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CHAPTER I

Introduction

The U.S. Environmental Protection Agency estimates that in 1996 there were

more than 120 million light-duty vehicles on the road in the United States [36].

According to the U.S. Department of Transportation, individuals averaged four trips

per day in 2001, 87% of which were taken in personal vehicles [60]. The destinations

for these trips include family and personal reasons such as shopping and errands,

social and recreational trips for vacation or to see friends, and work-related commuter

travel [60]. As personal vehicles are involved in so many aspects of of daily life in

the United States, the sustainability of this mode of travel is of national interest.

Transportation sources accounted for 67% of the petroleum consumption in the

United States in 1999, and net imports fulfilled 49.6% of the total 1999 U.S. petroleum

consumption [15]. Additionally, the transportation system causes adverse impacts

on the environment which include emissions of criteria air pollutants and greenhouse

gases, habitat and land use, harm to water quality and aquatic resources, hazardous

materials incidents, noise, and creation of solid waste [36]. These energy and en-

vironmental concerns contribute to the complexity of analysis and decision-making

within the transportation sector.

Consider the problem of determining when, and with what, to replace a passenger
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vehicle. This decision will impact economics, emissions and energy use. The best

decision for economics may not be a good decision for emissions. How do we trade-off

these various objectives to find the “right” decision?

Asset replacement problems that minimize the cost (or maximize the profit) to the

decision-maker have been studied for many years (eg. [59], [9], [55], [38], [37]). There

is, however, a lack of literature addressing replacement problems in which conflicting

objectives must be considered. The study of multiobjective optimization is motivated

by the fact that “many decision problems have to be placed in a much broader

framework than covered by the interest of the decision-maker” [47]. The literature

concerning multiobjective analysis therefore attempts to aid decision-makers who

must consider more than one criterion at a time.

Multiobjective analysis has its origins in microeconomics theory from the late

nineteenth century [58]. Optimization literature on the subject has been growing

since the late 1960s [10]. For the purposes of this discussion, we define a multiobjec-

tive optimization problem as a mathematical program with objective function that

is a vector of attributes to be maximized or minimized [10]. An important difference

encountered when optimizing over several objectives is that one is not likely to find

a single solution that is best (a global optimum), as is usually the result with single-

objective optimization [57]. The aim, therefore, is to present the decision-maker with

a set of good solutions from which he or she may choose according to the specific

agenda of the particular decision-maker. Because the existence of a single solution

attaining the desired extreme values of all components of the objective is rare, we

wish to trade-off alternate strong solutions. That is, within the set of feasible solu-

tions, we seek a solution that is “good” in all objectives, conceding that it is unlikely

to be “best” for any objective.
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Traditional approaches to multiobjective optimization have included some tech-

niques in which the decision-maker must specify upfront the relative importance of

each objective under consideration. An example of this is the weighting method,

in which a single objective is created by taking the inner product of the objective

vector with a vector of predetermined weights [10]. Another traditional approach is

an adaptation of goal programming in which the decision-maker specifies acceptable

ranges for the objectives, and a single solution to minimize deviation from the goals

is found [52]. Similar to this approach is the ε-constraint method [10] in which all

objectives but one are constrained, and the final objective is minimized. By varying

the constraints on the objectives and alternating which objective is minimized, the

ε-constraint method can give a decision-maker a good indication of the available so-

lutions. The many iterations required, and the fine mesh of constraints which must

be employed in order that solutions are not missed, can make implementation of such

methods extremely tedious.

Due to the fact that traditional approaches to multiobjective optimization are

limited to discovering one solution at a time, interest in population-based evolution-

ary algorithms, which may find multiple new solutions each generation, has grown

quickly in the past 20 years [17]. Because we are able to find multiple solutions more

easily, the first stages of the optimization are not limited to determining a single,

“best” solution. Instead we would like to construct the set of Pareto-optimal solu-

tions, that is, the set of solutions for which the improvement in one objective requires

degrading the value of another objective. From this set, a decision-maker may glean

valuable trade-off information, eventually leading him or her to the desired “right”

solution for the specific circumstances.

For two solutions, x1 and x2, to a minimization problem with vector objective
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function f(x) = [f1(x), . . . , fK(x)], we say f(x1) dominates f(x2) if and only if

fi(x1) ≤ fi(x2) for all i ∈ {1, . . . , K} and there is at least one i ∈ {1, . . . , K} for

which fi(x1) < fi(x2). In this case, x2 is inferior to x1. For a given set, Ω, of

solutions to the problem, any xj ∈ Ω which is not inferior to any other solution in Ω

is referred to as noninferior with respect to Ω, and its objective vector f(xj) is locally

nondominated. We reserve the term “Pareto-optimal” for those solutions which are

noninferior with respect to the entire decision variable space of the problem under

consideration. We note that the aim with each algorithm’s implementation may be

to construct a representative set of Pareto-optimal solutions rather than the entire

Pareto-optimal set.

Construction of multiobjective, metaheuristic algorithms to find a set of Pareto-

optimal solutions allows us to gain insight into tradeoffs over the life of a single

vehicle. This can help inform the decisions of individual consumers or automobile

manufacturers concerned with determining a vehicle’s design life. A third category

of stakeholders that influences the composition of the population of vehicles on the

road at any time is the national policymakers. These decision-makers implement

policies that may have broad impacts, such as the CAFE (Corporate Average Fuel

Economy) standards restricting the profile of the vehicles for sale each year, fuel

costs and taxes, infrastructure development for alternative fuels and incentives for

consumers to purchase vehicles with new technology.

In order to provide information regarding the impacts of such policy changes, we

must broaden our analysis from the single vehicle to a population-level perspective.

Walker [63] defines public policy analysis as “a process that generates information

on the consequences that would follow the adoption of various policies,” and this is

the information we would like to present to transportation-related decision-makers
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at the national policy level. Our approach to developing an understanding of these

consequences is to construct a model in which we aggregate the decisions of a variety

of vehicle owners. These consumers are influenced by each other, the choices made

available to them by the automobile manufacturers, public policy mandates, and

their physical and economic environments. The model aggregating these consumers

is therefore quite complex, and we look to the discipline of agent-based models for

experience in constructing the decision-support system for policymakers.

Multiagent models have been used in a wide variety of large-scale applications.

Elliot and Kiel [23] propose an agent-based model for understanding terrorist orga-

nizations, Bui [7] describes a multiagent approach to telemedicine, and Kwon and

Sadeh [49] develop a multiagent architecture to enable a new understanding of com-

parative shopping. There are limitations of the large-scope, complex models which

are somewhat reflected in Sterman’s statement that “When we point to outside

shocks and side effects to excuse the failure of our policies, we think we are describ-

ing a capricious and unpredictable reality. In fact, we are highlighting the limitations

of our mental models” [39]. Models involving environmental impacts and reactions

have, however, received encouraging attention from the multiagent, complex systems

perspective (see [13], [65], [20], [34], and [25]), and we work take these concerns into

consideration as we approach our multivehicle, multiobjective replacement problem.

In Chapter II we discuss the specific vehicle replacement problem analyzed as

part of this work, and we describe the data utilized here. In Chapter III we intro-

duce multiobjective heuristic algorithms, including a detailed description of the three

implemented for this study. We discuss the outcomes of the algorithm implementa-

tions and consider additional analysis of the algorithms. In Chapter IV we expand

our analysis to the nation-wide population of vehicles, and we consider the impact
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on this population of changes in national policy, such as an increase in fuel tax or

emissions regulations. From these anticipated impacts, we examine the change in

the environmental and economic burden of the vehicle population due to such policy

changes. Finally, we draw conclusions and discuss future work in Chapter V.



CHAPTER II

Vehicle Replacement

Vehicle service lifetime decisions of automobile manufacturers, policymakers and

environmentally concerned consumers are influenced by the energy use and harmful

emissions associated with owning and driving a vehicle. We begin our vehicle re-

placement analysis by examining the life of a single vehicle, and this serves as the

foundation for the nationwide model discussed in Chapter IV. Using data gathered

from a variety of industrial and governmental sources, we use the Industrial Ecol-

ogy methodology of Life Cycle Assessment (LCA) to construct profiles of a generic,

midsize vehicle’s energy use, cost and emissions produced. Upon the retirement of

this vehicle, we introduce a new vehicle, whose LCA profiles are adjusted to reflect

anticipated advances in technology over time, to perform the equivalent function of

the first vehicle. We continue these replacements for the length of the study so that

a sequence of vehicles and their optimal retirement ages is constructed.

Our ultimate aim in this single-vehicle study is to determine the service lifetimes

able to best satisfy a decision-maker’s concern for all of the (conflicting) objectives

considered: cost, energy use and HC, CO, CO2, NOx emitted. This will necessarily

involve a trade-off among the objectives since, for example, newer vehicles which

use less energy and produce fewer emissions require a greater economic investment

7
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than the maintenance of older, less efficient vehicles. Because the objectives are

noncommensurable, the construction of this trade-off is nontrivial and requires an

understanding of the behavior of the individual objectives. Therefore, we begin with

the analysis of several single objective, single-vehicle replacement problems, and then

move to the multiobjective analysis discussed in Chapter III.

2.1 Assumptions

Many older vehicles, instead of being scrapped immediately upon the purchase of

a replacement, are kept as secondary vehicles. These vehicles are not driven daily,

yet they have not been dismantled. The sequential nature of our model requires

that the challengers perform the same service as the defender so that their behaviors

may be compared. In order to ensure that each vehicle under consideration in the

model performs an equivalent function over its entire life, we limit our definition

of vehicle life to be the number of years for which the vehicle remains a member

of the population of Primary Use Vehicles. We characterize this population by the

following:

• Each vehicle is a mid-size, 5-passenger domestic sedan.

• The vehicle is assumed to be driven 12,000 miles per year.

• Every owner maintains the vehicle according to the manufacturer’s recommen-

dations, and all maintenance is performed by a service professional.

• Only regular unleaded gasoline is used.

As long as the vehicle remains a Primary Use Vehicle, it may be owned by a single

driver or a series of drivers. The environmental factors are unaffected by a change in

ownership since, for our purposes, the vehicle’s function never changes. Additionally,
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we assume that financial transactions at the time of an ownership change are com-

pleted according to the vehicle’s depreciated value so that no additional vehicle cost

is created during an ownership change. Therefore the only purchase cost incurred

per vehicle is the initial purchase of the vehicle when it enters the population of

Primary Use Vehicles.

When a vehicle is no longer a Primary Use Vehicle, it may enter another pop-

ulation of vehicles with an alternative function (a family’s weekend car, say) or be

be scrapped. For the purposes of this study, we consider that all vehicles leaving

the Primary Use population are scrapped immediately since in this case the ensu-

ing patterns of use are shown to be reduced well below the annual mileage for the

households’ primary vehicles [15].

2.2 Data

A collaboration with the School of Natural Resources, the Department of Physics,

and the Department of Industrial and Operations Engineering at the University of

Michigan, in addition to industry partners at General Motors and the U.S. Envi-

ronmental Protection Agency’s Vehicle Emissions Laboratory, has provided a rich

data set for our study of the multiobjective asset replacement problem. For every

vehicle and year considered in the model, we require several parameters in order to

determine its optimal retirement age:

• Vehicle Characteristics

– The fuel economy of each new vehicle model as well as its predicted fuel

economy performance over time.

– The assumed number of vehicle miles traveled per year.
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• Economic costs:

– The purchase price of the vehicle (assumed to reflect the cost of manufac-

turing the vehicle)

– The annual cost to maintain the vehicle for each year of its life

– The average annual price of gasoline and the fuel economy of each new

vehicle model as well as its predicted fuel economy performance over time

– The annual ownership costs (insurance, registration and taxes)

– The value to be received by the last owner upon disposal of the vehicle

• Energy Used:

– The energy required for manufacturing the vehicle

– The energy used in the preparation and use of the fuel per mile driven (the

precombustion and combustion of each gallon of gasoline) for each calendar

year and each vehicle model

– The energy used during vehicle service (overhead as well as manufacturing

of new parts)

– The energy used in the end of life processing of the vehicle

• Emissions (for each pollutant under consideration):

– The quantity of emissions released during materials production and vehicle

manufacturing

– The emissions released in the preparation and use of the fuel per mile driven

(the precombustion and combustion of gasoline)

– The emissions released during maintenance and the production of parts

required for maintenance
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– The quantity of emissions released during the end of life processing of the

vehicle.

By varying these parameters we are able to examine the impact of each on the opti-

mal retirement ages of the vehicles. This flexibility is of particular importance when

considering future vehicles. The life cycle specifications change with each technolog-

ical improvement, and several significant changes in vehicle and fuel technologies are

expected in the near future [45]. A model for decision-making that depends on the

future must therefore consider several potential improvement schedule scenarios. A

complete description of the development of the data profiles is available in [43].

2.3 Single-vehicle Replacement Model

To begin our study of the multiobjective, vehicle-replacement problem, we consider

the optimization of the replacement of a single, mid-size, passenger sedan with a

comparable new vehicle to perform the same service (a constant number of miles are

driven per year). At the start of each year, the owner makes the decision to either

buy a new vehicle or keep the existing vehicle. The solutions, therefore, are series of

replacement decisions of the form “Buy a new vehicle at the start of year 1985 and

keep it for 10 years; then buy a new vehicle at the start of year 1995 and keep it for

6 years, etc.”

We currently assume a deterministic model in which there is one new vehicle

available for purchase each year, and replacement decisions are made only at the

beginning of each year. Additionally, the time horizon is a finite number of years in

which decisions are made, and all vehicles have a finite maximum service life after

which they must be retired.
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2.3.1 Integer Program Formulation

The following parameters and variables are used in constructing an integer program

to model the replacement problem:

N = The time horizon for the study

V = The maximum service life of a single vehicle

K = The number of objectives to minimize

xij =





1 if purchase a vehicle at the beginning of year i

and keep through year j;

i ∈ {1, 2, . . . , N}, j ∈ {i, i + 1, . . . , i + V − 1}

0 otherwise

ckij = The cost to objective k of purchasing a vehicle in year i

and keeping it through year j; k ∈ {1, 2, . . . , K}, i ∈ {1, 2, . . . , N},

j ∈ {i, i + 1, . . . , i + V − 1}

For each individual objective k = 1, 2, . . . , K, we formulate the vehicle replacement

problem as follows:

Minimize
N∑

i=1

V +i−1∑
j=i

ckijxij(2.1)

Subject to
V−1∑
j=1

x1j = 1(2.2)

V +i−1∑
j=i

xij ≤ 1, ∀i = 2, . . . , N(2.3)

V +i−1∑
j=i

xij =
i−1∑
n=1

xn,i−1, ∀i = 1, . . . , N(2.4)

xij ∈ {0, 1}, ∀i = 1, . . . , N ; j = 1, . . . , (N + V − 1)(2.5)
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The objective (2.1) is to minimize the total cost or environmental burden (specified

by index k) of owning a vehicle for the time horizon. The first constraint (2.2) ensures

that a vehicle is purchased in the first year of the horizon (no vehicle may be held

over from a previous ownership). The next constraint (2.3) ensures that multiple

vehicles may not be purchased in the same year. Finally, (2.4) ensures that a new

vehicle is purchased as soon as one is retired, and (2.5) states that the variable xij is

binary (0/1). This formulation of the model is solved using AMPL/CPLEX [50], and

we use this formulation extensively in Section 3.3.2 to check the Pareto optimality

of solutions found by the multiobjective metaheuristics.

2.3.2 Dynamic Program Formulation

An alternative formulation of the problem was implemented for our initial, numerical

trials. For each objective that we desire to minimize (initially economic cost, energy

use, NMHC emitted, CO emitted, CO2 emitted and NOx emitted), we construct a

deterministic dynamic program to optimize over a finite horizon of predicted data.

At the start of each year of ownership, the vehicle owner the the opportunity to buy

a new vehicle or keep the existing vehicle. Each solution, therefore, is a series of

replacement decisions of the form “Buy a new vehicle at the start of 2001 and keep

it for 5 years; then buy a new vehicle at the start of 2006 and keep it for 8 years,”

etc. We use the following notation in this dynamic programming formulation of the

single-vehicle, single-objective model:
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n = First year of the study

N = Last year of the study

M = Maximum physical life of a vehicle

BM(i) = Burden of the materials production of model year i vehicle

BA(i) = Burden of the manufacturing and assembly of model year i

vehicle

BU(i, j) = Burden of the vehicle use during year j of model year i

vehicle’s service

BR(i, j) = Burden of the maintenance and repair during year j of model

year i vehicle’s service

BE(i, j) = Burden of the retirement of model year i vehicle at the end of

year j

u(i, j) = Burden of purchasing a new vehicle at the start of year i and

keeping it for j years

xi = Decision variable representing the number of years to own

vehicle of model year i

For any i, u(i, 0) = 0 and represents the case in which a new vehicle is not purchased

in year i. Therefore,

u(i, j) =





BM(i) + BA(i) + BE(i, i + j − 1) +
∑j

k=1(BU(i, k) + BR(i, k)) if j > 0

0 if j = 0
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For each criterion, this model seeks to minimize the burden from the life cycle of

model years n to N by deciding how long to keep each vehicle before purchasing a new

vehicle. For the model, vehicles owned for 0 years represent vehicle models that are

never purchased. The dynamic programming optimality equations are constructed

as follows. Let f(i) be the minimum possible burden accumulated from the start of

year i through the end of year N . Then

f(i) =





minxi∈{1,2,...,M}{u(i, xi) + f(i + xi)} ∀i = n, . . . , N

0 ∀i > N

To solve each of these dynamic programs, the method of forward reaching [18] is

implemented in a C program. For each program, in order to observe the behavior

of the objectives not currently optimized, the values of these objectives under the

generated policy are printed in addition to the optimal value of the single, minimized

objective. From our initial runs of these programs, we are able to observe the ex-

pected tension between, for example, minimization of cost (few vehicle replacements)

and NOx emissions (several replacements in rapid succession to take advantage of

technological improvement in fuel economy).

2.4 Single-objective Results

We began the Life Cycle Optimization of Vehicle Replacement study by considering

economic cost, energy use, and emissions of nonmethane hydrocarbons (NMHC),

nitrogen oxides (NOx), carbon monoxide (CO) and carbon dioxide (CO2). The

optimal replacement policies for each of these are given in Table 2.1.
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Table 2.1: Single-objective Optimal Policies (1985 - 2020)
Objective Optimal Replacement Policy

Economic Cost 18, 18
CO2 18, 18

Energy 18, 18
CO 3, 3, 4, 6, 6, 7, 7

NMHC 6, 6, 10, 14
NOx 5, 5, 6, 6, 14

NMHC + NOx 5, 5, 7, 7, 12

2.4.1 Refinement of Objectives

From these preliminary results we see that there is indeed tension among the ob-

jectives. We see that information regarding trade-offs between objectives would be

interesting and helpful, but we first revisit our choices in objectives to streamline the

future comparisons. We note that energy use and carbon dioxide (CO2) emissions

are nearly identical in profile since both are driven predominately by the combus-

tion of gasoline. As changes in fuel economy will therefore affect these objectives

simultaneously, we choose to eliminate the energy use objective, and represent this

perspective with the CO2 emission objective alone.

In our discussions with our research partners at General Motors, we discover

that great improvements in the recent past have reduced the carbon monoxide (CO)

emissions to nominal levels, and hence the introduction of new technologies would not

be expected to impact this objective significantly. We therefore choose to eliminate

this objective from further consideration as well.

Finally, we have discovered that it is a common practice to add the nonmethane

hydrocarbon (NMHC) emissions and the nitrogen oxides (NOx) emissions together,

allowing the sum to sufficiently describe the impact of both pollutants since they work

together in the formation of smog. This step is our final refinement to the portfolio

of objectives considered, and it leaves us with three areas of analysis: discounted
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economic cost, CO2 emissions (a global pollutant), and NMHC + NOx emissions

(local pollutants).

2.4.2 Objective Trade-offs

The single-vehicle results above in Table 2.1 show that the economic cost objective

and the CO2 emission objective are both minimized when a policy that mandates

two 18-year vehicle lives is implemented. This contrasts with the NMHC + NOx

policy of 5,5,7,7,12 years, and in Figure 2.1, we see the results of these policies on

the nonminimized objectives. In this Figure, Policy 1 is the (5,5,7,7,12 years) that

minimizes NMHC +NOx, and Policy 2 is the (18,18 years). To move from Policy 1

to Policy 2 requires an increase in NMHC + NOx emissions of almost 50% over the

36 year study horizon, and the economic cost increase required to change from Policy

2 to Policy 1 exceeds 50% of the Policy 2 economic cost. The relative magnitude of

the change on the CO2 emissions is not great, and this is due to the fact that the

CO2 is primarily emitted in the combustion of gasoline, and this does not change

much in the expected technology changes through 2020.

0

0.5

1

1.5

2
Cost

NMHC+NOxCO2

Policy 1

Policy 2

Figure 2.1: Magnitude of Trade-offs



CHAPTER III

Multiobjective Metaheuristics

From the single-objective analysis discussed in Chapter II, we discover that a

single, optimal solution to our multiobjective, vehicle-replacement problem does not

exist. If we wish to minimize the economic cost required to own and drive a vehicle,

then we should choose to keep the vehicles in services for long periods of time (15 to

20 years). However, if we would like to minimize the nonmethane hydrocarbons and

nitrogen oxides emitted, we should replace a vehicle more frequently so that new,

efficient technology may replace older, possibly-failing, emissions-control systems. In

order to present meaningful information regarding the impacts of various policies to

a decision-maker, we look to the discipline of multiobjective decision-making.

Several methods for solving multiobjective dynamic programs exist in the liter-

ature, but the fact that our objectives are noncommensurable prevents easy imple-

mentation of these methods. We choose not to assign a dollar value to the various

emissions since the true cost of these environmental burdens is not yet understood.

Therefore we cannot simply sum the objectives and minimize one grand cost. In

general, we seek Pareto-optimal solutions to the objectives such that changing the

solution to improve in one area will cause decline in another. The sensibilities of the

decision-maker will then help determine which of these nondominated solutions is

18
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most appropriate.

One method of analyzing several objectives together involves the use of multi-

attribute utility functions. Carnahan and Thurston [8] employ this method to de-

termine the optimal set of design characteristics for a production process so as to

optimize cost, pollution and quality. The construction of this utility function, how-

ever, requires that the decision-maker assign weights of importance to the objectives.

For a single decision-maker this is perhaps manageable, but we seek to construct a

model that produces a solution which is informative for our anticipated audience of

consumers, automobile manufacturers and policymakers. Each of these would most

likely weigh the objectives differently, and hence a solution without the preliminary

weights may be more helpful.

Another method commonly used to evaluate problems with several objectives is

the ε - Constraint Method. This method involves choosing one objective to minimize

while constraining the others to desired values. By varying these constraint values,

one is able to explore the possible solutions. This ε - Constraint technique is employed

by Abo-Sinna and Hussein [3] as well as Wang and Shieh [64] who introduce a method

of multiplier updating to an existing Iterative Dynamic Programming method for

studying chemical processes. Ko, et al. [56] use this method in combination with

a weighing approach to study trade-offs between cost, reliability and storage at a

water reservoir. These techniques all suffer from the disadvantage of providing only

one new nondominated solution at each iteration. For a complex problem in which

the nature of the solution space is not know up front, these methods may require a

large number of iterations before an adequate variety of solutions is found.

A third area of multiobjective solution techniques is evolutionary heuristic al-

gorithms. These methods have the advantage that they maintain a population of
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solutions throughout their implementation. This allows for the possibility of finding

multiple solutions per iteration in addition to ending with a set of possible solutions

for each run. For the present multiobjective, vehicle-replacement problem, we have

not restricted our analysis to the wishes of a particular decision-maker. We prefer to

construct a set of efficient solutions that demonstrate the various trade-offs required

for each policy choice, and therefore the population-based, evolutionary, heuristic

algorithms are an appropriate and attractive choice. In the following section we

discuss some background regarding single-objective heuristics so that we may build

upon these ideas in Section 3.2.

3.1 Single-objective Heuristic Algorithms

The two foundational areas for the algorithms to be discussed in Section 3.2 are

genetic algorithms and tabu search. As the respective multiobjective algorithms

are extensions of previous single-objective bodies of literature in both cases, we

present some introductory ideas for each of these to provide a foundation for our

later discussion.

3.1.1 Genetic Algorithms

The development of genetic algorithms and a number of other evolutionary program-

ming techniques are described well in [31], [14] and [46], and we note that these are

largely based on ideas given in [33]. These algorithms are most often used for large-

scale or complex searches, and they are designed to mimic the processes of natural

selection and genetics. A typical algorithm begins with a randomly generated popu-

lation of potential solutions to the problem at hand. For ease of manipulation within

the algorithm, each solution is encoded into a string format, according to a chosen

scheme. The strings are referred to as chromosomes, after the genetics precedent,



21

and each component of a chromosome is called a gene, which may take any of the

specified possible values known as alleles. For example, consider the problem

Maximize {f(x) = x : x ∈ {0, 1, 2, . . . , 31}}

[48]. The solutions to this problem may be encoded into 5-digit binary chromosomes

in which each gene assumes the standard binary value. Hence the value 1 is encoded

as 00001, the value 2 is encoded as 00010, and so on through the value 31 which

is encoded as 11111. For each chromosome we calculate an associated fitness value

according to the given objective function to be used in comparing solutions during

the evolutionary process. Given the objective function above, for example, the fitness

of individual 01100 would be 12.

Once the population is formed, a “survival-of-the-fittest” scheme is used to evolve

this population into a new generation. As there is a direction in which the evo-

lution is desired to progress (toward the optimal solution of the stated objective

function), genetic operators designed specifically to guide the evolutionary process

in this direction are applied. A typical algorithm will begin with an operator known

as reproduction [31]. This involves the selection of parents from the current gener-

ation according to their fitness values so that the “better” genetic material will be

used in construction of the next generation. The chosen parents are copied into a

mating pool which will undergo further genetic operators. A number of alternatives

for this selection process have been evaluated, and again we refer the reader to [31],

[14] and [46] for additional reference.

Once this mating pool is constructed, a crossover operator is typically applied to

randomly selected pairs of parents within the pool. For single-point crossover, once

two strings are chosen, a point on the chromosome is randomly chosen such that the

genes past this point are swapped on the two strings. For the example above, if we
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begin with two parents

10111 and 01100,

and if we happen to choose to crossover from the third gene on, the resulting new

solutions are

10100 and 01111.

As in the case of the reproduction operator, there have been several successful vari-

ations on the single-point crossover [46], including extensions to 2-point and multi-

point crossover. Reproduction and crossover operators constitute the majority of

the evolutionary process for many genetic algorithms [31], but a final kind of op-

erator is employed to ensure that pieces of the genetic picture (the possibility of a

particular allele in a given position on the chromosome, for example) are not lost.

In most cases this final operator is mutation. A few solutions in the mating pool

are randomly selected to have single genes randomly replaced with small probability

by alternative allele values, and this helps maintain diversity within the population.

Once the new generation is complete, this becomes the next population from which

to select parents, and the process is repeated for a specified number of generations

or until a sufficiently “good” fitness value is found.

Single-objective genetic algorithms have been applied with success to a variety of

problem classes. Michalewicz [46], for example, discusses genetic algorithm imple-

mentations for the Transportation Problem, the Traveling Salesman Problem, and

a number of graph-drawing, scheduling and partitioning problems. The theory of

convergence for single-objective genetic algorithms has also been studied extensively,

see for example [54]. The extension of genetic algorithms to problems which con-

sider multiple objectives is a more recent area of research, and in Section 3.2 we will

discuss the development and use of genetic algorithms for our multiobjective vehicle



23

replacement problem. In Section 3.1.2 below, we introduce background material on

tabu search algorithms.

3.1.2 Tabu Search

Tabu search is a metaheuristic for solving combinatorial optimization problems that

employs flexible and dynamic memory structures to aggressively explore past the

limitations of local optimality ([30], [28]). For a thorough study of tabu search, see

[24]. For the purposes of this discussion, we consider the following problem

Minimize f(x) : x ∈ X in Rn

where x ∈ X constrains x to a discrete set of values. We define the set S(x) to

be the moves s ∈ S available to a solution x, where s : X(s) → X. That is,

S(x) = {s ∈ S : x ∈ X(s)}, and we refer to the set S(x) as the neighborhood

function [28].

For a typical implementation of tabu search, we begin with an initial x ∈ X, and

we define a subset T of S so that

T (x) = {s ∈ S : s(x) violates the given tabu conditions}.

These tabu conditions are a restriction on the moves to new solutions that a solution,

x, may take in its future iterations. The purpose of the tabu list is to use historical

information in the search process to prevent the algorithm’s returning too soon to

previously explored solutions. The algorithm begins with T empty, and from x it

searches for the s ∈ S(x)−T with the “best” possible characteristics, as defined by a

pre-specified evaluation function, and we let this be the move that takes x to x̄. We

replace x by x̄, and if c(x̄) < c(the best solution found so far), then we update this

best-found indicator. We then update the tabu list, T , according to its definition,
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and we repeat this process until the chosen number of iterations are completed or

until S(x)− T = ∅ [28].

Just as advances and alternatives have been developed for the genetic algorithm

operators discussed above, the schemes for defining tabu lists and the “best” neighbor

functions have been refined and adapted for a variety of problem-specific advantages

[24]. Glover [29] describes tabu search applications in graph theory problems, course

scheduling, telecommunications, flow shop sequencing, the Traveling Salesman prob-

lem, quadratic assignment, and character recognition. In the sections below we

discuss the extension of tabu search as well as genetic algorithms our multiobjective,

vehicle-replacement problem.

3.2 Multiobjective Heuristic Algorithms

Beginning with the publication of Schaffer’s Vector Evaluated Genetic Algorithm

(VEGA) in 1984 [53], there have been several approaches to the creation of a set of

Pareto-optimal solutions by means of a genetic algorithm. The success of early algo-

rithms such as the Niched Pareto Genetic Algorithm (NPGA) [35], the multiobjective

genetic algorithm introduced by Fonseca and Fleming [26] and the original Nondom-

inated Sorting Genetic Algorithm (NSGA) [57] demonstrated the effectiveness of

such population-based heuristics for finding a representative set of Pareto-optimal

solutions.

As these and many other multiobjective algorithms have been studied and im-

plemented, a new generation of algorithms has emerged. Zitzler and Thiele [66]

introduce the Strength Pareto Evolutionary Algorithm (SPEA) which, in addition

to their new niching method, powerfully combines several previously isolated ideas:

external storage of nondominated solutions, assignment of fitness based on Pareto
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dominance, and clustering to reduce the number of nondominated solutions. Given

the strong performance by SPEA on several test problems ([41], [22], [66]), we choose

to implement a variation of it, SPEA/M, for our multiobjective equipment replace-

ment problem, in which the addition of the ‘M’ is used to denote its development at

the University of Michigan.

Another multiobjective genetic algorithm that builds on earlier algorithms is

NSGA-II [40], the new version of the Nondominated Sorting Genetic Algorithm.

The elimination of the previously sensitive sharing parameter and the modification

to an elitist selection process have addressed many of the issues regarding the original

NSGA. Due to the strength of these updates, we choose to implement a variant of

NSGA-II, the NSGA-II/M, as the second multiobjective genetic algorithm for the ve-

hicle replacement problem considering environmental and economic objectives. For

a more comprehensive survey of multiobjective evolutionary algorithms and their

development, please see [61], [12] or [27].

Although, as described in Jones et al. [19], 70% of the multiobjective meta-

heuristic literature employs genetic algorithms, there is also strong representation by

simulated annealing and tabu search algorithms. We choose to expand our analysis

of multiobjective solution techniques by considering a tabu search-based approach

in addition to the evolutionary algorithms introduced above. Given the performance

of Hansen’s Multiobjective Tabu Search (MOTS) [32] for project scheduling as de-

scribed by Viana and de Sousa [62], we choose to develop MOTS/M to introduce the

ideas from MOTS to the multiobjective vehicle replacement problem. As we intro-

duce the details of the three algorithms presented in this paper, it is worth mentioning

our intended framework for evaluating the effectiveness of the algorithms. Deb [17]

states “it can be conjectured that there are two goals in a multiobjective optimiza-



26

tion: 1. To find a set of solutions as close as possible to the Pareto-optimal front

[and] 2. To find a set of solutions as diverse as possible.” This two-fold goal of con-

vergence and spread is our guide as we implement the following heuristic algorithms

for the Life Cycle Optimization of Vehicle Replacement problem.

3.2.1 Strength Pareto Evolutionary Algorithm (SPEA/M)

Our variant of Zitzler and Thiele’s SPEA [66] for the Life Cycle Optimization of Vehi-

cle Replacement begins with a randomly generated population, P , of predetermined

size N . Any infeasible solution created at any time by the algorithm is discarded

and replaced by another randomly generated solution. The locally noninferior mem-

bers of P are copied and appended to an external set P ′ (initially empty). We then

remove any duplicates or newly inferior solutions from P ′. If the size of the set P ′

exceeds its predetermined limit, N ′, we use the clustering procedure suggested by

Zitzler and Thiele [66] to reduce the size of P ′ to N ′.

The next step is to calculate, for each solution, a fitness value to be used in the

creation of the next generation. The fitness values are constructed to encourage both

the favoring of locally noninferior solutions and the spreading out of solutions along

the Pareto frontier. For each solution x ∈ P ′, let n(x) be the number of solutions in

P which are inferior to x. We assign to each x ∈ P ′ a strength, s(x) = n(x)
N+1

, and we

use this strength as the measure of fitness for the solution. A small strength value

indicates that the solution is isolated, and we favor these solutions by minimizing

strength in the operations performed on P ′. For each solution y ∈ P , let P ′
y be the

set of x ∈ P ′ to which y is inferior. We assign to y a fitness f(y) = 1 +
∑

p∈P ′y
s(p).

Again, the isolated solutions will be favored by minimizing fitness values.

Once the fitness values are assigned, we construct a mating pool of size N from

which to create the next general population. We set aside a predetermined number,
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Table 3.1: SPEA/M Pseudocode
1 Initialize P , P ′

2 Find noninf. solns in P
3 Append to P ′

4 Assign fitness to P , P ′

5 Select N from P ∪ P ′

6 Crossover, Immigration
7 Repeat from 2

ν < N , of places in the mating pool to be filled later, and we begin by using binary

tournament selection with replacement on the union of P and P ′ to fill the first N−ν

places in the mating pool. Binary tournament selection is an operator that randomly

chooses two solutions from P ∪ P ′, compares their fitness values, and keeps only the

better of the two. After N − ν comparisons, we have a pool of N − ν solutions to

which we apply Bernoulli (also called uniform) crossover. Finally, the remaining ν

places in the next generation are filled by the immigration [6] of ν new, randomly-

generated solutions as an alternative method to mutation for the introduction of new

genetic material to the population. The new generation, P , is now created. Unless

we have completed the specified maximum number of generations, we begin again

by appending copies of the locally noninferior solutions found in P to P ′. Once all

generations are completed, the output to the decision-maker is P ′, the external list of

noninferior solutions that has been updated and maintained throughout the course

of the algorithm. For an outline of the SPEA/M, see Table 3.1.

3.2.2 Nondominated Sorting Genetic Algorithm II (NSGA-II/M)

The implementation of our variant of NSGA-II described by Deb et al. (2002) also

begins with a randomly generated population, P , of size N . As described above,

we discard and replace any infeasible solutions which are created at any time. In

this case, however, there is not a separate list of locally noninferior solutions. We

begin by finding the locally noninferior solutions within P and assigning these a rank
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of 1. They are the first noninferior front found within P , and for a minimization

problem, these would be the lightly-shaded points in Figure 3.1. We then search

P again, leaving out the solutions in the first front. The set of locally noninferior

solutions found in the remaining subset of P (the unshaded points in Figure 3.1) are

assigned a rank of 2, and this second front is then set aside while we again search the

remaining subset of P for a third locally noninferior front (in Figure 3.1 this is only

the darkly-shaded point). This process continues until all solutions in P have been

assigned a rank. The next step is to create a new population, Q, of size N from P .

f2

f1

Figure 3.1: Pareto-optimal fronts sorting

We apply to P the same binary tournament selection with replacement, Bernoulli

crossover and immigration operators that were used in SPEA/M. In the first genera-

tion, the noninferior front ranks assigned to the solutions in P are used for comparing

individuals in the tournament selection. In later generations, the evaluation criterion

is the crowded-comparison operator described below. Once Q is created, we form a

new population R, of size 2N , by simply combining the populations P and Q.

For each member of R, we now calculate a crowded-comparison value using the
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following three steps. First, we sort R into its locally noninferior fronts and assign

ranks as described for P above. Within each front, Γ, we then calculate the crowding

distance [40] for each solution to give a measure of the density of solutions surround-

ing it. For each x ∈ Γ, we calculate Γ[x]distance(k) for each objective k, and the sum

of these distances is the crowding distance for x. Let n = |Γ|, and let Γ[x]k be the

value of objective k for solution x. To compute the Γ[x]distance(k) values:

• For each x ∈ Γ, set Γ[x]distance(k) = 0

• Sort Γ according to objective k so that Γ[1]k is the least objective value, and

Γ[n]k is the greatest

• Set Γ[1]distance(k) = Γ[n]distance(k) = ∞

• For i = 2 to (n− 1), Γ[i]distance(k) = (Γ[i + 1]k − Γ[i− 1]k)/(Γ[n]k − Γ[1]k)

Once crowding distances have been assigned within all locally noninferior fronts, we

construct a final ordering of R. We sort R first in increasing order of the locally

noninferior front rankings, and then within each front, we sort according to the

crowding distances just calculated. Because we wish to favor the isolated solutions,

we prefer the solutions with the largest crowding distances. The last step in the

algorithm is to create a new population, P , with the N best members of R. We then

either repeat, beginning with the generation of Q, or quit if the desired number of

generations is completed. A summary of the steps is given in Table 3.2.

3.2.3 Multiobjective Tabu Search (MOTS/M)

The Multiobjective Tabu Search introduced in [32] simultaneously optimizes a set of

individual current solutions in order to produce a set of noninferior solutions, similar

to the output of the multiobjective evolutionary algorithms. For MOTS/M and the
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Table 3.2: NSGA-II/M Pseudocode
1 Initialize P
2 Sort to noninf. fronts
3 Assign ranks
4 Select Q from P
5 Form R = P + Q
6 Calc crowding distances
7 Sort R
8 Choose best N as new P
9 Repeat from 2

Life Cycle Optimization of Vehicle Replacement problem, we begin with a randomly

generated set, X, of solutions (infeasible solutions are discarded and replaced) which

we address one at a time in each iteration of the algorithm. The algorithm employs

a weight vector, λ, initialized to 0 each time a new solution is considered, and a

vector of range equalization factors, π, used to ensure valid comparisons across the

K objectives. The range equalization factors are initialized to πk = 1/K, for each

objective k = 1, . . . , K, at the start of each solution’s iteration. The MOTS/M, in

the same way as the SPEA/M, maintains an external set of the locally noninferior

solutions found so far. This set is initially empty, and it is augmented throughout

the algorithm rather than overwritten. Additionally, let f(x) = (f1(x), . . . , fK(x))

be the vector of objective functions to be evaluated, all of which we assume are to

be minimized.

For each solution x ∈ X, in each iteration, we begin by calculating the parameters

relating it to the other solutions in X. Iteratively, for each solution y ∈ X such that

f(y) is nondominated by f(x) and f(y) 6= f(x),

1. Set w = 1/(
∑

k=1,...,K πk|fk(x)− fk(y)|).

2. For each objective k, if fk(x) < fk(y), then set λk = λk + πkw.

If the resulting λ is 0, then we set each λk = 1/K; otherwise, we normalize the λ

found above. The next step is to find the “best” neighbor of x to replace it in the
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set of solutions. For each solution x ∈ X, we maintain a list of neighbors from which

to choose. As described more fully in Section 3.3 below, the solutions for the Life

Cycle Optimization of Vehicle Replacement problem are binary strings of Buy/Keep

replacement decisions, and a solution’s neighborhood is the set of solutions which

can be attained by a single swapping of two consecutive decisions. As an example,

if a particular solution, x, has “Buy” in period 4 and “Keep” in period 5, one of its

neighbors is the solution whose only difference from x is that it requires a “Keep”

in period 4 with the “Buy” in period 5; that is, we delayed the replacement by one

period.

To find the best neighbor, we consider two criteria. First, the move from x to

the neighbor must not be on the tabu list for x. This tabu list is a set of the most

recent moves (from the corresponding solution to a neighbor) that we want to keep

from repeating continuously. The length of the tabu list (the number of forbidden

moves) is a parameter of the algorithm, and when the most recent move is added to

the list, the earliest move is removed. The second criterion is to find the neighbor,

y, that minimizes λ · f(y). Once the best neighbor, y∗, is found, we add the move

(y∗-to-x) to the tabu list, removing the earliest move from the list if necessary. We

then replace x by y∗ in the set of solutions and check to see whether this new x is

noninferior with respect to the externally kept set of locally noninferior solutions. If

x is noninferior, we add it to this external set, and update the set to remove any

newly inferior solutions. If the noninferior set contains more than two solutions, we

update the range equalization factors,

πk =
1

Rangek
[

K∑
i=1

1

Rangei ]
−1

where Rangek is the range of values of objective k within the noninferior set, and K

is the number of objectives.
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Table 3.3: MOTS/M Pseudocode
1 Initialize set X
2 For each x ∈ X:
3 Update w and λ
4 Choose best neighbor y
5 Update tabu list
6 Test inferiority of y
7 Update π
8 Inc. drift counter
9 Repeat from 2

Finally, we increment a drift counter which, when it has reached the parameter-

specified threshold, indicates the interval at which we randomly select one solution

in the general set to be replaced by another randomly chosen solution in the set. We

then move to the next solution in the set and repeat the procedure until the specified

number of iterations are completed. An outline of the MOTS/M algorithm is given

in Table 3.3.

3.3 Implementation

With the aid of multiobjective metaheuristics, we are able to construct a set of

Pareto-optimal solutions to the Life Cycle Optimization of Vehicle Replacement

problem discussed in Chapter II. Each solution represents a replacement policy for

a single vehicle over the given time horizon. Analysis of this Pareto-optimal set pro-

vides information on the trade-offs among the objectives and allows a decision-maker

to choose a final policy according to his specific agenda.

The three objectives we wish to minimize are economic cost (constant 1985 dol-

lars), carbon dioxide (CO2) emissions, and the sum of nonmethane hydrocarbons

and nitrogen oxides (NMHC + NOx) emissions. Preliminary individual analysis of

these objectives demonstrates that the NMHC+NOx (the local pollutant objective)

changes almost inversely proportionally to the economic cost and CO2 (the global
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pollutant objective). From the results of Chapter II we have seen that as technology

improves, newer-model vehicles are expected to emit fewer local pollutants, so to min-

imize these emissions one should replace a vehicle fairly frequently, taking advantage

of the fact that with each replacement the local emission performance will improve.

On the other hand, since carbon dioxide emissions and economic operating costs

are closely related to annual fuel consumption, the recommended replacements for

these objectives are farther apart due to the more modest predictions for widespread

fuel economy improvement. This tension among the objectives indicates that fur-

ther information regarding trade-off among the objectives may be gleaned from the

construction of a set of Pareto-optimal solutions for the simultaneous minimization

of all three objectives.

3.3.1 Novel Algorithm Details

The algorithm outlines given above in Sections 3.2.1 - 3.2.3 explain our adaptations

of three published multiobjective heuristic algorithms for the vehicle replacement

problem ([66], [40], [32]). In all cases we used binary encoding for the replacement

policies so that for our time horizon of 36 years (1985 - 2020), each solution is a

binary string of length 36. We use “1” to indicate that a purchase occurred in the

corresponding year, and a “0” to indicate that the existing vehicle was kept. All

policy strings begin with a “1”, as we require a vehicle to be purchased at the start

of the time horizon (1985). The only additional feasibility constraint is that no

vehicle may be kept for more than 20 years. This is implemented by discarding any

solutions that violate this maximum life constraint before they are added to any of

the solution populations.

For the SPEA/M and NSGA-II/M , we introduce two genetic operators not used

with either of the two original algorithms. Traditionally, mutation has been used
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to introduce new genetic material to a population [31]. This operator chooses a

generally small set of individuals each generation to undergo random alterations to

their encoded representations. As an alternative to mutation, we choose to employ

immigration [6] to introduce new possibilities in each generation. Instead of altering

existing solutions, the immigration operator randomly generates completely new so-

lutions to be added to a specified number of places in the generation’s population.

The second modification we make to the original genetic operators for SPEA/M and

NSGA-II/M is to consistently use Bernoulli (also called uniform) crossover [31] in the

evolution of each generation. This means that for each crossover operation we select

two individuals and randomly decide “switch” or “don’t switch” for each chromosome

(rather than choosing just one place on the string to trade genetic information).

Finally, as discussed in the following section, we implement a method to validate

our final set of solutions from each algorithm. This is not addressed in the papers

which introduce our foundational algorithms ([66], [40], [32]), as these used known

functions for their test problems. In this case, we do not know the solution set that

we seek as we begin our analysis of the multiobjective vehicle problem, so we must

validate the results after the fact.

3.3.2 Verifying Pareto Optimality

One drawback of the multiobjective heuristic algorithms is that the set of locally

noninferior solutions given as output might contain solutions that are not truly

Pareto-optimal. For the Life Cycle Optimization of Vehicle Replacement problem,

we construct an integer program to verify the Pareto optimality of each solution

given by the algorithms. This method may be used to verify Pareto optimality of

any heuristic, hence we consider it separately rather than as part of our heuristic

algorithms.



35

Let X be the set of feasible solutions to the problem, K the number of objectives

to be minimized, and T the number of years in the time horizon. For each output

solution, x = (x1, x2, . . . , xT ), with objective vector f(x) = (f1(x), . . . , fK(x)), we

solve the following:

Maximize z =
∑K

i=1(fi(x)− fi(y))(3.1)

Subject to

fi(y) ≤ fi(x) i = 1, . . . , K(3.2)

y ∈ X(3.3)

If z > 0, then we have found a solution, y, that was able to make an improvement

over x in at least one objective without degrading the values of any other objectives.

That is, z > 0 implies that x is not Pareto-optimal, and z = 0 indicates that we

were not able to improve on x which is therefore proven to be Pareto-optimal. If

we find that a particular solution x̄ ∈ X is not Pareto-optimal, we can then use

the constraint method [10] to try to find Pareto-optimal solutions in addition to z.

Considering each objective component k ∈ [1, 2, . . . , K] in turn, we solve

Minimize zk = fk(x)(3.4)

Subject to

fi(x) ≤ fi(x̄) i = 1, . . . , K(3.5)

x ∈ X.(3.6)

Because x̄ is not Pareto-optimal, we are guaranteed to find at least one solution x

such that fk(x) < fk(x̄) for some k ∈ [1, 2, . . . , K] (though it could be only the y

from above), and hence we will find at least one Pareto-optimal solution that may

be added to our solution set.
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Table 3.4: Pareto-optimal solutions found in 100 generations of the SPEA/M
Minimum Maximum Median

500/50/100/2 31 48 36.5
500/50/100/5 30 47 37.5
500/50/400/2 45 49 47
500/50/400/5 40 49 46.5
500/250/100/2 31 49 38
500/250/100/5 30 51 38
500/250/400/2 57 69 61.5
500/250/400/5 53 67 61.5

The validation of every solution found is a significant task. However, the imple-

mentation of the heuristic optimization followed by the integer program validation

of Pareto optimality does guarantee the quality of the solutions presented to the

decision-maker. In the experiments discussed below, we verified the Pareto optimal-

ity of the solutions presented, but we did not extend to finding new solutions with

the constraint method.

3.3.3 Algorithm Performance

SPEA/M Results

We tested several parameters for the SPEA/M, including the initial population size,

the limit on the size of the external set of noninferior solutions, the number of gener-

ations, and the numbers of crossover and immigration to perform in each generation.

For each parameter set we conducted 10 trials, each beginning with a different ran-

dom seed. Hence median results are presented for the output. To represent the

parameters used in each trial, we adopt the following notation: N/N ′/Number of

crossover/Number of immigration, where N is the general population size, and N ′

is the maximum size of the external set of noninferior solutions. An example of

preliminary work to evaluate the parameter choices is given in Table 3.4. As we are

able to obtain such a large set of Pareto-optimal solutions, we are able to see a visual

representation of the trade-offs among the objectives by plotting the objective values
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in pairs. For one of the instantiations of the 500/250/400/2 parameter set after 100

generations, see Figure 3.2.

We observe a confirmation of the tension between the NMHC + NOx objective

and the other two that had been identified in initial single-objective analysis. An

interesting feature of the Pareto-optimal front is the clustering of the solutions into

four regions, particularly evident in the NMHC + NOx vs. Cost plot. Each cluster

corresponds to a particular number of vehicle replacements over the time horizon. For

example, the solutions with costs less than $50,000 each require an initial purchase

and just one replacement over the horizon. The next cluster, containing solutions

with costs between $50,000 and $60,000, represents Pareto-optimal replacement poli-

cies which require two replacements after the initial purchase. The third and fourth

clusters correspond to policy groups requiring three and four replacements after the

initial purchase, respectively.

Additional analysis using the Constraint Method has verified that there do exist

these gaps in the cost objective within which no Pareto-optimal solutions can be

constructed. The threshold areas immediately before and after the jumps in the

costs provide interesting information to the decision-maker. In most cases, a cost

occurring just above a gap could be reduced significantly without great impact on

the other two objectives. Although the large number of Pareto-optimal solutions

found is most likely more information than a decision-maker would need, the insight

into the objective trade-offs gained by viewing so much of the Pareto-optimal front

could enhance the understanding of such a decision-maker.

NSGA-II/M Results

We now examine the results from the NSGA-II/M for the Life Cycle Optimization of

Vehicle Replacement problem. Similar to our approach with the SPEA/M, we tested
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Figure 3.2: Pareto-optimal solutions after 100 SPEA/M generations
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Table 3.5: Pareto-optimal solutions found in 100 generations of the NSGA-II/M
Minimum Maximum Median

500/100/2 63 67 65
500/100/5 64 69 66
500/400/2 65 68 67
500/400/5 64 68 67

several parameter options, the output for each set being a representation of the 10

random trials performed. As there is no external set of noninferior solutions for the

NSGA-II/M, we have one fewer parameter than for the SPEA/M, and we use the

notation (Population size/Number of crossover/Number of immigration) to specify a

set of trials. An example of the output from the NSGA-II/M for parameter choices

similar to those used for the SPEA/M is given in Table 3.5. This performance appears

comparable to the SPEA/M, and we explore the similarities further in Section 3.3.4.

Again we would like to visually observe the relationships between the objectives as

demonstrated by the Pareto-optimal solutions found by the NSGA-II/M. We choose

one set of output for the 500/400/2 set of parameters to plot for demonstration

in Figure 3.3. We observe that the NSGA-II/M has identified the four clusters in

the cost objective, and the decision-maker again has many solutions from which to

choose a replacement policy.

MOTS/M Results

Our variant of the Multiobjective Tabu Search algorithm was not as successful as the

two evolutionary algorithms. In addition to the fact that considering each solution

individually led to slower progress, we were unable to converge to more than a few

solutions on the true Pareto-optimal front. To illustrate this result, we plot in Fig-

ure 3.4 the output from one MOTS trial with a set of Pareto-optimal solutions found

by the NSGA-II/M. In this MOTS/M trial we allow 500 initial solutions, 500 “gen-

erations,” a tabu list length of 2 moves for each solution, and a drift criterion of 1000
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Table 3.6: Outline of the three algorithms
Stage SPEA/M NSGA-II/M MOTS/M
Initialization Population P of size

N , empty P ′
Population P of size N Set X with neighbor-

hoods and empty ex-
ternal set

Method to encourage
diversity of solutions

Assignment of strength
and fitness values

Crowding distance cal-
culations

Multiplicative weights
(λ)

Chance to select favor-
able solutions

Binary tournament se-
lection on P ∪ P ′ to
produce mating pool

Binary tournament se-
lection on P to pro-
duce Q; ranking of R

Choice of best neigh-
bor

Recombination of solu-
tion fragments

Crossover Crossover Neighborhoods

Introduction of new so-
lution fragments

Immigration Immigration

Advance the algorithm Begin again with new
P

Form new P from best
N solutions in R = P+
Q

Replace each solution
one-at-a-time with
best neighbor

iterations before drift is performed. Only two of the plotted MOTS/M solutions are

Pareto-optimal, though several are “close” to Pareto-optimal solutions found by the

NSGA-II/M. We are able to see two new clusters in the cost objective corresponding

to policies that require 5 and 6 replacements after the initial purchase, but these are

never policies whose objective values are nondominated.

3.3.4 Algorithm Comparison

Although the implementation details are varied, there exist functional commonalities

between the three algorithms. We outline some of these in Table 3.6 to illustrate

the similar behaviors. Because the SPEA/M and the NSGA-II/M both appeared

to successfully find representative sets of the Pareto-optimal front, we choose to

explore their performance in more detail. From the initial parameter-testing phases,

we determine that an initial population of 500 solutions with 400 crossover and 2

immigration per generation is a favorable parameter set for both algorithms, and we

let the maximum number of noninferior solutions in the SPEA/M be 250. We first

examine the median number of Pareto-optimal solutions as the number of generations

increases. A set of reference points of this progress are plotted in Figure 3.5. We
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Table 3.7: Variance within the trials as generations increase
Generations SPEA/M Variance NSGA-II/M Variance

50 10.44 0.99
100 16.54 1.12
200 16.27 1.43
300 15.38 1.29
400 15.38 1.29
500 15.38 1.34
750 14.9 1.34

discover that although both algorithms perform well as the generations increase, the

NSGA-II/M attains a greater median number of Pareto-optimal solutions found after

just 50 generations than the SPEA/M finds after 750 generations. Additionally, as we

examine the variance within each sample of 10 trials per experiment, we discover that

the NSGA-II/M reaches its exceptional performance with a minimum of variance, as

shown in Table 3.7.

3.4 Remarks and Conclusions

The Life Cycle Optimization of Vehicle Replacement problem is a complex prob-

lem with more than the commonly-considered two objectives. We have shown that

the frameworks of the Strength Pareto Evolutionary Algorithm [66] and the Non-

dominated Sorting Genetic Algorithm II [40] successfully identified large numbers

of Pareto-optimal solutions. These solutions were sufficiently well-distributed along

the Pareto-optimal frontier that we were able to distinguish clusters of solutions

corresponding to characteristics of the replacement policies.

Although our variant of the Multiobjective Tabu Search [32] was not able to

discern many truly Pareto-optimal solutions, we did approach a portion of the Pareto-

optimal front. The modification of traditional tabu search to include a set of solutions

for multiobjective optimization allowed us to introduce a nontraditional competitor

for the multiobjective evolutionary algorithms.
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Figure 3.3: Pareto-optimal solutions after 100 NSGA-II/M generations
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CHAPTER IV

Multivehicle Study

In the previous two chapters, we have examined extensively the service life of a

single passenger vehicle. Using historical data and projections for the future, we have

been able to observe tradeoffs among the environmental and economic objectives as

we lengthen or shorten the vehicle’s service life. Replacement decisions are not made

in isolation, however, and we now consider passenger vehicle replacement within the

nationwide vehicle population. Within this population we have households owning

vehicles of various ages, and the replacement decisions in these households made be

the result of a variety of motivations.

Vehicle type choice models have shown that factors such as household income and

size, in addition to vehicle price, capacity, performance characteristics, age, brand,

style, and safety features may affect a consumer’s vehicle choice [11]. Given an

existing population of households and their vehicles, however, how might the profile

of this population change due to an alteration in its environment? We construct a

model to examine the impact on a population of a change in national policy such as

fuel cost or the widespread introduction of advanced technology.

44
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4.1 Policy Analysis of Complex Systems

Public policy analysis is defined by Walker in [63] as “a rational, systematic approach

to making policy choices in the public sector...[;] a process that generates information

on the consequences that would follow the adoption of various policies.” He continues

to describe the benefits of a sound relationship between an analyst working with the

data and modeling aspects of a policy decision and the policymaker whose judgement

helps define objectives and constraints [63]. As we consider policies that could impact

the national population of vehicles, we see that describing the consequences requires

gleaning information from an elaborate and interdependent system of stakeholders.

These include consumers, automotive industry partners in manufacturing and R&D,

energy industry leaders, and numerous public policymakers. In addition to consid-

ering multiple vehicles, we must also consider the effect of multiple owners in areas

with diverse geographic profiles and a continually changing economic climate, as just

a beginning. Hence we see the effect of deliberate policy changes as well as changes

in the environment brought about by external forces [63].

Bankes ([4], [5]) highlights many problems that may result from the application

of classical optimization techniques to analysis of policy in a complex environment.

He notes, “For those problems for which no model can accurately predict the details

of system behavior, approaches to policy analysis based on using some model to

forecast system behavior will be inappropriate.”[5] He suggests alternatives to a single

forecasting model which include consideration of an ensemble of plausible models to

determine robust policies or level sets of solutions which perform well relative to a

determined threshold [5]. This approach has been used, for example, to study the

effect of greenhouse-gas reduction strategies on climate change [51].
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The aim of using computer models, and well-reasoned ensembles of computer mod-

els in particular, to aid policy decisions is to gain insight into the possible future states

of the system [4]. We began our study of the multiobjective, vehicle-replacement

problem by developing of a set of Pareto-optimal solutions for single-vehicle replace-

ment, and this allowed us to observe trade-offs among environmental and economic

objectives in detail. We now construct a collection of scenarios that allows us to

examine the impact of a changing national environment on a population of vehicles

and consumers.

4.2 Model

To begin to understand the dynamics of the national vehicle-owning population, we

work to group households into categories according to their perceived purchasing

behavior. As the single-vehicle analyses gave insights specifically for 5-passenger,

domestic sedans, we begin with this part of the vehicle population for our multivehicle

study. We assume that many of the consumers driving 5-passenger, Primary Use

sedans are interested in minimizing the cost to drive their vehicles for commuting,

etc. With our focus on one kind of vehicle, we clearly can only attempt to understand

the effect of a policy change on the owners of vehicles of this type. If we could

characterize all existing households, we would be able to realize the model shown in

Figure 4.1.

For the model illustrated in Figure 4.1, we begin with a population of vehicles

and owners in equilibrium. Let there be N categories of households so that each

household category i ∈ 1 . . . N constitutes the fraction ωi of the population. When

the indicated Policy Change is imposed, each category of households may respond

uniquely to this change with a behavior change denoted ∆i, i ∈ 1 . . . N . We weight
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these changes according to the representation of each household in the entire pool

(ωi), and we aggregate the behavior changes to realize the overall impact of the

policy change. While we could never presume to correctly determine the change for

a specific individual, the goal is to find the appropriate derivative in the aggregate

case.

Policy 
Change

Households

�

1

�

2

�

N

Nationwide 
behavior 
change

�
1

�
2

�
N

Figure 4.1: Policy Decision Support System Framework

4.3 Data

Many of the assumptions made in Section 2.1 for the single-vehicle replacement

model hold in the population-wide model as well. We continue to consider only

Primary Use Vehicles, and within this subset of the population, only the midsize, 5-

passenger, domestic sedans. Each vehicle is driven 12,000 miles per year, maintained

according to manufacturer specifications, filled with regular unleaded gasoline, and

retired within 20 years of its initial purchase.

Although the baseline vehicle used in this multivehicle analysis has the same

profile as the vehicle discussed in Chapter II, we have an additional need for data
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describing consumer behavior and alternatives resulting from policy changes.

4.3.1 Household Profile

We continue to analyze midsize, domestic, passenger vehicles driven 12,000 miles

per year, and we begin our analysis assuming that such an owner is only concerned

with the economic cost of his or her vehicle use. Our network of these households is

described as follows:

• One midsize, 5-passenger, domestic sedan per household is driven 12,000 miles

per year

• The consumer minimizes the cost-to-go as each year’s buy/keep choice is made

• Ownership begins with a uniformly assigned 1-20 year-old vehicle at the end of

1994 (hence the model years may begin in 1975)

• Annual buy/keep decisions continue through 2050 to reduce end-of-study effects

through 2020

4.3.2 Baseline Consumer Behavior

As introduced in Section 4.2, we assume that our population of vehicles and owners

begins in some equilibrium state. That is, vehicles of the profile used in Chapter II are

being driven and replaced by consumers according to the household profile discussed

above. We refer to this instantiation of the model (with no policy interference) as the

Baseline scenario, and the resulting household replacement schedules are shown in

Table 4.1. The first column contains the age of the vehicle owned at the end of year

1994. These ages are randomly assigned to consumers, and over the time horizon

1995-2020, we see that the replacement policies vary according to this starting point.

The second column displays the ages of vehicles owned by a baseline consumer who
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begins with the corresponding vehicle age at the end of 1994. For example, in the

first row we see that a consumer whose vehicle was one year old at the end of 1994

will keep that initial vehicle until it has been driven for 19 years. The vehicle will

then be replaced by a vehicle which becomes eight years old in 2020, where the

parentheses around the vehicle age at the end of year 2020 indicate that this would

not have been the last year of the vehicle’s life, had 2020 not been the final year of

our study horizon. The third column shows the years in which vehicle replacements

were made; all replacements occur at the beginning of the indicated year.

We see that the optimal behavior for all consumers was to keep the vehicles for

19 or 20 years before replacing with a new vehicle. Over the 1995-2020 period, the

population-wide average vehicle age per year varied from 9.09 to 11.38 years, with

an average of 10.02 years. The average age of automobiles in operation in the United

States in 1997 was computed to be 8.7 years [15], and this would include effects of

vehicles taken off the road following accidents as well as consumers with objective

functions other than minimizing cost.

As we currently assume the consumers are minimizing their cost to own and

drive a vehicle, we examine the average cost per year. For a population of 200

households, the average expenditure per year varies from $1644.14 to $7814.76, with

the average annual expenditure over 1995-2020 of $3683.20 (all costs given here in

year 2000 dollars). The U.S. Bureau of Labor Statistics’ Consumer Expenditure

Survey estimates that households in 2000 spent an average of $6990 on personal

vehicle transportation [1]. However, in single-person households which are reported

to have 1.0 vehicles per household on average, the average expenditure on personal

vehicle transportation in 2000 was $3410 [1], just below the $3683.20 found in our

baseline multi-household scenario.
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Table 4.1: Baseline Consumer Behavior
Age at end of 1994 Ages of vehicles owned 1995-2020 Replacement Years

1 2-19, 1-(8) 1994, 2013
2 3-20, 1-(8) 2013
3 4-20, 1-(9) 2012
4 5-20, 1-(10) 2011
5 6-19, 1-(12) 2009
6 7-19, 1-(13) 2008
7 8-19, 1-(14) 2007
8 9-19, 1-(15) 2006
9 10-19, 1-(16) 2005
10 11-19, 1-(17) 2004
11 12-19, 1-(18) 2003
12 13-20, 1-(18) 2003
13 14-19, 1-19, (1) 2001, 2020
14 15-20, 1-19, (1) 2001, 2020
15 16-19, 1-19, 1-(3) 1999, 2018
16 17-19, 1-19, 1-(4) 1998, 2017
17 18-19, 1-19, 1-(5) 1997, 2016
18 19, 1-19, 1-(6) 1996, 2015
19 1-19, 1-(7) 1995, 2014
20 1-19, 1-(7) 1995, 2014

4.3.3 Policy Scenarios

The scenarios considered in addition to the baseline model are described below, and

their results are given in Section 4.4.

Fuel Tax The first policy change we choose to investigate is an increase in the

cost to the consumer of gasoline. One mechanism that policymakers have for

implementing such a change is to increase the tax collected per gallon. As

suggested in [21], we implement at the start of year 2001 a gasoline tax increased

to the level charged in the United Kingdom in 2001 [16], which represents an

increase of $3.06/gallon (year 2000 dollars).

Hybrid Only Another policy that we analyze with our population of vehicles is the

widespread availability of a vehicle with significantly improved fuel economy.

Data for the profile of a hybrid vehicle to be introduced to the consumers in the

year 2004 are given in Table 4.2. It should be noted that the Toyota Prius, on
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which our hybrid vehicle profile is based, is a smaller vehicle than the generic,

domestic, 5-passenger sedan used in the baseline scenario, and hence we do not

offer consumers an identical challenger. This shortcoming is addressed in the

Multiple Challengers scenario.

Fuel Tax + Hybrid We examinse a scenario in which our two policies coincide:

availability of an efficient hybrid vehicle in 2004, and a significantly increased

gasoline tax in 2001.

Multiple Challengers This scenario is similar to the Hybrid Only scenario in that

a hybrid vehicle becomes available to consumers in the year 2004. In this case,

however, a fixed percentage of consumers have the choice to buy a traditional

or hybrid vehicle whereas above they were restricted to considering only the

hybrid model. As each household is initialized, they are assigned a category

which allows a 20% chance of their being allowed to choose between hybrid and

traditional vehicles from 2004 on. The remaining 80% of the households only

have the traditional, baseline vehicle to consider in their replacement decisions.

This limitation on the number of hybrids that may be introduced is intended

to capture two problems with the Hybrid Only scenario. The first is that the

Toyota Prius on which we model our hybrid vehicle is smaller than the mid-

size, 5-passenger sedan we use in the baseline case. A consumer will have to be

flexible in his or her vehicle functionality to switch to the smaller vehicle, and

we recongmize this would not happen in all cases. The second cause for limiting

the distribution of the hybrid vehicle choice is that currently demand exceeds

supply. That is, only a limited number of hybrid vehicles are available for sale

each year (an estimated high of 47,000 Prius’ in 2004 [2]), and therefore it does
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not make sense to allow our entire population of consumers to switch at once.

Alternative Consumer Behavior Now consider the effect on consumers’ replace-

ment policies if, instead of minimizing cost, the consumers minimize their NMHC+

NOx emissions. We saw in Section 2.4 that shorter vehicle lives reduce the cu-

mulative NMHC +NOx emissions as new technology is brought onto the road,

removing older, polluting technology. We repeat the baseline multivehicle sce-

nario described in Section 4.3.2 with the following changes, and the results are

given in Section 4.4.5.

1. All consumers minimize NMHC + NOx only

2. We perform this second analysis twice. First, we randomly make 20% of

the population minimize NMHC + NOx only while the remaining 80% of

consumers only minimize the economic cost (as in the Baseline scenario).

In the second trial, we let 50% of the population minimize NMHC + NOx

only while the remaining half minimize only economic cost.

3. We randomly generate a weighted objective function for each houseold. The

weight for NMHC + NOx may be up to 50%, and the remaining weight is

applied to the economic cost objective.

4.4 Results

As we examine the output of the consumers given the policy scenarios discussed

above, we consider two questions of interest. The first of these is: Does consumer

vehicle replacement behavior change from that seen in the Baseline scenario? We

display the new consumer replacement policies in tables similar to Table 4.1 in order

to compare this information. Our second question of interest is: Does the population
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Table 4.2: Data for Hybrid Vehicle Profile
Category Reference Value Source
Cost

Purchase 20810 2004 Toyota Prius MSRP
Fuel Economy 56 mpg (2004) www.fueleconomy.gov
Maintenance same as baseline
End of Life same as baseline

Carbon dioxide, CO2

Production 2786 kg [45] pgs. 4-12, 4-13
Use 158 g/mi [42] Prius lab test emissions
Maintenance same as baseline
End of Life same as baseline

Nitrogen Oxides, NOx

Production same as baseline
Use 0.010 g/mi [42] Prius lab test emissions
Maintenance same as baseline
End of Life same as baseline

Non-methane hydrocarbons, NMHC
Production same as baseline
Use 0.0024 g/mi [42] Prius lab test emissions
Maintenance same as baseline
End of Life same as baseline

profile (for economic or emissions burdens) change from the Baseline scenario? We

display this information by plotting the average annual burden per household under

the various scenarios. The following results are for each of the policy scenarios

described in Section 4.3.3.

4.4.1 Fuel Tax

When the increase in the cost of gasoline due to a new tax policy is introduced

in 2001, there is only one change in behavior for consumers driving the baseline

vehicle. Those consumers whose vehicle was 2 years old at the end of 1994 now only

keep it through age 19, replacing a year earlier so the new vehicle is 9 years old at

the end of 2020. This earlier replacement occurs in 2012. Because there is little

consumer behavior change due to this policy, the increase in the average annual cost

per consumer over the Baseline scenario shown in Figure 4.2 is primarily due directly

to the same number of gallons being sold merely at higher prices. In Figure 4.3 we
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again see the result of the minimal behavior change in the fact that the average

annual burden of NMHC + NOx varies little from the Baseline scenario case.

Cost of Baseline vs. Fuel Tax scenarios
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Figure 4.2: Average Annual Cost: Fuel Tax vs. Baseline scenarios

4.4.2 Hybrid Only

Now suppose that a hybrid vehicle resembling the Toyota Prius, as described in Table

4.2 is introduced as the only vehicle available for purchase in the year 2004. The

consumer behavior changes dramatically, as shown in Table 4.3. The sections of the

table set off between double lines show that many of the consumers ended up on

the same vehicle replacement schedule once the hybrid was introduced. This causes

the always significant purchase costs to occur in the same years for most households,

and the resulting average annual cost per household shown in Figure 4.4 contains

economically unrealistic peaks corresponding to these popular purchase years. In

Figure 4.5, we see a dramatic reduction of NMHC+NOx emissions as all consumers
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Figure 4.3: Average Annual NMHC + NOx emissions: Fuel Tax vs. Baseline scenarios

eventually replace with the hybrid vehicle.

4.4.3 Fuel Tax + Hybrid

When we introduce the gasoline cost increase in 2001 to this population which re-

places with hybrids from 2004, we see a shift in the hybrid vehicle lifetimes. These

new policies are shown in Table 4.4. Similarly, we see only moderate shifts in the

corresponding profiles of average annual cost and NMHC + NOx emissions; these

are shown in Figures 4.6 and 4.7, respectively.

4.4.4 Multiple Challengers

Now we examine the results of allowing just 20% of the population to be able to

replace with a hybrid beginning in 2004. The resulting population cost profile is

shown in Figure 4.8, and the population NMHC+NOx profile is shown in Figure 4.9.
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Table 4.3: Consumer behavior from Hybrid Only scenario
Age at end of 1994 Ages of vehicles owned 1995-2020 Replacement Years

1 2-19, 1-(8) 1994, 2013
2 3-19, 1-(9) 2012
3 4-19, 1-(10) 2011
4 5-20, 1-(10) 2011
5 6-14, 1-13, 1-(4) 2004, 2017
6 7-15, 1-13, 1-(4) 2004, 2017
7 8-16, 1-13, 1-(4) 2004, 2017
8 9-17, 1-13, 1-(4) 2004, 2017
9 10-18, 1-13, 1-(4) 2004, 2017
10 11-19, 1-13, 1-(4) 2004, 2017
11 12-20, 1-13, 1-(4) 2004, 2017
12 13-18, 1-12, 1-(8) 2001, 2013
13 14-19, 1-12, 1-(8) 2001, 2013
14 15-19, 1-13, 1-(8) 2000, 2013
15 16-19, 1-14, 1-(8) 1999, 2013
16 17-18, 1-16, 1-(8) 1997, 2013
17 18-19, 1-16, 1-(8) 1997, 2013
18 19, 1-17, 1-(8) 1996, 2013
19 1-18, 1-(8) 1995, 2013
20 1-18, 1-(8) 1995, 2013

Table 4.4: Consumer behavior from Fuel Tax + Hybrid scenario
Age at end of 1994 Ages of vehicles owned 1995-2020 Replacement Years

1 2-17, 1-(10) 1994, 2011
2 3-18, 1-(10) 2011

3 (no change) 4-19, 1-(10) 2011
4 (no change) 5-20, 1-(10) 2011

5 6-14, 1-16, (1) 2004, 2019
6 7-15, 1-16, (1) 2004, 2019
7 8-16, 1-16, (1) 2004, 2019
8 9-17, 1-16, (1) 2004, 2019
9 10-18, 1-16, (1) 2004, 2019
10 11-19, 1-16, (1) 2004, 2019
11 12-20, 1-16, (1) 2004, 2019
12 13-18, 1-10, 1-(10) 2001, 2011
13 14-19, 1-10, 1-(10) 2001, 2011
14 15-18, 1-13, 1-(9) 1999, 2012
15 16-19, 1-13, 1-(9) 1999, 2012
16 17-19, 1-13, 1-(10) 1998, 2011
17 18-19, 1-14, 1-(10) 1997, 2011
18 19, 1-16, 1-(9) 1996, 2012
19 1-16, 1-(10) 1995, 2011
20 1-16, 1-(10) 1995, 2011
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Figure 4.4: Average Annual Cost: Hybrid Only vs. Baseline scenarios

In these cases, the resultant population-wide burdens are not greatly affected, and

this seems likely to be the way in which a nation-wide population experiences the

introduction of such a technology alternative.

4.4.5 Alternative Consumer Behavior

As described above in Section 4.3.3, we consider three cases of Alternative Consumer

Behavior, the results for which are given separately.

1. First we observe the impacts of consumers choosing to minimize only their

NMHC + NOx emissions (instead of only economic cost). Except for con-

sumers owning very new vehicles at the end of 1994, the majority of the pop-

ulation makes an immediate decision to move to a policy allowing new vehicle

purchases in 1995, 2001 and 2007. The aligning of all consumers is likely due

to a sensitivity in the data making these specific choices better than small vari-
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Figure 4.5: Average Annual NMHC + NOx emissions: Hybrid Only vs. Baseline scenarios

ations on these replacement policies, but we do see in Table 4.5 that the older

technology is removed from the road much more quickly than in the Baseline

consumer population that minimizes cost. The aligning of consumers unfortu-

nately causes the same spikes in average annual cost and emissions that we saw

in the Hybrid Only scenario. Figures 4.10 and 4.11 show the changes in the

average population profile from the Baseline scenario in which only economic

cost was minimized to the Alternative Consumer Behavior scenario 1 in which

only NMHC+NOx emissions are minimized. Despite the purchase-year peaks,

we see that the NMHC + NOx emissions are reduced much earlier than in the

Baseline scenario.

2. We had two experiments that mixed consumers with very different objectives.

First we let 20% of the consumers minimize only NMHC+NOx emissions (while
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Figure 4.6: Average Annual Cost: Fuel Tax + Hybrid vs. Baseline scenarios

the remaining consumers minimized cost as in the Baseline scenario), and these

results are shown in Figures 4.12 and 4.13. In the second case we increased the

number of consumers minimizing only NMHC + NOx emissions to be 50% of

the population. The results for this population are give in Figures 4.14 and 4.15.

In both of these trials we see moderate economic cost spikes in the same years

as the Alternative Consumer Behavior 1 scenario. This is due to the fact that

the individuals minimizing NMHC + NOx switch immediately to that higher-

frequency replacement schedule. It seems as though this result paints a realistic

picture of the introduction of low-emission technology. The “Green Consumers”

who strive only to reduce their emissions will have to pay monetarily for that

objective.

3. The final Alternative Consumer Behavior scenario explored allows consumers
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Figure 4.7: Average Annual NMHC + NOx emissions: Fuel Tax + Hybrid vs. Baseline scenarios

to minimized a weighted sum of economic cost and NMHC + NOx emissions.

These results are given in Figures 4.16 and 4.17, respectively. Here we see

only small, gradual changes in the cost and NMHC + NOx burdens, as the

magnitude of the economic cost allows it to continue to be favored above the

NMHC + NOx emissions. We do, however, see the effect of individuals trying

to consider multiple objectives, and this seems to reflect somewhat the trend of

consumer education [2].

4.5 Discussion

We have now seen the impact on consumer behavior and on average annual burdens

of a variety of potential changes in an automotive consumer’s environment. It is

important to note that each consumer in our model minimizes his or her objective
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Figure 4.8: Average Annual Cost: Multiple Challengers vs. Baseline scenarios

over the entire 1995 - 2050 timeline. That is, in the Baseline scenario, for example,

a consumer minimizes the total cost to be incurred from the present through 2050,

rather than just the cost in the next year. To show relative changes in these cumu-

lative, horizon-length burdens, we display the average values for our population of

200 consumers in Table 4.6. Figures 4.18, 4.19, and 4.20 show the relative changes

in each objective as the various policies are implemented.

The other measure of change that we discussed in Section 4.4 is the change in con-

sumer replacement policies. One way in which we observe this change is by analyzing

the average age of the vehicles in the population in a given year. When replacements

become more frequent, this average age tends to decrease. In Table 4.7, we display

the maximum, minimum and mean population-wide average vehicle age for each of

our policy scenarios. As we might expect, the scenarios in which we had any con-
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Table 4.5: Consumer behavior from Alternative Consumer Behavior 1 scenario
Age at end of 1994 Ages of vehicles owned 1995-2020 Replacement Years

1 2-6, 1-7, 1-(14) 2000, 2007
2 3-7, 1-7, 1-(14) 2000, 2007
3 4-6, 1-9, 1-(14) 1998, 2007
4 1-6, 1-6, 1-(14) 1995, 2001, 2007
5 1-6, 1-6, 1-(14) 1995, 2001, 2007
6 1-6, 1-6, 1-(14) 1995, 2001, 2007
7 1-6, 1-6, 1-(14) 1995, 2001, 2007
8 1-6, 1-6, 1-(14) 1995, 2001, 2007
9 1-6, 1-6, 1-(14) 1995, 2001, 2007
10 1-6, 1-6, 1-(14) 1995, 2001, 2007
11 1-6, 1-6, 1-(14) 1995, 2001, 2007
12 1-6, 1-6, 1-(14) 1995, 2001, 2007
13 1-6, 1-6, 1-(14) 1995, 2001, 2007
14 1-6, 1-6, 1-(14) 1995, 2001, 2007
15 1-6, 1-6, 1-(14) 1995, 2001, 2007
16 1-6, 1-6, 1-(14) 1995, 2001, 2007
17 1-6, 1-6, 1-(14) 1995, 2001, 2007
18 1-6, 1-6, 1-(14) 1995, 2001, 2007
19 1-6, 1-6, 1-(14) 1995, 2001, 2007
20 1-6, 1-6, 1-(14) 1995, 2001, 2007

Table 4.6: Cumulative burdens over the 1995 - 2050 horizon
Scenario Cost (1975$) NMHC + NOx (kg) CO2 (kg)
Baseline 36188.13 1034.96 306710.09
Fuel Tax 46457.11 1033.50 306669.02
Hybrid Only 33844.99 639.44 174907.00
Fuel Tax + Hybrid 40366.72 613.14 171507.23
Multiple Challengers 35877.09 980.90 286990.14
Alt Consumer Behavior 1 46081.19 721.97 316084.40
Alt Consumer Behavior 2 (20%) 38376.29 963.69 308815.65
Alt Consumer Behavior 2 (50%) 41241.47 873.15 311510.97
Alt Consumer Behavior 3 36186.22 1032.10 306879.71
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Figure 4.9: Average Annual NMHC +NOx emissions: Multiple Challengers vs. Baseline scenarios

sumers minimize NMHC+NOx emissions resulted in lower average population-wide

vehicle ages than the scenarios in which economic cost was minimized.

As we were careful to state at the start of this Chapter, it is important to approach

computer modeling of this kind of large, complex system with care. We have imple-

mented a number of possible changes to the environment for a population of vehicle

owners, and we have observed the results of these changes given our assumptions

Table 4.7: Population-wide age averages for each scenario
Scenario Maximum Minimum Mean
Baseline 11.4 9.1 10.0
Fuel Tax 11.4 9.1 10.0
Hybrid Only 12.2 3.9 8.4
Fuel Tax + Hybrid 12.1 4.4 8.7
Multiple Challengers 11.0 7.7 9.4
Alt Consumer Behavior 1 14.0 1.0 5.7
Alt Consumer Behavior 2 (20%) 11.0 7.6 9.0
Alt Consumer Behavior 2 (50%) 11.8 5.2 7.8
Alt Consumer Behavior 3 11.4 9.2 10.0
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Figure 4.10: Average Annual Cost: Alternative Consumer Behavior 1 vs. Baseline scenarios

regarding the consumers’ behavior and motivations. There are a couple of model

shortcomings that should be noted as the results are presented.

The first area of concern regards the profile of our hybrid vehicle. As discussed,

it is modeled after the Toyota Prius, and the fact that the size and performance

of the Prius differ from the mid-size, passenger vehicle previously available changes

the functionality that we offer to our consumers. Additionally, we report the same

categories of emissions for our hybrid vehicle as for the baseline vehicle, but there has

been concern raised that the technology employed in the hybrid vehicles differs suffi-

ciently from traditional internal combustion engine vehicles that perhaps additional

pollutants (such as lead) should be studied as well [44].

A second opportunity for improvement arises in the Alternative Consumer Be-

havior 3 scenario. The weighting scheme employed for each consumer is a naive
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Figure 4.11: Average Annual NMHC + NOx emissions: Alternative Consumer Behavior 1 vs.
Baseline scenarios

summation of noncommensurate, weighted values. It is possible that an approach

which normalizes the individual objectives first could be applied to “level the play-

ing field” for the objectives. This would allow somewhat greater pressure from the

NMHC + NOx objective, for those consumers desiring such an effect.

There are, of course, an endless number of policy alternatives and other exter-

nal forces which could be evaluated for our population of consumers. These include

expansion of the vehicle models studied, acquisition of multiple vehicles by some

households, implementation of a Corporate Average Fuel Economy (CAFE) restric-

tion on the vehicles available each year, and a system that allows some consumers to

purchase used vehicles from other consumers wishing to upgrade. The possibilities

are discussed further in Chapter V, as we see that the multivehicle, multiobjective

model of vehicle ownership allows us thee flexibility to ask a great variety of ques-
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Figure 4.12: Average Annual Cost: Alternative Consumer Behavior 2 (20%) vs. Baseline scenarios

tions.
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Figure 4.13: Average Annual NMHC + NOx emissions: Alternative Consumer Behavior 2 (20%)
vs. Baseline scenarios
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Figure 4.14: Average Annual Cost: Alternative Consumer Behavior 2 (50%) vs. Baseline scenarios
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Figure 4.15: Average Annual NMHC + NOx emissions: Alternative Consumer Behavior 2 (50%)
vs. Baseline scenarios
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Figure 4.16: Average Annual Cost: Alternative Consumer Behavior 3 vs. Baseline scenarios
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Figure 4.17: Average Annual NMHC + NOx emissions: Alternative Consumer Behavior 3 vs.
Baseline scenarios

Average Cost per consumer (1995 - 2050)
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Figure 4.18: Cumulative Economic Cost
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Figure 4.19: Cumulative NMHC + NOx Emissions
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Figure 4.20: Cumulative CO2 Emissions



CHAPTER V

Conclusions

In this work we explore a new perspective on the asset replacement problem. The

simultaneous consideration of noncommensurate and conflicting environmental and

economic objectives significantly increases the complexity of determining the optimal

service life of an asset, particularly as we do not restrict ourselves to a specific

decision-maker. As part of our collaborative work with research partners in the

University of Michigan School of Natural Resources and Environment, we were able

to build upon a foundation that included traditional operations research techniques in

addition to their tools of Life Cycle Analysis. This partnership enhanced the quality

of data and insight into energy and emissions modeling to extend our analysis beyond

the hypothetical.

In Chapter II we construct a model to explore the optimal life cycle of a passenger

vehicle from the perspective of a variety of objectives. The ease of implementation

of a single-objective, single-vehicle dynamic program allows us to quickly observe

the tensions among several of the objectives. The extension to the development

of multiobjective metaheuristics in Chapter III results in a generous set of Pareto-

optimal solutions for the vehicle replacement problem, and from these solutions we

glean further information regarding trade-offs available to a decision-maker. With-

71
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out restricting ourselves to a weighted objective function, we gain a set of possible

replacement policies for comparison. Additionally, the use of three fundamental algo-

rithms upon which our variants are based allows us to compare the key components

of each of these. We discover that the relatively small number of parameters required

for the NSGA-II [40] variant contributes to its robust performance, for example.

In Chapter IV we expand the scope of our analysis in recognition of the fact that

the decisions of the various stakeholders affecting vehicle service lives are not inde-

pendent. We assemble a population of consumers owning our Primary Use Vehicles,

and we observe the changes in their replacement policies and the resulting vehicle

population as characteristics of their environment are altered. We see that whereas

some policies (a dramatic increase in fuel cost, for example) have little effect on con-

sumer replacement behavior in the baseline case, other changes (such as the sudden

availability of an inexpensive, fuel-efficient, alternative vehicle) change the optimal

policy even for those consumers minimizing only economic cost.

The multivehicle model of Chapter IV has many possibilities for future extensions.

At present, we consider only one baseline vehicle: the domestic, midsize, 5-passenger

sedan owned as a Primary Use Vehicle. The development of additional initial vehicle

profiles would allow the consideration of new consumer preferences and behaviors.

The more variety available in initial circumstances, the larger the ensemble of models

that may be drawn upon for insight, and the greater chance the computer models

have for aiding in the discovery of robust policies [5].

Another area of extension for the multi-vehicle model is the consideration of differ-

ent kinds of policies. We do not presently restrict the annual population-wide emis-

sions, for example, and this could be an interesting area for investigation. Applying

this type of “budgetary” constraint would involve new and significant modeling chal-
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lenges, but the resulting behavior could enhance insight into the repercussions of the

population’s individuals being required to work together to reduce their emissions.

A possible alternative to the budget constraint that could achieve similar insights

would be to assemble consumers on a spatial location-based network. It is possible

that consumers could work together, using penalties to encourage highly-polluting

neighbors to alter their behaviors. Additionally, if consumers are given the oppor-

tunity to change location (and some initial pollution-tolerance level), would we see

segregation of vehicle-owners based on this attitude toward/tolerance for pollution?

As we work to enhance our models of these various levels of stakeholders who

are called upon to weigh conflicting objectives in their decision-making processes,

it seems that another area of application for these kinds of models would be the

healthcare industry. In that case we have policymakers or administrators, caregivers,

and patients making decisions that must weigh cost, efficiency and quality of care.

The decisions that one patient makes may influence the alternatives available to

another patient, and these in turn affect and are shaped by the choices made by

doctors and administrators.

Our analysis in this work has focused on the replacement of passenger vehicles, but

the multiobjective life cycle analysis tools could be used for a variety of assets whose

environmental profiles are in tension with the economic characteristics. Household

appliances, lawnmowers and fleets of larger vehicles are just a few examples. Once

the (nontrivial) Life Cycle Inventory of data is compiled and feasible alternatives are

identified, the methods employed here should be adaptable to these new assets in a

straightforward manner.
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ABSTRACT

ASSET REPLACEMENT CONSIDERING ENVIRONMENTAL AND

ECONOMIC OBJECTIVES

by

Darby E. Grande

Chair: James C. Bean

Asset replacement considering the impact on a single objective is a well-studied

problem, but the extension to multiple objectives poses new challenges. We examine

the service life of a passenger vehicle from energy, emissions and economic perspec-

tives. The Life Cycle Optimization performed considers burdens accrued by each

objective in the materials production, component manufacturing and assembly, use,

maintenance and repair, and end-of-life phases of each vehicle’s life. We discover

that as technology improves, frequent vehicle replacements, which bring newer tech-

nologies onto the road sooner, favor the local emissions objective. In contrast, the

economic and global-impact emissions objectives are minimized by longer vehicle

lives since their manufacturing burdens are larger in proportion to moderate savings

in fuel economy gained by anticipated technological improvements.

We analyze the performance of three heuristic algorithms for the identification of



Pareto-optimal solutions to the multiobjective vehicle replacement problem. These

are replacement policies in which the value of one objective may not be improved

without degrading the value of another objective. We implement two multiobjective

genetic algorithms and one tabu search-based algorithm, and we validate the results

using the Constraint Method. In doing this, we discover some commonalities across

the algorithms, such as the ability to identify the clustering of solutions into groups

corresponding to the number of replacements achieved over the fixed time horizon.

Having determined a representative set of Pareto-optimal solutions for single-

vehicle replacement, we employ their trade-off information in constructing a multive-

hicle model that examines the vehicle replacement decisions of consumer groups. As

the model aggregates these individual decisions, we investigate the potential impact

of national policy changes such as an increase in fuel tax or widespread introduction

of new technology as seen in an advanced, lower-emitting vehicle.


