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Abstract   

Optimal Design of MR Image Acquisition Techniques 

 

Abstract 

by 

 

BRIAN MARSHALL DALE 

 

MRI (magnetic resonance imaging) is an important modern imaging modality due, in 

part, to its variety of contrast mechanisms and control parameters.  However, this same 

wealth of control and contrast mechanisms poses a difficult problem for the design of 

MRI acquisition strategies.  To date, most sequence design has been accomplished using 

experience and heuristic techniques.  Despite the advances made in the field using these 

strategies, they are inherently limited by the skill of the designer.  Many individuals who 

have a sequence-design need lack the necessary experience, and even experts may 

develop sub-optimal protocols.  In addition, some areas of MRI, such as k-space 

trajectories, seem to offer advantages, but are still poorly understood even by the experts.  

In order to overcome these limitations it would be beneficial to use modern optimization 

algorithms in the design of acquisition techniques.  To date, such optimal design has been 

quite limited in both objectives and parameters, and has led to techniques with limited 

benefit and applicability.  This work overcomes these limitations by investigating a 

variety of algorithms and applications that should prove important in MRI.  First, an 

optimally precise protocol for DCE-MRI (dynamic contrast enhanced MRI) was 
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developed.  Second, a software-based fluoroscopic gridding-reconstruction technique was 

developed.  This makes a variety of pulse sequences, such as spiral imaging, available for 

iMRI (interventional magnetic resonance imaging) applications and is a necessary step 

for the remainder of this work.  Third, time-optimal k-space trajectories were developed 

using the calculus of variations and multi-objective GAs (genetic algorithms) were used 

to develop optimal trajectories with respect to time, aliasing energy, flow-artifact energy, 

and off-resonance artifact energy.  Fourth, these trajectories were tested for 

improvements in image quality using both objective image-quality measures for 

experimental phantom images and subjective image-quality measures for in-vivo images.  

Finally, the multi-objective algorithms were adapted to optimize images acquired using 

rectilinear sequences with respect to acquisition speed, resolution, and BW (bandwidth).  

The accomplishment of these goals resulted in improvements for several MRI acquisition 

techniques and also resulted in the development of techniques that should have wider and 

more general utility for obtaining similar improvements for other MRI techniques. 
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Chapter 1. Introduction 

MRI is one of the most important modern medical imaging modalities with 

approximately 18 million procedures performed in 2001 and an annual growth rate of 

15% (Goldburgh 2002).  While other modalities may be preferred over MRI for specific 

applications, no other modality has the same breadth of applications as MRI.  Part of this 

general utility may be due to the variety of physical contrast mechanisms available to 

MRI (Haacke et al. 2001).  With inherent sensitivity to magnetic relaxation parameters, 

susceptibility, motion, chemical shift, magnetization transfer, and other physical 

quantities, the possible types of image contrast are nearly innumerable.  In addition, MRI 

pulse sequences are able to control 3 separate gradient coils as well as the transmission 

and reception of energy through one or more RF (radio frequency) coils at each instant in 

time.  This results in a great deal of flexibility in increasing or reducing the sensitivity of 

a particular acquisition technique to a particular physical source of contrast or artifact.  

1.1 Significance 

MRI is currently used in three main areas: diagnostic imaging, interventional 

imaging, and quantitative imaging.  Most commonly, it is used clinically for a variety of 

diagnostic procedures (Goldburgh 2002).  These diagnostic procedures usually require 

high spatial resolution, SNR (signal to noise ratio), and low artifact levels.  Additionally, 

it is important to have strong contrast between normal and pathological tissues (Hendrick 

et al. 1987).  Available contrast mechanisms include diffusion-weighted imaging for 

stroke, perfusion imaging for vascular tumors and infarction, T1 (longitudinal relaxation 

time) and T2 (transverse relaxation time) contrast, flow-sensitive imaging and MR 

(magnetic resonance) angiography for detecting a variety of vascular pathologies, 
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malformations and cardiac defects, and others (Hahn et al. 1990; Brady et al. 1991; 

Aronen et al. 1995; Brittain et al. 1995; Sorensen et al. 1997; Beache et al. 1998; 

McKenzie et al. 1999).   

The use of MRI in interventional procedures is rapidly expanding (Duerk et al. 1996).  

Although the main magnetic field restricts the use of some equipment, the lack of 

ionizing radiation adds a measure of safety for patients, physicians, and technicians.  In 

iMRI the SNR, artifact, and contrast requirements are somewhat relaxed, but spatial and 

temporal resolution are critical.   

Quantitative MRI shows significant potential for use in the laboratory (Reeder et al. 

1996; Belle et al. 1998; Buxton et al. 1998).  For such sequences, the precision and 

accuracy of the generated measurements are of paramount importance and all other 

considerations are usually only important insofar as they degrade the quality of the 

measurement.  MRI can be used to quantitatively measure perfusion, blood-flow velocity, 

myocardial strain, ADC (apparent diffusion coefficient), diffusion-tensor, chemical shift 

and other important physical quantities. 

1.1.1 MRI protocols and pulse-sequences 

While the utility of this wide variety of controls and contrast mechanisms is beyond 

dispute, this same variety poses a great challenge for those involved in the design of MRI 

acquisition techniques.  Most current design techniques rely on the skill and expertise of 

the designer and a few simple heuristic rules derived from the collective years of 

experience available in the literature.  Many clinicians, technicians, researchers and other 

personnel may have an imaging need, but lack the ability to wisely select or develop the 

proper imaging technique.   
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No single pulse sequence is useful or appropriate for all imaging tasks and therefore it 

is important to specify the particular goal as completely and accurately as possible in 

order to choose the pulse sequence that will best meet the specific requirements.  Once 

these imaging goals are clearly specified then the quality of a given image can be 

evaluated as a function of how well the image satisfies the specific requirements.  This 

intuitive, goal-driven evaluation of image quality has rarely been used; instead image 

quality is usually specified as a function of less meaningful, but simple to compute, 

metrics such as the SNR (Prato et al. 1986; Hendrick et al. 1987; Star-Lack 1999).  Many 

of these goal-driven measurements of image quality require some amount of modeling 

and simulation and it is expected that their usefulness and applicability will improve as 

the underlying models and simulations improve (Petersson et al. 1993). 

Despite this important need in the MR imaging community, there is no such general, 

goal-driven, MRI protocol and pulse-sequence design procedure available in the 

literature.  This work seeks to develop such a general design procedure using a variety of 

optimization and evaluation procedures.   

1.1.2 K-space trajectories 

The raw data in MRI is acquired in k-space, which is the spatial frequency, or Fourier 

domain.  Most imaging techniques utilize a rectilinear traversal through k-space and 

reconstruct the image via the FFT (fast Fourier transform).  However it is also possible to 

acquire data along any arbitrary, non-rectilinear, trajectory through k-space (O'Sullivan 

1985; Jackson et al. 1991; Moriguchi H. et al. 1999; Oesterle et al. 1999; Qian et al. 

2002; Rosenfeld 2002; Moriguchi et al. 2003).  Some of better-known advantages of such 

non-rectilinear k-space trajectories are that they have rapid acquisition times and good 
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flow properties.  However, they are also known to typically have high sensitivity to off-

resonance blurring and significant amounts of aliasing energy (image errors from 

violating the Nyquist criterion).   

Most current design techniques essentially begin with a trajectory shape that is easy 

to visualize and realize and then examine the properties of the trajectory.  By far, the two 

most common classes of trajectories are spiral and radial (Ahn et al. 1986; Meyer et al. 

1992; Noll et al. 1995; Thedens et al. 1999).  These two classes have several desirable 

properties including rapid acquisitions and benign artifact patterns; however, a general 

understanding of the impact of k-space trajectories on image quality is quite limited 

(Glover and Pauly 1992; Nishimura et al. 1995; Liao et al. 1997; Shankaranarayanan et 

al. 2001).  This work seeks to utilize this k-space trajectory design problem as an 

example of the potential utility for general optimal design procedures in MRI. 

1.2 Optimal trajectory design 

By using formal optimization techniques, the best pulse sequence and/or trajectory for 

a given task could be chosen as the one that results in images that optimize the 

appropriate image-quality metrics.  This would not only result in imaging techniques that 

were superior to current techniques, but would also eventually allow independence 

between the quality of imaging techniques and the sequence-development skills of the 

designer.  Due to the large volume of MRI procedures performed annually, even small 

improvements in such general design techniques could have a dramatic impact. 

Despite the availability of good techniques for modeling, simulating, and evaluating 

image quality, there has been little effort in integrating image quality into the pulse-

sequence design process (Petersson et al. 1993; Salem K.A. et al. 2002).  The attempts 
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that have been made to date have generally centered on the more simplistic metrics and 

have been severely restricted in the choice of optimization parameters (Prato et al. 1986; 

Wang et al. 1987; Star-Lack 1999).  Other researchers have optimized one small part of a 

pulse-sequence without rigorously examining the impact of other aspects (Van Lom et al. 

1991; Simonetti et al. 1993).  Thus they have usually searched a miniscule fraction of the 

available pulse sequences for a sequence that optimally accomplishes a single, less 

meaningful, imaging goal.  To overcome these limitations we will develop a more 

general optimization technique that will allow the use of more important objective 

functions and more general pulse-sequence parameterizations.  This should permit better 

exploitation of the desirable properties and reduction of the impact of the various 

associated disadvantages of using k-space trajectories.   

1.3 DCE-MRI 

DCE-MRI is one of the most important of all quantitative imaging techniques for 

measuring perfusion with MRI, and has been shown to correlate well with the 

microsphere technique without requiring excision of the tissue (Lombardi et al. 1999; 

Luo et al. 2002).  The standard Gd (gadolinium) contrast agent-based DCE-MRI studies 

assume a two-compartment pharmacokinetic model relating the rate of change of the 

tissue concentration to the transport of the contrast agent across the endothelium between 

the plasma and the EES (extravascular extracellular space) (Tofts 1997).  All quantitative 

DCE-MRI protocols attempting a complete implementation of the Kety model have some 

common features (Evelhoch et al. 2000).  Specifically, they include the following steps: 

1) Acquisition of raw data for the purpose of calculating spatial maps of T10 

(pre-contrast longitudinal relaxation time) across tissues of interest. 

  19 



2) A fast T1-weighted acquisition sequence used to acquire a pre-contrast signal 

baseline with respect to which the relative increase in signal after contrast can 

be calculated. 

3) Rapid acquisition of a dynamic series of post contrast images using the same 

sequence, from which the relative signal change (Srel) due to changing contrast 

agent concentrations can be obtained, and subsequently the local tissue 

concentration over time can be calculated. 

The precision of T1 maps has been analyzed, but this is only part of the precision of 

the whole perfusion measurement (Wang et al. 1987).  An optimally precise DCE-MRI 

technique would be a useful benefit to research about vascular tumors, and cerebral and 

myocardial infarctions.  In the clinic it would allow more exact determination and 

monitoring of appropriate therapies and in the laboratory it would allow greater statistical 

power, smaller sample sizes, or higher confidence for detecting perfusion effects.  This 

research will extend previous work in order to develop such an optimally precise DCE-

MRI technique. 

1.4 Fluoroscopic gridding-reconstruction 

Obviously, data acquired along a non-rectilinear trajectory cannot be reconstructed 

with the FFT.  Several techniques exist for reconstructing such data; the most commonly 

used being convolution-based gridding-reconstruction (O'Sullivan 1985; Jackson et al. 

1991).  Unfortunately, even this technique introduces a large computational burden 

relative to the FFT.  In many situations this computational burden introduces an 

unacceptable delay.  A software-based fluoroscopic gridding-reconstruction technique 

would allow the use of k-space trajectories in such situations, particularly in iMRI 
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applications.  This should, in turn, benefit patient care and safety in iMRI applications by 

giving the interventional radiologist more rapid feedback.  However, current fluoroscopic 

gridding-reconstruction techniques rely exclusively on hardware solutions, which may 

not be available at most sites, are more expensive, more difficult to maintain and 

distribute, and often require special expertise (Meyer et al. 1992; Eggers and Proska 

1999).  A software-based method would allow the reconstruction of such data without 

requiring additional hardware and would thus enable the use of non-rectilinear 

acquisition techniques at most sites.  This work will attempt to develop such a software-

based fluoroscopic gridding-reconstruction technique. 

1.5 iMRI applications 

As previously mentioned, one important application for MRI is the guidance of 

minimally invasive interventional procedures, usually involving the insertion of a needle 

or catheter (Duerk et al. 1996).  This is a particularly promising area for the use of k-

space trajectories because one of their known advantages, high temporal resolution, is 

one of the most important requirements for iMRI.  In addition, it is a good area in which 

to use optimal design techniques because there is somewhat less information available in 

the literature for designing iMRI pulse sequences than for designing diagnostic imaging 

pulse sequences. 

1.6 Overview of dissertation 

This work was initiated with four specific aims in mind.  The organization of the 

remainder of the dissertation roughly parallels this structure. 
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1.6.1 To develop an optimally precise DCE-MRI protocol  

Chapter 2 details the use of the propagation of errors theory to analyze the sensitivity 

of DCE-MRI measurements to errors in the source images and obtain an optimally 

precise DCE-MRI protocol.  The results of this analysis and optimization suggest that 

some of the fundamental assumptions used in designing these protocols, such as the use 

of a very short TR (repetition time) for increased T1 weighting, may actually lead to sub-

optimal protocols (Dale et al. 2003b). 

1.6.2 To develop a fast, software-based gridding-reconstruction method  

Chapter 3 covers the development of a look-up table method for reducing the 

computational burden and achieving a software-based fluoroscopic gridding-

reconstruction.  This method has already found widespread acceptance (Dale et al. 2001).  

Although it does not represent the application or development of an optimization method, 

the table-based method was essential for the reconstruction of images acquired with the 

optimal trajectories developed later. 

1.6.3 To develop methodologies for optimal k-space trajectory design  

Chapter 4 covers the use of the calculus of variations to design optimal trajectories 

with respect to minimizing gradient transfer time.  Chapter 5 details the use of multi-

objective genetic algorithms to design Pareto-optimal trajectories with respect to 

minimizing acquisition time, flow artifacts, off-resonance blurring, and aliasing energy.  

Several of the objectives and constraints used in the GA optimizations are based on 

simulated MRI acquisitions.  This is intended to produce results that are more useful than 

those previously obtained with more simplistic measures of image quality.  The multi-

objective GA, in particular, is a very powerful and flexible tool for optimal design.  It is 
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conceivable that it will eventually achieve widespread use in the design of MRI 

acquisition techniques. 

1.6.4 To explore the impact of trajectory optimization on image quality 

It is understood that, even with perfect simulations of modeled quantities, effects that 

are not modeled may lead to significant image degradation.  In order to explore this 

possibility, these trajectories were implemented on a 1.5 T Siemens Sonata.  The quality 

of the acquired images was evaluated numerically in phantom studies for the achievement 

of the stated design objectives as described in Chapter 5.  Volunteer images were also 

acquired and evaluated subjectively by human observers as described in Chapter 6.  Both 

methods of validation confirmed the effectiveness of the objectives and optimizations 

utilized in the previous aim.   

1.6.5 Extras 

Although not one of the original aims of this project, Chapter 7 details a direct and 

important new extension of the multi-objective GA work of chapter 5.  Specifically, it 

describes the application of the same multi-objective GA to the optimization of a true-

FISP (fast imaging with steady-state free precession) pulse sequence using a standard 

rectilinear k-space trajectory.  Because of the much more widespread use of rectilinear 

trajectories, Chapter 7 may represent the more immediately applicable portion of the 

work for most situations.  Both single- and dual-echo true-FISP pulse sequences were 

developed which are optimal with respect to image quality, acquisition time, and 

resolution. 

A summary of this work is presented in Chapter 8, along with some speculations on 

the future importance of this work and the directions that may prove most fruitful for 
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further investigations.  The appendix contains a brief derivation of the Kety equation, 

which is the fundamental equation for quantitative measurements of perfusion such as 

those obtained using DCE-MRI. 
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Chapter 2. Optimizing the Precision of DCE-MRI  

2.1 Introduction 

Any product required by cells for normal function and survival, which they do not 

produce themselves, is delivered via the blood stream.  The rate of delivery of these 

products (as well as the removal of waste products) is governed by the local tissue 

perfusion rate and the permeability and surface area of the local capillary network.   

These properties can vary dramatically between normal tissue types.  In the central 

nervous system the foundation of the blood-brain barrier is a greatly reduced capillary 

permeability compared to elsewhere in the body.   In the liver, both perfusion and 

permeability are high to facilitate delivery of a wide range of blood-born nutrients, 

toxins, waste products etc. to the cellular machinery responsible for their metabolism.  

Variations in perfusion and permeability also occur as a result of pathological conditions.  

Neurological diseases such as multiple sclerosis are known to cause breakdown of the 

blood brain barrier (Gadian et al. 1985; Grossman et al. 1986; Tofts and Kermode 1991).  

Cerebrovascular accident by definition leads to regions of local ischemia in brain 

parenchyma. 

Tumors require proliferating neovasculature for continued growth, with microvessel 

density and permeability dramatically different from surrounding tissue.  Tissue necrosis 

can also influence these properties.   These variations in tissue perfusion and capillary 

permeability are two of the mechanisms responsible for the changes in contrast between 

tissue types obtained from intravenous contrast agents in medical imaging.  Thus, 

measuring the pharmacokinetic behavior of contrast agents by repeated imaging has 
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opened the way to development of techniques for measuring local perfusion and 

permeability in vivo. 

DCE-MRI assessment of vascularity is based on the application of models of the 

tracer kinetics of injected T1-shortening contrast agents.  These models relate the 

exchange of tracer between various fluid compartments of the body over time; they are 

also applicable to other modalities like PET (positron emission tomography) and CT 

(computed tomography).  They can be used to interpret in vivo measurements of signal 

increase or tracer concentration vs. time in various tissues of interest.   The standard Gd 

contrast agent-based DCE-MRI studies assume a compartmental pharmacokinetic model 

relating the rate of change of the tissue concentration to the bi-directional transport of the 

tracer across the endothelium between the plasma and the EES (Tofts 1997).  This 

assumption holds for standard clinically approved Gd-based contrast agents (Yuh 1999) 

which are lipophobic and do not cross the lipid membranes of erythrocytes or tissue cells. 

Tofts, et al. (Tofts et al. 1999) published the results of a consensus effort to 

standardize the form and terms of this compartmental modeling approach for DCE-MRI.  

They presented a modified Kety formula (Kety 1951), derived in Appendix A, relating 

the rate of change of the tissue tracer concentration CT to the instantaneous difference 

between the arterial plasma concentration (Cp) and the interstitial fluid concentration 

within the EES (Ce). 

[ ]ep
transT CCK

dt
dC

−=
  [2.1] 

By assuming the tracers do not cross the cellular lipid membrane into the cytoplasm, 

tissue concentration CT varies proportionally with Ce, and inversely with the volume 
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fraction ve of the EES, according to the relation Ce=CT/ve.   Making this substitution and 

multiplying through the right hand side by Ktrans, the equation can be rewritten as 

Tepp
transT CkCK

dt
dC

−=
  [2.2a] 

or alternately as  

T
e

p
transT C

v
1CK

dt
dC

−=
  [2.2b] 

The equation can be modified for use with arterial concentration CA instead of Cp by 

knowledge of the Hct (hematocrit) according to C pA C)Hct1( −= .   The parameters kep 

and ve have unambiguous relations to physiology.  The EES volume fraction, ve, is 

defined above, while kep is the reciprocal of the MTT (mean transit time) required for a 

differential volume of tracer in plasma to cross a unit tissue volume from the arterial 

inflow side to the venous effluent side.  The relation of Ktrans to physiology depends on 

the balance between capillary permeability vis-à-vis the contrast agent and blood flow in 

the tissue of interest (Tofts et al. 1999).   If the tracer is freely diffusible, i.e. permeability 

surface area product PS is high compared to flow F, then interstitial fluid and effluent 

venous plasma concentration are in equilibrium, and flux across the endothelium is only 

limited by the volume flow, F, of blood per unit volume of tissue.  If the permeability is 

very low compared to flow, then the difference between incoming arterial and outgoing 

venous concentration is negligible, and only the permeability-surface area product PS of 

the endothelium governs tracer flux.  In the flow-limited case Ktrans=Fρ(1-Hct).  In the 

permeability-limited case Ktrans=PSρ.  In both cases ρ is the tissue density.  In the mixed 

case where neither flow nor permeability can dominate, Ktrans=EFρ (1-Hct), where 
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( )HctF
PS

eE −
−

−= 11  is the fractional reduction in capillary tracer concentration as it crosses a 

unit volume of tissue (Renkin 1959; Crone 1963).  Most clinically approved Gd contrast 

agents, including Gd-DTPA (Gd-diethylenetriaminepentaacetate), fit the mixed case, 

with a tendency for the influence of flow to outweigh that of permeability surface area 

product.  

Many techniques and approaches to DCE-MRI have been published. However, a 

Consensus Recommendation for DCE-MRI (Evelhoch et al. 2000) outlined the common 

features of quantitative DCE-MRI.  In particular, those that attempt a complete 

implementation of the Kety model include the following steps 

1) Acquisition of raw data for the purpose of calculating spatial maps of T10 

across tissues of interest. 

2) A fast T1-weighted acquisition sequence used to acquire a pre-contrast signal 

baseline with respect to which the relative increase in signal after contrast can 

be calculated. 

3) Rapid acquisition of a dynamic series of post contrast images using the same 

sequence, from which the relative signal change (Srel) due to changing contrast 

agent concentrations can be obtained, and subsequently the local tissue 

concentration over time can be calculated. 

The parameter of greatest interest in DCE-MRI based on the two-compartment model 

is Ktrans since it is the parameter associated with microvascular physiology.  For any 

implementation of DCE-MRI, the accuracy and precision of Ktrans from two-compartment 

modeling is a function of the source errors that exist in the raw MRI data.  However, the 

route from raw MRI signals to local estimates of Ktrans involves a complicated series of 
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mathematical processing steps.  Determining which sources of image error have the 

greatest impact on the error in Ktrans by simple inspection of the algorithm employed is 

difficult.  Part of the difficulty lies in the fact that the magnitude of the propagated errors 

may be a function both of the magnitude of the source variation and other key parameters 

in the algorithm.  Thus, a fixed measurement error from one source image may propagate 

to become a significantly larger error in Ktrans than the same measurement error from a 

different source image.    

Knowledge of the relative sensitivity of Ktrans error to independent sources of image 

error can reveal to investigators which improvements in imaging techniques will lead to 

the greatest improvement in precision and which will lead to little or no improvement.  

This study describes the application of the propagation of errors technique to DCE-MRI 

methodologies.  The goal was to evaluate the expected error variance in calculations of 

local measurements of Ktrans, and to determine the influence of various experimental and 

imaging parameters, including T10, relaxivity α, and overall tissue concentration, on 

propagated error.  Accomplishing this goal will answer questions such as, “If there is a 

small error in the dynamic images, how much error will be introduced into the estimate of 

Ktrans, and conversely, what if that same small error was in the T1 measurement image 

instead?” 

2.2 Materials and Methods 

2.2.1 DCE-MRI Protocol 

2.2.1.1 Measuring Longitudinal Relaxation 

Several techniques for calculation of T10 exist.  For the purpose of this experiment we 

selected the following two.  The first is the dual spin echo technique, in which two T1-
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weighted spin-echo images that differ only in their TR are acquired.  The ratio, R, 

between these two signals is given by the following expression derived from the spin-

echo signal equation (Haacke et al. 2001) 



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 −






 −

==
−

−

1
2

1
1

2

1

1

1

T
TR

SE

T
TR

SE

ek

ek

S
S

R

  [2.3] 

where  includes the T2 effects (assumed constant given fixed TE [echo time]) as 

well as spin-density and receiver chain properties.  This expression can be solved for T1 

(numerically for arbitrary TR’s or analytically for rational TR1/TR2).   The second 

technique uses two FLASH (fast low-angle shot) sequences with identical TR/TE and 

different tip angles (Wang et al. 1987). The two signals can be used to solve for T1

SEk

0 by 

the equation 
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=  [2.4] 

where  and  are the signals obtained using flip angles of θ1θS 2θS 1 and θ2 

respectively. 

2.2.1.2 Dynamic Contrast Enhanced Images 

The dynamic T1-weighted images we chose to examine in this study were from 2D-

FLASH (two dimensional) acquisitions since they are commonly used in DCE-MRI.  

Three precontrast baseline images were averaged while post-contrast dynamic images 

were repeated every 7.14 seconds. 
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2.2.1.3 Evaluation of Contrast Agent Concentration 

The expression for the signal in a FLASH experiment, accounting for a particular 

contrast agent concentration C, can be written (Haacke et al. 2001): 

)C1T
1(TR

)C1T
1(TR

FLASHFLASH
0

0

e)cos(1

e1kS
α+−

α+−

θ−

−
=

  [2.5] 

where  includes the T2* effects as well as spin-density and receiver chain 

properties, and 

FLASHk

α  is the relaxivity of the contrast agent.  From pre- and post contrast 

images the relative signal change can be calculated as 

0=

=
CFLASH

FLASH
rel S

S
S

  [2.6] 

Equations [2.5] and [2.6] can be combined to define an analytical expression for Srel.  

Under certain conditions the  terms in numerator and denominator can be canceled, 

and the resultant expression solved for C .  This yields a concentration function f

FLASHk

c in 

terms of , T1, and relS α . 
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Two assumptions are made in this derivation.  First, that the post contrast longitudinal 

magnetization recovery is monoexponential with time constant T1, where T1 obeys the 

relation 1/T1=1/T10 + α CT.   In this case CT is the tissue Gd concentration that would be 

obtained if the amount of contrast agent in the voxel (volume element) were uniformly 

distributed rather than restricted to the plasma and EES compartments.   For this 

assumption to hold, the water exchange between compartments with a voxel must be in 
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the fast-exchange regime where protons affected by the extracellular contrast agent can 

quickly distribute throughout both the intra- and extra-cellular spaces (Landis et al. 

1999). 

The second assumption is that, for the range of sequence parameters we examined, 

the FLASH signal attenuation due to Gd-mediated T2 shortening is negligible over the 

range of tissue concentrations likely to occur with standard clinical doses of Gd contrast 

agents (0.0-0.1 mM).  Negligible T2 effects allow the cancellation of  terms from 

final expression for concentration. 

FLASHk
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the dual spin-echo technique and dynamic images use the indicated parameters for a 
FLASH acquisition.  T10 map, baseline, and dynamic images are combined as indicated 
to obtain concentration curves which are used to estimate Ktrans.  Each measured pixel has 
some error which contributes to errors in T10, Srel, concentration and Ktrans.
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Figure 2.1 DCE-MRI processing steps for a typical protocol.  T10 map is obtained using 
the dual spin-echo technique and dynamic images use the indicated parameters for a 
FLASH acquisition.  T10 map, baseline, and dynamic images are combined as indicated 
to obtain concentration curves which are used to estimate Ktrans.  Each measured pixel has 
some error which contributes to errors in T10, Srel, concentration and Ktrans.

A flow chart outlining the processing steps required for DCE-MRI is given in Figure 

2.1.  It illustrates how raw images are first converted to T1 maps and relative signal 

curves, then combined to generate concentration curves.  Once the concentration values 

versus time are calculated for every voxel, the figure shows how curves from tissue and 

arterial blood are fit to the modified Kety equation to obtain the principal perfusion 

parameter Ktrans.  
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2.2.2 Theory 

2.2.2.1 Propagation of Errors 

Any measurement process introduces some error into the measured values.  If a 

parameter is not directly measured, but instead is calculated as some function of 

measured values, then the calculated parameter will contain some error propagated 

through the function from the errors in the original measured values.  The final error in 

the calculated parameter will depend both on the magnitudes of the various source errors 

and their modulation by the function.  The theory of propagation of errors characterizes 

this modulation and the resulting errors.  In particular, it states that for any parameter, f, 

calculated from measured values x, y, and z 
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  [2.8] 

where σx, σy, and σz are the respective standard deviations (Bevington 1969).  The 

covariance terms are neglected in this expression, and therefore the errors must be 

uncorrelated.  The propagation of errors does not require that the source errors be 

normally distributed, and even in the presence of bias, the partial differential terms are 

the sensitivity of the parameter to each source of error. 

2.2.2.2 Application to DCE-MRI protocol 

Only the propagation of errors from measured parameters was analyzed.  User-

defined parameters of the scanning sequence, such as TR and θ, were assumed to be exact 

quantities; they could not introduce errors themselves, but they could modulate errors 

introduced elsewhere. 

Substituting equation [2.7] into equation [2.8], we obtain an expression for 

concentration variance in terms of , T1, and relS α : 
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Practical DCE-MRI implementations typically use a published standard value for α , 

or at most use a lab standard measured once in a phantom study.  Thus it is unlikely that 

any practical DCE-MRI implementation will have a reasonable estimate of .  For this 

reason we also neglect its contribution and set  at this point to obtain [2.9b].   
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Even if this is not a good assumption, it may prove to have very little practical effect 

because the errors in our concentration measurement due to propagated errors in 

relaxivity will be constant across all studies, patients, and measurements. 

The values for T1 and  are in turn subject to propagated errors from the source 

images.  For example, the solution of [2.3] for the dual spin-echo experiment with TR1 = 

800 ms and TR2 = 400 ms, is: 

relS
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where T1 is in ms, and  and  are the values of the signal intensity for 

corresponding voxels in the TR = 800 ms and TR = 400 ms images respectively.  In a 

similar manner equation [2.6], the expression for the relative signal in the FLASH 

experiments, can be rewritten: 
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where  is the averaged baseline image (pre-contrast) and  is the post-contrast 

image for which the concentration is being calculated.  By substituting [2.10] (or [2.4]) 

and [2.11] into [2.8], and using [2.3] and [2.5] to remove the  terms it is now possible 

to write 
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Finally, substituting [2.7], [2.12], and [2.13], into [2.9b] results in an expression for 

the variance in the concentration value in terms of tissue T1, contrast agent concentration, 

and SNR of the various source images: 
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The full expression of equation [2.14] is omitted at this point for brevity.  We now 

have expressions for   and  in terms of the various imaging parameters, the 

tissue T1 and the contrast agent concentration. 
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2.2.2.3 Propagation of errors through model fitting 

While T1 and concentration are obtained by single point evaluations of analytical 

functions, Ktrans is obtained by fitting discretely sampled time functions of arterial and 

tissue concentration to some representation of the Kety model.  Several approaches to 

such model fitting have been employed.  Some involve fitting a derived analytical 

expression for CT under an assumed AIF (arterial input function).  Others deconvolve 

measured AIF with measured tissue concentration curves to obtain the tissue residue 

function.  Alternately one may numerically differentiate the tissue concentration curve to 

obtain dCT/dt and solve the Kety equation directly using linear regression with the tissue 

concentration and AIF as independent linear predictors of the differential term.  Other 

approaches may be conceived but all will have at least one element in common: the data 

used in each will be comprised of a time series of n sampled concentrations, each of 

which has a propagated error component which contributes uniquely to the overall error 

in the fit parameters.  The error contribution of each sample is unique due to the fact that 

the propagated error in concentration varies with concentration itself (see [2.11]) and the 

concentration varies for each sample.  Tracking the propagation of these contributions 

through a fitting a process to a final single parameter will now be described. 

For directness, assumed the technique of numerical derivation of (n)/dt from the 

sampled tissue curve C (n) for purpose of direct fit to the Kety equation using linear 

regression with C

TdC

T

T(n) and CA(n) as independent predictors of (n)/dt.  Once these 

three curves are obtained, a least-squares fit to the Kety model gives K

TdC

trans and 1/Ve.  

Analysis of the least squares fit shows that Ktrans can be written: 
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It is not appropriate to use [2.8] directly on [2.15] because [2.8] is only valid if the 

errors in the arguments are uncorrelated (Bevington 1969).  In this case, all of the 

concentration measurements depend on the T1 measurement and the errors should 

therefore be correlated.  Instead, by first substituting [2.7], [2.10] (or [2.4]), and [2.11] 

into [2.15] we obtain an expression for Ktrans in terms of all of the n+3 arterial samples 

SAi, and the n+3 tissue samples STi as follows. 

( )LL ,S,S,S,S,,S,S,S,SfK T1T0T400T800A1A0A400A800Ktrans
trans =  [2.16] 

We then make the assumption that the error in any of these images will be 

uncorrelated and so [2.8] may be used to obtain an expression for . 2
Ktransσ
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As before [2.3] and [2.5] can be used to eliminate all of the  terms.  The use of an 

analytical representative C

iS

A curve results in an expression for the variance in Ktrans in 

terms of the tissue and blood T1 and the SNR of the various source images. 
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[2.18] 

The equations outlined above were used to obtain a closed-form expression for  

and  using a symbolic math program (Mathematica, Wolfram Research, Champaign 

Ill).  The large numbers of terms, combined with the complexity of the MR signal 

2f
Cσ

2f
Ktransσ
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equations, prevent the closed form expression for  to fit within the space 

constraints of this dissertation. 

2
Ktransσ

Estimates for , , and  were obtained from the FLASH (TR=37ms, 

TE=4ms, FA [flip angle]=70

FLASHk

2
Sσ

2
0Sσ

σ

2
Stσ

o, slice thickness = 5mm, matrix=192x256, FOV [field of 

view]=320x240 mm) images obtained using the DCE-MRI protocol described above.  

Estimates for ,  , ,  were obtained from spin-echo sequences for T1 

measurement  (TR=400/800 ms, TE=15ms, FA=90±, slice thickness = 4mm, gap=1mm, 

matrix=192x256, FOV=320x240 mm, 1 acquisition).  The FLASH sequence was 

repeated 120 times, once every 7.14 seconds.   The FLASH sequence for DCE-MRI 

employed 1 acquisition, while that for the baseline measurement was averaged over 3 

acquisitions.  All images were obtained using a 1.5T Siemens (Erlangen, Germany) 

Symphony MRI system.  

SEk 800
2

400S

These estimates were substituted into the  expression, along with the appropriate 

imaging parameters, to obtain:  

2f
Cσ

( )CT
C

C ,1f 2
2

σσ =
  [2.19] 

for the imaging system and protocol under consideration. 

Eq [2.20] was chosen as a representative AIF (Simpson et al. 1999).  The Kety 

equation, [2.21] was solved using the AIF to obtain an expression for the tissue 

concentration as a function of time.  
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2.2.2.4 Validation through Monte-Carlo simulation 

Monte-Carlo simulations were used to estimate variance and confidence limits in the 

fit of Ktrans values due to errors propagated from source image noise.  Specifically, 

several Ktrans, T10 values, and AIFs were chosen and used to simulate the sampled signals 

described above.  Zero-mean uncorrelated Gaussian errors were introduced into each 

signal.  The resulting simulated noisy data was then used to obtain a least-squares fit to 

[2.2].  The process was repeated multiple times and the corresponding values for Ktrans 

were analyzed to obtain confidence limits for Ktrans.  The Monte-Carlo simulations were 

used as an independent method to validate the results of the propagation of errors 

analysis. 

Additionally, the propagation of errors results above were used to obtain an optimal 

DCE-MRI protocol.  Using similar Monte-Carlo simulations as above, this protocol was 

compared to the standard protocol currently in use at this institution.  The Levene test for 

homogeneity of variation was used to test the null hypothesis that the variances of the 

standard and optimal protocols were the same.  The number of Monte-Carlo simulations 

was determined by statistical power considerations (power is the probability of detecting 

a true difference - the probability of getting a true positive).  Specifically, it was chosen 

so that a true difference of ½ of the theoretical difference could be detected with 

probability 0.80.   

2.3 Results 
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spin-echo acquisition.
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spin-echo acquisition.

Figure 2.2 is a plot of the CV (coefficient of variation = standard deviation/mean) of 

the T10 measurement as a function of T10 (see Eq [2.12]) for both measurement 

techniques.  The FLASH technique is 16 times faster than the spin-echo technique and 

therefore the CV is plotted both for a single acquisition and for 16 acquisitions.  The 

FLASH technique with 4 or more acquisitions was found to be more precise than the 

spin-echo technique for all T10.  Due to its improved precision and speed, the dual tip-

angle FLASH technique with 4 acquisitions was used in the remainder of this work.  

Although this analysis assumes that TR and tip-angle are exact quantities, it should be 

noted that tip-angle could be inexact or non-uniform causing a small distortion (increase 
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or decrease in slope of flat region) in the corresponding curve.  Note that the most precise 

T10 measurements (CVSE = 1.6%, CVFLASH1 = 2.5%, CVFLASH16 = 0.6%) are obtained for 

low T10 (250 ms for SE, 380 ms for FLASH).  The least precise T10 measurements (CVSE 

= 7.8%, CVFLASH1 = 3.7%, CVFLASH16 = 0.9%) occur for high T10 tissues such as blood 

(T1blood = 1200 ms).  The source error variances used in this plot were taken from the 

noise variance estimates described above.     
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images are measured using TR = 40 ms and tip angle = 70º.  The baseline is averaged 
over three FLASH acquisitions.
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Figure 2.3 is a contour plot based on equation [2.14].  The contours are plotted along 

lines of constant CV for the concentration measurement.  Note that, when the 

concentration is approximately 150 µM or greater, we expect that the measured 

concentration values will have less than a 10% CV over almost all values for T10 while 

concentrations less than 75 µM will have more than a 15% CV.  For most tissues and 
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Figure 2.4 Simulated concentration curves used in this study.  These three arterial input 
functions were used during this study.  Tissue curves correspond to the tissue 
concentration from the sharpest of the three input functions with three different perfusion 
values.  These concentration curves were assumed in the evaluation of the precision of 
Ktrans.  Other functions could be assumed for situations where these do not provide a 
reasonable approximation to the observed range of concentration curves.
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Figure 2.4 Simulated concentration curves used in this study.  These three arterial input 
functions were used during this study.  Tissue curves correspond to the tissue 
concentration from the sharpest of the three input functions with three different perfusion 
values.  These concentration curves were assumed in the evaluation of the precision of 
Ktrans.  Other functions could be assumed for situations where these do not provide a 
reasonable approximation to the observed range of concentration curves.

concentrations of interest the CV is nearly independent of T10.  Note also, that the most 

accurate data (CV = 2.2%) will be obtained with relatively high contrast agent 

concentrations (C = 1810 µM) in low T1 tissues (T10 = 310 ms). 

Figure 2.4 is a plot of the simulated contrast-agent concentration curves used to 

evaluate the precision of Ktrans measurements.  The plots are based on equations [2.20] 

and [2.21] with the parameters chosen to give reasonable approximations to the curves 

observed in previous studies using the DCE-MRI protocol described above.  The highest 

tissue concentration is 182 µM for highly perfused tissues (Ktrans = .0040).  The more 

typical tissue (Ktrans = .0025) had a peak concentration of 130 µM. 
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Figure 2.5 Coefficient of variation in Ktrans as a function of T10 and as a function of TR 
and Tip Angle for several different values of T10.  Note that the secondary effect of T10
and Tip Angle is greater than the main effect of T10 alone and that longer TR 
measurements are more precise.
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Figure 2.5 Coefficient of variation in Ktrans as a function of T10 and as a function of TR 
and Tip Angle for several different values of T10.  Note that the secondary effect of T10
and Tip Angle is greater than the main effect of T10 alone and that longer TR 
measurements are more precise.
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The CV of Ktrans was plotted against tissue T10 (Figure 2.5a), TR of the dynamic 

FLASH sequence (Figure 2.5b), and tip angle of the dynamic FLASH sequence (Figure 

2.5c).  For each plot, all other variables and parameters were held constant, (e.g. 

acquisition time, T10 measurement tip angles, etc.).  Source image variances used in these 

computations were obtained from the DCE-MRI protocol images as described above.  

The variance for the arterial concentration was based on a 100 voxel ROI (region of 

interest), which improved the arterial SNR by a factor of 10.  The CV displayed little 
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variation as a function of T10 though there is a minimum of approximately 5.0% for 

tissues with a T10 around 500 ms (CV = 5.5% for T10 = 250 ms).  The CV was more 

sensitive to TR than T10, with longer TR yielding more precise measurements.  Though 

no minimum was found over the range of TR studied, the CV varied from 10% for TR = 

20 ms to 2.6% for TR = 100 ms.  The CV dropped 3.3% as TR changed from 20 ms to 30 

ms and only dropped 0.2% as TR changed from 90 ms to 100 ms.  The CV was also 

found to be sensitive to the tip-angle of the dynamic FLASH sequence, and the sensitivity 

function was strongly modulated by changes in the tissue T10.  For tissues with T10 = 250 

ms the CV varied from a maximum of 7.3% at 30º to a minimum of 5.2% at 50º, while 

tissues with T10 = 500 ms varied from a maximum of 6.6% at 90º to a minimum of 3.7% 

at 40º. 
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Figure 2.6 The coefficient of variation in Ktrans using the optimally precise protocol is 
averaged over 250 ms < T10 < 1250 ms and .001 min-1 < Ktrans < .004 min-1.  Both errors 
due to typical levels of noise (reduced by averaging) and errors due to a small artifact 
(not reduced by averaging) are considered.  The small artifact is equal to 1% of the signal 
from fat.  Only one type of error from one source of error is considered for each bar. 

Figure 2.6 shows the average error introduced into the assessment of Ktrans from 

errors in the T1 maps, baseline images, and dynamic FLASH images.  Errors from each 

source image are separated into arterial and tissue components for a total of six sources of 

error.  Each average CV is generated by evaluating [2.18] for the imaging parameters of 

the standard protocol currently in use at this institution and averaging the resulting CV 

over a range of T10 from 250 ms to 1250 ms and a range of Ktrans from 0.0010 min-1 to 

0.0040 min -1.  In order to investigate the sensitivity both to noise and to other errors 

(artifacts) these average Ktrans errors were generated both from the noise variance 
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estimates above and from a small artifact deviation equal in magnitude to 1% of the 

signal from fat.  The noise error was reduced appropriately to account for signal 

averaging and ROI averaging, but the artifact error was not.  The largest source of 

propagated error was an average CV = 7.67% when the small artifact occurred in the 

tissue portion of the baseline image.  In contrast, noise in the baseline image caused only 

a 3.64% average CV.  The smallest source of propagated error was an average CV = 

0.04% due to noise in the arterial input portion of the dynamic images.  Note also the 

much greater sensitivity to artifact than to noise of the arterial portions of both the T1 

measurement (4.17% v. 0.17%) and baseline image (4.14% v. 0.20%). 

The optimal protocol, for T1 = 300 ms and Ktrans = 0.0025 min-1, was determined to 

be the same as the standard protocol described above except with a TR increased to 110 

ms and contrast injected as quickly as possible (tp = 15 s).  The optimal protocol had 

approximately one fourth of the variance of the standard protocol or one half of the 

standard deviation (optimal CV = 4% v. standard CV = 8%).  The number of Monte-

Carlo simulations was set to 120, which is the number required to distinguish between 

CV = 5% and CV = 7% normally distributed random variables with probability 0.80 

using the Levene test for homogeneity of variation.  The null hypothesis that the 

variances were equal was rejected with p<.001 for the Monte-Carlo simulations, well 

below the 95% confidence limit. 

2.4 Discussion 

DCE-MRI is a powerful tool for the assessment of vascular physiology, particularly 

in the arena of tumor perfusion and angiogenesis.  To solve for both Ktrans and Kep (or 

equivalently Ve) in vivo, dynamic concentration data from both tissue and AIF are 

  48 



required.  Difficulties in obtaining case-by-case measurement of the AIF have motivated 

the use of a standardized AIF.   Standard signal processing techniques can then be used to 

extract the desired parameters.  For example, the impulse response for the two-

compartment model is given by h(t)=Ktrans*exp(-kept).  Since CT(t)=conv(Cp(t), h(t)), h(t) 

can be obtained by deconvolution of the tissue concentration curve and AIF to obtain 

h(t), and non-linear regression used to fit the parameters Ktrans and kep (Tofts et al. 1999).  

Another approach is to assume an analytical form for Cp(t), develop an analytical solution 

for CT(t) and fit the result to the tissue data using a nonlinear fitting technique.  Also, one 

can calculate dCT/dt at each sample point numerically from tissue data, and, treating it as 

an independent variable, perform a least squares linear fit to the differential equation 

itself with Cp(t) and CT(t) as independent predictor variables of dCT/dt. 

Several models exist, and the choice between them depends both on the in vivo 

behavior of the contrast agent employed and the assumptions the investigator is able to 

make regarding the characteristics of the tissue of interest.  A simple plasma-

compartment model is appropriate for blood pool tracers that do not enter the tissue (Axel 

1980).  Additional compartments are required for tracers that cross the capillary 

endothelium.  Port et al. (Port et al. 1999) suggested that in mammary tumors, the tissue 

compartment may be comprised of from one to three sub-compartments, and developed a 

Bayesian approach for selecting the appropriate combination of sub-compartments in a 

particular tumor based on the fit of tissue enhancement curves to acquired data. 

Assuming a typical two-compartment model is chosen and that the AIF is to be 

measured from the images, there are still a variety of considerations in obtaining 

optimally precise (minimum variance) measurements of Ktrans.  For example, the best 
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choice of T10 measurement technique depends on both the expected T1 of the tissue of 

interest (Wang et al. 1987) as well as the expected sources of errors as can be seen from 

Figure 2.2.  For example, in muscle (T1 = 900 ms) even a single acquisition of the dual 

tip-angle technique is superior to the spin-echo technique.  In more fatty tissues (T1 = 

300 ms) the choice is not so clear.  If the expected errors are mostly noise, then they may 

be reduced by acquiring multiple averages, making the dual tip-angle technique superior 

for a given amount of time.  However, if the expected errors are due to artifacts then it is 

possible that they will not be reduced by multiple averages and the spin-echo technique 

could be superior. 

In Figure 2.3 it is apparent that, at the concentrations typical in such studies (0-200 

µM), the errors in concentration are almost independent of the tissue T10, which is 

consistent with the flatness of the dual-tip angle curve over most of the range of T10 

values.  For such typical concentration values the errors will never be less than a 7% CV 

for an individual measurement, and at contrast-agent concentrations around 100 µM, 

where the CV is at least 11% for all tissue T10, the 95% confidence interval is between 78 

and 122 µM.   

An interesting result can be noted by examining Figures 2.3, 2.4, and 2.5 together.  

Specifically, the simulated tissue (Ktrans = .0025) concentration curve in Figure 2.4 peaks 

at 130 µM, which, from Figure 2.3, results in concentration measurements with at least 

an 8.5% CV  It would be reasonable to expect that Ktrans measurements from such data 

could be no more precise than 8.5% CV, however Figure 2.5 clearly shows that the Ktrans 

measurements can have CVs as low as 3% or 4%.  The least squares fit can thus be 

shown to suppress some of the variability and result in Ktrans measurements that are more 
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precise than the source concentration measurements.  Whether such a result can be 

generalized to other techniques, such as deconvolution, remains to be seen. 

Some of the results shown in Figure 2.5 are counter-intuitive and clearly demonstrate 

the need for rigorous analysis of the precision of all DCE-MRI techniques.  Specifically, 

the precision of Ktrans was found to improve with lower tip-angles and longer TRs.  As 

both of these tend to reduce the T1 weighting, this result is contrary to popular wisdom in 

designing DCE-MRI protocols, however the Monte-Carlo simulations were specifically 

used to verify this result.  This counter-intuitive result appears not to be a spurious 

artifact introduced at some stage of the propagation of errors analysis, but rather a real 

trend not previously noted in the literature. 

Figure 2.5 also shows the presence of a strong secondary effect as well as some main 

effects.  Main effects are those where changing a parameter results in changes to the CV.  

For example, 2.5a shows that the main effect of T10 is fairly minimal; while in Figure 

2.5b the main effect of TR is noticeably greater.  Secondary effects are those where 

changing one parameter alters the main effect of another parameter.  For example, in 

Figure 2.5b the main effect of TR is relatively unaffected by variations in tissue T10 

meaning there is little secondary effect of T10 on TR.  Figure 2.5c, however, shows the 

strong secondary effect of T10 on tip-angle.  This secondary effect seems to be stronger 

than the main effect of T10 and perhaps even as strong as the main effect of tip-angle.  

Therefore, it is important to match the tip-angle of a given DCE-MRI protocol to the 

expected T1 of the tissue of interest in order to obtain the most precise Ktrans 

measurements possible.  At the time that this matching is performed, the T10 

measurement technique should probably also be matched to the same T1.  Note that the 
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choice of tip-angle will also impact the precision of AIFs obtained from the image data.  

The technique used here includes this effect by propagating errors from both the tissue 

pixel (picture element) and the blood ROI, and can thus be used to select the optimal 

parameter in the face of such potentially competing factors.  The use of an assumed or 

standardized AIF may lead to different results, both in terms of the optimal parameter 

values and the final precision of the measurement. 

The increased TR of the optimal DCE-MRI protocol also coincides with the results of 

Figure 2.5, and invites the question, “Why has this trend not been previously discovered 

in the literature?”  This is particularly surprising considering the magnitude of the 

improvement: a four-fold reduction in variance or a two-fold reduction in standard 

deviation.  Such a large improvement would allow the same statistical power in scientific 

DCE-MRI studies with as little as one-fourth of the number of samples.  Alternatively, 

this improvement could allow detection at the same statistical power of true differences 

of as little as one-half of the current detectable differences with the same number of 

samples.  There are several reasons why such an impressive trend may not have been 

noticed previously.  First, all methodological studies to date have focused on the 

accuracy, not the precision, of DCE-MRI.  Although it is not impossible to accidentally 

discover precision effects during such studies, it is much less likely than with the direct 

approach used here.  Second, statistical tests on measures of spread are, in general, much 

less powerful than statistical tests on measures of central tendency.  Recall that N = 120 

for the Monte-Carlo validation despite the size of the effect.  Most scientific studies 

performed using DCE-MRI are designed for tests on the mean and thus have insufficient 

number of samples to statistically detect differences in precision despite the potential 
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benefit in statistical power that could be attained for the tests on the mean.  Third, even 

normal tissues can exhibit fairly large natural variation in perfusion values.  Because 

variances are additive, the natural variance of the tissue perfusion will be added to the 

error variance of the measurement technique to obtain the total variance of the 

measurements, which is the only observable variance.  This will further reduce the 

statistical power of tests on the variance and require even greater N.  Finally, Monte-

Carlo methods, although widely accepted in the DCE-MRI literature, are inherently 

limited by the assumptions made in generating the random signal.  Although care was 

taken to use the best and most complete methods possible for generating and processing 

the signals, there is always a danger that some important factor was overlooked.  Despite 

this well-known weakness of Monte-Carlo simulations, they are commonly used and 

accepted primarily because of the lack of any perfusion phantoms and secondarily 

because of its success in correctly identifying and guiding the development of several 

important DCE-MRI techniques (Su and Nalcioglu 1993; Bahn 1995; Ostergaard et al. 

1996a; Ostergaard et al. 1996b; Boxerman et al. 1997; Dennie et al. 1998; Karlsen et al. 

1999; McMahon and Oldfield 1999). 

The artifact level chosen in the calculation of the results in Figure 2.6 is slightly 

greater than the noise level and should be barely perceptible.  The most important 

difference between such errors and the noise is not their magnitude, but rather that the 

artifact errors are not reduced through spatial or temporal averaging.  This error is used to 

demonstrate the absolute sensitivity of Ktrans precision to small errors in the various 

sources.  In particular, consider the question posed in the introduction.  If there are no 

image errors other than a small error that occurs in the arterial portion of the dynamic 
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images, then the error propagated into Ktrans will be less than a 0.5% CV.  Conversely, if 

the same error is instead introduced into the same portion of the T10 measurement image 

it will propagate into more than a 4% CV in Ktrans. 

Errors in the arterial portion of the dynamic images had the smallest impact on the 

precision of the Ktrans measurement.  This indicates that future developmental efforts 

would probably be more productively focused elsewhere (e.g. optimizing the dynamic 

sequence for the tissue of interest rather than for blood).  The large impact of small 

artifacts in the tissue portion of the baseline image indicates that care should be taken in 

this portion of the DCE-MRI protocol.  If any perceptible artifact exists in the baseline 

image, then it can be assumed that the Ktrans of the corresponding tissue cannot be 

measured more accurately than within ±15% and is probably much worse (e.g., ±20% for 

noise in all images + small artifact only in baseline). 

It should be emphasized that, as with any analysis, the results of this analysis were 

necessarily limited by the assumptions made throughout the propagation of errors and 

Ktrans analysis.  For example, water exchange was assumed to be fast, only two tissue 

compartments were considered, and off-resonance and flow effects were not modeled in 

the signal equations (Landis et al. 1999).  While the specific results may need to be 

recalculated in situations where one or more of the assumptions do not hold, a careful 

examination of the propagated errors is important to consider in the development of any 

DCE-MRI protocol as evidenced by the aforementioned counter-intuitive results.  It is 

possible that similar rigorous analyses of other quantitative measurement techniques, 

such as diffusion-tensor imaging, may also yield counter-intuitive results, and that failure 
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to perform such analyses could lead to sub-optimal precision in the quantity of interest 

for currently proposed protocols. 

DCE-MRI perfusion assessment requires the measurement of multiple signals as 

inputs for a complex post-processing algorithm that yields a single index of blood flow.  

A standard index that may be obtained is Ktrans which is proportional to blood flow and 

dependent upon capillary perfusion for clinically approved diffusible tracers such as Gd-

DTPA.   The accuracy of measured Ktrans is dependent upon the accuracy of the source 

image data used in its calculation and also a function of how these errors are propagated 

through the signal equations and modified Kety two-compartment model.   We have 

shown how Ktrans error has different sensitivities to both sequence and tissue parameters.   

In T1 weighted source images, signal decreases with increasing T10.   With constant noise, 

SNR varies inversely with T10, causing Ktrans error to increase with T10.  The results of 

our analysis (Figure 2.2) suggest that at high T10 the sensitivity to error may not be 

negligible.  For example, with the spin-echo measurement technique, the T1 of tissues 

such as gray matter (T1 = 950 ms) cannot be measured more accurately than within 

±11%.  The analysis outlined above provides a means for determining the magnitude of 

the increase, as well as a means for determining the SNR changes necessary to reduce 

Ktrans error to acceptable levels when attempting voxel-resolution perfusion imaging of 

tissues with high T10.   This will be particularly important when attempting to compare 

perfusion in tissues with different T10, or in the same tissue undergoing changes over 

time (e.g. apoptosis) that concurrently lead to changes in T10. 

In conclusion, our findings suggest that estimates of Ktrans in tissue at a voxel within 

an image are most sensitive to errors in the images used to estimate baseline T1.   Thus, 
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errors in pre-contrast T1 estimates of the arterial blood and tissue leads to far greater 

error in estimates of perfusion than comparable error in images used to measure the 

relative signal change after contrast administration.   A fixed error in post contrast arterial 

signal that propagates to a 0.4% error in Ktrans will propagate to a much greater error 

when it occurs in pre-contrast arterial signal (5%), pre-contrast tissue signal (5-12%), 

post contrast tissue signal (4-10%), tissue T10 measurement signal (5-25%), or arterial T1 

measurement signal (27%).  However, in spite of these differences in sensitivity, the 

signal to the uncorrelated background noise (SNR) in all of our images did not propagate 

to large errors.  On the other hand, larger errors from other sources such as breathing or 

other motion could contribute to large variation in Ktrans estimates, especially when they 

occur during T10 measurement signal acquisition.  In other words, SNR is not as 

important as minimizing artifact in acquisitions used to estimate T10.  Finally, due to 

strong main and secondary effects, it is important to optimize a DCE-MRI protocol for 

the tissue of interest, particularly with regards to matching the technique to the 

anticipated T10 of the target tissue.   
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Chapter 3. Rapid Gridding-Reconstruction Using Tables 

3.1 Introduction 

The reconstruction of non-uniformly sampled Fourier data is a well-known problem 

in many fields including radio astronomy, synthetic aperture radar, and MRI (Hogg et al. 

1969; Choi and Munson 1998).  In MRI this reconstruction problem arises when an 

image is acquired using a non-rectilinear or non-Cartesian k-space trajectory.  Examples 

include radial k-space acquisitions for (filtered) back projection reconstruction (PR), 

spiral trajectories, rosette trajectories, or any number of other proposed trajectories.  Such 

trajectories may be desirable for a variety of reasons including rapid acquisition times or 

good artifact reduction properties (Meyer et al. 1992; Irarrazabal and Nishimura 1995; 

Zhou et al. 1998).  For example, in an iMRI setting, many trajectories could allow 

simultaneously high temporal and spatial resolution while providing data collection 

throughout a targeted region of k-space, determined by resolution requirements.  This is 

in contrast to the currently more common keyhole techniques, which increase temporal 

resolution by sampling only a portion of the targeted region of k-space (Duerk et al. 

1996).  However, to be useful in iMRI and other fluoroscopic applications, these non-

rectilinear trajectories currently require access to numerically intensive special 

reconstruction code, sophisticated computer hardware or special reconstruction hardware, 

thereby limiting their use in some applications (Kerr et al. 1997; Eggers and Proska 

1999). 

The solutions to the problem of how to reconstruct non-uniformly sampled k-space 

data can be broadly grouped into two categories.  The first group is solutions that rely on 

direct application of the DFT (discrete Fourier transform) from the sampled data points.  
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The second group is solutions which use a gridding algorithm to estimate an equivalent 

set of uniformly sampled Fourier data from the non-uniformly sampled acquired data, 

followed by reconstruction using the FFT (O'Sullivan 1985; Jackson et al. 1991; 

Rosenfeld 1998). 

An efficient method for performing either the DFT reconstruction or data gridding 

operations would allow completely real-time reconstruction (i.e., limited by the 

acquisition time) of these non-rectilinear trajectories, which could open the door for their 

use in a wider variety of clinical situations.  Moreover, if the method could allow the 

calculation of the result due to each individual data point immediately upon acquiring the 

data point, it would have an advantage even over current keyhole or sliding window 

reconstruction methods.  The image could be updated after each individual data point, or 

after any given number of data points, to reflect the most recent information.  This would 

be a necessary precursor to truly fluoroscopic MRI acquisitions. 

The purpose of this work was to determine if the computational efficiency of pre-

calculated look-up tables could be effectively exploited to achieve real time 

reconstruction, or real time gridding during non-rectilinear or non-Cartesian k-space 

sampling when using only modest conventional computational resources.  The remainder 

of this paper will describe table-based computational methods that permit rapid 

reconstruction of non-uniformly sampled k-space data even on a typical, PC (personal 

computer) for the DFT and for some of the currently used gridding algorithms. 

3.2 Methods 

A linear look-up table arrangement (in time) and hence a simple memory allocation 

scheme allows very predictable access into a look-up table, which in turn suggests the 
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possibility for fast table-driven computation (Booth 1997).  Proposed methods to achieve 

an efficient DFT and gridding table method are described below. 

3.2.1 Description of a Lookup Table DFT method 

A DFT table is a pre-calculated table of weights describing how each data point 

affects the entire image space.  That is, the precalculated table consists of the DFT of a 

delta function at the sampled location in k-space.  Consider the DFT transform pair for a 

1D (one dimensional) signal sampled at  equidistant points in both time and frequency. N
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where  is the Fourier data and  is the reconstructed signal in the space (or 

time) domain.  The synthesis equation may be rewritten (Eq. [3.2]) when the requirement 

for equidistant frequency samples is relaxed. 
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where the  are the sampled locations in frequency,  is the number of 

frequency samples and  is the density compensation function at the sample 

locations.  The function  is equal to 1.0 if the  are equidistant; otherwise it 

is large in the relatively undersampled regions and small in oversampled regions (Hoge et 

al. 1997; Pipe and Menon 1999). 
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then Eq. [3.2] may be rewritten as 
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If the  are known in advance, as is the case in any MRI pulse sequence, then it is 

possible to pre-calculate and store all of the T , and reload them only during the 

acquisition/reconstruction.  This is the mathematical basis of the DFT table-enhanced 

method.  Note that all of the transcendental functions and the density compensation 

functions are pre-computed, and the task, at run time, consists entirely of multiplication 

and addition.  Note also that each of the  can be processed independently and 

simultaneously.  Because of this, it is convenient to write the above equations in a 

vectorized format. 
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or, in vector/matrix format 
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In MRI, each of the  is one of the acquired data points.  A table-based 

DFT reconstruction, therefore, consists of the following steps: 

))(),(( ikikF yx

1) Compute and store all of the . This file is the pre-calculated look-up table 

and may be used repeatedly for a given trajectory.  That is,  needs only to 

be calculated once since it can be used, for example, for any pulse sequence in 

which that k-space trajectory is used. 

)(iT

)(iT

2) Load the look-up table into memory. 

3) Set the current estimate of  to zero. f

4) Acquire the first data point, . ))0(),0(( yx kkF

5) Calculate T . ))0(),0(()0( yx kkF⋅

6) Accumulate (add) the result into the current estimate of . f

7) Repeat steps 4 – 6 for the rest of the data points. 

3.2.2 Description of a Look-up Table Method for Gridding 

A table for gridding operations used prior to 2D-FFT reconstruction of non-

rectilinearly sampled MRI data would be a pre-calculated table of weights describing 

how each data point contributes to a small, rectilinearly sampled, k-space neighborhood.  

The gridding algorithm presented by O’Sullivan consists of several steps designed to 

compute, not the actual Fourier data at the grid points, but a set of gridded Fourier data 
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whose FFT is equal to a sampled version of the integral FT (Fourier transform) of the 

non-uniformly sampled function (O'Sullivan 1985).  The basic steps are as follows. 

1) Multiply the trajectory data, ))(),(())(),(( ikkikkikikF yyxxyx −−⋅δ , by an 

appropriate density compensation function, . ))(),((1 ikik yx
−ρ

2) Convolve the density compensated trajectory data by an appropriate function, 

.  Ideally, a sinc function covering all of k-space would be used, but 

this would lead to a significant computational burden and thus finite windows, 

like Kaiser-Bessel functions, are chosen instead. 
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3) Sample the convolved function onto a rectilinear k-space grid by multiplying 

by the comb function, comb . [3.8] ∑∑
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4) Transform the gridded data, G , from the previous step using the FFT. ),( yx kk

5) Deconvolve the transformed image by dividing it by c , the FT of the 

convolution function used in step 2.  This step is unnecessary if a sinc 

function was used in the gridding convolution; for many convolution 

functions this correction produces minimal improvements in the central 

portion of the image. 
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The result from step 3 of the gridding algorithm is the gridded Fourier data that lies 

on a rectilinear grid (Jackson et al. 1991), expressed here as 
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or, in matrix format, 
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Eq. [3.12] has the same form as Eq. [3.7].  Therefore, a similar table-based 

reconstruction process used above to calculate f  could also be used here to calculate the 

gridded data, G .  Once complete, the image can be reconstructed via the 2D (or ND [n 

dimensional]) FFT of .  Further, any operation that can be expressed as a linear 

function on the sampled data points, e.g. , can be computed using the 

table-based reconstruction method. 

G

))(),( ikiF y(kx

Once the gridding table, Tg , is created and stored it can be loaded at run time into 

memory and then used to greatly speed the processing.  The table-enhanced gridding 

algorithm proceeds in the following steps. 
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1) Do a table-based reconstruction using  to reconstruct  (as opposed to 

using T  to reconstruct ).  This covers steps 1 – 3 in the gridding algorithm. 

Tg G

f

2) Transform the gridded data using the FFT. 

3) Deconvolve the transformed image by dividing it by c , the FT of the 

convolution function used to calculate the table. 

),( yx

3.2.3 Programming Methods 
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Figure 3.1 Structure of the gridding table.  Table example based on a 4 by 4 convolution 
window.  The row offset and column offset values accomplish the sparse matrix 
representation.  The mask elements are the only non-zero elements of the sparse matrix.
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Figure 3.1 Structure of the gridding table.  Table example based on a 4 by 4 convolution 
window.  The row offset and column offset values accomplish the sparse matrix 
representation.  The mask elements are the only non-zero elements of the sparse matrix.

For a small convolution window )(iTg

zero.  This allows use of a sparse matrix representation where the zero d neither be 

stored nor calculated at run time.  Thus the tables are organized as shown in Figure 3.1.  

The i’th data point acquired from the scanner corresponds to the i’th entry in the table 
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that is, in turn, simply a sparse matrix representation of )(iTg .  When a data point is 

acquired, the row and column offsets are read and used as indices into the gridded array, 

which is the current estimate of G .  Then all of the weights in the table entry are 

multiplied by the data point and a umulated into the indicated locations in the array.  

The next entry in the table is then loaded and the processor waits, if necessary, to acquire 

the next data point.  If the processor has idle time while waiting for the next data point, 

the size of the convolution window may be increased or other computations may be 

performed without adding any time to the reconstruction.  A larger convolution window 

generally results in less aliasing artifact from the gridding procedure itself (Jackson et al. 

1991). 
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l function of the first kind, 

of the gridding tables used re were calculated with the Kaiser-Bessel window 

Eq. [3.13] (O'Sullivan 1985; Jackson et al. 1991): 
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where  is the zero-order modified Besse  is the width 

of 

0I

o

W

the wind w, and β  is a free parameter.  It was set to the optimal value (5.7567 for 

W=4) presented by Jackson et al. for windows of width 5.0 or less or otherwise to the 

approximately optimal value (9.4248 for W=6 or 12.566 for W=8) from the simple 

equation presented by Wajer et al. (Jackson et al. 1991; Wajer et al. 1999). 

Both radial and spiral trajectories were considered.  The density compensation 

function was multiplication by the k-space radius of the data point for both cases (Hoge 

et al. 1997).  The comb function used to produce the k-space grid had a sampling interval 
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of unity as shown above; it was not oversampled as has been suggested in order to 

increase the FOV and thereby move the aliasing energy away from the ROI (Jackson et 

al. 1991). 

Three different complex number representations were investigated for the DFT table 

reco

ing constant (equal to the value of 

The Kaiser-Bes

ms were implemented in either the Interactive Data Language (IDL: 

Res

eriments were designed to determine differences in accuracy, 

com

nstruction.  The first was the standard rectangular representation (i.e., jBA+ ).  The 

second and third were polar representations ( θjAe ) with the phase discretized into 16 and 

8 bits respectively and the magnitude 

))(),((1 ikik yx
−ρ , representing the density compensation function) for each table entry.  

sel window function is entirely real, and therefore the various complex 

number representations used for a DFT table are neither possible nor necessary for a 

gridding table. 

All algorith

be

earch Systems, Inc., Boulder CO) or in C++ (Visual C++ v5.0: Microsoft Inc., 

Redmond, WA).  For C++ programs, the OptiVec C/C++ complex math library (by 

Martin Sander, shareware v1.6), which allows for complex data and includes the FFT, 

was used.  The functions in this library have been partially optimized by using assembly-

level instructions and vectorized computational techniques.  For example, the FFT 

algorithms were written in assembly level. 

3.2.4 Experimental Methods 

3.2.4.1 DFT Methods 

The DFT table exp

putational speed, and table size of the various complex number representations.  A 

mathematical phantom, similar to a CT resolution phantom for large data sets (>1002 data 
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points) or a single square for small data sets, was calculated based on a series of 2D 

rectangular pulses of width (wx,wy) centered about the point (cx,cy) (u  in Eq. [3.14]). 
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Its analytical FT provided simulated k-space data that was uniformly sampled on a 

32-by-32 square grid.  Look-up tables were developed to reconstruct from the 32-by-32 

k-space data onto a 32-by-32 image-matrix.  Three different look-up tables were pre-

calculated using IDL according to the three different representations of complex 

numbers: one using the standard rectangular representation and the other two using polar 

representations with the phase discretized to 8 and 16 bits respectively.  The size of each 

of the look-up tables was noted.  The table-based DFT reconstruction was performed 

following the aforementioned method and the time required was measured using the 

computer’s internal clock and the standard time routines.  After measuring the 

reconstruction time with these tables, the fastest one was re-coded in C++ and compiled 

using the previously mentioned compiler set to optimize for speed.  The deviations from 

use of the FFT were calculated and compared.  The speed results obtained with IDL were 

checked by using C++ to measure the average speed of one-million multiply-accumulate 

operations on random data for each of the various complex number formats.  The 

experiment was not designed to assess or compare the computational time of the 2D-FFT 

versus a table-based reconstruction, but rather to explore only errors and reconstruction 
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times associated with different table formats that might lend themselves to more rapid 

reconstruction. 

3.2.4.2 Gridding Methods 

All of the gridding procedures described in Methods Section B and Eq. [3.8] – Eq. 

[3.12] were coded with the Microsoft C++ compiler.  All reported reconstruction times 

were obtained using the standard C++ time routines with the code compiled to optimize 

for speed.  They were performed on a Windows NT 4.0 single processor 600 MHz 

Pentium III PC with 512MB of RAM (random access memory).  All of the gridding-table 

experiments used the same gridding code and the same 2D-FFT code for reconstruction; 

the only differences were in the code used to generate the pre-calculated look-up tables 

and the raw data. 

The first gridding-table trial measured the time required to grid simulated data 

resulting from sampling along a spiral trajectory.  The simulated spiral trajectory data 

was generated from evaluation of the analytic expression for the 2D-FT of the 

mathematical resolution phantom at each k-space sampling location.  An Archimedian 

spiral trajectory was used: 

1)128128(,,1,0))(),(())(),(( 64/
256

64/
256 −⋅== Lieimereikik ijiiji

yx
ππ  [3.15] 

where the real part of the number represents the distance in k-space along the kx 

direction and the imaginary part represents the position along the ky direction.  This spiral 

has 128 turns and 128 sampled data points per turn with the radius of the last data point 

being 64.  The data were gridded onto a (128+W-1)2 point matrix where W is the width 

of the Kaiser-Bessel window as is dictated through the use of the convolution gridding 

method without oversampling.  The gridded matrix was zero padded to 2562 points as 
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required by the OptiVec FFT routine.  A reference image was generated by applying the 

gridding reconstruction algorithm to data obtained by sampling the transform of the 

mathematical resolution phantom along a 1282 Cartesian trajectory.   

These images and times were also compared to a non-table-based gridding operation.  

The non-table-based operation used the same code as the table-based operation except in 

the innermost loop where the simple multiply-accumulate of the pre-calculated table 

value was replaced with the usual inline computation of the density compensation 

function and the Kaiser-Bessel window.  This window utilized a fast Taylor-series 

expansion of the zero-order modified Bessel function of the first kind.  Enough terms 

were used to ensure accuracy to one part per million.  This is in contrast to the much 

slower function used in the table calculations, which proceeds to full machine precision.  

However, since this is pre-calculated, the increased time does not impact on the 

gridding/reconstruction time. 

The second gridding-table test reconstructed simulated data sampled along a radial k-

space trajectory, as would occur in projection reconstruction acquisitions, which are now 

regaining attention in a variety of MRI applications.  The same mathematical resolution 

phantom was used to generate simulated data by evaluation of the analytic expression for 

its 2D-FT.  The radial trajectory consisted of 180 views, each offset by 1º from the 

previous; 256 points were collected for each view with the 128th data point located at the 

origin of k-space.  The data were gridded onto a (256+W-1)2 point matrix where W is the 

width of the Kaiser-Bessel window.  The gridded data was generated, the gridding time 

was measured, and the resulting times and images were compared to those obtained 

through a non-table-based algorithm as above. 
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The third and final trial of the table-based gridding algorithm reconstructed in-vivo 

radial k-space data acquired in our lab.  A pig’s neck was scanned using a 180 view, 256 

points per view radial k-space True-FISP acquisition during iMRI needle insertion. The 

pulse sequence was implemented on a Siemens 0.2T Magnetom Open MRI system 

(Siemens Medical Systems, Erlangen, Germany).  The echo occurred at the 128th point in 

each view.  The views were separated by approximately (but not exactly) 1º due to the 

MRI system’s hardware truncating the gradient tables to a fixed precision.  The data were 

again gridded onto a (256+W-1)2 point matrix where W is the width of the Kaiser-Bessel 

window.  The time required for table-based gridding was measured and compared with 

non-table-based gridding as with previous experiments. 

3.3 Results 
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Figure 3.2 Accuracy comparison between the different complex number representations 
for the DFT table.  For the polar representations, the number of bits indicates how many 
bits of precision were used to discretize the phase.  Deviations are scaled to the range of 
bytes (0-255) and are measured relative to the FFT of the same data

Figure 3.2 Accuracy comparison between the different complex number representations 
for the DFT table.  For the polar representations, the number of bits indicates how many 
bits of precision were used to discretize the phase.  Deviations are scaled to the range of 
bytes (0-255) and are measured relative to the FFT of the same data

Results from the DFT experiment showed that the unavoidable Fourier artifacts, such 

as Gibbs ringing, overwhelm the miniscule differences between the FFT and the table-

enhanced DFT by five orders of magnitude as would be expected.  Figure 3.2 shows the 

deviations, with respect to the FFT, generated by using the various table representations 

from the first DFT table experiment.  The deviations in this image are calculated by 

taking the absolute value of the magnitude error.  Before the errors were calculated, the 

images were scaled up to the range of bytes (gray levels) to give a reference for how 

visible those errors would be on a typical display device.  The rectangular complex table 

generated the most compact error pattern with the lowest peak value.  The two polar 

tables generated different error patterns with the errors from the 8-bit table being highest, 
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5 gray levels or approximately 2% peak error.  Also note that the error for the 8-bit table 

was at or near its peak value (5 gray levels) for many more pixels than was the 16-bit 

Unfo

table.   

rtunately, neither of the polar representations performed better than the standard 

rect

110 msC++ (rectangular)

731 ms8-bit Polar

839 ms16-bit Polar

422 msRectangular

Reconstruction TimeRepresentation

Table 3.1
DFT-table reconstruction time for various complex number representations

110 msC++ (rectangular)

731 ms8-bit Polar

839 ms16-bit Polar

422 msRectangular

Reconstruction TimeRepresentation

Table 3.1
DFT-table reconstruction time for various complex number representations

angular table in speed as shown in Table 3.1.  The general trend of Table 3.1 was also 

evident with the multiply-accumulate (MAC) measurements on random data in C++ 

(rectangular: 351 ns/MAC; 16-bit polar: 1041 ns/MAC; 8-bit polar: 972 ns/MAC).  The 

fastest time, obtained for the optimized C++ implementation of the rectangular table, was 

110 ms for a 32 x 32 reconstruction. 
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a.  W is the width of the Kaiser-Bessel convolution kernel
b.  Simulated data
c.  Actual data from pig
d.  2562 point 2D-FFT
e.  5122 point 2D-FFT

218.8 mse8399.0 ms4211.7 ms1636.9 msRadialc

(standard)

218.4 mse130.8 ms80.0 ms36.1 msRadialc

(table- enhanced)

218.7 mse8415.3 ms4218.1 ms1639.2 msRadialb

(standard)

219.4 mse131.5 ms80.1 ms36.2 msRadialb

(table- enhanced)

44.3 msd2992.9 ms1499.5 ms582.3 msSpiralb

(standard)

44.3 msd47.17 ms29.3 ms12.8 msSpiralb

(table-enhanced)

2D-FFTW = 8aW = 6aW = 4aTrajectory

Table 3.2
Computation times for various k-space trajectories with lookup table gridding

a.  W is the width of the Kaiser-Bessel convolution kernel
b.  Simulated data
c.  Actual data from pig
d.  2562 point 2D-FFT
e.  5122 point 2D-FFT

218.8 mse8399.0 ms4211.7 ms1636.9 msRadialc

(standard)

218.4 mse130.8 ms80.0 ms36.1 msRadialc

(table- enhanced)

218.7 mse8415.3 ms4218.1 ms1639.2 msRadialb

(standard)

219.4 mse131.5 ms80.1 ms36.2 msRadialb

(table- enhanced)

44.3 msd2992.9 ms1499.5 ms582.3 msSpiralb

(standard)

44.3 msd47.17 ms29.3 ms12.8 msSpiralb

(table-enhanced)

2D-FFTW = 8aW = 6aW = 4aTrajectory

Table 3.2
Computation times for various k-space trajectories with lookup table gridding

In Table 3.2 the left-hand column indicates the trajectory and the top row indicates 

the size of the Kaiser-Bessel window used in the computations for gridded data trials.  

The size of the window determines the number of mask points in each table entry.  These 

convolution kernels were generally larger than those typically used elsewhere (Irarrazabal 

et al. 1993; Irarrazabal and Nishimura 1995; Butts et al. 1997; Sedarat and Nishimura 

1999).  The images and results from the individual trials will be mentioned below, but it 

is important to note the ratio of the computation times of the table-based and the non-

table-based trials.  The table-enhanced gridding operation ranged from 45 to 64 times 
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Figure 3.3 Gridded and reconstructed image from the spiral trajectory sampling of the 
mathematical resolution phantom, gridded in 12.8 ms using the table-based 
reconstruction with a 4 by 4 Kaiser-Bessel convolution window.  2562 point FFT took 
44.3 ms on the same system.

Figure 3.3 Gridded and reconstructed image from the spiral trajectory sampling of the 
mathematical resolution phantom, gridded in 12.8 ms using the table-based 
reconstruction with a 4 by 4 Kaiser-Bessel convolution window.  2562 point FFT took 
44.3 ms on the same system.

faster than the standard gridding operation, and in most cases the table-enhanced gridding 

was faster than the corresponding 2D-FFT while the non-table-enhanced gridding was 

always slower. 

The spiral trajectory, the first gridding-table experiment, produced the results shown 

in Figure 3.3 and Table 3.2.  Figure 3.3 is the gridded and reconstructed data from a 

mathematical resolution phantom, produced using an analytical Fourier-domain 

representation of the rectangular regions. 
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(a) (b)

Figure 3.4 Difference images with respect to a reference image, obtained by applying 
the gridding reconstruction algorithm to data from sampling the transform of the 
mathematical resolution phantom along a 1282 Cartesian trajectory.  Peak difference with 
the gridded/reconstructed spiral image was 93 gray levels in the outer regions and 29 in 
the central region.  The spiral vs. reference difference image (a), which shows artifacts 
due to the spiral trajectory, was scaled by 2.7 to improve contrast visibility.  Peak 
difference with the non-gridded FFT-reconstructed image was 5 gray levels.  The non-
gridded vs. reference image (b), which shows artifacts due only to the gridding, was 
scaled by 51 to improve contrast visibility.  K-space data gridded using the table-based 
reconstruction with a 4 by 4 Kaiser-Bessel convolution window.

(a) (b)(a) (b)

Figure 3.4 Difference images with respect to a reference image, obtained by applying 
the gridding reconstruction algorithm to data from sampling the transform of the 
mathematical resolution phantom along a 1282 Cartesian trajectory.  Peak difference with 
the gridded/reconstructed spiral image was 93 gray levels in the outer regions and 29 in 
the central region.  The spiral vs. reference difference image (a), which shows artifacts 
due to the spiral trajectory, was scaled by 2.7 to improve contrast visibility.  Peak 
difference with the non-gridded FFT-reconstructed image was 5 gray levels.  The non-
gridded vs. reference image (b), which shows artifacts due only to the gridding, was 
scaled by 51 to improve contrast visibility.  K-space data gridded using the table-based 
reconstruction with a 4 by 4 Kaiser-Bessel convolution window.

Figure 3.4a is the difference between the spiral image and the reference image, scaled 

up by 2.7 times to improve contrast visibility.  The figure shows that the only artifacts in 

the original image are some streaking artifacts of 93 gray levels (peak difference) on the 

edge or 29 gray levels (peak difference) in the central region.  This difference arises from 

the non-uniform sampling.  Figure 3.4b is the difference between the non-gridded 

Cartesian data image and the reference image, scaled up by 51 times to improve 

visibility.  The peak difference is 5 gray levels.  The peak difference between the 
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Figure 3.5 Reconstructed image from the radial trajectory sampling of the mathematical 
resolution phantom, gridded in 36.2 ms using the table-based reconstruction with a 4 by 4 
Kaiser-Bessel convolution window.  5122 point FFT took 219.4 ms on the same system.

Figure 3.5 Reconstructed image from the radial trajectory sampling of the mathematical 
resolution phantom, gridded in 36.2 ms using the table-based reconstruction with a 4 by 4 
Kaiser-Bessel convolution window.  5122 point FFT took 219.4 ms on the same system.

reconstructed image obtained with the table-based gridding and the one obtained with 

standard gridding is one gray level.  These small errors occurred slightly more frequently 

in the corners of the image.  

The second experiment, the simulated radial k-space acquisition, resulted in the 

image in Figure 3.5 and the computational speeds given in Table 3.2.  It took nearly three 

times longer to reconstruct the PR sequence than the previous spiral trajectory, as 

expected since the radial k-space PR trajectory had nearly three times the number of data 

points.  The artifacts in this reconstruction were similar to, but fainter (35 gray levels 

peak), than the artifacts in the spiral experiment. 
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(a) (b)

Figure 3.6 Reconstructed magnitude image (a) from the in-vivo radial acquisition of a 
pig neck showing inserted needle, gridded in 36.1 ms using the table-based 
reconstruction with a 4 by 4 Kaiser-Bessel convolution window.  5122 point FFT took 
218.4 ms on the same system.  Also shown for comparison is a filtered back projection 
reconstruction (b) of the same data.  The 180-view radial data was acquired using a True-
FISP sequence with TE = 9.8 ms and TR = 20.8 ms at 0.2 T.

(a) (b)(a) (b)

Figure 3.6 Reconstructed magnitude image (a) from the in-vivo radial acquisition of a 
pig neck showing inserted needle, gridded in 36.1 ms using the table-based 
reconstruction with a 4 by 4 Kaiser-Bessel convolution window.  5122 point FFT took 
218.4 ms on the same system.  Also shown for comparison is a filtered back projection 
reconstruction (b) of the same data.  The 180-view radial data was acquired using a True-
FISP sequence with TE = 9.8 ms and TR = 20.8 ms at 0.2 T.

The third and final gridding-table trial is summarized in Figure 3.6a and Table 3.2.  

Even using this actual MRI data, with non-zero imaginary parts, the computational speed 

is essentially the same as from the previous experiment, as was expected for two 

trajectories with the same number of data points.  Figure 3.6b is a filtered back projection 

reconstruction of the data.  Observe that most of the artifacts in the gridded image (with 

the notable exception of the rings in the corner) also occur in the back-projected image. 

3.4 Discussion 

Many of the points of this paper may seem fairly obvious to some readers, but a 

thorough investigation regarding the applicability of look-up tables to non-rectilinear 

  77 



MRI reconstruction in general, and these algorithms in particular, is absent in the 

literature.  Prior to this work, it was doubtful whether such large tables would be useful in 

accelerating any algorithm.  The conventional wisdom regarding look-up tables is that 

they must be small enough to fit inside the cache to achieve computational efficiency, 

while the tables used in this manuscript are necessarily many times larger.   

The DFT-table experiment, the comparison of rectangular vs. polar representations, 

indicates that the rectangular representation is preferable over either of the polar 

representations (rectangular vs. 16-bit polar vs. 8-bit polar representations had peak 

deviations of 0.000444 vs. 0.0224 vs. 5.42 gray levels and reconstruction times of 422 ms 

vs. 839 ms vs. 731 ms).  The computational burden of the DFT reconstruction is 

proportional to the number of data points in the trajectory times the number of pixels in 

the final image (1024 times 1024 for the above experiments).  Thus the fastest results 

from these experiments (110 ms) can be extrapolated to give anticipated best-case 

reconstruction times for larger trajectories or image sizes.  For a 128 by 128 trajectory 

and final image (or any arbitrary trajectory with 1282 data points) the extrapolated 

reconstruction time is 28.16 s; for a 256 by 256 trajectory and final image the time is 7.5 

min.  These reconstruction times are much greater than would be useful in any kind of 

time-sensitive application.  The DFT-table method is still useful to consider because, due 

to its inherently parallel structure, specialized hardware and advances in computer 

technology may eventually make the table-based DFT even faster than the FFT 

(discussed in further detail below).  Unfortunately, direct application of the DFT on the 

non-rectilinear data points is simply too computationally intensive, and thus currently 
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takes too long, to warrant further investigation for use in a typical situation with limited 

computer resources.   

The first gridding experiment was the first one to use a non-Cartesian sampling 

scheme and thus the first one that needed a non-FFT reconstruction.  The most interesting 

aspects of this experiment are the difference images between the reconstructed gridded 

data and the reference image and between the non-gridded 2D-FFT of the Cartesian data 

and the reference image.  Though not necessary to reconstruct the image, the use of the 

gridding operation on the Cartesian data allows one to separately examine the effects of 

the trajectory and the effects of the gridding.  The spiral vs. reference difference image is 

shown (peak difference: 93 outer region, 29 central region), scaled by 2.7 times, in Figure 

3.4a.  This image indicates that the artifacts in Figure 3.3 are largely due to the trajectory 

itself.  The non-gridded vs. reference difference image is shown (peak difference: 5 gray 

levels), scaled by 51 times, in Figure 3.4b.  The most evident features of the spiral vs. 

reference image are the radial streaks around the outer portion of the image caused by the 

spiral sampling of the Fourier data.  However, note the distinct delineation of the central 

portion of the image where there is much less difference between the two images.  This 

central portion is almost exactly 128 pixels in height and width, or it is almost exactly the 

central quarter of the image.  With some values of β  it is possible to get sharp peaks in 

the corners of the image.  This problem could be avoided by setting the outer portion of 

the image to zero, keeping only the portion that is the most accurate reconstruction of the 

desired image (see the central portion of Figure 3.4).  This also supports the use of over-

sampling of the Fourier data, as has been suggested in the literature, to increase the FOV 

prior to this cropping (Jackson et al. 1991).  The low peak difference (5 gray levels) in 
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the non-gridded vs. reference image indicates that most of the artifacts in the table-based 

gridding reconstructions are attributable to the trajectory itself, rather than to the 

reconstruction. 

The simulated radial k-space data experiment showed similar, though much less 

intense, artifact patterns as the previous spiral sampling.  This is not surprising since the 

spiral ultimately generates a sampling pattern in k-space that is very similar to the radial 

acquisition (Ahn et al. 1986).  The salient point to note from these final two experiments 

is the computational speed.  First, the radial trajectories have nearly three times the 

number of data points as the spiral trajectory used (46080 vs. 16384).  Consequently, the 

gridding time for the radial acquisition was nearly three times as long as the gridding 

time for those other trajectories (36.2 ms vs. 12.8 ms).  Thus, the number of computations 

in the table method, and hence the gridding time, is directly proportional to the number of 

data points.  This is one reason for using gridding rather than the DFT tables, since with 

the DFT the reconstruction time should be roughly proportional to the square of the 

number of sampled data points (Proakis and Manolakis 1996). 

The radial k-space acquisition in a living pig, the third gridding-table experiment, 

showed the utility of this method for actual image reconstruction.  The radial pulse 

sequence used in this experiment requires 1300 msec to acquire all of the data while the 

gridding process, when performed on a modest PC, required 36.1-130.8 msec.  This 

indicates that the entire gridding process could take place during the acquisition itself 

even using a single processor PC for the reconstruction.   

If this were implemented on-line, the table-based gridding procedure could be 

accomplished in real time (limited by the acquisition) and the total lag time would be the 
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time it takes to do the 2D-FFT and display the data.  This would allow a variety of pulse 

sequences to be used in a more real-time fashion as is important in fMRI (functional 

magnetic resonance imaging), perfusion, cardiac and iMRI applications where currently 

the selection is quite limited.  In addition, this efficient method would free up 

computational resources for other desirable activities, especially for groups with access to 

specialized computational resources. 

When examining all of these results it should be remembered that expertise and 

familiarity with a particular computer language might play a significant role in affecting 

the speed results of any such experiment.  Undoubtedly results will vary according to the 

skill of the programmer.  Thus, less attention should be paid to the absolute times found 

in the tables, but rather the relative differences between conventional and table-based 

methods.  The reason for this is that differences in times for any task are expected with 

different computer systems.  However, use of speed-optimized code allows comparison 

between relative time differences to be made.  For example, if conventional regridding on 

a different computer requires 100msec (and 582.3 msec here for W=4: Table 3.2), then a 

table based method on this alternative hardware would likely require approximately 2.2 

msec for table-based gridding since 12.8 msec was needed on our 600MHz Pentium. 

The DFT has the advantage of much simpler mathematics and direct calculation of 

the final reconstructed image, when compared to the various gridding approaches.  

However, as shown here, it is computationally intensive and therefore usually considered 

too slow for widespread use, even when using these efficient table-based methods.  On 

the other hand, all of the gridding approaches introduce some error during the change 

from non-uniformly sampled data to an estimate of a uniformly sampled Fourier data set.  
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The errors result from the need for interpolation, convolution, matrix inversion, or other 

such operations in the data estimation process (O'Sullivan 1985; Jackson et al. 1991; 

Rosenfeld 1998).  Further, gridding methods create Fourier data, or k-space data, that 

must still be transformed into the reconstructed image by use of the FFT.  The 

considerable numerical advantage of the FFT, however, can make the total gridding-

reconstruction process less computationally intensive than the corresponding direct DFT 

reconstruction, at the expense of modest image errors and artifacts. 

The speed of the reconstruction really became potentially useful in dynamic settings 

beginning with the gridding experiments (12.8 ms to 130.8 ms).  As mentioned earlier, 

the primary advantage of the gridding algorithm is that most of the values in Tg  are 

equal to zero and, using a sparse matrix representation, they need to be neither stored nor 

calculated.  Another advantage of the gridding table over the DFT is that the DFT table 

must be complex while the convolution function, and therefore the gridding table, is 

usually purely real (though the acquired or simulated data is still complex).  This further 

reduces the computational burden by simplifying each complex multiply-accumulate 

from four multiplications and four additions in the DFT table to two multiplications and 

two additions in the gridding table. 

)(i

The final two steps (i.e., the FFT and the deconvolution) of both the normal and the 

table-enhanced versions of the gridding algorithm are identical and so the anticipated 

savings in time are in the first step.  The processor is able to prepare the data for the FFT 

in a minimal amount of time with the table-enhanced method by reducing all of the 

transcendental or other functions in the first three steps to a single multiply-accumulate.  

Even on a single processor this can mean that the gridding process can be done as fast as 
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the data is acquired.  In that case, the entire reconstruction process would only be twice as 

long as the reconstruction of a normal acquisition in which the row FFT is evaluated for 

each line of data as it is acquired.  Table 3.2 shows that non-uniform k-space sampling 

with a table-enhanced gridding algorithm permits gridding during the acquisition, leaving 

both the row and the column transformations for calculation upon completion of the 

acquisition. 

These table-based methods are highly amenable to parallelization.  With a sufficient 

number of processing elements the DFT-table methods could, theoretically, become even 

faster than the FFT.  This is because the FFT must wait until the entire row is collected 

before beginning the row transformation.  Then it must wait until all the rows are 

collected before beginning the column FFTs.  The DFT, on the other hand, can process 

the result from each data point as it arrives from the scanner.  All processing tasks could 

be equally distributed between up to as many different processing units as there are 

elements in the T(i) or Tg(i) matrices.  Groups have already begun exploring 

multiprocessor and dedicated hardware systems for non-rectilinearly sampled k-space 

data (Kerr et al. 1997; Eggers and Proska 1999).  If enough elements exist to process one 

data point before the next arrives, then the entire process is performed in real-time and 

limited only by the MRI data-sampling rate.  The end result of using a table method in 

conjunction with sufficient computer power, as described above, would be the ability to 

reconstruct an image after the acquisition of each data point or after any arbitrary number 

of data points.  This would even be possible for the gridding-table method, but would be 

somewhat more natural for the DFT-table method.  Even without reconstructing a new 

image after every data point, the gridding process can be carried out concurrently with 
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the image collection and thus the 2D-FFT could be applied as often as desired to reflect 

the updated data.  This would be important in a MR fluoroscopy application where it 

would be desirable to obtain updated images in sub-second increments.  Certain 

acquisition strategies, such as spiral or rosette, could acquire sufficient information each 

second to warrant an updated image reconstruction several times per second; and these 

table-based methods could be a means to facilitate that high rate of image reconstruction, 

even without specialized computational equipment.  In situations with specialized 

computational resources, this method would allow for more processing, such as motion 

correction, to occur on-line rather than expending all the computational resources on the 

gridding/reconstruction task. 

The use of lookup tables to improve the computational speed of algorithms is a 

generally accepted and common practice.  In fact, many compilers, when optimizing for 

speed, will automatically generate small tables in order to handle complicated branching 

structures such as switch statements (Booth 1997).  Tables often allow much more 

complicated numerical or logical functions to be mapped into a simple memory access 

function.  For example, the table saves tens or hundreds of processor clock cycles 

(dependent on the processor) by pre-calculating and storing the results from complicated 

functions, such as Bessel, exponential and other transcendental functions.  In a similar 

fashion, the information needed to perform complicated operations, such as convolution, 

can be easily stored in the table for quick use at run time.  The net effect is a significant 

reduction in the computational burden during the reconstruction.  This mapping, in 

essence, trades bytes for flops (floating-point operations per second).   This can be 
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advantageous since it is easier to increase the maximum number of MB of available 

memory than it is to increase the number of Mflops on most available computer systems. 

Other methods have been proposed to reduce the number of Mflops needed prior to 

reconstruction for use in gridding algorithms.  Some groups have used fixed-point 

calculations, rather than the more accurate floating-point, in order to use the faster integer 

portions of the processor (Liao 1999).  The table lookup methods developed here for 

flops could also be extended to fixed point operations and thus gain all of the advantages 

(and disadvantages) of using integer arithmetic. 

The two major limitations to the speed of a table look-up operation are the size of the 

table and the predictability of the access pattern.  Both of these relate to the probability of 

a given table entry being in the data cache of the processor (Booth 1997).  A strong 

computational time penalty is incurred using the table methods each time the algorithm 

must wait for data from main memory, or worse, from the hard drive.  The computational 

advantage can therefore be lost if the tables are poorly organized.  Thus the fastest tables 

are small and generally accessed in a straightforward manner (Booth 1997).  Thus the 

speed advantages gained by the gridding tables seem to violate some of the known 

stereotypes of fast tables simply because of their sheer size.  The reconstruction tables in 

this project are not small, but their access patterns are so predictable that they enhance the 

computational speed significantly, even without explicit concern over cache access.  

There are two principal requirements that must be satisfied to be able to use this table 

method.  The first is that the sampled locations of k-space must be known beforehand.  In 

MRI this is not a difficult requirement since the sample point locations are determined by 

the pulse sequence, which is created beforehand.  The second more limiting, requirement 
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is that the operation replaced by the table must be a linear operation on the sampled data 

points.  This allows a table implementation of the DFT algorithm or the commonly used 

convolution gridding algorithm.  However, other gridding operations (e.g., interpolation) 

are generally not linear and therefore would not qualify for a table implementation as 

described here (O'Sullivan 1985; Rosenfeld 1998).  Also, portions of the convolution 

gridding algorithm that are linear operations on the transformed data rather than on the 

original sampled data, such as the final deconvolution, cannot be implemented in this 

type of table.  Fortunately, by combining all linear operations on the sampled data, 

operations like density compensation, convolution, and resampling can all be contained 

in a single table. 

Future table-based methods could include other corrections or enhancements.  For 

instance, Meyer et al. include a step for normalizing the energy in each grid point that 

could be included in the table with no run-time penalty (Meyer et al. 1992).  Other 

enhancements could include corrections for eddy currents or any other influence that 

could be anticipated in advance and compensated for with a linear function on the 

original, non-uniformly sampled, k-space data. 

3.5 Conclusions 

In conclusion, a table-based gridding operation can be computed in less time than the 

acquisition, even when the computations are performed on a single processor PC.  Using 

this method, the rate-limiting step in generation of the MR image for many applications is 

the MRI pulse sequence itself since the table based method proposed here can be run 

coincident with data collection.  When implemented on-line, this method would allow the 

total reconstruction time to equal the acquisition time plus the time required for the 2D-
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FFT.  Further improvements in reconstruction time can be achieved with this method 

using specially designed hardware or multi-processor systems.  The current 

implementation of the table-based method allows for larger convolution kernels than are 

usually used with other methods.  This in turn leads to reduced sidelobes and therefore 

less aliasing energy in the image, all within a computation time (when performed on a 

600MHz Pentium III processor with 512 MB RAM) less than many MRI acquisitions. 

The lookup tables require a substantial amount of memory, but the predictable access 

into the table allows for rapid memory access despite their size.  The inclusion of the first 

three steps of the typical gridding algorithm in a single step and the transformation of all 

complicated functions into simple MACs allow for rapid computation at run time.  

Together the quick access and the easy computation lead to a very rapid execution even 

with a single processor PC system.  Look-up table methods for reconstruction should be 

considered as an alternative method for gridding and reconstruction in non-uniformly 

sampled k-space MRI acquisitions. 
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Chapter 4. Time-optimal K-space Trajectories  

4.1 Introduction 

In many MRI pulse sequences, a relatively large amount of time is spent neither 

transmitting nor receiving RF energy.  This time is typically used to either allow 

magnetization relaxation to generate a desired contrast between tissues or to allow the 

gradients to transition to a desired gradient level and/or k-space location.  Often this 

gradient waveform control results in dead time within a pulse sequence that should be 

minimized.  For example, the time required to move from the end of one line in an EPI 

(echo planar imaging) sequence to the beginning of the next contributes to T2* decay 

related loss in resolution and off resonance artifacts; reducing this time would result in 

less sensitivity to these effects (Butts et al. 1997; Jesmanowicz et al. 1998; Reber et al. 

1998).  Unnecessary dead time can also result in a larger TR that can increase the severity 

of the banding artifact in true-FISP sequences (Duerk et al. 1998; Larson et al. 2002; 

Dale et al. 2003a).  Minimization of sequence dead time is an important concern for 

steady-state EPI sequences such as the recently proposed SPIDER (steady-state 

projection imaging with dynamic echo-train readout) technique (Larson and Simonetti 

2001). 

A variety of methods have been introduced in order to minimize this dead time.  

Some of the most effective are the HOT (hardware optimized trapezoid) waveforms by 

Atalar and McVeigh and the corresponding higher order moment extension by Bolster 

and Atalar (Atalar and McVeigh 1994; Bolster, Jr. and Atalar 1999).  One significant 

limitation of the HOT approach is that the rotation between the logical and hardware 

gradient axes (i.e., the amount of obliquity of the slice plane and in-plane rotation) must 
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be known at the time of the design of the gradient waveforms.  A further result of this 

limitation is that the total duration of a waveform generated with the HOT method 

depends on the rotation in any sequence and on the azimuthal angle of each view in any 

radial acquisition. 

It is desirable, in many circumstances, to use gradient waveforms that will not violate 

hardware limitations regardless of the rotation between the logical and hardware gradient 

axes.  This allows design of the gradient waveforms prior to run-time and maintains 

timing consistency between acquisitions with different rotations or between different 

views in a radial sequence.  This is often done by employing conservative methods such 

as reducing the maximum gradient strength by a factor of 2  or 3  depending on the 

number of active gradient axes (Atalar and McVeigh 1994).  While this practice is 

common, it does not fully utilize the capability of the gradient hardware resulting in sub-

optimal gradient waveform durations. 

This work overcomes these problems by using modern control theory and the calculus 

of variations to derive the mathematical form of the time-optimal gradient waveforms for 

several possible design strategies.  One of these strategies has both the property of being 

independent of the rotation and the property of fully utilizing the slew-rate capability of 

the gradient hardware.  Each derived waveform is shown to be the minimum-time 

solution for the given design strategy and the differences between the various strategies 

are demonstrated through several examples. 

4.2 Theory 

The formulation of an optimal-control problem using the calculus of variations 

involves defining the state variables of the system, choosing the appropriate control 
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region and other constraints, and deriving the corresponding Hamiltonian and co-state 

equations for use with the PMP (Pontryagin minimum principle).   The resulting systems 

of differential equations are then solved with the initial and final conditions to obtain a 

specific time-optimal gradient waveform.  Each of these steps is described below.  

Together, a time-optimal control problem for design or MR gradient waveforms can be 

stated as: “Given the gradient amplitude and slew-rate constraints, how can the gradient 

system be controlled from its initial state to a desired final state in the shortest possible 

time?”   

4.2.1 State-space representation 

The solution of a control problem begins with a state-space representation of the 

system.  For the MRI gradient system, the state equations are: 

( ) ( )
( ) ( )tt

tt
sg'

gk'
=
= γ

  [4.1] 

where γ is the gyromagnetic constant, ( )tk  is the k-space location, g  is the gradient 

waveform, and  is the slew rate.  In this formulation, the state variables are 

( )t

( )ts ( )tk  and 

, the control variable is ( )tg ( )ts , and the system is linear time-invariant.  This system is 

completely characterized for any time 0  given an initial state  and ft<t< ( )0 k= 0k ( )0 0gg =  

and a control  which is defined on all open subintervals of 0 . (s )t ftt <<

4.2.2 Control regions and admissible controls 

Due to the hardware limitations described above, not all choices are reasonable for 

.  In particular, the slew-rate limitation can be expressed as a restriction on the range 

of  and the gradient magnitude limitation can be expressed as a restriction on the 

( )ts

s( )t
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Figure 4.1 Three possible control regions for a 2D slew space.  The vertical/horizontal 
axes represent the hardware coordinate system while the offset axes represent the logical 
coordinate system.  The outer square is the entire set of slew rates that can be achieved 
by the hardware.  The circle and inner squares are two sets of slew rates that can be 
achieved by the hardware regardless of the angle between the logical and hardware 
coordinate systems.  The angle between these two sets of axes is not known until run-
time due to the potential for oblique acquisitions and/or in-plane rotation.

sphase

sread

sy

sx

Figure 4.1 Three possible control regions for a 2D slew space.  The vertical/horizontal 
axes represent the hardware coordinate system while the offset axes represent the logical 
coordinate system.  The outer square is the entire set of slew rates that can be achieved 
by the hardware.  The circle and inner squares are two sets of slew rates that can be 
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coordinate systems.  The angle between these two sets of axes is not known until run-
time due to the potential for oblique acquisitions and/or in-plane rotation.
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range of .  In the 1D case, the control region is straightforward: ( )tg ( ) mst ≤s  where  is 

the maximum slew rate that can be achieved by the amplifier.   

ms

The 2D case is not as simple as the 1D case.  Figure 4.1 shows a number of possible 

control regions.  The outer square represents the total range of slew rates that could be 

achieved by two separate gradient channels.  Expressed mathematically, 

( ) { yxist mi ,s ∈≤ } } where  represent the hardware axes.  The circular control { zyx ,,
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region can be expressed ( ) mst ≤s .  This represents the largest range of slew rates that are 

guaranteed to not exceed the slew-rate constraint on any gradient axis regardless of the 

rotation between the logical and hardware axes.  The inner square can be expressed 

( ) { pri
s

t m
i ,

2
s ∈≤

( )txs

( )tyk ( )ty

( )txs

} } where {  represent the logical readout, phase-encode, and slice-

select axes.  This region, like the circular control region, is guaranteed to not exceed the 

slew-rate constraint regardless of the rotation, and it represents the largest such region 

where each logical gradient axis is independent of the other axes.  

spr ,,

( )tys

( )tyg

( ) St ∈s

( )0k* =

When a square (or rectangular) control region is chosen, the problem can be 

simplified into two independent 1D problems rather than a single 2D problem because no 

choice of  can have any influence on available choices for or on the resulting 

 and g .  On the other hand, for the circular control region, a particular choice of 

 defines the limits for 

( )tys

 and thereby indirectly affects the resulting ( )tyk  and 

 thus requiring the solution of a single 2D problem.   

Let S denote the chosen control region (i.e., inner circle, inner square, etc.). A 

corresponding region can also be chosen for the gradient amplitude constraints and will 

be denoted G .  A control function ( )ts , defined on 0 , that satisfies the control 

constraints , and results in state functions 

ftt <<

( )tk  and ( )tg  such that g , is called 

an admissible control.  The corresponding pair of state functions  and g  is called an 

admissible trajectory. 

( ) Gt ∈

( )t( )tk

The time-optimal control is thus an admissible control ( )ts*  that transfers the system 

from the given initial state, 0k  and ( ) 00 gg* = , to the desired final state ( ) ff k*t =k*  
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and ( ) ff g*t =g*

( )ts

, and minimizes tf*.  In other words, for any other admissible 

control  that transfers the system from 

ff t*t ≤

( ) 00k k=  and ( ) 00 gg =  to ( ) ff kt =k  and 

( ) fg=

t

ftg .  Thus, the minimal time is , the optimal control is  and the optimal 

trajectory is k*  and . 

*t f ( )ts*

( ) ( )tg*

( )t

( ) (
ft

∫=
0

g,k,ffF

( ) 1s,g,k,f =t

( ) ft=fF

s,

z
x

∂
∂

=
H'

x
z

∂
∂

−=
H'

4.2.3 Pontryagin Minimum Principle 

In order to solve this optimization problem it is necessary to use the calculus of variations 

to examine the change in  due to infinitesimal variations in the function ft s .  The 

functionals used in variational problems are of the form (Kirk 1970; Hocking 1991) 

)dtt   [4.3] 

For time optimality, we will let 

  [4.4] 

so that 

 

The PMP states that a necessary condition for a control function to minimize a cost 

functional is that the control function minimizes the Hamiltonian (considered as a 

function of the control variables) at each point in time.  In order to obtain the 

Hamiltonian for a given system it is necessary to introduce the co-state equations.  The 

Hamiltonian, the state equations, and the co-state equations are related as follows: 

 

  [4.5] 

zx ⋅+= 'fH  
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where  is the vector of state variables,  is the vector of co-state variables, x z H  is the 

Hamiltonian and  is the integrand of the cost functional to be minimized.  

Differentiation of a scalar function with respect to a vector here refers to the vector 

formed by taking the partial derivative of the scalar function with respect to each vector 

component. 

f

In variational problems, the optimal control at each point in time is either a local 

minimum of H  or it is on the border of the admissible control region (Kirk 1970; 

Hocking 1991).  Therefore, the solution to this optimization problem will be different for 

every different choice of control region.  As mentioned previously, problems using the 

square control regions of Figure 4.1 can be separated into two 1D control problems.  

Therefore we will examine only 1D optimization problems and the 2D circular control 

region optimization problem. 

4.2.4 Time-optimality for 1D problems 

The slew-rate constraint for a 1D time-optimal gradient control problem is: 

( ) mst ≤s  

the Hamiltonian is: 

szgz1 21 ++= γH   [4.6] 

and the co-state equations are: 

( )
( ) ( )tt
t

12

1

z'z
0'z
γ−=

=   [4.7] 

which have the solution: 

( )

( ) tcct

c
t

122

1
1

z

z

+=

−=
γ   [4.8] 
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The Hamiltonian is the equation of a straight line in the ( )Hs,  plane with slope .  

Straight lines have no local minima and therefore can only be minimized by values on the 

boundary of the control region.  Note that if 

2z

0z 2 =  there is no minimum even at the 

boundary values.  This is not a difficulty for this problem since only for 

one point in time.  The value of the control at a single point cannot alter the state-space 

trajectory, and therefore we can choose 

( ) 012 =+= tccz 2 t

0)s( =t  at 0)(2z =t  in order to have an easily 

defined control at each point in time: 

( ) ( )tccst m 12sgns* +−=   [4.9] 

This result leads to two possible forms for the optimal control. 

( )








<<−
=

<<
=

fm

m

ttts
tt

tts
t

1

1

1

,
,0

0,
s*  or s*  [4.10] ( )









<<
=

<<−
=

fm

m

ttts
tt

tts
t

1

1

1

,
,0

0,

where the switching time 

121 / cct −=  

Controls of this form are known as bang-bang controls and represent a maximal 

control effort throughout the transfer.  Note that there is, at most, one switch between 

control extremes.   

Using the two possible forms for the optimal control, along with the initial conditions, 

the final conditions and the condition of continuity at the switching time we obtain the 

following expressions for the switching time, the corresponding k-space location and 

gradient amplitude, and the final time: 
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( ) ( )

m

fmf

s

kksgg
g

t
2

42
2 0

22
0

0

1
γ

γ −++
+−

=

( )

 or 

( )

m

fmf

s

kksgg
g

2

42
2 0

22
0

0 γ
γ −−+

+
t1 =  

( ) ( )
m

fmf

s
kksgg

k
4

2 0
2
0

2

1

++−
=
γ

 or 
( ) ( )

m

fmf

s
kksgg

4
2 0

22
0

1

++−
=
γ

k  

( )
γ

0
22

0
1 2

kksgg
g fmf −

+
+

=  or 
( )
γ

0
22

0
1 2

kksgg
g fmf −

−
+

−=  [4.10] 

( ) ( )

m

fmf
f

s

kksgg
gg

t
γ

γ 0
22

0
0

1

42 −++
−+

=

( )

 or 

( )

m

fmf
f

s

kksgg
gg

γ
γ 0

22
0

0

42 −−+
++

t1 =  

The addition of the gradient amplitude constraints is fairly intuitive in the 1D case.  

This is done by making the control space depend on the state of the system as follows: 

( ) ( )
( ) ( )

( ) ( ) mm

mm

mm

gtst
gtts
gtst

−=≤≤
=≤≤−

<≤

g,s0
g,0s
g,s

  [4.11] 

The Hamiltonian remains unchanged, as do the co-state equations and their solutions.  

The only change is the value of the minimizing slew-rate when ( ) mgt ±=g .  Thus, if ( )tg*  

never reaches , then the optimal trajectory with the constraint is the same as the 

optimal trajectory without it.  If 

mg±

( )tg*  does reach mg± , then the control region is halved 
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so the optimal control switches to a slew-rate of 0 until the time  is reached.  

This leads to two more possible forms for the optimal control: 

122 / cct −=

( )








≤<−
≤≤
<≤

=

fm

m

ttts
ttt
tts

t

2

21

1

,
,0

0,
s*  or s*  [4.12] ( )









≤<
≤≤
<≤−

=

fm

m

ttts
ttt
tts

t

2

21

1

,
,0

0,

Using the two possible forms for the optimal control, along with the initial conditions, 

the final conditions and the condition of continuity at the switching time we obtain the 

following expressions for the switching time, the corresponding k-space location and 

gradient amplitude, and the final time: 

Again, the two possible forms for the optimal control are used, along with the initial 

conditions, the final conditions and the condition of continuity at the switching time to 

obtain the following expressions for the two switching times, the corresponding k-space 

locations (the corresponding gradients are equal to mg± ), and the final time: 

m

m

s
gg

t 0
1

−
=  or 

m

m

s
gg

t 0
1

+
=  

( )
0

2
0

2

1 2
k

s
gg

k
m

m +
−

=
γ

 or 
( )

0

22
0

1 2
k

s
gg

m

m +
−

=
γ

k  

( )
mm

mfmfm

sg
skskgggg

t
γ

γ
2

222 0
2

0
2
0

2

+−+−
=

( )

 or 

mm

mfmfm

sg
skskgggg

γ
γ

2
222 0

2
0

2
0 −+++

=t2  [4.13] 

( )
f

m

mf k
s

gg
k +

−
=

2

22

2

γ
 or 

( )
f

m

fm k
s

gg
k +

−
=

2

22

2

γ
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m

f

mm

fm

m

fm
f g

kk
sg

gggg
s

gg
t

γ
0

2
0

2
0

2
2 −

+
+−

+
−

=  or 

m

f

mm

fm

m

fm

g
kk

sg
gggg

s
gg

γ
−

+
++

+
+

= 0
2

0
2
0

2
2

ft  

These results still represent a maximal effort throughout the transfer, but that effort is 

limited by different considerations during different portions of the transfer. 

4.2.5 Time-optimality for 2D and 3D magnitude slew-rate constraints 

The magnitude slew-rate constraint, ( ) mst ≤s , results in the circular control region of 

Figure 4.1 for the 2D case or a similar spherical control region for the 3D (three 

dimensional) case.  As mentioned previously, this control region results in a ND problem 

that cannot be separated into a number of 1D problems.  In vector form, the state 

equations for the ND gradient control problem are: 

( ) ( )tt gk' γ=  

( ) ( )tt sg' =  

and the Hamiltonian is: 

( ) ( ) ( ) ( ) 1+⋅+⋅= ttttH szgz 21γ   [4.18] 

The co-state equations are: 

( ) 0'z1 =t  

( ) ( )tt 12 z'z γ−=   [4.19] 

which have the solution: 

( )
γ

1c
z1 −=t  

( ) 01 ccz 2 += tt   [4.20] 
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The Hamiltonian (eq. [4.18]) is the equation of a plane in the ( )H,s  space.  As before, 

this has no local minima and can therefore only be minimized by values on the boundary 

of the control region where ms=s .  In particular, the control that minimizes H  is the 

control that minimizes , therefore, the optimal control vector sz ⋅2 ( )*s*,s yx=*s  can be 

expressed: 

( )
01

01

2

2*
cc

cc
z
zs

+
+

−=−=
t

st
s m

m   [4.21] 

This expression for the optimal control can be substituted into the state equations 

along with the above expressions for .  The resulting form of the state equations has 

the following analytical solution, with the constants of integration expressed in terms of 

the initial conditions:   
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Substituting these expressions into the expression for the Hamiltonian and 

simplifying gives the following constant expression for the Hamiltonian: 
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Using the final conditions in the solution to the state equations and substituting the 

above expressions results in a system of 2 vector equations in 2 vector unknowns and one 

scalar unknown.  The final scalar equation is obtained by setting the Hamiltonian equal to 

zero as indicated by the PMP.  This gives the following system of 3 equations in 3 

unknowns. 
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This system of equations cannot be solved analytically for the remaining unknowns, 

but can be solved numerically when given specific values for the initial conditions, the 

final conditions, and .  The resulting values for the vectors  and , and the scalar 

 completely characterize the gradient waveforms and k-space trajectory which transfer 

the system from the initial state to the final state in the minimum amount of time possible 

for a circular control region. 

ms gc sc

*t f

4.3 Methods 

All constraints and waveforms are based on a system with a 200 T/m/s maximum 

slew rate and a 40 mT/m maximum gradient strength.  In addition, there is an assumed 

30º in-plane rotation between the logical and hardware gradient axes.  Each section below 

presents the optimal waveforms for a particular transfer for each of the three control 

regions in Figure 4.1.  All initial and final conditions are presented in the logical 

reference frame. 

4.3.1 Time Optimal EPI reversal 

Transfer from the end of the first line to the beginning of the second in an EPI 

sequence is defined as follows: 
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where the readout gradient strength is 20 mT/m, the maximum k-space location is 500 

m-1 and the separation between lines is 50 m-1. 

The time-optimal transfer for the control region corresponding to the rotated square of 

Figure 4.1 is calculated by evaluating equation [4.10] for the above initial and final 
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conditions with slew and gradient constraints of 2200  T/m/s and 240  mT/m on each 

axis.  The time-optimal transfer for the circular control region is calculated by 

numerically solving equation [4.22] after substituting in the initial and final conditions 

and the magnitude slew constraint of 200 T/m/s.  The resulting control parameters are 

then fed back into the state equations to generate the optimal waveforms.  The time-

optimal transfer for the outer square control region is found by first translating the initial 

and final conditions into the hardware coordinate system.  Equation [4.10] is then solved 

with the full hardware constraints of 200 T/m/s and 40 mT/m on each axis.  The resulting 

waveforms are translated back into the logical coordinate system. 

4.3.2 Time Optimal radial EPI reversal 

Transfer from the end of the first line to the beginning of the second in a rEPI (radial 

echo planar imaging) sequence is defined as follows: 
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where the readout gradient strength is 20 mT/m, the maximum k-space radius is 500 

m-1 and the angular separation between lines is 10º. 

The three time-optimal transfers corresponding to the three different control regions 

are calculated as described above. 

4.3.3 Time Optimal read-dephasing, phase-encoding, and slice-refocusing 

Transfer from the end of the slice-selection pulse to the beginning of the first readout in a 

sequentially ordered FLASH sequence is defined as follows: 
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where the readout gradient strength is 20 mT/m, the maximum k-space location is 500 

m-1, the slice-select gradient is 12 mT/m, and the slice-select duration is 1 ms 

(corresponding to a 10 mm slice thickness with a 5.11 kHz transmit BW). 

The three time-optimal transfers corresponding to the three different control regions 

are calculated as above except for the changes needed to handle the 3D transfer of this 

problem.  Specifically, the hardware constraints are 3200  T/m/s and 340  mT/m on 

each axis for the small cube.  Also, some of the waveforms reached the gradient 

amplitude limit and therefore required use of equation [4.13] instead of equation [4.10]. 

4.4 Results 

All of the figures below represent gradient waveforms that are time-optimal with 

respect to one of the control regions.  In the case of the outer square the waveforms are 

designed in the hardware reference frame and then rotated and plotted in the logical 

reference frame.  Slew and k-space waveforms are not plotted as they contain little or no 

additional information. 

4.4.1 Time Optimal EPI reversal 

The time-optimal EPI reversal gradient waveforms for each of the three control 

regions are shown in Figure 4.2.  The minimum times are 283 µs, 221 µs, and 204 µs 

respectively for the rotated square, circular, and large square control regions.  For the 

rotated square control region the minimum time is limited by the 283 µs required to 

  103 



transfer the readout gradient.  Note that the speed of the transfer is roughly proportional 

to the area of the control region with the fastest transfer occurring for the largest control 

region. 

The switching time for the waveform in Figure 4.2a is 141 µs while the switching 

times for the waveform in Figure 4.2c are 39 µs and 189 µs.  The time-optimal 

parameters for Figure 4.2b are 01 =c , 00379.2 =c , 5.293 −=c , and .  These 

parameters result in the time-optimal waveforms 

00326.4 =c

( ) ( 00780.862.1 − )tsinh6 −tx .25=g  and 

( ) 20400.84.811508.33g ttty +−+−=  with  in mT/m and g t  in µs. 

Figure 4.2 Time-optimal EPI reversal gradient waveforms.  Minimum time of 283 µs
for the small square control region (left).  Minimum time of 221 µs for the circular 
control region (center).  Minimum time of 204 µs for the large square control region 
(right).
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Figure 4.2 Time-optimal EPI reversal gradient waveforms.  Minimum time of 283 µs
for the small square control region (left).  Minimum time of 221 µs for the circular 
control region (center).  Minimum time of 204 µs for the large square control region 
(right).
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For the small square control region there are an infinite number of waveforms that 

accomplish the required phase-encoding transfer in 283 µs, all of which are time-optimal 

in this case.  The displayed phase-encoding waveform was generated by reducing the 

slew-rate to 58.7 T/m/s in the phase-encode direction.  Other potential waveforms include 

those with the full slew-rate and an appropriate leading and/or lagging delay period.  A 
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similar situation occurs for the large square control region.  In this case the displayed 

waveforms were generated by reducing the slew-rate to 158.1 T/m/s in the direction of 

the hardware y-axis.   

4.4.2 Time Optimal radial EPI reversal 

The time-optimal rEPI reversal gradient waveforms for each of the three control 

regions are shown in Figure 4.3.  The minimum times are 292 µs, 264 µs, and 231 µs 

respectively for the inner square, circular, and large square control regions.  To generate 

the displayed waveforms the slew-rate was reduced to 120.8 T/m/s in the phase-encode 

direction and 194.0 T/m/s in the y-axis direction as described above.  Note that the fastest 

transfer corresponds to the largest control region. 

Figure 4.3 Time-optimal rEPI reversal gradient waveforms.  Minimum time of 292 µs
for the inner square control region (left).  Minimum time of 264 µs for the circular 
control region (center).  Minimum time of 231 µs for the outer square control region 
(right).
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Figure 4.3 Time-optimal rEPI reversal gradient waveforms.  Minimum time of 292 µs
for the inner square control region (left).  Minimum time of 264 µs for the circular 
control region (center).  Minimum time of 231 µs for the outer square control region 
(right).
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The switching times for the inner square control region are 131 µs and 286 µs while 

the switching times for the large square control region are 25 µs and 159 µs.  The optimal 
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Figure 4.4 Time-optimal slice-refocusing, readout-dephasing and phase-encoding 
gradient waveforms.  Minimum time of 957 µs for the small square control region (left). 
Minimum time of 702 µs for the circular control region (center).  Minimum time of 657 
µs for the large square control region (right).
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Figure 4.4 Time-optimal slice-refocusing, readout-dephasing and phase-encoding 
gradient waveforms.  Minimum time of 957 µs for the small square control region (left). 
Minimum time of 702 µs for the circular control region (center).  Minimum time of 657 
µs for the large square control region (right).
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parameters for the circular control region are 05.31 −=c , 00301.2 =c , , and 

.  These parameters result in the optimal waveforms 

9.343 =c

00437.4 −=c

( ) ( t0134.− )tt 76.1sinh9.14000304.0801.98.6 12 ++−+ −tx 49.2g −=

( )

 and 

( )t0134tt .76.1sinh30.10397.5.10912 12 −++− −ty 5.28g −=  

4.4.3 Time Optimal slice-refocusing and phase-encoding 

The time-optimal slice-refocusing, readout-dephasing and phase-encoding gradient 

waveforms for each of the three control regions are shown in Figure 4.4.  The minimum 

times are 957 µs, 702 µs, and 657 µs respectively for the rotated square, circular, and 

large square control regions.  To generate the displayed waveforms the slew-rate was 

reduced to 51.5 T/m/s in the phase-encode direction, 54.2 T/m/s in the slice-select 

direction, 99.5 T/m/s in the x-axis direction, and 95.5 T/m/s in the z-axis direction as 

described above. 

The switching times for Figure 4.4a are 200 µs, 448 µs, 508 µs, 583 µs, and 589 µs.  

For Figure 4.4c the switching times are 144 µs, 200 µs, 242 µs, 391 µs, and 407 µs.  For 
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the spherical control region in Figure 4.4b the optimal parameters are 0.131 −=c , 

, , , 00409.2 =c 96.73 =c 00263.4 −=c 75.65 −=c , and 00236.6 =c .  These parameters result in 

the time-optimal waveforms ( ) ( )t0770.0. −tr 25sinh46.102432560 12 − −t .8.15 +−t 9.44 +−=g  

( ) ( )t0770.tt 00913. 2 −+tp 5.33g =

( )

0.2592.5960 −−+ sinh643. 1−  

( )t0770.−tt 00656.25 2+ts 3.22g −= 0.25.4690−+ sinh05.2 1+ − . 

4.5 Discussion 

Some general trends are evident in the results presented above.  Specifically, the 

fastest transfer will always be accomplished using the largest control region.  This can be 

seen empirically in the transfer times presented above and demonstrated mathematically 

by noting that a larger control region will result in a larger set of admissible controls, and 

therefore any optimal control for the small region is an admissible control for the large 

region.  The optimization procedure selects the control that minimizes the transfer time 

from the set of all admissible controls.  Also, the time-optimal controls always represent a 

maximal effort throughout the transfer.  This makes intuitive sense and can be verified by 

noting that the time-optimal control is always on the border of the control region due to 

the linearity of the Hamiltonian.  These results indicate that the choice of the control 

region is one of the most important steps in the optimization problem. 

In the slice-rephasing, phase-encoding, and readout-dephasing example the gradient 

waveforms for the spherical control region violated the gradient-magnitude constraint 

because the only constraint used was the magnitude of the slew-rate.  At the present time 

there is no good method for incorporating these constraints.  The variational techniques 

that exist to handle similar situations all result in a system of differential equations with 
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Figure 4.5 Control region for magnitude slew-rate constraints when the gradient is at the 
gradient-magnitude limit.  The control which minimizes the Hamiltonian, s*, depends on 
the gradient vector, g, and the co-state vector, z.  The g vector determines the semi-
circular region of admissible controls while z determines the optimal vector from within 
that region.  The optimal control, s*, is the vector which minimizes z.s*.  This is the 
vector directly opposite z if z.g<0, for which z.s*=-sm|z|.  Otherwise s* is the vector to 
the corner of the semi-circular control region most nearly opposite z as shown, for which 
–sm|z|<z.s*<0. 
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Figure 4.5 Control region for magnitude slew-rate constraints when the gradient is at the 
gradient-magnitude limit.  The control which minimizes the Hamiltonian, s*, depends on 
the gradient vector, g, and the co-state vector, z.  The g vector determines the semi-
circular region of admissible controls while z determines the optimal vector from within 
that region.  The optimal control, s*, is the vector which minimizes z.s*.  This is the 
vector directly opposite z if z.g<0, for which z.s*=-sm|z|.  Otherwise s* is the vector to 
the corner of the semi-circular control region most nearly opposite z as shown, for which 
–sm|z|<z.s*<0. 

half of the boundary conditions specified at the initial time and the same half of the 

boundary conditions specified at an unknown final time.  This system of differential 

equations must be solved numerically; however this is quite difficult due to the poor 

specification of the boundary conditions and the fact that the final time is unknown.  With 

a sufficiently robust method it would be possible to solve this problem for a fixed final 

time and iteratively reduce the time until the method failed to converge to an admissible 

solution.  Unfortunately, current numerical methods can fail to converge for a variety of 

reasons other than the non-existence of an admissible solution such as numerical 

instability, stiff problems, etc. 

Despite the problem of incorporating gradient-magnitude constraints into the circular 

control region problem, certain characteristics of the solution can be ascertained by 
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examining the conditions that lead to minimization of the Hamiltonian when gradient 

constraints are included.  If we follow the same line of reasoning that implemented the 

gradient constraints for the 1D problem we can express the admissible control region as a 

function of the gradient variables.  In particular, if mg<g , then the control region is the 

circular control region of Figure 4.1.  If mg=g , then the control region is the semi-

circular region of the slew-space shown in Figure 4.5.  This control region will allow the 

gradient vector to move around the edge of the gradient-magnitude-constraint region or to 

move back into the interior of the region, but will not permit it to move outside of the 

constraint region.   

In this formulation none of the state or co-state equations are modified, nor is the 

Hamiltonian.  The only modification is in the determination of the optimal control that 

minimizes the Hamiltonian.  If 0<⋅gz , then the Hamiltonian is minimized by one of the 

two corners of the semi-circle.  Otherwise the Hamiltonian is minimized by the point on 

the arc of the control region that is in the direction opposite .  Additionally, the 

solutions to the co-state equations indicate that the direction of  changes smoothly.  

This means that the optimal gradient waveform must leave the 

z

z

mg=g  region 

tangentially even if it does not enter it tangentially.  Finally, the paths from the initial 

point to the mg=g  entry point and from the mg=g  exit point to the final point will 

each be the time-optimal paths with the same control parameters as found above. 

Recall that both square control regions in Figure 4.1 could be separated into two 1D 

problems.  When the control problems for the two axes are separated, it is unlikely that 

they will both result in the same t .  The larger of the separate  values is the 

minimum time for the overall transfer.  On the other axis, any control that reaches the 

*f *t f
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final state at the proper time is optimal and therefore the time-optimal solution for a 2D 

problem with a square control region is not generally unique. 

The following rules are proposed based on the results above.  The fastest transfers 

will always be obtained by doing the gradient waveform design in the hardware reference 

frame after the initial and final conditions have been transformed from the logical 

reference frame.  If it is not possible to know the rotation between the logical and 

hardware axes at design time, or if it is necessary to maintain timing consistency across 

acquisitions which may have different rotations, then the fastest transfers will be obtained 

using the circular control region.  The only times when the rotated square control region 

should be used are when the circular control region results in a waveform that violates the 

gradient constraints or when a time-optimal transfer is not needed. 

The variational approach appears to be a good technique except when it leads to 

results that cannot be solved using current methods as occurs when attempting to add the 

gradient-magnitude constraints or first-moment requirements to the circular control 

region problem.  Other approaches, such as the waveform-building approach, can lead to 

sub-optimal waveforms that the variational approach avoids.  The variational approach 

(despite its current limitations) also allows optimal controls to be generated for a wider 

variety of situations.  In addition, once robust numerical methods are developed for the 

solution of such difficult boundary-value problems (half of the boundary conditions 

specified at an unknown final time), the variational approach will be easily extended 

beyond the current limitations. 

Variational methods should also be useful for designing gradient transfers that have 

other constraints or that are optimal with respect to other functionals.  For example, the 
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minimum-time transfer could potentially be extended to include gradient induced PNS 

(peripheral nerve stimulation) constraints, or an appropriate cost functional could be used 

for designing a slice-selection gradient waveform requiring the minimum RF energy 

deposition in a given amount of time.  Optimizations utilizing such safety or biological-

effect based cost functions and constraints might increase patient safety with current 

protocols or allow the use of imaging techniques that are currently unusable due to safety 

concerns. 

4.6 Conclusions 

Using constrained optimization in conjunction with variational methods it was shown 

that, for 1D transfers, the time-optimal gradient waveforms with gradient-amplitude and 

slew-rate constraints are either triangular with slopes equal to the maximum slew-rate or 

trapezoidal with slopes equal to the maximum slew-rate and the flattop at the maximum 

gradient amplitude.  If first-moment requirements are included, the resulting time-optimal 

waveforms were shown to be bipolar with the same slope and maximum amplitude 

properties as above.  Furthermore, any 2D transfer with a square control region (or any 

3D transfer with a cubic control region) was shown to be separable into 2 (or 3) 1D 

transfers.  The resulting time-optimal waveforms are not unique due to the separable 

nature of the problem.  Finally, the form of the 2D and 3D transfers corresponding to 

constraints on the magnitude of the slew-rate was derived.  The resulting waveforms are 

composed of the square root of a 2nd order polynomial and the inverse hyperbolic sine of 

a 1st order polynomial in time.  These waveforms are not guaranteed to satisfy gradient-

magnitude constraints, but they are guaranteed to satisfy the slew-rate constraints 

regardless of the rotation between the logical and hardware reference frames.  The use of 
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these waveforms will result in gradient transfers that were shown to reduce the dead time 

to the minimum possible without violating hardware limits. 
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Chapter 5. Trajectory Design With a Multi-objective GA 

5.1 Introduction 

Spiral, radial, and other non-rectilinear k-space trajectories are an area of active 

research in the MRI community (Ahn et al. 1986; Glover and Pauly 1992; Noll et al. 

1998; Bornert et al. 2000; Moriguchi et al. 2000; Larson and Simonetti 2001).  Much of 

this interest has been generated because of some of the well-known advantages of these 

trajectories including rapid acquisition times and reduced artifact levels.  However, 

despite this growing interest, there is little in the way of a general theory or method for k-

space trajectory design that would allow easy derivation of new trajectories with specific 

desired properties. 

This problem represents an excellent opportunity for formal optimal-design methods 

(Deb 2001).  These methods would allow specification of the desired properties followed 

by derivation of the appropriate trajectory shape rather than the typical paradigm of 

specification of the shape followed by examination of the resulting properties.  Such an 

approach would be beneficial in transforming trajectory design from an art to a science.  

In addition, an appropriate implementation could allow a search through all possible 

shapes rather than only trajectories with an easy analytical formulation. 
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Figure 5.1 Flowchart of a typical genetic or evolutionary algorithm.  Each individual is 
one potential solution to the problem (e.g. a specific trajectory).  The initial solutions are 
evaluated according to some fitness criteria (e.g. acquisition time).  The worst individuals 
are discarded and the fittest form the parent population.  Parents are randomly selected 
and are evaluated according to some, potentially different, fitness criteria (e.g. image 
quality).  New solutions (children) are generated by mixing the features (recombination) 
from two parent solutions.  The child solutions have a small chance of undergoing a 
random change (mutation) to introduce new features.  The parent and child populations 
are combined and the process is repeated for a number of iterations, or generations in 
order to gradually develop superior solutions.
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Figure 5.1 Flowchart of a typical genetic or evolutionary algorithm.  Each individual is 
one potential solution to the problem (e.g. a specific trajectory).  The initial solutions are 
evaluated according to some fitness criteria (e.g. acquisition time).  The worst individuals 
are discarded and the fittest form the parent population.  Parents are randomly selected 
and are evaluated according to some, potentially different, fitness criteria (e.g. image 
quality).  New solutions (children) are generated by mixing the features (recombination) 
from two parent solutions.  The child solutions have a small chance of undergoing a 
random change (mutation) to introduce new features.  The parent and child populations 
are combined and the process is repeated for a number of iterations, or generations in 
order to gradually develop superior solutions.

There are many different classes of optimization algorithms, but one that has been 

gaining popularity is the class of evolutionary or GAs (GA’s) (Deb 2001).  As shown in 

Figure 5.1, these algorithms use a probabilistic biological metaphor rather than a 

deterministic hill-climbing metaphor.  Parent solutions pass on characteristics to the next 

generation or results via their children; occasionally mutations occur which introduce 
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new characteristics to the population of potential solutions.  Specifically, each individual 

solution in a parent population is evaluated with respect to the objectives to obtain a 

measure of reproductive fitness.  Child solutions are obtained from the fittest individuals 

through crossover operations between multiple parents and/or mutation operations on a 

single individual.  The child solutions join with the parent solutions and some solutions 

(potentially using a different measure of fitness for survival than for reproduction) are 

removed from the combined population.  The surviving parent and child solutions 

combine to form the parent population for the next generation and the process is repeated. 
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Figure 5.2 An example of multi-objective terminology for trajectory optimization.  Each 
trajectory is assigned a point according to its artifact severity and acquisition time, which 
are known as the objectives.  Here, trajectories a) and b) are both clearly preferable to 
trajectory c), but without additional information, there is no way to choose between a) 
and b).  Thus, out of these three trajectories a) and b) are considered non-dominated and 
c) is considered dominated.  The feasible set is the set of all possible trajectories that do 
not violate the constraints.  The Pareto-optimal set is the non-dominated subset of the 
feasible set; finding it is the goal of a multi-objective optimization. 
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are known as the objectives.  Here, trajectories a) and b) are both clearly preferable to 
trajectory c), but without additional information, there is no way to choose between a) 
and b).  Thus, out of these three trajectories a) and b) are considered non-dominated and 
c) is considered dominated.  The feasible set is the set of all possible trajectories that do 
not violate the constraints.  The Pareto-optimal set is the non-dominated subset of the 
feasible set; finding it is the goal of a multi-objective optimization. 

Relative to more deterministic optimization methods, GA’s are insensitive to the 

initial guesses and are more capable of handling discrete parameters (Deb 2001).  More 

importantly, the GA’s have the advantage of being able to find global optima in the face 

of non-linear, multi-modal, discontinuous, or otherwise ill-behaved objective and 

constraint functions (Deb 2001).  In addition, multi-objective GA’s are unique in their 

potential to sample the entire Pareto-optimal set in a single run, even when the Pareto-
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optimal set is non-convex.  In mathematics, Pareto-optimal means the best possible 

tradeoff between two or more competing objectives as shown in Figure 5.2 (e.g. the best 

image quality for a given acquisition speed), and non-dominated means that, in at least 

one objective, the solution is better than any other solution in the set without being worse 

in any other objective (e.g. a sequence with less artifact in the same time).  However, 

GA’s are generally quite computationally expensive and their convergence to the true 

optimum is usually not guaranteed.   

One common use for GA’s, particularly in the field of aerospace engineering, is for 

shape optimization (Sharatchandra et al. 1998; Deb 2001).  Typically simulations are 

used to evaluate the properties of the shape, either because no analytical formulation 

exists or because of violations of the underlying assumptions in the analytical 

formulations that do exist.  For MR image acquisitions this would be similar to 

optimization of the k-space trajectory shape using simulations to compute one or more 

measures of image quality. 

Previous optimizations for MR image acquisition techniques have usually focused on 

objectives, such as SNR, that were chosen for their ease of computation rather than for 

their impact on image quality (Hendrick et al. 1987; Van Lom et al. 1991; Simonetti et al. 

1993; Star-Lack 1999; Gao and Reeves 2000; Sabat and Irarrazaval 2002).  Although 

some attempts have been made to use the more robust properties of single-objective GA’s 

for MRI (typically for hardware design, but once for trajectory design), none have yet 

used multi-objective GA’s to optimize trajectory shape using multiple simulated 

measures of image quality (Fisher et al. 1997; Williams et al. 1999; Sabat and Irarrazaval 

2002).  The closest to this type of optimization are Wager and Nichols who have recently 

  117 



used a single-objective GA to attempt to simultaneously optimize multiple simulated 

objectives in fMRI experimental design (Wager and Nichols 2003).  Their problem 

would have been a particularly appropriate application for a multi-objective GA. 

This work describes the development and use of a multi-objective GA in designing k-

space trajectories that Pareto-optimally achieve multiple simulated objectives.  The 

objectives were chosen for their anticipated impact on image quality and not for 

computational convenience.  Simulated images were acquired using the genetically 

designed trajectories in order to examine the effectiveness of the simulated measures of 

image quality.  The new trajectories were translated into actual pulse sequences, and 

images were acquired to confirm predicted imaging improvements under real conditions. 

5.2 Methods 

5.2.1 Trajectory parameterization 

Perhaps the most important choice in using a GA for trajectory optimization is the 

parameterization of the trajectory shape itself.  This determines which trajectories are 

difficult or impossible to represent and therefore unlikely to be discovered.  In addition, if 

a parameterization uses too many numbers to represent the shape, then convergence may 

be impeded.  Several parameterizations were investigated to determine the amount of 

distortion introduced into the trajectories with a reasonable numbers of parameters.  All 

parameterizations were designed to represent a single interleaf, with the remainder being 

obtained by successive rotations of the first.  Due to the success of spirals and radials in 

the literature the first representation was a variable density spiral parameterization 

consisting of a sampling of the dθ(r)/dr function for the k-space trajectory (Tsai and 

Nishimura 2000).  The second representation was a broadband parameterization where 
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the direction of travel was specified at each point in time and the trajectory went as far as 

possible in that direction subject to the hardware constraints (Hardy and Cline 1989).  

The third, fourth, and fifth parameterizations were direct representation of the slew, 

gradient, or trajectory waveforms respectively.   Additionally, these representations were 

discretized using linear interpolation, Fourier decomposition, or Chebyshev 

decomposition (Sharatchandra et al. 1998).  In other words, a continuous gradient 

waveform could be generated from a finite set of data by considering the data as samples 

of the waveform and interpolating, or by considering the data as coefficients in a finite 

Fourier or Chebyshev series and evaluating the series.  Trajectory parameterizations were 

tested for accuracy of fit, determined by the maximum deviation from the desired 

trajectory, first on spiral and then on other trajectories including radial, WHIRL (winding 

hybrid interleaved radial lines), and SPIDER (Pipe 1999; Larson and Simonetti 2001).  

They were also tested for the introduction of gradient amplitude and slew-rate constraint 

violations. 

5.2.2 Objectives and Simulations 

Objectives were chosen for their potential impact on image quality and not for 

linearity or other purely mathematical considerations.  Additionally, the objectives were 

required to be properties of the trajectories themselves.  For example, contrast is a large 

factor in the quality of most clinical images; however it is not an inherent property of the 

trajectory but rather a property of the RF and gradient timings.  Instead, artifact severity 

was considered to be the dominant image-quality property of a trajectory.  For example, 

reduced flow-artifact is the most well-known advantage of spirals while severe off-

resonance blurring is the most well-known disadvantage (Meyer et al. 1992; Bornert et al. 
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1999).  Aliasing artifact is also an important property of any trajectory, especially for 

trajectories that violate the Nyquist criterion in order to reduce acquisition time (Peters et 

al. 2000; Tsai and Nishimura 2000).  Therefore, the four objectives considered here were 

acquisition time, aliasing energy, flow artifact energy, and off-resonance artifact energy. 

The dominant factor in the total acquisition time is the number of interleaves rather 

than the duration of each interleaf.  Therefore, the acquisition time was calculated as: 

Nleafs + tleaf/100, where Nleafs is the number of interleaves and tleaf is the readout time for a 

single interleaf, in ms.  The second term is intended to reduce the number of ties that 

would otherwise occur by choosing the sequence with the shorter interleaf when the total 

number of interleaves is the same. 

Aliasing energy was calculated by evaluating a Lorentzian envelope: EA(k) = 

C1/(C2+|k|2), where |k| is the k-space radius and the constants are found by a least-squares 

fit to several actual spiral data sets.  EA is evaluated at each location that is not sampled 

on the k-space grid and represents the energy that will alias into the image.  A grid point 

is considered not sampled if no trajectory point lies within its Voronoi polygon (the 

Voronoi polygons are unit squares for a rectilinear grid).  EA is then summed over the k-

space grid.  This measure of aliasing energy applies a greater penalty to a trajectory with 

a non-sampled grid point in the center of k-space than to a trajectory with a non-sampled 

grid point in the outer regions. 

Measures of off-resonance and flow artifact energy depended on simulations.  

Analytical phantoms and their corresponding representations in k-space were developed 

using known properties of the FT, the velocity k-space formalism and an adaptation of 

the formalism for off-resonance effects (Nishimura et al. 1995).  The 0th and 1st gradient 
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moments and sample time were evaluated for each ADC (analog to digital converter) 

sample in order to generate the simulated data.  These data were gridded onto a 2x over 

sampled grid using the standard convolution-based gridding-reconstruction with 

Jackson’s convolution-based density compensation function for a width 1 rectangular (for 

rapid computation of the density compensation function) convolution kernel (O'Sullivan 

1985; Jackson et al. 1991).  

This simulation process was repeated during the optimization to generate three 

magnitude images for each individual parent and child trajectory, one without flow or 

off-resonance effects, one corrupted by flow, and one corrupted by off-resonance.  To 

obtain a measure of flow or off-resonance sensitivity, the uncorrupted image was 

subtracted from the corrupted image and the total energy of the resulting difference 

image was computed.   
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Figure 5.3 Example images for the three numerical phantoms (rectangular, spherical, 
and resolution from left to right) used in the simulations for the flow and off resonance 
objectives.  Simulated data are sampled on a radial trajectory and reconstructed using 
standard convolution-based gridding-reconstruction with a 2x oversampled grid and a 
width 1 rectangular convolution kernel.  The square root of the magnitude image is 
displayed in order to accentuate the artifacts. 
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Figure 5.3 Example images for the three numerical phantoms (rectangular, spherical, 
and resolution from left to right) used in the simulations for the flow and off resonance 
objectives.  Simulated data are sampled on a radial trajectory and reconstructed using 
standard convolution-based gridding-reconstruction with a 2x oversampled grid and a 
width 1 rectangular convolution kernel.  The square root of the magnitude image is 
displayed in order to accentuate the artifacts. 

Three different simulated phantoms, corresponding to three different physical 

phantoms, were used in order to investigate the sensitivity of the simulations to changes 

in the shape of the phantom (see Figure 5.3).  The primary simulated phantom, the only 

one used during the actual optimization, was a long narrow rectangle in a vertical 

orientation; the second phantom was a uniform sphere; and the third phantom was a 

simulated resolution phantom (Bornert et al. 2000).  The rectangular phantom was 

evaluated using sinc(wx kx,wy ky) = sin(wx kx)/(wx kx) sin(wy ky)/(wy ky), and the circular 

phantoms were evaluated using jinc(r k) = J1(|r k|)/|r k|, where k = kx + i ky, J1 is the first 

order Bessel function of the first kind, w is the width of the rectangle, and r is the radius 
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of the circle.  All three phantoms were also used to simulate a continuous range of off-

resonance from -100 Hz at the bottom of the image to +100 Hz at the top.  The 

rectangular phantom was also used to simulate a flow of 100 cm/s (Nishimura et al. 

1995). 

5.2.3 NSGA-II 

Deb’s elitist NSGA-II (non-dominated sorting genetic algorithm II) is a well-known 

multi-objective GA (Deb et al. 2002).  It is capable of converging to the Pareto-optimal 

set while maintaining diversity along it using a crowded-comparison operator that 

incorporates both the non-domination rank and a crowding measure for each solution.  

The NSGA-II was implemented using Mathematica 4.0.  In this implementation, the 

population size was 200.  Such a large population was required to adequately sample the 

3D Pareto-optimal set associated with four-objective problems (Deb 2001).  For every 

child solution, two parent solutions were chosen through binary tournament selection.  As 

previously mentioned, it is possible to use different selection criteria for survival and 

reproduction.  This can continue to push the population towards the Pareto-optimal set 

even when the survival selection has generated a purely non-dominated population.  In 

this case, the binary tournament selected the fastest trajectory if both trajectories met 

minimum image-quality standards (aliasing energy < 0.04, flow and off-resonance 

artifact energy < 0.01, as determined in prior trials using these measures of aliasing 

energy), otherwise it selected for the best image-quality.  Child solutions were obtained 

through simulated binary crossover (µc = 3) between the parents followed by lognormal 

mutation (Pm = 0.01, σm = 0.5) on the child (Deb 2001).  Simulated binary crossover is a 

commonly used computational analog of genetic recombination, while lognormal 
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mutation perturbs a simulated gene by a small scale-factor.  40 children were produced 

for each of the 400 generations, resulting in a total of approximately 16,000 trajectories 

examined.  To decrease the total computation time, the algorithm was executed in parallel 

on a local area network of PC workstations running Windows NT, 2000, and XP using 

Mathematica’s Parallel Computing Toolkit.  The Toolkit allows parallelization of a 

computation across a network of heterogeneous computers. 

5.2.4 Constraints 

The constraints for k-space trajectory design can generally be grouped into two 

categories: engineering constraints such as gradient amplitude and slew-rate limits and 

safety constraints such as gradient-induced PNS and SAR (specific absorption rate).  

SAR was not expected to be an active constraint for any of the tested k-space trajectories.  

These trajectories were to be implemented on a 1.5 T Sonata (Siemens Medical 

Solutions, Erlangen, Germany) and therefore the optimization used a slew-rate constraint 

of 200 T/m/s and a gradient amplitude constraint of 40 mT/m.  The engineering 

constraints were enforced through a feasibility-preserving strategy where the trajectory is 

at one of the limits at every point in time for the variable-density spiral and broadband 

parameterizations.  The engineering constraints were enforced through the constrained 

non-dominated sorting procedure for the other parameterizations (Deb et al. 2002).  PNS 

constraints were evaluated using the SAFE (stimulation approximation by filtering and 

evaluation) model with the parameters provided by Siemens for the Sonata (Hebrank and 

Gebhardt 2000).  The PNS safety constraint was enforced through the constrained non-

dominated sorting procedure. 
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The FOV is also an important factor in designing k-space trajectories because it 

indirectly affects all of the above constraints through its impact on the gradient 

waveforms.  There are at least two possible approaches for handling the FOV, the first is 

to consider it as both a genetic parameter and an objective, and the second is to simply 

use a fixed FOV.  The latter approach was used in this work to avoid adding a 5th 

objective.  In order to reduce the need for re-optimizing, a relatively small FOV of 128 

mm was selected.  The resulting trajectories may be used for any FOV ≥ 128 mm without 

violating any of the constraints. 

5.2.5 Implementation 

A total of 20 trajectories tested during the optimization were implemented on the 1.5 

T Siemens Sonata mentioned previously using the standard Siemens pulse-sequence 

development tools.  The trajectories to be implemented were selected in groups designed 

to vary, as much as possible, in only a single objective.  Four groups were selected (see 

Appendix B), one for each objective (acquisition time, aliasing energy, flow artifact 

energy, and off-resonance energy).  Each group contained a Pareto-optimal trajectory, a 

standard trajectory, and three sub-optimal trajectories.     

Once implemented, the actual trajectory was measured and the objectives were re-

calculated based on the measured, versus the programmed, trajectory (Duyn et al. 1998).  

Image reconstruction was performed by a table-lookup method for gridding 

reconstruction (Dale et al. 2001).  Gridding tables were calculated based on the measured 

trajectory acquired.  Although contrast is not an inherent property of the trajectory, care 

was taken to maintain similar contrast within each group in order to aid comparison. 
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5.2.6 Comparison of Theoretical and Actual Objectives 

The quality and optimality of the final trajectories was expected to depend largely on 

the accuracy and effectiveness of the simulations used to calculate the objectives.  For 

each trajectory, images were acquired under conditions that recreate, as much as possible, 

the simulated images, with the number of averages set between 5 and 17 to both control 

for and reduce noise levels.  To re-create the off-resonance objective, one image was 

acquired under conditions of careful shimming and a second after deliberately offsetting 

one of the first-order shim currents.  To test the flow objective, a flow phantom was 

imaged, after careful shimming, under flowing and non-flowing conditions.  The aliasing 

energy objective could not be recreated experimentally.  Instead, after noting that aliasing 

causes energy from objects in one portion of the image to be displayed in other portions 

of the image, a point spread function was acquired by imaging a small object at the center 

of the FOV.  The central portion of the image was masked out, and the total energy of the 

remainder was calculated.  The time objective was measured by multiplying the TR by 

the number of interleaves.  Linear regression was used to evaluate the effectiveness of the 

simulated objectives as independent linear predictors of the measured objectives. 

5.3 Results 

5.3.1 Trajectory parameterization 
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The variable-density spiral parameterization was found to be accurate at representing 

spiral and WHIRL trajectories with a relatively small number of data points, but was 

fundamentally incapable of representing any other class of trajectories and was therefore 

discarded from further consideration.  As shown in Table 5.1, the slew waveform 

encoding resulted in severely distorted trajectories for all discretization methods while 

the trajectory waveform encoding resulted in spurious slew-rate constraint violations; 

these encodings were also dropped from consideration.   
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Figure 5.4 Approximations to a standard 6-interleaf spiral trajectory using the same 
number of terms for several different parameterization schemes. For each scheme a 
single interleaf of the trajectory is displayed by the bold line while the sampling patterns 
of the remaining interleaves are displayed with the points.  The top row is a high-
bandwidth parameterization where the direction of travel is encoded at each step in time 
and the trajectory proceeds as far as possible in that direction subject to hardware 
constraints.  The bottom row is direct encoding of the required gradient waveforms. 
Each parameterization can be encoded using linear interpolation, Fourier series
decomposition, or Chebyshev series decomposition.
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Figure 5.4 Approximations to a standard 6-interleaf spiral trajectory using the same 
number of terms for several different parameterization schemes. For each scheme a 
single interleaf of the trajectory is displayed by the bold line while the sampling patterns 
of the remaining interleaves are displayed with the points.  The top row is a high-
bandwidth parameterization where the direction of travel is encoded at each step in time 
and the trajectory proceeds as far as possible in that direction subject to hardware 
constraints.  The bottom row is direct encoding of the required gradient waveforms. 
Each parameterization can be encoded using linear interpolation, Fourier series
decomposition, or Chebyshev series decomposition.
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The performance of the high-BW parameterization was found to depend strongly on 

the discretization chosen (see Figure 5.4) with the Chebyshev decomposition performing 

best.  The gradient waveform encoding was generally more accurate than the high-BW 

representation (see Figure 5.4), with the Chebyshev discretization again being most 
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accurate.  Comparisons of these two parameterizations with Chebyshev decomposition on 

a broad range of standard k-space trajectories (spiral, WHIRL, radial, and SPIDER) 

demonstrated that both could reproduce all classes of trajectories with less than 1.3 grid 

points of maximum deviation, in k-space, between the desired and realized trajectories.  

However, the high-BW encoding was generally both slightly less accurate and, by always 

driving the hardware at the maximum slew-rate or gradient-amplitude, it should tend to 

result in more gradient-induced PNS and trajectory distortions.  Therefore, the remainder 

of this work utilizes the Chebyshev decomposition of the gradient waveform.   

Four parameters were chosen to describe each trajectory during the optimization.  The 

first was an integer for the number of interleaves, the second was an integer for the 

number of gradient waveform sample points, the third was a complex floating-point 

number for the initial k-space location, and the fourth was a variable-length list of 

complex floating-point numbers for the Chebyshev coefficients of the gradient 

waveform. 

5.3.2 Computational Time 

The evaluation of a single trajectory typically required between 1 and 96 seconds on a 

3 GHz Pentium 4 running Windows XP with 1 GB RAM.  Feasible trajectories with large 

numbers of data points or interleaves tended to take more time, while trajectories that 

violated one of the constraints tended to take less time.  The non-dominated sorting 

procedure required approximately 15 seconds on the same computer system.  Slower 

computers, or computers with less RAM required more time for the trajectory evaluation.  

Using parallelization across 7 to 9 heterogeneous workstations allowed a single 

generation to be completed every 3-5 minutes.  The full 500 generations required 2 days 
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Figure 5.5 One projection through the four-dimensional objective space onto a two-
dimensional data set.  One dimension is the acquisition time objective while the other 
dimension is a linear combination of the three image quality objectives.  Each point 
represents a k-space trajectory.  Non-dominated trajectories (in the original objective 
space) are displayed in bold and other tested trajectories are displayed small. 
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Figure 5.5 One projection through the four-dimensional objective space onto a two-
dimensional data set.  One dimension is the acquisition time objective while the other 
dimension is a linear combination of the three image quality objectives.  Each point 
represents a k-space trajectory.  Non-dominated trajectories (in the original objective 
space) are displayed in bold and other tested trajectories are displayed small. 

to complete and were computed during a weekend, when the workstations were not 

otherwise occupied.     

5.3.3 Optimal trajectories 

With four objectives it is difficult to plot all of the trajectories on a single graph in 

objective space, but it is possible to use a linear combination of the three image quality 

objectives to project the 4D (four dimensional) data set down onto 2D.  Figure 5.5 shows 

one such projection.  Note the relatively dense sampling of the objective space in the 

region of the non-dominated set.  Note also that some of the original non-dominated 

trajectories are not Pareto-optimal with respect to this particular weighting, but that all of 

  130 



Sample GA-designed Trajectories

Lower Acquisition Time
Lower Image Quality

Higher Acquisition Time
Higher Image Quality

Figure 5.6 Three GA-designed non-dominated trajectories.  All three trajectories begin 
with non-zero gradient amplitude at the k-space origin.  They are slow trajectories with 
good off-resonance and flow properties.  All three trajectories move outward, first in a 
straight line, and then with a fairly gentle curvature relative to a standard spiral. 
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Figure 5.6 Three GA-designed non-dominated trajectories.  All three trajectories begin 
with non-zero gradient amplitude at the k-space origin.  They are slow trajectories with 
good off-resonance and flow properties.  All three trajectories move outward, first in a 
straight line, and then with a fairly gentle curvature relative to a standard spiral. 

the projection Pareto-optimal trajectories are from the original non-dominated set.  

Proceeding along the projection Pareto-optimal set from fast trajectories with low-quality 

images to slower trajectories with higher quality, we first encounter a region of standard 

spirals with progressively more interleaves.  These give way to WHIRL trajectories 

followed by a group of new, genetically designed trajectories.  This general trend was 

observed for most linear combinations investigated. 

The non-dominated GA-designed trajectories generally start at the center of k-space 

with non-zero initial gradient amplitude and tend to move outward, first in a straight line, 

and then with a fairly gentle curvature relative to a standard spiral.  Similar trajectories 

were also discovered in a previous optimization using slightly different flow and off-
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Figure 5.7 Comparison of an optimal GA designed trajectory (middle trajectory in 
Figure 5.6) with a radial, spiral, and WHIRL trajectory with the same numbers of 
interleaves.  The Voronoi area is reported in units of squared grid points so that values
greater than 1.0 represent an undersampled region.  Note that the new trajectory is more 
oversampled than any other trajectory.  The radial trajectory samples each k-space radius 
at two points in time.  Although the optimal trajectory begins with non-zero initial 
gradient amplitude, it generally uses a smaller gradient than the other trajectories. 
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Figure 5.7 Comparison of an optimal GA designed trajectory (middle trajectory in 
Figure 5.6) with a radial, spiral, and WHIRL trajectory with the same numbers of 
interleaves.  The Voronoi area is reported in units of squared grid points so that values
greater than 1.0 represent an undersampled region.  Note that the new trajectory is more 
oversampled than any other trajectory.  The radial trajectory samples each k-space radius 
at two points in time.  Although the optimal trajectory begins with non-zero initial 
gradient amplitude, it generally uses a smaller gradient than the other trajectories. 

resonance objective functions.  Three of these trajectories are displayed in Figure 5.6 in 

order of increasing image quality and acquisition time.   

Of those three trajectories, the middle one (in both image quality and acquisition 

time) is compared to 156-view radial, spiral, and WHIRL trajectories in Figure 5.7.  Note 

that the optimal trajectory is more oversampled (smaller Voronoi areas) than the other 
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Figure 5.8 Comparison of a cardiac image acquired using a new GA designed trajectory 
(middle trajectory in Figure 5.6) with similar images acquired using two standard radial 
trajectories.  The 157-view radial is matched to the GA trajectory in number of views, 
but requires 45% more averages in order to achieve the same SNR and therefore required 
a longer imaging time.  The 109-view radial is approximately matched in terms of 
imaging time.  Note the superior quality of the GA image, in particular note the reduced 
artifact near the chest wall, the more uniform signal in the aorta, and the improved 
definition of the coronary artery. 
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Figure 5.8 Comparison of a cardiac image acquired using a new GA designed trajectory 
(middle trajectory in Figure 5.6) with similar images acquired using two standard radial 
trajectories.  The 157-view radial is matched to the GA trajectory in number of views, 
but requires 45% more averages in order to achieve the same SNR and therefore required 
a longer imaging time.  The 109-view radial is approximately matched in terms of 
imaging time.  Note the superior quality of the GA image, in particular note the reduced 
artifact near the chest wall, the more uniform signal in the aorta, and the improved 
definition of the coronary artery. 

trajectories, and that only the radial trajectory ever becomes undersampled.  Note also 

that, although the optimal trajectory begins with non-zero gradient amplitude, it generally 

uses lower gradients than the standard trajectories.   

A cardiac image acquired using the same optimal trajectory is also compared to 

images from 109-view and 157-view radial trajectories in Figure 5.8.  The 157-view 

radial is matched to the GA trajectory in terms of number of interleaves, but the radial 

trajectory requires approximately 45% more averages (9 for GA trajectory, 13 for radial 

trajectory) in order to obtain the same SNR.  The 109-view radial is matched in terms of 

total acquisition time.  Note the improvement in overall image quality, particularly in the 

regions of the chest wall, aorta, and coronary artery.       
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5.3.4 Constraint activity 

Four thousand trajectories tested were considered non-feasible due to constraint 

violations.  The gradient-amplitude constraint was active along 4% of the non-dominated 

set while the slew-rate constraint was active along 12%.  The PNS constraint was active 

along 16% of the non-dominated set.  No trajectory has triggered gradient hardware or 

PNS safety features even when run with minimum TE at a 128mm FOV on the 1.5 T 

Sonata.  Although SAR constraints were not considered in the optimization, no trajectory 

has triggered the RF safety features. 

5.3.5 Objective function sensitivities 

After the optimization was completed, the 20 test trajectories were implemented and 

measured.  For each group, the corresponding objective functions were re-calculated 

based on the measured trajectories, i.e. the flow artifact objective was re-calculated for 

trajectories in the flow group (see Methods: Objectives and Simulations above).  There 

was a high degree of correlation (R2 > 0.98) between the objective functions based on the 

designed and measured trajectories for all three image-quality objectives.  In addition, the 

off-resonance objective was also recalculated for the two other simulated phantoms, the 

spherical phantom and the resolution phantom.  The measures had the same trends as 

before, with the correlation parameter being positive with greater than 95% confidence in 

all cases.  The exact details were object specific, but with R2 values greater than 0.8 in all 

cases.  No obvious indications of object-specific features (e.g. changes in curvature or 

density near the k-space radius corresponding to the width of the rectangle) were noticed 

in the genetically designed trajectories.   
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Figure 5.9 Plots of the correlation between the simulated objective functions and their 
experimentally measured analogs.  Each point is a single simulated-experimental 
objective pair for a single trajectory while each plot is a single group.  The solid line is 
the regression line.  The dashed lines are formed by the mean prediction confidence 
interval at each location and demark a region 90% likely to contain the true regression 
line. 

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

0.05

0.06

0.07

0.08

0.09

R2 = 0.770

Simulated Artifact Energy (%)

Ex
pe

rim
en

ta
l A

rti
fa

ct
 (%

)

0 0.1 0.2 0.3
0.05

0.075

0.1

0.125

0.15

0.175

0.2

R2 = 0.913

Simulated Artifact Energy (%)Ex
pe

rim
en

ta
l A

rti
fa

ct
 (%

)
0 0.05 0.1 0.15 0.2 0.25 0.3

0.04

0.06

0.08

0.1

0.12 R2 = 0.876

Simulated Artifact Energy (%)Ex
pe

rim
en

ta
l A

rti
fa

ct
 (%

)

0 100 200 300 400
0

500

1000

1500

2000

R2 = 0.981

Simulated Time (# interleafs)

A
cq

ui
si

tio
n 

Ti
m

e 
(m

s)

Off-resonance Artifact

Aliasing Energy

Flow Artifact

Acquisition Time

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

0.05

0.06

0.07

0.08

0.09

R2 = 0.770

Simulated Artifact Energy (%)

Ex
pe

rim
en

ta
l A

rti
fa

ct
 (%

)

0 0.1 0.2 0.3
0.05

0.075

0.1

0.125

0.15

0.175

0.2

R2 = 0.913

Simulated Artifact Energy (%)Ex
pe

rim
en

ta
l A

rti
fa

ct
 (%

)
0 0.05 0.1 0.15 0.2 0.25 0.3

0.04

0.06

0.08

0.1

0.12 R2 = 0.876

Simulated Artifact Energy (%)Ex
pe

rim
en

ta
l A

rti
fa

ct
 (%

)

0 100 200 300 400
0

500

1000

1500

2000

R2 = 0.981

Simulated Time (# interleafs)

A
cq

ui
si

tio
n 

Ti
m

e 
(m

s)

Off-resonance Artifact

Aliasing Energy

Flow Artifact

Acquisition Time

Figure 5.9 Plots of the correlation between the simulated objective functions and their 
experimentally measured analogs.  Each point is a single simulated-experimental 
objective pair for a single trajectory while each plot is a single group.  The solid line is 
the regression line.  The dashed lines are formed by the mean prediction confidence 
interval at each location and demark a region 90% likely to contain the true regression 
line. 

5.3.6 Simulation accuracy 

Figure 5.9 displays the correlation between the simulated and experimental objective 

measurements for each objective.  The simulated and experimental time objectives were 

strongly correlated (R2 = 0.981) while the correlation for off-resonance objectives was 

not as strong (R2 = 0.770).  In all cases the slope of the regression was positive with 95% 
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confidence.  All three of the image-quality objective regressions also had a constant term 

that was positive with 95% confidence.   

5.4 Discussion 

5.4.1 Algorithm performance 

The algorithm appears to have converged well.  The non-dominated set appears 

clearly defined and little advancement was observed in the last 50 generations.  The 

population became entirely non-dominated within the first 100 generations.  Subsequent 

progression towards the Pareto-optimal set can largely be attributed to the reproductive 

sorting function used in the binary tournament.  The increased density towards the higher 

number of interleaves probably reflects the presence of the minimum-image-quality 

aspect of the binary tournament; faster trajectories failed to meet that minimum and were 

given lower priority.  Alternatively or additionally, it may reflect the fact that the 

variable-length list of Chebyshev coefficients was usually shorter for high-interleaf 

trajectories, possibly leading to improved convergence towards that region of the Pareto-

optimal set. 

Consider the progression along the projection Pareto-optimal set of Figure 5.5.  On 

the rapid (low-quality) side we first encounter spiral trajectories with progressively more 

interleaves, followed by WHIRL trajectories, and finally by the new trajectories shown in 

Figure 5.6.  At each point along that progression, the Pareto-optimal trajectory represents 

the best possible image-quality for a given acquisition speed; the progression along the 

set represents an inherent trade-off between time and quality.  This implies several things.  

First, although the quality of images acquired using the new trajectories is superior to 

images acquired with the rapid spiral trajectories, it is incorrect to say that the new 

  136 



trajectories are superior to the rapid spirals.  Instead, the preferred trajectory depends on 

the requirements of a particular application to determine if the sacrifice in speed is worth 

the improvement in quality.  Second, the transition from spiral to WHIRL trajectories to 

the new trajectories indicates that at medium numbers of interleaves the WHIRL 

trajectories are superior to spiral trajectories with the same number of interleaves and 

high numbers of interleaves the new trajectories are superior to both WHIRL and spiral 

trajectories with the same number of interleaves.  It appears that these new trajectories 

evolved the radial center of the WHIRL trajectories and improved on it by adding the 

non-zero initial amplitude component.  Finally, because no weighting between the 

objectives was specified during the optimization, this optimization only needs to be 

performed once in order to derive the optimal trajectories for a variety of applications.  In 

fact, the optimal trajectory for any application where the important factors are any 

function of these four objectives can be determined without repeating the optimization. 

As shown in Figure 5.5, even with a projection through the data set, it is possible to 

see the dense sampling of the objective space in the vicinity of the non-dominated set.   

This increased sampling density is the key advantage of the GA over an exhaustive or 

random search approach; however, it also compounds the difficulty of selecting 

appropriate groups of trajectories by concentrating the tested trajectories within a 

relatively small region near the Pareto-optimal set.  

The use of a true multi-objective optimization has some distinct advantages over a 

single objective optimization (Deb 2001).  A single objective optimization would have to 

determine, in advance, how much image quality we would be willing to sacrifice for a 

given increase in acquisition speed.  This would vary from application to application and 
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is not trivial to determine even given a particular application.  In addition, the weighting 

coefficients themselves would be strange quantities, particularly when one or more of the 

objectives were in some sort of arbitrary unit (e.g. A.U.2/s).  With the multi-objective 

optimization no such weighting coefficients are needed.  Alternatively the time-quality 

trade off may be examined for any given weighting without needing to repeat the 

optimization, and for any given weighting the best trajectories will always be a subset of 

the original non-dominated trajectories.  Because most MRI acquisition design problems 

represent a trade-off between multiple conflicting objectives, the multi-objective 

approach is generally preferred. 

5.4.2 Objectives 

The results of the “Objective Function Sensitivities” section indicate that the typical 

deviations from the intended k-space trajectory do not greatly disturb the results of the 

optimization, at least not for the objectives used here.  However, there is a potential for 

the optimization to converge to a sub-optimal region simply because the simulated object 

is different from the experimentally imaged object.  It is important to note that, even in 

the worst case, the slope of the regression was still positive with 95% confidence and that 

the simulated objects do not need to be exactly the same in order to have a very strong 

correlation.  In addition, no obvious indications of features related to the simulated 

rectangle were noted in the optimized trajectories.  These observations indicate that the 

optimization results may not be highly sensitive to the specific numerical phantom, but 

further investigations may still be warranted.  Alternative phantoms include the Shepp-

Logan phantom, point-spread functions, or circular phantoms, but the point-spread 
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function may favor uniform trajectories and rotationally-symmetric phantoms may cause 

problems related to low-signal rings in k-space. 

One factor that may have limited the strength of the correlation between the simulated 

and experimental objectives is the fact that the various trajectories in each group are not 

exactly uniform in the other three objectives.  Additionally, because it is not possible to 

obtain a perfect shim, the baseline images for the off-resonance cost function, and all 

images for the aliasing and flow cost functions, are unavoidably corrupted by some 

amount of off-resonance.  This is especially true for the flow and point phantoms which 

were particularly difficult to shim.  Despite the presence of such effects, the correlation 

between the simulated and experimental measures was positive with 95% confidence in 

all cases.  This means that improvements in the simulated measures during the 

optimization generally resulted in measurably superior image quality.  Because the GA 

only compares objective values to determine relative ranking, and not the magnitude of 

the difference, the actual slope of the regression is not as important as the fact that it is 

positive.  With more data points it would be possible to get reasonable confidence limits 

on the value of R2.  This might allow for convergence criteria based on stopping the 

optimization when we were confident that the improvements were smaller than some 

fraction of the unexplained variance for all objectives.  The fact that the constant term 

was also positive with 95% confidence for all image-quality objectives is consistent with 

the presence of noise energy in all of the experimental measures, and the absence thereof 

in the simulations. 

When evaluating these results, it is important to realize that the particular objectives 

chosen here impact the specific result of this optimization rather than the general 
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applicability of the optimization technique.  In this sense, the fact that the algorithm was 

able to converge to a well-defined set of non-dominated trajectories may prove to be 

more important than the derivation of the particular trajectories presented in Figure 5.6.  

Specific applications may demand a different set of objectives or even a different set of 

parameters, but the convergence, robustness, and other properties of the GA itself will 

remain even though these specific results may not. 

It would be useful to have a wider variety of standardized computational image-

quality metrics in MRI.  The current selection of metrics is largely limited to SNR and 

CNR (contrast to noise ratio), neither of which are designed to assess the impact of 

artifacts.  ROC (receiver operator characteristic) curves, while capable of assessing the 

impact of artifacts, require a human expert to evaluate each image, which is possible but 

not practical for optimal design.  One potential type of computational metric that has 

recently been introduced to the field of MRI and may overcome these limitations is the 

use of perceptual models (Salem K.A. et al. 2002).  Other metrics might include measures 

of the precision or accuracy of quantitative techniques or computed analogs of detection 

thresholds for diagnostic techniques.   

Despite the lack of good standardized objectives, the results obtained here with these 

objectives are encouraging.  We have demonstrated convergence in a difficult shape-

optimization problem with four simulated objectives each having positive correlation to 

the experimental analogs.  Additionally, the similarity of the results in Figure 5.6 to 

trajectories obtained in previous optimizations with different cost functions is an 

indication that non-zero gradient amplitude at the k-space origin may indeed result in 

beneficial flow and off-resonance properties in conjunction with such curves. 
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5.4.3 Parameters 

The Chebyshev gradient-waveform parameterization of the trajectory shape was 

found to provide an accurate representation of a variety of trajectories with a reasonable 

number of terms.  Other researchers have also had success in using orthogonal series 

representations rather than interpolation in shape optimizations (Sharatchandra et al. 

1998).  One additional parameterization that may be useful is a rational polynomial 

parameterization.  Often the minimax rational approximation to a function will require 

fewer terms for the same degree of accuracy as the minimax polynomial approximation 

(Press et al. 1992).  

It should be noted that the variable-density spiral parameterization was capable of 

representing spiral trajectories with a much smaller number of parameters.  Similarly, 

other classes of designed trajectories can be specified with a small number of parameters 

at the expense of generality.  Due to the fact that all of the Pareto-optimal trajectories 

obtained using the Chebyshev parameterization (see Figure 5.6) could also have been 

described using a generalization (to allow non-zero initial gradient amplitude) of a 

variable-density parameterization, it may be reasonable for future optimizations to use a 

generalized variable-density parameterization without much concern about losing useful 

trajectories.  An optimization with a smaller number of parameters may have better 

convergence properties; therefore there may be an opportunity to make a trade-off 

between generality and convergence.  Although Figure 5.5 indicates that the optimization 

did converge, it is possible that it could have converged in fewer generations by using 

less general parameterizations. 
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In this case, the generality of the Chebyshev parameterization enabled the discovery 

of a new class of trajectories with apparently beneficial properties.  These trajectories 

begin at the origin with non-zero gradient amplitude and move outward, first in a straight 

line, and then with a fairly gentle curvature relative to a standard spiral.  The small 

amount of time required for the prephasing gradient pulse and ramp up was found to be a 

worthwhile investment even though both simulated flow and off-resonance effects 

accumulate during the application of the prephasing gradient lobes in the simulations.  It 

is possible that there is some disadvantage to having the closely-spaced points near the 

origin that inevitably result from simply beginning at the center of k-space.  This result 

can be applied in future trajectory design work by simply adding such prephasing 

gradient lobes to the beginning of spiral, WHIRL, or other standard k-space trajectories.  

This could be done even without utilizing a formal optimization procedure, although 

some amount of simulation may be necessary in order to determine the range of 

beneficial initial gradient amplitudes. 

K-space trajectory design was selected because, like all shape optimizations, it is an 

inherently difficult problem due to the infinite number of degrees of freedom.  The 

assumption was that, if an optimal-design technique could prove successful here, it 

should be powerful enough to handle most MR image acquisition design issues.  In many 

applications, a standard rectilinear acquisition may be desired.  For example, image-

quality objective functions based on contrast could be utilized with parameters such as 

TE, TR, and the presence or absence of magnetization-preparation pulses.  Such an 

optimization could still be used to find the fastest acquisition, subject to all of the 

engineering and safety constraints, for a given level of image-quality. 
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5.4.4 Improvements 

In order for this technique to become generally accepted at least three specific 

improvements will be required.  First, any increases in the ability to accurately simulate 

an MRI acquisition will lead to improvements in cost functions based on those 

simulations.  For example, a standardized high-quality virtual heart, lung and rib cage 

would be useful for developing optimal cardiac sequences.  Second, the current list of 

multi-objective GAs must improve.  In particular, an ideal algorithm would be 

computationally inexpensive with few or no algorithmic parameters and guaranteed 

convergence.  Third, it would be desirable to be able to simply insert particular cost 

functions onto pre-packaged, or at least standardized, parameterizations and optimization 

routines.   

Some of the above-mentioned improvements will occur merely as a function of 

continuing increases in computer power.  Others will require new innovations in the 

various fields.  In particular, multi-objective GAs are still in their infancy and there is no 

reason to expect that their convergence properties will remain poorly understood for long.  

However, even without the benefit of these improvements, the optimization technique 

used here represents a powerful design tool.  

5.4.5 Optimal design 

This work represents, to our knowledge, the first attempt to use multi-objective GAs 

in the design of MR image acquisition techniques.  It is hoped that such rational design 

procedures will transform the design process from an art to a science.  As robust and 

effective design procedures are developed and utilized, the quality of future techniques 

can be rapidly improved relative to the normal progress and the quality will be less 
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dependent on the sequence-development skills of the designer.  Such design procedures 

would be desirable in order to ensure that patients consistently receive the highest 

possible quality of care.   

In addition, there are many researchers and clinicians who have a novel imaging 

need.  Often, they can be very specific about the type of information that they want to 

obtain and the properties of the images that would provide that information.  The 

technique developed here could prove quite useful for researchers and clinicians facing 

such situations by allowing them to obtain a pulse sequence that would optimally meet 

their specific requirements. 

5.4.6 Conclusions 

In conclusion, we have presented a technique for the optimal design of k-space 

trajectories.  This technique allows the specification of the desired properties of the 

trajectory followed by a genetic-algorithm based search through all possible trajectories 

to find those that optimally accomplish the specified objectives.  The algorithm was able 

to converge despite the inherent difficulty of shape optimization due to the large number 

of free parameters.  Deviations from the designed trajectories that occur on modern MRI 

scanners were found to have relatively little impact on the objective functions.  Changes 

in the simulated object had a relatively greater impact on the objective though similar 

objects such as the spherical and resolution phantoms were strongly correlated.  Finally, 

reduction of the simulated artifact levels during the optimization was correlated with 

reduced artifact levels in the experimentally acquired images.  No theoretical or practical 

limitation was encountered which would fundamentally exclude this technique from more 

general application to other MRI design problems.   
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We believe the method has significant potential for improving the utility and quality 

of non-rectilinear k-space trajectories.  Feasibility of the method has been confirmed and 

results show predicted improvements.  Novel trajectories with specific image-quality 

properties can now be derived without violating critical hardware or patient-safety 

constraints.  The resulting improvements in image-quality and patient safety should 

hopefully lead to improved clinical outcomes.  We also believe that extensions to this 

method will have similar potential for improving most MR image acquisition techniques. 
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Chapter 6. Subjective Image Quality of GA Trajectories 

6.1 Introduction 

Non-rectilinear k-space trajectories, including spirals and others, are an area of active 

research for MRI (Ahn et al. 1986; Glover and Pauly 1992; Liao et al. 1997; Noll et al. 

1998; Bornert et al. 2000; Moriguchi et al. 2000; Cline et al. 2001; Larson and Simonetti 

2001).  Much of this interest has been generated because these trajectories typically have 

rapid acquisition times and benign flow or motion artifact patterns (Bornert et al. 1999).  

Many trajectories are known to have increased sensitivity to off-resonance effects, and 

some trajectories deliberately violate the Nyquist criterion in order to improve acquisition 

speed at the expense of increased artifact (Meyer et al. 1992; Peters et al. 2000; Tsai and 

Nishimura 2000). 

Most trajectories have been designed using heuristic methods, but recently two 

groups have used GAs to generate trajectories that are optimal with respect to one or 

more measures of image quality (Sabat et al. 2003; Dale et al. 2004).  In particular, a 

multi-objective GA has been used to generate trajectories that minimized simulated 

measures of aliasing energy, flow-artifact energy, and off-resonance energy (Dale et al. 

2003c; Dale et al. 2004).  The utility of such optimal trajectories depends, in large part, 

on the effectiveness of the objectives utilized during the optimization. 

These simulated measures of image quality have been verified using numerical 

ratings of water phantom images acquired under carefully controlled experimental 

conditions (Dale et al. 2004).  Clinical images, however, typically have signal from a 

variety of tissues and cannot be acquired under such carefully controlled conditions.  

Additionally, a given artifact may be very large according to these numerical ratings 
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while being visually insignificant.  To overcome these limitations, it is important to study 

the relationship between the original simulated objectives and subjective image-quality 

ratings of in-vivo images as given by experienced medical imaging raters. 

6.2 Methods 

6.2.1 Experimental design 

Fifteen trajectories were created as described in previous work (Dale et al. 2004).  

The trajectories were arranged in three groups (see Appendix B), each group 

corresponded to one of the three image quality objectives: aliasing energy, off-resonance 

artifact energy, flow artifact energy (the acquisition-time group of the original work is not 

considered here).  Each group was selected to obtain a large variation in the 

corresponding objective and as little variation as possible in the other two objectives.  

Additionally, each group consisted of one optimal trajectory, one standard trajectory, and 

three sub-optimal trajectories. 

A head image, a cardiac image, and a carotid image were acquired in a single 

volunteer for each of the fifteen trajectories.  In addition, one simulated phantom image 

from the original optimization was also included for each trajectory as a fourth 

“location”.  Care was taken to ensure similar contrast within groups and locations.  The 

number of averages was set between 5 and 17 to both control for and reduce noise levels.  

Images were reconstructed with a table-based gridding-reconstruction using the measured 

trajectories (Duyn et al. 1998; Dale et al. 2001).   
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Figure 6.1 Screen shot of the graphic user interface used to obtain the subjective ratings. 
Each row contains three images from one group including one acquired using the 
standard trajectory.  The TE, TR, and flip angle were held constant within each group in 
order to avoid non-artifact sources of contrast variation within each row.  Each 
presentation had an associated ROI and question.  The “Toggle ROI” button turned the 
ROI overlay on and off. During a training session, raters were instructed in the use of the 
GUI and in the appearance of various artifacts.  They indicated their judgments using the 
sliders on the right, and clicked “OK” when they were satisfied with their ratings.

Figure 6.1 Screen shot of the graphic user interface used to obtain the subjective ratings. 
Each row contains three images from one group including one acquired using the 
standard trajectory.  The TE, TR, and flip angle were held constant within each group in 
order to avoid non-artifact sources of contrast variation within each row.  Each 
presentation had an associated ROI and question.  The “Toggle ROI” button turned the 
ROI overlay on and off. During a training session, raters were instructed in the use of the 
GUI and in the appearance of various artifacts.  They indicated their judgments using the 
sliders on the right, and clicked “OK” when they were satisfied with their ratings.

Image quality was assessed using a variation of the high-definition television industry 

standard method of DSCQS (double stimulus continuous quality scale) rating 

(International Telecommunication Union 2002).  This method involves the presentation 

of pairs of images, obtaining separate ratings for each image using a pair of visual analog 

scales, and then averaging the scores across a relatively large number of observers to 

obtain a single quality score for each image.  The only difference between the standard 
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DSCQS method and ours was the simultaneous presentation of 6 images as shown in 

Figure 6.1.  Following standard practice, the test session was preceded by a brief training 

session and a rest period during which the subject who was evaluating the images could 

ask questions of the test administrator.  The training session utilized a different series of 

images from the test session, but acquired using the same trajectories and also designed 

to span the full range of image quality.  During the training session, specific types of 

artifacts, such as blurring or streaking, were indicated to the subject and specific 

instructions were given regarding scoring, the use of the GUI, and the criteria for judging 

images.   

Each row of each presentation consisted of one image acquired using the standard 

trajectory and two using other trajectories within a single group and location.  For a 

particular image quality issue, a ROI was marked using a graphical overlay and a 

particular question was asked.  For example, to identify potential blurring, we would 

indicate a region of brain near the sinus cavities and ask, “How sharp are the structures in 

the brain?”  Subjects recorded answers using the standard method of a visual analog scale 

ranging from “Excellent” to “Bad,” as shown in Figure 6.1.  In all cases, subjects were 

asked to rate images based only on the severity of artifact within the ROI.  In this 

experiment, we used 9 specific ROI with a maximum of three and a minimum of 1 ROI 

for each anatomical location.   

To rate all 15 images (one from each trajectory) for each question required 3 

presentations of 6 images each, with some repetition of the standard trajectory images as 

dictated by the DSCQS method.  Therefore, excluding the training and stabilization 

images, each subject rated a total of 162 images from 27 presentations.  Presentation 
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order was randomized according to standard practice.  Images were evaluated in a 

darkened, quiet room under controlled conditions.  Subjects consisted of 10 scientific MR 

imaging experts and 3 board-certified radiologists. 

6.2.2 Statistical analysis 

Data was analyzed according to the industry standard methods for the DSCQS 

(International Telecommunication Union 2002).  Specifically, each slider rating was first 

converted to a numerical score.  For each of the 162 images, a mean score was obtained 

across all observers along with an associated 95% confidence interval.  The mean and 

confidence interval scores were then linearly transformed to a score between 0 and 1.  

The standard analyses included specific methods for testing normality, for rejection of 

raters, and for relating the subjective data to the original simulated measures of image 

quality.   

For this work, the process of relating the subjective data to the original simulated 

image quality measure was particularly important.  It is well known that these types of 

ratings often produce a sigmoidal curve (International Telecommunication Union 2002).  

Due to the sigmoidal shape, standard linear regression is not effective, but rank-order 

statistics such as the Chi-squared test and Spearman’s rank-order correlation can be used 

instead.  It is also possible to test the null hypothesis that the optimal trajectories did not 

have better subjective scores than the standard trajectories.   

When a more detailed analysis is desired, the standard practice is to fit the data to a 

logistic curve of the form: f(x) = (1/u + b0 b1
x)-1 where u is the upper limit, b0 is the y-

intercept, and b1 is the steepness of the logistic regression (International 

Telecommunication Union 2002).  Such curve fitting is available on SPSS 11.5 (SPSS 
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Inc., Chicago, Illinois) and was applied separately for each of the three simulated 

objectives.  The significance of each regression was determined by the use of the F 

statistic test, which is related to the confidence intervals on the regression parameters.  

Specifically, if the F statistic was significant at the 0.10 level and the slope of the curve 

was negative, then we can conclude with 95% confidence (one-tailed) that reductions in 

the simulated artifact objectives correlate with improvements in the subjective ratings.  

The proportion of variance accounted for, or R2, was computed as a measure of the 

relative importance of successful objectives.   

6.3 Results 

Before performing the analyses described above, the data was explored for evidence 

of confounding effects.  The standard test for screening raters was applied and no raters 

were rejected.  No significant correlations were observed between the simulated objective 

variables, although there was a slight negative correlation (r = -0.061) between aliasing 

energy and flow artifact energy and a slightly stronger positive correlation (r = 0.172) 

between aliasing energy and off-resonance artifact energy.  There was no significant 

correlation of average rating with presentation order.  No significant differences were 

found between image ratings across the three columns of images in each presentation.  

There was a small (5%), but statistically significant, decrease in the average rating of 

images in the bottom row, which coincided with an increased occurrence (11%) of the 

two worst trajectories (according to the simulated aliasing energy objective).  A principal 

components analysis indicated that a single factor accounted for 72% of the total variance 

in the raw image ratings; this factor was always less than .05 standard deviations away 

from being a z-transformation of the mean scores. 
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Spearman’s Rank-Order Correlations

To obtain the subjective ranks for the Chi-square and Spearman’s tests, the subjective 

scores from each presentation of six images (across two different groups of trajectories) 

were ranked from 1 to 6 and the scores from each row of three images in each 

presentation (within a single group of trajectories) were ranked from 1 to 3.  Objective 

ranks were obtained similarly using each simulated objective score.  All Chi-square tests 

were highly significant (p < .001).  Table 6.1 presents the results of the Spearman’s rank 

order correlation tests.  Within groups (e.g. only considering images from the group of 

trajectories selected to vary, as much as possible, only in the simulated flow-artifact 

energy objective), all of the objective ranks had highly significant correlations with the 

subjective ranks, with the aliasing-artifact objective being the strongest and the flow-

artifact objective being the weakest.  A similar trend was observed across groups except 

that the flow-artifact objective was not significantly correlated. 
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Figure 6.2 Images showing significant improvements in the subjective scores for the 
optimal versus the standard trajectories.  The X1 images were acquired using the optimal 
trajectories while the X2 images used the standard trajectories. The neck images are 
labeled A, simulated images are labeled B, and the cardiac images are labeled C and D. 
Note the decreased levels of background artifact in image A1 relative to image A2 and in 
image B1 relative to B2.  The cardiac images show decreased background artifact (gray 
arrows) and aortic flow artifact (black arrows) in C1 and D1 relative to C2 and D2 
respectively.  Additionally, D1 does not show the slight increase in blurring seen in C1; 
D1 is optimal with respect to off-resonance while C1 is optimal with respect to flow 
artifact.
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Figure 6.2 Images showing significant improvements in the subjective scores for the 
optimal versus the standard trajectories.  The X1 images were acquired using the optimal 
trajectories while the X2 images used the standard trajectories. The neck images are 
labeled A, simulated images are labeled B, and the cardiac images are labeled C and D. 
Note the decreased levels of background artifact in image A1 relative to image A2 and in 
image B1 relative to B2.  The cardiac images show decreased background artifact (gray 
arrows) and aortic flow artifact (black arrows) in C1 and D1 relative to C2 and D2 
respectively.  Additionally, D1 does not show the slight increase in blurring seen in C1; 
D1 is optimal with respect to off-resonance while C1 is optimal with respect to flow 
artifact.
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The data was combined across raters as described above for the remainder of the 

analysis.  The null hypothesis that the optimal trajectories did not have better subjective 

scores than the standard trajectories was rejected for the aliasing objective in the 

simulated images, for the flow-artifact objective in the neck, heart, and simulated images, 

and for the off-resonance artifact objective in the heart images.  Some of these images are 

shown in Figure 6.2.  The null hypothesis was not rejected in the head images for any of 

the three simulated objectives.  That is, the head images acquired using the optimal 
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trajectories were not considered better than the head images acquired using the standard 

trajectories. 

Table 6.2 is a summary of the results from the logistic regressions.  Across all ROI, 

we are 95% confident that improvements in all three of the simulated objectives were 

correlated with improvements in the subjective ratings, with the simulated off-resonance 

objective having the strongest correlation and the flow-artifact objective having the 

weakest (but still significant) correlation.  Improvements in the simulated aliasing energy 

objective were significantly correlated with improvements of the subjective scores in all 

cases, and the effect was always at least twice as strong as the effect of any other 

simulated objective.  Overall it accounted for 85.7% of the variance in the subjective 

image quality measure.  The aliasing objective was the only objective with a significant 

correlation to the subjective scores in the head, in the neck, and when raters were 

instructed to consider only the background.  The simulated flow-artifact energy objective 
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was only correlated with the subjective ratings across all ROI and for the simulated 

images.  Improvements in the off-resonance artifact energy objective were correlated 

with improvements in the subjective scores both across all ROI and in the heart, 

accounting for 31.3% of the subjective-score variance for the coronary artery ROI and 

24.7% of the variance for the aorta ROI. 

6.4 Discussion 

6.4.1 Confounding effects 

One advantage of using the standard DSCQS method in evaluating MR images 

acquired using different trajectories, is that it is fairly robust and relatively well 

understood (International Telecommunication Union 2002).  Despite the difficulties and 

complications possible in such subjective image-quality rating experiments, careful 

application of this method resulted in very few significant confounding effects.  The one 

exception noted was a small, but statistically significant, decrease in the average score for 

images displayed on the bottom row of the GUI.  Due to the very large number of ratings 

(N = 2106) even small differences are likely to be statistically significant.  Additionally, 

the fact that there were more occurrences of the two worst trajectories on the bottom row 

indicates that the difference may be a real average difference in image quality rather than 

a measurement bias.   

One other potential confounding effect common to these types of experiments is 

inter-rater variability.  The training session is an important mechanism for reducing this 

variability and is required for the DSCQS method.  This particular experiment also 

utilized ROI and associated questions to help direct the raters’ attention towards the same 

part of each image, thereby reducing the inter-rater variability.  Even with these features, 
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there remains a large amount of inter-rater variability.  The DSCQS method compensates 

for this remaining variability by aggregating scores using the mean across all raters and 

by screening the raters.  The principal component analysis of the raw ratings lends further 

support to the use of the mean scores as a method for normalizing or aggregating the 

scores from different raters.  The only extracted factor was essentially the same as these 

mean scores obtained with the DSCQS method, and the lack of other significant factors 

indicates that the remaining intra-rater variance was essentially unstructured noise.  Thus, 

the reduction and compensation procedures seem to have been effective in avoiding 

confounding effects due to inter-rater variability for this experiment. 

6.4.2 Objective effects 

The Chi-square and Spearman’s rank-ordered correlation tests are attractive in this 

application because they require minimal processing of the data.  Also, because the 

images were only ranked within the set of images visible on a single screen, these metrics 

would have been insensitive to any temporal effects that may have occurred.  These tests 

are robust in the sense that they make fewer assumptions about the data (e.g. linearity of 

the regression), but by converting scale data to ordinal data they can under-estimate the 

true strength of a regression.  Even so, they were able to clearly indicate two trends that 

were repeatedly uncovered in the remainder of the analysis.  Specifically, all of the 

objective measures corresponded with the subjective ratings of image quality under 

certain circumstances, especially when images were compared only within each group of 

trajectories.  Also, the aliasing objective was found to have the strongest and most 

consistent effect on image quality; while the flow objective was found to have the 

weakest and least consistent effect. 

  156 



The only regressions that indicated the simultaneous success of all three objectives 

were the regressions using images from all ROI.  These regressions only used ratings 

from images acquired with trajectories in the corresponding group (e.g. only images 

acquired with trajectories from the flow-artifact group were considered for the regression 

using the flow-artifact objective as a logistic predictor of the subjective scores).  This is 

essentially a method for reducing the confounding influence of the other objectives; recall 

that the groups are designed to vary as much as possible in the corresponding objective 

while varying as little as possible in the remaining objectives.  When considering the 

flow-artifact objective, for example, the effect of the aliasing and off-resonance 

objectives is to add non-correlated variance.  This effect is also related to the difference 

between the significance of the Spearman’s rank-order correlation “within groups” and 

“across groups” for the flow-artifact objective.  This is particularly problematic for the 

flow and off-resonance objectives due to the strength of the aliasing objective effect on 

the subjective ratings.  Although it is not possible to completely eliminate the variation in 

the other two objectives, by considering only the objectives within a group the 

uncorrelated variation is at least somewhat attenuated.  With this attenuation it was 

possible to detect that, in general, improvements in all three objectives corresponded with 

improvements in the subjective measure of image quality.   

The simulated images were included in this experiment in order to investigate 

whether or not humans would make the same choices as the computer when using the 

same image.  This regression was very strong for both the aliasing and flow objectives, 

but was not significant for the off-resonance objective despite a reasonable proportion of 

variance explained (44.6%).  This is likely due to both the small number of observations 
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(N = 6) for a single ROI considered within groups, and a restricted range problem.  The 

subjective scores for simulated images acquired using the aliasing group of trajectories 

ranged from 0.06 to 0.93 (on a scale from 0.0 to 1.0), and the scores for the flow group 

ranged from 0.25 to 0.75, but the scores for the off-resonance group only ranged from 

0.57 to 0.90 in the subjective scores.  Considering the success of the off-resonance 

objective in other regressions and the R2 of .446 in this regression, it is reasonable to 

hypothesize that the regression might become significant after resolving these problems. 

In cardiac imaging fairly small and important structures, such as the coronary arteries, 

can be difficult to image due to susceptibility effects, movement, and the nearby presence 

of fat.  The off-resonance objective, though not as universally important as the aliasing 

objective, was still quite important for cardiac imaging.  It is somewhat surprising that the 

flow objective was not determined to be significant in the heart, but that could be due to 

the fact that the flow-artifact objective was computed using only in-plane simulated flow.  

Although motion certainly does occur in plane, it may be less than the through-plane 

motion, and the simulations would not detect such through-plane effects (see Appendix 

C).  On the other hand, even with the aforementioned restricted range problem, small 

differences in the off-resonance artifact objective were correlated with blurring artifacts 

that could degrade the visibility of the coronary artery and the aortic root.  For the 

coronary artery ROI, the off-resonance objective accounted for 31.3% of the total 

variance, the most for any objective besides aliasing when considered across groups. 

The most important objective was the aliasing energy objective.  It was highly 

significant and explained between 55.2% and 99.6% of the total variance in each case, 

85.7% of the variance overall.  When raters were asked to focus on the background, it 
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was the only objective that seemed to have any impact on the subjective scores.  This is 

most likely due to the fact that the off-resonance and flow effects tend to generate more 

localized artifacts such as blurring or streaking while the aliasing typically causes extra 

signal to appear at a distance determined by the Nyquist criterion.  The aliasing objective 

was also the only successful objective in the neck images.  The carotid arteries have 

relatively rapid flow, but the direction is through plane with the same results as described 

for the heart.  Off-resonance effects are also fairly limited in the neck due to its small size 

and more uniform susceptibility (relative to the head and chest).  Thus it appears that the 

consistency of the aliasing effect is due to the fact that it is not dependent on the presence 

of a physical quantity (flow velocity or off-resonance frequency) in order to appear in an 

image.  Due to the strength and consistency of this effect, it is important that all future 

optimization work include aliasing energy as either an objective or a constraint. 

6.4.3 Conclusion 

In conclusion, the simulated objectives utilized previously in the optimal design of k-

space trajectories have been validated in subjective image-quality experiments, lending 

credence to both the method and the results of that optimization.  The aliasing energy 

objective, in particular, has such a strong and consistent effect that it should be included 

in any future optimization work.  Finally, in demanding applications with strong physical 

effects, such as cardiac imaging, it is important to include other suitable objectives to 

reduce the artifacts caused by these effects.  The optimization of such objectives during 

the trajectory design process has been shown here to result in significant improvements in 

subjective ratings of image quality. 
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Chapter 7. Optimal True-FISP Pulse Sequences 

7.1 Introduction 

One common goal of active MR research is the design of pulse sequences with 

reduced acquisition times.  Improving MR acquisition speeds results in reduced motion 

artifacts as well as increased utilization of costly MRI systems.  Short acquisition times 

require rapid gradient switching which can lead to PNS (Irnich and Schmitt 1995; Price 

1999).  As a result, PNS effects, rather than gradient hardware, frequently limit the 

acquisition speed of pulse sequences.  Because of its inherent complexity, few, if any, 

optimization studies have incorporated a PNS model into pulse sequence design 

(Simonetti et al. 1993; Reeder et al. 1999).  Therefore, to date, reducing the acquisition 

time of a particular pulse sequence involves a tedious, iterative process involving 

adjustment of gradient lobe parameters until the PNS limits are approached but avoided 

overall.   

Automating the pulse sequence optimization process requires a model capable of 

searching through many pulse sequence parameters with multiple objectives in a timely 

fashion.   GAs are a class of optimization techniques that are capable of finding global 

minima in the face of highly non-linear or otherwise ill-behaved objective and constraint 

functions (Deb 2001).  They use a biological metaphor where sequence parameters are 

encoded in a numerical “gene” and then sequences compete according to one or more 

objectives to pass that genetic information on to future generations.  The population of 

sequences thus evolves to an optimal set after multiple generations.   

In this study, a multi-objective GA incorporating the PNS model is used to optimize 

several variations of a True FISP pulse sequence (Duerk et al. 1998).  Image quality, 
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resolution, and acquisition speed are three important considerations in most applications.  

This work sought to improve all three by simultaneously minimizing the TR, FOV, and 

the BW.  Because FOV, TR, and BW are conflicting objectives, there will not be a single 

optimal sequence but rather a set of sequences, each representing the lowest possible TR 

for a given BW and FOV.  Such “best trade-off” sequences are known as Pareto-optimal, 

and finding them is the goal of multi-objective optimizations (Deb 2001).   

7.2 Methods 

The GA utilized in this work was the NSGA-II first proposed by Deb for general 

work in optimization and later used by Dale for work specifically looking at MRI pulse 

sequence design (Deb et al. 2002; Dale et al. 2003a; Dale et al. 2003c; Dale et al. 2004).  

The NSGA-II is capable of simultaneously optimizing multiple objectives in the presence 

of ill-behaved objective or constraint functions.  Here, the population size was set to 50 

and the optimization was run for 500 generations resulting in a total of approximately 

25,000 sequences tested.   

Parent sequences were selected using a binary tournament selection, where two 

random sequences “compete” and the more fit of the two is then used in the simulated 

genetic operations.  As in biology, the fitness for reproductive selection in a GA can be 

different from the fitness for survival.  In this case, survival fitness is based on crowding 

and optimality, while the reproductive fitness was based on TR unless the BW was 

greater than 1000 Hz.  The combination of these selection pressures is designed to push 

the population of sequences towards a set of the most rapid possible, best trade-off, 

sequences spanning the range of BW from the minimum possible to 1000 Hz.  Two child 

sequences were produced from each pair of parent solutions using simulated binary 
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crossover (µ = 1), which is a commonly used computational analog of genetic 

recombination.  This was followed by Gaussian mutation (σ = 4), a common 

computational analog of genetic mutation, on an average of one parameter per child (Deb 

2001). 

In this study, the acquisition time of both a single-echo and a dual-echo True FISP 

pulse sequence were optimized for use on a Siemens Sonata 1.5 T scanner.  Therefore the 

slew rate was constrained to be less than 200 T/m/s and the gradient magnitude on each 

axis was constrained to be less than 40 mT/m.  In addition to the above hardware 

constraints, the sequence was also constrained to avoid causing PNS as determined by the 

SAFE model (Hebrank and Gebhardt 2000).  The model uses two or more first-order 

digital low-pass filters to approximate the generation of action potentials within the nerve 

cells and the spread of the signal via synapses.  The SAFE model takes all three gradient 

waveforms as input and returns a single stimulation waveform where values greater than 

1.0 indicate that a PNS has occurred, and it is used on the Siemens Sonata to monitor the 

gradient waveforms and halt the sequence in the event of a predicted stimulation.  All 

constraints were enforced using the standard constrained non-dominated sorting 

procedure (Deb et al. 2002). 
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Figure 7.1 Two true-FISP pulse sequences.  All gradient axes are completely refocused 
at the end of each repetition.  The single-echo sequence has eight gradient lobes while 
the dual-echo sequence has nine.
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Figure 7.1 Two true-FISP pulse sequences.  All gradient axes are completely refocused 
at the end of each repetition.  The single-echo sequence has eight gradient lobes while 
the dual-echo sequence has nine.
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The single-echo True FISP sequence has eight gradient lobes while the dual-echo 

sequence has nine (Figure 7.1).  The dual-echo sequence was designed to be a 2-Point 

Dixon acquisition for rapid fat suppression (Dixon 1984; Coombs et al. 1997).  Note that 

the only free parameter of the 2nd readout gradient lobe was the ramp down time, and that 

the start time, duration, and ramp-up times were determined by the 2.2ms delay between 

the two same-BW gradient echoes required for fat suppression.  The phase encode 

gradients of this multi-echo model could easily be adapted to cover different lines of k-

space as in EPI sequences or 1-Point Dixon acquisitions (Flask et al. 2003).  All gradient 

lobes were designed as trapezoidal gradient pulses.  Nonlinear gradient waveform ramps 

could be included in the GA, but were not considered for this study (Dale et al. 2003c; 

Dale et al. 2004). 
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Figure 7.2 Timing parameters.  Each trapezoidal gradient lobe can be completely 
described by the four indicated timing parameters.  Once the timing is fixed, the gradient 
amplitude is determined by the FOV.
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Figure 7.2 Timing parameters.  Each trapezoidal gradient lobe can be completely 
described by the four indicated timing parameters.  Once the timing is fixed, the gradient 
amplitude is determined by the FOV.

Each trapezoidal gradient lobe was specified using 4 timing parameters: Delay, Ramp 

Up Time, Flat Top Time, and Ramp Down Time (Figure 7.2).  GAs are capable of 

accepting discrete parameters; therefore, the individual timing parameters were 

constrained to integer multiples of the hardware gradient raster time (10 µs).  The FOV 

was included as an additional parameter, resulting in a total of 33 parameters for the 

single-echo optimization and 34 parameters for the dual-echo optimization.  The constant 

sequence values used during the optimization were a fixed matrix (2562), slice orientation 

(axial), slice thickness (3 mm), and BW-time product of the RF pulse (1.6).  Note, once 

the timing parameters are set, the amplitude of each gradient lobe can be uniquely 

determined from the desired FOV, slice thickness, RF pulse, and/or Readout BW and is 

therefore not a free parameter.  All timing parameters were greater than or equal to zero 

and the FOV was constrained to between 50 mm and 300 mm.   
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7.3 Results 

For three-objective optimizations, such as these optimizations, the Pareto-optimal set 

is usually a curved surface in the objective space.  Recall that Pareto-optimal for this 

work means that each sequence represents the shortest TR possible (without causing 

stimulation) at a given combination of BW and FOV.  These Pareto-optimal surfaces are 

shown in Figure 7.3 by plotting BW vs. TR curves for several different FOVs for each 

optimization.  During both single echo and dual echo optimizations the sequence 

populations generally had more individuals with higher FOVs, and the final curves 

corresponding to higher FOVs also tended to be smoother.   
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Figure 7.3 Optimal pulse sequences.  Each point represents a single pulse sequence 
plotted with the three objectives.  All plotted sequences are optimal, the fastest sequence 
possible for a given BW and FOV.  Note that the FOV curves are shown in steps of 100 
mm for the single-echo and 50 mm for the dual-echo case.
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Figure 7.3 Optimal pulse sequences.  Each point represents a single pulse sequence 
plotted with the three objectives.  All plotted sequences are optimal, the fastest sequence 
possible for a given BW and FOV.  Note that the FOV curves are shown in steps of 100 
mm for the single-echo and 50 mm for the dual-echo case.

Both optimizations generally exhibited a “diminishing returns” type of behavior 

where successive improvements in one objective came at progressively greater sacrifices 
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in another objective.  This was observed by noting that the FOV curves are progressively 

more strongly shifted to the right, and that each curve generally becomes progressively 

steeper on the left than on the right.  Note the relatively hard floor on the BW for the 

dual-echo optimization. 

For the single-echo true-FISP the larger FOV sequences were almost universally 

slew-limited.  The shorter TR, large FOV sequences also tended to be PNS limited.  PNS 

limited sequences had stimulation curves that usually approached the safety limit at four 

time-points: before and after the excitation and before and after the readout.  The 

importance of the slew constraints was not as significant for smaller FOV sequences.  

Instead, most small FOV sequences were PNS limited with the shorter TR, small FOV 

sequences also being gradient amplitude limited. 
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Figure 7.4 Selected optimal true-FISP pulse sequences.  A) single echo, FOV = 300 
mm, TR = 4.0 ms, BW = 560 Hz, stim = 96%.  B) dual echo, FOV = 300 mm, TR = 6.1 
ms, BW = 560 Hz, stim = 97%.  C) single echo, FOV = 200 mm, TR = 4.7 ms, BW = 550 
Hz, stim = 99%.  D) dual echo, FOV = 200 mm, TR = 6.8 ms, BW = 560 Hz, stim = 92%
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Figure 7.4 Selected optimal true-FISP pulse sequences.  A) single echo, FOV = 300 
mm, TR = 4.0 ms, BW = 560 Hz, stim = 96%.  B) dual echo, FOV = 300 mm, TR = 6.1 
ms, BW = 560 Hz, stim = 97%.  C) single echo, FOV = 200 mm, TR = 4.7 ms, BW = 550 
Hz, stim = 99%.  D) dual echo, FOV = 200 mm, TR = 6.8 ms, BW = 560 Hz, stim = 92%
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The behavior of the constraints was different for the dual-echo pulse sequences.  The 

stimulation constraints were active across the entire population, regardless of FOV, TR, 
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and BW.  Typically the stimulation approached the limit only between the two readouts 

for small FOV sequences, while the larger FOV sequences would approach the limit 

before and after the excitation and after the second readout.  The slew-rate constraints 

were also active for both the largest and smallest FOV sequences across all TRs, while 

the gradient amplitude constraints were active for the shorter TR sequences across all 

FOVs. 

0.8385602.54.73001Standard

0.9175602.6/4.86.82002D

0.9995502.74.72001C

0.9745602.3/4.56.13002B

0.9575602.343001A

Max StimBW (Hz)TE (ms)TR (ms)FOV (mm)# EchoesSequence

Table 7.1 Summary of test and standard sequence parameters

0.8385602.54.73001Standard

0.9175602.6/4.86.82002D

0.9995502.74.72001C

0.9745602.3/4.56.13002B

0.9575602.343001A

Max StimBW (Hz)TE (ms)TR (ms)FOV (mm)# EchoesSequence

Table 7.1 Summary of test and standard sequence parameters

The selected Pareto-optimal pulse sequences are shown in Figure 7.4 and compared 

with a standard sequence in Table 7.1.  Sequences A) and B) are 300 mm single- and 

dual-echo sequences respectively, and sequences C) and D) are the 200 mm single- and 

dual-echo sequences.  Each plot displays the three gradient axes as well as the stimulation 

waveform generated by the SAFE model.  Note the details of the pulse sequences and 

their impact on the stimulation waveforms.  For example, in B) and D) note how the high 

slew-rate portion of each of the final refocusing pulses are somewhat staggered.  In both 

cases, it appears that the stimulation waveform becomes truncated due to these 
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Standard single-echo
4.7 ms, 300 mm, 560 Hz

Optimal single-echo
4.0 ms, 300 mm, 560 Hz

Optimal dual-echo
6.1 ms, 300 mm, 560 Hz

Figure 7.5 Axial abdominal images acquired with FOV = 300 mm and BW = 560 Hz. 
The standard sequence requires 18% more time than the optimal sequence, for the same 
BW and FOV.  The two single-echo sequences have the same noise levels, while the 
dual-echo sequence requires 53% more time, has less noise, and more uniform fat 
suppression.

Standard single-echo
4.7 ms, 300 mm, 560 Hz

Optimal single-echo
4.0 ms, 300 mm, 560 Hz

Optimal dual-echo
6.1 ms, 300 mm, 560 Hz

Standard single-echo
4.7 ms, 300 mm, 560 Hz

Optimal single-echo
4.0 ms, 300 mm, 560 Hz

Optimal dual-echo
6.1 ms, 300 mm, 560 Hz

Figure 7.5 Axial abdominal images acquired with FOV = 300 mm and BW = 560 Hz. 
The standard sequence requires 18% more time than the optimal sequence, for the same 
BW and FOV.  The two single-echo sequences have the same noise levels, while the 
dual-echo sequence requires 53% more time, has less noise, and more uniform fat 
suppression.

asymmetric gradient lobes.  Note also that most of the pulse sequences have asymmetric 

waveforms on the PE axis with the first PE lobe being trapezoidal and the second being 

triangular.   

Images of a volunteer’s abdomen (FOV = 300 mm) were obtained for optimized 

single-echo and dual-echo true-FISP sequences as shown in Figure 7.5.  Abdominal 

images were also acquired with a conventional, sub-optimal true-FISP sequence for 

comparison.  The sub-optimal (Fig. 7.5a) and optimal (Fig. 7.5b) single-echo true-FISP 

images show comparable image quality and level of artifacts.  Aside from the TR (4.7 

ms), the parameters of the sub-optimal sequence were equivalent to the optimized single-

echo pulse sequence.  The optimized dual-echo image is also very similar to the single-

echo image, but with uniform fat suppression throughout the abdominal region.   
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Figure 7.6 Axial head images acquired with FOV = 200 mm.  The 200 mm optimal 
single-echo sequence has the same TR as the 300 mm standard single-echo sequence 
used above.  The dual-echo sequence requires 45% more time, has less noise, and more 
uniform fat suppression.

Optimal single-echo
4.7 ms, 200 mm, 550 Hz

Optimal dual-echo
6.8 ms, 200 mm, 560 Hz

Figure 7.6 Axial head images acquired with FOV = 200 mm.  The 200 mm optimal 
single-echo sequence has the same TR as the 300 mm standard single-echo sequence 
used above.  The dual-echo sequence requires 45% more time, has less noise, and more 
uniform fat suppression.

Optimal single-echo
4.7 ms, 200 mm, 550 Hz

Optimal dual-echo
6.8 ms, 200 mm, 560 Hz

Optimal single-echo
4.7 ms, 200 mm, 550 Hz

Optimal dual-echo
6.8 ms, 200 mm, 560 Hz

The optimized true-FISP sequences were also used to obtain images of volunteer’s 

head/optic nerve (FOV = 200 mm) as shown in Figure 7.6.  Multiple signal averages 

(NSA = 5) were obtained to improve the image quality.  The single-echo images were 

reconstructed on-line.  The dual-echo sequences were reconstructed offline incorporating 

an off-resonance correction algorithm resulting in uniform fat suppression (Coombs et al. 

1997). 

7.4 Discussion 

The GA provided multiple, Pareto-optimal true FISP sequences that would have been 

very difficult to design by conventional means.  Typical pulse sequence design involves 

an iterative process where the gradient pulse timing and shapes are varied until the TR is 
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at an acceptable level without violating the stimulation limits.  Even when this process is 

successful, small changes in sequence parameters during imaging applications often lead 

to PNS violations.  Prior to this optimization work, PNS violations caused by small 

parameter changes were particularly problematic during the development of the dual-

echo sequences.  The Pareto-optimal solution sets provided by the GA overcome this 

limitation and allow the sequence to remain time-optimal for a variety of specified 

imaging conditions. 

The NSGA-II was able to converge to a reasonably well-defined Pareto-optimal set 

within 500 generations in both the true-FISP and the dual-echo true-FISP cases.  The 

greater smoothness of the large-FOV curves suggests that these regions may have 

converged more completely than the small FOV regions.  This is further substantiated by 

the observation that, during the optimization, the sequence populations tended to have a 

higher proportion of large FOV individuals.  This may be a direct result of using a 

random initial population, because random small-FOV individuals are more likely to be 

severely penalized for hardware constraint violations.  An alternative to using a random 

initial population would be to design an initial population based on product pulse 

sequences.   

Another potential method to improve convergence would be to use a hybrid GA 

where both genetic optimization and more traditional “hill climbing” optimization 

routines are used together (Lahanas et al. 2003).  Such algorithms have been shown to 

have faster and more complete convergence properties than pure GA’s, while being more 

able to escape from local minima than pure traditional optimization routines. 
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The relatively hard floor on BW for the dual-echo optimization is due to the fact that, 

even with an infinite slew rate, there is a fundamental minimum BW of 455 Hz for 

symmetric gradient echoes separated by exactly 2.2 ms.  With limited slew rates, this BW 

floor is a function of the FOV as can be seen in Figure 7.4.  Such features can be 

discovered automatically using a formal optimization without requiring specific encoding 

of the theoretical constraints.   

The constraint activity has important implications for hardware design.  Almost all of 

the Pareto-optimal pulse sequences were stimulation limited, with the exception of the 

low-BW/large-FOV single-echo sequences.  This implies that improvements in hardware 

would only allow increases in acquisition speed if they were coupled with mechanisms to 

maintain or reduce stimulation levels.  Without such mechanisms sequence designers will 

only be able to make improvements by sliding along the PNS constraint surface, and thus 

sequence-design methods like the one presented here will become more important. 

Perhaps one of the most important advantages of a multi-objective GA is that it is 

possible to sample the entire Pareto-optimal set in a single run.  This allows for a more 

complete understanding of the inherent trade-offs amongst the various objectives.  The 

alternative is usually to do a single-objective optimization by assigning weighting 

coefficients to the various objectives.  Such weighting coefficients are notoriously 

difficult to obtain with any degree of confidence and are generally different for each 

application.  Instead, by using the multi-objective approach, the optimization can be 

performed once and the results may be used for any application without repeating the 

optimization.  This is important because the 500 generations used here required 

approximately 12 hours of computation time (mostly for evaluating the SAFE model).  It 
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is therefore neither feasible nor necessary to repeat the optimization on-line during the 

selection of sequence parameters, as would be required with the weighting methods. 

There are several potential methods for obtaining the best sequence for a particular 

application from a table of all of the Pareto-optimal sequences without requiring the 

specification of weighting coefficients.  The simplest involves plotting the trade-off curve 

for two objectives while fixing the remaining objectives and selecting the best trade-off 

for a particular application.  This procedure can be repeated for other pairs of objectives 

until the best sequence is obtained.  However, it becomes progressively more 

cumbersome with increased numbers of objectives.  In such cases, a suitable alternative is 

to use a clustering algorithm to select a small number of representative sequences (Deb 

2001).  The best one for the application is selected and the corresponding cluster is 

repeatedly sub-divided into a similar number of sub-clusters until the single best 

sequence is obtained.   

In conclusion, the NSGA-II was able to successfully converge and find minimum-TR, 

PNS-limited, true-FISP pulse sequences for a wide variety of combinations of BW and 

FOV without requiring selection of weighting coefficients.  The multi-objective GA was 

able to converge despite the non-linear nature of the SAFE model and the discrete timing 

parameters used.  This technique solved some of the challenges encountered when 

working with new pulse sequences such as the dual-echo true-FISP, and the inclusion of 

the FOV as an objective successfully overcame one of the fundamental limitations of 

previous work.  We believe that techniques similar to those used here will prove useful 

for rapid refinement of a wide variety of new techniques developed in the future.  
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Chapter 8. Summary 

This work has resulted in the development of a wide variety of techniques and 

methods for optimal design in the field of MR image acquisition.  It has been motivated 

by the immense complexity and flexibility of MRI itself.  Optimally precise DCE-MRI 

protocols, optimal k-space trajectories, and optimal true-FISP pulse sequences have been 

developed along with the means for fluoroscopic online gridding-reconstruction of non-

rectilinear k-space data.  This not only represents the accomplishment of all of the 

original specific aims of this project, but also the additional demonstration of the utility 

of the multi-objective GA optimization for more traditional types of sequences with 

rectilinear k-space trajectories. 

8.1 Significance 

8.1.1 Current Results 

Several of the specific results are of immediate and practical application in the MR 

imaging community.  For example, DCE-MRI is widely used as a non-invasive method 

for scientific studies that need to measure tissue perfusion in-vivo.  Most such studies 

involve human clinical trials of new drugs, such as the testing of anti-angiogenic agents 

for safety and efficacy in starving cancer tumors.  By improving the precision of the 

DCE-MRI measurements researchers can obtain the same information with a smaller 

number of samples.  In this case, a smaller number implies that fewer patients are placed 

at risk by undergoing an experimental treatment.  Even in studies where patient risk is 

non-existent, a smaller number always represents a smaller cost to gather the same 

information. 
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The time-optimal trajectories for k-space transfers have a wide potential for 

application in many high-speed applications, especially for any type of EPI application.  

For example, the SPIDER pulse sequence, an asymmetric radial true-FISP EPI pulse 

sequence, has shown some potential in cardiac imaging; however off-resonance and 

motion effects occasionally limit its effectiveness (Larson and Simonetti 2001).  The 

application of the time-optimal trajectories to the SPIDER sequence can result in a 30% 

reduction in overall echo-train duration, or an increase in azimuthal separation from 1.4º 

to 18º.  This should attenuate the off-resonance or motion effects and thereby improve the 

effectiveness of a promising technique.  Because the time-optimal trajectory solution is 

general, for any initial and final gradient state, its application is not limited to the 

SPIDER sequence, but should provide similar reductions in sensitivity to off-resonance 

and motion effects for any multiple gradient echo technique.  Such rapid sequences are 

particularly important in cardiac imaging, iMRI, and fMRI.  Better, faster cardiac and 

iMRI images could allow for improvements in patient care, while better, faster fMRI 

images could help in a wide variety of scientific projects. 

The new GA-designed Pareto-optimal trajectories represent a significant 

improvement in image quality over current standard trajectories at higher numbers of 

interleaves.  Also, the unexpected presence of a consistent feature in the GA-designed 

optimal trajectories, the non-zero initial gradient amplitude, is a surprising discovery that 

may have further applicability.  Specifically, it could be applied to current WHIRL and 

spiral trajectories, and may result in improved image quality.  Such a potential general 

improvement may have never been discovered without the use of a formal optimization 

procedure such as that used here.   
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Although many techniques exist for correcting badly corrupted images, most of them 

require a great deal of post processing and are therefore not suitable for fluoroscopic 

applications such as iMRI.  Rather than spending a long time in post processing, these 

trajectories allow for the improvement of image quality by investing a relatively small 

amount of time in the acquisition itself.  The use of k-space trajectories in iMRI settings, 

such as device guidance, is particularly promising.  The resulting improvement in 

temporal resolution and image quality over current techniques could reduce the total 

duration of most interventional procedures, which is often highly correlated with clinical 

outcome.   

In addition to the new trajectories developed, one important result from the multi-

objective trajectory optimization is the understanding of the relationship between spiral, 

WHIRL, and other standard trajectories.  If an extremely high temporal resolution is 

required, and image quality is secondary, then spirals with low numbers of interleaves are 

the trajectory of choice.  As the need for speed is reduced and the desire for image quality 

is increased, then spiral trajectories are no longer the best choice.  While it has long been 

intuitively understood that there is an inherent trade-off between acquisition speed and 

image quality, the details of that trade-off have never been carefully described.  This 

work now gives researchers a rationale for making specific choices in the use of 

particular trajectories for their specific application. 

Finally, the optimization of the rectilinear true-FISP pulse sequences is expected to 

have much more widespread impact due to the more common use of rectilinear k-space 

acquisitions.  In particular, the dual-echo pulse sequence optimization is particularly 

important.  While true-FISP and Dixon techniques are both well-accepted techniques, the 
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typical implementation is to perform two separate single-echo acquisitions with different 

TEs and then combine the images.  By placing both echoes in a single acquisition, the 

total imaging time is reduced by a factor of 2.  This idea holds significant promise for a 

wide variety of rapid fat-suppressed applications, but was difficult to implement in a 

time-efficient manner without risking PNS.  Early development of the dual-echo 

technique relied on a cumbersome, iterative, guess and test procedure for finding 

workable sequence parameters.  Small changes in the sequence often resulted in 

unexpected violations of the PNS constraints.  With the multi-objective GA optimization 

results, the parameters can easily be adjusted to meet the requirements of a particular 

application while both maintaining optimality and avoiding PNS.  Essentially, the 

rectilinear dual-echo true-FISP technique has undergone a very rapid transition from a 

new to a mature technique. 

8.1.2 Future Impact 

Although these are each important improvements, the larger potential impact of this 

project lies, not in these specific results but in the continued application of the methods 

developed here.  In particular, the multi-objective GA optimization shows immense 

promise for improving a wide range of MRI acquisition techniques.  One major limitation 

of previous work in optimal design has been the usual single-objective approach.  This 

approach is seldom appropriate in MRI due to the fact that there are almost always 

multiple important objectives and the objectives are usually conflicting.  The multi-

objective approach acknowledges that fact, and attempts to completely uncover the true 

nature of the inherent trade-offs that must be made between the various objectives. 
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One other limitation of previous work is the requirement of most optimization 

methods that the objective functions and constraints be well-behaved and even 

differentiable functions of the parameters.  This often requires so many simplifying 

assumptions, and/or poor metrics of image quality, that the results can seem less 

important even after a well-done optimization.  The use of a GA addresses this concern 

by using an algorithm that makes no requirements on the behavior of the objective or the 

continuity of the parameters and constraints.  This allows discrete or otherwise 

discontinuous objectives and parameters, multi-modal objectives, disjoint feasible 

regions, and simulation-based objectives with arbitrarily complicated models.  Although 

simplifying assumptions were made here, they were all related to reducing the 

computation time of the objective calculation, not to requirements of the optimization 

algorithm itself.  This is an important distinction because the multi-objective GA method 

will be able to take immediate advantage of improvements in computer hardware to 

compute more realistic and useful objectives, instead of simply optimizing a poor 

objective in less time. 

By addressing these two concerns and limitations of previous work, it is hoped that 

this technique will gain widespread acceptance and use in the design of MR image 

acquisitions.  MRI is increasingly moving from being strictly a subject of research, to 

also becoming a tool of research.  This means that there are an increasing number of 

people trying to use MRI to answer a question that has never been asked before.  Usually 

these scientists are experts in the subject of their particular research question, not in MR 

physics and pulse sequence design.  However, because the topic usually has one or more 

novel components, it is common for there to be no pulse sequences that specifically 
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address their particular requirements.  Future extensions to this optimization work may 

help to move sequence design from the MR physics domain to the problem domain, 

thereby allowing such researchers to use their own specific expertise and general 

scientific skills to best advantage.   

The other anticipated benefit from widespread use of this method would be the rapid 

maturation of new techniques.  In other words, techniques that have been around for a 

long time, such as single-echo true-FISP, may see only a small, incremental improvement 

through the application of a formal optimization procedure.  Such techniques are already 

mature in the sense that there is a large body of experience using them and most 

improvements that can be made will already have been discovered through the course of 

the many man-years spent in developing them.  However, as our experience with the 

dual-echo true-FISP sequence indicates, even new techniques that seem quite similar to 

well-established sequences can have surprising difficulties and challenges.  Instead of 

spending several man-years to refine these techniques, explore the obstacles, and 

discover the possible improvements through trial and error, the use of optimal design 

techniques allows the same improvements by spending a little time in careful preparation 

and a few computer-hours of exploration and refinement.  In this sense, general 

optimization methods like the multi-objective GA allow the rapid maturation of new 

techniques, which in turn should help achieve an elevated rate of improvements in patient 

care. 

8.2 Future Directions 

In order to attain the desired future impact described above there are a number of 

necessary improvements, each relating to one or more specific facets of this project.  This 
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penultimate section addresses some of the individual steps that should be taken next in 

order to realize the full potential of these methods. 

8.2.1 DCE-MRI Precision 

As mentioned in Chapter 2, one significant problem with the Monte-Carlo method is 

that it is inherently limited by the assumptions made in generating the random signal.  

The propagation of errors optimization therefore lacks some of the sense of validity 

achieved through the experimental validation of the trajectory optimization.  However, in 

addition to the current lack of a perfusion phantom that motivates the use of Monte-Carlo 

methods in the DCE-MRI literature, the validation of the optimally precise protocol 

presents some extra experimental challenges.  Specifically, because statistical tests on 

variance are so much less powerful than tests on the mean, it is absolutely essential that 

any attempt for experimental validation take care both to reduce the variability of the 

measured perfusion and to allow the collection of a large number of samples. 

There are at least two methods that show some promise for the experimental 

validation of the optimal DCE-MRI protocol.  The first would be to use a hollow-fiber 

hemodialysis filter, or dialyzer, as a perfusion phantom.  The hollow-fiber dialyzer is the 

most similar manufactured product to the function of natural blood vessels.  Gd-DTPA is 

known to pass from the blood to the dialysate during the course of normal hemodialysis 

just as it passes from the blood to the tissues during DCE-MRI (Niendorf et al. 1996; 

Niendorf et al. 1997; Ueda et al. 1998; Okada et al. 2001).  In addition, because of the 

manufactured nature and the rigorous standards for such filters, the “natural” variance 

component should be quite low.  Also, with the ability to completely and rapidly flush the 

dialyzer, it should be possible to repeat the experiment a large number of times in 
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relatively short succession.  There are, however, some very important differences 

between a hollow-fiber dialyzer and normal tissues.  First, the dialyzer may not be MR 

compatible.  This should not be too difficult to remedy because the hollow-fiber 

component itself is manufactured from a cellophane resin, and it would only be the 

housing or other components that may need to be replaced.  Second, the “blood” 

represents a much larger portion of the total volume in a dialyzer than in normal tissues.  

This could potentially be resolved through the removal or occlusion of a portion of the 

fibers.  Third, the geometry of the dialyzer is such that there is likely to be significant 

concentration differences between the inlet and outlet sides of the fibers and therefore a 

significant component of diffusion along the fibers in the “tissue” compartment.  A 

sufficiently rapid flow through the hollow fibers could reduce or eliminate this effect as 

well as potentially helping with the second concern.  Finally, both the extracellular 

volume fraction and the clearance of Gd-DTPA (both directly related to Ktrans and kep) are 

much higher in a dialyzer than in any kind of living tissue.  These last two problems 

should not diminish the ability to use the hollow-fiber dialyzer as a perfusion phantom, 

but they will mean that the phantom will be quite different from any type of normal 

tissue.  Because the results of the optimization are dependent on both the expected tissue 

and blood T10 and on the expected Ktrans, the protocol described above will generally not 

be optimal for the dialyzer.  Instead, it would probably be best to repeat the optimization 

for the dialyzer parameters and compare the dialyzer-optimal protocol to the standard 

protocol rather than comparing the tissue-optimal protocol to the standard protocol.  If the 

tissue-optimal protocol is desired, then it will be essential to do the error propagation 

using the dialyzer parameters and the tissue-optimal protocol to determine the anticipated 
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change in precision.  Even if the dialyzer experiments cannot be used to validate the 

specific optimal protocol, they can still be used to validate the propagation of errors 

method itself.  If the propagation of errors is experimentally verified, then the 

optimization based on the propagation of errors will be at least partially validated. 

The other method that has some promise in experimental validation of the optimal 

DCE-MRI protocol is the use of artificially perfused excised organs.  The experimental 

setup would be similar to that of a Langendorff perfused heart.  This setup would allow 

for the determination of both the arterial input and venous output components and 

therefore permit the determination of the overall perfusion with some, hopefully high, 

degree of accuracy and precision.  By taking the difference between this measure and the 

MRI determined measure we should be able to obtain a fairly good measure of the 

variance of the DCE-MRI technique itself.  The desired features of an organ for this 

experiment would be: a tough outer capsule to prevent changes in volume and the bulk 

accumulation of fluid, a single arterial input and venous output to simplify setup, a 

reasonably small size to perhaps permit multiple samples in a single run, and a single 

type of tissue with a high Ktrans for increased precision and volume averaging.  One 

potential candidate organ, although it contains two types of tissues, is the testicle.  If it 

proves suitable for this type of preparation, it would have the additional advantage of 

being readily and cheaply available in large quantities due to common practices in the 

beef, pork, and lamb agricultural industries. 
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8.2.2 Genetic Algorithm Optimizations 

8.2.2.1 Methods 

This work clearly indicates that the multi-objective GA approach is a very powerful 

and general method for the optimal design of MR imaging techniques.  The NSGA-II and 

the associated parameter settings used here, however, are not the only multi-objective GA 

or parameters available, and others should be investigated to determine convergence 

properties.  In particular, a steady-state GA may prove useful.  They avoid the use of 

generations and may have guaranteed convergence.  Also, hybrid optimization routines, 

combining a GA and a deterministic hill-climbing optimization algorithm, are know to 

converge more rapidly and may even be able to converge more completely if care is 

taken to avoid becoming trapped in local minima. 

8.2.2.2 Results 

As mentioned above, there are at least two potential methods for obtaining the best 

sequence for a particular application from a table of all of the Pareto-optimal sequences 

without ever requiring the specification of weighting coefficients.  The more practical, 

particularly for large numbers of objectives, is to use a clustering algorithm to select a 

small number of representative sequences.  The best one for the application is selected 

and the corresponding cluster is repeatedly sub-divided into a similar number of sub-

clusters until the single best sequence is obtained.  This represents a very fast search.  For 

example, there were almost 1200 Pareto-optimal trajectories developed, and this method 

could find the best after only five iterations with four clusters per iteration.  For two 

objective sets, or by fixing the remaining objectives and considering only two at a time 

for higher dimensional sets, it may be reasonable to use the other method.  In fact, the 
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two methods could be combined in order to easily allow small refinements of the 

selection determined by clustering, if experience indicates that the choice was not 

completely satisfactory.  In either case, it would be quite useful to have one or both of 

these mechanisms available on the scanner for immediate investigation of any particular 

solution from the whole Pareto-optimal set, rather than the current system of selecting a 

few solutions at the PC for implementation on the scanner. 

8.2.2.3 Constraints 

The only major constraint not considered during this project is SAR.  SAR should not 

be difficult to incorporate into any of the optimizations, and will become progressively 

more important as optimization and sequence development proceeds to 3 T and even 

higher field strengths.  However, in addition to the SAR constraints, the current SAFE 

model for PNS constraints is not entirely satisfactory.  It is quite cumbersome and 

computationally intense, and it also has some anisotropy that is not possible to remove 

simply by picking an inscribed sphere region similar to the approach of the time-optimal 

transfer method.  This means that it is not possible to use the SAFE model, as currently 

implemented, to design sequences that are guaranteed to avoid stimulation in any 

orientation.  It is probable that a simpler model, using fewer than the current 21 

parameters used by the SAFE model and adaptable to such rotations, could fit the PNS 

data equally well.  It would be desirable to have such a model for PNS, but its use may be 

limited by the fact that the SAFE model is likely to remain the model actually used by the 

Siemens MRI systems for the foreseeable future. 
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8.2.2.4 Parameters 

The choice of parameters is a vital part of any optimization and can dramatically 

affect the results of any optimization routine by making certain types of solutions 

difficult or impossible to represent and discover.  The Chebyshev series expansion of the 

gradient waveform has proved to be a very effective and general parameterization and it 

was absolutely critical that such a generality be utilized in the first experiences with 

trajectory optimization.  The previous work done here using a variable-density spiral 

parameterization did not permit non-zero initial gradient amplitudes nor did it permit 

trajectories to begin at a non-zero k-space location (e.g. reversed spiral or radial).  

Optimizing using the general Chebyshev series expansion helped discover the importance 

of the initial gradient amplitude, but the general optimization also wasted some amount of 

time on testing sequences that did not sample the center of k-space; such sequences are 

generally not useful.  The fact that the Pareto-optimal trajectories could all be represented 

with a slight generalization of the variable-density spiral parameterization is an important 

indication that future trajectory optimization work should probably utilize a generalized 

variable-density parameterization.  Such a parameterization should have faster and more 

complete convergence properties, especially for low numbers of interleaves, without 

inadvertently discarding any useful solutions. 

For the rectilinear and other pulse-sequence based optimizations, other specific 

additional parameters may prove useful.  The gradient-timing parameterization seems to 

work well, but it is quite possible that non-linear ramp shapes may reduce PNS for the 

same change in gradient amplitude over the same amount of time.  Such ramp-up and 

ramp-down shape parameters could be incorporated into the current optimization fairly 
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easily.  In addition, there are many potential “binary” parameters in MRI, such as 

whether or not to perform fat-suppression, flow compensation, or magnetization 

inversion.  These types of parameters may prove particularly important for some of the 

contrast-based objectives described in the next section. 

8.2.2.5 Objectives 

The objectives used here, particularly the simulation-based measures of artifact 

severity, were all validated using subjective rating experiments.  However, there remains 

a lot of work that could be done to further refine and improve these objectives with the 

goal of designing objectives with the greatest possible impact on perceived image quality.  

This could be accomplished, for example, by using a perceptual difference model instead 

of the mean squared error as a measure of the degradation of image quality due to the 

influence of the physical effects.  Also, using the perceptual difference model may allow 

the combination of multiple objectives, such as the aliasing and off-resonance objectives, 

into a single objective.  This would be desirable due to the improvement in convergence 

that using fewer objectives usually provides.  Additional artifact objectives that should be 

studied include through-plane flow and bulk motion between views.  

The proper choice of objectives depends, in large measure, on the desired 

applications.  For example, in scientific applications the multi-objective GA approach 

could be extended to other quantitative imaging applications, similar to DCE-MRI, where 

accuracy and precision would be a logical pair of objectives.  Current quantitative 

techniques include ADC imaging, diffusion tensor imaging, flow quantification, 

myocardial stress/strain imaging, etc.  If the new quantitative technique were not as well 
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established as DCE-MRI, then it may or may not be that accuracy and precision are 

conflicting objectives; either way the multi-objective approach will illuminate that fact.   

Such objectives, however, would not be as useful for more traditional diagnostic or 

interventional imaging applications, where the usual objectives are acquisition time and 

one or more measures of image quality.  This is a particularly important arena for future 

improvements.  For example, contrast between blood and other tissue or between normal 

and pathological tissue is often a critical measure of image quality for many diagnostic 

and device-guidance applications.  Specific kinds of contrast that could be optimized 

include dark-blood, bright-blood, fat-suppression, tumor-tissue contrast, vulnerable 

plaque, etc.  Although the perceptual model may be more easily applied to artifact-based 

objectives, it could also be applied to such contrast objectives in order to maximize the 

desired perceptual difference between normal and pathological tissue.  Image contrast 

was not optimized in either the k-space trajectory or rectilinear pulse-sequence 

optimizations, but probably represents the best and single most important future step for 

this work.   

8.3 Conclusion 

In conclusion, MRI is a very complicated and flexible imaging modality with an 

infinite variety of possible image acquisition techniques, and a corresponding variety in 

available information.  The optimal design methods presented here are an essential step 

towards changing the design of MR image acquisition techniques from an art to a 

science.  These initial optimizations have resulted in a four-fold improvement in the 

precision of quantitative DCE-MRI measurements of perfusion, as well as significant 

improvements in the quality of images acquired with non-rectilinear k-space trajectories.  
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Initial experiences with the rectilinear true-FISP optimizations indicate that the multi-

objective GA, in particular, will be applicable to most possible imaging applications.  It is 

anticipated that further developments and extensions to these methods will allow for 

improvements in established techniques and, perhaps more importantly, will permit the 

rapid maturation of new techniques. 
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Appendix A. Kety Equation Derivation 

The Kety equation is used in MRI, PET, and other imaging modalities in order to 

quantify tissue perfusion rates.  In general, it relates the rate of uptake of an inert 

substance into the tissues to the concentration of that inert substance in the arterial and 

venous blood.   In MRI, the form of the Kety equation that is most commonly used is (all 

variables used in this section are defined in Table A.1): 

TepP
trans

eTP
T CkCKvCCHctFE

dt
dC

−=−−= )/()1(  

To derive this equation, consider a differential element of plasma as it passes through 

the capillaries from the arterial to the venous side.  If the tissue concentration is zero, then 
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the plasma to the EES.  This fraction, E, is related to the relative dominance of flow and 

vascular permeability.  For example, if the vascular permeability is very high relative to 

the flow, then by the time the differential element passes through to the venous side the 

plasma concentration will be equal to the EES concentration and therefore E will be equal 

to 1 (CV = 0 for CT = 0).  If permeability is not high relative to flow, then E will be some 

number less than 1.   

The total volume of plasma that passes through a unit volume of tissue is equal to 

, and therefore the total flux of tracer entering a unit volume of tissue can be 

written: 

)1( HctF −

P
T CHctFE

dt
dC )1( −=  

Assuming that at equilibrium CP = CE (i.e. no active transport across the capillary so 

transport is equally likely in both directions), then E is also the fraction of the EES 

concentration that a differential element of plasma will have upon reaching the venous 

side if it enters with no tracer.  Therefore the total flux of tracer leaving a unit volume of 

tissue can be written: 

E
T CHctFE

dt
dC )1( −=−  

These two expressions can be combined using the principle of superposition to 

obtain: 

)()1( EP
T CCHctFE

dt
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By making the substitution EeT CvC =  we obtain: 
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which is the most commonly used form of the Kety equation for MRI.   

The plasma concentration cannot be measured directly using MRI, but the arterial 

concentration can be measured if an appropriate artery is within the imaging plane.  By 

making the substitution PA CHctC )1( −=  we obtain: 

TepA

trans

TeA
T CkC

Hct
KCvHctFECFE

dt
dC

−
−

=−−=
1

)/)1((  

which, although not commonly used, is an expression of the same form and meaning as 

the Kety equation, but in terms of variables that can be measured using MRI. 
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Appendix B. Trajectories and Gradient Waveforms 

Figure B.1 Trajectories and gradient waveforms for the group of trajectories 
corresponding to the time objective. A single interleaf of each trajectory is displayed. 
Trajectories are displayed in order of acquisition time with the fastest trajectory on top 
and the slowest trajectory on bottom.  The first trajectory is Pareto-optimal and the 
second is a standard 201-view radial trajectory.

Figure B.1 Trajectories and gradient waveforms for the group of trajectories 
corresponding to the time objective. A single interleaf of each trajectory is displayed. 
Trajectories are displayed in order of acquisition time with the fastest trajectory on top 
and the slowest trajectory on bottom.  The first trajectory is Pareto-optimal and the 
second is a standard 201-view radial trajectory.
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 Figure B.2 Trajectories and gradient waveforms for the group of trajectories
corresponding to the aliasing energy objective. A single interleaf of each trajectory is 
displayed.  Trajectories are displayed in order of aliasing energy with the least aliasing 
energy on top and the most on bottom.  The first trajectory is Pareto-optimal and the 
sec d is a standard 109-view radial trajectory.

Figure B.2 Trajectories and gradient waveforms for the group of trajectories
corresponding to the aliasing energy objective. A single interleaf of each trajectory is 
displayed.  Trajectories are displayed in order of aliasing energy with the least aliasing 
energy on top and the most on bottom.  The first trajectory is Pareto-optimal and the 
sec d is a standard 109-view radial trajectory.
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Figure B.3 Trajectories and gradient waveforms for the group of trajectories 
corresponding to the flow-artifact energy objective. A single interleaf of each trajectory
is displayed.  Trajectories are displayed in order of flow-artifact energy with the least 
flow artifact on top and the most on bottom.  The first trajectory is Pareto-optimal and 
the last is a standard 157-view radial trajectory.

Figure B.3 Trajectories and gradient waveforms for the group of trajectories 
corresponding to the flow-artifact energy objective. A single interleaf of each trajectory
is displayed.  Trajectories are displayed in order of flow-artifact energy with the least 
flow artifact on top and the most on bottom.  The first trajectory is Pareto-optimal and 
the last is a standard 157-view radial trajectory.
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Figure B.4 Trajectories and gradient waveforms for the group of trajectories 
corresponding to the off-resonance artifact energy objective. A single interleaf of each 
trajectory is displayed.  Trajectories are displayed in order of off-resonance artifact 
energy with the least off-resonance artifact on top and the most on bottom.  The first 
trajectory is Pareto-optimal and the second is a standard 133-view radial trajectory.

Figure B.4 Trajectories and gradient waveforms for the group of trajectories 
corresponding to the off-resonance artifact energy objective. A single interleaf of each 
trajectory is displayed.  Trajectories are displayed in order of off-resonance artifact 
energy with the least off-resonance artifact on top and the most on bottom.  The first 
trajectory is Pareto-optimal and the second is a standard 133-view radial trajectory.
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Appendix C. Long Axis Cardiac Images 

During the defense of this dissertation, one important comment from the committee 

was regarding the appropriateness of the axial slice orientation used to acquire the cardiac 

images for the subjective study.  The simulations used for the flow-artifact energy 

objective computation simulated only in-plane flow, and the axial view has a large 

Figure C.1 Long-axis cardiac images acquired using trajectories from the flow-artifact 
energy group.  The trajectory for a) is Pareto-optimal while the trajectory for b) is a 
standard 157-view radial trajectory.  The remaining trajectories, for images c), d), and e), 
are the sub-optimal trajectories and are arranged in order of increasing flow-artifact 
objective.  Note that all images have a relatively large amount of background artifact. 
The position of the slice requires that a large amount of anatomy be located outside of 
the FOV.  Using these trajectories there is no single “readout” direction along which to 
apply over-sampling and thus avoid aliasing.  Due to these effects, the cardiac images for 
the bjective study were acquired using the axial slice positioning despite the greater 
amount of in-plane flow with the long axis view.

susu

a b

c d e
Figure C.1 Long-axis cardiac images acquired using trajectories from the flow-artifact 
energy group.  The trajectory for a) is Pareto-optimal while the trajectory for b) is a 
standard 157-view radial trajectory.  The remaining trajectories, for images c), d), and e), 
are the sub-optimal trajectories and are arranged in order of increasing flow-artifact 
objective.  Note that all images have a relatively large amount of background artifact. 
The position of the slice requires that a large amount of anatomy be located outside of 
the FOV.  Using these trajectories there is no single “readout” direction along which to 
apply over-sampling and thus avoid aliasing.  Due to these effects, the cardiac images for 
the bjective study were acquired using the axial slice positioning despite the greater 
amount of in-plane flow with the long axis view.
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c d e

a b

c d e

  197 



amount of through-plane motion.  It was therefore suggested that a four-chamber or 

sag

function of increasing flow-artifact objective (note the increased degradation on the 

bottom row from image c to image e), the overall quality of these images is much worse 

than the corresponding axial images.   

This overall increased level of artifacts is most likely due to heightened amounts of 

aliasing energy.  In rectilinear imaging, aliasing is only a concern for the phase-encoding 

direction because oversampling can be applied in the readout direction to increase the 

actual FOV to the required distance in that direction.  However, with these non-rectilinear 

trajectories there is no single readout direction and no single phase-encoding direction.  

Even when readout oversampling is utilized, such trajectories are therefore still highly 

sensitive to signal from locations outside of the FOV.  This would have a tendency to 

make the image quality more strongly related to the aliasing energy objective, and thus 

introduce even more variance for the logistic regressions related to the flow-artifact 

objective. 

gital view of the heart, containing both ventricle and aorta, might have been preferable 

in order to increase the amount of in-plane flow and reduce the through plane motion.  

Figure C.1 shows such images acquired using each of the five trajectories in the flow-

artifact objective group.  Although there are visibly increased levels of artifact as a 
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In order to reduce the amount of aliasing energy due to signal outside of the FOV it is 

possible to apply saturation pulses cranial and caudal to the heart and aortic arch.  Such 

images are shown in Figure C.2.  In this Figure it is possible to observe increasing levels 

of artifact with increasing flow artifact sensitivity levels, particularly for the three sub-

optimal trajectories in Figure C.2a-c.  It is also apparent that there are reduced levels of 

background artifact relative to Figure C.1. 

Figure C.2 Long-axis cardiac images acquired using trajectories from the flow-artifact 

Pareto-optimal while the trajectory for b) is a standard 157-view radial trajectory.  The 
energy group with cranial and caudal saturation pulses applied. The trajectory for a) is 

remaining trajectories, for images c), d), and e), are the sub-optimal trajectories and are 
arranged in order of increasing flow-artifact objective.  Note that all images have less 
background artifact than the corresponding images in Figure C.1. The aliasing energy 
due to signal from tissue outside of the FOV can be reduced using the saturation pulses at 
the expense of time and some changes in contrast due to the increased TR.

c d e

energy group with cranial and caudal saturation pulses applied. The trajectory for a) is 

remaining trajectories, for images c), d), and e), are the sub-optimal trajectories and are 
arranged in order of increasing flow-artifact objective.  Note that all images have less 
background artifact than the corresponding images in Figure C.1. The aliasing energy 
due to signal from tissue outside of the FOV can be reduced using the saturation pulses at 
the expense of time and some changes in contrast due to the increased TR.
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Figure C.2 Long-axis cardiac images acquired using trajectories from the flow-artifact 

Pareto-optimal while the trajectory for b) is a standard 157-view radial trajectory.  The 
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Although the use of saturation pulses is shown here to be one potential method for 

improving the overall quality of these images, it was not utilized in the subjective image 

quality experiments for two principal reasons.  First, all forms of magnetization 

preparation have been avoided in this work because any magnetization preparation 

necessarily increases the acquisition time and any associated improvements in image 

quality would be unrelated to the trajectory or the trajectory optimization.  Second, by 

increasing the TR of the pulse sequence, the use of the saturation pulses would result in 

altered contrast, which was considered an important factor to control in the design of the 

perceptual experiments.  However, it may be worthwhile for a follow-up study of the 

flow-artifact objective to utilize this technique in order to obtain a reasonable level of 

image quality in the sagittal orientation rather than using the transverse orientation 

without magnetization preparation. 
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