Novel Algorithms for Multi-Objective Search and
their application in Multi-Objective Evolutionary
Neural Network Training.

Submitted by Jonathan Edward Fieldsend, to the University of Exeter as a thesis for the degree of

Doctor of Philosophy in Computer Science, June 2003.

This thesis is available for Library use on the understanding that it is copyright material and that

no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no
material has previously been submitted and approved for the award of a degree by this or any other

university.



0.1 Abstract

In a wide variety of application areas there is a need to trade-off competing objectives to achieve
a resolution to a specific problem. Where the interdependencies of these objectives are unknown
(as is often the case), this involves the searching and storing of a set of potential problem solutions
which, without objective preference knowledge, cannot be said to be any better or worse than other
members of the set. Many studies over the last 18 years have investigated ways to improve the
efficiency of the search process for these solutions; principally through the tools of evolutionary
computation. This increased efficiency has been manifest in the discovery of the best set of solutions
in a fewer number of function (problem) evaluations; the fewer the function evaluations, the lower
the computational cost and the better the search process is judged to perform. A number of studies
have focused on the additional computation complexity of some of the more advanced methods,
however one major cause of realised run-time has been largely ignored. The current approach in the
literature is to store potential solutions in a linear list. This means that a large proportion of an
optimiser’s time can be actually spent comparing stored solutions with new solutions, as opposed
to function evaluation of solutions, or the search process itself. The first part of this work confronts
this problem by developing new data structures for the representation of multi-dimensional points,
which can be used in multi-objective search processes. These new data structures are shown to be
significantly faster than linear lists and operational proofs are also derived that evinces this. The
second part of the thesis is concerned with the benefits of these new data structures to multi-objective
search beyond their application within a general framework - to their specific use in facilitating
novel optimisation techniques. This is shown with the development and empirical validation of a
multi-objective particle swarm optimisation model. The final part of the work is concerned with
the development of a multi-objective evolutionary neural network framework. Until this point the
technique of choice in this field has been the linear weighting method, whose shortcomings have
been amply demonstrated in the general multi-objective optimisation field. This section therefore
transfers the recent advances in multi-objective optimisation to a neural network training framework,
and develops novel generalisation techniques to deal with the unique properties of multi-objective
error minimisation that are not apparent in the uni-objective case. Empirical validation is provided

in terms of test problems from the literature and an extensive financial forecasting application.



for my family



0.2 Acknowledgements

No work is that of a single person - but rather some amalgamation of that person and their ex-
periences, here I would like to acknowledge those people who have in some part provided those
experiences that have propelled me in different directions during my PhD research, helped me to

think in different ways and enabled me to stay sane during the inevitable lows as well as highs.

From the academic community at the department I would like to thank my supervisors Sameer
Singh and Zheng Yang as well as my Thesis chair Derek Partridge. I would also like to thank
Richard Everson for our many discussions on multi-objective theory and generous collaboration in

the development of the dominated and non-dominated trees.

I have been privileged to enjoy the company of a number of excellent PhD students during
my time at Exeter, firstly Keir Bovis who was forced to sit next to me for 3 years, fostered my
LINUX initiation, was free in the exchange of ideas, as well being persuasive of the benefit of the
Imperial Free House as a solution to the most persistent problems. In addition I would like also
thank Michelle Fisher, Tim Hodgson, Julia Wallace, Kevin Smith and Alex Schmolck - all of whose
conversations over lunch have provided an interesting insight into life, the universe, and the best

source of carbohydrates on campus.

I would also like to thank Morgan Adams, Demetra Arsalidou, Sarah Bidgood, Daniel Fraser,
Rinske Goettsch, Keith Langmead, Carly Mays, Tom Milburn, Nick Murison, Brynmor Morris, Ming
Peng, Christina Pdssel, Marika Wedlock, James Wheeler and Maria Varikou for their friendship and

support over the last few years.

I would finally like to thank Soon-Thiam Khu and Xin Yao for agreeing to examine my thesis.



Contents

0.1 Abstract . . . . . . . . e e e e e e e e e e e
0.2 Acknowledgements . . . . . . . .. ..
0.3 Nomenclature . . . . . . . . . . e e e e e e e

0.4 Author Declaration . . . . . . . . . . . L

1 Introduction
1.1 Motivation . . . . . . . . e e e e
1.1.1 Problems in evolutionary multi-objective search . . . . . . . . ... ... ...
1.1.2 Problems with the current approach to multi-error neural network training
1.2 Objectives . . . . . . . L e e e
1.3 Contributions . . . . . . . . . L e e e

1.4 ThesSis OVEIVIEW . . . . o v v i o o e e e e e e e e e e e e e e e e e e e e e e e e e

2 Artificial Neural and Evolutionary Computation
2.1 The multi-layer perceptron . . . . . . . . . ...
2.2 Basic principles of evolutionary algorithms . . . . . . . ... ... 0000
2.2.1 Evolution strategy (evolutionary programming) . . . . . . .. . . .. .. ...

2.2.2 Genetic algorithms . . . . . . . ...

I Improving Multi-Objective Optimisation

3 Evolutionary Multi-Objective Search
3.1 Multi-objective evolutionary algorithms: a brief overview . . ... ... ... ... ..

3.1.1 TImportant issues in multi-objective optimisation . . . . ... ... ... ...

20
21

22
22
24
25
26
26
27

29
29
32
33
34

37



CONTENTS 6

3.1.2 MOEA: The major advances 1985-2000 . . . . . . . . .. .. ... ... ... 47

3.2 Manifest problems of current approaches . . . . . . . .. ... oL L. 51
3.2.1 Shrinking and oscillating estimated Pareto fronts . . . . . .. ... ... ... 51

4 The Dominated and Non-Dominated Tree Data Structures 57
4.1 Using an unconstrained elite archive . . . . .. ... ... . ... ... 0oL, 57
4.1.1 Selection. . . . . ... e e e 58

4.1.2 Efficient storage of the frontalset . . . . . . . . ... ... ... 60

4.2 Dominated and non-dominated trees . . . . .. .. ... L oo 60
4.2.1 Construction . . . . . . . .. L e e e 63

422 QUETY . . . o e e e e 64

4.2.3 Non-dominated trees . . . . . . . ... L 66

4.2.4 TInsertion and deletion . . . ... .. .. ... ... L. 67

4.3 Application of data structures . . . . . . . . ... 71
4.3.1 Usein MOEAs . . . . . . . . . . e 71

5 An Empirical Validation of the New Data Structures 73
5.1 Experimental design . . . . . . .. ... 73
5.1.1 Algorithm implementation . . . . . . .. ... .. .. ... ... .. 76

5.1.2 Results . . . . . . L e 78

5.2 Keyresults . . . . . . o e e 82
5.3 Further implications: robust stopping criteria . . . . . . .. .. ... ... ... ... 85

II Dominated Tree based Multi-Objective Particle Swarm Optimisa-

tion 88
6 Particle Swarm Optimisation 90
6.1 The heuristic and standard algorithm . . . .. ... ... ... .. ... . ..., 90
6.2 Common extensions . . . . . . . . . ..o e e e e 92
6.2.1 Multi-swarm PSO . . . . . .. oL 92

6.2.2 Localbest PSO . . . . . . . . 93

6.2.3 Hybrid PSO . . . o o oo ot 93



CONTENTS 7

6.3 Previous neural network applications . . . . . . . ... ... Lo L oL 93
6.3.1 Partial weight training . . . . . . . ... oL oL 94
6.3.2 Full weight training . . . . .. ... .. .. L Lo o 94
6.3.3 Architecture optimisation . . . . . ... ... .. ... ... .. ..., 94

7 Directed Multi-Objective Particle Swarm Optimisation 96

7.1 MOPSO . . . 96

7.2 Previousstudies . . . . .. ... 97
7.2.1 Huand Eberhart . . . ... ... .. ... ... . 97
7.2.2 Parsopoulos and Vrahatis . . .. .. .. ... ... ... ... .. . .. 99
7.2.3 Coello and Lechunga . . . . . .. .. .. ... ... 100

7.3 The new MOPSO model: local-global optimisation using dominated trees. . . . . . . 101

7.4 Empirical comparison of two MOPSO models . . . . .. ... ... .......... 104
7.4.1 The comparativemodels . . . . . . ... ... o 105
7.4.2 The introduction of turbulence . . . . . ... ... L. 105
7.4.3 Comparative MOAs and test functions . . . . . ... ... ... ........ 106
7.4.4 Comparative MeEASUIe . . . . .« v v v v v v et e et e e e e e e e e 107
7.4.5 Algorithm implementation . . . . . . .. ... ... L0 108
74.6 Results . .. .. .. e 109

8 Empirical Comparison of MOPSO Models 112

81 Thederivedmodels. . . . . . . .. .. 112
8.1.1 Selection of gbest or lbest . . . . . . . . . . 113
8.1.2 Selection and maintenance of pbest . . . . . .. ... 114

8.2 Comparative measure . . . . . . . . .. ..o e e e e 114

83 Results. . . . . . . e 115
83.1 Imertia . . . . . . . . . e e 115
83.2 Turbulence . . . .. . . . . e 116
8.3.3 pbest and gbest selection . . . . . ... ..o Lo 116

84 Keyresults . . . . . . . 117



CONTENTS

IIT Multi-Objective Evolutionary Neural Network Framework

9 Neural Networks for Time Series Forecasting

9.1
9.2
9.3

9.4

Neural network time series forecasting & function approximation . . .. .. .. ..
Data processing and effective experiment design in the Neural Network literature . .
Traditional multi-error training . . . . . . . .. . ..o oL
9.3.1 Single model example . . . . . . .. .. ..o
9.3.2 Set of modelsexample . . . . . . ... o

Problems with current approach . . . . .. .. ... ... ... oL L L.

10 A Pareto Neural Network Training Model

10.1
10.2

10.3
10.4

10.5

Pareto optimal multi-objective evolutionary neural networks . . . . . . . . ... ..
Uni-objective evolutionary neural networks . . . . . .. . ... ... ... ... ..
10.2.1 Simulated annealing . . . . . .. ... oL oL
10.2.2 Single-agent stochastic search . . . . .. .. . ... ..o oL L.
10.2.3 Evolution strategy . . . . . . . . . . .. .
10.2.4 Genetic algorithms . . . . . . . . .. ..o
The general model . . . . . . . .. L
Novel generalisation techniques . . . . . . . . . ... ... ... L ..
10.4.1 The use of a ‘validation’ set . . . . . .. . . . .. ... ...
10.4.2 Bootstrap generalisation . . . . . . . .. .. ... o oL
Empirical comparison of the new generalisation techniques . . . . . . .. .. .. ..
10.5.1 Application, data and error measures. . . . . . . . . . . ..o 00 ...
10.5.2 Methods . . . . . . . . . . L
10.5.3 Results . . . . . . . L
10.5.4 Comments . . . . . . o v it e e e e e e e e e e e e e e

11 Empirical Application of Pareto Neural Networks

11.1

Proof of concept; initial application of MOENN training to real world data . . . .
11.1.1 Trading strategy and error measures . . . . . . . . . ... .. ... .....
11.1.2 ENN model . . . . . . . . o
11.1.3 Data . . . . . o o o e e e e e e

121

123
123
124
127
127
129
131

135
135
136
136
137
138
140
141
149
149
151
152
152
154
155
161



CONTENTS 9

11.1.4 Experiments and results . . . . . . . . . . ... L Lo 167

11.1.5 Comments . . . . . . . . . o Lo e e 170

11.2 Extensive application of MOENNSs to regression problems. . . . . . . . ... ... .. 171
11.2.1 Results . . . . . . o o 175

11.2.2 Further efficiency tests: Comparison with single objective ES runs . . . . . . 182

11.3 General comments . . . . . . . .. L.l e e e e 185

12 Conclusion 187
12.1 Furtherissues . . . . . . . . . o L o L e e e e e 188
12.1.1 Bias/variance tradeoff in uni-objective problems . . ... .. ... ... ... 188

12.1.2 Multi-objective simulated annealing and Markov chain Monte Carlo . . . . . 189
Bibliography 190

References 190



List of Figures

1 Generic multi-layer perceptron, showing the forward flow of the input signal (function
signal) and the backward flow of the error signal. . . . . .. ... .. .. ....... 30

2 Roulette wheel selection. . . . . . . . . . . . . . e e e 35

3  Tlustration of the true Pareto front, and three estimates of it. The estimate of algo-
rithm A being clearly more accurate than B, but the comparison of A and C' is not
aseasy to quantify. . . . . ... L 42

4  Comparing the density of estimated Pareto fronts. Illustration of an underlying true
Pareto front (a), and its approximation using an MOEA that is designed to return
equal density along the front (b) and one that does not (¢). . . ... ... ...... 43

5  (a) Illustrates dense and evenly distributed estimated Pareto fronts. Front A domi-
nates a larger extent of Front B, but both fronts dominate an equal number of each
others’ constituent members. (b) Ilustrates estimated Pareto fronts of differing ex-

tents. Front B is of far greater extent than A, but will receive a lower C metric

6 Two dimensional illustration of minimum surrounding hypercube volume dominated

by two fronts (hypercuboid boundaries marked with dashed lines). . . ... ... .. 46
7  An example of the estimated V measure for two estimated Pareto fronts as the number

of Monte Carlo samples increases. . . . . . . . . . . ... oo 48
8 Example of a retreating estimated Pareto front, produced by truncation by clustering. 52
9  Percentage of individuals in active clustered archive dominated by members of the

dormant unconstrained archive. . . . . . . . . . ... ... 53

10



LIST OF FIGURES 11

10
11

12

13

14

15

16
17

18

19

20

21

22

Non-dominated space around a point in 2 and 3 dimensions. . . . . . .. ... .. .. 55

Archive growth in 2 to 10 dimensions, using random number generation. . . . . . . . 56

A two objective example of partitioned quasi-random selection, with the objective
1 and 2 dimensions partitioned in illustration (during selection only one dimension
is partitioned at each generation). N = 5 representative individuals are required,
so selection is from N — 1 = 4 bins (after automatic selection of the extremal value
(circled)). . . . . . 59
Top: 13 points {y1,...,y13} in two dimensions and the composite points {cy,...,cr}
(squares) forming a dominated tree. The open circle, q represents a query point.
Bottom: Composite nodes listed as ordered by <. . . . . . .. .. ... ... ... .. 62
The non-dominated tree representing the 13 points {y1,...,y13} illustrated in figure
1. e e 66

Dominated tree resulting from the tree shown in figure 13 after the insertion of y14

and deletion of y4. . . . . . . . .. e 69
Dominated tree resulting from ‘cleaning’ of the tree shown in figure 15. . . . . . .. 70
Tllustration of dominated tree represented in a doubly-linked list. . . . . ... .. .. 72

Growth of archive size using ZDT1, ZDT2 and ZDT3 (Zitzler et al. , 2000) and the
test functions F1, F2 and F3 introduced in this work, using a simple (1+1)-ES based
MOEA. . . 74
Growth of archive sizes using ZDT1, ZDT2 and ZDT3 (Zitzler et al. , 2000) and the
test functions F1, F2 and F3 introduced in this work, using a simple GA based MOEA. 75
Parallel coordinated graphs of the objective bounds of the test functions (each line
relating to an individual which minimises one of the objectives) . . . . . . . . . . .. 7
The average time (in seconds) spent checking an individual against the elite archive
and updating the archive in the three different archive methods (unconstrained stan-
dard, unconstrained with the new data structures and clustered), using the GA up to
5000 generations (with the three objective problem F5). . . . . . .. ... ... ... 81
Tllustration of e-dominance, although the new point b dominates the archive member

it does not € dominate it, and therefore is not stored. . . . . . . . . . .. ... ... 84



LIST OF FIGURES 12

23
24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

The multi-objective particle swarm optimisation method of Hu & Eberhart (2002). . 98

The multi-objective particle swarm optimisation model of (Parsopoulos & Vrahatis,

2D Tllustration of grid based selection scheme used in (Coello & Lechuga, 2002), with
the ‘fitness’ of populated hypercubes highlighted. . . . .. ... ... ... ... .. 101
The multi-objective particle swarm optimisation model of (Coello & Lechuga, 2002). 102
Selection of local gbest for each swarm member. . . . . . . .. .. .. ... ... 104
The Pareto optimal fronts for the ZDT functions 1-4. Optimal Pareto fronts plotted,
along with 100,000 randomly generated individuals. . . . . . . .. .. ... ... ... 107
Illustration of the PSO search process, and the volume in which a particle X; can

move at each iteration. X; can feasibly be moved to point ‘a’, but not to point ‘0’. . 110

Average number of competing models that the MOPSOs are significantly better than,
when no turbulence is used. Model ordering as Table 12. . . . ... ... ... ... 118
Average number of competing models that the MOPSOs are significantly better than,

when turbulence is used. Model ordering as Table 12. . . . .. ... ... ... ... 119

Correct direction change prediction versus Euclidean minimised model. . . . . . . .. 128
The CAPM model. Pareto front defining trade-off between profit and risk in a port-
folio of stocks, and also in relation to a prediction model genus with various model
PATAmEters. . . . . . . . e e e e e e e e e e e e e e e e e e e e e e e 129
Two risk free rates of interest in the CAPM model (and forecast model analogy). . . 130
Two dimensional error surface 1. Suboptimal models denoted by circles. The optimal
model returned by equal weighting of the errors highlighted at the tangent point. . . 132
Two dimensional error surface 2. Suboptimal models denoted by circles. The optimal
model returned by equal weighting of the errors highlighted at the tangent point. . . 133
Example the effect of composite weighting when the front is convex with respect to
the origin. Irrespective of weights given to the respective errors, the optimal model

returned will only be one of the extreme optimal solutions. . . . .. ... ... ... 134

Tllustration of network topology and feature adaptation through genetic bit mutation. 143



LIST OF FIGURES

39

40

41

42
43
44
45

46

47
48

49

50

51

52

Tllustration of probabilistic weight perturbation. Dashed connection in network ‘B’
representing original weight value in network ‘A’ plus perturbation of v - ©, where ©
represents values generated by a distribution selected by the user. . . ... .. ...
Tllustration of probabilistic weight deletion. Network ‘B’ represents the original net-

work ‘A’ after weight deletion of probability 0.05 (the link between Input 2 and the

13

fourth hidden node removed, along with the link between the 3rd and 6th hidden unit.)145

Tllustration of network connectivity adaptation through genetic crossover. Dashed
connections in offspring ‘C’ and ‘D’ represent weights inherited from parent network
‘A’. Solid connections represent weights inherited from parent 'B’. . . . .. ... ..
Flow diagram of the general MOENN framework. . . . . . . ... ... ... .....
Lo and Bassu’s first noisy function (Lo & Bassu, 2002a). (Test function 1). . . . . .
Lo and Bassu’s second noisy function (Lo & Bassu, 2002a). (Test function 2). . . . .
Test function 1, estimated Pareto fronts, points from the standard training method
denoted by ‘+’, points from the validation training method denoted by ‘0’ and points
from the bootstrap training method denoted by ‘x’.. . . . . . .. .. ... ... ...
Test function 2, estimated Pareto fronts, points from the standard training method
denoted by ‘+’, points from the validation training method denoted by ‘0’ and points

from the bootstrap training method denoted by ‘x’.. . . . . .. ... .. ... .. ..

Network design, illustrating topography and recurrence. . . . . . .. ... ... ...
An illustration of the test and training sets (top) in relation to the transformed data
ye (bottom). . . . . L e
An illustration of the three investor types compared, the profit-maximiser operating
at point ‘a’, the middle-way practitioner operating at point ‘b’ and the risk-averse
individual operating at point ‘c’. . . . . . . .. ..o oL
Estimated Pareto error surface on training set and the noisy estimated Pareto error
surface on the test set (first window). . . . .. ... ... . L Lo L.

Profit plots for the 10 year test period for the extreme and mid models on the training

166

Pareto front, the random walk model and the market return (capital initialised at 100).171

Top: The Nikkei 225 index (open level). Bottom: The ¢ transformation of the
Nikkei 225, as described by Equations 59-62. . . . .. ... ... ... ... .....



LIST OF FIGURES

53

54

55

56

57

58

59

Risk and return on the S&P 500 index (80% train, 20% test). Left: Training Pareto
front. Right: Evaluation of set on test data. . . . . .. .. ... ... ... ....
Risk and return on the Nikkei 225 index (80% train, 20% test). Left: Training Pareto
front. Right: Evaluation of set on test data. . . . . . ... ... .. ... ......
Risk and return on the FTSE 100 index (80% train, 20% test). Left: Training Pareto
front. Right: Evaluation of set on test data. . . . . .. .. ... .. .. .......
Risk and return for 3 different exemplar members of the archived ENNs across the

37 international indices (indices ordered as in Table 21). Market performance and

14

performance of the random walk model using the same trading strategy are also shown.177

Boxplots of the realised risk and return for 3 different exemplar members of the
archived ENNs across the 37 international indices. Market performance and perfor-
mance of the random walk model using the same trading strategy are also shown. . .
Example of the range of ENN topographies on an estimated Pareto front. Hinton plots
are shown for the ENN weights (a), input topography (b) and hidden topography (c)
of the 8 ENNSs lying on the estimated Pareto error surface for the Nikkei 225 data.

Risk and return on the Lima General index training data, the models found by
the MOES after 25000 generations plotted as points, the models found by the uni-
objective ES with 5 different risk maximums plotted as circles, again after 25000

generations. . . . . . ... ..l L Lo

178

181



List of Tables

1 GA reproduction (elitist selection). . . . . . . . . .. ... L L 34
2 GA crossover (one point example). . . . .. ... Lo oo 34
3 GAmutation. . . . . . . e e e e e e 35
4 First three Test functions from (Zitzler et al. , 2000). . . . . . .. .. ... ... ... 75

5  Mean execution time (in seconds) of the three archive methods, standard deviation

in parentheses. Results in bold signify significantly faster results as suggested by the

Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in each tail) compared to

the other two algorithms. Results in italics signify that the dominated tree algorithm

is significantly faster than linear search. . . . . .. .. ... ... ... ... ... 79
6  Generations (multiples of 1000) for which algorithm A is significantly faster than

algorithm B. t(A, B), calculated using the Wilcoxon non-parametric signed ranks test

at the 0.05 significance level with 0.025 in each tail. Where L denotes the standard

unconstrained archive with linear search, D is the dominated tree archive and C is

the clustered archive. . . . . . . . .. L 80
7  Table showing archive size beyond which the dominated tree is significantly faster

than the linear search for the various test problems for the total (absolute) time cost

of the method up to that archive size, the second column pair are for the incremental

cost (the difference between the time taken in reaching one range and the next).

Significance calculated using a Wilcoxon signed ranks test (0.025 in each tail). . .. 80

15



LIST OF TABLES

10
11

Comparison between end-of-run fronts from the unconstrained and clustered elite ES
and GA archive models, using the € measure. C(U,C) is the mean proportion of the
members of the clustered generated front dominated by members of the unconstrained
generated front. Means are over 50 runs, with standard deviation in parentheses. The
first two columns relate to the results after an equal number of generations. The third
and fourth columns relate to the results after the clustered algorithms have run for
an equal time as the dominated tree based unconstrained algorithm. Results in bold
signify significantly better results under the Wilcoxon non-parametric signed ranks
test (2 tailed, 0.025ineach tail). . . . ... ... ... L L Lo L
Comparison between end-of-run fronts from the unconstrained and clustered elite ES
and GA archive models, using the V measure. Where V (U, C) is the mean proportion
of the volume of the minimum hypercube containing both estimated fronts, which
is dominated by members of the unconstrained generated front but not by members
of the constrained generated front. Means are over 50 runs, standard deviation in
parentheses, value as a percentage. The first two columns relate to the results after an
equal number of generations. The third and fourth columns relate to the results after
the clustered algorithms have run for and equal amount of time as the data structure
based unconstrained algorithm. Results highlighted in bold signify significantly better

results under the Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in each

Test functions from (Zitzler et al. , 2000) used in this chapter. . ... ........
MOA comparison results with various parameter settings. ES refers to the (1+1)-ES
MOEA, P’ refers to the MOPSO model based on (Coello & Lechunga, 2002) and
P" refers to the MOPSO method developed in this Chapter. Means highlighted in
bold are significantly better than both competing models (using the Wilcoxon Signed
Ranks Test at the 0.05 level, 0.025 in each tail). Means in italics are significantly
better than one other competing model. # is the test function number, w the inertia

and T refers to whether turbulence is present. . . . . . .. .. .. .. ... ... ...

16



LIST OF TABLES

12

13

14

15

16

Boxplots of results using V¥ measure. The 16 MOPSO models are ordered in four
groups of four, the groups ordered by the gbest selection type and the order within a
group determined the pbest selection type. The first box therefore denotes the M ¢
MOPSO, the fourth box denotes the M; 4 MOPSO and the sixteenth box denotes the
My,4 MOPSO. The column titled ES contains the boxplots of the (1+1)-ES MOEA
(first) and the hybrid MOESPSO (second). . . . ... ... ... ... ........
Bar charts showing significant results using V¥ measure. The 16 MOPSO models
are ordered in the same fashion as in Table 12. The bar chart plots range between
0 and 15, and shows the number of competing MOPSO models that a particular
MOPSO is significantly better than (using the Wilcoxon Signed Ranks Test, at the

0.05 significance level.) . . . . . .. L. L e

Test function 1. Proportion of archive set fitted on the training data that is non-
dominated on test data (é(ﬁ’,ﬁ)) Means highlighted in bold signify significantly
better results under the Wilcoxon non-parametric signed ranks test (2 tailed, 0.025
in each tail.) Standard deviations in parenthesis. . . . ... .. .. ... ... ....
Test function 1. Comparison between estimated Pareto fronts on test data from the
standard, validation, and bootstrapping training models, using the ¢ measure. C(a, b)
is the mean proportion of the members of the estimated front produced by the training
method ‘b’ dominated by members of the estimated front produced by the training
method ‘a’. Means are over 30 runs, with standard deviation in parentheses.. . . . .
Test Function 1. Comparison between estimated Pareto fronts on test data from the
standard, validation, and bootstrapping training models, using the } measure. Where
V (a) is the mean proportion of the volume of the minimum hypercube containing all
estimated fronts, which is dominated by members of the estimated front produced by
method ‘a’ . Means are over 30 runs, standard deviation in parentheses, value as a
percentage. Results highlighted in bold signify significantly better results under the

Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in each tail.) . . ... ..

17



LIST OF TABLES

17

18

19

20

21
22

23

Test function 2. Proportion of archive set fitted on the training data that is non-
dominated on test data (C(F,F)). Means highlighted in bold signify significantly
better results under the Wilcoxon non-parametric signed ranks test (2 tailed, 0.025
in each tail.) Standard deviations in parenthesis. . . . ... ... ... ... .....
Test function 2. Comparison between estimated Pareto fronts on test data from the
standard, validation, and bootstrapping training models, using the ¢ measure. C(a, b)
is the mean proportion of the members of the estimated front produced by the training
method ‘b’ dominated by members of the estimated front produced by the training
method ‘a’. Means are over 30 runs, with standard deviation in parentheses.. . . . .
Test Function 2. Comparison between estimated Pareto fronts on test data from the
standard, validation, and bootstrapping training models, using the }V measure. Where
V (a) is the mean proportion of the volume of the minimum hypercube containing all
estimated fronts, which is dominated by members of the estimated front produced by
method ‘a’ . Means are over 30 runs, standard deviation in parentheses, value as a
percentage. Results highlighted in bold signify significantly better results under the

Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in each tail.) . . ... ..

Mean risk and return over the 25 test sets for the extreme and mid-way models, the
random walk model and the market return (standard deviations in parenthesis).

Stock index descriptions . . . . . . . . ... L. e e e
Mean risk and return over the 37 international indices. Results shown for the archived
ENN exemplar models ‘A’, ‘B’ and ‘C”, the market performance and from the random
walk model (standard deviations in parenthesis). . . . ... ... ... ... ..., .
Results comparing uni-objective and multi-objective optimiser. GU is the average
number of generations taken by the uni-objective to reach the estimated Pareto front
found by the MOES. GM is the number of generations per non-dominated point on the
estimated Pareto front found by the MOES. The ratio of the two values, GV /GM , gives
an approximation as to how much more efficient the MOES is at finding estimated

Pareto solutions from a given set than the uni-objective ES. . . . . . ... ... ...

18



List of Algorithms

© 00 N O ot ke W N

—_ = e e
B oW N~ O

The sequential unified multi-objective evolutionary algorithm (Laumanns et al.

2000). F; denotes the elite archive, X; the general (search) population and p¢ the

elitism intensity at generation¢. . . .. .. ... ... L Lo 50
Construction of a dominated tree. . . . . . . . . . .. ... L. 63
Insertion into a dominated tree. . . . . . . . .. ... L Lo 67
Deletion from a dominated tree.. . . . . . . . . . ... oL 68
Cleaning a dominated tree. . . . . . . . .. ... . 70
General MOPSO algorithm. . . . . . .. .. ... .o 113
Simulated annealing of NN weight space. . . . . . . . . ... ... .. ... ...... 137

Single-Agent Stochastic Search (algorithm taken from (McDonnell & Waagen, 1994)). 138
General algorithm for evolution strategy neural network training used in the literature.140
Implementation of MOEA in the NN domain (standard training approach), Mg. . . 147
Implementation of MOEA in the NN domain (validation training approach), My. . 150
Implementation of MOEA in the NN domain (bootstrap training approach),Mpg. . . 151
Trading strategy (return objective). . . . . . . . . . . ... ... ... 165
Implementation of the uni-objective ES NN optimiser (bootstrap training approach),

for the finance problem. . . . . . . . ... L 182

19



0.3 Nomenclature

c Composite point.

D Number of objective dimensions.

& Set of estimated Pareto optimal solutions.

F Archive of non-dominated solutions maintained by a multi-objective algorithm.

g Index of global best solution maintained by PSO in the uni-objective domain.

L (Hyper-) Set of best previous solutions found by particles in multi-objective PSO (local
best).

L Length of (non-) dominated tree.

M Number of solutions in F'.

n Number of parameters in decision vector.

P Set of best previous solutions found by particles in uni-objective PSO.

P The true Pareto set of solutions.

q Query point.

T Dominated tree.

p,u,v,x Decision vectors (solutions/particles).

V Set of particle velocities in PSO.
vV Volume measure, comparing different €.
VP Volume measure, comparing P and an £.

X Set of solutions.



0.4 Author Declaration

This Thesis includes works from number of papers published by the author (or submitted for publi-
cation) during the period of his research toward a PhD at the University of Exeter. The papers and

the Chapters in which work from them appears are as follows:

e Chapters 4 & 5 include work from the study “Using Unconstrained Elite Archives for Multi-
Objective Optimisation” in IEEE Transactions on Evolutionary Computation, 7(3), 2003, by
J.E. Fieldsend, R.M. Everson and S. Singh,

e Chapter 7 includes work from the study “A Multi-Objective Algorithm based upon Particle
Swarm Optimisation, an Efficient Data Structure and Turbulence” in proceedings of the UK

Workshop on Computational Intelligence (UKCI’02) by J.E. Fieldsend and S. Singh.

e Chapter 8 includes work from the study “ On the selection of gbest, lbest and pbest individuals,
the use of turbulence and the impact of inertia in multi-objective PSO” (submitted to IEEE

Transactions on Evolutionary Computation, July 2002) by J.E. Fieldsend and S. Singh.

e Chapter 11 includes work from the study “ Pareto Multi-Objective Non-Linear Regression Mod-
elling to Aid CAPM analogous Forecasting”, in proceedings of the IEEE International Joint
Conference on Neural Networks, part of the World Congress on Computational Intelligence,

WCCI 2002 by J.E. Fieldsend and S. Singh.

e Chapter 11 also includes work from the study “Pareto Evolutionary Neural Networks” (sub-

mitted to IEEE Transactions on Neural Networks, June 2003), by J.E. Fieldsend and S. Singh.



Chapter 1

Introduction

1.1 Motivation

Frequently, when looking for a potential solution to a problem, one must trade-off a number of
competing objectives. Under normal circumstances these may be binary trade-offs - a proper break-
fast versus catching the earlier bus, or more continuous trade-offs; how much capital to save for a
‘rainy day’ versus how much to spend and enjoy now. These types of decisions are commonplace
- and are arguably far more apparent than the simple single-objective problems a large proportion
of optimisation academia are concerned with. The two examples previously given are quite easy
to represent, ceteris paribus, the consumption of breakfast will directly lead to the missing of the
bus, and the expenditure of capital on a nice new car will directly lead to the number in the bank
account shrinking (or the red number rising!).

However in a number of domains the inter-relationships of a set of parameters which effect the out-
come of a process are unknown - empirical observations being the only way to ascertain/approximate
them. Two general techniques have received much interest in the later half of the 20th century in or-
der to facilitate the resolution of these types of problem; evolutionary computation (EC) and neural
networks (NNs), which both belong to a group of technologies commonly referred to as computa-
tional intelligence (CI). EC has gained in popularity due to its ability to search for global solutions
in high dimensional parameter space, which may exhibit complex interactions in relation to their

relationship to the evaluation of the parameter set. NNs in turn have received much attention as

22



CHAPTER 1. INTRODUCTION 23

a ‘universal approximator’, that is the ability (given sufficient network size) to represent any de-
terministic function mapping f(a) — b, where a is a scalar or vector of inputs and b is a scalar
or vector of desired outputs. More recently, research has been undertaken on combining the two
approaches, using the methods of EC to optimise (train) NN approximators (evolutionary neural
networks (ENNs)), in the situation where the function approximation is evaluated in terms of a single
error term (Alba et al. , 1993; Angeline et al. , 1994; Baluja, 1996; Belfore & Arkadan, 1997; van den
Bergh & Engelbrecht, 2001b; van den Bergh & Engelbrecht, 2000; van den Bergh, 1999; Berlanga
et al. , 1999; Chen & Weigand, 1992; Coit & Smith, 1996; Conradie et al. , 2002b; Conradie et al.
, 2002a; de Garis, 1991; Dominic et al. , 1992; Dracopoulos & Jones, 1995; Engelbrecht & Ismail,
1999; Fang & Xi, 1997; Fogel et al. , 1995; Greenwoood, 1997; Greenwood, 1997; Hansen & Meservy,
1996; Huang & Huang, 1997; Hung & Adeli, 1994; Ishigami et al. , 1995; Ismail & Engelbrecht, 2000;
Ismail & Engelbrecht, 1999; Janson & Frenzel, 1992; Janson & Frenzel, 1993; Koza & Rice, 1992;
Kupinski & Anastasio, 1999; Lee & Jang, 1996; Liu & Yao, 1998; Lopez et al. , 1999; McDonnell &
Waagen, 1994; Maniezzo, 1994; Maricic, 1991; Marin & Sandoval, 1993; Marti, 1992; Merelo et al. ,
1993; Olmez, 1997; O’Neil, 1992; Park et al. , 1995; Porto et al. , 1995; Prados, 1992; Saravanan &
Fogel, 1998; Schaffer et al. , 1990; Spofford & Hintz, 1991; Srinivas & Patnaik, 1991; Topchy et al.
, 1997; Vico & Sandoval, 1991; White, 1993; Whitehead & Choate, 1996; Wieland, 1992; Yao et al.
, 1996; Yao & Liu, 1997; Yao & Liu, 1998; Yao, 1999; Zaus & Roland, 1991; Zhang & Shoa, 2001;
Zhang & Veenker, 1991; Zitar & Hassoun, 1995).

The vast majority of EC and NN applications are concerned with problems formulated such that
they have a single objective. However, as alluded to previously, many (if not the vast majority)
of situations encountered in real life involve the trading-off of one objective against another (or
more). This is also true of processes in the design of a product or the approximation of a functional
relationship between signals where EC and NNs have their central applications. For instance the
manufacturer of a product may wish it to be as cheap to produce as possible, but also of high per-
formance. In the approximation of a functional relationship there may be more than one competing
measurement that the practitioner is interested in minimising (for example mean versus maximum
Euclidean error (Lo & Bassu, 2002a)).

Methods to resolve these types of problem have been developed since 1985 in the EC domain,

under the guise of multi-objective evolutionary algorithms (MOEAs) which return a set of solutions



CHAPTER 1. INTRODUCTION 24

describing the trade-off front (Borges & Hansen, 1998; Coello, 1999; Deb, 1999; Deb et al. , 2000;
Deb et al. , 2001; Deb, 2001; Ehrgott & Gandibleux, 2000; Everson et al. , 2002; Fieldsend &
Singh, 2002b; Fieldsend et al. , 2003; Fonseca & Fleming, 1995; Fonseca & Fleming, 1993; Hajela
& Lin, 1992; Hanne, 2000; Hanne, 1999; Horn et al. , 1994; Knowles & Corne, 2000; Knowles &
Corne, 1999; Kupinski & Anastasio, 1999; Laumanns et al. , 2000; Laumanns et al. , 2001; Zitzler
et al. , 2001; Mostaghim et al. , 2001; Mostaghim et al. , 2002; Murata & Ishibuchi, 1995; Parks &
Miller, 1998; Ray & Liew, 2002; Schaffer, 1985; Srinivas & Deb, 1995; Veldhuizen & Lamont, 2000a;
Veldhuizen & Lamont, 2000b; Zitzler et al. , 2000; Zitzler & Thiele, 1999; Zitzler, 1999). However
traditional ‘gradient descent’ techniques are still the training technique of choice for multi-objective

neural networks (MONNSs) which return a single model.

1.1.1 Problems in evolutionary multi-objective search

The classical approach to resolving the multi-objective optimisation problem has been through first
defining a relative preference vector (Deb, (2001)), creating a composite function, and finding a
single trade-off optimal solution through the use of a single -objective optimiser. However this
approach is very sensitive to the allocation of the preference vector, slight variations of values will
in all probability lead to different solutions being returned. Unfortunately, as the preference vector
is generated by a mixture of qualitative as well as quantitative information, which may be difficult
to define, the classical approach has the potential of being highly subjective. As such this thesis
will focus on more recent advances in the field, that of evolutionary multi-objective optimisation.
The vast majority of these multi-objective optimisation methods assume that the interdependencies
of the objectives being optimised are unknown. As such, although a preference may be known
with regard to how the objectives should be ranked (or indeed weighted), optimisation and search
is undertaken assuming that all objectives are equally important.! This therefore necessitates the
searching and storing of a set of potential problem solutions which cannot be said to be any better
or worse than other members of the set. Several studies over the last 18 years have investigated
ways to improve the efficiency of the search process for this set of solutions; principally through the
tools of EC. This increased efficiency has been manifest in the discovery of the best set of solutions

in a fewer number of function (problem) evaluations - the fewer the function evaluations, the lower

LA full discussion as to why prior objective weightings cannot be used usefully within the optimisation process if
the inter-relationships of objectives is unknown is provided later in Part III.



CHAPTER 1. INTRODUCTION 25

the computational cost and the better the search process is judged to perform. A number of studies
have focused on the additional computation complexity of some of the more advanced methods (e.g.
Knowles & Corne (2000) and Coello & Lechunga (2002)), however one major cause of computational
cost has been largely ignored. The current approach in the literature is to store sets of potential
solutions in a linear list; meaning a large proportion of an optimiser’s time can be actually spent
comparing stored solutions with new solutions, as opposed to function evaluation of solutions, or
the search process itself. If a method where developed which could store these multi-dimensional
points such that comparison of a point to the set was significantly faster than the linear list method
(including of course the additional maintenance cost of this structure) then a significant influence
on the computational cost of all multi-objective optimisation methods will have been reduced. In
addition, it is conceivable that not only would this new data structure improve the efficiency of
general multi-objective search, but that it may also enable the development of new multi-objective

optimisation algorithms as well.

1.1.2 Problems with the current approach to multi-error neural network
training

Currently the technique of choice in the field of multi-error NN training has been the linear weighting
method propagated by gradient descent techniques (Moya & Hush, 1996; Wang & Wahl, 1997;
Wen & Lee, 1998; Yao & Tan, 2000). However, this approach has a number of shortcomings that
have been amply demonstrated in the general multi-objective optimisation field. These include
an inability to find points on a non-convex surface (Deb, 2001), and (if the technique is being
used to emulate a uni-objective method), a very restrictive requirement to know a priori the inter-
relationships of the competing errors (Fieldsend & Singh, 2002b). Given the success of uni-objective
EC techniques in NN training, and the preeminent use of EC methods in the general area of multi-
objective optimisation it would seem reasonable to use the more advanced MOEA methods to train
NNs in the multi-error case. However, for this to succeed the problem of generalisation in the
multi-error? estimation domain needs to be addressed; the problem of over-fitting in multi-error NN
training has been ignored in the literature. This has most probably been due to the recent emergence

of the field itself. Of the published papers in the area that the author has found, there are only two

2In NN training, the terms multi-error and multi-objective are interchangeable in this work, as it is assumed that
error terms are the objectives to be optimised.



CHAPTER 1. INTRODUCTION 26

that actually use a MOEA for multi-error NN training. The first study used a synthetic problem,
Kupinski & Anastasio (1999), which due to its design may experience only very minimal over-
fitting. The second one is by the author himself, Fieldsend & Singh (2002b), where the empirical
application of a well known MOEA to a financial forecasting problem demonstrated that a large
proportion of optimal set members with respect to the training data, may be suboptimal on the test
data (compared with other set members).

Given the problems outlined above, the objectives of the thesis are now defined.

1.2 Objectives

The general objectives of this thesis are as follows;

e The development of novel data structures to enable the storing, searching and updating of a
large number of non-dominated solutions to multi-objective problems, faster than the cur-
rent linear order method used by the literature; that can be used by all kinds of multi-

objective/multi-criterion optimisation techniques.

e The development of new multi-objective optimisation techniques, that were not viable previ-

ously, dependent upon the new data structures.

e To empirically test the validity of multi-objective evolution of NNs, where an unbounded set of
networks is maintained that lie across the error trade-off front, as opposed to the single model

(linear sum) training currently in the literature.

e To present empirical results which support each of these steps, both on well-known existing

test functions/data and new application data.

1.3 Contributions

The contribution of this thesis are as follows:

e The theoretical development of two novel data structures (called dominated and non-dominated
trees) with details of their operation, including time computational complexity, for the storing

of multi-dimensional points. These new structures are not only empirically demonstrated to



CHAPTER 1. INTRODUCTION 27

perform significantly faster than linear lists in the active archiving of non-dominating sets for
their use by multi-objective optimisation methods, but in addition their use in the storing of

general sets of multi-dimensional points is also highlighted.

e The generation of a multi-objective variant of the recent particle swarm optimisation algorithm
which is based on the properties of the new data structures. It is demonstrated that this new
algorithm more closely transfers the particle swarm heuristic to the multi-objective domain
than its peers which have been developed by other researchers during the course of this thesis,
and it is also empirically demonstrated to be superior to the best performing of these competing

multi-objective particle swarm optimisers on a number of well known test problems.

e The formulation of a multi-objective evolutionary neural network (MOENN) architecture by
the synthesis of approaches previously developed in MOEAs, the ENN, and the multi-objective
neural network (MONN) literatures. This architecture not only encompasses sets of function
approximators with heterogeneous error properties but heterogeneous parameterisation. New
methods for the improvement of MOENN generalisation are developed and empirically vali-

dated on existing test data and new financial forecasting problems.

1.4 Thesis overview

The thesis is structured as follows. Next is a short chapter introducing the basic concepts and
methods of NNs and EC for the reader who is unfamiliar with these techniques. Following this is
the main body of the thesis, which covers the three topics described in Sections 1.2 and 1.3; the
development of new data structures to improve the efficiency of general multi-objective optimisation;
the application of these new data structures in the generation of new multi-objective optimisation
methods; the synthesis of a general MOENN training framework and new generalisation methods
to confront the unique problems of multi-objective training. Each of these topics are tackled in
turn in Parts I, IT and III of the thesis, and each of these parts is split into three chapters. The
first chapter of each part provides a general review of the topic area and state-of-the-art techniques,
the next chapter provides the theoretic framework of the novel research undertaken in the area as
part of this thesis and the third chapter provides rigorous empirical support for the new techniques

introduced. The thesis concludes with a discussion of the various results obtained, applicability of



CHAPTER 1. INTRODUCTION

proposed methods, and possible future research directions in the area.

28



Chapter 2

Artificial Neural and Evolutionary

Computation

In this chapter the basic design of the CT methods of NNs (in the form of multi-layer perceptions) and
EC (in its two most popular forms - genetic algorithms and evolution strategies) will be described.
This is necessary due to focus of this body of work on methods using these models. Readers who
are already comfortable with the basic premise and operation of these approaches however can feel

free to move directly to Part I.

2.1 The multi-layer perceptron

The original motivation behind artificial NNs was the observation that the human brain computes
in a completely different manner than the standard digital computer (Haykin, 1999), which enables
it to perform tasks such as pattern recognition and motor control far faster and more accurately
than standard computation. This ability is derived from the fact that the human brain is complex,
nonlinear and parallel, and has the additional ability to adapt to the environment it finds itself in
(referred to as plasticity). Artificial NNs developed as a method to mimic these properties, and
terms relating to NN design (neurons, synaptic weights) are taken from the biological description
of the brain function. However, it is generally the case that NNs in popular use by researchers use

only the concepts of parallelism, non-linearity and plasticity within a mathematical framework, and

29



CHAPTER 2. ARTIFICIAL NEURAL AND EVOLUTIONARY COMPUTATION 30

do not attempt to copy exactly the functions of the brain (which are still not fully understood).
The most popular NN model is the multi-layer perceptron (MLP) since the formalisation of the
backpropagation (BP) leaning algorithm in the early 1980s. The basic design of an MLP is shown

in Figure 1.

| nput First  Second Output
Layer Hidden Hidden Layer
Layer Layer

e Error signals.
Function signals.

Figure 1: Generic multi-layer perceptron, showing the forward flow of the input signal (function
signal) and the backward flow of the error signal.

The input signal of an MLP (or feature vector) is propagated through the network (neuron
by neuron), and transformed during its passage by the combination of the synaptic weights and

mathematical properties of the neurons, until on the final layer an output signal is generated. In the



CHAPTER 2. ARTIFICIAL NEURAL AND EVOLUTIONARY COMPUTATION 31

example shown in Figure 1 the network is defined as being fully connected, each neuron (or node)
being connected to each other neuron in the layers directly preceding and proceeding it, and having
a I:3:2:1 topological design. That is it has I input nodes, followed by two hidden layers, the first
containing 3 nodes and the second 2 nodes, with a single output node. The two middle layers are
referred to as hidden due the fact that the user does not commonly observe the inputs or outputs
from these nodes (unlike the input layer where the feature vector is known and the output layer
where the output is observed). The most common transfer function used in the MLP is the sigmoid
function ¢(). For the jth hidden node of a network with a vector of z inputs its logistic form is

defined as:

1
_ 1
O ) .

where w; ; is the ith input weight between node j and the previous layer, 2; is the output of the ith
node in the layer preceding node j and Bj; is the weight of the bias input the jth node. The bias is
similar to the, intercept term using in linear regression and has a fixed value for all patterns.

The adjustment of the synaptic weight parameter variables within an MLP are most commonly
performed in a supervised learning manner using the fast backpropagation algorithm. Sequences of
input and resultant outputs are collected from an undefined functional process f(a) — b. This set
of patterns are then presented to the MLP in order for it to emulate the unknown function. The kth
input pattern a(k) is fed through the network generating an output b(k), an approximation of the
desired output b(k) (illustrated with the arrows pointing to the right in Figure 1). The difference
between the desired output b(k) and the actual output b(k) is calculated (usually as the Euclidean
distance between the vectors), and this error term, E, is then propagated back through the network,
proportional to the partial derivative of the error at that node (illustrated with the dashed arrows
pointing to the left in Figure 1). An in-depth discussion of the history and derivation of the back-
propagation algorithm, though the calculus chain, can be found in Bishop (1998) and Haykin (1999),
however as the main focus of this thesis is not on extending gradient descent methods themselves, it
is sufficient to directly describe the delta rule which is at the heart of the backpropagation algorithm.

In relation to weight between ith and the jth node it is defined as:

Awg j(k) = —n% 2)



CHAPTER 2. ARTIFICIAL NEURAL AND EVOLUTIONARY COMPUTATION 32

where 7 is known as the learning rate of the system (used to dampen the effect of each pattern so
that the change in network weights from one pattern to the next is not too drastic). By using a

partial derivative of the sigmoidal transfer function, Equation 2 can be expressed as:

Aw j (k) = ne; (k)" (h; (k)2 (k) 3)

where e;(k) is the differentiation of E(k) with respect to the error on the jth node, ¢'(h;(k)) is
the derivative of the activation function on the jth node and z; is the output of the ith node (the
local gradient). Each pattern in turn is presented to the MLP, with its weights adjusted using
the delta rule at each iteration. The passing of an entire pattern set through the MLP is called a
training epoch. MLPs are usually trained, epoch by epoch, until the observed average error of the
function approximation reaches a plateau, or the error on a secondary data set whose patterns are
not used during training (known as a validation set) begins to rise. The generalisation ability of the
approximated function is then assessed on another set of collected data which the NN has not been
trained on. The common use of a validation set is in order to prevent so called over-fitting. Because
of the high function complexity that NNs can emulate, there is always a risk that the NN will simply
map the input and output vectors directly without recourse to creating an internal representation
of their generation process. Selecting an appropriate network size therefore becomes an important

task (for which a potential solution is discussed in Chapter 11).

2.2 Basic principles of evolutionary algorithms

In order to facilitate multi-objective optimisation in the NN domain the techniques of EC (also
known as evolutionary algorithms (EAs)) will be employed. The field of MOEAs is already well
developed (Beale & Cook, 1978; Borges & Hansen, 1998; Coello, 1999; Deb, 1999; Deb et al. , 2000;
Deb et al. , 2001; Ehrgott & Gandibleux, 2000; Everson et al. , 2002; Fieldsend & Singh, 2002b;
Fieldsend et al. , 2003; Fonseca & Fleming, 1995; Fonseca & Fleming, 1993; Hajela & Lin, 1992;
Hanne, 2000; Hanne, 1999; Horn et al. , 1994; Knowles & Corne, 2000; Knowles & Corne, 1999;
Kupinski & Anastasio, 1999; Laumanns et al. , 2000; Laumanns et al. , 2001; Zitzler et al. , 2001;
Mostaghim et al. , 2001; Mostaghim et al. , 2002; Murata & Ishibuchi, 1995; Parks & Miller, 1998;
Ray & Liew, 2002; Schaffer, 1985; Srinivas & Deb, 1995; Veldhuizen & Lamont, 2000a; Veldhuizen &



CHAPTER 2. ARTIFICIAL NEURAL AND EVOLUTIONARY COMPUTATION 33

Lamont, 2000b; Zitzler et al. , 2000; Zitzler & Thiele, 1999; Zitzler, 1999). The first practical study
in the area was Schaffer (1985) and is discussed in Part I of this Thesis. Most recently developed
algorithms in this field are capable multi-objective optimisers, however they are all based on EC

techniques developed on uni-objective problems, the principle two of these EC methods will now be

defined.

2.2.1 Evolution strategy (evolutionary programming)

In evolution strategy (ES), also known as evolutionary programming (EP), a problem is represented
by a floating point string with n adjustable parameters, x = (x1,2,...,%,). These solutions or
decision vectors are perturbed at each iteration (have their component values adjusted) before their
fitness is evaluated by calculating the effect of the new parameters on the process being modelled.
These decision vectors are iteratively adjusted (perturbed) in order to improve their performance,

with each iteration known as a generation. The perturbation usually takes the form,

x; :::ci+'y,~-® (4)

where z; is the i*" decision parameter of a vector, © is a random value drawn from some (pre-
determined) distribution and ~ is some multiplier. The process of an evolution strategy is designed
in part to emulate the biological evolutionary process of adjustment and selection. Potential solutions
are subtly altered, and the fitter of these evaluated solutions are more likely to pass into subsequent
generations

A (u, M)-ES process is one in which p decision vectors are available at the start of a generation
(called parents), which are then perturbed to generate A variants of themselves (called children
or offspring). This set of A children is then truncated/replicated to provide the u parents of the
following iteration. The process of selection for which children should form the set of parents in
the next iteration is usually dependent on their evaluated fitness (the fitter being more probable to
‘survive’). A (u + A)-ES process denotes one where the parents compete with the children in the

selection process for the formation of the next generation parent set.



CHAPTER 2. ARTIFICIAL NEURAL AND EVOLUTIONARY COMPUTATION 34

2.2.2 Genetic algorithms

In genetic algorithms (GAs), the parameters of a model are converted into a representative ‘chro-
mosome’, usually in the form of a binary string representation, with a number of bits (called genes)
used to represent each parameter (a GA can also use the floating point representation used in ES, or
indeed a mixture of bit and floating point representation). The number of bits define the resolution
(or granularity O’Neil (1992)) of the resultant individual. In GAs a population of decision vectors
is again maintained, and the population is adjusted from generation to generation using the three

basic GA operators: reproduction (selection), crossover and mutation. These are defined below.

e Reproduction (as defined in Chen & O’Connell (1997)) is where a copy of an individual is
chosen for direct insertion into the next generation, usually determined by some probability

or ranking given the individual’s (chromosome’s) fitness.

Table 1: GA reproduction (elitist selection).

| Current Generation | — | Next Generation |

0110011 — 0110011
0011110 — 0011110

e Crossover takes place when two individuals are recombined to create one or more offspring
by the cutting and exchanging of certain (random) alleles (gene sequences). The parents

themselves are usually determined according to some fitness measure

Table 2: GA crossover (one point example).

| Current Generation | — | Next Generation |

0110011 — 0110110
0011110 — 0011011

e Mutation is chromosome alteration caused by the stochastic random bit flipping of an individ-

ual’s genes



CHAPTER 2. ARTIFICIAL NEURAL AND EVOLUTIONARY COMPUTATION 35

Table 3: GA mutation.

| Current Generation | — | Next Generation |

0110011 — 0110001
0011110 — 0111110

Again, as in ES, exact selection methods vary from study to study, however two of the most
popular approaches to select individuals to form the next generation’s search population are roulette
wheel selection (i.e. (Huang & Huang, 1997)) and binary tournament selection (Zitzler et al. , 2000).

In roulette wheel selection the fitter members of the population are given a larger probability
to be selected for direct insertion into the next generation or crossover than those that are less fit
(usually proportional to their fitness). However as all individuals are given a probability, no one
individual is denied the chance of reproduction no matter how unfit. As such this process can be
represented as a roulette wheel, with different size segments determined by each individuals fitness.

pr

P1

P4

Figure 2: Roulette wheel selection.

This is illustrated in Figure 2, where a population of 8 individuals is shown. Chromosome 1 has
P1 probability of being selected for a particular operator (with chromosome 8 having a far smaller

probability of P8).



CHAPTER 2. ARTIFICIAL NEURAL AND EVOLUTIONARY COMPUTATION 36

In binary tournament selection individual pairs are selected at random from the current popula-

tion, with the fitter of the two selected.

The aims of the thesis have been broadly outlined in the introductory chapter, and in this
chapter the reader has been provided with a basic overview of the main CI techniques in that will
be employed in the remainder of the thesis. The following chapter will proceed with a more formal
discussion of multi-objective optimisation, and introduces the first novel aspect of the thesis, new

data structures to facilitate more efficient storage and maintenance of multi-objective solutions.



Part 1

Improving Multi-Objective

Optimisation

37



38

In this first part of the thesis, the general area of MOEAs is described, which has gained
widespread use, both in academic and industrial circles, since the first major study in the area
by Schaffer (1985). The area of active elite sets, which have drastically improved the performance
of these algorithms, is highlighted as the most recent major advance in the area. It is also shown
that this advance has highlighted a new problem in the domain, that of the efficient storage, query
and update of this archive. When the cost of evaluating the fitness function of a solution is suitably
high (as can be the case in NN evaluation, and many industrial tasks), this becomes of considerable
importance.

It is shown in Part I that a consequence of restricting the number of solutions in the elite front
can be shrinking, Zitzler et al. (2001), and oscillating/retreating estimated Pareto fronts (Hanne,
1999; Laumanns et al. , 2001; Everson et al. , 2002). These problems also occur in the strength
Pareto evolutionary algorithm (Zitzler et al. , 2000; Zitzler & Thiele, 1999; Zitzler, 1999), Pareto
archived evolutionary strategy, Knowles & Corne (2000; 1999), and other existing MOEAs which use
a truncated elite archive. A remedy to this situation is simply to retain all non-dominated solutions
found (as an active input to the continuing search process), as for example used by Parks & Miller
(1998); however, this approach can be very time consuming (as any individual inserted into the elite
archive must first be compared to every individual already present in the archive). It is important to
note that in many studies an elite offline store of solutions is maintained which is unbounded, even
when truncation takes place in the active population, and therefore the linear time update costs are
still incurred (in addition to the time cost of truncation).

New data structures called dominated and non-dominated trees are introduced in the following
chapters that permit faster searching of the elite archive, allowing even very large active elite sets
to become feasible. It is shown that the use of the dominated and non-dominated trees in basic ES
and GA MOEAs on a number of test sets leads to faster computation in comparison to maintaining
an unconstrained archive as a linear list. Also, the estimated Pareto front discovered is significantly

better than that found with a truncated elite archive.



Chapter 3

Evolutionary Multi-Objective Search

In this chapter the general area of MOEAs is described, some of the major theoretical advances in
the area over the last 18 years highlighted, culminating in the unified model introduced by Laumanns
et al .(2000) and the use of active elite archives of solutions. Problems with archive truncation are

then illustrated, that show the common problem of maintaining unrestricted archives.

3.1 Multi-objective evolutionary algorithms: a brief overview

Frequently a number of competing objectives have to be traded against one another whilst seeking
a viable solution to a given problem, often without any a priori knowledge of exactly how the
objectives interact with each other. For instance, in product design a firm may wish to maximise
the performance of an appliance whilst also trying to minimise its production cost. These two
objectives cannot typically be met by a single solution, therefore, by adjusting the various design
parameters, the firm may seek to discover what possible combinations of these two objectives are
available given a set of constraints (for instance legal requirements and size limits of the product).

In Fonseca & Fleming (1993) for example, multi-objective optimisation is applied to four per-
formance measures of a gas turbine. Similarly in Hajela & Lin (1992) different loads in trusses are
the competing objectives to be minimised and in Parks & Miller (1998) different properties of a
pressurised water reactor load pattern are optimised.

The curve (for two objectives) or surface (more than two objectives) that describes the optimal

39



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 40

trade-off possibilities between objectives is known as the Pareto front (Pareto, 1927). A feasible
solution lying on the Pareto front cannot improve any objective without degrading at least one of
the others, and, given the constraints of the model, no solutions exist beyond the true Pareto front.
The goal, therefore, of multi-objective algorithms is to locate the Pareto front of these non-dominated
solutions.

Multi-objective evolutionary algorithms (MOEAS) represent a popular approach to solving these
types of problem by using evolutionary search techniques. MOEAs have been in use for a consid-
erable length of time now. Beale & Cook (1978) used a random search technique in an attempt to
simultaneously minimise a number of objectives in an aircraft simulator. However, it was the work
of Schaffer (1985), which recognised the need to return a set of solutions that has been widely quoted
as the first MOEA study (Fonseca & Fleming, 1995; Veldhuizen & Lamont, 2000a; Zitzler et al. ,
2000). The use of EAs as the tool of choice is due to such problems being typically complex, with
both a large number of parameters to be adjusted and several objectives to be optimised. In addi-
tion, EAs which maintain a population of solutions are able to explore several parts of the Pareto

front simultaneously.

3.1.1 Important issues in multi-objective optimisation
Pareto optimality

Most recent work on multi-objective algorithms (MOAs), EC based or otherwise, is formulated in
terms of non-dominance and Pareto optimality, which is now briefly described.

The multi-objective optimisation problem seeks to simultaneously extremise D objectives:

yl:fl(x)a 7’:1aaD (5)

where each objective y; depends upon a vector x of P parameters or decision variables. The param-

eters may also be subject to J constraints:



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 41

Without loss of generality it is assumed that the objectives are to be minimised so that the multi-

objective optimisation problem may be expressed as:

Minimise y = f(x) = (f1(x),-.., fp(x)) (7
subject to e(x) = (e1(x),...,es(x)) >0 (8)
where x = (21,...,2p) and y = (Y1,...,YD).

When faced with only a single objective, an optimal solution is the one that minimises the objec-
tive given the model constraints. However, when there is more than one objective to be minimised,
solutions may exist for which performance on one objective cannot be improved without sacrificing
performance on at least one other. Such solutions are said to be Pareto optimal, (Veldhuizen &
Lamont, 2000a), named after the 19th century Engineer, Economist and Sociologist Vilfredo Pareto,
whose work on the distribution of wealth led to the development of these trade-off surfaces (Pareto,
1927). The set of all Pareto optimal solutions are said to form the true Pareto front, which for the
remainder of this thesis is denoted by P.

The notion of dominance may be used to make Pareto optimality clearer. A decision vector u is

said to strictly dominate another v (denoted u < v) iff

filw) < fi(v) Vi=1,...,D and

fi(u) < fi(v) for at least one i. ©)

Less stringently, u weakly dominates v (denoted u < v) iff
fitn) < fi(v) Vi=1,...,D. (10)
A set of M decision vectors W = {Wy, Ws,..., W} is said to be a non-dominated set (an estimated

Pareto front &) if no member of the set is dominated by any other member:

W; AW; Vi, j=1,...,M. (11)



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 42

Extent, resolution and density of the estimated Pareto set

There are a number of requirements of estimated Pareto fronts that researchers wish their algorithms
to produce. These can be broadly described as high accuracy, representative extent, minimum
resolution and and equal density.

The first concept, accuracy, is based on the difference between the true and estimated Pareto
fronts (simply that the estimated solutions should be as close as possible to the true Pareto front).
In Figure 3, the estimated front of Algorithm A is clearly more accurate than that of Algorithm B,

however the comparison of A and C is more difficult to quantify, as in some members of A dominate

members of C, but also the reverse is true.

*
N
o ¥
> oo
S| x
i X O
a © %
O x
O
o *
X
O
x *
X
X o ¥
O
X o
>< |:|
X O m|
X O
X o) o O
o
X w x % %
Objective 1

X True Pareto Front

O Estimated Pareto optimal individuals, agorithm A
x Estimated Pareto optimal individuals, algorithm B
o Estimated Pareto optimal individuals, algorithm C

Figure 3: Illustration of the true Pareto front, and three estimates of it. The estimate of algorithm
A being clearly more accurate than B, but the comparison of A and C is not as easy to quantify.

Ideally the Pareto solutions returned (or estimates of them) should lie across the entire surface of

the true Pareto front, and not simply be concerned with a small subsection of it. Minimum resolution



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 43

is a common requirement as in many applications the end user may wish that the difference between
potential solutions is no bigger than a fixed value (of course, in discontinuous Pareto problems this
requirement is not entirely realistic).

Much emphasis has been placed by researchers on the non-dominated solutions returned by the
search algorithm being equally distributed (of even density), for instance Deb et al. (2001), however,
it is arguable that this should be of concern only if the generating process results in evenly distributed
solutions. In an actual application it may well be the case that the generating process produces an
unbalanced Pareto front. This information itself may be very pertinent to the decision maker - by
forcing MOEASs to misrepresent this fact by penalising any representation other than equal density
they are providing a misleading representation of the generating process which may have negative

repercussions for the final user of the information.

Objective 2
x
x
Objective 2
X
Objective 2

XXX
Objective 1 Objective 1 Objective 1
a x True Pareto Front b x Estimated true Pareto front C x Estimated true Pareto Front

Figure 4: Comparing the density of estimated Pareto fronts. Illustration of an underlying true
Pareto front (a), and its approximation using an MOEA that is designed to return equal density
along the front (b) and one that does not (c).

An illustration of this is provided in Figure 4. Figure 4a shows the true Pareto front, with Figures
4b and 4c illustrating the returned sets of two MOEAs; the first one shows uniform density and the
second one does not. By forcing the returned Pareto front estimate to be uniform, Figure 4b does
not indicate to the end user of the density of solutions to the lower left of the front.

Given the different requirements outlined in this section, two recent measures to compare esti-

mated Pareto fronts will now be discussed.



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 44

The problem of scalability

Another problem that has become a focus of concern is that of scalability - that is whether an
algorithm performs well irrespective of the dimensionality of the task being optimised (in objective
or parameter space). Recent work by Khare et al. (2002) has shown that the ordering of search
algorithms in terms of the best estimate of the true Pareto front found, is not scale independent
of the number of objectives D. With algorithms that performed well on lower (2-3) dimensions
performing less well on higher (up to 8) objective dimensions. ‘Better’ was defined in terms of

diversity of solutions, distance from the true Pareto front and algorithm run time.

Comparing estimated Pareto fronts

In recent years academics have become concerned with exactly how to compare the results of two
or more competing algorithms (Hansen & Jaszkiwicz, 1998), i.e. how can one non-dominated set be
‘proved’ to be better or worse than another? Comparison of Pareto front estimates is difficult as
there are several ways in which a front can be inferior or superior to another (as discussed earlier
in terms of front extent and resolution). Indeed it is unlikely that any one single measure will be
sufficient to encompass all desired information when evaluating the output of an MOEA. In this part
two performance measures that to encapsulate different properties of competing non-dominated sets
are used.

First, an alternative to the popular C metric (Zitzler et al. , 2000; Zitzler, 1999; Zitzler & Thiele,
1999) is discussed.

The C metric is defined as:

beB: dJacA,a<b
c(a,B) =1t - iy (12)

where A and B are two sets of decision vectors and A,B C X .

The C metric measures the fraction of members of B which are (strictly or weakly) dominated
by members of A. As such it measures the quality of A with respect to B. When C(4, B) = 1, then
all of the individuals in B are dominated by solutions in A; C(A, B) = 0 represents the situation in
which none of the individuals in B are dominated by any member of A.

It should be noted that C(A, B) is not technically a metric since C(A, A) # 0 and C(A4, B) is not



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 45

symmetrical in its arguments and it does not satisfy the triangle inequality. Furthermore, C has the
following undesirable property: suppose that W is a non-dominating set and A CW and B C W,
then C(A, B) can take on any value in [0, 1].

In this work the following modified version of the C measure is used:

5 beB:JdJacA,a<b
C(A,B) = 1 B H (13)

Now C (A, A) =0 and, in addition, it measures two mutually non-dominating sets as equivalent, i.e.

if AC W and B C W are each subsets of a non-dominating set W, then C (A,B) =0.

g o® % o
> OoO ° =
8 "o g
8 ’ S | -
o° ©
o o
o °
. B
.
. %0
o
* A o B o B
° © ©
a Objective 1 b Objective 1

Figure 5: (a) Illustrates dense and evenly distributed estimated Pareto fronts. Front A dominates
a larger extent of Front B, but both fronts dominate an equal number of each others’ constituent
members. (b) Illustrates estimated Pareto fronts of differing extents. Front B is of far greater extent
than A, but will receive a lower C metric value.

Nevertheless, C and C fail to account for either the difference in the extent of the fronts being
compared or the uniformity of the distribution of points along the front. For example, Figure 5a
illustrates two fronts with a similar extent, but points describing A are uniformly distributed along
the front, whereas those describing B are clustered in one region. However, C(A4,B) = C(B,A) =
C(A,B) =C(B,A) = 4/12, even though elements of A dominate elements of B along the majority
of their extents. In Figure 5b although B has a much greater extent, A is ranked higher using C and
C: C(A,B) = C(A, B) = 2/12, whereas C(B, A) = C(B, A) = 0/12.

As some of the problems highlighted with the C and C measure demonstrate, there are a number



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 46

of properties which are usually desired of estimated Pareto fronts. As discussed previously, these
include that the ‘distance’ of the estimated Pareto front from the true Pareto front should be
minimised, and that the extent of the estimated front should be maximised (i.e. a wide range
of solutions in objective space should be returned). A measure which is designed to satisfy these
requirements is now discussed.

The second measure used in this study is conceptually similar to the performance measure used
in Laumanns et al. (2000), and it is a measure of the objective space volume that is dominated by
one front but not the other. V(A4, B) can be expressed as the fraction of the volume of the minimum
hypercuboid containing both fronts that is strictly dominated by members of A but not dominated
by members of B, and therefore it lies within the range [0,1]. An illustration of this is provided in
Figure 6 where two continuous fronts A and B have differing extents and also dominate each other

in different regions of the objective space.

V olume dominated
by front A but not B.

Objective 2

Volume dominated
by front B but not A.

Objective 1

Figure 6: Two dimensional illustration of minimum surrounding hypercube volume dominated by
two fronts (hypercuboid boundaries marked with dashed lines).

V (A, B) is defined in the following manner. For any set of D-dimensional vectors Y, let Hy

denote the smallest axis-parallel hypercuboid containing Y:

Hy ={z€RP : q; <z <bforsomeabeY,i=1,...,D} (14)



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 47

Now hy (y) : Hy — [0, I]D denotes the normalising scaling and translation that maps Hy onto

the unit hypercube. This transformation serves to remove the effects of scaling the objectives. Let
Dy (A) = {z €[1,0/° : z < hy (a) for some a € A} (15)

be the set of points in the hypercube defined by Y which are dominated by the normalised front A.
Then V (A, B) is defined as:

V(A,B)=X(Days(A)\Days(B)) (16)

where X (A) denotes the Lebesgue measure of A (Jones, 1993).

Despite this rather cumbersome description, V (4, B) and V (B, A) are easily calculated by Monte
Carlo sampling of H4jp and counting the fraction of samples that are dominated exclusively by A
or B. In this part of the thesis, 50000 samples are taken for Monte Carlo estimates. An example of
the variance decrease of the estimate of ¥V with increased Monte Carlo samples is shown in Figure
7. Here a Monte Carlo simulation of a hypercuboid surrounding the fronts defined by the standard
strength Pareto evolutionary algorithm (SPEA) MOEA (Zitzler et al. (2000)) and the SPEA with an
unconstrained archive on their second test function after 500 generations. 1 million random samples
were generated, with difference in proportion of samples dominated by the unconstrained SPEA and
standard SPEA shown in Figure 7a, and log variance of these differences shown in Figure 7b. The
log variance smoothed by a finite impulse response filter is also shown.

The benefit of the volume measure V is that it will reward sets that are of greater extents when
those extents are in front of the comparison set, but not when they are behind, it is not effected by
the distribution of points across a front. In addition it also gives information regarding how far one
set is (on average) in front of another.

Unfortunately the V measure, like the original C metric, has the property that, if W is a non-

dominating set, and A C W and B C W, both V (A, B) and V (B, A) may be positive.

3.1.2 MOEA: The major advances 1985-2000

Since the first study in the area by Schaffer (1985), which realised the need to return a set of

solutions, there have been several MOEA models developed in the literature, and a number of very



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 48

0.039 4
5 0.038 4
0.037 4

0.036}
0351
0.034}

0.033}

Difference in proportion dominated
>

Log variance of last 1000 samples.

. . \ \ \ \ |

0.032}

0.031}

. . . . . . .
0 1 2 3 4 5 6 7 8 9 10
a Number of samples. x10° b

Figure 7: An example of the estimated V measure for two estimated Pareto fronts as the number of
Monte Carlo samples increases.

good review studies that cover them (Coello, 1999; Fonseca & Fleming, 1995; Tan et al. , 2002;
Veldhuizen & Lamont, 2000a). As such, this section does not intend to extensively describe them,
but to list the important chronological advances in the field concluding with the unified model of

Laumanns et al. (2000).

Returning set a of solutions (1985)

As stated earlier, the vector evaluated genetic algorithm (VEGA) by Schaffer (1985) is generally
recognised as the first MOEA paper, as it recognised the need to return a set of solutions to a
multi-objective problem, as opposed to a single individual. A single GA population was used with
a fraction of the population chosen at each generation for recombination based on their fitness with
respect to one of the evaluated objectives. The estimated Pareto solutions were removed at the end
of the process. In future studies, however, it was noted that the approach tends to bias selection
in favour of those individuals at the extreme (that solely minimise one objective) at the cost of

solutions that lie on the trade-off front.

Adaptive Linear Weighting (1992)

Hajela and Lin’s weighted-sum genetic algorithm (HLGA) resolved the problem of biased selection
(Hajela & Lin, 1992). In their model an extra D parameters where maintained in a solution’s

decision vector. These parameters acted as the linear weighting coeflicients described earlier in



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 49

Equation 5 and were perturbed at each generation (i.e. no two particular individuals were evaluated
in the same manner), and solutions were discovered along the estimated Pareto front. However, this
method cannot find solutions that lie on non-convex areas of Pareto fronts, and as such it is limited

to problems that are strictly convex (which is commonly not known a priori).

Pareto Selection (1993)

It was in 1993 that studies began to seriously use Pareto dominance itself as a means for selection and
comparison of individuals during the search process (e.g. Fonseca and Fleming’s multi-objective EA
(FFGA) (Fonseca & Fleming, 1993)). The use of this measure meant that solutions, both in convex
and non-convex regions of estimated Pareto fronts, would be represented equally in the selection

stages of these algorithms leading to better convergence.

Elite Individual Retention (1999/2000)

Zitzler et al. (2000) present a comparative study on six test functions introduced by Deb (1999) using
a number of the most widely used MOEAs, including FFGA, the niched Pareto genetic algorithm
(NPGA) of Horn et al. (1994), HLGA, VEGA and the non-dominated sorting genetic algorithm
(NSGA) of Srinivas & Deb (1995). Their study suggests that their genetic algorithm (GA) based
strength SPEA outperforms the other algorithms by consistently recording better results as mea-
sured by the C metric (Zitzler et al. , 2000; Zitzler, 1999; Zitzler & Thiele, 1999) on the test functions.
In an earlier paper by Zitzler & Theile (1999), SPEA’s superior performance was also demonstrated
in comparison to four other MOEAs on a 0/1 knapsack problem. Another MOEA which has demon-
strated significant results is the ES based Pareto archived evolution strategy (PAES) of Knowles and
Corne (1999; 2000). The salient feature of these new methods is their active use of elitism in the
multi-objective domain. Both SPEA and PAES retain an archive of the estimated Pareto optimal
solutions that they have discovered in their search process so far, and reinsert copies of them back
into the search population (in the case of SPEA), or use them as a source of parents for perturbation

(in the case of PAES).



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 50

The unified model (2000)

As evinced by a number of comparative studies (Knowles & Corne, 1999; Knowles & Corne, 2000;
Zitzler et al. , 2000; Zitzler, 1999; Zitzler & Thiele, 1999), both the SPEA and the PAES provide
an effective methodology for multi-objective optimisation problems. Both algorithms can be seen as
variants of the unified model for multi-objective evolutionary algorithms, UMMEA, introduced by

Laumanns et al. (Laumanns et al. , 2000), and is outlined in Algorithm 1.

Algorithm 1 The sequential unified multi-objective evolutionary algorithm (Laumanns et al.
2000). F; denotes the elite archive, X; the general (search) population and p§ the elitism intensity
at generation {.

1: t:=0

2:  (Fo,Xo,p§) := initialise ()

3:  while terminate (Fy, Xy,t) = false

4 t:=t+1

5: Ftl = update (Ft—l,Xt—l)

6: F; := truncate (FY})

7 p§ := adapt (Fy, X4—1,p§_,)

8 X := vary (sample (evaluate (Fy, X;—1,p5)))
9: end

The algorithm summarises the UMMEA framework in terms of stochastic operators. The genetic
search population Xj is initialised, together with the elite archive Fy (generally to an empty set). At
each generation the elite archive is augmented to form F] by incorporating those solutions in X; 1
which are not dominated by any members of F;_; |JX;_1; in addition any elements of F;_;which
are dominated by members of X;_; are deleted from F}. For reasons of computational efficiency the
new archive F} is then truncated to create the archive F, usually to some pre-stated size. In the
SPEA this truncation is achieved by clustering, and in PAES a density based method is used. In
Algorithm 1, crossover/mutation/perturbation are abstractly represented by the vary () operator.
Individuals are selected using the sample() operator from F; and X; ; based on the fitness operator
evaluate() for crossover/mutation/perturbation; the ‘elitism intensity’, pf, controls the probability
that an individual from the elite archive rather than the general population is selected. SPEA, PAES
and the UMMEA all use an archive limited to a fixed maximum number of individuals, presumably

to avoid the computational costs of maintaining a large archive.



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 51

3.2 Manifest problems of current approaches

For computational efficiency most MOEAS limit the size of their elite archive. In SPEA, for instance,
this is achieved by clustering (in objective space) the individuals comprising F} and replacing clusters
by the individual closest to the cluster centroid.

However, an artifact of truncation is that the Pareto front (as represented by the truncated
archive) can shrink if individuals that define the boundaries of the estimated Pareto front! are
removed (referred to here as the extremal individuals). If subsequent evolution fails to rediscover the
extremal individuals, then repeated clustering will shrink the Pareto front and the final estimate of
the Pareto set will lie across a narrow subset of the true frontier.

This effect is present even in the case of an offline ‘dormant’ estimated Pareto front (e.g., one
that acts as a passive store for non-dominated individuals, and plays no part in the search process),
as search will not be directed towards the extremal values. It is interesting to note that after the
criticism by Zitzler et al. (2000), Coello (1999) and Srinivas & Deb (1995) of VEGA because of its
bias toward extremal values, that its replacements should in turn be biased toward search in the
centre of the front. (This is supported by the results presented in Zitzler and Thiele (1999) and
Zitzler et al. (2000), where VEGA outperforms NPGA, FFGA and HLGA).

The shrinking front effect can be detrimental in two ways. The main consequence is the narrow
extent of the estimated front (mis-representing the true Pareto front); secondly, extra search time is
required in order to rediscover the extremes of the estimated Pareto front.

These problems are easily circumvented by removing the extremal individuals from the truncation
process and passing them directly to F;. In this thesis it is referred to as the pinning of extremal

individuals, and has also been used in a recent extension to SPEA (Zitzler et al. , 2001).

3.2.1 Shrinking and oscillating estimated Pareto fronts

The elite archive is, in essence, a memory of where the algorithm has reached in previous generations
in its estimation of the Pareto front, and should contain the ‘best’ estimate of the Pareto front at
any stage. The estimated front should ‘advance’ in the sense that no individual in F; should be

dominated by any member of an earlier set, Fy, ..., F; ;. Informally, it is said that an individual x

! Containing what are referred to as component minima and maxima in (Laumanns et al. , 2000), in the case of
the true Pareto set.



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 52

a b
Obj. 2 Ohj. 2 Obj. 2
Obj. 1 Ohj. 1 Obj. 1
d e f
Obj. 2 Obj. 2 Obj. 2
Obj. 1 Obj. 1 Obj. 1
Obj. 2 Obj. 2
Obj. 1 Obj. 1

Figure 8: Example of a retreating estimated Pareto front, produced by truncation by clustering.

lies behind the front if a member of the elite set dominates x. However, the requirement of several
MOEASs, that F; be limited to M members, can produce ‘retreating’ or, more commonly, ‘oscillating’
estimates of the Pareto front. In these cases, members of F}; may lie behind the earlier estimates of
the Pareto set. The nature of this behaviour is now described.

An illustration of a retreating front is shown in Figure 8. Figure 8a illustrates an archive, Fj,
with a maximum of M = 6 members. In Figure 8b a new non-dominated member (drawn as a filled
circle) has entered the set from the current population. Since there are now 7 elements in F}, one
member must be removed by clustering. The pair of solutions nearest each other form a cluster of
two (circled) elements and one of them (chosen at random) is deleted, resulting in truncated archive
F}; shown in Figure 8c. If at a subsequent generation a new element enters the full archive (Figure

8d), the clustering process will truncate the archive to the set as shown in Figure 8e. This results in



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 53

an archive F; (Figure 8g) containing an element that lies behind (i.e. is dominated by) elements of
the original archive set (Figure 8a). Repeating this process can lead to the estimated front retreating
or, more commonly, oscillating as the front advances in the MOEA search stage but retreats during
truncation. This phenomenon was first noted by Hanne (1999) in different situation. In Hanne’s
MOEA (an applied example of which is available in Hanne (2000)), a (A + u)-ES scheme was used
with a child replacing the parent if the parent does not dominate the child. As such, the population
that Hanne used was not a Pareto archive as it was not a non-dominated set (Equation 11); in fact,
the population constructed in Hanne (1999) may only have one Pareto solution at any generation.
The oscillation highlighted by Hanne is produced as a result of the search process as opposed to
the truncation of the elite set. Laumanns et al. (2001), however, note its application to all elite
archive truncation methods (but again without empirical examples) and used it as an impetus for

their development of e-dominance and e-approximate Pareto sets.

60

50 b

40 -

30 | B

20 B

Percentage of clustered set dominated by archive

10 | b

0 | | | | | | | | |
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
ES(1+1) generations

Figure 9: Percentage of individuals in active clustered archive dominated by members of the dormant
unconstrained archive.

A simple empirical example of oscillation can be shown using a (141)-ES MOEA to optimise
the ZDT1 function of Zitzler et al. (2000). The ZDT1 function was optimised using clustering to
truncate the archive to 20 individuals. However, a dormant archive of unlimited size containing all
non-dominated individuals was also maintained. Figure 9 shows the percentage of individuals in the

truncated F; that are dominated by members of the dormant unconstrained archive. As the number



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 54

of generations increase the number of dominated individuals in the clustered archive increases and
then oscillates around the 40% mark. Clearly the search process is being forced to rediscover portions
of the front lost in the truncated archive but retained in the unconstrained archive (at generation
100,000 the dormant archive consisted of 95 individuals.) Since the extremal individuals were pinned,
the effect seen is ‘oscillation’, rather than ‘shrinking’ or ‘retreat’.

This artifact has two main consequences. First, search time is wasted ‘rediscovering’ individuals
and regions that have been eliminated by truncation. Secondly, convergence to the true Pareto
front is impaired. Numerical simulations show that this oscillation is particularly serious when the
estimated front lies close to the true front. The oscillation can prevent convergence to the true front
leading to poor estimates and difficulties in assessing convergence.

In the light of the artifacts discussed here, it is recommended that a secondary population of all
currently non-dominated individuals found during the evolutionary search is used actively within
the search process. In terms of the UMMEA (Algorithm 1), this thesis advocates dropping the
truncate () operation. The set of all currently non-dominated individuals is referred to as the frontal
set Fy. This approach has previously been adopted by, for example, Murata & Ishibuchi (1995)
and Parks & Miller (1998). It should be noted that, while Laumanns et al. (Laumanns et al. ,
2000) recommend the truncation of the external set, their results from this study are based on an
MOEA which retains all non-dominated individuals. However, the issue of time cost of using an
unconstrained elite archive has not been addressed, be it in the case of an active elite archive, or a
dormant archive as recommended in Veldhuizen & Lamont (2000a).

As the number of objective dimensions increases, the issue of archive growth becomes yet more
important. Beyond the argument of oscillating fronts, and the need to minimise fitness evaluations,
the fact is that for every increase in the number of objective for a problem, there is, ceteris paribus, a
doubling in probability of finding a solution that is mutually non-dominating with the elite archive.

A theoretical justification for this argument is illustrated in Figure 10. Here a single point is
placed in the centre of a square covering the unit range and a cube covering the unit range. In
the 2-D case this point dominates 1/4th of the area, is dominated by 1/4th of the area, and is
mutually non-dominating with 1/2 of the area. In the 3-D case it dominates 1/8th of the volume,
it is dominated by 1/8th of the volume and is mutually non-dominating with 3/4th of the volume.

This process continues as D increases. More formally, taking a single point in the centre of D



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 55

1
Mutually Dominated
Non-Domed .
&)
o Mutually
Dominating  Non-Domed .
0
0 1
1
Mutually
n-Domed .
Dominated
O
Dominating
010 1
Mutually
Non-Domed .
1

Figure 10: Non-dominated space around a point in 2 and 3 dimensions.

dimensional space, the amount of space that is mutually non-dominating with this point is 212);151,

giving proportions of 0,0.5,0.75,0.875,0.9375, .. .,0.998 for dimensions 1 to 10.

In reality of course the front is moving forward in time as well as spreading out, so the growth
will not tend to be quite as drastic as the formula would infer, however it can still be very large. An
empirical example is provided in Figure 11a to 11i. Here objective vectors are generated at random
from ~ N (0,1) for objective vectors of length D =2,3,...,10 and stored in an unconstrained elite
archive. After 100000 random individuals are generated, approximately 20 individuals reside in the
elite archive at D = 2, as opposed to nearly 800 at D = 5 and 25000 when D = 10.

As the number of objectives increases the number of archive solutions grows, ceteris paribus. Also
as the number of generations an MOEA runs for increases the the number of archive solutions also

tend to grow (again highlighted in Figure 11). In application terms this means a larger and larger



CHAPTER 3. EVOLUTIONARY MULTI-OBJECTIVE SEARCH 56

100 400
|
14 o0
) 300
g g g
10 B0 >
$ 2 0
59 S0 S
< 6 < <
20 100
4
0 0
0 2 4 6 8 10 b 0 2 4 6 8 10 0 2 4 6 8 10
a Evaluations L Evaluations e (¢ Evaluations i
800 3000 600(
2500 5000|
600
8 2600 4600
o N N
] ] >
00| 1800) 3800
= = =
S S S
< 1800 2800|
200
500 1000
0 0
0 2 4 6 8 10 0 2 4 6 8 10 f 0 2 4 6 8 10
d Evaluations ot € Evaluations e Evaluations )
10
1
25|
8000
o 10800 g2
6800 ] H
o o 45
S 2 2
4§00 S [
< 5600 <1
2000 05
. 0
0 2 4 6 8 10 h 0 2 4 6 8 10 0 2 4 6 8 10
g Evaluations b Evaluations L 1 Evaluations ot

Figure 11: Archive growth in 2 to 10 dimensions, using random number generation.

proportion of an optimisers time is spent comparing solutions it finds to solutions it already has (in
the archive), as opposed to searching for new solutions. The next chapter therefore introduces a new

data structure to enable faster comparison of solutions to an archive.



Chapter 4

The Dominated and Non-Dominated

Tree Data Structures

In this chapter, novel data structures are introduced to aid the efficient maintenance of estimated
Pareto sets. These data structures maintain a quasi-linear order on a set of multi-objective non-
dominating points. The properties of this representation allows searches with complexity which can
be as low as that of binary search. Proofs of operation are derived, including the complexity of

various different operations, and their algorithms are provided.

4.1 Using an unconstrained elite archive
In most MOEASs using an active archive, the archive must be searched at two distinct junctures:

1. When representative individuals are selected for binary tournament selection, roulette wheel

selection, etc. (in the case of a GA) or for perturbation (in the case of an ES).

2. When individuals are compared with the archive F; to determine whether they dominate or

are dominated by members of Fj.

A data structure to facilitate searching F; which is faster than a linear list is the dominated
tree. Since the frontal set contains all of the currently non-dominated decision vectors found, it may

become very large as the search progresses. In order for an MOEA search using an unconstrained

57



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 58

archive to be computationally viable, efficient ways of selecting elements of F; (for crossover, muta-
tion and perturbation and of storing F; to permit rapid query, insertion and deletion of its elements)

must be found. These problems and their solutions are now discussed.

4.1.1 Selection

In a MOEA implementing an unconstrained elite archive many more individuals than necessary may
be available for selection during its evolutionary processes. In this case the manner in which the
sample () operator (Algorithm 1) selects individuals becomes important. Uniform random selection
of individuals from Fj artificially concentrates the search on densely populated regions of the front.
Tt is therefore helpful to select a number of representative individuals. An approach could be to use
the SPEA clustering method to find representatives, however, this proves to be too time consuming
for large frontal populations (due to the computational complexity of the process). Here the new
method of partitioned quasi-random selection (PQRS) is introduced as a selection routine and used
in conjunction with active unconstrained elite archives.

Suppose that N elite individuals are required for selection. In PQRS an arbitrary objective out
of the D objective dimensions is partitioned into (N — 1) bins of equal width and one individual
is selected at random from each of these bins. This ensures that individuals are selected uniformly
across the extent of the front in the chosen dimension. The objective dimension selected for parti-
tioning rotates through the D dimensions with the generation ¢. The individual on the extreme of
the objective dimension is always selected ensuring the concept of pinning discussed earlier.

An example of PQRS in a D = 2 objective problem is shown in Figure 12. Here N = 5 individuals
are to be selected from a frontal population of M = 24 (where M = |F;| denotes the current size
of the frontal set). Given the extremal individual is selected, four additional individuals must be
selected from F;. Having selected an objective coordinate, the frontal set is partitioned on that
coordinate into (N — 1) equally spaced bins. In Figure 12 this can be seen as four bins for the
selected dimension, each spanning 1/4th of the range of the front on that objective dimension. An
individual in each bin is selected by generating a random number uniformly distributed across the
range of the bin, and selecting the closest individual (based on Euclidean distance). If a bin is empty
(for instance due to a discontinuity in the Pareto front), the closest individual from the entire front

is used. In addition, no individual is selected twice (unless M < N).



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 59

Obj.1, Obj.1, Obj.1, Obj. 1,
Binl Bin2 Bin3 Bin4

'e Obj. 2,
: : : : Bin 4

[ J
[
L]

i | | | - 0D 2,
S 3 3 ! Bin3
. ! ! !

L]
L]
L]

Objective 2

i i i . Oob.2
! | | | Bin2

o i . 0bj.2,
0. ! ! Binl

Objective 1

Figure 12: A two objective example of partitioned quasi-random selection, with the objective 1 and
2 dimensions partitioned in illustration (during selection only one dimension is partitioned at each
generation). N = 5 representative individuals are required, so selection is from N —1 = 4 bins (after
automatic selection of the extremal value (circled)).

Note that in SPEA clustering is used to reduce the archive before individuals are selected for
binary tournament selection; in contrast, PQRS does not reduce the frontal set population: it only
selects individuals for breeding and does not remove them from F;. This approach is similar to that
used in PAES, when the objective space is partitioned into grids. However, as the partitioning is
done with bins in PQRS, grid knowledge does not need maintenance and updating as in Knowles &
Corne (2000).

Rapid selection from the frontal set is enabled by maintaining D binary trees, one for each
objective dimension. This means that each selection takes O (2log, M) comparisons as opposed
to O (M) for a linear search. Since the frontal set is constantly changing this can be conveniently
implemented using self balancing trees (e.g. AVL or Red-Black trees (de Berg et al. , 1997)), or
doubly linked lists.

If only one elite individual is desired (for instance a (1+1)-ES is being used), then the objective



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 60

space is still separated into (N — 1) bins, with a particular bin (or extreme individual) selected with
equal probability. A random number is generated from a uniform distribution across the range of
the bin, and the individual closest to this number is selected. The larger the value of NV, the less the
selection process will be affected by dense areas of the archive, and the less the bias toward selecting

the extremal individual.

4.1.2 Efficient storage of the frontal set

An important constraint on using a large active frontal set is the number of comparisons that must
be made with individuals in the frontal set at each generation. When the archive is small in size,
for instance M = 20 (as in (Zitzler et al. , 2000)), the time for a linear search of F; is negligible.
However, with no limits imposed on the size of the frontal set in an MOEA, the linear search of
a large number of individuals (1000 for instance) before assigning an individual as non-dominated,
may simply be too costly to make the method practical. Hence intelligent storage is needed before

the unconstrained frontal set approach is viable.

4.2 Dominated and non-dominated trees

To determine whether an individual, y = (f1(x), f2(x), ..., fp(x)), should become a member of the
frontal set, F',! it must be first checked that y is not dominated by any other element of F. At the
same time any elements of F' that are dominated by y should be deleted from F. When the frontal
set is small, a simple linear search is sufficiently cheap to perform these checks. However, as the size
of the frontal set grows the cost of querying the frontal set becomes prohibitive. In this section two
data-structures are described— dominated trees and non-dominated trees — for efficient storing and
rapid querying, and updating of the frontal set.

For this discussion it is convenient to denote members of the frontal set and individual(s) from
the search population as points y in D-dimensional space. Geometrically, finding individuals in F’
that dominate y amounts to finding frontal individuals that lie to the ‘south-west’ or ‘left and below’

y. Mathematically, the set of dominating individuals is:

{zeF :2z;<y;forall1<i<D andz; <y; for at least one 1 < j < D} (17)

!Since the genetic generation plays no role here, the subscript ¢ has been dropped.



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 61

It would be possible to use kd-trees (Bentley, 1975; de Berg et al. , 1997) or range trees (Bentley
& Friedman, 1979; de Berg et al. , 1997), however these are both suited to querying F' for elements
which lie in bounded (hyper-) rectangles. Priority trees, developed by McCreight (1985), are suited
to rectangular queries in which the rectangle is unbounded on a single side. Sun and Steuer (Sun &
Steuer, 1996) describe an alternative data structure adapted for answering queries about domination
and non-domination which has been extended recently by Mostaghim et al. (Mostaghim et al. |
2002).

The ‘dominates’ relation imposes a partial ordering on individuals. However, since the elements
of F' are mutually non-dominating, this relation cannot be used directly to construct, for example,
a binary tree to enable fast searching. In the dominated tree, composite points are constructed from
original individuals such that the composite points are ordered by the dominates relation so that
binary search may be used in the new structure.

The dominated tree consists of a list of L = [M /D] composite points, c;, ordered by the weakly-
dominates relation, <:

T={cr=...%ca<c1} (18)

Usually, the stronger condition, ¢; < ¢; iff ¢ > j, will hold. The coordinates of each composite
point are defined by up to D elements of F', the constituent points of a composite point. An example
of a dominated tree in two dimensions is shown in Figure 13.
Denote by Y; the constituent points of ¢;, namely the D-tuple defining the coordinates of ¢;; so
that if
V= (yM,y®,. .y @,y (19)

then the dth coordinate of the composite point is the dth coordinate of y(¥; thus Cid = yéd).
Dominated trees are constructed to have the property that the constituent points of ¢; (at least)

weakly dominate c; and at least one of the constituent points of c; strictly dominates c;:
If ¢; < c; then y@ < ¢; Vy@ € ¥; and 3y? € V; such that y¥ < c; (20)

For example, in Figure 13 the constituent points of ¢4, c5 and ¢g dominate c3. However, note that
they do not necessarily dominate the constituent points of ¢z, namely y3 and yg.

It follows from (20) that if ¢; < ¢; then all the constituent points of ¢; (at least) weakly dominate



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 62

5
L] Y bcl
7
o y oc2
6
{ Y oce3
2
° y:
1
° y
8
L] Y Dcd
y9
L] . ° q
Yy
°
10
.y ocs
12
.y o 5:181
.y
° y4
13
w7

Composite | Constituent
node points
C1 (y1,¥s)
C2 (y2,¥7)
C3 (y3,¥6)
c4 (ya,¥s)
Cs (¥9,¥10)
Cé (y11,¥12)
C7 (y13,¥13)

Figure 13: Top: 13 points {y1,...,¥13} in two dimensions and the composite points {ci,...,c7}
(squares) forming a dominated tree. The open circle, q represents a query point. Bottom: Composite
nodes listed as ordered by <.

all points that are dominated by c;:
If ¢;<c; <y then vy <y vy@ ey, (21)

It should be emphasised that dominated and non-dominated trees do not require that the con-
stituent elements form a non-dominated set (as seen in Figure 13). The dominated tree is illustrated
with a general set of two-dimensional points, because non-dominated sets of two-dimensional ele-
ments have the property that listing the points in order of increasing first coordinate (objective),
Y1, is equivalent to listing them in order of decreasing second coordinate, y». This is seen easily by
considering two mutually non-dominating points, say, u € R? and v € R?. Without loss of gener-

ality, suppose that u; < v;. If us < vy then u < v, contradicting the fact that they are mutually



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 63

non-dominating, and thus it may be concluded that us > vs. This ordering property is special to
two dimensions, and it can be misleading if one tries to generalise to higher dimensions from a visual
representation in two dimensions. The points and the tree illustrated in Figure 13 are more akin to
the general (D > 2) case. Dominated trees also have applications to general sets (i.e., sets whose
elements are not mutually non-dominating), such as answering queries about enclosing rectangles

(McCreight, 1985; McCreight, 1980).

4.2.1 Construction

Algorithm 2 Construction of a dominated tree.

Inputs:
F={y1,---,Ymy---sYM} Vectors to form the dominated tree
1. T:=0
2: L=[M/D]
3: fori:=1,...,L
4: ford:=1,...,D
o: y = maxy,, cr(Ym,q)
6: Cid ‘= Yd Keep pointers from y,, to and from c;
7: if |F| # 1
8: F:=F\y Delete y from F'
9: end
10: end
11: T:={c;<ci1 X...%c1} Appendc;toT
12: end
Construction of a dominated tree from M points F = {y1,...,¥Ym,---,¥M, } is described in

Algorithm 2 and proceeds as follows. The first composite point c; is constructed by finding the
individual y,, with maximum first coordinate; this value forms the first coordinate of the composite
point:

_ 22
CL1 = max (Ym,1) (22)

Thus, for example, in Figure 13, ¢1;1 = yi,1. This individual y,, is now associated with ¢; and
removed from F'. Likewise, the second coordinate of ¢; is given by the maximum second coordinate
of the points remaining in F: ¢; 5 = maxy, cr\T (ym,g); in Figure 13 ¢;,2 = y5,2. This procedure is

repeated to construct ¢ and subsequent composite points until all M elements of F' are associated



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 64

with the tree. In general the dth coordinate of the ith composite point is given by:

Ci.g = max 23
i,d ymEF\Tym’d ( )

Note that in the construction of the final composite point (that is, the composite point that dominates
all other composite points), the M elements of F' may have been used before all of the D coordinates
of the final composite point ¢ have been defined. As illustrated by composite point c¢; in Figure
13, the last remaining point in F' (y;3 in Figure 13) is reused to define the remaining coordinates.

Tt is clear from the construction of 7 that it possesses properties (18) and (20). Since D elements
of F are used in the construction of each composite point (except possibly for the dominating
composite point), the number of composite points in 7 is L = [M/D].

If a naive search for the maximum in line 5 of Algorithm 2 is used, construction of 7 from M
points takes O(M?) comparisons (because each of the M points y,, is inserted after searching F' of
length M — m). However, if D PQRS trees have been constructed (at cost O(DM log, M)), they
can be used to efficiently find the constituents of a new composite point. Each point in the PQRS
trees is marked as ‘used’ trees as it is inserted into 7T; the dth coordinate of the composite point
under construction is then the maximum unused point in the dth PQRS tree. By maintaining D
pointers to the maximum unused element in the PQRS trees the dominated tree may be constructed

in O(M D) operations.

4.2.2 Query

Given a test point q, the properties of dominated trees can be used as follows to discover which
points in F' dominate q. Although the dominated tree is implemented efficiently as a binary tree,
the query procedure is most easily described in terms of an ordered list of L composite points. First,
the list is searched to find the indices h and [ of composite points ¢, and ¢; that dominate and are

dominated by q respectively:

L+1 if q < cr

min{i : ¢; < q} otherwise



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 65

and

0 if e <
- LA (25)

max{i : q <¢;} otherwise

Also cy denotes the ‘least’ composite point that strictly dominates cp:

H=min{i : ¢; <cp} (26)

For the query point illustrated in Figure 13,1 = 2, h = 5, and H = 6. (Note that it is not necessarily
true that H = h + 1.) Since ¢, < q it is clear from (20) that all the constituent points of the
composite points ¢; that dominate cp, H < i < L, also dominate q. (Note that the constituent
points of ¢p, and indeed c;, that only weakly dominate cp, need not dominate q; e.g. in Figure
13 ¢5 < q, but y9 £ q.) Also, since q < ¢; and the constituent points of ¢; have at least one
coordinate equal to a coordinate of ¢;, it may be concluded that q is not dominated by any of the
constituent points of ¢y, ..., c;. Each constituent point of ¢; I < ¢ < H must be checked individually
to determine whether it dominates q; in Figure 13 the points ys3,¥s,¥4,¥s, Y9, and yi1o must be
individually checked.

If the dominated tree is used to maintain a mutually non-dominating set, when determining
whether q is to be included in F' it can be rejected immediately if A < L because it is certainly
dominated by at least one of the constituents of cy,.

Since the composite points are arranged as a sorted list, determination of [ and h takes O(log, (M/
D)) domination comparisons each. Hence the total number of domination comparisons required to
enumerate the elements in F' that dominate a query point is O(2log,(M/D) + DK), where K is
the number of points that have to be checked individually. Clearly, certain configurations of F' and
q can result in all elements of F' being checked — in linear time. However, such arrangements are
seldom encountered in practice. This rapid checking permits very large archive sets to be maintained
efficiently.

Although, as already mentioned, dominated trees may be used to search general sets, their
primary use is for maintaining an archive F' of mutually non-dominating points. In this case a query
is often made to discover whether q is dominated by any element of F'; if not, q is inserted into F'.
If it is determined that q is to be included in F' then those elements of F' that are dominated by q

must be identified and deleted from F'. Queries about which elements of F' are dominated by q can



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 66

be answered using the dominated tree, however, it may be inefficient. This is because even though
q < ¢c; for 1 <4 <1, q need not dominate the constituent points of these ¢; and the constituent
points must therefore be checked individually. Hence, in Figure 13 for example, q < ¢z < ¢, but
y5 and y7 are not dominated by q. The non-dominated tree is a data structure that permits this

sort of query to be answered efficiently.

4.2.3 Non-dominated trees

Non-dominated trees are analogous to dominated trees, but they facilitate searching for the subset
of F' that is dominated by q; that is, points that are to the ‘north-east’ or ‘right and above’ q may

be located efficiently. A non-dominated tree consists of an ordered list of composite points:

T={c1<cy=<...<¢cy} (27)

Analogous to property (20), non-dominated trees are constructed with the property that if ¢; < cj,

then all of the constituent points of c; are (at least) weakly dominated by c;:

If ¢; < ¢j then ¢; = y(@ vy ¢ Y; and 3 y? € Y; such that cj < y(@ (28)
.ys
oY
.y6
c7 ly2
c6 O .yl
c50 .y8
c4n yo
B85, o
.y12
c20 .yll
o o
.y13

Figure 14: The non-dominated tree representing the 13 points {y1,...,y13} illustrated in figure 13.

An example of a non-dominated tree is shown in Figure 14 (again for a general set). Operations on



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 67

non-dominated trees are analogous to those on dominated trees. Construction proceeds by starting
with the minimum coordinate of each objective and successively inserting points with the minimum
coordinate remaining in each dimension. Likewise, queries are analogous to queries in dominated
trees.

If one needs to find out both if a point dominates members of the stored set and if it is domi-
nated by set members, then both data structures (dominated and non-dominated trees) need to be

maintained.

4.2.4 Insertion and deletion

Elements are added and deleted continually from the frontal set during the course of an optimisation.
It is therefore important that the data structure used to support F' can be modified dynamically.

Online insertion of a new point y is accomplished in a simple manner as outlined in Algorithm 3.

Algorithm 3 Insertion into a dominated tree.

Inputs:
T={cr %...%c1} Dominated tree of L composite points
y Point to be inserted into T
1: ify<cg
2: fork=1,...,D
3: Cl, = Yk
4: end
5: T:={c Rcp <X...<%c1}
6: else
7: j := argmin(c; > y) Binary search
8: c =cju New composite point
9: fork=1,...,D
10: if yr > cjq1,k
11: Ch = Yk
12: break
13: end
14: end
15: fork=1L,...,5+1
16: Cp+1 := Cg Relabel
17: end
18: Cjp1:=¢ Ti={cr<X...%¢cjj1 3 <¢; 2...2¢1}
19: end

If the new point dominates ¢y (the composite point that dominates all others) then a new

composite point, ¢, is created with all of its coordinates defined by y (steps 1-4 in Algorithm 3).



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 68

It is clear that ¢’ < ¢r, and therefore ¢’ may be appended to T as cr41, preserving the ordering
property (18).

If y does not dominate ¢y, a bisection (binary) search is used to locate composite points, such
that ¢j11 ¥ y and y < ¢;. A new composite point ¢’ is then constructed with coordinates equal to
c;t1 except in the first coordinate for which y; > c¢j11,% as accomplished by lines 8-14.

By construction, cj11 = ¢’ < ¢;, so ¢ may be inserted in 7 between c¢;11 and c; while pre-
serving the ordering property (18). In Algorithm 3 this properly and the necessary relabelling is
accomplished by lines 15-19. Most practical implementations of ordered lists (such as binary trees
or linked lists) are not index based, so this relabelling is unnecessary. The binary search of T takes
O(log,(M/D)) domination comparisons and the calculation of the coordinates of ¢’ is equivalent to
another domination comparison (D comparisons), therefore the cost of insertion is O(log, (M /D))
domination comparisons.

Figure 15 shows the dominated tree resulting from the insertion of a new point y14 in the tree
shown in Figure 13. Note that the tree resulting from insertion is less than optimal in the sense that
a point (e.g., yg) may contribute to more than one composite point.

Deletion of a point y,, from the tree is slightly more complicated, because the composite point to
which y,, contributed, say c;, must remain (at least) weakly dominated by c;1 after the deletion.
Assume that in the construction of 7, pointers are kept from each element y,, to the composite

point ¢; of which y,, is a constituent (illustrated in Figure 17).

Algorithm 4 Deletion from a dominated tree.

Inputs:
T={cer X...%c1} Dominated tree of L composite points
Ym With ¢jp = Ym,k Point to be deleted from T
Ym defines the kth coordinate of c;
1. ifj<L
2: Cjk = Cjt1k Use coordinate from dominating composite point
3:  else
4: forueY;\ynm Check the remaining constituents of c;
5: ifup > cjp
6: Cjk = Uk
7: end
8: end
9: end

If y,, defines the kth coordinate of c;, then, as shown in Algorithm 4, upon deletion of y,, the



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 69

deleted coordinate of c; is replaced by the kth coordinate of c;;;. This assignment ensures that
¢k < Cjy1,k, SO that ¢j11 <X ¢j, as required by (18). Also note that the constituent points of c;
after the deletion are either the constituent points of c; before the deletion or the constituent points
of cj;1. Therefore, if before the deletion c; <y, then after the deletion the constituent points of c;

continue to weakly dominate y, showing that properties (20) and (21) are preserved.

5
L] Y ocl
7
L] y oc2
y6
o bec4 Oc3
2
° y:
1
° y
y8
c5
gee .y14
9
° y
y3
°
10
.y o c6
12
4 o 0171
.Y
3
'’

Figure 15: Dominated tree resulting from the tree shown in figure 13 after the insertion of y14 and
deletion of yy4.

Deletion of y4 from the tree shown in Figure 13 is illustrated in Figure 15. Note that if y,,
contributes to more than one composite point, then each of the composite points to which it con-
tributes must be dealt with in turn, beginning with the one that dominates all of the others. On
the other hand, if y,, is the sole constituent point of c; (e.g., ci3 in Figure 13) then c; is deleted
from 7 when y,, is deleted. Provided that pointers are kept from each y,, to the composite points
to which it contributes, then deletion of a point contributing to k& composite nodes is achieved with

O(kD) comparisons or, equivalently, O(k) domination comparisons.

Cleaning

Insertion and deletion operations sometimes result in points contributing to more than one composite
point. The dominated and non-dominated trees therefore contain more composite nodes than the

optimum [M/D] and hence increased time is needed to search them. This can be alleviated by



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 70

Algorithm 5 Cleaning a dominated tree.

Inputs:
T={er <X...%¢c1} Dominated tree of L composite points
1. j:=1
2:  while j < |T]|
3: foryey;
4: L:=|T|
S: T = append(delete(y, 7;'+1,L)7 ’Tl,]')
6: end
7 j=3+1
8 end

periodically ‘cleaning’ the tree in the following manner. Let 7} denote the sub-tree of 7 composed
of the composite points j,...,k:

ﬁ,k:{ck jjcj} (29)

and let the deletion operation (Algorithm 4) be denoted by delete(y,T). As described in Algorithm
5 cleaning is achieved by successively deleting constituent nodes from all composite nodes except for
the least-dominating node to which they contribute. This ensures that every point y,, contributes

to exactly one composite point. A cleaned tree is shown in Figure 16.

y5
y7

y6

2
.V

10
.V

12
.y ] 5:181
.y

Figure 16: Dominated tree resulting from ‘cleaning’ of the tree shown in figure 15.

The number of composite nodes in an ideal tree is [M /D], so in a dirty tree of L composite nodes

the number of points that contribute to more than one composite node is LD — M. Since deletion



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 71

of a single point takes O(1) domination comparisons, the time taken to clean a tree is estimated as
O(LD — M). In practice it is not efficient to clean the tree following every insertion and deletion,
but occasional cleaning may be triggered when the number of composite points exceeds a threshold,
say 2M /D. Alternatively, if PQRS trees have been constructed then they may be used to efficiently

rebuild the dominated tree ‘from scratch’.

4.3 Application of data structures

In the following empirical chapter the data structures are implemented using C++ with doubly
linked lists, as illustrated in Figure 17.

As is shown, in this implementation each archived individual is contained in one or more compos-
ite points in the dominated and non-dominated trees, and also has ‘knowledge’ of which composite
points it is in (through pointer references to doubly linked list nodes). In the illustration point y,,
contributes to two composite points of the dominated tree (ce and c3) and one composite point
of the non-dominated tree (cg). However, as discussed earlier, the dominated and non-dominated
trees described are formulated to be independent of the base tree format. Since the work has been
made available electronically by the author from his publications website,? a number of different
implementations have been developed including doubly linked lists, binary trees and vectors, in a

number of different research institutions.

4.3.1 Use in MOEAs

In practical application to MOEAs the author represents the archive frontal set F' by D PQRS
trees together with one dominated and one non-dominated tree. The dominated tree permits rapid
searching of F' to discover whether a member q of the internal population should be included in F
if it is, the non-dominated tree is used to rapidly locate and remove those elements of F' that are
dominated by q. The PQRS trees are used for ensuring that elite individuals (from F') selected for
breeding are selected uniformly along F' and for maintenance of the dominated and non-dominated

trees.

2http ://wuw.dcs.ex.ac.uk/people/jefields/seminars.html



CHAPTER 4. THE DOMINATED AND NON-DOMINATED TREE DATA STRUCTURES 72

Dominated tree Non-dominated tree

Z - - - . -
% D-dimensional point Composite point

([ List node, conatining pointer to composite point wrapper.
Q Composite point wrapper, containing pointer to composite point.

***** = Pointer from composite point to D—dimensional point.
***** >  Pointer from D-dimesional point to list node.

> Pointer from list node to composite wrapper
""" < Pointer from composite wrapper to composite point.
—  Pointer from list node to list node
—  Pointer from composite wrapper to composite wrapper

Figure 17: Tlustration of dominated tree represented in a doubly-linked list.



Chapter 5

An Empirical Validation of the New

Data Structures

In this chapter the novel data structures are demonstrated to significantly improve the performance

of MOEAs.

5.1 Experimental design

In order to evaluate the efficiency of the new data structures, results are presented of a comparison
with the GA and ES MOEAs using (a) full elite archives using PQRS and dominated trees, (b) full
elite archives with a standard linear search, and (c) truncated archives with clustering. This allows
for the comparison of efficiency in terms of time, between linear lists and the new data structures
when using unconstrained archives, and in terms of archive quality, between the algorithms using
unconstrained archives and clustered archives. In addition to the standard ZDT test functions in
Zitzler et al. (2000), new multi-objective test problems are also introduced that have the character-
istic of large archive growth, which this work wishes to investigate. However, first a brief critique of

the ZDT multi-objective test suite is given.

73



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 74

The ZDT test functions involve two objectives and have the following structure:

Minimise T (x) = (f1(z1),f2 (%)),
where f2(x) =g (x2,...,2p) - h(fi(2z1),9(D2,...,7p)),

and x = (21,...,2p).

Although the six ZDT functions represent many different features and levels of difficulty, the
first objective (f1) is always a function solely of the first decision parameter (in fact, for the first
four test functions, f1 (1) = x1). This simple form of f; means that when genes describing z; are
initialised as uniformly distributed random numbers, the initial estimate of the Pareto front extends
over the full range of f;. Consequently optimisation chiefly consists of minimising fo, rather than
the combined minimisation of both objectives.

This structure also appears to produce the artifact that the growth of the frontal set is quite
limited, as shown in Figures 18 and 19. As opposed to the experience of other applied studies that
have experienced much larger archive growth (e.g. (Parks & Miller, 1998)). In addition, all six test

functions are only two objective problems.

3500
F2
3000} !
F
2500f
(0]
N
©2000]
2
ey
[$)
& 1500}
2
1000} P
| 573013
zpT1] l
T
o —
£ > a 6 10
Generations (ES(1+1)) x 10*

Figure 18: Growth of archive size using ZDT1, ZDT2 and ZDT3 (Zitzler et al. , 2000) and the test
functions F1, F2 and F3 introduced in this work, using a simple (1+1)-ES based MOEA.

For the purposes of this work, where the focus is on maintaining large archives, the ZDT func-

tions unfortunately are arguably of limited use (note however that Deb et al. (2001) have recently



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 75

9000
F3
8000+ 1
70001
.&5 6000+
2]
< 5000+ E2
S
© 4000}
2
=3000
2000f F11
10001 DT1 1
SoTZDTZ
0 i L L
0 1000 2000 3000 4000 5000

Generations (GA, pop. 20)

Figure 19: Growth of archive sizes using ZDT1, ZDT2 and ZDT3 (Zitzler et al. , 2000) and the test
functions F1, F2 and F3 introduced in this work, using a simple GA based MOEA.

introduced additional higher-dimension test functions). The first three ZDT functions are still em-
ployed in this chapter as they are well known to the community at large. Their formulation is shown

in Table 4

Table 4: First three Test functions from (Zitzler et al. , 2000).

# Function X
fi(zy) = 21,

ZDT1  g(z2,...,o8) =149 (Eivzz ﬂfn) /(n=1), iv :[?60’1].
hf1,9) =1-/fi/g. ~
fi(zy) = 21,

ZDT2  g(za,...,28) =149 (Eivzz l‘n) /(n=1), iv g[%oi]
h(f1,9) =1=(f1/9)* 7
fi(z1) = x4,

ZDT3  g(x2,...,an) =1+9 (Zf:z ﬂfn) /(n—=1), iv ;[?)(,)’1]

h(fi,9) =1-+/fi/g— (f1/g)sin(107 f1).

In addition three new test functions are introduced, in which all objectives are dependent on all
decision parameters. These functions do exhibit large archive growth. All three are combinations of

the following five base functions, B; (x).



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 76

e Base functions

5169 = 3 e g ((/m)") 5 (30)
B; (x) = Z (ml — % (cos (10 (i/m)) + 1)) (31)
B; (x) = i |z; —sin® (i — 1) cos® (i — 1)|% (32)
By (x) = i T — i (cos(i—1)cos(2(i —1)) +2) ’ (33)
Bs (x) = Z (xz — % (sin (10007 (i/m)) + 1)) (34)

i=1

e Multi-objective functions

Fi (x) = (B1 (x) , B2 (x)) (35)
F (x) = (B2 (x) , Bs (x) , B4 (x)) (36)
F3 (x) = (B1 (), B3 (x),, B4 (%) , Bs (x)) (37)

In all cases m=30 and z; € [0,1].
Parallel coordinated graphs shown in Figure 20 of these test functions, which illustrate the
function bounds and the trade-off between objectives (with the lines crossing), on the true Pareto

front.

5.1.1 Algorithm implementation

The implementation of both the ES and GA models use floating-point representation of parameters
in the individual chromosomes. In order to compare the linear search and the dominated tree
method the two versions of each MOEA were each executed 50 times on each test problem, with the
cumulative time saved at each generation (the time spent in the methods dealing with comparison
to the archive and selection from the archive). In order to compare the unconstrained and truncated
approach, each was executed 50 times on each test problem (with different starting points), and

the resultant non-dominated solutions saved at the end of each run. The runs were repeated twice;



7

CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES

18 50 ; 50 ;
IA\ !
16+ h I\ A
/ (RS ,"“‘\
/ L / \ i L "y
14+ // | 40 // \\ 40 ﬂ' ‘\\
5 12¢ // ) ,[ \\ ;‘ “\ \\
o / 30 | Vo4 30F 0
210¢ / 1 I \ / | \\
c // ,/ \\ / ” \\ \
© gt // 1 ! \\ L !
& ; 20 | 1 207 .
S sl ) ] , | \ /\
14 // /l // ;’ “/
an ) 1 ’ / j RN
{ 10r/ /o 107 /' \
// ! / / \
21 ! / I [ /
// I / ! // //
0 o4 0 .
1 2 1 2 1 2 3 4
Obijective

Figure 20: Parallel coordinated graphs of the objective bounds of the test functions (each line

relating to an individual which minimises one of the objectives)

once for the same number of generations (function evaluations) and once for the same empirical
run time. In the case of the clustering algorithm no off-line store was maintained, as maintaining
this store would incur an additional time cost above the standard (unclustered) approach, for which

truncation is designed to alleviate. Clustering was performed using the method from SPEA (Zitzler

(2000)) Each simulation was performed using the parameters shown below:

GA

Number of generations : 5000

Search population size : |B;| = 20

Max. archive population size (when clustered) : M = 50

Crossover rate : 0.8

Mutation rate : 0.05



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 78

(14+1)-ES

Number of generations : 100000
Max. archive population size (when clustered) : M =50
Mutation rate : 0.2

Single point crossover was used and the mutator variable was drawn from a Gaussian distribution
with 0.1 variance and zero mean. In each of the 50 different runs the MOEAs were initialised from
identical decision vector populations of size 100, with the non-dominated individuals residing in these
populations forming the initial elite archive. Initialisation of decision vectors was from 2/(0,1). The
random number generators were identically seeded for each of the 50 runs, so that the fronts found
by the two unconstrained methods were identical. This means that time comparisons were made
on strictly identical update/selection problems. Elitism intensity was 1.0 and the dominated and
non-dominated trees were cleaned when they exceeded 1.2M /D composite points. In all algorithms

selection of elite individuals from the archive used PQRS.

5.1.2 Results

Timing results

When comparing the speed of the three algorithm types the sum of clock ticks counted when op-
erating in the relevant methods of each algorithm (those that dealt with the comparing of a new
individual to the archive (and updating), and the selection of an individual from the archive as a
parent) was maintained, with these value transformed into seconds’.

As shown in Tables 5 and 6, the simple GA using the dominated trees was significantly faster
than the standard linear search GA for all six test problems. The ES dominated tree algorithms
were significantly faster than the standard linear approach for the three new test problems, however
there was no significant difference in speed on the three ZDT functions. The clustering algorithm
was faster than both on the 3 and 4-objective problem using the simple ES, and faster than linear or
dominated tree searches on all the test functions except F) using the GA. This is a reflection of the

size of the archive set — see Figures 18 and 19. Table 6 shows the generations at which one algorithm

1The machine used in these experiments was a 1.4GHz AMD Athlon processor with 256Mbytes of DDRAM.



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 79

Table 5: Mean execution time (in seconds) of the three archive methods, standard deviation in
parentheses. Results in bold signify significantly faster results as suggested by the Wilcoxon non-
parametric signed ranks test (2 tailed, 0.025 in each tail) compared to the other two algorithms.
Results in italics signify that the dominated tree algorithm is significantly faster than linear search.

Linear Dominated tree Clustered
7DT1 0.61 (0.06) 0.60 (0.06) 1.04 (0.08)
7DT2 0.44 (0.06) 0.45 (0.05) 0.48 (0.07)
ES | ZDT3 0.59 (0.05) 0.60 (0.06) 1.00 (0.07)
F1 7.29 (0.18) 5.62 (0.21) 48.39 (0.50)
F2 134.00 (9.56) 111.80 (7.63) 77.26 (0.69)
F3 191.82 (19.21) 151.25 (14.71) 78.79 (1.36)
ZDT1 | 3.11 (0.20) 1.79 (0.12) 1.03 (0.08)
ZDT2 | 2.44 (0.18) 1.53 (0.11) 0.54 (0.07)
GA | ZDT3 2.36 (0.12) 1.27 (0.08) 1.07 (0.08)
F1 10.38 (0.82) 7.87 (0.86) 29.65 (0.65)
F2 | 105.07 (12.80) | 81.86 (9.61) | 62.94 (0.96)
F3 341.54 (38.25) | 245.61 (27.604) | 74.64 (1.961)

tested using the non-parametric Wilcoxon signed rank test, from Wilcoxon & Wilcox (1964), at the
0.05 level (0.025 in each tail)? was found to be significantly faster than another. As it can be seen,
both the unconstrained algorithms were initially faster than the clustered approach, however, as
their archives grew their time cost per generation (the gradient of the cumulative time curves shown
in Figure 21), surpassed that of the clustering approach.

It can also be seen that in a number of cases standard linear approach is initially faster than the
dominated tree method. This is due to the time cost of maintaining the data structures outweighing
the search cost reduction compared to the linear list, when the archive population is small. A number
of additional experiments were therefore run where the time taken to reach different archive sizes
was assessed. Again 50 separate runs of the two unconstrained approaches (for both the ES and GA
MOEA) were made, with the time taken to reach archive sizes in 50 member increments recorded
for each of the test functions. As can be seen in Table 7, for the ZDT functions it is generally the
case that after the archive has exceeded 50-100 members the dominated tree method is significantly
faster than the linear list. A higher threshold is experienced by the new functions introduced in

this work, with the dominated tree not being significantly faster until the archive reaches 150-250

2t-tests cannot be used as the samples cannot reasonably be assumed to be drawn from normal distributions,
neither are the samples independent (each pair being correlated). The Wilcoxon signed rank test does not assume
normality, and its independence assumption is only that each pair is independent of all other pairs.



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 80

Table 6: Generations (multiples of 1000) for which algorithm A is significantly faster than algorithm
B. t(A, B), calculated using the Wilcoxon non-parametric signed ranks test at the 0.05 significance
level with 0.025 in each tail. Where L denotes the standard unconstrained archive with linear search,

D is the dominated tree archive and C is the clustered archive.

#(L,D) | ((L,C) | #D,L) | #(D,0) [ {C,L) | #C,D)
ZDT1 1-48 1-100 - 1-100 - -
ZDT2 1-64 1-100 - 1-100 - -

ES | ZDT3 1-64 1-100 - 1-100 - -
F1 1-5 1-100 10-100 1-100 - -
F2 - 1-53 2-100 1-61 57-100 66-100
F3 - 1-44 3-100 1-50 48-100 54-100
ZDT1 1-16 - 22-100 - 12-100 1-100
ZDT2 | 2, 4-10 - 22-100 - 4-100 2-100

GA | ZDT3 1-15 15-19 22-100 20-57 30-100 | 1-11, 71-100
F1 1-3 1-100 8-100 1-100 - -
F2 - 1-56 2-100 1-69 62-100 76-100
F3 - 1-26 3-100 1-31 29-100 35-100

members. This is thought to be because the test function surfaces are searched in all objective
directions (unlike the ZDT functions for which optimisation principally consists of ‘pushing down’
the second objective), and as such have a higher proportion of individuals discovered at the edges of
the frontal set at each generation (meaning the number of composite points to be searched linearly

is on average larger).

Table 7: Table showing archive size beyond which the dominated tree is significantly faster than the
linear search for the various test problems for the total (absolute) time cost of the method up to
that archive size, the second column pair are for the incremental cost (the difference between the
time taken in reaching one range and the next). Significance calculated using a Wilcoxon signed
ranks test (0.025 in each tail).

Trees Sig. Faster
Cumulative || Incremental
ES | GA ES GA
ZDT1 | 150 150 100 100
ZDT2 | 150 150 50 50
ZDT3 | 250 | 150 100 50
F1 450 | 300 250 | 150
F2 550 | 400 200 | 150
F3 400 | 350 200 | 150




CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 81

120

std

=

)

]
T

tree

®
3
T

clust

Cumulative time (seconds)
N »
: :

N
S
T

0

L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

GA generations (search pop. 20)

Figure 21: The average time (in seconds) spent checking an individual against the elite archive and
updating the archive in the three different archive methods (unconstrained standard, unconstrained
with the new data structures and clustered), using the GA up to 5000 generations (with the three
objective problem F5).

Performance results

Table 8 shows the € performance comparison of the fronts found by the unconstrained and truncated
algorithms after 100000/5000 ES/GA generations. On all six test functions the unconstrained ap-
proach performed significantly better than the constrained approach using the GA over the 50 runs,
both in terms of equal generation length and equal computation time. The ES unconstrained method
performed significantly better than the clustered method using this measure on test functions Fi,
F5, and F3 on equal generation length, the clustered method being significantly better on ZDT2 and
ZDT3. However, when the clustered algorithm was run for the same amount of computation time
as the different dominated tree runs, the unconstrained method was significantly better than the
constrained method for all the test functions except ZDT2 (where there was no observed significant
difference between the two methods over the 50 runs). This result however is simply due to the
slower archive increase experienced for this test problem; meaning that although the marginal cost
of each extra generation was more for the standard linear list storage method at generation 5000,
the algorithms where not run for long enough for this to transfer to a significant difference on the
total time run (due to the relative efficiency of the linear list at low archive sizes).

These results are further supported by those using the V measure (Table 9). Fronts found by



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 82

Table 8: Comparison between end-of-run fronts from the unconstrained and clustered elite ES and
GA archive models, using the ¢ measure. C(U,C) is the mean proportion of the members of the
clustered generated front dominated by members of the unconstrained generated front. Means are
over 50 runs, with standard deviation in parentheses. The first two columns relate to the results
after an equal number of generations. The third and fourth columns relate to the results after
the clustered algorithms have run for an equal time as the dominated tree based unconstrained
algorithm. Results in bold signify significantly better results under the Wilcoxon non-parametric
signed ranks test (2 tailed, 0.025 in each tail).

Equal generations Equal time
C(U,C) C(C,U) CU,C) C(C,U)

ZDT1 | 0.318 (0.142) | 0.408 (0.172) || 0.636 (0.173) | 0.163 (0.161)
ZDT2 | 0.337 (0.156) | 0.465 (0.180) || 0.383 (0.175) | 0.413 (0.179)

ES | ZDT3 | 0.244 (0.114) | 0.382 (0.135) || 0.417 (0.152) | 0.245 (0.152)
F1 0.899 (0.030) | 0.005 (0.001) || 0.999 (0.003) | 0.000 (0.001)

F2 0.894 (0.035) | 0.001 (0.001) || 0.878 (0.039) | 0.002 (0.001)

F3 0.816 (0.048) | 0.003 (0.004) || 0.787 (0.055) | 0.005 (0006)

ZDT1 | 0.981 (0.012) | 0.000 (0.000) || 0.982 (0.011) | 0.000 (0.000)
ZDT2 | 0.982 (0.010) | 0.000 (0.000) || 0.981 (0.011) | 0.000 (0.000)

GA | ZDT3 | 0.984(0.011) | 0.000 (0.000) || 0.984 (0.011) | 0.000 (0.000)
F1 0.995 (0.010) | 0.001 (0.002) || 0.996 (0.010) | 0.000 (0.001)

F2 0.947 (0.025) | 0.000 (0.001) || 0.935 (0.030) | 0.000 (0.001)

F3 0.962 (0.029) | 0.000 (0.001) || 0.921 (0.032) | 0.000 (0.001)

the unconstrained full archive are significantly ahead of the clustering truncated method using the
GA, for both equal generations and equal computation time. Using the ES scheme the fronts found
by the dominated tree method are significantly better than those found by clustering for all test

functions except ZDT2, where there was no significant difference between the two methods.

5.2 Key results

New data structures and methods — PQRS and dominated trees — have been introduced to facili-
tate faster performance when maintaining an unconstrained archive of non-dominated solutions. Al-
though dominated trees are usually used for maintaining a set of mutually non-dominating elements,
it is to be emphasised that there is no restriction to using them only with mutually non-dominating
sets. Unconstrained archives themselves are necessary to prevent oscillations and retreat of the

frontal set, problems which beset MOEAs in which the elite archive is truncated. The problem of

oscillating fronts was demonstrated empirically in this thesis for the first time.



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 83

Table 9: Comparison between end-of-run fronts from the unconstrained and clustered elite ES and
GA archive models, using the V measure. Where V (U, C) is the mean proportion of the volume of
the minimum hypercube containing both estimated fronts, which is dominated by members of the
unconstrained generated front but not by members of the constrained generated front. Means are
over 50 runs, standard deviation in parentheses, value as a percentage. The first two columns relate
to the results after an equal number of generations. The third and fourth columns relate to the
results after the clustered algorithms have run for and equal amount of time as the data structure
based unconstrained algorithm. Results highlighted in bold signify significantly better results under
the Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in each tail).

Equal generations Equal time
V(U,C) V(C,U) V(U,C) V(C,U)

ZDT1 | 0.760% (0.360) | 1.260% (4.810) | 1.650% (0.530) | 0.810% (4.550)
ZDT2 | 0.802% (0.447) | 1.021% (0.618) || 0.957% (0.512) | 0.836% (0.549)

ES | ZDT3 | 0.581% (0.320) | 1.151% (5.530) || 0.912% (0.466) | 0.944% (5.374)
F1 9.287% (0.708) | 0.014% (0.031) || 4.601% (0.288) | 0.000% (0.000)

F2 9.466% (0.669) | 0.019% (0.011) || 5.614% (0.413) | 0.025% (0.018)

F3 11.215% (0.748) | 0.224% (0.115) || 8.517% (0.765) | 0.300% (0.161)

ZDT1 | 5.829% (0.374) 0.000 (0.000) 5.423% (0.413) 0.000 (0.000)
ZDT2 | 8.882% (0.762) 0.000 (0.000) 7.617% (0.666) 0.000 (0.000)

GA | ZDT3 | 3.612% (0.359) 0.000 (0.000) 3.713% (0.403) 0.000 (0.000)
F1 5.146% (0.439) | 0.000% (0.000) || 5.553% (0.400) 0.000 (0.000)

F2 8.651% (0.492) | 0.004% (0.013) || 8.649% (0.563) | 0.006% (0.009)

F3 13.770% (0.962) | 0.001% (0.002) || 12.514% (0.978) | 0.046% (0.095)

The dominated trees reduce the time taken using an unconstrained archive, in both simple ES
and GA MOEAs, although when the archive is relatively small (below approximately 50 members)
the cost of maintaining these structures negates the decreased search time. For the test sets used
in this thesis even when running the (typically) quicker clustering algorithm for the same time as
a simple MOEA with an unconstrained archive and dominated trees, the unconstrained algorithm
still produces superior results. The precise impact of dominated trees on the overall run time of an
algorithm will, of course, depend upon the complexity of test function itself and the complexity of
the fitness assignment/selection procedure used.

The exact complexity of the search of a dominated tree is dependent on the number of individual
composite points to be checked linearly; as such the data structure described is affected more by
individuals that lie on the extremes of the estimated Pareto front. This is shown empirically in
Table 7, with a larger archive size needed for the test functions introduced in this thesis than the

ZDT functions before the data structures are found to be significantly faster than the linear search.



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 84

In extreme circumstances it still may be the case that the maintenance of all frontal solutions may
be infeasible (simply in memory requirements); in such cases the data structures introduced here
could be used in tandem with an unconstrained e-approximate Pareto set.

In Laumanns et al. (2001) the problem of oscillating fronts is addressed by the development of
the e-dominance concept and e-Pareto sets. In this approach the objective values of a solution are
calculated as usual, but an additional D e-Pareto objective values are also calculated, which are

used in the comparison of individuals. If the objectives are to be minimised these are

yi = fi(x)-(1—e), i=1,...,D (38)

where € is pre-set by the user, and determines how much a new solution has to be better than a

previous archived solution in order to be archived. An illustration of this is shown in Figure 22.

» Archive member
g = New point

Obijective 2

Le - —

Objective 1
------------------ Line denoting Pareto domination by archive set
Line denoting ] —Pareto domination by archive set

Figure 22: Illustration of e-dominance, although the new point b dominates the archive member it
does not € dominate it, and therefore is not stored.



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 85

On initialisation the objective values of the seed solutions are calculated, and the non-dominated
individuals are stored in terms of their e-objectives (an initial e-Pareto set). On the generation
of new individuals for insertion into the e-Pareto set, comparison is based on the new solution’s
objective y and the stored solution’s y¢. Only if the new solution is not e-dominated by any element
of the set will it be inserted into the archive, its e-objectives are then stored and any e-dominated
individuals removed. This is illustrated in Figure 22, although new point b dominates the archived
point a, it does not e-dominate it, and therefore it is discarded. Laumanns et al. (2001) show
that a result of this is an € dependent bound on the size of the e-Pareto set. However this is at a
cost; the final estimated front may lie behind the true Pareto front in each dimension by a factor of
(1 +¢€). In addition, although overt oscillation of the Pareto set (in its e-Pareto form) is removed,
oscillation (and decreased search efficiency) will still occur. This is because solutions that dominate,
but do not e-dominate the e-frontal set, are not added to the e-Pareto set and therefore have to be
rediscovered. The empirical impact of this oscillation and that of restricting forward movements of
the e-Pareto set to steps of greater than ef; has not been reported. If the e-dominance approach
were to be adopted, a potentially time consuming search of the e-Pareto set would still be necessary

when inserting a new solution, and therefore the data structures introduced here would be useful.

5.3 Further implications: robust stopping criteria

Robust stopping criteria are largely missing from the MOEA literature. Beale & Cook (1978) include
a fitness-based stopping criterion in their study, in which the algorithm is terminated if the fittest
individual has remained unchanged for 1000 consecutive generations. As Coello (1999) points out,
MOEAs since Schaffer (1985), which carry a set of non-dominated individuals, are usually terminated
after a fixed number of generations, or the population is monitored at intervals and a decision made
on a visual basis.

The use of an elite archive which can only ‘advance’ however allows a number of robust stopping

methodologies to be introduced. Examples of these are:

e When no individual that dominates a member of F' is discovered after a given number of

consecutive generations.

This is similar to the approach taken by Beale & Cook (1978), however in a MOEA there is a set of



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 86

elite solutions instead of a single elite individual. It is to be emphasised that this sort of criterion
can fail with an truncated archive which is prone to oscillation. Note that new individuals may be
found that are non-dominated by the frontal set - and therefore are inserted into F. However, these

individuals may only fill in the front (increasing its resolution), rather than pushing it forward.

e When there has been no change in the extremal values for a given number of consecutive

generations.

The previous stopping criterion, when taken by itself, may lead to sub-optimal stopping in that,
although the front may have ceased moving forwards, it may still be moving outwards toward the
extremes. This second criterion takes this form of search into account and can usefully be combined

with the previous criterion.

e When the average distance in objective space between neighbouring individuals in F' reaches

a specific threshold.

The practitioner may wish the front to be defined to a particular resolution, therefore they may
not solely wish to stop the search process after the front has finished moving, but prefer to wait
until this resolution is reached. With two objectives, the resolution can be estimated by calculating
the maximum over F of the nearest neighbour distances®. With more than two objectives a similar
termination criterion can be defined based on the maximum area of any triangle of a Delauney
tessellation (de Berg et al. , 1997) of F.

In practice the third criterion alone may lead to stopping before a good estimate of the true
Pareto front has been found (if the resolution is set too coarse), however in conjunction with the
first two criteria a good estimate of the true Pareto front to any desired resolution can be achieved.

If a practitioner prefers a small number of evenly distributed individuals to be returned after al-
gorithm termination, the final elite archive may be clustered using the method employed in standard
SPEA (the computational cost is not too high as it only needs to be performed once).

The stopping criteria defined above are not readily applied to methods which do not use an
unconstrained active elite archive because, even if a dormant offline store is used, these methods

are susceptible to oscillating active estimates of the Pareto front, which may cause spurious early

3This can fail in the pathological case that the true front contains isolated points in objective space.



CHAPTER 5. AN EMPIRICAL VALIDATION OF THE NEW DATA STRUCTURES 87

termination. (An alternative discussion on stopping techniques for MOEAs, through the use of

multiple run-time error metrics, can be found in Deb & Jain (2002)).

In the previous three chapters generally applicable data structures for multi-objective optimi-
sation have been developed. The focus of the thesis shall now turn to the development of novel
multi-objective optimisation algorithms that are dependent specifically on the properties of these

data structures to impove not just their empirical speed, but their search processes too.



Part 11

Dominated Tree based
Multi-Objective Particle Swarm

Optimisation

88



89

In this second part, the particle swarm optimisation heuristic is described, which has recently
found popular use as a NN optimiser. A novel extension to the general model which facilitates
the optimisation of multiple objectives is introduced. This new approach relies on the new data
structures developed in Part I of the thesis. The new method is demonstrated to be consistently su-
perior to another multi-objective particle swarm optimisation method also published in 2002 (Coello
& Lechunga, 2002) and a recent MOEA (Knowles & Corne, 1999; Knowles & Corne, 2000) on a
number of well known test functions.

Additional experiments show that the introduction of a stochastic ‘turbulence’ term within
MOPSO improves performance across models. Sixteen different methods of MOPSO are then com-
pared, some included from the literature and others developed in the thesis, and from this empirical
evaluation it is shown that a hierarchy of models exists. In addition the benefits of this new method
in comparison to MOEA methods is further underlined. The types of problem where the new method

excels and where it has limitations are highlighted, with a discussion as to why this may be the case.



Chapter 6

Particle Swarm Optimisation

In this chapter particle swarm optimisation is introduced, some of its common variants described,

and its recent applications to NN training highlighted.

6.1 The heuristic and standard algorithm

The Particle Swarm Optimisation heuristic (PSO) was first proposed by Kennedy and Eberhart
(1995) for the optimisation of continuous non-linear functions. This in turn has been the catalyst
for several papers in the last few years, (Carlisle & Dozier, 2001; Conradie et al. , 2002b; Conradie
et al. , 2002a; Duch & Korczak, 1999; Duch, 1999; Engelbrecht & Ismail, 1999; Ismail & Engelbrecht,
1999; Ismail & Engelbrecht, 2000; Kennedy & Spears, 1998; Lovbjerg et al. , 2001; Ozcan & Mohan,
1999; Parsopoulos & Vrahatis, 2001; Parsopoulos et al. , 2001a; Parsopoulos et al. , 2001b; Parunak
et al. , 2001; Shi & Eberhart, 1998; van den Bergh, 1999; van den Bergh & Engelbrecht, 2000;
van den Bergh & Engelbrecht, 2001a; van den Bergh & Engelbrecht, 2001b; Zhang & Shoa, 2001),
which have covered both the theoretical expansion of the subject area, and the empirical /theoretic
comparison to existing EC techniques and specific applications. PSO is of specific interest to this
thesis since: (a) given its representational similarities to EC approaches, studies have highlighted
its relative speed and effectiveness compared to EC approaches in the uni-objective domain, the
development of a multi-objective variant, though not trivial, does strike as a ‘natural’ progression

and (b) one of the most popular applications of the method has been NN optimisation (Conradie

90



CHAPTER 6. PARTICLE SWARM OPTIMISATION 91

et al. , 2002b; Conradie et al. , 2002a; Duch, 1999; Duch & Korczak, 1999; Engelbrecht & Ismail,
1999; Ismail & Engelbrecht, 1999; Ismail & Engelbrecht, 2000; van den Bergh, 1999; van den Bergh
& Engelbrecht, 2000; van den Bergh & Engelbrecht, 2001b; Zhang & Shoa, 2001). With this in
mind, the PSO method in its general and advanced forms will now be described.

In PSO a solution is represented by a vector of floating point numbers (in a similar fashion
to ES), such that in n-dimensional decision space the ith ‘particle’ is represented as X; = x =
(1,22, ...,%y,), which resides in a population (called swarm) of m individuals X = {X1, Xs,..., X, }.
These decision vectors/particles are kept in a population of fixed size. However this is where the
similarity to traditional evolutionary motivated algorithms ends. PSO was inspired by the flocking
behaviour of birds and the swarming behaviour of insects; they have an innate ability to search as
a group (a so called social element, Ozcan & Mohan (1999)) but also as an individual (a so called
cognition element Ozcan & Mohan (1999)). Each particle in PSO has its parameters altered at each
generation in an attempt to ‘fly’ them toward better solutions, weighting this flight by some random
variable in order to promote search through the process of over /under shooting. The swarm interac-
tions at the social and cognition levels are aimed at creating a balance between staying close to the
optimum, whilst searching areas of local interest in the search space. In attempting to emulate this
behaviour the individual solutions in PSO have a number of additional properties. They maintain a
copy of the decision parameters of the fittest ‘position’ that they have recorded in previous iterations
P, =p = (p1,p2,---,pn) - therefore encapsulating basic cognition, a ‘memory’. They also maintain
a copy of their previous velocity in different directions of decision space V; = v = (v1,v2,...,0,) -
that is the difference between their current n-dimensional position, and that at the previous gener-
ation. Using notation consistent with that used in Part I, the general algorithm for updating these

velocities (for ‘flying’ the swarm from one generation to the next) is:

V;' = w% + 011'1(131' — X,) + CQI‘Q(Pg — Xz) (39)

X =X;+xVi (40)

Where w, ¢1,¢2,x > 0. w is the inertia of a particle (how much its previous trajectory affects its
new velocity), ¢; and ¢y are constraints on the velocity toward global best (gbest), indexed by g, and

previous best (pbest) of a particle. These are most commonly fixed at 1 or 2 (Coello & Lechunga,



CHAPTER 6. PARTICLE SWARM OPTIMISATION 92

2002; Kennedy & Eberhart, 1995), although more explicit guidelines are presented in a recent study
(Shi & Eberhart, 1998). The smaller the inertia the more the algorithm will tend toward convergence
as the velocity will have a proportionally higher weighting toward the current global and personal
best particle positions. The high inertia values promote a greater degree of search as a particle has a
greater probability of searching around less fit areas of decision space it may find itself in through the
previous positions encapsulated in V). As such the inertia value is sometimes adjusted as the search
progresses, starting at a high level and then decreasing over time. x (the construction coefficient,
Lovbjerg et al. (2001)) is a constraint on the overall shift in position and ri,rs ~ U(0,1). In the
original study by Kennedy and Eberhart (1995) both the inertia and construction coefficient were
fixed at 1. The velocity at the start of the swarming process is typically either random, or set at

Zero.

6.2 Common extensions

A large amount of work has consolidated the base PSO model since its inception, considering its
relative youth as a technique. This may well be due to its intuitive appeal and ease of coding. Some

of the most popular variants will now be described.

6.2.1 Multi-swarm PSO

In multi-swarm PSO, a number of sub-swarms are used that are concerned with optimising particular
parts of the decision space, van den Bergh & Engelbrecht (2001a; 2001b), (called cooperative particle
swarm optimisation, CPSO), or swarming separately with sporadic information transfer, Lovbjerg
et al. (2001), which is synonymous to the island models from the GA literature. Indeed, the
subpopulation method in Lovbjerg et al. (2001) uses GA crossover as this source of information
transfer between its swarms. As indicated, CPSO, separates the decision vector into a number of
sub-vectors, each represented by an individual swarm, with solutions generated by the concatenation
of these vectors. Another version combines both of these approaches, using both standard PSO and
CPSO in parallel, Bergh & Engelbrecht (2001a), with the global best information shared between

both algorithms at the end of each generation.



CHAPTER 6. PARTICLE SWARM OPTIMISATION 93

6.2.2 Local best PSO

Instead of moving a particle in part toward a global best solution (in terms of the best individual
found entire population so far), a local best solution is used (termed lbest), such that a particle it
is trajected toward the fittest of its nearest swarm neighbours (Hu & Eberhart, 2002). Therefore in

this variant Equation 39 is replaced with
Vi i=wV; + vy (P — X;) + cora (X5 — X5) (41)

where the parenthesis around 4 in X(; indicate the the particle that is nearest (in objective space)

to Xz

6.2.3 Hybrid PSO

The final popular extension is the fusion of PSO with an existing EA technique. For instance in
Conradie et al. (2002b) two hybrid PSO models are developed, one combined with GA techniques,
and one using sub-populations (as discussed in Section 6.2.1). These were then compared to standard
PSO and GA on a number of test functions. In the hybrid PSO/GA model, after ‘flying’ the particles,
a number of the swarm are crossed-over (with a certain probability) using for instance the arithmetic
crossover function (Lovbjerg et al. , 2001). Although not found to be in general better than the
comparative models in Conradie et al. (2002b), the hybrids were significantly better on the multi-
modal test problems encountered, highlighting some problems that PSO can tend to have with this
type of problem (which will be discussed further in Chapters 7 and 8, in the context of multi-objective
PSO search).

6.3 Previous neural network applications

As stated earlier in this chapter, PSO has been used by a number of studies in the training of NNs.

The approaches used fall into three broad categories. These are as follows:



CHAPTER 6. PARTICLE SWARM OPTIMISATION 94

6.3.1 Partial weight training

In partial weight training, PSO is used in conjunction with another NN optimisation method, either
in tandem or for the initial/end training. For instance in van den Bergh (1999) PSO is used to
find the best initial training weights for a network, whose training is then competed with gradient
descent methods. In Conradie et al. (2002b) on the other hand PSO is used in tandem with an EA,
whereas in Conradie et al. (2002a) although the NNs are initially trained with traditional gradient
descent, PSO is then used for the online adaptation of weights (as the underlying process being

modelled changes over time, in the case of the study a non-linear bioreactor).

6.3.2 Full weight training

In the second approach PSO is solely used for determining the NN weight parameters. PSO has
already found a niche in this area for product unit MLPs (Engelbrecht & Ismail, 1999; Ismail &
Engelbrecht, 1999; Ismail & Engelbrecht, 2000) where the the fitness surface is prone to be very
disjunct. In the studies mentioned above it has been found to be better than gradient descent and
random search approaches (in terms of function evaluations needed to reach the fittest solutions),
and of a similar standard to GAs. In van den Bergh & Engelbrecht (2000; 2001b) PSO and CPSO
where compared with respect to their evaluated performance, with training product unit NNs. CPSO
proved to be consistently superior with an average of one swarm per five parameters proving optimal,
although in van den Bergh & Engelbrecht (van den Bergh & Engelbrecht, 2001a) (a later study by
the same authors) it was recommended that a combination of both the subpopulation methods used
in van den Bergh & Engelbrecht (van den Bergh & Engelbrecht, 2000) should be used, as opposed
to purely CPSO by itself.

6.3.3 Architecture optimisation

In Zhang and Shoa (2001), two separate PSO swarming techniques are used. The first PSO swarm
is concerned simply with varying the network architectures of a population of heterogeneous NNs.
After each generation of this manipulation however, each particle of this swarm has another swarm
seeded from it with homogeneous architectures (inherited from its ‘parent’ particle). These swarms’
sole concern is to optimise the weights of that particular architecture. The best particle of these

sub populations after training is then inserted back into the original population and the process is



CHAPTER 6. PARTICLE SWARM OPTIMISATION 95

repeated.
After this general overview of PSO, the next chapter will introduce a multi-objective variant,
using additional properties of the novel data structures from Part I to enable the selection of a global

best individual from the archive for each member of X.



Chapter 7

Directed Multi-Objective Particle

Swarm Optimisation

In this chapter a novel method for multi-objective optimisation using PSO is introduced. This new
method is dependent on the data structures introduced in Part I, and is shown to be significantly
better than the current best performing multi-objective PSO model in the literature, Coello &
Lechunga (2002), which in turn has outperformed a number of recent MOEAs (Deb et al. , 2000;
Knowles & Corne, 1999; Knowles & Corne, 2000).

7.1 MOPSO

Until recently PSO had only been applied to single objective problems. However as discussed in
depth earlier several problems are multi-objective. PSO has, in its short history, a number of studies
which highlight its use in NN optimisation. Therefore the development of this technique, firstly to
effectively handle general multiple objectives, and then to apply this to NN optimisation seems a
natural progression, alongside the parallel development of GA and ES techniques.

In the year 2002 the first part of this progression seemed to occur, with a number of different
studies published on multi-objective particle swarm optimisation (MOPSO) (Coello & Lechunga,
2002; Hu & Eberhart, 2002; Parsopoulos & Vrahatis, 2002)!. However, although most of these

1Tn addition a study by the author, Fieldsend & Singh (2002a), was also published in 2002, based upon the work

96



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 97

studies were generated in parallel with the same overall aim, each implements MOPSO in a different
fashion. Given the wealth of MOEAs in the literature this may not seem particularly surprising,
however the PSO heuristic puts a number of constraints on MOPSO that MOEAs are not subject
to. In PSO itself the swarm population is fixed in size, and its members cannot be replaced, but
only adjusted by their pbest and the gbest, which are themselves easy to define. However, in order to
facilitate a multi-objective approach to PSO a set of non-dominated solutions (the best individuals
found so far using the search process) must replace the single global best individual in the standard
uni-objective PSO case. In addition, there may be no single previous best individual for each
member of the swarm. Interestingly the conceptual distinction between gbest and Ilbest tends to
get blurred in the multi-objective application of PSO. A local individual may be selected for each
swarm member, however these lbest individuals may all also be non-dominated (representing local
areas of the estimated Pareto front maintained by the swarm), also making them all gbest. Choosing
which gbest, lbest and pbest to direct a swarm member’s flight therefore is not trivial in MOPSO.
The principle divergence within (Coello & Lechunga, 2002; Hu & Eberhart, 2002; Parsopoulos &
Vrahatis, 2002) has therefore been on how these are selected, with a separate divergence on whether

an elite archive is maintained.

7.2 Previous studies

In this section brief descriptions and critiques of preceding works in this area are provided.

7.2.1 Hu and Eberhart

A considerable degree of a priori knowledge in terms of test function properties is used in the
implementation of the D = 2 MOPSO in Hu & Eberhart (2002). Instead of a single gbest, a local
lbest is found for each swarm member selected from the ‘closest’ two swarm members. The concept of
closeness is calculated in terms of only one of the evaluated objective dimensions, with the selection
of the local optima from the two based upon the other objective. The selection of which objective to
fix (used to find the ‘closest’) and which to optimise is based on the knowledge of the test function
design — the relatively simple objective function being fixed. This is shown in Figure 23 with the

nearest particles to b highlighted (in terms of the ‘simpler’ objective 2), meaning that the lbest for b

in this chapter.



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 98

is ¢ (the fitter of the two neighbours in terms of objective 1). A single pbest is maintained for each
swarm member, which is only replaced when a new solution is found which dominates it (identical
to the ‘conservative’ preservation of efficiency selection rule described by Hanne (1999), although
not referenced in Hu & Eberhart (2002)). This is demonstrated in Figure 23 with particle ¢ moving
to a fitter position at generation ¢+ 1 (one that dominates its previous position). This new position
is mutually non dominating with the pbest of a, however, as the multi-objective evaluation of the

new particle does not lie in the lower quadrant of the pbest (represented in Figure 23 with a square),

P, remains unchanged.

X
b
Sl [“c d @ .
= X
3 x
o X
5 ) .
X
X
X
X
x X
a(t+1) a(t)
X
0
Objective 1

x Individual residing in swarm.
o Current pbest
* New particle position

Figure 23: The multi-objective particle swarm optimisation method of Hu & Eberhart (2002).

The performance of the MOPSO was demonstrated on a number of test functions from the
literature (including the ZDT test functions from Zitzler et al. (2000)), however no comparison was

made with any other models, or the true Pareto fronts for the problems.



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 99

7.2.2 Parsopoulos and Vrahatis

Parsopoulos & Vrahatis (2002) introduce two methods that use a weighted aggregate approach and
another that is loosely based on the VEGA MOEA by Schaffer (1985). These were compared on a
number of two dimensional problems. In the first two approaches the weighted aggregate algorithms
needed to be run K times to produce K estimated Pareto optimal points (meaning that each run
had a single global best). Although Parsopoulos & Vrahatis (2002) state that this approach has
a low computational cost, the need for a separate run for each solution found does not necessarily
support this. Their final method - the vector evaluated particle swarm optimiser (VEPSO), uses
one swarm for each objective (as illustrated in Figure 24, where the two swarms are shown pushing
toward the opposite axis). The model is inspired by the original 1985 VEGA model developed by
Schaffer (1985) and discussed in Chapter 3. The best particle of the second swarm was used to

determine the velocities of the first swarm (act as its global best), and vice-versa.

Objective 2
X

Objective 1
< Individual residing in swarm 1.
* Individual residing in swarm 2.

Figure 24: The multi-objective particle swarm optimisation model of (Parsopoulos & Vrahatis, 2002).

Comparison between the algorithms was qualitative (based on visual inspection of the found

fronts), with no comparison made to recent competitive methods in the MOEA domain. In addition



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 100

the current VEPSO model is only designed for D = 2 problems.

7.2.3 Coello and Lechunga

In the previous two studies the maximum number of estimated Pareto points returned at the end of
the search process equalled the swarm size, meaning large swarms were typically used. In comparison
Coello & Lechunga (2002) propose a method which is inspired by more recent developments in the
MOEA literature. Two repositories are maintained in addition to the search population. The first
is an archive of the global best individuals found so far by the search process, F', and the second
containing a single local best for each member of the swarm. A truncated archive is used to store
the (global) elite individuals. This archive uses the method of Knowles & Corne (2000) to separate
the objective function space into a number of hypercubes (an adaptive grid), with the most densely
populated hypercubes truncated if the archive exceeds its membership threshold. The archive also
facilitates the selection of a global best for any particular individual in Coello & Lechunga (2002).
A fitness value is given to each hypercube that contains archive members, equal to dividing 10 by
the number of resident particles. Thus a more densely populated hypercube is given a lower score.
This is illustrated in Figure 25.

Selection of a global best for a particle is then based on roulette wheel selection of a hypercube
first (according to its score), and then uniformly choosing a member of that hypercube. This method
therefore biases selection toward under-represented areas of the estimated Pareto front (unlike the
original method developed in Knowles & Corne (2000)). Only one local best solution is maintained
for each swarm member. However, if a particle X; is evaluated and found to be mutually non-
dominating with P;, then one of the two is randomly selected to be the new P;.

An illustration of the swarm is shown in Figure 26, where once again particle a is highlighted
in its generational move. However in this model, unlike Hu & Eberhart (2002), a(t + 1) has a 50%
probability of becoming the new pbest of a.

The MOPSO method in Coello & Lechunga (2002) was compared with two highly regarded
MOEAs, the PAES of Knowles & Corne (2000) and the non-dominated sorting genetic algorithm
IT of Deb et al. (Deb et al. , 2000), with promising results. On the two dimensional test functions

used, the MOPSO either outperforms or is not significantly different to the competing algorithms



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 101

O i
N | e 25 | | |
Q| ° : : : :
> ' ® ! ! ! !
= L ! )
B8 17 1 1 1
o e ! ! ! !
Ol % | : : :

| [ ] | | | |

e X : ;

i o i i i

! * ! ! !

20 &

: 3 . 3.3 2.5§ 10.0§

S

Objective 1

Figure 25: 2D Tllustration of grid based selection scheme used in (Coello & Lechuga, 2002), with the
‘fitness’ of populated hypercubes highlighted.

(using the M| measure (Zitzler et al. , 2000))2.

7.3 The new MOPSO model: local-global optimisation using
dominated trees.

The main problems with studies including Hu & Eberhart (2002) and Parsopoulos & Vrahatis (2002)
are their formulation purely for 2-dimension problems, and that, by taking their inspiration from
early work in the MOEA domain, they themselves are susceptible to the problems that beset these

early models (which research in the 1990s highlighted, and in a large part rectified). For instance,

2The work also compares the empirical run time of the two approaches - showing their MOPSO to be quite
significantly faster than PAES. This is actually quite a concerning result. It is relatively easy to see that Coello
and Lechunga’s MOPSO actually has a higher complexity than PAES - they both have identical storing methods,
therefore the difference is on perturbation. PAES adds a single random value to each parameter of a perturbed
solution, however Coello and Lechunga’s MOPSO adds four values to each solution/particle and has the additional
overhead of maintaining the local best solutions and velocity for each particle. If the PAES algorithm consistently
discovered significantly more non-dominating solutions than the other method (which it would have to maintain)
then it could explain the observed result. However both methods truncate this set, so it is unlikely to be the cause.
The only other explanation the author can hypothesise is that the two methods had separate implementations - with
the MOPSO being written in either a faster programming language - or an optimised form of code that the PAES
wasn’t. As such any claims of significant speed up would be disingenuous as they would caused by different modes of
implementation as opposed to algorithmic complexities.



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 102

X
AN X X
e x :
*8' x
o) © X
O . X
X
(@]
© X
X
X
(@] o %
° a(t+1) a(t)
w— X
)
O
Objective 1

x Individua residing in swarm.
o Current pbest

* New particle position

o Member of elite archive

Figure 26: The multi-objective particle swarm optimisation model of (Coello & Lechuga, 2002).

by using a swarm for each objective the VEPSO model of Parsopoulos & Vrahatis (2002) will tend
to suffer from the same problem of biasing its search toward the optimisation of the individual
objectives as Schaffer’s VEGA does. The degree of prior knowledge needed by the MOPSO of Hu &
Eberhart (2002) severely restricts its application, and inspection of the plots provided in their paper
show that the model experiences problems discovering solutions over the full extent of the front.
The constraints of needing m swarm members to have the potential of m estimated Pareto optimal
solutions at the end of the search process is also very restrictive; given the fact that typically only
a small proportion of solutions in the search population at the end of the process will be estimated
Pareto optimal. This in turn necessitates large swarm sizes and therefore increased number of
fitness evaluations, which may be costly in most applications (let alone inefficient). In addition the
oscillating phenomena described in earlier chapters is exacerbated when the Pareto front ‘memory’
is solely contained in X and P.

The MOPSO model of Coello & Lechunga (Coello & Lechunga, 2002) is by far the more robust,



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 103

due to its use of an elite archive. Given the fact that the authors felt confident enough to compare
their model against state-of-the-art MOEAs, unlike the other two studies, supports this almost as
much as their positive results. However here it is argued that even this model can be improved
further, as it is not a full transference of the PSO heuristic to the multi-objective domain. In
uni-objective PSO the swarm is concerned with improving the fitness of each of its members with
respect to a single objective. The formulation of Coello and Lechunga’s model transfers this across
by having each particle concerned with improving on all objectives. That is, the selection of the
gbest from the archive takes no consideration of the particles position in the fitness landscape; in
randomly choosing a gbest, a particle may be pushed towards an area in decision space whose fitness
evaluation may be fitter with respect to one objective than the particle’s present position, but worse
on one or more of the other objectives. In contrast an approach closer to the original model would
try and push a particle toward an area in decision space which was evaluated as dominating its
current position, better on at least one objective and no worse on any other objective. This can be
taken even further by attempting to push the particle toward the member of the archive that not
only, at a minimum, weakly dominates it, but that it is closest to it in the objective space. In this
interpretation of MOPSO, each swarm member is therefore concerned with improving a particular
region of £, however, only a single swarm is used. A shift in the relative position of a particle is
not problematic as ‘memory’ of its search in a particular multi-dimension objective area is retained
in the archive should any other particle become concerned with it (or indeed if it moves back in
subsequent generations).

Although this focused or directed form of MOPSO seems an appealing transference of PSO to
the multi-objective domain, the costs of implementation are prohibitive with existing methods. To
find the closest archive member to a swarm individual X; takes O (D - |F|) objective comparisons,
meaning O (m - D - |F|) objective comparisons each generation! However by using the unique or-
dering of individuals represented by the composite point data structure discussed in Chapter 4 this
approach is now viable. For any member of the swarm, X, the first non-dominated composite point,
c;, of the global non-dominated set is sought (i.e. where ¢; ¥ s < ¢;_1), this takes O (log, (M + 1))
domination comparisons to find (where M is the number of composite points). The global best for
an individual Xj; is that archive member of the composite point c; contributing the vertex which is

less than or equal to the corresponding objective in X;. An illustration of this is provided in Figure



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION

27.

Objective 2

104

X 1
. C
a5 X )
x x
e R
OZ/» ’>?<’ - C ! ’/></,
B
X : ,'/
g lix ¥
L
& L
w -X
w
Objective 1

o Individual residing in €elite archive.
O Composite point.
< Individual residing in swarm.

Figure 27: Selection of local gbest for each swarm member.

In the case of a composite point c; with more than one vertex less than or equal to the corre-

sponding objectives of an individual X; (as is illustrated in Figure 27 between composite point ¢y

and individual a), one of the vertices that meets the condition is selected at random to provide the

global best (F{;) for the swarm individual Xj;.

7.4 Empirical comparison of two MOPSO models

The experiments in this chapter are designed to evaluate the new algorithm developed in this chapter

to existing models on a number of test functions previously described in the literature. In addition

they are also designed to evaluate the utility of introducing a turbulence term to MOPSO models.



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 105

7.4.1 The comparative models

The first comparative model is based on the (1+1)-ES PAES model of Knowles & Corne (2000) with
an unlimited archive. However, instead of grid based selection, the PQRS method introduced in Part
I is used. Both methods attempt to provide unbiased selection from the estimated front. PQRS is
simply preferred in this case as grid knowledge need not be maintained and the method is easily
integrated into the dominated and non-dominated tree framework used to store the archives. At
each generation in PQRS one objective dimension is selected and partitioned into () — 1 bins of equal
width (with an extra bin containing the best individual in that dimension). To select a representative
from the archive, first one bin (or the best solution) is selected uniformly to ensure that there is
no bias towards the dense areas of the front, and then an individual is uniformly selected from the
bin. This is easily implemented by maintaining D balanced binary trees of the archive individuals
in each objective dimension. Selection then follows randomly generating a number that lies in the
chosen bin’s range and selecting the nearest tree member. A more detailed description can be found
in Chapter 4. The second model is based on Coello & Lechunga’s (2002) MOPSO with an unlimited
archive and selection from PQRS. This second model uses the biased roulette wheel selection from

Coello & Lechunga (2002) for bin selection.

7.4.2 The introduction of turbulence

During the early development of PSO (Kennedy & Eberhart, 1995), a stochastic variable called

‘craziness’ was used, such that in this early algorithm Equation 39 read;
Vi = V" +r3, (42)

where Vf’ is the velocity of the nearest neighbour to X;, Y;, and where r3 is a vector of random
variables of length n. As this early PSO developed and changed into the more familiar algorithms
described at the start of Chapter 6, this craziness parameter was dropped. In this study however
the author shall empirically validate the re-introduction of an extra stochastic variable within PSO
(specifically in the multi-objective domain). In keeping with the overall design of the PSO, this

term is referred to as ‘turbulence’ (equivalent to perturbation in ES), as it reflects the change in a



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 106

particle’s flight which is out of its control. Where turbulence is used Equation 39 is changed to:

V;' = wV, +Clr1(Pi _Xz) —|—CQI'2(Pg _Xz) +r3. (43)

7.4.3 Comparative MOAs and test functions

The comparative MOEA is based on the (1+1)-ES PAES model of Knowles & Corne (2000) with
an unlimited archive and PQRS selection of parent (Fieldsend et al. , 2003).
Four test functions are used in this Chapter to compare the MOAs, drawn from the D = 2 ZDT

test functions introduced in Zitzler et al. (2000). These functions take the form:

Minimise T (x) = (f1(z1), f2 (%)),
where f2(x) =g(z2,...,zn) - h(fi(z1),9 (22,...,7N))

and x =(T1,...,ZN)-

A description of all four test functions used can be found in Table 10. ZDT1 is a 2D convex test
problem, ZDT2 a 2D concave test problem, ZDT3 a 2D noncontiguous convex test problem and

ZDT4 a 2D multi-modal test problem.

Table 10: Test functions from (Zitzler et al. , 2000) used in this chapter.

# Function X
fi(z1) = x4,

ZDT1L (@, yan) =1+9 (S0ly o) /(n - 1), iv :[%0’1]
hfi,9)=1-/fi/g. l _
fi(z1) = x4,

ZDT2 g(xz,...,xN)=1+9(Zf:2wn) /(n—1), ivéfi)o’l]
h(f0) = 1 (f1/g)". -
fl(.'L'l) =T,

ZDT3  g(wa,..oon) =1+9 (SN, 0m) /(n = 1), iv :[%?’1],

h(fi,9) =1-+/fi/g— (f1/g)sin(107 f1).
fi(z) = z1, N =10,
IDT4  g(ws,...,on) =1+10(n—1) + N (22 — 10cos(4nz,)), =1 €[0,1],

h(f1,9) =1-+/fi/g Zo2,...ZN € [-5,5].




CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 107

A visual representation of the Pareto optimal fronts for these test functions is provided in Figure
28. Also plotted for each test function are 100,000 randomly generated individuals (whose param-
eters are selected uniformly from the appropriate range for each test function). This gives a visual

indication of the density of potential solutions for each problem.

8
7
6
~ Ng
2 2
8 84
Qo Qo
o O 3,
2,
0 : ‘ ‘ 0 : : : ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
7ZDT1 Obiective 1 7ZDT2 Obiective 1
10°*
[Eessasc sas "
10° |

Objective 2

Log Objective 2
[
1 O'\\’

Ay 10
or \. N
-1 ‘ ‘ : A 10° : ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
7ZDT3 Obiective 1 7ZDT4 Obiective 1

Figure 28: The Pareto optimal fronts for the ZDT functions 1-4. Optimal Pareto fronts plotted,
along with 100,000 randomly generated individuals.

7.4.4 Comparative measure

Results are compared using the V¥ measure proposed by Fieldsend & Singh (2002a), which is similar
to the V measure used in Part I. However, as the true Pareto front is known for all of the test functions
used here, its calculation is slightly different. V” is a measure of the multi-objective error volume
that is dominated by the true Pareto front but not the estimated Pareto front. Loosely V7 is the

fraction of the volume of a hypercuboid containing P (Hp) that is strictly dominated by P but is



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 108

not dominated by members of &, the estimated Pareto set. The V¥ measure is easily estimated by
Monte Carlo sampling of Hp and counting the fraction of samples that are dominated exclusively by
P and dividing by the number of samples dominated by P. Therefore the lower the V7, the lower the
hypercuboid volume exclusively dominated by the true Pareto front, and the nearer the estimated
front is to the true front. This measure therefore alleviates the problem of pairwise comparisons
needed by V, as P acts as the baseline to which all competing models are compared.

The hypercuboid bounds are determined by the P range of fi and the P range of fo + 3.0 (the
cuboid used in Zitzler et al. (2000) when visually comparing their MOEA results ). This allows
direct comparison of the V¥ measure across all models. A total of 250000 samples were taken for

Monte Carlo estimates, and P was represented by 250 randomly drawn members of P.

7.4.5 Algorithm implementation

The implementation of all the models use floating point representation of parameters in the individual
chromosomes. In order to compare the new MOPSO technique, each MOA was executed 25 times
on each test problem, and the resultant non-dominated solutions saved at the end of each run. Each

simulation was performed using the parameters shown below:

e ES. Number of generations = 4000. Mutation rate =0.2.

e PSO (all variants). Number of generations 200. Search population size = 20.

The turbulence (perturbation) variable for all models was ~ N(0,0.1R), where R is the absolute
range of the model parameter®. In each of the 25 different runs, the MOAs were initialised from
identical decision vector populations of size 20, with the non-dominated individuals residing in these
populations forming the initial elite archives. Initialisation of decision vectors was from Uniform
distributions, over the range of the chromosome parameters for the particular test function. The
experiments were repeated with and without turbulence and w was set at 0.4 (as used in Coello &
Lechunga (2002)) as well as 0.8. Turbulence probability was fixed at 0.2. In PQRS, for all algorithms,
Q@ = 20. As in (Coello & Lechunga, 2002), ¢1,c2, x = 1.

3The choice of a Gaussian distribution is just one of many possible distributions. Other equally as valid choices may
be those with thicker tails like the Laplacian or the Chaucy distribution, which has been demonstrated to significantly
improve performance of single objective evolutionary algorithms (Yao et al. (1999))



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 109

7.4.6 Results

Table 11 shows the results of these experiments. The use of turbulence is seen to significantly
increase the performance of both the MOPSO algorithms across the test functions, as does the use
of a higher w value. In addition, the new dominated tree MOPSO algorithm can be seen to be
significantly better than the ES method and the competing MOPSO method when using turbulence
and a high w on the first three test functions. The new MOPSO also tends to be better than the
competing MOPSO even when no turbulence is used and with lower w values (sub-optimal parameter
settings). When considering why this may be the case one must view the effect of turbulence in
the context of the general PSO arithmetic form. In the general case, a particle X; is pushed/pulled
towards its pbest and gbest operating points, as well as along its current velocity. This means that
a hypercuboid is generated in decision/particle space containing these four points, the bounds of
which are defined by the sum of the absolute distances from X; to the three other points, each
distance multiplied by its relevant constraint from Equation 39. X; can therefore effectively move
to any point within this hypercuboid, but not outside it. An illustration of this is shown in Figure
29 where the decision space is comprised of two variables. The highlighted area in Figure 29 shows
the bounding hypercuboid where particle X; can move to given its previous best F;, global best P,
and velocity V;. Therefore, as illustrated, it is feasible for X; to be moved to ‘a’, but impossible for
it to shift to ‘b’.

This restriction on a particles movement means that local optima within this bound may be
found, but any global optima outside will not be found at that generation, and search may easily be
stuck at a local minima. Turbulence has the effect of increasing the volume of this bounded region,
indeed, if the turbulence is drawn from distributions that extend beyond the range of the variables
then in effect there is no bound on the search process at all. The turbulence term can therefore be
seen to operate as a stochastic process shaking the particles out of local optima they may become
stuck in.

The fourth test function however, with multi-modality (21° local Pareto-optimal fronts, Zitzler
et al. (2000)), causes great problems for both MOPSO algorithms, with none of the estimated fronts
from these models anywhere near the true Pareto front.* This is due to the function design, where

to pass through local Pareto fronts, a swarm member may have to fly in a direction opposite to its

41t is interesting to note that, although not discussed in the original study, during its conference presentation this
problem was also noted by Coello on results not reported in Coello & Lechunga (2002).



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 110

X(de,1+cldi,1+ C2dg,1)

Decision variable 2

dv,2

o2
(°°FF0 +2'p+ % pm)X

d Decision variable 1

Figure 29: Tllustration of the PSO search process, and the volume in which a particle X; can move
at each iteration. X; can feasibly be moved to point ‘a’, but not to point ‘b’.

local and global best (in parameter space).

To put these results in context, Zitzler et al. (2000) compares six MOEAs on these test functions:
FFGA, the NPGA, HLGA, the VEGA, the NSGA and their own elitist SPEA. This comparison was
performed with search populations four two five times larger than here and for 250 generations.
Even after 16,000-20,000 evaluation functions (as opposed to the 4,000 used in this chapter) many
algorithms still did not converge to the true Pareto fronts as well as the MOPSO methods described

here.



CHAPTER 7. DIRECTED MULTI-OBJECTIVE PARTICLE SWARM OPTIMISATION 111

Table 11: MOA comparison results with various parameter settings. ES refers to the (1+1)-ES
MOEA, P’ refers to the MOPSO model based on (Coello & Lechunga, 2002) and P refers to the
MOPSO method developed in this Chapter. Means highlighted in bold are significantly better than
both competing models (using the Wilcoxon Signed Ranks Test at the 0.05 level, 0.025 in each tail).
Means in italics are significantly better than one other competing model. # is the test function
number, w the inertia and T refers to whether turbulence is present.

V” (%)

[(#]w,T| BS [ P | D
0.4 15.0 | 55.0 | 32.8
No | (1.3) | (6.7) | (8.0)
0.8 15.0 20.1 3.7
1| No | 1.3) | (7.6) | (3.8)
0.4 15.0 3.0 3.6
Yes | (1.3) | (0.5) | (0.7)
0.8 15.0 1.2 0.7
Yes | (1.3) | (0.3) | (0.1)

0.4 12.0 | 65.6 | 60.9
No (1.2) | (7.8) | (8.5)
0.8 12.0 | 27.8 31.2
2| No | (1.2) | (5.1) | (10.2)
0.4 12.0 6.7 5.8
Yes | (1.2) | (0.8) | (0.9)
08 | 120 | 44 | 1.6
Yes | (1.2) | (1.1) | (0.5)
0.4 8.2 32.2 12.1
No (1.0) | (3.3) | (2.2)
0.8 8.2 17.3 3.1
3| No (1.0) | (4.9) | (2.6)
0.4 8.2 2.8 3.1
Yes | (1.0) | (0.9) | (0.6)
0.8 8.2 1.3 0.7
Yes | (1.0) | (0.5) | (0.2)
0.4 68.1 100 100
No | (16.5) | (0.0) | (0.0)
0.8 68.1 100 100
4| No | (165) | (0.0) | (0.0)
0.4 68.1 100 100
Yes | (16.5) | (0.0) | (0.0)
0.8 68.1 100 100
Yes | (16.5) | (0.0) | (0.0)




Chapter 8

Empirical Comparison of MOPSO
Models

Following the success in the previous chapter of the new dominated tree MOPSO model, in this
chapter sixteen MOSPSO models are derived based on different pbest, gbest and lbest selection
methods (of which the models of Coello & Lechunga (2002) and Fieldsend & Singh (2002a) are
variants), and compared. A hierarchy of models is shown to exist, with the new method introduced

in chapter 7 vying for top position with another novel MOPSO method introduced in this chapter.

8.1 The derived models

Following the significant improvement of the new MOSPSO introduced in the previous section with
regards to the MOPSO of Coello & Lechunga (2002), sixteen different MOPSO models are now
compared that all maintain an unconstrained elite archive of gbest solutions and a fixed population
of search particles. Four different methods of selection of the gbest/lbest individual for a particle
are compared and four different methods of pbest selection are compared (as described below). A
general algorithm for the implementation of these MOPSOs is described in Algorithm 6.

In this set of experiments, as in those of the previous chapter and the work by Coello & Lechunga
(2002), ¢1 = ¢a = x = 1. The different methods of selecting from the gbest archive F' and the

set/hyperset of pbest individuals L in Algorithm 6, as used in this chapter, will now be described.

112



CHAPTER 8. EMPIRICAL COMPARISON OF MOPSO MODELS 113

Algorithm 6 General MOPSO algorithm.

1:  Generation counter ¢ := 0. Initialise the swarm population X (¢), and update the
non-dominated population F'(t) with non-dominated members of X (t).

2: Initialise the local non-dominated set/hyperset L(¢) with members of P(t), Ly (t) := P(t).

3: Initialise the velocity set V(¢t), V;(t) :=0 Vi=1,...,]|X]|.

4: t:=t+1.

5:  Calculate new velocity of each particle. V;(t) := wVi(t — 1) + e1ry (L (¢ — 1) — Pi(t — 1))
teory (Fiyy(t—1) = Pyt — 1)) Vi=1,...,|X|, where ry j,r0; ~U (0,1) Vj =1,...,n.

6: Accelerate the swarm members along their new trajectories, P(t) := P(t — 1) + xV (¢).

7:  Update non-dominated global store F(t), and local set/hyperset L(t).

8: If user defined termination conditions are not met, go to 4.

9: end

8.1.1 Selection of gbest or lbest

Four different types of gbest/lbest selection are compared in this chapter. The first three are based on
the random selection of an individual from F' to act as a gbest for a swarm member. The first method,
M, ;! is simple uniform selection of an instance from F. The primary benefit of this approach is
that this selection is rapid, O(1), however it biases selection to already densely represented areas of
the estimated Pareto front.

The second method, My ;, is based on unbiased selection of the front. Here the front is parti-
tioned, with selection first uniformly of a partition, and then uniformly from that partition. The
method used here is PQRS (as introduced in Part I and used in the previous chapter.) This selection
makes O(1g(|F|)) objective comparisons. As before, PQRS is simply preferred in this case to the
grid schemes used in Coello & Lechunga (2002) and Knowles & Corne (2000) as grid knowledge
need not be maintained and the method is easily integrated into the dominated and non-dominated
tree framework. At each generation in PQRS one objective dimension is selected and partitioned
into @ — 1 bins of equal width (with an extra bin containing the best individual in that dimen-
sion). To select a representative from the archive, first one bin (or the best solution) is selected
uniformly to ensure that there is no bias toward dense areas of the front, and then an individual is
uniformly selected from the bin. This is easily implemented by maintaining D balanced binary trees
of the archive individuals in each objective dimension. Selection then follows randomly generating
a number that lies in a chosen bin’s range and selecting the nearest tree member.

The third, M3 ;, method also uses PQRS partitioning, but biases selection toward those partitions

14 indicates the various pbest selection methods used, which are discussed in the next section



CHAPTER 8. EMPIRICAL COMPARISON OF MOPSO MODELS 114

which have fewer members by using roulette wheel selection of partitions (as used by the MOPSO
in Coello & Lechunga (2002) and in the previous Chapter).

The final, My ;, method is the local-global method previously introduced, where a gbest indi-
vidual from an elite archive is selected locally to each swarm member. As stated previously, this
makes O (log, (M + 1)) domination comparisons, as opposed to O (D - |F|) objective comparisons if

a linear comparison between particle and archive was used to find the closest.

8.1.2 Selection and maintenance of pbest

Four different pbest maintenance and selection strategies are compared. The first two methods only
maintain a single pbest for each individual. The first method, M; 1,2 comes from the MOPSO in
Coello & Lechunga (2002) and the second, M, o, from the MOPSO in Hu & Eberhart (2002) (as
described previously).

In the third and fourth methods, a set of local best individuals found is maintained for each
swarm member. In the third method, M; 3, the selection of a local best for an individual from the
hyperset L (the set all of the local best sets) is uniform (as used in the previous chapter). In the
fourth method, M; 4, however the pbest selection is based on local closeness. As the size of the
particle estimated Pareto fronts are typically small these are maintained in linear lists and closeness
is determined by Euclidean distance. This distance is normalised by mapping the minimum axis-
parallel hypercube that contains the particle’s £ (local estimated Pareto front) to unit range. The
Euclidean distance is then calculated on this transformed representation (this mapping is of course

not permanent - only a temporary measure when calculating local distances).

8.2 Comparative measure

The test functions used here and other algorithm parameters are identical to the previous MOPSO
experiments, however each algorithm was run for 30 times in these experiments. Again the V7
measure is used, however the hypercube bounds for the ZDT test functions are defined by the
minimum axis parallel hypercube that contains P and the reference front created by adding 0.1 x
[max{(f2)} — min{(f2)}] to the f, values of P. A total of 250000 samples were taken for Monte

Carlo estimates, and P was represented by 250 randomly selected members of P.

24 indicates the various gbest selection methods used, which were discussed in the previous section



CHAPTER 8. EMPIRICAL COMPARISON OF MOPSO MODELS 115

8.3 Results

Boxplots of the empirical results can be found in Table 12. The influence of the various parameters

of the models are now discussed.

Table 12: Boxplots of results using V¥ measure. The 16 MOPSO models are ordered in four groups
of four, the groups ordered by the gbest selection type and the order within a group determined the
pbest selection type. The first box therefore denotes the M; ; MOPSO, the fourth box denotes the
M 4 MOPSO and the sixteenth box denotes the My 4 MOPSO. The column titled ES contains the
boxplots of the (141)-ES MOEA (first) and the hybrid MOESPSO (second).

Inertia, Turbulence
# ES 0.4, No 0.8, No 0.4,Yes 0.8,Yes
pli

albinn) | jebeEmEs) | e
7ZDT1
7ZDT2

S .| Seoestunomnagscs
7ZDT3
7ZDT4

8.3.1 Inertia

Apart from test function ZDT4, the higher inertia weight clearly increases convergence to the true
Pareto front (and indeed it is consistently statistically significant using the Wilcoxon signed ranks

test at the 0.05 significance level with 0.025 in each tail). This is shown in Table 12 with the boxplots



CHAPTER 8. EMPIRICAL COMPARISON OF MOPSO MODELS 116

across the models using an inertia w = 0.8, both with and without turbulence, closer to the x-axis
than the identical models with w = 0.4. This is interesting, as too high a level of inertia in the
uni-objective application of PSO is thought to lead to premature convergence, however possibly due
to the maintenance of a population of solutions in MOPSO, this problem is not so pronounced in

the multi-objective domain.

8.3.2 Turbulence

Again, apart from ZDT4, all the MOPSO models tend to perform significantly better (at both inertia
levels) when the turbulence term is introduced. With the high inertia, high turbulence model variants
performing best of all, significantly outperforming the competing MOEA, and hybrid MOESPSO
model on the first three test functions. However the obvious reversal of this situation occurs in
ZDT4, where the use of turbulence has a negative effect. However even when turbulence is not
used PSO still relatively under-performs on this test function, leading to the assumption that the

properties of ZDT4 itself may be having an effect, which will be discussed more fully in Section 8.4.

8.3.3 pbest and gbest selection

As highlighted in Table 12, the impact of the pbest and gbest selection methods is less important to
overall MOPSO performance than the use of turbulence or the inertia weight. In addition, their effect
does not seem to follow any discernible pattern, i.e. no one model clearly stands out as significantly
better than the others. Table 13 shows a number of competing MOPSO models that a given model
significantly outperforms with a bar chart.

The average performance of the MOPSOs across test functions without turbulence and with
turbulence are shown in Figures 30 and 31.

A general hierarchy of models, and the interactive affect of turbulence is easier to see in these
figures. Models using the composite tree based gbest selection method, My ;s, are seen to perform
relatively poorly when turbulence is not included. However with high turbulence and high inertia this
gbest selection method, in combination with the third pbest method (which maintains a population
of pbest solutions for each particle, the new model introduced in the previous chapter, My 3), is
seen to perform on average joint best. The other best performing model when turbulence is used

is the simplest model, M, i, that uses random selection and a single pbest solution randomly is



CHAPTER 8. EMPIRICAL COMPARISON OF MOPSO MODELS 117

Table 13: Bar charts showing significant results using V¥ measure. The 16 MOPSO models are
ordered in the same fashion as in Table 12. The bar chart plots range between 0 and 15, and shows
the number of competing MOPSO models that a particular MOPSO is significantly better than
(using the Wilcoxon Signed Ranks Test, at the 0.05 significance level.)

Inertia, Turbulence
# 0.4, No 0.8, No 0.4,Yes 0.8,Yes
ZDT1
ZDT2
ZDT3
ZDT4 ILI-

replaced when pairwise non-dominated. Although as stated, Mj ; is the easiest form of MOPSO
to implement - none of the previous studies reviewed had actually done so. The best performing
MOPSO model when turbulence is not used, unbiased gbest selection and uniform pbest selection

from a hyperset, Ma 3, is also the second worst performing model with turbulence.

8.4 Key results

In the first set of experiments in Chapter 6 a new method for selecting the best global and local
individuals for MOPSO swarm members, facilitated by the data structures introduced in Part I was
compared to an existing well validated MOPSO and an MOEA. The new dominated tree MOPSO
is based on a concept of closeness to members of the global set, and maintains a set of local best

solutions for each swarm member. It has been shown to be significantly better than both comparative



CHAPTER 8. EMPIRICAL COMPARISON OF MOPSO MODELS 118

N o« Ey ~ ©
T T T T T

Av. no. models sig. better than
©
T

0 2 4 6 12 14 16

8 10
MOPSO model

Figure 30: Average number of competing models that the MOPSOs are significantly better than,
when no turbulence is used. Model ordering as Table 12.

MOAs. It has also been demonstrated that the use of a stochastic turbulence variable can be a
significant aid to general MOPSQO. However this approach does has some deficiencies. Clearly if
there is little or no relationship between ‘closeness’ in objective space and ‘closeness’ in parameter
space, MOPSO methods (and PSO methods in general) may experience problems (for instance in
ZDT4).

In the set of experiments in this chapter a large number of MOPSO models have been compared,
all derived from the general PSO framework, the majority of which have not been previously eval-
uated. Two of these models, the random gbest selection and a single pbest solution model, and the
more advanced global lbest selection model with uniform pbest solution selection from a set (the
dominated tree MOPSO), have been shown, on average, to produce the best results. However it
must be noted that the test functions used have evenly distributed solutions. The detrimental bias
of random selection in the simpler model may be more problematic on less well distributed solutions.
This should merit further investigation when test functions exhibiting these properties are fully de-
veloped. Nevertheless it is recommended to implement one or both of these methods as comparative
MOPSOs in future studies of MOPSO and MOEA.

In addition the use of a stochastic turbulence variable within MOPSO has been shown to have
significant impact. Its implementation consistently increases the performance of all MOPSO models
on three of the four test functions. High inertia weights have also been shown to be significantly

beneficial to all MOPSOs on the first three test functions.



CHAPTER 8. EMPIRICAL COMPARISON OF MOPSO MODELS 119

<

© I a >
T T T T

Av. no. models sig. better than.
~
T

12 14 16

8 10
MOPSO Model

Figure 31: Average number of competing models that the MOPSOs are significantly better than,
when turbulence is used. Model ordering as Table 12.

The author also notes that MOPSOs compared here showed some deficiencies. The multi-modal
test problem ZDT4 reversed all the trends of the earlier results. Turbulence and higher inertia
actually decreased performance, with the MOEA significantly outperforming the MOPSOs on all
parameter settings. Although the hybrid MOESPSO did not succumb to the problems on ZDT4
that the MOPSOs did, it performed no better than the ES MOEA on the other test functions.

It may be argued that due to its focus on gbest and pbest to drive its search process, PSO will
be more susceptible to getting trapped in the local fitness peaks that multi-modal test functions
encapsulate. If a particle’s global best and previous best are both on one of these peaks, then there
is nothing to direct it away. In theory, the stochastic turbulence term should then help this process
by pushing an individual out of this local optimum - however as the results show, this is not the
case (at least - not at the generation length compared).

Until a suitable approach for minimising the detrimental impact of multi-modality on MOPSO is
developed, it is recommended that, if the problem is known a priori to be multi-modal, an MOEA
and not an MOPSO should be the optimiser of choice.

Parts I and IT of this thesis have dealt with the general improvement of the multi-objective search
process through the development of efficient data structures to enable faster optimisation and the
generation of new MOEA methods (in the domain of MOPSO). In the following final part of the
thesis these advances shall be applied to the domain of multi-objective neural network training, where

until this point the vast majority of approaches have been founded on the suboptimal technique of



CHAPTER 8. EMPIRICAL COMPARISON OF MOPSO MODELS 120

propagating a linear sum of errors through gradient descent methods. A general framework for
multi-objective evolutionary neural networks is developed and validated on a large number of real

world and artificial data sets.



Part 111

Multi-Objective Evolutionary Neural

Network Framework

121



122

In Part IIT the advances made in the previous two Parts with regards to general multi-objective
search, are applied to the training of NNs. A brief review of NN time-series forecasting is provided,
and a general framework for the use of MOEAs to train NN is formulated. Empirical research is
undertaken which demonstrates the validity of this approach even in noisy function approximation,
using test data from recent approaches in the literature to gradient descent multi-objective optimi-
sation (Lo & Bassu, 2002a; Lo & Bassu, 2002b). After the application to function approximation
with systematic noise, and the development of novel generalisation techniques, the new approach is
applied to noisy real-world forecasting problems from the finance domain, underlining the significant
trade-off between fixing a Euclidean minimisation model and one that maximises potential return.
This approach is then refined and applied to the prediction of 37 different international stock indices,
producing estimated Pareto optimal models describing the trade-off between expected return and

prediction volatility through trading on neural network forecasts.



Chapter 9

Neural Networks for Time Series

Forecasting

In this chapter a review of NN time series forecasting is provided, and salient areas of data selec-

tion /processing are discussed.

9.1 Neural network time series forecasting & function approx-
imation

The use of NNs in the time series forecasting domain is now well-established. There are review papers
on this matter (for example, that by Adya and Collopy (1998)), as well as methodology studies
(Moody, 1998; Refenes et al. , 1997). The main attribute which separates NN time series modelling
from traditional econometric methods, and the reason practitioners most often cite their use, is
their ability to generate non-linear relationships between a vector of time series input variables and
a dependent series, with little or no a priori knowledge of the form that this non-linearity should take.
This is opposed to the rigid structural form of most econometric time series forecasting methods (e.g.
linear Auto-Regression (AR) models, Exponential Smoothing models, (Generalised) Auto-Regressive
Conditional Heteroskedasticity models (G)ARCH, and Auto-Regressive (Integrated) Moving Average
(AR(I)MA) models) (Bera & Higgins, 1993; Fieldsend, 1999; Gujarati, 1992). Apart from this

123



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 124

important difference, the underlying approach to time series forecasting itself has remained relatively
unchanged during its progression from explicit regression modelling to the non-linear generalisation
approach of NNs. Both of these approaches are typically based on the concept that the most accurate
forecast, if not the actual realised (target) value, is the one with the smallest Euclidean distance
from the actual. An assumption of all forecasting models is that there is an underlying functional
(causal) relationship between the inputs to a model and the output to be forecast. In the following

section, the methods that aid models detect these relationships are described.

9.2 Data processing and effective experiment design in the
Neural Network literature

There have been hundreds if not thousands of studies using NNs for modelling of various systems,
with a number of journals and conferences that focus specifically on NN technique and advances.
Although a number of researchers have differing views on exact implementational techniques, one
consensus at least has been reached: “the quality of the model is greatly dependent on the quality
of the data given to it.” As such the first part of this chapter introduces various techniques in the
literature for data pre-processing.

Data is typically sampled in NN training, with a base pool of explanatory and dependent variable
vectors separated into a training set, a validation set, and a test set, all of which do not overlap.
The NN model weights are adjusted such that the model exhibits minimum error on the training
set. This error measure is pre-defined by the user, and the minimisation property itself is local if a
gradient descent based optimiser is used, or asymptotic to the global if an EA approach is used. If
a validation set is used, then this is usually conditional on some error property with relation to this
set, so that weight adjustment may terminate before the minimum is reached on the training set
(in this case, typically NN weights are adjusted with respect to the training set and adjustment is
terminated when the model error with respect to the validation set starts to rise). The generalisation
error is typically calculated with respect to the test set.

There are however a number of different approaches in the time series forecasting literature on
how to construct these sets.A common approach to data partitioning for neural network training is

that of consecutive partitioning. This involves selecting the first temporal portion of the available



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 125

data to train /fit the model, and the remainder to test the generalisation ability of the model (Refenes
et al. , 1997). Data randomisation is also widely used, here data vectors are randomised before the
training, validation, and test sets are constructed, e.g. Lajbcygier et al. (1995). In its simplest form
a single column array of random values can be associated with the matrix of input/output vectors,
and by sorting the random data array in ascending (or descending) order the data matrix can be
effectively shuffled. In this approach the input pattern of the system (which explanatory variables
to use, and which specific lags) must be decided before the randomisation takes place. This means
that a certain degree of data tracking must take place for such regimes as sensitivity analysis to
be implemented (Moody, 1998). LeBaron & Weigend (1998) demonstrate that variation in network
performance is affected by the data sample used in training to a greater extent than the random
initialisation condition of the NN. They use what is known as bootstrapping, where input-output
vector pairs are randomly extracted from the data (with or without replacement) for the generation
of the training, validation and test sets. This differs from randomisation due to the ‘replacement’
factor, meaning that the union of the training, validation and test sets may be in fact larger than
the original data set, as there may be duplication of pairs.

Many different forms of time series pre-processing are also commonly used in the time series
forecasting domain including standard transformations such as principal components analysis (PCA)
and Fourier analysis, and other application dependent approaches. Data pre-processing is typically
used to alter the statistical properties of the data, reduce noise and detect trends, in order to make
the forecasting task itself simpler.

Often in time series modelling there can be a large number of explanatory time series available,
some of which may be largely redundant due to them being different measures of the same process.
For example in economics there are three different measures of money supply, m1, m2 and m3. The
first includes cash and bank deposits, the second includes all those in the first measure plus short
term investments (funds etc) and the third includes the previous measures and institutional money
market funds and inter-bank agreements. Other time series available may actually be spurious (by
being unrelated to the dependent series). In this section the common ‘data driven’ methods for data
reduction in NN time series forecasting are introduced.

At a bare minimum data is usually scaled before being presented to a NN (for example Kaastra

& Boyd (1996)), with respect to the upper and lower bounds of the transformation functions. This



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 126

is typically between 0 and 1, although also on the ranges [0.05,0.95] and [0.1,0.9] (to enable NN
functionality slightly beyond the range of the training data.) A number of data transforms are
performed in the literature that are application specific. That is, prior knowledge is used in order
to transform the data into new series that are thought to express a relationship with the dependent
series which is easier to model (e.g. Saad et al. (1998) and LeBaron & Weigend (1998)). Adjusting
the data with respect to periodic seasonal variation (seasonality) is a technique regularly used in
the econometric literature, which has gained use in NN time series forecasting recently. Nelson et
al. (1999) for instance report that by deseasonalising their data prior to NN modelling, the forecast
accuracy of the model increases. Atiya et al. (1999) also seasonally adjust their time series data.
Typically, deseasonalisation is accomplished by subtracting the seasonal averages from the time
series at the relevant points. The theoretical justification itself is relatively straightforward, as is the
case with (hopefully) all data transforms. The problem itself is made simpler as the NN model no
longer has to represent the seasonal changes.

A technique known as differencing is used extensively in NN time series modelling for ensuring
data stationarity. For example in Hann & Steurer (1996) 13 inputs are used in a multivariate
time series model, 10 are differences and one is a double difference. The aim of differencing is to
remove linear trends from the input data (known as non-stationarity) where the series mean is time
dependent. Without removal it is apparent that out-of-sample data will present the network with
inputs far in excess of the range of data used in its training.

The level of differencing, I, is denoted as

e~ 1(d) (44)

where d is the order of difference (Virili & Freisleben, 2000), and (; is the transformed series. The

calculation of (; ~ I (1) is

b
G=7— : (45)
1
where b is the original non-stationary time series. The calculation of (; ~ I (d) is
by
= 4
“TLsT1@-y 1o

Simple moving averages for converting non-stationary data into a stationary equivalent for NNs



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 127

are discussed in Kaastra & Boyd (1996). The moving average transform &; of non-stationary series

b is calculated as
n- bt

(i bi—i)

where the moving average window length n is user defined.

& = (47)

Several of the studies discussed in this chapter have had their performance evaluated with respect
to a number of different error measures (objectives), but have been fitted with respect to only single
error term (or a weighted linear sum of more than one). In the next section a discussion is provided
on why the linear weighting approach to multi-error neural networks is inadequate, and examples

are given where multi-error training is needed.

9.3 Traditional multi-error training

When committed to forecasting (or classification) tasks, NNs are typically trained with respect to
Euclidean distance minimisation. This is commonly irrespective of any other end user preferences.
In a number of situations, for instance time series forecasting, users may have other objectives in
addition to Euclidean distance minimisation. Users may, for example, desire model predictions to
be consistent in a relative error measure, to be accurate in their directional change predictions, or
may prefer a number of application dependent error measures. Recent studies have confronted the
problem of multi-objective training of NNs by back-propagating a linear sum of errors (Moya &
Hush, 1996; Wang & Wahl, 1997; Wen & Lee, 1998; Yao & Tan, 2000). However this approach
implicitly assumes a priori knowledge of the error surface defined by the problem, which typically

is not the case.

9.3.1 Single model example

In forecasting financial, economic and several other time series, it is often important to correctly
predict the directional change of the series (Armstrong & Collopy, 1992). Consider predicting the
consumer demand for a particular good. Just as important as the actual level of demand predicted
in the next time step, is whether the demand at the next time step is higher or lower than the present

level. The same can also be true of many physical and physiological systems. For example, in the



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 128

medical field changes in direction of time series (heart rate, blood pressure) can be as important as
the actual level (see Figure 32). If it is accepted that any model forecast will contain some degree
of error, the practitioner may be willing to sacrifice some of the Euclidean accuracy for a greater

degree of confidence associated with the predicted directional change of the model forecast.

Value
el S

e2

t-2 t-1 t t+1 Time

Figure 32: Correct direction change prediction versus Euclidean minimised model.

In Figure 32, even though the Euclidean error of model B (e2) is smaller than that of model A
(e1), model A correctly predicts the directional movement of the series (with respect to the realised
previous time step), and as such may be the user-preferred model.

In addition, the end user might not be solely concerned with the accuracy of the forecast, but
also with the properties of the residual error. They may desire the model’s error to be consistent
(being drawn from a Platykurtic distribution), as opposed to one that has both periods of very low
error and also occasional periods of very high forecast error (drawn from a Leptokurtic distribution).
End users may often prefer a model that has an overall higher average Euclidean error than another,
provided it is less likely to produce instances of very large prediction error. This preference may
be derived from the costs associated with large forecast errors. Take for example the situation

of forecasting a manufacturing firm’s inventory level. A certain degree of forecast error may be



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 129

absorbed by the company, but sporadic large differences between the predicted and actual could
leave the firm with a large surplus of material (and associated storage costs) - or worse, lacking the

materials it needs to satisfy demand.

9.3.2 Set of models example

An illustration of the interaction between multiple objectives in a problem, where a set of models is
desired for collective use (as opposed to comparison), can be shown by analogy with the capital asset
pricing model (CAPM) from finance (Brealey & Myers, 1996). The CAPM describes the relationship
between risk and return in an optimum portfolio of stocks, where risk is to be minimised and return

maximised.

Return

Risk

Figure 33: The CAPM model. Pareto front defining trade-off between profit and risk in a portfolio
of stocks, and also in relation to a prediction model genus with various model parameters.

In Figure 33 the front F'F represents the Pareto optimal portfolios (called efficient portfolios
in CAPM), with examples of other sub-optimal portfolios lying beneath F'F' also marked. Line
SS is the capital market line, with point Rf, where the capital market line intersects the y-axis,

representing the level of ‘risk free’ return available in the market place to the individual (i.e. through



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 130

treasury bonds). The capital market line is tangential to the efficient portfolio front, the point where
it touches the front at a being the optimal market portfolio. In the simple illustration shown in
Figure 33, by investing in the market portfolio at point a, and lending or borrowing at the risk
free rate Rf, it is possible to operate on the capital market line, gaining a higher rate of return for
any level of risk than that possible by investing in an efficient portfolio of stocks. More complex
interactions can also be modelled within the CAPM framework. For example in those cases where
there are two different zero-risk rates in the market (that available to the user when borrowing, and

that available from government bonds) the situation illustrated in Figure 34 occurs.!

Return

Risk

Figure 34: Two risk free rates of interest in the CAPM model (and forecast model analogy).

Here the rate of return demanded by lenders is Rf", whereas the ‘risk free’ rate of return for
investors in bonds is lower at Rf’. The two tangential lines generated are S’S’ and S”S", with
the kinked capital market line itself a combination of the two (represented as a solid line). The

central section of this line is described by the efficient portfolio front between portfolios a and b. In

I The divergence of risk levels occurs in actuality as the Bank needs to make some profit, or at least cover its costs,
even if it thinks the borrower is zero risk. In the case where the bank does incorporate an addition risk premium to
cover then the divergence between the two rates, the proportion of the efficient frontier consisting of efficient portfolio
points will be even higher.



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 131

this situation the user therefore desires to know the portfolios described by points a and b, and all
those in between on the efficient portfolio frontier. The rates of risk and return described by the
capital market line to the left of a can be accessed by distributing the individuals wealth between
government bonds (and gaining Rf’ return at zero risk) and portfolio a (and potentially gaining Ra
return at a risk of Sa). The risk and return levels described by the capital market line to the right
of b can be accessed by the individual borrowing from the market at the rate Rf"” and investing
this, and all their other wealth in portfolio b.

An analogy can be drawn with the prediction of stock market prices. The Euclidean error of
a model can be seen as a proxy for a forecast model’s risk, and a trading strategy (based around
the direction success error for instance) as a measurement of the expected return of a model. In
this situation, front F'F' represents the Pareto optimal set of regression models, and models a to b
are the final models desired by the practitioner (to enable operation on the capital market line).
In addition, given that different individuals may experience differing Rfs (due to differing costs of
borrowing and lending available to different individuals and institutions in the economy), points a

and b will vary across individuals.

9.4 Problems with current approach

An illustration of the problems associated with the current approach to multi-objective training in
NN regression is provided in Figures 35 and 36.

Consider the situation where a number of errors measures are used that lie in the range [0,1].
Given that the practitioner wishes to minimise these errors, the typical approach in linear sum back-
propagation is to minimise the composite error ec. In the D error case (where there are D errors
to be minimised) this is:

D
Eczw151+w252+...+wD5D,Zwizl,\ﬁ0<w,~<1 (48)
i=1

In the D = 2 dimensional case illustrated in Figures 35 and 36, where the practitioner gives equal

weighting to both errors, and both errors lie upon the same range, this is calculated as:

ec = 0.5e1 + 0.5¢,. (49)



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 132

1
\\{)\ o o S O o
N N O N (@] Q
o \\‘o o, °
. o O\ "o
Q . o o
N o N o o~ O
o
O N o) S ¢]
g . O\\\o NS
O N A
= 05 S
8 oL o
504 o 7 e e
o™ o
\O\ \\\O o
N o N
o
o o
0 0.25 05 R
Objective 1

Figure 35: Two dimensional error surface 1. Suboptimal models denoted by circles. The optimal
model returned by equal weighting of the errors highlighted at the tangent point.

This approach implicitly assumes that the interaction between the two error terms is symmetric.
Consider Figures 35 and 36. Figure 35 illustrates the situation described, where the minimum error
surface defined by the problem is shown, with suboptimal models lying behind it denoted by circles.
On its extremes it can be seen that the error combinations (0.0, 1.0) and (1.0, 0.0) are possible, which
define the axial symmetric hyper-boundaries of the front. In applying Equation 49, each dashed line
shown represents a set of objective combinations that are ranked as equivalent (the lines gradient
reflecting the prior weightings). As can clearly be seen, if the Pareto front is reached by the training
process, then the model returned is one tangential to one of these parallel lines. In the case of Figure
35 this model can be seen to have the error properties (0.25, 0.4). Figure 36 illustrates the same
situation, with identical hyper-boundaries but a slightly different degree of convexity of the front.
In this case the model returned is defined by the error properties (0.3, 0.5). The two models are
significantly different, and in both cases, due to the shape of the Pareto error fronts (and contrary
to the desires of the user), the error properties of the models returned are not equal. Although the
feasible range of both error measures are the same, the interaction of the errors, as demonstrated
by the shape of their true Pareto fronts, results in the return of models, that though Pareto optimal

in themselves, do not represent the preferences of the practitioner. An even worse situation arises



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 133

Objective 2
o
[6)]

0 03 05 N
Objective 1

Figure 36: Two dimensional error surface 2. Suboptimal models denoted by circles. The optimal
model returned by equal weighting of the errors highlighted at the tangent point.

if the true Pareto front is non-convex. In this case composite error training (if the Pareto front is
reached) will only return those models that are on the extremes of the Pareto front, as illustrated
in Figure 37.

This is irrespective of the values used for w; and wy. The model returned will always be the
one that strictly minimises one of the objectives (errors). This problem with the linear weighting
approach has been know for a number of years in the MOEA literature, however it has not been

addressed by those using linear weighting to propagate multiple objectives in NN training.

Given the observed need for multi-error training methods for NNs - and the problems highlighted
with propagating a linear sum of errors through gradient descent training techniques, using the
methods described in the previous Parts of the thesis to generate a general multi-error /objective NN
training framework is an obvious progression.? The next chapter outlines this framework, in relation
to the existing evolutionary neural network literature (for uni-objective problems), and highlights

the unique generalisation problems that Pareto multi-objective NN training faces.

2Indeed a general model could be envisaged in this context for any parameterised model for signal forecast-
ing/function mapping where errors are present



CHAPTER 9. NEURAL NETWORKS FOR TIME SERIES FORECASTING 134

Objective 2

0 05 T
Objective 1

Figure 37: Example the effect of composite weighting when the front is convex with respect to the

origin. Irrespective of weights given to the respective errors, the optimal model returned will only
be one of the extreme optimal solutions.



Chapter 10

A Pareto Neural Network Training
Model

In this chapter an overview of a novel general Pareto NN training model is provided, based on the
novel contributions made in the previous chapters. Some ENNs from the literature are described and
existing techniques to aid generalisation from these uni-objective models are shown to be inadequate
for application to the multi-objective domain. New generalisation techniques are therefore derived

and compared. The final model will be empirically validated in Chapter 11.

10.1 Pareto optimal multi-objective evolutionary neural net-
works

Selecting the correct inputs for a NN for its given task is important. If the NN is not given enough
relevant inputs, then there will be still be error present in the model which is systematic (can be
explained). If spurious inputs are put into the model additional error may be generated as some
of the relationships modelled by the weights fitted during training will themselves be spurious,
causing systematic bias and extraneous noise. In a linear model inputs are selected prior to model
fitting using various correlation measures (e.g. linear, Kendall’s tau, Spearman’s rank, partial auto

correlation functions), or by removal after fitting using statistical significance tests (t-tests) on the

135



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 136

effect of the removal of an input on the model’s residual error. In non-linear modelling there is no
single robust and widely accepted method for model selection.

A number of algorithms are in use that prune (remove) extraneous nodes and/or weights from
a network. Moody (1998) mentions a number of model based methods, including the constructive
algorithm (SNC) which adds nodes, sensitivity based pruning algorithms like optimal brain surgery
(OBS) and optimal brain damage (OBD) and pruning algorithms based on principal components,
PCP. The reason often cited for pruning is the need for bias/variance trade-off (also referred to as the
sensitivity /specificity trade-off); too large a network will over-generalise, and too small a network
will not form a suitably diverse representation. Smoothing regularisers also do a similar job through
weight decay Bishop (1998). Finally much work has been produced in the last decade on the use
of EAs for simultaneously optimising NN architecture and weights (through exclusively EA means
or hybrid EA /gradient descent methods). This is of significant relevance to the thesis as, just as it
is accepted that no single NN topology is optimal for any given problem, it may be assumed that
no single NN topography is optimal for a given set of non-commensurable error combinations in
relation to any single problem. Just as the set of NN models is needed to represent the Pareto error
surface defined by a problem need to be heterogeneous in their weight vector, so they may need to

be heterogeneous in their features and architectures.

10.2 Uni-objective evolutionary neural networks

Since an extensive review on this matter is already available in the literature by Yao (1999), this
section will restrict itself to a basic overview of how common EC techniques have been applied to
ENN training, before Section 10.3 which develops a general model for MOENN training. The section
commences with brief discussions of techniques which maintain a single network that is evolved from
one iteration to the next (Sections 10.2.1-10.2.2), and then introduces techniques which maintain
populations of diverse networks which are evolved as a group at each generation (Sections 10.2.3-

10.2.4).

10.2.1 Simulated annealing

Simulated annealing is a generalised Monte Carlo technique that uses a monotonically decreasing

variance controlled by a temperature annealing schedule, and was used to adapt the weights of an



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 137

NN in Porto et al. (1995). The process can be visualised as a ball rolling down a steadily changing

non-linear surface in side a container, with the container being shook repeatedly to enable the ball

to jump out of local minima, but with the amount of shaking (temperature) decreasing over time.
Given that E, is the total error over all patterns with the n-dimensional network weight vector

x, the simulated annealing algorithm used in Porto et al. (1995) is described in Algorithm 7.

Algorithm 7 Simulated annealing of NN weight space.

1: Let xo be an arbitrary starting neural network weight vector (either specified or selected at
random).

2: Set initial temperature ¢.
3: Calculate E (xq).
4: If E (x¢) < € halt.
5:  Generate m independent standard normal variates Yi,...,Y,, and compute the components
of U:Ui=Ys/(Y2+...+Y2)*° i=1,...,m.
6: Set x* :=x¢+ (Ar)U.
7:  Calculate E (x*).
8 If E(x*) < E(x¢), %o :=x*, if E (x*) < ¢, halt, otherwise, go to 4.
9: IfE(x*)>FE(x),p:=exp{— (E(x*)—E(x0))/t}. Generate a uniform [0,1] variate V'
(N.B. in (Porto et al. , 1995) a Cauchy distribution was used).
10: a) If V > p, go to 5.
11: b) If V < p, x¢ := x*, go to 5.
12: end

Ar and t are determined empirically. ¢ is the error level desired of the NN. ! If the temperature
t is held constant, then the algorithm reverts to a pure Monte Carlo method, and if ¢ = 0 it
approximates a gradient decent algorithm. In general the temperature is calculated as a function of

time (in (Porto et al. , 1995) it was set inversely proportional to the number of iterations).

10.2.2 Single-agent stochastic search

Random search techniques were traditionally based around single agent stochastic search strategies,
which have also been used to train recurrent neural networks, as in McDonnell & Waagen (1994). In
this procedure a search point (network weight vector) is perturbed by a uniform random variable. A

more advanced variant uses an adaptive bias vector to add momentum to the search and a function

IThis highlights a general problem that can be seen in number of ENN studies - that of arbitrary algorithm
termination methods. Unless there is a reasonable value for € known @ priori, which by definition must be application
dependent, then these methods can be susceptible to a degree of selection bias (i.e. running the algorithm a number
of times with different & and seeing which value gives the best generalisation error). This differs significantly from
gradient descent training - when a validation set can be used to determine algorithm termination for example, which
is a general (data independent) method.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 138

evaluation to drive the search in a particular direction (gradient). The variance of the uniform
perturbation £ is then controlled by the repetition of successes, scnt, and of failures, fent, of the

search to reach a higher performing point (as is described in Algorithm 8).2

Algorithm 8 Single-Agent Stochastic Search (algorithm taken from (McDonnell & Waagen, 1994)).

Initialise the NN weight vector z¢ and bias vector by = 0.

Set maximum number of generations, V.

Set number of repeated successes scnt = 0.

Set number of repeated failures fent = 0.

Fix expansion constant, ex.

Fix contraction constant, ct.

Fix Secnt, the number of repeated successes that trigger a change in perturbation variance.

Fix Fent, the number of repeated failures that trigger a change in perturbation variance.

Fix upper and lower bounds of perturbation variance o, o3 and initialise variance og =1.

Set generation counter ¢ := 0.

er-o; if sent > Sent

ct-oy if fent > Fent

Oub if oy <op

ot otherwise

12:  Generate a multivariate Gaussian random vector & ~ N (by, o¢41)-

13: If E(x: + &) < E(xt), then x411 = x4 + & and bgy1 = 0.4& + 0.2bg, sent := sent + 1,
feny := 0. Go to 16.

14: IftE (Z’t — é.t) < FE (.'L't) < FE (.Z't + ft); then Ti4+1 = T — é‘t and bk+1 = bk — 0.46]9,
sent = sent + 1, feny := 0. Go to 16.

15: ZTer1 = x¢ and bgpq = 0.5b. fent := fent + 1, sent := 0.

16: Ift = N, stop, else t :=t+ 1, go to 11.

17: end

—

[y

[y
[

Set Ot41 =

The contraction constant ¢t and expansion constant ex, which define the rate of reduction or
increase of the variance are user defined, as well as the upper and lower bounds of the perturbation
variance. Scnt and Fent (limits to number of successes/failures before perturbation variance is

altered) are also user defined.

10.2.3 Evolution strategy

There are a number of different variants of ES used in the literature with relation to ENNs, however

in general they take the following form in relation to weight determination:

Wik = Wik +7 - © (50)

2Interestingly a similar approach is recommended in some Monte Carlo methods, when adjusting parameter per-
turbation variances during ‘burning-in’ to ensure a certain acceptance rate (Denison et al. , 2002)



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 139

where wf, is the i*" weight of the n'" network in the population at the k** epoch of training,
O ~ N (0,w) and ~ is some multiplier. There does not seem to be any uniformity with regards to
the selection of these variables in the literature, and optimal values tend to be problem specific.

In Greenwood (1997) and Saravanan & Fogel (1998) w is set as 1 and in Belfore & Arkadan
(1997) 0.1. In Fogel et al. (1995) and Porto et al. (1995) w is set as the parent’s mean square error.
In Berlanga et al. (1999) however w is adaptive, where it is determined by an associated value to
each weight wg, where w; = wg - exp {~ N (0, Aw)} .

In Belfore & Arkadan (1997), Berlanga et al. (1999) and Fogel et al. (1995) ™ is a fixed value
for all networks (at 1), and in Fogel et al. (1997), Greenwood (1997; 1997), and Saravanan & Fogel
(1998) ~™ is variable.

In Fogel et al. (1997), Greenwood (1997), and Saravanan & Fogel (1998) 4" is adaptive such

0-5 and I is the number

that v, = 7p -exp {7’ -© +7-0O} , where 7’ = 21)"%® and 7 = (21°%)"
of weights in the ENN. In Greenwood (1997) a lower limit is placed on 4", with its value being
determined by the mean value of the 7ys of its two parents (in this situation the offspring is the copy
of a population member that is ranked worthy to have an offspring, and its v is determined by this
parent and a randomly chosen member of the population). By contrast in Fang & Xi (1997) and
Yao et al. (1996) 4y = \; - (¢"/®sum) , where ¢™ is the fitness of the nt® member of the population
(network), @y, is the sum fitness of the entire population and )\; is an evolving weight (between
the range [0,1]). The determination of A; is undefined in Yao et al. (1996). In Fang & Xi (1997) \;
is user defined (set at 1.2 and 1.1) and ¢™ and ®,,, are the respective error terms, and not fitness
(the distinction being errors are minimised whereas fitness is maximised).

In most studies a given ENN’s ability to reproduce into the next epoch’s (generation’s) population
is determined by its relative average error, either in relation to the training set, or a validation set.
The population of networks is ranked at each generation (epoch), with the fittest networks having
a higher probability of offspring in the next generation.

The exact selection methods vary from study to study. In Porto et al. (1995) members of the
ENN population are compared to ‘c’ randomly selected other populations and they are assigned a
rank dependent upon how many of the ¢ individuals it is fitter than (i.e. every individual will be
given a rank between 0 and ¢). The proportion of the population with the highest ranks is then

selected as parents for the next generation.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 140

Greenwood (1997) used a (15, 105)-ES, that is, of a population of 105, the 15 fittest (as ranked
by the error term used) each have 7 offspring, which generates the next generation.

In Fang & Xi (1997) the top 50% are transferred to the next generations population, one copy
without perturbation and one with perturbation. Whereas in Belfore & Arkadan (1997) out of a
population of 100, 10 offspring in the new generation are created from the fittest individual (one of
them without perturbation), the next 80 being generated from the next 20 ranked individual and
the final 10 being randomly chosen and mutated from the entire population. A general algorithm

for evolutionary neural network training with ES is provided in Algorithm 9.

Algorithm 9 General algorithm for evolution strategy neural network training used in the literature.

—_

Initialise the p network weight/topography vector(s) x.
Set maximum number of generations, V.

Initialise generation counter ¢ :=1

Set probabilities for mutation and/or node deletion/addition.
Set perturbation multiplier ~.

Fix perturbation distribution ©.

Generate A offspring from p parents.

Evaluate offspring and select new g population.
t:=t+1.

If t = N terminate algorithm, otherwise go to 7.

end

[y

=

Typically the offspring generation (Algorithm 9, line 7) will entail either simple perturbation of
the network weights and topography, or consist of perturbation followed by gradient descent training
(e.g. Yao & Liu (1997)). As discussed previously, the parameter v may also be adjusted during the

iteration process.

10.2.4 Genetic algorithms

Binary string representation is the common mode of representation of weights in GA approaches to
ENN training. For instance, in the work of Janson & Frenzel (1993), each weight is represented by 32
bits, with a network containing 37 adjustable weights, resulting in a chromosome 1,184 bits in length.
Maricic (1991) used 8 bits per weight, resulting in a weight resolution/granularity of 0.0078 over the
interval [-1.0, 1.0] (that is, a weight can only be adjusted by increments of 0.0078). Genetic algorithms
and punctuated equilibria (GAPE) neural network learning, Brill et al. (1992), is implemented in

the same fashion as a standard GA, except that there are a number of separate populations that



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 141

only interact after a specified number of generations (this approach is also referred to as island
populations). Population based incremental learning (PBIL), used in Baluja (1996), is a variation
of the GA architecture where the population is represented in terms of probability vectors. Again
the weight vectors and/or node information is transformed into a binary representation (usually
constrained by a pre-specified range). In PBIL, however, as the population search proceeds, a
probability is given to each bit position with respect to its association with a high fitness solution.
Initially these values are set to 0.5 (from the range [0,1]). This is then subject to an update rule as
shown in Equation 51

Pi,t+1 = (H,t - (10 — LR)) + (LR - Sz') (51)

where P;; is the probability of generating a 1 in bit position ¢ at time step ¢ and s; is the value of the
ith element of the highest evaluated vector (neural network) in the current generation and LR is the
learning rate (user defined). The probability vector is also moved toward the complement vector of
the worst solution in the population (on those bit positions where it differs from the fittest solution).
Mutation is applied like a standard GA, but with a smaller rate than that of LR. Crossover however

was not implemented in PBIL.

Using these works as a foundation, a general model for the multi-objective optimisation of ENNs

will now be introduced.

10.3 The general model

This section provides a synthesis of work from the ENN literature and the MOEA literature, and
outlines general framework for Pareto MOENN training. In this framework a set of estimated Pareto
optimal ENNs is maintained in tandem with the training process through the dominated and non-
dominated trees introduced in Part I of this thesis. Four evolutionary operators are recommended
within the evolutionary algorithm training process itself - however their individual use is dependent
on the optimisation process used (ES, GA or PSO). Specific methods from the evolutionary neural
network literature are not directly applicable to the multi-objective domain, and some techniques are
impossible to transfer. These issues will be discussed towards the end of this chapter, highlighting

that, even in comparison with Parts I and II, the extension of ENN to the multi-objective domain



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 142

is by no means trivial.

In the general MOENN model presented here, as in previous studies, ENNs are stored within
chromosomes, with the representation of the direct encoding form (Yao, 1999), that will now be
described.

Given a maximum size for a four layer feed-forward MLP MOENN of I input units (features),
H, and H; hidden units in the first and second hidden layers, and O output units, the chromosome

length used to represent this network within an MOEA is of size S, where

S={I+1)-Hi+H +1)-Hy+(Hy+1)-O+I+H +H+ D (52)

The first (I +1)-Hy + (Hy +1)- Hy + (Hz + 1) - O genes are floating point and store the weight
parameters (including biases) of the NN, the next I + H; + H, are bit represented genes, whose
value (0 or 1) denotes the presence of a unit or otherwise (in the two hidden layers and input layer).
The next D genes are again floating point and these are used to hold the D error values associated

with the network on the training data.

(1) Topology /feature selection through node addition/deletion

GAs have been the main evolutionary search process used in the population based MOEA literature
over the last 15 years (Coello, 1999; Fonseca & Fleming, 1993; Fonseca & Fleming, 1995; Hajela &
Lin, 1992; Horn et al. , 1994; Schaffer, 1985; Veldhuizen & Lamont, 2000a; Veldhuizen & Lamont,
2000b; Zitzler, 1999; Zitzler et al. , 2000; Zitzler & Thiele, 1999). Other EA approaches have also
been in addition. One of the earliest works in the area by Beale and Cook (1978), and a number
of other more recent models also use ES (Hanne, 2000; Knowles & Corne, 1999; Knowles & Corne,
2000).

Topography and input feature selection is implemented within this multi-objective evolutionary
neural network model by bit mutation of the section of the chromosome representing the network
architecture. This is facilitated by first determining a superset of input features and maximum
hidden layer sizes. Once this is determined, any chromosome has a fixed maximum representation
capability. Manipulation of structure is stochastic. By randomly bit flipping members of the first
I genes of the binary section of the chromosome the set of input features used by the network is

adjusted. This is illustrated in Figure 38, where network A is mutated into network B by flipping



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 143

A
Input 1
O

Input 2

O O O Output
Input 3 O

O O O
Input 4

O

Chromosome|..,1,1,1,1,1,1,1,1,1,1,1,1,..]

i /\

Input 1 Input 1 C
O O
Input 2 Input 2
O O O QOutput O O O QOutput

Input 3 O Input 3 O

O O O O O

N Input 4

O O O

Chromosomel...1.1.1.0.1.1.1.1.1.1.1.1...1 Chromosomel...1.1.1.1.1.1.1.1.1.0.1.1...1

Figure 38: Illustration of network topology and feature adaptation through genetic bit mutation.

the 4" gene in the binary segment of the chromosome. Switching the value of genes in the rest of
this chromosome section affects the hidden topography of the network, again illustrated in Figure

38 as the mutation of network A into network C' by flipping the 9** binary gene.

(2) Weights adjustment

In ES, the weight space of a network is perturbed by a set of values drawn at each epoch (generation)
from a known distribution (Gaussian, Laplacian, etc), as shown in Equation 50 in Section 10.2.3.
Direct adjustment of weight values is implemented in this ES fashion. The implementation of
weight perturbation of member gene of a chromosome has a set probability, an illustration of this is
shown in Figure 39, where the probability of perturbation is set at 0.20.
In the empirical section of this part the variance and probability of perturbation is fixed - however
this is not determined within the general model (the practitioner can of course use whatever mutation

method they prefer).



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 144

Input 1

A
Input 2
—0 O Output
Input 3 Oﬁ
—0 O
Input 4
O

Chromosome|[..,1,1,1,1,1,1,21,1,1,1,1,1,..]

O O O

Chromosomel....1.1.1.1.1.1.1.1.1.1.1.1...1

Figure 39: Illustration of probabilistic weight perturbation. Dashed connection in network ‘B’
representing original weight value in network ‘A’ plus perturbation of v - ©®, where © represents
values generated by a distribution selected by the user.

(3) Weight addition/deletion

A GA type mutator can also be used to effect the connectivity of individual synaptic weights. An
illustration of this is shown in Figure 40, where the probability of weight deletion is 0.05.

Figure 40 illustrates the transformation of a copy of neural network ‘A’ into ‘B’ through stochastic
weight deletion. Input node 2 can be seen to be only partially connected to the first hidden layer in

network ‘B’, as is the third node of the first hidden layer.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 145

Output
O—
Chromosome(..,1,1,1,1,1,1,1,1,1,1,1,1,..]
Input 1 B
Output

O

O O O

Input 2
—0O O
Input 3
—0O O
Input 4
O

Chromosome(..,1,1,1,1,1,1,1,1,1,1,1,1,..]

Figure 40: Illustration of probabilistic weight deletion. Network ‘B’ represents the original network
‘A’ after weight deletion of probability 0.05 (the link between Input 2 and the fourth hidden node
removed, along with the link between the 3rd and 6th hidden unit.)

4) Topolo feature selection and weight addition/deletion through crossover
pology g

In addition to previous three methods, a GA implementation of the general MOENN framework
allows the alteration of both the high level topology of the ENN (the nodes) and the low level
architecture (the connectivity) through breeding existing ENNs using crossover. Crossover takes
place only across the weight space of the network chromosomes.

Figure 41 illustrates two potential offspring, C and D, from the single point crossover of two
ENNs, A and B. Child C is constructed with the crossover operator cutting the parent chromosomes
at the first weight of the fourth input feature. The weights up to the cutting point are provided by
ENN A and those after by ENN B. The ENN C’s topology is inherited at random (in the illustration



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 146

Input 1 B
O
O Output
Input 3 O
O O
Chromosome...,1,1,1,1,0,0,1,1,1,1,1,1,..] Chromosome][...,1,1,1,0,1,1,1,1,1,1,1,1,..]

Input 1 C

——0O. O

Input 2 W

— \‘\\ O Output

Input 3 \::\\\\ O =

OO0

Input 4 Y

%O,’ \\O O

Chromosomel....1.1.1.1.00.1.1.1.1.1.1...1 Chromosomel....1.1.1.0.1.1.1.1.1.1.1.1...1

Figure 41: Tllustration of network connectivity adaptation through genetic crossover. Dashed connec-
tions in offspring ‘C’ and ‘D’ represent weights inherited from parent network ‘A’. Solid connections
represent weights inherited from parent 'B’.

this is from A). As input 4 is not active within network B, the illustration shows that the fourth
input node of the child C is only partially connected with its first hidden layer. A similar effect is
illustrated in the second example child D. In this instance the crossover operator cuts the parent
chromosomes at the second weight of the second node of the second hidden layer. The first section
of the weight vector is inherited from B, and the second from A, with B’s topology is inherited. The
consequence of this is that the second node of the second hidden layer is only partially connected.
Further breeding in later generations can lead to networks with more partially connected nodes,
though connectivity is only affected in this implementation when ENNs with different topologies are
crossed over at a point of node-dissimilarity.

An algorithmic description of the general MOENN framework is shown in Algorithm 10 and flow

diagram is shown in Figure 42.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 147

Algorithm 10 Implementation of MOEA in the NN domain (standard training approach), Mg.

Input:

Output:

M , size of initial random population of solutions. Each solution chromosome x
representing the weights and topology of a NN model.

A non-dominated set of NN models that are an estimate of the true Pareto front
defined by the data generation process (represented by the training data), and the NN
genus.

Initialisation: Generate random NN population of size M, such that each parameter
(weight) of the ENNs ~ N(0, ), and the binary part of the chromosome is

either initialised at 1 or ~ U(0,1). Generate the empty frontal (non-dominated) set
Fy = (. Update Fy with the non-dominated solutions from the random population,
with respect to the chosen error terms.

Initialise generation counter ¢ := 0.

Frontal Representatives: Use Partitioned Quasi-Random Selection (PQRS) to
select network representative(s) from Fj, Fft. Create replica network(s) of F.f, H,.
Population Selection: Use preferred selection method (roulette wheel,

binary tournament selection, etc) from X, | H; to generate intermediate search
population X;.

Genetic Recombination: Adjust weights, topology, connectivity and inputs of NN
individual(s) X;* using EC techniques, dependent on the EA

process used (e.g. ES, GA or PSO) and user preferred methods.

Fitness Assignment: Evaluate the ENN(s) X} with respect to the user

determined error measures on the training data presented. If F; £ X/ go to 5
otherwise go to 6.

Update Archive:

a) Insert ENN chromosome(s) X/ into F; if it is not dominated by individuals in Fj.
b) Remove ENN chromosome(s) from F; which are dominated by the X .

Looping: Iterate epoch count, ¢t := t + 1. If stopping criteria have not been met then
go to 2, else terminate algorithm and save members of F; for evaluation on test data.
end




CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 148

Fix maximum number of generations

f

Initialise ENN empty archive Ft

{ )
[ J
|

[ Initialise counter t=0 ]
[ )
[ J

/

Initialise ENN population Xt

|

Evaluate ENN population Xt

/

Insert non—dominated members of Xt
into Ft

f

Remove dominated members of Ft

/

[ t=t+l

—

End

Generate new ENN population Xt
from member(s) of Xt-1 and/or Ft-1

/

[ Evolve members of Xt J

Figure 42: Flow diagram of the general MOENN framework.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 149

10.4 Novel generalisation techniques

As described in Chapter 1 of this thesis, a single error term cannot be meaningfully propagated
through a network in a multi-objective application. The hybrid methods used for example in (Yao
& Liu, 1997) and highlighted in (Yao, 1999), where individual networks are trained at each generation
using a gradient descent technique in addition to their evolutionary manipulation, are infeasible. As
such perhaps a greater focus needs to be paid to the perturbation methods used in MOENN as they
provide the only method of synaptic adjustment (it also means that the MOENN training process
is necessarily slower, again highlighting the importance of the data structures introduced in Part I).
Another important issue is the problem of generalisation in the MOENN domain. In order to aid
generalisation a commonly used technique is to separate time series data into consecutive training,
validation and test sets. The forecast model is then trained on the first set until the measured error
beings to increase on the second set (from an optimal minimum), with the final generalisation error
calculated on the third set. By stopping training when the observed validation error begins to rise
the practitioner aims to prevent owerfitting of the model on the training data. However the use
of validation sets to prevent overfitting of NNs on training data is problematic in the multi-error
case where a set of models is returned. For instance a case may arise where some members of the
set exhibit falling error values both on training and validation data, whilst others exhibit rising
validation error values (or indeed some validation errors rising and some others falling). As such two
novel techniques to aid generalisation are now presented, which will be compared in the following

chapter.

10.4.1 The use of a ‘validation’ set

The first new method to improve generalisation is inspired by the traditional validation set approach.
As stated previously, this approach cannot be transferred directly to the MOENN domain, however
the main thrust of the approach can be recreated. As in the traditional approach, the data set is
partitioned so that a portion of the data is separated as an ‘unseen’ test set on which the generalisa-
tion ability of the model(s) will be evaluated. The remaining data is split again to provide a training
set and a validation set. A potential solution (ENN) is evaluated with regard to the training set.

If this solution is found to be non-dominated by the current archive a copy is created and saved in



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 150

the archive F'(line 5 of Algorithm 11). A second archive however is also maintained in the valida-
tion method, which maintains the non-dominated set with respect to the validation data. However,
potential solutions are only considered for insertion to this validation archive if (and only if) it has
initially been found to be non-dominating with regard to the training data at that epoch/generation.
This process continues until algorithm termination, and the set of models returned are those residing
in the validation archive, not the training archive.

By only comparing solutions to the validation archive (if they have been accepted previously
to the training archive) this method attempts to prevent overfitting to the validation archive. As
solutions that are not non-dominating with respect to the validation set are not selected (even if
there are non-dominating with the training set), this method also aims to prevent overfitting on the

training data. A description this training approach is shown in Algorithm 11.

Algorithm 11 Implementation of MOEA in the NN domain (validation training approach), My.

Input: As in Algorithm 10.

Output: A non-dominated set of NN models that are an estimate of the true Pareto front
defined by the data generation process (represented by the training and validation
data), and the NN genus.

1: Initialisation: Generate random NN population of size M, such that each parameter

(weight) of the ENNs ~ N (0, «), and the binary part of the chromosome is

either initialised at 1 or ~ U(0,1). Generate the empty frontal (non-dominated) set

Fy = 0, and the empty validation archive F? = {).

Update Fp and Fy with the non-dominated solutions from the random population,

with respect to the chosen error terms.

Initialise generation counter ¢ := 0.

Frontal Representatives: As in Mg.

Population Selection: Asin Mg.

Genetic Recombination: As in Mg.

Fitness Assignment: As in Mg.

Update of Training Archive:

a) Insert ENN chromosome(s) X;* into F; if it is not dominated by individuals in F.

b) Remove ENN chromosome(s) from F; which are dominated by the X;.

7: Update of Validation Archive:

a) Insert ENN chromosome(s) X; into FY if it is not dominated by individuals in F; A\ FY.

b) Remove ENN chromosome(s) from F? which are dominated by the X;'.
8: Looping: Iterate epoch count, ¢t := t + 1. If stopping criteria have not been met then
go to 2, else terminate algorithm and save members of F’ for evaluation on test data.
9: end




CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 151

10.4.2 Bootstrap generalisation

The second new method to improve generalisation is based on bootstrap techniques. The data is
partitioned as in Mg into a training and test set. The training set is then bootstrap sampled
to create n data subsets, on which the neural networks are evaluated during the training process.
Potential solution networks produced by the MOEA are initially evaluated with respect to all of
the bootstrap sets. Initially this will lead to nD fitnesses associated with a solution (the number
of bootstraps multiplied by the number of error terms to be optimised). The final D fitness values
attached to a decision vector for the archiving processes are the worst D objective values recorded
over the n bootstrap sets.® This training method is designed to prevent overfitting on a particular
subset of the training data, and also to prevent general overfitting to the training data itself. A

description of this training approach is shown in Algorithm 12.

Algorithm 12 Implementation of MOEA in the NN domain (bootstrap training approach), M pg.

Input: M, size of initial random population of solutions. Each solution chromosome x
representing the weights and topology of a NN model.
n, the number of bootstrap subsets generated from the original training sets.
s, the size of the bootstrap subsets.
Output: As in Algorithm 10.
1: Initialisation: Generate n bootstrap subsets of the training data of size s.
Generate random NN population of size M, such that each parameter
(weight) of the ENNs ~ N (0, ), and the binary part of the chromosome is
either initialised at 1 or ~ U(0,1). Generate the empty frontal (non-dominated) set
Fy = 0. Update Iy with the non-dominated solutions from the random population,
with respect to the chosen error terms (using a solution’s worst D terms over the
n subsets).
Initialise generation counter ¢ := 0.
Frontal Representatives: As in Mg.
Population Selection: As in Mg.
Genetic Recombination: As in Mg.
Fitness Assignment: Evaluate the ENN(s) X;* with respect to the user
determined error measures on the training subsets presented. If F; A X} go to 5
otherwise go to 6.
6: Update of Archive:
a) Insert ENN chromosome(s) X} into F; if it is not dominated by individuals in F;.
b) Remove ENN chromosome(s) from F; which are dominated by the X;.
7: Looping: Iterate epoch count, ¢ :=t + 1. If stopping criteria have not been met then
go to 2, else terminate algorithm and save members of F; for evaluation on test data.
8: end

3Tf bootstrapping is performed without replacement, it is evident that the size of these sets must be smaller than
the original training set, otherwise the approach mimics the standard training method.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 152

Models derived from the general MOENN framework using the new generalisation methods will

now be compared.

10.5 Empirical comparison of the new generalisation techniques

This section investigates problem of ‘noisy’ Pareto estimates when approximating functional rela-
tionships. The comparison of the new generalisation techniques introduced in the previous section
is presented using the data that has been previously used in recent gradient descent approaches to
MONN training by Lo & Bassu (2002a). As above, the standard training method is referred to as

Mg, and the new validation and bootstrap training methods as My and Mg respectively.

10.5.1 Application, data and error measures

In the case of signal processing in the presence of an environmental parameter that is impossible or
difficult to adapt to, minimising the maximum error of a function approximation becomes important,
as highlighted in Lo & Bassu (2002a), leading to the so called robust approximation. The generic
formulation of robust programming is b = f(a,c) + ¢ where a is known, b is observed and ¢ is an

4 € is some environmental

uncertain environmental parameter that changes too fast for adaptation.
error which cannot be modelled - but for which the distributional properties may be known (an
example may be the error inherent in the measuring device which collects the process data). In
their recent papers Lo & Bassu, (2002a; 2002b), develop a risk-averting (RA) training criterion that
attempts to trade-off Euclidean error minimisation on one extreme with the minimax error criterion
on the other, leading to the (\,p) RA training criterion. In the situation where A and B are
respectively sets of observed input-output pairs of the process, their robust error term is formulated

as

ERrobust (X) = €exp ()‘ |y - g|p) (53)

where f (A, x)is the output of the function approximation model with parameter vector x. p is fixed

at 2. When A = 1 the criterion is identical to Euclidean minimisation and as A — oo it approaches

4Similarities can of course be made to other forecasting domains. In forecasting economic series (i.e. demand for
a good), many explanatory macroeconomic variables may be used, money supply, average level of debt, balance of
payments etc. However the modelling of microeconomic events in the economy is usually too difficult, an advertising
campaign in a different area of the country, changes in tastes, simple individual choice decisions.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 153

the minimax criterion (Lo, 2002). These errors are then propagated during training, with either a
fixed value of A, or with it changing over time, depending on the NN evaluation.

A number of test functions are developed in (Lo & Bassu, 2002a) in order to demonstrate the
effectiveness of their approach, and the trade-off of between Euclidean (maximum-likelihood) fitting

and robust fitting. The first of these test function is defined below

() = Xj0.1,0.4) (%) + €X[0.6,0.9] (%) (54)

where z € [0,1] and the environment parameter ¢ has an 80% probability of taking that value
of 1, and a 20% probability of being zero. The indicator function x has the property (xg(z) =
ljz € G) A (xg(z) = 1|z ¢ G). A graphical representation of this function, with 6000 randomly

(Uniformly) generated points, is shown in Figure 43.

SAMPLES  +

08 |

06 [

Output

04 |

02|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input

Figure 43: Lo and Bassu’s first noisy function (Lo & Bassu, 2002a). (Test function 1).
Their second test function is a noisy sinusoid, with a random phase shift. It is defined as:
fla) =sin(a+c)+e (55)

where = € [0,27], ¢ has a 75% probability of being 0, and a 25% probability of being equal to 2.
€ ~ N (0,0.0706%). A plot of 6000 input-output pair generated from this function by Uniformly



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 154

sampling across the range of a is provided in Figure 44.

15 T T T T

SAMPLES  +

Output

Figure 44: Lo and Bassu’s second noisy function (Lo & Bassu, 2002a). (Test function 2).

10.5.2 Methods

A (1+41)-ES MOEA based on the PAES (Knowles & Corne, 1999; Knowles & Corne, 2000) is used in
this section to train the Pareto MOENN models (identical to the MOEA used described in Chapter
7). The archive is initialised with 1000 randomly initialised networks for each test function, whose
maximum topological representation is identical to those used in Lo & Bassu (2002a) (1:10:1 and

1:5:1). The algorithm parameters are:
e Probability of weight perturbation = 0.2.
e Probability of node deletion/addition = 0.02.
e Probability of weight deletion = 0.02.
e Perturbation ~ N(0,1) x 0.1.
o Initial weights ~ N (0, 1).

e Training set size (|T'|) = 600 patterns (or 400/200 with train/validation) for test functions 1,

300 patterns (or 200/100 with train/validation) for test function 2.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 155

Bootstrap size = 150.

Number of Bootstraps = 10.

Test set size 3000 patterns.

Training Generations = 1000000 for test functions 1, 250000 for test function 2.

Each algorithm was run 30 times with different initialisation vectors and different random seeds,
the two training errors to be minimised are the Euclidean distance and the RA criterion described
in Equation 53 (X set at 20). The evaluated errors of the trained models are the average Euclidean
error and maximum Euclidean error. The training size is kept deliberately small and the number
of generations used large to help quantify the effect of overfitting when attempting to estimate the
Pareto error generating process. The three validation methods described in the previous Chapter
are compared, that is Mg (Kupinski & Anastasio, 1999; Fieldsend & Singh, 2002b), My and Mp.

Two measures are used to compare the different model sets returned by the MOENNSs on the
test data.

The first of these measures is the C measure, which has been used previously in this thesis, and
counts the proportion in points in one set that are dominated by points in another (Fieldsend et al.
, 2003). In this section it is used both to estimate the internal consistency of a single set of models
evaluated on test data, C (Mg, Mg), and to compare two sets of ENNs returned by two different
training methods, C(Mg, My). In the first instance, the higher the value returned the greater
number of models that are dominated by others of the same set, and therefore the more inconsistent
the set is (the further away it is from being a Pareto set with regards to the test data). In the second
instance, C (Mg, My), it measures how accurate one front is in comparison to another.

The second measure is the volume measure V, which was also introduced in Part I, and again

compares the accuracy of two sets of models on the test data.

10.5.3 Results

As the results in Tables 14 - 19 clearly show, the proposed bootstrap training approach, Mp, is
markedly superior to both of the other approaches, producing model sets which are more consistent
than the other two training methods as well as its test set evaluations being significantly in front of

the competing approaches using the V measures.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 156

Table 14: Test function 1. Proportion of archive set fitted on the training data that is non-dominated
on test data (C(F,F)). Means highlighted in bold signify significantly better results under the
Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in each tail.) Standard deviations in
parenthesis.

C(F,F)
Ms | 0.2421
(0.0240)
My | 0.3289
(0.0674)
Mg | 0.2207
(0.0166)

Table 14 for instance shows that for test function 1 the set of ENNs returned by the Mg method
contained on average 24.4% dominated ENNs on the test data (i.e. 24.4% suboptimal in comparison
to other ENNs of the same set). For the My measure this was 32.9% whereas the Mg experienced
22.1% self dominated points. For test function 2 this was 10.2%, 12.7% and 6.9% respectively (Table
17). Table 15 shows that ENNs from the Mp dominated 75.4% of those produced by Mg on the
test function 1 testing data, and 85.4% of those of My. The left table in Table 16 shows that
the ENN models produced by Mg lay on average 2.8% ahead on those produced by the other two
methods in objective space.

Figures 45 - 46 show the estimated Pareto fronts of a single run by the three methods on the two

test functions.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 157

Table 15: Test function 1. Comparison between estimated Pareto fronts on test data from the
standard, validation, and bootstrapping training models, using the C measure. C (a,b) is the mean
proportion of the members of the estimated front produced by the training method ‘b’ dominated
by members of the estimated front produced by the training method ‘a’. Means are over 30 runs,
with standard deviation in parentheses.

C(Ms, My) | 0.6134
(0.3075)
C(Ms, Mp) | 0.1403
(0.2392)
C(My, Ms) | 0.2898
(0.2299)
C(My,Mp) | 0.0970
(0.1211)
C(Mgp, Ms) | 0.7536
(0.3058)
C(Mp,My) | 0.8540
(0.2134)

Table 16: Test Function 1. Comparison between estimated Pareto fronts on test data from the
standard, validation, and bootstrapping training models, using the V measure. Where V (a) is the
mean proportion of the volume of the minimum hypercube containing all estimated fronts, which
is dominated by members of the estimated front produced by method ‘a’ . Means are over 30
runs, standard deviation in parentheses, value as a percentage. Results highlighted in bold signify
significantly better results under the Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in
each tail.)

Total | Exclusively
V(S) | 0.7527 0.0041
(0.0369) (0.0086)
V(V) | 0.7456 0.0030
(0.0277) (0.0068)
V(B) | 0.7917 0.0284
(0.0173) (0.0231)




CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 158

Table 17: Test function 2. Proportion of archive set fitted on the training data that is non-dominated
on test data (C(F,F)). Means highlighted in bold signify significantly better results under the
Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in each tail.) Standard deviations in
parenthesis.

C(F,F)
Mg | 0.1019
(0.0709)
My | 0.1569
(0.0696)
Mg | 0.0695
(0.0533)

Table 18: Test function 2. Comparison between estimated Pareto fronts on test data from the
standard, validation, and bootstrapping training models, using the C measure. C (a,b) is the mean
proportion of the members of the estimated front produced by the training method ‘b’ dominated
by members of the estimated front produced by the training method ‘a’. Means are over 30 runs,
with standard deviation in parentheses.

C(Ms, My) | 0.1740
0.1551
C(Mg,Mg) | 0.1545
0.1090
CMy,Mg) | 0.2789
(0.2077)
CMy, Mp) | 0.2015
(0.1507)
C(Mp,Msg) | 0.2979
(0.2482)
C(Mp, My) | 0.2999
(0.2844)




CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL

o
©
T

o
3
T

Minimum Maximum Euclidean Error
o o
vl o
T T

0.4

0.3r

Average Euclidean Error

0.4

159

Figure 45: Test function 1, estimated Pareto fronts, points from the standard training method
denoted by ‘+’, points from the validation training method denoted by ‘o’ and points from the

bootstrap training method denoted by ‘x’.

Table 19: Test Function 2. Comparison between estimated Pareto fronts on test data from the
standard, validation, and bootstrapping training models, using the V measure. Where V (a) is the
mean proportion of the volume of the minimum hypercube containing all estimated fronts, which

is dominated by members of the estimated front produced by method ‘a’ .

Means are over 30

runs, standard deviation in parentheses, value as a percentage. Results highlighted in bold signify
significantly better results under the Wilcoxon non-parametric signed ranks test (2 tailed, 0.025 in

each tail.)
Total | Exclusively
V(S) | 0.8321 0.0021
0.0270 0.0029
V(V) | 0.8310 0.0021
0.0289 0.0041
V(B) | 0.8561 | 0.0173
0.0263 0.0107




CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 160

N
kS
T

NG
N
T

Minimum Maximum Euclidean Error
[y
© N
T T

Iy
o
T

-
>
T

=
N
T

0.5 0.55 0.6
Average Euclidean Error

Figure 46: Test function 2, estimated Pareto fronts, points from the standard training method
denoted by ‘+’, points from the validation training method denoted by ‘o’ and points from the
bootstrap training method denoted by ‘x’.



CHAPTER 10. A PARETO NEURAL NETWORK TRAINING MODEL 161

10.5.4 Comments

These results clearly show that the generalisation from MOENN training can be improved beyond the
approach currently taken in the literature (Kupinski & Anastasio, 1999; Fieldsend & Singh, 2002b),
by using the bootstrap training method. If this new generalisation technique is used, then the set of
ENNs evaluated on the test data can be observed to be significantly more consistent on the two test
functions used (i.e. contain significantly less self dominated points). However the improvement is
not just manifest in the internal consistency of the fronts, but also in terms of the actual optimality
of the Pareto approximation. The estimated Pareto fronts generated by the bootstrap generalisation
lie significantly in front of those generated by the standard method and the new validation method

for both test functions (as measured by the V measure and C measure).

In the following section models derived from the general MOENN framework introduced in this

chapter will be empirically validated on a number of real world data sets from the finance domain.



Chapter 11

Empirical Application of Pareto

Neural Networks

In this chapter a number of experiments are performed to assess the performance of models derived

from the general model described in Chapter 10.

e The trade-off between models that maximise profit and minimise Euclidean error is shown in

the forecasting of the Dow Jones Industrial Average stock index (Section 11.1).1

e Section 11.2 provides an extended set of experiments based on those from Section 11.1, with
37 international index series from financial markets. These experiments use topologically

heterogeneous ENNs, maximising return and minimising return variance.

11.1 Proof of concept; initial application of MOENN training
to real world data

The first empirical section of this chapter is concerned with applying a model, derived from the
general MOENN framework, to a financial forecasting problem. The ENN models are trained in
order to forecast an international stock index. The concern in this process is the optimisation of two

measures, Euclidean error (minimised) and return (maximised). Therefore the final set of achieved

!The results from this Section were published in (Fieldsend & Singh, 2002b).

162



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 163

Pareto optimal members, F', should provide an estimate of the trade-off of the accuracy/return
defined by the generating process and trading strategy. As this is the first application of MOEA
trained ENNs to real world data (the only previous work using an MOEA to train ENNs used a
simple synthetic data set (Kupinski & Anastasio, 1999)), it is designed to provide a simple initial
model evaluation. The MOEA used is a GA based model, the SPEA of Zitzler (1999), and the
topology of the trained ENNs is fixed.

Financial forecasting (modelling the generating process of a financial time series, or process) is a
popular application of both NNs and other nonlinear models as discussed in Chapter 9. However in
many applications misleading claims are made (or inferred) with regards to the actual efficiency of
the models presented. Typically the accuracy of a model will be described for some data set (usually
in terms of Euclidean error), and an estimate of the profit generated by using the model forecasts
and a trading strategy is provided. However, often the the cost of trading (transaction costs) are not
factored into this calculation. These addition costs, typically trading commission plus any taxation
that may be relevant (e.g. stamp duty in the UK) can have a significant affect on realised profits.
For instance, take a hypothetical model which is found to experience an average profit over a year of
test data of 16.2% (excluding transaction costs), which involves actively trading (buying or selling)
25% of the time. If the market return of the financial series over the same period was 6%, then one
would assume that there were significant opportunities for realising excess profits by trading using
the forecast model. However, by including a reasonable transaction cost level the analysis changes
completely. The yearly return of the forecast model infers a daily return of 0.06% compounded over
the period (or approximately 0.30% compounded per trade)?. With transaction costs of 0.2% per
trade the actual profit of the model drops to slightly over 5.1% per annum (0.1% per trade or the
equivalent of 0.02% per day) - actually worse than simply investing at the start of the year and
waiting until the end. A transaction cost of more than 0.3% would lead the model which initially
boasted a yearly return of over 16% to actually realise a loss. As such the approach used in this and

later sections is to include transaction costs in the training and final evaluation.

2financial markets typically experience 250 trading days per year



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 164

11.1.1 Trading strategy and error measures

Due to the difficulty in predicting raw market time series for profitable day trading when trans-
action costs are taken into consideration, this section combines a number of time series in a novel
transformation in order to make the forecasting task easier. The data transformation used is an
application specific one (determined by the trading strategy to be used), but has the additional ben-
efit of creating a stationary time series for forecasting. (Other studies have also used data specific
transformations, e.g. Saad et al. (1998) and LeBaron & Weigend (1998)).

The dependent time series that will be modelled in this section, y;, is a transformation of the
one day return between the open price of a market or individual stock, and the next day realised

high, as shown in Equation 56.
G
— 56
vt <0.993b§_1> (56)

where b? is the open level of a market /stock at day t and b} is the market/stock high at day t.

The trading strategy is dependent on the market/stock level falling during the day by at least
0.7% before buying (trading-in) - as described in Algorithm 13. The purchase cost is therefore
99.3% of the open price. The return measure is calculated using a simple trading strategy based
upon transaction costs calculated at 0.1% of price (defined as a reasonable level in Schittenkopf et
al. (2000)), and therefore a minimum increase in price from buy to sell of 0.2% is needed before any
profits can be realised.

In addition, the trading strategy is designed such that a trade into the market will only take place
if the estimated profits beyond transaction costs of selling the next day equal approximately 1.5%.
This regime is used in order to eliminate trades where the price fluctuation is small — and where a
small over estimate of the dependent value will lead to losses. The forecast of the transformed series
Y¢, Ui, therefore needs to be greater than 1.017. The return objective measure is formally described
in Algorithm 13.

The measure shows that if §;,1>1.017 (predicting that tomorrows high is 1.7% higher than the
trade-in price on day t), and during the day the price falls to (or below) a level of 99.3% of the open
price, trading will occur (Algorithm 13). If this happens, and the realised value of value of y; is
greater than 1.017, then when the market level reaches the point of being 1.7% above the price paid
on entrance (when the next days price is 1.0% higher than todays open), the assets will be sold and

profits realised (after costs incurred). If however the market level does not reach a level 1.7% above



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 165

Algorithm 13 Trading strategy (return objective).

1: ¢, current time step (day).
Ui, the model forecast at day ¢.

g = 099”3%, where bf is the market close on day ¢.

eft Return value at time ¢ (as a percentage of capital at t — 1).

Set t := 1, first trading day of train (or test) set instance.

If (G > 1.017) A (2t_y /zg_; <0.993) shift capital from risk free deposit into market at
the point where the market price falls to 99.3% of open (incurring transaction costs), go to
7, otherwise go to 8.

7: t:=t+ 1, Calculate profit/loss.

8: If (y¢ > 1.017), sell when market reaches the level 101.7% of that when entered,
eft = 1.5, go to 2. Else:
9: If (y; < 1.017), sell at the end of day, et = (¢f — 1) — (0.1 + 0.1¢§), go to 6.

10:  Calculate nominal risk free interest accrued on assets, ef* = 0.0016 (compound equivalent
to 4% p.a.) ,t:=t+ 1, go to 6.

10:  Halt process when end of train (or test) set is reached.

12: end

the price paid on entrance then the assets are disposed of at the end of ¢ 4+ 1, with the potential for
either profit or loss. If b, _;/b¢_; > 0.993, or §; < 1.017 then no trade will occur and the capital will
lie in a bank deposit accruing the equivalent of 4% interest p.a. (0.016% a day compounded over
250 trading days).

The second training objective is to minimise the RMSE of the model prediction of y; - (a direct
measure of the standard deviation of the forecast of the model prediction from the actual), equivalent
to minimising the Euclidean error. It should be noted that a measure more in keeping with the
CAPM framework would be the standard deviation of the model return. This is used in later
experimentation (Section 11.2), however, by using RMSE the results from this Section can be used
to demonstrate the competition between Euclidean error minimisation and profit maximisation in

financial forecasting applications.

11.1.2 ENN model

In order to use the trading strategy introduced, a model is needed to produce a prediction of the
time series y;, ¥z- To do this, a set of recurrent ENN time series forecast models will be trained

(describing the trade-off between the Euclidean prediction error and return objective).



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 166

Fifteen explanatory variables were used in the ENNs, and are defined as follows:

v =, (57)
o =G, Bees (58)

variables 1 to 10 contain the last 10 lagged realised values of y; (2 weeks of trading), of course y; 1
cannot be used as it incorporates information that will not be available at the start of day at ¢ — 1.

Variables 11 to 15 are recurrent variables. Figure 47 illustrates the network design.

Y

Figure 47: Network design, illustrating topography and recurrence.

11.1.3 Data

The data used in the model is the open, high, low and close of the Dow Jones Industrial Average
(DJIA) over the 2500 trading day period from 28/2/1986 to 3/1/2000 (the open and high are
needed in the generation of dependent time series y, and the low and close are needed for the profit
calculation of the trading strategy. The low is needed to know whether a trade is triggered, and the
close is needed for returns where the actual level does not rise as much as predicted). In Section
11.1.4 a sliding window is used to contain the training and test sets which are generated by first
creating the relevant explanatory vector and dependent value pairs (embedded matrix), and then

passing a window with the first 1000 samples as training data and the next 100 samples as test data



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 167

across the series, sliding the window forward by 100 samples 25 times. As illustrated in Figure 48
below, this means that the 25 test sets contain a total of 2500 trading days (approximately 10 years)
from 12/2/1990 to 3/1,/2000.

Train Test

—

ocooll

11
1.08;
1.06;
1.04¢

1.02

1
0.98

0.96
28/2/1986

1000 1500 2000 2500
12/2/1990 3/1/2000

Figure 48: An illustration of the test and training sets (top) in relation to the transformed data y;
(bottom).

11.1.4 Experiments and results

The experiments in this section are designed to demonstrate the feasibility of MOENN, through
an application in the time series forecasting domain. It is also designed to highlight the benefit
of producing a population of models which lie on an estimate of the Pareto front of the generating
process. As stated, this allows the practitioner to choose a model from a viable set that describes their
error trade-off preferences after training and therefore knowledge of the training error interactions
(instead of the approach of summation, where only one model is returned and where the practitioner
must have a priori knowledge of the error surface). However, if the error properties do not hold true
on the test data, this approach is of no use in the financial domain.

To test this, three preferences of three general practitioners are defined: risk averse (model C),
profit maximiser (model A) and middle-way (model B). The relevant models for each of these type

of investor are selected at each of the training windows, model C is the ENN set member which



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 168

has the highest return on the training data, model B is the ENN at the middle of the set (when
the set is ordered by one of the two objectives) and model A is the ENN set member which has the
lowest RMSE on the training data. The performance of each of these models is then evaluated on
the test data. An illustration of where these individuals reside in terms of the Pareto front is shown

in Figure 49.

Return

Risk

Figure 49: An illustration of the three investor types compared, the profit-maximiser operating at
point ‘a’, the middle-way practitioner operating at point ‘b’ and the risk-averse individual operating
at point ‘c’.

A multi-objective GA was used, the SPEA of (Zitzler et al. , 2000; Zitzler & Thiele, 1999; Zitzler,
1999), updated to incorporate an unconstrained archive and the data structures described in Part
I. It was implemented using single-point crossover and the mutator variable was drawn from a zero-
mean, symmetric, Leptokurtic distribution (kurtosis ~ 10) generated by the product of two uniform
distributions covering the range [0,1], and a Gaussian distribution with a variance of 0.1 and zero
mean. The probability of mutation was 0.1 and the probability of crossover was 0.8. Each population
of networks was trained for 2000 generations, with the search population in each instance generated
with the search population at the end of the previous training window. For the first DJIA training
window the search population ENN parameters where randomly generated from ~ N(0,1). The
search population itself was implemented as in (Zitzler et al. , 2000; Zitzler & Thiele, 1999; Zitzler,
1999), consisting of 80 individuals updated at each generation using binary tournament selection

with (upto) 20 individuals from the archive F'.



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 169

The average Euclidean error and return for the three practitioners described earlier (selected
as those NN models operating at the relevant points on the training set Pareto front), the market
return, and the performance of the random-walk forecast of y; for the 25 test sets are shown in Table
20. (Again, as y; is not known at the start of day ¢, due to its use of the daily high of the market,

the random walk model takes the form 7; = y;_»).

Table 20: Mean risk and return over the 25 test sets for the extreme and mid-way models, the
random walk model and the market return (standard deviations in parenthesis).

Train Test
RMSE % Ret RMSE % Ret
Risk Averse 0.00903 0.1391 0.00923 0.0907

(0.00181) | (0.0306) | (0.00316) | (0.0742)
Middle Way 0.00908 0.2299 0.00923 0.1714
(0.00182) | (0.0569) | (0.00308) | (0.1317)
Profit Maximiser | 0.00927 0.2904 0.00978 0.2233
(0.00184) | (0.0797) | (0.00302) | (0.1780)
Market - 0.0508 - 0.0619

- (0.0208) - (0.0717)

Random Walk 0.01348 0.1293 0.01295 0.1175
(0.00312) | (0.0364) | (0.00461) | (0.0968)
Risk Free 0 0.0016 0 0.0016

As it can be clearly seen, the model attributes of the different points on the estimated Pareto
front on the training data are consistent over the test data also, although with a degree of noise. An
example of this is illustrated in Figure 50, with the training Pareto front and estimated test Pareto
front plotted for the first training and test window. The mean RMSE of the model B, although
above that of the risk averse models on the test sets, is not significantly so. However the central
models’ mean return is significantly higher, as are the profit maximisers models’ return significantly
higher than both the central models’ return and minimal risk models return. (Calculated using the
non-parametric Wilcoxon Signed Ranks Test (Wilcoxon & Wilcox, 1964) at the 2% level (1% in each
tail)).

The tabulated results are further supported in a visual fashion by the profit plots over the 10 year
period for the various models, which are shown in Figure 51. It is of interest to note that all three
ENN model types outperform the market return, however the risk averse models (RMSE minimiser)

display a lower return over the period than the simple random walk model on the transformed data,



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 170

0.3 . .
- Train Front
g 0.25- i
7 |
o : |
b 0.2_ .;L- %
c :
S0.15- 1
@ Test Front
c

0.006 0.608 0.I01 0.612
Risk (RMSE)

Figure 50: Estimated Pareto error surface on training set and the noisy estimated Pareto error
surface on the test set (first window).

once more underlining the fact that models should be trained with respect to the error preferences

of the user (models trained strictly to minimise RMSE will not necessarily generate excess profits).

11.1.5 Comments

In this section a novel approach to the construction of financial time series models has been formed by
analogy with the CAPM from portfolio theory. Approximate Pareto frontiers have been generated
for the DJIA index based on NN model risk and return, showing that the MOENN framework
introduced in the previous section is a feasible method for the modelling of these types of problem.
As a result of this it has also been demonstrated that risk and return are competing in model
parameter specification, and that this generalises to test data.

However there are still further areas of research in this field. Both Kupinski & Anastasio (1999)
and the work presented in this section do not fully confront the problem of generalisation /validation
in the domain of Pareto population training. The MOEA developed in the literature address ‘clean’
process domains. In noisy domains such as financial forecasting, where the generating process itself
is being modelled, the divergence between the estimated Pareto surface from the training data, and
the actual surface defined by the process itself merits much further investigation. This is confronted

in the next set of experiments in this chapter, which use a number of ‘noisy’ test functions used in



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 171

4
2.5x 10
Max Ret.
2k
C__B 1.5¢
a
@
O 4!
Lowest Risk NN Mid Risk/Ret. NN
0.5+ .
Market Random Walk
0
0 500 1000_ 1500 2000 2500
12/2/1990 Trading Days 3/1/2000

Figure 51: Profit plots for the 10 year test period for the extreme and mid models on the training
Pareto front, the random walk model and the market return (capital initialised at 100).

the linear weighting MONN literature.

11.2 Extensive application of MOENNSs to regression prob-
lems.

The final empirical analysis of this thesis is based on the prediction of thirty-seven international
indices. The data itself varies in length across samples, the longest being 4845 data series (over
19 years) and the shortest 416 data samples (under 2 years). All series are daily, containing open,
high, low and close, and run until 7th February 2003, and were obtained from http://uk.finance.
yahoo.com/. A description of these series is provided in Table 21.

The two error measures to be optimised, based on forecasting transforms of these series and

using a trading strategy, are again risk (minimised) and return (maximised). The transform and



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 172

trading strategy used are similar to that introduced in Section 11.1, however the risk term, instead
of being the RMSE of the model, has a firmer grounding in Finance theory - being the variance of
the realised returns.

The return error measure is almost identical to that introduced in Algorithm 13, but instead of
trading dependent on a fall of 0.7%, a fall of 0.5% is used. The strategy is therefore to trade into the
market on day ¢ when the level drops by 0.5% of the open value and sell the following day when the
level rises 1.7% above the purchase level (1.2% above the open of the previous day), accruing 1.5%
profit (including transaction costs of 0.1% each way). If the level does not fall by at least 0.5% then
the initial trade does not occur and the capital is invested overnight as a ‘risk-free’ asset (i.e. a bank
deposit earning 0.016% - equivalent to 4% per annum). If the initial trade has occurred and the
level does not rise 1.7% above the purchase level the following day, trade out of the market occurs
at the market close of day t 4+ 1 and profit/loss (including transaction costs) occurs. The predicted

series ¢; is a composite series based upon this trading strategy, and is described below:

— L (59)
= \0.99507_,
if bl | > 0.995b2 ,, ¢ = 1.00016 (60)
else ifg > 1.017, ¢ = 1.017 (61)
else g = b (62)
= \0.99507_,

where b is the open level of the market at day ¢, b} is the market high at day t, b} is the market
low at day ¢, and b§ is the market close at day ¢. Thus ¢ exactly encapsulates the profit/loss of this

trading strategy (excluding the transaction costs).



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS

Table 21: Stock index descriptions

| Country | Index | From | Until | Samples ]
Americas
Argentina MerVol 24-10-1996 | 07-02-2003 1538
Brazil Bovespa 13-05-1993 | 07-02-2003 2408
Canada S&P TSX Composite | 22-08-1984 | 07-02-2003 4647
Mexico IPC 29-05-2001 | 07-02-2003 416
Peru Lima General 15-05-1998 | 07-02-2003 1169
USA S&P 500 25-11-1983 | 07-02-2003 4845
Asia & Pacific
Australia All Ordinaries 28-08-1984 | 07-02-2003 4659
China Shanghai Composite | 21-07-1997 | 07-02-2003 1329
Hong Kong Hang Seng 18-12-1990 | 07-02-2003 3000
India BSE 30 17-07-1997 | 07-02-2003 1368
Indonesia Jakarta Composite 18-07-1997 | 07-02-2003 1336
Japan Nikkei 225 19-09-1986 | 07-02-2003 4035
Malaysia KLSE Composite 21-12-1993 | 07-02-2003 2247
New Zealand NZSE 40 06-10-1992 | 07-02-2003 2590
Pakistan Karachi 100 23-07-1997 | 07-02-2003 1322
Philippines PSE Composite 18-07-1997 | 07-02-2003 1376
Singapore Straits Times 10-07-1997 | 07-02-2003 2651
South Korea Seoul Composite 18-07-1997 | 07-02-2003 1357
Sri Lanka All Share 15-10-1998 | 07-02-2003 1032
Thailand SET 18-07-1997 | 07-02-2003 1362
Taiwan Taiwan Weighted 18-07-1997 | 07-02-2003 1351
Europe
Austria ATX 27-11-1992 | 07-02-2003 2517
Belgium BEL-20 01-07-1992 | 07-02-2003 2587
Czech Republic PX50 16-07-1999 | 07-02-2003 875
Denmark KFX 11-02-1993 | 07-02-2003 2499
France CAC 40 19-03-1990 | 07-02-2003 3231
Germany DAX 12-12-1990 | 07-02-2003 3048
Greece General Share 13-05-1998 | 07-02-2003 1182
Ttaly MIBTel 04-08-1993 | 07-02-2003 2391
Netherlands AEX General 28-10-1992 | 07-02-2003 2604
Russia Moscow Times 15-05-1998 | 07-02-2003 1125
Spain Madrid General 27-05-1999 | 07-02-2003 857
Sweden Stockholm General | 17-01-2001 | 07-02-2003 505
Switzerland Swiss Market 27-11-1990 | 07-02-2003 3031
Turkey ISE National 100 18-07-1997 | 07-02-2003 1321
UK. FTSE 100 18-04-1984 | 07-02-2003 4750
Africa and Middle East
| Israel | TA-100 | 25-05-1998 | 07-02-2003 | 931 |

173



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 174

A visual example of this is given in Figure 52, which shows the open level of the Japanese Nikkei

225 index over the past 17 years, and its corresponding ¢; transformation.

Index level

L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500

t

1.05

0.925

08 L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 52: Top: The Nikkei 225 index (open level). Bottom: The ¢ transformation of the Nikkei
225, as described by Equations 59-62.

A completely adaptive topology is used in this section, allowing heterogeneous topologies to be

maintained by the estimated Pareto set of NNs. The model inputs are defined as follows:

vt1,...,10 P (63)

variables 1 to 10 contain the last 10 lagged realised values of y; (2 weeks of trading). Again ¢



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 175

cannot be used as it incorporates information that will not be available at the start of the day at
t—1.

A sliding window is used to contain the training and test sets, which were generated by first
creating the relevant explanatory vector and dependent value pairs (embedded matrix). The first
80% of the data was initially used for training, and the next 20% for testing. The bootstrap based
MOENN model of the previous Sections was used as the training algorithm.

Each run was initialised with 200 random networks. The algorithm parameters were:

Probability of weight perturbation = 0.2

Probability of individual weight elimination = 0.02

Probability of individual node elimination = 0.02

Perturbation ~ N(0,0.1)

Initial weights ~ N(0,0.1)

Generations = 25,000

11.2.1 Results

Graphical examples of estimated Pareto fronts defined by the archive of ENNs on the test data are
provided in Figures 53 - 55. Figure 53 gives the estimated Pareto front generated for a market from
the Americas group (the S&P 500 index), Figure 54 gives the estimated Pareto front generated for
a market from the Asia/Pacific group (the Nikkei 225 index), and Figure 55 gives the estimated
Pareto front generated for a market from the European group (the FTSE 100 index).

These figures show that although there is some degree of noise present, the general shape and
properties of ENN models fitted on the training data is consistent with their performance on the
training data. ENNs with high return and high volatility on the training data also maintain these

properties on testing data, and likewise for models with low volatility and low return.



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 176

0.12 0.25
+
PO
01 H 0.2
£ §
0.08 ;* &
- )
= fis
So.06 #‘g*
0.04 /$
0.02};
0
0 0.2 0.4 0.6 0.8 1 1

Figure 53: Risk and return on the S&P 500 index (80% train, 20% test). Left: Training Pareto
front. Right: Evaluation of set on test data.

0.12 0.15
H
b
01 & @
+
er &
0.08 P 0.1 o ®
-+ o &
4 o
= -+ 8°
So.06 - § o
oo
0.04 0.05 A
O¢
0.02 OB
xf%&%
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 08 1
g a

Figure 54: Risk and return on the Nikkei 225 index (80% train, 20% test). Left: Training Pareto
front. Right: Evaluation of set on test data.

0.06 025
i
0.05 4t 0.2 R
& b
L+ - ©
0.04 L 0.15 P
= P - ®
fin} o R
0.03 - 0.1 3
+ o°
oo
002f #j; 0.05 B
0 0&R @)@%5)
0.01 [0
ol 02 0.4 0.6 0 02 04 06 038 1
o a

Figure 55: Risk and return on the FTSE 100 index (80% train, 20% test). Left: Training Pareto
front. Right: Evaluation of set on test data.



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 177

Train Test
1 1 . .
N
z . . z
< 05 < 05
@ @
o o
S g
£ £
3 3
5 O 5 O
14 14
-0.5 : : : -0.5 : : :
0 10 20 30 40 0 10 20 30 40
Market index Market index
5 i i ; 5 : : :
4r 1 4r 1
o3+ 1 o3 1
£ £
2 2
Q Q
@2t , @2t ,
+ +
X
1 ++7\+ I + ol ) Yo, A +2 1 /\++ |
+ / + N * 7 + Iy N + Thay AL
L \ \ ' i + Y NUNS AEA Vs GAEA N Y A58 A
8402 tﬁﬁAAA and Ai ;k/ Aﬂi nda B ke 0 KA,IA XAAAAAi\ A@Aﬁ/fﬂ x
0 10 20 30 40 0 10 20 30 40
Market index Market index

Figure 56: Risk and return for 3 different exemplar members of the archived ENNs across the 37
international indices (indices ordered as in Table 21). Market performance and performance of the
random walk model using the same trading strategy are also shown.

Figure 56 illustrates the risk and return experienced by different operating points (individual
ENNs) of the Pareto front of MOENNSs, and their corresponding performance on the test data.
Three investor types are again taken as exemplars from the archives, those that lie on either extreme
of the front, and the mid set member, for each of the 37 different stock indices (points ‘A’; ‘B’ and
‘C’, as shown previously in Figure 49). The performance of the profit maximising extreme ENN,
‘A’ is denoted by plus signs in Figure 56, joined by dots. The performance of the mid set members,
‘B’, are denoted by triangles and the performance of the risk minimising ENNs, ‘C’, by circles.
The market performance is shown with a solid line, and the random walk model performance is
shown with a dashed line (in this case the random walk model uses the trading strategy based on

its prediction that ¢;11 = ¢;_1)3. As can be seen the profit maximiser model consistently produces

3The random walk model of Gt+1 = &+ cannot be used as ¢; is unknown at the start of day ¢ and can only be



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 178

higher rate of return than the other models across both training data and test data, meaning that
the returned capital on investment in this model was consistently higher than the two other ENN
operating points (implying the consistency of the ENN set) and higher than the returns produced by
trading on random walk predictions, or investing the capital in the market at the start and removing
it at the end of the time period. The market rate however experiences the highest volatility of return
across the data, implying that it is the least safe of the five models for investment purposes. The

relative performance of the five different models can be seen more clearly in Figure 57.

Train Test

4
3
T
4
3
T

o@
-
|
T
I

Return (% per day)
Return (% per day)
=

C mkt w
Model

»
)
»
)

Return o
N

Return o
N

=
5
=
5

—
i I

H e G40 S =

n I
mkt w A B

[

L
-
b--

o
{4l

B mkt

C C
Model Model

Figure 57: Boxplots of the realised risk and return for 3 different exemplar members of the archived
ENNSs across the 37 international indices. Market performance and performance of the random walk
model using the same trading strategy are also shown.

Here boxplots of the results of the five models over training and test sets for the two objective
measures are shown. Using the Wilcoxon signed ranks test (two tailed at the 0.05 significance level),

the higher return rates of model ‘A’ are found to be significantly better than all the other models,

calculated at the close of trade on day ¢t.



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 179

with the next best model being the random walk, followed by model ‘B’. Over the training data
the market return is higher than the MOENN operating point ‘C’, however on the test data, ‘C’
(effectively keeping the capital in the bank and not trading) is significantly better than investing in
the markets (which isn’t surprising given recent market performance).

The volatility of the market return was significantly higher than all the other models, followed
by model ‘A’; the random walk model and then model ‘B’. Firstly these results show the three
different operating points of the MOENN results were consist across the test data, with ‘A’ having
higher return followed by ‘B’ and then ‘C’, and ‘C’ having the lowest volatility, followed by ‘B’
and ‘A’. Model ‘A’ was also the best performing model (in terms of return) out of the five, and
produced consistent positive returns on all markets (as shown by the box-plots), even when some of
the markets were experiencing significant downward trends. Mean values and standard deviations
are shown in Table 22. As can be seen, when the extreme profit maximisation ENN model ‘A’ (the
ENN which has the maximum return of the Pareto set of ENN models on the training data) is used,
an average daily return of 0.1142% on the test data is realised. This relates to an average annual
return of 33.2%, compared to the random walk annual return of 20.1% and the market annual return

of -4.3%.

Table 22: Mean risk and return over the 37 international indices. Results shown for the archived
ENN exemplar models ‘A’; ‘B’ and ‘C”, the market performance and from the random walk model
(standard deviations in parenthesis).

Train Test
Risk % Ret Risk % Ret
Model C 0.0000 0.0160 0.0000 0.0160
(archive ENN) | (0.0000) | (0.000) | (0.0000) | (0.000)
Model B 0.1923 0.0475 0.2949 0.0366
(archive ENN) | (0.0882) | (0.0285) | (0.2025) | (0.0330)
Model A 0.6570 0.1494 0.7573 0.1142
(archive ENN) | (0.3526) | (0.1317) | (0.3551) | (0.1375)
Market 1.7533 0.0416 1.6207 | -0.0176
(0.7917) | (0.0941) | (0.6864) | (0.1061)
Random Walk | 0.5142 0.0544 0.5137 0.0733
(0.2782) | (0.0711) | (0.2634) | (0.1037)

The fact that consistent profits are observed using the random walk approach is interesting. This

may be due to the trading strategy itself restricting the random walk model to trade where the market



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 180

is volatile and the potential for large returns is higher (which is its aim), it must be remembered
that the random walk is operating on the transformed trading series not the raw indices. However it
is conceivable that the transaction costs modelled may be too low for certain markets. If this second
case is true, it should be noted that even with transactions cost raised in order to make the random
walk model unprofitable, model ‘A’ will still experience significant positive returns beyond both the
market and bank returns.

Figure 58 illustrates the wide range of ENN architectures apparent in the non-dominated set of
models returned by the Pareto-ENN process. Figure 58a shows a Hinton plot of the weights of the
84 ENNs residing in the archive of the Nikkei 225 Pareto-ENN, each column representing a different
ENN (each white square denoting an active weight, and each empty square denoting a disconnected
weight). The weights are ordered such that wi,..., w1l represent the weights from the 10 inputs
nodes and the bias to the first hidden node, wyo, ..., w23 represent the same for the second hidden
node and so on. wiig, ..., wl2] represent the weights between the hidden layer and the output
node, and the output bias. As it can be seen, a wide range of weights and degrees of connectivity
are used, from 75 active weights (the 81st ENN) to 121 active weights (the 83rd ENN). Figure 58b
shows which inputs were used by each of the ENNs (with some ENNs using all the available inputs,
and others using as few as 6) and Figure 58c shows which hidden units when used by each of the

ENN set members (with between 7 and 10 hidden units used).



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 181

| ENNy ENNgs | " p(un)
E="
a)
N p(wia1)
v p(I)
b)
N p(I10)
v p(Hy)
c)
N p(Hio)

Figure 58: Example of the range of ENN topographies on an estimated Pareto front. Hinton plots
are shown for the ENN weights (a), input topography (b) and hidden topography (c) of the 84 ENNs
lying on the estimated Pareto error surface for the Nikkei 225 data.



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 182

11.2.2 Further efficiency tests: Comparison with single objective ES runs

As described earlier, another potential solution to this problem is to run a single objective opti-
miser many times on a problem keeping the other objective(s) ‘fixed’ (i.e. constraining acceptable
solutions to have the other objective(s) equal to or below/above a pre-defined value). It has been
argued previously that this is inefficient in time resources, however this statement will be empirically
investigated here. To facilitate this a uni- objective optimiser for the previous finance problem was
formulated. Here the optimiser (again a (1+1)-ES) is solely concerned with optimising return, for a
maximum acceptable risk level. The perturbation techniques and probabilities are identical to those
used in the MOENN previously, and again the bootstrap generalisation method is used to prevent
over-fitting. For each of the 37 finance problems five single objective ENNs were trained, with the
constraint of risk being no higher than 0.2, 0.4, 0.6, 0.8 and 1.0, for a maximum of 25000 generations

(meaning 185 separate optimiser runs). The optimiser is described in Algorithm 14.

Algorithm 14 Implementation of the uni-objective ES NN optimiser (bootstrap training approach),
for the finance problem.

Input: M, size of initial random population of solutions. Each solution chromosome x
representing the weights and topology of a NN model.
n, the number of bootstrap subsets generated from the original training sets.
s, the size of the bootstrap subsets.
r, the maximum risk allowed by a model.

Output: A single NN which estimates the maximum return possible given r.

1: Initialisation: Generate n bootstrap subsets of the training data of size s.
Generate random NN population of size M, such that each parameter
(weight) of the ENNs ~ N (0, @), and the binary part of the chromosome is
either initialised at 1 or ~ U(0,1). Generate the empty elite individual
Ey = . Update Eg with the fittest solution from the random population,
with respect to the chosen error term (using a solution’s worst term over the
n subsets), constrained that the highest risk on the subsets is lower than r.
Initialise generation counter ¢ := 0.

2: X/ = E;.
3: Genetic Recombination: As in Mp.
4: Fitness Assignment: Evaluate the ENN(s) X} with respect to return

on the training subsets presented. If the return is greater than that of Ey,
and risk is less than r, go to 5, otherwise go to 6.
5: Et+1 = X;
6: Looping: Iterate epoch count, ¢t := ¢ + 1. If stopping criteria have not been met
then go to 2, else terminate algorithm and save E; for evaluation on test data.
7: end

Each run was initialised with 200 random networks. The algorithm parameters were:



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 183

Probability of weight perturbation = 0.2

Probability of individual weight elimination = 0.02

Probability of individual node elimination = 0.02

Perturbation ~ N(0,0.1)

Initial weights ~ N(0,0.1)

Generations = 25,000

The progress of the elite ENN in objective space, E; in Algorithm 14, was recorded every 250
generations and compared to the set of ENNs discovered by the MOENN after 25000 generations,
the generation at which the single objective ENN is no longer dominated by member(s) of the saved
front F' being marked. For each test problem, if the average number of generations needed for the
single objective optimiser to train an ENN that is not behind F is less than 25000/|F| then there
is no efficiency benefit to using the MOENN training regime. If however the average number of
generations needed is greater than 25000/|F| there are tangible efficiency gains, to which a value

can even be assigned.

Results

Results from the different runs are shown in Table 23

On all bar two of the 37 test problems the MOES is shown to be more efficient than the uni-
objective optimiser - performing 22 times better on average (i.e. for the uni-objective optimiser to
find the same points in |F| it would need to perform 22 times more function evaluations). This
indeed may even be an underestimate - as nearly 40% of the 185 uni-objective optimiser runs did
not reach the front found by the MOES within 25000 generations (an example of this is shown in
Figure 59).

The implication of this is that the formulation of nominally uni-objective problem as a multi-
objective problem can actually improve the search process - as indeed has been previously postulated
(e.g. Abbass & Deb (2003)). This is most likely due to the synergies present in multi-objective search.
The evolution of a point in one area of objective space, through its decision space parameters, may

lead to its shifting to a different area of objective space. In multi-objective optimisation this solution



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 184

Table 23: Results comparing uni-objective and multi-objective optimiser. GV is the average number
of generations taken by the uni-objective to reach the estimated Pareto front found by the MOES.
GM is the number of generations per non-dominated point on the estimated Pareto front found by
the MOES. The ratio of the two values, GY/GM, gives an approximation as to how much more
efficient the MOES is at finding estimated Pareto solutions from a given set than the uni-objective
ES.

Financial Index GY GM | GYV/GM
MerVol 10650 | 892.9 11.9
Bovespa 1250 | 781.3 1.6

S&P TSX Composite | 4200 | 675.7 6.2
IPC 16850 | 263.2 64.0

Lima General 25000 | 1388.9 18.0
S&P 500 1900 342.5 5.5

All Ordinaries 25000 | 925.9 27.0
Shanghai Composite | 11700 | 384.6 30.4
Hang Seng 3200 | 471.7 6.7
BSE 30 15950 | 396.8 40.2
Jakarta Composite 14350 | 609.8 23.5
Nikkei 225 1950 625.0 3.1
KLSE Composite 2950 | 581.3 5.0
NZSE 40 500 925.9 0.5
Karachi 100 13300 | 431.0 30.8
PSE Composite 7950 | 568.1 14.0
Straits Times 24350 | 1086.9 22.4
Seoul Composite 1150 | 595.2 1.9
All Share 25000 | 1388.9 18.0
SET 17100 | 500.0 34.2
Taiwan Weighted 10950 | 675.7 16.2
ATX 13600 | 757.6 18.0
BEL-20 25000 | 581.4 43.0
PX50 20100 | 1086.9 18.5

KFX 25000 | 806.5 31.0

CAC 40 16750 | 294.1 57.0
DAX 25000 | 531.9 47.0
General Share 10600 | 609.8 17.4
MIBTel 18050 | 657.9 274
AEX General 15000 | 333.4 45.0
Moscow Times 750 1562.5 0.5
Madrid General 11150 | 735.3 15.2
Stockholm General 7150 | 609.8 11.7
Swiss Market 20550 | 362.3 36.7
ISE National 100 9700 | 347.2 27.9
FTSE 100 2350 | 925.9 2.5
TA-100 11700 | 454.5 25.7




CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 185

0.6
0.4 . 4
O
= o.”
I .
e
0.2 . e
. ‘O
(@]
"
/_/‘
0 Il Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 59: Risk and return on the Lima General index training data, the models found by the MOES
after 25000 generations plotted as points, the models found by the uni-objective ES with 5 different
risk maximums plotted as circles, again after 25000 generations.

is stored if it is non-dominating with other solutions in the area it has moved to. In the case of uni-
objective optimisation these kind or fortuitous movements are not easily sustained as a movement
in decision space is purely defined as better or worse - therefore the uni-objective formulation may

be more likely to be caught in local optima.

11.3 General comments

The MOENN framework has been shown to be a robust approach to multi-objective training in
noisy domains, with experimentation on 38 real-world data sets showing that a Pareto set of ENNs
training using the methodology can perform in a consistent manner on unseen test data. This
has been manifest in both the visual inspection of the trade-off fronts produced, and by statistical
comparison of different operating points on training data, and their relative position on test data.

The technique is also shown to generate significant results when compared to other models in the



CHAPTER 11. EMPIRICAL APPLICATION OF PARETO NEURAL NETWORKS 186

financial domain, and to produce significant returns even when considering transaction costs. New
methods to improve generalisation in MOENNSs have also been introduced and compared on test sets
from the multi-objective NN literature, with an approach based on the bootstrapping of training
data found to be significantly better than the comparative models.

The advances of this body of work as a whole will now be discussed in the concluding chapter of

the thesis.



Chapter 12

Conclusion

This thesis provides a synthesis of a number of methods, from a number of disparate application
domains, in the construction of a novel methodology for implementing multi-objective optimisation
within the NN domain. In addition a number of significant new techniques have been developed to
improve the general area of multi-objective optimisation.

In Part I:

e The theoretical development of two novel data structures (called dominated and non-dominated

trees) was presented for the storing of multi-dimensional points.

e Details of the operation, including computational complexity of these data structures was also

derived.

e These new structures are shown to perform faster than linear lists in the active archiving of

non-dominating sets for their use by multi-objective optimisation methods,

e In addition their use in the storing of general sets of multi-dimensional points is also highlighted.
In Part II:

e The generation of a new multi-objective variant of the recent particle swarm optimisation

algorithm based on the properties of the new data structures is presented.

187



CHAPTER 12. CONCLUSION 188

e It was demonstrated that this new algorithm more closely transfers the particle swarm heuristic
to the multi-objective domain than its peers which have been developed by other researchers

during the course of this thesis.

e It was also empirically demonstrated to be superior to the best performing of these competing

multi-objective particle swarm optimisers on a number of well known test problems.

e A general overview of the PSO and MOPSO algorithm has been provided, indicating the

strengths and weakness of the method and placing it in the context of other EC techniques.
In Part III:

e The formulation of a general MOENN architecture is provided, where the ENNs are adaptive

in both parameters and topologies.

e Novel generalisation techniques are derived from this general framework and a new method
based on bootstrap sampling of training data is shown to produce significantly better and

consistent results on test data.

e Results are provided on extensive real world financial forecasting problems, highlighting the

benefit of multi-objective ENN training.

12.1 Further issues

12.1.1 Bias/variance tradeoff in uni-objective problems

As discussed previously, a common problem in the uni-objective function modelling domain is the
calculation of appropriate network size. A number of different methods are used in the literature on
this matter which tend to consist consist of iteratively adding and removing nodes (OBS, OBD) or
penalising complex representation (i.e. weight decay regularisation). However, using the methods
introduced in this part, it is possible to estimate the optimum network complexity for a uni-objective
modelling task during the learning process and in a single run. Abbass (2001) has previously taken
this approach, trading off ENN accuracy and ENN size, however the method can be extended further
by encapsulating the complexity of a ENN in terms of the sum of its squared weights - making the

problem continuous in both dimensions as opposed to continuous in one and discrete in the other.



CHAPTER 12. CONCLUSION 189

12.1.2 Multi-objective simulated annealing and Markov chain Monte Carlo

Recent work has attempted to create simulated annealing multi-objective optimisation models
(Czyzak & Jaskiewicz, 1998; Hapke et al. , 2000; Jaskiewcz, 2001; Matos & Melo, 1999; Nam
& Park, 2000), although these generally have been of the form of linear sum methods. The work
presented in this thesis is equally applicable to these methods, both in terms of the use of the data
structures and the general ENN training procedures. A rigorous extension of simulated annealing
process to the multi-objective domain would however open up a whole new area of multi-objective
optimisation, as it would open the door for the development of Markov Chain Monte Carlo (Denison

et al. , 2002; Liu, 2001) multi-objective methods.



References

Abbass, H.A. 2001. A Memetic Pareto Evolutionary Approach to Artificial Neural Networks. Pages

1-12 of: The australian joint conference on artificial intelligence. Springer.

Abbass, H.A., & Deb, K. 2003. Searching under multi-evolutionary pressures. Pages 391-404 of:
Proceedings of the 2003 evolutionary multiobjective optimization conference (emo03). Springer-

Verlag.

Adya, M., & Collopy, F. 1998. How Effective are Neural Networks at Forecasting and Prediction?

A Review and Evalution. International Journal of Forecasting, 17, 481-495.

Alba, E., Aldana, J.F., & Troyla, J.M. 1993. Full Automatic ANN Design: A Genetic Approach.
Lecture Notes in Computer Science, 686, 399-404.

Angeline, P., Saunders, G., & Pollack, J. 1994. An Evolutionary Algorithm that Constructs Recur-
rent Neural Networks. IEEE Transactions on Neural Networks, 5(1), 54-65.

Armstrong, J.S., & Collopy, F. 1992. Error measures for generalizing about forecasting methods:

Empirical comparisons. International Journal of Forecasting, 8(1), 69-80.

Atiya, A.F., El Shoura, S.M., Shaheen, S.I., & EI Sherif, M.S. 1999. A Comparison Between Neural-
Network Forecasting Techniques—Case Study: River Flow Forecasting. IEEE Transactions on

Neural Networks, 10(2), 402-409.

Baluja, S. 1996. Evolution of an Artificial Neural Network Based Autonomous Land Vehicle Con-
troller. IEEE Transactions on Systems Man and Cybernetics - Part B: Cybernetics, 26(3),
450-463.

190



REFERENCES 191

Beale, G.O., & Cook, G. 1978. Optimal Digital Simulation of Aircraft via Random Search Tech-
niques. ATAA Journal of Guidance and Control, 1(4), 237-241.

Belfore, L., & Arkadan, A. 1997. Modeling Faulted Switched Reluctance Motors Using Evolutionary
Neural Networks. IEEE Transactions on Industrial Electronics, 44(2), 226-233.

Bentley, J.L. 1975. Multidimensional binary search trees used for associative searching. Communi-

cations of the ACM, 18(9), 507-517.

Bentley, J.L., & Friedman, J.H. 1979. Data Structures for Range Searching. Computing Surveys,
111(4), 398-409.

Bera, T., & Higgins, L. 1993. ARCH Models: Properties, Estimation and Testing. Journal of
Economic Surveys, 7(4), 305-362.

Berlanga, A., Molina, J.M., Sanchis, A., & Isasi, P. 1999. Applying Evolutionary Strategies to
Neural Networks Robot Controller. Lecture Notes in Computer Science, 1607, 516-525.

Bishop, C.M. 1998. Neural Networks for Pattern Recognition. Oxford University Press.

Borges, P.C., & Hansen, M.P. 1998. A basis for future successes in multiobjective combinatorial

optimization. Tech. rept. Technical University of Denmark. IMM-REP-1998-8.
Brealey, R.A., & Myers, S.C. 1996. Principles of Corporate Finance. 5th edn. McGraw-Hill.

Brill, F., Brown, D., & Martin, W. 1992. Fast Genetic Selection of Features for Neural Network
Classifiers. IEEE Transactions on Neural Networks, 3(2), 324-328.

Carlisle, A., & Dozier, G. 2001 (April). Tracking Changing Extrema with Particle Swarm Opti-
mizer. Tech. rept. CSSE01-08. Auburn University, Computer Science and Software Engineering

Department.

Chen, Q., & Weigand, W.A. 1992. Neural Net Model of Batch Process Optimization Based on An
Extended Genetic Algorithm. Pages 519-524 of: IJCNN’92 IEEE/INNS Baltimore, vol. IV.

Chen, Y., & O’Connell, R. 1997. Active Power Line Conditioner with a Neural Network Control.
IEEFE Transactions on Industrial Applications, 33(4), 1131-1136.



REFERENCES 192

Coello, C.A.C. 1999. A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization
Techniques. Knowledge and Information Systems. An International Journal, 1(3), 269-308.

Coello, C.A.C., & Lechunga, M.S. 2002. MOPSO: A Proposal for Multiple Objective Particle
Swarm Optimization. Pages 1051-1056 of: Proceedings of the 2002 Congess on Evolutionary
Computation, part of the 2002 IEEE World Congress on Computational Intelligence. Hawaii,
May 12-17: IEEE Press.

Coit, D.W., & Smith, A.E. 1996. Solving the redundancy allocation problem using a combined neural

network /genetic algorithm approach. Computers and operations research, 23(6), 515-526.

Conradie, A.V.E., Miikkulainen, R., & Aldrich, C. 2002a. Adaptive Control utilising Neural Swarm-
ing. Pages 60-67 of: Proceedings of the Genetic and Evolutionary Computation Conference,
New York, USA.

Conradie, A.V.E., Miikkulainen, R., & Aldrich, C. 2002b. Intelligent Process Control utilising
Symbiotic Memetic Neuro-Evolution. Pages 623-628 of: Proceedings of the 2002 IEEE Congress
on Evoluionary Computation (CEC-2002).

Czyzak, P., & Jaskiewicz, A. 1998. Pareto simulated annealing - a metaheuristic technique for
multi-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7,

34-47.

de Berg, M., van Kreveld, M., Overmars, M., & Schwarzkopf, O. 1997. Computational geometry :

algorithms and applications. Berlin: Springer.

de Garis, H. 1991. GenNETS : Genetically Programmed Neural Networks. Pages 1891-1396 of:
Proceedings of IJCNN’91 Singapore IEEE/INNS, vol. 2.

Deb, K. 1999. Multi-objective genetic algorithms: Problem difficulties and construction of test
problems. Ewvolutionary computation, 7(3), 205-230.

Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

Deb, K., & Jain, S. 2002. Running Performance Metrics for Evolutionary Multi-objective Optimiza-
tion. Tech. rept. 2002004. Indian Insitute of Technology Kanpur.



REFERENCES 193

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. 2000. A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multi-Objective Optimization: NSGA-II. Pages 84/9-858 of: Proceedings
of Parallel Problem Solving from Nature - PPSN vi. Springer.

Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. 2001 (August). Scalable Test Problems for Evolu-
tionary Multi-Objective Optimization. Tech. rept. 2001001. Kanpur Genetic Algorithms Labo-
ratory (KanGAL).

Denison, D.G.T, Holmes, C.C., Mallick, B.K., & Smith, A.F.M. 2002. Bayesian Methods for Non-

linear Classification and Regression. Wiley.

Dominic, S., Das, R., Whitley, D., & Anderson, C. 1992. Genetic Reinforcement Learning for Neural
Networks. Pages 71-76 of: Proceedings of IJCNN’92 Seattle IEEE/INNS, vol. II.

Dracopoulos, D.C., & Jones, A.J. 1995. Neural Networks and Genetic Algorithms for the Attitude
Control Problem. Lecture Notes in Computer Science, 930, 315-321.

Duch, W. 1999. Alternatives to gradient-based neural training. Pages 59—64 of: Fourth Conference

on Neural Networks and Their Applications, Zakopane, Poland.

Duch, W., & Korczak, J. 1999. Optimization and global minimization methods suitable for neural
networks. Tech. rept. KMK UMK 1/99. Nicolaus Copernicus University, Faculty of Physics,

Astronomy and Informatics.

Ehrgott, M., & Gandibleux, X. 2000. An Annotated Bibliography of Multi-objective Combinatorial
Optimization. OR Spektrum, 22(4), 425-460.

Engelbrecht, A., & Ismail, A. 1999. Training product unit neural networks. Stability and Control:
Theory and Applications, 2(1-2), 59-74.

Everson, R.M., Fieldsend, J.E., & Singh, S. 2002. Full Elite Sets for Multi-Objective Optimisa-
tion. Pages 343-854 of: Parmee, 1.C. (ed), Adaptive Computing in Design and Manufacture V.

Springer.

Fang, J., & Xi, Y. 1997. Neural Network design based on evolutionary programming. Artificial
Intelligence in Engineering, 11, 155-161.



REFERENCES 194

Fieldsend, J.E. 1999. Non-linear ARCH Volatility Estimation Using Neural Networks. MSc Thesis,

University of Plymouth.

Fieldsend, J.E., & Singh, S. 2002a. A Multi-Objective Algorithm based upon Particle Swarm Op-
timisation, an Efficient Data Structure and Turbulence. Pages 37-44 of: Proceedings of UK
Workshop on Computational Intelligence (UKCI’02).

Fieldsend, J.E., & Singh, S. 2002b. Pareto Multi-Objective Non-Linear Regression Modelling to Aid
CAPM Analogous Forecasting. Pages 888-393 of: Proceedings of the 2002 IEEE International
Joint Conference on Neural Networks, part of the 2002 IEEE World Congress on Computational
Intelligence. Hawaii, May 12-17: IEEE Press.

Fieldsend, J.E., Everson, R.M., & Singh, S. 2003. Using Unconstrained Elite Archives for Multi-

Objective Optimisation. IEEE Transactions on Evolutionary Computation, 7(3), 305-323.

Fogel, D.B., Wasson, E.C., & Boughton, E.M. 1995. Evolving neural networks for detecting breast
cancer. Cancer Letters, 96, 49-53.

Fogel, D.B., Wasson, E.C., Boughton, E.M., & Porto, V.W. 1997. A step toward computer-assisted

mammography using evolutionary programming and neural networks. Cancer Letters, 93-97.

Fonseca, C.M., & Fleming, P.J. 1993. Genetic Algorithms for Multiobjective Optimizationi: Formu-
lation, Discussion and Generalization. Pages 416—423 of: Proceedings of the Fifth International

Conference on Genetic Algorithms. San Mateo, California: Morgan Kaufmann.

Fonseca, C.M., & Fleming, P.J. 1995. An Overview of Evolutionary Algorithms in Multiobjective

Optimization. Evolutionary Computation, 3(1), 1-16.

Greenwood, G.W. 1997. Training Partially Recurrent Neural Networks Using Evolutionary Strate-
gies. IEEFE Transactions on Speech and Audio Processing, 5(2), 192-194.

Greenwoood, G.W. 1997. Training Multiple-Layer Perceptrons to Recognise Attractors. IEEFE
Transactions on Evolutionary Computation, 1(4), 244-248.

Gujarati, D. 1992. Essentials of Econometrics. McGraw-Hill.

Hajela, P., & Lin, C-Y. 1992. Genetic search strategies in multicriterion optimal design. Structural

Optimization, 4, 99-107.



REFERENCES 195

Hann, T., & Steurer, E. 1996. Much ado about nothing? Exchange rate forecasting: Neural networks

vs. linear models using monthly and weekly data. Neurocomputing, 10(4), 323-340.

Hanne, T. 1999. On the convergence of multiobjective evolutionary algorithms. Furopean Journal

of Operational Research, 117, 553-564.

Hanne, T. 2000. Global Multiobjective Optimization Using Evolutionary Algorithms. Journal of
Heuristics, 6, 347-360.

Hansen, J.V., & Meservy, R.D. 1996. Learning experiments with genetic optimization of a generalized

regression neural network. Decision Support Systems, 18(3), 317-325.

Hansen, M.P., & Jaszkiwicz, A. 1998. Evaluating the quality of approzimations to the non-dominated
set. Tech. rept. IMM-REP-1998-7. Institute of Mathematical Modelling, Technical University

of Denmark.

Hapke, M., Jaskiewicz, A., & Slowinski, R. 2000. Pareto simulated annealing for fuzzy multi-

objective combinatorial optimization. Journal of Heuristics, 6(3), 329-345.
Haykin, S. 1999. Neural Networks A Comprehensive Foundation. 2 edn. Prentice Hall.

Horn, J., Nafpliotis, N., & Goldberg, D.E. 1994. A Niched Pareto Genetic Algorithm for Multiobjec-
tive Optimization. Pages 82-87 of: Proceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence, vol. 1. Piscataway, New
Jersey: IEEE Service Center.

Hu, X., & Eberhart, R. 2002. Multiobjective Optimization Using Dynamic Neighborhood Particle
Swarm Optimization. In: Proceedings of the 2002 Congess on Evolutionary Computation, part
of the 2002 IEEE World Congress on Computational Intelligence. Hawaii, May 12-17: IEEE

Press.

Huang, S., & Huang, C. 1997. Application of Genetic-Based Neural Networks to Thermal Unit
Commitment. IEEE Transactions on Power Systems, 12(3), 654-660.

Hung, S., & Adeli, H. 1994. A Parallel Genetic/Neural Network Learning Algorithm for MIMD
Shared Memory Machines. IEEE Transactions on Neural Networks, 5(6), 900-909.



REFERENCES 196

Ishigami, H., Fukuda, T., Shibata, T., & Fumihito, A. 1995. Structural optimization of fuzzy neural
network by genetic algorithm. Fuzzy Sets and Systems, 71(3), 257-264.

Ismail, A., & Engelbrecht, A. 1999. Training Product Units in Feedforward Neural Networks using
Particle Swarm Optimization. Pages 86—40 of: Proceedings of the International Conference on

Articial Intelligence, Durban, South Africa.

Ismail, A., & Engelbrecht, A. 2000. Global optimization algorithms for training product unit neural
networks. Pages 132-137 of: International Joint Conference on Neural Networks IJCNN’2000,
vol. I. IEEE Computer Society, LosAlamitos, CA.

Janson, D.J., & Frenzel, J.F. 1992. Application of Genetic Algorithms to the training of Higher
Order Neural Networks. Journal of Systems Engineering, 2(4), 272-276.

Janson, D.J.; & Frenzel, J.F. 1993. Training Product Unit Neural Networks with Genetic Algorithms.
IEEFE Expert, 8(5), 26-33.

Jaskiewcz, A. 2001. Multiple objective metaheuristic algorithms for combinatorial optimization.

Ph.D. thesis, Poznan University of Technology.
Jones, F. 1993. Lebesgue Integration on Fuclidean Space. Boston: Jones and Bartlett.

Kaastra, I., & Boyd, M. 1996. Designing a neural network for forecasting financial and economic

time series. Neurocomputing, 10(3), 215-236.

Kennedy, J., & Eberhart, R. 1995. Particle Swarm Optimization. Pages 1942-1948 of: Proceedings
of the Fourth IEEE International Conference on Neural Networks. Perth, Australia: IEEE

Service Center.

Kennedy, J., & Spears, W. 1998. Matching algorithms to problems: an experimental test of the
particle swarm and some genetic algorithms on the multimodal problem generator. Pages 74-77
of: Proceedings 1998 IEEE World Congress on Computational Intelligence, Anchorage: Alaska,
May 1998.

Khare, V., Yao, X., & Deb, K. 2002. Performance Scaling of Multi-Objective Evolutionary Al-
gorithms. Tech. rept. 2002009. Kanpur Genetic Algorithms Laboratory (KanGAL), Indian

Institute of Technology Kanpur.



REFERENCES 197

Knowles, J., & Corne, D. 1999. The pareto archived evolution strategy: A new baseline algorithm
for pareto multiobjective optimisation. Pages 98-105 of: Proceedings of the 1999 Congress on

Evolutionary Computation. Piscataway, NJ: IEEE Service Center.

Knowles, J.D., & Corne, D. 2000. Approximating the Nondominated Front Using the Pareto
Archived Evolution Strategy. Evolutionary Computation, 8(2), 149-172.

Koza, J.R., & Rice, J.P. 1992. Genetic generation of both the weights and architecture for a neural
network. Pages 397-404 of: Proceedings of IJCNN’92 Seattle IEEE/INNS, vol. II.

Kupinski, M.A., & Anastasio, M.A. 1999. Multiobjective Genetic Optimization of Diagnostic Clas-
sifiers with Implications for Generating Receiver Operating Characterisitic Curves. leee Trans-

actions on Medical Imaging, 18(8), 675-685.

Lajbcygier, P., Boek, C., Palaniswami, M., & Flitman, A. 1995. Neural Network Pricing of all
Ordinaries SPI Options on Futures. Pages 64-77.

Laumanns, M., Zitzler, E., & Thiele, L. 2000. A Unified Model for Multi-Objective Evolutionary
Algorithms with Elitism. Pages 46-53 of: Proceedings of the 2000 Congress on Evolutionary
Computation. Piscataway, NJ: IEEE Service Center.

Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. 2001 (June). On the Convergence and Diversity-
Preservation Properties of Multi-Objective Evolutionary Algorithms. Tech. rept. TIK-Report
108. Swiss Federal Institute of Technology Zurich (ETH).

LeBaron, B., & Weigend, A. 1998. A bootstrap Evaluation of the Effect of Data Splitting on
Financial Time Series. IEEE Transactions on Neural Networks, 9(1), 213-220.

Lee, S-K., & Jang, D. 1996. Translation, rotation and scale invariant pattern recognition using spec-
tral analysis and hybrid genetic-neural-fuzzy networks. Computers and Industrial Engineering,

30(3), 511-522.
Liu, J.S. 2001. Monte Carlo Strategies in Scientific Computing. Springer.

Liu, Y., & Yao, X. 1998. Towards designing neural network ensembles by evolution. Lecture Notes

in Computer Science, 1498, 623—632.



REFERENCES 198

Lo, J.T. 2002. Minimization through Convexitization in Training Neural Networks. Pages 1889-
1894 of: Proceedings of the IEEE International Joint Conference on Neural Networks, part of
the IEEE World Congress on Computational Intelligence. Hawaii, May 12-17: IEEE Press.

Lo, J.T., & Bassu, D. 2002a. Robust Approximation of Uncertain Functions where Adaptation is

Impossible. Pages 1956-1961 of: Proceedings of the IEEE International Joint Conference on

Neural Networks, part of the IEEE World Congress on Computational Intelligence. Hawaii,
May 12-17: IEEE Press.

Lo, J.T., & Bassu, D. 2002b. Robust Identification of Uncertain Dynamical Systems where Adapta-

tion is Impossible. Pages 1558-1563 of: Proceedings of the IEEE International Joint Conference

on Neural Networks, part of the IEEE World Congress on Computational Intelligence. Hawaii,
May 12-17: IEEE Press.

Lopez, P., Vilarino, D.L., & Cabello, D. 1999. Genetic Algorithm Based Training for Multilayer

Discrete-Time Cellular Neural Networks. Lecture Notes in Computer Science, 1607, 467-476.

Lovbjerg, M., Rasmussen, T.K., & Krink, T. 2001. Hybrid Particle Swarm Optimiser with Breeding
and Subpopulations. Pages 469-476 of: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B.,
Voigt, H-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., & Burke, E. (eds),

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001). San
Francisco, California, USA: Morgan Kaufmann.

Maniezzo, V. 1994. Genetic Evolution of the Topology and Weight Distribution of Neural Networks.
IEEFE Transactions on Neural Networks, 5(1), 39-53.

Maricic, B. 1991. Genetically Programmed Neural Network for Solving Pole-Balancing Problem.

Pages 1273-1277 of: Artificial Neural Networks: Proceedings of the International Conference
on Neural Networks. North-Holland.

Marin, F.J., & Sandoval, F. 1993. Genetic Synthesis of Discrete-Time Recurrent Neural Network.
Lecture Notes in Computer Science, 686, 179—184.

Marti, L. 1992. Genetically Generated Neural Networks I: Representational Effects. Pages 537-542
of: Proceedings of IJCNN’92 Baltimore IEEE/INNS, vol. IV.



REFERENCES 199

Matos, M.A., & Melo, P. 1999. Multiobjective Reconfiguration for Loss Reduction and Service
Restoration Using Simulated Annealing. In: Proceedings of the IEEE Budapest Power Tech’99
Conference. I EEE.

McCreight, E.M. 1980. Efficient algorithms for enumerating intersecting intervals and rectangles.

Tech. rept. CSL-80-9. Xerox Palo Alto Research Center, Palo Alto, CA, USA.
McCreight, E.M. 1985. Priority search trees. STAM Journal on Computing, 14, 257-276.

McDonnell, J., & Waagen, D. 1994. Evolving Recurrent Perceptrons for Time-Series Modeling.
IEEFE Transactions on Neural Networks, 5(1), 24-38.

Merelo, J.J., Paton, M., Canas, A., Prieto, A., & Moran, F. 1993. Optimization of a competitive
learning neural network by Genetic Algorithms. Lecture Notes In Computer Science, 686,

185-192.

Moody, J. 1998. Forecasting the Economy with Neural Nets: A survey of Challenges and Solutions.
Pages 347-371 of: Orr, G.B., & Mueller, K-R (eds), Neural Networks: Tricks of the Trade.

Berlin: Springer.

Mostaghim, S., Teich, J., & Tyagi, A. 2001 (December). Comparison of Data Structures for Storing
Pareto Sets in MOEA. Tech. rept. 02/01. Computer Engineering Lab., University of Paderborn.

Mostaghim, S., Teich, J., & Tyagi, A. 2002. Comparison of Data Structures for Storing Pareto-sets
in MOEAs. In: Proceedings of the 2002 Congess on Evolutionary Computation, part of the 2002
IEEE World Congress on Computational Intelligence. Hawaii, May 12-17: IEEE Press.

Moya, M.M., & Hush, D.R. 1996. Network Constraints and Multi-ojective Optimization for One-
class Classification. Neural Networks, 9(3), 463-474.

Murata, T., & Ishibuchi, H. 1995. MOGA: Multi-objective genetic algorithms. Pages 289-29/ of:
Proceedings of the 1995 IEEFE International Conference on Evolutionary Computation. Perth,
November: IEEE Press.

Nam, D., & Park, C.H. 2000. Multiobjective Simulated Annealing - A Comparative Study to

Evolutionary Algorithms. International Journal of Fuzzy Systems, 2(2), 87-97.



REFERENCES 200

Nelson, M., Hill, T., Remus, W., & O’Connor, M. 1999. Time Series Forecasting Using Neural
Networks: Should the Data be Deseaonalized First? Journal of Forecasting, 18, 359—-367.

Olmez, T. 1997. Classification of ECG waveforms using RCE neural network and genetic algorithms.

Electronics Letters, 33(18), 1561-1562.

O’Neil, A. 1992. Genetic Based Training of Two-Layer, Optoelectronic Neural Network. Electronics
Letters, 28(1), 47-48.

Ozcan, E., & Mohan, C.K. 1999. Particle Swarm Optimization: Surfing the Waves. Pages 1939-1944
of: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., & Zalzala, A. (eds), Proceedings
of the Congress on Evolutionary Computation, vol. 3. Mayflower Hotel, Washington D.C., USA:
IEEE Press.

Pareto, V. 1927. Manuel D’Economie Politique. 2nd edn. Paris: Marcel Giard.

Park, S ., Park, L-J., & Park, C. 1995. A Neuro-Genetic Controller for Nonminimum Phase Systems.
IEEFE Transactions on Neural Networks, 6(5), 1297-1300.

Parks, G. T., & Miller, 1. 1998. Selective Breeding in a Multiobjective Genetic Algorithm. Lecture
Notes in Computer Science, 1498, 250-259.

Parsopoulos, K., & Vrahatis, M. 2001. Particle Swarm Optimizer in Noisy and Continuously Chang-
ing Environments. Pages 289-29/4 of: Hamza, M.H. (ed), Artificial Intelligence and Soft Com-
puting. JASTED/ACTA press.

Parsopoulos, K.E., & Vrahatis, M.N. 2002. Particle Swarm Optimization Method in Multiobjective
Problems. Pages 603—-607 of: Proceedings of the 2002 ACM Symposium on Applied Computing
(SAC 2002).

Parsopoulos, K.E., Laskari, E.C., & Vrahatis, M.N. 2001a. Solving L1 Norm Errors-In-Variables
Problems. Pages 185-190 of: Hamza, M.H. (ed), Artificial Intelligence and Applications.
IASTED/ACTA Press.

Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D., & Vrahatis, M.N. 2001b. Stretching tech-
nique for obtaining global minimizers through Particle Swarm Optimization. Pages 22-29 of:

Proceedings of the Particle Swarm Optimization Workshop, Indianapolis, USA.



REFERENCES 201

Parunak, H. Van Dyke, Brueckner, S., Sauter, J., & Matthews, R.S. 2001. Distinguishing Environ-
mental and Agent Dynamics: A Case Study in Abstraction and Alternate Modeling Technolo-

gies. Lecture Notes in Computer Science, 1972, 1-14.

Porto, V.W., Fogel, D.B., & Fogel, L.J. 1995. Alternative Neural Network Training Methods. IFEE
Ezpert, 10(3), 16-22.

Prados, D. 1992. New Learning Algorithm for Training Multilayered Neural Networks that uses
Genetic-Algorithm Techniques. Electronics Letters, 28(16), 1560-1561.

Ray, T., & Liew, K.M. 2002. A Swarm Metaphor for Multiobjective Design Optimization. FEngi-
neering Optimization, 34(2), 141-153.

Refenes, A-P.N., Burgess, A.N., & Bentz, Y. 1997. Neural Networks in Financial Engineering: A
Study in Methodology. IEEE Transactions on Neural Networks, 8(6), 1222-1267.

Saad, E.W., Prokhorov, D.V.; & Wunsch, D.C. 1998. Comparitive Study of Stock Trend Prediction
Using Time Delay, Recurrent and Probabilistic Neural Networks. JEEE Transactions on Neural

Networks, 9(6), 1456-1470.
Saravanan, N., & Fogel, D.B. 1998. Evolving Neural Control Systems. IEEE Expert, 10(3), 23-27.

Schaffer, J., Caruana, R., & Eshelman, L. 1990. Using Genetic Search to Exploit the Emergent
Behavior of Neural Networks. Physica D, 42, 244-248.

Schaffer, J.D. 1985. Multiple objective optimization with vector evaluated genetic algorithms. Pages

99-100 of: Proceedings of the First International Conference on Genetic Algorithms.

Schittenkopf, C., Tino, P., & Dorffner, G. 2000. The profitability of trading volatility using real-
valued and symbolic models. Pages 8-11 of: IEEE/IAFE/INFORMS 2000 Conference on

Compuational Intelligence for Financial Engineering (CIFEr).

Shi, Y., & Eberhart, R. 1998. Parameter Selection in Particle Swarm Optimization. Pages 591-601

of: Proceedings of the Seventh Annual Conference on Evolutionary Programming.

Spofford, J., & Hintz, K. 1991. Evolving Sequential Machines in Amorphous Neural Networks. Pages
973-978 of: Artificial Neural Networks: Proceedings of the International Conference on Neural
Networks. North-Holland.



REFERENCES 202

Srinivas, M., & Patnaik, L.M. 1991. Learning Neural Network Weights using Genetic Algorithms
- Improving Performance By Search-Space Reduction. Pages 2331-2336 of: Proceedings of
IJCNN’91 Singapore IEEE/INNS, vol. 3.

Srinivas, N., & Deb, K. 1995. Multiobjective Optimization Using Nondominated Sorting in Genetic
Algorithms. Ewvolutionary Computation, 2(3), 221-248.

Sun, M., & Steuer, R.E. 1996. InterQuadi: An ineteractive quad tree based procedure for solving
the discrete alternative multiple criteria problem. Furopean Journal of Operational Research,

462-476.

Tan, K.C., Lee, T.H., & Khor, E.F. 2002. Evolutionary Algorithms for Multiobjective Optimization:

Performance Assessments and Comparisons. Artificial Intelligence Review, 253-260.

Topchy, A.P., Lebedko, O.A., Miagkikh, V.V.; & Kasabov, N.K. 1997. An Approach to Radial Basis
Function Networks Training based on Cooperative Evolution and Evolutionary Programming.

In: Proceedings of the International Conference on Neural Information Processing, ICONIP’97.

van den Bergh, F. 1999. Particle Swarm Weight Initialization in Multi-layer Perceptron Artificial
Neural Networks. Pages 41-45 of: Proceedings of the International Conference on Articial

Intelligence, Durban, South Africa.

van den Bergh, F.; & Engelbrecht, A. 2000. Cooperative Learning in Neural Networks using Particle

Swarm Optimizers. South African Computer Journal, 84-90.

van den Bergh, F., & Engelbrecht, A. P. 2001a. Effects of Swarm Size on Cooperative Particle Swarm
Optimisers. Pages 892-899 of: Spector, Lee, Goodman, Erik D., Wu, Annie, Langdon, W. B.,
Voigt, Hans-Michael, Gen, Mitsuo, Sen, Sandip, Dorigo, Marco, Pezeshk, Shahram, Garzon,
Max H., & Burke, Edmund (eds), Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001). San Francisco, California, USA: Morgan Kaufmann.

van den Bergh, F., & Engelbrecht, A.P. 2001b. Training Product Unit Networks using Cooperative
Particle Swarm Optimisers. In: Proceedings of the International Joint Conference on Neural

Networks (IJCNN), Washington DC, USA.

Veldhuizen, D. Van, & Lamont, G. 2000a. Multiobjective Evolutionary Algorithms: Analyzing the
State-of-the-Art. Ewvolutionary Computation, 8(2), 125-147.



REFERENCES 203

Veldhuizen, D. Van, & Lamont, G. 2000b. On Measuring Multiobjective Evolutionary Algorithm
Performance. Pages 204211 of: Proceedings of the 2000 Congress on Evolutionary Computa-

tion.

Vico, F.J., & Sandoval, F. 1991. Use of Genetic Algorithms in Neural Networks Definition. Lecture
Notes in Computer Science, 540, 196-203.

Virili, F., & Freisleben, B. 2000. Nonstationarity and Data Preprocessing for Neural Network
Predictions of an Economic Time Series. Pages 5129-5136 of: Proceedings of IJCNN 2000,
Como IEEE/INNS.

Wang, Y., & Wahl, F.M. 1997. Multiobjective neural network for image reconstruction. IEE

Proceedings - Vision, Image and Signal Processing, 144(4), 233-236.

Wen, C-G., & Lee, C-S. 1998. A neural network approach to multiobjective optimization for water

quality management in a river basin. Water Resources Research, 34(3), 427-436.

White, D. 1993. GANNet: A Genetic Algorithm for Optimizing Topology and Weights in Neural
Network Design. Lecture Notes in Computer Science, 686, 322-327.

Whitehead, B.A., & Choate, T.D. 1996. Cooperative - Competitive Genetic Evolution of Radial
Basis Function Centers and Widths for Time Series Prediction. IEEE Transactions on Neural

Networks, 7(4), 869-880.

Wieland, A.P. 1992. Evolving Neural Network Controllers for Unstable Systems. Pages 667-673 of:
Proceedings of IJCNN’92 Seattle IEEE/INNS, vol. II.

Wilcoxon, F., & Wilcox, R.A. 1964. Some Rapid Approximate Statistical Procedures. New York:
Lederle Labs.

Yao, J., & Tan, C.L. 2000. Time dependant Directional Profit Model for Financial Time Series Fore-
casting. In: IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference

on Neural Networks.

Yao, S., wei, C., & He, Z. 1996. Evolving wavelet neural networks for function approximation.

Electronics Letters, 32(4), 360-361.



REFERENCES 204

Yao, X. 1999. Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9), 1423-1447.

Yao, X., & Liu, Y. 1997. A New Evolutionary System for Evolving Artificial Neural Networks. IEEFE
Transactions on Neural Networks, 8(3), 694-713.

Yao, X., & Liu, Y. 1998. Making Use of Population Information in Evolutionary Neural Networks.
IEEFE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 28(3), 417-425.

Yao, X., Liu, Y., & Lin, G. 1999. Evolutionary Programming Made Faster. Ieee transactions on

evolutionary computation, 3(2), 82-102.

Zaus, M., & Roland, M. 1991. Fusion-Technology and the design of Evolutionary Machines for Neural
Networks. Pages 1165-1168 of: Artificial Neural Networks: Proceedings of the International

Conference on Neural Networks. North-Holland.

Zhang, B-T., & Veenker, G. 1991. Neural Networks that Teach Themselves through Genetic Dis-
covery of Novel Examples. Pages 690-695 of: Proceedings of IICNN’91 Singapore IEEE/INNS,

vol. 1.

Zhang, C., & Shoa, H. 2001. An ANN’s Evolved by a New Evolutionary System and its Application.
Pages 3562-3563 of: Proceedings of the 89th IEEE conference on Decision and Control, vol. 4.

Zitar, R., & Hassoun, M. 1995. Neurocontrollers Trained with Rules Extracted by a Genetic Assisted

Reinforcement Learning System. IEEE Transactions on Neural Networks, 6(4), 859-876.

Zitzler, E. 1999. Fvolutionary Algorithms for Multiobjective Optimization: Methods and Applica-
tions. Ph.D. thesis, Swiss Federal Institute of Technology Zurich (ETH). Diss ETH No. 13398.

Zitzler, E., & Thiele, L. 1999. Multiobjective Evolutionary Algorithms: A Comparative Case Study
and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 3(4),
257-271.

Zitzler, E., Deb, K., & Thiele, L. 2000. Comparison of Multiobjective Evolutionary Algorithms:

Empirical Results. Evolutionary Computation, 8(2), 173-195.

Zitzler, E., Laumanns, M., & Thiele, L. 2001 (May). SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm. Tech. rept. TIK-Report 103. Swiss Federal Institute of Technology Zurich
(ETH).



