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Abstract

In real world problems, one is often faced with the problem of multiple, possibly competing, goals, which should
be optimized simultaneously. These competing goals give rise to a set of compromise solutions, generally denoted
as Pareto-optimal. If none of the objectives have preference over the other, none of these trade-off solutions can
be said to be better than any other solution in the set. Multi-objective Evolutionary Algorithms (MOEAs) can find
these optimal trade-offs in order to get a set of solutions that are optimal in an overall sense.

MOEAs are getting immense popularity in the recent past, mainly because of their ability to find a wide
spread of Pareto-optimal solutions in a single simulation run. Various evolutionary approaches to multi-objective
optimization have been proposed since 1985. Some of fairly recent ones are NSGA-II, SPEA2, PESA (which
are included in this study) and others. They all have been mainly applied to two to three objectives. In order to
establish their superiority over classical methods and demonstrate their abilities for convergence and maintenance
of diversity, they need to be tested on higher number of objectives.

This project mainly investigates two issues - (1) Scalability of these algorithms with respect to the number of
objectives, (2) Comparing these algorithms on the basis of -

• How close do they get to Pareto-optimal front?

• How well do they maintain diversity and provide a good spread of solutions on the converged front?

• Their running time.

Experiments were done for 2, 3, 4, 6, and 8 objectives for all three algorithms on four scalable test problems
[DTLZ01] namely - DLTZ1, DLTZ2, DLTZ3 and DLTZ6. These problems differ from each other in the type
of Pareto-optimal front, number of local Pareto-optimal fronts and the degree of difficulty they provide, to an
algorithm, in both converging to the true Pareto-optimal front and maintaining a widely distributed set of solutions.

Keywords:Multi-objective Evolutionary Algorithms (MOEAs), scalability, Pareto Optimality, Perato-optimal
front, non-domination, scalable test problems, PESA, SPEA2, NSGA-II.
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Chapter 1

Introduction

In the world around us it is rare for any problem to concern only a single value or objective. Generally multiple
objectives or parameters have to be met or optimized before any solution is considered adequate. In traditional
multiobjective optimisation it is usual to simply aggregate (see figure 2.4) together (add in some way) all the
various objectives to form a single (scalar) fitness function, which can then be treated by classical techniques such
as simple GAs, multiple objective linear programming (MOLP), multiple attribute utility theory (MAUT), random
search, simulated annealing etc.

A problem that arises however is how to normalise, prioritise and weight the contributions of the various
objectives in arriving at a suitable measure, e.g. when choosing a car how do we compare incommensurable values
like size and colour? Also these objectives can interact or conflict with each other, increasing one can reduce others
in turn and this can happen in nonlinear ways.

This mapping stage is in itself problematical in that the set of solutions produced is highly dependent upon
the value sharing function used and how the weights are assigned. Only if this is adequate will the solutions also
be adequate and it is very easy to assign prejudicial or inappropriate sharing factors which can lead to apparently
quantitatively exact solutions that are sub-optimal or misleading in practice. Thus a Multiobjective Optimisation
Problem requires solving two problems, firstly to establish an objective function and secondly to somehow search
this space to locate acceptable solutions (ideally global optima) in terms of the decision variables.

Most of the conventional Operational Research methods of obtaining solutions or approaching the Pareto front
focus on the first stage of ranking the objectives, i.e. trying to reduce the design space to a more easily managed
mathematical form (since most such problems are far too complex to enumerate and evaluate all the possible
combinations in any reasonable time). Some of these techniques are:

• Stochastic- very general, but inefficient (e.g. random walk, simulated annealing, Monte Carlo & tabu)

• Linear Programming- fast, but restricted to linearised situations only

• Gradient Based/Hill Climbing- nonlinear, applicable to smooth(differentiable) functions

• Simplex Based- nonlinear for discontinuous functions

• Sequential Optimisation- ranks objectives by preference and optimises them in order (lexicographic)

• Weighting Objectives- creating a single scalar vector function to optimise, multiple runs needed

• Constraint- optimises preferred objective with others treated as constraints

• Global Criterion- minimises the distance to an ideal vector

• Goal Programming- minimises deviation from target constraints

• Multiattribute Utility Theory (MAUT)- maximises preferences or fitnesses

1



CHAPTER 1. INTRODUCTION 2

These conventional optimization techniques, which tend to generate elements of the Pareto optimal set one
at a time, are difficult to extend to the true multiobjective case (discussed in section 2.6). However, evolutionary
algorithms had been pointed out to be possibly well-suited to multiobjective optimization since early in their devel-
opment [FF95]. This is based on their ability to search for multiple solutions in parallel and to handle complicated
tasks such as discontinuities, multi-modality and noisy function evaluations. Also, evolutionary algorithms can
find multiple optimal solutions in one single run due to their population based approach. Hence they are ideal
candidates for solving multi-objective optimization problems which involve the task of finding more than one
optimum solutions.

1.1. MOTIVATION

Evolutionary algorithms are attractive in the context of multi-objective optimization for various reasons listed in
section 2.6, but most of the work that has been done in evolutionary multi-objective optimization is restricted to 2
and 3 objectives. The main motivation behind this work is to investigate how these algorithms behave when tested
on higher dimensional problems. Scalability of some modern algorithms (section 3.2) is to be investigated using
an experimental study. This study would involve experiments with chosen algorithms (section 3.2) on four scalable
(in terms of objectives and variables) test problems (chapter 4) for 2 to 8 objectives. For comparison purposes,
three performance metrics are to be used (chapter 5).

1.2. MSC. PROJECT PROPOSAL

1.2.1. Aim

To investigate the performance scaling of Multi-objective Evolutionary Algorithms (MOEAs), available in litera-
ture, with increase in number of objectives.

1.2.2. Objectives

1. To get familiarised with some of the recent MOEAs (e.g. SPEA2, NSGA-II, PESA) available in literature.

2. To choose 3 performance metrices (one for measuring convergence, second for measuring diversity of ob-
tained solutions and third one for the time complexity of the algorithm)

3. To perform a study investigating the scalability of each algorithm for 2 to 10 objectives; experimentation to
be done on four test problems (DLTZ1, DLTZ2, DLTZ3, DLTZ4 [DTLZ01]).

4. To compare the algorithms with respect to the chosen performance metrices.

1.3. ORGANISATION OF REPORT

The rest of the report is organised as follows. Chapter 2 describes, in detail, the multi-objective optimization prob-
lem and various concepts related to it. Concepts of domination and pareto-optimality are discussed. A discussion
on the two possible approaches to multi-objective optimization is also presented. Chapter 3 gives a brief literature
review of different multi-objective evolutionary algorithms, followed by detailed descriptions on the three algo-
rithms used in this study. Common variational operators used for all the algorithms are also presented. Chapter 4
describes the four scalable test problems used for experimentation. A discussion on the performance metrics used
is presented in chapter 5. Chapter 6 describes in detail the experiments conducted including the parameters and
results. Chapters 7 and 8 present a discussion on results and conclusion, respectively.



Chapter 2

Multi-Objective Optimization

To understand MOEAs we need to understand the Multi-Objective Optimisation Problem (MOOP) that these algo-
rithms are applied to. These problems are the most realistic optimization problems. They require the simultaneous
optimization of more than one objective function. Some examples of such problems are:

• In bridge construction, a good design is characterized by low total mass and high stiffness.

• Aircraft design requires simultaneous optimization of fuel efficiency, payload, and weight.

• In chemical plant design, or in design of a groundwater remediation facility, objectives to be considered
include total investment and net operating costs.

• A good sunroof design in a car could aim to minimize the noise the driver hears and maximize the ventilation.

• The traditional portfolio optimization problem attempts to simultaneously minimize the risk and maximize
the fiscal return.

In the following sections we will look at the differences between single and multi-objective optimization,
followed by some concepts related to multi-objective optimization and finally, evolutionary multi-objective opti-
mization with some of the reasons why it should be preferred over classical methods.

2.1. SINGLE & MULTI-OBJECTIVE OPTIMIZATION

There is one essential difference between single objective optimization and multiobjective optimization. This
difference is based on the fact, that there is no natural sort order of points of then−dimensional Euclidian space,
if n ≥ 2. Hence, a solution of an optimization problem can not be directly compared with some other. There is a
special subspace structure of optimal solutions in multiobjective optimization, referred to as the Pareto set (section
2.5. A solution is Pareto-optimal, if this solution is not dominated by some other solution, i.e. if no change in the
optimization problems’ domain variables gains increase in all fitness values at once. The set of all Pareto-optimal
solutions is the Pareto set (or Pareto-front). The task of multiobjective optimization is generally considered as the
search for the Pareto-front.

2.2. MULTI-OBJECTIVE OPTIMIZATION PROBLEM (MOOP)

The Multi-Objective Optimization Problem (MOOP) (also called multicriteria optimization, multiperformance or
vector optimization problem) can be defined as the problem of [Osy85]:Finding a vector of decision variables
x, which optimizes a vector function

fm(x), m = 1, 2, . . . , M ;

satisfies inequality

3
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f (minimize)
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1
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1
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Figure 2.1: Concept of Domination

gj(x) ≥ 0, j = 1, 2, . . . , J ;

and equality constraints

hk(x) = 0, k = 1, 2, . . . ,K;

and whose elements represent the objective functions. These functions form a mathematical description of
performance criteria which are usually in conflict with each other. Hence, the term optimize means finding such a
solution which would give the values of all the objective functions acceptable to the decision maker.

These objective function constitute a multi-dimensional space in addition to the usual decision space. This
additional space is called theobjective space,Z. For each solutionx in the decision variable space, there exist a
point in the objective space:

f(x) = Z = (z1 , z2 , . . . , zM )T

2.3. CONCEPT OF DOMINANATION

Most multi-objective optimization algorithm use the concept of domination. In these algorithms, two solutions are
compared on the basis of whether one dominates the other solution or not.

Any solutionx(1) is said to dominatex(2) or x(1) is said to be non-dominated byx(2) if both the conditions 1
and 2 are true:

1. x(1) is no worse thanx(2) in all objectives.

2. x(1) is strictly better thanx(2) in at least one objective.

Say, we have two objective functionsf1 andf2, both to be minimized. In figure 2.1 we have 4 solutions and

• Solution 4 dominates solution 1, 2 and 3.

• Solution 2 and 3 dominate solution 1.

If any of the two coditions mentioned above is violated the solutionx(1) does not dominatex(2). Hence in
figure 2.1 neither of solutions 2 or 3 dominate each other.
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Figure 2.2: Different PO solution sets, for the same objective space, depending on maximization or minimization
problem

2.4. NON-DOMINATED SET

For a given finite set of solutions, if we perform pairwise comparisons to find out which solutions dominate which
and which are dominated by each other. We can find a subset of solutions such that, any two solutions of which do
not dominate each other and all the other solutions of the finite set are dominated by one or more members of this
subset. This subset is called thenon-dominated setfor the given set of solutions. Or in other words [Deb01]:

Among a set of solutionsP, the non-dominated set of solutionsP ′ are those that are not dominated by any
member of setP.

2.5. PARETO OPTIMALITY

Pareto optimality can be defined as thebest that could be achieved without disadvantaging at least one group.
A single-objective optimization problem may have (and usually does have) a single-valued, unique solution. The
solution to a MOOP is, as a rule, not a particular value, but a set of values of decision variables such that, for
each element in this set, none of the objective functions can be further increased without a decrease of some of the
remaining object functions (every such value of a decision variable is referred to as pareto-optimal (PO)).

When the setP (section 2.4) is the entire search space, orP = S, the resulting non-dominated setP ′ is called
thePareto-optimal (PO) set. Figure 2.2 the shaded area represents the entire objective space. In the left figure, the
PO solution set is shown with a dark curve, if we choose to minimize bothf1 andf2. But if we choose to minimize
f1 and maximizef2, the resulting PO solution set is shown in the right figure.

Like global and local optimal solutions in the case of single objective optimization, there could be global and
local PO sets in multi-objective optimization.

2.5.1. Globally Pareto-optimal set

Globally PO set is the non-dominated set of entire feasible search spaceS. Since the solutions of this set are not
domonated by any feasible member of the search space, they are theoptimal solutions for MOOP.

2.5.2. Locally Pareto-optimal set

A locally Pareto-optimal set can be defined as [Deb01, pages 31–32]
If ∀x ∈ P, ∃ noy (in the neighbourhood ofx, such that,

‖ x− y ‖∞≤ ε,
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whereε is a small positive number) dominating any member of the setP, then solutions belonging to setP
constitute a locally Pareto-optimal set.

In figure 2.3 the shorter curve represents a local PO front. None of its points have any neighbour which
dominate any member of this set.

f

f1

2

(minimize)

(minimize)

Globally Pareto−optimal
set

Locally Pareto optimal 
set

Figure 2.3: Locally Pareto-optimal set

2.6. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

In absence of any further information, none of the solutions on a pareto front can be said to be better than the others
on the same front. All of the solutions on the PO front are optimal. This is the fundamental difference between
a single and multi-objective optimization task. Even with this fundamental difference the user will finally require
one solution for his/her practical purposes. The decision as to which solution to choose, requires some high level
information. At some stage of the problem solving process the decision-maker is to articulate his/her preferences
about the objectives. Depending on the stage of optimization where this high level information is used, there can
be two possible approaches to MOOP.

1. Preference-Based Approach ORa priori Decision-maker combines the differing objectives into a scalar cost
function (figure 2.4) and converts the MOOP to single objective optimization problem. Now any single
objective optimizer can be used to obtain one single solution. This procedure can be repeated again and
again to find multiple trade-off solutions by using a different cost function.

2. Ideal Multi-Objective Optimization ORa posterioriFirst a multi-objective optimizer is used to find multiple
trade-off optimal solution with a wide range of values for the objectives, then one solution is chosen from
them using the higher level information.

The trade-off solution obtained by using preference based strategy is largely sensitive to relative preference
vector used in forming the composite cost function. A change in this preference vector will result in a different
trade-off solution. Classical multi-objective optimization methods, which convert multiple objectives into single
objective by using a relative preference vector of objectives, work according to this preference-based strategy.
Unless a reliable and accurate preference vector is available, the optimal solution obtained by such methods is
highly subjective to the particular user.

Evolutionary algorithms seem particularly suitable to solve MOOP problems, because they deal simultaneously
with a set of possible solutions or population. This allows them to find several members of the Pareto optimal set
in a single run of the algorithm, instead of having to perform a series of separate runs as in the case of the classical
techniques. Additionally, evolutionary algorithms are less susceptible to the shape or continuity of the Pareto front
(e.g., they can easily deal with discontinuous or concave Pareto fronts), whereas these two issues are a real concern
classical techniques.
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Figure 2.4: Two approaches to multi-objective optimization



Chapter 3

Description of Algorithms Used

This chapter presents a brief literature review on various MOEAs, which is by no means complete but can provide
the reader with a better understanding of the algorithms (section 3.2) used in this study. Starting from the very
first MOEA proposed, a description of different algorithms (section 3.1) which incorporate elitism is presented,
followed by the detailed description of some of the state-of-the-art MOEAs (section 3.2) which are used in this
comparative study.

In order to make the comparisons fair, common variational operators were used in all the three algorithms.
Simulated Binary Crossover [DK95] and polynomial mutation [DG96] were used. Last section (section 3.3)
describes these common operators.

Some evolutionary multi-objective optimization algorithms were developed in the early nineties, based on
combining the ideas [Gol89] of

• Pareto dominance-to exploit the search space in the direction of the Pareto front

• Niching techniques-to explore the search space along the front to keep diversity

The very first one in them was -MOGA (Multi-Objective Genetic Algorithm) [FF93], in which each individual
was ranked on the basis of the number of individuals by which it is dominated. The distribution of individuals
over the Pareto region was performed by a fitness sharing procedure. Later, in 1994, two other MOEAs were
proposed -NSGA andNPGA. In NSGA (Non-dominated Sorting Genetic Algorithm) [SD94],The rank of each
individual was based on the rank of the front it belongs to. The distribution of individuals over the Pareto region
was performed by a fitness sharing procedure. NPGA (Niched Pareto Genetic Algorithm) [HN93] was also based
on the Pareto dominance concept but differed from NSGA and MOGA in selection. NPGA used tournament
selection instead of proportionate selection like in NSGA and MOGA. The distribution of individuals over the
Pareto region was performed by a fitness sharing procedure.

All the algorithms mentioned above had two shortcomings in general:

1. They use, as fitness sharing as a tool to keep diversity in the population through the whole Pareto front and
hence they require a fitness sharing factor to be set.

2. They did not incorporate elitism, which has been demonstrated to improve significantly the performance of
multi-objective algorithms [PM98, ZDT00].

3.1. ELITIST AND SHARING PARAMETERLESS MULTI-OBJECTIVE EVOLUTIONARY ALGO-
RITHMS

Elitism maintains the knowledge acquired during the algorithm execution by conserving the individuals with best
fitness in the population or in an auxiliary population. Some algorithms that make use of both improved concepts
(elitism and no sharing factor) are given in the following sections.

8
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3.1.1. PAES

PAES (Pareto Archived Evolution Strategy) [KC99] can be viewed as (1+1) ES but in addition to the parent and
the offspring, an archive of best solutions found so far is also maintained at each generation. A new crowding
method is introduced in this algorithm to promote diversity in the population. The objective space is divided into
hypercubes by a grid which determines the density of individuals; the zones with lower density are favoured in
detriment of the zones with higher density of points. This technique depends only on the parameter of number of
grid divisions and is less computationally expensive than niching, avoiding the use of the fitness sharing factor.
Starting with an initial random solution and an empty archive the following steps are performed per iteration (say
t):

Parentp(t) is mutated, by using a normally distributed probability function with zero mean and a fixed mutation
strength, to obtain an offspringc(t), which is then compared with the parent. Now there are three scenarios
possible:

• If p(t) dominatesc(t), c(t) is discarded and we move to next iteration.

• c(t) dominatesp(t) we acceptc(t) as the parent for next generation and a copy of it is kept in the archive.

• If neither solution dominatesc(t) is compared with the population of previously archived non-dominated
solutions. Now again three cases are possible here:

1. If c(t) is dominated by a member of archiveit is rejected and we move to next iteration.

2. If c(t) dominates a member(s) of the archive, dominated members are deleted andc(t) is accepted as
parent for next generation.

3. If neitherc(t) nor any archive member dominate the other, c(t) is added to archive only if the archive
size hasn’t already reached its maximum. Ifc(t) is accepted and it belongs to a grid less crowded than
that of thep(t), it qualifies to become the parent for the next generation. If archive is full the above
density based comparison betweenp(t) andc(t) decides who remains in the archive.

Initially conceived as a multi-objective local search method(1 + 1)-PAES, it has been extended later to the
(µ + λ)-PAES.

3.1.2. SPEA

Zitzler and Thiele [ZT99] proposed Strength Pareto Evolutionary Algorithm(SPEA), which stores the solutions
of the best front found in an external auxiliary population. A clustering method (average linkage method) based
on objective space was implemented to preserve diversity in the population, avoiding the use of any parameter
such as the fitness sharing factor. Starting with an initial population and an empty archive the following steps are
performed per iteration:

All non-dominated population members are copied to the archive; any dominated individuals or duplicates (re-
garding the objective values) are removed from the archive during this update operation. If the size of the
updated archive exceeds a predefined limit, further archive members are deleted by a clustering technique
which preserves the characteristics of the non-dominated front.

Step1: fitness values are assigned to both archive and population members:

• Each individuali in the archive is assigned a strength valueS(i) ∈ [0, 1), which at the same time
represents its fitness valueF (i). S(i) is the number of population membersj that are dominated by or
equal toi with respect to the objective values, divided by the population size plus one.

• The fitnessF (j) of an individualj in the population is calculated by summing the strength valuesS(i)
of all archive membersi that dominate or are equal toj, and adding one at the end.

Step2: The next step represents the mating selection phase where individuals from the union of population and
archive are selected by means of binary tournaments. Since the fitness is to be minimized here, each indi-
vidual in the archive has a higher chance to be selected than any population member.
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Step3: Finally, after recombination and mutation the old population is replaced by the resulting offspring popu-
lation.

3.1.3. NSGA-II

NSGA-II [DPAM02] maintains the solutions of the best front found including them into the next generation.
The rank of each individual is based on the concept of the level of non-domination corresponding to the NSGA.
Moreover in this proposal is introduced a faster algorithm to sort the population that takesO(mN2) computations,
instead of the previous one ofO(mN3), wherem is the number of objectives considered andN is the number of
population members. A crowding distance is evaluated that considers the size of the largest cuboid enclosing each
individual without including any other of the population. This parameter is used to keep diversity in the population
and points belonging to the same front and with higher crowding distance are assigned a better fitness than those
with lower crowding distance, avoiding the use of the fitness sharing factor. A detailed description of the algorithm
is given in the next section.

3.2. MOST RECENT ALGORITHMS - USED IN THE STUDY

Following are the most recently proposed algorithms which have been used in this comparative study.

3.2.1. PESA

In PESA (Pareto Enveloped-based Selection Algorithm) [CKO00], not only the crowding mechanism is based on
the hyper-cubes grid division as in PAES, but also the selection criterion is performed by this concept. Apart from
standard parameters such as crossover and mutation rates, PESA has two parameters concerning population size
(PI&PE), and one parameter concerning the hyper-grid crowding strategy.PI is the size of internal population
IP andPE is the maximum size of the archive, or ‘external population’,EP . The third parameter is called the
Squeeze Factor(figure 3.1) and is used in selection and archive update in PESA. The crowding strategy in PESA
works by forming an implicit hyper-grid which divides (normalised) phenotype space into hyper-boxes.

B  −> 1
A −> 2
Squeeze Factor

f

A
B

1
f

2

Figure 3.1: Squeeze factor and hyper-grid crowding strategy in PESA (for 2objective DLTZ2 or DLTZ3).

In Figure 3.1, hypergrids are illustrated by the thick horizontal and vertical lines; the problem is two-dimensional
and hence these hyper-boxes are simply squares. Each chromosome in the archive is associated with a particular
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hyper-box in phenotype space, and has the squeeze factor equal to the total number of other chromosomes in the
archive which inhabit the same box.

Step 1: Initialization Generate and evaluate each of an initial ‘internal’ population (IP ) of PI chromosomes,
and initialise the ‘external’ population (EP) to the empty set.

Step 2: Archive Incorporation Incorporate the non-dominated members ofIP into EP . A candidate may
enter the archive if it is non-dominated withinIP , and if is not dominated by any current member of the
archive. Once a candidate has entered the archive, members of the archive which it dominated (if any) will be
removed. If the addition of a candidate renders the archive over-full (its size temporarily becomesPE + 1),
then a current member of EP is removed. This choice is made by first finding the maximal squeeze factor in
the population, and removing an arbitrary chromosome which has this squeeze factor.

Step 3: Termination If a termination criterion has been reached, then stop, returning the set of chromosomes
in EP as the result. Otherwise, delete the current contents ofIP , and repeat the following untilPI new
candidate solutions have been generated: - With probabilitypC , select two parents fromEP , produce a
single child via crossover, and mutate the child. With probability (1 − pC), select one parent and mutate it
to produce a child.

Step 4: return to Step 2.

3.2.2. SPEA2

SPEA2 [ZLT01] was proposed as an improvement of SPEA. Authors in [ZLT01] identified some weaknesses of
SPEA, e.g.

• If the archive contains only a single individual, all population members have the same rank independent of
whether they dominate each other or not. As a consequence, the selection pressure is decreased substantially
and in this particular case SPEA behaves like a random search algorithm.

• If many individuals of the current generation are indifferent, i.e., do not dominate each other, none or very
little information can be obtained on the basis of the partial order defined by the dominance relation. In this
situation, which is very likely to occur in the presence of more than two objectives, density information has
to be used in order to guide the search more effectively. Clustering makes use of this information, but only
with regard to the archive and not to the population.

• Clustering technique used in SPEA may lose outer solutions.

SPEA2 was designed to overcome the aforementioned problems. The overall algorithm Can be presented in
the following steps:

Input: N (population size)
N (archive size)
T (maximum number of generations)

Output: A (non-dominated set)

Step 1: Initialization: Generate an initial populationP0 and create the empty archive (external set)P 0 = ∅. Set
t = 0.

Step 2: Fitness assignment:Calculate fitness values of individuals inPt andP t.Each individuali in the archive
P t and the populationPt is assigned a strength valueS(i), representing the number of solutions it dominates

S(i) = |{j|j ∈ Pt + P t ∧ i Â j}| (3.1)

where| · | denotes the cardinality of the set,+ stands for multiset union and the symbolÂ corresponds to
the pareto dominance relation. On the basis ofS value, the raw fitnessR(i) of an individuali is calculated
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R(i) =
∑

j∈Pt+P t,jÂi

S(j) (3.2)

That is the raw fitness is determined by the strengths of its denominators in both archive and population, as
opposed to SPEA where only archive members.In addition, density information is incorporated to discrimi-
nate between individuals having identical raw fitness values. The density estimation technique in SPEA2 is
an adaptation of thek− th nearest neighbor method, where the density at any point is a decreasing function
of distance to thek− th nearest data point. Here the inverse of distance to thek− th neighbor is used as the
density estimate. For each individuali the distances (in objective space) to all individualsj in archive and
population are calculated and stored in a list. After sorting the list in increasing order , thek − th element

gives the distance sought, denoted asσk
i . k =

√
N + N is used as a common setting. Now the density

D(i) =
1

σk
i + 2

(3.3)

In the denominator, two is added to ensure that its value is greater than zero and thatD(i) < 1. Finally,
addingD(i) to the raw fitness value if an indiviuali gives its fitnessF (i)

F (i) = R(i) + D(i) (3.4)

Step 3: Environmental selection:Copy all non-dominated individuals inPt andP t to P t+1. Now there are
three possible scenarios:

1. If |P t+1 = N |, the environmental selection step is complete.

2. If |P t+1 > N |, then reduceP t+1 by means of thetruncation operator. This operator iteratively
removes individuals fromP t+1 until |P t+1 = N |. At each iteration an individuali is chosen for
removal for whichi ≤d j ∀j ∈ P t+1 with

i ≤d j :⇔ ∀0 < k < |P t+1| : σk
i = σk

j ∨
∃0 < k < |P t+1| : [(∀0 < l < k : σl

i = σl
j) ∧ σk

i < σk
j ]

whereσk
i denotes the distance ofi to itsk− th neighbor inP t+1. In other words the individual which

has the minimum distance to another individual is chosen at each stage; ties are broken by considering
the second smalles distance and so on. Figure 3.2 illustrates the working of this truncation operator for
2 objective DLTZ2 or DLTZ3 problem withN = 5.

3. if |P t+1 < N |, then fill P t+1 with dominated individuals inPt andP t. This can be implemented by
sorting the multisetPt + P t according to the fitness values and copy the firstN − |P t+1| individualsi
with F (i) ≥ 1 from the resulting ordered list toP t+1.

Step 4: Termination: If t ≥ T or another stopping criterion is satisfied then setA to the set of decision vectors
represented by the non-dominated individuals inP t+1 and stop.

Step 5: Mating selection: Perform binary tournament selection with replacement onP t+1 in order to fill the
mating pool.

Step 6: Variation: Apply recombination and mutation operators to the mating pool and setPt+1 to the resulting
population. Increment generation counter(t = t + 1) and go to Step 2.
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Figure 3.2: Archive truncation in SPEA2: black circles in the right figure are deleted by the truncation operator
(Assuming 2objective DLTZ2 or DLTZ3 problem withN = 5).

3.2.3. NSGA-II

NSGA-II [DAPM00] was proposed, as a modification of NSGA, to alleviate the three difficulties associated with
NSGA. It incorporates elitism, doesn’t require any sharing parameter to be set and uses afast non-dominated
sorting approachwhich makes it faster (section 3.1.3) than NSGA. Details of fast non-dominated sorting approach
can be found in [DAPM00].

Algorithm can be described as follows. Initially, a random parent populationP0 is created. The population is
sorted based on the non-domination. Each solution is assigned a fitness equal to its non-domination level (1 is the
best level). Thus, minimization of fitness is assumed. Binary tournament selection, recombination, and mutation
operators are used to create a child populationQ0 of sizeN . Further, the NSGA-II procedure can be outlined in
the following steps:

Step 1: Combine populationCombine parent and children population to createRt = Pt ∪Qt.

Step 2: Non-domianted SortingPerform non-dominated sorting toRt and identify different frontsFi, i =
1, 2, . . . , etc.

Step 3: Creating new populationSet new populationPt+1 = ∅. Set counteri = 1.
Untill |Pt+1|+ |Fi| < N , perform|Pt+1| = |Pt+1| ∪ |Fi| andi = i + 1.

Step 4: Crowding SortPerform the crowding sort (F , <c) procedure (described in detail below) and include the
most widely spread(N − |Pt+1|) solutions by using the crowding distance values in the sortedFi to Pt+1.

Step 5: Creating offspring populationCreate offspring populationQt+1 from Pt+1 by using the crowded tour-
nament selection (described below), crossover and mutation operators.

A discussion on crowding sort involved in step 4 and crowded tournament selection in step 5 are given in the
following sections.

3.2.3.1. Crowding-distance-assignment(L)

We need to calulate the density of solutions inF to do the crowding sort in step4. To get an estimate of the density
of solutions surrounding a particular point in the population, the average distance of the two points on either side of
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this point along each of the objectives is calculated. This quantityidistance serves as an estimate of the size of the
largest cuboid enclosing the pointi without including any other point in the population. This distance,idistance, is
called the crowding distance for the individuali and it is used for crowding sort.

2

f
1

f

cuboid

i

i−1

i+1

Figure 3.3: Crowding distance calculation (2objective DLTZ2 or DLTZ3 problem).

In Figure 3.3, the crowding distance of thei− th solution in its front (marked with solid circles) is the average
side-length of the cuboid (shown with a dashed box). The following algorithm is used to calculate the crowding
distance of each point in a front.

l = |L| number of solutions inL
for eachi setL[i]distance initialize distance
for each objectivem
L = sort(L,m) sort using each objective value
L[1]distance = L[l]distance = ∞ so that boundary points are always selected
for i = 2 to (l − 1) for all other points
L[i]distance = L[i]distance + (L[i + 1].m− L[i− 1].m)

HereL[i].m refers to them− th objective function value of thei− th individual in the setL.

3.2.3.2. Crowded tournament selection operator

In crowded tournament selection, a solutioni wins a tournament with another solutionj if any of the following
conditions are true:

1. i has a better non-domination rank thanj, i.e. ri < rj .

2. If they have the same rank but solutioni has a better crowding distance than solutionj, i.e., ri = rj and
idistance > jdistance.

3.3. VARIATIONAL OPERATORS USED

Since the test problems that we are dealing with have a continuous space, real encoding should be preferred to avoid
problems related to hamming cliffs and to achieve arbitrary precision in the optimal solution. For this reason, in
all the algorithms real-coded parameters were used and crossover and mutation operators were applied directly to
real parameter values. The real parameter crossover and mutation operators used in this study are described in the
following sections.
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3.3.1. Simulated Binary Crossover

Simulated Binary Crossover (SBX) [DK95] creates two offspring solutions from two parents. SBX operator
imitates the working principle of a single point crossover operator on binary strings. Authors in this paper showed
that the common interval schemata between the parents are preserved in the offspring, thus SBX respects the
interval schemata. The following steps are involved in creating two offspring (x

(1,t+1)
i andx

(2,t+1)
i ) solutions

from two parents (x(1,t)
i andx

(2,t)
i ).

Step 1: Choose a random numberui ∈ [0, 1).

Step 2: Calculate a spread factor,βi as the ratio of the absolute difference in offspring values to that of parents:

βi =

∣∣∣∣∣
x

(2,t+1)
i − x

(1,t+1)
i

x
(2,t)
i − x

(1,t)
i

∣∣∣∣∣ (3.5)

From the following probability density function, the ordinateβqi is found so that the area under the proba-
bility curve from0 to βqi is equal toui.

P(βi) =

{
0.5(ηc + 1)βηc

i , if βi ≤ 1;
0.5(ηc + 1) 1

βηc+2
i

, otherwise (3.6)

whereηc is any non-negative real number. We will call this parameterdistribution index for crossover. This
parameter needs to be set by the user. A large value ofηc gives a higher probability for creating a near-parent
solutions and a small value ofηc allows distant solutions to be selected as offspring. Using equation (3.6),
we calculateβqi by equating the area under the probability curve toui, as follows:

βqi =

{
(2ui)

1
ηc+1 , if ui ≤ 0.5;

( 1
2(1−ui)

)
1

ηc+1 , otherwise
(3.7)

Step 3: Compute the offspring using:

x
(1,t+1)
i = 0.5[(1 + βqi)x

(1,t)
i + (1− βqi)x

(2,t)
i ] (3.8)

x
(2,t+1)
i = 0.5[(1− βqi)x

(1,t)
i + (1 + βqi)x

(2,t)
i ] (3.9)

Here the offspring produced are symmetric about the parent solutions and for a fixedηc the offspring have a
spread which is proportional to that of the parent solutions. From equations (3.8) and (3.9) we can have:

(x(2,t+1)
i − x

(1,t+1)
i ) = βqi(x

(2,t)
i − x

(1,t)
i ) (3.10)

which implies that if two parents are far away, say at the initial populations when the solutions are randomly
placed, almost any value of offspring can be achieved (Exploration). However when the solutions tend to converge
due to the actions of genetic operators (and hence the parents are close to each other) distant solutions are not
allowed, thereby focussing the search to a narrow region (Exploitation). Thus SBX helps in exploring the search
space at the initial generation, while it exploits the acquired knowledge at later stages.
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3.3.2. Polynomial Mutation

In polynomial mutation [DG96], following steps are involved in mutating a solutionx
(1,t+1)
i to obtain the offspring

y
(1,t+1)
i .

Step 1: Choose a random numberui ∈ [0, 1).

Step 2: Calculate the parameterδi from the probability density functionP(δ) = 0.5(ηm + 1)(1− |δ|)ηm as:

δi =

{
(2ui)

1
ηm+1 − 1, if ui < 0.5;

1− [2(1− ui)]
1

ηm+1 , otherwise
(3.11)

Step 3: Find the offspring using:

y
(1,t+1)
i = x

(1,t+1)
i + (xUi − xLi )δi, (3.12)

wherexUi andxLi are the lower and upper bounds on the decision variablex. The shape of the probability
distribution is directly controlled by the user defined parameter -Distribution index for mutation(ηm).



Chapter 4

Test Problems

Most earlier studies on MOEAs introduced test problems which were either simple or not scalable [Sch84, Kur91,
FF95]. Few others were too complicated to visualize the exact shape and location of the resulting PO front
[VFM96]. In this study four scalable test problems, namely DLTZ1, DLTZ2, DlTZ3 and DLTZ6, are used for
the following reasons:

1. Simplicity of construction- These problems are quite easy to construct using theBottom-up approachdis-
cussed in [DTLZ01]. In this approach the PO front is first assumed in the objective space and an overall
objective search space is constructed from the front to define the test problem.

2. Scalability- These problems can be scaled to any number of decision variables and objectives.

3. Knowledge of exact shape and location of the resulting PO front- The resulting PO is very easy to com-
prehend and its exact shape and location is known. The corresponding decision variable values are also
known.

4. Ability to control difficulties in both converging to the true PO front and maintaining a widely distributed
set of solutionsThey can introduce controllable hindrance to converge to the true PO front and also to find a
widely distributed set of PO solutions.

4.1. TEST PROBLEM DLTZ1

Equation (4.1) is anM− objective test problem with linear PO front. The functionalg(xM ) requires|xM | = k
variables andg can be any function with,g ≥ 0. Equation (4.1) also has the suggested [DTLZ01] value ofg(xM ).

Minimize f1(x) = 1
2x1x2 · · ·xM−1(1 + g(xM )),

Minimize f2(x) = 1
2x1x2 · · · (1− xM−1)(1 + g(xM )),

...
Minimize fM−1(x) = 1

2x1(1− x2)(1 + g(xM )),
Minimize fM (x) = 1

2 (1− x1)(1 + g(xM )),
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,

where g(xM ) = 100
[|xM |+

∑
xi∈xM

(xi − 0.5)2 − cos(20π(xi − 0.5))
]
.





(4.1)

The PO solution corresponds toxM = {0.5, 0.5, . . . , 0.5}T and the objective function values lie on the linear
hyper plane:

M∑
m=1

fm = 0.5
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Figure 4.1 show the PO front for 3 objectives. The total number of variables in the above problem isn =
M + k− 1. Wherek can be set by the user giving him the freedom to scale to any number of variables. A value of
k = 5 is used in this study. The difficulty in the problem is to converge to the global PO front avoiding (11k − 1)
local PO fronts.

4.2. TEST PROBLEM DLTZ2

Minimize f1(x) = (1 + g(xM )) cos(x1
π
2 ) cos(x2

π
2 ) · · · cos(xM−2

π
2 ) cos(xM−1

π
2 ),

Minimize f2(x) = (1 + g(xM )) cos(x1
π
2 ) cos(x2

π
2 ) · · · cos(xM−2

π
2 ) sin(xM−1

π
2 ),

Minimize f3(x) = (1 + g(xM )) cos(x1
π
2 ) cos(x2

π
2 ) · · · sin(xM−2

π
2 ),

...
Minimize fM−1(x) = (1 + g(xM )) cos(x1

π
2 ) sin(x2

π
2 ),

Minimize fM (x) = (1 + g(xM )) sin(x1
π
2 ),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,
where g(xM ) =

∑
xi∈xM

(xi − 0.5)2.





(4.2)

The PO solution to this problem corresponds toxM = {0.5, 0.5, . . . , 0.5}T and all objective values satisfy:

M∑
m=1

f2
i = 1;

Figure 4.1 show the PO front for 3 objectives. The total number of variables in the above problem isn =
M + k − 1. Wherek can be set by the user. A value ofk = |xM | = 10 is used.

4.3. TEST PROBLEM DLTZ3

Minimize f1(x) = (1 + g(xM )) cos(x1
π
2 ) cos(x2

π
2 ) · · · cos(xM−2

π
2 ) cos(xM−1

π
2 ),

Minimize f2(x) = (1 + g(xM )) cos(x1
π
2 ) cos(x2

π
2 ) · · · cos(xM−2

π
2 ) sin(xM−1

π
2 ),

Minimize f3(x) = (1 + g(xM )) cos(x1
π
2 ) cos(x2

π
2 ) · · · sin(xM−2

π
2 ),

...
Minimize fM−1(x) = (1 + g(xM )) cos(x1

π
2 ) sin(x2

π
2 ),

Minimize fM (x) = (1 + g(xM )) sin(x1
π
2 ),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n,
where g(xM ) = 100

[|xM |+
∑

xi∈xM
(xi − 0.5)2 − cos(20π(xi − 0.5))

]
.





(4.3)

Figure 4.1 show the PO front for 3 objectives. The PO solution corresponds toxM = {0.5, 0.5, . . . , 0.5}T .
The total number of variables in the above problem isn = M + k − 1. Wherek can be set by the user. A value
of k = |xM | = 10 is used. Theg function in the problem introduces (3k − 1) local PO fronts and one global PO
front. All local PO fronts are parallel to the global PO front and an MOEA can get stuck to any of these local PO
fronts, before converging to the global PO front (atg∗ = 0).
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4.4. TEST PROBLEM DLTZ6

Minimize f1(x) = (1 + g(xM )) cos(θ1
π
2 ) cos(θ2

π
2 ) · · · cos(θM−2

π
2 ) cos(θM−1

π
2 ),

Minimize f2(x) = (1 + g(xM )) cos(θ1
π
2 ) cos(θ2

π
2 ) · · · cos(θM−2

π
2 ) sin(θM−1

π
2 ),

Minimize f3(x) = (1 + g(xM )) cos(θ1
π
2 ) cos(θ2

π
2 ) · · · sin(θM−2

π
2 ),

...
Minimize fM−1(x) = (1 + g(xM )) cos(θ1

π
2 ) sin(θ2

π
2 ),

Minimize fM (x) = (1 + g(xM )) sin(θ1
π
2 ),

where θi = π
4(1+g(r)) (1 + 2g(r)xi), for i = 2, 3, . . . , (M − 1),

and g(xM ) =
∑

xi∈xM
x0.1

i ,
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.





(4.4)

This problem will test an MOEA’s ability to converge to a curve. Figure 4.1 show the PO front for 3 objectives.
In this case there is only one independent variable (x1) describing the PO front. The mapping betweenθi andxi

in equation (4.4) ensures that the curve is the only non-dominated region in the entire search space. Sinceg = 0
corresponds to PO front,θi = π/4 for all but the first variable. As before, the total number of variables in the
above problem isn = M + k − 1. Wherek can be set by the user. A value ofk = |xM | = 10 is used.
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Figure 4.1: Pareto-optimal fronts for all 4 Test Problems with 3 Objectives



Chapter 5

Performance Metrics

Earlier MOEAs paid emphasis on getting more and more close to the true PO front in the objective space. Com-
paring the performance of different MOEAs is complicated by the fact that the result of an EMO run is not a single
scalar value but a vector of objective values. This in turn requires more than one performance metric. Also as we
know that there are two distinct goals (figure 5.1) in multi-objective optimization,(i) discover solutions as close to
the PO solutions as possible (which requires searchtowardsthe PO front).(ii) find solutions as diverse as possible
in the obtained non-dominated front (which requires searchalong the PO front). In some sense, these two goals
areorthogonalto each other. Hence we require at least two metrics for these two goals.

f (minimize)

f (minimize)

1

2

second goal

fir
st 

go
al

Figure 5.1: Two goals of multi-objective optimization

It has been widely accepted that one performance metric is not enough to judge the performance of an MOEA.
A number of different performance metrics have been suggested in the literature. Hansen and Jaszkiewicz [HJ98]
described three performance metrics namely - R1, R2 and R3. These metrics compare two non-dominated sets
on the basis of some utility functions and determine the expected number of occasions the solutions of one set is
better than the other. Detailed descriptions of these metrics can be found in [HJ98]. Knowles and Corne [KC02]
analyzed different metrics available in literature on the basis of extent of outperformance relations between the
two sets of non-dominated solutions, which are to be compared, and recommended the use of any of the above
three metrics. However these metrics require a number of utility functions, their probabilities of occurrence and a
numerical integration technique to evaluate them.

Zitzler [Zit99], in hisS metric, calculates the hypervolume of the multi-dimensional region enclosed by the
non-dominated set to be assessed and a ‘reference point’ to measure the diversity and convergence of the non-
dominated set obtained. This hypervolume value represents the size of region the non-dominated set dominates.
The relative value ofS metric depends on the chosen reference point, hence same two non-dominated sets can
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have different relativeS metric for different reference points.
Zitzler [ZLT+02], later showed that for anM−objective optimization problem, at least M performance metrics

are needed to compare two or more sets of solutions. Use of any number less thanM would result in inaccurate
judgement because of dimensionality reduction. Deb [DJ02] suggested that we can overcome this dimensionality
problem using afunctionally independentset of variables, which would of course make it theoretically inaccurate
but practically feasible. He also suggested two newrunning performance metrics - one for measuring the con-
vergence to the reference set and other for measuring the diversity in population members at every generation of
an MOEA run. In this study these two metrics (with slight variation) have been used in addition to a third one,
which simply measures the running time of the MOEA. All three metrics, which were applied to only the final non-
dominated set obtained by an MOEA to evaluate its performance, have been discussed in detail in the following
sections.

5.1. METRIC FOR CONVERGENCE

The following metric, in some sense, represent the distance between the set of converged non-dominated solutions
and the global PO front, hence lower values of convergence metric represent good convergence ability. LetP ∗ be
the reference or target set of points on the Pareto-optimal front and letF be the final non-dominated set obtained
by an MOEA. Then from each pointi in F the smallest normalized Euclidean distance toP ∗ will be :

di =
|P∗|
min
j=1

√√√√
M∑

k=1

(
fk(i)− fk(j)
fmax

k − fmin
k

)2

(5.1)

Here,fmax
k andfmin

k are the maximum and minimum function values ofk-th objective function inP ∗. How-
ever in this study, no target points were chosen because equations of PO fronts were known for all the four test
problems. The orthogonal distance of a pointA in the non-dominated set from the PO front was calculated directly
from the equation of PO front. E.g. in DLTZ2 or DLTZ3

di = ‖~rA‖ − 1 (5.2)

Once these distances are known the convergence metric can be obtained by averaging the normalized distance
for all points inF :

C =
∑|F|

i=1 di

|F| (5.3)

5.2. METRIC FOR DIVERSITY

Diversity metric is a number in the range[0, 1], where1 corresponds to best possible diversity and a0 corresponds
to worst possible diversity. In calculating the diversity metric, the obtained non-dominated points are projected
on a hyper-plane, thereby losing a dimension of the points. The plane is divided into a number of small grids (or
M−1 dimensional boxes). Depending on each grid contains a non-dominated point or not, a diversity metric is
defined. If all grids are represented with at least one point, the best possible (with respect to the chosen number of
grids) diversity measure is achieved. If some grids are not represented by a non-dominated point, the diversity is
poor. Various parameters required to calculate this metric and their chosen values are given in table 5.1

Reference plane M−th objective functionfM = 0
Number of grids (Gi) Population size

Target (or reference) set of points (P ∗) One assumed solution in each grid

Table 5.1: Parameter settings for calculating the diversity metric

Calculating the diversity metricFollowing steps are involved in calculating the diversity metric:
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1. For each grid indexed by(i, j, . . . ) calculate following two arrays:

H(i, j, . . . ) =
{

1, if the grid has a representative point inP ∗;
0, otherwise.

= 1, for the chosen reference setP ∗ (5.4)

h(i, j, . . . ) =
{

1, if H(i, j, . . . ) = 1 and the grid has a representative point inF ;
0, otherwise.

=
{

1, if the grid has a representative point inF for the chosenP ∗;
0, otherwise.

(5.5)

2. Assign a valuem(H(i, j, . . . )) to each grid depending on its and its neighbor’sh(). Similarly, calculate
m(H(i, j, . . . )) usingH() for reference points.

3. Calculate the diversity metric (of the populationP of non-dominated slution produced by an MOEA) by
averaging the individualm() values forh() with respect to that forH():

D(P ) =

∑
i,j,...

H(i,j,... )6=0
m(h(i, j, . . . ))

∑
i,j,...

H(i,j,... )6=0
m(H(i, j, . . . ))

(5.6)

Value functionm() for the grid was calculated by using itsh() and two neighboringh() dimension-wise. With
a set of three consecutive binaryh() values, there are a total of 8 possibilities. Any value function may be assigned
by keeping in mind the following:

• A 111 is the best distribution and a000 is the worst.

• A 010 or a101 means a periodic pattern with a good spread and should be valued more than110 or 011

• A 110 or 011 may be valued more than001 or 100, because of more covered grids.

Based on the above observations, [DJ02] suggested the following (Table 5.2)m() andh() values. We have also
used the same lookup table for calculating these parameters. Two or more dimensional hyper-planes are handled
by calculating the above metric dimension-wise.

h( . . . j-1 . . . ) h( . . . j . . . ) h( . . . j+1 . . . ) m(h( . . . j . . . ))
0 0 0 0.00
0 0 1 0.50
1 0 0 0.50
0 1 1 0.67
1 1 0 0.67
0 1 0 0.75
1 1 1 1.00

Table 5.2: Lookup table for calculating diversity metric

Figure 5.2 shows a sample calculation of diversity metric in case of 2-objective DLTZ2 or 2-objective DLTZ3
problem. Here circles represent the reference or target points, in every partition there is one such point and hence
the number of partions is same as population size. Boxes represent the set of non-dominated points given by an
MOEA. Thef2 = 0 is used as the reference plane here and the complete range onf1 values are divided intoG1 =
10 grids. This complete range depends on the PO front the algorithm has converged to and the resulting divesrsity
metric (see sections 5.2.1 and 5.2.2) will also be different. For boundary grids, an imaginary neighboring grid
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with a h() andH() value of one is always assumed. In figure 5.2 (a), these grids are shown with dashed lines.
Even if we have more than one points in a grid,h() still remains as one. Based on moving window containing three
consecutive grids, them() values are computed in the figure. To avoid the boundary effects of using the imaginary
grid, the metric value is normalized as follows:

D(P ) =

∑
i,j,...

H(i,j,... )6=0
m(h(i, j, . . . ))−∑

i,j,...

H(i,j,... )6=0
m(0)

∑
i,j,...

H(i,j,... )6=0
m(H(i, j, . . . ))−∑

i,j,...

H(i,j,... ) 6=0
m(0)

(5.7)

where0 is a zero-valued array. Though in our studyH(i, j, . . . ) is always equal to 1 (each grid contains one
reference point),H(i, j, . . . ) 6= 0 consideration in computing theD(P ) term and the boundary grid adjustment
was suggested to allow a generic way to handle disconnected PO fronts in the original work [DJ02].

5.2.1. Metric based on Pareto-optimal front (Diversity Metric1)

Ideally we want our algorithm to give us non-dominated solutions on the global PO front and if we divide our
objective space corresponding to this global PO front into grids equal to the population size, then one point in each
grid would be the best possible diversity (D(P ) = 1). We will call this diversity metric (obtained by splitting the
global PO region into grids)diversity metric1.

5.2.2. Metric based on Converged front (Diversity Metric2)

But if the algorithm isn’t able to converge to the global PO front then the above metric will not be able to measure
the diversity of non-dominated solutions produced by the MOEA. E.g. in figure 5.2 (b), if solid black squares
represent the non-dominated points produced by an MOEA on a local PO front (circle with radius equal to 2 for
2-objective DLTZ2 or DLTZ3), the diversity metric based on global PO front gives us a diversity value of one, but
(as clear from the figure) the spread of solutions isn’t very good and it might end up converging to a very small
region of global PO front. In such cases where an algorithm is struck in a local PO front, we should calculate our
diversity metric based on the actual converged front instead of global PO front. We will call this diversity metric
(obtained by splitting the converged PO region into grids)diversity metric2.

To compare two algorithms (for diversity) the use of diversity metric2 should be preferred because even if one
of them has converged to true PO front and the other hasn’t, the diversity metric2 of the former will be almost
equal to its diversity metric1 value, which would not be the case with latter.

5.3. RUNNING TIME

This is simply the running time of an algorithm (in seconds) for the particular settings. It has been included in the
performance metric set to evaluate how an MOEA scales in terms of time complexity with increase in number of
objectives. A linear or polynomial increase in running time is acceptable but an exponential increase is undesirable.
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PO front and converged PO front



Chapter 6

Experimental Study

Extensive experimentation was done to compare the relative performance scaling of different algorithms. Experi-
ments were conducted for the three algorithms (section 3.2) on the four test problems (sections 4.1 to section 4.4)
for 2, 3, 4, 6 and 8 objectives. 30 runs were performed for the 2, 3, and 4 objective cases but because limited
amount of time only 10 runs could be performed for higher number of objectives. That is, in total

3 algorithms *4 test problems * [ 30 runs* 3 different objectives + 10 runs *2 different objectives ] = 1320

simulations runswere conducted for the study. (It is worth mentioning here that the running time for the
slowest algorithm, PESA, increased sharply with the number of objectives, e.g. for 8-objective DLTZ2 problem a
single run of PESA took on an average 93 hours for0.72∗106 function evaluations). To make the comparisons fair
the number of function evaluations (table 6.1) were kept constant for all three algorithms on a particular setting.
E.g. for 8-objective DLTZ2 problem each algorithm was allowed0.72 ∗ 106 function evaluations.

Algorithm Populations Involved Function Evaluations
PESA Internal Population (IP ) and External Population (EP ) (IP + EP )* # of generations
SPEA2 Population Size (N ) and Archive Size (N ) (N + N ) * # of generations

NSGA-II Population Size(N ) 2*N * # of generations

Table 6.1: Number of function evaluations

There were different parameters associated with the experimentation, some common to all the algorithms and
some specific to a particular one. Before the actual experimentation some tuning of these parameters was required.
Finding values for which an algorithm works best is, in itself, an optimization problem and if we are judging
the performance on the three metrics (section 5.1 to section 5.3) it becomes a MOOP for each of the parameter
involved. A very simplistic approach was adopted to tune (instead of optimizing) these parameters. Experiments
with only 2-objectives were used and the purpose of this tuning was to find a set of values for which an MOEA
performs well. Following is the description of these parameters and table 6.2 gives the tuned values for these
parameters.

6.1. PARAMETER TUNING

Lets first look at the parameters that are common to all the algorithms. Other than population size, which is dis-
cussed separately in the next section because of its relative importance, the optimal values of different parameters
for different algorithms found as the result of experiments with 2-objective are listed in table 6.2. These experi-
ments were conducted on problems DLTZ2 and DLTZ3 and only the convergence and diversity metrics were used
to evaluate the performance of the algorithm, running time was not considered.

Besides these, another parameter specific to PESA was the number of grids that each dimension of objective
space is split into. Grid sizeG = 10 was found to be optimal for 2-objective DLTZ2 and DLTZ3 problems.
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Parameter PESA SPEA 2 NSGA-II
Crossover probabilitypc 0.8 0.7 0.7

Distribution index for SBXηc 15 15 15
Mutation probabilitypm (if n = # of variables) 1.0

n
1.0
n

1.0
n

Distribution index for polynomial mutationηm 15 15 20
Ratio of internal population size to archive size 1:1 1:1 1:1

Table 6.2: Tuned parameter values

6.2. POPULATION SIZE

Population size plays a crucial rule in the performance of an MOEA. As the number of objective functions (M )
increases, more and more solutions tend to lie in the first non-dominated front. Most MOEAs (sections 3.1 and 3.2)
assign the similar fitness to all solutions in the first non-dominated front. So as the number of objective functions
increase, there is no (very little) selection advantage to any of these solutions. In absence of any selection pressure
for better solutions, the task of recombination and mutation operators to find better solutions may be difficult in
general.

It has been shown empirically [Deb01, pages 404–405] that for a particularM , the proportion of non-
dominated solutions decreases with population size. If we require a population with a user-specified maximum
proportion of non-dominated solutions, then these empirical results can be used to estimate what would be a
reasonable population size. This requirement on population size increases exponentially withM . Ideally to inves-
tigate the scaling of an MOEA we should present it with a population having equal proportion of non-dominated
solutions, for allM , to start with, but this is practically impossible because of exponential increase in population
size. The population scheme used in this study is given in table 6.3.

M Population Size Maximum proportion of non-dominated solutions
2 20 0.2
3 50 0.22
4 100 0.28
5 150 0.36
6 250 0.45
7 400 0.52
8 600 0.60
9 850 0.68
10 1150 ∼ 0.75

Table 6.3: Population scheme - for Internal or main population (which is same as external population as the result
of parameter tuning)

Ideally to maintain a constant value of maximum proportion of non-dominated solution we should have used
an exponantial scheme in population size. But for practical reasons a polynomial scheme was chosen. The above
scheme is quadratic withR2 = 0.9916.

6.3. NUMBER OF GENERATIONS

As per the pervious discussions, each algorithm was allowed equal number of function evaluations for each simu-
lation run. Population sizes and number of generations were kept constant across various algorithms. Population
size was decided using the scheme presented in section 6.2. Number of generations used for different problems
and different # of objectives (M ) are listed in table 6.4.

More number of function evaluations were used for DLTZ3 and DLTZ6 because they can introduce more
difficulties to a MOEA in converging to PO front and in finding a diverse set of solutions. DLTZ3 tests the ability
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# of generations
For M = 2, 3 and 4 For M = 6 and 8

DLTZ1 & DLTZ2 300 600
DLTZ3 & DLTZ6 500 1000

Table 6.4: # of generations for different problems and # of objectives (M )

of an MOEA by introducing local PO fronts (section 2.5.2) and DLTZ6 tests them for their ability to converge to a
curve (section 4.4.

Number of generations from 6-objectives onwards was doubled because none of the algorithms was able to
converge to the global PO front in these many generations. Converging to a PO front means having a convergence
metric (section 5.1) less than a threshold (ε). Any appropriate value ofε can be chosen. But here, instead of choos-
ing some such threshold, the algorithms were compared (for convergence) solely on the basis of the convergence
metric that they can achieve in given number of function evaluations.

6.4. RESULTS

All the experiments were conducted using these tuned parameters, though the parameters were tuned only for 2
objectives the same tuned parameter values were used for higher number of objectives. Following sections present
the results of experimentation. To get a better understanding, the results presented here are split up according to
performance on convergence to front, diversity of solutions obtained and running time. This classification will help
us in analysing the performance of different algorithms on the basis of different performance metrics.

Results presented here are in concise form and only give the mean values of all the runs. For a detailed descrip-
tion of results, readers are referred to Appendix A. In Appendix A results for 2, 3 and 4 objectives are presented
with the mean (MEAN), standard deviation (SD), minimum (MIN) and maximum (MAX) values obtained in 30
runs. Since only 10 runs could be performed for higher objectives all 10 runs are listed for 6 and 8 objectives.

6.4.1. Results for Convergence

A lower convergence metric value implies better convergence. Following sections present results for convergence
on the four test problems. PESA gives the best performance in terms of convergence for all four problems. SPEA2
and NSGA-II have similar performances.

6.4.1.1. Results for Problem DLTZ1

Table 6.5 lists the convergence metric obtained for DTLZ1. Convergence metric results on DLTZ1 are also plotted
in figure 6.1. Few observations can be made from these results:

• All three algorithms have similar performance for 2 to 4 objectives but as the number of objectives increase,
PESA performs much better than the other two.

• Except for 6-objective case, convergence levels of SPEA2 and NSGA-II are more or less the same.

6.4.1.2. Results for Problem DLTZ2

Table 6.6 lists the convergence metric obtained for DTLZ2. Convergence metric results on DLTZ2 are also plotted
in figure 6.3. Few observations can be made from these results:

• PESA performs much better than the other two.

• Convergence levels of SPEA2 and NSGA-II are more or less same.

• We should expect convergence metric to increase with the # of objectives but between 4 and 6 objective it
has decreased, the reason being, the increased number of generations in 6 and 8 objectives.
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Convergence Metric (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 300 2.86948 3.08825 2.27666
3 50 300 0.04419 0.04843 0.38360
4 100 300 0.02317 0.29925 3.10281

Convergence Metric (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 600 0.00117 5.99951 120.19162
8 600 600 0.00407 498.27151 465.30155

Table 6.5: Convergence Metric for DLTZ1 (see table A.1 for detailed results)

Convergence Metric (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 300 8.40378E-05 0.00026 0.00179
3 50 300 0.00035 0.006635 0.01003
4 100 300 3.60429 5.07137 6.32618

Convergence Metric (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 600 0.00301 2.00216 1.67564
8 600 600 0.00689 2.35258 2.30766

Table 6.6: Convergence Metric for DLTZ2 (see table A.2 for detailed results)

6.4.1.3. Results for Problem DLTZ3

Table 6.7 lists the convergence metric obtained for DTLZ3. Convergence metric results on DLTZ3 are also plotted
in figure 6.5. Few observations can be made from these results:

• PESA performs much better than the other two.

• NSGA-II performs badly at the beginning for smaller number of objectives, but catches up with SPEA2.

• Both SPEA2 and NSGA-II have bad convergence levels for 6 and 8-objective cases, showing that they got
stuck to one of the(3k − 1) local PO fronts (section 4.3).

Convergence Metric (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 500 22.52023 16.87313 21.32032
3 50 500 1.80296 2.39886 5.65577
4 100 500 1.16736 4.00596 66.94049

Convergence Metric (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 1000 0.15035 217.95360 1273.30601
8 600 1000 7.23062 1929.94832 1753.41364

Table 6.7: Convergence Metric for DLTZ3 (see table A.3 for detailed results)
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6.4.1.4. Results for Problem DLTZ6

Table 6.8 lists the convergence metric obtained for DTLZ6. Convergence metric results on DLTZ3 are also plotted
in figure 6.5. Here again SPEA2 and NSGA-II perform neck to neck but PESA once again appears as the overall
winner except for the 2-objective case where it performs marginally worse than NSGA-II.

Convergence Metric (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 500 0.79397 0.77622 0.63697
3 50 500 0.20528 0.29271 0.24515
4 100 500 3.60430 5.07137 6.32619

Convergence Metric (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 1000 5.30454 10.53682 9.48750
8 600 1000 6.32247 10.62932 10.27306

Table 6.8: Convergence Metric for DLTZ6 (see table A.4 for detailed results)

6.4.2. Results for Diversity

As discussed in sections 5.2.1 and 5.2.2, two metrics were used to measure the diversity of solutions obtained in
the non-dominated front.Diversity metric1measures the diversity of solutions on the basis of true PO front and
diversity metric2uses the converged front for this purpose. If the algorithm hasn’t converged to true PO front
then the use of diversity metric2 is suggested. I have calculated both of these metrics for all the simulation runs.
As anticipated (section 5.2.2) the two diversity metrics differ in value if the converged front is far from the true
PO front and diversity metric2 is better performance indicator for reasons stated in the same section. Following
sections discuss performance of different MOEAs on the basis of both of these metrics.

6.4.2.1. Results for Problem DLTZ1

Tables 6.9 and 6.10 list diversity metric1 and diversity metric2 respectively. Diversity metric (both 1 and 2) results
on DLTZ1 are also plotted in figure 6.2. Few observations can be made form these results.

• SPEA2 performs better than the other two.

• NSGA-II is better than PESA in terms of diversity metric2 and for smaller # of objectives (2, 3, 4) in diversity
metric1.

Diversity Metric1 (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 300 0.25093 0.55656 0.447843
3 50 300 0.42116 0.63186 0.57752
4 100 300 0.37605 0.54176 0.38676

Diversity Metric1 (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 600 0.33643 0.35645 0.19343
8 600 600 0.25245 0.26107 0.19744

Table 6.9: Diversity Metric1 for DLTZ1 (see table A.5 for detailed results)
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Diversity Metric2 (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 300 0.50019 0.86516 0.72559
3 50 300 0.52274 0.78292 0.76968
4 100 300 0.48239 0.67835 0.72558

Diversity Metric2 (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 600 0.39297 0.48162 0.38293
8 600 600 0.29631 0.35056 0.37425

Table 6.10: Diversity Metric2 for DLTZ1 (see table A.6 for detailed results)

6.4.2.2. Results for Problem DLTZ2

Tables 6.11 and 6.12 list diversity metric1 and diversity metric2 respectively. Diversity metric (both 1 and 2) results
on DLTZ2 are also plotted in figure 6.4. Few observations can be made form these results.

• NSGA-II outperforms the other two algorithms in terms of diversity metric2.

• Performance in terms of diversity across true PO front (diversity metric1) is more or less the same.

Diversity Metric1 (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 300 0.57396 0.81866 0.75177
3 50 300 0.57163 0.67260 0.74996
4 100 300 0.22557 0.22916 0.12825

Diversity Metric1 (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 600 0.47099 0.29675 0.48248
8 600 600 0.43230 0.30944 0.52913

Table 6.11: Diversity Metric1 for DLTZ2 (see table A.7 for detailed results)

Diversity Metric2 (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 300 0.58508 0.82185 0.75863
3 50 300 0.57993 0.71680 0.81106
4 100 300 0.48906 0.47385 0.59749

Diversity Metric2 (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 600 0.52335 0.64928 0.73253
8 600 600 0.57082 0.64134 0.75665

Table 6.12: Diversity Metric2 for DLTZ2 (see table A.8 for detailed results)

6.4.2.3. Results for Problem DLTZ3

Tables 6.13 and 6.14 list diversity metric1 and diversity metric2 respectively. Diversity metric (both 1 and 2) results
on DLTZ3 are also plotted in figure 6.6. Few observations can be made form these results.
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• SPEA2 and NSGA-II have somewhat similar performances in terms of diversity metric2.

• Performance of PESA is much worse than other two on diversity metric2, especially for higher objectives.

Diversity Metric1 (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 500 0.14023 0.17338 0.08845
3 50 500 0.38964 0.62793 0.26243
4 100 500 0.31659 0.58861 0.15869

Diversity Metric1 (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 1000 0.18812 0.08588 0.12068
8 600 1000 0.02463 0.15186 0.06456

Table 6.13: Diversity Metric1 for DLTZ3 (see table A.9 for detailed results)

Diversity Metric2 (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 500 0.49708 0.71668 0.57169
3 50 500 0.58655 0.78539 0.60255
4 100 500 0.51138 0.72006 0.50373

Diversity Metric2 (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 1000 0.32959 0.36687 0.57644
8 600 1000 0.11972 0.55771 0.58456

Table 6.14: Diversity Metric2 for DLTZ3 (see table A.10 for detailed results)

6.4.2.4. Results for Problem DLTZ6

Tables 6.15 and 6.16 list diversity metric1 and diversity metric2 respectively. Diversity metric (both 1 and 2) results
on DLTZ6 are also plotted in figure 6.8. Few observations can be made form these results.

• SPEA2 and NSGA-II have somewhat similar performance in terms of diversity metric1, but NSGA-II has a
marginal better performance on diversity metric2.

• PESA once again is the loser in terms of diversity metric2.

6.4.3. Results for Running Time

Tables 6.17 to 6.20 list the running time of different algorithms on different problems with different # of objectives.
Running time results are also plotted in figures 6.1 for DLTZ1, 6.3 for DLTZ2, 6.5 for DLTZ3 and 6.7 for DLTZ6.
All the simulations were performed on Solaris workstations. 10 different machines were used for 10 runs of a
particular algorithm to save time. Results for all four problems are pretty much similar. NSGA-II was the fastest
and PESA was the slowest of all three for all the # of objectives over all problemss. PESA on 8-objective DLTZ2
took on an average approximately93 hours to run. Just for the sake of trying, I ran PESA on 10-objective DLTZ2
and at the time of writing the report, after 9 days of running the code, it hasn’t produced the output.
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Diversity Metric1 (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 500 0.20191 0.44403 0.40845
3 50 500 0.41961 0.64654 0.66156
4 100 500 0.22557 0.22916 0.12825

Diversity Metric1 (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 1000 0.27631 0.07593 0.07544
8 600 1000 0.27801 0.05583 0.04766

Table 6.15: Diversity Metric1 for DLTZ6 (see table A.11 for detailed results)

Diversity Metric2 (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 500 0.55794 0.85028 0.78385
3 50 500 0.56628 0.83747 0.81710
4 100 500 0.48906 0.47385 0.59749

Diversity Metric2 (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 1000 0.48725 0.60226 0.65365
8 600 1000 0.44885 0.55396 0.62897

Table 6.16: Diversity Metric2 for DLTZ6 (see table A.12 for detailed results)

Running Time (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 300 2.53 3.7 2.9
3 50 300 9.125 17.375 4.53
4 100 300 70.525 91.45 17

Running Time (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 600 4229.2 1839 213.9
8 600 600 95465.67 34735.33 1552.72

Table 6.17: Running Time for DLTZ1 (see table A.13 for detailed results)

Running Time (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 300 4.6 4.067 3.267
3 50 300 19.825 20.425 4.925
4 100 300 193.975 107.45 18.7

Running Time (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 600 8082.8 2408 235.9
8 600 600 334641.5 33722 1570.8

Table 6.18: Running Time for DLTZ2 (see table A.14 for detailed results)
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Running Time (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 500 5.567 6.633 5.733
3 50 500 11.833 29.333 7.972
4 100 500 80.8 131.925 29.75

Running Time (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 1000 3402.4 3103.1 384.4
8 600 1000 85559.4 49382.2 2605.5

Table 6.19: Running Time for DLTZ3 (see table A.15 for detailed results)

Running Time (Averaged over 30 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

2 20 500 3.767 4.233 3.2
3 50 500 22.233 32.466 7.733
4 100 500 295.15 178.175 31

Running Time (Averaged over 10 runs)
# of Objectives (M) Population Size # of Generations PESA SPEA2 NSGA-II

6 250 1000 13528.2 5640.1 386.9
8 600 1000 262802.9 53809.8 2741.1

Table 6.20: Running Time for DLTZ6 (see table A.16 for detailed results)
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Figure 6.1: Convergence Metric & Running Time for DLTZ1
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Discussion on Results

Following is the discussion over the results presented in section 6.4. Few other points that have been observed
during this extensive comparative study are also discussed.

1. ScalabilityEach algorithm scale differently in terms of the performance metrics chosen.

• PESA scale very well in terms of convergence but poorly in terms of diversity maintenance and running
time.

• SPEA2 scales well in terms of diversity maintenance but suffers in converging to the global PO front
and in running time.

• NSGA-II scales well in terms of running time and diversity maintenance but suffers in converging to
the global PO front.

2. Convergence to PO frontAbility to converge to the PO front was found best in PESA, though it cannot
produce a very diverse solution on the converge front. Also it has another difficulty attached to it - it can not
scale in terms of time with increasing # of objectives.

SPEA2 and NSGA-II have comparable performance in terms of convergence, which is inferior to PESA.
Both SPEA2 and NSGA-II had difficulties in dealing with local PO fronts especially for higher # of objec-
tives.

3. Diversity in obtained solutionsEven in terms of diversity of solutions in the converged front SPEA2 and
NSGA-II have similar performances, which is much better than PESA. Though, PESA was able to converge
to global PO front many a times, when others couldn’t, still its performance in terms of diversity of solutions
in the PO front is only comparable with others.

4. Running TimeNSGA-II was the fastest of all three algorithms, primarily because it doesn’t involve expen-
sive calculations related to clustering (as in SPEA2) or grid based calculations (as in PESA). Exponential
increase in running time for PESA makes it impractical for higher objectives.

5. Diversity metricDiversity metric2, which uses actual converged front instead of global PO front should be
used to compare two algorithms (for diversity) because even if one of them has converged to true PO front
and the other hasn’t, the diversity metric2 of the former will be almost equal to its diversity metric1 value,
which would not be the case with latter.

6. Grid size in PESAGrid size in PESA is a crucial factor. If we choose very fine grids we can hope to get a
good performance in terms of diversity but that would make the algorithm even more expensive.

7. Effect of population sizeAs discussed in section 6.2, to investigate the scaling of an MOEA we should
present it with a population having equal proportion of non-dominated solutions, for allM , to start with, but
this is practically impossible because of the required exponential increase in population size.
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8. Swapping offspring in SBXSwapping the offspring in SBX helped improving the performance of all three
algorithms. This is because the way SBX has been formulated (see equation 3.10) - either offspring1 always
gets a variable value greater than offspring2 or it always gets a smaller value. PESA always takes one off-
spring generated each time and rejects the other one, hence improved performance on PESA can be explained
but the improvement in performance of SPEA2 and NSGA-II is something that is to be investigated.

9. Limited function evaluationsThere can be two possible approaches to compare two algoritms. We observe
the function evaluations needed for an algorithm to achieve a required threshold of performance. Another
approach, which was used in this study, is to fix the number of function evaluations and then compare them
on the basis of their performance. Latter was followed of obvious practical reasons.
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Conclusion

All of the work that has been done in MOEAs is mostly limited to 2 and 3 objectives. In this project scalability
issues related to three of the state-of-art algorithms (PESA, SPEA2 and NSGA-II) were explored. These algorithms
were tested for their scalability with respect to number of objectives. Experiments were done starting from 2 to 8
objectives.

These algorithms were tested for their performance, on specially designed scalable test problems. In this
study four scalable test problems, namely DLTZ1, DLTZ2, DlTZ3 and DLTZ6, were used because of their ease of
construction, scalability to any number of objectives and variables, ability to provide controllable hindrance both in
converging to front and in maintaining diversity and because the PO front for these problems were known apriori.

To compare two or more sets of non-dominated solutions of anM−objective problem require at leastM
performance metrics, otherwise this would result in an inaccurate judgement caused by reduction in dimensionality.
However, havingM performance metrics would make the comparison practically infeasible. In this study three
performance metrics were used, in terms of which the scalability of these algorithms were assessed. First metric
measures closeness of obtained non-dominated solution to the global PO front, thus it indicates the convergence
ability of an MOEA. The second metric indicates the diversity of solutions in the obtained non-dominated set.
Running time was also included as one of the metric to evaluate how an MOEA scales in terms of time complexity
with increase in number of objectives. Use of 3 metrics has made this approach practically feasible at the cost of
accuracy.

As the result of the study on four test problems, PESA was found to be best in terms of converging to the PO
front, but it lacks good diversity maintenance. Also the algorithm was found to be slow because of expensive grid
based calculations. Exponential increase in running time makes the algorithm infeasible for higher # of objectives.
SPEA2 and NSGA-II performed equally well on convergence and diversity maintenance. Their convergence level
was inferior to that of PESA but diversity maintenance was better. NSGA-II was found to be much faster than
SPEA2 because of the expensive clustering of solutions. Running times for NSGA-II were an order of magnitude
less than that of SPEA2 for higher objectives.

Though the results obtained establish different algorithms as ‘winners’ in terms of different performance met-
rics, however, they belong to a limited set of test problems and must always be regarded as tentative. Hence much
further work is needed on further problems. E.g. problems which can test an MOEA for its ability to handle con-
straints can be used. Also, comparison of these algorithms with other classical methods on higher # of objectives
would be useful.
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Detailed results for Convergence Metric (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 2.86948 3.08825 2.27666
SD 5.93164 5.35433 5.43593

MIN 0.00591 0.01144 0.00823
MAX 24.99170 13.08870 24.99000

3 MEAN 0.04419 0.04843 0.38360
SD 0.12320 0.05331 0.50094

MIN 0.00069 0.00446 0.01192
MAX 0.53870 0.26143 2.70094

4 MEAN 0.02317 0.29925 3.10281
SD 0.09059 0.66360 4.08272

MIN 0.00112 0.00475 0.29167
MAX 0.58075 2.96980 17.17910

Detailed results for Convergence Metric(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.00084 8.68173 252.33200

Run 2 0.00165 0.77197 294.02400
Run 3 0.00032 19.67100 107.66400
Run 4 0.00035 3.92065 40.62650
Run 5 0.00105 1.30696 29.76040
Run 6 0.00153 1.45626 120.24400
Run 7 0.00066 0.61886 85.20650
Run 8 0.00167 0.80701 7.57305
Run 9 0.00043 2.79386 43.84610
Run 10 0.00322 19.96680 220.63900

8 Run 1 0.00047 499.81300 470.64300
Run 2 0.00058 498.06100 454.66500
Run 3 0.00016 496.47800 455.69400
Run 4 0.00063 500.76200 464.76900
Run 5 0.00049 497.52400 477.83300
Run 6 0.00047 496.99100 481.24200
Run 7 0.00049 467.98760 442.62800
Run 8 0.00027 506.39978 455.53400
Run 9 0.00059 495.73289 491.24534
Run 10 0.00053 522.96570 458.76600

Table A.1: Full results of Convergence Metric for DLTZ1
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Detailed results for Convergence Metric (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.00008 0.00026 0.00180
SD 0.00019 0.00029 0.00082

MIN 0.00001 0.00001 0.00056
MAX 0.00092 0.00105 0.00337

3 MEAN 0.00035 0.00663 0.01003
SD 0.00013 0.00224 0.00234

MIN 0.00017 0.00316 0.00650
MAX 0.00074 0.01241 0.01549

4 MEAN 0.00170 0.03369 0.04529
SD 0.00039 0.00846 0.01373

MIN 0.00109 0.01945 0.02392
MAX 0.00266 0.05643 0.07656

Detailed results for Convergence Metric(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.00273 2.03153 1.67075

Run 2 0.00303 1.95179 1.75410
Run 3 0.00399 1.87814 1.63739
Run 4 0.00281 2.09604 1.90039
Run 5 0.00292 2.05034 1.70630
Run 6 0.00302 1.99977 1.52191
Run 7 0.00331 2.03722 1.66861
Run 8 0.00259 1.94358 1.62651
Run 9 0.00289 2.11748 1.71067
Run 10 0.00273 1.91568 1.55977

8 Run 1 0.00775 2.36491 2.28753
Run 2 0.00605 2.35616 2.36133
Run 3 0.00693 2.36460 2.31716
Run 4 0.00687 2.34644 2.33837
Run 5 0.00709 2.33081 2.33621
Run 6 0.00798 2.39876 2.30470
Run 7 0.00577 2.39032 2.25913
Run 8 0.00898 2.30543 2.22045
Run 9 0.00575 2.29008 2.31631
Run 10 0.00582 2.37833 2.33953

Table A.2: Full results of Convergence Metric for DLTZ2
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Detailed results for Convergence Metric (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 22.52023 16.87313 21.32032
SD 22.90480 16.72477 11.15397

MIN 0.03424 0.14699 1.50539
MAX 76.00240 51.41630 54.20570

3 MEAN 1.80296 2.39884 5.65577
SD 5.78546 4.72212 6.26729

MIN 0.01761 0.02129 0.05576
MAX 25.37300 25.17790 31.81220

4 MEAN 1.16736 4.00596 66.94049
SD 3.50522 4.00594 39.06815

MIN 0.04186 0.06679 19.89080
MAX 21.33010 16.95700 178.73900

Detailed results for Convergence Metric(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.08938 290.33400 1261.72000

Run 2 0.46341 127.49400 1288.15000
Run 3 0.04154 187.74300 1259.34000
Run 4 0.17326 146.80700 1239.06000
Run 5 0.05782 287.27000 1321.65000
Run 6 0.14190 216.79500 1336.58000
Run 7 0.24349 205.11700 1288.31000
Run 8 0.12831 235.18500 1167.36000
Run 9 0.12586 357.76200 1192.43000
Run 10 0.03852 125.02900 1378.46000

8 Run 1 0.08938 290.33400 1261.72000
Run 2 0.46341 127.49400 1288.15000
Run 3 0.04154 187.74300 1259.34000
Run 4 0.17326 146.80700 1239.06000
Run 5 0.05782 287.27000 1321.65000
Run 6 0.14190 216.79500 1336.58000
Run 7 0.24349 205.11700 1288.31000
Run 8 0.12831 235.18500 1167.36000
Run 9 0.12586 357.76200 1192.43000
Run 10 0.03852 125.02900 1378.46000

Table A.3: Full results of Convergence Metric for DLTZ3
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Detailed results for Convergence Metric (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.79397 0.77622 0.63697
SD 0.32237 0.23794 0.29986

MIN 0.22178 0.24088 0.19279
MAX 1.46463 1.24145 1.40166

3 MEAN 0.20528 0.29271 0.24515
SD 0.21199 0.23631 0.22849

MIN 0.00000 0.00000 0.00000
MAX 0.69444 0.93898 0.76565

4 MEAN 3.60430 5.07137 6.32619
SD 0.38084 0.22360 0.36229

MIN 2.91572 4.66647 5.57813
MAX 4.75811 5.61403 7.03207

Detailed results for Convergence Metric(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 4.96938 10.53360 9.51737

Run 2 5.62785 10.53230 9.22393
Run 3 5.73656 10.53390 9.71738
Run 4 5.81924 10.54870 9.16755
Run 5 5.18632 10.53320 9.44906
Run 6 5.05015 10.54720 9.91849
Run 7 5.13960 10.53210 9.54346
Run 8 5.20524 10.52880 9.06623
Run 9 4.99894 10.54930 9.49485
Run 10 5.31216 10.52910 9.77670

8 Run 1 6.27629 10.64700 10.36310
Run 2 6.38993 10.65060 10.23710
Run 3 6.30120 10.64660 10.17330
Run 4 6.25879 10.55080 10.33280
Run 5 6.39879 10.65160 10.30590
Run 6 6.22593 10.65873 10.30820
Run 7 6.34523 10.68943 10.23730
Run 8 6.56539 10.59546 10.28680
Run 9 6.22674 10.64632 10.21300
Run 10 6.23645 10.55666 10.27306

Table A.4: Full results of Convergence Metric for DLTZ6
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Detailed results for Diversity Metric1 (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.25093 0.55656 0.44784
SD 0.14059 0.34527 0.23329

MIN 0.03526 0.03526 0.03526
MAX 0.58000 0.95211 0.85632

3 MEAN 0.42116 0.63186 0.57752
SD 0.07563 0.04565 0.15660

MIN 0.25622 0.50867 0.05622
MAX 0.58439 0.73898 0.70592

4 MEAN 0.37605 0.54176 0.38676
SD 0.07125 0.02007 0.11091

MIN 0.24966 0.50037 0.13818
MAX 0.55178 0.59364 0.55519

Detailed results for Diversity Metric1(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.35471 0.18365 0.15051

Run 2 0.33839 0.46945 0.14663
Run 3 0.29958 0.15026 0.15727
Run 4 0.36868 0.23337 0.20690
Run 5 0.36333 0.44243 0.21597
Run 6 0.38956 0.48729 0.15900
Run 7 0.35909 0.47166 0.21035
Run 8 0.32980 0.50668 0.28714
Run 9 0.25179 0.46480 0.21995
Run 10 0.30937 0.15493 0.18056

8 Run 1 0.24988 0.27383 0.19846
Run 2 0.24294 0.27129 0.18922
Run 3 0.26454 0.24343 0.20120
Run 4 0.25093 0.25458 0.22297
Run 5 0.23966 0.26912 0.20076
Run 6 0.25094 0.25417 0.20597
Run 7 0.25893 0.26946 0.19517
Run 8 0.25294 0.24983 0.18966
Run 9 0.26092 0.26092 0.17527
Run 10 0.25286 0.26408 0.19560

Table A.5: Full results of Diversity Metric1 for DLTZ1
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Detailed results for Diversity Metric2 (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.50019 0.86516 0.72559
SD 0.17016 0.11721 0.13887

MIN 0.19790 0.59737 0.45118
MAX 0.87790 1.00000 0.90421

3 MEAN 0.52274 0.78292 0.76969
SD 0.10693 0.06054 0.09305

MIN 0.30306 0.58378 0.55571
MAX 0.70490 0.91469 0.88745

4 MEAN 0.48240 0.67836 0.58683
SD 0.09175 0.04362 0.09545

MIN 0.27714 0.54522 0.28791
MAX 0.66879 0.74485 0.71646

Detailed results for Diversity Metric2(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.41028 0.35522 0.38812

Run 2 0.41537 0.59946 0.36625
Run 3 0.31735 0.31547 0.37029
Run 4 0.39060 0.37129 0.38116
Run 5 0.43120 0.56978 0.38113
Run 6 0.48527 0.56011 0.34819
Run 7 0.39950 0.57194 0.38048
Run 8 0.39711 0.60378 0.41261
Run 9 0.27004 0.51754 0.39144
Run 10 0.41303 0.35161 0.40964

8 Run 1 0.29465 0.35800 0.37856
Run 2 0.30750 0.36084 0.37844
Run 3 0.28679 0.34015 0.37905
Run 4 0.28846 0.34662 0.39439
Run 5 0.28453 0.33413 0.37017
Run 6 0.28060 0.34216 0.37194
Run 7 0.30667 0.37172 0.36276
Run 8 0.27274 0.33919 0.37647
Run 9 0.26881 0.39666 0.35262
Run 10 0.36488 0.40559 0.38661

Table A.6: Full results of Diversity Metric2 for DLTZ1
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Detailed results for Diversity Metric1 (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.57396 0.81867 0.75177
SD 0.09135 0.01766 0.03891

MIN 0.33368 0.77737 0.67684
MAX 0.72895 0.85158 0.85158

3 MEAN 0.57163 0.67260 0.74996
SD 0.04344 0.03255 0.02064

MIN 0.48194 0.58796 0.69776
MAX 0.69725 0.73755 0.79000

4 MEAN 0.52708 0.62136 0.71360
SD 0.03692 0.01773 0.01881

MIN 0.43993 0.58529 0.67242
MAX 0.60801 0.65145 0.74650

Detailed results for Diversity Metric1(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.47917 0.28409 0.49031

Run 2 0.42277 0.31398 0.46535
Run 3 0.50914 0.29491 0.45811
Run 4 0.46548 0.28364 0.49944
Run 5 0.48906 0.26691 0.49252
Run 6 0.50623 0.31535 0.49198
Run 7 0.46243 0.29619 0.48530
Run 8 0.47268 0.31475 0.47939
Run 9 0.44485 0.27458 0.46009
Run 10 0.45818 0.32317 0.50235

8 Run 1 0.43976 0.31882 0.53132
Run 2 0.42424 0.30597 0.53893
Run 3 0.43089 0.31192 0.53054
Run 4 0.44983 0.30257 0.53052
Run 5 0.45093 0.30796 0.54932
Run 6 0.49832 0.30963 0.52897
Run 7 0.47821 0.31796 0.52000
Run 8 0.43215 0.30819 0.51625
Run 9 0.39875 0.29875 0.52018
Run 10 0.31692 0.31271 0.53985

Table A.7: Full results of Diversity Metric1 for DLTZ2
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Detailed results for Diversity Metric2 (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.58509 0.82186 0.75863
SD 0.09700 0.01992 0.04302

MIN 0.33368 0.77737 0.68526
MAX 0.75947 0.85632 0.87790

3 MEAN 0.57993 0.71680 0.81107
SD 0.04528 0.03629 0.02452

MIN 0.48367 0.64061 0.76888
MAX 0.70408 0.79347 0.86286

4 MEAN 0.57993 0.71680 0.81107
SD 0.04528 0.03629 0.02452

MIN 0.48367 0.64061 0.76888
MAX 0.70408 0.79347 0.86286

Detailed results for Diversity Metric2(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.52718 0.63810 0.73353

Run 2 0.46229 0.65994 0.73879
Run 3 0.57885 0.62894 0.72403
Run 4 0.51590 0.64356 0.74832
Run 5 0.55398 0.63955 0.75395
Run 6 0.56575 0.67661 0.72128
Run 7 0.51917 0.65037 0.72152
Run 8 0.51545 0.64318 0.72565
Run 9 0.49500 0.64741 0.72531
Run 10 0.49994 0.66520 0.73300

8 Run 1 0.58532 0.64035 0.76048
Run 2 0.55634 0.64166 0.75855
Run 3 0.57983 0.64480 0.75159
Run 4 0.56852 0.63780 0.76216
Run 5 0.55638 0.64660 0.77560
Run 6 0.57557 0.64394 0.76009
Run 7 0.59100 0.64032 0.74527
Run 8 0.60644 0.64566 0.74251
Run 9 0.54187 0.64653 0.75080
Run 10 0.54701 0.64739 0.76850

Table A.8: Full results of Diversity Metric2 for DLTZ2
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Detailed results for Diversity Metric1 (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.14023 0.17339 0.08846
SD 0.14497 0.19218 0.06994

MIN 0.00000 0.03526 0.03526
MAX 0.57947 0.72947 0.24632

3 MEAN 0.38965 0.62793 0.26244
SD 0.13220 0.14088 0.19989

MIN 0.01367 0.05541 0.02051
MAX 0.57480 0.71541 0.71694

4 MEAN 0.31659 0.58861 0.15869
SD 0.09393 0.02637 0.03146

MIN 0.10138 0.55407 0.10054
MAX 0.45323 0.65209 0.22212

Detailed results for Diversity Metric1(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.26200 0.07294 0.13776

Run 2 0.09638 0.07929 0.10926
Run 3 0.23940 0.10269 0.10434
Run 4 0.16981 0.10936 0.13500
Run 5 0.27371 0.07737 0.11782
Run 6 0.17187 0.09992 0.10068
Run 7 0.07937 0.08291 0.11834
Run 8 0.16581 0.09068 0.12998
Run 9 0.19127 0.07354 0.12310
Run 10 0.23168 0.07018 0.13060

8 Run 1 0.02315 0.15694 0.07371
Run 2 0.02671 0.15600 0.06647
Run 3 0.02252 0.16160 0.07088
Run 4 0.02255 0.13582 0.06314
Run 5 0.02825 0.14899 0.09328
Run 6 0.02645 0.14104 0.07017
Run 7 0.02705 0.13744 0.07166
Run 8 0.02766 0.13383 0.05779
Run 9 0.02826 0.13022 0.05164
Run 10 0.02886 0.12661 0.05042

Table A.9: Full results of Diversity Metric1 for DLTZ3
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Detailed results for Diversity Metric2 (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.49708 0.71668 0.57169
SD 0.14339 0.15166 0.15533

MIN 0.19500 0.32053 0.27800
MAX 0.78579 0.95211 0.78579

3 MEAN 0.58655 0.78540 0.60255
SD 0.09515 0.11143 0.18633

MIN 0.29265 0.23735 0.15061
MAX 0.75480 0.87327 0.87490

4 MEAN 0.51138 0.72007 0.50374
SD 0.07063 0.05674 0.04957

MIN 0.39182 0.58024 0.38377
MAX 0.65263 0.84118 0.60764

Detailed results for Diversity Metric2(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.42831 0.38503 0.55709

Run 2 0.25926 0.30965 0.56666
Run 3 0.36541 0.39917 0.59316
Run 4 0.32823 0.34057 0.57686
Run 5 0.41876 0.37533 0.57903
Run 6 0.31181 0.37423 0.59618
Run 7 0.20012 0.37125 0.58424
Run 8 0.30659 0.38373 0.56925
Run 9 0.33093 0.36958 0.55533
Run 10 0.34650 0.36024 0.58666

8 Run 1 0.12233 0.55757 0.57234
Run 2 0.10548 0.54439 0.59580
Run 3 0.10192 0.54173 0.59897
Run 4 0.10579 0.55591 0.55738
Run 5 0.11641 0.55048 0.58668
Run 6 0.10904 0.54972 0.59635
Run 7 0.12954 0.54706 0.59111
Run 8 0.12455 0.56837 0.58802
Run 9 0.09836 0.55625 0.57749
Run 10 0.09480 0.53907 0.58431

Table A.10: Full results of Diversity Metric2 for DLTZ3
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Detailed results for Diversity Metric1 (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.20191 0.44404 0.40846
SD 0.14198 0.25537 0.19784

MIN 0.00000 0.00000 0.00000
MAX 0.45684 0.72421 0.66737

3 MEAN 0.41962 0.64655 0.66157
SD 0.06423 0.14591 0.13731

MIN 0.26061 0.07153 0.23674
MAX 0.52541 0.83102 0.81898

4 MEAN 0.22558 0.22917 0.12825
SD 0.02790 0.01438 0.01845

MIN 0.17758 0.19441 0.07926
MAX 0.28256 0.25495 0.16205

Detailed results for Diversity Metric1(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.25504 0.08232 0.06243

Run 2 0.25248 0.08953 0.10778
Run 3 0.24496 0.07340 0.06055
Run 4 0.28109 0.06469 0.08893
Run 5 0.29282 0.06692 0.10227
Run 6 0.30431 0.07883 0.07153
Run 7 0.28642 0.07434 0.06268
Run 8 0.29658 0.07761 0.06463
Run 9 0.30113 0.07628 0.06542
Run 10 0.24829 0.07541 0.06818

8 Run 1 0.28261 0.05203 0.04591
Run 2 0.27154 0.04990 0.04963
Run 3 0.27991 0.05054 0.05023
Run 4 0.27531 0.07294 0.04546
Run 5 0.27396 0.05378 0.04980
Run 6 0.27261 0.06380 0.04348
Run 7 0.27125 0.06645 0.04426
Run 8 0.26990 0.06910 0.05619
Run 9 0.26854 0.07175 0.04408
Run 10 0.26719 0.07441 0.04754

Table A.11: Full results of Diversity Metric1 for DLTZ6
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Detailed results for Diversity Metric2 (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 0.55795 0.85028 0.78386
SD 0.12064 0.06017 0.08507

MIN 0.29421 0.66790 0.61526
MAX 0.81211 0.95211 0.92158

3 MEAN 0.56629 0.83748 0.81710
SD 0.14311 0.03616 0.06102

MIN 0.26061 0.70663 0.71510
MAX 0.82857 0.90857 0.92061

4 MEAN 0.48907 0.47386 0.59749
SD 0.03777 0.02237 0.02803

MIN 0.39471 0.42633 0.52226
MAX 0.56633 0.52303 0.67330

Detailed results for Diversity Metric2(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 0.49409 0.60792 0.64865

Run 2 0.46802 0.62490 0.63540
Run 3 0.44483 0.60759 0.67659
Run 4 0.48154 0.60603 0.63410
Run 5 0.49044 0.59878 0.66059
Run 6 0.50453 0.58925 0.68078
Run 7 0.51649 0.60843 0.65140
Run 8 0.51663 0.58961 0.63621
Run 9 0.48931 0.59200 0.64283
Run 10 0.46671 0.59811 0.66998

8 Run 1 0.44999 0.53540 0.62642
Run 2 0.43841 0.55041 0.62334
Run 3 0.45818 0.54032 0.62398
Run 4 0.44977 0.57866 0.63484
Run 5 0.49856 0.58483 0.63804
Run 6 0.49153 0.60447 0.63520
Run 7 0.40238 0.53923 0.62373
Run 8 0.41323 0.57249 0.63297
Run 9 0.42408 0.59100 0.62226
Run 10 0.46246 0.59717 0.62998

Table A.12: Full results of Diversity Metric2 for DLTZ6
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Detailed results for Running Time in seconds(30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 2.53 3.70 2.90
SD 0.51 0.47 0.55

MIN 2.00 3.00 2.00
MAX 3.00 4.00 4.00

3 MEAN 9.13 17.38 4.53
SD 1.56 0.49 0.80

MIN 7.00 17.00 4.00
MAX 15.00 18.00 8.00

4 MEAN 70.53 91.45 17.00
SD 5.53 1.04 0.39

MIN 59.00 89.00 16.00
MAX 81.00 93.00 18.00

Detailed results for Running Time in seconds(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 4218 1854 218

Run 2 4335 1733 222
Run 3 4300 1787 211
Run 4 4229 2336 212
Run 5 4064 1697 209
Run 6 4105 1671 213
Run 7 4063 2215 219
Run 8 4222 1619 208
Run 9 4673 1584 212
Run 10 4083 1894 215

8 Run 1 88714 34323 1692
Run 2 104299 34373 1545
Run 3 93384 33125 1543
Run 4 98534 38376 1564
Run 5 95634 34314 1521
Run 6 97462 33901 1520
Run 7 94321 37898 1533
Run 8 95467 35983 1546
Run 9 99045 33578 1518
Run 10 87796 31482 1545

Table A.13: Full results of Running Time for DLTZ1
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Detailed results for Running Time in seconds (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 4.60 4.07 3.27
SD 0.50 0.26 0.59

MIN 4.00 4.00 3.00
MAX 5.00 5.00 5.00

3 MEAN 19.83 20.43 4.93
SD 3.69 0.59 0.83

MIN 18.00 20.00 4.00
MAX 36.00 22.00 8.00

4 MEAN 193.98 107.45 18.70
SD 17.41 1.28 2.42

MIN 180.00 104.00 18.00
MAX 254.00 110.00 29.00

Detailed results for Running Time in seconds(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 8153 2304 227

Run 2 8145 2233 224
Run 3 8065 2225 234
Run 4 8318 2961 323
Run 5 8052 2248 223
Run 6 7975 2295 226
Run 7 7867 3045 222
Run 8 8072 2246 227
Run 9 8198 2288 228
Run 10 7983 2235 225

8 Run 1 334600 32537 1743
Run 2 334683 33196 1556
Run 3 334983 37034 1571
Run 4 334543 32994 1544
Run 5 335894 32849 1548
Run 6 336534 33848 1552
Run 7 338763 32890 1544
Run 8 332784 33903 1536
Run 9 339764 33952 1563
Run 10 323867 34017 1551

Table A.14: Full results of Running Time (seconds) for DLTZ2
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Detailed results for Running Time in seconds (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 5.57 6.63 5.73
SD 0.74 0.49 0.79

MIN 4.00 6.00 5.00
MAX 7.00 7.00 8.00

3 MEAN 11.83 29.33 7.97
SD 1.50 0.63 1.13

MIN 10.00 28.00 7.00
MAX 15.00 31.00 14.00

4 MEAN 80.80 131.93 29.75
SD 8.91 1.38 2.84

MIN 68.00 129.00 29.00
MAX 102.00 136.00 47.00

Detailed results for Running Time in seconds(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 3509 2956 373

Run 2 3867 2774 365
Run 3 3402 2904 371
Run 4 3254 3778 366
Run 5 3271 3021 372
Run 6 3271 2964 512
Run 7 3502 3755 370
Run 8 3387 2989 370
Run 9 3282 3011 375
Run 10 3279 2879 370

8 Run 1 85976 49509 2928
Run 2 86053 49758 2574
Run 3 87437 49631 2589
Run 4 83515 48684 2591
Run 5 88929 49329 2566
Run 6 82326 49952 2565
Run 7 86748 49808 2573
Run 8 81579 49665 2574
Run 9 83133 49108 2534
Run 10 89898 48378 2561

Table A.15: Full results of Running Time (seconds) for DLTZ3



APPENDIX A. DETAILED RESULTS 64

Detailed results for Running Time in seconds (30 runs)
Mean, Standard Deviation (SD), Minimum (MIN) and Maximum (Max) Values
# of Objectives (M) Metric Value PESA SPEA2 NSGA-II

2 MEAN 3.77 4.23 3.20
SD 0.51 0.44 0.56

MIN 3.00 4.00 2.00
MAX 5.00 5.00 5.00

3 MEAN 22.23 32.47 7.73
SD 4.38 0.78 0.45

MIN 16.00 31.00 7.00
MAX 39.00 34.00 8.00

4 MEAN 295.15 178.18 31.00
SD 22.07 7.23 0.39

MIN 272.00 173.00 30.00
MAX 373.00 210.00 32.00

Detailed results for Running Time in seconds(10 runs)
All 10 runs are listed

# of Objectives (M) Metric Value PESA SPEA2 NSGA-II
6 Run 1 13874 5418 387

Run 2 13417 5428 385
Run 3 13487 5418 389
Run 4 13531 6947 385
Run 5 13736 5261 391
Run 6 13470 5252 387
Run 7 13390 6904 387
Run 8 13599 5256 384
Run 9 13460 5267 384
Run 10 13318 5250 390

8 Run 1 264680 63432 2990
Run 2 259404 53475 3144
Run 3 264316 63526 2646
Run 4 265494 52565 2657
Run 5 268758 52612 2691
Run 6 297654 50357 2645
Run 7 256354 48155 2650
Run 8 227983 49047 2648
Run 9 258945 53592 2646
Run 10 264412 51337 2694

Table A.16: Full results of Running Time (seconds) for DLTZ6
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Source Files

Running PESA
Location m̃sc39vxk/sp/pesa/withSBX/
Files new.c & metric.cpp
Compiling file1 gcc -lm new.c
Running file1 a.out
Output files out (non-dominated solutions) & time (running time)
Compiling file2 g++ -lm metric.cpp -o met
Running file2 met
Output files metrics (contains convergence and diversity metrics)
Note for all problems: # of variable = cardinality(k) + # of objectives(M ) -1

Table B.1: Running PESA

Running SPEA2
Location m̃sc39vxk/sp/SPEA2/TEA/ExtMultiobjective/Examples/
Files teaSPEA2.cc & metric.cpp
Compiling file1 type ‘rem’ on the prompt
Running file1 type ‘teaSPEA2’ on the prompt
Output files out (non-dominated solutions) & time (running time)
Compiling file2 g++ -lm metric.cpp -o met
Running file2 met
Output files metrics (contains convergence and diversity metrics)
Note for all problems: # of variable = cardinality(k) + # of objectives(M ) -1

Table B.2: Running SPEA2
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Running NSGA-II
Location m̃sc39vxk/sp/nsga2code/
Files nsga2.c & metric.cpp
Compiling file1 gcc -lm nsga2.c
Running file1 a.out
Output files out (non-dominated solutions) & time (running time)
Compiling file2 g++ -lm metric.cpp -o met
Running file2 met
Output files metrics (contains convergence and diversity metrics)
Note for all problems: # of variable = cardinality(k) + # of objectives(M ) -1

Table B.3: Running NSGA-II
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MSc. project Declaration
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Appendix D

Statement of Information Search Strategy

1. Parameters of literature search

Most of the literature search was carried out for the first part of the project in which various MOEAs,
performance metrics and test problems were searched for.

• Forms of literature
The categories explored maximally were conference papers and Journal articles; Technical report,
theses books and www pages were also searched for. My supervisor Prof. K. Deb also provided me
with some references.

• Age-Range of literature
First ever MOEA was proposed in 1985. So the search was carried out from 1985 onwards.

• Restrictions as to language
I don’t know any language other than English so my search will be limited to articles published in
English.

2. Appropriate search tools

• Engineering Index
Ei Compendex (http://edina.ac.uk/compendex/login.shtml), can be used to search interdisciplinary en-
gineering information database in the world. Various keywords can be used to search for conference
papers, journal articles and some theses.

• Science Citation Index (SCI)
This was used for finding relevant journal papers. Cited reference search was also performed using
SCI. In SCI keywords can be used to find some papers to start with, further cited reference search can
be used. ResearchIndex (http://citeseer.nj.nec.com/cs) and Web of Science (http://wos.mimas.ac.uk)
are two useful science citation indices.

• Dissertations Abstracts International (DAI) and Index to Theses
DAI (http://wwwlib.umi.com/dissertations/gateway) can be used to retrieve North American theses and
Index to Theses (http://www.theses.com) can be used to retrieve UK theses.

3. Search statements

The search statements will be based on following terms: Multi-Objective Evolutionary Algorithms (MOEAs),
Evolutionary Multi-objective optimization, Pareto-optimality, Non-dominated solutions, etc - various com-
binations of these keywords were used.

4. Brief evaluation of the search

For the first part of the project, using various keywords for searching in Science Citation Index, following 9
items were retrieved.
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• 5 Conference proceedings

• 3 Technical Reports

• 1 PhD Thesis

Using these as starting points, cited reference search was carried out. For the second part of the project, my
project supervisor suggested a few references. Other literature items were retrieved by the cited reference
search.



Appendix E

List of Acronyms

DLTZ Deb Laumanns Thele Zitzler (test problems)
EMO Evolutionary Multi-objective optimization
MOEA Multi-objective Evolutionary Algorithms
MOGA Multi-objective Genetic Algorithm
MOOP Multi-objective optimization problem
NPGA Niched Pareto Genetic Algorithm
NSGA Non-dominated Sorting Genetic Algorithm
PAES Pareto Archived Evolution Strategy
PESA Pareto Enveloped-based Selection Algorithm
PO Pareto Optimal
SBX Simulated Binary Crossover
SPEA Strength Pareto Evolutionary Algorithm
VEGA Vector Evaluated Genetic Algorithm
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