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Chapter 1
Problem definition and research
objectives


1.1 Problem definition


Forests should be managed as to meet multiple (often conflicting and incom-
mensurable) objectives (Afdeling Bos en Groen, 2000). In the Flemish forest
law, timber production is a very important but no longer the only management
objective. In the forest management literature, however, most models focus on
this purely economic function of the forest. These models were not developed
to allow objectives that require spatial data such as wildlife conservation and
recreation and are unable to handle spatial objectives. Linear programming,
for example, uses continuous variables, and this is not suitable when spatial
integrity is of concern. Integer and mixed-integer programming overcome this
problem but in order to explicitly formulate the spatial requirements very large
integer programs are needed. These programs cannot be solved even with to-
day’s computing power. Heuristics have been proposed as a means to handle
these complicated optimisation problems, and are indeed capable of solving
them. However, they suffer, as the linear or integer programs do, from the fact
that they are essentially single objective optimisers. This requires that the mul-
tiple objectives have to be reformulated into a single objective function and this
hampers the search for the trade-off front between these objectives. Until today,
there has been no report on the use of a truly multiple objective and spatial
optimiser in forest management. The integration of the optimisers together with
a geographical information system has also been long advocated but in reality
few (if any) real-world applications that combine GIS and optimisers online in
forest management have been reported.
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2 Problem definition and research objectives


1.2 Objectives and research questions


Clearly, the need for an optimisation technique that can handle both multi-
ple objectives and spatial information emerges. The main objectives in this
dissertation can be stated as:


1. develop a forest management planning tool that generates alternative plans
for multiple objectives;


2. this tool should be flexible and allow the integration of spatial data and
GIS functionality ;


3. this tool should be efficient and preferably fast.


These three objectives can be met if the following research questions are an-
swered:


1. What is the current state-of-the-art of optimisation techniques in forest
management and what are the shortcomings of these approaches?


2. What techniques are available in operations research or computational
intelligence that optimise multiple objectives without the need for prior
aggregation?


3. Which of these are flexible enough to allow integration with GIS?


4. What are the basic assumptions for using these techniques; if they are
not met in the case of forest management, how can these techniques be
adapted? This can be split into the following sub-questions:


a. What is the effect of the encoding strategy on the solution quality?


b. Are forest management problems deceiving the search and optimisa-
tion process?


5. How can these techniques be improved so that they find optimal solutions
in a faster way?


1.3 Experimental setup


1.3.1 Research question 1


The first research question is answered through an extensive review of the ex-
isting techniques that have been used both in forest management planning and
in related domains such as urban and land use planning.
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1.3.2 Research questions 2 and 3


Genetic algorithms are proposed as optimisation tool for forest management
planning because


• they do not combine multiple objectives prior to the optimisation process;


• they generate multiple alternatives in a single optimisation run due to
their population-based approach;


• they allow easy integration between the optimisation module and GIS
functionality.


Two forest management problems, a harvest scheduling problem and a schedul-
ing problem involving spatial data, are first solved using a single objective ge-
netic algorithm. Its performance is compared to that of existing methods and
the validity of the alternatives is analysed in detail. This is followed by a com-
parative study of two widely applied multiple objective genetic algorithms in
research domains such as control and civil engineering. For this study, a forest
benchmark problem with known best alternatives is used so that the perfor-
mance of the two optimisers in the domain of forest management can be investi-
gated. In the next step the harvest scheduling problem and the spatial problem
are solved using the best multiple objective genetic optimiser. The results from
the multiple objective genetic algorithms are compared to those of the single
objective optimiser and the advantages of the multiple objective approach are
identified. As in genetic algorithms the function evaluations are completely sep-
arate from the optimisation process itself, it is possible to include GIS in the
process. The GIS-module stores and analyses the spatial data and models and
there is no need for the optimiser module to include extra decision variables for
the spatial data. In the second multiple objective case study, which includes
spatial information, the advantages of combining GIS and GA are shown. First
a benchmark problem from literature is treated, and later this is applied to the
study area.


1.3.3 Research question 4


This research question is twofold and can be split into two sub-questions.
In genetic algorithms, the decision variables have to be encoded in a chromo-
some. Several encoding strategies are possible and the first sub-question there-
fore is (research question 4a): ‘How does the encoding strategy of the decision
variables affect the solution quality’. This question is dealt with separately for
each case study. For the harvest scheduling case study, three encodings are
possible and the effect of each of them on the solution quality is determined for
both the single and multiple objective case.


Due to the two-dimensional nature of spatial information, a linear repre-
sentation of the forest management decision variables might violate the basic
assumptions of genetic algorithms and this could lead to suboptimal solutions.







4 Problem definition and research objectives


The second sub-question can formulated as (research question 4b) : ‘Are link-
age learning operators necessary when genetic algorithms are used for forest
management optimisation problems’. To that end, two advanced methods that
overcome this problem are applied to the spatial problem in order to ascertain
whether forest management problems require specialised techniques.


1.3.4 Research question 5


Fitness inheritance is an efficiency enhancement technique that has been pro-
posed in literature to speed up the genetic optimisation process if the function
evaluations are very time-consuming. Because it has only been applied to simple
problems, fitness inheritance is tested on three test functions from a benchmark
test suite of functions. Their behaviour is analysed using various performance
indices. After they have been tested, fitness inheritance is applied to a case
study for which the assumptions for using fitness inheritance hold.


1.4 A road map to this dissertation


This dissertation consists of three main parts. The first part is a general intro-
duction to the basics of forest management. The second part includes all theory
and case studies on simple single and multiple objective genetic algorithms. The
final part introduces both theory and practice of advanced genetic algorithms.


Part I consists of two chapters and answers research question 1. Chapter 2
commences with a definition of forest management and its implementation in the
framework of the Flemish Community. This is followed by a literature review of
models that form the basis of quantitative forest management. Chapter 2 con-
tinues with a review of the existing optimisation techniques that are commonly
used in forest management and current shortcomings and pitfalls are outlined.
Next to the techniques that are used in theory, those that are used in the real
world are discussed. Finally, a summary and conclusion are written. The second
chapter of Part I (Chapter 3) briefly describes the study area. This study area
is used in the case studies throughout this dissertation.


In Part II and Part III, the design of the dissertation is as follows: first a
chapter concerning the theoretical aspects is presented. This is then followed by
relevant case studies. These case studies clarify the theory and show particular
advantages and disadvantages of the methods that were described earlier.


Part II starts with the theoretical background on simple genetic algorithms
(Chapter 4). The fundamentals of genetic algorithms are discussed, together
with issues such as the correct representation of chromosomes and the use and
parameter setting of genetic operators. This is followed by some guidelines for
forest management problems. These guidelines are used in the two case studies
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that follow this theoretical chapter. In the first case study (Chapter 5), the har-
vest scheduling problem, a well-studied forest management problem, is solved.
The two objectives in this case are restated into a single objective formulation
prior to the optimisation process. The second case study (Chapter 6) focuses
on the integration of spatial information during the optimisation process. Using
a simple genetic algorithm, the perimeter between old growth and clear felled
areas is maximised. The results of the genetic algorithms are compared to those
found in literature.


In Chapter 7 the single objective genetic algorithm is extended to the mul-
tiple objective case. The modifications needed for this extension are briefly
discussed. Next to the extension, performance indices for multiple objective op-
timisers are reviewed. This is followed by a comparative study of two algorithms
(Chapter 8) that are described in literature as good starting points. These are
then compared on a forest benchmark problem. For this real-world problem the
optimal values are known, and hence it is possible to test the two implemented
algorithms. Both algorithms are analysed in detail and the best algorithm is
retained for the rest of the dissertation. This algorithm is used for the harvest
scheduling problem, which is now optimised as a multiple objective problem
(Chapter 9). The objectives are simultaneously optimised without prior aggre-
gation of the objectives. This approach is compared to the results obtained in
the single objective formulation, and the validity of the harvest scheduling plans
is investigated. After this case study, the focus is again on the integration of
spatial data in the optimisation process (Chapter 10). Several ways of opera-
tional links between genetic algorithms and GIS are reviewed, and the multiple
objective extension of the edge-dependent optimisation benchmark problem is
solved. Thence, the same strategy is again applied to the study area. Overall,
Part II addresses both research questions 2 and 3. Research question 4a is also
answered.


In the final part of this dissertation (Part III), more advanced genetic algo-
rithms are applied to forest management. The first chapter in this part (Chap-
ter 11) commences with a discussion of the disadvantages of blindly applying
genetic algorithms to forest management problems. Chapter 11 discusses the
consequences of applying the simple genetic algorithm and tries to formulate an
answer to research question 4b. As spatial data is by nature two-dimensional (or
even three-dimensional), simply using linear chromosomes might violate the ba-
sic assumptions of genetic algorithm theory. Algorithms that can overcome this
problem are then reviewed and two promising ones are fully described. These
two algorithms are again applied to a case study in Chapter 12 to illustrate
their value in the optimisation process.


Finally, a major impediment to the common use of genetic algorithms in
forest management is that it can be time-consuming. Especially when complex
spatial models are used to derive the objective function values, evaluating many
solutions is very costly. Therefore an efficiency enhancement technique called
fitness inheritance was proposed in literature. As there is little known about
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where fitness inheritance can be applied, it is initially applied to a test bed of
benchmark problems in Chapter 13. The effect of fitness inheritance is investi-
gated by means of several performance indices, and after this analysis follows
the framework wherein fitness inheritance can be used. This chapter provides
an answer to research question 5. In the final case study (Chapter 14), fit-
ness inheritance is applied to the harvest scheduling problem, indicating the
advantages or disadvantages for a real-world application.







Part I


Basics of forest
management
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Chapter 2
General introduction


2.1 Defining forest management


The need to manage forests to reach multiple objectives has been present for
a long time, but since the beginning of the 1970s this need has become urgent
in Flanders. This is mainly due to the raise of living standards leading to
more spare time and the increasing societal pressure for environmental issues
(Afdeling Bos en Groen, 2000). Many countries such as the USA, Great Britain
and the Netherlands explicitly recognise these objectives in their forest laws.
In the Flemish forest law (Vanhaeren, 2002), timber production remains a very
important forest function, but is no longer seen as the sole management objective
of the forest (Janssens & de Schuyter, 1990). The forest law explicitly lists those
functions that are potentially conflicting with the timber production. These
functions are: the social and educational function, the environmental protective
function, the ecological function and the scientific function.


Dealing with the complex problem of integrating timber production with
other values and benefits requires a more comprehensive and spatial approach
than has traditionally been applied to the management of forest ecosystems
(Brown & MacLeod, 1996). Before providing a literature review of tools for
the design of forest management plans, it is necessary to define what forest
management is. First some definitions found in literature will be listed, and
second by using their common characteristics a definition for this dissertation
will be presented.


Loomis (1993) states that the management of natural resources can be de-
fined as the organisation or coordination of natural resources and the human
input of labour, capital and knowledge. Management involves not only the coor-
dination but also the control and scheduling of used resources. Leuschner (1990)
defines forest management very broadly as the application of a wide range of
scientific, economic and social principles to administer and solve problems in


9







10 General introduction


forested areas. These principles can include, but are not necessarily limited to,
those principles developed in forest science. This is the same definition as the
one given by Buongiorno and Gilles (1987):


“The art and science of making decisions with regard to the organi-
sation, use and conservation of forests.”


In academic circles, the term forest management has a more restricted mean-
ing (Leuschner, 1984):


“The study and application of analytical techniques to aid in choos-
ing those management alternatives that contribute most to the or-
ganisational objectives.”


This is very similar to what Tarp and Helles (1997) mention:


“Forest management planning involves the selection of treatments
for each of the management units in the forest. These administra-
tive units also form the basis for incorporating variations of growing
conditions and weighing of primary objectives within a multi-use
concept.”


A more recent definition by Davis et al. (2001) has the same key components:


(Forest management) “is the art and science of growing, harvest-
ing, protecting and manipulating trees and related vegetation and
helping land owners, affected parties and society to sort out their
options and understand the trade-offs involved in achieving their
contemporary mix of forestry-related goals.”


According to Berck (1999), forest management is the manipulation of the for-
est to produce different mixes among the uses of the forest. This manipulation
is undertaken to achieve a certain set of objectives. Management furthermore
decides the relative importance of forest objectives. Tarp and Helles (1997),
Leuschner (1984) as well as Berck (1999) therefore consider forest management
planning as a technical tool to enable decision making concerning silvicultural
treatments in such a way that —multiple— objectives are met. Bos (1994)
finally states that forest management can be defined as the set of human activ-
ities aiming at a sustainable fulfilment of the needs of society by adjusting the
forest ecosystem to those needs and adjusting society to the forest.


All these definitions are related to the arrangement or manipulation of forest
management units through silvicultural treatments in order to solve problems in
forests based on forestry principles and also techniques from outside the realm
of forest science. Moreover, all these definitions implicitly stress the central
role of decision making in forest management. The kernel of decision making
in forest management is therefore to answer the following question (Lammerts
van Bueren, 1983):
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“Which mix of functions and what level of fulfilment per function
maximises the satisfaction of society’s needs”


The answer to the question should be determined by society’s needs, the
physical suitability of forest land to fulfil functions, economic implications and
social acceptance (Lammerts van Bueren, 1983).


Using the common characteristics found in the definitions from literature,
forest management will be defined as follows:


“A set of human actions that will produce a set of forest goods and
services in such a way that the varying needs of society are met in
an optimal way.”


2.2 The forest management planning process


Planning in most of the forest operations is a complex task that can result in
major financial losses if conducted suboptimally (Robak in Brack and Marshall
(1996)). A procedure for scheduling forest operations (treatments) across space
(the forest management units) and time (planning horizon) is a key component
of forest management planning. According to Lammerts van Bueren (1983) the
natural resource use can be evaluated by land evaluation procedures. Because
society has demands and needs, some types of land use such as forest use are
more suitable to fulfil these needs than others. The preferences of the user can
then be defined in terms of a product that has to be realised and the methods
and means to obtain this product. This product can be qualitative (e.g. nice
scenery in the forest) as well as quantitative (e.g. timber volume). During the
planning process the forest owner (private or public) should answer the following
questions in planning (Fig. 2.1) (Loomis, 1993; Lammerts van Bueren, 1983;
Speidel, 1972):


1. Where are we?


2. Where do we want to be?


3. What alternative actions will get us there - what is in our means?


4. Did we make it?


Carlsson (1999) bundles these steps into two groups:


1. Identification of objectives and alternatives;


2. Valuation of alternatives.
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Figure 2.1: The planning process (Speidel, 1972)


The determination of the most socially desirable alternative requires agree-
ment on the objectives. All the effects, both desirable and undesirable, of these
objectives should be known. This implies that the first task in defining forest
management is to state the objective or objectives of the management plan.
This is not a trivial task and is likely to be a source of contention in itself
(Mendelsohn, 1996). The purpose of analysis in this case is to ensure that all
the potential effects associated with each objective have been identified, and
quantified where possible. Then it is up to the agency or political decision
makers to judge which objectives are most important (Loomis, 1993).


In a decision making process four possible ways exist to select between al-
ternative strategies or solutions (Hwang & Masud, 1979):


1. No articulation of preference information is provided. This means that
methods following this approach do not need any inter-objective or sub-
jective preference information from the decision maker once the problem
constraints and objectives are defined.


• Pros: during the process of obtaining the solution the decision maker
is not disturbed by the analyst


• Cons: the analyst has to make assumptions about the decision maker’s
preferences


There are no real-world forest applications of this category.
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2. A priori articulation of preference information. In this case the prefer-
ence information is given to the analyst before the optimisation procedure
commences. The optimisation techniques that are traditionally being used
in forest management are based on the a priori articulation because they
require a single objective function as input.


• Pros: a whole range of classical single objective optimisers can be
applied to solve the problem.


• Cons: requires prior preference information which can be difficult
to give when the optimisation problem is very complex or when the
objectives are incommensurable.


3. Progressive articulation of preference information. This class of methods
relies on the progressive definition of the decision maker’s preferences along
with the explorations of the criterion space. During the search progress,
the decision maker is repeatedly asked to give some trade-off or preference
information based upon the current solution in order to determine a new
solution. These methods assume that the decision maker is unable to
indicate prior preferences due to the problem complexity, but can give
this information at a local level to a particular solution: given a small
number of solutions the decision maker can indicate the preference for the
objectives.


• Pros:


– there is no need for prior preference information, only local pref-
erence information is needed. This means that the decision
maker can articulate the preferences based on solutions produced
by the analyst;


– it is a learning process for the decision maker to understand the
behaviour of the system;


– since the decision maker is involved the obtained solution has a
better prospect of being implemented.


• Cons:


– solutions depend on the accuracy of the local preference the de-
cision maker can indicate;


– there is no definitive guarantee that the preferred solution can
be obtained in a finite number of iterations – that is the number
of times that the analyst has to go back to the decision maker
to ask for the local preference;


– much effort from the decision maker is required.


This has been used in group decision making for forest management prob-
lem such as in Faber et al. (1998): several stakeholders have to give their
preferences over the objectives through ranking and proposal evaluation.
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Combining the preferences leads to the solution which is acceptable for all
parties involved.


4. A posteriori articulation of preference information. The methods of this
class determine a subset of the complete set of solutions that make up
the trade-off front between the objectives. If there is no prior preference
articulation, then no solution on the trade-off front is worse than another,
because an improvement in one objective dimension has the opposite effect
in the other dimension. From this set the decision maker chooses the most
satisfactory solution, making implicit trade-offs between objectives. In
many cases the trade-off information is received from the decision maker
after the method has terminated and the subset of solutions on the trade-
off has been generated.


• Pros: does not require any assumption or information concerning the
decision maker’s utility function.
• Cons: these methods usually generate a large number of solutions on


the trade-off front — it becomes nearly impossible for the decision
maker to choose the most satisfactory one.


Looking for the solutions on the trade-off front and dropping inferior solu-
tions helps to simplify a complex forest ecosystem management problem, so that
it is dealt with more easily (Loomis, 1993). If an algorithm is capable of finding
all these solutions, the complex problem can be reduced to choosing the best
solution afterwards by the decision maker. Moreover, if the trade-offs between
the objectives can be given explicitly, it also becomes easier to compare the
alternatives (Carlsson, 1999).


Production possibility frontiers, or efficiency frontiers (Davis et al., 2001),
have been used for this purpose and can be constructed using generating tech-
niques (Carlsson, 1999). A generating technique is a method for solving a mul-
tiple objective problem repeatedly to obtain solutions on the trade-off front.
Those solutions can then be used to define the production possibility frontier.
A production possibility frontier shows the trade-offs between two products or
objectives. While the production possibility frontier cannot answer the ques-
tion if there is enough of one or the other objective, it is a useful starting point
for debate (Davis et al., 2001). Finding the cheapest way to reach the goals is
important to policy making and management planning for at least two reasons
(Davis et al., 2001):


1. Inefficient solutions can result in needless conflict because the trade-offs
or costs are higher than they really are.


2. The higher the costs of achieving a goal, the less likely it is that society
will choose high levels of that goal.


Two examples of production possibility frontiers are given in Fig. 2.2. These
trade-offs can be between market and non-market products as well as between
two non-market products.
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(a) Trade-off between timber volume and woodcock


(b) Trade-off between badger and woodcock


Figure 2.2: An example of a production possibility frontier between
two products competing for the same resources. Fig. 2.2(a) represents
the trade-off between a market product (timber volume) and a non-
market product (abundance of woodcock) and in Fig. 2.2(b) the trade-off
between two non-market products: abundance of badger versus abun-
dance of woodcock is depicted
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2.3 Quantitative models for planning: literature
review


Many forest management problems have an almost infinite number of alterna-
tives. A typical forest management problem recognises a multitude of stands
and a variety of actions over time that could be taken in the stands to achieve the
objectives of the forest management problem. As the number of choices can get
very large, optimisation techniques are commonly applied. Before the optimi-
sation techniques are described, the basic formulation of the harvest scheduling
problem and other quantitative models necessary in the planning process will
be elaborated in the following sections.


2.3.1 Basic formulation of the harvest scheduling problem


Classical scheduling methods were designed to regulate timber harvests. In
modern forestry this approach remains essentially the same, even though so-
cial context and technological capabilities are very different (Roise et al., 2000).
Much work on forest management planning emphasises economic approaches in
which achievement of some goals is maximised subject to constraints of other
goals. The strong economic flavour of this planning approach has some disad-
vantages because production efficiency is emphasised whereas spatial integrity
is ignored (Davis et al., 2001).


In forest management two basic ways of formulating the optimisation prob-
lem are commonly used: Model I and Model II (Johnson & Scheurman, 1977).
These two models differ in their definition of an activity. According to Johnson
and Scheurman (1977) all forest optimisation problems can be reduced to one
of these two formulations.


Garcia (1990) refers to the forest management from a state space view. Any
system that evolves in time can be described by a state that characterises the
system at some point in time, and a transition function that specifies how the
state changes over time. The state of the forest at the start of period t+ 1 is a
function of the state at period t and the actions in period t. Using this concept,
it is possible to represent the problem in terms of network flows (Fig. 2.3).
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Figure 2.3: The forest management process can be represented from a
state space view. The process can be seen as a system, described by its
state, that evolves in time, described by its transition function (Garcia,
1990)


2.3.1.1 The Model I formulation


In Model I, an allocation option refers to a complete set of management actions
that will occur on a particular land unit over the entire planning horizon. The
structure of Model I is very clear: each activity represents a possible manage-
ment regime per land unit with its associated inputs and outputs throughout
the planning horizon. A Model I can handle both even-aged or uneven-aged
management strategies (Bos, 1994). The objective function of the Model I for-
mulation is to maximise the net present value obtained from the forest stands
(Eq. 2.1) subject to area constraints for each management unit (Eq. 2.2).
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Maximise
U∑


l=1


Rl∑
q=1


Dlqxlq (2.1)


subject to


Rl∑
q=1


xlq = All = 1, . . . , U (2.2)


where
xlq = hectares of forest management unit l assigned to regeneration


harvest sequence q
At = number of hectares in forest management unit l
U = number of management units
Rt = number of possible regeneration harvest sequences over the


planning horizon for forest management unit l
Dlq = discounted net value per hectare of forest management unit l


over the planning horizon, if assigned to regeneration harvest
sequence q. Dlq can be decomposed into more understandable
terms:


Dlq =
N∑


j=1


PlqjVlqj − Clqj


γj
+
P ′


lqN


γN


where
N = number of periods in the planning horizon
Plqj = unit price of harvest in period j from forest man-


agement unit l under regeneration harvest sequence
q


Vlqj = volume per hectare harvested in period j from for-
est management unit l under regeneration harvest
sequence q


Clqj = cultural treatment costs per hectare in period j for
forest management unit l under regeneration harvest
sequence q


γj = discount rate for period j
P ′


lqN= net value per hectare placed at the end of the plan-
ning horizon, i.e. in period N on forest management
unit l under harvest regeneration sequence q


2.3.1.2 The Model II formulation


In Model II, each age class containing hectares in the first period forms a man-
agement unit until these hectares are harvested. An allocation option refers to
a complete set of actions that will occur on a particular land unit from the time
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the land unit is regenerated until it is harvested or until it is left as ending in-
ventory at the end of the planning horizon. This means that there are decision
variables for existing stands and different ones for regenerated stands, each time
a stand gets harvested it gets transferred to another decision variable. There-
fore it is less easy to deal with uneven-aged management practices, because the
definition is based on the existence of regeneration harvest which does not occur
in uneven-age management. The objective function of the Model II formulation
(Johnson & Scheurman, 1977) is written in Eq. 2.3. This objective function is
subject to area constraints Eq. 2.4 and Eq. 2.5


Maximise
N∑


j=1


j−Z∑
i=−M


Dijxij +
N∑


i=−M


EiNwiN (2.3)


subject to


N∑
j=1


xij + wiN = Ai i = −M, . . . , 0 (2.4)


N∑
k=j+Z


xjk + wjN =
j−Z∑


i=−M


xij j = 1, . . . , N (2.5)


where
xij(xjk) = hectares planted in period i (period j) and harvested in


period j (period k)
wiN (wjN ) = hectares planted in period i (period j) and left as part


of the ending inventory in period N , the hectares that
are uncut at period N


Ai = number of hectares present in period 1 that were planted
in period i (i = −M, . . . , 0), with each At being a con-
stant at the beginning of the planning horizon (period
1)


M = number of periods before period 0 in which the oldest
age class present was planted


Z = minimum number of periods between regeneration har-
vests


Dij = discounted net value per hectare from hectares planted
in period i and harvested in period j. Dij can be ex-
pressed as follows:


Dij =
j∑


k=max(i,1)


PikjVikj − Cikj


γk
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with
Pikj = unit price of volume harvested in period k on


hectares planted in period i and harvested in pe-
riod j


Vikj = volume per hectare harvested in period k on
hectares planted in period i and harvested in pe-
riod j


Cikj = cultural treatment costs per hectare in period k
on hectares planted in period i and harvested in
period j


EiN = discounted net value per hectare during the planning
horizon from hectares planted in period i and left as
ending inventory in period N plus discounted net
value per hectare of leaving these hectares as ending
inventory


EiN =
N∑


k=max(i,1)


PikNVikN


γk
+
P ′


iN


γN


where
PikN = unit price of volume harvested in period k on


hectares planted in period i and left as ending
inventory in period N


VikN = volume per hectare harvested in period k on
hectares planted in period i and left as ending
inventory in period N


CikN = cultural treatment costs per hectare in period k
on hectares planted in period i left as ending in-
ventory in period N


P ′
iN = net value per hectare of leaving hectares in period


i as ending inventory in period N


Eq. 2.4 denotes the area constraints for the Model II formulation and states
that the inventory of land planted at time i, this being Ai, is either cut or left
standing. Eq. 2.5 denotes that the land harvested in year j from all previous
standing planting is available for harvesting between year j + z and year N or
can be left standing (Berck & Bible, 1984).


2.3.1.3 Discussion


Both Model I and Model II have their merits for timber harvest and activity
scheduling. When ecological considerations need to be incorporated, the Model
I formulation has a slight advantage because a unit of land can easily be tracked
from beginning to end of the planning horizon. Another advantage is that inte-
ger constraints on management units can be easily tracked from start to finish
(Roise et al., 2000; Davis et al., 2001). Both models, however, are very weak in
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terms of ecological forest planning and analysis because they are stratum-based
models, while most ecological processes require spatial integrity. The problem
with stratum-based approaches is that the links between data and their loca-
tion gets destroyed, making it impossible to evaluate spatial implications of
alternatives (Carlsson, 1999).


2.3.2 Growth modelling


Forest management decisions are predicated on information about both current
and future resource conditions (Avery & Burkhart, 1994). Inventories taken at
one instant in time provide information on current volume and related statistics.
Forests, however, are dynamic systems, and it is necessary to project these
changes to obtain relevant information for prudent decision making. The term
growth of a tree is the increase over a given period of time, while yield can be
defined as the total amount available for harvest at a given time. Hence, yield
can be regarded as the accumulation of the annual increments.


A forest growth model describes the development of tree crops as they get
older (Philip, 1994). The term forest growth model can be somewhat misleading
because only the growth of the trees and not of the whole ecosystem is modelled.
The design of a growth model depends on the resources available, on the uses to
which it will be put and the structure of the tree stands, either even or uneven-
aged, of a single or mixed species. The four most common uses are (Philip,
1994):


• to predict the growth of the forest so that the manager may match his
harvesting and selling plans against the prediction of growth and conclude
whether he is cutting more or less than, or an amount equal to, growth;


• to predict growth on a particular site to enable the land manager to make
rational decisions. Often the growth model is required to provide infor-
mation for conversion into economic measures to facilitate comparisons of
a number of feasible investment options;


• to predict growth of crops under different management regimes and silvi-
cultural practices in order to make comparisons and a choice;


• to predict work programmes when budgeting costs and revenues.


The growth models of forest crops can be classified as in Fig. 2.4. A stand
growth model describes the stand and predicts growth through general para-
meters, such as the total basal area per hectare, mean values, and definitions of
frequency distributions. A single tree growth model on the other hand, predicts
the growth of individual trees and synthesises stand growth from the sum of a
representative sample of individuals.


A static model predicts stand or tree volume at a stated time and infers
growth by subtracting the previous from the current standing volume. A dy-
namic model predicts volume increment directly and deduces cumulative vol-
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umes by summing growth. Finally, a distinction can be made between determin-
istic models and stochastic models. The first type predicts the expected values
under a given set of conditions, whereas the second type of models includes
uncertainty in the outcome through the incorporation of random variables, and
thus adjusts the prediction by including the effect of stochastic elements.


Figure 2.4: A classification of growth models (after Chertov et al.
(1999))


Most authors in forest management literature for instance Carter et al.
(1997), Barrett et al. (1998) and Church and Daugherty (1999), use stand
growth models to predict the further growth, because of their simplicity (Philip,
1994). A limitation of stand growth models is that they consider each site in
isolation. As a result, they require that the site under scrutiny is independent
of all other sites (Davis & Martell, 1993). The factors that are included in these
stand growth models are those factors that most closely relate to growth and
yield of forest stands. These factors are (Avery & Burkhart, 1994):


1. the point in time in stand development;


2. the site quality;


3. the number of trees that occupy the site.


For even-aged stands, these factors can be expressed quantitatively through
the variables of stand age, site index, and stand density. Stand age and stand
density are parameters that are recorded in a standard inventory base. The
site index is a measure for the site quality for the given species and is derived
from the relation between the top height in a stand at a standard age. The
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British Forestry Commission, for instance, designed simple yield classes for tree
species commonly found in the United Kingdom. In these yield tables every
curve refers to a growth model and these curves differ by intervals of 2 m3 ha−1


yr−1 in maximum mean annual increment (Hamilton & Christie, 1971). If the
yield class of the site and the age of the stand is known, it is possible to derive
the stand top height. This information can be used as input in the production
tables. The production tables can also be used directly with the yield class and
age as input variables.


2.3.3 Forest valuation


As the revenue received from the timber production is in the future, it is nec-
essary to transfer the future value into current value before it is possible to
compare alternative plans that have different revenue at fixed points in time.
A central axiom of economic forestry is that discounted net value measures the
human benefit from the use of forest resources. Net present value – the dis-
counted values of revenues and costs from the use of forest resources over time –
is often used to estimate net benefit (Davis et al., 2001). The net present value
can be calculated as in Eq. 2.6


V0 =
Vt


(1 + i)t
(2.6)


where Vt is the net revenue obtained at period t, and i is the discount rate.
In forestry, due to the long term planning horizon, managers favour low dis-


count rates. As low discount rates tend to magnify the future values, they will
encourage conservation and longer planning horizons. High discount rates on
the other hand will lessen these future values (Duerr, 1993) and will favour al-
ternative plans with a shorter rotation because a tree reaches financial maturity
at a time long before it would be considered old growth (Davis et al., 2001).


Some forest managers propose to use a zero compound rate, because at this
interest rate, a future decision, no matter how distant in the future has the
same significance as a decision taken today. Any property capable of yielding
a perpetual return has an incalculably high value. In general, however, the
compound interest rate is set between 3% and 6% (Nalli et al., 1996; Davis
et al., 2001).


One has to be cautious about compound interest. Its most dangerous im-
plication is that the future can be clearly foreseen, but the longer the planning
period and the lower the rate of interest, the greater the hazards of the com-
pound interest are (Duerr, 1993). Some forest economists therefore argue that
a compound rate can only be used for a certain period of the planning horizon
(say for example the first 30 years) and then the nominal value should be used
for the remainder of the planning horizon. Church and Daugherty (1999) de-
scribe alternative approaches that consider a form of equity between current and
future generations as represented by the periods in the planning horizon. They
combine both the nominal net revenue in each period and each period’s present
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net worth with values discounted relative to each period. These measures are
used as criteria for welfare. Using the net present worth relative to each period
will maximise economic efficiency and allows for variation in net revenue. Using
net revenue focuses on a more even distribution of net revenues between the
periods.


2.3.4 Ecological models


If long-term management planning should encompass multiple goals, for example
economic and ecological, it is necessary to blend traditional economic forestry
with ecological models (Davis et al., 2001). If ecological objective functions
are included in the optimisation process, it is critical to develop the ecologi-
cal models that will determine the best management activity for each forest
management unit in order to maximise these ecological goals.


Ecological models model complex dynamic systems and they try to tie
changes in one aspect of the model to changes in other parameters. These
models should also be able to determine the impact of various management
actions. These actions could include any forest management activity (Mendel-
sohn, 1996). A key question in forest ecosystem management is how the selected
size, shape and distribution of harvests influences the spatial characteristics of
natural disturbances (Seymour and Hunter, 1999 in Davis et al. (2001)). Patch
size, the amount of edge, and the continuity of the patches within a forest can
all affect the ability of that forest to support different species (Davis et al.,
2001). The emphasis on composition, structure and processes within ecological
systems directs attention to broad spatial scales and large landscapes.


In the Flemish framework, Afdeling Bos en Groen (2000) explicitly men-
tioned that all management plans should include management activities that
promote the abundance of certain key species.


2.4 Geographical information systems in forest
management


Although geographical information systems (GIS) are capable of storing, visu-
alising, analysing and retrieving spatial information, forest management tech-
niques rarely use the GIS during the planning or modelling phase (Taylor,
Walker, & Abel, 1999; Baker & Mladenoff, 1999; Baskent & Jordan, 1991).
Brief surveys by Misund et al. (1995) have shown that there exist very few sys-
tems for computer aided planning or scheduling that have capabilities to handle
problems with a spatial component and that geographical information systems
offer very primitive facilities for planning and scheduling.


Forest planning has traditionally assumed that spatial complexities of plan-
ning could be worked out during plan implementation or in the detailed opera-
tional planning. It is becoming clear, however, that leaving out habitat, visual,
and other spatial outcomes to be worked out during the implementation can lead
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to misleading results and to plans that are impossible to implement successfully
(Johnson 1992 in Davis et al. (2001)). When wildlife habitat is abundant, it
is easy to work out the spatial problems, but when wildlife habitat is scarce,
ignoring it in the planning stage will result in projecting activity levels and
outcomes that cannot be attained. Especially in the framework of the Flemish
Community this is important: the size of the Flemish forests is very limited and
the forests are very fragmented (Afdeling Bos en Groen, 2000, 2001) and there-
fore one cannot leave out the spatial outcome until the actual implementation
of the plan.


GIS promises to be a major tool for management planning within administra-
tive units and among ownerships because of the importance of the spatial scale
(Franklin, 1994). Simultaneously recognising spatial scales such as patches,
stands and groups of stands within watersheds or forests, together with the
quantification of projection of structural characteristics, wildlife habitat and
other ecosystem elements and the portrayal of spatial patterns and relation-
ships of stands, streams and forests form three key elements of management for
sustainable human-forest ecosystems (Davis et al., 2001).


Spatial decision support systems (SDSS) are tools that help the decision
maker to make well-founded decisions based on the integration of spatial and
non-spatial data. In general, an SDSS consists of different modules (Densham,
1991): (1) the information data base, (2) the model toolbox which includes the
GIS-functionality and (3) the optimisation toolbox. A front end to the SDSS is
the graphical user interface (GUI).


The use of SDSS in forest management has not been very extensively. A
short review is given in the following paragraphs. Baskent and Jordan (1991)
designed a spatial wood supply model based on numerical and geographical
information. The geographic stand information includes harvest block config-
uration and stand adjacency tables. Their tool is however not designed to
optimise a harvest strategy over time. It is only developed to queue harvest
blocks as to not violate adjacency constraints. They conclude that spatial mod-
elling has potential to improve management design. The reasons for this are:
firstly, a spatial model determines a better assessment of wood supply as it is
determined as a function of both geographic and numerical data. Secondly, the
proposed strategies are much easier to implement in the field. A third reason
is that harvesting as it occurs in actual practice is mimicked and finally, with
the production of new spatially-oriented performance indices, a spatial wood
supply model has potential to improve understanding of forest dynamics under
management with both wildlife and economic objectives under consideration.
Chuvieco (1993) combined linear programming and GIS for land-use modelling.
He used GIS first as a tool to derive the coefficients of the objective function
and after the optimisation to map the optimal solution, but GIS was not used
directly during the optimisation process. Olson and Orr (1999) and Naesset
(1997a) applied a similar approach: maps were generated in a GIS, and these
maps were the input for linear programming. During the optimisation process
there was no link to the GIS and only afterwards their optimal solutions were
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visualised.
Naesset (1997b) reviews the use of GIS within decision support systems and


says that GIS is a crucial technology for linking restrictions in timber manage-
ment practices due to preservation of biodiversity, to practical forest manage-
ment. Finally, Kurttila (2001) reviewed how the spatial structure in the forests
were included in the optimisation calculations of forest planning and says that
there is an increasing need to analyse the development of the spatial structure
of forests and to develop the means by which spatial objectives can be explicitly
included. He states that the best way to handle spatial objectives is to include
them directly in the optimisation process but that this is too complicated.


In the previous paragraphs the need for an integrated approach be-
tween an optimiser and a geographical information system clearly
comes forward. As there are still very little approaches that com-
bine these two models, one of the aims of this dissertation is to
develop an SDSS where the spatial data can be integrated during
the optimisation process.


2.5 Multi-objective optimisation techniques in
forest management


2.5.1 Basic concepts and terminology


The objective function of ecosystem management differs from previous man-
agement efforts in its complete enumeration of desired products. Ecosystem
management does not preclude market outputs such as timber production from
being one of the objective functions but ecosystem management does not allow
it to be the only objective (Mendelsohn, 1996).


Forest managers often invoke the goal of multiple use, but, as yet, no criterion
to measure the degree of multiple use has been agreed upon. It is hard to
say whether one management plan contains more multiple use than another,
and by how much (Davis et al., 2001). The forest management problem thus
can be stated as a multiple objective optimisation problem (MOOP) where the
multiple objectives have to be maximised or minimised and where a number of
constraints have to be met in order to obtain feasible solutions. Korhonen et al.
(1992) distinguishes between discrete and continuous multiple objective forest
optimisation problems: if the forest management problem is formulated as a
Model I type problem, the problem can be classified into the discrete category;
a Model II formulation refers to continuous problems.


Any MOOP where it is the aim to maximise the objective functions can be
written as in Eq. 2.7 (Deb, 2001):
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Maximise


fm(x) m = 1, 2, . . . ,M (2.7)
(2.8)


subject to


gj(x) ≥ 0 j = 1, 2, . . . , J (2.9)
hk(x) = 0 k = 1, 2, . . . ,K (2.10)


x
(L)
i ≤ xi ≤ x(U)


i i = 1, 2, . . . , N (2.11)


A solution vector to the optimisation problem, x, is a vector of n decision
variables: x = (x1, x2, . . . , xn)T . These decision variables are constrained by the
variable bounds, restricting each decision variable xi to take a value in between
a lower x(L)


i and an upper x(L)
i bound (Eq. 2.11). These bounds determine the


decision variable space D or in short the decision space. The above problem is
characterised by K equality constraints (Eq. 2.9) and J inequality constraints
(Eq. 2.10). Any solution meeting the constraints and variable bounds is called
a feasible solution. Within the decision space, it is possible to determine the
complete set S of feasible solutions for which it holds that S ⊆ D.


The main difference between single and multi-objective optimisation prob-
lems is that for multi-objective optimisation the objective functions constitute a
multi-dimensional space, in addition to the usual decision variable space. This
means that with multi-objective optimisation problems, an n-dimensional deci-
sion space is mapped onto an m-dimensional solution space. Fig. 2.5 illustrates
the mapping process between these two spaces.


As discussed in the previous sections the indication of preferences is very
difficult in the domain of forestry, even though this approach has been applied
many times. Afdeling Bos en Groen (2000) mentions that many a researcher has
tried to derive a total economic value but the results of this are still preliminary.
If this approach is abandoned, it is necessary to define a different way to judge
if one solution is better (or more preferable) than another without this prior
indication of preferences. In the case of multiple objectives, it is only possible
to state that one chromosome is better than another when it has at least the
same objective function scores for all objectives and a better score for at least
one objective.


Any two vectors u and v can be related in one of the following ways:


u = v ⇔ (∀i ∈ {1, 2, . . . , k})(ui = vi) (2.12)
u ≥ v ⇔ (∀i ∈ {1, 2, . . . , k})(ui ≥ vi) (2.13)
u > v ⇔ u ≥ v ∧ u 6= v (2.14)


Two decision variable vectors a and b with corresponding objective value vectors
f(a) and f(b) can have one of the following relationships for a multiple objective
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Figure 2.5: Representation of the decision space and the corresponding
objectives or solutions space


problem:


a � b (a dominates b) ⇔ f(a) > f(b) (2.15)
a � b (a weakly dominates b) ⇔ f(a) ≥ f(b) (2.16)
a ‖ b (a incomparable to b) ⇔ f(a) 6> f(b) ∧ f(b) 6> f(a) (2.17)


Using the concept of Pareto-dominance (Eq. 2.15), it is possible to arrange all
solutions in a partial order. In Fig. 2.6(a), the light grey region indicates the
solutions that are dominated by solution B and the dark grey region represents
the set of solutions that dominate B.
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(a) Dominance relationships (b) Pareto-optimal front


Figure 2.6: Fig. 2.6(a) For a solution B, the region indi-
cated in light grey denotes the set of solutions that are dom-
inated by B, the region in dark grey is the set of those solu-
tions that are dominating B. The solutions marked as ◦ (such
as A) are non-dominated solutions; the solutions marked as
• are dominated solutions. In Fig. 2.6(b) the Pareto-optimal
front for a maximisation problem is depicted. For any solu-
tion on this front there does not exist another solution that
can improve the value of one objective without lowering the
value of another objective.


A feasible decision variable vector a is said to be a non-dominated element of
a reference set A if there exists no other vector that dominates a. In Fig. 2.6(a)
A is a Pareto-optimal solution because there is no other solution that can im-
prove one of the objective values without lowering another objective value. The
corresponding objective value vectors of the non-dominated solutions form the
Pareto-front of the reference set A (Fig. 2.6(a)). The set of all non-dominated
solutions (i.e. when A is the set of all feasible solutions) is called the Pareto-
optimal set. The corresponding objective value vectors are then called the
Pareto-optimal front of the optimisation problem.


The aim of any optimiser is to approximate the Pareto-optimal front as well
as possible and to find solutions that are evenly spaced along the Pareto-optimal
front. The first goal is obligatory for any optimisation task: if the solutions
obtained after the optimisation process do not converge on the optimal solution
or do not approximate the Pareto-optimal front, the optimiser is not useful.
The second goal is specific for multiple objective problems. If a Pareto-optimal
front is to be obtained, it is necessary to find as many solutions as possible in
every region of the Pareto-optimal front. Only in that way, a clear view of the
explicit trade-offs between the objectives can be obtained.
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2.5.2 Mathematical techniques


2.5.2.1 Linear and integer programming


Linear programming has been widely accepted as a general and good optimiser
for forest management planning (Davis et al., 2001; Davis & Martell, 1993).
It has been used extensively since the 1970s. FORPLAN was one of the first
systems that was implemented by the United States Department of Agriculture
and was entirely based on linear programming. A general single objective linear
programming problem can be stated as in Eq. 2.18. In this formulation all m
constraints are linear combinations of the n decision variables (Kolman & Beck,
1995) :


Maximise


z = c1x1 + c2x2 + · · ·+ cnxn


subject to


a11x1 + a12x1 + · · ·+ a1nxn ≤ b1
a21x1 + a22x1 + · · ·+ a2nxn ≤ b2


... (2.18)
am1x1 + am2x1 + · · ·+ amnxn ≤ bm


xj ≥ 0 j = 1, 2, . . . , n


with xi decision variable i, ci the objective function coefficient associated with
decision variable i, aij the coefficient of decision variable i in constraint j and
bj the upper bound for constraint j. As can be seen in Eq. 2.18, it is very easy
to formulate the Model I or Model II formulation as a linear program. One
limitation of linear programming is that it requires continuous variables and
therefore it cannot be used for spatial objectives (Kurttila, 2001).


Integer programming or mixed-integer programming has been used to over-
come the lack of spatial integrity that was present in the linear programming
formulation. The problem definition remains the same as in Eq. 2.18 but extra
constraints limiting the decision variables to integers are added to the formu-
lation. The use of integer programs is therefore common when wildlife habitat
maximisation is one of the objectives (Hof & Joyce, 1993; Hof, Bevers, Joyce,
& Kent, 1994).


Both linear and integer programming approaches are essentially single ob-
jective optimisers. In order to deal with multiple objectives, it is necessary
to recast these multiple objectives into a single objective problem. Three basic
tools are employed to recast a multiple objective problem in forest management:
the weighted sum method, the constraint method and a stage approach.
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Weighted sum method The weighted sum method scalarises a set of ob-
jectives into a single objective one by multiplying each objective with a weight.
This requires the a priori articulation of the preferences (Hwang & Masud,
1979). If there are M objectives, the objective function (Eq. 2.18) becomes
Eq. 2.19:


Maximise


w1 × f1(x) + w2 × f2(x) + · · ·+ wM × fM (x)


subject to


a11x1 + a12x1 + · · ·+ a1nxn ≤ b1
a21x1 + a22x1 + · · ·+ a2nxn ≤ b2


... (2.19)
am1x1 + am2x1 + · · ·+ amnxn ≤ bm


xj ≥ 0 j = 1, 2, . . . , n


In the particular case of forest management, two problems arise with this
method. The main problem is the determination of the weights. They should
reflect the relative importance of one objective over another. Choosing weights
requires a consensus on the relative importance and this consensus can be hard
to obtain. The weighting method also requires that all the objectives are com-
mensurable. This is certainly not the case in forest management e.g. timber
volume and recreational benefit are not commensurable.


Two general characteristics of this method are (1) the setting of appropriate
weights is scale dependent and therefore all weights should be normalised before
assignment and (2) when the Pareto-optimal front is non-convex, it is impossible
to attain it using the weighting method (Mietinnen 1999 in Deb (2001)).


Constraint method The constraint method requires as much user interac-
tion as the weighted sum method. First of all, it needs some prior preference
articulation because one objective from the set of objectives has to be selected
as the main objective. The other objectives are then reformulated as extra
constraints. These other objectives acquire different boundary values and these
target values are determined by the user. The main advantage of this method
in comparison with the weighted sum method is that it can handle both convex
and non-convex problems. A disadvantage is that the solution of this optimisa-
tion problem is very sensitive to the target vector stated. If these bounds are
set too high (in the case of a maximisation problem) it is impossible to find a
feasible solution to the problem. Especially in large problems with many con-
straints finding the constraints that caused infeasibility is difficult (Buongiorno
& Gilles, 1987).
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A stage approach Another method is the stage approach. Here the problem
is solved in multiple stages by setting bounds for each objective consecutively.
Strange et al. (1999) for example used this approach to evaluate management
alternatives. Again this method is very sensitive to the chosen initial bounds
and to the order in which the objectives are added.


2.5.2.2 Goal programming


Goal programming was first introduced by Charnes (1955 in Deb (2001)) and
gained real popularity after the work by Ignizio (1976 in Deb (2001)). The main
idea in goal programming is that all of the management goals are expressed as
goal constraints. The objective function is then to minimise the deviation from
these goal constraints and becomes (Deb, 2001):


Goal
f(x) = t x ∈ S (2.20)


and the set of goals can be written as


f(x)− p+ n = t (2.21)


where p is the positive deviation from the target volume and n is the negative
deviation from the target volume t. The advantage of goal programming is
that the optimisation problem becomes less rigid. Because the deviations are
minimised, feasibility is guaranteed. The main disadvantage however is that it
is possible to obtain dominated solutions if the target values are set too low.
Especially in the case of forest management inferior solutions or solutions that
are not on the efficiency frontier are unacceptable (Davis et al., 2001).


2.6 Dealing with spatial data in the optimisa-
tion process


2.6.1 Integrating mathematical techniques and spatial data


It is difficult to provide spatial integrity using the linear programming method
for the Model I or Model II formulation. This spatial integrity can be provided
by turning a Model I formulation into an integer or a mixed-integer program with
each stand receiving only one treatment (Bevers & Hof, 1999; Hof et al., 1994),
but this leads to a very large integer formulation that is is usually unsolvable,
even with the current computing power. Yoshimoto and Brodie (1994), for
instance, noted that a spatial long-term planning problem with mixed-integer
or integer programming is difficult to handle. The primary difficulty with this
approach is that it requires the enumeration of all possible management regimes,
a task that is combinatorial in nature (Sherali & Liu, 1990). Hof and Joyce
(1992) report that the main problem for these non-linear formulations is not







2.6 Dealing with spatial data in the optimisation process 33


the computational effort, but rather the numeric precision. As the non-linear
models get larger, numeric imprecision causes the search algorithm to fail before
solution time becomes a problem.


Many authors have tried to reduce the number of constraints that arise when
implementing spatial features into the optimisation problems so that they could
still implement integer or mixed-integer approaches. The main focus has been
on the so-called adjacency constraint problem. In this problem, the forest har-
vesting activities have to be scheduled in such a way that two neighbouring
stands are not cut within a certain temporal window. This ensures that no
treated unit or collection of units will exceed a limit on the area cut usually im-
posed by the forest authorities (Murray, 1999) . In Flanders this is not specified
in the forest law (Vanhaeren, 2002) but in the long term vision (Afdeling Bos
en Groen, 2000) a maximum clear felled area of 1 ha is stated.


The simplest way to check for the adjacency constraints is by pairwise com-
parison. A list is made for every stand i and its neighbouring stands, the set
Ai. The adjacency constraint is then defined as:∑


j∈Ai


Yj ≤ 1 ∀i (2.22)


In Eq. 2.22, Yj denotes that management activity j is assigned to stand i
and consequently Eq. 2.22 ensures that only one stand can be cut in the group
of adjacent stands of i, i.e. Ai. Equations that enforce this are referred to as
Type 1 adjacency constraints (Jones et al., 1991). Type 1 constraints can only
be used for groups of three or four mutually adjacent polygons (Jones et al.,
1991).


If the set of mutually adjacent stands is larger, Type 2 adjacency constraints
(Jones et al., 1991) can be used. These Type 2 constraints combine multiple
sets of Type 1 constraints and reduce the number of adjacency constraints.


Most of the research to find methods to reduce the number of constraints
have built on these two types of constraint definitions. Murray and Church
(1995) investigated the effectiveness of the algorithms that reduce the number
of constraints. They found that the traditional pairwise approach for imposing
adjacency constraints, leads to a huge number of constraints but not necessarily
to the tightest formulation. Methods that use the fewest number of constraints
may produce poor structure and increase the computational difficulty of the
problem.


A different approach to handle non-linearity is based on the four-colour
theorem (Murray, 1999; Roise et al., 2000). This theorem says that any planar
map can be coloured in such as way that adjacent polygons in the map have
different colours, with just four colours. Roise et al. (2000) extended this to
avoid adjacent cuttings with an exclusion period r and found that adjacency
constraints can be met only for a planning horizon R if R/r ≥ 4. This method,
however, is only applicable for forests with less than 200 stands (Roise et al.,
2000).
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2.6.2 Heuristics


A totally different approach to integrate spatial objectives in the forest optimi-
sation problem is based on the use of heuristics. Heuristics are based on ‘rules of
thumb’ in order to speed up the optimisation problem. They can generate spa-
tially and temporally feasible solutions to large problems that were previously
unsolvable with mathematical techniques (Carlsson, 1999). In general heuristics
start off with a randomly initialised solution and will modify this solution within
a predefined neighbourhood around the former solution. They will investigate
only part of the solution space and have different mechanics to escape from local
maxima. A downside of heuristic algorithms often reported is that they do not
guarantee optimality. The three heuristic techniques that have been used exten-
sively in forest management are: Monte Carlo integer programming, tabu search
and simulated annealing. Genetic algorithms are also heuristic procedures but
have been not been used frequently.


2.6.2.1 Monte Carlo integer programming


A simple Monte Carlo search process is one where a solution is randomly gen-
erated to a mixed-integer programming problem. These solutions are tested for
feasibility and for each feasible solution, the objective function is calculated. If
the solution quality is better than for the previous solution, the new solution is
kept as the best solution. This process is repeated for a number of times. This
approach is in fact nothing but a steepest ascent (for a maximisation problem)
hill climbing method. The main weakness of this approach is that it cannot es-
cape from local optima. Clements et al. (1990) and Jamnick and Walters (1993)
used Monte Carlo simulation to solve the adjacency constraint problem but did
not compare it with classical techniques. Boston and Bettinger (1999) reported
that Monte Carlo integer programming is limited to planning problems with a
maximum of three planning periods.


2.6.2.2 Tabu search


Tabu search is a heuristic designed to escape from local optima: even if there
is no better solution than the current solution xn in its neighbourhood V (Xn)
then the new solution will be the best possible solution x in V (xn) or a sub-
neighbourhood V ′(xn) if V (xn) is too big to be explored efficiently (Pirlot,
1992). The main idea behind tabu search is simple. A memory forces the
search to explore new areas of the search space. In this memory, solutions that
have been examined are kept and these solutions become ‘tabu’ or forbidden
during a number of steps (Michalewicz & Fogel, 2002). Prohibiting a given
attribute is likely to be restrictive in excluding many more solutions than just
the visited one. To correct this, it is possible to overrule the tabu status of
a move when it leads to a solution that is good enough. When the memory
should be overruled is defined in a so-called aspiration level describing what ‘a
good’ solution is. Brumelle et al. (1998) used tabu search for finding good forest
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harvest schedules satisfying the adjacency constraints. Their objective was to
maximise the total volume cut, while maintaining even-flow and minimising
the deviations of the adjacency constraints. If a stand i is cut at time t and
the exclusion period between two successive felling activities is r then moves to
include the neighbouring stands for scheduling between t and t+r are put on the
tabu list. If for a stand there are no non-tabu neighbours, then that solution is
selected that violates the adjacency constraints the least. They compared their
results to a random search and found that their solutions were superior. Boston
and Bettinger (1999) found that tabu search is able to find solutions within
93.7% of the optimal values reached with integer programming. Moreover, it has
a very small range in objective value between the solutions obtained in different
repetitions, indicating the robustness of the method. It was also able to produce
the smallest deviations from target harvest levels for even-flow objectives.


2.6.2.3 Simulated annealing


This method is based on an analogy taken from metallurgy (Michalewicz &
Fogel, 2002). After metal has been heated to make it a fluid, it is cooled down
again to get the proper shape, say a metal sheet. During this cooling process, the
state of the molecules changes. If the temperature of the metal is lowered very
quickly, the crystal formation of the molecules is suboptimal and the metal may
have certain faults. If the cooling process is more gradually, the crystallisation
is almost perfect but the cooling process requires more energy or time. This
analogy can be used to solve optimisation problems. Starting off with a random
solution, this solution can be changed from its current state into a new state.
In the beginning of the ‘cooling process’ almost all moves from the current
solution are allowed, but as the process continues, the probability to accept
inferior solutions is lowered, so that the algorithm gets more and more selective.
This is analogous with the Boltzmann distribution in thermodynamics (Pirlot,
1992). Simulated annealing is the heuristic that has been applied the most
in forest management and it has been reported that this method obtained the
best results in terms of convergence to the global optimum (Boston & Bettinger,
1999). It can be proven that simulated annealing always converges on the global
optimum given enough time. Lockwood and Moore (1993) were among the first
to apply simulated annealing to a harvest scheduling problem with adjacency
constraints. They have tested simulated annealing on a test data set of 1648
and 27548 stands and could successfully find harvest schedules complying with
the spatial constraints. These problems are far larger than could be handled
by integer or mixed-integer programs. They used the basic inventory polygons
as input without recombination or reclassification. As they applied simulated
annealing to a real-world problem, the true optimum was unknown and likely
unattainable. Therefore they argue that the use of simulated annealing is at
best a tool for policy analysis. Tarp and Helles (1997) used a combination of
simulated annealing and linear programming to find an optimal model. They
solved the problem in four steps, from which they derived the name of the
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algorithm SALP:


1. S Solve the LP model;


2. A Solve the adjacency model with SA;


3. L Compare LP and adjacency model optima;


4. P Make trade-off between incremental cost and damage cost and determine
the final strategy.


They argue furthermore that the use of GIS could enhance the algorithm because
then the consequences could be evaluated directly on a map. They conclude that
the combination of SA and LP causes a significant improvement, partly because
it contributes to reducing economic losses arising from damage caused by the
adjacency problems and secondly that the non-linearity of the spatial objectives
is overcome through the use of simulated annealing. Ohman and Eriksson (1998)
used the concept of core area as a criterion for forming contiguous areas of old
forests in landscapes and applied simulated annealing to do so. Their objective
was in fact to find a maximum present value subject to core area for each
planning period. Van Deusen (1999) finally used simulated annealing to generate
multiple solutions by combining the different objectives into a weighted sum.
He let the weights vary in order obtain the multiple solutions. He continued
this work (Van Deusen, 2001) and combined the optimisation of the spatial
arrangement of the stands and the harvest schedules.


2.6.2.4 Genetic algorithms


Genetic algorithms have been rarely used in forest management. Davis et al.
(2001) mention only one paper by Pesonen et al. (1995). Lu and Erikkson
(2000) used genetic algorithms to form harvest units, but they conclude that
the results are still preliminary as they did not investigate the full options of ge-
netic algorithms. Moore et al. (2000) used GA to find management strategies for
wildlife objectives. They solved a single objective problem: maximise the bird
abundance at the end of a fixed planning horizon. They found that the genetic
algorithm frequently did not find the optimal value but the designs found by
the GA provided objective values that were consistent with their intuition about
how initial habitat stages would influence bird habitat over time. They felt that
the sub-optimal results were due to insufficient investigation into the optimal
settings of the genetic algorithm. Falçao and Borges (2001) also used evolution-
ary algorithms to solve integer forest management scheduling in Portugal. They
reported that the best solution came within 0.2% of the estimated heuristic op-
timum. Moreover they reported a small range in the objective value between
the repetitions suggesting robustness of the method. They indicated that fu-
ture research should focus on the incorporation of additional spatial data such
as adjacency, edge length and interior space, given that topological information
is available. Booty et al. (2001) also implemented genetic algorithms in their
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environmental decision support system (RAISON-DSS), reportedly because the
genetic algorithm is better at avoiding local minima than linear programming.
As genetic algorithms are the basis of this research they will be fully discussed
in Chapter 4.


2.6.2.5 Discussion


Heuristics have been used extensively to overcome the main drawback of math-
ematical techniques, namely the limitations as to the problem size. Several
authors have reported near-optimal solutions even though heuristics do not
guarantee that optimal solutions will be attained. The main problem with the
reported heuristic procedures is similar to that of mathematical techniques: they
are essentially single objective optimisers. Even with modern heuristic methods
it is necessary to reformulate the multiple objectives into a single objective and
this reduces the potential of the above heuristics.


2.6.3 Methods applied for real-world applications


Roise et al. (2000) conducted a large informal survey in which private forest
companies were asked what software they used for planning. They found that
the maximisation of net present value was still the most important objective,
but that some other companies used other and multiple objectives to coordinate
more closely with the larger integrated company strategy. Most of the companies
used linear programming in order to generate harvest plans. Very few companies
applied a form of heuristic search in order to find schedules.
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2.7 Summary and conclusion


In forest management literature, most models have focused on the
purely economic function of the forest. It is required by many for-
est laws to include other functions as well, and especially the spa-
tial objectives require a much more comprehensive approach. The
mathematical techniques that were developed for the economic
functions, are unable to handle these spatial objectives. Linear
programming has continuous variables, and these are not suitable
to ensure spatial integrity. Integer and mixed-integer program-
ming overcome this problem but the spatial requirements lead to
very large integer formulations which cannot be solved even with
today’s computing power. Heuristics have been proposed as a
means to handle these complicated optimisation problems, and
are indeed capable of solving them. They suffer, just as the math-
ematical techniques, of the fact that they are essentially single
objective optimisers. Until now, truly multi-objective optimisers
have not been used in forest management.
The integration of the optimisers together with a geographical
information system has been advocated for a long time as to in-
tegrate spatial data and models in the optimisation process. This
combination only exists when GIS is used for classification pur-
poses prior to the optimisation process or afterwards for visualis-
ing the proposed alternatives. The online combination of GIS and
optimisers in forest management has not been reported.







Chapter 3
Study area


In the subsequent chapters, theory will alternate with applications. All the ap-
plications and models were developed for the same study area: Kirkhill Forest
in Aberdeen, Scotland. Originally the aim was to develop a tool for generating
alternative forest plans for a Flemish forest. At the start of this research no
Flemish data was readily available, because the field work of the First Flemish
Forest Inventory (Afdeling Bos en Groen, 2001) was just finished and the data
was not yet ready for use. Instead a study site in Scotland was selected. Ab-
erdeen University uses this forest as a research forest and the students conduct
an inventory every year for their master’s project. This rough data set includes
not only field data but also yield class (Cameron, 2000). This can be used
as input to the Forestry Commission production forecast models (Hamilton &
Christie, 1971). Next to inventory data, the data set included also spatial infor-
mation such as contour lines. Kirkhill Forest is subject to comparable uses as
in Flemish forests, i.e. timber production, recreation and wildlife conservation.
It also has the same size as a the larger Flemish forests (such as Heverleebos)
and therefore seemed to provide an good alternative. Finally, as I studied at
Aberdeen University during a Socrates exchange programme (1998-1999), I was
familiar with Kirkhill forest.


General information Kirkhill Forest is situated in Scotland, U.K. It lies
between 2 ◦16’ and 2 ◦14’ W longitude and between 54 ◦11’ and 58 ◦13’ 30”
latitude (Fig. 3.1). The forest is located 12 km north west of the city of Ab-
erdeen and is dissected by the A96 Aberdeen-Inverness dual carriageway. It
was previously managed by the British Forestry Commission as a productive
coniferous forest but has changed ownership at the beginning of the 1990s. The
recreational use of Kirkhill Forest is very high given its proximity to Aberdeen.
Furthermore, it has a high landscape impact as it is predominantly surrounded
by agricultural land.
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Figure 3.1: Kirkhill forest, near Aberdeen in Scotland (Cameron,
2000)
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Topography and slope Kirkhill forest has a height between 80 and 250 m
above sea level (Fig. 3.2). The highest peak is in the northern part of the forest.
Mostly the terrain is gently undulating, with low to moderate slopes. Only near
the peak of the forest, some higher slopes are present. The topography was
derived from the contour lines provided by Cameron (2000).


Figure 3.2: Topography of Kirkhill forest
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Species distribution Kirkhill forest has an area of 454 ha and 395 stands.
The predominant species in Kirkhill forest are Sitka spruce (Picea sitchensis),
Scots pine (Pinus sylvestris), Larch (Larix spp.), Norway spruce (Picea abies)
and Douglas fir (Pseudotsuga menziesii). Other conifers found in Kirkhill are
Grand fir (Abies grandis), Noble fir (Abies nobilis) and Lodgepole pine (Pinus
contorta). There is a limited presence of broadleaves such as birch (Betula spp.),
European beech (Fagus sylvatica) and European oak (Quercus spp.). These
form occasionally mixed broad-leaved stands. Currently, 50 ha of the forest is
unplanted (Figs. 3.3 and 3.4).


Inventory data The area of the 299 planted stands amounts to 400 ha. The
total area and mean values of basal area, volume per ha and density are sum-
marised by species in Fig. 3.1.The site productivity varies considerably between
the species and the stands. The yield classes range between low values for Eu-
ropean larch (yield class 4 to 6) up to high to very high values for Sitka spruce
(yield class 10 to 22). The age distribution of Kirkhill Forest is highly unbal-
anced. During the 1950s the Forestry Commission restocked many stands, and
afterwards these stands were no longer managed. Therefore, there is a peak
in the age distribution of the forest: up to 160 stands are in the age category
between 50 and 60 years (Fig. 3.5).


Figure 3.4: Species distribution in Kirkhill forest (Cameron, 2000)
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Figure 3.3: Species map of Kirkhill forest based on the inventory by
Cameron (2000)
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Table 3.1: Area covered by species (ha), density (trees/ha), mean basal
area (m2/ha), and mean volume (m3/ha) in Kirkhill forest (Cameron,
2000)


Species Area
(ha)


Density
(trees/ha)


Mean basal area
(m2/ha)


Mean volume
(m3/ha)


European larch 9·162 214·887 19·456 186·601
Hybrid larch 10·274 1327·000 38·167 280·457
Japanese larch 63·248 561·566 27·798 276·631
Douglas fir 18·500 745·981 53·183 574·642
Norway spruce 19·318 528·025 26·145 273·827
Sitka spruce 144·382 751·721 40·614 424·156
Lodgepole pine 15·392 958·332 21·788 139·836
Scots pine 84·343 618·108 30·117 243·654
Mixed
broadleaves 16·662 − − −


Mixed conifers 18·596 942·875 32·083 285·376
Unplanted 50·163 − − −
Others 4·445 − − −


Figure 3.5: Age distribution of Kirkhill forest (Cameron, 2000). Note
the high number of stands within the age category of 50–60 years
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Recreation Kirkhill forest is much used for recreational purposes due to its
proximity near Aberdeen. Most visitors are hikers and mountain bikers. Both
hiking and cycling trails are available. The Tyrebagger sculpture trail leads
hikers along several sculptures in the forest. Horse riders can also enjoy in
Kirkhill forest and ride along one of the horse trails within the forest. Several
car parks are provided within the forest boundaries, and the Tyrebagger trail
starts at one of those points.


Wildlife Although there are few rare species of flora and fauna inside the
forest, the species found are considered to constitute an integral part of the forest
structure, and wildlife potential enhancement is therefore one of the objectives of
the owner. Bird species include crow (Corvus spp.), buzzard (Buteo buteo) and
woodcock (Scolopax rusticola). Red and grey squirrel (Sciurius vulgaris and S.
carolinensis) are both present in Kirkhill as are roe deer (Capreolus capreolus)
and badger (Meles meles). Two key species, woodcock and badger, will be used
in the case study. Woodcock is a bird species typically related to old growth
forest. Badger, a protected species, roams at the forest edge. They can survive
in forests with a high diversity in forest structure, but as Kirkhill forest was
previously used as production conifer forest, badgers have built their setts near
a forest edge so that they can forage in the agricultural fields surrounding the
forest while still having forest cover for protection.


In all case studies, woodcock will be considered as a species typi-
cally linked to old growth forest, whereas badgers will be consid-
ered as edge-dependent species.
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Simple genetic algorithms
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Chapter 4
Simple evolutionary algorithms for
single objective problems


4.1 History of evolutionary algorithms


During the last thirty years there has been a growing interest in the use of the
principles of heredity and evolution as a metaphor for a generic optimisation
tool in areas as diverse as engineering (civil, mechanical, electrical, control, · · · ),
industry (scheduling, planning and management) and to some lesser extent in
geography, chemistry, physics, medicine, ecology and computer science and en-
gineering (Coello et al., 2002).


The general class of optimisers based on this concept is referred to as evolu-
tionary algorithms (Michalewicz, 1999) and encompasses distinct groups of al-
gorithms. The three main groups are (Jacob, 1998; Michalewicz, 1999): genetic
algorithms (Mitchell, 1996; Goldberg, 1989; Holland, 1975), genetic program-
ming (Koza, 1993, 1994) and evolution strategies (Rechenberg, 1994 in Jacob
(1998)). All evolutionary algorithms are search and optimisation techniques
based on the principles of natural evolution and selection. The inventors of
evolutionary algorithms were amazed at the seemingly very complex structures
such as humans that can be created from an apparently simple coding strategy
in chromosomes.


The evolution of simple towards more complex systems has occurred due
to selective pressure from the environment. Species that are more successful
at avoiding death have the opportunity to produce more offspring than those
that die young. This offspring inherits some of the beneficial traits from the
parents, allowing it to survive even better under the environmental conditions.
On average, the survival fitness of a generation increases due to this selective
pressure. Furthermore, because of the recombination of the genetic material of
the parents, the offspring develops new traits that were not present in one of
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the parents. Mutation once in a while throws in a wild card. This wild card
is sometimes bad causing early death, but occasionally it creates a somewhat
different trait that allows an individual to be even more successful than would
have been the case after simple recombination of the parents’ genetic material.
In fact mutation increases the diversity in a population. As the environment
(the predators for example) is dynamic, there is a constant struggle of all species
to stay at the edge of the current ‘genetic’ technology. If that species does not
invent something new, it will get extinct some time or another.


Imitating this strategy, evolutionary algorithms were designed to solve op-
timisation problems. It was hypothesised that a general optimiser could be
developed based on the principles of selection, recombination and mutation. A
number of alternatives is proposed (either generated randomly or seeded with
previously known solutions) and these alternatives are evaluated for their per-
formance for the problem at hand. The solutions that are performing better
are selected as ‘promising’ and used to make new alternatives. Through the
recombination and mutation of bits and pieces of the promising alternatives, it
is expected that the best alternative is reached. The main steps in the evolu-
tionary algorithm are: initialisation, evaluation, selection and variation. These
steps are repeated until a stopping criterion is reached (Alg. 1).


Algorithm 1: The overall pseudocode for evolutionary algorithms


t← 0;
initialise population P (t);
initial evaluation P (t);
while stopping criteria not met do


t← t+ 1;
select P (t) from P (t− 1);
change P (t);
evaluate P (t);


end


The three variants of evolutionary algorithms differ in (1) the data structure
that they apply, and (2) the values on which several parameters of the algorithm
are fixed on during the optimisation process. Evolution strategies are based on a
variable-length vector of real values, genetic algorithms use a fixed-length vector
of a discrete alphabet with low cardinality and genetic programs employ tree
structures with a variable length.


For land-use planning (Matthews et al., 1999, 2000), the automatic formation
of harvest units based on tree attributes (Lu & Erikkson, 2000) and urban
planning (Feng & Lin, 1999) genetic algorithms were applied, because in those
cases the number of management units is known beforehand and the number of
treatments per unit is discrete. A fixed-length string is a logical data structure
for this type of optimisation problems.
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In Section 2.3.1.3 was already mentioned that a Model I approach
is the best model for forest management problems that include
spatial data. When this Model I approach is used, the forest
stands have a one decision variable for the entire duration of the
planning horizon. This ensures a fixed number of management
units and thus a fixed number of decision variables. As this num-
ber is known beforehand and it is fixed, a fixed-length string is
used in this dissertation and therefore genetic algorithms will be
the focal point


4.2 Fundamentals of genetic algorithms


4.2.1 Terminology


The vocabulary of genetic algorithms is heavily based upon biological terminol-
ogy. The basic data structure of a genetic algorithm is a fixed-length binary
encoded string and is referred to as a chromosome. This binary encoded string,
x = (x1, x2, . . . , xn) with n variables or genes, is mapped from its genotype
into its phenotype through the mapping function f . Each gene can have several
values or alleles. In the case of a single objective problem, the expression of
the genotype will result in one trait or objective value. This is mathematically
written as:


Rn → R : x→ g(x) (4.1)


For a multiple objective problem this results in a vector of objective values.
A set of individuals is called a population. After the creation of the initial


population, a binary crossover operator and a unary mutation operator are
applied with a certain probability after a biased selection of individuals that
are seemingly better than others. These selected individuals are put into the
mating pool before recombination. This process repeats itself until a predefined
stopping criterion is met. Each cycle is referred to as a generation. When the
best individuals of the previous generation are used in the next one, elitism is
applied.


4.2.2 Theoretical foundation


A genetic algorithm processes short promising pieces of different chromosomes.
They are promising because they increase the fitness of an individual more than
other pieces do. These short pieces can be represented by templates, so-called
schemata, over the chromosomes in the population. The order of a schema S is
the number of fixed genes in that schema. The defining length of a schema S is
the difference in position between the two utmost fixed positions in the string.
The promising schemata receive more trials of being in the next generation than
the schemata that are less promising. The assignment of the number of trials
is exponential and this is under a noisy fitness environment the best strategy
(Goldberg, 1989).
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A genetic algorithm combines instances of these templates through recom-
bination and the final sum of all pieces adds up to the global optimum. Since
the global optimal can be build up using these smaller parts, these pieces are
referred to as building blocks.


The fundamental theorem of genetic algorithms can be stated as the follow-
ing theorem (Theorem 1) (Holland, 1975; Goldberg, 1989; Michalewicz, 1999):


Theorem 1 (Fundamental Theorem of GA) Short, low-order, above-ave-
rage schemata receive exponentially increasingly trials in subsequent generations
of a genetic algorithm.


and the theoretical foundation of genetic algorithms is mostly based on the
following basic hypothesis of genetic algorithm (Hypothesis 1) (Holland, 1975;
Goldberg, 1989; Michalewicz, 1999).


Hypothesis 1 (Building block hypothesis) A genetic algorithm seeks near-
optimal performance through the juxtaposition of short, low-order, high-perfor-
mance schemata called the building blocks.


A lot of genetic algorithm theorists have tried to prove this building block
hypothesis, but for problems other than laboratory problems, most evidence
of this hypothesis has been purely empirical (Michalewicz, 1999).


The building block hypothesis states that only short and low order schemata
are processed and this has a direct consequence on the proper representation
of an optimisation problem: the encoding strategy that is used has to comply
with the basic assumption of genetic algorithm. Indeed, the encoding strategy
might even be critical for the success or failure of the optimisation process.


4.3 Setting up a simple genetic algorithm


As discussed before, recombination and mutation will explore the search space,
whereas selection will exploit the knowledge learned from the individuals. The
balance between exploration and exploitation is critical in order to achieve rea-
sonable behaviour for the genetic algorithms (Bäck, 1994; Grefenstette, 1997a;
Michalewicz, 1999). In the following sections a brief review of the possible
operators that are available for a genetic algorithm is presented.


4.3.1 Representation issues


Before a genetic algorithm can be run, the proper data structure has to be
chosen. Davis (1991) and Michalewicz (1999) stress that a good representation
is critical for the success or failure of the genetic algorithm. The success of
a data structure can be evaluated by the best objective value obtained after
running the genetic algorithm with the different data structures.


Matthews et al. (2000) investigated the effect of two different representations
for a land use planning problem. At first, they applied a fixed-length string
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referred to as the land block representation: each gene represents a land block
and the allele value is the land use type that will be allocated to that land
block. The second representation encodes target land use as percentages. The
priority for allocating these land uses is determined by the order in which they
appear in the genotype. This representation is called the percentage and priority
representation. When this last operator is translated into an actual allocation,
the land blocks are allocated ‘greedily’ starting from those that have the best
performance per unit. This allocation continues until either the target land use
percentage is exceeded or no land blocks remain to be allocated.


They found that there was no significant difference in solution quality for the
two representations. Hence for forest management problems the data structure
is simple. As the management units are fixed for the entire duration of the
planning period using a Model I approach, a fixed-length chromosome is suitable.


Next the question of the most suitable encoding must be addressed. Depend-
ing on which optimisation problem is solved, there is a choice between binary
encoding, gray encoding or integer encoding. Binary encoding is the most com-
monly known representation of integers on a base 2. This representation has the
disadvantage however that two consecutive integers might differ in more than
one bit place. The number of different bit positions between two consecutive
integers in the binary representation is referred to as the Hamming distance.
As the Hamming distance is larger than one on some occasions, discrepancies in
the search space may be present because two genotypes that differ in only one
bit place might be decoded into two phenotypes with two integer values that are
not consecutive (Goldberg, 1989). Gray codes are an adapted form of binary
encoding and ensure that the Hamming distance between two consecutive inte-
gers is always one. According to Goldberg (1989) the use of gray coding results
in a smoother optimisation process. Michalewicz (1999) (p. 98) presents some
conversion tools from binary to gray encodings. Davis (1991) and Michalewicz
(1999) advocate however that the representation should be as close as possible
to the problem domain and therefore integer encodings are a logical encoding
scheme as well. As an illustration the different encoding strategies for integers
in the interval [0, 7] are given in Table 4.1 .


4.3.2 The genetic operators


4.3.2.1 Selection operators


As seen in the basic evolutionary algorithm (Alg. 1) the first step in a genetic
algorithm is the selection procedure. Three main selection schemes are (1)
proportional selection, (2) selection strategies based on ranking procedures and
(3) tournament selection.


Proportional selection Fitness proportionate selection was originally pro-
posed by Holland (1975) and has been widely used in evolutionary computation
(Grefenstette, 1997a). Before the selection phase, a probability distribution is
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Table 4.1: Different encoding strategies: binary, gray and integer en-
coding for integer values in the interval [0, 7]. Note that for the gray
encoding the Hamming distance is always one


binary gray integer
000 000 0
001 001 1
010 011 2
011 010 3
100 110 4
101 111 5
110 101 6
111 100 7


created such that the probability of selecting an individual for reproduction is
proportional to the individual’s fitness. The sampling procedure is referred to
as the roulette wheel sampling algorithm, because one can think of the proba-
bility distribution as defining a roulette wheel on which each slice has a width
corresponding to the individual’s selection probability, and the sampling can
be imagined as spinning the roulette wheel and testing which slice ends up top
(Fig. 4.1).


Figure 4.1: Roulette
wheel sampling


Figure 4.2: Stochastic
universal sampling


The advantage of the fitness proportionate selection is that it is easy to
understand. Given the building block hypothesis and the schema theorem,
fitness proportionate selection is a natural selection strategy. A first drawback
of the roulette wheel sampling scheme is that the probability distribution is
sampled N times because the complete population is replaced. If the roulette
wheel is called N independent times, this may result in a high variance in
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the number of offspring assigned to each individual. Baker (1987) developed an
algorithm called stochastic universal sampling to reduce the variance. Stochastic
universal sampling also divides the roulette wheel into slices, but N equal spaced
pointers are used to determine which individuals will get selected (Fig. 4.2). The
roulette wheel is then spun to determine the selected individuals. Stochastic
universal sampling is more efficient than roulette wheel sampling because it
takes only a single pass to assign all the individuals.


The main problem associated with proportional selection is that it is scale
sensitive. In the beginning of the genetic algorithm, some individuals will have
a fitness that is a lot larger than the fitness of the second best individual. This
individual will take up a very large part of the roulette wheel, and will get se-
lected many times. The other individuals do not really stand a chance to be
represented in the mating pool. This can cause premature convergence towards
a local suboptimum. In the last generations, all individuals are more or less
equal in fitness. Each individual will receive an equal portion of the pie, and
the probability to become selected will be uniform. The search capacity of the
genetic algorithm will reduce and the search behaviour will become a random
walk. This can be overcome to some extent by using fitness scaling (Goldberg,
1989). Fitness scaling rescales the fitness values between the maximum and
minimum value, and modifies the probability distribution function. The disad-
vantage of this is that the probability distribution function is sensitive to the
scaling parameters and that choosing different scaling parameters influences the
selective behaviour of the operator even though the fitness of the solutions is
the same.


Rank-based selection As discussed in the previous section, the proportional
selection schemes are easily influenced by so-called super-individuals at the be-
ginning of the search process and are characterised by a weak search capacity at
the end of the optimisation process unless fitness scaling is applied. In order to
prevent these side-effects, rank-based selection procedures have been proposed.
Ranking simplifies the mapping from the objective function to the fitness func-
tion (Grefenstette, 1997b) and also eliminates the fitness scaling procedures,
since selection pressure is maintained even if the objective function values within
the population converge on a very narrow range. Grefenstette (1997b) states
that ranking may be a natural choice for problems in which it is difficult to state
an objective function, for example if the objective function involves some sub-
jective preference for alternative solutions. In that case, the exact value of the
objective function is not so important. Additionally, Michalewicz (1999) states
that rank-based selection operators control the selective pressure better than
proportional schemes, and focus the search process better. On the other hand,
these approaches have some apparent drawbacks (Michalewicz, 1999). Firstly,
it puts the responsibility to the user when to use these mechanisms. Secondly,
rank-based procedures ignore the information about the relative evaluations of
different chromosomes and thirdly, all cases are treated equally regardless of
the magnitude of the problem. Finally, selection procedures based on ranking
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violate the Schema Theorem (Michalewicz, 1999).


Tournament selection In tournament selection a group of q individuals is
chosen randomly from the population either with or without replacement. This
group of individuals takes part in a tournament, this means that the fitness val-
ues are compared between the q individuals and the best individual is selected.
This individual wins the tournament. Often tournaments are held between two
individuals, but this can be generalised to any arbitrary group size. The process
is repeated N times and this will lead to a high variance as was the case with
proportional selection. In comparison with the previous techniques, tournament
selection can be implemented efficiently and has a time complexity of O(N ) be-
cause no sorting of the population is required (Blickle, 1997). Furthermore,
tournament selection is invariant under rescaling.


4.3.2.2 Crossover operators


During the recombination phase, crossover is performed with a certain (fixed
or variable) crossover probability. For many genetic algorithm theorists and
practitioners crossover is the most important operator. These theorists and
practitioners believe that if crossover is deleted from the algorithm the result is
no longer a genetic algorithm because crossover distinguishes the optimisation
process of genetic algorithms from classical optimisers (Davis, 1991). The main
problem associated with the recombination operators is that the purely syntactic
operation on the chosen alphabet must produce semantically valid fitness values
(Booker et al., 1997; Falkenauer, 1998). If these semantically correct results
cannot be found with classical operators then it is up to the user to design
specialised operators. All these crossover operators should be consistent with the
Mendelian inheritance: the requirement that each gene carried by an offspring
is a copy of a gene inherited from one of its parents (Booker et al., 1997). In the
following paragraphs a brief overview of classical crossover operators is given.
This is by no means a detailed analysis of their performance. Further details
are provided by Booker et al. (1997).


One-point crossover One-point crossover was devised by Holland (1975).
Goldberg (1989) also favours this operator and the schema theorem is based on
this simple operator. It has three main steps. Firstly two parents are randomly
chosen from the mating pool. Secondly, a random point along the string is cho-
sen as a breakpoint. This delineates the parts of information to be exchanged.
Finally, the two parent chromosomes swap this information to produce two chil-
dren. One-point crossover has a very high positional bias: longer schemata will
become disrupted more easily than the shorter ones. On the other hand it does
not have a distribution bias, i.e. the cross site is chosen uniformly along the
string.
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Two-point and multi-point crossover The one-point crossover operator
has been extended by De Jong (in Spears (1998)) into the n-point or multi-
point crossover operator. In n-point crossover, n positions are randomly chosen
along the chromosome and the information between two consecutive points are
exchanged. According to De Jong two-point recombination is less likely to
disrupt long schemata than one-point crossover because it is a cyclic operator.
Therefore the longer schemata are preserved. There is no consensus about the
advantages and disadvantages of multi-point crossover for n ≥ 3.


Uniform crossover Syswerda (1989) introduced uniform or shuffle crossover.
Unlike the other operators it does not use split points but it takes a decision of
which parent to copy from based on a (fair or biased) flipped coin. He compared
the performance of this operator with one-point and two-point crossover and
found that while uniform crossover is more disruptive of schemata than one-
point or two-point crossover, it does not have a length bias. This means that
the defining length does not influence the probability of disruption. Moreover,
he showed that the more disruptive nature of uniform crossover is likely to
construct instances of higher order schemata. Spears (1998) extended this work
by providing a common framework upon which to compare all n-point crossover
operators and uniform recombination operators. Radcliffe ((1991) in Booker
et al. (1997)) points out that uniform crossover is the only crossover operator
that can generate all possible instances of offspring. Uniform crossover is the
most commonly applied recombination operator in applications (Booker et al.,
1997).


Discussion Spears (1998) analysed the effect of these operators on the re-
combination of building blocks. His conclusion is that the disruptive nature of
the n-point crossover is affected by both the defining length and the order of
the schemata, whereas uniform recombination is only affected by the order. All
forms of recombination are more disruptive if there are higher order schemata
and become less disruptive when the population converges.


4.3.2.3 Mutation


Although crossover is a very potent means to explore the search space, it does
have a negative side-effect. As it only swaps existing knowledge, it cannot
escape from suboptimal solutions after convergence. The only way to keep the
exploration phase going is by inserting diversity in the population. This can be
done by a mutation operator. Falkenauer (1998) calls the effect of the mutation
operator the smallest possible random modification of an individual. Many
authors use mutation with a low probability (Holland, 1975; Goldberg, 1989;
Falkenauer, 1998) but empirical and theoretical investigations demonstrated
the benefits of the role of mutation as a search operator (Bäck et al., 1997).
Spears (1998) found that high levels of mutation are the most disruptive and
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also achieve the lowest levels of construction. This means that by using high
levels of mutation the chance that new building blocks are found decreases.


4.3.2.4 Setting the parameters


Before the genetic algorithm can be run the user has to determine how to set the
various parameters. In general there are four variables that need to be set before
good results can be obtained: the population size, the crossover probability, the
mutation probability and the stopping criterion. The setting of these param-
eters is more of ‘an art than a science’ (Michalewicz, 1999) and for real-world
applications they are mostly sought through trial and error. There are however
some rules of thumb and theoretical models that have been worked out for small
problems such as the bit-counting or One Max problem. For this problem the
goal is to maximise the number of ones along the chromosome. Because of its
simplicity it has been used widely for testing purposes. A fifth but implicit
parameter that can largely influence the behaviour of a genetic algorithm is the
initial seed for the random population (Osyczka, 2002). Running any genetic
algorithm with a different random starting seed might produce very different
results and this should be kept in mind when making comparisons between algo-
rithms. For real-world applications this means that repetitions of experiments
are needed in order to remove the random effect.


Population size The population size has to be considered carefully. If the
population size is too small, the population will soon suffer from premature
convergence because the diversity in the population is too low. On the other
hand, if the size is too large the convergence towards the global optimum is
slow and the memory requirements to run the genetic algorithm increase a lot.
Lobo (2000) did some experiments with the One Max problem and a real-world
network expansion problem. For his real-world application, the aim was to ex-
pand an existing electricity network to newly built houses. In order to do so,
the company had the choice between building transformers and putting new
cables between the houses and either the new transformers or existing substa-
tions. It was also possible to connect several transformers before connecting
them to one of the existing substations. The total cost of the network expan-
sion is the sum of all the costs needed to build the transformers and the costs
of putting new cables. The overall goal of the electricity company is of course
to provide electricity to all houses with a minimum cost. For One Max and the
real-world application, he found that indeed an undersized or oversized popula-
tion influenced respectively the solution quality and the time to convergence a
lot.


Several authors (Harik et al., 1999; Pelikan et al., 2000a) have spent much
effort on trying to design a population sizing model and although their models
have been checked against some real-world problems, they are not really ap-
plicable for the practitioner (Lobo, 2000) because they require a lot statistical
data on the fitness values such as the order of the building blocks or the variance
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and means of the schemata. These parameters are not readily available for real-
world problems. Lobo suggested to use a parameter-less GA that determines
the population size through a rat race between several parallel populations with
a different population size but in reality most researchers still determine the
population size through trial and error.


Crossover and mutation probability Recombination and mutation is per-
formed with a certain fixed or variable probability. Again the setting of these
parameters is the subject of debate. Whereas the more classical genetic algo-
rithm theorists fervently advocate the use of a high crossover probability (in
the range [0.8, 1] (Goldberg, 1989; Holland, 1975)) and a low mutation prob-
ability (in the range [0, 0.01] (Goldberg, 1989; Holland, 1975)), recent work
has shown that the issue of the mutation probability has been underestimated.
Bäck et al. (1997) cites three important results on the mutation operator but
the main (practical) result is that the lower bound for the mutation probability
is pm = 1/l with l the length of the chromosome (Mühlenbein 1992 in Bäck
et al. (1997)). Fonseca (1995) provides a more mathematical background for
the mutation parameter. The probability that a chromosome with length l is
not modified by mutation is:


Ps = (1− pm)l (4.2)


where pm represents the bit mutation probability. If there is no crossover op-
erator the probability of survival Ps should be no less than the inverse of the
expected number of offspring, µ, of the best individual: Ps ≤ 1


µ . It follows that


pm ≤ 1− µ−1/l (4.3)


In the presence of crossover, the actual mutation probability should be some-
where below this limit. If the expected number of offspring is 2, pm = 0.7/l
was found to be a good parameter setting. Other authors suggest a variable
mutation probability, either over the generations (Fogarty 1989 in Bäck et al.
(1997)) or along the chromosome (Michalewicz, 1999). Lobo (2000) on the other
hand states that the performance of the genetic algorithm is not so much in-
fluenced by these operators than by the population size. According to him the
performance of a genetic algorithm is not very influenced by these setting. He
suggests that the combined effect of recombination and selection (ignoring the
effect of mutation) should result in a net growth factor of building blocks of 2.
This ensures that the schemata can mix given an adequate population size and
that the population will not converge prematurely.


Stopping criterion There are three main ways to stop the generational loop:


• allele convergence


• a predefined number of generations
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• when the optimum is reached


It is evident that for real-world problems only the second option is open. Wait-
ing for a full allele convergence can cost too much time, and it is very likely
that the optimal solution has already been in the population for a long time.
The third possibility is only possible for laboratory problems such as One Max
where the optimum is known beforehand. The problem with the predefined
number of generations is that again it needs user interaction. The combination
of population size and number of generations provide the total number of func-
tion evaluations. The population size has the largest effect: running a genetic
algorithm when the population has converged already does not make any sense.
In reality the number of generations is usually set according to the time one is
prepared to wait before a solution is achieved.
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4.4 Implications for forest management prob-
lems


Representation For all forest management problems, the data
structure that will be applied is a fixed-length chromosome given
its performance in similar domains such as land use and urban
planning. The encoding strategy should be tested, since there
are no comparative studies as yet. Therefore, for the relevant
problems integer, gray and binary encodings will be implemented
and compared.


Selection operator In general for all applications tournament
selection will be used as selection operator because (1) it is a fast
method, (2) it is fitness scale insensitive and (3) it does not require
any scaling or ranking.


Recombination operators and their parameters One-
point crossover and uniform mutation were selected because of
their ease of implementation and their theoretical foundation.
Uniform mutation will be applied and the mutation probability
is fixed for the entire duration of the search process. On all occa-
sions the crossover probability was in the range [0.8, 1] and muta-
tion probability was above the lower bound of 0.7/l provided in
literature.


Analysing the outcome All the experiments were repeated at
least ten times (Osyczka, 2002) and mean and median values were
used to compare the effect of the parameters or algorithms so that
the effect of the initial seed could be eliminated from the analysis.
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Chapter 5
Case study : solving a harvest
scheduling problem with single
objective genetic algorithms


5.1 Problem definition


The issue of harvesting scheduling was studied extensively in the past (Hoganson
& Rose, 1984; Hof & Joyce, 1992, 1993; Lockwood & Moore, 1993; Murray &
Church, 1995; Snyder & Revelle, 1997; Tarp & Helles, 1997; Borges & Hoganson,
1999; Snyder et al., 1999; Falçao & Borges, 2001). Forest managers need to
schedule management treatments over a planning horizon. The two objectives
that are mostly used in the harvest scheduling problems in literature are (1)
to maximise net present worth, and (2) to minimise the deviations between the
different cutting periods. Using a Model I harvest scheduling formulation this
can be written as (Johnson & Scheurman, 1977):


Maximise f =
N∑


i=1


M∑
j=1


cijxij (5.1)


Minimise g =
M∑


j=1


(
Vj − V


)
(5.2)


where N is the number of stands, M is the number of time periods, cij is
the present value obtained when applying the management treatment to stand
xi in period j. Vj is the total volume summed over all stands (m3) cut in
period j and V is the average volume over all cutting periods. Eq. 5.1 expresses
the management objective of maximising the net present value, while Eq. 5.2
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expresses the objective of minimising deviations in timber volume between the
different cutting periods.


5.2 Research rationale


For N cutting periods and k management activities, the harvest schedul-
ing problem has Nk possible combinations. Constraining the problem
to an integer program, requires N ∗ k decision variables. This increases
the number of decision variables to such an extent that it can only be
solved using heuristics. Therefore genetic algorithms will be used.
Because the problem can only be solved using heuristics the global opti-
mum for the bi-objective problem is unknown. The global optimum for
this problem under no even-flow assumptions on the other hand can be
derived. In that case, all felling activities are postponed to the end of the
planning horizon and the maximum present value that can be obtained
under that scenario amounts to e 914232. This value can be used as a
benchmark to compare the solutions found with the genetic algorithm.
Because the encoding strategy might influence the results from the ge-
netic algorithm, the effect of three encoding strategies will also be inves-
tigated.


5.3 Material and methods


5.3.1 Input data


For each of the stands the yield class is known. This was used as input for the
production tables from the Forestry Commission (Hamilton & Christie, 1971),
and from these forecast tables the cumulative volume from thinning and felling
activities can be derived. To simplify the problem, it was assumed that all
timber, both from thinning and felling, was sold at the felling date even though
this is not very realistic. Prices were real prices per diameter class published in
2000 (Anonymous, 2000) (Appendix A). The diameter class at each period was
derived from Hamilton and Christie (1971). The discount rate was 3% and the
present value was calculated as in Eq. 2.6 (p. 23).


The difficult task of assigning values to weights can be simplified by working
with relative weights. If one is indifferent to either of the objectives, then the
objectives should be rescaled between 0 and 1 in order to remove differences
of scale magnitude (Buongiorno & Gilles, 1987). However, this might lead to
numeric imprecision and therefore the weights are usually multiplied by a fixed
factor. As the present value is in magnitude 100 times larger than the harvest
volumes, the present value was divided by 100. The objective function can thus
be written using the notations from Eq. 5.1 and Eq. 5.2 as in Eq. 5.3:
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Maximise


f =


∑N
i=1


∑M
j=1 cij


100
+ w ·


M∑
j=1


(
Vj − V


)
(5.3)


with w the weight for the second objective.


5.3.2 Implementation


A genetic algorithm with binary tournament selection, one-point crossover with
a probability of 0.8 and uniform mutation with a probability of 0.01 (> 1/l)
was implemented in Java (Appendix B). The population size was 100 and the
number of generations was set to 50. No fitness scaling was implemented as
binary tournament selection is insensitive to the fitness differences. Because ge-
netic algorithms can lose good solutions during the optimisation process, elitism
was applied. In this particular case of elitism, the parent population and the
child population were merged and sorted according to their fitness values. The
best N individuals were used to continue the search process. Binary, gray and
integer encodings were initially tested with equal weights. For the binary and
gray codes, 3 bits for each harvesting period were used as there are 8 periods in
total over the complete planning horizon. This was repeated 10 times (Osyczka,
2002).


After selection of the representation that led to the best solution, the weights
were varied. The weight w was initially linearly distributed on the half-open
interval ]0, 1] in steps of 0.2. If the weight 0 is included in the interval then the
optimisation problem is unbounded and all felling activities will be planned at
the end of the planning horizon (period 8). Two additional weights (0.01, 0.05)
were evaluated in a later phase to get more information on the Pareto-front
between the two objectives. For each weight the genetic algorithm was repeated
10 times.


5.4 Results and discussion


Encoding strategy Initially, the influence of the encoding strategy on the
solution quality was tested. In Table 5.1 the mean objective function, mean
values for present value and mean sum of deviation in volume for binary, gray
and integer coding are presented.
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Table 5.1: Influence of binary, gray and integer coding on the per-
formance of the genetic algorithm. The experiment was repeated 10
times for each encoding. OV is the combined objective value, PV is the
present value, Vi the total volume summed over all stands cut in period
i and V is the average volume over all cutting periods


Encoding type mean OV mean PV
(*e 100)


∑n
i=1 Vi − V


(m3)
binary 2265·50 3308 1043·10
gray 2684·50 3534 850


integer 2573·50 3326·68 753·58


The significance of the differences between the mean objective values is tested
using a One Way ANOVA, which has as null hypothesis H0: the means of k
samples are equal. One Way ANOVA assumes that the samples are indepen-
dent, are drawn from a normally distributed population and that the variances
between the samples are equal. The assumption of normality was tested using
the Shapiro-Wilk test which has proven to be a better test than the classical
Kolmogorov-Smirnov test (Zar, 1999). The null hypothesis for the Shapiro-
Wilk test is H0: the sample is drawn from a normally distributed population.
QQ-plots, depicting the deviation of the sample distribution from a normal dis-
tribution, were inspected visually. Equal variances were analysed graphically
with boxplots as well as statistically using Levene’s test for homogeneity of
variances (H0: variances are equal).
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(a) The QQ-plot for integer encoding (b) The QQ-plot for binary encoding


(c) The QQ-plot for gray (d) Boxplot for the three encodings


Figure 5.1: QQ-plots and boxplot for the integer, binary and gray en-
coding strategies for a harvest scheduling problem. The effect of the
encodings on the weighted objective value is tested. There are 10 repe-
titions
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From Figs. 5.1(a) to 5.1(c), it can be concluded that the data is close to normal
distribution. This is only confirmed by the Shapiro-Wilk test statistic for the
integer and binary codes and not for the gray codes. The test statistics for the
samples are:


• pint = 0.535 > 0.05⇔ H0 is accepted;


• pbin = 0.602 > 0.05⇔ H0 is accepted;


• pgray = 0.026 < 0.05⇔ H0 is not accepted.


The boxplot (Fig. 5.1(d)) indicates that the variances of the groups are equal.
The test statistic of Levene’s test backs this up: p = 0.133 > 0.05 ⇔ H0


is accepted. As the data is not normally distributed, a One Way ANOVA
procedure cannot be applied. The most common alternative to the One Way
ANOVA statistics, is the Kruskal-Wallis test. This procedure is based on ranking
the results from all samples in ascending order and then calculating the mean
rank for each of the factors. The power of this test is lower than that from an
ANOVA test, because the type II error, where the H0 hypothesis is not rejected
when in fact it is false, increases (Zar, 1999). It is thus possible that the null
hypothesis is accepted, while there are significant differences between the two
factors under consideration. On the other hand, if the null hypothesis is rejected
then it is most certain that there are differences due to the factors present.


Table 5.1 shows that gray codes results in a higher objective value than
integer and binary codes. The Kruskal-Wallis test statistic (p = 0.263 > 0.05)
shows that there is no significant difference between the three groups.


As there is no difference, the integer codes will be used in the
following case studies because they are the most natural represen-
tation for the problem and this is recommended by Davis (1991).


Changing the weight In Table 5.2 and Fig. 5.2 the mean values per weight
combination for integer encoding are presented. A first observation is that
linearly distributing the weights on a small interval does not result to evenly
spaced solutions along the Pareto-front. This has some implications: if a forest
manager decides to investigate only weights in the interval ]0, 1] in steps of 0.2,
a considerable amount of information on the shape of the Pareto-front will be
lost. Changing the weight from w = 0.2 to w = 0.05 and then to w = 0.01,
changes the slope of the Pareto-front substantially. Beyond w = 0.2 a small
increase in present value results in a large increase in the sum of all deviations
and a large increase of the present value. The effect of the even-flow objective
is small even when the present value is deemed 5 times more important than
even-flow, but this drastically changes once the present value is considered 100
times more important than even-flow. The present value obtained with a weight
of 0.01 amounts to e 666811, which is 72.9 % of the maximum value that can
be obtained if there are no even-flow assumptions.
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Table 5.2: Results for the different weight combinations. The experi-
ment was repeated 10 times. PV is the present value, Vi the volume cut
in period i and V is the average volume over all cutting periods


mean OV mean PV
(*e 100)


∑n
i=1 Vi − V (m3)


1 2573.0 3326.58 753.58
0.8 2744.6 3396.14 814.43
0.6 3151.3 3659.14 846.40
0.4 3435.8 3752.19 790.98
0.2 4042.7 4211.20 1084.93
0.05 5482.1 5508.46 2636.38
0.01 6469.8 6668.11 19830.60


Figure 5.2: Results for the different weight combinations. The experi-
ment was repeated 10 times. On the x-axis the present value (*e 100),
and on the y-axis


∑n
i=1(Vi − V )
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Validity In Fig. 5.3 the volumes per cutting period are presented for all the
weights. From Fig. 5.3(a) to Fig. 5.3(c) the even-flow constraint is strengthened.
If this constraint is strengthened then the average volume obtained over all
periods declines when increasing w from 0.01 to 0.2. For a weight w = 0.01 the
volume harvested per year amounts to 6.70 m3/ha/yr. For equal weights this is
only 6.30 m3/ha/yr. To illustrate that Kirkhill Forest is similar for production
as the Flemish forest: there the average over all forests per year is 4 m3/ha/yr.
The other weights produce similar average volumes. Even-flow constraints do
not only have an effect on the present value but also have a negative side-effect
on the average volume over all periods.


(a) w = 0.01 (b) w = 0.05


(c) w = 1 (d) Effect of w on V


Figure 5.3: The influence of weight w on the variation in
volume between the different cutting periods. From 5.3(a) to
5.3(c), the even-flow constraint is strengthened. In (d) the
effect of the weights on the average volume V is shown


The felling age of the forest stands (Fig. 5.4) after equal weights indicates
that the rotation age should be increased in order to obtain a normal age dis-
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tribution. Up to 1/3 of the stands have a felling age over 80 years (Fig. 5.4).
From Fig. 5.4, it also follows that some stands are cut very young in order to
obtain an even-flow of timber volume.


Figure 5.4: Felling age of the forest stands


The age distribution of the forest is affected by the harvesting plan. Looking
at the effect of the plan where the two objectives were equally important, the age
distribution of the forest almost resembles an age distribution of a normal forest
(Fig. 5.5). This is caused implicitly by the even-flow objective. This is based
on a volume control and the age distribution is implicitly adjusted to a normal
state. This is confirmed in Fig. 5.6: if the even-flow objective is relaxed, the
state of the forest reduces to a normal forest but to a lesser extent. Running the
genetic algorithm for another planning horizon stabilises the age distribution,
if the objectives are equally important, even more (Fig. 5.7). Starting from the
age distribution with equal weights in the first planning horizon and running
it again for a second planning horizon with a weight of 0.01 affects the age
distribution a little: it becomes less stable (Fig. 5.8).
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Figure 5.5: Age distribution of the forest before and after the harvest
scheduling plan with two equally important objectives


Figure 5.6: Age distribution of the forest before and after the harvest
scheduling plan with the present value objective 100 times more impor-
tant than the even-flow objective
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Figure 5.7: Age distribution of the forest before and after the harvest
scheduling plan after a second planning horizon with two equally impor-
tant objectives


Figure 5.8: Age distribution of the forest before and after the harvest
scheduling plan after a second planning horizon with the present value
100 times more important than the even-flow objective
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5.5 Conclusion


Genetic algorithms are capable of solving a harvest scheduling problem.
The encoding strategy did not affect the quality of the solutions; there
was no significant difference between the different codes. As there is no
difference, integer codes were used for the other experiments, since this
is the most natural representation for the decision variables and this is
generally recommended.
In order to find the Pareto-front, the weights were initially linearly dis-
tributed on the interval ]0, 1]. It was found that this did not lead to
evenly spaced solutions along the Pareto-front. In order to gain more in-
formation, two additional weights were chosen: w = 0.01 and w = 0.05.
When the present value was 100 times more important the slope of the
Pareto-front changed a lot. This implies that a user without prior knowl-
edge on the problem, investigating the effect of the weights on the two
objectives might loose a lot of information on the Pareto-front if these
weights are linearly distributed on a small interval.
Both the age distribution and the average volume are affected by the
even-flow objective. Running the genetic algorithm in order to maximise
the present value and minimise the deviations between the periods, pro-
duces harvesting plans enforcing a balanced age distribution. Relaxing
the even-flow objective has an effect on the age distribution, but then
some variations in frequency between the different age classes are still
present. The present value obtained with a relaxed even-flow constraints
amounts to 72.9 % of the total maximum attainable present value. The
even-flow objective also influences the harvested volume: this declines
as the even-flow objective becomes more important.
A practical drawback using weights is that it is very cumbersome. Re-
running the genetic algorithm or any single objective optimiser for sev-
eral weight combinations is a tedious job and requires large amounts of
computing time.
In Chapter 9, a multiple objective genetic algorithm will be applied
in order to optimise the two objectives simultaneously. If a multiple
objective genetic algorithm is applied, no weights have to be set as the
combination of these weights are evaluated implicitly. Consequently,
a single run of the multiple objective genetic algorithm produces the
Pareto-front.







Chapter 6
Case study: maximising the
abundance of badgers using GAs


6.1 Problem definition


In Kirkhill forest, badger (Meles meles) is present. Badger is protected in Great
Britain and is considered as edge-dependent species (Neal & Cheeseman, 1996).
This means that the abundance is both influenced by the forest cover and the
presence of nearby agricultural fields and by open areas in the forest where it
can forage. Imagine in the simplest case that the abundance of badger is linearly
related to the perimeter between the forest and the open areas and a simulated
forest consisting of nine forest management units as in Hof and Joyce (1992).
Each block has a size of 3-by-3 km. The goal is to maximise the abundance
of edge-dependent species. As the relationship between the perimeter and the
edge-dependent species is assumed to be linear, this is equivalent to maximising
the perimeter between the clear felled and old growth blocks. Hof and Joyce
(1992) formulated the optimisation problem as follows :


75
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Maximise E subject to


N =
∑


i


∑
j


Cij


D = (N · 12)− 3[C11 · (C12 + C21)
+C12 · (C11 + C13 + C22)
+C13 · (C12 + C23)
+C21 · (C11 + C22 + C31)
+C22 · (C12 + C23 + C32 + C21)
+C23 · (C13 + C22 + C22 + C33)
+C31 · (C21 + C32)
+C32 · (C31 + C22 + C33)
+C33 · (C32 + C23)]


E = 1.261573 ·D


where N is the number of cells left in old growth, Cij is the man-
agement activity assigned to the stand on row i and column j and
D is the amount of edges between old growth and harvested areas.


The amount of edge D is calculated as follows: the edge from each Cij that
equals one, i.e. old growth, is 12 if all adjacent Cij are zero, i.e. clear felled.
For each adjacent cell Cij that is not zero the edge is overestimated twice by
3 km. The constraint thus starts with the maximum individual edge N · 12 and
deducts the overestimates for the cells. The optimal objective function value
is 60 and occurs when a checker board pattern of clear felled and old growth
blocks is present (Fig. 6.1).


1 0 1
0 1 0
1 0 1


Figure 6.1: The optimal solution is a checkerboard pattern. The blocks
that remain standing have value 1, the cut blocks have value 0.
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6.2 Research rationale


In this case study, models for spatial allocation in geographic information
systems are not yet integrated with the genetic algorithm. Because in
literature no benchmark problems exist where GIS and GA or any other
optimiser are combined during the optimisation process, a more basic
spatial problem is solved with genetic algorithms but without GIS as to
have a common bed of comparison with problems described in literature.
In later case studies, GIS functionality will however be combined with
the flexibility of GA optimisation.


6.3 Material and methods


In order to test the effectiveness of the genetic algorithm a series of experiments
was performed. In each of the experiments a fixed-length binary string was
used with length l = 9, each block being represented as a bit. As only two
management activities were allowed (clear fell and do-nothing) a fixed-length
data structure with binary encoding was sufficient. A simple genetic algorithm
with a crossover probability of 0.9 and mutation probability of 0.1 ≈ 1/l was
implemented. As the search space for the problem has only 512 solutions, for
a population size of 30 all possible combinations can be generated after 18
generations. Therefore the maximum number of generations was fixed on 20.
The optimisation process was repeated until the best solution was found or until
there was a time out, which occurred when the maximum number of generations
was reached. This experiment was repeated 1000 times for every population
size. The population size was varied. Initially a large population was used, and
gradually this was lowered in the experiments until the percentage of repetitions
that reached the optimal solution was insufficient (< 80%). This could indicate
the minimal population size needed to solve the problem.


6.4 Results


For a population size of 30, the optimal value is only obtained in 90.5% of
the cases before the maximum number of generations is reached (Table 6.1).
The mean number of fitness evaluations is 245, which is after approximately 8
generations. The population size could be lowered to a size of 24 and still the
optimum is found in 84.6 % of the cases. Lowering the population size even
more does not yield satisfactory results. Even though the genetic algorithm
does not find the global optimum for such a seemingly simple problem always,
the results were not considered too bad as no attention was paid to the setting
of the parameters of crossover probability or mutation probability at this stage
of the research.
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Table 6.1: Percentage of repetitions where the optimal value was ob-
tained before maximum number of generations was reached for forest
with a 3-by-3 grid layout for an edge-dependent maximisation formula-
tion


P Optimum (%)
30 90.5
24 84.6
18 75.7


Reformulating the problem as an adjacency problem eases the optimisation
process. If for the simulated forest the objective function is to prevent adjacent
cuts, then the optimal solution is reached in 99.5% of the cases after on average
155 function evaluations (Table 6.2). This means that the global optimum is
found within the fifth generation. It is possible to reduce the population size to
12 and still obtain the global solution in 82.5% of the cases before time out. If
the population size is decreased even more, the global solution is reached in less
than 80%.


Table 6.2: Percentage of repetitions where a global optimum is ob-
tained before maximum number of generations was reached for forest
with a 3-by-3 grid layout for an adjacency formulation


P Optimum (%)
30 99.5
24 97.4
18 92.3
12 82.5


The adjacency formulation was applied to a larger grid of 9-by-9 blocks,
leading to a search space of 281 ≈ 2 · 1024 . The crossover probability was set to
0.9 and the mutation probability 0.01. The experiment was repeated 20 times
for a population size of 80 and for a population size of 200. As the initial seed
influences the result (Osyczka, 2002) the mean evolution over the repetitions is
used for comparison.


In Fig. 6.2 this mean evolution over the 50 generations is depicted. The
number of non-adjacent stands that is reached on average for a population
size of 80 is 74. Increasing the population to 200 slightly improves the average
number of correct stands up to 76 (Fig. 6.3). This means that over the complete
solution 2 adjacent stands do not have a correct management activity assigned
to them.
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Figure 6.2: Evolution of the fitness value for a forest with a 9-by-9
grid layout for an adjacency formulation. The population size is 80 and
number of generations is 50


Figure 6.3: Evolution of the fitness value for a forest with a 9-by-9
grid layout for an adjacency formulation. The population size is 200
and number of generations is 50
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As the population had not converged, the number of generations was increased
up to 150. This yielded the evolution as in Fig. 6.4. The same best value was
obtained and once more no convergence occured. The best and mean fitness
values do level off on a plateau and do not change anymore beyond the 55th


generation.


Figure 6.4: Evolution of the fitness value for a forest with a 9-by-9
grid layout for an adjacency formulation. The population size is 200
and number of generations is 150


An explanation as to why the adjacency problem is more readily solved than
the perimeter problem is the following. In the adjacency problem the following
cutting patterns are equivalent to each other:


0 1 0
1 0 1
0 1 0


1 0 1
0 1 0
1 0 1


For the edge formulation however, the first structure is a local optimal solution
(perimeter= 48). This local optimal pattern is the solution that is found after
time out. If the population converges towards this local optimum, it is very
difficult to step from that solution to the global optimum as it requires all the
bits to be switched. This problem was also reported by Hof and Joyce (1993).
They mention that the fitness surface is not convex and that local optima are
present. The complete fitness surface is presented in Fig. 6.5.
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Figure 6.5: Fitness surface for the different combinations, on the x-
axis the number of blocks that are not clear felled, on the y-axis the
edge between old growth and cut blocks


A possible solution to overcome this problem is to ensure diversity in the pop-
ulation with diversity-stimulating measures. These will be explained in Chap-
ter 7. Another possibility is through the use of techniques that try to process
schemata as a whole which will be handled in Chapters 11 and 12.


The technique described by Hof and Joyce (1992) guarantees optimality but
is not extendable towards larger problems. In the case of a genetic algorithm
however, the relationship between the cutting blocks and the perimeter can be
determined through the use of a geographic information system and therefore it
is expected that even larger problems can be solved using GA. An application
based on this approach will be presented in Chapter 10.
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6.5 Conclusion


A simple genetic algorithm is not capable of finding the global optimum
for an edge-maximisation problem in all cases: only in 90.5% of the rep-
etitions for a population size of 30 the global optimum is attained before
600 solutions are evaluated. Reformulating the problem as an adjacency
problem leads to better results: for a population size of 30 the optimum
is reached in 99.5% of the cases. The difference in performance of the
genetic algorithm is due to the existence of local optima for the edge
maximisation problem. A possible method to overcome this problem is
through the use of genetic algorithms that search for good schemata and
process these as a whole. This subject will be treated in Chapter 11.
The genetic algorithms have an advantage over the classical non-linear
technique. The equations for the edge formulation cannot be extended to
larger problems. The genetic algorithm offers the advantage that it can
be integrated with a GIS because the genetic algorithm requires only the
fitness value. Inside the GIS, the edge length can be determined and the
result can be fed back to the genetic algorithm. An example of such an
application will be given in the Chapter 10 on multiple objective genetic
algorithms.







Chapter 7
Extending the simple genetic
algorithm to multiple objectives


One of the objectives in this dissertation is to implement an optimiser that
facilitates simultaneous optimisation of multiple objectives without having to
combine the objectives into a single objective function.


In order to use genetic algorithms for multiple objectives two major modi-
fications are necessary. A first problem arising from multiple objectives is the
assignment of fitness values and the selection of individuals. As multiple objec-
tives are defined, the selection criterion can no longer be based on the raw fitness
values of the objectives. New selection criteria will be discussed in Section 7.1.


Another feature of single objective genetic algorithms is that the population
usually converges on a single solution. For multiple objectives this is unwanted
because the aim is to to find a set of evenly spaced Pareto-optimal solutions. To
counter this convergence, techniques have been proposed to enforce population
diversity and they will briefly described in Section 7.2.


7.1 Fitness assignment in a multiple objective
environment


In a multiple objective environment, one individual will have two or more ob-
jective values, one for each objective function. Because there is an objective
value vector, the criterion for the selection operator must be redefined. Even
with multiple objective evolutionary algorithms, the selection criterion has to
be based on a single fitness value. This value must be derived from the objec-
tive values and any monotonic transformation is sufficient as long as one ensures
that the individuals are at least as fit as the solutions they dominate (Fonseca &
Fleming, 1997). There are many ways to define this monotonic transformation
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and these can be categorised into three main categories (Fonseca & Fleming,
1995):


• plain aggregation procedures;


• non-Pareto-based approaches;


• Pareto-based approaches.


The first category will not be discussed in detail because this is the approach
that has been used commonly for all classical multiple objective optimisers. The
other groups are briefly described in the following sections.


7.1.1 Non-Pareto-based approaches


In the first generation of multiple objective evolutionary algorithms non-Pareto-
based approaches were used. The first real multiple objective approach was
made by Schaffer (1985) (in Fonseca and Fleming (1995)). His Vector Evaluated
Genetic Algorithm (VEGA) splits the population into several subpopulations
and each subpopulation was used to evaluate one of the objective functions. The
selection phase took place on the subpopulations but the reproduction phase was
performed on the complete population. One of the main drawbacks was that
this approach biases the search towards more extreme solutions, because the
selection was biased towards the individuals performing well in one or the other
objective direction but tends to ignore the compromise solutions (Fonseca &
Fleming, 1995; Goldberg, 1989). This is referred to as speciation.


7.1.2 Pareto-based approaches


Pareto-based fitness assignment was initially proposed by Goldberg (1989) and
has been very popular in the domain of multiple objective evolutionary algo-
rithms (Van Veldhuizen & Lamont, 2000): in the category of a posteriori tech-
niques twice as many Pareto-based selection approaches exist than the sum of
non-Pareto-based and aggregating approaches. The Pareto-based approaches
are founded on the notion that solutions on the same level of domination should
receive equal fitness values. According to a survey by Van Veldhuizen and Lam-
ont (2000), the two mainstream Pareto-based approaches are a scheme proposed
by Goldberg (1989) and by Fonseca and Fleming (1993).


Goldberg (1989) proposed iterative fitness assignment: initially all the non-
dominated solutions are identified in the population and these solutions are
assigned rank 1. Then this set of solutions is removed from the population and
the next set of non-dominated solutions is assigned rank 2. This continues until
all solutions have been assigned their rank. This procedure was used in Srinivas
and Deb (1994) and Deb et al. (2000) in the design of the Non-Dominated Sort-
ing Algorithm (Srinivas & Deb, 1994) and Non-Dominated Sorting Algorithm
II (Deb et al., 2000).
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Fonseca and Fleming (1993) use a different approach: each individual re-
ceives a Pareto-rank corresponding to the number of individuals that dominated
this individual. This ensures that all non-dominated solutions are assigned the
same ranking. Dominated solutions are penalised according to the density of
solutions along the Pareto-front.


7.1.3 Discussion


Van Veldhuizen and Lamont (2000) list some recommendations for the design
of multiple objective evolutionary algorithms. In general they recommend algo-
rithms that incorporate Pareto-based approaches because they seek the Pareto-
optimal front explicitly. Given these recommendations the Non-Dominated
Sorting ranking procedure is applied. Essentially there should no difference
between the two ranking procedures other than implementation details (Fon-
seca & Fleming, 1997), because in both approaches individuals at the same level
of domination receive the same ranking and the order between the solutions is
respected between the two approaches.


7.2 Niche formation methods


7.3 Introduction


Both the previous Pareto-ranking procedures ensure that all individuals at the
same level of dominance receive the same fitness value, but this does not ensure
that the solutions will be evenly distributed along the Pareto-front. Due to
finite population size, genetic algorithms tend to drift towards a single (sub)-
optimal solution even when the problem is multi-modal. This phenomenon is
referred to as genetic drift. As it is the aim of multiple objective evolutionary
algorithms to approximate the Pareto-optimal front, some sort of diversity-
stimulating measures have to be applied to counter this drift.


Most of the proposed techniques are a metaphor from nature. Species have
evolved over time in such a way that they avoid overlap for resources as much
as possible. Each species has its own function and resource in nature and this is
called the species’ niche. Every species has adapted in such a way that it fulfills
its jobs within the environment in the best possible way. If the abundance of
that species increases due to a favourable environment, the resources available
per capita decline. This increases the normal level of selective pressure on the
population and consequently the number of individuals that produce offspring
declines. This self-regulating effect reduces the population size until there is
enough resource available once more for each individual.


Many techniques based on this metaphor of niching have been proposed
to ensure diversity for multiple objective genetic algorithms: restricted mating
(Fonseca & Fleming, 1993), clustering (Zitzler, 1999), adaptive grid methods
(Knowles & Corne, 2000) amongst others. Because niche inducing methods were
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originally designed for multi-modal functions, Purshouse and Fleming (2002) in-
vestigated whether they perform well in the case of multiple objective problems.
They concluded that the incorporation of a niche inducing method enhances the
spread along the Pareto-front well, and that the performance of multiple objec-
tive genetic algorithms is significantly better due to the diversity stimulating
operators.


As it is by no means the aim in this dissertation to compare all niching
techniques, two techniques were selected: the fitness sharing strategy
with σshare calculated as by Fonseca and Fleming (1993) because this
technique has proven its merit in land use planning (Matthews et al.,
2000) and the crowding distance assignment as proposed by Deb et al.
(2000) and Deb (2001) because it has a reduced computational complex-
ity.


7.3.1 Fitness sharing


Fitness sharing was proposed by Goldberg and Richardson (1987 in Goldberg
(1989)) and decreases the fitness value of an individual in relation to the number
of similar individuals. The similarity is expressed either in the genotype space:
the number of genes where the individuals differ, or in the phenotype space,
the distance in objective values of two individuals. For a population of size N
the shared fitness value of an individual is calculated in three steps. Initially a
sharing function is determined as follows


Sh(d) =


{
1−


(
d


σshare


)α


if d ≤ σshare


0 otherwise
(7.1)


All individuals within a distance of σshare of each other will decrease each other’s
fitness (Fig. 7.1). Dissimilar individuals have no impact on each other’s fitness
value.
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Figure 7.1: All the individuals within a distance σshare of individual
A (such as B) will decrease the fitness value of A. Sharing can be
performed in either the decision variable or objective function space


A second step is to determine the niche count NC(i) of each solution i. For
a solution i this is the sum of all distances obtained by applying the sharing
function to the complete population and is thus determined as


NC(i) =
N∑


j=1


Sh(dij) (7.2)


with dij the distance between individual i and individual j. Finally the fitness
value of individual i f ′i is


f ′i =
fi


NC(i)
(7.3)


with fi the original fitness value. The problem with this technique is the de-
termination of σshare. Fonseca and Fleming (1993) provide a mathematical
background to calculate this parameter. Since for multiple objectives evenly
spaced solutions along the Pareto-optimal front are desirable, then ideally the
distance between successive solutions along the Pareto-front is L/N where L is
the perimeter length of the front and N is the population size.


In reality this perimeter is unknown and therefore they have suggested a
procedure to dynamically update this parameter at every generation. If the
search space is divided into different hypervolumes that are a distance σshare


apart from each other then all ideally solutions lie in a different hypervolume. If
the distance ∆i between current maximum objective value maxi and minimum
the objective value mini, for each of the k objectives, is a surrogate for the
perimeter length of the Pareto-front, then σshare is calculated as


N (σshare)
(k−1) =


∏k
i=1(∆i + σshare)−


∏k
i=1 ∆i


σshare
(7.4)







88 Extending the simple genetic algorithm to multiple objectives


where k is the number of objectives and


∆i = maxi −mini (7.5)


Before fitness sharing is used, all fitness values should be normalised into [0, 1]
to avoid that scale differences of the objectives influence the distance measures.
Fonseca and Fleming (1993) suggests that normalising the objectives by the best
estimate of ∆i available at each generation yields good results as they showed
in Fonseca and Fleming (1998).


7.3.2 Crowding distance operator


Another approach, the crowding distance operator, was proposed by Deb (1999).
In fitness sharing, the niche count has to be determined and this requires the
comparison of each individual with each other individual in the population. As
this is computationally inefficient, they proposed a method where each individ-
ual is only compared with its neighbours instead of comparing it with the entire
population. The two closest individuals are those that have the nearest objec-
tive function value in every objective dimension. For a bi-objective problem,
the crowding distance of an individual is calculated as the sum of the sides of a
rectangle between the two closest individuals (Fig. 7.2). The distance between
these neighbours is then a measure for the density around the solution: if the
closest neighbours are far away this implies a good spread along the Pareto-
front. If the neighbours are very close to the solution, allowing new solutions in
this area should be discouraged.


Figure 7.2: Crowding distance measure: the distance between two clos-
est solutions of point A (B and C) is determined. The distances for
each objective dimension are added together (D1 and D2) and yield the
crowding distance. If this distance is low, the crowding around A is high
and the probability of A winning a tournament is lowered
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Individuals are then selected according to a modified tournament selection
operator. In Deb’s approach binary tournaments are held and the diversity
measure is based on the crowding distance instead of a simple count of other
individuals within a distance σshare of the individual under investigation. The
tournament relationship can then be defined as (Deb, 2001):


An individual i wins in a tournament with another solution j if any
of the following conditions are true:


1. solution i has a better rank than individual j: ri < rj


2. both solutions have the same rank but individual i has a better
crowding distance than individual


7.4 Comparing multiple objective evolutionary
algorithms


Given the fact that the outcome of multiple objective evolutionary al-
gorithms is a set of solutions, it becomes very difficult to determine
whether a set of parameters results in better performance than another
set or whether one algorithm gives better results than another. In the
following sections the mainstream performance indices are reviewed, to-
gether with their shortcomings and advantages.


7.4.1 Performance indices


Various unary performance indices have been proposed in the literature. The
question arises which indices might adequately measure the multiple objective
genetic algorithm results or allow meaningful comparisons of the implementa-
tions (Coello et al., 2002). Appropriate measures must be selected upon which
to base multiple objective genetic algorithm performance claims. There is a
difference between the performance indices that have been typically used in
operations research versus those commonly applied in the domain of multiple
objective genetic algorithms. In general the indices from operation research fo-
cus on the genotype space and they try to measure the distance of a point to
the Pareto-optimal set, whereas those from the genetic algorithm domain most
commonly measure the distance from a solution to the Pareto-optimal front in
the phenotype space. Because two algorithms might have different behaviour in
the genotype and phenotype space, it is certainly not an easy task to determine
which of the algorithms is better given the indices.


The performance indices that have been formulated are designed to evaluate
the two characteristics of a multiple objective genetic algorithm:


• closeness to the Pareto-optimal front
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• spread along the Pareto-optimal front


Testing closeness Van Veldhuizen and Lamont (1999) proposed two mea-
sures: the error ratio and the generational distance. The error ratio is simply
calculated as the ratio of the number of solutions that are not on the Pareto-
optimal front to the population size.∑n


i=1 ei


n
(7.6)


where ei = 0 if individual i is on the Pareto-optimal front P ∗ and ei = 1 if it is
not. This measure is bounded between 0 (all solutions are on the Pareto-optimal
front) and 1 (none of the solutions are on the Pareto-optimal front). One of the
main drawbacks of this measure is that it can only indicate if there are any
of the solutions on the Pareto-optimal front. If for two algorithms none of the
solutions are on this Pareto-optimal front the error ratio cannot distinguish
between these two algorithms (Deb, 2001). Therefore Deb (2001) redefines the
error conditions as follows: if the minimum distance between an individual i
and the Pareto-optimal front P ∗ is larger than a threshold δ then the individual
is counted as an error. If a suitable threshold is used, then the δ-error ratio can
give an indication about the proportion of individuals within a distance δ of the
Pareto-optimal front (Deb, 2001).


Another measure proposed by Van Veldhuizen and Lamont (1999) is the
generational distance (GD). The generational distance is a value representing
how far the current front is from the optimal front. The value is defined as


G =


√∑n
i=1 d


2
i


n
(7.7)


where n is the number of individuals in the current front and di is the distance
between each of the individuals and the nearest individual on the Pareto-optimal
front. This measure can also be used as a measure of fluctuation between several
repetitions. Deb (2001) proposes to use the variance in the distance values to
test the robustness of an algorithm. Both measures defined by Van Veldhuizen
and Lamont (1999) are scaling dependent.


Testing spread among the non-dominated points Schott (1995) intro-
duced a spacing measure based on a variance-like measure. For the spacing
measure the variance between the distances of each solution on the Pareto-front
and the mean distance along the Pareto-front is calculated.


Deb and Jain (2000) extended this measure because the spacing measure
does not take into account the maximum spread between the most extreme
solutions.


∆ =
∑M


m=1 d
e
m +


∑|Q|
i=1(di − d)∑M


m=1 d
e
m|Q|d


(7.8)
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where |Q| denotes the number of solutions in the Pareto-front, di the Euclidean
distance of solution i to the closest solution j in the Pareto-front, d is the average
distance over all solutions and de


m is the distance between the extreme solutions
of Pareto-front and Pareto-optimal front according to objective dimension m.


If the spacing and spread indices are averaged over a number of repetitions,
then a low mean value indicates evenly spaced solutions. If this space measure
is high the solutions are not very well distributed along the front. Knowles and
Corne (2000) indicate that these measures can only be used in conjunction with
other indices. In that case it provides information about the vector distributions.
An advantage of these measures is their low computational cost.


Combining spread and closeness Another measure defined by Zitzler (1999)
is the hypervolume or S-measure. It calculates the hypervolume enclosed by a
solution set A and a reference point. It computes the area of the search space
dominated by this solution set. In many aspects this measure is a very good
one (Knowles & Corne, 2002; Zitzler et al., 2002) but it has one caveat: the size
of the dominated space is easily influenced by the reference point, and care has
to be taken before any decisive conclusions based on this measure can be made.
A disadvantage is the larger computational overhead.


Comparing the indices Several approaches can be used to compare the in-
dices. These approaches are guided by the underlying distribution assumptions.
If the independent samples are normally distributed and have equal variances a
usual One Way ANOVA test can be used to determine whether the differences
between the indices are significant. If the above stated assumptions are not met,
then a non-parametric Kruskal-Wallis test provides an alternative.


A different strategy is proposed by Purshouse and Fleming (2002). As the
results from several runs are influenced by the initial seed, some of the differences
may be the result of this initial seed. In order to exclude the random effect, they
use a non-parametric test based on bootstrapping (Hollander & Wolfe, 1999).
The bootstrapping test procedure in a one-sample non-parametric framework
can be described as follows (Hollander & Wolfe, 1999): suppose a parameter
θ = θ(F ) has to be estimated and there are n samples X1, X2, . . . , Xn randomly
drawn from an unknown distribution F . The bootstrapping procedure is then


1. Make n random draws with replacement from the sample X1, . . . , Xn


2. Perform this step a large number of times (e.g. 1000) (B). For each draw
calculate the estimate of the parameter θ, this is θ̂. Denote the B values
of θ̂ as θ̂∗1, . . . , θ̂∗B , these are the bootstrapping replications of θ̂


3. Sort the bootstrapping values in ascending order


Using the B sorted bootstrapping estimators the confidence interval can be
derived without any assumptions about the underlying distribution. For a con-
fidence level 100(1 − α)% the lower bound θ′L and the upper bound θ′U can be
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derived in the following manner:


θ′L = θ̂∗(k) , θ′U = θ̂∗(B−k+1) (7.9)


where k is the largest integer less than or equal to (B+1)(α/2). This confidence
interval is referred to as the percentile interval. Hollander and Wolfe (1999)
indicate that the number of bootstrapping values B should be > 2000.


When comparing the performance of two multiple objective genetic algo-
rithm, the difference in means from the two algorithms has to be estimated.
Purshouse and Fleming (2002) therefore extend the original bootstrapping idea
into the following procedure:


1. For each of the two algorithms, each with a sample size of n, calculate the
mean of e.g. the hypervolume measure


2. Combine the results of the two algorithms in one set S


3. Make 2n random draws with replacement from the combined set S


4. Split the set up into two new samples and assign the first half to algorithm
1 and the other half to algorithm 2


5. Perform steps 3 and 4 a large number of times B. For each draw calculate
the estimate for the mean of each sample and then calculate the estimate
of the difference in means between the samples


6. Sort the estimated difference in means values in ascending order


7. Calculate the confidence interval as in Eq. 7.9


Purshouse and Fleming (2002) set the number of bootstrapping iterations toB =
5000. All the mean differences can then be put into a histogram, and the origi-
nal mean difference can be used as a test measure. If this test value lies within
the 95% (or 99%) confidence interval, the mean difference can be seen as one
originating from randomly assigning the output results and therefore it cannot
be concluded that one method is better/worse than another. If the test value
is outside the boundaries, the difference in means is very unlikely caused by
randomness and consequently one algorithm is better than the other.


Some care needs to be taken when using this approach: it is possible to derive
different estimates of bootstrapping confidence intervals when the same data is
bootstrapped (Hollander & Wolfe, 1999). Especially in cases where the test
measure is very close to the confidence interval boundaries different conclusions
might be drawn when repeating the bootstrapping method several times. This
is in contrast to the basic assumption of statistics stating that given the same
data the conclusion should always remain the same.


The procedures to calculate the above indices are further elaborated in Ap-
pendix C.
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Number of indices to use Zitzler et al. (2002) proved mathematically that it
is impossible to state that one algorithm is better than another given a finite set
of performance indices. Deb and Jain (2000) however indicate that even though
the use of performance indices is mathematically incorrect, they do provide a
lot of information about the performance of the two algorithms as long as one
does not revert to strong statements such as: ‘Algorithm A is significantly better
than B ’.


7.4.2 Statistical approaches


A totally different approach for performance comparison avoiding the issues of
the number of indices to use, is based on statistics and was proposed by Fonseca
and Fleming (1996). They use the so-called attainment function as a measure
of performance.


If a multiple genetic algorithm is run for several times, the search space can
be divided into three areas :


• part of the search space that is always dominated by all of the runs;


• part of the search space that is dominated by some of the runs;


• part of the search space that is never dominated by any of the runs.


The part of the search space that is always dominated is bounded by the set of
the ‘tightest goals’ and this corresponds to attaining the goals in 100% of the
repetitions. Using the repetitions, it is also possible to draw the set of goals that
are attained in 50% of the cases and this is the median attainment surface over
all runs. Next to the median, 25% and 75% percentiles can also be drawn. Using
these attainment surfaces, a Mann-Whitney test can be applied to establish the
differences in performance between the several algorithms. To this end, Knowles
and Corne (2000) grid the median and for each of the grid points they determine
whether a solution on median A is dominating the corresponding solution on
median B point or vice versa. Using this information, they give test statistics
in a matrix form, showing the area of the search space where algorithm A beats
algorithm B and vice versa. A second approach by Fonseca and Fleming (1996)
uses a Kolmogorov-Smirnov like test, to determine whether the two distributions
along the attainment functions from the two samples originate from the same
distribution or not.
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Figure 7.3: When the multiple objective genetic algorithm is run for
several times, the search space can be divided in three areas. For a max-
imisation problem, the green region marks the area that is dominated
by the Pareto-fronts of all runs and the red area bounds the region that
is never dominated by any of the runs. The grey region is reached by
some Pareto-fronts but not by all of them. The upper boundary of the
green region is the 100% attainment surface, the lower boundary of the
red region is the 0% attainment surface


7.5 Conclusion


Because there is no consensus on the use of performance indices, and
because they can only highlight certain qualities of multiple objective
genetic algorithms, it was decided to use all of them combined. In this
way, the general performance of an algorithm can be gauged. It should
be clear however that this general performance cannot give strong state-
ments such as algorithm A is better than B and the statistical analysis is
only performed per indicator separately. Many of the measures require
that the Pareto-optimal front is known and cannot be used for the real-
world case studies. The complete set of indices will however be used for
the initial comparative study.







Chapter 8
Multiple objective genetic
algorithms for forest management:
a comparative study


8.1 Research rationale


Multiple objective genetic algorithms have not been used in forest man-
agement yet. Therefore there is no information available on which al-
gorithms perform well for this type of problem. In order to get this
information, a comparative study was conducted on a forest manage-
ment problem with a known Pareto-optimal front. Two multiple objec-
tive algorithms were tested: the Multiple Objective Genetic Algorithm
(MOGA) implemented by Fonseca and Fleming (1993) because this has
proven its merit in a land use planning problem (Matthews et al., 1999,
2000) and the Non-Dominated Sorting Algorithm II (NSGA-II) (Deb
et al., 2000, 2002) because of its reported efficiency. These two algo-
rithms are also recommended by Van Veldhuizen and Lamont (2000)
as starting points. The outcome of these were compared with a random
search strategy to determine whether the genetic operators were efficient.


8.2 Introduction


Because the Pareto-optimal front is unknown for the harvest scheduling prob-
lem, a forest management problem defined by Gong (1992) was chosen as forest
benchmark problem (Ducheyne et al., 2001).
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For this benchmark problem, the first objective is to maximise the harvest
volume V . Since harvest volume is negatively correlated to the standing volume
left in the forest, it is possible to write the first objective as in Eq. 8.2:


Maximise


f1 =
i=N∑
i=1


v(i, a) (8.1)


∼ 1
vstand


(8.2)


where


v(i, a) = harvest assoc. with stand i and decision a
vstand = volume left standing
N = number of forest stands


The second objective is to maximise the benefit that people obtain from the
standing forest, measured by a utility function U . According to the law of
diminishing returns, this function can be modelled using the square root of the
standing volume (Gong, 1992). The more standing volume left in the forest, the
more trees present for people to enjoy. However, the increase in benefit derived
from the trees will decrease when the forested area is larger as the marginal gain
of leaving an extra tree declines. Therefore the second objective can be written
as in Eq. 8.3:


Maximise


f2 =
i=N∑
i=1


ui (8.3)


∼
√
vstand (8.4)


where


ui = utility assoc. with stand i
vstand = volume left standing
N = number of forest stands


As follows from Eqs. 8.2 and 8.3, the two objectives are conflicting. Moreover,
the Pareto-front between the two objectives is non-convex (Fig. 8.1). This
prohibits the use of weighted sum formulations and Gong (1992) reverted to
a complex dynamic programming formulation in order to solve it.
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Figure 8.1: The Pareto-optimal front: the front is non-convex and can-
not be found using the weighted sum approach


8.3 Methodology


There are four different functions for this benchmark problem that can be as-
signed to the forest: an economic function which involves clear felling and habi-
tat conservation, passive and active recreation which involves leaving the stands.
Each stand can receive only one set of management activities over the complete
planning horizon. The functions are mapped using two bits per forest stand.
295 stands from the 399 stands were retained, the other stands were excluded
because they were either unplanted or not yet productive during the initial pe-
riod. A simple land block assignment procedure as in Matthews et al. (2000)
was applied. The different algorithms (MOGA, NSGA-II and the random search
strategy) were all programmed in Java. The Java-documentation files are in-
cluded in Appendix B.


For the two genetic algorithms, the population size P , the number of gen-
erations T , crossover rate for uniform crossover pc and mutation rate pm were
fixed: P = 100, T = 50, pc = 0.8 and pm = 0.01. All algorithms were re-
peated 30 times and for each run the error ratio, generational distance, spacing,
spread and hypervolume measure were determined (Section 7.4.1 p. 89). These
measures were implemented in MATLAB 6.5 (Appendix C) and were analysed
using either the One Way ANOVA or the Kruskal-Wallis statistical tests (both
in SPSS) and the bootstrapping method, which was implemented in MATLAB
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(Appendix C). The significance level for all statistical tests was set to 95%.
The 50% attainment surface was derived in MATLAB (Appendix C) for visual
comparison and this is also used as input for the Mann-Whitney test statistics
provided by Knowles and Corne (2000).


8.4 Results and discussion


8.4.1 Visual interpretation


The following median attainment surfaces were obtained for MOGA and NSGA-
II; for the random simulation the median attainment surfaces is not presented
because this is too small, therefore the solutions found by the random simula-
tions over the 30 runs are presented (Fig. 8.2).


Figure 8.2: Comparison of the median attainment surface non-
dominated front between random search, MOGA and NSGA-II. Both
algorithms outperform the random strategy. NSGA-II approached the
Pareto-optimal set more closely than MOGA, but MOGA is better at
maintaining spread along the Pareto-front


Fig. 8.2 shows that both MOGA and NSGA-II perform much better than
the random search strategy. NSGA-II approached the Pareto-optimal front bet-
ter than MOGA. MOGA on the other hand is capable of finding more extreme
solutions and this results in better spread along the Pareto-front. None of the
algorithms are capable of finding the extreme solutions. Because the apparent
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lack in spread might be caused by implementation errors in the crowding dis-
tance operator (NSGA-II) or sharing function (MOGA), the algorithms were
tested on a non-convex test function provided by Zitzler (1999), Zitzler et al.
(2000). Test function 2 is a three objective non-convex function:


f1(x1) = x1


g1(x2, . . . , xn) = 1 +
9 · (


∑n
i=2 xi)


n− 1
(8.5)


h2(f1, g1) = 1−


√
f1
g1


(8.6)


where n = 30 and xi ∈ [0, 1]. The Pareto-optimal front is formed when g1 equals
1. In Zitzler (1999), Zitzler et al. (2000) a comparison between different algo-
rithms on this test function is made and this can be used to compare the results
between the adapted implementations used in this work with the performance
of the other implementations.


Figure 8.3: Performance of MOGA and NSGA-II for a non-convex test
function. In this case all extreme solutions are found, indicating good
implementation of the two algorithms


From Fig. 8.3 follows that both algorithms have a good spread and they
approximate the Pareto-optimal front well for the non-convex test function.
The performance of both algorithms on the test function is similar. The lack
of spread in the forest management problem is therefore not caused by imple-
mentation errors, but is most likely caused by the discreteness of the problem.
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MOGA can handle this discreteness better than NSGA-II in terms of spread
but NSGA-II is capable of approximating the Pareto-optimal front quicker.


8.4.2 Performance indices


8.4.2.1 Testing closeness to the Pareto-optimal front


The generational distance (GD) and the δ-error ratio, with δ = 0.05, were cal-
culated for both genetic algorithms. The output results were normalised using
the respective minimum and maximum values in each objective dimension in
the Pareto-optimal front because both error ratio and generational distance are
scaling dependent: the difference in magnitude between the objectives disre-
gards the effect of the objective with the lowest magnitude. The means of error
ratio and generational distance as well as their standard deviations are listed in
Table 8.1 . In Fig. 8.4 the result of the bootstrapping method is shown.


Table 8.1: The mean error ratio with δ = 0.05, generational distance
and the standard deviation over 30 runs for MOGA and NSGA-II


MOGA NSGA-II
GD 0.066± 0.009 0.016± 0.002
Error ratio 0.8921± 0.01 0.003± 0.011


The data is not normally distributed for the error ratio (p = 0.01 < 0.05)
and for both generational distance and error ratio, the assumption of equal
variances is also not fulfilled (generational distance: p < 0.05 and error ratio:
p = 0 < 0.05). Therefore a non-parametric Kruskal-Wallis test in combination
with the bootstrapping method is applied for the statistical analysis. From both
the Kruskal-Wallis test (Table 8.2) (p = 0.0 < 0.05) as well as the bootstrapping
method (Fig. 8.4) clearly follows that NSGA-II performs better than MOGA at
a confidence level of 95%. In Fig. 8.4 the test measure is positive, indicating
that the mean generational distance as well as mean error ratio is higher for
MOGA than for NSGA-II. As for these two test indices lower values are better,
it follows that NSGA-II performs better in terms of closeness to the Pareto-
optimal front. The standard deviation of the generational distance is smaller
for the NSGA-II than for MOGA (Table 8.1), and this can be interpreted as a
more robust behaviour of the NSGA-II algorithm.
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Table 8.2: Kruskal-Wallis statistics for generational distance and error
ratio over 30 repetitions for MOGA and NSGA-II


MOGA NSGA-II
GD 45.50 15.50
Error ratio 45.50 15.50


(a) Generational distance


(b) Error ratio


Figure 8.4: Bootstrapping results for the error ratio
(Fig. 8.4(b)) and the generational distance (Fig. 8.4(a)). The
confidence interval boundaries are marked in red (α = 95%),
the test measure is marked in green. Both test indices are
outside the boundaries.
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8.4.2.2 Testing spread


The spread was measured by the spacing measure and by the spread measure.
The spacing from NSGA-II is lower than the spacing from MOGA indicating
that the crowding distance function spreads the solutions better than the sharing
function (Table 8.3).


Table 8.3: Mean spacing and spread for MOGA and NSGA-II over 30
runs. A low value of spacing and spread indicates evenly spaced solutions


MOGA NSGA-II
spacing 18.37± 1.61 13.50± 0.297
spread 0.502± 0.053 0.525± 0.04


For spacing and spread the variances were not equal (p = 0.001 < 0.05), there-
fore the Kruskal-Wallis-test procedure was used (Table 8.4). The means for
spacing are significantly different at a 95% level (p = 0.009 < 0.05) and this
is confirmed using the bootstrapping procedure (Fig. 8.5). The test indices for
the spacing are in the 5% tails of the histogram. Once more lower values are
better, therefore NSGA-II has more evenly spaced solutions than MOGA. If the
distance to the most extreme solutions is included as in the spread measure by
Deb et al. (2000), however, MOGA has a better performance because it can
reach the extremes better. From the bootstrapping results (Fig. 8.5), it follows
that there is no difference between the two algorithms, but as noted before, the
test value is just inside the boundaries and the boundaries differ between two
different bootstrapping procedures. The Kruskal-Wallis test (Table 8.4) cannot
detect any significant difference at a level of 95% (p = 0.095 > 0.05).


Table 8.4: Kruskal-Wallis statistics for spacing and spread over 30 rep-
etitions for MOGA and NSGA-II


mean rank MOGA mean rank NSGA-II
spacing 15.50 45.50
spread 34.27 26.73
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(a) Spacing


(b) Spread


Figure 8.5: Bootstrapping results for spacing (Fig. 8.5(a))
and spread (Fig. 8.5(b)). The confidence interval boundaries
are marked in red (α = 95%), the test measure is marked in
green. The test measure for spacing is outside the confidence
interval boundaries, the test measure for spread is just within
these boundaries
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8.4.2.3 Combining spread and closeness


The hypervolume measure calculates the size of the dominated space and is a
combined measure for both spread and closeness. For this measure the data was
not normalised as it is scaling independent. The mean hypervolume indices are
listed in Table 8.5


Table 8.5: Mean hypervolume for MOGA, NSGA-II and random search
over 30 runs


Algorithm S
MOGA 13491904·43
NSGA-II 13998229·19
random search 7339239·14


Both normality (p > 0.05 for all groups) and homogeneity of variances (p =
0.426 > 0.05) assumptions are fulfilled and from statistical analysis (One Way
ANOVA) follows that NSGA-II is significantly better than MOGA at a 95%
level, and that both genetic algorithms are significantly better than the random
strategy. From the bootstrapping method the same conclusion can be drawn
when comparing MOGA and NSGA-II (at a 95% level).


Figure 8.6: Results from the bootstrapping method. In the x-axis, the
mean differences are represented, on the y-axis the frequency counts. In
red, the confidence interval of 95% is indicated, in green the test measure
is marked.
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8.4.3 Statistical approaches


The median attainment surfaces for MOGA and NSGA-II have already been
represented in Fig. 8.2. These surfaces can be used as input for statistical
comparison. Knowles and Corne (2000) provided a test measure based on these
attainment surfaces showing where algorithm A outperforms B and vice versa.


Table 8.6: Test statistics based on the comparison of the median at-
tainment surface from MOGA and NSGA-II. The test statistics show
the part of the search space where the NSGA-II and MOGA are not
dominated by any algorithm and the part where they are dominated by
the another algorithm


MOGA NSGA-II
non-dominated 20.6 83.6


dominates 16.4 79.4


From this measure (Table 8.6), it follows that NSGA-II dominates MOGA in
83.6% of the covered search space and that MOGA dominates NSGA-II in 20.6%
of the cases. These statistics can be explained because MOGA reaches the
extreme solutions better than NSGA-II does and therefore MOGA beats NSGA-
II in part of the search space. In the largest part of the search space the
solutions from MOGA are dominated by NSGA-II because NSGA-II is closer to
the Pareto-optimal front.
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8.5 Conclusion for the forest management prob-
lem


Both MOGA and NSGA-II have shown a better performance than a
random search strategy. They both approximate the Pareto-optimal
front well, but suffer from a lack of spread. Especially the NSGA-II is
not capable of finding the more extreme solutions. This lack of spread,
however, is not caused by any implementation errors: both algorithms
have a very good spread over the complete Pareto-front for a non-convex
test function commonly used as reference function in GA literature.
NSGA-II is capable of approximating the Pareto-optimal front faster
than MOGA and has more evenly spaced solutions. If the distance from
the extreme solutions in the Pareto-front to the extremes of the Pareto-
optimal front are included in the spread measure, MOGA scores better
than NSGA-II. However, this is not significant. The variance between
the several runs both in generational distance is smaller for NSGA-II
than for MOGA, highlighting that NSGA-II is more robust than MOGA
in terms of approximation of the Pareto-optimal front.
When the algorithms are compared in terms of both spread and close-
ness, the hypervolume measures indicates that the NSGA-II dominates
a higher portion of the solution space than MOGA does.
Using the attainment surfaces similar conclusions can be drawn: the
Mann-Whitney test procedure shows that NSGA-II beats MOGA in the
larger portion of the search space.
Overall, the NSGA-II algorithm shows a better performance for the for-
est management problem and therefore this algorithm will be used in
the subsequent case studies.







Chapter 9
Case study: solving a harvest
scheduling problem as a
bi-objective problem


9.1 Introduction


The harvest scheduling problem as defined in the single objective case will now
be solved using the multiple objective genetic algorithm NSGA-II. The original
objective functions (Eqs. 5.1 and 5.2) are the direct input for the genetic algo-
rithm and do not have to be combined in any way beforehand. The same data
and production forecast models as in the single objective case are used to allow
for comparison of both approaches.


9.2 Methodology


As for the single objective case, the effect of encoding was investigated. Next
to looking the approximation of the Pareto-optimal front, the spacing of the
solutions along the Pareto-front was closely examined. Again binary, gray and
integer encodings were used to represent the eight different cutting periods per
management unit. The effect of the encoding strategies was inspected visually
as well as using the hypervolume measure and the statistical analysis via the
attainment surfaces. Other indices for closeness could not be applied because
the Pareto-optimal front is unknown. The spacing measure was also used. Later
on, the population size was increased from 500 up to 1000 individuals in steps
of 250. For each of these population sizes, the effect on convergence and spread
was determined. For each encoding type and population size, the experiment
was repeated 10 times.
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The multiple objective genetic algorithm with the best encoding strategy
was then also run for 50 generations and a population size of 100, using the
same parameters as for the single objective problem. The outcome of the sin-
gle objective and multiple objective genetic algorithms was compared. For all
experiments binary tournament selection with the non-dominance selection cri-
terion was used, together with one-point crossover with a crossover probability
of 0.8 and uniform mutation with a probability of 0.01. Once more the elitist
strategy was applied.


9.3 Results and discussion


9.3.1 Effect of encoding on spread and Pareto-optimality


Visual interpretation Integer encoding proves to be the best encoding strat-
egy in terms of approximating the Pareto-front (Fig. 9.1), but again gray en-
coding is a very close second. The three encodings show a similar spread.


Figure 9.1: Median attainment surfaces for binary, gray and integer
encoding


Performance indices The performance of the integer encoding is confirmed
by the spacing measure and by the hypervolume measure (Table 9.1). The
data for the spacing measure is not normally distributed (pb = 0.010 < 0.05,
pg = 0.185 > 0.05 and pi = 0.01 < 0.05). Therefore the Kruskal-Wallis test
was used as test procedure next to the randomised testing procedure. For the
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Table 9.1: Mean hypervolume and spacing measure for binary, gray,
and integer encodings. The results are averaged over 10 runs.


binary gray integer
hypervolume 6.1e10 6.1e10 6.2e10


spacing 1603.80 431.41 485.42


hypervolume measure the data is normally distributed (pb = 0.576 > 0.05,
pg = 0.728 > 0.05 and pi = 0.823 > 0.05) and the variances are equal (p =
0.784 > 0.05) and for the hypervolume measure a One Way ANOVA test was
applied together with the randomised testing procedure.


There is a significant difference between the groups for the spacing measure
(Table 9.2). Again gray and integer codes score best and both are significantly
better than binary codes according to a non-parametric post-hoc test. The
bootstrapping test procedure confirms this, in both Fig. 9.2(a) and Fig. 9.2(c)
the test value is outside the confidence intervals indicating a significant differ-
ence between integer and binary codes and between gray and binary codes. In
Fig. 9.2(b) the test value is within the boundaries of the interval showing that
there is no difference between gray and integer codes.


The One Way ANOVA test statistic for the hypervolume measure (Table 9.2)
indicates that there are no significant differences (p = 0.656 > 0.05) and this is
also confirmed by the bootstrapping results (Figs. 9.3(a) to 9.3(c)).


Integer codes will be used to solve the harvest scheduling problem be-
cause they are the most natural representation for the problem.


Table 9.2: Kruskal-Wallis ranks for spacing measure over 10 repetitions
for binary, gray and integer encoding


binary gray integer
spacing 24.50 12.20 9.80
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(a) integer - binary


(b) integer - gray


(c) binary - gray


Figure 9.2: Bootstrapping results for the difference in
mean spacing for integer, binary and gray encodings. In
Fig. 9.2(a) the difference between integer and binary en-
coding, Fig. 9.2(b) between integer and gray encoding and
Fig. 9.2(c) between binary and gray encoding
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(a) integer - binary


(b) integer - gray


(c) binary - gray


Figure 9.3: Bootstrapping results for the difference in mean
hypervolume for integer, binary and gray encodings. In
Fig. 9.3(a) the difference between integer and binary en-
coding, Fig. 9.3(b) between integer and gray encoding and
Fig. 9.3(c) between binary and gray encoding
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9.3.2 Effect of population size on solution quality


Visual interpretation In a last phase the effect of the population size on
solution quality as well as spread was investigated. The population size was
increased from 500 to 1000 in steps of 250. This results in the following median
attainment surfaces (Fig. 9.4).


Figure 9.4: Median attainment surfaces for population sizes 500, 750,
and 1000 over 10 runs


The median attainment surfaces for the three population sizes are very similar.
They approximate the Pareto-optimal front the same and the spread of the
solutions along the attainment surface is even along the Paret-front. The fact
that they approximate the same front indicates that they are very close to the
(unknown) Pareto-optimal front.
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Performance indices The spacing and hypervolume measure are determined
for the different population sizes. The mean values are listed in Table 9.3.
The mean value for the hypervolume measure is almost the same for the three
population sizes, the spacing along the Pareto-front is also very similar across
the different population sizes.


Table 9.3: Mean spacing and hypervolume measure for population sizes
500, 750 and 1000. The results are averaged over 10 runs.


500 750 1000
spacing 2853.04 1865.74 3041.27


hypervolume 6.5e10 6.7e10 6.7e10


For the spacing measure the data is normally distributed (p500 = 0.237,
p750 = 0.625 and p1000 = 0.394). The data is not homoscedastic and therefore
the Kruskal-Wallis procedure is applied. From the test value (p = 0.0 > 0.05),
it follows that there are significant differences. These differences are found,
according to a non-parametric posthoc-test, between the population size of 750
and the population sizes of 500 and 1000.


A One Way ANOVA test can be used to test whether the means of the
hypervolume measure are equal or not for the three population sizes, because
the assumptions of normality (p > 0.05 for all groups) as well as homogeneity
of variance (p = 0.085 > 0.05) are fulfilled. The statistical analysis shows
that there is significant difference between the different population sizes for the
hypervolume measure (p = 0.001 > 0.05) and according to Tukey’s posthoc-test
this is between the population size of 500 on the one hand and the population
sizes of 750 and 1000 on the other hand.


A population size of 750 is sufficiently large enough to solve the harvest
scheduling problem.


Table 9.4: Mean Kruskal-Wallis ranks for spacing over 10 repetitions
for population sizes 500, 750 and 1000


500 750 1000
spacing 18.30 5.90 22.30
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(a) population sizes 500 - 750


(b) population sizes 500 - 1000


(c) population sizes 750 - 1000


Figure 9.5: Bootstrapping results for the difference in
mean spacing for population sizes 500, 750 and 1000. In
Fig. 9.5(a) the difference between population sizes 500 and
750, Fig. 9.5(b) between population sizes 500 and 1000 and
Fig. 9.5(c) between population sizes 750 and 1000
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(a) population sizes 500 - 750


(b) population sizes 500 - 1000


(c) population sizes 750 - 1000


Figure 9.6: Bootstrapping results for the difference in mean
hypervolume for population sizes 500, 750 and 1000. In
Fig. 9.6(a) the difference between population sizes 500 and
750, Fig. 9.6(b) between population sizes 500 and 1000 and
Fig. 9.6(c) between population sizes 750 and 1000
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9.3.3 Comparing the single and multiple objective genetic
algorithm


Running NSGA-II with integer encoding and a population size of 50 enables
comparising the results of the single objective and the multiple objective op-
timiser. The multiple objective genetic algorithm was also run for the same
number of generations. Overlay of the median attainment surface from the
multiple objective optimisation runs with the median attainment from the sin-
gle objective optimisation is depicted in Fig. 9.7.


Figure 9.7: Overlay of the median attainment surface found with the
single objective optimiser and the best solutions obtained with a multiple
objective genetic algorithm with a population size of 50. On the x-axis
the present value (*e 100) and on the y-axis the sum of deviations in
volume (m3)


The two median attainment surfaces are very similar. Only the most extreme
solution is missing from the Pareto-front found by NSGA-II. Running the mul-
tiple objective genetic algorithm has particular benefits in terms of computer
efficiency. For both algorithms the same population size and number of gener-
ations was chosen. The product of population size and number of generations
yields the number of function evaluations. In the case of the single objective op-
timiser, this total number should be multiplied by five as the genetic algorithm
has to be run five times to get points along the Pareto-front. This results in
50 ∗ 100 ∗ 5 function evaluations. For the multiple objective genetic algorithm,
with the same population size and number of generations, the number of func-
tion evaluations is only one fifth of the total number of function evaluations
needed for the single objective optimiser.


Running NSGA-II with a population size of 750, which proved to be a good
population size in the previous section, and for 50 generations yields the fol-
lowing Pareto-front (Fig. 9.8). The maximum present value that is attained in
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50% of the repetitions amounts to e 670300 (73,3% of the maximum attainable
present value) and has a total sum of volume deviations of 398991 m3. For
a weight of 0.01 this was e 667435 (73% of the maximum attainable present
value) and a total sum of volume deviations of 21535.5 m3. The median values
are similar for the single and multiple objective optimiser.


Figure 9.8: Overlay of the best solutions found with the single objec-
tive optimiser and the solution front obtained with a multiple objec-
tive genetic algorithm with a population size of 750. On the x-axis the
present value (*e 100) and on the y-axis the sum of deviations in volume
(m3)


9.3.4 Validity of the plans


Two plans will be investigated more closely as to their validity: the harvest
schedule plan with the most strict even-flow objective and the plan with the
best present value. The objective values for the two plans are listed in (Ta-
ble 9.5). The volume per period and the harvest pattern in the forest illustrated
in Fig. 9.11(a) and Fig. 9.11(b).


Table 9.5: The present value PV and the average volume V over all
cutting periods for the best even-flow harvest plan, the compromise plan
and the best present value plan


PV
(*e 100)


∑n
i=1 Vi − V (m3)


5878 600
6851 28514
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From Figs. 9.11(a) and 9.11(b) a conclusion similar to that of the single objective
case follows: the age distribution is forced by the proposed harvest plans towards
a normal age distribution. If the even-flow objective becomes more important
this effect is stronger than when the present value objective is more important.
Again the average volume that is attained with the relaxed even-flow objective
(6.80 m3/ha/yr) is higher than when the objective of even-flow becomes more
important (6.56 m3/ha/yr). From the harvest pattern, it follows that in order
to get a better present value, more stands are scheduled for cutting in the
later planning periods than when the even-flow objective is important. From
the detailed Pareto-front follows that there is a very narrow range where low
deviations from the average volume can be obtained. This shows that forest
managers need to design their plans very carefully so as to avoid too large
deviations, and that the range is limited.
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(a) Even flow


(b) No even-flow


Figure 9.9: The variation in total deviation in volume (m3)
between the different cutting periods. From Fig. 9.9(a) to
Fig. 9.9(b), the even-flow constraint is strengthened.
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(a) Even flow


(b) No even-flow


Figure 9.10: The effect of the even-flow objective on the
age structure. From 9.10(a) to 9.10(b), the even-flow con-
straint is strengthened.
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(a) Even flow


(b) No even-flow


Figure 9.11: The effect of the even-flow objective on the
harvest pattern. From 9.11(a) to 9.11(b), the even-flow con-
straint is strengthened.
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9.3.5 Conclusion


The encoding strategy is important in terms of approximation of the
Pareto-front. The best encoding strategies are gray and integer encoding.
As is suggested in literature, binary encoding does not perform very well.
There is an effect if the population size is increased from 500 to 750, the
Pareto-optimal front is approximated more closely. This effect is no
longer present when the size increases even more to 1000.
Using multiple objective genetic algorithms instead of single objective
genetic algorithms to solve the harvest scheduling problem speeds up
the optimisation process: in order to find solutions linearly distributed
along the Pareto-front a single run suffices. For both optimisers the effect
of the plans on the age structure of the forest is the same: if the even-flow
objective becomes more and more important, the age structure resembles
that of a normal forest due to the volume control, even though this is not
explicitly mentioned in the objective functions. If the even-flow objective
is relaxed, the stands are scheduled in later planning periods than when
the even-flow objective is very important. Finally, the Pareto-front is
very steep, indicating that forest managers have to design their plans
carefully to meet their objectives.







Chapter 10
Case study: solving a multiple
objective problem using GAs and
GIS


10.1 Research rationale


In the single objective case, the abundance of edge-dependent species was
maximised using explicitly formulated spatial constraints. These equa-
tions were created manually and the spatial modelling was performed
without a geographical information system. This is hardly feasible for
large problems and creating the non-linear constraints becomes impos-
sible if the forest stands are in an irregular pattern. As Hof and Joyce
(1993) state, the shortcomings of their approach is that (1) global op-
tima cannot be assured and (2) only relatively small problems can be
solved.
In the following case study, the multiple objective problem as defined by
Hof and Joyce (1992, 1993) is solved using a multiple objective genetic
algorithm in combination with a GIS. This addresses the second short-
coming of the former approach but does not guarantee global optima.
The combination of the optimiser and the GIS fulfils the requirements
for a Spatial Decision Support System (SDSS): the multiple objective
genetic algorithm generates alternatives for the decision maker using
spatial information and spatial modelling. These solutions help the de-
cision maker to make well-founded decisions.
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10.2 Linking genetic algorithms and GIS


From SDSS literature can be learned that an SDSS consists of several distinct
modules (Armstrong & Densham, 1990; Seffino et al., 1999) such as the analysis
and optimiser toolbox and the model base, usually the GIS. The integration of
GA and GIS fits well within the framework of SDSS. Because the functionality
of the genetic algorithm is clearly distinguished from the fitness evaluation, any
model requiring spatial data can be evaluated directly inside a geographical in-
formation system. In order to do this the entities should be able to communicate
with each other. The inter-operability is the ability of several components to
communicate with each other through the exchange of data and services with
one another (Twery et al., 2000). The coupling between the different entities
can take place in the following ways (Goodchild, 1992; Ungerer & Goodchild,
2002):


• stand alone, which is not very efficient because in that case the function-
ality of the two systems cannot be exploited efficiently;


• loose coupling: the data exchange operates either through ASCII- or bi-
nary files. This has two strengths: (1) each task is tackled by the package
that is best suited to solve the task and (2) there is no need to build new
software. Its disadvantage is the dependence on file formats in the case
of ASCII-files and the fact that it requires the loading of both the analy-
sis/optimiser toolbox and the model base at the same time. This might
cause hardware-related problems;


• close or deep coupling: The analysis/optimiser toolbox is called directly
from the GIS. This has much potential but requires that the underly-
ing data structures can be accessed and there is the extra need for code
creation;


• full integration: this is the best way to work but requires complete open-
ness of the GIS software and this is as yet not the case for most available
commercial software.


Twery et al. (2000) mention that the existing forest ecosystems management
decision support systems are largely monolithic structures without open gen-
eral purpose communication and control standards that provide interoperabil-
ity. Only very recently some GIS have allowed better communication through
the Component Object Model protocol (COM-compliance) such as Idrisi32 and
ArcGis8.1 and can be useful in the creation of a close coupled system (Ungerer
& Goodchild, 2002).


In this dissertation, a loose coupling strategy (Fig. 10.1) is proposed because
of its ease of implementation and because of the optimal task distribution. More-
over, this approach is platform-independent. When the software is developed
using the COM-protocol, it has to use Visual Basic for Applications (VBA),
and this inhibits the use of the developed software on operating systems such
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as Linux, Unix or Macintosh. The solutions generated by the genetic algorithm
were written as ASCII-files. The GIS was prompted to read the input files and
the proposed management activity for each stand was linked through the rela-
tional key to the attribute table in the GIS. After the files had been linked, the
GIS performed several scripts. While the GIS was running, the genetic algo-
rithm waited for the response, repeatedly asking the GIS whether it was done
or not. The geographic information system returned the different objective
function values in an ASCII-file.


Figure 10.1: Loose coupling between the analysis/optimiser toolbox
and the GIS. The data exchange is through ASCII-files


Originally the aim was to combine the genetic algorithms with ArcView.
The reason for this was twofold:


• ArcView3.1/ArcGIS is the best known and most widely applied GIS in
public agencies because of its user-friendliness and its possibility to cus-
tomise the graphical user interface (Zhang & Griffith, 1997; Ducheyne,
1999)


• ArcView3.1 allows communication between two programs through the Dy-
namic Data Exchange protocol (DDE). This enables prompting ArcView
to execute a script from another program


When ArcView was used numerous errors and broken connections between
the modules occurred and in the initial stages of this research the genetic algo-
rithm had to be restarted many times. This was also noted by Westra (2002).
Therefore, it was opted in a later stage to use open source GRASS GIS (4.3;5.0)
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(Neteler & Mitasova, 2002) as an alternative GIS. This free GIS runs on a
Linux platform and is as customisable as ArcView through the use of tcltTk
for GRASS. Because all the software was developed in Java and there was
loose coupling, the genetic algorithm could be transferred to the Linux plat-
form without any modification. Any GIS script could be called and executed
immediately from the GA, as all source code and executables were directly avail-
able in GRASS GIS. A disadvantage for operational applications is the lower
level of user-friendliness and that it is less well known.


10.3 A multiple objective spatial problem


10.3.1 The objective functions


As in Hof and Joyce (1992, 1993), timber volume, the abundance of edge-
dependent species as well as the abundance of old growth species are maximised
for a single time period. For simplification reasons, Hof and Joyce (1992, 1993)
assumed in their application that the timber volume V per m2 is 1m3, and this
assumption is also made here for comparison purposes. The abundance of edge-
dependent species E is linearly related to the length of the edge between clear
felled stands and old growth stands (internal edge) and between agricultural
fields and old growth stands (external edge). The abundance of the old growth
species O is linearly related to the area of old growth forest. Two management
activities are possible, clear felling stand i (Ci = 0) and leaving stand i in old
growth (Ci = 1). The following objective functions are formulated for M stands
with a size of l-by-l km (in a grid layout as in Chapter 6), with δij a matrix
where δij = 1 if j is a neighbour of i and δij = 0 if j is not a neighbour of stand
i, and Cj is the management activity assigned to stand j:


Maximise V =
M∑
i=1


1− Ci) (10.1)


Maximise E =
M∑
i=1


Ci × (4× l)− l ×


 M∑
i=1


 M∑
j=1


δijCj


 (10.2)


Maximise O =
M∑
i=1


Ci (10.3)


10.3.2 Evaluating fitness values in GIS


The area of each stand is fixed, and therefore it is much faster to use a lookup
table to calculate the total area of clear felled and old growth stands instead of
using time-consuming spatial analysis tools. The edge objective on the other
hand is dynamic and has to be evaluated continuously in the GIS. The evaluation
of the length of the edge was initiated from the genetic algorithm, which served
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as DDE server. In DDE communication, there is a DDE server and a DDE
client. The DDE server calls the client to check whether the client is running
or not, and then sends a command towards it to activate the client. While the
DDE client is working the DDE server checks for output. In this application, the
genetic algorithm fired a main script in ArcView GIS, the DDE client, and this
main script controlled the internal ArcView scripts (Fig. 10.1). The first step
of the internal scripts linked the ASCII-file with proposed management activity
for each stand, to the relational database in ArcView. This was followed by
dissolving the boundaries between the stands that have the same management
activity attribute and by the calculation of the perimeter. In a last phase, the
result was exported as an ASCII-file and all objects that were created during the
script were removed. These scripts were written in the macro language Avenue
(ESRI, 1996) provided by ArcView, and were based on either the standard
commands from ArcView itself or on freely available scripts from the ESRI
forum (ESRI, 2003). When ArcView was activated as DDE client, it tended
to time out before the complete command was sent through, and this was the
main reason to use GRASS GIS for the spatial modelling.


In GRASS GIS a similar approach was followed: a main script controlled
all steps that had to be performed by the GIS and was called from the GA.
This initiated both the linkage of the tables and the perimeter calculation. In
GRASS GIS, a set of landscape ecology measures were provided by Baker and
Cai (1992) and these could be used to determine the perimeter between the
clear felled and old growth stands.


10.3.3 Solving the benchmark problem


10.3.3.1 Methodology


NSGA-II was applied to solve the benchmark problem. Because the search space
of the initial problem is small for a three-by-three grid (size of the search space =
29 = 512), the population size was kept low (P = 30) and the maximum number
of generations was set at 10. This means that 300 alternatives were evaluated
and this is approximately half of the search space. A binary encoding strategy
is sufficient to represent the problem using the land block representation. Later
on, the size of the benchmark problem was increased from a three-by-three grid
to a nine-by-nine grid making the problem harder to solve (size of the search
space = 281). For the nine-by-nine grid the population size was increased up to
P = 100 and the NSGA-II was run for 50 generations. For both problems the
crossover probability was kept at 0.08 and the mutation rate at 0.01.


10.3.3.2 Results and discussion


The 3-by-3 grid Solving the problem on a three-by-three grid produces the
following Pareto-front (Fig. 10.2). In Fig. 10.2, the solutions from the initial
population as well as the solutions from the final population are presented.
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Figure 10.2: Pareto-front over 10 runs for the 3-by-3 grid. The initial
population consists of almost all optimal solutions, and there is no effect
of the genetic algorithm


Because the search space is so small, the population size was kept low but
even at a low population size, many of the optimal solutions are already present
in the initial population (Fig. 10.2). This means that the problem is too easy to
solve with a genetic algorithm. Some optimal solutions that are missing from the
initial population are found in later generations by the GA, but in general the
problem is solved without exploiting the search capacity of the genetic algorithm.


The 9-by-9 grid Solving the nine-by-nine grid problem shows the advantages
of the GA. In the initial population a smaller portion of the optimal solutions
is present (Fig. 10.3) and because the search space is much larger, the search
capacity of the GA has an effect on finding (sub-)optimal solutions quickly.


From Fig. 10.3 follows that the genetic algorithm optimised the three ob-
jectives. The solutions produced by the initial population are dominated by
the final Pareto-front and the Pareto-front has the shape of the Pareto-optimal
front. It also follows that, in contrast to the harvest scheduling problem, the
genetic algorithm is now capable of finding the extreme solutions more easily
than the compromise solutions. This is mainly due to the local suboptima lo-
cated in the centre of the fitness surface. These local suboptima are not found
at the boundaries and the chance of finding an optimal solution is much larger
at the boundaries than at the centre of the fitness surface.
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Figure 10.3: Pareto-front over 10 runs for the 9-by-9 grid. There is a
difference between the initial population and the population found at
generation 50


10.3.4 Application to a Kirkhill forest


10.3.4.1 Methodology


Kirkhill forest consists of 399 different stands, and problems of this size can
no longer be solved using the procedure proposed by Hof and Joyce (1992,
1993). In this case, the chromosome length is 399, one bit for each stand.
The population size was set to 100 and the total number of generations to 50.
Crossover probability was set to 0.08 and uniform mutation occurred in 1% of
the cases. The initial population was randomly initialised.


10.3.4.2 Results and discussion


The total running time was 4h on a Intel Pentium III processer (651 MHz and
384 MB of RAM). This included the entire communication between GA and
GIS. As the global optima are not known beforehand, it is impossible to know
whether the resulting Pareto-front is optimal. The Pareto-front between the
different objectives for a single run is presented in Fig. 10.4.
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Figure 10.4: The Pareto-front between (1) clear felled area (m2), (2)
old growth area (m2) and (3) perimeter (m)


From Fig. 10.4, it follows that different compromise solutions are found.
Again, maintaining the spread for the real-world application proves to be a
difficult task because all solutions are in the centre, no extreme solutions for
the timber or old growth objectives are found (e.g. clear felling all stands and
leaving all stands). The three most extreme solutions are presented in Table 10.1
and Figs. 10.5 to 10.7.


Table 10.1: Objective function values under the scenario of maximum
timber production, maximum abundance of old growth species and max-
imum abundance of edge-dependent species


timber old growth edge
Total timber production (m3) 288·60 184·14 220·01
Abundance of old growth species 88·97 133·30 118·11
Abundance of edge-dependent species 78·818 83·460 85·821
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Figure 10.5: Harvesting pattern for a maximum timber production


Figure 10.6: Harvesting pattern for a maximum abundance of old
growth species
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Figure 10.7: Harvesting pattern for a maximum abundance of edge-
dependent species


Due to the lack of spread, there is not much difference in actual output
levels between the three extreme solutions found in this run (Table 10.1), but
even for the small differences noted, large differences in spatial configuration
are found. In Table 10.1 under a maximum scenario of timber production,
the timber volume amounts to 288.6 m3 and in Fig. 10.5 is shown that there
are more clear felled stands. For a maximal old growth objective many more
stands are left (Table 10.1 and Fig. 10.6). However, this is not very pro-
nounced, either due to insufficient population sizing or because of the linkage
learning problem mentioned in the single objective case. The solution maximis-
ing the abundance of edge-dependent species resembles a checkerboard pattern
(Fig. 10.7) and the total area that is clear felled is approximately half (277 ha)
of the total area of all stands (454 ha). The number of edge-dependent species
counted as badgers setts is 85.8 setts/454 ha or 18.9 setts/100 ha. This is also
within the boundaries found for the abundance of badgers in the British Isles
(26 mean used setts/100 ha), as well as for the land class found in mid-east
Scotland (lowlands with variable land use, but mainly arable), where the mean
used sett density is 7.4 setts/100 ha and the total sett density is 21 setts/ha
(Cresswell et al., 1990). The results show that including the spatial informa-
tion leads to very different results in terms of spatial layout. Because the spatial
data can be included during the optimisation process, the combination of genetic
algorithms and GIS opens possibilities for a spatial decision support system.


Because there are more than two objectives, other methods for visualising
the solutions and their relationships are needed. Fonseca (1995) introduced the
method of parallel coordinates to show possible conflicts between objectives.
These graphs depict each non-dominated solution, with on the x-axis an integer
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representing the objective function and on the y-axis their rescaled objective
function scores. These objective functions are rescaled to the interval [0,1]. If
the connecting lines between the objectives are parallel, the objectives are not
conflicting but in harmony, and the problem can be recast into a single objective
one. If the lines are crossing, the objectives are conflicting and only a multiple
objective approach can produce solutions. Purshouse and Fleming (2003) pro-
vided a mathematical foundation for the conflict, harmony and independence
relationships between the objectives.


There is a clear inverse linear relationship between the objective of timber
production and leaving old growth stands (Figs. 10.8(a) and 10.8(b)). The rela-
tionship between the objective of edge and timber on the one hand (Figs. 10.8(a)
and 10.8(c)) and old growth on the other hand (Figs. 10.8(b) and 10.8(c)) is not
inverse, but is on some occasions in harmony while on other occasions there is
a conflict. This is logical because the Pareto-front has a maximum for the edge
objective function when the level of old growth species and timber production
is average and is minimised where the other two objectives are maximal.
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(a) Timber vs old growth and edge


(b) Old growth vs timber and edge


(c) Edge vs old growth and timber


Figure 10.8: Visualisation of the conflicts between the
three objectives: timber volume, abundance of old growth
species and abundance of edge-dependent species







10.4 Conclusions 135


10.4 Conclusions


The integration of GA and GIS offers clear potential for spatial decision
support systems. The functionality of both modules fit together and can
remain in two entities. This ensures flexibility for the SDSS.
Solving a simple spatial problem is not efficient because the problem is
too easy to solve and in the initial population most of the solutions are
already generated. However, when the size of the problem increases, the
advantage of genetic algorithms becomes apparent: it is able to generate
solutions closer to the Pareto-front in a short time. Solving a real-world
application again shows that the discreteness of the forest management
problem causes the lack of spread along the Pareto-front. The solutions
are all centred in the middle. If the extreme solutions are taken as
alternative, the plans do appear valid: for the timber scenario, clearly
more stands are scheduled for clear felling, whilst for the old growth
scenario, more stands are left. For the edge-dependent problem, the
alternative resembles a checkerboard pattern, and half of the forest is
cut. Clearly the solution is not optimal yet, and it is thought that this
is caused either by insufficient population sizing or the linkage problem.
These two problems will be handled in detail in Chapter 12.
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Part III


Advanced genetic
algorithms
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Chapter 11
Estimation of distribution
algorithms


11.1 Deceptiveness in genetic algorithms


In simple genetic algorithms the building blocks are processed implicitly. This
has several consequences: (1) the encoding strategy must be appropriate for the
problem at hand, and (2) the operators that are used during the evolutionary
optimisation process should preserve the building blocks. If the decision vari-
ables are independent of each other or when the defining length of the schemata
of the building blocks is low, then the classical crossover operators can properly
mix the building blocks to get Pareto-optimal solutions.


For some optimisation problems though, decision variables are dependent on
other variables. Under those conditions, it may occur that the partial schemata
fitness is lower than the fitness of the complete schema. Suppose the following
schemata with length l (Goldberg, 1989):


∗ ∗ 0 ∗ ∗1 ∗ ∗
∗ ∗ 0 ∗ ∗0 ∗ ∗
∗ ∗ 1 ∗ ∗0 ∗ ∗
∗ ∗ 1 ∗ ∗1 ∗ ∗


and suppose that the global optimum contains the schema 11. Solutions con-
taining the other schemata are suboptimal solutions. This means that the fitness
of schema 11, f11 is larger than that of schema 01, f01, schema 10, f10 and than
that of schema 00, f00. If however for the partial schema 0∗, ∗0, 1∗ and ∗1
holds that f(0∗) > f(1∗) and f(∗0) > f(∗1), then the genetic algorithm might
be fooled because of the ‘wrong’ sampling information. If f00 ≥ f01 and the
initial proportion of 00� 01 then the population converges on a local optimum.


139







140 Dealing with deceptiveness


This type of problem is referred to as a deceptive problem, because the
partial fitness of the schemata deceives the genetic algorithm and inhibits con-
vergence towards global optima. This also occurs in nature and is referred to
as epistasis by biologists. Epistasis occurs when two genes are evaluated sepa-
rately and are ‘useless’ that way but when they are evaluated as a whole their
function is suddenly extremely important to the organism.


Epistasis leads to disturbed genetic algorithm behaviour especially when
the order or the defining length of the schemata showing deceptiveness is long.
When there is a higher order building block, the bits that make up the optimal
schema will never be linked under the influence of a standard crossover operator,
and thus the optimal solution cannot be found.


Epistasis is called the ‘linkage problem’ in the domain of evolutionary al-
gorithms (Mitchell, 1996; Goldberg, 1989; Falkenauer, 1998). Bosman and
Thierens (1999) define linkage for the binary representation as ‘the structural
cohesion of the bits in the coding string with respect to the search space’. The
aim of linkage learning is to arrange the genes of which the building block is
composed, together so that the crossover operator does not break the building
blocks.


11.2 Research rationale


In real-world applications, schemata are more often than not loosely
coupled (Harik, 1997). Theoretical studies (Thierens & Goldberg, 1993)
have shown that genetic algorithms ignoring possible linkage patterns
reduce the exploitation of the problem structure (Bosman & Thierens,
1999).
The abundance of edge-dependent species was maximised using sim-
ple single (Chapter 6) and multiple objective genetic algorithms (Chap-
ter 10) and in both cases suboptimal solutions were derived. This might
be due to loosely coupled building blocks. Because of the spatial rela-
tionship between the data, the genes that belong together might be far
apart in the chromosome. This was also noted by Van Dijk et al. (2000):
they designed a specialised crossover operator for a map-labelling prob-
lem in GIS. The relation of one stand to another stand can be either
a one-to-one relationship, indicating complete independence, a one-to-
many relationship, indicating epistasis or a many-to-one relationship,
which arises when several parameters are represented by one building
block (Falkenauer, 1998). If there is complete independence, the prob-
lem can be solved using simple genetic algorithm strategies. In the other
two cases, the simple approach might fail. This chapter addresses the
problem of a one-to-many relationship and answers the following re-
search question: “Is there a one-to-many relationship between the genes
for forestry related problems?”
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11.3 A short review of linkage learning


11.3.1 Using tailor-made representations or operators


In linkage learning there are two lines of research. In the first class of techniques
various reordering operators are designed in order to bring the genes of the
building blocks together.


Techniques to preserve linkage information have been proposed quite early.
Both Holland (1975) and Goldberg (1989) propose the use of an inversion and a
reordering operator to bring the composing genes of the building blocks together.
This inversion operator chooses two positions in the chromosome at random
and switches the allele values. Through random chance, it may occur that the
defining length of a schema is shortened and therefore preserved after crossover.
This operator, however, is not very successful, as selection drives the population
towards convergence long before the genes are brought together (Pelikan et al.,
2000b).


A second method is the messy genetic algorithm (messy GAs) (Goldberg
et al., 1992, 1993). Messy genetic algorithms do not work using a fixed-length
chromosome but instead use a variable length chromosome where each gene is
defined by its position (locus) and its value (allele). In each chromosome it
is possible for some loci to be missing (underspecification) and others to be
specified more than once (overspecification), hence the name ‘messy’. There
are two phases: the primordial phase where initially the population is formed
through enumeration of all possible schemata of the order k, which has to be
known or guessed in advanced. In the juxtapositional phase the chromosomes
are recombined taking into account the under and overspecification. Mitchell
(1996) points out that enumerating all schemata of order k is infeasible. Gold-
berg et al. (1993) and Kargupta (1995) replaced the complete enumeration with
a probabilistically complete initialisation, but Mitchell (1996) shows that even
with this initialisation phase the initial population size grows exponentially with
the order of the building blocks.


A third approach in this framework is the Linkage Learning Genetic Al-
gorithm (LLGA) (Harik, 1997). Harik (1997) designed a specialised crossover
operator that uses the linkage information for the recombination phase and a
probabilistic expression method to supplement the messy GA. The LLGA per-
forms well for exponentially scaled problems but Pelikan et al. (2000b) mention
that it is not very efficient from a theoretical point of view for uniformly scaled
building blocks.


11.3.2 Probabilistic modelling


The setting and choice of crossover and mutation operators itself is a difficult
task. This together with a need to better understand the behaviour of a ge-
netic algorithm led to the creation of so-called breeder algorithms (Mühlenbein
& Schlierkamp-Voosen, 1994) where no recombination operators senso stricto
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are used. The group of these probabilistic genetic algorithms is referred to as
Estimation of Distribution Algorithms (EDAs) (Larranaga & Lozano, 2002).


In EDA, the population is seen as a sample from the solution space and
through the use of probability density functions, the relationship between the
genes is explicitly formulated. These relationships ensure that the genes of each
building block are kept together during recombination.


A distinction between the different probabilistic models can be made ac-
cording to the degree of interaction between the genes they allow. The simplest
models, such as by Harik et al. (1998) and by Baluja and Caruana (1995), do
not include any interaction. These probabilistic models assume that all decision
variables are independent and build the density function across the population
for each gene independently. In the compact GA (cGA) (Harik et al., 1998)
the selection step is the same as in the regular evolutionary algorithm. After
selection a probability vector is created. This vector represents the probability
that the gene on that position has an allele value of 1. The probability is cal-
culated by scanning across the population and counting the number of times
a 1 is encountered on that position. The basic idea is that, for a single ob-
jective problem, the population converges and that ultimately the probability
vector will consist only of probability zero and probability one. According to
these probabilities new individuals are created. The behaviour of the cGA is
in essence that of a simple genetic algorithm with uniform crossover. As these
models are designed for univariate relationships, they do not perform well when
there are interactions between the variables (Pelikan et al., 2000b). Bivariate
models, such as by Baluja and Davies (1997) allow interactions between two
genes and can effectively solve problems with order 2, but are insufficient to
solve higher order problems. Multivariate models allow multiple interactions
and can be represented by trees, clusters or Bayesian networks (Mühlenbein &
Mahnig, 1999; Harik, 1999; Pelikan et al., 2000b).


In the context of geographical information systems, the use of discrete
multivariate models seems appropriate. The discrete nature of a stand
translates naturally into a discrete model. The spatial linkage between
one stand and the others can be described as a one-to-many relation-
ship. This relationship might be expressed by multivariate probabilistic
models. It is hypothesised that the probability density structure of the
problem can be represented either (1) by clusters of several genes form-
ing building blocks that do not have any further interaction between
them or (2) by a network if there are conditional dependencies between
the clusters (Fig. 11.1). The second research question addressed in this
chapter is thus:


• if there is epistasis, can the relationship be explained by using
clusters or by a full network structure?
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Figure 11.1: Possible probabilistic structures for the representation of
the spatial structure of the forest: (a) as in the Extended Compact GA
and (b) as in the Bayesian Optimization Algorithm


11.4 Probabilistic models used for EDAs


Two probabilistic models will be investigated: the Extended Compact Genetic
Algorithm (ECGA) by Harik (1999) because it represents multivariate relation-
ships as clusters and the Bayesian optimization algorithm (Pelikan et al., 2000b)
that allows a full network structure.


11.4.1 The Extended Compact Genetic Algorithm


The Extended Compact GA (ECGA) was designed by Harik (1999) and extends
the compact GA by Harik et al. (1998) because it allows multivariate interactions
whereas the compact GA does not allow gene interaction. The procedure of the
ECGA is as follows: first the initial population is generated and the mating pool
is selected. Based on the mating pool, the probabilistic model is built. Because
there is a trade-off between the goodness-of-fit of a model to represent the data
set on the one hand and the model size on the other hand, different measures
to determine the best model can be used. The size of the model in ECGA is
determined by the memory space needed and is called the model complexity
(Eq. 11.1). The compressed population complexity (Eq. 11.2), which is based
on the Shannon-entropy (Shannon, 1948) (Eq. 11.4), corresponds to how much
the data can be compressed and thus how good the model represents the data
set. The Combined Complexity (CC) (Eq. 11.3) is the sum of the two previous
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scoring functions and is the same as the Minimum Description Length (MDL)
(Rissanen, 1989). The CC thus favours the least complex models that fit the
data best.


MC = (log2(N + 1))×
∑


i


(2Si − 1) (11.1)


CPC = N ×
∑


i


entropy(Mi) (11.2)


CC = MC + CPC (11.3)


where


entropy(Mi) = −
∑


i


pi × log2 pi (11.4)


where N is the population size, pi is the probability of having an allele value of
1 on locus i, Si is the cardinality of subset i and Mi is the marginal distribution
of this subset.


Initially, the simplest model, one not including any interaction, is generated
and the CC is calculated. Then the genes are combined on a second level by
making one group of two bits and all the other bits are left independent, and
again the CC is calculated for each of these models. According to the steepest
descent search, the model that shows the largest decrease of CC is retained for
further expansion. All genes are added to the model in this way until there is no
further decrease in CC. Once the probabilistic model is generated, a crossover-
like operator is used. This operator shuffles the subsets between all parents and
generates new offspring (Fig. 11.2). Note that in this way no mutation operator
is applied. When the size of all subsets is equal to one, then this operator is the
same as a uniform crossover over the complete population (Alg. 2). An example
of the ECGA is given in Appendix D.


Figure 11.2: The crossover operator in the Extended Compact Genetic
Algorithm: for each subset a parent is randomly selected from the mat-
ing population. The corresponding subset from the parent is transferred
to the offspring.
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Algorithm 2: The Extended Compact GA (Harik et al., 1999)
set t← 0;
while termination criteria not met do


select promising string S(t) from population P (t);
create initial model M ;
calculate the CC;
while CC decreases do


create new model by expanding subsets from former model M ;
calculate CC;


end
generate a set of new strings O(t) according to best model M ;
create population P (t + 1) by replacing some strings from P (t) by
O(t);
set t← t+ 1;


end


11.4.2 The Bayesian Optimization Algorithm


A short introduction to Bayesians networks A Bayesian network is an
efficient tool to build a model from a domain with a certain degree of uncertainty
and has been used extensively in expert networks (Jensen, 1996). It is a directed
acyclic graph (DAG) where each directed edge shows the conditional probability
existing between the two connected nodes. A Bayesian network can encode a
joint probabilistic distribution function formally (Heckerman et al., 1995).


In order to learn Bayesian networks semi-automatic methods are used to
construct or modify them using prior knowledge. Two types of learning can be
defined (Jensen, 1996):


• quantitative learning: determining the structure of the network;


• qualitative learning: determining the parameters of the network.


Batch learning is a technique where the learning process is based on a data set.
Because the data set is finite, the probability distribution over the population
does not always represent the true distribution. In that case, even if the model
fits the database well, the model is still incorrect. A way around this is to
determine the joint probability of a network given the database. This is usually
assessed using Bayes’ rule (Jensen, 1996) (Eq. 11.5).


P (B | D) =
P (D | B) · P (B)


P (D)
(11.5)


with B a prior hypothetical network and D the data set, and P (B | D) the
conditional probability that network B is present given data set D, P (D | B)
the conditional probability that the data set D is derived from network B, P (B)
and P (D) the probability distribution over respectively network B and the data
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set D. The joint probability of network B and data set D occurring together is
then given by Eq. 11.6:


P (B,D) = P (D | B) · P (B) (11.6)


If there are only two categories, e.g. an experiment of tossing a fair or biased
coin, the probability of having a head is π and the probability of having a tail
is 1− π, with π some prior knowledge about whether the coin is fair or biased,
and by how much the coin is biased. The probability mass function over n coin
tossing trials is then a binomial distribution (Eq. 11.7)


P (x | π) =
(
n
x


)
πx · (1− π)n−x (11.7)


with x the number of heads and n the number of trials. Instead of assigning
discrete values to π, it is also possible to characterise π as a probability density
function, and use this function as prior knowledge. A distribution that is often
used for binomial probabilities is the β-distribution, because if a β-distribution
is used as prior in combination with a likelihood function, the posterior distri-
bution is also a β-distribution. If the prior β-density function has two positive
parameters (a, b) then the β-density function is written as in Eq. 11.8:


P (π) ∝ πa−1 · (1− π)b (11.8)


The posterior β-distribution function, after n trials with x successes is then
characterised by the parameters (a+ x, b+ n− x) (Eq. 11.9):


P (π | x, n) ∝ πa+x−1 · (1− π)b+n−x (11.9)


This can be extended to the multinomial case, where the number of categories
k > 2. Under those conditions, the multinomial variant of the β-distribution
is used, and this is known as the Dirichlet distribution (Congdon, 2001). Let
x1, x2, . . . , xk denote the counts from k > 2 categories of the outcome. Then
the multinomial likelihood function specifies (Congdon, 2001):


p(θ1, θ2, . . . , θk | α1, α2, . . . , αk) ∝
k∏


j=1


θ
xj


j (11.10)


where the θj , the probabilities of belonging to one and one only of the k classes,
sum to 1. The conjugate prior density function is a density for θ1, . . . , θk speci-
fied in terms of positive parameters α1, · · · , αk, namely


p(θ1, θ2, · · · , θk | α1, α2, · · · , αk) ∝
k∏


j=1


θ
αj−1
j (11.11)


Suppose the following initial values c1, . . . , ck are assigned to α1, α2, . . . , αk


then the posterior density of the θ1, · · · , θk is again a Dirichlet distribution with
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parameters c1+x1, c2+x2, · · · , ck +xk. From the properties of the Dirichlet dis-
tribution, the posterior means of the multinomial probabilities, for i = 1, · · · , k
are then


xi + ci
X + C


(11.12)


with X =
∑k


i=1 xi and C =
∑k


i=1 ci. Often the ci are assumed equal to each
other, i.e. ci = C/k for all i (Bishop, Fienberg, & Holland, 1980).


This allows to incorporate knowledge to various degrees by changing the
expected cases for each category. Imagine there is a previous study of a similar
problem, then the information from that study can be used as prior values for
cj . The smaller the ratio between the expected cases ci and the observed cases
xi the more weight is attached to the prior knowledge. If however these values
are unknown or the information from the study has a high degree of uncertainty
then setting cj equal to 1 and C = k, will ensure that although the information
is used to some extent, it can be swamped by the new information from the
current data set.


One measure based on this rule is the Bayesian Dirichlet measure (Heck-
erman et al., 1995) (Eq. 11.13). This measure combines prior knowledge and
information from the data set in order to determine what the posterior proba-
bility of the presence of a certain model is together with the data set.


P (D,B | ζ) = P (B | ζ) ·
n∏


i=1


qi∏
j=1


Γ(N
′


ij)
Γ(N ′ij +Nij)


ri∏
k=1


Γ(N
′


ijk +Nijk)
Γ(N ′ijk)


(11.13)


Γ(n) = (n− 1)! (11.14)


with ζ some background information, ri is the number of states node Xi can
take and qi the number of states the parents Pai of node Xi can take. The jth


instance of the parents of Xi is written as Paij. Nij is the number of cases in the
data set D that the parents are in instance j. Nijk denotes the number of cases
in the data set D where Paij = k, in other words the number of cases where
the node Xi is in state k given that the parent set is in its jth state. N


′


ij and
similarly N


′


ijk denote the prior information about the number of instances of
resp. Paij and Paij = k. Finally, the gamma function (Eq. 11.14) is the discrete
gamma function for positive integers. This gamma function is sometimes called
the factorial function (Spiegel, 1980).


When applying this measure there is a large degree of freedom to set the
level of incorporating the prior knowledge. N


′


ij and N
′


ijk together with P (B | ζ)
specify the current knowledge about the domain. The specification of these
values, however, is very difficult for all instances of i,j and k. If uninformative
exponents are used by setting N


′


ijk = 1 and since N
′


ij =
∑ri


k=1N
′


ijk then N
′


ij =
k. The weight attached to the knowledge from the data set is much higher than
the weight attached to the prior knowledge. If the number of cases Nij and
Nijk is much larger than N


′


ij and N
′


ijk then the data will tend to swamp the
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prior knowledge (Congdon, 2001). If all exponents are set to 1, and the prior
distribution over the networks is uniform a special case of the BD-measure, the
K2-measure (Eq. 11.15), is derived.


P (D,B | ζ) = P (B | ζ) ·
n∏


i=1


qi∏
j=1


Γ(k)
Γ(k +Nij)


ri∏
k=1


Γ(1 +Nijk)
Γ(1)


(11.15)


and combining Eqs. 11.15 and 11.14 leads to Eq. 11.16:


P (D,B | ζ) = P (B | ζ) ·
n∏


i=1


qi∏
j=1


(k − 1)!
(k − 1 +Nij)!


ri∏
k=1


(Nijk)! (11.16)


This expression can also be written in a logarithmic form and then all products
become sums. Each change in network structure can then be evaluated rather
quickly.


An example of probabilistic modelling at hand Suppose the following
population of chromosomes (Table 11.1) and the network structure (Fig. 11.3):


Table 11.1: An example population with 11 individuals and two pos-
sible classes


0 0 1 0
1 0 1 0
1 1 0 1
1 0 1 1
0 0 1 1
1 0 1 1
1 1 1 1
0 0 0 1
1 0 0 0
1 0 0 0
0 0 0 0


Node or gene 1 is a top node and has no parents (Fig. 11.3). As all the
chromosomes in the population can be represented by either schema 1 ∗ ∗∗ or
by schema 0 ∗ ∗∗, the number of cases Nij for the empty parent set of node 1 is
NPa1=∅ = 11. The number of cases where X1 = 0 and the parent set is empty is
then : NX1=0∧Pa1=∅ = 4 and the number of cases where X1 = 1 and the parent
set is empty is NX1=1∧Pa1=∅ = 7 . Node 2 is also a top node and therefore
NPa2=∅ = 11. The number of cases where X2 = 0 and the parent set is empty
is: NX2=0∧Pa2=∅ = 9 and the number of cases where X2 = 1 and there is an
empty parent set is NX2=1∧Pa1=∅ = 2. Node 3 is conditionally dependent by the
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Figure 11.3: An example network with four nodes and the conditional
dependencies between the nodes


parent set Pa3 = {X1, X2} and consequently there are 4 possible instances of
the parents set: {0, 0}, {0, 1}, {1, 0}, {1, 1}. For these four instances the number
of cases where X3 = 0 and X3 = 1 has to be counted:


NX3=0∧Pa3={0,0} = 2
NX3=0∧Pa3={0,1} = 0
NX3=0∧Pa3={1,0} = 2
NX3=0∧Pa3={1,1} = 1
NX3=1∧Pa3={0,0} = 2
NX3=1∧Pa3={0,1} = 0
NX3=1∧Pa3={1,0} = 3
NX3=1∧Pa3={1,1} = 1


so thatNX3∧Pa3={0,0} = 4, NX3∧Pa3={0,1} = 0, NX3∧Pa3={1,0} = 5 andNX3∧Pa3={1,1} =
2. Node 4 has node 3 in the parent set Pa4 = {X3} and there are two possible
instances of this parent set: {0}, {1}. The counts are then:


NX4=0∧Pa4={0} = 3
NX4=0∧Pa4={1} = 2
NX4=1∧Pa4={0} = 2
NX4=1∧Pa4={1} = 4


and NX4∧Pa4={0} = 5 and NX4∧Pa4={1} = 6. Since for all nodes there all only
two states k = 2 the K2-measure 11.15 reduces to:


P (D,B | ζ) = P (B | ζ) ·
n∏


i=1


qi∏
j=1


1
(1 +Nij)!


ri∏
k=1


(Nijk)! (11.17)
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So for this example


P (D,B | ζ) ∝ 7! · 4!
12!


· 2! · 9!
12!


· 2! · 2!
5!
· 2! · 3!


6!
· 1! · 1!


3!
· 3! · 2!


6!
· 2! · 4!


7!
∝ 5.62 10−15


This indicates the probability for network B to be jointly present with data set
D. If the network is changed by deleting the arc between node 1 and node 3,
and inserting an arc between node 1 and node 2, then P (D,B | ζ) = 6.10 10−14


and thus it is more likely that the second network represents the conditional
relationships better than the first network.


The Bayesian Optimization Algorithm The Bayesian Optimization Al-
gorithm uses a Bayesian network to represent the conditional dependencies be-
tween the genes. Because the search for the optimal network is NP-complete
(Chickering et al., 1995), Pelikan et al. (2000b) implement an additional pa-
rameter constraining the number of incoming edges in the DAG. This reduces
the search space and simplifies the construction of new networks. The initial
network is empty and the new networks are created by adding, deleting or in-
verting the arcs. Using the logarithmic form of the BD-measure, each change is
evaluated quickly. The search for new networks can be based on any heuristic
search technique and in the Bayesian Optimization Algorithm a simple greedy
search technique is used. Once the model is built, the marginal probabilities
for each gene can be calculated and used to generate new values for each of the
genes according to these probabilities. A general description of the Bayesian
Optimization Algorithm is given in Alg. 3. In Appendix D an example of the
network construction and creation of new offspring is given.


Algorithm 3: The Bayesian Optimization Algorithm (Pelikan et al., 2000b)
set t← 0;
while termination criteria not met do


select promising string S(t) from the population P (t);
construct the network B using a chosen measure and constraints;
generate a set of new strings O(t) according to the joint distribution
encoded by B;
create a new population P (t+1) by replacing some strings from P (t)
by O(t);
set t← t+ 1;


end







Chapter 12
Case study: Maximising the
abundance of badgers with EDAs
and GIS


12.1 Research rationale


Because in the previous case studies the best solutions after optimising
the abundance of edge-dependent species were suboptimal, the effect of
the estimation of distribution algorithms on this problem is investigated.
It is assumed that loose linkage is (partially) responsible for the subop-
timal solutions. Loose linkage cannot be detected unless the application
of specialised algorithms or operators results in better performance than
simple genetic algorithms and standard crossover operators.


12.2 Methodology


The original source code of Extended Compact GA (ECGA) (Lobo & Harik,
1999) and the Bayesian Optimization Algorithm (BOA) (Pelikan, 2000) was
adapted for the real-world application. ECGA was also implemented in Java,
but as a Java-implementation is not so fast in execution time as a version in C
the original source code was used.


In order to sample the population properly, large population sizes are re-
quired, otherwise wrong correlations may be built into the model. For both
ECGA and BOA, the population size was fixed to 1000. Larger population
sizes were not considered because fitness evaluations are very costly in terms of
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computing time. For BOA it was assumed that the maximum number of incom-
ing edges is 5, consequently the order of the building blocks is at most 5. For
both algorithms, the crossover probability was 1 and mutation probability was
zero. In ECGA, tournament selection was used with a comparison set of size
16. As the selective pressure was high, no elitism is needed. In BOA, truncation
selection was applied with τ = 50%, this means that half of the population is
replaced by the offspring. Because of the lower selective pressure, elitism was
used in this case. These values are reported as suitable settings for the two
algorithms (Harik, 1999; Pelikan et al., 2000b).


12.3 Results and discussion


12.3.1 EDAs versus simple GA


Both EDAs perform significantly better than the simple GA with elitism (p =
0 < 0.05) (Table 12.1). This suggests that the building blocks cannot properly
mix using a simple GA and a standard crossover operator. Therefore advanced
algorithms taking into account the linkage information are needed to solve this
type of real-world applications more efficiently. Implicit processing of building
blocks does not guarantee that the correct building blocks are found in the
population.


Table 12.1: The mean number of badger setts and the variance for
simple GA (sGA), the Extended Compact GA (ECGA) and the Bayesian
Optimization Algorithm (BOA).


Algorithm Mean Std Dev
sGA 72.15718 0.4295
ECGA 104.73810 0.3052
BOA 97.25322 0.5845


The first research question is thus answered:


• for this type of real-world applications, building blocks have a
higher order;


• and there is loose linkage or epistasis.


This means that linkage learning is helpful to find optimal solutions when
maximising the abundance of edge-dependent species.
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12.3.2 ECGA versus BOA


To address the second question: ‘How can the relationship between the
genes be represented and what structure leads to the highest objective
function value?’, the underlying structure from the two algorithms, either
a cluster or a network, and the objective function values are analysed.
As a good solution within acceptable time limits is more preferable than
the optimal solution where one has to wait a long time, the maximum
number of generations was used as stopping criterion and the output
after 40 generations was used to compare the algorithms.


ECGA A solution to which the population converges in one of the repetitions
is given in Fig. 12.1. This solution has a perimeter length of 83895 m and
this corresponds to 95.34 badger setts. The average abundance in the region of
Aberdeen is 21 setts/100 ha (Cresswell et al., 1990) and for Kirkhill forest this
results in 104.16 setts. The value obtained with the genetic algorithm is thus
very similar to the average value for the region of Aberdeenshire. The area of
the forest that is clear felled amounts to 237.1451 ha which is approximately
half of the forest.


Figure 12.1: An example solution found by ECGA


ECGA clusters the stands in 99 groups. The average number of stands in
each cluster is initially around 4 (Fig. 12.2). The size of the cluster increases
a little during the first 5 generations but quickly declines afterwards over the
number of generations. This is caused by population convergence: as the indi-
viduals are more and more similar due to selection, the model cannot detect any
correlations. The model found in the first generation for the previous solution
is shown in Fig. 12.3.
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Figure 12.2: Evolution of average size of the clusters or building blocks
for ECGA over the number of generations: the average cluster size de-
creases as the population converges


Figure 12.3: An example of a linkage model found in the first genera-
tion. There are 99 different clusters, with an average building block size
of 4.1 genes
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The chromosomes from the best solutions over the different repetitions are dif-
ferent from each other. Upon closer examination, it appears that parts of the
chromosomes are complementary. For example, stands 22 and 23 have a different
value in the final solutions from all repetitions and are each other’s complement.


Repetitions
1 2 3 4 5 6 7


22 0 1 1 1 0 1 1
23 1 0 0 0 1 0 0


Next to stands 22 and 23, other stands feature the same phenomenon: the 89
stands that are a complement to their neighbour are coloured in red in Fig. 12.4.
Assuming that for these stands their linkage is only with their neighbour, the
propagation of the building blocks for 22% of the genes of the chromosome
would pose no problem because the genes are already closely coupled. The rest
of the chromosome will have linkage with stands further away inducing loose
linkage and this implies that specialised operators or algorithms are required
indeed. These complementary chromosomes were also encountered in the grid
problem: there the best local optimal solution was the complement of the global
optimal solution. This implies that for the real-world application, as for the grid
problem, the fitness surface has local suboptima.


Figure 12.4: Core stands after running ECGA
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BOA The best solution found in one of the repetitions after 40 generations
is depicted in Fig. 12.5. The perimeter length for this solution is 77243 m, and
this amounts to 97.44 badger setts in Kirkhill forest, again close to the average
number of badger setts reported for Aberdeenshire. The total area cut is 195
ha, which is much less than the area clear felled with ECGA (237 ha).


Figure 12.5: An example solution found by BOA


The structure found by BOA is a complex network (Fig. 12.6).
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0 ← 2, 99, 368, 321


1 ← 54, 365, 363, 58


2 ← 367, 145, 353, 31


3 ←


4 ←


5 ← 71, 15


6 ←


7 ← 317, 113, 291, 41


8 ←


9 ← 216, 261, 347, 316


10← 21, 204, 5, 305


11← 8


12← 19, 45, 97, 321


13← 170, 298, 109, 11


14← 334, 161, 15, 277


15← 59


16← 163, 363, 194, 158


. . .


Figure 12.6: Several forest stands are grouped together to form a
building block. In this figure for example stands nos. 54, 58, 363, 365


Because the network structure is complex, it is very difficult to present a
physical interpretation of the structure. Still, as in the case of ECGA, comple-
mentary stands are present (Fig. 12.7). In BOA this number of complementary
stands is larger than for ECGA: there are 105 complements in total.


Figure 12.7: Core stands after running BOA


BOA detects building blocks up to order k, this being the number of incoming
edges of a node. This parameter needs setting because finding the optimal
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network is NP-complete (Chickering et al., 1995) and by using this parameter
the search space is drastically reduced. However, for a real-world problem this
can be a serious limitation, as usually the size of the building blocks is not
known a priori. If the size is limited up to a certain order k and building blocks
of higher order are present, then the population size needs to grow exponentially
(Pelikan et al., 2001). The average number of incoming edges in the network is
initially around 5 (Fig. 12.8) and declines to an average number of 4.5 incoming
edges over time. It can be put forward that the size of the building blocks
is not larger than 5 because ECGA uses no prior information and found no
building blocks larger than 5. This makes it very likely that the assumption for
the order of the building block for BOA was valid. The decline in size of the
building blocks is slower than in the case of ECGA because the selective pressure
in ECGA is higher and this drives the population much quicker to convergence
(Fig. 12.9). This convergence probably leads to suboptimal solutions but has
the advantage that better solutions are found in a shorter time span.


Figure 12.8: Evolution of average size of the clusters or building blocks
for ECGA over the number of generations: the average cluster size de-
creases as the population converges
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Figure 12.9: Mean maximum and average values over all repetitions
for ECGA and BOA
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Discussion The results for ECGA are better than for BOA (Fig. 12.9). After
statistical analysis it was found that ECGA is significantly better (p = 0.05)
than BOA. From Fig. 12.9 can be seen that the best individual and the average
individual have not yet converged at generation 40 in the case of BOA. ECGA
on the other hand converged already around generation 25.


Three possible causes can be put forward for the slow convergence of BOA.
First of all, it is possible that the number of generations is not large enough,
but this can be rejected on the basis of calculations by Pelikan et al. (2001).
They calculated that for a problem with 396 bits, the time until convergence is
around 35 generations. A second reason might be that the selective pressure in
BOA is too low (oral comm. Pelikan, 2002) because the original settings advised
by Pelikan (2000) were used.


Finally the population size could be too small (Pelikan et al., 2001). They
calculated that the population size required for a problem with a length of 396
bits and building blocks of order 5 is around 10000 individuals when using BOA.
In order to increase the population size two options are open: the population
size can be set arbitrarily high, thereby using a lot of computer time, but this
might cause even slower convergence as Lobo (2000) showed in his experiments.
Another option that can be pursued is to use a parameter-less GA (Lobo, 2000).
In that case one does not need to worry about the population size at all. One
possible disadvantage is that this approach needs interaction with the user, who
needs to decide when the evolution has to terminate.


One of the main problems that needs to be addressed before attempting any
of these approaches is the reduction of the time span of the fitness evaluations.
As 1 fitness evaluation takes up to 5 s on a 1.3 Ghz AMD-Athlonprocessor,
extremely large population sizes should be avoided. This problem will be ad-
dressed in Chapter 13.
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12.4 Conclusion


It can be concluded that the use of linkage learning for the forest manage-
ment problem offers opportunities. The two linkage learning algorithms
are significantly better than the simple GA. The real-world application
suffers from loose linkage: the genes that make up a building block are
not close together and the implicit processing of the building blocks does
not guarantee optimality.
ECGA processes building blocks with an average size of 4.5 at the be-
ginning of the evolution and the size decreases to 1 over time due to
population convergence. The size of the building block is only deter-
mined by the probabilistic model. ECGA quickly converges due to its
high selective pressure. Already at generation 25 the population con-
verges. When the linkage model is physically interpreted, it is concluded
that the number of badger setts found by ECGA approximates the av-
erage number of badger setts in the Aberdeenshire region. The cutting
pattern in the forest resembles a checkerboard and a little more than
half of the forest is clear felled. The solutions found by the different rep-
etitions are not always the same. On the contrary, 22% of the bits form
a group with their neighbour and are complementary to the same bits in
other solutions. This indicates that for the other bits groups are formed
with stands located further away and that linkage learning is necessary.
BOA finds very complicated network structures with on average 5 in-
coming edges at the beginning of the evolutionary process and 4.5 near
the end of the evolution. This is the same size as in ECGA. BOA did not
converge before the end of the evolution and the solution quality is still
inferior to that of ECGA, probably due to insufficient population sizing
and a lower selective pressure. The physical interpretation is much more
difficult, but as for ECGA the genes from the chromosomes from different
repetitions are complementary to some parts of the chromosomes.
In order to investigate the behaviour of the algorithms further the fit-
ness evaluation time should be reduced as this currently is a major im-
pediment for using larger population sizes. This will be dealt with in
Chapter 13.
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Chapter 13
Fitness inheritance


13.1 Introduction to fitness inheritance


In many real-world applications of evolutionary algorithms, the fitness of an
individual has to be derived using complex models and time-consuming compu-
tations. Especially in the case of multiple objective optimisation problems, the
time needed to evaluate these individuals increases exponentially (Chen et al.,
2002) due to ‘the curse of dimensionality’ (Bellman, 1961) and this leads to a
slower convergence of the evolutionary algorithms. For example, the determi-
nation of the edge between the cut and old growth area takes up to 5 s on a
1.3 Ghz AMD-Athlonprocessor. It is not feasible to use such time-consuming
models with large population sizes unless the time to evaluate the objective
functions is reduced.


Fitness inheritance is an efficiency enhancement technique that was origi-
nally proposed by Smith et al. (1995) to improve the performance of genetic
algorithms. Sastry et al. (2001) and Chen et al. (2002) have developed analyt-
ical models for fitness inheritance. In fitness inheritance an offspring receives
a fitness value that is inferred from the fitness values of its parents instead
of through full fitness evaluation. If inferring the fitness value is faster than
evaluating the model needed to determine the objective value, then fitness in-
heritance would speed up the optimisation process, unless the noise resulting
from the fitness inheritance procedure is influencing the search behaviour of the
genetic algorithm.
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13.2 Theoretical foundation of fitness inheritance


13.2.1 Single objective fitness inheritance


Smith et al. (1995) were the first to introduce the technique of fitness inheritance.
They point out that for some (and probably most) real-world optimisation prob-
lems, genetic algorithms cannot be applied because the cost of determining the
fitness values for an entire population is too high. Earlier on, Grefenstette and
Fitzpatrick (1985) tried to reduce the evaluation time by partially evaluating
each individual instead of completely evaluating it and by allowing the genetic
algorithm run for more generations. They concluded that it is more effective to
evaluate fast noisy fitness functions for more generations than to evaluate the
slow but exact functions for fewer generations. Smith et al. (1995) attempted
a similar procedure, but instead of evaluating parts of the individuals, they
evaluated only part of the population. In order to derive a fitness value for
the offspring that is not evaluated they proposed two methods: the average
inheritance, where the offspring’s fitness is calculated as the average value from
both parents, and the proportional inheritance where the average is weighed
according to the similarity between the offspring and their parents.


Smith et al. (1995) applied the schema theory to explain why the genetic al-
gorithm is not disturbed by the noisy fitness function and base their calculations
on two characteristics of genetic algorithms:


• a child can inherit schemata common to both parents and in that case,
the schemata fitness values are correctly determined. The update of the
genetic algorithm then reflects the average fitness of the common schemata
in the individuals;


• a child can inherit schemata that are only present in one parent and this
leads to an approximate fitness value of those schemata.


In the case of fitness inheritance, the fitness values of those schemata are either
deemed constant in the case of average fitness inheritance, or linearly related to
the number of bits from the parents for proportional fitness inheritance.


For the bit-counting problem (One Max, page 58) they compared the be-
haviour of the conventional genetic algorithm with that of the inheritance tech-
niques. When all individuals were evaluated, the optimum (all ones) is reliably
reached after 10200 evaluations. In the case of the inheritance approaches this
was attained after only 2640 function evaluations. They argued that this might
be caused by the simplicity of the One Max problem and applied the same
techniques to an aircraft routing problem. For this real-world application, the
length of the flying route has to be minimised, while the aircraft has to avoid
detection by a threat along the route. Each time the aircraft was detected, a
penalty was added to the objective function. Their preliminary results were
that the best results were obtained if only one individual at each generation is
evaluated provided elitism is applied. This showed that fitness inheritance had
the potential to improve GA performance.
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Even though this approach seemed promising, it took another six years be-
fore this work was continued. Sastry et al. (2001) investigated the time to con-
vergence, population sizing and the optimal proportion of inheritance for the
One Max problem. The optimal proportion is the amount of inheritance that
can be used in such a way that the number of function evaluations is minimised.
They found that the time until population convergence is:


tconv =
π


2I


√
l


1− pi
(13.1)


with I the selection intensity, i.e. a measure for the selective pressure, l the
length of the chromosome and pi the fraction of the individuals that inherit
their value. The population size n can be written as:


n = −2k−1 log(ψ)
√
π


(1− p3
i )


√
σ2


f (13.2)


where k is the size of the building block, ψ is the failure rate or the rate that one
accepts for not reaching the optimal value and σ2


f is the variance of the noisy
fitness functions. This noise is caused by the incorrect fitness value for the
inheritance individuals. Finally, pi is once more the proportion of individuals
that inherit fitness values. They also determined that the optimal proportion
of inheritance p∗i lies between 54%− 55.8%. This is considerably less than what
Smith et al. (1995) indicated: they calculated that for the One Max problem the
proportion of inheritance could be raised up to 90% without loss of optimality.
By building these analytical models, Sastry et al. (2001) were the first to provide
a strong theoretical foundation for fitness inheritance.


13.2.2 Multiple objective fitness inheritance


Chen et al. (2002) extended the analytical model provided by Sastry et al. (2001)
to multiple objective problems. They included an extra parameterM to account
for the number of niches in the multiple objective problem. The problem for
which the population sizing model and the time to convergence was derived is
the bi-objective One Max problem. This problem is defined by :


Maximise
{
f1(s, x1) = l − d(s, x1)
f2(s, x2) = l − d(s, x2) (13.3)


where string s is the string to be evaluated, x1 and x2 are two fixed reference
strings, the string length is l and d(s, xi) is the Hamming distance between
string s and string xi. Chen et al. (2002) used as reference string x1 all ones
and as reference string x2 all ones except for the first four bits. Their model for
convergence time is:


tconv =
π


2I


√
l


1− pi


√
1 +


M − 1
l


(13.4)
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The population size can be determined as follows:


n = −2k−1 log(ψ)M
√
π


(1− p3
i )


√
σ2


f + σ2
N (13.5)


where σ2
N is the noise variance from the other niches. These models are very


similar to those by Sastry et al. (2001) and if M = 1 they reduce to the single
objective models.


Both models were experimentally tested on the bi-objective One Max prob-
lem. They found that when the inheritance proportion is smaller than 0.7, the
results fit the predicted convergence and population-sizing model, but that for
large inheritance proportions the models were no longer valid.


13.3 Research rationale


Other than the preliminary results for the aircraft routing problem by
Smith et al. (1995), there are no real-world applications that use fit-
ness inheritance. The question arises whether the efficiency enhance-
ment technique can cope with real-world applications. To investigate
this, both the average and proportional inheritance techniques will be
tested initially on a test suite of functions provided by Zitzler (1999)
and Zitzler et al. (2000). These functions pose different problems for
genetic algorithms and have been used extensively in literature. Finally
the proposed techniques will be applied to the case study of the harvest
scheduling problem in Chapter 14.


13.4 Methodology


13.4.1 Zitzler’s test suite


Zitzler (1999) and Zitzler et al. (2000) presented a test suite of problems that
pose certain difficulties to multiple objective genetic algorithms. This test bed
has been used extensively for the comparison of new algorithms and is regarded
as a benchmark in many papers. Hence it is used here to examine the behaviour
of genetic algorithms with and without fitness inheritance. Three functions from
the test suite are used because they represent three different categories of test
functions: convex, non-convex and discontinuous functions. The other three
functions from the test suite also fall under one of these three categories. The
three functions are listed below and are also depicted in Figs. 13.1 to 13.3.
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• Test function 1 (h1) has a convex Pareto-optimal front:


f1(x1) = x1


g1(x2, . . . , xn) = 1 +
9 · (


∑n
i=2 xi)


n− 1
(13.6)


h1(f1, g1) = 1−


√
f1
g1


where n = 30 and xi ∈ [0, 1]. The Pareto-optimal front is formed when g1
equals 1.


• Test function 2 (h2) is the non-convex counterpart of test function 1:


f2(x1) = x1


g2(x2, . . . , xn) = 1 +
9 · (


∑n
i=2 xi)


n− 1
(13.7)


h2(f2, g2) = 1−
(
f2
g2


)2


where n = 30 and xi ∈ [0, 1]. The Pareto-optimal front is formed when g1
equals 1.


• Test function 3 (h3) tests whether a genetic algorithm is able to cope with
discreteness in the Pareto-optimal front:


f3(x1) = x1


g3(x2, . . . , xn) = 1 +
9 · (


∑n
i=2 xi)


n− 1
(13.8)


h3(f3, g3) = 1−


√
f1
g1
−


(
f1
g1


)
sin(10πf1) (13.9)


where n = 30 and xi ∈ [0, 1]. The Pareto-optimal front is formed when g1
equals 1. The sine function introduces discontinuity in the Pareto-optimal
front but not in the objective space.
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Figure 13.1: Test function 1 is a convex function


Figure 13.2: Test function 2 is the non-convex counterpart of the first
test function







13.4 Methodology 169


Figure 13.3: Test function 3 is a discontinuous function. The discon-
tinuity is only present in the objective space


13.4.2 Parameter settings


The experiments were performed using a genetic algorithm with binary tour-
nament selection, one-point crossover with crossover probability of 0.8 and a
uniform mutation rate of 0.01. The population size was set to 100 and the
number of generations was set to 200. These settings are the same as in Zit-
zler (1999) with as sole difference the number of generations. The encoding
of the decision vector was also the same as in Zitzler (1999): an individual is
represented as a bit vector where each parameter xi is represented by 30 bits.
The crowding distance assignment procedure was used for sharing. The fitness
assignment applied was proposed by Deb et al. (2000) and equals the number
of solutions that dominate the current solution. All experiments were repeated
10 times. Since the same settings as in Zitzler (1999) were chosen, it is possi-
ble to check the implementation of the genetic algorithm implemented in this
dissertation as well as to test the behaviour of the fitness inheritance strate-
gies. The optimal proportion of 0.54 is used to test the behaviour of the genetic
algorithms. The maximum number of fitness evaluations for the inheritance
approach should be the same as for the non-inheritance approach, therefore the
number of generations is doubled to 400 generations to allow fair comparison.
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13.5 Solving the test functions with fitness in-
heritance


For the analysis of the fitness inheritance, the three previously described test
functions are used. The Pareto-fronts achieved by the evolutionary algorithm
without fitness inheritance, as well as the Pareto-fronts for the two genetic algo-
rithms with average or proportional fitness inheritance, will be presented. The
Pareto-optimal front is drawn for comparison purposes. The unary measures
generational distance, error ratio, spacing, spread and hypervolume measure
(Section 8.4.2 on p. 100) are used to compare the different approaches. These
measures are calculated for 100 function evaluations for the non-inheritance ap-
proach and every 50 function evaluations for the inheritance techniques. For
all three algorithms this is at every generation. The difference in means of
the above measures over time is determined by a One Way ANOVA test if the
data is normally distributed and homoscedastic, otherwise a non-parametric
Kruskal-Wallis test is applied. All tests are at a significance level of 95%.


13.5.1 Convex functions


Visual interpretation The standard genetic algorithm is capable of find-
ing a Pareto-front very close to the optimal Pareto-front for the first convex
test function (Fig. 13.4). Both inheritance strategies approximate the Pareto-
optimal front well. If there is no inheritance the variance between the different
points is low; on the other hand the points from the proportional inheritance
approach are much more scattered. The solutions from the two inheritance
approaches are also much more concentrated near the point (f1, h1) = (0, 1).


Generational distance The evolution of generational distance over the func-
tion evaluations for the standard genetic algorithm is very similar to that of the
two inheritance techniques (Fig. 13.5). In all three cases, the decrease in gener-
ational distance is initially strong but as the population converges this becomes
much smaller. The data was statistically analysed using a One Way ANOVA test
because on all occasions the data was normally distributed and homoscedastic.
All p-values for the relevant tests of normality (Shapiro-Wilk), homoscedastic-
ity (Levene’s test) and One Way ANOVA are listed in Table 13.1. Before 1800
function evaluations the generational distance is significantly lower for the in-
heritance techniques than for the regular genetic algorithm (p = 0.000). From
then on, there is no difference anymore (p = 0.067− 0.052) until 16800 function
evaluations. After that, the generational distance for the non-inheritance ap-
proach is significantly lower than for the proportional inheritance approach but
not than the average inheritance technique (p = 0.037) according to Tukey’s
posthoc-test.
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Figure 13.4: The overall Pareto-front for test function 1. On the x-axis
F1 = f1, on the y-axis F2 = h1 and on the z-axis F3 = g1


Figure 13.5: Evolution of generational distance over the number of
function evaluations for the first test function
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Table 13.1: p-values for normality, homoscedasticity and One Way
ANOVA for different numbers of function evaluations for generational
distance (non = no inheritance, average = average inheritance and pro-
portional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene One Way ANOVA
100 non 0.971 0.7761 0.000


average 0.662
proportional 0.380


1800 non 0.688 0.776 0.067
average 0.885
proportional 0.695


16800 non 0.482 0.919 0.052
average 0.984
proportional 0.493


16900 non 0.470 0.902 0.037
average 0.910
proportional 0.407


Error ratio The previous findings are confirmed by the error ratio: initially
this is 1 for all algorithms, but after 10000 function evaluations the error ratio
declines quickly. The error ratio of the inheritance techniques is higher than
that of the standard genetic algorithms, especially near the end of the evolu-
tion. Apparently the convergence towards the front is hampered by the fitness
inheritance. The effect of the inheritance on the error ratio was also investi-
gated statistically: for each 100 function evaluations, the Kruskal-Wallis test
was performed because the data was not normally distributed for all cases, and
the data was not homoscedastic. According to this test, there is no significant
difference present between the three approaches, but near the end of the evolu-
tion, the test statistic p approximates 0.05. This indicates that if the number
of function evaluations increases even more, the inheritance techniques might
perform worse than the regular technique.
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Figure 13.6: Evolution of error ratio over the number of function eval-
uations for the first test function


Figure 13.7: Evolution of spacing over the number of function evalua-
tions for the first test function
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Spacing and spread Spacing and spread on the other hand are not so much
influenced by the inheritance techniques: in all cases the crowding distance
operator ensures that the spacing and spread remain more or less equal over the
complete evolution. The effect of the inheritance techniques was again tested
using a Kruskal-Wallis test as once more the data was not normally distributed
and homoscedastic (Table 13.2). Initially the spacing measure for the non-
inheritance approach is significantly lower than for the other two approaches
(p = 0.1 − 0.2), but after 175000 function evaluations there is no longer a
difference between non-inheritance and average inheritance. In the last phase,
it is inconclusive whether there is a difference or not: p = 0.047 ≈ 0.05.


Table 13.2: p-values for normality, homoscedasticity and Kruskal-
Wallis for different numbers of function evaluations for spacing for the
first test function (non = no inheritance, average = average inheritance
and proportional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene Kruskal-Wallis
17500 non 0.377 0.481 0.422


average 0.010
proportional 0.010


For spread, the Kruskal-Wallis test shows clearly that in all cases there are signif-
icant differences. For all cases p = 0 even though this is not clear from Fig. 13.8.
All p-values for the relevant tests of normality (Shapiro-Wilk), homoscedasticity
(Levene’s test) and One Way ANOVA and Kruskal-Wallis are listed in Table 13.3
. Initially all groups are significantly different from each other (p = 0.000), and
the standard genetic algorithm performs the worst in terms of spread. At 6000
generations, they have more or less the same performance but still the Kruskal-
Wallist test indicates significant differences (p = 0.002). Even at the end of
the evolution there is still a significant difference between the proportional in-
heritance and no-inheritance strategy (p = 0.000) according to Tukey’s posthoc
test. It seems that the amount of spacing and spread is highly determined by
the initial spacing in the population. Especially spacing does not change much
over the course of the genetic algorithm. Spread is lowered somewhat more than
spacing but still remains much the same. This might indicate that the crowd-
ing distance measure is more a ‘diversity preserving’ measure than a ‘diversity
stimulating’ measure.
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Figure 13.8: Evolution of spread over the number of function evalua-
tions for the first test function


Table 13.3: p-values for normality, homoscedasticity and Kruskal-
Wallis for different numbers of function evaluations for spacing for the
first test function, for 20000 function evaluations One Way ANOVA is
used (non = no inheritance, average = average inheritance and propor-
tional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene Kruskal-Wallis
3200 non 0.200 0.010 0.000


average 0.193
proportional 0.644


6000 non 0.390 0.216 0.002
average 0.017
proportional 0.636


10000 non 0.442 0.004 0.000
average 0.455
proportional 0.583


20000 non 0.428 0.058 0.000
average 0.483
proportional 0.713
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Hypervolume The fact that a higher error ratio is present with the inheri-
tance techniques is confirmed by the hypervolume measure: this value is for both
inheritance techniques lower than for the standard genetic algorithm (Fig. 13.9).
All p-values for the relevant tests of normality (Shapiro-Wilk), homoscedasticity
(Levene’s test) and One Way ANOVA are listed in Table 13.4. Up until 4000
function evaluations this difference is not significant. Between 4000 and 16000
there is a difference between the non-inheritance and the average approach ac-
cording to Tukey’s posthoc-test. Beyond this point this posthoc-test indicates
a significant difference between the non-inheritance approach on the one hand
and the two inheritance strategies on the other hand.


Figure 13.9: Evolution of hypervolume over the number of function
evaluations for the first test function
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Table 13.4: p-values for normality, homoscedasticity and One Way
ANOVA for different numbers of function evaluations for hypervolume
for the first test function (non = no inheritance, average = average in-
heritance and proportional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene One Way ANOVA
4000 non 0.960 0.180 0.000


average 0.482
proportional 0.773


16000 non 0.930 0.719 0.002
average 0.482
proportional 0.773


Conclusion Between the two fitness inheritance techniques there is
little difference in performance. The generational distance, error ratio
and hypervolume are not always significantly different, and in most cases
very close to the values of the non-inheritance approach. Spacing and
spread are even better for the average fitness inheritance than for the
standard genetic algorithm. Overall fitness inheritance can speed up the
optimisation process for convex functions while maintaining the same
behaviour as the regular genetic algorithm.
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13.5.2 Non-convex functions


Visual interpretation The algorithms based on fitness inheritance are not
suitable for solving non-convex optimisation problems (Fig. 13.10). The points
found by the inheritance approaches are much further away from the Pareto-
optimal front. Furthermore, there are many points near the origin of the x-axis.
This phenomenon was also observed in the first test function.


Generational distance The generational distance is for both inheritance
techniques higher than for the non-inheritance approach and this is true for
the complete evolution (Fig. 13.11). Between the two inheritance techniques,
however, there is visually no difference. The data was statistically analysed using
a One Way ANOVA, all p-values for the relevant tests of normality (Shapiro-
Wilk), homoscedasticity (Levene’s test) and One Way ANOVA are listed in
Table 13.5. At 600 function evaluations, the ANOVA test value shows that
there are no significant differences between the three algorithms (p = 0.21). At
700 function evaluations however this changes, there is no conclusion possible
as p = 0.050. At 800 evaluations however the p-value is 0.018. Tukey’s posthoc-
test indicates that there is a significant difference between the non-inheritance
and the average inheritance approach, but is inconclusive for the proportional
approach. This remains the same until 1600 function evaluations. At that
point, Tukey’s posthoc-test shows that there is a significant difference between
the non-inheritance approach on one hand and both inheritance techniques on
the other hand.
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Figure 13.10: The overall Pareto-front for test function 2. On the x-
axis F1 = f2, on the y-axis F2 = h2 and on the z-axis F3 = g2


Figure 13.11: Evolution of generational distance over the number of
function evaluations for the second test function
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Table 13.5: p-values for normality, homoscedasticity and One Way
ANOVA for different numbers of function evaluations for generational
distance for the second test function(non = no inheritance, average =
average inheritance and proportional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene One Way ANOVA
600 non 0.344 0.098 0.210


average 0.491
proportional 0.511


700 non 0.668 0.111 0.050
average 0.761
proportional 0.487


800 non 0.779 0.183 0.018
average 0.989
proportional 0.595


1600 non 0.135 0.497 0.001
average 0.499
proportional 0.357


Error ratio The error ratio of the two inheritance techniques is much worse
than for the non-inheritance approach. Whereas the error ratio drops after
10000 evaluations for the regular genetic algorithm, the error ratio for the two
inheritance approaches stays 1 for the complete duration of the genetic algo-
rithm. As their error ratio remains constant, no statistical analysis is possible.
Still, from Fig. 13.12 follows clearly that the inheritance techniques do not per-
form well in terms of error ratio, and that they fail to reach the Pareto-optimal
front for a non-convex function.


Spacing and spread Spacing and spread are again not influenced by the
inheritance techniques. The crowding distance operator ensures once more that
the spacing and spread remains more or less equal over the complete evolution
(Figs. 13.13 and 13.14). The spacing of the non-inheritance approach is less than
that of the two inheritance approaches, and the spacing of the average inheri-
tance is better than that of the proportional inheritance technique (Fig. 13.13).
Before 8000 function evaluations the difference between the spacing is signifi-
cant only between the group of non-inheritance and proportional inheritance.
Beyond this point, there is a difference between the group of non-inheritance
and the two inheritance approaches (Table 13.6).


In the case of spread, initially the non-inheritance approach performs worse
than the two other approaches. This difference is not significant with respect to
the average inheritance approach but is significant with respect to the pro-
portional inheritance approach until 6000 function evaluations (p = 0.000).
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After 6000 function evaluations, there is no longer a difference between the
non-inheritance and inheritance approach but there is a significant difference
between the two inheritance procedures: according to Tukey’s posthoc test,
average inheritance has a significantly higher spread than the proportional in-
heritance (p = 0.013).
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Figure 13.12: Evolution of error ratio over the number of function eval-
uations for the second test function


Figure 13.13: Evolution of spacing over the number of function eval-
uations for the second test function
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Table 13.6: p-values for normality, homoscedasticity and Kruskal-
Wallis for different numbers of function evaluations for spacing for the
second test function (non = no inheritance, average = average inheri-
tance and proportional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene Kruskal-Wallis
4800 non 0.010 0.151 0.021


average 0.655
proportional 0.438


8000 non 0.010 0.288 0.003
average 0.203
proportional 0.073


16000 non 0.010 0.632 0.012
average 0.648
proportional 0.048


Figure 13.14: Evolution of spread over the number of function evalu-
ations for the second test function
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Table 13.7: p-values for normality, homoscedasticity and One Way
ANOVA for different numbers of function evaluations for spread for the
second test function (non = no inheritance, average = average inheri-
tance and proportional = proportional inheritance


Evaluations Group Shapiro-Wilk Levene One Way ANOVA
4000 non 0.247 0.422 0.000


average 0.527
proportional 0.728


6000 non 0.175 0.645 0.013
average 0.468
proportional 0.696


10000 non 0.764 0.626 0.0000
average 0.424
proportional 0.448


Hypervolume The hypervolume measure again confirms the findings of the
error ratio and the generational distance: this value is lower for both inheritance
techniques than for the standard genetic algorithm. Up until 1400 function eval-
uations this difference is not significant between the three groups (p = 0.054)
(Table 13.8). Between 1400 and 1800 function evaluations, the non-inheritance
approach is only significantly different (p = 0.000) from the average approach,
but later on Tukey’s posthoc-test indicates that all groups are significantly dif-
ferent from each other.


Conclusion It can be concluded that for non-convex functions, after a
few fitness evaluations, the inheritance techniques converge slower to the
Pareto-optimal front than the non-inheritance approach. Maintaining
spread or spacing is again not affected by the inheritance. This means
that for non-convex functions, inheritance techniques are less suitable to
use.
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Figure 13.15: Evolution of hypervolume over the number of function
evaluations for the second test function


Table 13.8: p-values for normality, homoscedasticity and One Way
ANOVA for different numbers of function evaluations for hypervolume
for the second test function (non = no inheritance, average = average
inheritance and proportional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene One Way ANOVA
1400 non 0.692 0.269 0.054


average 0.349
proportional 0.871


1800 non 0.951 0.324 0.000
average 0.378
proportional 0.560
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13.5.3 Discontinuous functions


Visual interpretation The inheritance techniques are unable to solve the
third discontinuous problem (Fig. 13.16). Both inheritance techniques yield
the same result but their Pareto-fronts approximate the Pareto-optimal front
in a linear way. This is particularly pronounced in the case of the average
fitness inheritance. The solutions are also unevenly distributed along the fronts.
Apparently, the noise resulting from the linear interpolation of the fitness values
of the offspring results in a high disturbance of the genetic algorithm.


Generational distance The generational distance is similar for all approaches
for the complete evolution (Fig. 13.17). Between the two inheritance techniques,
however, there is visually no difference. The data was statistically analysed using
a One Way ANOVA, all p-values for the relevant tests of normality (Shapiro-
Wilk), homoscedasticity (Levene’s test) and One Way ANOVA are listed in
Table 13.9. Early in the evolution, there is not much difference between the ap-
proaches, but this according to Tukey’s posthoc-test becomes significant among
all groups after 10000 function evaluations.


Figure 13.16: The overall Pareto-front for test function 3. On the x-
axis F1 = f2, on the y-axis F2 = h2 and on the z-axis F3 = g2
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Figure 13.17: Evolution of generational distance over the number of
function evaluations for the third test function


Table 13.9: p-values for normality, homoscedasticity and One Way
ANOVA for different numbers of function evaluations for generational
distance for the third test function (non = no inheritance, average =
average inheritance and proportional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene One Way ANOVA
10000 non 0.348 0.846 0.000


average 0.828
proportional 0.516


Error ratio The error ratio of the two inheritance techniques is much worse
than for the non-inheritance approach. Whereas the error ratio drops after
10000 evaluations for the regular genetic algorithm, the error ratio for the av-
erage inheritance approaches stays 1 for the complete duration of the genetic
algorithm. The error ratio of the proportional inheritance technique does de-
cline after 16000 function evaluations but much less than in the case of non-
inheritance approach.
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Figure 13.18: Evolution of error ratio over the number of function eval-
uations for the third test function


Spacing and spread As was the case with the two other functions, the spac-
ing and spread are not affected by the inheritance. The spacing of the average
inheritance is again much lower than that of the others. From Fig. 13.16 can
be concluded that once more the points from the average inheritance are well
distributed, but that proportional inheritance shows a higher degree of scatter.
This is confirmed by the spread measure: the spread measures for the three
approaches are similar and the values for the average technique are now in the
range of the other two procedures. However, because the distance to the ex-
treme points is taken into account, this compensates for the low values of the
spacing measure.
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Figure 13.19: Evolution of spacing over the number of function eval-
uations for the third test function


Figure 13.20: Evolution of spread over the number of function evalu-
ations for the third test function
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Hypervolume Finally the hypervolume measure confirms the findings with
the error ratio and the generational distance (Fig. 13.21): this value is lower
for both the inheritance techniques than for the standard genetic algorithm.
Up until 2700 function evaluations, this difference is not significant between
the three groups (Table 13.10). After 2700 there is a difference between the
non-inheritance and the two inheritance approaches, but these two do not differ
from each other until the very end of the evolution.


Conclusion As was the case for non-convex functions, the inheritance
techniques are not useful for discontinuous functions. Their behaviour
in terms of generational distance, error ratio and hypervolume is signif-
icantly worse than for the non-inheritance approach over the complete
evolution. Again, spacing and spread are not affected by the fitness
inheritance.


Figure 13.21: Evolution of hypervolume over the number of function
evaluations for the second test function
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Table 13.10: p-values for normality, homoscedasticity and One Way
ANOVA for different numbers of function evaluations for hypervolume
for the third test function (non = no inheritance, average = average
inheritance and proportional = proportional inheritance)


Evaluations Group Shapiro-Wilk Levene One Way ANOVA
2700 non 0.485 0.068 0.040


average 0.491
proportional 0.444


13.5.4 General conclusion


Fitness inheritance efficiency enhancement techniques can be used in or-
der to reduce the number of fitness evaluations provided that the Pareto-
front is convex and continuous. If the surface is not convex, the fitness
inheritance strategies fail to reach the Pareto-optimal front. As to the
inheritance strategy, it is safer to choose the proportional approach, be-
cause in most cases the proportional inheritance performs better in terms
of generational distance, error ratio and hypervolume.
If real-world practitioners want to use fitness inheritance, it is advis-
able to check beforehand what the nature (convex, non-convex,...) of
the Pareto-front is. This can be achieved by solving the problem with a
classical multiple objective GA for a low number of generations and then
switch to fitness inheritance techniques if there is sufficient indication
that the Pareto-front is convex and continuous. They should also con-
sider other techniques for speeding up the optimisation process. These
might include local fitness recalculation, where the fitness value of the
individuals is updated from the value from the parents by recalculating
only where the children differ from the parents. As the harvest schedul-
ing problem is convex, the proportional fitness inheritance technique will
be applied in the final chapter.
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Chapter 14
Case study: Fitness inheritance
for harvest scheduling


As a final case study, fitness inheritance is used to speed up the optimisation
process for the bi-objective harvest scheduling problem. As this problem is
convex, fitness inheritance should be a feasible approach.


14.1 Methodology


The same input data and Forestry Commission production tables as in Chap-
ters 5 and 9 are applied. The population size is set to 100, the number of
generations without fitness inheritance to 200, and with proportional inheri-
tance to 400. Average inheritance was not tested because from the test function
followed that its behaviour was either similar or worse than that of proportional
inheritance. One-point crossover is used with a probability of 0.8 and uniform
mutation with a probability of 0.01. Integer encoding is used, as this proved to
be the best encoding strategy for the harvest scheduling problem. Binary tour-
nament selection was used and the crowding distance operator ensured sharing.


14.2 Results and discussion


From Fig. 14.1 follows that after the same number of function evaluations,
the attainment surface from the inheritance approach equals that of the non-
inheritance approach. This is confirmed by calculating the hypervolume mea-
sure. The data is normally distributed (p = 0.99 > 0.05) and homoscedastic
(p = 0.685). From the Student t-test test statistic follows that there is no
significant difference between the two groups (p = 0.209).
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Figure 14.1: Attainment surfaces for the harvest scheduling problem
for non-inheritance and proportional inheritance approaches


14.3 Conclusions


The behaviour of the inheritance approach is similar to that of the stan-
dard genetic algorithm. However, this should be relativised because in
reality the same number of function evaluations are necessary to obtain
the same Pareto-front.







Part IV


Conclusion
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Chapter 15
Summary and conclusions


15.1 Research question 1


A forest management problem can be formulated as a Type I Model or a Type II
Model. Both of these models have their merits for timber harvest and activ-
ity scheduling. If one considers other objectives than purely economic ones,
a Type I Model has a slight advantage in comparison with the other model,
because the management unit can be easily tracked from the beginning to the
end of the planning horizon. Still, the Model I formulation as originally con-
ceived is insufficient to include ecological models or any other models that need
spatial data as input, because it is stratum-based and thus the link between
the management unit and its location is not straightforward. This traditional
model has been used extensively to solve harvest scheduling problems and is
translated very easily into a linear programming format.


In order to guarantee spatial integrity, the decision variables that were origi-
nally continuous are transformed into integer variables. This leads to very large
combinatorial problems that cannot be solved using exact techniques such as in-
teger or mixed-integer programming for real-world problems, even with today’s
computer power. Heuristics have been proposed as a means to handle these
complicated optimisation problems, and are indeed capable of solving them.


The integration of the optimisers together with a geographical information
system to include the spatial information in an explicit way has also been ad-
vocated. Until now, GIS is only used for classification purposes prior to the
optimisation process or for visualisation of the alternatives after the process.
An online integration of GIS and optimisers in forest management has not yet
been reported.


All the previously described techniques also require that there is only one ob-
jective function. The multiple objectives have to be combined using for example
the weighing method or the constraint method. This is difficult to achieve if the
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objectives are incommensurable. If a production possibility frontier is required,
then for these approaches the optimiser has to be run repeatedly. Until today,
there has been no use of a truly multi-objective optimiser in forest management.


15.2 Research question 2


15.2.1 Harvest scheduling as a single objective problem


A Type I harvest scheduling problem is initially solved using a single objective
genetic algorithm. Because the Type I problem has two objectives (maximisa-
tion of present value and minimisation of the deviations between the successive
harvesting periods) these objectives were combined using the weighing method
prior to the optimisation. Because the Pareto-optimal front is searched for,
the weights were linearly distributed on the interval ]0, 1]. Using these weights
did not lead to evenly spaced solutions along the Pareto-front and very little
information could be gained. Therefore two additional weights were chosen:
w = 0.01 and w = 0.05. When the present value was 100 times more important,
the slope of the Pareto-front became very steep. This implies that an unknow-
ing user investigating the effect of the weights on the two objectives might lose
a considerable amount of information on the production possibility frontier if
the weights are linearly distributed on a small interval.


The age distribution of the forest is normalised due to the implicit volume
control of the even-flow objective. The genetic algorithm produces harvesting
plans enforcing a balanced age distribution. The present value obtained with the
relaxed even-flow constraints amounts to 72.9% of the total maximum attainable
present value. The average volume and the volume harvested per year is also
affected by the even-flow objective: it declines as this objective becomes more
important.


A practical drawback from using weights is that it is very cumbersome.
Rerunning the genetic algorithm or any single objective optimiser for several
weight combinations, is a tedious job and requires large amounts of computing
time.


15.2.2 Extension to multiple objectives


A comparative study Before the Type I harvest scheduling problem was
solved as a bi-objective problem, two genetic algorithms commonly used in the
domains of control or civil engineering, the Multiple Objective Genetic Algo-
rithm (MOGA) and the Non-dominated Sorting Algorithm-II (NSGA-II), were
compared on a benchmark problem with a known Pareto-optimal front. Their
performance was also compared with that of a random search strategy. The
objectives for this benchmark problem were: (1) maximise timber revenue and
(2) maximise the recreational value. The Pareto-optimal front is non-convex,
and therefore it cannot be solved using the weighing method.
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Both MOGA and NSGA-II have a better performance than a random search
strategy. They both approximate the Pareto-optimal front well, but suffer from
a lack of spread. Especially the NSGA-II is not capable of finding the more
extreme solutions. Because of this lack of spread, the implementation of the two
algorithms was tested on another non-convex function. From this experiment
followed that both algorithms have a very good spread over the complete Pareto-
front and thus the lack of spread is only caused by the nature of the forest
management problem.


NSGA-II is capable of approximating the Pareto-optimal front faster than
MOGA and the solutions found by NSGA-II are more evenly spaced along the
front. If the distance from the extreme solutions in the Pareto-front to the most
extreme Pareto-optimal ones are included, MOGA scores better than NSGA-II
but not significantly. This highlights that MOGA finds more solutions near
the extremes than NSGA-II does. The variance between the several runs in
generational distance is smaller for NSGA-II than for MOGA and this shows
that NSGA-II is more robust than MOGA in terms of approximation of the
Pareto-optimal front.


When the algorithms are compared in terms of both spread and closeness,
the hypervolume indicates that the NSGA-II dominates a higher portion of
the solution space than MOGA does. Using the attainment surface similar
conclusions can be drawn: the Mann Whitney test procedure shows that NSGA-
II dominates MOGA in the larger portion of the search space. Given these
results, NSGA-II was chosen to solve the harvest scheduling problem.


Harvest scheduling as a multiple objective problem The Type I harvest
scheduling problem is now solved as a bi-objective problem using NSGA-II.
Using such an algorithm clearly speeds up the optimisation process: in order
to find evenly spaced solutions along the Pareto-front a single run suffices. The
attainment surface of NSGA-II is similar to the attainment surface obtained with
the single-objective optimiser, but in order to reach this only one fifth of the
function evaluations is necessary. The minimal population size needed to solve
this problem is 750, increasing it even more does not improve the approximation
of the Pareto-optimal front.


Validity of the harvest scheduling plans For both optimisers the effect
of the plans on the age structure of the forest is the same: if the even-flow
objective becomes more important, the age structure resembles that of a normal
forest. This is caused by the volume control, even though this is not explicitly
mentioned in the objective functions. If the even-flow objective is relaxed, the
harvesting of the stands is postponed to later harvesting periods. The Pareto-
front is very steep indicating that forest managers have to design their plans
carefully to meet the objective of even-flow.
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15.3 Research question 3


Single objective optimisation In order to answer this research question, the
abundance of an edge-dependent species, namely the badger, was maximised.
The abundance of the badger depends on the spatial configuration of clear felled
and old growth stands. Here it was assumed that the abundance is linearly
related to both the internal edge (between clear felled and old growth blocks)
as well as the external edge (between forest and the surrounding agricultural
fields). Before the single objective genetic algorithm was applied to Kirkhill
Forest, it was used to solve a similar problem from literature. For this problem
the aim is to maximise the internal and external edge for a 3-by-3 grid problem.
Because the search space for this problem is so small (512 different solutions),
the genetic algorithm was stopped after 600 function evaluations. A simple
genetic algorithm was not always capable of finding the global optimum, only
in 90.5% of the repetitions for a population size of 30 the global optimum is
attained before the stopping criterion was reached.


Reformulating the problem as an adjacency problem leads to better results:
for a population size of 30 the optimum is reached in 99.5% of the cases. The
difference in performance of the genetic algorithm is due to the existence of local
optima for the edge maximisation problem. For the edge-dependent formulation,
the local optimum is the complement of the global optimum. For the adjacency
formulation, however, both solutions are global optima. This explains why the
second formulation is much easier to solve than the first one.


Multiple objective optimisation In the previous case study, the spatial
constraints were created by hand. This is not very efficient for larger prob-
lems and almost impossible for an irregular configuration of forest stands. This
implies that the non-linear techniques can only solve relatively small problems
and that they cannot scale up to real-world applications. The integration of GA
and GIS offers great potential for spatial decision support systems (SDSS). The
functionality of both modules fits together and can remain in two entities and
this ensures flexibility for the SDSS. Therefore, the genetic algorithm and GIS
were loosely coupled. This has the advantage of being platform independent
and ensures an optimal task distribution between the two modules. Originally
ArcView GISr was chosen as GIS module but this led to many broken connec-
tions between the genetic algorithm and the GIS. Therefore, in a later stage the
open source GRASS GIS was used instead.


The single objective problem from the previous case study is now extended to
a multiple objective one. Three objectives have to be optimised simultaneously:
(1) timber revenue, (2) abundance of old growth species and (3) abundance of
edge-dependent species. In literature, this is solved on a three-by-three grid.
Because the problem is too easy to solve, the initial population already contains
most of the Pareto-optimal solutions and therefore using a genetic algorithm for
this problem is not efficient. When the scale of the problem increases from a
three-by-three grid to a nine-by-nine grid, the advantage of genetic algorithms
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becomes apparent: it approximates the Pareto-optimal front in a short time.
The genetic algorithm is then used to optimise the same objectives on


Kirkhill forest. This introduces an extra difficulty because the stands are now in
an irregular configuration and the size of the search space becomes very large.
The results show that the discreteness of the forest management problem again
causes a lack of spread along the Pareto-front: most of the solutions are cen-
tred in the middle of the Pareto-front. If the extreme solutions are taken as
alternatives, the plans do appear valid. The harvest pattern for the scenario of
maximum of timber production allocates 288 ha for clear felling. This is much
lower for the scenario of maximum old growth objective, where only 184 ha are
clear felled. For the scenario of maximum abundance of the badger, the sum
of internal and external edge equals 68 km and this corresponds to 85 badger
setts. This is less than the average for Aberdeenshire and this might indicate
that for this objective the solutions are far from the optimum.


15.4 Research question 4a


The Type I harvest scheduling problem was solved using three different encoding
strategies: (1) binary codes which are used in general in genetic algorithms,
(2) gray codes that are supposed to enhance genetic algorithm performance
because they reduce the discontinuity and (3) integer codes because they are the
most natural representation for the forest management problem. The encoding
strategy does not affect the genetic algorithm behaviour for the single but does
affect the behaviour of the multiple objective genetic algorithm. For the multiple
objective genetic algorithm the approximation of the Pareto-optimal front is best
when either gray or integer codes are used.


15.5 Research question 4b


Because of the two-dimensional nature of spatial information, the linear repre-
sentation of the decision variable vectors might violate the basic assumption of
genetic algorithms: building blocks should be short and low-order pieces of the
chromosome. In order to test whether a forest management problem employing
spatial data needs more advanced genetic operators, the single objective maximi-
sation problem of the abundance of edge-dependent species was optimised using
two Estimation of Distribution Algorithms (EDAs). These algorithms should
detect the building blocks in the chromosome through probabilistic modelling
and process them explicitly during recombination. When two of these EDAs,
the extended compact GA (ECGA) and the Bayesian Optimization Algorithm
(BOA), are applied to Kirkhill forest, their performance is significantly better
than of a simple genetic algorithm. This means that the real-world application
suffers from loose linkage: the genes that make up a building block are not close
together and the implicit processing of the building blocks does not guarantee
optimality.
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ECGA processes building blocks with an average size of 4.5 at the beginning
of the evolution and the size decreases to 1 over time due to population con-
vergence. The size of the building block is only determined by the probabilistic
model. ECGA quickly converges due to its high selective pressure. Already at
generation 25 the population converges. When the linkage model is physically
interpreted, it is found that the number of badger setts found by ECGA approx-
imates the average number of badger setts in the Aberdeenshire region. The
cutting pattern in the forest resembles a checkerboard and a little more than
half of the forest is clear felled. The solutions found by the different repetitions
are not always the same. On the contrary, 22% of the bits form a group with
their neighbour and are complementary with the same bits in other solutions.
This indicates that the other building blocks consists of stands far away and
that linkage learning is necessary.


BOA finds very complicated network structures with on average 5 incoming
edges at the beginning of the evolutionary process and 4.5 near the end of the
evolution. This is the same size as in ECGA. BOA did not converge before the
end of the evolution and the solution quality at that point is still inferior to that
of ECGA, probably due to insufficient population sizing and a lower selective
pressure. The physical interpretation is much more difficult, but as for ECGA
the genes of the chromosomes from different repetitions are complementary in
some parts.


In short, using a cluster-based probabilistic model ensures that better solu-
tions can be found than in the case of the simple genetic algorithm in a shorter
time span than a network-based probabilistic model.


15.6 Research question 5


Two fitness inheritance techniques have been proposed in literature as efficiency
enhancement techniques. Because little was known about their applicability for
multiple objective problems, they were first evaluated on three functions: a con-
vex, a non-convex and a discontinuous one. Their performance was tested using
several performance indices and from the results followed that fitness inheritance
can only be used in order to reduce the number of fitness evaluations provided
that the Pareto-optimal front is convex and continuous. If the surface is non-
convex or discontinuous, the fitness inheritance strategies fail to approximate
the Pareto-optimal front.


If real-world practitioners want to use fitness inheritance, it is advisable
to check beforehand what the nature (convex, non-convex,...) of the Pareto-
optimal front is. The problem should first be solved using a classical multiple
objective GA for a low number of generations and given sufficient indication
that the Pareto-optimal front is convex and continuous, one could switch to
fitness inheritance. If a decision about which inheritance strategy must be
taken, it is safer to choose the proportional approach, because in most cases
the proportional inheritance shows better performance in terms of generational
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distance, error ratio and hypervolume.
When the proportional fitness inheritance technique is applied for the convex


harvest scheduling problem, it can speed up the optimisation process. Accord-
ing to performance indices and the attainment surfaces, fitness inheritance can
approximate the Pareto-optimal front.


15.7 Critical notes and indications for future re-
search


Parameter settings Parameter settings for the different algorithms are al-
ways susceptible to criticism. Here they were set to the best suitable ones that
were found in literature. However, if for some reasons they were not set to these
values, because for example a large population size is not feasible, then the best
alternative settings were chosen.


Extension of spatial models The spatial models that were used to deter-
mine the abundance of the badger are not really realistic, even though realistic
sett numbers were obtained. Extension of these models and inclusion of other
models is certainly necessary for operational applications. Moreover, until now
the use of extensive spatial modelling is not feasible in terms of computing time.
Real-world practitioners should consider other techniques for speeding up the
optimisation process. These might include local fitness recalculation, where the
fitness value of the individuals is updated from the value from the parents by
recalculating only part of the fitness function. Another possibility is instead
of simply averaging the fitness values, is to use advanced statistical techniques
such as kriging.


Testing the acceptability of the harvest plans Even though the plans
seemed valid, it might be useful to present them to forest managers. This might
indicate some logistic problems for the implementation of the plans. This might
also increase the acceptability of the plans.


Extension of EDAs to multiple objectives The EDAs might be extended
for multiple objectives, thus making it possible to solve even more complex
optimisation problems.


New algorithms A full examination of new algorithms such as by Jaszkiewicz
(2000) might be worth studying, because they might provide a faster way of
finding Pareto-optimal solutions.
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15.8 Main contributions of this dissertation


This dissertation has tried to make contributions to both the forest management
as well as to the genetic algorithm domain. These contributions are listed below.


To the forest management community


• a comparative study was performed to assess which genetic algorithm
is best suited for solving forest management problems (Ducheyne et al.,
2001)


• the effect of the encoding technique for harvest scheduling problems was
analysed


• the plans generated by the single and multiple objective genetic algorithms
were analysed for their validity (A1-paper submitted)


• the proposed genetic algorithm is coupled with a GIS to allow the online
evaluation of spatial models (A1-paper in progress)


To the genetic algorithm community


• estimation of distribution algorithms were applied to a real-world applica-
tion; the probabilistic models were physically interpreted (Ducheyne et al.,
2002)


• in order to investigate the usefulness of fitness inheritance, both the aver-
age and proportional fitness inheritance techniques were extensively anal-
ysed both on a test suite of functions and a real-world application (A1-
paper) (Ducheyne et al., 2003)







Chapter 16
Samenvatting en conclusies


Bij de aanvang van dit onderzoek werden drie objectieven vooropgesteld:


1. De ontwikkeling van een optimalisatietechniek voor bosbeheer die alter-
natieve plannen genereert voor meerdere objectieven.


2. Bij een dergelijk beheersinstrument moet de integratie van ruimtelijke
gegevens en GIS-functionaliteit mogelijk zijn.


3. Dit hulpmiddel is bij voorkeur efficiënt en snel.


Er werden vijf onderzoeksvragen geformuleerd die ervoor moesten zorgen dat
de drie hoofdobjectieven werden bereikt:


1. Welke optimalisatietechnieken worden heden ten dage gebruikt bij bosbe-
heer met meerdere objectieven, en wat zijn hun tekortkomingen?


2. Welke nieuwe optimalisatietechnieken uit operationeel onderzoek of com-
putationele intelligentie zijn beschikbaar die meerdere objectieven zonder
aggregatie kunnen optimaliseren?


3. Welke van deze technieken zijn voldoende flexiebel om integratie met GIS
mogelijk te maken?


4. Wat zijn de basisveronderstellingen bij deze methodes? Als deze niet
vervuld zijn in het geval van bosbeheerstoepassingen, hoe kunnen deze
methodes worden aangepast? Deze vraag werd opgesplitst in twee deelvra-
gen:


a. Wat is de invloed van de coderingsstrategie van de beslissingsvari-
abelen op de kwaliteit van de oplossingen?


b. Bemoelijken bosbeheersproblemen het optimalisatie-en zoekproces?


205
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5. Hoe kunnen de technieken worden verbeterd zodat goede oplossingen sneller
worden bekomen?


In de volgende paragrafen wordt het antwoord op deze vijf vragen kort toegelicht.


16.1 Onderzoeksvraag 1


Elk bosbeheersprobleem kan worden geformuleerd als een Type I of een Type II
Model. Deze modellen hebben hun nut bewezen bij het plannen van kapregeling
of andere beheersactiviteiten. Deze modellen worden eenvoudig vertaald in een
lineair programma. Een Type I formulering is te verkiezen boven de tweede for-
mulering als er andere objectieven aanwezig zijn, omdat dan de beslissingsvari-
abelen toelaten om een beheerseenheid te volgen van het begin tot het einde van
de beslissingshorizon. Toch is ook dit model ongeschikt om bijvoorbeeld eco-
logische modellen te integreren tijdens het optimalisatieproces. Hiervoor zijn
ruimtelijke data nodig en omdat beide modellen stratum-gebaseerd zijn is de
link tussen de beheerseenheid en de locatie verbroken.


Om toch ruimtelijke integriteit te bekomen werden de beslissingsvariabe-
len, die in de vorige formulering continu waren, gediscretiseerd. Dit leidde
tot zeer grote combinatorische problemen die voor reële toepassingen niet kun-
nen opgelost worden met behulp van exacte technieken zoals integer en mixed-
integer programmeren. Verschillende heuristieken werden voorgesteld om deze
complexe optimalisatieproblemen op te lossen. Zo zijn bijvoorbeeld simulated
annealing en tabu search in staat om dit te realiseren op een reële schaal.


In plaats van de ruimtelijke gegevens als beslissingsvariabelen te formuleren,
biedt de integratie van een optimalisatietechniek met een GIS veel mogelijkhe-
den. Tot op heden werd GIS echter enkel voor classificatiedoeleinden vóór het
optimalisatieproces of voor visualisatie na dit proces gebruikt. De online samen-
werking tussen beiden werd echter nog niet gerapporteerd binnen bosbeheer.


De vorige technieken veronderstellen verder dat er slechts één enkele objec-
tieffunctie is. Meerdere objectieven moeten omgevormd worden tot één enkele
functie bijvoorbeeld met de gewichtenmethode of de voorwaardenmethode. Dit
is vooral moeilijk wanneer de objectieven in verschillende eenheden uitgedrukt
zijn. Als er dan ook nog een Pareto-front tussen de objectieven gezocht wordt,
moet men de optimalisatietechniek meermaals toepassen. In bosbeheer is er
echter tot nog toe geen echte optimalisatietechniek in gebruik die meervoudige
objectieven aankan, zonder dat die op voorhand moeten samengevoegd worden.
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16.2 Onderzoeksvraag 2


16.2.1 Het opstellen van kapschema’s als een enkelvoudig
objectiefprobleem


Een optimaal Type I kapschema wordt eerst gezocht met behulp van een genetisch
algoritme met een enkelvoudig objectief. Vermits de Type I formulering twee
objectieven heeft (de maximalisatie van de tegenwoordige waarde en de mini-
malisatie van de afwijking in kapvolume tussen de kapperiodes) werden deze
twee objectieven voor het optimalisatieprocess gecombineerd met behulp van
de gewichtenmethode. Om het Pareto-optimale front te vinden werden de
gewichten lineair gekozen over het halfopen interval ]0, 1]. Het gebruik van deze
gewichten leverde echter geen gelijk verdeelde oplossingen over het Pareto-front
op. Er kon dan ook weinig informatie uit het bekomen Pareto-front gehaald
worden en daarom werden nog twee extra gewichten gekozen: w = 0.01 en
w = 0.05. Als het objectief van de tegenwoordige waarde 100 keer belangrijker
werd dan dat van gelijke houtopbrengst, werd de helling van het Pareto-front
zeer steil. Dit heeft als gevolg dat indien een gebruiker die gewichten moet
kiezen als hij weinig kennis over het probleem heeft, veel informatie over het
Pareto-front kan verliezen.


Het bekomen gemiddeld houtvolume wordt sterk bëınvloed door het objectief
van gelijk volume. Dit houtvolume neemt af naarmate dit objectief belangrijker
wordt. De leeftijdsverdeling van het bos wordt door een impliciete volumecon-
trole genormaliseerd en een genetisch algoritme genereert kapplannen met een
gebalanceerde leeftijdsdistributie. Als er weinig belang is voor even-flow wordt
een tegenwoordige waarde bekomen die tot 73% van de maximum te bereiken
tegenwoordige waarde bedraagt.


Een praktisch nadeel van de gewichtenmethode is dat de gewichtenmethode
omslachtig is: het meermaals laten lopen van het genetisch algoritme om meerdere
punten op het Pareto-optimaal front te vinden vergt veel tijd.


16.2.2 Uitbreiding naar meerdere objectieven


Een vergelijkende studie Vooraleer het Type I kapprobleem werd opgelost
als een tweevoudig objectiefprobleem werden twee meervoudig objectief geneti-
sche algoritmes met elkaar vergeleken. Deze twee genetische algoritmes werden
reeds vaak toegepast, onder meer in het domein van regeltechniek en mechanica.
Deze twee algoritmes zijn het Multiple Objective Genetic Algorithm (MOGA)
en het Non-dominated Sorting Algorithm-II (NSGA-II). Ze werden vergeleken
op een referentieprobleem waarvan het Pareto-optimale front gekend is en ze
werden tevens vergeleken met een random zoekmethode. De objectieven voor
dit probleem waren: (1) maximaliseer de houtopbrengst en (2) maximaliseer het
nut dat mensen bekomen van het bos. Het Pareto-optimale front is niet convex
en kan niet worden opgelost met behulp van de gewichtenmethode.


Zowel MOGA als NSGA-II doen het beter dan de random zoektocht. Beide
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zijn in staat om het Pareto-optimale front goed te benaderen, maar vertonen
weinig spreiding van de oplossingen. Vooral NSGA-II kan de meer extreme
oplossingen niet vinden. Om uit te sluiten dat dit gebrek aan spreiding werd
veroorzaakt door de implementatie van de algoritmes, werden ze extra getest
op een niet convexe functie waarvoor de performantie gekend is. Hieruit vol-
gde dat ze voor die functie wel degelijk een goede spreiding vertonen en dat de
hogervermelde gebrekkige spreiding te wijten is aan de aard van het bosbeheers-
probleem.


NSGA-II benadert het Pareto-optimale front sneller dan MOGA en de op-
lossingen liggen op een gelijke afstand langs het front. Het feit dat MOGA
meer extreme oplossingen vindt wordt kwantitatief bevestigd met behulp van de
spreidingsmaat, maar het verschil in spreidingsmaat tussen de twee algoritmes
is niet significant. De variantie in generatie-afstand tussen de verschillende
herhalingen is verder kleiner voor NSGA-II dan voor MOGA en dit toont aan
dat NSGA-II robuuster is tegen de randominitialisatie van de populatie dan
MOGA.


De hypervolume-maat toont tenslotte aan dat NSGA-II een groter deel van
de zoekruimte domineert en als de attainment-functie wordt gebruikt kan een
gelijkaardige conclusie worden getrokken. Uit de Mann-Whitney testprocedure
volgt dat NSGA-II MOGA domineert in het grootste deel van de zoekruimte.


Het opstellen van kapschema’s als een meervoudig objectief probleem
Het Type I kapprobleem kan nu worden opgelost als een tweevoudig objectief-
probleem met NSGA-II. Eén enkel run volstaat om equidistante oplossingen
langs het Pareto-front te vinden. Bovendien wordt de stap van de gewichten
vermeden. Het bekomen Pareto-front van het NSGA-II is vergelijkbaar met dat
van het enkelvoudig genetisch algoritme en hieruit blijkt dat een dergelijk algo-
ritme het optimalisatieproces kan versnellen in vergelijking met de enkelvoudige
versie.


Validatie van de kapschema’s Het effect op de leeftijdsverdeling is analoog
als bij de enkelvoudige formulering: als het objectief van gelijk kapvolume belan-
grijker wordt dan lijkt de leeftijdsverdeling van het bos op dat van een normaal
bos. Dit wordt veroorzaakt door een impliciete volumecontrole. Als het objec-
tief van gelijk kapvolume minder belangrijk is dan dat van de tegenwoordige
waarde, dan wordt het kappen van de bestanden verdaagd naar latere kappe-
riodes, en dit zorgt ervoor dat de leeftijdsstructuur van een normaal bos nog
beter wordt benaderd. Het Pareto-front is verder zeer steil, en dit toont aan
dat bosbeheerders hun kapschema’s goed moeten analyseren wanneer ze gelijke
kapvolumes wensen.







16.3 Onderzoeksvraag 3 209


16.3 Onderzoeksvraag 3


Enkelvoudige optimalisatie Om deze onderzoeksvraag te kunnen beant-
woorden wordt de abundantie van een grensafhankelijke diersoort, namelijk de
das, gemaximaliseerd. De abundantie van de das is afhankelijk van de confi-
guratie van gekapte en niet-gekapte bestanden. In dit onderzoek werd veron-
dersteld dat het aantal dassen lineair gerelateerd is met zowel de interne grens
(tussen de gekapte en niet-gekapte bestanden) als de externe grens (tussen bos
en landbouwvelden). Voordat het genetisch algoritme werd toegepast op het
studiegebied, werd het gebruikt om een gelijkaardig probleem uit de literatuur
op te lossen. Bij dit probleem is het doel de interne en externe grens voor een
raster van 3-bij-3 cellen te maximaliseren. Omdat de zoekruimte beperkt is
(slechts 512 verschillende oplossingen), werd het genetisch algoritme gestopt na
600 functie-evaluaties. Het genetisch algoritme was in slechts 90.5% van de her-
halingen in staat om het globale optimum te vinden voor een populatiegrootte
van 30.


Als het probleem wordt omgevormd tot een adjacency-probleem worden
betere resultaten bekomen. Met een populatiegrootte van 30 wordt het op-
timum in 99.5% van de gevallen bekomen. Het verschil in performantie van
het genetisch algoritme kan verklaard worden door de aanwezigheid van lokale
optima bij de oorspronkelijke formulering. Dit lokale optimum is het comple-
ment van het globale optimum, terwijl voor het tweede geval beide oplossingen
globale optima zijn.


Meervoudig objectief optimalisatie In het voorgaande voorbeeld werden
de vergelijkingen voor de ruimtelijke informatie met de hand opgesteld. Dit
is niet efficiënt voor grote problemen en bijna onmogelijk voor een onregel-
matige configuratie van de bestanden. Dit impliceert dat de voorgaande meth-
ode niet kan toegepast worden op reële toepassingen. De integratie van GA and
GIS daarentegen biedt mogelijkheden voor dergelijke ruimtelijke problemen. De
functionaliteit van beide modules is complementair en de modules kunnen af-
zonderlijk blijven bestaan. Het genetisch algoritme en het GIS werden in dit
werk los met elkaar gekoppeld zodat de toepassing platformonafhankelijk was
en de taakdistributie zo efficiënt mogelijk tot stand werd gebracht. Initieel werd
ArcView GISr gebruikt als GIS-module maar de communicatie tussen ArcView
en het GA verliep niet optimaal. Daarom werd in een later stadium besloten
om het open source GRASS GIS te gebruiken.


Het enkelvoudig objectief probleem van de vorige case study werd uitge-
breid tot een meervoudig probleem. Drie objectieven waren: (1) maximalisatie
van houtopbrengst, (2) maximalisatie van de abundantie van een oude-bos dier-
soort en (3) de abundantie van een grensafhankelijke diersoort. In de literatuur
werd dit opgelost op een fictief bos met een rasterlayout van drie-bij-drie cellen.
De initiële populatie bevat reeds veel Pareto-optimale oplossingen en het ge-
bruik van een genetisch algoritme in dergelijke kleine problemen is dan ook
niet efficiënt. Als het probleem wordt vergroot tot een raster van negen-bij-
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negen cellen dan zijn de voordelen van het genetisch algoritme wel duidelijk:
het genetisch algoritme is in staat het Pareto-optimale front snel te bereiken.


Het genetische algoritme wordt vervolgens aangewend om hetzelfde prob-
leem in Kirkhill op te lossen. Dit introduceert een extra moeilijkheid om-
dat de bestanden in een onregelmatig patroon staan en bovendien wordt de
zoekruimte door het aantal bestanden zeer groot. Opnieuw wordt aangetoond
dat het discrete karakter van het bosbeheersprobleem een gebrekkige spreiding
van de oplossingen veroorzaakt. De meeste oplossingen liggen in het centrum
van het Pareto-front. De drie meest extreme oplossingen worden gebruikt om
de plannen te valideren. Het kapplan dat het meeste houtvolume oplevert, allo-
ceert 288 ha van het bos voor kappen. Dit is veel minder in het geval waar de
abundantie van de oude-bos soort wordt gemaximaliseerd: 184 ha wordt gekapt.
Om de maximale abundantie van de das te bekomen bedraagt de som van de
interne en externe grens 68 km. Dit komt overeen met 85 dassenburchten over
Kirkhill en is minder dan het gemiddelde voor Aberdeenshire. Dit toont aan
dat de oplossingen nog ver verwijderd zijn van de optimale oplossingen.


16.4 Onderzoeksvraag 4a


Het kapprobleem werd opgelost met behulp van drie verschillende coderings-
technieken voor de beslissingsvariabelen: (1) binaire codering, de meest ge-
bruikte codering voor genetische algoritmes, (2) gray codering, die verondersteld
wordt de discontinüıteiten tussen gehele getallen te verminderen en (3) gehele
getallen die de meest natuurlijke voorstelling zijn van de beslissingsvariabelen
bij een kapprobleem. De codering heeft enkel effect op het gedrag van het meer-
voudig objectief genetisch algoritme. Bij meervoudige objectieven is zowel de
benadering van het Pareto-optimale front het best met integer en gray codering.


16.5 Onderzoeksvraag 4b


Omdat ruimtelijke gegevens een twee-dimensioneel karakter hebben, kan het
zijn dat een lineaire voorstelling van de beslissingsvariabelen niet voldoet aan de
basisveronderstelling van een genetisch algoritme, namelijk dat building blocks
kort en van lage orde moeten zijn. Om na te gaan of er bij een bosbeheersprob-
leem met ruimtelijke gegevens meer geavanceerde operatoren dan de eenvoudige
recombinatieoperatoren vereist zijn, werd teruggegrepen naar het enkelvoudig
objectief probleem waarbij de abundantie van de das werd gemaximaliseerd.
Er was immers al vastgesteld dat de oplossing voor dit objectief zowel in het
enkelvoudig als in het meervoudige geval niet optimaal is.


Dit probleem werd dan opgelost met behulp van twee distributieschattingsal-
goritmes: het Extended Compact Genetic Algorithm (ECGA) en het Bayesian
Optimization Algorithm (BOA). Deze algoritmes zijn in staat om building blocks
in een chromosoom te detecteren door probabilistische correlaties op te sporen
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in de populatie. Als de building blocks zijn gevonden, kunnen ze tijdens de re-
combinatiefase expliciet worden verwerkt. Wanneer deze probabilistische schat-
tingsmethodes worden toegepast op Kirkhill, blijkt hun performantie significant
beter te zijn dan deze van een standaard genetisch algoritme. Dit bewijst dat
voor dit reële probleem, de genen van de building blocks ver uit elkaar liggen en
dat de geavanceerde technieken nut hebben. Het standaard genetisch algoritme
is niet in staat om de building blocks impliciet te gaan verwerken.


ECGA detecteert building blocks met een gemiddelde grootte van 4.5 genen
bij het begin van de evolutie en deze grootte daalt tot 1 op het einde van
het optimalisatieproces. Dit is een gevolg van de populatieconvergentie. Deze
convergentie treedt bij ECGA vrij snel op (reeds op generatie 25) als gevolg van
de hoge selectiedruk die nodig is om het algoritme te doen werken.


Wanneer het linkage model fysisch wordt gëınterpreteerd, blijkt dat het aan-
tal dassenburchten gevonden door ECGA overeenkomt met het gemiddelde voor
de Aberdeenshire regio. Het kappatroon benadert ook in vrij hoge mate een
dambordpatroon en iets meer dan de helft van het bos wordt gekapt. De
oplossingen van de herhalingen zijn niet altijd dezelfde. Het blijkt dat 22%
van de genen een groepje vormt met zijn buur en dat deze groepjes complemen-
tair zijn tussen de verschillende herhalingen. Deze complementariteit was ook
aanwezig bij het rasterprobleem en duidt waarschijnlijk weer op lokale minima.
De andere bits zijn gelinkt met bits die niet de buur zijn en duiden erop dat
de genen van de building blocks inderdaad ver van elkaar verwijderd zijn. Dit
verklaart waarom een klassiek genetisch algoritme faalt op dit probleem.


BOA vindt een zeer complexe netwerkstructuur tussen de bestanden. Initieel
is de grootte van de groepjes 5 en dit vermindert tot 4.5 op het einde van de
evolutie. Dit is dezelfde orde die ook ECGA weergaf. De populatieconvergentie
is bij BOA nog niet opgetreden na 40 generaties, en de waarde van de beste
oplossingen is nog altijd lager dan bij ECGA. Dit is te wijten aan ofwel een te
kleine populatie ofwel een te lage selectiedruk.


De fysische interpretatie is door de complexe netwerkstructuur moeilijker
dan bij ECGA, maar net zoals bij ECGA worden complementaire stukjes in de
chromosomen van de verschillende herhaling waargenomen.


Voor een bosbeheersprobleem kan dus besloten worden dat een model geba-
seerd op clusters voldoende is om betere oplossingen te genereren dan een
klassiek genetisch algoritme en dat de tijdsduur hiervoor beperkter is dan voor
BOA.


16.6 Onderzoeksvraag 5


Het bepalen van de fitnesswaarden voor nieuwe individuen door overerving werd
voorgesteld in de literatuur als een manier om de efficiëntie van een genetisch
algoritme te verbeteren. Omdat er weinig gekend is omtrent de toepasbaarheid
van deze technieken voor problemen met meervoudige objectieven werden ze
eerst getest op drie testfuncties: een convexe functie, een concave functie en
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een discontinue functie. De performantie werd getest met behulp van verschil-
lende indicatoren en hieruit blijkt dat fitness-erving enkel mogelijk is indien het
Pareto-optimale front convex en continu is. Indien dit niet het geval is, dan
kan het genetisch algoritme met fitness-erving het Pareto-optimale front niet
benaderen.


Als men fitness-erving wil gebruiken voor reële problemen, dan is het aan
te raden om op voorhand na te gaan wat de vorm van het Pareto-front is.
Indien blijkt dat dit convex is dan kan men eventueel fitness-erving toepassen.
Een haalbare werkwijze is eerst het probleem op te lossen voor een beperkt
aantal generaties en om de vorm van het Pareto-front na te gaan en daarna over
te schakelen op fitness-erving. Als men moet beslissen welke ervingstechniek
gebruikt moet worden, dan is het beter om proportionele fitness-erving te kiezen
omdat die voor de meeste indices de beste score heeft in vergelijking met de
gemiddelde fitness-erving.


Indien men het optimalisatieprocess wil versnellen, kan men ook andere tech-
nieken inschakelen zoals bijvoorbeeld een lokale herberekening van de fitness-
waarde. Dit is vooral interessant als er al enige graad van convergentie aanwezig
is omdat dan de nakomelingen heel sterk op de ouders zullen lijken.


Als tenslotte proportionele fitness-erving wordt toegepast voor het convexe
kapprobleem, blijkt dat de ervings-techiek in staat is om het optimalisatieproces
te versnellen. Fitness-erving is in staat om het Pareto-optimale front te be-
naderen.


16.7 Bemerkingen en indicaties voor toekomstig
onderzoek


Parameterwaardes Parameterwaardes voor de verschillende algoritmes kun-
nen altijd worden bekritiseerd. In dit onderzoek werd getracht om ze zoveel
mogelijk op die waarden te zetten zodat de algoritmes hun beste perfomantie
bereiken. Indien dit niet mogelijk was, bijvoorbeeld omdat een zeer grote pop-
ulatie nodig was dan werden ze op de best mogelijke waardes gezet.


Uitbreiding van de ruimtelijke modellen De gebruikte ruimtelijke mod-
ellen om de abundantie van de das te bepalen zijn zeer simplistisch. Hoewel toch
een realistisch aantal dassenburchten werd bekomen, zijn uitgebreidere modellen
nodig voor operationeel gebruik. Tot nog toe is ook het gebruik van complexe
ruimtelijke modellen niet echt haalbaar omdat het te veel computertijd vergt.
Daarom is het aan te raden om technieken die het proces versnellen te gebruiken.
Omdat fitness-erving niet werkt met eenvoudige lineaire schatting van de fitness-
waarden, kan bijvoorbeeld overwogen worden om meer geavanceerde schatting-
stechnieken zoals kriging te gebruiken. Verder kan ook lokale herberekening van
de fitness-waarden zoals bij tabu search een mogelijkheid zijn.
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Validiteit van de kapplannen Hoewel de planning geldig lijken, is het zeker
nuttig om ze voor te leggen aan bosbeheerders. Deze kunnen vervolgens wijzen
op de logistieke problemen die kunnen ontstaan door de implementatie van de
plannen. Een dergelijke interactie zou natuurlijk ook de aanvaardbaarheid van
de plannen verhogen.


Uitbreiding van de probabilistisch schattingsmodellen voor meerdere
objectieven De probabilistische schattingsmodellen zouden kunnen uitgebreid
worden voor meerdere objectieven. Dit zou het mogelijke maken om meer-
voudige objectief problemen met ruimtelijke gegevens op te lossen.


Nieuwe algoritmes Dit doctoraatsonderzoek spitste zich enkel op genetisch
algoritmes toe omdat ze heel gemakkelijk meervoudige objectieven kunnen op-
timaliseren door hun populatie-gebaseerde aanpak. Deze aanpak heeft ook het
nadeel dat er veel individuen moeten geëvalueerd worden en dit kan het zoekpro-
ces vertragen. Een onderzoek naar het gebruik van nieuwere algorithms zoals
bijvoorbeeld van Jaszkiewicz (2000) is dan ook de moeite waard omdat ze mis-
schien sneller Pareto-optimale oplossingen kunnen genereren.


16.8 Wetenschappelijke bijdrage van dit werk


Tijdens dit onderzoekswerk werd getracht om een bijdrage te leveren tot zowel de
kennis in het domein van bosbeheer als in het domein van genetische algoritmes.
Deze zijn:


Tot het domein van bosbeheer


• Een vergelijkende studie werd uitgevoerd om na te gaan welk genetisch
algoritme geschikt is voor een bosbeheersprobleem (Ducheyne et al., 2001).


• Het effect van de codering voor een kapprobleem werd geanalyseerd.


• De kapplannen die gegenereerd werden door zowel enkelvoudige als meer-
voudige objectief genetische algoritmes werden gevalideerd (A1-artikel in-
gezonden).


• Het voorgestelde genetisch algoritme werd gekoppeld aan een GIS om een
online evaluatie van ruimtelijke modellen mogelijk te maken (A1-artikel
in voorbereiding).


Tot het domein van genetische algoritmes


• Probabiliteitsschattingsalgoritmes werden toegepast op een reëel prob-
leem, de probabilistische modellen werden fysisch gëınterpreteerd
(Ducheyne et al., 2002).
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• Het nut van gemiddelde en proportionele fitness-erving werd uitgebreid
getest zowel op een drietal testfuncties als op een reëel probleem (Ducheyne
et al., 2003).
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Appendix A
Real prices for standing volume
published in 2000


Table A.1: Real prices for standing volume (Anonymous, 2000)


Prices (e) per m3 for conifers
Diameter at
1.5 m (cm)


20-39 40-59 60-69 70-89 90-119 120-149 150-179 > 180


Norway
spruce


- 6 15 27.5 40 47.5 47.5 47.5


Larch - 2.5 7.5 10 21.25 26.25 28.75 28.75
Scots pine - 2.5 7.5 10 21.25 26.25 28.75 28.75
Douglas fir - 2.5 7.5 10 21.25 26.25 28.75 28.75


Prices (e) per m3 for broadleaves
Diameter at
1.5 m (cm)


100-119 120-149 150-179 180-199 200-219 220-249 > 250


Oak 10 23.50 35 50 55 150 155
Beech 15.50 30 52.50 70 80 85 85
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Appendix B
Java documentation files for the
single and multiple objective
genetic algorithm


/*Class Parameters*/
// Imports
import java.lang.String;
import java.io.BufferedReader;
import java.lang.Exception;


public class Parameters {


// Fields
private int numberOfGens;
private int popSize;
private int numberOfReps;
private String outputprefix;
private int maxInt;
private char elitisme;
private int numberOfElites;
private int tDom;
private char crossOverType;
private char selectionType;
private double pCross;
private double pMut;
private int numberOfObjectives;
private int numberOfGenes;
private int functionNumber;
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private double pDecode;
private double weight;


// Constructors
public Parameters() { }
public Parameters(int p0, int p1, int p2, String p3, \\
int p4, char p5, int p6, int p7, char p8, char p9, \\
double p10, double p11, double p12, int p13, int p14,\\
int p15, double p16) throws Exception { }


// Methods
public int getGenerations() { }
public int getPopsize() { }
public int getNumberOfRepetitions() { }
public String getOutputFile() { }
public int getMaxInt() { }
public char getElitisme() { }
public int getNumberElites() { }
public int getTDom() { }
public char getCrossOverType() { }
public char getSelectionType() { }
public double getPCross() { }
public double getPMut() { }
public double getPDecode() { }
public int getNumberOfObjectives() { }
public int getNumberOfGenes() { }
public String getOutputprefix() { }
public int getFunctionNumber() { }
public double getWeight() { }
public static Parameters readParams(BufferedReader p0)\\
throws Exception { }
public String toString() { }


}
/*Class Chromosome*/
public class Chromosome {


// Fields
private int[] chrom;
private int maxInt;
private int numberOfGenes;


// Constructors
public Chromosome(Parameters p0) { }
public Chromosome(Object p0) throws Exception { }
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// Methods
public int getBit(int p0) { }
public void setBit(int p0, int p1) throws Exception { }
public String toString() { }
public boolean equals(Object p0) { }


}
/*Class Individual*/
public class Individual {


// Fields
private Chromosome chrom;
private double[] objectiveValues;
private double decisionVar;
private int rank;
private int number;
private double fitness;
private double distance;
private double violations;
private double[] deviation;
private final double EPS = 9.999994179233909E-5;
private boolean feasible;


// Constructors
public Individual(Parameters p0) { }
public Individual(Parameters p0, Chromosome p1) \\
throws Exception { }


// Methods
public Chromosome getChrom() { }
public double getObjectiveValues(int p0) { }
public int getRank() { }
public double getFitness() { }
public double getDev(int p0) { }
public double getDecisionVar() { }
public double getDistance() { }
public int getNumber() { }
public boolean getFeasible() { }
public void setChrom(Object p0) throws Exception { }
public void setRank(int p0) throws Exception { }
public void setNumber(int p0) throws Exception { }
public void setDistance(double p0) throws Exception { }
public void setObjectiveValues(int p0, double p1) { }
public void setDecisionVar(double p0) { }
public void setFitness(double p0) { }
public void setDev(int p0, double p1) { }
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public void setFeasible(boolean p0) { }
public void setViolations(double p0) { }
public boolean constrained_dominates(Object p0) \\
throws Exception { }
public boolean dominates(Object p0) throws Exception { }
private boolean equals(Individual p0) { }
public boolean greaterThen(Object p0) throws Exception { }
public String toString() { }
public static void decode(Individual p0, int p1, \\
int p2, int p3, double p4) throws Exception { }
public static int convertGrayToInt(int[] p0) { }
public static int convertBinaryToInt(int[] p0) { }


}
/*Class Population*/
public class Population {


// Fields
private int popsize;
private double[] max;
private double[] min;
private Individual[] pop;
private int maxInt;
private int numberOfObjectives;
private double minFitness;
private double maxFitness;
private double averageFitness;


// Constructors
public Population(Parameters p0) { }
public Population(int p0, Parameters p1) { }


// Methods
public void setIndiv(int p0, Individual p1) \\
throws Exception { }
public Individual getIndiv(int p0) { }
public static void initialPop(Population p0, \\
Parameters p1, Random p2) \\
throws Exception { }
public static void decodePop(Population p0, \\
Parameters p1, Hashtable p2) \\
throws Exception { }
public static void sort(Population p0, \\
Parameters p1) throws Exception { }
public static Population select(Population p0, \\
Parameters p1, Random p2) throws Exception { }
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private static Population tournamentSelectionWith\\
DominationSet
(Population p0, Parameters p1, Random p2) throws Exception { }
private static Population tournamentSelection \\
(Population p0, Parameters p1, Random p2, int p3) throws Exception { }
private static Population TournamentSelectionECGA\\
(Population p0, Parameters p1, Random p2) throws Exception { }
private static int[] shuffle(int p0) { }
private static Population binaryTournamentSelection\\
(Population p0, Parameters p1, Random p2) throws Exception { }
private static Population rouletteWheelSelection\\
(Population p0, Parameters p1, Random p2) throws Exception { }
public static void calcRank(Population p0) throws Exception { }
private static void shareByRank(Population p0) { }
private static boolean[] dominatedCompare\\
(Population p0, Population p1) throws Exception { }
private static boolean[] dominatedCompare\\
(Population p0) throws Exception { }
private static double[] share(Population p0, \\
Population p1, int p2, Population p3) { }
private static void calcMaxMin(Population p0) { }
public static int recombine(Population p0, \\
Population p1, Parameters p2, Random p3, int p4) throws Exception { }
private static int uniformCrossover(Population p0,\\
Population p1, Parameters p2, Random p3, int p4) throws Exception { }


private static int onepointCrossover(Population p0,\\
Population p1, Parameters p2, Random p3,int p4, Hashtable p5)\\
throws Exception { }


private static boolean flip(double p0) { }
private static int mutate(int p0, Parameters p1, Random p2) { }
public String toString() { }
public static void printStats(Population p0, PrintWriter p1,\\
int p2, int p3) throws Exception { }
public static void merge(Population p0, Population p1,\\
Population p2) throws Exception { }


public static void copyPop(Population p0, Population p1,\\
int p2) throws Exception { }
public static void copyPop(Population[] p0, Population p1,\\
int p2, Parameters p3) throws Exception { }


public static Population[] fastNonDominatedSort(Population p0,\\
Population[] p1, Parameters p2) throws Exception { }
static Population[] changeSize(Population[] p0, int p1, \\
Parameters p2) throws Exception { }
private static void crowdingDistanceAssignment(Population p0,\\
Parameters p1) throws Exception { }}
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/*Main Class FORGA*/
public class FORGA {


// Fields
static BufferedReader in;
static PrintWriter uit;


// Constructors
public FORGA() { }


// Methods
public static void main(String[] p0) { }


}







Appendix C
Matlab documentation files for
performance indices and
bootstrapping method


function [snijpuntenX,snijpuntenY] = findAttainment (fileprefix)


Function findAttainment requires as input the outputfiles from the genetic al-
gorithm and yields the crosssections and the median attainment surfaces both
numerically and graphically.


First, the Pareto-optimal solutions are extracted from the data set. These
solutions are then sorted. This is followed by the determination of the inter-
sections between an arbitrary diagonal line and the attainment surface for each
run. As the intersections are on a line, it is possible to draw the frequency
distribution, and hence to determine the median attainment surface.


function [ER, GD] = GD(fileprefix)


Function GD requires as input the outputfiles from every repetition from the
genetic algorithm and the reference file containing the Pareto-optimal solutions.
This function yields tab-delimited files containing the error ratio and genera-
tional distance for each repetition.


The Pareto-optimal front is read from an inputfile, together with the Pareto-
fronts of all repetitions. For the generational distance, the minimum distance
from each point of the Pareto-front to the Pareto-optimal front is determined
using the module dsearchn. Adding these distances together leads to the gen-
erational distance. Using the distances from dsearchn it is also possible to
determine the error ratio: if the distance is larger than treshold δ than the
solution is counted as error.


225







226
Matlab documentation files for performance indices and bootstrapping


method


function [spacingvector] = spacing(fileprefix)


Function spacing requires as input the outputfiles from every repetition from the
genetic algorithm and yields a tab-delimited outputfile containing the spacing
for each repetition.


Initially, the solutions are sorted according to the first objective. Then the
duplicate points are removed from the inputfiles. The distance between the
points is then determined by taking the absolute value of the difference between
the objectives. For each of the solutions, the minimum distance is determined.
In the next step, the mean distance over all points is taken, and finally the
difference for each point to the mean distance is calculated. This produces a
vector with the spacing values for each of the repetitions.


function [spreadvector] = spread(fileprefix)


Function spread requires as input the outputfiles from every repetition from the
genetic algorithm and yields tab-delimited outputfile containing the spacing for
each repetition.


The procedure to calculate the spread is the same as for spacing. Next
to the distance between the points on the Pareto-front, the distance from the
extreme solutions on the Pareto-front to the most extreme solutions on the
Pareto-optimal front is determined.


function [hypervolume] = hypervolume(fileprefix)


This function converts the outputfiles from the genetic algorithm into the suit-
able format for the hypervolume measure by Zitzler (1999). This hypervolume
measure requires that all objectives are maximised.


function []=bootstrapping(alpha,fileprefix1,fileprefix2)


The bootstrapping module requires as input the confidence level alpha, and the
fileprefix from two inputfiles for which the bootstrapping must be performed.
This function yields bootstrapping graphs with the bounds of the confidence
interval (in red) and the test value (in green).


First, the inputfiles are loaded. The mean performance index for each algo-
rithm is calculated, together with the difference in means. In the following step,
the data from the two algorithms are put together, permuted and redistributed
over the two algorithms. The mean for the two algorithms is calculated again.
This is repeated 5000 times. The 5000 resulting means are then sorted, and the
lower and upper bound of the confidence interval are determined according to
Eq. 7.9 (p. 92). The bootstrapping values are put in a histogram and displayed
together with the confidence interval boundaries and the original mean value as
test measure.







Appendix D
Examples of ECGA and BOA


D.1 ECGA


Imagine the following population of 8 individuals. The length of each chromo-
some is 4. After the selection step the mating pool is formed as in Table D.1
:


Table D.1: Initial population and mating pool


Initial population Mating pool
0010 1001
0000 1101
1001 0111
1101 ⇒ 1100
1001 0011
0111 0111
1000 1000
1000 1001


From the mating pool, it is now possible to calculate model complexity
(MC) (Eq. D.1), the compressed population complexity (CPC) (Eq. D.2) and
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the combined complexity (CC) (Eq. D.3).


MC = (log2(N + 1))×
∑


i


(2Si − 1) (D.1)


CPC = N ×
∑


i


entropy(Mi) (D.2)


CC = MC + CPC (D.3)


where


entropy(Mi) = −
∑


i


pi × log2 pi (D.4)


where N is the population size, pi is the probability of having an allele value of
1 on locus i, Si is the cardinality of subset i and Mi is the marginal distribution
of this subset.


For the first model M1, it is assumed that there is no interaction between the
genes. M1 can thus be represented as: M1: [1][2][3][4]. The model complexity
is then with N = 8 and Si = 1 ∀i = 1, . . . , n: log2 9 × (1 + 1 + 1 + 1) = 12.67.
The compressed population complexity is based on sum of the entropy for each
gene i:
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As N=8, CPC = 29.76 and therefore the combined complexity for M1 equals
CC = 12.67 + 29.76 = 42.44.


If we now combine gene 1 and gene 3 together in one group, then model 2 is
represented by: [1,3],[2],[4]. The model complexity is with S1 = 2 for the first
group and Si = 1 for i = 2 and i = 3: log2 9 × (3 + 1 + 1) = 15.8. This is
higher than for the first model, because we need to count four instances of the
first subset, instead of two instances. The compressed population complexity
in this case is 22.12, and the combined complexity is 37.92. This indicates that
the second model represents the data better than the first model.


This procedure is continued using a greedy search. At each grouping level,
the combined complexity is calculated. The model with the lowest CC is then
used to combine the genes into groups of three. Assuming the second model was
the best in the previous calculations, this would be used to expand the model
in the next level until no further decrease of CC is possible.


After the best model (for example our model [1,3][2][4]) is found, the next
generation of individuals is created. To this end, the parent population is shuf-
fled randomly. If for example the parent numbers are as follows after shuffling:
3,2,4,5,1,8,7 and 6, then the first child will receive subset [1,3] from parent 3,
the second child from parent 2, etc. After all children have received the first
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subset of genes, the parent population is shuffled again. Now, subset [2] will be
assigned to all offspring. Finally, the population is shuffled for a last time, and
subset [4] will be assigned to the offspring. This procedure is nothing else but
a uniform crossover with N parents.


D.2 BOA


Imagine the following population of 4 individuals. The length of each chromo-
some is 3. After the selection step the mating pool is formed as in Table D.2
:


Table D.2: Mating pool


Mating pool
100
110
000
000


Based on the mating pool, the possible networks are constructed in the
following manner.


Empty network In the simplest case, all genes are independent, and this cor-
responds with an empty network. We proceed with calculating the coefficients
Nij and Nijk as in Eq. 11.16 on p. 148 and as was shown in the example on
p. 148. For the empty network, we find that P (D,B | ζ) = 0.0004.


Adding one edge Starting from the empty network, we can now add an
edge between the different genes. This produces the following joint probability
(Table D.3):
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Table D.3: Joint probability functions and scores for the networks with
only one edge


P (D,B | ζ) Score
p(x1)p(x3)p(x2 | x1) 0.0004
p(x1)p(x2)p(x3 | x1) 0.0002
p(x2)p(x3)p(x1 | x2) 0.0017
p(x2)p(x1)p(x3 | x2) 0.0004
p(x2)p(x3)p(x1 | x3) 0.0004
p(x1)p(x3)p(x2 | x3) 0.0003


The network with joint probability function p(x2)p(x3)p(x1 | x2) has the
highest score and will be used for adding the following edge.


Adding the second edge There are only four different networks possible as
loops are not allowed in a Bayesian network. The joint probability for these
networks in given in Table D.4 :


Table D.4: Joint probability function and scores for network with a
second edge added


p(D,B | ζ) Score
p(x2)p(x1 | x2)p(x3 | x2) 0.0010
p(x2)p(x1 | x2)p(x3 | x1) 0.0002
p(x2)p(x3)p(x1 | x2, x3) 0.0004
p(x3)p(x2 | x3)p(x1 | x2) 0.0017


No more edges can be added to the network without creating loops. The
best network has the highest probability and the lowest number of edges. In
this case, the best network is therefore the network with the joint probability
function p(x2)p(x3)p(x1 | x2) . In the following stage it is possible to generate
the offspring.
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Creating new offspring Given the best joint probability function, it is now
possible to calculate the marginal frequencies of having an allele value of 1 at
each gene position. From Table D.2 follows that the marginal frequencies are:


Table D.5: Marginal probability for gene 2 and gene 3


Gene marginal probability
x2 = 1 1/4
x3 = 1 0/4


Using a random generator is it possible to determine the allele values for
gene 2 and 3. The outcome of gene 1 depends on the value received for gene 2.
Imagine that gene 2=0 than follows that the p(x1 = 0 | x2 = 0) = 0.666 and
p(x1 = 0 | x2 = 1) = 0.333. Using the random generator again will give the
final allele value for gene 1.
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Bäck, T. (1994). Selective Pressure in Evolutionary Algorithms: A Characteri-
zation of Selection Mechanisms.
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