3

) and assigned

from later part of the jobs appearing in the same machine. The other genes except

light-chain gene are defined as heavy-chain. Suppose there are 3 jobs in the JSSP, the

number of light-chain gene is defined to 1 (integer of 3.0(+×) and the number of

heavy-chain gene is 2 (jobs minus the number of light-chain gene). For machine

number 1 in machine list, the corresponding jobs/genes are 1-2-3, therefore, its chain type

is defined as H-H-L. And the same manner for machine number 2, the corresponding

 117

jobs/genes and chain type are 3-1-2 and H-H-L respectively, and so on. Hence, the

corresponding chain list of given antibody is [H H H H H L H L L] (see Fig. 40, chain

list).

[Step 3] Calculating combinatorial intensity

 The antibody-to-antigen affinity value () is employed to illustrate the

combinatorial intensity between antigen/objective and the ith antibody/schedule. In this

chapter, the maximum makespan of a schedule is used as the affinity value, and it should

be minimized. The makespan is obtained by following decoding procedure: The first

gene/job is scheduled/decoded first, then the second gene, and so on. Each scheduling

gene/job is allocated in the best available processing time for corresponding machine.

The process is repeated until all genes are scheduled. Thus, the Gantt chart for this given

antibody ([3 1 2 2 1 3 1 2 3]) is drawn in Fig. 41 with its maximum makespan of 14.

iAgAb

3 21 2 31 1 32
2 11 3 12 3 32

Antibodyi
Machine list:
Time list: 3 13 5 23 2 33

m
1

m
2

m
3

Processing time
2 4 6 8 10

1

3

2

2

1

M
ac

hi
ne

3

1

2

3

12 14

Fig. 41 Decoding for an antibody/schedule (Gantt chart)

 118

[Step 4] Clonal proliferation

 In the proposed scheme, the most-matched antibody which has minimal maximum

makespan derived from [Step 3] is chosen for hypermutation during the clonal

proliferation process, with a user-defined hypermutation rate and proliferation number.

Again, hypermutation only takes place in light-chain genes (L). For a 3 jobs JSSP, if a

light-chain gene mutated form job j3 to j1 (j1 is generated randomly from all jobs), the

original job j1 which has the same machine number with j3 should also be repaired to j3

(reciprocal exchange within the same machine) in order to avoid yielding illegal or

infeasible schedules (that is, some jobs are repeated more than once while other jobs get

lost in the identical machine). After the hypermutation process, the proliferated

antibodies which have better affinity than un-proliferated antibody are differentiated into

plasma antibody and memory antibody preserved and updated in the memory pool.

Further, the resulting poor proliferated antibodies are neglected. Resulting plasma

antibodies combined with the remaining antibodies derived from [Step 3] are then

proceed to Step 5 for donor antibody selection according to their affinity value. In the

memory pool, only highest affinity antibody can be survived. On the other hand, those

antibodies with low affinity and repeat will be removed from the memory pool. In

addition, a part of memory antibodies are induced into the germ-line DNA library (as per

Step 6) according to a user-defined inducing rate.

 119

[Step 5] Tournament selection for donor antibodies

The proposed algorithm uses a tournament selection scheme to select donor

antibodies exhibiting higher affinity values to assemble germ-line DNA libraries.

3 1 2 3 2 1 1 2 3

1 2 2 3 1 3 3 2 1

3 3 2 1 2 1 2 1 3
1 2 1 2 3 2 3 1 3

2 3 1 2 2 3 1 1 3

.

.

.

donor1

donor2

donori

memory1

memoryj

.

.

.

3 1 2 3 2 1 1 2 3

random
select

2 3 1 2 2 3 1 1 3

Germ-line DNA library

2 1 1 1 3 2 3 2 3

1 2 1 3 2 1 2 3 3

machine list

seed antibody

machine list

donor antibody

machine number 1 rearrangement

machine list
3 2 1 3 2 1 1 2 3
2 1 1 1 3 2 3 2 3

machine list
3 2 1 3 2 1 1 2 3
2 1 1 1 3 2 3 2 3

1 2 2 3 1 3 3 2 1
machine list 1 1 3 2 2 1 3 2 3

machine list
3 2 1 3 2 1 1 2 3
2 1 1 1 3 2 3 2 3

machine number 2 rearrangement

machine list
3 2 1 3 2 1 1 2 3
2 1 1 1 3 2 3 2 3

machine list 1 1 2 3 2 2 1 3 3

machine list
3 2 1 3 2 1 1 2 3
2 1 1 1 3 2 3 2 3

machine number 3 rearrangement

1 2 1 2 3 2 3 1 3

seed antibody

seed antibody

seed antibody

new antibody

donor antibody

donor antibody

seed antibody

seed antibody

seed antibody

Fig. 42 Illustration of fragmental rearrangement for scheduling problem

 120

[Step 6] Germ-line DNA library construction

 As to MOIA, the components of germ-line DNA library are constructed from the

memory antibodies and the donor antibodies.

[Step 7] Randomly gene fragment rearrangement

 In this optimization, new antibodies/schedules are rearranged via gene fragments

picked randomly from germ-line DNA library. A concept of machine-based

rearrangement is used for producing a new antibody and as shown in Fig. 42 considering

a 3-job 3-machine job-shop scheduling problem. First, randomly chosen a seed

antibody and a donor antibody from the library, and then assigned the genes/jobs of donor

antibody with first machine number (number 1) to the seed in corresponding gene locus.

Next, chosen a randomly donor antibody again for assigning the genes with second

machine number (number 2) to the seed antibody in corresponding gene locus.

Repeating processes till all machine numbers are assigned. The new antibody is

produced once all machine numbers are assigned. It is easy to see that any assign of

fragments will generate a feasible schedule without repairing procedures.

×

[Step 8] Antibody diversification

 Because of different antibody representation, the antibody diversity mechanisms are

 121

needed to revise for applying to this scheduling optimization, and some of these revised

mechanisms need repairing procedures.

1. Somatic point mutation. As depicted in Fig. 43, in terms of not-binary/integer

encoding representation, this means swapping two randomly selected heavy-chain

genes according to a pre-defined diversity probability.

3 21 2 31 1 32
H HH H LH H LL

Antibodyi
Chain type:

point mutation

321 2 3 1 12Antibodyi 3

swap
Fig. 43 Somatic point mutation illustration for scheduling problem

3 21 2 31 1 32

H HH H LH H LL

Antibodyi

Chain type:

somatic
recombination

2 3 1 32Antibodyi

fragment 1 fragment 2

1 32 1

partial exchange

Fig. 44 Somatic recombination illustration for scheduling problem

2. Somatic recombination. As shown in Fig. 44, two heavy-chain gene fragments

with the same length are randomly selected from an antibody. After which a partial

 122

exchange is performed between the two fragments according to a pre-defined

diversity probability.

3 1 2 31 1 32
H HH H LH H LL

Antibodyi
Chain type:

conversion

Antibodyi

starting site ending site

swap

1 12 1 33 2 32

swap

swap

2

Fig. 45 Gene conversion illustration for scheduling problem

3 21 2 31 1 32Antibodyi

inversion

1 1 32Antibodyi

starting site ending site

3 3 1 2 2

3 21 2 31 1 32

Fig. 46 Gene inversion illustration for scheduling problem

3 21 2 31 1 32Antibodyi

shift

starting site ending site

3 13 2 12 1 32Antibodyi

Fig.47 Gene shift illustration for scheduling problem

 123

3. Gene conversion, gene inversion, and gene shift. Following predefined

probabilities, gene conversion, gene inversion, and gene shift is performed using a

randomly selected heavy-chain gene (see Fig. 45 to 47). Note that the starting and

ending sites were randomly generated, and the number of shift genes was predefined.

This type of diversification scheme results in a global search effect. In gene

conversion (depicted in Fig. 45), those heavy-chain genes between the starting and

ending site were swapped with the other heavy-chain gene chosen from antibody at

random. As to the gene inversion operator shown in Fig. 46, randomly chosen

gene/job fragment inverses sequentially its gene positions from front to rear and

from rear to front. Fig. 47 illustrates gene shift operation. Following the

predefined number of shift, the selected gene/job fragment right-shift their gene

locations with excessive positions being reallocated from rear to front.

4. Nucleotide addition. Nucleotides insertion may be accomplished either in light- or

heavy-chain genes. The nucleotide is a randomly created natural number of

predefined size representing the genes/jobs and inserted at a randomly chosen

inserting site in the antibody locus. Displaced genes are then shifted to the right

with excessive genes out with the antibody boundary being repairing. In the

repairing process, first m of each job will be preserved and excessive part will be

discarded as depicted in Fig. 48.

 124

3 21 2 31 1 32Antibodyi

inserting site
2 32Randomly nucleotide

3 21 2 2 32 31 1 32

3 21 2 2 13 13

discard

Antibodyi

Fig. 48 Nucleotide addition illustration for scheduling problem

It should be noted that the six diversification mechanisms described in [Step 8] are

adopted randomly in the antibody diversity process.

[Step 9] Stopping criterion

The whole process will stop when the iteration equals a pre-defined number.

Otherwise the process reverts to [Step 2] for another generation. In the final stage, the

best solutions are stored in the memory pool.

7.3 Experimental Results and Discussions

 For carrying out the necessary computations and evaluating the performance of the

proposed immune algorithm, the program for computing JSSP was developed using C++

language and running with a Pentium 3 processor at 1.0GHz. In this study, 27

benchmark instances of different size (operations) collected from the OR-Library

 125

(http://www.mscmga.ms.ic.ac.uk) including two classes of standard JSSP test problems

[Fischer and Thompson, 1963; Lawrence, 1984] are considered to illustrate the

effectiveness of the proposed algorithm. These instances are widely used in the

literatures, and each of instances is run randomly 10 times. The associated user-defined

parameters utilized in proposed immune algorithm for scheduling optimization are

tabulated in Table 13, each with the same parameter setting. Table 14 summaries the

computational results, it lists the instance name and its size (job machine), the best

known solution, the solution obtained by proposed immune algorithm (IA), and the

solution computed by other algorithms such as genetic algorithms (GA) [Dorndorf and

Pesch, 1995; Wang and Zheng, 2002; Gonçalves et al., 2002; Croce et al., 1995], stimulated

annealing (SA) [Kolonko, 1999; Van Laarhoven, 1992], and tabu search (TS) [Dell’ Amico

and Trubian, 1993]. Table 15 shows the corresponding best schedules obtained by

proposed immune algorithm. In the random runs, the compared results (Table 15)

shown that the average relate error of the proposed immune algorithm over 10 random

runs compared to other for the best known so far is very small, and the optimal or

near-optimal solutions is found for 16 of the 27 instances, and apart of them are found

very quickly for middle-size instances such as the size/operations small than 15 5. For

remaining large-size instances the results are also very close to that of other comparison

algorithms.

×

×

 126

http://www.mscmga.ms.ic.ac.uk/

Table 13 Immune algorithm parameters for scheduling problem

Instance size (job machine) × 6x6 10x5 15x5 20x5 10x10 15x10 20x10 30x10 15x15

Iteration number 100 500 1000

Antibody population size job× machine 2 × (job × machine)

Antibody length 36 50 75 100 100 150 200 300 225

Diversity probability 0.1 0.1 0.1

Hypermutation rate 0.5 0.5 0.5

Light/heavy chain-length ratio 6:4 5:5 5:5

Number of proliferation 6 8 10

Inducing ratio 0.1 0.2 0.2

Bit number in Gene shift 2-bit 2-bit

Bit number of nucleotide random between 1 to number of jobs

Tournament size (job × machine)/10 (2 × job × machine)/10

 127

Table 14 Computational results

GA SA TS

Name Size
Best

known
IA

Dorndorf
and

Pesch
(1995)

Wang
and

Zheng
(2002)

Gonçalves

et al.
(2002)

Croce

et al.
(1995)

Kolonko
(1999)

Van
Laarhoven

et al.
(1992)

Dell’
Amico
et al.

(1993)

FT06 6x6 55 55 55 55 55 55

FT10 10x10 930 955 960 930 936 946 930 930

FT20 20x5 1165 1201 1249 1165 1177 1178 1165 1165

LA01 10x5 666 666 666 666 666 666 666 666

LA02 10x5 655 659 681 666 666 655

LA03 10x5 597 597 620 597 666 597

LA04 10x5 590 593 620 590 590

LA05 10x5 593 593 593 593 593

LA06 15x5 926 926 926 926 926 926 926 926

LA07 15x5 890 890 890 890 890

LA08 15x5 863 863 863 863 863

LA09 15x5 951 951 951 951 951

LA10 15x5 958 958 958 958 958

LA11 20x5 1222 1222 1222 1222 1222 1222 1222 1222

LA12 20x5 1039 1039 1039 1039 1039

LA13 20x5 1150 1150 1150 1150 1150

LA14 20x5 1292 1292 1292 1292 1292

LA15 20x5 1207 1207 1237 1207 1207

LA16 10x10 945 946 1008 945 977 979 945 956 945

LA17 10x10 784 784 809 787 784

LA18 10x10 848 855 916 848 848

LA19 10x10 842 857 880 857 842 842

LA20 10x10 902 911 928 910 902

LA21 15x10 1046 1088 1139 1058 1047 1097 1046 1063 1047

LA26 20x10 1218 1257 1278 1218 1218 1231 1218 1218

LA31 30x10 1784 1784 1784 1784 1784 1784 1784

LA36 15x15 1268 1316 1373 1291 1305 1305 1268 1293 1268

 128

Table 15 The corresponding best schedules

Name Size
Best

known
IA Corresponding best schedule

FT06 6x6 55 55 [3 2 3 1 4 6 2 3 6 6 4 2 5 5 3 2 4 5 1 1 5 6 4 1 2 1 3 2 5 3 4 5 4 6 1 6]

FT10 10x10 930 955
[7 4 6 6 10 8 2 7 5 6 4 7 5 7 4 9 9 10 2 1 8 5 7 6 1 10 3 7 4 6 8 2 8 3
1 5 9 3 10 7 9 8 6 6 6 2 3 9 7 1 4 4 7 3 4 3 5 5 9 1 8 10 1 2 2 5 6 2 9
10 9 4 9 10 1 8 5 7 2 2 5 3 8 9 4 3 1 3 1 1 8 6 10 10 4 5 2 10 8 3]

FT20 20x5 1165 1201

[20 5 16 20 2 5 16 1 19 20 20 15 6 2 16 9 19 15 20 8 2 19 5 17 19
10 12 17 15 10 5 14 10 14 17 17 18 19 6 6 1 13 9 12 5 8 11 2 18 14
7 11 7 6 11 12 10 13 1 8 2 3 1 3 7 18 13 16 14 1 4 3 17 16 12 7 15 4
11 10 12 3 13 8 13 7 4 15 8 11 3 9 14 6 9 18 18 4 4 9]

LA01 10x5 666 666
[6 7 5 10 7 5 6 10 2 2 7 9 5 6 10 3 6 5 1 1 1 4 4 9 6 9 2 2 9 10 9 1 2
8 4 3 8 10 4 5 7 4 7 8 3 1 3 8 8 3]

LA02 10x5 655 656
[3 1 5 2 7 2 9 10 2 7 3 9 4 10 9 8 10 6 8 8 5 3 3 1 4 2 5 6 7 2 5 7 4 6
10 1 3 9 7 1 1 8 5 8 9 6 6 4 4 10]

LA03 10x5 597 597
[4 4 2 7 8 1 8 10 6 9 6 2 3 5 7 9 7 4 1 10 9 2 3 5 4 7 1 9 6 5 6 7 1 5 8
6 2 3 8 3 10 9 4 5 1 10 8 3 10 2]

LA04 10x5 590 593
[5 10 7 3 5 5 6 6 1 4 9 1 2 2 2 10 3 8 7 5 6 8 6 8 7 10 10 9 9 1 4 3 4
3 8 5 6 7 1 7 9 8 3 2 4 1 10 2 9 4]

LA05 10x5 593 593
[8 2 1 9 4 6 2 9 8 6 2 3 6 1 4 3 1 8 10 4 7 7 8 4 9 7 3 5 10 9 6 1 4 3 2
7 7 5 2 1 3 6 9 10 8 5 5 5 10 10]

LA06 15x5 926 926
[5 7 14 7 1 5 6 11 11 4 10 3 10 1 12 8 15 9 11 12 12 12 6 14 12 11
10 14 10 3 5 14 10 14 5 1 2 11 6 4 4 3 8 13 9 7 4 1 1 8 5 2 4 6 6 7 8
9 9 7 8 15 2 13 9 3 2 2 13 3 15 15 13 15 13]

LA07 15x5 890 890
[12 15 13 3 7 4 15 4 1 4 12 1 3 5 8 9 4 14 8 2 15 10 15 11 4 10 6 9
10 9 14 1 6 2 5 14 14 1 13 3 11 15 7 8 7 2 13 9 13 6 3 7 2 3 13 11 11
1 12 12 10 5 5 8 5 10 2 6 12 14 9 8 6 7 11]

LA08 15x5 863 863
[14 8 11 6 9 5 11 4 14 14 13 10 12 7 8 10 7 8 8 5 15 11 9 12 3 6 5 3
5 8 1 1 4 4 9 1 6 2 2 14 9 13 13 12 4 4 15 9 13 14 6 15 10 2 1 15 7 3
15 7 13 11 7 10 12 3 2 5 3 11 6 12 2 1 10]

LA09 15x5 951 951
[4 1 10 3 4 11 14 12 5 12 15 13 15 11 2 8 8 13 6 3 4 5 2 5 13 10 11 9
15 14 7 10 10 14 6 7 7 13 6 12 2 6 1 1 1 5 9 3 12 2 15 6 3 7 4 3 8 14
10 8 9 4 7 12 2 11 15 13 14 9 8 9 5 11 1]

LA10 15x5 958 958
[15 1 7 3 12 15 9 3 2 10 6 13 11 14 5 13 8 4 7 6 12 3 13 4 8 4 14 2 5
8 7 2 11 11 7 10 10 9 9 15 10 12 9 14 14 12 2 7 13 15 1 4 14 8 5 5 6
1 11 3 8 12 1 6 1 15 4 6 5 9 2 11 10 3 13]

 129

LA11 20x5 1222 1222

[13 11 20 11 20 8 15 1 14 2 7 18 5 11 4 9 7 20 4 12 6 9 15 7 18 3 13
8 20 17 18 15 10 16 5 16 16 8 14 6 12 15 3 17 2 16 2 1 13 11 5 6 6
10 5 16 9 4 3 11 14 12 1 15 18 17 18 12 6 13 4 14 19 9 10 2 1 7 8 9
13 7 4 2 19 17 19 17 20 10 3 12 1 8 14 5 10 19 3 19]

LA12 20x5 1039 1039

[1 14 7 20 2 5 19 14 9 15 20 16 8 11 6 20 19 19 5 6 7 9 13 1 18 12 8
15 4 4 13 9 3 18 18 2 5 9 11 20 3 15 9 12 11 16 10 16 13 3 11 12 4 7
1 17 1 5 17 3 5 2 14 6 8 8 12 13 7 14 17 2 15 4 6 20 10 17 3 17 7 18
10 18 6 19 19 15 8 12 16 16 11 4 14 10 1 2 13 10]

LA13 20x5 1150 1150

[7 20 8 9 6 15 17 4 5 3 12 18 11 16 17 8 3 3 2 8 7 2 19 9 11 19 6 12
13 11 14 4 14 19 20 20 7 13 4 18 10 9 6 10 2 1 19 4 10 14 18 13 5
17 18 16 1 12 10 12 19 17 4 13 14 17 6 15 2 15 8 7 8 7 1 15 5 6 9 1
1 5 16 10 20 9 14 13 2 16 11 12 11 3 18 15 3 20 16 5]

LA14 20x5 1292 1292

[5 7 8 17 3 8 1 11 7 20 2 3 20 14 13 9 15 19 1 20 18 11 2 14 9 13 9 4
10 14 2 15 17 2 20 12 10 11 3 2 7 18 11 13 6 17 12 6 7 7 6 14 15 11
5 19 5 8 5 10 8 5 1 17 16 3 18 8 15 1 4 18 4 16 16 9 17 9 19 1 18 15
6 10 16 10 13 4 19 4 19 12 3 20 16 13 14 12 6 12]

LA15 20x5 1207 1207

[2 7 3 13 20 14 13 2 12 11 9 15 2 11 11 7 20 12 19 12 4 13 4 20 12 4
1 7 11 1 15 1 6 15 8 2 5 10 3 4 19 6 9 13 18 8 10 17 19 3 2 11 16 16
6 10 8 5 12 10 18 5 8 19 6 1 1 8 19 13 7 20 14 5 18 9 15 15 14 4 14
6 5 10 16 17 20 17 17 3 9 9 16 3 17 18 18 14 7 16]

LA16 10x10 945 946
[10 9 10 6 3 2 6 8 3 7 1 3 3 6 4 5 7 9 8 6 7 5 3 7 2 2 10 1 1 3 7 4 3 1
8 6 1 4 10 5 3 9 10 4 1 2 7 5 6 5 3 8 4 9 2 5 8 4 9 1 7 10 5 4 4 6 8 6 5
6 1 2 3 2 2 5 10 7 7 10 9 1 9 4 7 8 8 8 10 5 4 9 10 9 2 6 9 8 1 2]

LA17 10x10 784 784
[7 2 4 8 6 2 1 1 10 5 3 4 7 4 5 1 8 3 2 8 2 4 3 5 6 9 7 5 8 6 6 5 4 4 10
1 2 6 7 3 9 5 9 3 9 5 1 2 10 7 3 10 6 8 2 8 2 9 3 1 2 9 8 3 10 3 9 7 1 9
7 9 1 4 6 6 7 5 10 5 7 2 10 9 8 8 7 4 8 4 6 10 6 4 1 10 5 1 3 10]

LA18 10x10 848 855
[9 7 10 9 9 10 5 2 7 5 10 7 7 6 3 3 8 1 8 9 4 6 3 6 5 1 1 9 4 8 8 6 3 8
3 10 1 6 5 10 3 9 8 9 6 1 3 3 10 3 4 3 4 10 6 7 5 1 1 2 2 1 1 4 1 4 2 5
6 2 2 5 4 8 4 5 9 5 7 6 6 5 4 2 2 7 8 7 7 9 8 2 10 10 2 10 8 7 9 4]

LA19 10x10 842 857
[8 9 6 10 5 1 3 2 2 7 4 10 1 6 1 3 10 4 5 10 3 2 9 5 9 9 1 1 4 6 5 7 5
7 8 6 2 8 1 9 4 4 4 3 4 9 2 4 5 8 5 9 10 2 9 7 1 4 7 4 7 5 6 2 7 3 8 6 5
3 7 1 3 7 3 1 6 7 2 6 5 9 8 8 9 6 2 1 8 2 8 6 10 10 10 8 10 10 3 3]

LA20 10x10 902 911
[1 9 6 6 10 2 5 8 8 6 9 10 5 7 10 5 2 6 5 9 5 7 1 8 8 7 10 3 2 6 1 2 7
10 1 9 10 1 6 3 5 9 6 6 8 9 1 10 5 2 4 3 6 4 5 9 7 3 3 7 4 4 3 8 4 1 1 6
1 10 4 1 4 9 9 4 9 3 8 2 5 5 7 10 2 2 7 7 3 3 2 2 8 10 3 7 4 8 4 8]

 130

LA21 15x10 1046 1088

[6 7 1 2 12 7 8 5 10 7 11 3 11 11 12 15 11 8 7 3 11 6 6 13 10 9 15 15
14 12 8 9 5 2 11 1 2 1 3 12 2 8 15 12 14 12 12 1 13 4 8 4 10 8 5 8 3
4 7 15 4 11 2 3 12 13 7 9 14 7 5 2 4 2 13 1 14 14 2 10 5 11 6 7 10 5
12 2 15 9 13 6 3 4 10 14 3 13 9 13 10 6 1 3 3 6 9 6 6 14 13 12 1 9 3
5 15 4 4 10 13 14 8 11 7 15 10 4 5 4 10 2 7 6 8 15 14 5 8 9 13 15 14
1 1 11 1 5 9 9]

LA26 20x10 1218 1257

[9 15 11 19 2 7 1 4 5 19 8 1 17 17 1 16 8 10 6 4 9 17 13 7 12 14 18 3
14 4 11 5 15 5 16 3 18 19 11 10 10 18 4 10 10 19 9 7 7 4 18 4 1 2 1
1 12 15 11 19 8 2 12 13 4 16 14 8 2 14 2 20 1 9 20 1 4 18 16 5 8 2
13 4 1 14 18 13 8 7 19 5 17 7 16 15 10 12 15 6 17 10 3 14 3 6 4 18
12 16 11 12 20 3 11 17 15 20 2 9 17 2 12 2 19 5 9 13 3 15 17 6 7 8
10 18 12 13 14 7 3 6 15 18 9 3 11 15 13 10 16 5 14 6 16 6 8 3 9 11
15 14 2 20 20 18 19 9 20 14 20 6 20 5 5 17 13 20 6 3 13 1 6 12 7 17
10 13 19 11 12 7 16 5 8 16 11 8 9 19]

LA31 30x10 1784 1784

[15 25 5 4 13 25 19 26 3 19 23 29 12 20 8 14 30 21 28 4 20 2 8 27
18 29 11 15 27 20 12 30 3 7 26 10 22 22 18 7 20 8 25 21 4 29 15 1
29 5 24 16 28 12 4 1 3 2 16 1 4 22 25 2 9 12 15 8 18 26 6 27 29 30
10 4 9 30 25 14 28 11 26 25 25 3 7 3 17 25 28 8 14 13 2 30 9 5 21 8
10 22 2 14 11 14 6 18 17 20 11 12 21 15 2 21 21 29 24 10 11 16 16
18 6 10 5 9 30 2 20 17 5 23 24 21 26 14 28 9 23 28 12 26 20 4 11 22
18 16 24 10 29 23 6 20 15 13 7 19 3 17 19 14 22 25 12 24 10 5 23
19 5 11 17 16 16 13 1 28 13 30 1 5 22 18 1 24 17 24 13 12 8 6 17 19
17 4 11 3 13 24 11 30 24 4 27 26 29 7 16 27 20 13 1 9 23 20 30 6 17
5 27 23 6 29 21 6 30 22 15 2 14 28 6 16 28 24 6 2 18 10 11 3 7 26
15 19 28 19 7 1 3 4 19 8 10 13 29 26 27 9 15 14 22 3 5 23 1 22 7 27
12 18 1 27 27 14 13 18 9 2 8 26 19 12 8 9 15 7 21 10 16 17 21 7 23
25 23 9]

LA36 15x15 1268 1316

[4 11 8 5 8 2 8 12 13 14 7 1 7 11 6 9 9 15 12 5 13 2 2 7 9 15 15 11 9
7 11 8 13 1 7 13 1 13 6 6 5 10 8 8 5 4 12 11 4 2 12 4 15 1 10 3 5 1
10 15 3 7 5 3 14 2 11 15 12 14 6 15 6 5 8 14 4 1 9 15 2 7 12 7 5 10 4
9 8 10 5 3 7 10 11 15 12 11 1 10 14 9 3 15 12 13 3 3 3 1 13 15 10 4
15 12 12 7 5 11 8 13 2 2 1 2 14 3 7 4 10 7 4 14 9 9 11 6 5 3 15 11 14
11 6 13 4 8 6 4 14 3 2 12 12 9 14 12 15 9 8 13 1 7 4 6 8 1 6 1 6 6 10
9 10 10 5 1 8 11 2 6 3 12 2 8 13 13 10 13 2 13 5 9 4 5 12 14 13 5 1 7
14 14 8 15 14 11 3 10 2 11 4 2 9 3 4 6 1 3 7 10 6 9 14]

 131

7.4 Summary

 In this chapter, a novel immune algorithm emulating the features of a biological

immune system is proposed for solving the job-shop scheduling problem. The

antibody/solution representation of a scheduling is based on the operation

(operation-based representation), and the goal is to minimize the maximum makespan

time of a scheduling. During the optimal search of scheduling, inherent local search

ability in immune system offered by clone process enhances the search speed and

accuracy in large-size scheduling problem. In addition, by integrating the features of

biological immune system such as antibody memory, fragmental rearrangement, and

diversity, the proposed immune algorithm provides a balance between exploring search

space and finding optimum solutions. Finally, numerical simulation based on the

benchmark instances demonstrated the effectiveness of the proposed immune algorithm

which produces optimal or near-optimal solutions on all instances tested, and has better

performance to part of comparison methods.

 132

CHAPTER 8

CONCLUSIONS

In this dissertation, a novel immune algorithm emulating the biological immune

system fully has been proposed by the author for solving the single-objective,

single-objective with multi-modally, and multi-objective optimization problems

considering different solution encoding system e.g. one- & two-dimensional binary-

encoded string and integer-encoded string. The proposed algorithm differs from the

other hybrid algorithms which are combined immune algorithm with evolutionary

algorithm (especially genetic algorithm) not only used the characteristics of the clonal

selection principle and the immune diversity, but the concepts of the cytokine, the

germ-line DNA libraries, the antibody fragment rearrangement, the antibody memory, and

the more antibody diversity mechanisms are also employed for finding the non-dominated

solutions and maintaining diversity in obtained non-dominated front, these are two

remarkable things concerned when adopted the evolutionary algorithm in the optimization

search. Moreover, the proposed methodology enhances convergent accuracy in

solutions via the function of clonal proliferation and schemata recombination

implemented through the process of gene fragmental rearrangement. The key natural

selection components (gene fragments) are similar to the building blocks of genetic

 133

algorithms associated with stimulus donor antibodies and memory antibodies. The

rearrangement of antibody genes involved in the production of antibodies differs

somewhat from the recombination of parental genes in genetic algorithms. In the former,

antibodies (solutions) are the direct products of gene fragment (e.g. light- and heavy-

chain gene fragments) combinations (schemata), rather than the antibody itself, while the

latter involves the crossing-over (or chromosome mixing) from parental genetic material

to create an offspring. Meanwhile, the two main drawbacks of the genetic algorithms –

the lack of local search ability and the premature convergence pointed out by Tazawa

(1996), have also been improved in this dissertation through the use of clonal

proliferation and antibody diversification schemes. The inherent local search and

memory abilities of the biological immune system employing clonal proliferation enhance

the search speed and convergence accuracy of solutions in the proposed algorithm, with

the substitution of increasing computation time. In the other hand, the innate

capabilities of specificity, distinction, and diversity using affinity, cytokine, and

diversification mechanisms further improve the premature convergence and diversity of

solutions. Therefore, the balance between exploration and exploitation of non-dominated

solutions within a search space are realized in this dissertation through the integration of

clonal proliferation, germ-line gene libraries, cytokine, gene fragment rearrangement, and

memory antibodies, further assisted by several diversification schemes.

 134

The effectiveness and adaptability of proposed immune algorithm have been proved

by several optimization problems including multi-objective optimizations in the

unconstrained/constrained test functions and the sizing of truss structure, single-objective

with multi-modal optimizations in the structural topology, and single-objective

optimizations in the job-shop scheduling problems. In the multi-objective optimization

of unconstrained/constrained test functions, numerous test functions were performed to

determine the effectiveness (accuracy as well as spread of global non-dominated solutions

or Pareto-optimal solutions) of the proposed immune algorithm, with Pareto-optimal

solution performances quantitatively measured by five performance metrics. The

compared results of these tests shown that the proposed immune algorithm generally

performs better than SPEA and NSGA-II, and by extension also better than MOGA,

NPGA, and NSGA in several areas. For multi-objective tress-structure sizing

optimization considering the constraint of maximum allowable stress, the compared

figures shown that the proposed algorithm is capable of finding acceptable feasible

Pareto-optimal solutions in 10-bar plane truss and 25-bar space truss optimization

problems. In addition, during the single-objective multi- modal topological optimization

considering the asymmetry structures and the constraint of maximum allowable stress, the

resulting figures indicated that the potential of the proposed immune algorithm as a tool

for investigating optimal topologies and for automatically creating innovative solutions to

 135

structural design problems has been illustrated in the examples presented. In the

single-objective job-shop scheduling optimization, 27 benchmark instances were used for

demonstrating the optimal search ability in such not-bit encoded system. The

scheduling results show that the proposed immune algorithm has ability to produce

optimal or near-optimal solutions on all instances tested, and has better performance than

simple methods.

Finally, numerous compared results from various applications confirmed that the

immune algorithm proposed in this dissertation is capable of fining acceptable

Pareto-optimal solutions quickly meanwhile maintaining diversity among Pareto-optimal

front and can be applied well in widely field of engineering optimal design.

 136

Bibliography

Aisu, H. and Mizutani, H. (1996), “A Rule Acquisition for Image Processing using

Immune Mechanism”, Proceeding of the 12th Fuzzy System Symposium, pp. 75-78.

Allaire, G. and Kohn, R.V. (1993), “Optimal design for minimum weight and

compliance in plane stress using external microstructures”, European Journal of

Mechanics, A/Solid 12 (6), pp. 839-878.

Anagnostou, G., Rønquist, E., and Patera, A. (1992), “A computational procedure

for part design”, Computer Methods in Applied Mechanics Engineering, 97, pp. 33-48.

Applegate, D. and Cook, W. (1991), “A computational study of the job shop

scheduling problem”, ORSA Journal on computing, 3(2), pp. 149-152.

Balicki, J., Kitowski, Z., and abd Stateczny, A. (1998), ”Extended Hopfield models

of neural networks for combinatorial multi-objective optimization problems”, The

IEEE International Joint Conference on Neural Networks, 1998. IEEE World

Congress on Computational Intelligence, pp. 1646 –1651.

Bendsøe, M. P. and Kikuchi, N. (1988), “Generating optimal topologies in structural

design using a homogenization method”, Computer Methods in Applied Mechanics

Engineering, 71, pp. 197-224.

Bersini, H. and Varela, F. J. (1990), “Hints for adaptive problem solving gleaned

 137

from immune network”, Parallel Problem Solving from Nature, pp. 343-354.

Bersini, H. and Varela, F. J. (1991), “The immune recruitment mechanism: A

selective evolutionary strategy”, Proc. 4th Int. Conf. On Genetic Algorithms, pp.

520-526.

Bersini, H. and Varela, F. J. (1994), “The Immune Learning Mechanisms:

Reinforcement, Recruitment and Their Applications”, In Paton, R. (ed.), Computing

with Biological Metaphors, Chapman and Hall, pp. 166-192.

Blazewicz, J., Domschke, W., and Pesch, E. (1996), “The job shop scheduling

problem: Conventional and new solution techniques,” European Journal of

Operational Research, 93, pp. 1-33.

Brucker, P., Jurish, B., and Sievers, B. (1994), “A branch & bound algorithm for the

job shop scheduling problem”, Discrete Applied Mathematics, 49, pp. 07-127.

Carlier, J. and Pinson, E. (1989), “A algorithm for solving the job-shop problem”,

Management Science, 35(2), pp. 164-176.

Carter, J. H. (2000), “The Immune System as a Model for Pattern Recognition and

Classification”, Journal of the American Medical Information Association, 7(1), pp.

28-41.

Chapman, C., Saitou, K., and Jakiela, M. (1994), ”Genetic algorithms as an

approach to configuration and topology design”, ASME Journal of Mechanical design,

 138

116, pp. 1005-1012.

Cheng, R., Gen, M., and Tsujimura, Y. (1996), “A tutorial survey of job-shop

scheduling problems using genetic algorithm – I. Representation”, Computers and

Industrial Engineering, 30(4), pp. 983-997.

Cheng, R., Gen, M., and Tsujimura, Y. (1999), “A tutorial survey of job-shop

scheduling problems using genetic algorithm – II. Hybrid genetic search strategies”,

Computers and Industrial Engineering, 30(4), pp. 51-55.

Chun J. S., Lim, J. P., Jung, H. K., and Yoon, J. S. (1999a), “ Optimal design of

synchronous motor with parameter correction using immune algorithm”, IEEE Trans.

On Energy Conversion, 14(3), pp. 610-615.

Chun, J. S., Lim, J. P., Jung, H. K., and Jung, H. K. (1999b), “Multisolution

optimization of permanent magnet linear synchronous motor for high thrust and

acceleration operation”, Electric Machines and Drives, 1999. International Conference

IEMD '99, pp. 57-59.

Chun, J. S., Jung, H. K., and Hahn, S. Y. (1998), “A study of optimization

performances between immune algorithm and other heuristic algorithms”, IEEE Trans.

on Magnetics, 34(5), pp. 2972-2975.

Chun, J. S., Kim, M. K., Jung, H. K., and Hong, S. K. (1997), “Shape optimization

of electromagnetic device using immune algorithm”, IEEE Trans. on Magnetics, 33(2),

 139

pp. 1876-1879.

Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont G. B. (2002),

“Evolutionary algorithms for solving multi-objective problems”, New York: Kluwer

Academic Publishers.

Coello Coello, C. A. and Christiansen, A. D. (2000), “Multiobjetive optimization of

trusses using genetic algorithms”, Computers and Structures, 75(6), pp. 647-660.

Coren, D., Dorigo, M., and Glover, F. (eds.), “New idea in Optimization, Part Three:

Immune System Methods”, McGraw Hill, New York, pp. 203-215.

Croce, F. D., Tadei, R., and Volta, G. (1995), “A genetic algorithm for job shop

scheduling problem”, Computers and Operations Research, 22, pp. 15-24.

Dasgupta, D. and Forrest, S. (1999), “An Anomaly Detection Algorithm Inspired by

the Immune System”, In Dasgupta, D. (ed.), Artificial Immune System and Their

Applications, Springer-Verlag, pp. 262-277.

Davis, J. (1985), “Job shop scheduling with genetic algorithm”, proceeding of First

international Conference on Genetic Algorithm, pp. 136-140.

Deb, K. (1999), “Multi-objective genetic algorithms: Problem difficulties and

construction of test problems. Evolutionary Computation, 7(3), pp. 205-230.

Deb, K. (2001), “Multi-objective optimization using evolutionary algorithms”, New

York: JOHN WILEY & SONS.

 140

Deb, K. and Gulati, S. (2001), “Design of truss-structures for minimum weight using

genetic algorithms”, Finite Elements in Analysis and Design, 37, pp. 447-465.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000), “A fast and elitist

multi-objective genetic algorithm: NSGA-II”, Technical Report 200001, Indian

Institute of Technology, Kanpur: Kanpur Genetic algorithms Laboratory (KanGAL).

Deb, K., Pratap, A., and Meyarivan, T. (2001), “Constrained test problems for

multi-objective evolutionary optimization”, First International Conference, EMO, pp.

284-298.

de Castro, L. N. and Jonathan, T. (1999), “Artificial immune systems: A new

Computational Intelligence Approach”, Springer-Verlag.

Dell’ Amico, M. and Trubian, M. (1993), “Applying tabu search to the job shop

scheduling problem”, Ann. Ops. Res., 40, pp. 231-252.

Dorndorf, U. and Pesch, E. (1995), “Evolution based learning in a job shop

environment”, Computers and Operations Research, 22, pp. 25-40.

Endoh, S., Toma, N., and Yamada, K. (1998), “Immune Algorithm for n-TSP”,

Proceeding of IEEE Systems, Man, and Cybernetics Conference, pp. 3844-3849.

Fourie, P. C. and Groenwold, A. A. (2002), “The particle swarm optimization

algorithm in size and shape optimization”, Structural Multidiscipline Optimization, 23,

pp.259-267.

 141

Erbatur, F., Ohasancebi, O., Tütüncü, I., and Kilic, H. (2000), “Optimal design of

planar and space structures with genetic algorithms”, Computers and Structures, 75,

pp. 209-224.

Fadel, G. and Li, Y. (2002), “Approximating the Pareto curve to help solve

biobjective design problems”, Struct Multidisc Optim, 23, pp. 280-296.

Fisher, H. and Thompson, G. L. (1963), “Probabilistic learning combinations of local

job-shop scheduling rules”, In: Industrial Scheduling, Muth, J. F. and Thompson, G. L.

(eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 225-251.

Fonseca, C. M. and Fleming, P. J. (1993), “Genetic algorithm for multiobjective

optimization: Formulation, discussion, and generalization”, In Proc. of the Fifth Int.

Conf. on Genetic Algorithms, pp. 416-423.

Foo, S. Y., Takefuji, Y., and Szu, H. (1995), “Scaling properties of neural networks

for job shop scheduling”, Neurocomputing, 8(1), pp. 79-91.

Fukuda, T., Mori, M., and Tsukiyama M. (1993), “Immune Network Genetic

Algorithm for Adaptive Production Scheduling”, Proceeding of 15th IFAC World

Congress, 3, pp.57-60.

Fukuda, T., Mori, K., and Tsukiyama, M. (1998), “Parallel search for multi-modal

function optimization with diversity and learning of immune algorithm”, In Dasgupta,

D. (ed,), Artificial Immune Systems and Their Applications, pp. 211-219.

 142

Gandibleux, X., Mezdaoui, N., and Freville, A. (1996), “A Tabu Search Procedure to

Solve Multiobjective Combinatorial Optimization Problems”, In Caballero, R. and

Steuer, R. (eds.), Proceedings Volume of Multiple Objective Programming and Goal

Programming ’96, Springer-Verlag.

Gen, M., Tsujimura, Y., and Kubota, E. (1994), “Solving job-shop scheduling

problem using genetic algorithms”, Proc. of the 16th Int. Conf. on Computer and

Industrial Engineering, Ashikaga, Japan, pp. 576-579.

Goldberg, D. E. (1989), “Genetic algorithms in search optimization & learning”,

Addison-Wesley.

Goldberg, D. and Richardson, J. (1987), “Genetic algorithms with sharing for

multimodal function optimization, Proceedings of the Second International

Conference on Genetic algorithms, pp. 41-49.

Goldberg, D. and Samtani, M. (1986), “Engineering optimization via genetic

algorithm”, In: Electronic Computation – Proceedings of the Ninth Conference on

Electronic Computation, American Society of Civil Engineers, Alabama at

Birmingham, February, pp. 471-482.

Gonçalves, J. F., Mendes, J. M., and Resende, M. G. C. (2002), “A hybrid genetic

algorithm for the job shop scheduling problem”, AT&T Labs Research Technical

Report TD-5EAL6J.

 143

Hajela, P. and Lee, J. (1996), “Constrained Genetic Search via Schema Adaptation:

An Immune Network Solution”, Structural Optimization, 12(1), pp. 11-15.

Hajela, P. and Lin, C.-Y. (1992), “Genetic search strategies in multicriterion optimal

design”, Structural Optimization, 4, pp.99-107.

Hajela, P., Yoo, J., and Lee, J. (1997), “GA based Simulation of Immune Networks –

Application in Structural Optimization”, Engineering Optimization, 29, pp. 131-149.

Hajela, P. and Yoo, J. (1999), “Immune Network Modeling in Design Optimization“,

In

Hansen, M. P. (1997), “Tabu Search for Multiobjective Optimizataion: MOTS”,

MCDM’97, Cape Town, South Africa, January, pp. 6-10.

Harris, R.S., Kong, Q., and Maizels, N. (1999), “Somatic hypermutation and the

three R’s: repair, replication and recombination”, Mutation Research. 436, pp.

157-178.

Hasanc, Àebi O. and Erbatur F. (2001), “Evaluation of crossover techniques in

genetic algorithm based optimum structural design”, Computers and Structures, 78, pp.

435-448.

Horn, J., Nafpliotis, N., and Goldberg, D. E. (1994), “A niched pareto genetic

algorithm for multi-objective optimization”, Proceedings of the First IEEE Conference

on Evolutionary Computation, pp. 82-87.

 144

Hunt, J. E. and Cooke, D. E. (1996), “Learning using an Artificial Immune System”,

Journal of Network and Computer Applications, 19, pp. 189-212.

Ishida, R., Sato, T. and Sugiyama, Y. (1995), “Optimum design of truss structure

by genetic immune recruitment mechanism”, Japan Society of Mechanical Engineers,

61(581), pp. 205-210.

Jakiela, M. J., Chapman, C., Duda, J., Adewuya, A., and Saitou, K. (2000),

“Continuum structural topology design with genetic algorithms”, Computer Methods

in Applied Mechanics Engineering, 186, pp. 339-356.

Jenkins, W. (1991), “Structural optimization with the genetic algorithm”, Structural

engineering, 69, pp. 418-422.

Jerne, N. K. (1974), “Towards a network theory of immune system”, Ann. Immunol.,

125C, pp. 373-389.

Jiao L. and Wang L. (2000), “A novel genetic algorithm based on immunity”, IEEE

Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 30(5),

pp. 552-561.

Jun, J.-H., Lee, D.-W., and Sim, K.-B. (1999), “Realization of Cooperative and

Swarm Behavior in Distributed Autonomous Robotics Systems using Artificial

Immune System”, Proceeding of IEEE Systems, Man, and Cybernetics Conference, 4,

pp. 614-619.

 145

Kane, C. and Schoenauer, M. (1996), “Topological optimum using genetic

algorithm”, Control and Cybernetics, 25, pp. 1059-1088.

Kephart, J. O. (1994), “A Biological Inspired Immune System for Computers”, In

Brooks, R. A. and Maes, P. (eds.), Artificial Life IV Proceeding of the Fourth

International Workshop on the Synthesis and Simulation of Living Systems, MIT press,

pp. 130-139.

Kibsgaard, S. (1992), “Sensitivity analysis - the basis for optimization”, International

Journal of Numerical Methods in Engineering, 34, pp. 901-932.

Kim, J. and Bentley, P. (1999), “Negative Selection and Niching by an Artificial

Immune System for Network Instrusion Detection”, Proceeding of Genetic and

Evolutionary Computation Conference, pp. 149-158.

Knight, T. and Timmis, J. (2001), “AINE: An Immunological Approach to Data

Mining”, Proceeding of the IEEE International Conference on Data Mining,

pp.297-304.

Knowles, J. D. and Corne, D. W. (1999), “Approximating the Nondominated Front

Using the Pareto Archived Evolution Strategy”, Evolutionary Computation, 7(3), pp.

1-26

Kolonko, M. (1999), “Some new results on simulated annealing applied to the job

shop scheduling problem”, European Journal of Operational Research, 113, pp.

 146

123-136.

Koppen, M. and Rudlof, S. (1997), “Multi-objective optimization by NESSY

algorithm”, Proceedings of the Second International ICSC Symposium on Soft

Computing, SOCO’97, pp. 243-248.

Krawinkel, U., Zoebelein, G., Bruggemann, M., Radburch, A., and Rajewsky, K.

(1983), “Recombination between antibody heavy chain variable-region genes:

Evidence for gene conversion”, Proc. Natl. Acad. Sci. USA, 80, pp. 4997-5001.

Krishnakumar, K. and Neidhoefer, J. (1997), “Immunized Adaptive Critics for Level

2 Intelligent Control”, Proceeding of IEEE Systems, Man, and Cybernetics Conference,

1, pp. 856-860.

Laumanns, M., Rudolph, G., and Schwefel, H. P. (1998), “A spatial predator-prey

approach to multi-objective optimization: A preliminary study”, Proceedings of the

Parallel Problem Solving from Nature V (PPSN-V), pp. 241-249

Lawrence, S. (1984), “Resource constrained project scheduling: An experimental

investigation of heuristic scheduling techniques”, GSIA, Carnegie Mellon University,

Pittsburgh, PA.

Lin, C. Y. and Chou, J. N. (1999), “A two-stage approach for structural topology

optimization”, Advances in Engineering Software, 30, pp. 261-271.

Lis, J. and Eiben, A. E.(1997), “Multi-sexual genetic algorithm for multiobjective

 147

optimization”, Proceedings of the IEEE Conference on Evolutionary Computation,

Indianapolis, IN, USA, pp. 59-64

Liu, J. S., Parks, G. T., and Clarkson, P. J. (2000), ”Metamorphic development: a

new topology optimization method for continuum structures”, Struct. Multidisc.

Optim., 20, pp. 288-300.

Lo, C.-C. and Chang, W.-H. (2000), “Multiobjective hybrid genetic algorithm for the

capacitated multipoint network design problem”, IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 30(3), pp. 461-470

Loh, H. T. and Papalambros, P. Y. (1991), “A sequential linearization approach for

solving mixed-discrete nonlinear design optimization problems”, ASME Transactions

on Journal of Mechanical Design, 113(3), pp. 325-334.

Luh, G.-C. and Cheng, W.-C. (2001), ”Non-linear System Identification using an

Artificial Immune System”, Proc. Instn. Mech. Engrs, Part I, Journal of Systems and

Control Engineering, 215, pp. 569-585.

Luh, G.-C. and Cheng, W.-C. (2002), “Behavior-based Intelligent Mobile Robot

using an Immunized reinforcement adaptive learning Mechanism”, Advanced

Engineering Informatics, 16(2), pp. 85-98.

Luh, G.-C., Chueh, C.-H., and Liu, W.-W. (2003), “MOIA: Multi-objective Immune

Algorithm”, Engineering Optimization, 35(2), pp. 143-164.

 148

Luh, G.-C. and Chueh, C.-H. (2004), “Multi-objective Optimal Design of Truss

Structure with Immune Algorithm”, Computers and Structures, 82, pp. 829-844.

Manser, T., Wysocki, L. J., Margolies, M. N., and Gefter, M.L. (1987), “Evolution

of Antibody Variable Region Structure during the Immune Response”, Immunological

Reviews 96, pp. 141-162.

Mariano C. E. and Morales, E. (1999), “A Multiple Objective Ant-Q Algorithm for

the Design of Water Distribution Irrigation Networks”, Technical Report HC-9904,

Instituto Mexicano de Tecnología del Agua.

Maturana, F., Gu, F., Naumann, A., and Norrie, D. H. (1997), “Object-oriented

job-shop scheduling using genetic algorithms”, Computers in Industry, 32, pp.

281-294.

Michalewicz, Z., Dasgupta, D., and Le Riche, R. G. (1996), “Schoenauer M.

Evolutionary algorithms for constrained engineering problems”, Computers Industrial

Engineering, 30(4), pp. 851-870.

Moh, J. S. and Chiang, D. Y. (2000), “Improved simulated annealing search for

structural optimization”, AIAA Journal, 38(10), pp. 1965-1973.

Mori, M., Tsukiyama, M., and Fukuda, T. (1993), “Immune Algorithm with

Searching Diversity and its application to Allocation Problem”, Trans. of the institute

of Electrical Engineering of Japan, 113-C(10), pp.872-878.

 149

Murata, T. and Ishibuchi, H. (1995), “MOGA: Multi-objective genetic algorithms”,

Proceedings of the Second IEEE International Conference on Evolutionary

Computation, pp. 289-294.

Murata, T. and Ishibuchi, H., and Tanaka, H. (1995), “Multi-objective genetic

algorithm and its applications to flowshop scheduling”, Computers industrial

Engineering, 30(4), pp. 957-968.

Narayanan, S. (1998), “On improving multiobjective genetic algorithms for design

optimization”, Structural Optimization, 18(2-3), pp. 146-155.

Nowicki, E. and Smutnicki, C. (1996), “A fast taboo search algorithm for the

job-shop problem”, Management Science, 42(6), pp. 797-813.

Osyczka, A. (2002), “Evolutionary algorithms for single and multicriteria Design

optimization”, Germany: Physica Verlag.

Osyczka, A. and Kundu, S. (1995), “A new method to solve generalized multicriteria

optimization problems using the simple genetic algorithm”, Structural Optimization,

10(2), pp. 94-99.

Perelson, A. S., Mirmirani, M., and Oster, G.F. (1978), “Optimal strategies in

immunology II. B Memory cell Production”, J. Math. Biol., 3, pp. 325-367.

Ponnambalam, S. G., Aravindan, P., and Rajesh, S. V., (2000), “A tabu search

algorithm for jod shop scheduling”, International Journal of Advanced Manufacturing

 150

Technology, 16, pp. 765-771.

Ponterosso, P. and Fox, D. S. J. (1999), “Heuristically Seeded Genetic Algorithms

Applied to Truss Optimization”, Engineering with Computers, 15, pp. 345–355.

Querin, O. M., Steven, G. P., and Xie, Y. M. (1998), “Evolutionary structural

optimization (ESO) using a bidirectional algorithm”, Engineering Computations, 15,

pp. 1031-1048.

Rajeev, S. and Krishnamoorthy, C. S. (1992), “Discrete optimization of structures

using genetic algorithms”, Structural engineering. 118, pp. 1233-1250.

Rao, S. S., Sundararaju, K., Prakash, B. G., and Balakrishna, C. (1992),

“Multi-objective fuzzy optimization techniques for engineering design”, Computers &

Structures, 42(1), pp. 37-44.

Rao Vemuri, V. and Cedeno, W. (1995), “New genetic algorithm for multi-objective

optimization in water resource management”, IEEE International Conference on

Evolutionary Computation, pp. 495-500.

Roitt, I. and Brostoff, J. (1998), “Immunology 5/e”, Mosby International Ltd., 1998.

Schaffer, J. D. (1985), “Multiple objective optimization with vector evaluated genetic

algorithms”, Proceedings of an international Conference on Genetic Algorithms and

Their Applications, Pittsburgh, PA, pp. 93-100.

Schott, J. R. (1995), “Fault Tolerant Design using Single and Multi-criteria Genetic

 151

Algorithms”, Master’s Thesis, Boston, MA: Department of Aeronautics and

Astronautics, Massachusetts Institute of Technology

Shih, C. J. and Yu, K. C. (1995), “Weighting objectives strategy in multicriterion

fuzzy mechanical and structural optimization”, Structural Engineering and Mechanics,

394, pp. 373-382.

Srinivas, N. and Deb, K. (1994), “Multi-objective optimization using non-dominated

sorting in genetic algorithms”, Evolutionary Computation, 2(3), pp. 221-248.

Suppapitnarm, A., Seffen K. A., Parks G. T., and Clarnkson P. J. (2000),

“Simulated annealing algorithm for multiobjective optimization”, Engineering

Optimization, 33(1), pp. 59-85.

Suzuki, K. and Kikuchim, N. (1991), “A homogenization method for shape and

topology optimization”, Computer Methods in Applied Mechanics Engineering, 93, pp.

291-318.

Tazawa, I., Koakutsu, S., and Hirata, H. (1996), “An immunity based genetic

algorithm and its application to the VLSI floorplan design problem”, Proceedings of

IEEE International Conference on Evolutionary Computation, pp. 417-421.

Templeman, A. B. (1988), “Discrete optimum structural design”, Computers and

Structures, 30(3), pp. 511-518.

Tenek, L. H. and Hagiwara, I. (1993), “Static and vibrational shape and topology

 152

optimization using homogenization and mathematical programming”, Computer

Methods in Applied Mechanics Engineering, 109, pp. 143-154.

Toma, N., Endo, S., and Yamada, K. (1999), “Immune algorithm with immune

network and MHC for adaptive problem solving”, Proc. of the IEEE System, Man, and

Cybernetics, IV, pp. 271-276.

Tomoyuki, M. (2003), “An application of Immune Algorithms for Job-Shop

Scheduling Problems”, Proc. of the 5th International Symposium on Assembly and Task

Planning, pp. 146-150.

Van Laarhoven, P. Aarts, E., and Lenstra, J. (1992), “Job shop scheduling by

simulated annealing”, Ann. Ops. Res., 40, pp. 113-125.

Viennet, R., Fonteix, C. and Marc, I. (1996), “New multicriteria optimization method

based on the use of a diploid genetic algorithm: Example of an industrial problem”,

Lecture Notes in Computer Science, v1063, pp. 200.

Wang, L. and Zheng, D. Z. (2002), “A modified genetic algorithm for job shop

scheduling”, Int J Adv Manuf Technol, 20, pp. 72-76.

Woon, S. Y., Querin, O. M., and Steven, G. P. (2001), “Structural application of a

shape optimization method based on a genetic algorithm”, Struct. Multidisc. Optim.,

22, pp. 57-64.

Wu, S. J. and Chow, P. T. (1995a), “Steady-state genetic algorithms for discrete

 153

optimization of trusses”, Computers & structures, 56, pp. 979-991.

Wu, S. J. and Chow, P. T. (1995b), “Integrated discrete and configuration

optimization of trusses using genetic algorithms”, Computers and Structures, 55(4), pp.

695-702.

Xie, Y. M. and Steven, G. P. (1993). “A simple evolutionary procedure for structural

optimization”, Computers & structures, 49, pp. 885-896.

Yoo, J. and Hajela, P. (1999), “Immune network simulations in multicriterion design”,

Structural Optimization, 18, pp. 85-94.

Zitzler, E., Deb, K., Thiele, L., Coello Coello C. A., and Corne D. (2001),

“Evolutionary multi-criterion optimization”, Springer.

Zitzler, E., Deb, K., and Thiele, L. (2000), “Comparison of Multiobjective

Evolutionary Algorithms: Empirical Results”, Evolutionary Computation, 8(2), pp.

173-195.

Zitzler, E. (1999), “Evolutionary Algorithms for multi-objective optimization:

Methods and Application”, Ph. D. Thesis, Zurich, Switzerland: Swiss Federal Institute

of Technology (ETH) (Dissertation ETH No. 13398).

Zitzler, E. and Thiele, L. (1998), “An evolutionary algorithm for multi-objective

optimization: The strength Pareto approach”, Technical Report 43, Computer

Engineering and Communication Network Lab (TIK), Swiss Federal Institute of

 154

Technology (EIH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.

Zitzler, E. and Marco, L., “Test problems and test data for multiobjective optimizers”,

Test Problem Suite, http://www.tik.ee.ethz.ch/~zitzler/testdata.html

 155

http://www.tik.ee.ethz.ch/~zitzler/testdata.html

	An Immune Algorithm for Engineering Optimization
	Dissertation for Ph.D. Degree
	Department of Mechanical Engineering
	ACKNOWLEDGEMENTS
	I express my thanks to my dissertation advisor, Dr. Guan-Chun Luh for his instruction. And I also would like to thank many people for their help and guidance during my years as a graduate student at Tatung University. Most of all, I offer my deepest th
	ABSTRACT
	摘要
	TABLES OF CONTENTS
	
	
	CHAPTER

	1INTRODUCTION 1
	2LITERATURE REVIEW 16
	3HOW BIOLOGICAL IMMUNE SYSTEM WORKS 29
	II APPLICATIONS
	MULTI-OBJECTIVE OPTIMIZATION 61
	STRUCTURAL TOPOLOGY OPTIMIZATION 90
	JOB-SHOP SCHEDULING OPTIMIZATION113
	CONCLUSIONS 133
	BIBLIOGRAPHY 137

	CHAPTER 1

	INTRODUCTION
	CHAPTER 2
	VEGA
	MOGA
	NPGA
	WBGA
	SPEA

	CHAPTER 3
	CHAPTER 4
	MULTI-OBJECTIVE OPTIMIZATION
	5.2.1 Unconstrained test functions
	5.2.2 Constrained test functions
	Unconstrained test functions

	CTP2-CTP7
	Constrained test functions

	Case 1
	Case 2
	CHAPTER 7
	Bibliography

