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“Drones make a great deal more noise, fly about much more quickly than other bees,
but they only make wax, not honey;...”

“...when your business is such that, to do it well, you must give it your whole
attention, you should look at Him now and then; doing as mariners do; for when
they want to reach some country, they look up to the sky, not down to the waves
they are sailing over. In this manner, God will work for you, with you, in you, and

when your work is done will comfort you.”

Saint Francis de Sales

“It is upon heaven that everything hinges... Everything is Grace.”

Saint Therese of Lisieux, the Little Flower

He Who is Mighty has done great things...
And His Mercy is on those who fear Him from generation to generation.

He has ... exalted those of low degree...
The Canticle of Mary  Luke 1:49-50,52

v



ACKNOWLEDGMENTS

First and foremost, I express my profound thanks to my advisor Prof. Francis
J. Doyle, III. He was a great source of help, encouragement and support throughout
the duration of my grad school. The enthusiasm and agility that he brings into
every aspect of the work is strongly contagious. He opened up several opportunities
to project the study, and his extremely accommodative nature greatly facilitated
working in the project. He granted all concessions ever requested for, including
conference attendance, journal choices for our publications, and more importantly
my long vacations home.

The strong collaboration with Air Products and Chemicals Inc. shaped this
project to be of relevance to actual practice while simultaneously addressing some
of the theoretical issues. The interaction with several engineers at Air Products,
including Drs. Cajetan F. Cordeiro, Sekhar Sundaram, Cory Schlags, Denis Nagy
and Frank Petrocelli is very gratefully acknowledged. Cajee showed great interest,
sparing time in the midst of his very busy schedule to bring his knowledge and
expertise into the project. He also served in my dissertation committee, besides
co-authoring papers. In addition, we received much chemicals to be used in our
experiments at Delaware. Sekhar was kind enough to share some of the model
parameters developed in his studies at Air Products.

I thank my former and current group mates, including Jorge Castro, Darrin
Feather, Kapil Gadkar, Ed Gatzke, Nick Hernjak, Toby Junker, Krishna Mahade-
van, Kapil Mayawala, Camelia Owens, Bob Parker, Luis Puig, Dan Saffer, Raj
Vadigepalli, Ping Xu and Dan Zak, and the post docs Selwa Ben Amor, Sharad



Bhartiya, Tim Crowley, Pascal Dufour and Scott Meadows. Very special thanks are
due to Tim and Scott for their thorough mentoring during my early days in the
project, and for the strong collaboration in setting up the experimental facility.

I thank all my teachers at the University of Delaware, whose courses helped
in developing a new ‘Delaware-flavour’, besides enhancing my knowledge in the
various subjects. Very special thanks to Dean Kaler and Prof. Wagner for serving
in the dissertation committee, and to Prof. Ogunnaike for his insightful comments
and suggestions on the work. Dean Kaler’s course on ‘Colloidal Phenomena’ and his
inputs outside of the course were very helpful in our coagulation modeling efforts, as
were the course on the Numerical Methods offered by Prof. Beris and the discussions
with him. I thank my TA advisors, particularly Profs. Doyle and Dhurjati, for
their guidance and also for providing a chance to hone my teaching skills. I also
thank several people in the department who were of tremendous help in setting up
the emulsion laboratory, managing the procurements and general management. I
am grateful to the procurement crew, including Nancy Levely, Lucille Wilson and
Kim Correll for being patient with me through all the delays and confusions which
accompanied every purchase!

I acknowledge funding from the University of Delaware in different forms, dur-
ing the period of my graduate studies. Funding from the Office of Naval Research
(Grant No. N000-14-96-1-0695) for the laboratory equipment and the Process Con-
trol and Monitoring Consortium for the laboratory operation and maintanence is
also gratefully acknowledged.

I fondly remember all the good people whom I met during my stay in Delaware,
who made life interesting. It is a great delight to know Prof. Doyle’s marvelous fam-
ily, his three wonderful children and his unassuming and friendly wife. My elderly
neighbour was an excellant gentleman, the conversations with whom I enjoyed im-

mensely. He never lost an opportunity to chide me for working too late and being up

vi



early again... if only he knew the truth! I am thankful to the Saint Thomas Moore
Oratory, which was a place to share my joys and sorrows, and to spend quiet times
with the Almighty. The lively study space, filled with enthusiastic young students,
was a blessing for me to brush away any loneliness and be motivated to work more.
It is a special joy to have known Fr. Szupper at the Oratory. I am very pleased to
have had the opportunity to meet several people at the Oratory and at the Saint
John’s Church over the four years. I thank God for having given this opportunity to
live among such good people. I will for ever remember the Rosary group that met
weekly to reflect on the Greatness of God and the Mystery of His Saving Power. It
is a special joy that my dissertation defense took place on the Feast of Our Lady of
the Rosary.

I take this opportunity to thank my parents and my brother John Christo-
pher. My parents continue to be very patient through all my gimmicks. I thank my

beloved brother John for his unconditional love.

vil



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . e xiii
LIST OF TABLES . . . . . . . . . e e e xXxXVi
ABSTRACT . . . e e xxVviii
Chapter
1 INTRODUCTION . . . . . .. e e 1
1.1 Distributed Parameter Systems . . . . . . .. ... ... ... .. 1
1.2 PSD in Emulsion Polymerization . . . .. .. ... ... ....... 2
1.2.1 Mechanism of Evolution of Distributions . . . . . ... .. .. 3
1.3 Issues in the Control of Distributions . . . . . . . . . ... ... ... 5
1.3.1 Instrumentation and Monitoring . . . . . . . ... .. ... .. 5
1.3.2  Sensitivity Studies, Process Potentials and Limitations . . .. 7
1.3.3 Process Modeling and Computational Methods . . . . .. .. 9
1.3.4 Optimization and Control . . . . . .. .. ... ... ..... 13
1.4 Outline of the Dissertation . . . . . . .. ... ... ... ....... 14

2 EXPERIMENTAL STUDY OF THE EVOLUTION OF

MULTI-MODAL PARTICLE SIZE DISTRIBUTIONS . . . . . .. 16
2.1 Imtroduction . . . . . . . . .. ... L 16
2.2 Experimental System . . . . ... ..o o000 17
2.3 Experimental Procedure and Typical Results . . . . . . ... ... .. 22
2.3.1 Analysis of latex density data . . . . . ... ... ... .. .. 25
2.3.2 Analysis of Particle Size Distribution Measurements . . . . . . 29

viil



3

2.3.3 Reproducibility Considerations . . . . . ... ... ... ... 34

2.3.4 Influence of surfactants on the evolution of PSD . . . . . . .. 39
2.3.5 Coagulation-induced bimodal distribution . . . . ... .. .. 43
2.3.5.1 Higher solids - mixed surfactant system . . ... .. 43

2.3.5.2 Vinyl acetate homopolymerization . .. .. ... .. 46

2.3.6 Delayed surfactant addition . . ... ... ... ... ..... 48

24 Summary ... ... oo e e e 52

POPULATION-BALANCE MODEL FOR PARTICLE SIZE

DISTRIBUTION . . . . . . . it 54
3.1 Imtroduction . . . . . . .. .. ... ... L 54
3.2 Model Formulation . . .. ... ... ... ... ... ... 55
3.2.1 Imitiation . . . . . .. .. ... 99
3.2.2 Pseudo-homopolymerization approximation . . . ... . ... 56
3.2.3 Aqueous phase oligomers . . . . . ... ... ... ... ... 57
3.24 Nucleation . . . . . . . . . ... o 58
3.2.5 Polymer particles . . . . ... ... 0000000 59
3.2.6  Average number of radicals/particle . . . . .. .. ... L. 60
3.27 Growth . ... .. ... 61
3.2.8 Monomer balances . . . . .. ... ... 0L 62
3.2.9 Surfactant balances . . . . . . .. .. oL 63
3.2.10 Entry into particles . . . . . . . ... oo 64
3.2.11 Desorption from particles . . . ... ... ... ... ..... 64
3.2.12 Termination inside particles . . . . . . ... ... ... .... 65
3.3 Solution Technique . . . . . . .. . . ... .. .. . ... ..., 65
3.4 Results and Discussion . . . . . ... ... o o000 69
3.4.1 Effect of size-dependence of n on the simulation results . . . . 77
3.5 Comparison with experimental results . . . . . . ... .. ... .. .. 78
3.6 Parametric Sensitivity . . . . . ... o oo 83
3.7 Coagulation Modeling . . . . . ... ... o000 88
3.8 Coagulation-inclusive Model Results . . . . ... .. ... ... ... 92
3.8.1 Analysis of Base Case Recipe . . . . ... ... ... ..... 94

X



3.8.2 Validation of the Simulation Results with Experimental Data . 100

3.9 Summary . . . ... 111

COMPUTATIONALLY-EFFICIENT SOLUTION OF

POPULATION BALANCE MODELS . . ... ... .. .. ..... 121
4.1 Solution Techniques for Population Balance Models . . . . . . . . .. 121
4.1.1 Model Reduction Strategies and Approximate Solutions . . . . 124
4.2 Algorithm Development . . . . . .. ... .. ... ... ....... 126
4.2.1 Coagulation-free emulsion polymerization. . . . . . . . . . .. 130
4.2.2 Coagulation-inclusive emulsion polymerization . . . . . . . .. 134
4.3 Stability and Accuracy Considerations and Adaptive Step Size . . . . 141
4.4 Summary and Extensions to General Population Balance Systems . . 144

SENSITIVITY STUDIES AND REACHABILITY ANALYSIS . 153

5.1 Imtroduction . . . . . ... ... ... Lo . 153
5.2 Experimental Sensitivity Studies . . . . . . ... ..o oL 155
5.2.1 Effects of Surfactant . . . . . . ... ... ... ... ... 156
5.2.2 Effects of Monomer — Vinyl Acetate . . . . . . .. ... .... 157
5.2.3 Effects of Monomer — Butyl Acrylate . . . . ... ... .. .. 158
5.2.4 Effects of Initiator . . . . . . ... ..o 158
5.2.5 Implications of the sensitivity results for the control of PSD . 162
5.3 Simulation-based Reachability Analysis . . . . . .. ... ... .... 167
5.3.1 Effect of Surfactants — Coagulation-free Case . . . . . . . . .. 167
5.3.2 Effect of Surfactants and Vinyl Acetate — Coagulation-free Casel76
5.3.3 Effect of Surfactants and Vinyl Acetate — Coagulation-inclusive
Case . . . .. e 177
5.3.4 Effect of Surfactants and Butyl Acrylate —
Coagulation-inclusive Case . . . . . . . .. .. ... ... ... 178



5.3.5 Effect of Parameterization of Inputs . . . . . . .. .. ... ..
5.4 Effect of Uncertainties and Disturbances on the Reachable Regions

5.4.1 Effect of Early In-batch Disturbances . . . . . . . ... .. ..
5.4.2 Effect of Initial Condition Disturbance . . . . . . ... .. ..
5.4.3 Effect of Large Initial Disturbance/Seed . . . . . ... .. ..

5.5 Summary ... oL
OPEN-LOOP AND FEEDBACK CONTROL STUDIES . . . . ..
6.1 Introduction . . . . . ... ... ... L oL

6.2 Optimization of the Feed Profiles using a Genetic Algorithm . . . . .

6.3 Results and Discussion . . . . . . . . . . . .. .. .

6.3.1 Case 1 — Optimization of the Surfactant Feed . . .. . .. ..
6.3.2 Case 2 — Optimization of the Surfactant and Monomer Feed

6.4 Multi-Objective Formulation . . . . . ... .. .. ... ... ...
6.4.1 Two-objective Formulation — Coagulation-free Case . . . . . .
6.4.2 Three-objective Formulation — Coagulation-free Case . . . . .
6.4.3 Convergence Tests . . . . . . ... ... ... ...
6.4.4 Three-objective Formulation — Coagulation-inclusive Case

6.5 Feedback Analysis. . . . . . . . . .. .. oL
6.5.1 Biased State Estimation Strategy . . . .. .. .. ... .. ..

6.5.1.1 Multi-objective Re-optimization Based on Biased
Estimation . . ... ... ... ... 00000,

xi



6.5.1.2 Single-objective Re-optimization Based on Biased
Estimation . . ... ... .. ... 0000 246

6.5.2 Luenberger Observer . . . . . ... .. ... ... ... .... 252

6.5.2.1 Single-objective Re-optimization Based on
Luenberger Observer . . . . . . .. ... ... .... 260

6.5.3 Observability Issues Based on Solids Content Measurements . 263

6.6 Summary . . . . ... .. e 264

7 CONCLUSIONS AND FUTURE WORK . . ... ... ... .... 269
7.1 Instrumentation and Monitoring . . . . . . .. ... .00 269
7.2 Modeling and Computational Algorithm . . . . . . ... .. ... .. 270
7.3 Process Sensitivity and Reachability Studies . . . . . . . ... .. .. 272
7.4 Open-loop and Feedback Studies . . .. ... ... ... ....... 273
7.5 Future Work . . . . . . .. .. 274
7.5.1 Extensions to Emulsion Polymerization . . . . . . ... .. .. 274

7.5.2 Applications to General Population Balance Systems . . . . . 277
BIBLIOGRAPHY . . . . . . . 279

xii



2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

LIST OF FIGURES

Schematic of the experimental emulsion polymerization system. . . 18

LabPRO autosampler 10-way valve configuration for on-line

sampling of the latex from the sampling loop. . . . . . ... .. .. 21
Chemical structure of the surfactants employed in the study. . .. 23
Nominal feed profile for semi-batch emulsion polymerization. . . . . 25
Evolution of the latex density during the semi-batch experiment. . 25

Estimates of process variables based on the densitometer and load
cell information. . . . . . . .. . . ... ... ... ... 30

Measurement of the PSD by the Capillary Hydro-Dynamic

Fractionator (CHDF). . . . . ... ... .. ... ... ....... 32
Evolution of the weight-averaged PSD. . . . . . .. ... .. .. .. 33
Evolution of the number-averaged PSD. . . . . .. ... ... ... 33

Estimation of the absolute distribution from the measurements of
the CHDF and the densitometer. . . . . . . . . . . . . . . .. ... 35

Evolution of the absolute distribution versus the overall conversion
of the monomers. . . . . . . . . .. 36

Plot of the absolute distribution against the mass of the initiator
COMPONENts. . . . . . . ... e e e e e e 37

Reproducibility of PSD measurements in the CHDF. . . . . . . .. 38

xiil



2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

Overall reproducibility on a run-to-run basis - density
measurements. . . .. o. .o Ll L oL e e e e e 39

Overall reproducibility on a run-to-run basis - solids content
estimates by densimetry. . . . . .. ... oo 40

Overall reproducibility on a run-to-run basis - solids content
estimates by gravimetry. . . . . . . ... Lo 40

Overall reproducibility on a run-to-run basis - evolution of the PSD. 41

Overall reproducibility on a run-to-run basis - comparison of the
PSD at select time instances. . . . . . ... ... ... ... .. .. 42

Feed profile of the various reagents including the surfactant solution,
for the study on the sensitivity to the properties of different

surfactants. . . . . . . . . . 43

Comparison of the experimental results with two different
surfactants, for similar operating conditions and feed rates. . . . . . 44

Comparison of the experimental results with two different
surfactants, for similar operating conditions and feed rates. . . . . . 45

Evolution of PSD in high solids content emulsion co-polymerization
of vinyl acetate and butyl acrylate with mixed non-ionic and anionic

surfactants. . . . . . . . . . 47

Profiles of the total mass of the various reagents, in vinyl acetate
homopolymerization. . . . . . . .. ... ..o 49

Emergence of a bimodal distribution in a vinyl acetate
homopolymerization experiment, caused by coagulation events.. . . 50

Feed profile of the reagents with delayed feed of surfactant. . . . . . 50
Evolution of the bimodal distribution, the primary mode attributed
to homogenous nucleation and the secondary mode to micellar

nucleation. . . . . . . . L L L 51

Total particles profile over the course of the batch. . . . . ... .. 51

xiv



3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

Discretization of the r-domain. . . . . . . . . . . . . . . ... ... 68

Feed profile for semi-batch emulsion polymerization.. . . . . . . . . 69
Aqueous phase oligomers and free surfactant concentration. . . . . 70
Profile of the nucleation rates and total particles. . . . . .. .. .. 73
Average number of radicals/particle, a(r,t). . . . . .. .. ... .. 74
Profile of some miscellaneous process variables. . . . ... ... .. 75

Evolution of the probability density function (PDF) W (d, t), versus
the unswollen particle diameter. . . . . . . ... ... ... .. .. 76

The size-dependent growth kernel at various times in the batch. . 76

Comparison of the PSD for size-dependent 7 with size-independent

Comparison of the simulation and experimental results for the
recipe shown in Figure 3.2. . . . . . .. .. ... 80

Comparison of the simulation and experimental results for a recipe
where VAc feed rate is perturbed relative to that shown in Figure
3.2 e e e 81

Comparison of the simulation and experimental results for a recipe
where surfactant feed rate is perturbed relative to that shown in
Figure 3.2. . . . . . .. 82

The modes formed by the initial homogenous nucleation and the
primary micellar nucleation are separated with an increase in I'y,.
Further increase in 'y, eliminates the primary micellar nucleation.
Overall, there is a reduced micellar nucleation with increase in I'y,. 86

XV



3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

An increase in D,,; decreases the number of particles formed by the
homogenous nucleation. Effect is seen after a sufficient number of
particles have been nucleated. The mode corresponding to the

primary micellar nucleation shifts closer to that due to the

homogenous nucleation, and also becomes more prominent, with
increase in Dy, . . . . . Lo e e 87

van der Waals’ attractive potential between particles separated by a
representative distance of D = 1.07um. . . . . ... ... 92

Steric repulsive potential between particles separated by a distance
of D =1.07Tum at different time instants, indicating the dependence
on the free surfactant concentration, S,,. . . .. ... ... .. .. 93

Free surfactant concentration, S,,, and the total swollen particle
surface area, A,, corresponding to the base case recipe. . . . . . . . 94

The size-dependent intrinsic coagulation rate 5 — Equation (3.46),
reflecting the sensitivity of the repulsive potential to the free

surfactant concentration, S,. The rapid decrease in the coagulation
rate constant at larger sizes can be exploited to reduce the
computational load. . . . ... ... ... ... oL, 95

Profiles of the nucleation rate and total particles for the base case
TECIPE. .« « o v v i i e e e e 98

Global average number of radicals/particle, calculated from the
complete distribution 7(r,t), corresponding to the base case recipe. 99

Instantaneous overall conversion of the monomers along the batch
corresponding to the base case recipe. . . . . . . ... ... ... .. 99

Evolution of the PSD along the course of the batch corresponding to
the base case recipe. . . . . . . . ... L L o 100

Comparison of the simulation results with the experimental data for

the vinyl acetate-butyl acrylate co-polymerization recipe shown in
Figure 3.2 (base case). . . . . ... ... ... ... ... 101

xvi



3.24

3.25

3.26

3.27

3.28

3.29

3.30

4.1

4.2

Nucleation rates and total particles profile for a recipe in which the
feed of the monomers and the surfactant solution shown in Figure

3.2 is delayed by 20 min (the initial mixture contains VA¢c monomer,
but no surfactant). . . . . . .. .. L 103

Comparison of the simulation and experimental results for a recipe
with delayed feed of surfactant and monomer (corresponding to the
case in Figure 3.24). . . . . .. ... Lo Lol 104

Comparison of the simulation and experimental end-point PSD for a
recipe obtained by a 22% reduction in the BuA feed rate relative to
Figure 3.2, upto 94 min. . . . . . . . . . .. ... ... ... ..., 106

Comparison of the simulation and experimental end-point PSD for a
recipe obtained by a 28% reduction in the VAc feed shown in Figure
32uptol16.7min. . . ... Lo 106

Comparison of the simulation and experimental end-point PSD for a
recipe in which the step increase in the surfactant feed at 10 min,
shown in Figure 3.2, is delayed to 15 min. . . . . . . . ... .. .. 107

Comparison of the simulation and experimental end-point PSD for a
recipe in which the concentration of initiator components is doubled
compared to the recipe shown in Figure 3.2. . . . . . ... ... .. 107

Comparison of the simulation and experimental results for a
different family of recipe, aimed at achieving a higher solids content,
and involving a longer batch time. . . . .. .. ... ... ... .. 108

The schematic of the proposed hierarchical two-tier algorithm. The

first tier involves the calculation of the rates of the individual
sub-processes (nucleation, growth, coagulation, breakage) holding

the PSD constant. The PSD is then updated in the second tier.
Iteration over these two tiers is optional. . . . . . . ... ... .. 128

Discretization along the size and time domains. . . . . . .. .. .. 131

xvii



4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

5.3

5.4

5.5

Comparison of the simulation results from the current algorithm

(500 Finite Elements of 2 nm width each) with those from the

solution of a OCFE-based discretization of the PBE, and employing
DDASSL integrator to solve the resultant DAE system (40 Finite
Elements having 3 internal collocation points per element). . . . . 145

The domain of integration for the double integrals. . . . . .. . .. 146

The domain of integration for the formation of particles in bin ‘j’
due to coagulation of particles in a particular bin ‘i’ (shown between
vertical dashed lines in Figure 4.4(b)), with other particles. . . . . 147

The end-point PSD simulated by the current algorithm, for the
complete case including nucleation, growth and coagulation (250

Finite Elements of 2 nm width each), compared with the case

without coagulation (500 Finite Elements of 2 nm width each). . . 147

The comparison of the end-point PSD corresponding to a
predictor-corrector strategy to update the PSD, with the case of an
explicit step to update the PSD (250 Finite Elements of 2 nm width
each, in both the cases). . . . . .. ... .. ... ... . ... 148

The comparison of the end-point PSD corresponding to the case of a
constant step size (0.1 s) with that corresponding to an adaptive

step size (250 Finite Elements of 2 nm width each). . .. ... .. 148

Comparison of surfactant feed between the present experiment and
the base case experiment. . . . . . .. ... ... ... ....... 158

Effect of a perturbation in the surfactant feed rate relative to the
base case experiment. . . . . . . .. .. ... 159

Evolution of the PSD with the surfactant-perturbed recipe. . . . . 160

Comparison of vinyl acetate feed between the present experiment
and the base case experiment. . . ... ... ... .. ....... 160

Effect of a perturbation in the VAc feed rate relative to the base
case experiment. . . . . . . ... ...l 161

XVviil



5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

Comparison of butyl acrylate feed between the present experiment
and the base case experiment. . . . . . .. ... ... ....... 162

Effect of a perturbation in the BuA feed rate relative to the base
case experiment. . . . . . . .. .. ..o 163

Effect of a perturbation in the initiator concentration relative to the
base case experiment. . . . . . . .. ... L. 164

The unimodal distributions produced with surfactant alone as the
manipulated variable, under coagulation-free conditions. . . . . . . 168

Characterization of the smaller (secondary) mode, in the bimodal
distributions produced with surfactant alone as the manipulated
variable, under coagulation-free conditions. . . . . . . . ... .. .. 169

Characterization of the larger (primary) mode, in the bimodal
distributions produced with surfactant alone as the manipulated
variable, under coagulation-free conditions. . . . . . . . ... .. .. 170

Relation between the mean size of the two modes in the bimodal
distributions produced with surfactant alone as the manipulated
variable, under coagulation-free conditions. . . . . . . ... .. .. 171

Ratio of the mean diameter of the two modes in the bimodal
distributions produced with surfactant alone as the manipulated
variable, under coagulation-free conditions. . . . . . . ... .. .. 171

Limits on the attainable profiles of total particles and solids content
when surfactant alone is used as the manipulated variable, under
coagulation-free conditions. . . . . ... .. ..o 172

Ratio of the mean diameter of the two modes in the bimodal
distributions produced with surfactant and VAc monomer as the
manipulated variables, under coagulation-free conditions. . . . . . 178

Limits on the profiles of total particles and solids content, when

surfactant and VAc monomer are used as the manipulated variables,
under coagulation-free conditions. . . . . .. .. ..o 179

Xix



5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

The unimodal distributions produced with surfactant and VAc
monomer as the manipulated variables, under coagulation-inclusive
conditions. . . . . . . . ... 180

The bimodal distributions produced with surfactant and VAc
monomer as the manipulated variables, under coagulation-inclusive
conditions. . . . . . . . L L 181

Ratio of the mean diameter of the two modes in the bimodal
distributions produced with surfactant and VAc monomer as the
manipulated variables, under coagulation-inclusive conditions. . . . 182

Limits on the profiles of total particles and solids content, when
surfactant and VAc monomer are used as the manipulated variables,
under coagulation-inclusive conditions. . . . . . . . ... ... .. 183

Ratio of the mean diameter of the two modes in the bimodal
distributions produced with surfactant and BuA monomer as the
manipulated variables, under coagulation-inclusive conditions. . . . 184

Limits on the profiles of total particles and solids content, when
surfactant and BuA monomer are used as the manipulated variables,
under coagulation-inclusive conditions. . . . . . . .. ... ... .. 185

Limits on the profiles of total particles and solids content, when
surfactant and VAc monomer are used as the manipulated variables,
under coagulation-inclusive conditions, when the duration of each
interval is allowed tovary. . . . . . . .. .. ... 186

The perturbed distribution at 22 minutes into the batch, relative to
the nominal distribution, due to an early disturbance in the batch. 187

Comparison of the end-point distributions that result in the nominal
case, with those that result after the source of an early disturbance

has been removed mid-course (at 22 minutes into the batch

spanning 121 minutes). . . . . . .. .. ... L. 188

Characterization of the distributions that result from the nominal

case, and from the case in which the source of an early disturbance

has been removed mid-course (at 22 minutes into the batch

spanning 121 minutes). . . . . .. ... ... 189

XX



5.27

5.28

5.29

5.30

5.31

5.32

5.33

6.1

6.2

6.3

6.4

6.5

6.6

The initial distribution (due to unintended carry-over from the
earlier batch). . . . ... Lo o 191

Effect of the initial distribution (of small mass) on the reachable
distributions. . . . . .. ..o 192

The limits of the attainable profiles of total particles and solids
content in the face of the uncertainty in the initial distribution. . . 193

The initial PSD, corresponding to a larger mass of initial seed. . . 195
Comparison of the unimodal distributions that are produced in the
current seeded case with those produced in the nominal (ab initio)

CASE.  + v e e e e e e e e e e e 196
Comparison of the bimodal distributions that are produced in the
current seeded case with those produced in the nominal (ab initio)

CASC. « v v e e e e s 197

Limits on the reachable profiles of total particles and solids content,
given the initial seed of particles. . . . . .. .. ... ... ... 198

Objective function values of the members as they evolve through the
generations to an optimal population. . . . . ... ... 214

The end-point PSD corresponding to members of particular
generations. (The target PSD is shown as a dashed line). . . . .. 215

Comparison of the recipe generated by the optimizer and the
resultant PSD with the target. . . . .. .. ... ... 216

Evolution of the total number of particles during the batch. . . . . 217
Comparison of the optimal recipe for both surfactant solution and
vinyl acetate monomer with the recipe originally used to generate

the target. . . . . . Lo 217

Evolution of PSD during the course of the batch for the sub-optimal
TECIPE. .« « . v v i e e e 218

xxi



6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

Comparison of the end-point PSD pertaining to the sub-optimal
recipe with the target distribution. . . . . . .. .. ... ... 219

Comparison of the total particles corresponding to the sub-optimal
recipe with that corresponding to the original recipe, during the
course of the batch. . . . . . . . .. ... ... . 220

Comparison of the solids content profile of the original recipe with
that obtained from the sub-optimal recipe — both from simulation
and experiment. . . . . . ... L. 220

Rate of consumption of the two monomers along the profile of the
batch. . . . . . . . 221

Comparison of the best recipe for matching the weight-averaged
PSD (for both surfactant solution and vinyl acetate monomer) with
the recipe originally used to generate the target. . . . .. ... .. 221

Comparison of the end-point PSD corresponding to the best recipe
with the target distribution. . . . . .. ... ... ... ... ... 222

Evolution of PSD during the course of the batch, observed in the
experimental implementation of the best recipe. . . . ... .. .. 223

Comparison of the total particles corresponding to the best recipe
with that corresponding to the original recipe, during the course of
the batch. . . . . . . ... . 223

Comparison of the solids content of the original recipe along the
course of the batch with that obtained from the best recipe — both
from simulation and experiment. . . . ... ... ... ... .... 224

Comparison of the recipe generated by the optimizer and the
resultant PSD with the target, to match the entire weight-averaged
PSD. . 225

Comparison of the recipe generated by the optimizer and the
resultant PSD with the target, for a minmax formulation of the
objective function on a weight-average basis. . . . . . . .. ... .. 226

xxii



6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

Schematic of the proposed hierarchical strategy for the control of

PSD, by regulating the nucleation, growth and coagulation events
individually, in a multi-objective framework. The target PSD

trajectory is transformed into trajectories of the individual rates of

the nucleation and growth events (with minimization of the

coagulation events). Further, the idea of the control of

instantaneous properties is exploited to re-cast the trajectories of
nucleation and growth rates as equivalent profiles of total particles

and solids content. . . . . . . ... ... ... 227

Evolution of the pareto-optimal solutions from generation I to
generation V. The inset shows the pareto-set filter corresponding to
the fifth generation. . . . . . . .. ... .o oL 232

Performance of the pareto-optimal solutions obtained at the end of
five generations, with respect to the end-point PSD target. . . . . 233

Comparison of the optimal feed profiles characterizing the four
pareto solutions, with the target (original) recipe. . . .. ... .. 233

Evolution of the (weight-averaged) PSD in the experimental
implementation of pareto # 4. Input profiles were those depicted in
Figure 6.21. . . . . . . . Lo 233

Comparison of the experimental results observed on implementing
pareto # 4 (from Table 6.1 — Two-objective formulation) with the
target. ... .. 235

Performance of the pareto-optimal solutions obtained at the end of
five generations in the three-objective problem, with respect to the
end-point PSD target. . . . . ... ... .o oo 236

Comparison of the optimal feed profiles characterizing the two
pareto solutions with the target recipe (that was originally used to

generate the target distribution) — three-objective formulation. . . 236

Comparison of NSGA-generated ‘optimal’ solution with the target,
utilizing a coagulation-inclusive model to perform the optimization. 240

xxiil



6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

Experimental implementation of the open-loop optimized recipe
corresponding to the solution shown in Figure 6.26, and comparison
of the obtained end-point PSD with the target. . . . ... ... .. 241

Multi-objective re-optimization of the inputs, using measurements
available at 8 minutes into the batch - based on a biased estimation
strategy. . . . . Lo 247

Mutli-objective re-optimized inputs corresponding to the results in
Figure 6.28. The dashed lines in the plot (‘Target’) represent the
open-loop optimized recipe. . . . . ... .. ... ... ... 248

End-point PSD obtained by a single-objective re-optimization, using
measurements available at 8 minutes into the batch - based on a
biased estimation strategy. . . . . ... .. ..o 249

Single-objective re-optimized inputs corresponding to the results in
Figure 6.30. . . . . . . .. 250

Biased estimation strategy without parameter updating, showing
the convergence of the results beyond 30 minutes. . . . . . . .. .. 253

Comparison of the estimates based on a Luenberger estimator with
parameter updating, with the experimental data. . . . ... .. .. 256

The convergence of the estimates based on Luenberger estimator,
with availability of additional data. . . . . . . .. ... ... .. .. 257

Single-objective re-optimization of the inputs, based on a
Luenberger estimator with parameter updating, utilizing data up to
33 minutes into the batch. . . . . ... ... ... ... ... ... 258

Inputs corresponding to the results presented in Figure 6.35,
re-optimized from 44 minutes into the batch. . . . . ... ... .. 259

Estimates based on discrete parameter updating using the early
measurements of solids content, compared with the estimates based

on the Luenberger continuous-discrete state/parameter estimator.

The parameter updating is stopped after the time shown in the

legend of the various cases. . . . . ... .. ... ... 261

XX1V



6.38

Estimates based on utilizing both the early solids content data for
parameter updating, and later measurements (PSD, total particles

and solids content) for state/parameter updating (labeled as ‘sc and
PSD data’). These are compared with the case when the early solids
content data are not employed for parameter updating. . ... .. 262

XXV



3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

6.1

6.2

6.3

6.4

LIST OF TABLES

Emulsion Polymerization Kinetic Scheme . . . . . . . ... ... .. 113
Kinetic and Physical Constants . . . . . .. ... ... ....... 114
Nominal values for uncertain parameters . . . . . . .. .. ... .. 115
Summary of Parametric Sensitivity Studies . . . . . . . .. ... .. 116
Summary of Parametric Sensitivity Studies . . . . . . . .. ... .. 117
Constants employed in the coagulation-inclusive model . . . . . . . 118
Nomenclature . . . . . . . . . . . . ... 119
Nomenclature (Cont’d) . . . . . .. ... ... .. .. .. ... . 120

Comparison of the solution times for the simulation of a batch
spanning 150 minutes in a Sun Blade 1000 Unix processor,
equipped with two 800 MHz processors and 1 GB memory. . . . . . 152

Objective function values corresponding to the four pareto-optimal
solutions. . . . . . . ... 232

Objective function values corresponding to the two pareto-optimal
solutions — three-objective formulation. . . . . . . . . .. ... ... 237

Objective function values corresponding to the pareto-optimal
solutions obtained from different strategies . . . . . . . .. ... .. 238

Objective function values corresponding to the two pareto-optimal
solutions — three-objective formulation, using a coagulation-inclusive



6.5

Nomenclature

XXVil



ABSTRACT

The control of particle size distribution (PSD) in emulsion polymerization
is motivated by the crucial role played by the PSD in determining the properties
of the latex, including adhesion, rheological properties, and drying characteristics,
among other things. Thus, the control of the entire multi-modal distribution leads
to a better quality product. This dissertation demonstrates the control of PSD
in semi-batch emulsion polymerization. The system investigated is vinyl acetate-
butyl acrylate co-polymerization with non-ionic surfactants. The evolution of PSD
is determined by the interplay of the phenomena of particle formation, particle
growth and coagulation/aggregation. The main aspects of the project can be broadly

summarized as follows:

e Performance of detailed process analyses to elucidate the mechanisms, under-

stand the controllability, and identify control strategies.

e Development of detailed population balance models and development of effi-

cient numerical methods.

e Development of control algorithms and strategies to produce better quality

products.

Elaborating on the above aspects, an experimental study of the feasibility
and methods of producing multi-modal distributions was performed, and the best
control strategy was identified. Also, the types of distributions that can be produced,
and their sensitivity to uncertainties in the model and the process were examined.

Such a study is necessary for successful control of any process.
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The next aspect of the research was to develop a detailed first principle model
for the process of the evolution of the PSD in semi-batch emulsion co-polymerization.
The model is cast in a population balance framework, accounting for the nucleation,
growth and coagulation phenomena. The population balance equations — which are
hyperbolic partial differential equations — and the associated complete model equa-
tions can be solved using standard techniques, as was demonstrated in our study.
However, besides being high-dimensional, the system is also characterized by a large
stiffness due to the wide difference in the time constants that characterize the nu-
cleation, growth and coagulation processes, rendering the solution computationally
very expensive and time consuming. This served as an impetus to develop better
numerical solution techniques for the model. An efficient solution technique has
been developed, that employs process understanding to re-cast the solution in a
hierarchical framework, with the nucleation, growth and coagulation phenomena
considered individually to update the PSD. The improved solution technique brings
on-line feedback control within the feasibility realm.

The final aspect of the research was to perform optimization and control stud-
ies on the PSD. Optimization studies were performed, to design recipe for semi-batch
operation that attain target PSDs in the latex. The discontinuities in the process
preclude the application of traditional gradient-based optimization techniques to
this problem. Thus, direct optimization techniques such as a genetic algorithm were
employed to solve this optimization problem. The tracking of a trajectory of PSD
was transformed into a multi-objective optimization problem, again in a hierarchical
framework in terms of the nucleation and growth rates, and this was solved using
a multi-objective extension of genetic algorithm (Non-dominated Sorting Genetic
Algorithm). The ability to account for model-mismatch using the on-line measure-
ments was examined using different estimation techniques. Also (off-line) feedback

studies were performed which provide encouraging results about the optimization
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and control of the PSD in semi-batch emulsion polymerization. The studies reveal
the potential for different methodologies of feedback control, specifically in-batch
(on-line) feedback control and batch-to-batch feedback control.
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Chapter 1

INTRODUCTION

1.1 Distributed Parameter Systems

Most processes are distributed with respect to one or more of their internal
characteristics. A classic example is the residence time of the components in a
continuous stirred tank reactor (CSTR). More subtle, but well-known examples
of the distributed nature of processes are the size distribution of crystals, emulsion
polymers and granules, and the age distribution of microbial cell populations. These
processes are categorized as distributed parameter systems (DPS). In addition to
the above mentioned examples which constitute the so-called population balance
systems, other examples of DPS include flow systems characterized by a velocity
distribution, general reactor and separator systems characterized by a residence
time distribution, and sheet and film-forming processes characterized by thickness
profiles. Researchers in the past were obligated to treat these processes as lumped

processes because of the following reasons:
e lack of instrumentation to discern these distributed attributes of the processes
e lack of computational tools to deal with the increased complexity
e lack of understanding of the underlying mechanisms that form distributions.

Analogous to the loss of performance associated with the design of ideal CSTRs,
there is a loss of value in neglecting the distribution in size/age of crystals, poly-

mer particles and cell populations. There is a recognition in the industries of a



need to reduce the fluctuations in product qualities by dealing with entire distribu-
tions (Congalidis and Richards, 1998). Furthermore, there is a growing recognition
among researchers of the substantial improvement in product quality by acknowl-
edging the distributed attributes of the processes (Doyle III et al., 2001; Christofides,
2002; Braatz and Hasebe, 2001; Daoutidis and Henson, 2001). Such improvements
are obtained by tailoring the distributions to suit specific end-use applications. This
idea is promoted by the recent advances in instrumentation technology and in com-
puting technology. Most processes of interest in this regard are characterized by
distributions in the sub-micron and nano scales. The advances in instrumentation
facilitate the monitoring or inferring of the sub-micron and nano states of the sys-
tem, thereby bridging the gap between the molecular scale and the macro scale.
However, dealing with the nanoscale of the processes and with distributions ne-
cessitates development of knowledge and theories, leading to a multi-disciplinary
research. This new rigorous approach, while benefiting from existing theories, also
indicates the erroneous conclusions drawn when treating processes through lumped
parameters. The rectification of such anomalies is an additional factor that leads to

improvements in the processes, and in the product qualities.

1.2 PSD in Emulsion Polymerization

Emulsion polymerization, in which the polymer is primarily produced as a
colloidal dispersion of particles in the aqueous phase, has several advantages over
other types of polymerization processes such as bulk and solution polymerization.
The compartmentalized (heterogeneous) arrangement of the reaction mixture en-
ables producing high molecular weight products. Also, the overall Trommsdorff (gel)
effect, being restricted to the particle phase, is much subdued in emulsion polymer-
ization unlike in bulk polymerization. In addition, no organic solvents are employed
in the formulation, alleviating environmental concerns. The particle size distribution

(PSD) of the emulsion latex is strongly correlated with the end-product properties



of the emulsion. The PSD influences the rheological properties, adhesion, drying
characteristics, optical properties, mechanical strength, and film-forming properties
of the final products, which include adhesives, coatings, paints, efc. For example,
the particle size distribution determines the achievable solids content, which in turn
is critical for film-forming applications and mechanical strength. Similarly, paint-
based applications require particular shear-thinning behavior — high viscosity at low
shear rates and vice versa. Such properties are provided by multi-modal distribu-
tions, thereby motivating the need to produce multi-modal particle size distributions
in the emulsions. The multi-modal PSDs of interest are not represented adequately
by lumped properties such as average particle size or even with a small number of
higher moments of the distribution. Hence, the problem of the control of the full
distribution in emulsion polymerization becomes a classical example of nanoscale

distribution control problems that lead to substantial quality improvements.

1.2.1 Mechanism of Evolution of Distributions

As illustrated in the foregoing discussion, emulsion polymerization is a multi-
phase reaction system wherein the main locus of polymerization lies within organic
particles (in the size range of about 2 nm to 1 x), which are dispersed in the aqueous
phase. The polymerization is primarily initiated in the aqueous phase, and results in
aqueous phase oligomers. However, both the monomers and polymers have a limited
solubility in the aqueous phase, thereby limiting the extent of polymerization in this
continuous phase. The particle phase is formed by two major mechanisms involving
the aqueous phase oligomers. The primary mechanism of particle formation is micel-
lar nucleation, which is effected by the entry of an oligomer from the aqueous phase
into a micellar aggregate of amphiphilic surfactants. These micelles are formed un-
der high concentration of surfactant molecules in the aqueous phase, exceeding the
critical micelle concentration (cmc) threshold. The second mechanism of particle

formation does not explicitly involve the heterogenous surfactant molecules, and is



termed homogenous nucleation. This occurs by the precipitation of these oligomers
into separate particles upon attainment of their critical chain lengths (corresponding
to their solubility limits). The polymer chains inside the particles propagate at very
high rates compared to that in the aqueous phase, causing the particles to grow
in size. The growth dynamics depend on the number of polymer chains within the
particles. This in turn depends upon the rate of entry of oligomers from the aqueous
phase into the particles, the rate of desorption of chains formed by chain transfer
within the particles back into the aqueous phase, and the rate of mutual termina-
tion of chains within the particles. Particles can also increase in size by coalescence
with other particles, either due to insufficient stabilization by surfactants or due
to the shear stress imparted on the particles by the mixing in the reactor. Thus,
the particle size distribution (PSD) is determined by the interplay of three major
processes — nucleation, growth and coagulation. See (Gilbert, 1995; Asua, 1996) for
a good introduction to emulsion polymerization.

Although emulsion polymerization has the operational advantage of a sub-
dued gel effect compared to bulk polymerization, the stabilization of the dispersed
phase is critical, and leads to concerns with instrumentation and operation. The
stabilization is achieved by the use of surfactants to counter the universal van der
Waals’ forces. These amphiphilic and surface-active surfactants adsorb onto the
particles with their hydrophobic end-groups, while the hydrophilic end-groups ex-
tend into the aqueous phase. Different surfactants effect stabilization by different
mechanisms. The two major types of surfactants are ionic and non-ionic. Ionic
surfactants stabilize the particles by electrostatic repulsion caused by the charge at-
tached to their hydrophilic ends. On the other hand, the non-ionic surfactants cause
the stabilization by many different, relatively less understood processes. The major
process among these is steric stabilization, caused by the bulkiness of the surfactant

chains. In addition to the surfactant-induced stabilization, the shear effects due to



mixing play a strong role in determining particle (in)stability.

In addition to particle stabilization, surfactants play a major role in the micel-
lar nucleation phenomenon by forming micelles which serve as precursors to particles
(new reaction sites). This role is uncomplicated in the case of the ionic surfactants
which restrict themselves to the aqueous phase and its interface with the dispersed
phases. The micelles are formed when the concentration of the surfactants in the
aqueous phase exceeds the cmc value. On the other hand, the non-ionic surfactants
partition into the dispersed phases leading to profound alterations to the nucleation
pattern. However, the non-ionic surfactants are preferred over their ionic counter-
parts, as the ionic surfactants adversely affect the water-resistance characteristics of

the emulsion polymer.

1.3 Issues in the Control of Distributions

To attain the goal of the control of the full distributions, one has to start from
scratch on several counts, including process analysis and controllability studies, pro-
cess modeling, optimization and control. The focus on the sub-micron regime would
require the knowledge of aspects that were not critical or essential when dealing with
the macro scale. A good understanding of the intricate behavior of the distributions
are required. The modeling studies assume special considerations with regard to the
underlying concepts, and the computational complexity. Optimization and control
might necessitate the development of newer tools and algorithms, assuming newer

dimensions. These aspects are outlined below.

1.3.1 Instrumentation and Monitoring
The success of the studies on the control of PSD depends upon several factors,
the primary factor being the availability of good instrumentation. Feedback control

necessitates the measurement of PSD on-line, at a sufficiently rapid frequency. One



also needs a good understanding of the mechanism of the evolution of the PSD, and
the sensitivities in the process.

Monitoring emulsion polymerization is easier as compared to bulk polymer-
ization, and a considerable literature exists on this topic, particularly for macro-
scopic and lumped properties such as the conversion and copolymer composition.
However, an issue to be reckoned with is the coagulation of the mass in the sampling
loop. Recent improvements enable the monitoring of the process at the sub-micron
level, and at sufficiently rapid frequency to enable on-line control. Instruments for
monitoring the PSD include light scattering equipment, and more recent hydro-
dynamic equipment. Kammona et al. (1999) provide an excellent review on the
instrumentation applied to emulsion polymerization. To cite a few relevant studies,
Noel et al. (1995) investigated the use of on-line gas chromatography and den-
simetry to obtain the conversions of the individual monomers in a two-monomer
system. Siani et al. (1999) also investigated the inference of monomer conversion for
multi-monomer systems using ultrasonic sensors. The use of calorimetry to monitor
conversion in emulsion polymerization via the direct measurement of the polymer-
ization rate, was demonstrated by several authors (McKenna et al., 1996; Ozdeger et
al., 1997b; de la Rosa, 1996). Liotta (1996) constructed a model emulsion polymer-
ization system incorporating instrumentation for on-line measurement of conversion
and PSD, as part of a study on the control of the diameter ratio of bi-disperse
populations.

Several studies addressed the evolution of the distribution in semi-batch emul-
sion polymerization, by focusing on individual aspects of the evolution. Chern et
al. (1997) studied the effect of mixtures of anionic and non-ionic surfactants on the
coagulation phenomenon, and found that the system considerably deviates from
Smith-Ewart kinetics. Piirma & Chang (1982) studied the alterations to the nucle-

ation pattern introduced by non-ionic surfactants, attributed to their tendency to



be absorbed into the dispersed phases. Similar observations were made by Ozdegar
et al. (1997a; 1997b) in the batch emulsion polymerization of styrene and n-butyl
acrylate using non-ionic surfactants. Low and high initial surfactant concentrations
resulted in unimodal distributions, while intermediate concentrations resulted in bi-
modal distributions in batch polymerization. The unimodal distributions produced
at low initial surfactant concentrations were attributed to homogenous nucleation
and those at high initial surfactant concentrations were attributed to micellar nucle-
ation. The bimodal distributions produced in the intermediate case were attributed
to a primary homogenous nucleation followed by a secondary micellar nucleation.
Sajjadi & Brooks (2000) observed the evolution of bimodal distributions in semi-
batch recipes that do not contain any emulsifier in the initial batch. The primary
nucleation event was attributed to the homogenous nucleation mechanism, and the
secondary nucleation was attributed to either homogenous or micellar nucleation.
However, detailed modeling studies undertaken in this dissertation have indicated
that even for a highly water-soluble monomer such as vinyl acetate, homogenous
nucleation rate fails to compete with radical entry into existent particles/micelles.
This clearly attributes the secondary nucleation event seen in the study of Sajjadi
& Brooks on butyl acrylate emulsion polymerization to a micellar phenomenon.
The work of Sajjadi & Brooks serves as an experimental demonstration of the fea-
sibility of effecting secondary particle nucleation and producing bimodal distribu-
tions by semi-batch operation, particularly with surfactant feed. This aspect was
demonstrated via detailed mathematical modeling by other authors (Crowley et

al., 2000; Meadows et al., 2002).

1.3.2 Sensitivity Studies, Process Potentials and Limitations
Effective control of any process depends upon two pre-requisites — the iden-

tification of the sensitivities in the process on the one hand and its potentials and



limitations on the other. The first step enables developing efficient and effective con-
trol strategies. While this analysis is obvious and intuitive in most systems when
viewed through lumped parameters, in the case of new and emerging processes, par-
ticularly when characterized by distributions and profiles, any intuition that may
be available is negated in a number of situations. The few studies reported in the
literature on the control of distributions have defaulted on surfactant feed, in some
cases along with initiator feed, as the manipulated variable. For certain specific
applications (to control the growth of seeded particles), researchers have employed
monomer feed as the manipulated variable. However, the mechanism of formation
of distributions and profiles are intricate and are influenced in complex and in some
cases non-intuitive ways by the inputs available in the process, as would be clear
from the mechanism presented previously. It is of interest to identify the most
suitable control configurations for all possible scenarios. Hence the need for the
sensitivity analysis.

The second pre-requisite for efficient design and control is the identification
of the reachable regions of the outputs — this aspect also being tied to the potentials
and limitations in the system. Again, while it is easier to ascertain the controllability
of lumped parameter systems, it is not so in the case of the distributed parameter
systems (which are modeled through partial differential equations). Distributions
constitute an infinite-dimensional system with respect to the outputs, while the di-
mension of the inputs is small (depending upon the parameterization chosen). Thus,
the achievable distributions are limited. Also, in the case of multi-variate systems,
the attainable regions of the different variables are usually correlated, and hence
the reachability analysis assumes a further dimension. This is the case for the con-
trol of distributions, and thus the shape of the achievable distributions are limited.
These aspects need to be understood to formulate meaningful control objectives

for the process. Semino & Ray (1995a) addressed the controllability of population



balance systems. They found in their study that employing the feed concentration
of surfactant, initiator and inhibitor as manipulated variables ensures the control-
lability of the distributions for the unconstrained case. Liotta, Georgakis, Sudol
& El-Aasser (1997) performed simulation-based controllability studies to determine
the reachable region for the control of the diameter ratio of a bi-disperse popu-
lation. They identified the reachable regions of diameter ratio, and examined its
sensitivity to the initial conditions. They used the monomer concentration within
the particles as the manipulated variable, which in turn can be controlled by ma-
nipulating the monomer feed rate. The upper and the practical lower limits on
the monomer concentration within the particles were used to identify the reachable
regions. These aspects need to be elaborated upon under more general conditions,

and the controllability under constrained conditions needs to be studied.

1.3.3 Process Modeling and Computational Methods

As in the case of the sensitivity and controllability analyses, the new outlook
to the process requires a paradigm shift in the modeling approach too. There is a
rich literature on lumped parameter models for emulsion polymerization processes,
starting with the conventional Smith-Ewart model which identified three regimes
in terms of the relative importance of the rates of entry, desorption and termina-
tion (Gilbert, 1995), and derived expressions for the average number of radicals per
particle 7 for each regime. The lumped parameter models approximate complete
PSD or molecular weight distribution (MWD) information by a few moments. These
models enable calculation of monomer conversion and average co-polymer composi-
tion. The average number of radicals per particle 7 is modeled using the expression
of Smith & Ewart (corresponding to one of the three regimes) or the Stockmayer &
O’Toole modifications (O’Toole, 1965). Such lumped parameter models include the
works of Nomura et al. (1982), Dimitratos et al. (1989; 1991) and Urretabizkaia et

al. (1992). Penlidis et al. (1985) provide a review of the lumped parameter models in



emulsion polymerization. Forcade & Asua (1990) modeled three populations of par-
ticles — characterized by the number of radicals in them. DeGraff & Poehlein (1971),
Kiparissides et al. (1979) and Mead & Poehlein (1988) studied continuous emulsion
polymerization reactors. Richards et al. (1989) lumped all particles above a cut-off
size into a single entity in their model, although they account for the size distribution
of the particles at the smaller size end.

Min & Ray (1974) were among the first to introduce a paradigm shift in
the modeling of PSD, by employing the population balance approach to model the
entire PSD. In this approach, the particles are characterized by a population den-
sity function such as F,(x,t) — a measure of the concentration of particles having
n growing radicals, where x is some measure of the particle size, say mass, volume,
radius, life time, etc. Rawlings & Ray (1988a; 1988b) generalized this model and
performed parametric sensitivity studies. Storti et al. (1989) proposed the pseudo-
homopolymerization approach, as an extension of the model to copolymer systems.
Saldivar et al. (1998) developed a comprehensive and generalized model for PSD
and MWD for multi-monomer systems, employing the pseudo-homopolymerization
approximation. Melis et al. (2000) addressed the modeling of the coagulation phe-
nomenon in a population balance framework. Another class of distributed parameter
population balance modeling is the zero-one model. This model assumes that the
particles have either one radical or none at all, based on assumptions on the rates of
entry, termination and desorption. Chen & Wu (1988) modeled a copolymer system
using the zero-one model. Other studies based on the zero-one approach include the
works of Coen et al. (1998), Crowley et al. (2000) and Araujo et al. (2001).

In general, population balances account for the modeling of systems charac-
terized by nucleation (birth), growth (aging), and coagulation/breakage (aging and

loss). These so-called population balance systems are represented by some quantity
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of interest that is distributed along a certain coordinate of property, e.g., the pop-
ulation of the world, which is distributed with respect to the age of the members.
Although the birth and loss of members can be accounted for by the conventional
material and energy balances, the drift of the population from one age group to an-
other (the aging process), which is internal to the system, requires a new modeling
framework. The population balance modeling principle accounts for these internal
realignment processes. The population balance concept has been employed in solv-
ing chemical engineering problems since the early 1960’s, covering a wide range of
systems which fall under the broad class of distributed parameter systems. The sys-
tems considered range from crystallization (Randolph and Larson, 1962), microbial
cell population (Fredrickson and Tsuchiya, 1963), and residence time distribution or
catalyst activity distribution in fluidized bed reactors (Behnken et al., 1963; Ran-
dolph, 1964). The text by Ramkrishna (2000) provides a very good introduction to
population balances.

The general population balance equation is given by:

%C(n, t) + (%(C(n, t)%}) = Rouc(n,t) + Rinternar (1, 1) (1.1)

where ((n,t) is the population density function, defined such that ((n,t)dn is the
concentration or value of the quantity whose internal property value lies within a
small interval dn of n. R,uc(n,t) accounts for the ‘birth’ of the quantity in the various
parameters range. For example, in human population balance, birth is restricted to

the smallest age group, and R,,.(n,t) = 0 for > Nyin. The terms %(C(n, t)‘fi—;’) and

Rinternar(n, t) are the two terms which account for the internal realignment processes.

The partial derivative term accounts for a continuous growth process, e.g., the aging

process in human populations, in which case the term ‘2—2 =1 (as in the case of all sys-

tems where age is the internal coordinate). Similarly, in polymerization processes,

the entities increase in size/length due to the polymerization reactions, in which

case Z_? is related to the polymerization rate. ‘fi—’t’ can also take negative values, as in
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the case of the dissolution process. While this first realignment term accounts for a
relatively gradual process, the other realignment term (Ripnternai(7,t)) accounts for
more discrete processes. These include the coagulation (aggregation) and breakage
processes. Coagulation accounts for the merging of two components with particular
values of the internal quantity to form a third component with a different value
of the internal quantity. For example, in granulation, two particles of sizes r; and
r9 combine to form a single particle of a larger size r3. Breakage accounts for the
converse effect, of one particle breaking into two (or more) smaller particles. The
internal coordinate n can also assume discrete values — for example, the number of
active radicals and inactive polymer chains inside the particles in emulsion polymer-
ization. As mentioned earlier, systems characterized by population balance cover a
wide gamut, ranging from crystallization, precipitation, granulation, cell population
and viral population in biochemical and biomedical applications, mineral processing
(dissolution), comminution processes, and a variety of polymerization systems (both
homogeneous and heterogeneous).

One important issue in population balance modeling is the computational
solution of the resultant partial differential equations or integro-partial differential
equations (the integrals arising in the Riuerna(n,t) term). While this issue has
limited the type of applications amenable to population balance considerations, the
recent advances in computing have greatly facilitated the application of popula-
tion balances to many complicated systems. The recent applications of population
balance principles include, besides emulsion polymerization, crystallization (Braatz
and Hasebe, 2001; Gerstlauer et al., 2001), precipitation (Falk and Schaer, 2001; Ma-
honey and Ramkrishna, 2002), cell populations (Daoutidis and Henson, 2001), disso-
lution processes (Giona et al., 2002), polyolefins (Prasetya et al., 1999; Yiannoulakis
et al., 2001), and micro-emulsion applications (Bandyopadhyaya et al., 1997; Ramkr-
ishna and Mahoney, 2002).
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1.3.4 Optimization and Control

In contrast to the relative dearth of literature on the control of the full PSD,
there is a considerable literature on the control of lumped properties. These include
the studies addressing the issue of state estimation for semi-batch emulsion poly-
merization. These state estimation studies become important for feedback purposes,
either due to the lack of instrumentation to measure several important properties,
or due to infrequent measurements. Such state estimation studies include the works
of Dimitratos et al. (1989; 1991), Kozub & MacGregor (1992b), Liotta, Georgakis &
El-Aasser (1997) and Astorga et al. (2002). These studies used an extended Kalman
filter with parameter augmentation of the states, and a receding-horizon framework
in the estimator. Kozub & MacGregor (1992b) suggested the need to update the
initial conditions in addition to the parameters (reiterative extended Kalman filter),
along the lines of the proposition in Jazwinski (1970). They suggest a full non-linear
optimization strategy utilizing all the data points (available up to the current time),
to determine the initial conditions. However, all these studies deal with lumped pa-
rameter models, and there are no state estimation studies reported, that deal with
the full PSD in emulsion polymerization.

On the optimization and control of semi-batch emulsion polymerization,
Kozub & MacGregor (1992a) applied the idea of a two-tier control strategy — open-
loop feed-forward design of an optimal recipe, which is then re-computed on-line
based on feedback from process measurements — for the multi-variable control of
composition and average molecular weight. They utilized the idea of the control
of instantaneous properties. A similar strategy was employed by Urretabizkaia
et al. (1994) for the open-loop control of ter-polymer composition. Saldivar &
Ray (1997) studied the control of copolymer composition and average molecular
weight for semi-continuous emulsion polymerization, employing open-loop recipe

design coupled with on-line re-computation based on measurements — the so-called
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two-tier approach. This work was the first experimental application of multi-variable
control in emulsion polymerization. Semino & Ray (1995b) demonstrated the con-
trol of PSD, based on their controllability studies on the system. Liotta, Georgakis
& El-Aasser (1997) configured a linear MPC with state estimation for the control
of the diameter ratio of a bi-disperse (two mono-disperse) population. Liotta, Geor-
gakis, Sudol & El-Aasser (1997) studied the possibility of exploiting the gel-effects
for manipulating competitive particle growth on a styrene system. Clarke-Pringle
& MacGregor (1998) presented a batch-to-batch adjustment strategy for the control
of molecular weight distribution (MWD), to re-optimize the inputs for the subse-
quent batch based on end-point measurement of the MWD. Crowley et al. (2000)
were among the first researchers to address the optimal control of the full parti-
cle size distribution. They used a detailed population balance model for styrene
emulsion polymerization to design open-loop optimal recipes for semi-batch emul-
sion polymerization, to achieve a target PSD. They considered different objective
norms, with both surfactant feed rate and free surfactant concentration as possible
manipulated variables. In a subsequent study, Crowley et al. (2001) used a hybrid
modeling strategy in batch-to-batch optimization for PSD control. They augmented
their first-principles model with a Partial Least Squares (PLS) correction to account
for model discrepancies. This PLS correlation was updated after each batch, and
the combined model used to re-optimize the feed profile. Recently, Flores-Cerrillo
& MacGregor (2002) developed a feedback control strategy for the control of PSD,
in which they employ a mid-course correction to the open-loop optimal recipe based
on the PSD measurement available by that time. They addressed the control of

both absolute and relative distributions in their study.

1.4 Outline of the Dissertation
The objective of this dissertation is to address the different challenges and

issues involved in the control of distributions that were highlighted above. The test
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bed chosen for the study is the control of PSD in emulsion polymerization. The spe-
cific system chosen is vinyl acetate (VAc) - butyl acrylate (BuA) co-polymerization
with non-ionic poly-ethylene oxide surfactants. A redox initiator pair of t-butyl
hydrogen peroxide (tBHP) and sodium formaldehyde sulphoxylate (SFS) is em-
ployed, with ferrous ammonium sulphate as the co-ordination agent. In addition
to addressing the specific problem of the control of PSD in emulsion polymeriza-
tion, the study also serves as a guide to general population balance systems. The
dissertation is organized as follows: chapter 2 presents the experimental system
and defines instrumentation considerations. It also studies the evolution of PSD
in semi-batch operation, examines the overall feasibility of producing multi-modal
distributions, and presents different methods of producing these multi-modal distri-
butions. Chapter 3 presents a detailed population balance model, with parametric
sensitivity studies on the model. Validation of the model against experimental data
is also discussed. Chapter 4 presents an efficient numerical computation technique
for population balance models. Chapter 5 presents experimentally-observed sensi-
tivities aimed at identifying suitable manipulated variables and control configura-
tions. It also presents simulation-based reachability studies that identify potentially-
reachable distributions, and the effect of disturbances and uncertainties on the reach-
able distributions. Chapter 6 presents open-loop optimization studies to attain tar-
get end-point PSDs and track target PSD trajectories. The chapter also presents
feedback considerations of state estimation and receding horizon re-optimization of

the recipe. Chapter 7 presents conclusions with indications to future work.
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Chapter 2

EXPERIMENTAL STUDY OF THE EVOLUTION OF
MULTI-MODAL PARTICLE SIZE DISTRIBUTIONS

2.1 Introduction

The success of the open-loop and feedback studies aimed at the control of
the PSD depends upon several factors including accurate instrumentation, a solid
understanding of the mechanism of the evolution of the PSD, and some knowledge
of the sensitivities in the process.

Experimental and theoretical studies in emulsion polymerization have covered
a wide range of topics, from kinetic studies, to analysis of particle formation and
growth, to instrumentation and calibration procedures. This chapter addresses most

of these issues in a consistent framework. In particular, the aim of the chapter is to

e present an overall emulsion polymerization system, equipped with state-of-
the-art sensors for both on-line and off-line measurements, and adapted for

both semi-batch and batch emulsion polymerization

e describe procedures for interpretation of sensor measurements (first principle-

based calibration)

e study the mechanism of evolution of PSD and demonstrate the evolution of

multi-modal distributions in semi-batch emulsion polymerization.
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2.2 Experimental System

Figure 2.1 shows the schematic of the experimental facility employed in the
study. This facility is based on a similar facility at the Emulsion Polymerization
Institute at the Lehigh University, Pennsylvania (Liotta, 1996). It includes a 3
liter borosilicate reactor (Chemglass), equipped with four vertical baffles, and im-
plemented with an agitator from Parr Instruments. The agitator shaft is provided
with three 45° teflon impeller blades of 2%" diameter, attached about 1 cm apart,
and is about 2 cm from the bottom of the reactor. The top of the reactor is covered
with a Stainless Steel plate, and sealed using gaskets and a Stainless Steel latch.
The reactor is provided with a jacket, which serves as one means of heat transfer.
The temperature of the reactor is controlled through a Lauda circulator, which is
equipped with a temperature bath. The bath could be used for both heating and
cooling, via automatic control through a solenoid valve attached to a cooling water
loop. The other means of heat transfer from the reactor is through an overhead con-
denser (Lauda) (connected to the shell side of a chiller), attached to the top of the
reactor. The reactor headspace is continuously purged with nitrogen gas to main-
tain an inert (oxygen-free) environment in the reactor. This exit purge gas, with
the vapors of the monomers and water, passes through the overhead condenser, and
gets condensed back to the reactor. The uncondensed purge gas is then bubbled
through cold water in a dip-tube, to condense out any remaining monomer before
release into the fume hood.

The top plate of the reactor has openings for the feed streams — the monomers,
surfactants, and initiators. These openings are connected through Swagelok fittings

to %" teflon tubings, that emanate from the feed pumps. Reciprocating pumps are

1

used to feed the reagents from the burette to the reactor, through these 5" tubing.

The feed pumps (Fluid Metering Inc.) are equipped with Hall effect flow sensors,
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Figure 2.1: Schematic of the experimental emulsion polymerization system.

which measure the feed rates based on the speed of rotation of the pumps. An alter-
native, more robust measurement, of feed rate is through weight or force transducers
(Load cells) from Interface Inc., from which the feed burette are suspended. These
load cells record the weight of the burette, from which data the mass of reagent
fed and their mass feed rate can be calculated. The top plate of the reactor is also
provided with openings for a Pressure Transducer (Cole Parmer), and a Resistance
Temperature Detector (RTD) (Omega Engineering) for temperature measurement.
For the latex sampling, a i" Stainless Steel dip tube from the latex is attached
to another opening in the top plate, which is connected through Swagelok fittings
to i" teflon tubing leading to a diaphragm pump (Cole Parmer). The diaphragm
pump outlet passes through the tube side of a shell-and-tube heat exchanger, into
an on-line Anton Parr densitometer. This unit measures the density of the latex by
measuring the frequency of vibration of the glass U-tube through which the latex

passes. A slip stream is taken from the outlet of the densitometer to a MATEC
Capillary Hydro-Dynamic Fractionator (CHDF) for measurement of Particle Size
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Distribution (PSD), while the rest is returned to the reactor, through another open-
ing in the top plate.

The CHDF is chosen over the light scattering equipment due to ease of adap-
tation for on-line purposes, and the better resolution over a wider particle range,
in spite of a longer measurement time. In particular, the CHDF resolves the distri-
bution every 4 nm from 8 nm to 500 nm, and every 5-6 nm up to 1100 nm. The
instrument fractionates the particles based on their size using the concept of hy-
drodynamic segregation. The latex is diluted and carried through a long capillary
column by the eluant stream at a fixed flow rate. The particles are segregated in
this laminar flow regime based on size, with the largest particle eluting first and
the smallest eluting last. The particle size is obtained from the elution time via
calibration for a particular flow rate of the eluant. The particle size is estimated
based on reference particles, using the retention factor values. The relative particle
concentration in the various size ranges is determined through UV absorbance. See
DosRamos and Silebi (1993) for more details on the instrument. The analysis of
each sample takes approximately 11 minutes, as the sample is eluted through the
capillary. The CHDF is augmented with a LabPRO autosampler for on-line PSD
analysis. Figure 2.2 shows a schematic of the sampling process. The slip stream
from the sampling loop (densitometer outlet) is diluted with an eluant stream from
the CHDF itself (through a T-connection), and circulated through a sampling loop
(25 pl capacity) to the waste. The marker (sodium benzoate) reference fluid is also
circulated through another sampling loop of 20 ul capacity (%" tubing employed
for these flow streams). Once a sample has been analyzed, and after the speci-
fied wait period, the 10-way vial of the autosampler is switched to position 1 (see
Figure 2.2(b)). At this time, a new sample is injected into the CHDF for analy-
sis. One minute after injecting the sample, the autosampler switches to position 2

(Figure 2.2(c)), during which time the reference is injected into the capillary. The
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autosampler then returns to its normal position. Thus, on-line PSD measurements
are obtained once every 11 minutes.

A Honeywell distributed control system (DCS), Plantscape, is employed for
both the data acquisition and for the operation of the process. The DCS system
is provided with the hybrid control module and the control and monitoring soft-
wares. The hybrid control module is the I/O card that interfaces the process with
the computer. It receives 4-20 mA signals from the process (or 0-5 V as appro-
priate), relaying it to the computer in suitable digitized format, and also conveys
control moves back to the process as 4-20 mA signals through D/A converters. The
control software can be used to build PID (proportional-integral-derivative)-type
controllers, and also sequential logic controllers. The monitoring software provides
a user interface to monitor plant operation, make set-point changes, and to his-
torize process data. The Anton Parr densitometer is provided with an evaluator
unit to convert the vibration frequency measurements to density information. This
unit produces a 4-20 mA analog output signal which is conveyed to the hybrid
controller (through wiring). Similarly, the load cells are attached to transducers
that produce 4-20 mA signals. The flow meters in the feed pumps are attached to
frequency-to-analog transducers, to produce the appropriate current signals. The
hybrid controller is adaptable with the resistance signals from the RTD used for
the temperature measurement. Each of these measurements are calibrated in the
software, to convert the signals to appropriate engineering units (using a linear scal-
ing). In the case of the PSD measurements from the CHDF, they are processed in
a dedicated PC through the MATEC software, to produce PSD information. This
information is then conveyed to the Honeywell PC through data-transfer protocol,
from where the Plantscape software reads the data into it as points. Advanced con-
trol requires application program interfacing between a FORTRAN or C application

and the Plantscape software. The software is set to historize the data once every
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minute for all important process information such as feed rates, load cell readings,
density measurements, reactor temperature and agitator speed. The feed pumps are
operated through FMI stroke rate controllers, which are amenable to both remote
and manual modes of operation. Remote operation is through 4-20 mA signals, ema-
nating from the Plantscape DCS system and conveyed through the hybrid controller
block.

2.3 Experimental Procedure and Typical Results

The monomers of interest in our study are vinyl acetate (VAc) and n-butyl
acrylate (BuA). The emulsifiers employed are non-ionic poly-ethylene oxide surfac-
tants in most cases, although anionic surfactants have also been considered. Figure
2.3 shows the chemical structure of the various surfactants employed in the study.
The initiator employed is a redox pair, t-butyl hydrogen peroxide (t-BHP) and
sodium formaldehyde sulphoxylate (SFS), with ferrous ammonium sulphate as the
coordination agent. The monomer pair has a large reactivity ratio (with BuA being
the more reactive monomer), and wide differences in saturation limits and solubil-
ities in the particles and the aqueous phase (VAc has about 2% solubility in water
while BuA has a trace solubility). The non-ionic surfactants add to the richness of
the process by alterations in the nucleation pattern, attributed to their tendency to
partition into the particles and monomer droplets. The redox initiation mechanism
in itself is quite complicated and not well-understood. The reducer in the redox pair,
SFS can itself act as an initiator under certain conditions (Wang et al., 2000). In
addition, the oxidant t-BHP tends to participate in the partitioning phenomenon,
like the monomers and the surfactants. The redox mechanism however, has more
flexibility than the thermal initiation, and is also conducive to low temperature
operations. However, too low temperature operation may not be desirable due to
cloud point considerations with the surfactants. The normal operating temperature

is 60°C in these experiments.
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Figure 2.3: Chemical structure of the surfactants employed in the study.

The experiments involved elaborate pre- and post-operations. The pre-experimental
operations involve preparing the reagents and the initial mixture. The reagents are
added to the burette, and the initial mixture to the reactor. The reactor is mounted
on a stand and sealed air-tight to ensure that the purge gas exits through the over-
head condenser and bubbler. (Typically, the experiments are performed close to
atmospheric pressure). The purging of the reactor with nitrogen gas is started, and
the mixing of the reactor contents is initiated. The heating of the reactor through the
circulator is begun 20-30 minutes after the start of the purging. The sampling pump
is started, and maintained at a constant circulation of about 25-30 ml/min. After
the contents are raised to the reaction temperature and maintained, the monomer in
the initial recipe is added, and the temperature is controlled to the set-point value.

The process itself is carried out in an automated fashion, using the sequential
control option available in the Plantscape control software. The software is pre-
programmed to implement the recipe. This sequential controller writes the set-
point values for the reagents, making the necessary changes in the feed rates at

the appropriate times, and returns control to the operator (to make changes to the
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recipe on-line, if needed). For future control experiments, an application program
will write set-points to these PI(D) controllers (over-riding the open-loop sequential
controllers). Each of these feed rates are then maintained by the corresponding PI
controllers, by varying the pump speeds. The temperature is maintained at the set-
point value through a PID controller, that provides a set-point value for the bath
temperature (cascaded control).

Figure 2.4 shows the feed profiles for a typical semi-batch emulsion poly-
merization experiment. The monomer feeds (VAc and BuA) are pure components,
while the surfactant and initiator feeds are aqueous solutions. The surfactant em-
ployed in this recipe (surfactant A) has a low carbon chain length (9 ethylene oxide
linkages, molecular weight 616), a relatively low cmc value (5 x 10™° mol/liter at
room temperature), and a tendency to partition into the dispersed organic phases
(partition co-efficient value at room temperature of 15.5 into the monomer droplets,
with a hydrophilic-lyophilic balance of 13.0), besides being adsorbed onto the in-
terfaces (adsorption isotherm characterized by an adsorption equilibrium constant
of K,g = 1 x 108 liter/mol, and a maximum surface coverage of I',, = 4.5 x 107°
mol/sq.m). The surfactant solution has a weight % concentration of 22.8, while the
redox pair t-BHP and SFS have weight % concentrations of 3.33 and 3.41, respec-
tively. The recipe is programmed in the sequential controller and implemented in an
automated fashion. Figure 2.5 shows the latex density over the course of the batch
spanning two hours. The data shows two periods of increasing rates — one around
10 minutes and the other around 45 minutes, with a period of near-constant rate
in between (after a slight slump). The rates begin to fall after the monomer feeds
are completed, and the density value stagnates after about 90 minutes, in spite of
an increase in the initiator feed rates at this time. For most part of the batch, the
temperature was within +/- 2°C of the set-point value of 60°C. Thus, the batch is

assumed to be isothermal in treating the density data, as per the sensitivity result
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present by Rawlings and Ray (1988a).
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Figure 2.4: Nominal feed profile for semi-batch emulsion polymerization.
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Figure 2.5: Evolution of the latex density during the semi-batch experiment.

2.3.1 Analysis of latex density data
The information of the density of the latex along with the feed rates of the
various reagents can be utilized to calculate conversion values, solids content, and

the co-polymer composition. This can be done by calibrating the densitometer, or
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by employing process calculations. The former approach is discouraged mainly due
to the fact that a number of factors influence the underlying calibration. The cali-
bration would be limited to one set of conditions, and a separate calibration would
be needed for every possible condition. Also, a separate calibration would be neces-
sary for every system. These aspects advocate the use of simple first principle-based
process calculations in interpreting the data. Another advantage with this model-
based approach is that it enables the calculation of the partial conversion of both
the monomers from the densitometer measurements (along with the information of
the feed rates and total masses that are available from the measurements of the
flow meters or the load cells). While this calculation is straightforward in the case
of hompolymerization, a copolymerization system is more involved, necessitating
reactivity ratios and the partitioning calculations. This is done as follows: the total
mass of the various reagents in the latex (monomers, surfactants, water, initiator
components) at any given time is calculated from the load cell readings, and the
total mass of the latex is computed. From the value of the density of the latex at
the current time instant and the total mass of the latex, the volume of the latex
is calculated. At this stage, the assumption of the ideality of the latex is invoked.
Although the polymeric solution is far from ideal, the ideality assumption is quite

common in the calibration of instruments (Siani et al., 1999). Thus,

le + Vm2 + va + Vw + Vsurf = VT = L (21)

Platex

where V,,,; is the volume of unreacted monomer ‘i’ in the latex, V), is the volume
of the polymer in the latex, V,, is the volume of water, Vi, s is the volume of
the surfactants, Vi is the total volume of the latex, my is the total mass of the
latex (from load cell measurements) and ppe; is the density of the latex (from the
densitometer). V,, and V,, s are known from the mass of these reagents in the latex,
and known density values. Although volume additivity is invoked, a provision does

exist to account for non-ideality in an approximate manner. At the initial time
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(before the start of polymerization) the volume change on mixing can be computed

as
Avmzm = VT - le - VmZ - Vw - Vtm'rf (22)

This change can be assumed constant throughout the batch. Although this accounts
for the non-ideality in the initial colloidal dispersion, the non-ideality could increase
with the formation of polymer in the latex.

The total mass balance on the components is:
lepml + Vm2pm2 + V;Jpp = m%l + m%Z (23)

where m? . is the total mass of the monomer ‘i’ added to the latex up to the cur-

2
rent time instant. The ratio of the conversion of the two individual monomers is

computed as:

(V;;l_vml),oml _ (V$2_Vm2)pm2
S = Rl (2.4)

where V,I. is the total volume of monomer ‘i’ fed to the reactor up to the current
time instant, MW,,; is the molecular weight of monomer ‘i’, and R is the ratio of

the reaction rate of monomer 1 to that of monomer 2. This can be calculated as

R = kp11p1[M1]p+kp21p2[Mi]

il Sorvm | e v Mz]z , where p; (i = 1,2) is the pseudo-homopolymer probability

(fraction of polymer radicals of type ‘i’) (defined in Chapter 3), [M,], is the concen-
tration of monomer ‘i’ in the particle phase, kp;; is the propagation rate constant

for polymer of type ‘i’ with monomer ‘j’, . The pseudo-homopolymer probabil-

kp21[M1]p
kp21[Mi]p+kpi2[Ma]p’

ity is calculated as p; = and p, = 1 — p;, neglecting the chain

transfer events (Storti et al., 1989). Thus, the ratio of the reaction rates becomes

_ kp21(kp11 [Mi]pt+kp12[Ma2]p)[M1]p
- kp12(kp21[Ml]p+k’p22[M2]p)[M2]p )
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In the above equation, the instantaneous reactivity ratio is applied for the
entire duration from the start of the batch to the current time instant. One could

instead recast it to account only for the current time instant as:

(V1 +Vit 1 —Vin1)pm1 — %(VrﬁQ‘*‘Vﬁz_Vm?)Pm? (2 5)
MW MWp2 )

where V2. is the volume of unreacted monomer ‘i’ at the previous time instant, and
V2. is the volume of monomer ‘i’ added during the current time instant. The concen-
tration of the monomers in the particle phase, [M,],, are obtained from partitioning

calculations as:

M,V + G2 Vi + e Va = s (2.6)
for each monomer (i = 1,2), where V; is the swollen volume of the particles, related

s VP 3
to the total polymer volume V}, as V7 = AL MWy T3 Wiy and Vj is the volume

Pm1 Pm2
of monomer droplets. One can define an equation for the calculation of the volume

of droplets in terms of the monomer concentrations in the particle phases and the

[Mi]pKai MW; _ 4

i (balance of the volume of droplets) , to

partition co-efficients as ¥2_,
constitute the sixth equation of the set. However, in the present case, the droplets
were assumed to be absent in performing the partitioning calculations. Thus, the
equations (Equation (2.1), (2.3), (2.4) or (2.5), and (2.6)) constitute a complete
system of equations in the unknowns V,,,; and [M;],, for ¢ = 1,2 and V,, which can
be solved for using any suitable method. Once these quantities are known, they can
be utilized to compute the individual and overall conversions, the solids content,
and the copolymer composition.

Figures 2.6 shows the solids content, the overall conversion values (instanta-
neous and cumulative), and the copolymer composition. The value of the polymer
density pp was adjusted for one particular experiment to provide a good fit between

the solids content predicted by the above approach with that obtained from gravi-

metric analysis. Although the polymer density might vary with composition, this
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same value was used for all subsequent experiments (including the current one).
As can be seen from Figure 2.6(a), there is a good correspondence between the
gravimetric and densimetric estimates, in spite of the assumptions of ideality, uni-
form polymer density and isothermal operation. The conversion profiles capture the
initial increasing rate period, an intermediate seemingly constant rate period and
a falling rate period towards the end of the batch. For this experiment, in which
the copolymer composition was not controlled, the composition shows a drift before

settling at about 52% VAc polymer.

2.3.2 Analysis of Particle Size Distribution Measurements

Figure 2.7(a) shows the fractogram for a typical PSD sample. The peak at
520 s pertains to the reference particles. The peak starting at approximately 400 s
corresponds to the surfactant species, and the peak centered at 350 s corresponds
to the polymer particles. This chromatogram of UV absorbance versus elution time
is converted by the MATEC software to relative PSD information based on the
calibration data. Figure 2.7(b) shows the relative weight-averaged PSD correspond-
ing to the fractogram shown in Figures 2.7(a). As seen in this plot, the CHDF
measures the relative concentration of the particles in the various size ranges, and
produces a distribution with the largest peak assigned a value of 100. The actual
weighted distribution is inferred from the data as follows: the distribution pro-
duced by the CHDF, N(r), is related to the actual weighted distribution W (r) as

N(r) = oW (r), where Wi, is the highest value of the weight averaged distri-

bution over the entire particle size range (largest peak in the distribution). The
actual weighted distribution satisfies the particle probability density function con-

dition ¥;W; = 1, where W; is the weight-averaged distribution at discrete points

100

SN and

of size r;. Using this condition in the above relation results in Wy, =
the probability density function is retrieved from the data produced by the CHDF

using the formula, W (r) = Y=z N(r). Thus, the actual weighted distribution can
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be inferred from the data produced by the CHDF. Figures 2.8 and 2.9 show the evo-
lution of the weight- and number-averaged PSD over the course of the batch. These
show the emergence of a clear bimodal distribution, with a comparable number of
particles in both the modes (Figure 2.9), but a higher mass of particles in the larger
mode (Figure 2.8), in a relative sense.

The above weighted distribution data can be combined with the data on
the solids content to extract the absolute distribution information. The absolute
PSD F(r) is related to the weight-averaged distribution (particle probability density
function) W(r) as W; = E:;;—%, where Fj is the value of F'(r) at the discrete point
of size r;. The absolute distribution can be derived from this relation, using the

volume of the polymer available from the densitometer calculations (or gravimetric

Yo Wi

N o where v; is the volume of a particle at the discrete

calculations), as F; =
point of size r; (v; = %r?). From the absolute distribution, the total particles can
be computed as N, = N43;F;. One can also obtain the total particle surface area,
and perform surfactant partitioning calculations using these information, if required.

Figure 2.10(a) shows a plot of the evolution of the absolute PSD along the
course of the batch, and Figure 2.10(b) shows the corresponding profile of the total
particles. This shows a relatively constant number of particles initially (up to about
40 minutes), followed by a prolonged secondary nucleation event resulting in almost
three times the number of particles at the end of the batch. The emergence of a
bimodal distribution after 40 minutes coincides with the decrease in the VAc feed
rate at this time, and occurs despite a drop in the feed rate of the surfactant. This
is due to the depletion of the monomer droplets from the system and the associated
release of the surfactants accumulated within them back into the aqueous phase,
causing a crossing of the cmc-barrier to micelle formation and nucleation, and re-
sulting in a secondary micellar nucleation event. This is similar to the study in

batch reactors, in which the disappearance of the monomer droplet phase resulted

31



25

s
3}
T

UV Absorbance
[

0.5¢ L g
0 ‘ ‘ ‘ ‘ [\
0 500 6

0 100 200 300 40 00
Elution time, s

(a) typical fractogram observed in the
capillary hydro-dynamic fractionator

100

90
801
701
60
50
401

301

Relative weight-averaged PSD

201

101

0 200 400 600 800 1000 1200
Particle size, nm

(b) relative weight-averaged distribution
as re-convoluted by the MATEC software

Figure 2.7: Measurement of the PSD by the Capillary Hydro-Dynamic Fraction-
ator (CHDF).

32



0.05

[a)
[
o 0.04
kel
(7]
g 003
g
§ 002
5
2 001
=
0)
120 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
S
\\\\\\\\\\\\\\\\\\\&&W
g0 \n.
Time, min ‘*\‘*“&\3&“\\\\\\

600

0
0 200
Particle size, nm

gu

o
o
>

—averaged PSD
o
[=}
=

Mk
T

\\\\\\\\\X\\‘ \\\&&\\\\ MR
N
80 e NN TR
\\\\\\\\\\\\\\\\“ \\\\ i\ X
i N\
) LT \
Time, mi \\\\\\\\\\\\\\\\\\\\\\\\\\ 1\ ‘0,
, min RN
MR

N\ i
T N
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\v) )
R T )
AR
TR
R
HTRHTHH
TR
NN

40

0
0 100 200

Particle size, nm

g

33



in the secondary nucleation event caused by the release of the absorbed surfac-
tants (Ozdeger et al., 1997b). (Note that the higher feed rates of the surfactant
employed at earlier times is not sufficient to cause a secondary nucleation as a por-
tion of it is lost into the monomer droplets). Figure 2.11 depicts the evolution of
the PSD against the cumulative overall conversion. It can be seen from this Figure
that the secondary nucleation event begins at about 40 % overall cumulative con-
version, which corresponds to about 50 % instantaneous conversion (Figure 2.6(b)).
Figure 2.12(a) shows the evolution of the PSD against the mass of SF'S added to
the reactor, while Figure 2.12(b) gives a plot of the total mass of t-BHP against the
total mass of SF'S.

The previously detailed results clearly elucidates the potential to produce
multi-modal distributions in semi-batch emulsion polymerization. However, the
process is more complicated than in the case of ionic surfactants mainly due to the
absorption of the surfactants into the like monomer droplets. This aspect is further
illustrated in the results presented next, in which the distributions produced by two
different surfactants with different partitioning characteristics are compared under
the same operating conditions. Thus, one might have to manipulate the feed of the

monomer in the semi-batch mode in addition to the feed of the surfactant.

2.3.3 Reproducibility Considerations

Before presenting the sensitivity results pertaining to different surfactants, it
is important to confirm that the measurements produced by the major equipment are
reproducible, and to document noise levels in these measurements. Figures 2.13(a)
and 2.13(b) show repeated measurements of two samples in the CHDF equipment.
Figure 2.13(a) shows that most of the distributions overlay on each other indicating
very good reproducibility. Figure 2.13(b) depicts the lowest reproducibility of 70%
observed in the equipment. The reproducibility is also evident in the evolution

plots of the distribution that were presented earlier (Figure 2.10(a), for example),

34



Absolute Distribution

D
\ TR
N\ R

AL =N
i R,
MR AN
Time, min

100 Particle size, nm

(a) evolution of the absolute PSD

B e
A O @

Total particles
=
N

1
0.8
0.6
04 h d . . .
0 20 40 60 80 100 120
Time, min

(b) profile of total particles

Figure 2.10: Estimation of the absolute distribution from the measurements of
the CHDF and the densitometer.

35



x107°

© o o o
o N M O ®» B

Absolute Distribution

o

R S

\\\\\\\\\\‘ ]\
Nk

N

W
N\
N
ik NS
s

\
N

QA ik
NN NNt

-

N Nk

Y

NMihinnnet

N
N ey
L NN
N

0.6
Cumulative
Overall ¥
Conversion

N\

nmt
N
Nhi i
Nl
Akt

0.2

300 400

200 Particle size, nm

0 100

Figure 2.11: Evolution of the absolute distribution versus the overall conversion
of the monomers.

in which the instrument captures the smooth and evolving distribution rather well.
However, the CHDF does not detect the particles until a solids content of about
0.5% is reached. So, in ab initio experiments, the first successful PSD measurement
is not available until about 6-10 minutes, typically.

The profile of the latex density shown in Figure 2.5 again indicates a good
reproducibility in the density measurements, in that it captures the evolution of the
latex density with only a few evident outliers. The whole experiment was repeated to
study the overall reproducibility of the experiment in the face of unavoidable initial
condition errors. Figure 2.14 compares the density measurements over the course
of the two batches, showing good qualitative and quantitative matches. Figures
2.15 and 2.16 compare estimates of the solids content by densimetric calculations
and by gravimetry, respectively, and show errors of about 5% or less. On the other
hand, Figure 2.17 compares the overall evolution of the PSD in the two batches,
and Figure 2.18 compares the individual PSD data at different times in the batch.
The evolution of the distribution is more intricate than the lumped solids content,

and is also subjected to the cascaded errors of disturbances. Even though the
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reproducibility is not as good as in the case of the lumped solids content data, there
is an overall qualitative and reasonably quantitative reproducibility that is evident

in the plots.
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Figure 2.14: Overall reproducibility on a run-to-run basis - density measurements.

2.3.4 Influence of surfactants on the evolution of PSD

Figures 2.20 and 2.21 compare results corresponding to the same semi-batch
emulsion polymerization recipe shown in Figure 2.19, but with different non-ionic
surfactants. While surfactant A is the same non-ionic poly ethylene oxide surfac-
tant whose properties were described previously, surfactant B is also a poly ethylene
oxide surfactant with 30 ethylene oxide linkages, and a hydrophobic-lyophobic bal-
ance of 17.2. It has a much lower partition co-efficient into the monomer droplets
of 0.035. Thus, this surfactant resides predominantly in the aqueous phase and
the interface, unlike surfactant A which partitions appreciably into the monomer
droplets and into the particles. The cmc value of surfactant B is 1.8 x 107%, al-
most four times higher than that of surfactant A, while its adsorption isotherm is
characterized by an adsorption equilibrium constant of K, = 3 x 10° liter/mol and

maximum surface coverage ['o, = 1.1 x 107® mol/sq.m. The difference in the results
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produced by the two surfactants can be analyzed in terms of the nucleation, growth
and coagulation events which determine the PSD. For the same feed rates of the
surfactants, monomers and the initiator components, surfactant B results in a much
larger nucleation rate in spite of its higher cmc value compared to surfactant A, due
to the profound difference in the partitioning tendency of the two surfactants. Nu-
cleation continues in both the cases until about 70 minutes, at which time the feed
of the surfactant is completed. On the growth front, the larger number of particles
in the case of surfactant B results in reduced concentrations of the monomers and
the polymer radicals inside the particles, resulting in reduced growth rates. On the
coagulation front, surfactant A is more prone to coagulation than surfactant B (due
to its lower value of adsorption equilibrium constant). Thus, as seen in Figure 2.20,
surfactant A results in a broader PSD at the end of the batch compared to surfactant
B. Although the solids content in surfactant B is higher at early times due to the
large number of particles nucleated, it drops at later times due to reduced growth
rates. These results are further illustrations of the complications in the nucleation

pattern that is introduced by the tendency of certain surfactants to partition into
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the monomer droplets, and of the need to employ both monomer and surfactant in

semi-batch mode to produce the desired PSD.
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Figure 2.19: Feed profile of the various reagents including the surfactant solu-
tion, for the study on the sensitivity to the properties of different
surfactants.

2.3.5 Coagulation-induced bimodal distribution

The experiments described in this section show that multi-modal distribu-
tions can be produced by exploiting the undesirable coagulation events. The first of
these experiments is a VAc-BuA copolymerization experiment with mixed surfac-
tants, and the next is a VAc homopolymerization experiment with a single non-ionic

surfactant.

2.3.5.1 Higher solids - mixed surfactant system

The recipe described next is designed to achieve a higher solids content. It is
a VAc-BuA co-polymerization experiment with a mixture of non-ionic surfactants
(poly ethylene oxides) (about 4.4% by weight of the total monomer used in the
batch) and anionic surfactants (sodium alkylphenolethoxylate sulphate) (about 0.7%

by weight of the total monomer) as emulsifiers. All the surfactants are added into
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the initial mixture, which comprises of DI water and ferrous ammonium sulphate.
The monomers were used as a 86% VAc and 14% BuA mixture. t-BHP and SFS
were 2.2% and 1.7% by weight aqueous solutions, respectively. The reactor contents
were agitated at approximately 120 rpm, and maintained at 65°C. 8.5% of the
total monomer mixture was added into the initial batch, and the feed of the SFS
solution was started at 0.2 ml/min. The feeding of the other components was
delayed, to cause the nucleation. Once initiation and nucleation were observed
(as evident primarily by a color change due to light scattering by the nucleated
particles, with the solution turning light blue at first and then white — one could
also deduce nucleation by noticing an increase in the reactor temperature), the
monomer mixture feed was started at 5 ml/min and the t-BHP solution feed at 0.26
ml/min. The monomer and t-BHP feeds were maintained for 180 minutes, and the
SFES feed for 240 minutes.

Figure 2.22 shows on-line PSD measurements from the batch. As stated
earlier, a sample analysis through the CHDF takes approximately 12-14 minutes,
and there was a wait period of 10 minutes between the samples. The measured
distributions are relatively narrow and unimodal until the sample at 129 minutes.
Subsequently, the sample at 153 minutes (Figure 2.22(b)) shows a bimodal distri-
bution, and the bimodality carries through the rest of the batch. This bimodality
is caused by a coagulation event after 129 minutes, resulting in the second larger
mode. In some cases, this coagulation event leads to the release of some adsorbed
surfactants (due to a decrease in the total surface area) so as to cause a nucleation
event. The solids content at the end of the batch is about 37%, with approximately
2 x 10*® particles.

2.3.5.2 Vinyl acetate homopolymerization
Figure 2.23 shows plots of the total mass of the various reagents in the reactor

at various times, for a VAc-homopolymerization experiment with a single non-ionic
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surfactant (surfactant A) as the emulsifier. Figure 2.24 shows the evolution of the
distribution (off-line analysis). The plots show a probable coagulation event between
12 and 15 minutes, that results in a bimodal distribution. The bimodality becomes
more prominent at later times with more nucleation, growth and coagulation, re-
sulting in a broad distribution at the end of the batch (100 min sample). The solids
content at the end time is approximately 17%.

Thus, semi-batch surfactant addition policy can be utilized to engineer a
coagulation event mid-course, and thereby produce a bimodal distribution. One
has to have recourse to a detailed model incorporating the coagulation event, to
predict the surfactant concentration to be employed through the batch in causing

the desired coagulation event.

2.3.6 Delayed surfactant addition

Sajjadi and Brooks (2000) observed that in a recipe that does not contain
any surfactant in the initial mixture, there is a primary homogenous nucleation.
This can be followed by a secondary nucleation event later in the batch, to produce
a bimodal distribution. The result presented here provides a similar case. Figure
2.25 shows the feed profiles for the two monomers (VAc and BuA), the surfactant
solution (surfactant A), and the initiator solutions. The solution concentrations are
the same as in the first case presented here. The initial mixture contains 1 liter
DI water, 52 g VAc monomer, and 0.1 g ferrous ammonium sulphate. The feed of
the monomers and the surfactant solution is delayed by approximately 20 minutes
compared to that of the initiator solutions. Polymerization of the monomer in the
initial mixture is initiated once the feed of the redox pair is started. Particles are
nucleated by the homogenous nucleation mechanism. The particles exhibit some
instability due to the absence of any external surfactant at this point, as seen in
the plot of the total particles in Figure 2.27 (stabilization is probably through in

situ generated surfactants). Once the feed of the surfactant and the monomers
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are commenced, particle nucleation occurs by the micellar mechanism, resulting in
a clearly separated bimodal distribution in the final latex, as seen in Figure 2.26.
Hence, this is an alternate method for producing a bimodal distribution, although
partitioning considerations and their effect on the nucleation phenomenon are still

to be accounted for in causing the secondary micellar nucleation.
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Figure 2.25: Feed profile of the reagents with delayed feed of surfactant.

50



©
=}
=

o
o
N

. W
W
>

\

Weight-averaged PSD

AR,
AR
\ \NARSUY N
\\R\\\QQQ&Q\“\\“ :

NN
NSRS NARSRE
RO ANANS T wu
M’{l” IR
(AR R
iy
) ) I
Time, min \ \‘\\\\\

500 600

100 200 particle Size, nm

Figure 2.26: Evolution of the bimodal distribution, the primary mode attributed
to homogenous nucleation and the secondary mode to micellar nu-
cleation.

1018

10177 ]

10167 ]

Total Number of Particles

1015 I I I I I I
0 20 40 60 80 100 120 140

Time, min

Figure 2.27: Total particles profile over the course of the batch.

ol



2.4 Summary

A complete experimental facility for semi-batch emulsion polymerization,
equipped with state-of-the-art instruments for measurement and estimation of PSD,
monomer conversions and co-polymer composition was presented. Detailed proce-
dures for the inference of important process variables from the measurements avail-
able were described. The calculation procedure, based on a simple steady state first
principle model, enables the inference of the partial conversion of both the monomers
and the co-polymer composition with the measurement of the latex density alone.
The reproducibility characteristics of the individual equipment and the overall pro-
cess (sensitivity to the initial conditions and to operational uncertainty) were exam-
ined. The equipment showed very good reproducibility. While the lumped variables
such as the solids content showed good reproducibility on a run-to-run basis, the
more detailed PSD measurements showed a reproducibility greater than 75%. The
instrumentation demonstrate the ability to employ on-line feedback control of the
process.

Semi-batch experiments were described for vinyl acetate-butyl acrylate emul-
sion polymerization, showing the evolution of multi-modal distributions. Different
methods of producing multi-modal distributions were examined. A semi-batch mode
of operation can be used in producing multi-modal distributions with given mean
and variance of each mode, by causing multiple nucleation events at predetermined
points in the batch. However, in recipes employing non-ionic surfactants, one needs
to recruit the feed rates of both the surfactants and the monomers to engineer
secondary nucleation events at the desired times, and thereby produce the desired
distributions. Alternatively, multi-modal distributions can be engineered by caus-
ing a strong coagulation event, which splits a given mode of particles to form a
larger mode of particles. However, this is complicated by shear considerations, and

one needs to employ a detailed first principle model to design a suitable recipe. A
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third, rather interesting method of producing bimodal distributions is by causing
an initial homogenous nucleation (in the absence of surfactants), and nucleating
another mode at a later time in the batch by the micellar mechanism. This ap-
proach, though straightforward, is still beset with all the factors that attend the
first approach. This study illustrates the ability to design recipes for the attainment
of multi-modal distributions, while the strong sensitivity in the process shows the

need for careful control.
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Chapter 3

POPULATION-BALANCE MODEL FOR PARTICLE
SIZE DISTRIBUTION

3.1 Introduction

One of the major challenges in the control of PSD is obtaining on-line mea-
surements. The acquisition of PSD data at a reasonable frequency is required to
facilitate corrective action. This challenge was addressed in the previous chapter.
On the other hand, corrective action is not possible in many cases and an error, once
committed, will carry through the entire batch. This motivates the development of a
model with good predictive ability for use in optimization studies and in model-based
control. In this chapter, a model is presented for a vinyl acetate(VAc) - butyl acry-
late(BuA) co-polymer system, using non-ionic surfactants. The general structure of
the pseudo-homopolymer model of Saldivar et al. (1998) is adopted, with consider-
able influence from other works (Coen et al., 1998; Crowley et al., 2000). However,
a number of significant changes are introduced. The pseudo-homopolymerization
model necessitates an equation describing the average number of radicals/particle.
This is modeled with equations derived from first principles, unlike the simplifica-
tions employed in the earlier models. The non-ionic surfactants tend to partition
into the organic phases, thereby drastically altering the evolution of particles and
the final PSD, as was demonstrated experimentally. This aspect is also incorporated

into the model.
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In the next section, the features of the coagulation-free model will be de-
scribed, highlighting the novelties and the hybrid adaptations. This will be followed
by the description of the general solution technique employed. The next three sec-
tions will discuss some simulation results, comparison of the simulation results with
the experimental results, and the sensitivity of the results to the model parameters,
respectively. The coagulation-inclusive model will be presented in the subsequent

sections, along with the simulation results and experimental validation.

3.2 Model Formulation

The kinetic scheme for the process is detailed in Table 3.1.

3.2.1 Initiation

As can be seen from Table 3.1, polymerization is initiated in the aqueous
phase. The oxidant t-butyl hydrogen peroxide (tBHP) (I,), reacts with the catalyst
(Y7) (ferrous ion), and forms the initiator radical (R,) ((CHj3)sC — O). The
material balances for the oxidizer [I], is given as follows:

d({{]wVaq)

dt = _kdl[I]w[YY] +’U[ (31)

In the process, the ferrous ion is oxidized to ferric ion (Y?). The ferrous ion is
regenerated from the ferric ion by the reductant sodium formaldehyde sulphoxylate,
(SFS) (Y2). The material balances for the reducer [Y5] is given as follows:

d([Y2]Vay)

B = ik 1Y + o :2)

Employing the pseudo steady state assumption for the intermediate iron radicals,
the concentration of the catalyst in the reduced form, in terms of the total moles of
the catalyst (both oxidized and reduced) in the system [Y;], is given by:

vy = Faeld

"~ ka[]w + ka[Ye] i (3:3)
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In the above equations, k41 and k4o are the kinetic constants for the oxidation and
reduction steps respectively, r; is the stoichiometric ratio between the oxidizer and
the reducer, v; is the molar feed rate of component %, and V;, is the volume of the
aqueous phase.

The initiator radical R, reacts with the sparingly soluble monomer in the
aqueous phase and initiates the polymerization. The material balance for [R,] is
given by:

A([Ru]Va) . =
T - kdl [I [Y Vaq Z km [Mzw] Vaqktau[Rw]( Z [Pw] + [Rw])

(3.4)

where [P,]' is the concentration of aqueous phase oligomers of chain length I, j.,
is the critical chain length, k2 = S22 32 kiDiwPjw is the pseudo-homopolymer

rate constant for termination in the aqueous phase (k}/

ti; being the termination rate

constant for a polymer chain of type i with a polymer chain of type j) and [M;],, is

the concentration of monomer ¢ in the aqueous phase.

3.2.2 Pseudo-homopolymerization approximation

In this two-monomer system (VAc and BuA), the polymer chains are of two
types — one in which the free-radical endgroup is derived from VAc and the other in
which it is derived from BuA. To simplify the model, the two chain types are lumped
into a single type, yielding the so-called pseudo-homopolymerization model (Storti
et al., 1989; Saldivar et al., 1998). The model assigns the polymer chains to one
type or the other based on a pseudo-homopolymer probability. This is derived by
accounting for the interchanging of the polymer chains between the two types by
cross-propagation and cross-chain transfer. This factor for the aqueous phase is
given by:

(kg1 + Kiron) [Mi]uw
(kpa1 + Ko [Mi]w + (Kpia + Kig1o) [Malu

Pw1 = (35)
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where k% . and k}”.. are the propagation and chain transfer constants for chains of

pLj trij
type ¢ with monomer j in the aqueous phase. p,; defined above is the fraction of

the aqueous phase oligomers that are of type 1, i.e., have a VAc end group.

3.2.3 Aqueous phase oligomers

The initiator radical [R, | reacts with the sparing amount of monomer dis-
solved in the aqueous phase and forms an oligomer of chain length 1. This can
further propagate until the critical chain length j.. is attained. The material bal-

ances for these oligomers are given by

1
WPul Ved) — v/, 52 ks [Ry|[Min] = Vagk [Pl (0 [Pul! + [Ru)) —

(K2 + k) [P Vag + k2 [Pu]®Vag — 3271 €l micettePwil Pu) ConicetteVaq
— e S et (r)puwil Pl F(r, t)dr

(3.6)
MPVed) = o ([Pu]™™ = [Pul™)Vag = Yy € micetiePuil Pul"ConicetteVag
— kit ap [Pl Vag = [} S0y € (r)puil Pu]"F (r,t)dr —
Koo [Pl (2070 [Pul' + [Ru))Vag 1= 2,3.jer — 1

(3.7)

d([Pw]®Vag) _ cr—l Tmaz A(r,t)F(rt)kanr; (r)[M;]pdr
dt 4 k;‘;av ] [P ] Vaq + Zz 1 Z] 1 ktmypwz anuc dej(T)‘f-EdlzZi kpjl[]&llip

— k2, [Py]Vag — K2, | w]o( I Pyl + [Ru])Vag = 321 €2 icctioPui Pl Comicette Vag
B thmuzw Zz 1 €T Puwi Py F (1, t)dr
(3.8)

where the pseudo-homopolymer rate constants are given by &, = 2 Z?Zl ks iPwil M,

2 2
k;}'(w = Zz 1 Z] 1 ktrzngIi[M] and kgjw Zi:l Zj:l ktmpw’pw]
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These equations account for the propagation, chain transfer, and termination
reactions that occur in the aqueous phase, and for the loss/gain of radicals to/from
the dispersed phases — micelles and particles. No distinction is made between the
initiator-derived polymer chains and those that result from chain transfer to the

monoimers.

3.2.4 Nucleation

Nucleation is the process of formation of polymer particles. It can occur
by two methods, namely, micellar nucleation and homogenous nucleation. Micel-
lar nucleation occurs when the free surfactant concentration in the aqueous phase,
Sw, exceeds a certain equilibrium solubility called the critical micelle concentration
(cmc). Above the cmc, the excess surfactant molecules aggregate in the aqueous
phase and form entities called micelles. The concentration of these micelles is de-
termined as follows:

(Sw — emc)aum

Cmicelle = (3 9)

AT scette
where «, s is the area occupied by one surfactant molecule and 7 cee is the ra-
dius of a micelle. The oligomer radicals in the aqueous phase, upon encountering
the micelles, enter into them, converting the micelles into polymer particles. This

phenomenon is called micellar nucleation.

The rate of micellar nucleation is given by

Jer—1 2
éRmicella/r = Z Z e»li,micellepwi[Pw]lcmicellevaq (310)
1=0 =1
where the entry rate constant e}, ..., for oligomers of type i and chain length / is
given by
ei’,micelle = 47rrzzicelleNAD’lUi’ [ = 07 1 (311)
€ micette = YT micetteNaDuwi/VI—1, 1=2,3..jo — 1 (3.12)
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D,,; is interpreted as related to the diffusion coefficient of species 7 radical when
n = 1, and as related to the mass transfer coefficient when n = 2.

Upon reaching the critical chain length j.., the oligomers in the aqueous
phase are rendered totally hydrophobic. Thereby, the oligomers precipitate out of
the aqueous phase, aggregate surfactant molecules around them and form a new par-
ticle. This phenomenon is called homogenous nucleation. The rate of homogenous

nucleation is defined as:

§Rhomogenous =k, [ng?—l]vaq (313)

pav

Thus, the combined nucleation rate is given by
§Rnuc = §Rmicellar + §Rhomogenmw (314)

3.2.5 Polymer particles

The polymer particles are characterized by a population density. The particle
density F'(r,t)dr is defined as the moles of particles of unswollen size between r and
r+dr at time t. The particle density is described by a population balance equation
(PBE), which accounts for the nucleation of new particles, and their growth — both
by polymerization and in discrete leaps by coagulation with other particles. Thus

the particle population is described by
%F(r, t) + %(F(r, t)%) = Rpucd (7 — Tnue) + Reoag (3.15)

R is the rate of nucleation and §(r —ryy) is the Dirac delta function which is unity
at r = rue and zero elsewhere. This assumes that the nucleation occurs at a fixed
minimum size 7,,.. It is also assumed that r,,. = Tmicene, the radius of a micelle,
for both homogenous and micellar nucleation. .., incorporates terms accounting
for the loss and gain of particles of size between r and r + dr due to coagulation.

The case corresponding to no coagulation (Re.eg = 0) is presented first, to study its
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validity under low solids content emulsion polymerization. This is then compared
with the coagulation-inclusive case.

The total number of particles in the system is calculated as N, = N4 f;’:‘t‘:” F(r,t)dr,
where N4 is the Avogadro number and 7,,. and 7,4, are the minimum and maxi-

mum size of the unswollen particles, respectively.

3.2.6 Average number of radicals/particle
An average number of active polymer chains (of both types combined) inside

particles of a given size can also be modeled by a population balance as below:

%(TL(T, t)F(Ta t)) + %(ﬁ(ﬁ t)F(?", t)%) = §Remﬁ?‘y(T) + §):'}desm"pti(m(7‘) + §):Etev"rm'nation (T)
+§Rcoagulati0n (T)
(3.16)

where 7i(r, t) is the average number of growing polymer chains/particle in particles of
size r at time ¢, Repiy accounts for the entry into all particles of size between r and
74 dr, Raesorption accounts for the desorption from all particles of size between r and
7 4+ dr, Ricrmination accounts for the termination within all particles of size between
r and 7 + dr, and Roeguiation accounts for the coagulation effects. The pseudo-
homopolymerization approach is employed to distinguish between the two types of
polymer chains. Analogous to that in the aqueous phase, the pseudo-homopolymer

probability in the particle phase is defined as

b= (kpo1 + kipor) [ M,
' (kpo1 + ko) [Milp + (kp12 + kir12)[Ma],

(3.17)

Alternatively, fixing the attention on a single particle, and making a balance
between the rates of entry, desorption and termination of radicals, and neglecting

coagulation, one obtains

Snir.0) = %

ot entry

(r) — R (r) — 2R (r) (3.18)

desorption termination
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where %’emy

r+dr, R
r and r +dr, R/

is the total rate of entry into a single particle of size between r and
is the total rate of desorption from a single particle of size between

desorption

termination 15 the total rate of termination within a single particle of
size between r and r+dr. These terms are described in detail later. For the smallest
size particles (1 = ruu.), a o value of unity is assumed. One could also assume a

pseudo-steady state in Equation (3.18) and obtain

§R;ntry( ) ;esorption( ) 2%;ermmatwn (’/’) =0 (319)

This yields a quadratic equation for 7(r,t). A global average can be derived from
n(r,t) as
[ f(r, t)F(r, t)dr

3.20
frn”:c” F(r,t)dr ( )

Nave (t) -

3.2.7 Growth

The second term on the left hand side of Equation (3.15) accounts for the
growth of the particles by polymerization. A polymer chain inside the particles
propagates at a rapid rate due to the high concentrations of the monomers within,
thereby increasing the mass and the size of the particles. The growth kernel, which

is the rate of increase in size, is given by:

(ryt
dt = 47rr Pp Zz IZ] 1 PZ] 1 NA)[M]]]JMW] (321)

where [M;], is the concentration of monomer j in the particles, MW; is the molecular
weight of monomer j, p, is the density of the polymer, and k,;; is the propagation

rate constant for polymer of type i with monomer j in the particle phase.
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3.2.8 Monomer balances

In a semi-batch reactor system, with continuous feed of the monomers, the

material balance for the monomers is given by:

aM; _ Unr; — Z?Zl(k”’ + k2. Y pwil Oligomer] [ M;],Vag

dt pij trij
— 37 (ki + i )il Myl [0 n(r,t)F(r, t)dr

T=Tnuc

(3.22)

where vy, is the molar feed rate of monomer j, [M;], is the concentration of
monomer j in the aqueous phase, ky;;/ i and ktrij/k;{ij are the rate constants
in the particle/aqueous phases for propagation and chain transfer to monomer re-
spectively, for a polymer of type ¢ with monomer j, and [Oligomers| = f;;gl[Pw]".

The monomers reside essentially in the dispersed phases due to their sparing
solubility in the aqueous phase. If the system is saturated with the monomers, such
that their concentrations in the aqueous phase and polymer phase is at the equilib-
rium solubility, then a separate droplet phase comprising the monomers is formed.
The partitioning of the monomers among the dispersed and continuous phases is

modeled using partition coefficients. This involves solving the set of algebraic equa-

tions described below, similar to the approach of Urretabizkaia et al. (1994).

Vip+Vop+Vp=V) Particle-phase balance
Viw + Vouw + Vi = %4 Aqueous-phase balance

Via+Vog= yd Droplet-phase balance

M, MW,
Vip+Via+Viw = =12 Total monomer balance
Pu;

where V; ,, Vi, and V; 4 are the volume of monomer i in the particles, aqueous phase
and monomer droplets respectively, and V}}, VI and V¢ are the total volume of the
swollen polymer, the aqueous phase and the droplets, respectively. These quantities

: ips : Vip _ Viw Via _ K4 Vip
are related via partition coefficients as Ve = Ky VT VI = Ky Vi

and

62



The total volume of the particles is given by V, = Ny f;’zzz s F(r, t)dr,

where r is the radius of the unswollen particles. The swollen and unswollen radii

3 . . .
are related as r3 = L [MI]’;_ MWL where pyy, is the density of monomer 4.

le PM2

3.2.9 Surfactant balances

One of the main roles of surfactants is to stabilize the polymer particles in
the continuous aqueous phase. They adsorb on the surface of the dispersed phases
(polymer particles and monomer droplets), with their lyophilic end groups facing
inwards and their hydrophilic ends directed outwards. The adsorption of surfactant
onto the particles and droplets is modeled as a Langmuir mono-layer adsorption.
Non-ionic surfactants, besides adsorbing onto the particles, also tend to partition
into the organic phases. This phenomenon is also modeled as an equilibrium phe-
nomenon, using partition coefficients.

Thus, the surfactant balance is given by:

Too KaaSuwAS

K s Kd d
VaSu + KoSuVy + KiSuV + 2

— Sy (3.23)

where V,, is the volume of the aqueous phase, S, is the concentration of surfac-
tant in the aqueous phase, and St is the total moles of surfactant in the reactor.
K,S,V, and K4S, V% account for the moles of surfactant absorbed into particles
and droplets, respectively. Here, K, and K¢ are the partition coefficient for surfac-
tant between the particles and the aqueous phase, and between the droplets and the
TooKaqSw As

A? is

aqueous phase, and V is the total swollen particle volume. The term 3227 dse A7

the Langmuir isotherm, which accounts for the moles of surfactant adsorbed onto
the particles, in equilibrium with that in the aqueous phase. Here, A} is the total
surface area of the swollen particles defines as A5 = [ 4wr2 N F (r,t)dr (where
rs is the swollen radius defined earlier), and T'y, and K,; are Langmuir adsorp-

tion constants. The quadratic equation (3.23) can be solved for the aqueous phase

surfactant concentration S,,.
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3.2.10 Entry into particles

The oligomers in the aqueous phase, besides entering into micelles and thereby
nucleating particles, can also enter into existent polymer particles. This phenomenon
will influence the average number of radicals/particle, as is evident from Equation
(3.18).

Analogous to the entry rate coefficients for radicals into micelles, the entry
rate coefficients for radicals of type 4, (i = 1,2) and chain length [, (1 = 0,1, ...j— 1)

into particles of size r is modeled as

el(r) = 4nr"NyD,;, [1=0,1 (3.24)
et(r) = Amr"NaDyi/VI—1, 1=2,3..5, — 1 (3.25)

where n = 1 corresponds to the Fickian diffusion model, and n = 2 corresponds to
the collision model.

As in the approach of Saldivar et al. (1998), no cut-off chain length is fixed
for the oligomers to enter into particles or micelles, and oligomers of all length
[ =0,1,...5¢, — 1 are allowed entry. Thus, the total rate of entry into a single
particle of size r is given by

Jer—1 2

Riiry (1) = D) ei(r)puil Pul- (3.26)

=0 i=1

3.2.11 Desorption from particles
As shown in Table 3.1, the polymer chains inside the particles undergo chain
transfer to the monomers. The resultant radicals can either propagate within the
particles or desorb out of it into the aqueous phase (but once propagated, they can
not desorb any more). The desorption rate is derived, extending the approach of

Coen et al. (1998) to copolymer systems, as follows:
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A balance for L? (Table 3.1 - particle phase) gives

d[LO] i ktrzj [L ] Z kp]Z[LO [M ]p de] [LO] (327)

=1

where the desorption rate coefficient kqnr;(r) is given by kqn; = %, with D,;
being the diffusion coefficient of monomer j in the aqueous phase. Assuming a

pseudo steady state,

[ 0] kZz_{l_kt”J[ ][M ]p (3.28)
antj + Doy Kpgi [ Mily

Thus, the total rate of desorption of monomeric radicals from particles of size r is

given by

Z de] Z 1 ktm‘jpz'i(ra t)[M;], (3.29)
deJ( ) + Zl:l kpjl[Ml]P

desorptzon
where [L;] = p;n(r, t).

3.2.12 Termination inside particles
The polymer chains inside the particles can undergo mutual termination.

The rate of termination inside particles of size r is given by
Kav T_L( )2
Va(r)Na

where kg, = Z?Zl Z?Zl pipjkeij. Vp(r) is the volume of a particle of size 7.

§R{‘,ermmatzon (7‘)

(3.30)

3.3 Solution Technique

The population balance equation, which is a hyperbolic partial differential
equation, is discretized in the particle radius () domain using orthogonal collocation
on finite elements (Finlayson, 1980; Gupta, 1995). The r-domain is divided into a
number of finite elements that each have a certain number of collocation points. The

PDE is satisfied identically at each of the internal collocation points (see Figure 3.1).
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The solution of the PDE within each finite element is approximated as a polynomial
of degree N. Any polynomial of degree IV can be expressed as a linear combination
of orthogonal polynomials of degrees 0 to N. Thus, the solution at any collocation

point can be approximated as a linear combination of orthogonal polynomials as
N
Fy(t) ~ F(rit) = Y d;P;(r;) (3.31)
§=0

where F;(t) is the approximate value of the density function at the collocation point
r; at time ¢ (solved by some numerical technique), F'(r;,t) is the accurate value, P;
is an orthogonal polynomial and d;’s are time-dependent coefficients. One class of
orthogonal polynomials is the Jacobi polynomial, which satisfies the orthogonality

condition defined as:

[P W (2)Pi(z)Pj(z)dz =0, i#j
i,j=0,1,2..N

(3.32)

where C; is a non-zero constant and W(z) = (1 — z)®z” is a weighting function.
For the case where a = 0, b = 1 and o = [ = 0, one gets the shifted Legendre
polynomial, which finds wide application in chemical engineering problems.

Equation (3.31) can be recast by substituting the polynomials P;(r;), as

N
Fy(t) m F(ri,t) = Y bjr! (3.33)
=0

where b;’s are new coefficients, in terms of the original coefficients d;’s. The col-
location points are chosen to be the roots of the shifted Legendre polynomial of
degree N. This choice evenly distributes the error in the approximation across the
finite element. Also, the error introduced in the evaluation of the integrals involv-

ing the distribution (NV,, A7, V}, etc.) is much lower using the quadratures of the

66



orthogonal polynomials. This is of particular significance for coagulation modeling.
From Equation (3.33), one could get the coefficients b,’s, which express the solution
at all points within the finite element. The continuity of the solutions across the
finite elements is obtained by enforcing the constraint FY,(t) = FJ*'(t), where FY,
is the value of the function at the N™ (last) collocation point of finite element j
and FJ'' is its value at the first collocation point of the (j + 1) finite element.

Smoothness across the finite elements is ensured by enforcing the equality of the

OFI (rn,t) _ oFit! (ro,t)
or _ or

derivatives . Thus, at the intersection of the finite elements,
the PDE is not satisfied, and instead the equality of the derivatives is enforced. Also,
it is essential to provide a proper boundary condition for the first collocation point
of the first finite element (corresponding to particles of the smallest size). Saldivar
et al. (1998) suggest that when the growth rate is non-zero, a pseudo steady state
can be assumed corresponding to this radius, and one gets R,,c = Ryrowtn + Reoag-
This can be provided as the boundary condition. Thus, at the boundary point (for
Reoag = 0),

dr

F(TRUC7 t) % ‘T:Tnuc

= Roue (3.34)

For the discretization, 40 finite elements are used, with 5 collocation points per ele-
ment (including the external collocation points). The complete system of differential-
algebraic equations (DAE) that result from the discretized PDE and the material
balance equations are solved using the DAE-solver DDASSL. A multi-component
Newton-Raphson technique is employed to solve the monomer partitioning equa-
tions. As a minor detail, the aqueous phase species — monomer, initiator radi-
cals, oligomers — are defined in absolute terms (moles) instead of in intrinsic units
(moles/liter). This takes into account the volume change of the reactor contents in
the semi-batch reaction scheme.

In using DDASSL, one has to provide a consistent set of initial conditions

for the system states. To determine consistent initial conditions, one must solve

67



the algebraic equations first (for a fixed initial condition for the differential states),
to force the residuals of those equations to zero. Since the discretized PDE rep-
resenting the intersection of the finite elements are replaced by the equality of the
derivatives (to ensure smoothness), which are algebraic equations, this becomes a
complex implicit problem. The complete set of the algebraic equations forms a non-
linear system. But, the subset involving the particle-related states alone forms a
tri-diagonal system, whose solution can be found using Thomas’ Algorithm (Holland
and Liapis, 1983; Gupta, 1995). However, the particle-related algebraic states are
coupled with the other algebraic states through the boundary condition. So, an
iterative solution strategy, which exploits the efficient Thomas’ Algorithm within,
is employed. Once the consistent initial conditions for the algebraic states are ob-
tained, one could then find the initial values of the derivatives for the differential
states from the differential equations, such that the residual is zero for these differ-
ential equations.

FINITE ELEMENTS

WA S

INTERNAL COLLOCATION POINTS

Figure 3.1: Discretization of the r-domain.
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Figure 3.2: Feed profile for semi-batch emulsion polymerization.

3.4 Results and Discussion

Several of the model parameters employed for the nominal base case simu-
lation were drawn from literature sources (Delgado et al., 1988; Perry and Green,
1984; Urretabizkaia et al., 1994; Urretabizkaia et al., 1993), and are shown in Table
3.2. Table 3.3 shows nominal values for the uncertain parameters, that would need
to be refined.

Simulations are performed using the formulation defined by Equation (3.18)
to describe the distribution of the average number of radicals per particle. The
collision model (n = 2 in Equations (3.11), (3.12), (3.24) and (3.25)) is used to
calculate the entry rates into micelles and particles. Coagulation is assumed to be
negligible. Figure 3.2 shows the feed profile for VAc, BuA, surfactant, tBHP and SFS
that was employed in the simulation. The monomer streams are pure components,
the surfactant feed is a 22.7 weight% aqueous solution, the t-BHP feed is a 3.33
weight% solution and SFS feed is a 3.41 weight% solution. The initial mixture
consists of 1 liter DI Water, 0.6 moles of VAc and 2x10~* moles of ferrous ammonium
sulphate catalyst. The polymerization is initiated in the aqueous phase, and forms

the aqueous phase oligomers as seen in Figure 3.3(a). In this ab initio batch (no
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Figure 3.3: Aqueous phase oligomers and free surfactant concentration.
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particles in the system at the early times) the oligomers formed propagate and attain
the critical chain length causing homogenous nucleation. Figure 3.4(a) shows the
rates of micellar and homogenous nucleation during this run. This figure shows
that the rate of homogenous nucleation increases at first with the formation of more
aqueous-phase oligomers. When a sufficient number of particles have been nucleated,
the rate of homogenous nucleation decreases, as the freshly formed oligomers enter
into existent particles before they reach the critical chain length. Homogenous
nucleation nearly ceases at about 0.2 minutes. Figure 3.4(a) also shows that the
first burst of micellar nucleation occurs at around 1 minute. This corresponds to
the first point where the free surfactant concentration S,, exceeds the critical micelle
concentration, cmc, as can be seen from Figure 3.3(b). After this point, the total
number of particles, N, remains constant until about 12 minutes, as can be seen in
Figure 3.4(b). Subsequently, two more bursts of micellar nucleation occur as seen in
Figure 3.4(a). The partial reason for this is the increase in the surfactant feed rate
at this time (Figure 3.2), which results in the cmc-crossings seen in Figure 3.3(b).
N, essentially remains constant after this point (Figure 3.4(b)).

Figure 3.5(a) shows the distribution of the average number of radicals/particle,
n(r,t). At any given time, a larger particle size r leads to a larger value of 7i. The
peak seen in the distribution of n(r, t) corresponds to the peak in the aqueous phase
oligomers, and hence in the entry rates of the radicals into the particles. Figure
3.5(b) shows the global average n,y.(t) (calculated using the distribution 7(r,¢) in
Equation (3.20)). The high values are consistent with the values documented in
earlier studies (Dimitratos et al., 1989; Liotta, Georgakis and El-Aasser, 1997).
Corresponding to the increase in the total number of particles N,, the concentration
of oligomers drops to low values (Figure 3.3(a)), due to the higher capture (entry)
rates into particles. Figure 3.6(a) shows the rate of polymerization of VAc and

BuA. Also corresponding to the nucleation events is the increase in the total rate of
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consumption of VAc and BuA. Figure 3.6(b) shows the pseudo-homopolymer prob-
ability in the particle and the aqueous phase, i.e., the fraction of the live polymer
radicals that have a VAc end-group. While this is very high at the initial time, it
drops to a very low value once BuA feed enters the system, the reason being the
high reactivity of BuA relative to VAc, as can be seen from Table 3.2 (r; and r3).
At 80 minutes and 95 minutes respectively, the feeds of VAc and BuA end
(Figure 3.2). Thereafter, the concentrations of the monomers in the particles drop
to lower values. This results in a decrease in the rate of polymerization (in spite of
an increase in the feed rates of the initiator components), as seen in Figure 3.6(a).
Figure 3.6(c) shows the instantaneous conversion of the two monomers. Figure 3.6(c)
shows that BuA is essentially completely converted to polymer after this point, while
the conversion of VAc is only about 60%. This results in an increase in the pseudo-
homopolymer probability (Figure 3.6(b)). Termination rates increase now, as the
VAc-ended chains are more susceptible to termination (refer Table 3.2). Thus, n(r, t)
is reduced (Figures 3.5(a) and 3.5(b)) and the conversion of VAc asymptotes at 60%.
Figure 3.7 shows the evolving weight-averaged PSD (probability density func-
tion (PDF)), defined as W(d,t) = % The initial modes of particles, formed
by the homogenous and the primary micellar nucleation (1 minute), grow rapidly
until the nucleation of the other modes of particles by the secondary micellar nu-
cleation (starting at about 12 minutes). After that, there is a reduced growth rate.
Figure 3.8 shows the size-dependent growth rate % (Equation (3.21)) — the growth
kernel — at various times in the batch. This registers the falling growth rate with the
decrease in 7(r,t) that accompanies the increase in the total particles N,, as seen
by the plots at 1 minute, 10 minutes and 13 minutes. After the first 60 minutes of
the batch, the growth rates drop to very low values as seen by the 70 minute plot in
Figure 3.8. This is due to the decrease in the concentration of the monomers inside

the particles. One can observe the distribution becoming more diffuse with growth
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in Figure 3.7. This is due to the size-dependent growth, with the larger particles

growing faster than the smaller ones, as seen in Figure 3.8.

3.4.1 Effect of size-dependence of n on the simulation results

Most of the previous modeling studies have employed a single average number
of growing radicals/particle to all particles, irrespective of their size, usually in the
form of Smith-Ewart equations or adaptations of them. This approach can lead to
very different results, as can be seen from Figure 3.9. The reason for this can be seen
from the plot of the distribution of the average number of radicals/particle in Figure
3.5(a), and the resultant size-dependent growth seen in Figure 3.8. In the simulation
for the size-independent case, ng.(t) (Equation (3.20)) is used in calculating the
growth rates inside all particles. This predicts a narrow distribution, and also a
sharp front in the PSD, which do not agree with the experimental observations.
Also, the particles are much smaller. To match the experimentally observed PSD
results, size-dependent growth is to be incorporated. While other methods have
been proposed to allow size-dependent growth, including artificial dispersion of the

distribution, this is a physically more meaningful approach. Based on experimental
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results, one can see that a collision model (n=2 in Equations (3.24) and (3.25))
is more apt to account for the dispersion of the distribution, as opposed to the

relatively lower size-dependence offered by the diffusion model (n=1).

3.5 Comparison with experimental results

Figure 3.10 compares the simulation results with those observed in an ex-
perimental facility, corresponding to the recipe shown in Figure 3.2. Figure 3.10(a)
compares the PSD predicted by the model after 2 hours of batch time, with that
observed experimentally at this time. As was discussed earlier, the simulation shows
an initial homogenous nucleation followed closely by a primary micellar nucleation,
and a delayed but prominent secondary micellar nucleation. This results in the three
modes of particles seen in Figure 3.10(a) (solid line), centered at approximately 400
nm, 300 nm and 100 nm. The experimentally-observed distribution (dashed line)
also shows the presence of three modes, centered at approximately 350 nm, 200 nm
and 70 nm. But the modes are more diffuse and interconnected. Figure 3.10(b)
compares the total particles from the simulations with that calculated from mea-
surements. The experimental result suggests a gradual and prolonged nucleation,
as opposed to the rapid nucleation simulated by the model. This rapid nucleation
is a feature of the current PBE models for PSD in emulsion polymerization. An
earlier and more gradual secondary micellar nucleation would also reduce the to-
tal particles N,, since some surfactant would be utilized to stabilize the particles
nucleated earlier (which would be growing too) — unlike in this case with rapid nu-
cleation where all of it is available for nucleation. Accounting for coagulation could
satisfy some of these requirements, while improvements in the nucleation models
might also be necessary. An early secondary micellar nucleation event would also
result in an early drop in the growth rates, resulting in the size of the larger modes
matching between the experimental and simulation results. Figure 3.10(c) compares

the polymer content of the emulsion as calculated using the model and gravimetric
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experimental data. Again, the mismatch is due to the error in the nucleation, and
its cascaded effect on particle growth.

Figure 3.11 compares the model predictions with the experimental results for
a slightly different recipe from the one shown in Figure 3.2. In this recipe, the feed
rate of VAc up to 16.7 minutes was reduced by about 20%, and this monomer was
fed in towards the end. The experimental data on the total particles NNV, in Figure
3.11(b) shows a prolonged nucleation, which is relatively rapid initially, then more
gradual up to about 40 minutes, but steeply increases at that time, coinciding with
the decrease in the feed rate of VAc. A probable reason for this is the depletion of
monomer droplets from the system, and the release of surfactant absorbed within
them back into the aqueous phase. Even though the simulation result shows a similar
trend, the timings and magnitudes are in disagreement. The major discrepancy
could be because the simulation predicts a larger initial homogenous nucleation,
which cascades into a reduced primary micellar nucleation and hence a hastened
secondary micellar nucleation. This results in the mismatch in the PSD seen in
Figure 3.11(a). The reduced primary micellar nucleation also results in larger growth
rates at early times, resulting in the early modes growing to a larger size than
observed in the experimental data. This in turn accounts for the higher solids
content predicted by the model, as seen in Figure 3.11(c).

Figure 3.12 compares the simulation and experimental results for yet another
recipe, where the surfactant feed rate between 10 and 15 minutes was reduced by
about 40% relative to the one shown in Figure 3.2. The amount of surfactant
withheld at this time was fed at a reduced rate towards the end of the batch. The
experimental data of the total particles in Figure 3.12(b) shows a near-constant
N, up to about 20 minutes, and then N, increases to a modest order of 10'°. On
the other hand, the simulation result shows a reduced N, at early times, and an

order of magnitude larger IV, at later times. The mismatch could be either because
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of (i) a reduced homogenous and primary micellar nucleation or (ii) an enhanced
homogenous nucleation which results in the reduced primary micellar nucleation.
(The latter effect was observed in the earlier result too, and hence is the more
probable one). One of the above causes the secondary micellar nucleation to happen
earlier, and also to be more prominent. The above effects manifest themselves in
the form of the mismatch in the PSD at the end of 2 hours, as seen in Figure
3.12(a). Figure 3.12(c) compares the solids content for this batch. The higher solids
simulated at early times could be due to the larger IV, at these times, and the lower
values after 40 minutes could be because of the reduced growth rates.

The above comparisons of the simulation and experimental results suggest
that the uncertainty in the surfactant partitioning parameters and the initiator pa-
rameters could be the underlying cause for the discrepancies observed. A parametric

sensitivity study is detailed in the following section to examine this probability.

3.6 Parametric Sensitivity
In this section, the sensitivity of the model predictions to some of the uncer-

tain parameters will be explored. Such a study is relevant for the following reasons:

1. The previous section on the comparison of the simulation results with the ex-
perimental results highlighted possible reasons for the discrepancies between
the two. A parametric sensitivity study would identify those parameters that
can address these issues. It will also identify the most sensitive parameters
among the unknown/uncertain parameters. In addition, it gives an idea of
the search direction for those parameters that would be fit using experimental
data on PSD and other process variables. Moreover, in such complex mod-
els, multiple parameters could affect the same aspects of the process. The
sensitivity studies aid in discerning the nuances in the effects of the different
parameters, which is essential in parameter estimation, to retain the predictive

capabilities of the model.
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2. These sensitivity results can be used to qualitatively validate the predictive
abilities of the model, based on prior experience with the processes. From
another perspective, these results elucidate the process of the evolution of
PSD in emulsion polymerization — which is important to formulate an effective

control strategy.

3. In a complex process, with several parallel and interacting subprocesses, the
prominent and rate determining steps depend upon the set of parameters that
characterize the system. Certain subprocesses, however, would be relatively
insensitive under all sets of parameters. Identification of such subprocesses
would enable robust model reduction for more efficient computation, which is

important for on-line control.

Tables 3.4 and 3.5 summarize the results of the parametric sensitivity studies
with respect to the nominal parameters. In most of these cases, the perturbation in
the parameter has a direct effect at an early stage. This effect then cascades through
the process in several ways, due to complex interactions, and either augments the
original effect or offsets it. Also, the nucleation phenomena is affected the most,
and usually, though not always, the effects on the other processes are a result of
the effects on the nucleation phenomena. For purposes of brevity, only two of these
results are detailed here.

Figure 3.13 shows the effects of ', on the simulation results. T'y, is the
amount of surfactant adsorbed per unit surface area of particles, on monolayer
formation. As I'y, increases, the amount of surfactant adsorbed onto the surface of
the particles in equilibrium with the amount in the aqueous phase increases. This
lowers the free surfactant concentration S, (to satisfy the mass balance (Equation
(3.23)), as seen in Figure 3.13(a). Thus, the primary burst of nucleation is delayed
but is stronger with the increase in 'y, from 4.5 x 1075 to 4.6 x 107% mol/m?, as

seen in Figure 3.13(b). This results in the separation of the homogenous mode
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and the primary micellar mode, as is evident in Figure 3.13(c). The effect on
the primary mode cascades into the secondary micellar mode. Due to the larger
number of particles at the larger 'y, value (4.6 x 107% mol/m?), more surfactant is
utilized for particle stabilization, resulting in a reduced secondary micellar nucleation
(as is evident from Figure 3.13(b) — loglog plot). Further increase in I'y, almost
completely eliminates the primary micellar nucleation, resulting in a single micellar
nucleation at about 12 minutes. In this case, the reduction in the secondary micellar
nucleation is due to the larger growth rates and particle sizes (of the homogenously-
nucleated mode). Thus, in these coagulation-free simulations, 'y, influences the
micellar nucleation phenomenon, and the effect cascades through the batch. Under
coagulation-prone conditions, this parameter could have an effect on coagulation.
Figure 3.14 shows the effect of D,,; (related to the mass transfer coefficient
of oligomers of type 1) on the PSD and nucleation rate. Unlike the effect of the
surfactant-related parameters (', for instance), which had an impact on the pri-
mary micellar nucleation first, and then cascaded through the secondary micellar
nucleation and the rest of the process, the effect of D,,; is observed even earlier, in
the homogenous nucleation. As D, increases from 20 cm/s to 40 cm/s, a mono-
tonic decrease in the homogenous nucleation rate after about 10~2 min is observed.
This is because the rate of entry of oligomers into the particles increases with D,,;.
Due to the reduced number of homogenously-nucleated particles at higher D,,;, the
total surface area of the particles decreases at these early times. This in turn makes
more surfactant available for the primary micellar nucleation. As explained earlier,
this effect on the primary micellar nucleation then feeds back through the rest of
the process. There is no direct effect of D, on growth rate (in fact, the particle
populations are smaller at larger D,;). This is either due to the lower pseudo-
homopolymer probability of species 1 oligomers, or due to the negative feed back

from the micellar nucleation events.

85



25
r r10°
o 2 — 45
: %
S15F -
3
g
5
8
£
g
b=
5
2
o cme
BOBF----- - G GREEEACEDEY || 2 EEEEEEEEY
- 0
:
0 : =
10 10° 10" 10°

Time, min

(a) effect of Ty, on Sy,

18

10
1
40"
"3
K
S
k]
)
Q
g
210}
1015
10°
Time, min
(b) effect of I's, on N,
0.08
rr10°
0.07f 1\ .
R — 45
HY - 46
5006 o\ -- 52
%l T —— 6.0
So.0s T
g L
go.04f A
g A
pi ;! N
5,0.03f i '.‘-
0.02f ] \ 4.
i \ e
! \." AN
0.01F N - '\
d | LAY 4
a4 X %4 Ay 4

o
o

Particle size, nm

(¢)  weight-averaged  PSD
W(d,t) at the end of 150
minutes

Figure 3.13: The modes formed by the initial homogenous nucleation and the
primary micellar nucleation are separated with an increase in I'..
Further increase in I',, eliminates the primary micellar nucleation.
Overall, there is a reduced micellar nucleation with increase in I' .
86



averag
o
o
(2
‘

L 0.04]

Weight:
o
o
w

0.02f

0.01 J
0 L L

0 100 200 300 400 500 600 700

Particle size, nm

(a) weight-averaged PSD W (d,t) at the end of 150
minutes

-9
1.2x 10

[
T

©
©
:

Rate of homogenous nucleation
o o
B [<2]
; d

0.2

L L
0 -3 -2 -1 0

10 10 10 10
Time, min

(b) effect on the rate of homogenous nucleation

Figure 3.14: An increase in D,,; decreases the number of particles formed by the
homogenous nucleation. Effect is seen after a sufficient number of
particles have been nucleated. The mode corresponding to the pri-
mary micellar nucleation shifts closer to that due to the homogenous
nucleation, and also becomes more prominent, with increase in D,.

87



These and other sensitivity results elucidate that the uncertainty in some of
the parameters could account for the errors in the magnitudes and timings of the
nucleation events. Correcting these could in turn correct the errors in the growth
rates, and the size of the peak. However, these results also suggest that accounting
for particle coagulation is necessary. This is particularly so at later times, when the
solids content increases and the surface coverage of the particles with surfactants

decreases.

3.7 Coagulation Modeling

The discrepancies seen in the predicted distributions and profiles relative to
the experimental measurements, and the inability to account for these completely in
parametric sensitivity studies, clearly highlight the importance of incorporating the
coagulation events into the model, even in the low solids content regime employed
in this study. The modeling of the coagulation events is described next.

The coagulation term R.p44(r,t) involves two terms, one accounting for the
formation of a particle by coagulation of particles of smaller sizes, and the other
accounting for the depletion of a particle by coagulation with other particles. Thus,
Reoag (75 t) = R ormation (7, t) — Raepretion (7, t). The formation term R sormation (7, t) (in

moles/m-s) is modeled as:

T

1 1 d "
8:“vformation (Ta t) = V /VQSr ﬂ('rla TII)F(’F,, t)F(T’”, t)dT,d—i“ (335)

In the above equation, r' and r” denote the sizes of the two (smaller) particles that

) —
=Tnuc

form a particle of size r upon coagulation. These are related by a volume additivity

condition as (r')® + (r")® = r®. Thus, the term %~ in Equation (3.35), which

represents the differential of the size of the second particle (involved in coagulation
with the first particle of fixed size ') to the differential of the size of the particle
formed, is given by:

dT’” 7,.2

o 3.36
dr ~ (13— ()} 530
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Thus, the formation term becomes:
]‘ _21{— ! n ! " 7“2 !
§Rfowna.tion(ra t) = 15 /2 ﬁ(?“ T )F(T ,t)F(T ’t)—2d7‘ (337)
Ve ' =Tpye (7’3 — (7"')3)5
The upper limit of integration 2% is to avoid double counting the coagulation events,
and corresponds to the case in which the two coagulating particles are of the same

size. The depletion term is given by:

1 Tmazx
Raepietion (T, 1) = V/ B(r,»"F(r,t)F(r', t)dr’ (3.38)

where 7, is the size of the largest particle that can participate in coagulation.
The calculation of the intrinsic coagulation rate (coagulation kernel) 3 in-
volves considerations of the forces and potentials between the particles. In the
current study with non-ionic surfactants, the stabilizing mechanism is assumed to
be steric hindrance, which is caused by the bulkiness of the surfactant chains that
prevents the particles onto which the chains are adsorbed from approaching each
other. As stated previously, there are few studies addressing the modeling of the
steric potential, particularly in the context of population balances in emulsion poly-
merization. It is essential to develop a model that can predict the experimental
results well, while simultaneously being of a low computational complexity. Thus,
in this study, simple expressions for the steric potential (analogous to those com-
monly employed for electrostatic and van der Waals’ potentials) are used. The steric
repulsive potential between two flat objects due to the surfactant chains adsorbed

onto their surfaces, is given by (Israelachvili, 1998) (page 295):

1 L s
ol (D) = 0L rspre 2 (3.39)

™

where D is the separation distance between the objects. The above equation is valid
for separation distances up to twice the extensional length (L) of the surfactant chain

5
into the aqueous phase, which is given by L = F%R%. [" is the surface coverage of the
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particles with surfactants (based on the partitioning calculation of the surfactants

among the various phases) modeled as:

_ 1—1c>oI(adSw]\]'A
B 1+ KadSw

In the above equation, K4 is the adsorption equilibrium constant for the surfactants

(3.40)

and 'y is the equilibrium surface coverage (Langmuir constants), N4 being the
Avogadro number. Ry is the Flory radius, which is related to the radius of gyration
of the polymeric surfactant chain (R,) as Rp = aR,. Here, a accounts for the
interaction of the surfactant with the solvent (water). The radius of gyration can

wa _ Wik

be calculated as R, = Ve 78 where [ is the effective segment length (of

the polymeric surfactant chain), n is the number of segments in the chain, M is
the molecular weight of the surfactant chain, and M, is the molecular weight of a
monomeric unit in the chain.

The Derjuguin approximation (Israelachvili, 1998) can be employed to extend
Equation (3.39) to obtain the repulsive potential between spherical particles. Thus,
the repulsive force between two spherical particles of size r and 7', separated by a
distance D is given by:

_ 27rr' 100L =D

= T kTe
r+r

Fr(D) (3.41)

This equation is again valid for (r +7') < D < 2L. Using the relation between force

and potential, Fr(D) = —waRil()D), one can obtain the steric potential as:
Yr(D) = — [ Fr(D)d(D) = 210213 kTe T + ¢ (3.42)

where c is a constant of integration. An adjustable constant is introduced into the
above equation to account for the various mechanistic and parametric uncertainties

in the model, thereby casting the repulsive potential as:

2rr' 100L? x
Un(D) = e I2kTe T + ' (3.43)
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where ¢, is the adjustable constant, and ¢’ = cyc.
The van der Waals’ attractive potential is relatively well known, and is mod-

eled as (for all D > (r +17)):

Ya(D) = % ( 5 _2(7:; 5+ _2(7/_ o +in (gz - E: i :;z)) (3.44)

In this equation, A is the Hamakar constant, which accounts for the effects of the

various intrinsic (internal) interactions between the particles that result in the net
attractive potential.

The net interaction potential, 1 (D) = r(D)—14(D), can be utilized to cal-
culate the intrinsic coagulation rate using established procedures (Melis et al., 2000),
as follows: the Fuch’s stability ratio W (r,r'), which has a reciprocal relationship to
the fraction of collision events that result in a successful coagulation event (activa-

tion barrier), is calculated as:

o0

(D)
exp(7)
W(r,r") = (r + 7“')/ LA, S
D=(r+r") D2

d(D) (3.45)
(k is the Boltzmann constant and 7 is the temperature of the emulsion). The stabil-
ity ratio is related to the intrinsic coagulation rate using the first order Smoluchowski

equation as follows:

ArDy(r +71')

B(r,r'") = ¢ W

(3.46)

In Equation (3.46), ¢, is another adjustable constant which subsumes the constant
¢’ in Equation (3.43), besides providing a way to account for the shear effects. This
is based on the hypothesis that the shear effects enhance the coagulation rate over
that under shear-free conditions (diffusion versus convection analogy) (Evans and
Wennerstrom, 1999). The diffusion co-efficient Dy is given by:

Dy = T (1 + l) (3.47)

- 6rp \r 1
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Here, 1 is the viscosity of the emulsion latex, related to the solids content as y =

(1JL+)2’ 1o being the viscosity of water at the reaction temperature, sc, the latex

SCref

solids content and sc,¢f, a reference solids content.

3.8 Coagulation-inclusive Model Results

Table 3.6 lists the modified model parameters, the other parameters being the
same as in Tables 3.2 and 3.3. The straightforward solution methodology based on
orthogonal collocation on finite elements results in a stiff system of equations, with
condition numbers of the order of 10* in the regime of nucleation. This in turn results
in large computation times. Incorporating the coagulation effects further increases
the computational load, due to the intensive nature of the coagulation calculations.
To circumvent this problem, an efficient computational technique, based on an order
reduction effected by the decomposition of the fast and the slow kinetics, is employed
(Chapter 4). Also, to reduce the computational load, the intrinsic coagulation rate

B(r,r") is updated only once every 10 min of batch time.
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Figure 3.15: van der Waals’ attractive potential between particles separated by a
representative distance of D = 1.07um.
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Figure 3.17: Free surfactant concentration, S,,, and the total swollen particle sur-
face area, A, corresponding to the base case recipe.

3.8.1 Analysis of Base Case Recipe

A simulation result corresponding to the recipe shown in Figure 3.2 is pre-
sented next, with particular emphasis to the analysis of the coagulation kernel and
its sensitivity to the process inputs. A comparison of the improvement obtained
relative to the previous coagulation-free model predictions, and validation against
experimental data are presented in the next subsection. Figure 3.15 shows a plot of
the van der Waals’ attractive potential between particles of various sizes, separated
by a representative distance of D = 1.07um. Figure 3.16 show similar plots of the
repulsive potential between particles of various sizes, separated by the same distance
of 1.07um. Figures 3.16(a), 3.16(b) and 3.16(c) correspond respectively to 30 min,
70 min and 120 min of the recipe shown in Figure 3.2. As an attempt to draw
a correlation between the coagulation kernel and the free surfactant concentration,
Figure 3.17 shows the profile of the free surfactant concentration S,, over the course
of the batch (top plot) and the total swollen particle area (bottom plot). The plot
shows that S, varies profoundly during the batch. It increases from 10 min up to

approximately 17 min, caused partly by the increase in the surfactant feed rate at
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Figure 3.18: The size-dependent intrinsic coagulation rate 3 — Equation (3.46),
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constant at larger sizes can be exploited to reduce the computational
load.
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this time (Figure 3.2), but also due to the depletion of the monomer droplets and
the associated release of absorbed surfactants (figure not shown). Subsequently, it
remains almost constant up to approximately 37.5 min, as the reduced feed rate of
the surfactant solution at this time is just sufficient to compensate for the increase
in the total surface area of the particles due to growth (Figure 3.17 — bottom plot).
After 37.5 muin, S, begins to increase again due to the increased feed rate, up to
about 70 min. Thereafter, S,, drops until approximately 95 min (due to adsorption
onto the growing particles). Beyond 95 min, S, remains almost constant as there
is no further increase in the particle surface area. The repulsive potential (Figure
3.16) shows a considerable sensitivity to the free surfactant concentration, S, as
expected (through the dependence on I'). The high value of S,, at 70 min results
in a higher repulsive potential at this time, compared to that at the other times.
Figure 3.18 shows the intrinsic coagulation rates (coagulation kernel) corresponding
to these same time instances, which reflect the sensitivity shown by the repulsive
potential to the free surfactant concentration. The intrinsic coagulation rate is lower
at 70 min relative to that at 30 min. Also, it is higher at 120 min by about four-
fold compared to that at 70 min (not perceptible in the plot), as an effect of the
variation in S,,. These results elucidate the potential to manipulate the coagulation
rate by employing the surfactant feed.

Each of the plots in Figure 3.18 illustrate a rapid decrease in the coagulation
rate constant with increase in the particle size(s). This observation was exploited
to further reduce the computational load. A cut-off size was fixed, above which
the particles were assumed to be colloidally-stable, thereby eliminating the need
to compute the coagulation terms for these larger size particles. This approach
is consistent with earlier approaches. Richards et al. (1989) defined two particle
populations, one accounting for the unstable smaller size particles, and the other for

the stable larger size ones. A similar approach was adopted by Araujo et al. (2001) in
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a full population balance framework (resulting in two population balance equations).
The present approach eliminates the need for two partial differential equations.
However, a sensitivity study was performed to identify the suitable cut-off size.

The simulation results are analyzed further to study the evolution of the
distribution. This analysis is also useful in the next subsection, in comparing the
simulation results with the experimental data. Figures 3.19(a) and 3.19(b) show
the rate of micellar nucleation and the profile of total particles over the course of
the batch, respectively. The homogenous nucleation is restricted to very early times
(before 1 min), contributing to the early particles seen in Figure 3.19(b). On the
contrary, micellar nucleation begins at about 1 min, and is prevalent through the
entire course of the batch. The profile of the total particles records decreases in
the particles count due to the coagulation events, which are seen to be the least
evident at times of high free surfactant concentration (Figure 3.17). The high value
of the intrinsic coagulation rate close to the end-point (Figure 3.18(c)), coupled with
the higher particle concentration at these times, cause higher rates of coagulation
towards the end of the batch thereby leading to a large drop in the number of
particles. Figure 3.20 shows the global average number of radicals/particle, ngy. (%),
calculated from the distribution, 7(r,t). It is seen that for most part of the batch,
Nave(t) is above unity justifying the use of a general model for a VAc-BuA copolymer
system. Figure 3.21 shows the profile of the instantaneous overall conversion, which
reaches about 78% at the end of 150 min with a modest solids content of about 22%.
Figure 3.22 shows the evolution of the PSD along the course of the batch. The end-
point PSD shows a large mode centered at approximately 400 nm, a diffuse mode at
around 250 nm, and another mode at approximately 100 nm (separate plot shown
later).

In summary, the model captures all relevant aspects of the evolution of the
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recipe.
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the base case recipe.

PSD, including the complications in the nucleation events associated with the non-
ionic surfactants. It can be employed to simulate all industrially-pertinent recipes,

such as ab initio and seeded polymerizations.

3.8.2 Validation of the Simulation Results with Experimental Data
The comparison of the simulation results with the experimental data for var-
ious recipes is presented next. In the first comparison case, simulation results both
with and without the coagulation events are presented to illustrate the improvement
obtained in accounting for the coagulation phenomenon. Figure 3.23 compares the
simulated end-point PSD and the profiles of the total particles and solids content
(corresponding to the cases with and without coagulation), with the experimen-
tal data. The recipe for the experiment is the one shown in Figure 3.2 (base case),
which was discussed in the previous subsection. The experimentally-observed distri-
bution in Figure 3.23(a) (dashed line) shows diffuse and interconnected modes, one
centered at approximately 320 nm, another at approximately 210 nm, and a third
at approximately 70 nm. In the coagulation-free case (dash-dot line), the model

simulates two diffuse and interconnected modes at the larger size end, similar to
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the experimental observation. However, it predicts a delayed but larger secondary
micellar nucleation event (Figure 3.23(b) — dashed line), resulting in the separate
and large peak centered at approximately 100 nm (Figure 3.23(a)). Parametric
sensitivity studies presented in section 3.6 indicates that this discrepancy is not en-
tirely due to the uncertainty in the values of the parameters. On the other hand,
the coagulation-inclusive simulation result captures these interconnected nucleation
events well, and also preserves the relative magnitudes of the various peaks, as seen
in Figures 3.23(a) and 3.23(b). However, in the simulation results, the early modes
are still larger than in the experimental data. Such discrepancies seen in the profiles
and the distribution can be attributed to the parametric uncertainty. Thus, there
are clear improvements obtained upon incorporating coagulation events into the
model, the complete model showing a qualitative and a partly quantitative validity.
A detailed parametric sensitivity study was performed with the coagulation-
inclusive model. Based on this study, some of the parameters were adjusted (c1, ¢s,
[, Kaq, cme, kyq and kyp1) to best match the simulated PSD with the experimentally-
observed PSD (Table 3.6). The matching of the experimental and simulated profiles
(total particles, solids content) was not considered in this parameter identification
exercise. However, there are several sources of uncertainty in the experimental re-
sults, caused by discrepancies in the feed rates delivered by the pumps, delays in
step changes in the feed rates, temperature fluctuations etc., which need to be ac-
counted for in a more rigorous parameter identification exercise. The parameter
values determined here are employed for all subsequent simulations without further
adjustment. Also, the complete coagulation-inclusive results alone are presented
henceforth, to make the plots more legible.
Figure 3.24 shows the simulation results pertaining to the recipe shown in

Figure 2.25, and Figure 3.25 compares the predictions of the end-point PSD and

the profile of solids content with the corresponding experimental data. In this case,
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Figure 3.24: Nucleation rates and total particles profile for a recipe in which the
feed of the monomers and the surfactant solution shown in Figure
3.2 is delayed by 20 min (the initial mixture contains VAc monomer,
but no surfactant).
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while the initial mixture was the same as in the base case, the feed of VAc, BuA
and surfactant solution were delayed by 20 min. During the first 20 minutes of the
batch, no external surfactant or BuA monomer are present in the reactor. When
the initiator components tBHP and SFS (which are not delayed) enter the reactor,
the VAc monomer in the initial batch (52 g) is initiated, and particles are formed by
the homogenous mechanism (Figure 3.24(a) — lower plot). Homogenous nucleation
rate remains appreciable until about 10 min, because of the higher solubility of the
VAc monomer in the aqueous phase. Thereafter, there is a decline in the number
of particles (Figure 3.24(b)) due to coagulation. At about 20 min, the feed of
surfactant and the two monomers is started. Micellar nucleation begins shortly
after this, and is prevalent for most part of the batch (Figure 3.24(a)). The resultant
PSD at the end of the batch is a prominent bimodal distribution, shown in Figure
3.25(a) (solid line). The comparison of the experimental data on the end-point
distribution (Figure 3.25(a)) and the profiles of total particles (Figure 3.24(b)) and
solids content (Figure 3.25(b)), with the corresponding simulation results, shows a
reasonable match. (Note that the plot in Figure 3.25(a) is of the relative distribution,
which causes the simulated peaks to be lower due to the presence of particles bridging
the two modes).

Figures 3.26-3.29 compare the simulations and experiments for four differ-
ent recipes, which were obtained by perturbations in the feed rates of BuA, VAc,
surfactant solution and initiator solution, respectively, with respect to the recipe
shown in Figure 3.2. In each case, the simulation results show very similar quali-
tative trends with the experimental results, in terms of the nucleation, growth and
coagulation events. These are evident by a comparison of the number of modes and
their relative magnitudes between the simulations and the experimental data. The
simulation results corresponding to the base case (particularly Figure 3.19(a)) are

used as a reference to interpret these results.
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Figure 3.26 corresponds to a recipe in which the BuA feed rate was reduced
by 22% relative to the original recipe (base case) up to 94 min, and there after
the feed rate was raised to the level in Figure 3.2. The total quantity of BuA in
the recipe was maintained the same as in the earlier recipe. The VAc-BuA co-
polymerization system is characterized by a high reactivity ratio, with BuA being
the more reactive monomer. Due to this reason, the reduced BuA feed results
in much reduced growth rates (relative to the base case), and hence, a high free
surfactant concentration and micellar nucleation rate between 3-6 min (see Figure
3.19(a)). This in turn cascades into a reduced micellar nucleation rate at the later
times. After 94 min, there is a substantial increase in the reaction rates, that results
in the de-swelling of the particles (due to the monomer consumption) and the release
of the surfactants (adsorbed onto their surface) back into the aqueous phase. This
in turn causes enhanced nucleation rates towards the end of the batch. Hence the
broad PSD seen in Figure 3.26. Also, both the simulation and the experimental
PSD show the same trend.

For the result presented in Figure 3.27, the VAc feed rate up to 16.7 min was
reduced by 28% compared to Figure 3.2. There was a prolonged feed of VAc due to
this, to maintain the same amount of VAc in the two recipes. In the perturbed case,
there is a larger value of the average number of radicals/particle at early times,
and hence, larger growth rates. This results in reduced nucleation rates between
3-6 min. The monomer droplets disappear from the system earlier in this case
(before 12 min), resulting in the release of surfactants absorbed into them back
into the aqueous phase. This causes a more prominent nucleation at these times.
Both the simulation and the experimental results show the same trend, though the
simulation predicts an even smaller nucleation at the intermediate times (3-6 min)
— attributable to uncertainty in the surfactant partitioning parameters.

In the case of Figure 3.28, the step increase in the surfactant feed rate at
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10 min in Figure 3.2 was delayed to 15 min. The monomer droplets disappear in
both cases at about 12 mun, releasing the absorbed surfactants into the aqueous
phase, and thereby resulting in increased rates of micellar nucleation (again, see
Figure 3.19(a)). However, in the current case, there is a relatively reduced micellar
nucleation at this time, but a more substantial nucleation event at later times.
Although the experimental result shows a larger growth rate, and/or an earlier
completion of the nucleation events compared to the simulation results, the overall
trend is very similar (with the simulated PSD being a stretched version of the
experimental one).

Figure 3.29 presents results in which case the concentration of the initiator
components were doubled relative to that employed in the base case recipe. In the
current case, there is a larger homogenous nucleation initially, which results in lower
values of 7i(r,t), and hence lower growth rates. This causes the total surface area
to be lower, thereby raising the value of S, and the nucleation rates in the 3-6
min time range. Soon after, the value of 7i(r,t) increases, causing the surface area
A, to increase above that in the base case (higher concentration of the initiator
components), and in turn causing reduced rates of nucleation. This results in the
PSD seen in the figure. The larger mode comprises the particles nucleated up to
about 6 min (initial homogenous and the intermediate micellar nucleation events).
The tail corresponds to the particles nucleated at later times of the batch. The
experimental results show a more prominent secondary peak. This could be either
due to an even earlier (and hence reduced) primary micellar nucleation event before
3 minutes in the experimental case, or due to the later nucleation events occurring
at larger rates than predicted.

Figure 3.30 considers a different family of recipe, for a batch spanning 200
min. In this case, the solids content achieved is slightly higher than the other cases,

under which condition one can expect more coagulation events. The experimental
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results show three peaks, at approximately 70 nm, 320 nm and 500 nm, and a shoul-
der at about 200 nm. The simulated distribution also shows these modes, although
the corresponding peak sizes are staggered. Also, there is an overall preservation of

the relative magnitudes of the various peaks.

3.9 Summary

A population balance model is developed for the PSD in emulsion polymeriza-
tion, accounting for the nucleation, growth and coagulation phenomena. In addition
to consolidating the various theories on each of these phenomenon into a single study,
the model presented here introduces several modifications to the population balance
model for PSD in emulsion polymerization. A significant modification as regards
the nucleation event is the incorporation of the partitioning of the surfactants into
the bulk of the dispersed phases, which accounts for the alterations in the nucle-
ation pattern under non-ionic surfactants. In modeling the growth phenomenon, a
first principles-based formulation is proposed to model the average number of radi-
cals/particle. The proposed formulation preserves the size-dependence of the growth
kernel, captures the broadening of the distributions with growth (both effects seen
experimentally), and also obviates the need for incorporating artificial dispersion
terms in the population balance equation. The improvements obtained with this
modification clearly indicate the disadvantages with lumped parameter modeling,
and motivate the use of a distributed approach where possible. The calculation of
the size-dependent intrinsic coagulation rate and the coagulation terms for emulsion
recipes employing non-ionic surfactants is demonstrated. Steric stabilization under
the influence of adsorbed surfactants in modeled as the primary stabilizing mecha-
nism. However, empirical allowances are introduced into the calculations to account
for other mechanisms that influence coagulation, including the shear imparted on
the particles due to the mixing in the reactor. In formulating the population balance

equation, the particle size is used as the internal coordinate. This is mainly due to
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two reasons, namely that the measurement available is as a size distribution (and
not volume distribution, for example); and that the range of particle size is narrower
than the range of particle volume, which makes the choice of size beneficial with
respect to numerical solution (number of finite elements, etc.). This choice of size as
the internal coordinate introduces minor, though critical, changes to the coagulation
kernel, which are clearly developed in this paper.

The model can be used to simulate all types of emulsion recipes that are of
interest to practitioners. The simulation results were compared with experimental
data. In general, the model demonstrates a good ability to predict the experimen-
tal observations. Also, there is a substantial improvement over the coagulation-free
simulation results. The discrepancies between the complete coagulation-inclusive
simulation results and the experimental observations can be attributed not only to
parametric uncertainty, but also experimental uncertainty (disturbances, delays in
pump startups, errors in the feed rates, etc.). The cascaded effects of the parametric
uncertainties on the evolution of the distribution were also discussed. The param-
eters were adjusted manually to provide an overall fit of the PSD in one case, and
the same set of parameters were used in the simulation of all the cases. It might
be beneficial to perform a rigorous parameter identification, utilizing all the exper-
imental cases, and simultaneously accounting for experimental uncertainties. For
the purposes of on-line control of PSD, a combined parameter-state estimator can
be employed, to account for the uncertainties in the model simultaneously, while

inferring the relevant feedback informations necessary for control.
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Table 3.1: Emulsion Polymerization Kinetic Scheme

Aqueous phase

Initiator decomposition
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Table 3.2: Kinetic and Physical Constants

kpi1 = kgl)ull
kpio = k;ﬁz
kp21 = k;;um
kpao = k;)22
p11

L= kp12

To = %
k11 = k2
ky1 = ki
koo = Ko
k12 = ko
PMy
PM,
Ky
Ky
Kg
Kgo
AR
[Ma]pt
MW,
MW,
Ny
MWsurf

3.29 x 10? liter/mol-s
8.9 x 10* liter/mol-s
3.9 x 10! liter/mol-s
2.47 x 10? liter/mol-s
0.037

6.33

9.3 x 1073 liter/mol-s
3.49 x 107 liter/mol-s
1.6 x 103 liter/mol-s
Vkiikioo

934 g/liter

894 g/liter

32

460

46

2140

7.5 mol/liter

1.5 mol/liter

86.09

128.17

6.023 x 1073

616
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Table 3.3: Nominal values for uncertain parameters

| S 4.5 x 10~ mol /m?
K 1 x 10° liter /mol
cme 5 x 10~ mol /liter
K, 0
K¢ 15.5
Qs 3.69 x 107 m?2 /molecule
Tnuc = Tmicelle 5 nm
pp 1120 g/liter
jC"' 5
Dy (n=2) 30 cm/s
Dyo (n=2) 55 em/s
Dy 1.0 x 1076 em?/s
Do 1.5 x 1075 dm?/s
Eiro1 = kir12 = kiroo | 9.3 X 1073 liter/mol-s
kr1 0.2 liter /mol-s
kro 0.2 liter /mol-s
ka1 400 liter/mol-s
ka2 400 liter /mol-s
rr 1
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Table 3.4: Summary

of Parametric Sensitivity Studies

Root cause of response

to perturbation

End effects

cmce

kiroo

kiro1

Affects timing and
magnitude of the
primary micellar
nucleation

Affects magnitude of
the primary micellar

nucleation

Affects timing and
magnitude of the
primary micellar
nucleation

Affects the rate of
homogenous
nucleation

Affects the rate of
homogenous
nucleation

Affects the rate of
desorption of
monomeric radicals

Affects the rate of
desorption of
monomeric radicals

Lower values of the cmc lead to earlier
and stronger primary micellar nucleation.
This in turn results in a

reduced secondary micellar nucleation

Larger quantity of surfactant adsorbed
onto the particles at larger K4, resulting
in reduced primary micellar nucleation,
which cascades through the rest of the
process. The nonlinearity in the

process is evident.

Monotonic effect, unlike in the case of K,4.
Larger values of I'o, lead to more delayed
and reduced primary micellar nucleation.
The effect cascades to secondary

micellar nucleation events (Figure 3.13).

An increase in D,,; decreases the number
of particles formed by homogenous
nucleation. This causes the primary
micellar nucleation to occur sooner and
be more prominent (Figure 6.37).

Similar effect to the case of Dy1. No direct
effect on growth, but only the cascaded
effect caused by the effect on the
nucleation phenomena.

Non-intuitive results seen in the effect of
kiroa. As k09 increases, excessive chain
transfer inside the particles and subsequent
desorption of the monomeric radicals
results in reduced 71(r,t) and growth rates.
But micellar nucleation is still reduced

at high k;.92, contrary to expectation.

Similar effect to the case of kj90. An
increase in the solids content and reaction
rates with increase in kg01.
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Table 3.5: Summary of Parametric Sensitivity Studies

Root cause of response
to perturbation

End effects

Jer

ka1

rr

Tmicelle
/ Tnuc

Pp

Affects the rate of
homogenous
nucleation

Affects the rates of
generation of oligomers
and homogenous
nucleation

Affects the rates of
generation of oligomers
and homogenous
nucleation

Affects concentration
of aqueous phase
oligomer

Affects homogenous
nucleation through a
different route

Affects the particle
growth rate
(Equation (3.21))

Larger values of j. lead to more delayed
and reduced initial homogenous nucleation.
This results in a larger primary

micellar nucleation.

Lower values of k.1 lead to lower rates of
homogenous nucleation, which cause enhanced
primary micellar nucleation and cascade to
the secondary micellar nucleation. Also, k.1
has a direct effect on growth. Lower values

of k1 lead to lower values of 7i(r, t)

and reduced growth rates.

Nonlinear effect — as k41 decreases, the rate
of homogenous nucleation decreases at first,
and then reverses direction.

As r; decreases, the concentration of the
aqueous phase oligomers increases. This leads
to increased initial homogenous nucleation,
but also higher 7i(r, t), resulting

in higher growth rates and a reduced primary
micellar nucleation. Nonlinearity evident too.

At larger values of 7,,., homogenous
nucleation rate is reduced (after substantial
homogenous nucleation has occurred) due to
the larger entry rates of radicals before
reaching the critical chain length. This
effect cascades through the micellar
nucleation and the rest of the process.

Obviously, larger values of p, lead to lower
growth rates, resulting in a lower surface
area, of particles. This increases the free
surfactant concentration, and advances and
strengthens the primary micellar nucleation.
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Table 3.6: Constants employed in the coagulation-inclusive model

A 5.5 x 10721 J
ki1 = k%, | 1.05 x 107 liter/mol-s

e 7.5 x 107% mol /m?
K 4 x 10* liter /mol
cme 2 x 1075 mol /liter
kr1 0.1 liter/mol-s
SCref 0.6

1 1x107°

) 1 x 10710

l 1 nm

M 616 g/mol

My 68.4 g/mol

Tcut—of f 66 nm
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Table 3.7: Nomenclature

T
F(r,t)
n(r, 1)
Nave (t)

Kad and Foo
45
Sw
cmc

T'micelles Tnuc
jCT
Ny
Fr(D)
¥} (D)
Yr(D)
Ry
Rr

SCref
k
T
Tcut—of f
kri
Kij

Ts
I
I
Y7
Yy

Y,
Ry,
M;
MW,
Jer

particle radius

particle density function

average number of active radicals in particles of size r at time ¢
global average number of radicals per particle

Langmuir adsorption constants

total swollen surface area of particles

free surfactant concentration

critical micelle concentration

radius of a micelle/nucleation size

critical chain length

Avogadro Number

repulsive force between particles separated by distance D
repulsive potential between flat objects separated by distance D
repulsive potential between spherical particles separated by distance D
radius of gyration

Flory radius

interaction parameter between polymer (surfactant) and solvent (water)
effective length of a segment of surfactant chain

extension length of adsorbed surfactant into the aqueous phase
Hamakar constant

intrinsic coagulation rate between particles of size r and 7’
Fuch’s stability ratio for particles of size r and 7’

effective diffusion co-efficient

viscosity of latex

viscosity of water

solids content of latex

reference solids content

Boltzmann constant

Reactor temperature

size above which the particles are colloidally-stable

Rate constant for reaction between initiator and monomer %
Rate constant for termination of polymer of type ¢ with another
polymer of type j

Swollen particle radius

Initiator stoichiometric ratio

Oxidant in aqueous phase

Reduced form of Iron (catalyst)

Oxidized form of Iron (catalyst)

Reducer

Initiator radicals

Moles of monomer % in the reactor

Molecular weight of monomer j

critical chain length
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Table 3.8: Nomenclature (Cont’d)

d
K3
Qm,s

ei(r)

e'li,'r_nicelle
Dw,i
Dw,i
Na
Kanj(r)
F (1)

Vij
Ve
‘/'ps
Vp
Vd

Concentration of monomer ¢ in the aqueous phase

Concentration of monomer 4 in the particles

Saturation concentration of monomer i in the aqueous phase
Saturation concentration of monomer ¢ in the particles

Oligomer of type 7 and chain length [ in the aqueous phase
Monomeric radicals in the aqueous phase

Rate constant for oxidation step of initiation

Rate constant for reduction step of initiation

Rate constant for propagation of polymer of type ¢ with monomer j
Rate constant for chain-transfer to monomer 7 from polymer of type i
Rate constant for termination of polymer of type ¢ with polymer of type j
Rate constant for propagation in the aqueous phase

Rate constant for chain-transfer to monomer in the aqueous phase
Rate constant for termination in the aqueous phase

Live polymer chains of type i, (i = 1,2) inside particles

Volume of the aqueous phase

Molar feed rate of component 4

particle density function

Average number of active radicals in particle of size r at time ¢
Global average number of radicals per particle

probability that a radical is of type ¢ in the particles

probability that a radical is of type ¢ in the aqueous phase

density of polymer

density of monomer 4

Partition coefficient for monomer % between particles and water
Partition coefficient for monomer 7 between droplets and water
Total moles of surfactant in reactor

Partition coefficient for surfactant between particles and water
Partition coefficient for surfactant between droplets and water

Area occupied by one surfactant molecule

entry rate constant of aqueous phase oligomers into particles

entry rate constant into micelles for oligomers of chain length [ and type ¢
Diffusion coefficient for monomer 7 in the aqueous phase

Parameter in entry rate coefficient

Avogadro Number

Rate constant for desorption of monomeric radical from particles
Approximate solution for F(r,t) at the it collocation point of the j*
finite element at time ¢

Volume of monomer i in phase j (j=d-droplets;p-particles;w-aqueous)
Total volume of the aqueous phase

Swollen particle volume

Unswollen particle volume

Volume of droplets
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Chapter 4

COMPUTATIONALLY-EFFICIENT SOLUTION OF
POPULATION BALANCE MODELS

4.1 Solution Techniques for Population Balance Models

Various solution techniques have been considered to solve population bal-
ance equations. See (Ramkrishna, 1985) for a detailed review on this topic. The
most popular techniques are based on approximating the infinite-dimensional par-
tial differential equation system as a finite-dimensional ordinary differential equa-
tion system. The solution techniques can be classified broadly into the method of
moments and discretization methods. The simplest among these methods is the
method of moments, wherein the moments of the distribution are computed. The
k™ moment is defined as p, = f;inm;” n*¢(n,t)dn. This definition can be applied
to the overall population balance equation (Equation 1.1) to derive one ordinary
differential equation representing each moment (say, po, p1, p2, i3, etc.) (Chiu and
Christofides, 1999). While the solution of the resultant system of ODEs is simple,
the application of the technique requires the number of moments considered to be
limited. Thus, it is restricted to distributions that are relatively smooth and ideally
unimodal. In applying the method of moments, usually the equation representing a
given moment depends upon higher moments. In specifying a cut-off moment, one
needs to define a closure condition to form a closed set of equations. The definition
of a proper closure condition is important in applying the method of moments.

The most popular techniques for the solution of PDEs in general, and popu-
lation balance models in particular, are the discretization techniques. In this case,

the PBE is sought to be identically satisfied at a certain number of points only (at
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certain values of 7 within the domain spanning 7,,;, and 7,4,). The simplest among
the discretization techniques is the Finite Difference (FD) methods. In this tech-
nique, the derivatives (usually with respect to the internal coordinate n alone, but
sometimes with respect to both ¢ and 7)), are approximated by finite differences of a
certain order (typically 1 — Taylor’s expansion, or 2). This approximation results in
either a system of ODEs or algebraic equations. While this method can be employed
to solve for more complex and multi-modal distributions, it results in spurious oscil-
lations and in numerical dispersions in the distributions, due to the truncation error
introduced in approximating the derivatives. In employing FD techniques, a large
enough size domain is to be covered, to prevent errors from backtracking (Crowley et
al., 1999). Some studies have employed moments at larger size to solve this closure
problem (Melis et al., 2000). While most researchers employ a standard ODE solver
beyond this step (for the discretization of the time domain), some studies have con-
sidered customized strategies. In a recent study on crystallization systems, Ma et
al. (2002) have proposed modifications to the FD approximations of the derivatives
to avoid spurious oscillations and numerical dispersion.

The second type of discretization methods is the method of weighted residu-
als (MWR). In this case, the solution within the domain of interest [9in, maz], OF in
sub-domains within the overall domain, is expressed in terms of basis functions and
weighting functions. The weighted sum of the residuals of the PBE, in terms of these
chosen solution forms (at certain chosen points), are driven to zero. This technique
is further classified into two types based on the choice of the weighting functions,
namely, collocation techniques and Galerkin’s method. Collocation techniques em-
ploy orthogonal polynomials as local basis functions and the Dirac delta function as
the weighting function. Thus, the residual of the population balance equation at the
chosen points of discretization are driven to zero, ¢.e., the population balance equa-

tion is identically satisfied at the chosen points. To avoid the use of a single basis
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function to cover the whole domain [9min, maez] (and hence the need for a high de-
gree polynomial as the basis function), the whole domain is divided into sub-domains
called Finite Elements (FEs), and a local basis function is chosen to represent the
solution within each FE. In approximating the derivatives with respect to 7, unlike
in the FD techniques wherein only one or both neighboring points (to the point at
which the derivative is calculated) are utilized, all discretization points within each
FE are utilized. Thus the numerical dispersion and oscillation problems common
in the FD techniques are subdued in collocation techniques. The most common
basis functions are orthogonal polynomials, which result in the Orthogonal Colloca-
tion on Finite Elements (OCFE) method (for example, (Saldivar, 1996; Crowley et
al., 2000)). Other class of basis functions, such as orthonormal wavelets (Liu and
Cameron, 2001), have also been employed in the collocation technique. Unlike the
collocation methods, the Galerkin’s method sets the weighting function identical to
the basis function (Godin et al., 1999; Chiu and Christofides, 1999; Mahoney, 2001).
Mahoney & Ramkrishna (2002) apply the Galerkin’s method for the solution of
distributions characterized by discontinuities, exploiting physical understanding of
the source of the discontinuity. Moving finite element techniques (Rawlings and
Ray, 1988a) have been proposed to reduce the number of FEs, remove the source of
potential errors due to closure problems, and also to capture sharp moving fronts
where they exist. In this case, the upper limit of the domain 7),,,, moves with time,
linked to the growth phenomenon in the population balance model.

A special sub-class of population balance problems to which the discretization
techniques have been employed are pure aggregation/breakage problems. Kumar
and Ramkrishna (1996b) provide an excellent review of the literature on this class.
These systems are characterized by integro-differential equations (Hounslow et al.,
1988; Kumar and Ramkrishna, 1996b). In calculating the integrals, the particles are

assumed to be concentrated at a single point (called the pivotal point) within each

123



element. During a coagulation or breakage event, the particles that result may not
fall at any pivot size, and will need to be assigned to two or more adjacent elements.
The preservation of the mass and the number of particles during this assignment
is critical. Kumar and Ramkrishna propose a new method which conserves both
number and mass, or any two property of interest. In a sequel publication (Kumar
and Ramkrishna, 1996a), they propose a method of adapting the pivot size within
each finite element.

One other solution class, which falls under probabilistic methods, is the Monte
Carlo method (see, for example (Hollander et al., 2001)). This technique uses the
Markov conditional probability of a particular state proceeding to any other state
in determining the solution. Besides predicting the ensemble average properties, it

also predicts the fluctuations, as pointed out by Ramkrishna (1985).

4.1.1 Model Reduction Strategies and Approximate Solutions

Despite increasingly faster computers, the solution of the population balance-
based models for on-line applications such as process control is still problematic.
This is particularly challenging for certain stiff systems, and for systems involving
complex kernels of nucleation, growth, coagulation and breakage. These aspects
motivate a model reduction strategy to enable efficient computation. The method
of moments in itself, with appropriate closure conditions, is an order reduction tech-
nique. Another well-known approach is the decomposition of the fast and slow
kinetics. Many engineering systems are characterized by widely varying eigenval-
ues, and thereby, some of the system states reach their equilibrium or steady state
values faster than the others (stiff systems). This difference in time scales of stiff
systems lead to special consideration in their numerical solution. One traditional
way to tackle these systems is to use the pseudo-steady state assumption for the fast
states (Maas and Pope, 1992). Several formal model reduction strategies have been

developed, which essentially are based on this concept of fast versus slow modes and
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the pseudo-steady state assumption. One such strategy to model reduction is to use
the inertial manifold. This enables the expression of the slow modes in terms of the
fast modes, and hence results in an order reduction. The calculation of the inertial
manifolds constitutes solving partial differential equations themselves, and hence,
methods are proposed to calculate Approximate Inertial Manifolds (AIM). Maas and
Pope (1992) and Rhodes and Morari (1997) develop a method for calculating the
inertial manifold for combustion systems. Chiu and Christofides (1999) and Adrover
et al. (2002) employ the AIM for order reduction of the infinite-dimensional PDE
systems.

In certain systems, the application of these general model reduction tech-
niques is of a limited value, for instance due to the size and complexity of the
problem, necessitating system-specific computational algorithms for efficient solu-
tions. In the combustion literature, a computation technique based on decomposing
the fast and the slow kinetics is employed typically, along the lines of Maas and
Pope (1992). In this case, the fast kinetics are integrated first, and the solution of
this integration is provided as the initial condition to re-integrate the slow kinetics
over the same time interval. The second integration is cast an an inertial manifold,
which is tabulated off-line. As a further extension, to balance the memory require-
ments and the efficiency of look-up on the one hand with the on-line computational
load on the other, an adaptive tabulation technique is presented by Pope (1997), in
which the table is built as the simulation progresses. Thus, only the accessed region
for the particular simulation is actually tabulated, instead of the whole reachable
region. Besides reducing the memory requirements, it also reduces the retrieval time
for the data from the table. While most of the integration involved in the second
step is performed (and stored) at the start of the simulation, the table evolves, and
the retrieval operation dominates over the integration and storage operations.

In the present study, a simple and straightforward algorithm is presented
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for the efficient solution of a population balance model, describing the evolution of
the particle size distribution (PSD) in emulsion co-polymerization. The method is
essentially based on the understanding that the PSD is determined by the interplay
of nucleation, growth and coagulation. Although the method is based on a finite
element discretization of the domain of the PSD, the method is not based on a dis-
cretization of the PBE itself. Instead, the accounting of the particles in the various
FEs is done by resorting to the underlying phenomena. The nucleation, growth
and coagulation processes that occur in each of the FE are considered individu-
ally to update the particle count. To provide a different mathematical perspective,
the algorithm takes a step back in the derivation of the PBE (Equation (1.1)) to
formulate the particle balance. The nucleation, growth and coagulation processes
are determined by the underlying thermodymanic and kinetic events, governed by
relatively simpler equations with relaxed stiffness characteristics. Thereby, the as-
sociated stiffness in the full solution is removed by the effective segregation of the
nucleation, growth and coagulation processes, and also no approximations are neces-
sary for the derivatives (and hence no truncation-related errors). Although the code
is presented specifically for PSD modeling in emulsion polymerization, the approach
is sufficiently general to allow treatment of a broad class of PBEs (since it involves
only the calculation of the rates of nucleation, growth, coagulation/aggregation and
breakage, as relevant). The technique developed is efficacious for on-line feedback
applications, while not losing any process information. The proposed algorithm has
the same two-tier strategy as the algorithm of Pope (1997) (and most other model
reduction strategies), the model reduction being achieved based purely on process

considerations however.

4.2 Algorithm Development
The model for PSD in emulsion polymerization involves two population bal-

ance equations (chapter 3), one for the particle density, and another for the average

126



number of radicals/particle — the latter in discretized form. In addition, it involves
the material balance equations for the monomers, surfactants, initiators and aqueous
phase oligomers, and the partition calculations for the monomers and surfactants.
In the solution of the above model, a discretization technique based on Orthogonal
Collocation on Finite Elements (OCFE) was employed (as described in Chapter 3).
The nucleation processes have typical time constants of the order of 0.02 s (lowest),
while the growth and the coagulation processes have time constants of the order of
50 — 100 s. However, the nucleation events occur only for a portion of the overall
batch, whenever the concentration of the surfactants in the aqueous phase exceeds
the critical micelle concentration values of the surfactants. While this enables larger
step sizes in non-nucleating regimes, it makes the system very stiff, with condition
numbers of the order of 10*. Thereby, the solution of these equations necessitate
employing stiff integrators, with adaptive step sizes, which need to be checked and
adapted at each step in the integration. The net effect is very large computation
times, typically about 38 minutes on a SunBlade 1000 processor (dual processor
of 800 MHz each, and 1 GB memory), for the simulation of a batch spanning 150
minutes — for coagulation-free conditions (See Table 4.1, last row). While this
renders the model of reduced utility for on-line purposes, the coagulation-inclusive
complete model (which is very computation-intensive) is of a reduced utility even
for off-line purposes. This clearly motivates the development of a more efficient
algorithm, to enable on-line model-based control of PSD.

As emphasized previously, the evolution of the particle size distribution in
emulsion polymerization is determined by three major phenomena — nucleation of
new particles, the growth of the particles by polymerization, and the coagulation
of the particles with each other. Control of these individual mechanisms leads to a

better control of the full PSD than that obtained by directly dealing with the PSD,
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SET INITIAL CONDITIONS

‘ HOLD PSD CONSTANT ‘

l FIRST TIER

CALCULATE RATES OF
NUCLEATION, GROWTH | _________________ }
AND COAGULATION I

l ! (OPTIONAL)
|
UPDATE PSD SECOND TIER

UPDATE A {
t=t+At
YES
NO STOP

Figure 4.1: The schematic of the proposed hierarchical two-tier algorithm. The
first tier involves the calculation of the rates of the individual sub-
processes (nucleation, growth, coagulation, breakage) holding the PSD
constant. The PSD is then updated in the second tier. Iteration over
these two tiers is optional.
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as will be demonstrated in Chapter 6. In this chapter, it is shown that this decom-
position of the full process, implemented in a two-tier hierarchical solution strategy,
results in very efficient numerical solutions. Although the strategy is presented in
a specific framework in this section, a later section describes extensions of the ap-
proach to broad classes of population balance systems. Figure 4.1 shows a schematic
representation of the proposed algorithm. The first tier involves the calculation of
the rates of nucleation, growth and coagulation by solving a system of equations
comprising ODEs and algebraic equations. The PSD is then updated in the next
tier. The calculation then proceeds to the next time step. The new algorithm
discretizes the domain of the PSDs into Finite Elements (FE) or ‘bins’. Sufficient
number of FEs are provided to cover the entire span of the PSD, to prevent backward
propagation of errors. Within each FE, a representative size (mid-point) is chosen
(see Figure 4.2(a)), based on which the size-dependent properties are calculated,
and are assumed to hold within the whole element. Also, the particles are assumed
to be uniformly distributed within each FE (constant particle density). This is dif-
ferent from the pivotal point assumption used in solving growth-free PBE models —
wherein the particles are assumed to be concentrated at a single point within each
element — and is more analogous to the second approach to mean value theorem in-
dicated in Kumar and Ramkrishna (1996b) (M-II approach in their nomenclature).
Further, the FE width chosen in this work is considerably lower than normal, to
capture the distribution with greater fidelity.

The individual rates of nucleation, growth and coagulation are dependent
on the concentration of the monomers, surfactants, the aqueous phase oligomers,
the particle phase radicals and the particles themselves. The concentrations of
the monomers, surfactants, the aqueous phase oligomers and the particle phase
radicals are in turn calculated from material balances and partitioning calculations.

Thus, the first or the inner tier involves the calculation of the rates of nucleation,
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growth and coagulation while holding the PSD fixed. This involves the solution of
ODEs and algebraic equations. In the present study, an iterative solution strategy
coupled with Newton-Raphson methods is employed for the algebraic equations, and
a predictor-corrector technique for solving the differential equations. A time step
At is defined. This is divided into four sub-intervals, each of width % (See Figure
4.2(b)). The solution is performed over each of these sub-intervals. Based on these
solutions, the rates of nucleation, growth and coagulation are computed at each of
these sub-intervals (using the equations presented in Chapter 3). At the end of
this time interval, At, the PSD information is updated as follows: the total moles
of particles within a FE j, F}, is defined as F; = j[b’;f_l F(r,t)dr, for j = 2,3...N,
and F| = f;bic F(r,t)dr (See Figure 4.2(a)). Applying this definition to the PBE
(Equation (3.15)), one gets:

rb; rbj
frb 1 gtF(r t)dr + fb 1 ar (#(r, )Z_)dT = frb 1 6(r = Tnue) Ruuc(t)dr + frbj,l Reoag (1, t)dr
(4.1)

Changing the order of differentiation and integration, and employing Leibnitz rule

results in:
%Fj + ( J dt)‘rb (P}_1%)|Tbj—l = 5j=1§RnUC(t) + fr:j_l §Rcoag(ra t)dT (4-2)

The case wherein the coagulation events are absent (or negligible) is presented
first, and the results are compared with the results obtained with the OCFE-based
DDASSL solution. In the following sub-section, the complete coagulation-inclusive

case is presented.

4.2.1 Coagulation-free emulsion polymerization
In the present study, the nucleation event is restricted to the first element
(extension of the algorithm for the case in which nucleation is prevalent over a longer

range of particle size is straightforward). Thus for elements 2, 3, ... N, the RHS of

130



FINITE ELEMENT DISCRETIZATION

rnuc rb 1 rb 2 rb 3 rb 4 rb N

(a) finite element discretization of the domain of particle size;
Tnuc 1S the size of the nucleus, rb; is the upper boundary of
finite element 4, and r; is the representative size for finite

element ¢

Atl4a

(b) the discretization along the time axis. Points 1-5 correspond to
the sub-steps of integration (inner tier) of width At/4, within the
overall main time step At (outer tier)

Figure 4.2: Discretization along the size and time domains.
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the PBE (Equation (4.2)) becomes zero for the coagulation-free case, and the PBE
reduces to:
&+ ()l — (Fiag)lro, =0 (4.3)

The expression for the growth rate (Equation (3.21)) has an explicit depen-

dence on the dependent variable, r. Upon rearrangement, it becomes:

’I”3 n\r,
dd_t - 47r3p,, Z?:l ijl pijPi NAt) [M] MW; = Rarowtn(r; 1) (4.4)

where the RHS has no explicit dependence on the dependent variable (r®), nor on
the PSD itself. The value of %wath(r t) is calculated for each FE, at each of the
sub-interval points ¢ —|— t+ ot 22 3At and ¢+ At. In order to exploit the explicit
form of the ODE representing growth (Equation (4.4)) (particularly with respect to
the PSD), the accounting of the growth event in updating the PSD is done as follows.
The fraction of particles in the various FE, that would grow into the adjoining FE
at the next time step is calculated: a cut-off particle size ri; in Finite Element j is
defined such that all particles above that size in this FE will move onto the next FE
at the next time step. The width of the FEs are such that the particles in a given FE
do not grow beyond their immediately neighboring FE. The value of Rgrown (7, 1)
is available at five time instances within this time step At (see Figure 4.2(b)). The
cut-off size is calculated using these values of Rgrowen(r, t) at the sub-interval points,

with a single application of a sixth order implicit Simpson method as follows:

TZ;’ = Tb_:;’ - (At/4)(14§RG’wwthj,1 + 64§RG7‘0wthj,2 + 24§RG’rowthj,3 + 64§RGrowthj,4
+14%Growthj,5)(%)
(4.5)

where Rayoutn; ; is the value of the Rgouwim(r, t) of Equation (4.4) at the 7 h sub-step
within this main step. Then, the particle count for bins 2, 3, ... N is updated as

(’/‘bj - Tij) L F (T‘bj_l - T’ij_l)

Foowi=F; — F; -
] J J ARj Jj—1 ARj—l

(4.6)
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where AR; is the width of finite element j. For the first FE, in which the nucleation

of new particles occurs, the particle count is updated as

Frew1 = Fi — Fl% + (At/4)(14R e 1 + 64R5uc2 + 24Rn0c,3 + 64Rnuc s
+14§Rnuc,5) (é)

(4.7)

where R,,.; is the nucleation rate at the i time sub-step. The last term arises
from a sixth order implicit Simpson method. The choice of four sub-steps within
each main step is arbitrary. One could choose other configurations (e.g., less con-
servative), and employ appropriate implicit integration formulae.

A constant step size of At = 0.1 s, and a constant width for all the finite
elements, AR = 2 nm, are employed. Figure 4.3 compares the end-point PSD, the
profile of total particles, and the profile of solids content pertaining to the current al-
gorithm, with the DDASSL solutions. The current algorithm follows the timings and
the magnitudes of the nucleation events predicted by the earlier algorithm closely
(as evident from the comparison of the profile of total particles), and also captures
the growth rates as seen in the solids content plot. However, the current algorithm
captures the intermediate nucleation event (between 3 and 4 minutes), and thereby
produces an interconnected PSD at the end of the batch, resulting in a better match
of the experimentally-observed distribution. Figure 4.3(a) shows a plot of the weight-
averaged distribution at the end of the batch. The OCFE/DDASSL solution predicts
much sharper segregation of peaks, which is contrary to the experimental results.
On the other hand, the current algorithm predicts a more smoothened distribution
due to an inter-related accounting of the nucleation and growth events. The peaks
in the current result are lower than the corresponding peaks in the OCFE/DDASSL
result due to the presence of particles in the range 150-250 nm. Overall, the current
results are closer to the experimentally-observed distribution. The CPU time for a

constant step size of 0.1 s, with 500 FEs, and a width of 2nm per element is 4.5
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minutes on a SunBlade 1000 dual processor with 800 MHz each, and 1 GB memory,

for the simulation of a batch spanning 150 minutes (see Table 4.1, first row).

4.2.2 Coagulation-inclusive emulsion polymerization

In this case, the full form of Equation (4.2) is employed to update the PSD.
The nucleation and the growth effects are incorporated as explained previously. This
section details the accounting of the coagulation effects. Coagulation modeling using
discretization techniques has elicited wide interest in pure aggregation/breakage
problems, as was mentioned previously. In this case, the conservation of mass and
number are critical, due to particular assumptions made in the discretization. As
shown in Chapter 3, Reoqy is defined as Reoag (7, 1) = H (Tupper — )R formation (7, 1) —
Raepietion (1, 1) H (reut—ops — 7). Here, H(.) is the Heaviside function (which is unity
when the argument is non-negative, and zero otherwise), re—oy is the cut-off size
below which the particles are prone to coagulation, and 7y, is the maximum size of
particles that could result by the coagulation of smaller particles, related to rey—ofs
as Tupper = Z%Tcut_of 7. Considering these separately, R formation (7, t) accounts for the
formation of particles of size r at time ¢. Thus, the rate of formation of particles in

bin j at time ¢ is given by (from Equation (3.37)):

R formations (1) = gt 72 [ 78 (a0, (13 — 1)) P, 0)P((1 = 179)4, )
7@3 oY dr'dr

(4.8)

Introducing a change of coordinate r” = (r3 — 7"'3)%, to simplify the integrand and
thereby facilitate analytical solutions, will render the domain of integration nonlin-
ear. In order to render the domain of integration bounded by linear boundaries, the
radius-based FEs are converted to volume-based FEs (only for the calculation of the
coagulation rates). Note that a linear grid choice on a radius-basis would result in a

geometric grid when converted to a volume basis. The rate of formation of particles
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of volume between V and V 4 dV, due to coagulation of smaller size particles, is
given by
1
v (V. VYFy (V! ) Fy (VY 6)dV'dv"” (4.9)
where V' and V" are related by the linear relationship V' 4+ V*” = V. Thus, the total
rate of formation of particles in bin ‘;’ becomes:

1 V] V—Vauce
1 [ / BV, (V — V) E (VL OF (V — V'), 0dV'| 4V (4.10)
2Vw V:‘/}fl VI:Vnuc

where Fy(V, t)dV = F(r,t)dr, and dV = 47r2dr, giving Fy (V, t) = 20 In discrete

4mr2

F,

. e e ey N _ .
form, the particle density in bin ‘j” on a volume basis is given by, Fy; = AR;inrT

due to the assumption of uniform particle density within each FE. Figure 4.4(a)
shows the domain of integration (shaded region) for the double integral in Equation

(4.10). Introducing a change of variables V" =V — V', the total rate becomes:

e [y BV (V = V) R (VOB (V= V'), )dV" | av' +

2V JV'=Vue VI=Vj_1 -V
L [ B0V = V)R (VO R (V = V'), )V v

2V V':Vj_l—Vnuc \4

(4.11)

The corresponding domain of integration is shown in Figure 4.4(b). Using this
description, the coagulation events are exact. Thus, there is a consistency in terms
of the number of particles, and a preservation of the mass during the coagulation
event.

In modeling the coagulation event, the calculation of the intrinsic coagulation
rate (coagulation kernel) (3 is performed on-line, as the simulation progresses. These
calculations, as well as the calculations of the coagulation rates themselves, involve
intensive computations. However, the form of the coagulation rate expression (as it
occurs in population balance systems in general) is amenable to performing some of

the calculations off-line analytically (once, at the start of the simulation), leading to
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a substantial reduction in the computational load. This approach is similar to the
one followed by Mahoney & Ramkrishna (2002), although in their case numerical
approximations to the domain of integration were employed, unlike the analytical
solutions employed in this work. The analytical solutions are derived as follows
(note that they can be easily adapted for general systems):

The space between V,,,,. and (V;_1 — V) along the V' axis in Figure 4.4(b)
can span several finite elements, depending on FE ‘j’ in which the particle formation
is under consideration. Within each of these FEs, the value of Fy,(V’, t) is a constant.
Considering one such FE ‘%’ shown in this Figure (by vertical dashed lines), the rate
of formation of particles in bin ‘j’ by coagulation of particles in bin ‘i’ with other

particles is given by:

s iy [ BV = V) Fr (V! ) By ((V = V), V"] dv*

= B e A BV (V = V) Fo(V = V!, 1)dv" | av”

2V V=V, Vi=V;_ -V’

(4.12)

The domain of integration is shown in Figure 4.5. This domain in turn spans several
FEs along the V" axis, i.e., the points ji, js, j3 and j; could (all or some) lie in
different FEs. Identification of the FEs in which ji, js, j3 and j4 lie will enable
a simplification of the double integrals, and will allow each integral to be cast in
terms of multiplications and additions. Figure 4.5 shows a split of the domain of
integration in terms of the various finite elements in the V" axis (horizontal dash-dot
lines). Consider the most general case in which each of these points ji, j2, j3 and
ja lie in different FEs, with other FEs between each of them. For the FE j;, the

coagulation term becomes,

R A AN G Vi
Big FviFvj / / 1 av'"| dv’ (4.13)
2Vw V’:V}'—I_le V":‘/j—l_vl
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which is the rate of formation of particles in bin ‘j” due to the coagulation of particles
in bin ‘i’ with the particles in bin ‘j;’. This simplifies to

Big FviFv,j
2V,

(3

(V= Vi)V = Vi Vi) + 507 = (Vo= i) (419

The term within the square brackets represents the portion of the particles in this
domain that could contribute to particles in bin ‘j’ by coagulation.

Similarly, for any bin between ‘j; 41’ and ‘jo—1’, say ‘j5’, the rate of formation
of particles in bin ‘j’ due to coagulation of particles in bin ‘i’ with particles in bin

‘75’ is given by:

5i,j5FV,iFV,j5 /‘/}'1—%’51 ‘/Vj5 av'" | av’ + /Vl /Vj5 av'" | av’
2V VI=Vi1-Viy \JVI=v; v VI=Vi Vi \J V=V
(4.15)
This simplifies to
Bigstvitvis rey, v (Vi — Vo Ve Ve )2 YV V)2
W [( Js Js*l)( Js 9*1) + 2( j—1 95*1) 2( Jj—1 ]5)
+(V3 - Vjs—l)(‘/;' - V}'—l + ‘/35—1)]
(4.16)

The rate of formation of particles in bin ‘j” due to coagulation of particles in bin ‘i’

with particles in bin ‘j5’ is given by:

/617]2FV,ZFV;‘75 /‘G_l‘/j2_1 /V} dV” dvl + /Vz /V} dV” dVI
2Vw '=Vi_4 V”:V}'_l—V’ V’:‘/j—l_vjz—l ‘/H:ij_1
(4.17)
This simplifies to
Buptvitvis rey, v \(Ve o — Ve o — Vi G VAR VAN RN Ue VARRY-
Wy [( J2 J*l)( j—1 Jja—1 zfl) + 2( j—1 32*1) 2( Z*l)
+(V3 - ij—l)(vi - ‘/}'—1 + ‘/32—1)]
(4.18)
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The rate of formation of particles in bin ‘j” due to coagulation of particles in bin ‘i’

with particles in bin ‘j3’ is given by:

Bijs FviFv,js /Vj_V’B / s av'" | dv' + / ; / A av'" | dv’
Vi=Via VI=Vj3 1 VI=Vj=Vj, VI'=Vjs-1

2V,
(4.19)

This simplifies to
Bijs Fv,iFv,j
TS[(VB - V}s—l)(v} - V}a - V;'—l) + (V; - ‘/}3_1)(‘/;' - VJ + V}s) - %(V;)Z
+%(VJ - ‘/}3)2]
(4.20)

For any bin between ‘j, + 1’ and ‘j3 — 1°, say ‘j5’, the rate of formation of particles

in bin ‘j’ due to coagulation of particles in bin ‘i’ with particles in bin ‘j5’ is given

by:
Biis Fvil'v gs /% /Vj5 av" | dav’ (4.21)
2V, V=V \JVvr=vj,
This simplifies to
Bijs FviFv,;
— Js — Vis—=1)\Vi — Vi—l '
B (Vi = Vim) (Vi = Vi) (4.22)

These are the bins that entirely contribute to particles in bin ‘j” upon coagulation
(this interpretation can be understood from Figure 4.5, envisaging bins (horizontal
lines) between j, and j3). For the present choice of FE widths, this case does not
arise, i.e., jo and j3 were either in the same bin or in immediately neighboring bins.
For any bin between ‘j3 + 1’ and ‘j, — 1°, say ‘j5’, the rate of formation of particles
in bin ‘j’ due to coagulation of particles in bin ‘i’ with particles in bin ‘j5’ is given

by:
Vi—Vis Vis Vi=Vjs-1 V=V’
/ / av'’ | dv' + / / av'’ | dv’
Vi=Vioa VI=Vjs 1 VI=Vj=Vijy VI=Vjg—1

Bijs FviFvjs
W
(4.23)
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This simplifies to

= 2‘1//1“ s [(V% - ‘/}5_1)(‘/} - Vj5 - V;—l) + (V} - ‘/}5—1)(‘/}5 - Vj5—1) - %(V} - ‘/}5—1)2
+3(V; = Vi)?]

1
2

(4.24)

The rate of formation of particles in bin ‘j” due to coagulation of particles in bin ‘i’

with particles in bin ‘j4’ is given by:

!
BiisFyviFy . Vi—Vig—1 Vi=V
1,4 I »J4 dV” dvl
VI=Vi1 VI'=Vj,—1

o (4.25)
1
(V)= Vi)V = Vit = Vi) = 50 = Vi 4

This simplifies to

BijiFviFv,,

v l(‘/%—1)2}

2
(4.26)

A slight modification is necessary when 7 = j — 1, in which case, V; should
be replaced by (V; — Viue). A more substantial change is needed for the case where
i = j, as is evident in Figure 4.4(b), since the domain of integration is now a
triangular region (instead of the rhombus that characterized the domains of the
earlier double integrals). (Note that this case accounts for the formation of particles
in bin ‘j’ by coagulation of particles in bin ‘j” with smaller particles. However,
the loss of the particles is accounted for in the depletion term, resulting in a net
cancellation). The rate of formation of particles in bin 1 due to coagulation is given
by R formation,1(t) = ﬁﬂl,lF‘le(Vl — 2Voue)?.

The terms within the square brackets in each of these integral evaluations
depend only on the grid details. Hence they can be computed once, at the start of
the simulation, and employed throughout. In this form, the integrals have been re-
duced to algebraic equations. Thus, at each time step, once the intrinsic coagulation
rate (3 is calculated, the calculation of the coagulation rate Ry, involves straight-

forward multiplications and additions. Due to this semi-analytic solution for the

139



coagulation terms, there is still an exact preservation of number and mass, subject
to the assumption of uniform particle density within each FE. This is an alternate
approach to the one employed in earlier studies (Kumar and Ramkrishna, 1996b),
which also account for the conservation of properties based on the assumption that
all the particles are concentrated at a single point within each finite element. In
the latter approach, particles are assigned to different bins, some smaller and some
larger than that which would actually result from the coagulation event. Such re-
assignments are not required in the present approach, which coupled with the small
FE widths, gives good performance.

Unlike the terms involved in the calculation of the formation of particles by
coagulation, the terms involved in the calculation of the depletion of particles by
coagulation are much more benign. The rate of depletion of particles in bin ‘j’ by
coagulation with other particles is:

FV,i

v S B P (4.27)
aq

§Rdepleti(m,i =

The coagulation-induced formation and depletion terms for each FE are com-
puted at each sub-interval point within the main time interval (as was done for
the nucleation and growth rates). The PSD information is then updated in this

coagulation-inclusive case as follows:

Frews = Fy — Fy % + (AL/4) (14Rnue1 + 64%nuc2 + 24Rnucs + 64Rnucs +
14§Rnuc,5)(41_5) + (At/4) (14R rormations., + 648 rormations » + 248 rormation s +
64R formations 4 + 14R formation 5) (35) — (At/4) (14R depietion, , +
64R deptetions » + 24Raepietions s + 64Rdepietions 4 + 14R deptetion ;) (75)
(4.28)
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and for j = 2,3...N

Fnew,j = F} - F] (Tbi;{;z]) + F}—l% + H(jupper - j)(At/4)(14§Rf0Tmationj,1 +

64R formationj s T 24§Rformationj,3 + 64§Rformationj,4 + 14§Rformatz'onj,5)(ﬁ)
—H (Jeut—ofs — J)(At/4) (14R depiction; , + 64Raepietion; , + 24Rdepletion; 5 +
64R gepiction; , + 14%(16])[6751.0’”4]',5)(%)

(4.29)

where R formation; ; and Raepietion; ; are the total rates of formation and depletion,
respectively, of particles in bin ‘j” at the 7' time sub-step, and H(.) is the Heaviside
function, while jypper and jeuroff are the bins corresponding to 7ypper and reysoff,
respectively.

Also, the intrinsic coagulation rate 3; ; can be updated only periodically, in-
stead of being updated at every time sub-step. In this case, the terms %formationj’i
and %depletionj,i can be computed only at one of the sub-time steps, and the coagula-
tion update reduces to a simple explicit Euler step. Considering the implicit nature
of all preceding integration steps, this is not a serious concern for stability, as will
also be demonstrated in the next section. Figure 4.6 compares the PSD resulting
from a complete coagulation-inclusive simulation of a batch spanning 150 minutes,
with that from a coagulation-free simulation. The simulation time on a SunBlade
1000 Unix dual processor with 800 MHz each, and 1 GB memory, using 200 finite
elements of 2 nm width each, is 16 minutes and 5 s, employing a constant step size

of 0.1 s, for a batch spanning 150 minutes (second row in Table 4.1).

4.3 Stability and Accuracy Considerations and Adaptive Step Size
The first tier of the algorithm, in which the rates of nucleation, growth and
coagulation are computed, involves solving ODEs and algebraic equations. While

this solution can be obtained with an arbitrary method, the current study employs
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an in-built algorithm. The differential equations were solved using Adams-Moulton-
Bashforth predictor-corrector techniques, employing an explicit predictor and an
implicit corrector. By virtue of the implicit technique, the stability of the algorithm
is ensured. The algebraic equations were then solved employing Newton-Raphson
methods. In the second tier of the algorithm, the integration equations employed to
update the PSD (Equation (4.2)) are implicit sixth order methods (due to the 4 sub-
step strategy that was followed here). The particular form of growth was exploited
to enable a single application of the implicit method. The stability of the second
step is also guaranteed due to its implicit nature in a coagulation-free simulation.
However, as mentioned previously, the coagulation-inclusive case involves an explicit
update of the PSD information (equivalent to a first order Euler step), particularly
when the intrinsic coagulation rate 3 is not updated within a time step. One might
consider employing a predictor-corrector framework for the coagulation update. In
the present case, the solutions show good stability even with a single step PSD
update in the second tier. This is seen in Figure 4.7, wherein the coagulation-
inclusive result is compared for the case in which a predictor-corrector method was
employed to update the PSD (for the second tier), with that for the case in which
the PSD is updated in a single step (as shown in Equations (4.28) and (4.29)). This
figure suggests that a single step PSD update is adequate (iteration is not essential).

In the above cases, the accuracy of the solution is ensured by maintaining
conservative time steps. In a predictor-corrector technique, the estimate of the
error in the integration can be obtained from the predicted and corrected solutions.
The predictor technique is fourth order, with an error approximately O(h*) and the
corrector is fifth order with an error approximately O(h®). Thus, the predicted value
is given by 2P = Tegaer + O(h?*), while the corrected value is given by = Tezeer +
O(h®). The error between the predicted and the corrected values, e = abs(x — zP)

is approximately O(h®). In simulations without an adaptive step size calculation, a
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step size of 1 x 107° s is employed for the first step. The step size is then doubled
at each subsequent step, until the attainment of a value close to 0.1 s. Thereafter,
the step size is maintained constant at this last value. This conservative step size
maintains the error estimates within acceptable bounds.

However, one could implement an adaptive step size calculation technique, to
produce solutions that meet a specified tolerance, while at the same time employing
the maximum allowable step size values. If the error at any step, for each term in the
vector e, is less than the corresponding tolerance values, then the step size can be
potentially raised for the next time step. Otherwise, the step size must be lowered for
the next time step to obtain an acceptable accuracy in the solution. Thus, if e(j) >

tol(j) for any component j in vector e, then hy,e,, =™ <hold(%)(%)> , where 7 refers

to each component in vector e. Else, hpep = min (m"; (hold(t:ég))( i )) L2 % hold)- In
each case, only the smallest suggested step size is adopted. The exponent is increased
in the case of an increasing step (e(j) < tol(j) for all j) as a safety margin (from 0.20
to 0.25) (Press et al., 1992). Another safety margin is provided by restricting the step
size to not exceed twice the earlier step size. In both cases, the integration results
of the current time step are accepted (Press et al., 1992). If a predictor-corrector
technique is employed in the PSD update step (second tier) to accommodate the
explicit involvement of the PSD information in the coagulation term, then another
step-size adaptation could be built around this term, to work in tandem with the
first one.

Figure 4.8 compares the simulation results pertaining to the adaptive step
size with that pertaining to a constant step size. The tolerance values set for the
variables are adjusted to yield a good match. The solution time for the adaptive
step size case is about 37 s in a 800 MHz dual processor with 1 GB memory, for a
simulation spanning 150 minutes, as shown by the entry in the third row of Table

4.1. The solution time when a predictor-corrector technique is employed for the
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PSD updating stage (second tier) increases to 39 s in this same processor (fourth
row of Table 4.1). The FE widths chosen in each of these cases are very conserva-
tive values (at least five times smaller than typical values (Crowley et al., 1999)).
An added feature of the current solution technique is its robustness to a range of
recipes. The stiffness characteristics of the OCFE-discretized original system caused
the integrator employed to be unsuccessful under conditions of excessive nucleation.
In particular, the code could not handle high initial surfactant concentrations, nor
simulate ‘pre-nucleation’ conditions (during which time the seed particles are gen-
erated, typically lasting about 10 minutes, which are quite common in industrial
practice). The current solution technique can simulate most industrially-relevant

recipes, and hence has a wider utility.

4.4 Summary and Extensions to General Population Balance Systems
This paper presents a new algorithm for solving population balance models.
The algorithm is based on a discretization of the domain of particle size into finite
elements or ‘bins’. The algorithm follows a two step strategy — one to calculate
the individual rates of nucleation, growth and coagulation, and the other to update
the PSD based on these individual rates. In the current implementation, each time
interval is divided into four sub-intervals. The rates of nucleation, growth and
coagulation are calculated at the four sub-interval points within the main interval,
by holding the PSD information constant. The particle count within each finite
element is then updated by a single semi-implicit step. In the case of a constant
step size, the overall time step chosen (for the outer step) is very conservative (0.1
s). Also, an adaptive step size strategy is presented, which gives solution times of
39 s in a 800 MHz dual Sun Blade 1000 processor with 1 GB memory (and less than
a minute in a single 333 MHz processor), for the simulation of a batch spanning 150

minutes.
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Figure 4.3: Comparison of the simulation results from the current algorithm (500
Finite Elements of 2 nm width each) with those from the solution of a
OCFE-based discretization of the PBE, and employing DDASSL inte-
grator to solve the resultant DAE system (40 Finite Elements having
3 internal collocation points per element).
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Figure 4.5: The domain of integration for the formation of particles in bin ‘j’
due to coagulation of particles in a particular bin ‘i’ (shown between
vertical dashed lines in Figure 4.4(b)), with other particles.
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Figure 4.6: The end-point PSD simulated by the current algorithm, for the com-
plete case including nucleation, growth and coagulation (250 Finite
Elements of 2 nm width each), compared with the case without coag-
ulation (500 Finite Elements of 2 nm width each).
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In the more traditional approach of discretizing the PBE (which implicitly
accounts for the nucleation, growth and coagulation processes), the discretization
results in a system of stiff differential algebraic equations (with condition numbers
exceeding 10* in the emulsion polymerization application that was presented here).
This stiffness problem is due to the huge disparity in the time constants of the
nucleation, growth and coagulation events. The current technique circumvents the
stiffness problem due to the decomposed strategy that is employed.

In coagulation modeling, the method gives very good solution times. It also
compares favorably with the other methods presented for pure-aggregation /breakage
systems in that it accounts for internal consistency in terms of the number of par-
ticles and the mass of the particles. However, this is subject to the assumption of
a uniform particle density within each bin, just as the previous results are subject
to specific assumptions in the discretization. But the widths of the finite elements
employed in this study (2 nm uniformly) are at least five times smaller than those
typically employed, and deemed acceptable, thereby justifying the assumption of a
uniform particle density within each FE.

This new hierarchical solution technique compares very favorably in terms of
computation times (even including the intensive coagulation calculations) compared
to a technique based on the discretization of a full PBE, as can be seen from Table
4.1. While the coagulation-free solution using the OCFE-technique and the DDASSL
integrator takes about 38 minutes typically, the current algorithm gives solution
times of about 37 s for the coagulation-inclusive simulation with adaptive step sizes.
This brings the problem of on-line PSD control within the feasibility realm, at least
from a computational stand point. In addition to this advantage, the current code
is very robust to a variety of operating conditions that one might encounter in
industrial practise, including very high nucleation rates.

Although the application presented here focused on emulsion polymerization,
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the algorithm is generic enough to be easily extended to other population-balance

systems. The major and obvious difference is in the calculation of the rates of

nucleation, growth, coagulation and breakage, as relevant, in the first tier of the

algorithm. Certain assumptions made in the algorithm and restrictions imposed

by the system itself in this particular application to PSD modeling in emulsion

polymerization are highlighted below, and their relaxation/extension for other PBE

systems is discussed.

1.

In the present study, custom-built algorithms were employed in solving the
relevant equations to obtain the individual rates of nucleation, growth and co-
agulation. A fourth order predictor-corrector technique was employed, thereby
necessitating four sub-intervals within each main interval. However, these so-
lutions may be performed using any suitable method with the appropriate set

of equations.

Nucleation was assumed to be restricted to the first FE, but relaxing this

assumption is straightforward.

. With respect to coagulation, the only difference is in the method of calculating

the intrinsic coagulation rate 3. The rest of the algorithm, including the semi-

analytical off-line computations, carry over to general systems.

. Growth phenomenon is the only mechanism that might require system-specific

considerations, especially to exploit the explicitness as was done in this study.
However, if a predictor-corrector technique is employed in the PSD update
step, as was demonstrated here, this concern is obviated. In that case, even
if an explicit form cannot be obtained for the growth term, the PSD can be

updated using the original growth term in Equation (4.2).

Breakage is uncommon in emulsion polymerization, and hence the modeling

of the breakage phenomenon was not presented here. However, it can be
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cast into the same framework as the coagulation phenomenon, and the an-
alytical solutions derived quite easily compared to the coagulation case, to
facilitate computation. Consider a typical breakage process, the cell division
process (Daoutidis and Henson, 2001). The accounting of the loss of cells
due to breakage is straightforward. The rate of formation of cells due to the
division of larger cells is modeled as

‘/}‘ lelm
%breakage (Vv, t) — / [/ F(V’)p(‘/’ V’)F(V”t)dvl dV (430)

formation
v=vi_1 Wvi=v

where I'(V') is the rate constant for the division of a cell of volume V', and
p(V, V') is the probability that the division of a cell of volume V" results in a cell
of volume V. This probability would satisfy the condition fxlo p(V,V"dV =1,
with p(V, V') =0 for V > V'. Casting this solution in a discretized framework
using analytical solutions is quite simple. No change of variables is necessary
in this case. One needs to identify the finite elements along the V' axis, from
Vj—1 to Vinee, and the analytical solutions can be derived in a straightforward

manner (subject to the assumption of a uniform particle density within each

FE).
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Table 4.1: Comparison of the solution times for the simulation of a batch spanning
150 minutes in a Sun Blade 1000 Unix processor, equipped with two
800 MHz processors and 1 GB memory.

Case

Time

Details

Coagulation-free

Coagulation-inclusive

Coagulation-inclusive

Coagulation-inclusive

OCFE-based discretization

and DDASSL-based solution
(Coagulation-free)

4 minutes 28 s

16 minutes 5 s

37 s

39 s

37 minutes 54 s

500 finite elements of 2 nm width each
Constant step size of 0.1 s

250 finite elements of 2 nm width each
Constant step size of 0.1 s

250 finite elements of 2 nm width each
Adaptive step size

250 finite elements of 2 nm width each
Adaptive step size

Predictor-corrector technique for PSD
update (second tier)

40 finite elements, 3 internal collocation
points per element
(330 state-DAE system)
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Chapter 5

SENSITIVITY STUDIES AND REACHABILITY
ANALYSIS

5.1 Introduction

Distributed parameter systems (DPS) are characterized by partial differential
equations (infinite-dimensional systems), for which there are limited theoretical con-
trollability results. In addition, these systems are characterized by discontinuities
that necessitate special consideration. These systems are approximated as lumped
multivariable systems, usually with a very high ratio of the number of correlated
outputs (controlled variables) to the number of inputs (manipulated variables). To
motivate the controllability issue from a physical standpoint, there are certain con-
straints on the type of distributions that can be produced in the emulsion. Even in
producing a monodisperse population, there is an upper limit on the particle size,
to enable producing a dispersion of solids in the aqueous phase with an appreciable
solids content in the latex. In other words, as the particle size of the monodisperse
population increases, the achievable solids content is reduced. Further, the relative
rates of nucleation and growth limits the attainable polydispersity of monodisperse
populations. Allowing for a distribution of particle sizes in the population expands
the attainable domain of solids content. However, the attainable distributions are
dictated by the rates of particle nucleation and growth, and on the particle stability.
These sub-processes strongly interact with each other. Although there are process
inputs to control some of these aspects independently, there is a high degree of cou-

pling with certain inputs. Considering all these issues and the constraints on the
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inputs, the actual reachable distributions are limited. The analysis becomes more
involved in the case of multi-modal distributions.

Formal controllability studies on particulate systems, aimed at determining
the controllable distributions, are rather limited. To avoid unattainable set-points,
some studies in the past on the control of distributions have utilized a partial control-
like strategy, in which a few of the outputs are controlled while the rest are allowed
to evolve in an open-loop manner (Gatzke and Doyle III, 2001; Daoutidis and Hen-
son, 2001). Other studies used target PSDs that are known to be attainable a
priori (Crowley et al., 2000). The present study is restricted to an analysis of the
reachability of the distributions. Reachability refers to the ability to steer an output
from an initial state to a final state in a finite time using the available inputs, while
controllability also includes the ability to maintain the output at this final state
beyond the end-point.

Recently, there have been studies which address the development of the reach-
able regions through the solution of optimization problems (Kauchali et al., 2002;
Wang and Doyle III, 2002). The latter study deals with determining the reachable
regions of PSD in styrene emulsion polymerization. In this study, Wang and Doyle
ITT have identified the reachable domains in terms of the “c-reachability”, which
is the domain of distributions that are reached with an error less than ¢ in the
defined objective function. However, there are also other approaches that rely on
simple simulations in arriving at the reachable regions (Liotta, Georgakis, Sudol and
El-Aasser, 1997), and in analyzing the processes (Russel et al., 2002).

In the current study, a combination of experiments and simulations using
population balance models are employed to analyze the evolution of PSD in the
semi-batch emulsion co-polymerization of vinyl acetate (VAc) and butyl acrylate

(BuA), using non-ionic surfactants. The experimental studies are mainly used to
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identify a suitable control configuration and the manipulated variables. The analy-
sis addresses the hierarchy of the individual sub-processes of nucleation, growth and
coagulation, where possible. The simulation studies extend the analysis to identify
the reachable unimodal and bimodal distributions. In the next section, the exper-
imental sensitivity studies are presented, and their implications for the control of
PSD are highlighted. The following section presents the simulation-based reacha-
bility studies. Here, the first part examines the nominal reachability under various
configurations — using a single manipulated variable; using different combinations
of multiple manipulated variables; the effect of particle coagulation; and the effect
of the parameterization of the inputs. The second part presents the effect of un-
certainties and disturbances on the reachable region. These include the effect of
a mid-course stochastic/deterministic disturbance, and uncertainties in the initial
conditions. This analysis provides information on the effectiveness of in-batch feed-
back control in the process, which assume importance considering the irreversibility

characteristics of the process.

5.2 Experimental Sensitivity Studies

The experimental facility is utilized to study the sensitivities in the process
of evolution of PSD. The objective of the study was to identify the best manipu-
lated variables, and an effective control strategy. This is done through a series of
experiments described below. The experiment described in Figure 3.2 is used as the
base case recipe. This base case recipe is subjected to various perturbations, and
their effects on the process are studied. These studies are used to infer the design-
and control-relevant issues of the process. The experiments and the inferences from

them are described below.
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5.2.1 Effects of Surfactant

The experiment described in this section was designed to determine the ef-
fect of changing the surfactant feed profile on the PSD and the conversion of the
monomers. The surfactant feed rate was perturbed as shown in Figure 5.1. Figure
5.2(b) compares the profiles of total particles in the current and the base case ex-
periments. The total number of particles nucleated in this experiment is much lower
(~ 10'), and also nucleation is not prolonged, unlike in the earlier experiment. This
is mainly due to the decrease in the surfactant feed rate between 10 and 15 minutes
(compared to the base case experiment). This decrease in the number of particle in
the latex results in larger growth rates, thereby causing the particles to grow to a
larger size (Figures 5.2(a)). This figure also shows some large size particles (larger
than 600 nm), suggesting a coagulation event that could have occurred during the
reduced surfactant feed rate. Figure 5.2(c) compares the profiles of solids content,
which shows that the end-point solids content increases to slightly over 25% at a
final overall conversion of approximately 95% (almost 20% higher than in the base
case). This aspect clearly demonstrates the complex and non-intuitive behavior of
the system. Increasing the surfactant feed rate to effect secondary nucleation and
a bimodal end-point distribution could cascade into lower growth rates and parti-
cle sizes, and a lower conversion too. This necessitates using other inputs in the
process, such as the feed rates of initiators and monomers, to correct this situation.
Another aspect of the process that is evident from this experiment is the competitive
particle growth phenomenon. This is seen in Figure 5.3, which shows the evolution
of the bimodal distribution (number-averaged plot) along the course of the batch.
It shows a more interconnected and diffuse distribution at the intermediate time
range which becomes separated into a more clear bimodal distribution towards the
end of the batch. This is due to the strongly size-dependent growth, with the larger

particles growing faster than the smaller ones. The size-dependent growth and the
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lack of inputs to manipulate this phenomenon demonstrate the importance of the
timings and durations of the various nucleation events. In producing a multi-modal
distribution, the polydispersity of each mode and the separation between the modes

is mainly influenced by the duration and the timings of the nucleation events.

5.2.2 Effects of Monomer — Vinyl Acetate

The next experiment was designed to investigate the influence of the feed rate
of one of the monomers on the evolution of the PSD and other pertinent outputs.
Vinyl acetate feed rate was perturbed as shown in Figure 5.4. Figures 5.5(b) and
5.5(c) compare the profiles of total particles and solids content between the two
experiments. In spite of the reduced feed rate of the VAc monomer at the start of
the reaction, there is no appreciable difference between the two cases at early times
(through 30 minutes) of the batches. A plausible explanation is that the system still
remains saturated with the monomers. But unlike in the base case, there is a steep
increase in the number of particles at approximately 37.5 minutes, coinciding with
the drop in the VAc feed rate at this time (Figure 5.4). One plausible explanation
is that all the monomer droplets disappear rapidly from the system coinciding with
the decrease in the feed of VAc at 37.5 minutes. This results in releasing all the
absorbed surfactants back into the aqueous phase and causing rapid nucleation.
The end-point distribution (Figure 5.5(a)) shows appreciable mass of very small
particles, due to the larger number of particles nucleated at the later times and also
due to the prolonged monomer addition in this experiment. The solids content in
this experiment increases by about 3%. These results clearly show that the monomer
feed affects the PSD by influencing not only the rate of growth, but also the rate
of nucleation. While a monomer-starved condition might decouple the effect of

monomer feed on the nucleation process, it would result in reduced growth rates.
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Figure 5.1: Comparison of surfactant feed between the present experiment and
the base case experiment.

5.2.3 Effects of Monomer — Butyl Acrylate

Figure 5.7 depicts results corresponding to a perturbation in the feed rate of
BuA monomer (shown in Figure 5.6). There is a much reduced nucleation rate in
this case, as is seen from the profile of the total particles (Figure 5.7(b)), and the
nucleation process continues through the course of the batch. The end-point PSD
(Figure 5.7(a)) shows a signature of coagulation in the form of the large particles
(larger than 600 nm). The results suggest a complex dependence of the surfactant
partitioning on the monomer composition. One explanation is the surfactant solu-
bility in the monomer droplets is larger at higher VAc composition in the droplets.
Due to lack of detailed knowledge on these phenomena, it is preferable to omit BuA

as a manipulated variable for the control of PSD.

5.2.4 Effects of Initiator

Figure 5.8 shows sensitivity results from an experiment in which the concen-
tration of the redox initiator pair (tBHP and SFS) were doubled relative to the base
case. Figure 5.8(b) compares the profiles of total particles, which shows that in this

case there is a larger nucleation event at the initial times (up to 15-20 minutes).
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Figure 5.6: Comparison of butyl acrylate feed between the present experiment and
the base case experiment.

Thereafter, the total number of particles remains relatively constant until approx-
imately 40 minutes, at which time there is a second nucleation event. Thus, the
end-point distribution is a more prominent bimodal distribution (as seen in Figure
5.8(a)). This could be attributed to a larger nucleation event at the early times (by
either of micellar or homogenous mechanisms or both), which depletes the micelles
and thereby prevents further nucleation events until approximately 40 minutes when
more micelles are formed. Either the increase in the surfactant feed or the drop in
the VAc feed (and the associated depletion of the droplets) could have contributed
to the new batch of micelles. Thus, there are two clearly distinct nucleation events,
contrary to the prolonged micellar nucleation event that characterizes the base case
experiment. This clearly demonstrates the strong ability to influence the nucleation
events through initiator feed rates or composition. Thus, the rate limiting step in
this case was clearly the formation of micelles. There is no appreciable effect on

growth, as seen by the comparable particle sizes.

5.2.5 Implications of the sensitivity results for the control of PSD
The effects of the manipulative variables on the PSD and solids content were

studied experimentally. Each of the feeds of the surfactant, monomers and initiators
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have profound influences on the evolution of the distribution. However, the observed
influences are complex and non-intuitive. It is natural to expect the surfactants
to affect the nucleation phenomenon and particle stability, and the initiators and
monomers to affect mainly the growth phenomenon. Thus, it is logical to utilize the
feed rates of surfactant and initiator as manipulated variables for the control of PSD,
as was done with ionic surfactants by other researchers (Crowley et al., 2000; Flores-
Cerrillo and MacGregor, 2002). However, in the current case, it is seen that all the
reagents — surfactant, monomer and initiator — influence the nucleation phenomena,
albeit in different ways. Monomer affects the growth phenomenon, while the effect
of the initiator on growth is seen to be minimal. Surfactants, whose major role
is particle stabilization (emulsification), do affect the coagulation phenomenon. In
addition to these direct effects, the variables also have secondary effects, which come
into play because of the interaction among nucleation, growth and coagulation. For
instance, the surfactants can affect the growth process indirectly, by affecting the
number of radicals/particle and the monomer concentration inside the particles (by
varying the particle number). Also, the behavior observed is quite complex, and
cannot be adequately represented in terms of any simple dynamics (for example,
first order, time delays, inverse responses etc.), even for continuous processes. Thus,
a detailed model-based optimization and control strategy is appropriate for this
process.

Another aspect that is revealed in the current study is the strong size-
dependence seen in the growth phenomenon, which results in a relative broadening
of the distribution with growth. Note that this is in contrast to the observations
made by Liotta et al. (Liotta, Georgakis, Sudol and El-Aasser, 1997), who observed
a relative narrowing of seeded bidisperse populations with growth. Modeling studies

also support the observation on the broadening of the distribution (Chapter 3). This
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is a clear example of the unsuitability of lumped parameters in certain cases, lend-
ing strong support to pursue the distributed parameter route. The lack of inputs
to manipulate the size-dependent growth necessitates tight control on the timings,
durations and magnitudes of the nucleation events in producing the desired distri-
butions — mean sizes and standard deviations of the modes. Once the nucleation
event has occurred, there is very little latitude to alter the competitive growth.

A third aspect that is evident from these experiments is the irreversibility
that is characteristic of these processes. Each of the nucleation, growth and coagu-
lation processes exhibit a certain irreversible character. For example, in producing
a unimodal distribution, if the actual nucleation rate deviated from the desired rate,
the effect of this error on the particle sizes can be corrected by suitably modifying the
growth rate (by recruiting multiple process inputs). But the effect of this error on
the breadth of the distribution cannot be rectified. (The import of this irreversibility
on the breadth of the distributions depends on the end applications). Similarly, in
producing multi-modal distributions, if the nucleation rate for the first nucleation
event is erroneous in implementation, this can be corrected (in a relative sense, and
bearing with the skewness of the distributions) by correcting not only the growth,
but also all the subsequent nucleation rates. On the other hand, if the primary
nucleation event is implemented as planned, but the secondary nucleation event is
erroneously implemented, it might leave an incorrectable effect on the distribution.
Similarly, a larger growth rate might result in larger sizes, which again cannot be
corrected (no shrinkage possible with respect to the polymer mass in the particles).
A strong coagulation event would also leave an indelible mark on the distribution
(see Chapter 6 for examples of these). The interactive nature between nucleation,
growth and coagulation again advices caution in the control of distributions.

From the preceding analysis, it is evident that one must employ multiple

inputs for the control of distributions, with the surfactant and VAc monomer being
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the most suitable inputs. Initiator feed could also be recruited, but mainly to
control the nucleation phenomenon. Also, the irreversibility considerations and the
interactions suggest an hierarchical strategy, in which the sub-processes (nucleation,
growth and coagulation) are controlled individually, thereby producing the target
distribution. A monomer-starved (droplet-free) condition might be preferable to
render the nucleation event a prerogative of the surfactant feed alone (and the
initiator feed, if utilized). However, too low concentrations would result in sub-
optimal growth rates. Although coagulation could potentially be used to shape
the distributions, the best strategy is to minimize coagulation events to the extent

possible.

5.3 Simulation-based Reachability Analysis

In the previous section, experimental sensitivity results were presented, which
were obtained by perturbing either the timing of a step change in input or the
magnitude of a step change. However, only one such perturbation was performed
with respect to each variable. A more exhaustive sensitivity study would examine
the effect of all possible perturbations on the distribution. This becomes almost
impossible experimentally (although the results presented above are some of the
most relevant perturbations). However, more comprehensive sensitivity studies can

be performed using the detailed population-balance model.

5.3.1 Effect of Surfactants — Coagulation-free Case

In the first case presented here, the coagulation events are assumed to be
absent and sensitivity to surfactant feed is examined. A typical semi-batch recipe
is considered, which is divided into 11 intervals of a fixed duration of 11 minutes
each. The feed rates of the reagents are held constant within each interval. The

feed of the monomers and the initiators are fixed. The surfactant feed rate in the
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manipulated variable, under coagulation-free conditions.
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first five intervals are varied, and the sensitivities with respect to each of these vari-
ables are analyzed. The surfactant feed rate in the first interval is constrained to lie
between 0.83 ml/min and 4.16 ml/min of 22.7% by weight aqueous solution. While
the lower limit is fixed to enable considerable micellar nucleation at early times
(there is no surfactant in the intial mixture), the upper limit is constrained to allow
a later secondary nucleation. A feed rate above the upper limit would result in the
nucleation of a very large number of particles initially, which upon growth would
render it impossible to cause the surfactant concentration in the aqueous phase to
exceed the critical micelle concentration (which is a pre-requisite for causing a micel-
lar nucleation event) subject to the upper constraints on the pumps. Homogenous
nucleation is found to be negligible after very early times of the batch, once the
particles are formed (see Chapter 3). The feed rates in the remaining four intervals
is constrained only by the limits of the pumps. Five different feed rate values are
considered within each interval, and simulations are performed for all combinations
of feed rate values in the five intervals. The end-point distributions produced in each
of these cases are analyzed. The distributions are approximated as Gaussian distri-
butions (combinations of Gaussians for multi-modal distributions), for the purposes
of characterization. Thus, each mode is characterized by a mean size, standard de-
viation in size, and the total particles in the mode. An analysis of the ratio of the
mean diameters of the bimodal distributions (among all the distributions produced)
shows a monotonic yet nonlinear dependence on the feed rate of the surfactant in
each of these intervals. This suggests that the distributions produced envelope all
the attainable distributions (subject to the discretization of the input profiles, the
constraints imposed, and the modeling errors). This is also seen in the study of
Wang and Doyle III (2002), in which a plot of the objective function defining the
deviation of the attained distribution from the target distribution, when plotted

against the mean and standard deviation of the target distribution (unimodal), is
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seen to be convex and monotonic with a single minimum. Thus, one can draw an
envelope of the reachable domains around these points, which characterize the ex-
actly reachable distributions. One can also infer the e-reachability domains from
these (see Wang and Doyle III (2002)). Figure 5.9 shows the unimodal distribu-
tions that are exactly reachable, from among all the distributions produced in these
simulations, characterized in terms of the mean, standard deviation and total par-
ticles. These plots show a long tail, corresponding to lower number of particles,
which result in larger growth rates and larger particle sizes. Also, in these cases, the
distributions are much broader (larger standard deviation), suggesting a prolonged
but low nucleation rate. As the total particles increases (above 10'®), there is a
much reduced growth rate, resulting in smaller particle sizes. As the total particles
increases further, there is a decrease in the standard deviation and a decrease in the
particle size, resulting in a cone-shaped reachable region. It can be inferred from
these plots that one cannot produce a narrow unimodal distribution with an aver-
age particle size larger than 100 nm. Alternatively, in producing a broad unimodal
distribution of size above 100 nm, the total particles are reduced, which might have
implications on the molecular weight distribution, although not necessarily on the
solids content.

Figures 5.10-5.13 show results pertaining to the bimodal distributions that are
produced in these simulations. Figures 5.10 and 5.11 characterize the distributions in
terms of the means and the standard deviations of the two modes. As seen in Figure
5.11(a), as the size of the larger mode (corresponding to the primary nucleation)
increases, the reachable standard deviations are reduced. However, the reachability
of the size of the smaller mode (corresponding to the secondary nucleation) increases
(Figure 5.12) — subject to the assumption of convexity. As seen in Figure 5.10(a),
as the size of the smaller mode increases, the choices available for the standard

deviation of the smaller mode are reduced. Also, as the number of particles nucleated
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in the secondary mode increases, the size of the particles decreases (Figure 5.10(b)).
Figure 5.13 shows a plot of the diameter ratio of bimodal distributions against the
average size of the smaller mode, which identifies an almost rectangular reachable
region. One aspect that is revealed in these results is that the number of particles in
the smaller (secondary) mode is generally larger than that in the larger (primary)
mode. This could be an effect of the partitioning of the non-ionic surfactants into
the dispersed phases. Larger initial surfactant feed rates lead to larger primary
nucleation events. There is a loss of surfactants into the monomers (at the initial
times), proportional to the early surfactant feed rates. Thus, there is also a larger
amount of surfactant lost into the monomer droplets at larger initial surfactant feed
rates. Hence, the secondary nucleation event, which is aided by the surfactants
released from the depleting droplets, is also enhanced.

Figure 5.14 shows the lower and upper limits on the profiles of total particles
and solids content corresponding to all the simulations. (Note that these limiting
profiles (or the various points on the profiles) might not necessarily belong to a single
simulation, but rather to different simulations). It shows that the profile of solids
content that can potentially be followed is relatively narrow, and the attainable
end-point solids content lies in the range of 14.8% to 19.2%. These plots show that
the rates diminish towards the end of the batch, suggesting that these reachable
distributions are retained beyond the end-point of the distribution. The reachable
distributions are useful in setting proper targets for the optimization problem in-
volved in designing a recipe to achieve a target end-point distribution. Similarly,
these profiles of the total particles and solids content aid in setting proper targets
for the optimization problem involved in designing a recipe that tracks a particular
PSD trajectory in leading to a target end-point PSD. Such a problem is presented

in Chapter 6, in which the optimization problem is formulated in a multi-objective
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framework. The distribution trajectory is re-cast as equivalent trajectories of nucle-
ation and growth rates, which in turn are converted into equivalent trajectories of

total particles and solids content.

5.3.2 Effect of Surfactants and Vinyl Acetate — Coagulation-free Case

The sensitivity of the results to the feed rate of VAc in the first five intervals
of the batch is studied next. As before, the coagulation events are neglected. In this
case, the feed rates of both the surfactant and VAc monomer were perturbed within
constraints, and the simulations are performed for all combinations of feed rate
values for the two reagents. Even though the distributions showed sensitivity to the
feed rates of VAc, the distributions generally lie within the same overall reachable
region. (The plot of the diameter ratio of the bimodal distributions alone is shown
in Figure 5.15). This suggests a potential for mid-course correction, in which an
error introduced by the uncertainty in the feed rate of surfactant can be corrected
by manipulating the monomer feed rate and vice versa. However, it considerably
enlarges the attainable limits for the solids content (Figure 5.14(b) compared with
Figure 5.16(b)), more so on the lower limit. This result is in perfect agreement with
the findings from the experimental studies presented previously, on the interaction
between nucleation and growth, and the effects of surfactant and VAc on the process.
To re-visit the scenario that was presented among the experimental results, a lower
nucleation rate (caused by a lower than intended feed rate of the surfactant) would
necessitate a decrease in the growth rate by reducing the monomer feed (to offset
the interaction between nucleation and growth). Thus, one could manipulate the
monomer feed to prevent the particles from growing to a larger size than in the
target, which would be the case if no correction is made in the monomer feed. But
this would result in a lower solids content.

Unlike the earlier case in which the number of particles in the smaller mode

was almost always larger than the number of particles in the larger mode, in this case
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there are more distributions in which that relation is violated (Figure not shown).
Thus, in conditions with a low monomer feed at the early intervals, the initial
surfactant loss into the monomers is lower. In this situation, a higher surfactant
feed at the early times results in a larger number of particles in the primary mode,

but the number of particles in the secondary mode are not necessarily higher.

5.3.3 Effect of Surfactants and Vinyl Acetate — Coagulation-inclusive

Case

In the above cases, the coagulation events were assumed to be negligible,
and a coagulation-free model was utilized for the simulations. But coagulation
events are always present, even in the low solids regime. So, in the next case, a
coagulation-inclusive model is used to study the sensitivity with respect to both
VAc and surfactants. Figure 5.17 characterizes the unimodal distributions that
resulted from these simulations in terms of the means and standard deviations. In
this case, the distributions are completely altered. Coagulation has scattered the
attainable distributions compared to the more concentrated distributions seen in
the coagulation-free case, and also has considerably reduced the maximum number
of particles. However, the relation of the size and spread of the distributions to the
total particles is still retained. Figure 5.18 characterizes the bimodal distributions
that are produced in the simulations. Here again, the scattering of the distributions
along the size and the standard deviation axes is evident, and the particles cover a
larger size domain in both the modes. Also, the plot of the diameter ratio of the
bimodal distributions (Figure 5.19) has transformed from its rectangular form to a
form that is more pointed towards the lower size end. Figure 5.20 shows the limits
on the profiles of the total particles and solids content, which indicate a substantial
downward shift in the upper limit on the profile of total particles, and an overall
upward shift on both the limits of the profile of solids content. The range of reachable
end-point solids content lies between 19% and 24%.
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Figure 5.15: Ratio of the mean diameter of the two modes in the bimodal distribu-
tions produced with surfactant and VAc monomer as the manipulated
variables, under coagulation-free conditions.

5.3.4 Effect of Surfactants and Butyl Acrylate — Coagulation-inclusive

Case

In the simulation studies presented thus far, the feed rates of the surfactant
and the primary monomer VAc were considered as manipulated variables. This was
mainly motivated by the experimental studies, which show some complexity in the
perturbations of BuA feed. However, BuA is a more reactive monomer than VAc.
So, in the next case, the feeds of surfactant and BuA monomer are considered as
the manipulated variables (under coagulation-inclusive conditions). In this case,
the reachable regions of the bimodal distributions are not considerably altered (see
Figure 5.21). Nor are the limits on the profiles of total particles changed much
(Figure 5.22(a) compared with Figure 5.20(a)). But the limits on the profiles of
solids content is substantially altered, with the reachable region of the end-point
solids content lying between 17.5% and 29% — a considerably wider region compared
to the case with surfactant and VAc as the manipulated/design variables (Figure
5.22(b) compared with Figure 5.20(b)). This is the effect of the considerably larger
reactivity of BuA compared to VAc, resulting in a larger sensitivity in the growth

rates, although the nucleation rates remain largely unaffected. However, since the
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Figure 5.16: Limits on the profiles of total particles and solids content, when
surfactant and VAc monomer are used as the manipulated variables,
under coagulation-free conditions.
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Figure 5.19: Ratio of the mean diameter of the two modes in the bimodal distribu-
tions produced with surfactant and VAc monomer as the manipulated
variables, under coagulation-inclusive conditions.

complexity of the dependence of the surfactant partitioning on the composition of
the monomer droplets are not incorporated into the model, care should be exercised

in utilizing these results.

5.3.5 Effect of Parameterization of Inputs

The results presented thus far employed a constant time interval (11 min-
utes), with the feed rates held constant within each interval (zero order hold). The
next result examines the sensitivity to such a parameterization of the inputs. VAc
and surfactant feed are used as manipulated variables, under coagulation-inclusive
conditions. The first three intervals are allowed different time durations. Simula-
tions are performed for all combinations of feed rate values (of surfactants and VAc)
and the time durations of the first three intervals. It is seen that a larger interval
at early times results in very large primary nucleation rates, particularly at larger
surfactant feed rates in these intervals. This deprives the system of its ability to
cause a secondary nucleation event (for which it needs to breech the cmc-barrier).
This clearly highlights the importance of having small enough intervals in the pro-

cess in producing multi-modal distributions, particularly for open-loop optimization.
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Thus, one can also pose the problem of allowing the duration of the intervals as op-
timization variables (Biegler, 2000). The attainable solids content range (7.5% to
21%) is much wider, and also considerably different from the earlier case with VAc

and surfactant feeds as manipulated variables (Figure 5.23(b) compared with Figure

5.20(b)).

5.4 Effect of Uncertainties and Disturbances on the Reachable Regions
The nominal reachability analysis of the distributions were presented in the
previous section. This section presents results on the analysis of the effect of dis-

turbances and uncertainties on these reachable distributions.

5.4.1 Effect of Early In-batch Disturbances

Figures 5.24-5.26 show results that examine the effect of an early disturbance
in the process, that is rectified mid-course, on the reachable PSDs. Figure 5.24
shows the perturbed distribution relative to the nominal one, at 22 minutes in the
batch. This corresponds to a time when a nucleation event is underway (as seen

by the large peak of particles in the smallest end). This perturbation can arise
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Figure 5.22: Limits on the profiles of total particles and solids content, when
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Figure 5.23: Limits on the profiles of total particles and solids content, when
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for several reasons, including model and parameter uncertainties, implementation
errors, and shear-induced coagulation (stochastic effect). Figure 5.25(a) shows the
end-point distributions that are reached in nominal case. If there are no further
stochastic effects, or if the source of the uncertainty that caused the deviation in the
distribution at 22 minutes has been corrected, then the resultant distributions at the
end of the batch are shown in Figure 5.25(b), which shows a very profound difference
when compared to Figure 5.25(a) even for such a small variation. Figure 5.26
characterizes the attainable bimodal distributions in terms of the means, standard
deviations and the diameter ratio. The nominal reachable region is much more
concentrated than the reachable region corresponding to the perturbed distribution.
Given the convexity with respect to the inputs, one could conclude that at least part
of the nominal region lies within the perturbed region. This region of intersection
is amenable to feedback correction, while a target in the complementary region (to
the perturbed region) cannot be attained after this mid-course disturbance. In the
latter case, if the source of this uncertainty is a deterministic disturbance, then the
best recourse is to employ a batch-to-batch control strategy (Clarke-Pringle and
MacGregor, 1998). On the other hand, if it is caused by stochastic effects, then the

law of averages applies, and one must design against expected variations.

—— Nominal
0.45r - - - Perturbed
0.4r 1

3035

o

B 03

j=}

o

©0.25

7

2 02

=

20.15f

0.1r
h
v
0.05F
\
0 -
0 50 100 150 200 250 300

Particle size, nm

Figure 5.24: The perturbed distribution at 22 minutes into the batch, relative to
the nominal distribution, due to an early disturbance in the batch.
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Figure 5.25: Comparison of the end-point distributions that result in the nominal
case, with those that result after the source of an early disturbance
has been removed mid-course (at 22 minutes into the batch spanning
121 minutes).
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5.4.2 Effect of Initial Condition Disturbance

Batch-to-batch latex carry-over is a prevalent issue in industrial practice, and
its effect on the reachable distributions should be ascertained. Figures 5.27-5.29
show results that examine the effect of an uncertainty in the initial conditions on
the reachable distributions. Figure 5.27 shows the initial distribution (obtained from
one of the experiments), with an initial solids content of less than 0.5%. Both VAc
and surfactant feeds were considered as manipulated variables, and the coagulation
effects were considered. The simulations did not produce any unimodal distributions
in this case, unlike in the nominal case. Although most of the nominal reachable
region is covered in this perturbed case, there are other possible distributions that
can be reached in the face of this uncertainty in the initial condition (particularly
with respect to the secondary (smaller) mode, as seen in Figure 5.28(b)). The rea-
son for the region of large sizes in Figure 5.28(a) is that at low surfactant feed rates
at the early intervals, the initial particles prevent any primary nucleation event by
taking up most of the surfactants, and also grow rapidly with the high concentra-
tion of the monomers, until the nucleation of the secondary mode. The nucleation
of the secondary mode occurs earlier in these cases, accounting for the larger par-
ticles (larger than 150 nm) in the secondary mode (Figure 5.28(b)). At higher feed
rates of surfactants in the initial intervals, the new particles nucleated dominate
the particles in the initial batch, thereby preventing them from being evident in the
end-point distribution. The implication of these results is that running a batch in
open loop with pre-optimized inputs might result in considerable difference in the
resultant distribution compared to the target. Thus one needs to employ in-batch
feedback control, which can correct these errors and drive the distribution towards
the target. However, even though feedback can be used to bring the distribution
back to the target (as seen by the nominal region lying entirely within the perturbed

region in Figure 5.28), the large particles are still present. The lower limit in the
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profile of total particles is reduced (Figure 5.29(a) compared with Figure 5.20(a)),
corresponding to the case of no initial nucleation in the current batch. Also, the
entire lower limit on the profile of solids content is reduced relative to the nomi-
nal case (Figure 5.29(b) compared with Figure 5.20(b)). However, the upper limit
essentially follows the nominal case except at the early times (where both limits
are above the nominal case due to the initial particles). This again is a result that
indicates that multiple manipulated variables can bring the distributions back to
the target (in a relative sense), although one might have to sacrifice performance on

the solids content tracking.
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Figure 5.27: The initial distribution (due to unintended carry-over from the earlier
batch).

5.4.3 Effect of Large Initial Disturbance/Seed

Figures 5.30-5.33 present results that examine the effect of a larger mass of
initial particles but with a much reduced particle sizes and a narrower distribution.
This initial distribution is shown in Figure 5.30. This case can be considered as a
larger initial disturbance with over 1% solids content, or as seeded emulsion polymer-
ization. In this case, unimodal distributions do result, which predominently pertain
to a combination of the initial seed along with the particles nucleated at the early

time intervals. Figure 5.31 compares the reachable unimodal distributions with the
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nominal (ab initio) case presented earlier — with surfactant and VAc as manipu-
lated variables under coagulation-inclusive conditions. The large size particles seen
at low number of total particles (less than 4 x 10'®) in the nominal case, which
correspond to recipe with low surfactant feed rates throughout, are not present in
the current case (Figure 5.31(b)). But the seed particles add to the nucleated par-
ticles, thereby causing a reduced growth rates and reduced particle sizes. Figure
5.32 compares the reachable bimodal distributions, which indicates an inverse effect
from what was seen in the previous case with a lower mass of initial particles. In the
current case, the perturbed distributions cover a smaller domain than the nominal
case. Thus, in-batch feedback has a limited utility in this case. For example, very
large sizes of the larger mode is again not possible (Figure 5.32(a)) (as was observed
in the case of the unimodal distributions). The distributions with very large sizes
in the larger mode (larger than 250 nm - Figure 5.32(a)) seen in the nominal case
correspond to low surfactant feed rates in the early intervals and larger feed rates
at the later intervals. The particles with the larger size range in the smaller mode
(above 80 nm in Figure 5.32(b)) are also not possible due to the cascaded effect of
the seed and growth on the nucleation event. The lower limit on the profile of total
particles is substantially increased (Figure 5.33(a) compared with Figure 5.20(a))
— the drop around 15 minutes corresponding to a coagulation event. But both the
lower and upper limits of the profiles of solids content are shifted upward compared

to the nominal case (Figure 5.33(b) compared with Figure 5.20(b)).

5.5 Summary
The sensitivities in the process of the evolution of PSD in semi-batch emul-
sion co-polymerization using non-ionic surfactants were studied via experiments and

simulations. The experimental studies indicate the following:

e The need for multiple process inputs for the control of PSD.
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e Surfactant and at least one monomer (in this case the primary monomer VAc)

as the manipulated variables, particularly when employing non-ionic surfac-

tants.

e The suitability of a hierarchical control strategy, in which the individual rates

of nucleation, growth and coagulation are controlled to produce the desired

complete distribution.

e The need for employing the detailed first-principle model for the open-loop

and closed-loop control of PSD.

e Irreversibility in several aspects of the process — while some of these such as

the skewness of the distributions may not be critical depending upon the end-

use applications, others such as the effect of a larger growth rate or a stronger

coagulation rate might leave an intolerable deviation in the distribution.

e Inherent limitations within the process that restrict the type of distributions

that can be produced, for example the size-dependent growth phenomenon

and the lack of inputs to manipulate it.
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e The limitations in the process that in some cases translate into lower solids
content (and hence have a bearing on the economy of the process), in employ-

ing feedback to correct the correctable errors in the distribution.

The simulation studies were used to gain further insights into the potentials
and limitations in the process, and to determine the type of distributions that can
actually be produced considering system and external limitations. A controllability
analysis based on a linearized model is unsuitable due to the discontinuity in the
process, and its highly nonlinear character. A rigorous mathematical analysis of the
reachability and controllability is also beyond the reach of this process, due to the
underlying complexity. Thus, a simple simulation-based analysis was performed.
The study gave insight into the restrictions on the types of distributions that can be
produced, and also revealed the effect on these restrictions under different control
configurations. Also, the study identified the types of exactly reachable distributions
(currently restricted to a low solids regime). Key aspects of the distributions (such
as the mean diameter ratio of bimodal distributions) were found to have a convex
and monotonic (though nonlinear) dependence on the inputs. Reachability domains
can be inferred from these reachable points based on this observation. A particular
discretization of the inputs along the batch, and a fixed reaction time were considered
in this study. Relaxation of these restrictions were examined. These gave further
insight into the optimization and control of PSD.

Further, the effect of uncertainties and disturbances on the reachable distri-

butions were analyzed. The results reveal two different scenarios:

e One in which an open-loop operation is deleterious, and in-batch feedback

control is essential and feasible.

e Another in which in-batch feedback control might not be effective in correcting

the errors.
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Some of these analyses were based on a mid-course disturbance detection and cor-
rection. Others were based on the assumption that the initial condition disturbances
are detected very early in the batch. In the latter case, the early detectibility adds
another layer of constraints to the feedback capabilities, which will be addressed in
the next chapter. These situations advocate a combination of in-batch and batch-
to-batch feedback control strategy for the control of PSD in semi-batch emulsion

polymerization.
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Chapter 6

OPEN-LOOP AND FEEDBACK CONTROL STUDIES

6.1 Introduction

In this chapter, model-based optimization and control studies for the full
PSD are presented. Genetic Algorithm (GA), a global optimization technique based
on direct optimization, is employed. The sensitivity results from Chapter 5 are
exploited in formulating these problems. First, optimization studies based on a
straightforward formulation of the problem is presented. The implementation of the
optimal feed policies in the experimental facility is discussed. Next, a novel hierar-
chical strategy is proposed to overcome some of the limitations with direct control
of PSD. Experimental implementation of these optimal recipes are also presented.
This is followed by an evaluation of the effectiveness of in-batch feedback to cor-
rect the discrepancies introduced by the unavoidable disturbances and uncertainties.
This involves the evaluation of several state/parameter estimation strategies, and
a determination of the requirements for successful state estimation. These strate-
gies are employed in off-line feedback calculations, to investigate their effectiveness.
This effectiveness analysis is motivated by the delayed and sparse measurements,
the irreversibilities in the process, and clear indications in the sensitivity results of
Chapter 5.4, and also in other studies (Wang and Doyle III, 2002) of possible cases
in which in-batch on-line feedback would not be able to rectify a discrepancy in the
distribution. The importance of state estimation in these feedback calculations is

evinced.

201



6.2 Optimization of the Feed Profiles using a Genetic Algorithm

A Genetic Algorithm (GA) is utilized to perform the optimization. The GA is
a conceptually-simple and easy-to-program global optimization technique (Goldberg,
1989). It is a facilitated random search technique, which exploits the supposed un-
derstanding of the genetic evolution phenomena to find an optimal solution of a given
problem. In most cases, GA can determine (arbitrarily closely) the global optimum
of non-convex optimization problems. One starts with a generation containing Ny,
randomly-generated members. The “fitness” of the N,,, members of the generation
is determined based on the desired objective. The population is reproduced into the
next generation in proportion to the fitness of its members, emulating the concept
of the survival of the fittest. The members of the new population are allowed to
cross-over and mutate subject to certain probabilities. The cross-over and muta-
tion operations drive the members downhill towards the optimal solution, and also
introduce a globality into the solution. The processes of selection, cross-over, and
mutation are repeated over several generations to arrive at one or more optimal
solutions.

In addition to its straightforward formulation, the GA does not require the
calculation of gradients and Hessian matrices, which are required for formal op-
timization schemes. Also, it provides a global solution with the right choice of
parameters (defined subsequently), while globality in the gradient-based schemes
is tied to the convexity of the feasible region. Crowley et al. (2000) found that
the solution obtained by gradient-based techniques depends on the initial guess,
suggesting that these PSD optimization problems could be non-convex. However,
unlike gradient-based techniques, the GA provides only a sub-optimal solution (or
requires several generations to provide the accurate solution) and hence might be

complemented with a local optimization technique. The GA has found application
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in several interesting chemical engineering problems including polymerization ap-
plications (Bhaskar et al., 2000), hydrogen reforming reactors (Rajesh et al., 2001)
and in on-line applications for the maximization of cell mass in bioreactors (Na et
al., 2001).

In formulating the optimization problem, the duration of the batch is divided
into 11 equal intervals, each spanning 11 minutes (PSD measurement frequency).
The feed rate of each reagent is held constant in each interval. The value of the feed
rate in each interval is the decision variable to be determined by the optimizer. The
algorithm is initialized with the first generation containing /Vp,, randomly-generated
members. Each member of the population is characterized by a set of chromosomes,
one each for each decision variable. The chromosomes are represented as binary
digits of length l.5.ome. These binary digits are generated using a random-number
generator for the first generation. The chromosomal information is translated into

feed rates employing the following linear interpolation:

leh k-1
Ui = Umin 2™ Upg2 (6.1)

Umaz — Umin Egcci’iome 2k—1

where u; is the reagent feed rate in interval 4, u,,;, and ., account for the range
of values for the input and wug is the binary value of the string at position k. Each
member of the population (with a particular set of values for the decision variables)
are simulated using the process model, and the objective function value for each
member is determined. The objective (#) is defined to meet the target PSD in
some sense — number-averaged, weight-averaged; 2-norm; min-max etc. While the
constraints on the inputs are explicitly met in the formulation (Equation (6.1)), the
constraints on the outputs are added as penalties to the objective function 6 (soft
constraints). The penalty for any constraint ¢pi, < ¢ < Cma is defined as (Rajesh

et al., 2001):
penalty = (¢ — Cmaz) + |€ — Cmaz| — (€ — Cmin) + |€ — Cimin (6.2)
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Whenever a constraint is violated, the penalty takes a non-zero value. Thus, the
combined objective function 5™ for the i member is defined as the weighted
sum of 6" and the penalty terms. Once the values of 87 for all i = 1,...N,,, are

determined, the fitness of each member of the population is calculated as:
fit; = Opep — 057, (6.3)

where 6,e; = (™% 65™) x w. Here, w is a factor greater than unity, intro-

duced to provide a non-zero fitness to the member with the highest objective
function value. Each member is reproduced with probability EN’{Z# into the
j=1 JUj

next generation, based on a random integer number between 0 and 100. A se-

ries of numbers m;,i = 1,...Np,, are defined as m; = Round[zl\,ﬁﬁ * 100] and
it

fiti ’

2P fit

ated. If the j** random number lies between m;_; and m;, then the i member of

=1

m; = m;_1+ Round[E % 100],7 = 2, ...Npop. Npop random numbers are gener-
the previous generation becomes the j* member of the current generation. Thus,
the members are reproduced into the next generation in proportion to their fitness.

The new members are crossed with each other in pairs (‘4" and 4+ 1°, i =
1,3,5...), subject to a probability pe..ss. During the cross-over operation of two
members, a certain location of the chromosome is determined at random and each
of the chromosomes (binary numbers) of the two members are swapped after this
location. Similarly, the members of the population are subjected to a mutation
operation based on a small probability, p,,.;- In this operation, a random location
of the chromosome between 1 and [l 5-ome 1S flipped from 1 to 0 or vice versa. The
resultant new generation is simulated again, and the objective function values and
fitnesses of its members are determined. The cross-over and mutation operations
introduce both uphill and downhill variations into the generation. While the uphill
moves ensure globality, the downhill moves drive the solutions towards the optima.
However, if the uphill change results in a member with very low fitness, that member

gets rejected during the selection process. These operations are carried out for a
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certain number of generations, Ngy.,. The optimal solutions obtained at the end of
these generations are pointers to the global optimum, and can potentially be refined
using local optimization methods.

The parameter values employed in this study are: Ny, = 8, Ny = 17,
lehrome = 24, W = 1.2, Peross = 0.7, and pye = 0.001.

6.3 Results and Discussion

The target PSD is generated by simulating a target recipe, which is designed
taking into consideration certain industrially-relevant factors, while also simultane-
ously ensuring a challenging distribution as the target for the optimizer to attain.
The ratio of the surfactant to the total monomer used in the recipe are commen-
surate to those used in industrial practice, thereby validating the target PSD. In
industrial practice, a typical batch spans between 2-7 hours. This study is restricted
to a 2 hour batch and a low solids content to minimize the artifacts of coagulation.
This regime of low solids is existent in all experimental batches and thus supports
the theoretical framework. The target PSD is a bimodal distribution, which has al-
most comparable mass in both the modes, but the number of particles in the smaller
size mode is over an order of magnitude higher than in the larger size mode. Thus,

the choice of objective function is critical.

6.3.1 Case 1 — Optimization of the Surfactant Feed

In the first set of the results described here, the surfactant feed rate is used
as the sole decision variable, and the feed rates of the monomers and the initiator
components are fixed a priori. Furthermore, the feed of surfactant is completed
mid-course. This is done to prevent the distribution from wandering from the tar-
get distribution after the target end time, as discussed by Crowley et al. (2000).
Although surfactant might be needed for particle stabilization beyond this point, it
would be made available by depleting droplets as well as by the particles, as they
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shrink with the consumption of the monomers. Thus, in this case, there were 5
decision variables, the feed rates of the surfactant solution in the first 5 intervals.
In the GA, one need not provide an initial guess, but only provide a range of values
for the decision variables (tmin and e, in Equation (6.1)). It proceeds from these
to a solution which is potentially globally-optimal, as mentioned previously. Even
though the values of u,,;, and 4., could be set as the pump limits, the number
of generations required for convergence can be substantially reduced by providing a
narrower range. In providing the range of input values for the various variables, the
feed rate of the surfactant solution in the first interval is restricted to lie between
relatively low values of 3 x 10~* to 5 x 10~% moles/s. In the second interval, the feed
rate is restricted to take values between 1.5 x 107 and 2.3 x 107 moles/s, while for
the next three intervals, the feed rate is restricted between 0.8 x 1072 and 1.7 x 1073
moles/s. The rational behind this choice is as follows: in producing a multi-modal
distribution, there is an upper bound on the primary nucleation event, to enable
effecting a secondary nucleation event at the required time during the batch. This
is to preclude the event of not being possible to exceed the cmc-barrier essential to
cause secondary micellar nucleation, due to the constraints in the surfactant feed.
Once the nucleation events are complete, the surfactant feed could be maintained
at a level just sufficient to provide adequate surface coverage. Towards the end of
the batch, as the monomer swelling the particles are being depleted, no surfactant
feed may be needed. The objective function was set as the 2-norm of the error in

matching the absolute PSD at the end of the batch to the absolute target PSD, i.e.,

V= / - (F(r,tr) = Frey(r))*dr, (6.4)

where @ is the objective function value for the i member of the population,
F(r,t;)dr is the particle density at the end time for the i member, and F,;(r)
denotes the target PSD. It is desired to achieve an appreciable solids content in the

latex, and also an appreciable conversion of the monomers. Since the feed rate and
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the total amount of the monomers are fixed, a single constraint on the solids content
would ensure both the requirements. The solids content was required to lie between
15% and 25%. In addition, there was a constraint on the total amount of surfactant
fed to the batch, in order to maintain the proportion of the surfactant to the total
monomer within a prescribed range. Figure 6.1(a) shows the value of the objective
function for each member of the population for each of the eight generations, and
Figure 6.1(b) shows the minimum objective function value in each generation. From
Figure 6.1(b), it is seen that the solution converges to the near-optimal value within
3-4 generations. Interestingly, the slightly better solution obtained in Generation #
5 is lost in the selection process, and the optimizer settles at a relatively sub-optimal
solution. One could retrieve the lost solution and provide it as the initial guess of
a local optimization scheme. Figure 6.2 shows the end-point PSD corresponding
to the successful members in Generations 1 and 8. Even though the initial ran-
dom input generates a wide range of PSDs, the last generation shows the solutions
converge near the target (dashed line).

Figure 6.3 shows the sub-optimal input profile and the resultant PSD. The
dashed lines in these plots show the target PSD and the original recipe that was used
to generate the target PSD. Providing this PSD as the target for the optimizer has
the advantages that the distribution is known to be reachable and that the optimal
solution is also known a priori. There is an acceptable match between the target and
the sub-optimal result, even though the objective function was based on absolute
PSD tracking. Also, none of the constraints were violated. Figure 6.4 compares the
total number of particles as it evolves during the batch for the case of the original
input and the solution. The tight correspondence in these plots also highlights
the possibility of multiple solutions. In generating these solutions, the upper limit
set for the feed rate of the surfactant in the first interval (5 x 107%) is lower than

the value used in generating the target (5.16 x 10~*) — which occurence is quite
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possible in actual practice, where the target recipe is unknown. Due to this reason,
the predicted input for the second and third intervals is lower than in the original
input, to maintain the relative proportion of the two modes. Fortunately, there is
no appreciable effect on the growth rates, and the particle sizes match between the
target and the solution, causing the solids content to be within acceptable levels.
It should be noted that the surfactant feed rate over the rest of the batch has no
effect on particle nucleation. This explains the observed difference between the
sub-optimal and original feed rates corresponding to the other two intervals. If the
surface coverage of the particles or some other surfactant-related variable is to be
matched, then the optimizer could potentially match the feed rates of surfactant in

these later intervals with the target feed rate values.

6.3.2 Case 2 — Optimization of the Surfactant and Monomer Feed

In the second case study, the feed rates of both the surfactant solution and
VAc monomer are used as degrees of freedom, with the feed rate of BuA fixed. The
feed rate of VAc in the first interval was left at the same value as in the original
recipe, while its value in the last three intervals was set to zero, so as to bring the
polymerization to completion at the end of the batch and prevent the PSD from
moving away from the target after this time. The feed rate in the remaining 7
intervals were to be determined by the optimizer, along with the values of the feed
rate of surfactant in the first 5 intervals (12 decision variables). The range set for
the possible values of VAc feed rate in the early intervals was below the value used
in the original recipe. Again the objective was to match the absolute distribution
as in Equation (6.4). In addition to the 2 constraints on the solids content and the
total amount of surfactant, a third constraint on the total amount of VAc was also
incorporated into the formulation this time.

Figure 6.5 compares the sub-optimal feed rates of surfactant and VAc gener-

ated by the optimizer with the original recipe. In this case, none of the 3 constraints
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were violated. The above optimal recipe was implemented in the experimental facil-
ity. Figures 6.6(a) and 6.6(b) show the evolution of the experimental and simulated
PSD for this recipe. At the outset, the trends look similar between the two plots.
But the experimental plot shows some very large particles (between 200 and 500
nm) at initial times. This touches upon the issue of batch-to-batch carryover that
was discussed in Chapter 5, and is prevalent in industrial practice. Even though
the reactor systems used to prepare the emulsions are washed after every batch, a
thorough caustic cooking is performed only periodically. So, the pipelines and the
vessels themselves have some residual latex from earlier batches. Emulating this in-
dustrial practice, the laboratory reactor was thoroughly cleaned before conducting
the experiment; however the tubing was only rinsed with DI water. This results
in the carry-over of small amounts of large particles from previous batches to the
current batch. These particles in the initial batch consume some early surfactant,
resulting in a delayed, but stronger and more persistent micellar nucleation at about
6 minutes, and hence a very late secondary micellar nucleation after 95 minutes. On
the other hand, the simulation result in Figure 6.6(b) shows a rapid initial micel-
lar nucleation resulting in a narrow peak, which later becomes diffuse with growth.
Also, the secondary micellar nucleation occurs much earlier — at about 25 minutes
— due to the accumulation of the surfactant fed during the second interval.

Figures 6.7(a) and 6.7(b) compare the end-point PSD corresponding to the
sub-optimal recipe, as observed experimentally and as predicted by the simulation.
The target PSD is also shown. The objective of matching the absolute PSD is not
perfect, as seen by the large mismatch in the weight-averaged PSD. The reason for
this can be seen in Figure 6.8, which plots the total number of particles between
the original recipe and the sub-optimal recipe (simulation-based). The number
of particles nucleated initially is much lower in the sub-optimal case, resulting in

a larger growth rate initially (a high concentration of the monomers inside the
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particles and larger number of radicals/particle), and in turn resulting in the larger
mode being larger than in the target. This result highlights an opportunity for mid-
course correction. If this discrepancy in the larger mode is predicted earlier, then the
nucleation of the second mode has to be reduced to preserve the relative magnitude
of the peaks (to control the relative distribution), but the timing of the secondary
nucleation has to be advanced to match the sizes, and hence preserve the shape
of the distribution. Monomer feed rate would also have to be recruited to obtain
acceptable conversion levels. (Recruiting the feed rate of DI water might result in
rendering the absolute PSD controllable too). So, a mid-course correction strategy at
a fixed time with surfactant as the only input (Flores-Cerrillo and MacGregor, 2002)
might not be the best strategy in all cases, although it definitely is a straightforward
approach. The larger mode in the experimental result falls in the same range as the
target because of the disturbance from earlier batches, which resulted in a stronger
(and delayed) primary micellar nucleation, and hence reduced growth rates and
smaller size particles.

Figure 6.9 shows the solids content profile for this case. While the simulation
predicts a solids content close to 20% at the end of the batch for this recipe, the
experimentally obtained solids content is 16%. The constraint set on the solids
content was between 15% and 25%. Figure 6.10 shows the rate of reaction of the
two monomers (simulation-based). For most parts of the batch, the ratio of the
reaction rate of VAc to BuA is a constant, suggesting that the composition of the
copolymer is a near constant in the batch. Also, the rate of reaction goes to zero
towards the end of the batch, ensuring that the distribution does not deviate from
the one corresponding to 121 minutes.

The input profiles and the end-point PSD corresponding to all the members
of each generation in this off-line study are archived. This enables one to re-analyze

the data and determine the best among them to match a different objective than the
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one specified to the optimizer. For example, one can pick out the member among
these members that gives the best match to the weight-averaged PSD. However,
this best recipe need not be an optimal one. Figure 6.11 shows the recipe which
gives the best match to the weight-averaged PSD (gives the least error in a min-max
formulation between the two modes). While this batch met the constraints on the
solids content and the total amount of surfactant fed, it violated the constraint on
the total amount of VAc. It utilized about 6.75% less VAc than the allowable limit
(which implies a higher conversion level as the solids content is within limits). Fig-
ures 6.12(a) and 6.12(b) compare the number-averaged and weight-averaged PSD for
this recipe (experimental and simulation) with the target PSD. The match between
the simulation and the target is good in both the plots, although the experimental
results show differences, attributed mainly to the mis-match between the nominal
model and the process. A close scrutiny of the experimental results showing the
evolution of PSD (Figure 6.13) shows that there is an initial rapid nucleation as
seen by the narrow distribution (narrower than in the previous experimental plot),
which broadens with growth. Early in the process (at approximately 16 minutes),
a shoulder appears in the distribution, which is a signature of coagulation (not ac-
counted for in the nominal model). The secondary nucleation occurs much earlier
in this case, at around 40 minutes, and is also stronger relative to the previous ex-
perimental result. Figure 6.14 shows a good match of the total number of particles
as it evolves in the batch — and hence the nucleation rates— between the “best”
recipe and the original recipe. Figure 6.15 compares the solids content for this case.
The end-point solids content is within the constraints in both the cases, although
it is lower in the experimental case by about 2% relative to the simulation case.
The experimental results show a slight drop in the growth rate (slope of the solids
content plot) at about 16 minutes, corresponding to the appearance of the shoulder

in the distribution. This could be due to the sudden decrease in the average number
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of radicals per particle, and possibly the concentration of the monomers, accompa-
nying the coagulation event. The reaction rates diminish at the end of the batch,
ensuring the stability of the distribution beyond this point.

From the perspective of on-line control, the splitting of the larger mode, even
if detected early in the batch, cannot be rectified externally. This necessitates an
explicit accounting of coagulation — both, that induced by inter-particle forces and
that induced by shear forces — in the model used by the optimizer. Alternatively,
precautions need to be taken to minimize coagulation. One could set a constraint
on the fractional surface coverage of the particles by surfactants. However, under
excessive shear in the reactor due to mixing, sufficient surface coverage does not
guarantee colloidal stability.

Figure 6.16 presents the sub-optimal results generated by GA to match the
weight-averaged PSD, i.e. 0" = [™*(W(r,t;) — W,es(r))?dr, where the weight-

Tnuc

averaged distribution is defined as W (r,t) = %

(a new optimization run).
An additional constraint on the surface coverage for the post-nucleation regime was
set as 1.0 < K4S, < 9, where K,4 is the adsorption equilibrium constant for
surfactants onto the particle surface, and S, is the free surfactant concentration
in the aqueous phase. This translates into a fractional surface coverage between
0.6 and 0.9. As seen in the comparison of the target and the sub-optimal PSD
(Figure 6.16(b)), the match of the larger mode is relatively better than the match
of the smaller mode. None of the four constraints were violated by this recipe. To
better the sub-optimal result, a min-max formulation was considered, with explicit
accounting of the errors in matching the two modes. It was sought to optimize the
maximum of the two errors. Figure 6.17 compares the sub-optimal results generated

using GA in a min-max formulation, on a weight-average and 2-norm basis. Thus,

0 is defined as:

0 = maz ( / :C(W(r, t) — Wies (r))dr, / T Wi ty) - W,ef(r))Zdr> . (6.5)

T1
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where r; was chosen as 75 nm. In this case again, there was a 17% violation of
the constraint on total VAc (on the lower side - hence a higher conversion level).
Even though the match between the target and the sub-optimal distributions is

reasonable, refinement might be possible using a gradient-based technique.

6.4 Multi-Objective Formulation

In this work, bimodal targets with clearly separated modes are of interest,
characterized by complex relations in terms of the number of particles in the two
modes and the mass of the particles in the two modes. These distributions are not
captured adequately by any straightforward objective function, as was seen in the
previous results. The choice of a proper objective function to capture all aspects of
the distribution is a difficult task, and usually varies from target to target. A strat-
egy is presented next to redress this issue, which employs the hierarchical strategy
proposed in Chapter 5. The sensitivity studies presented in Chapter 5 suggest the
benefit of regulating the nucleation, growth and coagulation processes separately,
and hence controlling the PSD in a hierarchical framework. An advantage in this
framework is that it is applicable to all types of target distributions. Another advan-
tage is that it facilitates the tracking of a target PSD trajectory along the course of
the batch — say, to guide the distribution to the target along a path that avoids prob-
lematic regimes, or to monitor the evolution of the distribution and decide upon the
appropriate feedback measure. Figure 6.18 depicts the proposed hierarchical strat-
egy. As observed in the previous section, coagulation is one of the most important
sources of irreversibility, and it is more difficult to manipulate coagulation to shape
the distribution in emulsion polymerization. Thus, it is advisable to minimize coag-
ulation to the extent possible. In following the trajectory of nucleation and growth,
the idea of the control of instantaneous properties can be utilized (Kozub and Mac-

Gregor, 1992a; Saldivar and Ray, 1997; Urretabizkaia et al., 1992). Exploiting this
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Figure 6.12: Comparison of the end-point PSD corresponding to the best recipe
with the target distribution.
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idea, the trajectory of the nucleation rate can be controlled by regulating the pro-
file of total particles, while the trajectory of the growth rate can be controlled by
regulating the profile of solids content.

Thus, the problem of following a target PSD trajectory is transformed first
into an equivalent problem of tracking the profiles of nucleation and growth rates,
with coagulation minimized. This in turn is transformed into another equivalent
problem of tracking the profiles of total particles and solids content, with coagulation
minimized. The transformed problem is a multi-objective optimization problem, in
which the first objective (denoted 6;) is the tracking error of the total particles,
and the second objective (6;) is the tracking error of the solids content. These are

defined as follows:

0, = Z w! (N — N;j.f)Q (6.6)

0, = wa(sci — sc}l)?
i
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Figure 6.16: Comparison of the recipe generated by the optimizer and the resul-
tant PSD with the target, to match the entire weight-averaged PSD.
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tant PSD with the target, for a minmax formulation of the objective
function on a weight-average basis.
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Figure 6.18: Schematic of the proposed hierarchical strategy for the control of
PSD, by regulating the nucleation, growth and coagulation events
individually, in a multi-objective framework. The target PSD tra-
jectory is transformed into trajectories of the individual rates of the
nucleation and growth events (with minimization of the coagulation
events). Further, the idea of the control of instantaneous properties
is exploited to re-cast the trajectories of nucleation and growth rates
as equivalent profiles of total particles and solids content.
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where N, ; (sc;) is the value of total particles (solids content) at time instant ‘¢’, and
N, and sc[*/ are the corresponding target values at this time instant. w;} and w?
are appropriate weights. A third objective can also be considered for the end-point

distribution error (63(ts)), defined as follows:

O3(tr) = /rmw(W(ﬁ tr) — Wier(r))?dr (6.8)

Here, W (r,ts) is the weight-averaged PSD at the end time ¢; and W,.¢(r) is the tar-
get weight-averaged PSD, r,,. and 7,,,, being the minimum and maximum particle
sizes in the population. 6; and f; can be collapsed into a single weighted objec-
tive and the problem can be solved using the regular single-objective GA. However,
these objectives conflict with each other, with improvement in one objective leading
to a potential worsening of the other (due to the interaction between nucleation,
growth and coagulation). Also, in order to alleviate the problems with the choice of
a proper weight, a multi-objective formulation is employed.

Multi-objective optimization is very common in engineering applications. For
example, in the model predictive control (MPC) algorithm, one wants to attain a
desired objective in the output while simultaneously minimizing the usage of the
inputs. A typical pair of objectives in optimizing the performance of chemical reac-
tors is to maximize the conversion and minimize the by-products. More generally,
one is often faced with the tradeoff between an engineering objective versus an eco-
nomic objective (Luyben and Floudas, 1994). It is common practice to combine
these multiple objectives through suitable weights — by emphasizing one objective
and relegating to a lower position the other. Although this is acceptable in most
cases, there are a number of situations in which the objectives are in competition.
This is particularly true in several polymerization applications, prompting the use
of multi-objective strategies for these applications (Tsoukas et al., 1982; Choi and
Butala, 1991; Mitra et al., 1998; Bhaskar et al., 2000). A common strategy used

for multi-objective optimization is the e-constraint method, wherein only one of the
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objective is chosen for the optimization, and all the other objectives are appended as
inequality constraints in the optimization problem (Tsoukas et al., 1982; Choi and
Butala, 1991; Luyben and Floudas, 1994). This problem is amenable to gradient-
based optimization techniques. Thus, a series of optimization problems are solved to
find a pareto-optimal set of solutions. Among these pareto solutions, improvement
in one objective leads to a worsening of one or more of the other objectives, thereby
rendering each of them equally acceptable or tradeoff solutions. A different tech-
nique that directly obtains the pareto curve, and has found wide applications, is the
Non-dominated Sorting Genetic Algorithm (NSGA) (Mitra et al., 1998; Bhaskar et
al., 2000; Silva and Biscaia Jr., 2001). This is based on an extension of the genetic
algorithm to multi-objective problems.

NSGA is employed to solve the multi-objective problem in this study. The
algorithm is similar to the one presented in the previous single-objective case, except
in the method of calculation of the fitness of the members. As mentioned previously,
a multi-objective optimization problem produces solutions which are not necessarily
optimal with respect to any of the objectives considered separately, but are the best
tradeoff solutions. In multi-objective optimization, a solution is considered better
than another only if it is better with respect to all the objectives. In this case, the
better solution is assigned a superior rank and a higher fitness for selection. On
the other hand, if one solution is better than another with respect to one objective,
while the second is better with respect to a different objective, then the two solutions
are considered non-dominated or equivalent, and are called pareto solutions. Pareto
solutions are assigned equal rank and fitness in the algorithm. Thus, if 6, ; < 0, ; and
0 < 05, where ¢ and j represent two members of the population, then, member %
is superior to member j, and is assigned a better rank. If 6, ; < 6, ; but 0,; > 0, ;,
then ¢ and j are non-dominated or non-inferior or pareto solutions.

The discretization of the inputs is done as described in the previous section.
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The members of the first generation are determined at random. The objective
function values of the members are evaluated by solving the population balance
model. The members are sorted into pareto sets using the non-domination concept
and are assigned ranks. All members having the same rank are assigned equal

fitness, defined as follows (Silva and Biscaia Jr., 2001):

N, —k+1
= —— 6.9
fi 33 (6.9)
where
1
SS = o ;(N, —k+1)Py, (6.10)

In the above equations, P, is the size of the population, N, is the total number of
ranks in the generation (or the highest rank), Py is the size of rank & (the number
of members assigned that rank), and fit; is the fitness of any member 7 (which
depends on its rank k).

The members are reproduced into the next generation in proportion to their
fitness values, emulating the concept of the survival of the fittest. The pareto-set
filter is introduced, and all members assigned the first rank are stored in this filter.
Some of the members of the new generation are selected at random and exposed
to cross-over and/or mutation operations, subject to certain probabilities pg.oss and
Pmut, Tespectively. The members of the new generation are evaluated. If a new
member is better than its parent in at least one attribute (i.e., with respect to at
least one objective), the new member is accepted into the current generation. If
not, the parent member is sent into the current generation. This concept is called
the Niche operator, introduced in the NSGA technique (e.g., (Silva and Biscaia
Jr., 2001)) to avoid a genetic drift. The members of the current generation are
sorted and ranked. The members assigned rank 1 in the current generation are
appended to those already present in the pareto-set filter. The members in the filter

are sorted and ranked, and only the first ranked members are retained. The current
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generation is again subjected to selection, and the entire operation is repeated for
a certain number of generations. At the end of any generation, the pareto-set filter
has the current pareto-optimal solutions. These solutions form a classical pareto

tradeoff curve.

6.4.1 Two-objective Formulation — Coagulation-free Case

In this section, a two-objective optimization problem is considered (total
particles, 6 and solids content, ;). The coagulation-free model is utilized, with
solution based on the orthogonal collocation on finite elements technique. The feed
rate of the surfactant solution in the first five intervals and the VAc monomer in
the first seven intervals are the decision variables. The feed rates of these reagents
in the other intervals are set equal to zero. The NSGA parameters employed are
Npop = 25, lehrome = 24, Peross = 0.7 and ppy,e = 0.001. Figure 6.19 shows the sorting
of some of the members pertaining to the first generation. The solution #1 is better
than the rest with respect to both the objectives, and is assigned rank 1. The
solutions marked #2 are paretos (non-dominated) to each other. Hence, these are
both assigned rank 2, and so on. Solution #1 is stored in the pareto-set filter after
the first generation. The operations of selection, cross-over and mutation, and the
updating of the pareto-set filter are repeated generation after generation. The inset
in Figure 6.19 shows the pareto-set filter at the end of five generations. It has four
solutions, each of which have bettered solution #1 from the first generation. Table
6.1 lists the values of the target variables corresponding to these four pareto-optimal
solutions. It can be seen that pareto #1 is the best with respect to the tracking
of the profile of total particles (6;), while pareto #4 is the best with respect to
the tracking of the profile of the solids content (). This table also provides the
value of 05(t7) (end-point PSD tracking error) corresponding to each of these pareto

solutions.
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Figure 6.19: Evolution of the pareto-optimal solutions from generation I to gen-
eration V. The inset shows the pareto-set filter corresponding to the
fifth generation.

One can see from this table, and also from Figure 6.20, that pareto #4 gives
the best match to the end-point PSD. The decrease in the value of 6, from pareto
#1 to pareto #3 is more than countered by the increase in value of 6;, resulting in
the degradation of the match in the end-point PSD 65(¢;). However, the drop in 6,
between paretos #3 and #4 results in a substantially better match of the end-point
PSD in spite of the increase in ¢#;. The non-uniform trend in the value of 63 suggests
regions in the pareto-curve where a different objective is dominant, indicative of
a multi-objective problem. Figure 6.21 shows a comparison of the feed profiles of
the surfactant solution and VAc monomer corresponding to the four non-dominated
solutions with the actual feed profiles that were originally used to generate the target

distribution.

Table 6.1: Objective function values corresponding to the four pareto-optimal so-

lutions.
Pareto # 0, 0o 05(ts)
1 1.3428 | 0.0325 | 5.63 x 10~*
2 1.3852 | 0.0311 | 6.97 x 104
3 2.1088 | 0.0296 | 1.5 x 1073
4 3.4663 | 0.0085 | 1.45 x 10~*
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Figure 6.20: Performance of the pareto-optimal solutions obtained at the end of
five generations, with respect to the end-point PSD target.
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Among the four pareto-optimal solutions obtained from the NSGA, in the
absence of the information on the third objective 63, the user could select any of
the four solutions for implementation in the process. In light of the values of 65(y)
for the four solutions, the user would likely choose pareto #4 for implementation.
The pareto solution #4 was implemented in an experimental reactor system. Figure
6.22 shows the evolution of the PSD over the course of the batch corresponding to
this recipe. Figure 6.23 shows a comparison of the estimates of the profiles of total
particles and solids content from the experimental data, with the target profiles. It
also depicts the end-point PSD obtained experimentally and the target end-point
PSD. The experimental data for the total particles (Figure 6.23(a)) shows that the
primary nucleation event is quite delayed (a longer induction period), and also shows
the presence of a coagulation event, that result in lower number of particles at early
times. This in turn results in larger values of the average number of radicals/particle
and monomer concentrations inside the particles, resulting in larger growth rates.
Hence the difference in the size of the larger mode, relative to the target (Figure

6.23(c)).

6.4.2 Three-objective Formulation — Coagulation-free Case

In the previous results, the profiles of nucleation and growth rates that charac-
terize the desired PSD trajectory were re-cast as equivalent profiles of total particles
and solids content (exploiting the idea of the control of instantaneous properties).
Viewing this approach from a different perspective, total particles and solids content,
are related to the moments of the distribution. Consequently, tracking the profiles
of total particles and solids content might not guarantee the attainment of a desired
multi-modal distribution with complex shapes. In light of this, the third objective
on the end-point weight-averaged PSD (63(¢s)) is explicitly included into the for-
mulation. The non-uniformity in the value of 63(¢;) in the pareto solutions (Table

6.1) with respect to #; and 6, also supports this formulation. Figures 6.24 and 6.25
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show the results pertaining to the three-objective optimization problem. In this
case, the algorithm generates two non-dominated solutions (after five generations),
one of which is the same as that obtained in the earlier two-objective formulation
(pareto #4). Table 6.2 lists the objective function values corresponding to these two
solutions. For implementation purpose, one could select the solution which gives the
maximum surface coverage to the particles with surfactants — based on the hypoth-
esis that larger surface coverage leads to lower coagulation events. Alternatively,
the user could employ other process information (not built into the mathematical

framework) in deciding which solution to implement.

Table 6.2: Objective function values corresponding to the two pareto-optimal so-
lutions — three-objective formulation.

Pareto # 0, 0o b3
1 3.4663 | 0.0085 | 1.45 x 104
2 2.3652 | 0.0279 | 2.94 x 10~*

6.4.3 Convergence Tests

It is well-known that in most cases, a Genetic Algorithm produces a solution
in the vicinity of the global optimum, but not the exact optimum. This solution can
be improved using a local optimization technique. Alternatively, one has to employ
a very large number of generations to obtain a solution close to the optimum. In
the case of a multi-objective optimization, the solution(s) obtained (either a pareto-
optimal set of non-dominated solutions or a unique solution) are not necessarily
optimal in a formal sense, but are the best tradeoff solutions. The actual optimal
point with respect to the different objectives (considered separately) is called a
utopia point, to reflect its ideality. This is the implicit tradeoff in optimizing multiple
objectives separately. However, in the current case, the solutions obtained are very
close to the targets, leaving little room for further refinement. Also, previous studies

based on optimizing a single target shows that the solutions converge (to within an
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accuracy dictated by the choice of objective function) in about three generations (of
a total of eight generations) — Figure 6.1(b). Thus, in this NSGA application, the
search was restricted to 5 generations. However, two measures were undertaken to
confirm that the solutions had converged to the ‘optimal’ ones. The first was to run
the algorithm for a larger number of generations, specifically 10. Another was to
parameterize the input space, and perform a systematic search (contrasted with the
facilitated random search that GA signifies) — by solving a combinatorial problem.
In these cases, different solutions were obtained, but these were paretos to the ones
found already. Table 6.3 lists all the solutions from the different strategies. In
summary, five generations were found to be adequate to develop the optimal pareto

curve.

Table 6.3: Objective function values corresponding to the pareto-optimal solutions
obtained from different strategies

Pareto # 01 0, Os(ty) Technique
1a 3.4663 | 0.0085 | 1.45 x 107* | 5 Generations
2a 2.3652 | 0.0279 | 2.94 x 10~* NSGA
1b 2.0651 | 0.02758 | 4.28 x 10~*
2b 2.05693 | 0.02738 | 5.48 x 10~* | 10 Generations
3b 2.0096 | 0.02789 | 3.37 x 10~ NSGA
4b 1.11708 | 0.03884 | 3.11 x 103
lc 9.9468 | 0.0238 | 1.22 x 10~* Systematic
2c 2.3881 | 0.0140 | 4.73 x 10~* search

6.4.4 Three-objective Formulation — Coagulation-inclusive Case

In the previous studies, a coagulation-free model was utilized in performing
the optimization. Coagulation events were minimized by setting constraints on the
surface coverage of the particles with surfactants. Such an approach was required
because of the computational burden associated with the complete coagulation-
inclusive model. This strategy was revised due to the excessive coagulation events

in the experimental implementation of the optimal recipe (see Figures 6.12(b) and
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6.23(a)). Thus, the complete coagulation-inclusive model, based on the efficient
solution technique presented in Chapter 4, was employed in the next case. The
algorithm produces two pareto-optimal solutions (shown in Table 6.4), which track
the target profiles of total particles and solids content closely, and also attain the
target end-point PSD. One of these solutions is shown in Figure 6.26. The input
profiles that are determined by the algorithm match the target input profiles rather
closely. Experimental implementation of this recipe is shown in Figure 6.27. Clearly,
there is no evidence of a strong coagulation event in the experimental distribution
(Figure 6.27(c)). However, there is a discrepancy between the target distribution
and the experimental distribution. This is attributed to model and parametric

uncertainties, and input disturbances.

Table 6.4: Objective function values corresponding to the two pareto-optimal solu-
tions — three-objective formulation, using a coagulation-inclusive model.

Pareto # 01 0o b3
1 7.4774 | 0.0057 | 1.122 x 107
7.5131 | 0.0056 | 1.069 x 10~

6.5 Feedback Analysis

The process of evolution of PSD in emulsion polymerization is quite complex,
comprising the phenomena of nucleation, growth and coagulation. The mechanisms
that characterize each of these sub-processes in turn are complex and not completely
well characterized. As newer processes are developed to address environmental im-
pacts or to produce better products, they add to the complications and to the
unknown mechanisms in the model. For example, the use of ionic surfactants re-
sults in undesired properties in the final products relative to their water-resistance
characteristics. Thus, the ionic surfactants are being replaced with non-ionic ones.
But the latter result in considerable alterations in the nucleation and coagulation

phenomena (and indirectly on the growth phenomenon) due to their tendency to
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partition into the dispersed phases. Since these aspects and mechanisms are still
subjects of active research, the model developed at this point has associated uncer-
tainties. There are also a number of parameters in the model that are uncertain.

Although the experimental implementation of the open-loop optimized recipe
produced encouraging results, there is a clear need for improvement through feed-
back. However, there are also indications that in-batch feedback may not be effective
to account for disturbances in semi-batch emulsion polymerization(Chapter 5;Wang
& Doyle III (2002)). For example, in the experimental implementation presented
previously (Figure 6.23), the primary nucleation event is delayed considerably, and
also there is a coagulation event. The resultant decrease in the number of particles
caused the primary mode to grow to a much larger size than desired. This is due
to the interactive effect of the nucleation phenomenon (decrease in the number of
particles) on growth. To correct this error (in a relative sense — and hence preserve
the shape of the distributions), one might need an earlier secondary nucleation event
(of a reduced magnitude) and also a drop in the growth rate. These highlight an
opportunity for improvement with feedback, subject to measurement limitations.
Feedback information on the total particles (or the free surfactant concentration
relative to the critical micelle concentration) could enable rectification of these er-
rors. However, it depends on whether these states are observable without the PSD
measurements, as the very first PSD measurement is not available until at least 12
minutes into the batch. In general, the PSD measurements are both sparse and
delayed, which could potentially make them of a reduced utility to correct the rapid
and irreversible processes. Also, there are cases in which, a strong coagulation event
could occur, leaving an irreparable impact on the distribution (Figure 6.12(b)). This
is mainly a concern due to the randomness associated with shear-induced coagula-
tion.

The previously described attributes challenge the application of control for
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this process. Generally, there are two feedback corrective measures that have been
proposed — in-batch feedback (Flores-Cerrillo and MacGregor, 2002), and batch-
to-batch feedback (Crowley et al., 2001). The in-batch feedback approach pre-
sented by Flores-Cerrillo and MacGregor (2002) is based on a single point re-
computation. This requires a determination of the most effective time to perform
the re-optimization. As described in the earlier scenario (reduced nucleation at
early times), the cascaded effects of the errors motivate earlier corrective action.
On the other hand, corrective action taken too early may lead to erroneous action
influenced by faulty measurements. Hence, it is of interest to identify the most op-
portune time to perform the first corrective action. Also, a single re-computation
may not be effective, and one might need a full nonlinear model predictive control
(MPC) formulation in a receding horizon framework to correct the errors. There are
several efficient solution techniques that have been developed (Mahoney and Ramkr-
ishna, 2002), which can render a full nonlinear MPC feasible. But it is important
to determine whether physical limitations can be overcome with on-line feedback
subject to the process constraints. If these strategies prove ineffective, it is better
to employ the batch-to-batch feedback strategy presented by Crowley et al. (2001),
with the possibility of improvement in subsequent batches.

The present study evaluates these tradeoffs with a two-fold objective. One is
the evaluation of different state estimation strategies to determine the configuration
that leads to a reasonable convergence of the estimates in the available time. The
second objective is to employ these estimation techniques to address the important
question of effectiveness of feedback. This study is carried out off-line using real

experimental data.

6.5.1 Biased State Estimation Strategy
As mentioned earlier, successful feedback measures rely on the availability of

successful and robust estimation techniques — which take the measurements from
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the process and reconcile them with the model to estimate the actual process states.
The on-line measurements available to monitor the process of the evolution of PSD

in the system considered here are (Chapter 2):

1. the relative PSD measurements, available typically every 11-12 minutes from

a capillary hydro-dynamic fractionator
2. latex density measurements from a densitometer

3. feed rate measurements (from flow meters and load cells).

In typical MPC applications using linear models on continuous processes, a classical
approach to correcting for disturbances and model mismatch is to bias the outputs
against the measurements, and hold the bias constant for the rest of the prediction
horizon (Garcia and Morari, 1982; Garcia and Morshedi, 1986). A similar idea can
be used in this semi-batch process, in a receding horizon framework.

This approach is an extension of the strategy presented in Chapter 2. In
that case, estimation was accomplished using sensor measurements combined with
process calculations using simple steady state models. It was seen that latex density
and feed rate values could be used to infer the conversion of the monomers and the
solids content. Combining this information with the relative PSD measurements
from the CHDF, the absolute PSD can be obtained, and all the particle-related
states including the total particles can be calculated. A major implication of this
study is the ability to observe all important process states. Dynamic state estimation
is possible if the above estimation technique is combined with a dynamic model. The
dynamic model based on the hierarchical strategy presented in Chapter 4 has the

generic structure

&= f(z,p,y,2, u)
y=g(z,p)

z = h(y) (6.11)
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Here the vectors y and z represent the inertial manifold or the pseudo-steady state
variables. A sequential solution technique is employed. The vectors, x represent the
states of the system, p the parameters, and u the inputs. The model reduction it-
self is obtained purely from process considerations, and the underlying mechanisms.
The vector z comprises the PSD at discrete points and other outputs such as the
total particles and solids content. The vector y comprises the faster modes such
as the average number of radicals/particle corresponding to the discrete points of
the PSD, and the partitioning equations. They also comprise the individual rates
of nucleation, growth and coagulation. The states x comprises the slower modes,
mainly the material balance equations. At each time instant measurements (includ-
ing the PSD) are available, the process calculations are performed, and the variables
in z are forced to calculated values z.4. (akin to an initial condition update). The

solution is continued in a receding horizon implementation.

6.5.1.1 Multi-objective Re-optimization Based on Biased Estimation
The experimental results from the open-loop optimized recipe using the
coagulation-inclusive model (Figure 6.27) are utilized for this study. Note that
more frequent PSD data — than the typical 11 minutes — are utilized at the early
times, based on off-line sampling. The very first successful measurement in this
experiment corresponds to the sample taken at 8 minutes, which would be available
at approximately 19-20 minutes (due to delay in measurements). Earlier measure-
ments are not possible owing to the low particle concentrations (below 0.5%) that
cannot be detected by the instrument. The model prediction is biased against the
measured/calculated value at 8 minutes (2 = 2.q.), and the new end-point PSD, and
the new trajectories of total particles and solids content are estimated. Based on
this estimate, the receding horizon multi-objective problem is re-optimized (based
on target variables 61, 6, and 63), to find the inputs that would drive the solu-
tion back to the target trajectory. The inputs from the third interval forward (22
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minutes) are re-optimized. Figure 6.28(c) shows a biased estimate of the end-point
distribution based on the 8-minute sample, which shows much larger size particles
in the larger (primary) mode relative to the target, and a much larger ratio of the
number of particles in the smaller mode to that in the larger mode, relative to the
target. This is mainly due to a reduced nucleation rate at early times as seen by
the estimates of total particles in Figure 6.28(a), which causes larger growth rates
at these early times. It also causes an earlier and larger secondary nucleation event.
The re-optimized input profiles (surfactant feed and VAc feed) after 22 minutes
(third interval forward) bring the trajectory back to the target profile of total par-
ticles, as seen in Figure 6.28(a). The optimizer reduces the surfactant feed in the
third interval (Figure 6.29(a)) to the lower limit that was set in the algorithm, to
reduce the nucleation rate, and to bring the profile of total particles back to the tar-
get. Thus, the peak corresponding to the secondary nucleation is reduced (Figure
6.28(c)). However, it is still broader than the target, as the secondary nucleation is
initiated at about 15 minutes (Figure 6.28(a)). Similarly, it is not possible to reduce
the size of the larger mode in the end-point distribution, since a decrease in the
VAc feed rate in most of the intervals (required to reduce the growth rates) would
result in lower solids content values and, hence, would violate the target trajectory
of solids content. Due to these conflicts, the optimizer balances on this particular

solution.

6.5.1.2 Single-objective Re-optimization Based on Biased Estimation
In the previous case, the inputs were re-optimized to bring the trajectory
back to the original profiles of total particles and solids content. However, owing
to the error that has occurred, the end-point distribution targeting suggests that
one should not follow the original trajectory of total particles and solids content,

which represent a particular nucleation and growth rate trajectory. Instead, these
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trajectories need to be re-computed. For example, the decrease in the particles nu-
cleated in the primary mode would necessitate a decrease in the particles nucleated
in the subsequent nucleation event to preserve the relative magnitudes of the dis-
tributions. In addition, it might necessitate an earlier secondary nucleation event
to preserve the distance between the modes. Thus, in the next case, a single objec-
tive optimization problem is solved, based on the end-point distribution alone (on a
weight-averaged basis — as defined in 63(¢s)). In this case, there is no target for the
profiles of total particles and solids content. The single-objective algorithm is uti-
lized for this purpose. The surfactant feed in intervals 3-5, and the feed of both the
monomers (VAc & BuA) in intervals 3-7 are re-computed. Note that it is essential
to include the feed rate of BuA as a decision variable. Figures 6.30 and 6.31 present
the results corresponding to this single objective optimization problem. It is seen
in Figure 6.30 that the size of the particles are reduced considerably, and the larger
mode is brought closer to the corresponding mode in the target. Also, the secondary

nucleation event is reduced, and the secondary mode is brought closer to that in
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the target. But the two modes are farther apart from each other in the solution
than in the target. This shows that, to correct for the reduced primary nucleation
event, the secondary nucleation event must have started before 15 minutes, or the
growth rate must be reduced at very early times (recall that the first PSD data is
not available until 20 minutes). The current solution has a significantly reduced
solids (~ 10%) at the end of the batch, confirming the observation made in the
multi-objective re-optimization case above. Further receding horizon optimization
as the batch proceeds (a full nonlinear MPC) could potentially improve upon these
results, as more data becomes available and more information about the experiment
can be inferred.

In the above cases, a simple biased-estimate (analogous to a constant dis-
turbance) was used. This predicts a secondary nucleation event that starts by
approximately 15 minutes, and also is stronger than in the nominal case (as seen
in Figure 6.28(a) — dashed line). However, a closer look at Figure 6.27(a) reveals
that the secondary nucleation event does not happen until about 40 minutes in the
actual case. This clearly highlights a shortcoming of basing the feedback calculation
on too few measurements. This also shows the ineffectiveness of the biased esti-
mate in most cases, particularly without a parameter update. To elaborate upon
the latter aspect first, the model predicts a larger primary nucleation event com-
pared to the actual experimental occurrence. This is probably due to the errors in
the surfactant-partitioning parameters and the critical micelle concentration (cmc)
value (discounting the effect of inhibitors such as residual dissolved oxygen in the
initial mixture — which might occur in spite of the purging of the reaction mixture
with nitrogen gas). For example, either the cmc value used in the model is lower
than the actual value, or the partitioning parameters are such that they predict
a larger free surfactant concentration in the aqueous phase. One or both of these

uncertainties result in predicting a larger concentration of the micelles, and a larger
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micellar nucleation rate. Now, when the distribution is updated at 8 minutes based
on the measured value, the total particles and the total surface area are reduced
(to the values calculated from the measurements). This results in an even larger
free surfactant concentration than in the nominal case, and hence, the prediction
of an earlier and larger nucleation event. This clearly shows the need for a param-
eter update in addition to output biasing. There are situations in which a pure
biasing of the outputs alone (without parameter updating) is effective in driving
the simulations to the experimental results, however, one needs to employ enough
data points. This is seen in Figure 6.32(b), in which, at early times, the biasing
results in a prediction of an even larger nucleation rate and number of particles.
The very first data point corresponding to 6 minutes shows 3.8 x 10'* particles — not
seen in the plot in Figure 6.32(b) — that is considerably lower than the predicted
value. Biasing against this value results in raising the predicted value to ~ 107 at
this time compared to ~ 1.5 x 10'® in the open-loop case. After about 30 minutes,
the predicted profile closely follows the observed data (and the estimated end-point
PSD and the experimental PSD match closely — Figure 6.32(a)). However, since the
biasing method is not consistent in all cases, a more formal estimation strategy is

considered next.

6.5.2 Luenberger Observer
For the next case, a Luenberger observer is proposed, in which the complete

system becomes:

(6.12)
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where w is the actual output (measurements), which represents the relative (weight-
averaged) PSD — discretized at different points in the size domain, and lumped
variables such as total particles and solids content. The auxiliary variables z (250x1)
account for the absolute PSD at more refined intervals than the outputs w, based
on the finite element discretization chosen (see Chapter 4). The vector z give the
actual absolute distribution, while the outputs w represent the actual measurements.
Three of the states z (M; & M, — the two monomers, and R,, — the aqueous phase
initiator-derived radicals) are chosen for update in the estimator framework, and
the rest are allowed to evolve in open-loop. The disturbances and noise are not

incorporated at present. An estimator of the form

J=9(&,p)
h(h) (6.13)

ISH
I

is defined (the character " denotes estimates of the corresponding variable), where L;
(over a time interval i) is a Luenberger gain, designed such that the eigenvalues of
(A — L,CD) lie in the LHP. Here A is the Jacobian of f(z) at Z, C' is the Jacobian
of h(g(xz,p)) at , and D is the Jacobian of ¢(z) at z = h(g(Z,p)), T being a
representative point in the time interval 7. wy is the measured output value at time
instant & (held constant until another measurement is available). The states are
corrected using combinations of the error in the weight-averaged PSD at different
discrete points of the distribution. Accordingly, the three non-zero rows of the
matrices L; (corresponding to the states M;, My and R,,) have non-zero elements at
different points to catch the value of the PSD at different discrete points. Although
the tuning of L; is done using the Luenberger concept, the estimator has a Kalman-

like structure. The gain matrices L; are calculated at the start in this off-line study,
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such that the convergence criterion is satisfied along the entire batch, by dividing
the entire batch into intervals spanning 10 minutes each. A state-estimation scheme
without a parameter update is again found to be inadequate. Instead, a discrete
(static) parameter update was performed for the cme, 'y, (one of the surfactant-
partitioning parameter), k,1; (propagation rate constant for polymer of type 1 — with
a VAc end group, with monomer 1 — VAc). The structure of the continuous-discrete

observer is given by:

A— . /\+
Dgy1 = Pg

Prsr = Py + L (Wii1 — a(2)) (6.14)

Here, L? is the fixed gain used to update the parameters. The supercript ~ denotes
the value of the parameter before updating — an infinitesimal time instant before
the measurement, and the supercript * denotes the value after updating using the
current measurement. Essentially, the parameters are updated at each time instant
a measurement is available, and are held constant until the next measurement. The
error in the lumped outputs, total particles and solids content (which represent
moments of the full distribution), are used to update the parameters, i.e., only
those corresponding rows of w are utilized.

Figure 6.33 compares the estimated profiles of total particles and solids con-
tent, and the end-point PSD, with the experimental observations. The estimation

scheme captures the delay in the secondary nucleation event and also reduces the
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number of particles nucleated during the secondary nucleation event. The param-
eter updating also corrects the overall growth rate, and pushes the particles closer
to the experimental end-point PSD, by correcting k,;,. However, this results in an
increased error in the solids content. The discrepancy seen in the end-point PSD
is mainly due to the irreversible effects during the first sample time in the batch.
This suggests the need for not only a parameter update as one progresses with the
batch (receding horizon), but a need to update the initial conditions (and simulate
the entire batch after each data is available). Since the model simulates a larger
number of particles at early times, there is a reduced growth rate which accounts for
the discrepancy in the size of the larger mode. Although the size can be corrected
by adjusting the parameters, the spread of the distribution is dictated by the early
nucleation rate and cannot be corrected in a receding horizon formulation (there is
no input to manipulate the competitive growth). Also, the relative magnitude of the
two modes cannot be corrected as the number of particles nucleated in the primary

mode cannot be taken away in a receding horizon formulation.
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Figure 6.34 shows the change in the estimates as more samples are utilized.
As one would expect, these results indicate a better convergence as more data are
utilized. The estimates utilizing the samples up to 55 minutes converge completely
with the one corresponding to using all the samples (and no better estimates are
available beyond this time point). Even at an earlier time, say 21 or 33 minutes, the
estimation is quite close to convergence. These earlier estimates capture the delaying
of the nucleation, and also partially capture the reduced secondary nucleation event.
Although it may not be advisable to base the re-computation of the inputs on the
sample at 8 minutes alone, or even on samples at 8 minutes and 12 minutes, one
can choose a time between 21-33 minutes to perform the first re-computation. This

could prevent any irreversible effects on the distribution.

6.5.2.1 Single-objective Re-optimization Based on Luenberger Observer

Figures 6.35 and 6.36 show the results corresponding to a re-computation of
the inputs using the data sampled up to 33 minutes (available at approximately 44
minutes). This is based on a single objective re-optimization, namely, minimization
of the deviation in the end-point weight-averaged PSD (63(¢;)). The surfactant feed
in intervals 5-7, and the feed of both monomers in intervals 5-8 are re-computed. The
inputs in this case drive the solution closer to the target, relative to the estimate
(Figure 6.35). The error in the smaller mode is partly due to limitations with
the objective function choice that was discussed earlier — with no single objective
function having the capability to describe all aspects of the distribution. In this
case, the surfactant feed in the fifth interval hits the upper constraint, and that
in the sixth interval is close to the upper constraint, to cause a larger nucleation
event (Figure 6.36(a)). The monomer feeds in these immediate intervals are reduced
significantly to affect the growth rates and the particle sizes (Figures 6.36(b) and
6.36(c)). Thereafter, nucleation is reduced, and the optimizer tries to raise the

growth rate to accommodate the smaller mode within the target.
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6.5.3 Observability Issues Based on Solids Content Measurements

The potential benefit of feedback control that was described previously, is
predicated on observability of key states at early batch times. An evaluation of that
observability is performed as follows. The parameters (alone) are updated based on
the solids content measurements until the time when the first PSD measurement is
available. Thereafter the batch is run in open-loop. The corresponding observer is

given below:

Prs1r = Py + L (wir1 — q(2)) (6.15)

Figure 6.37 shows the estimated profiles of total particles and solids content,
and the estimated end-point PSD, when solids content samples up to various cut-
off times are utilized to update the parameters. The estimates corresponding to
the earlier state-parameter estimator (utilizing all measurements) are also shown in
these figures (labeled as ‘Original estimate’). It is seen that using all solids content
measurements through 21 minutes (which is approximately the time when the first
PSD measurement is available) gives very close estimates to the ones obtained from
the earlier estimation strategy. Figure 6.38 examines the case wherein the early
parameter updating (based on the solids content measurements) is combined with
the later state/parameter correction in the continuous-discrete formulation that was
presented earlier. These show improvements, particularly in the profile of solids

content. But the major impact is the ability to observe the process trends at very
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early times of the batch. These results show the potential to extract information
on the total particles and the nucleation rates even at times before the availability
of PSD data. This could substantially improve feedback control, with the early

prevention of irreversible effects.

6.6 Summary

Optimal recipes to attain a target PSD in the semi-batch emulsion polymer-
ization of vinyl acetate and butyl acrylate were developed using a Genetic Algo-
rithm. The optimal recipes were implemented in the experimental reactor setup.

The experimental implementation reveals two important aspects:

1. The unidirectionality that characterizes several aspects of the process of evo-
lution of PSD, particularly coagulation, and hence the need for a model with
very good predictive capabilities to be employed in open-loop recipe genera-

tion.

2. Feedback can be utilized to correct multi-modal distributions, especially when
the objective is to only preserve the shape of the distribution (relative distri-
bution). Utilizing the feed rate of water as an additional handle enhances the
reachability of the absolute distributions as well. Due to the complexity of
the process, a model predictive controller based on a nonlinear process model
would be effective for feedback purposes. This is due, in large part, to the
requirement of coordinating several mechanisms for the successful control of
PSD. For example, to correct an error in the nucleation of the first mode,
the timing and magnitude of the nucleation of the second mode needs to be
carefully determined. It is also due to the multivariable nature of the process,

with strong interactions.

The first aspect can be addressed in part by batch-to-batch improvements of the

recipe, by correcting for the model uncertainties using the repeated batch history.
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However, the shear-induced coagulation could complicate such a scheme in its role
as a random process disturbance.

An extension of the study is the proposal of a novel strategy for recipe design
that attains a target PSD at the end of a batch. The proposed method is hierar-
chical, in which the desired PSD is produced by manipulating the individual rates
of nucleation, growth and coagulation over the course of the batch. The idea of
the control of instantaneous properties is invoked in implementing the technique.
The problem of the attainment of a desired PSD is decomposed into one of tracking
profiles of nucleation and growth rates, with coagulation minimized. This in turn
is re-cast as an equivalent problem of tracking profiles of total particles and solids
content, with coagulation minimized. While the tracking of the two profiles consti-
tute two specific objectives, a third objective on the full distribution itself is also
added to the formulation. The Non-dominated Sorting Genetic Algorithm (NSGA)
is used as the optimization technique to solve the resultant multi-objective prob-
lem, and to produce the pareto-optimal solutions. The new strategy is effective in
identifying solutions that match the target very closely, compared to the previous
single-objective formulation which was faced with the inability of defining a suitable
objective function in terms of the full distribution. Experimental implementation
produces results that are close to the target. The explicit incorporation of the coag-
ulation events in the model avoids any conspicuous coagulation events in the results.
The results however show differences attributed to the inevitable implementational
and model uncertainties, thereby motivating the use of feedback control.

An analysis of several state estimation and feedback strategies is performed.
The underlying on-line state estimation is very complex, consisting of multi-rate
characteristics and delayed measurements. In the current study, the estimation
was performed off-line. It was found that a combined state/parameter estimation

strategy is essential. The estimation was performed using a Luenberger observer
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with a continuous state update and a discrete parameter update. Further, it was
observed that a pure receding horizon estimation would not be very effective, and an
update of the initial conditions also is essential as each data point becomes available
(at least for the early portion of the batch). However, there are also cases in which a
simple biased estimator (even without parameter update) is effective in converging
to the experimental data. It is also important to account for noise and disturbances.
The last aspect was not pursued in the current study. Another observation that has
a profound implication for feedback control is the ability to influence the states on
the basis of the solids content values (from the more frequent densitometer and load
cell measurements). The early solids content measurements can be utilized to get
estimates of total particles and free surfactant concentration values. This would
enable earlier feedback correction. The general aim of feedback control of PSD (as
addressed in this paper) was to regulate the timing, duration and magnitude of the
secondary nucleation event and the overall growth rates to thereby match the target
PSD on a relative basis. These early estimates will substantially aid in regulating
both the secondary nucleation event and growth. But they can also potentially aid
in regulating the primary nucleation event (and hence attain the target PSD on
an absolute basis). However, this is only true for negative errors in the number of
particles. Also, the shape of the primary mode may not be correctable, as nucleation
and growth are inter-related (and not sequential) processes.

The state estimation studies show the need to delay the re-computation until
approximately 4-6 data points are available. The re-optimized results are encour-
aging in their ability to drive the solutions closer to the target. The implemen-
tation of a full nonlinear MPC beyond this point would be a desirable strategy.
At a minimum, re-computation at several instances would be needed (as opposed
to a single re-computation). A statistical fault detection tool (Flores-Cerrillo and

MacGregor, 2002) might be a possibility to compensate for measurement noise. A
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batch-to-batch re-computation (Clarke-Pringle and MacGregor, 1998; Crowley et
al., 2001; Lee et al., 2002) could complement in-batch feedback for the control of
PSD in semi-batch emulsion polymerization. An off-line parameter/state estimator
similar to the one considered in this study can be employed, utilizing all data points
available from previous batches. These parameter estimates can be utilized to re-
optimize the inputs for the subsequent batches, using the straightforward methods

presented here.
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Table 6.5: Nomenclature

T Particle radius
Trnuc Smallest particle radius
T'max Largest particle radius
Roue Rate of nucleation
Reoag Rate of coagulation
entry(T) Rate of entry of oligomers into a particle of size r
tesorption(T)  Rate of desorption of monomeric radicals from within a particle of size r
R ermination(r) Rate of termination within a particle of size r
Npop Number of members in a population
Nyen Number of generations
U; Feed rate in interval 4
Umin Minimum feed rate in interval ¢
Urnas Maximum feed rate in interval i
Upk Binary value at the k** position of a chromosome
c Constrained variable
Cmin Lower bound on the constrained variable
Cmaz Upper bound on the constrained variable
0; Objective value of member i of the population
950’”” Augmented objective value of member 7 of the population
fit; Fitness of member ¢ of the population
Ores Reference objective value for fitness calculation
Deross Cross-over probability
Prut Mutation probability
Lehrome Length of chromosomes
w Parameter (> 1) in fitness calculation
F(rt) Particle density function
W(r,t) Weight-averaged particle density (probability density function)
n(r,t) Average number of active radicals in particle of size r at time ¢
Ngve (t) Global average number of radicals per particle
Frep(r) Target PSD
iy Batch time
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Chapter 7
CONCLUSIONS AND FUTURE WORK

The dissertation presents a study aimed at the control of distributions and
profiles, mainly in the nanoscale and sub-micron scale. This is motivated by a
potentially substantial improvement in process performance and product quality
obtainable in pursuing the control of entire distributions. The major contributions
of the project are summarized below, along with recommendations for future studies.
The particular system investigated is the emulsion co-polymerization of vinyl acetate
and butyl acrylate, employing non-ionic surfactants as emulsifier and a redox pair
t-butyl hydrogen peroxide and sodium formaldehyde sulphoxylate as initiator (with
ferrous ammonium sulphate as the coordination agent). The objective is the control
of PSD in semi-batch operation. The dissertation treats the specific application of
PSD in emulsion polymerization completely, although a certain generality for pop-
ulation balance systems is attempted. The instrumentation considerations and the
mathematical modeling would be very specific for different systems. However, these
are very crucial steps towards control of distributions, justifying the investment of
time and resources in these studies. On the other hand, the analysis, computational
method, optimization and control ideas presented here are valid for all such systems,

and can be easily adapted to different applications.

7.1 Instrumentation and Monitoring
The instrumentation employed in this study include flow meters and load cells
for feed rate measurements (inputs), resistance temperature detector for tempera-

ture measurement (input), densitometer for latex density measurement (output) and
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most importantly, a capillary hydro-dynamic fractionator (CHDF') for PSD measure-
ment (outputs). The CHDF enables monitoring the sub-micron phase of interest, at
sufficiently rapid frequency for on-line control. This equipment in particular, but all
the equipment in general, show very good reproducibility characteristics. This, cou-
pled with the overall reproducibility of the process itself, justifies feedback control
measures (in-batch and batch-to-batch).

A mechanistic calibration procedure, using a simple steady state model, was
presented. This enables extracting all relevant process information from fewer in-
struments. Automated plant operation and historization of data were performed
employing the Honeywell DCS system, Plantscape, to facilitate future on-line con-
trol studies. The study was restricted to lower solids content (below 25%) for most
cases. The few experiments aimed at higher solids were faced with excessive coag-

ulation problems and clogging of the sampling loop.

7.2 Modeling and Computational Algorithm

A detailed population balance model was developed for the evolution of PSD
in semi-batch emulsion polymerization. In addition to consolidating the various
theories on each of the underlying phenomena into a single study, the model pre-
sented here proposes several novel aspects for the population balance modeling of
PSD in emulsion polymerization. A significant modification as regards the nucle-
ation event is the incorporation of the partitioning of the surfactants into the bulk
of the dispersed phases. This modification accounts for the more complex nucle-
ation phenomenon observed in such systems. In modeling the growth phenomena, a
first principles-based formulation is proposed to model the average number of radi-
cals/particle — casting this distributed variable in a population balance framework.
The improvements obtained clearly show the disadvantage with lumped parameter
modeling, and motivate the use of a distributed approach where possible. This also

hints at the additional factors that contribute to improvement of product quality
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while pursuing the distributed approach, besides the ability to engineer application-
specific distributions. The new formulation preserves the size-dependence of the
growth kernel, captures the broadening of the distributions with growth (both ef-
fects seen experimentally), and also obviates the need for incorporating artificial
dispersion terms in the population balance equation. Another primary contribution
of this study is on the modeling of the coagulation kernel under steric stabiliza-
tion with non-ionic surfactants. The literature on the population balance modeling
of the coagulation phenomenon in emulsion polymerization deal with ionic surfac-
tants wherein the stabilizing mechanism is electrostatic repulsion. In this study, a
method is proposed for the calculation of the size-dependent intrinsic coagulation
rate for emulsion recipes employing non-ionic surfactants. Steric stabilization under
the influence of adsorbed surfactants is modeled as the primary stabilizing mech-
anism. However, empirical allowances are made to account for other mechanisms
that influence coagulation, such as the shear effects.

The model can be used to simulate all types of emulsion recipes that could be
of interest to practitioners. The coagulation-inclusive complete model shows a very
good qualitative validity and an acceptable quantitative validity when compared to
the experimental observations. The parametric sensitivity studies provide insight
as to the sections of the process affected by the various parameters. This infor-
mation can be utilized in parameter fitting, to preserve the extrapolative abilities
of the model. However, the strong sensitivity of the results to the model param-
eters sets stringent requirements on the accuracy of the model parameters, from
the perspective of optimization and control. Hence, a better strategy would be to
identify the model parameters (particularly the most sensitive ones as revealed in
this study) independently, through separate instrumentation. Such studies are un-
derway in several research groups, and can be exploited in this multi-disciplinary

research. For the purposes of on-line control of PSD, a combined parameter-state
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estimator can be employed to account for the uncertainties in the model simulta-
neously, while inferring the relevant feedback informations necessary for control.
Such state/parameter estimation studies were performed, which shows the ability
to bridge the gap between theory and experiments.

A new computational technique was developed, which in essence is a order-
reduction technique based on process considerations. This technique circumvents
the stiffness problem inherent in the complete system, by decomposing the faster
and the slower modes. Also, a semi-analytical solution strategy is adopted for the
coagulation events to facilitate efficient computation. The solution times for the sim-
ulation of typical batches is such that it enables the application of on-line feedback
control on the process, in a receding horizon framework. The algorithm presented is

sufficiently general to be applicable to other population balance systems.

7.3 Process Sensitivity and Reachability Studies

Experimental studies on the sensitivity of the evolution of PSD and other
relevant process variables to available inputs were studied. These identify suitable
manipulated variables, reveal the uni-directionality (irreversibility) in the process
— which could cause concerns for on-line control — and a possible hierarchical cas-
caded control strategy for PSD — by regulating the individual processes of nucleation,
growth and coagulation at a lower level. In particular, they highlight the necessity
of employing multiple inputs (surfactant feed and monomer feed). Most of these
aspects clearly hold for all systems characterized by nucleation, growth and coag-
ulation/breakage (population balance systems). However, in adapting these ideas
to different systems, one needs to identify suitable manipulated variables for the
specific system.

Reachability studies were performed to identify the type of distributions that
can be produced under ab initio and seeded conditions. These were formulated

such that the ‘reachable’ distributions are also ‘controllable’ (i.e., retain their state
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beyond the end-point). A simple simulation-based methodology is adopted here to
perform the reachability analysis on the complex system, as the complexity of the
system precludes the application of more formal mathematical analysis tools. The
study also provides an inkling about the effect of uncertainties and disturbances, and
the potential (in)ability to employ feedback correction in certain cases. However, the
reachable distributions identified are reachable in an absolute sense, based on using
a model that has been validated against experimental data. Relaxing this stringent
constraint to identify distributions that are reachable within an allowable tolerance
limit might be necessary and useful, and might widen the reachable regions. The
reachable regions also depend upon the parameterization employed for the inputs, as
revealed in the study. Thus, more complex distributions can potentially be produced

contingent upon the ability to employ complex input profiles.

7.4 Open-loop and Feedback Studies

In performing optimization studies on the system, the traditional gradient-
based optimization strategies have a limited applicability. This is partly because
of the computational burden of obtaining the (numerical) gradients and Hessians.
Thus, a direct optimization technique — a genetic algorithm (GA) — is employed here.
Evolutionary techniques such as GA, and other direct optimization techniques such
as simulated annealing, are very viable alternatives to traditional optimization tech-
niques for complex distributed parameter problems. Formulating the optimization
problem in a straightforward manner in terms of the full PSD produces satisfac-
tory results, subject to process and target limitations. However, exploiting process
knowledge gained from the sensitivity studies, and employing a hierarchical strategy
to formulate the optimization problem, through the use of instantaneous property
control concepts, removes the limitations in the straightforward formulation and
produces much better results. This latter approach calls for a multi-objective strat-

egy, which is again obtained from an extension of the GA — the non-dominated
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sorting genetic algorithm. The hierarchical strategqy proposed here could potentially
be exploited for all other systems in this class.

Preliminary state estimation and feedback control studies were performed.
This is relevant because of the irreversibility in the system, which implies that on-
line feedback control might be ineffectiveness. The primary goal is to evaluate the
benefits of on-line control. State estimation shows the potential to eliminate the
uncertainties in the model. Requirements from a suitable state estimation strategy
were identified. These include the need for parameter-augmentation of the states,
and the re-estimation of the initial conditions. Observability based on early measure-
ments indicate the ability for early corrective action, which has a profound bearing
on on-line feedback control. Multiple receding horizon re-computation might be
needed for in-batch feedback control of PSD. A batch-to-batch strategy along the
same lines presented here is a valuable complement or alternative to in-batch cor-

rection. These aspects need to be studied in detail, and implemented on-line.

7.5 Future Work

Recommendations for future research in this subject focus on two different
aspects — the extension of the study on PSD control in emulsion polymerization;
and applications of the proposals made in the present study to general population

balance systems.

7.5.1 Extensions to Emulsion Polymerization
1. Traditional approach to efficient process operation is based on open-loop and
closed-loop optimization of the process performance. Open-loop considera-
tions deal with the optimal design of the process. Closed-loop considera-
tions focus on the effect of model uncertainties and process disturbances. The
present study revealed the unidirectionality in the process, which adds a new
dimension to efficient process operation, by limiting the capabilities of on-line

feedback. This suggests a need for incorporating robust considerations into
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the open-loop optimization of the process. One method of accounting for the
uncertainties in optimal process design is based on worst-case analysis and H,
considerations (Ma et al., 1999; Skogestad and Postlethwaite, 1996). Robust-
ness can be incorporated into the GA formulation by choosing the objective
function to be the maximum error subject to a range of uncertain parameters
©. For example, in the single objective optimization problem based on the

absolute distribution matching, the objective function can be defined as

0 =g / (F(r,ty) — Fref(T))ZdT‘ (7.1)

Here, the vector © accounts for the uncertainties including the model param-
eters and the implementational uncertainties (feed rates, pump delays, etc.).
The parametric sensitivity results presented in this study can be utilized to
perform this optimization. Alternatively, since the study if performed off-line,
separate simulations can be carried out for every possible scenario to determine

the worst-case situation.

In the study presented here, the inputs were parameterized as zero-order holds
in intervals of a fixed duration. The incorporation of the duration of the
various feed intervals as decision variables (Biegler, 2000) might be beneficial,

as revealed in the sensitivity studies of Chapter 5.

The identification of target distributions that lead to desired properties in
the latex is itself a challenging task. The uncertainties in this identification
might also be factored into the formulation, by the optimization of the recipe

to produce a class of distributions rather than a specific target distribution.

. The exploration of the applicability of the concepts proposed, and particu-
larly the model developed, to higher solids content emulsion polymerization
is another area of interest, for solids content exceeding 25%. The model pre-

sented here is general in terms of the process of the nucleation, growth and
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coagulation phenomena. However, the model proposed for the coagulation
phenomenon is a compromise between complexity and computational require-
ments. Incorporation of a more detailed calculation of the coagulation kernel
might be necessary in the high solids regime, in which the coagulation events
assume further importance. Studies such as those presented by Kiparissides et
al. (1993) and Fritz et al. (2002) can be used as a basis for this model extension.
Another critical issue to be addressed is the effect of mixing. This was sought
to be incorporated in an empirical manner in the current model. However,
the mixing effects are very complex and might need profound modifications
as more theory on these become available. In particular, the elucidation of
the relation between the mizring patterns and the energetics in the coagulation

kernel is a crucial step in solving this critical problem.

. A detailed sensitivity analysis of the process was performed, as an attempt to
correlate the available inputs with the outputs of interest. The applicability of
these findings to different situations, particularly to the emerging modifications
of the process such as enzyme-catalyzed emulsion polymerization would serve

useful purpose in adapting these processes to the industrial scale.

. Parameter identification studies, to provide better match between simulations
and experiments, is a very crucial step. The important parameters are those
corresponding to surfactant partitioning and the nucleation phenomena. One
way to tackle the uncertainties in these parameters is to incorporate an on-line
parameter update. This approach bestows a generality on the model to dif-
ferent surfactant and polymerization systems, based on a nominal knowledge
of the parameters involved. Such an approach was briefly demonstrated in
this study. Another way to tackle the parametric uncertainty is to identify

the model parameters separately, employing specific instrumentation. Such
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studies are underway in several research laboratories, such as in the group of

Prof. Larry Duda at Penn State University.

5. A suitable on-line feedback control strategy was proposed for this process,
which is a compromise between early correction and good estimation. In par-
ticular, a full nonlinear receding horizon control, but delayed until 4-5 PSD
measurements are available, is a suitable strategy. However, to address the
issue of irreversibility with respect to each of nucleation, growth and coagula-
tion, a batch-to-batch improvement will prove to be a valuable complement,
if not alternative, to in-batch control (Clarke-Pringle and MacGregor, 1998).
Lastly, the demonstration of on-line control of PSD on the lab-scale facility
is a valuable step from an industrial perspective. A major issue to tackle in
this regard is the interfacing of the codes developed with the DCS system, to

perform the computations on-line.

7.5.2 Applications to General Population Balance Systems

Several novel tools and algorithms were proposed in this study for PSD con-
trol in emulsion polymerization. These include the computational algorithm, the
hierarchical control strategy, and the application of direct optimization techniques.
Even though these developements focus on the specific problem of PSD in emulsion
polymerization, the concepts are applicable to the general class of population bal-
ance systems. This was illustrated in the case of the efficient solution technique in
Chapter 4, with indications to potential modifications required for different systems.
Demonstration of this generality of the concepts in systems such as crystallization,
granulation, cell population and precipitation, and the proposal of modification as
warranted by the specific applications, are of interest. For example, the development
of such efficient models for cell populations would enable the study of abnormal sit-

uations such as cancerous conditions, which in turn leads to proposition of control
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measures. Addressing the issues of cell division/birth and cell growth individually

would facilitate analysis and treatment.
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