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ABSTRACT

Feature subset selection is an important problem in knowledge discovery, not
only for the insight gained from determining relevant modeling variables but also for
the improved understandability, scalability, and possibly, accuracy of the resulting
models.

The purpose of this study is to provide a comprehensive analysis of feature
selection via evolutionary search in supervised and unsupervised learning. To achieve
this purpose, it first discusses a general framework for feature selection based on a new
search algorithm, Evolutionary Local Selection Algorithm (ELSA). ELSA searches
for a good set of feature subset in a multi-dimensional objective space and can be
combined with any supervised and unsupervised learning algorithms.

In supervised learning, we train an induction algorithm to maximize the clas-
sification accuracy for unseen data while minimizing the size of feature subsets.
Using Artificial Neural Networks (ANNs) as an induction algorithm, we apply an
ELSA/ANN model to a real business problem, customer targeting, and address the
issues related with knowledge discovery.

Focusing on feature selection for creating diversity in a classification ensem-
ble, we provide a new two-level evolutionary algorithm, Meta-Evolutionary Ensemble

(MEE) to create an optimal ensemble. In this algorithm, the various ensembles com-



pete with one another, being judged on their estimated predictive performance. In
addition, the underlying classifiers also compete with each other, being rewarded for
correctly predicting the training examples. In this way we aim to optimize ensembles
rather than form ensembles of individually-optimized classifiers.

However, we often cannot apply supervised learning for lack of a training sig-
nal. For these cases, we propose a new feature selection approach based on clustering
and discuss its significance to the real-world problems in marketing and finance. Fur-
ther, we show that our new approach can be used to form the given number of clusters

based on the selected features.
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CHAPTER 1
INTRODUCTION

This chapter discusses research motivation for feature selection and reviews
the fundamental concepts related to it. First, we present research motivation for fea-
ture selection in supervised and unsupervised learning in Section 1.1. In Section 1.2,
we describe two representative algorithms for learning, decision trees and neural net-
works, and clustering algorithms such as K-means and Expectation Maximization

(EM) for unsupervised learning. Section 1.3 provides the overall structure of thesis.

1.1 Feature selection in general

Feature selection has been an active research area in pattern recognition [162,
97, 123], machine learning [9, 115, 108, 31], statistics [62, 59, 143, 152], and data
mining communities [99, 114, 113, 106, 107]. The main idea of feature selection is to
choose a subset of the original variables by eliminating redundant features and those
with little or no predictive information. If we extract as much information as possible
from a given data set while using the smallest number of features, we can not only
save a great amount of computing time for future analyses, but often build a model
that generalizes better to unseen points. By identifying insignificant information,
feature selection also can save cost occurred data collection, communication, and

maintenance. Feature selection may also significantly improve the comprehensibility



of the resulting classifier models and clarify the relationships among features. Further,
it is often the case that finding the correct subset of predictive features is an important
problem in its own right. For example, a physician may make a decision based on the
selected features whether a potentially dangerous surgery is necessary for treatment
or not.

One of the simplest algorithm for feature selection, backward sequential se-
lection (BSS) was introduced in [137]. This starts with the full set of features, and
greedily removes the one that most improves performance, or degrades performance
slightly. Another simple algorithm, forward sequential selection (FSS) [208], starts
with the empty set of features, and greedily adds features. However, both algorithms
cannot consider the interaction among features and thus produce suboptimal solutions
[198].

Feature selection is also performed by classifiers in the decision tree family,
such as ID3 (1983), CART (1984), and C4.5 (1993) . These algorithms include a
feature selection routine as a subroutine and heuristically search the space of feature
subsets along the tree structures. Other approaches to feature selection can be done
either without using any learning algorithms — the filter approach — or with learning
algorithms — the wrapper approach — to evaluate selected features [99]. In the filter
approach, the inherent properties of features such as the correlation with the target
function are regarded as important and learning algorithms are used only for evalu-

ating final classifier with the selected features. However, the wrapper approach uses



a feature selection algorithm as a wrapper around the learning algorithms. Thus the
feature selection algorithm searches for a good subset using the learning algorithms
to evaluate feature subsets. The same learning algorithm is used for evaluating the
final classifier on holdout data to get the estimated accuracy.

We adopt the wrapper model of feature selection mainly because the wrapper
model has been shown to return higher predictive accuracy in supervised learning
[99, 44]. The wrapper approach typically requires two components: a search algorithm
that searches through the possible combinations of features, and one or more criterion
functions that evaluate the quality of each feature subset. Let D represent the original
feature dimension of a given data set. The whole search space is ©(2”), making
exhaustive search impractical for data sets with even moderate dimensionality. As a
search algorithm for feature space, greedy methods such as sequential floating search
are suitable for small- and medium-scale problems [123]. Since we are interested in
large-scale problems, we use Evolutionary Algorithms (EAs) to intelligently search
the space of possible feature subsets.

In order to select a good feature subset, we evaluate each feature subset in
terms of multiple objectives: the number of selected features (which should be mini-
mized) along with the accuracy in supervised learning (which should be maximized)
or the clustering quality in unsupervised learning (which should be maximized). This
is a difficult problem to solve in the general case, since any given data set may

have unique characteristics, and any given decision maker will have their own mental



model of the tradeoffs among criteria. In such situations we can use multi-objective or
Pareto optimization. Formally, each solution s; is associated with an evaluation vector
F = (F\(si), ..., Fc(s;)) where C is the number of quality criteria. One solution s; is
said to dominate another solution s, if Ve : Fu(s1) > F.(s2) and Jc : F.(s1) > F.(s2),
where F, is the c-th criterion, ¢ € {1...C}. Neither solution dominates the other if
der, co : Fpy(s1) > Fp(s2), Fu,(s2) > Fi,(s1). We define the Pareto front as the set
of nondominated solutions. The goal is to approximate as best possible the Pareto
front, presenting the decision maker with a set of high-quality solutions from which
to choose.

Standard EAs assume a single fitness function to be optimized and thus cannot
consider multiple fitness criteria effectively. A number of multi-objective extensions of
evolutionary algorithms have been proposed in recent years [202]. Most of them em-
ploy computationally expensive selection mechanisms to favor dominating solutions
and to maintain diversity, such as Pareto domination tournaments [90] and fitness
sharing [77]. We propose a new algorithm, Evolutionary Local Selection Algorithms
(ELSA), which works well for Pareto optimization problems [141, 106]. In ELSA,
each individual solution is allocated to a local environment based on its criteria val-
ues and competes with others to consume shared resources only if they are located in
the same environment. The more densely populated the local environment, the more
competition among individuals for resources, resulting in bias toward different local

environments.



Feature selection can have different implications in supervised and unsuper-
vised learning. In supervised learning, an induction algorithm is given a set of training
examples and is required to learn generalization rules to fit the training examples.
Each example in the training set guides or supervises a learner with a list of feature
values and a corresponding class label.

Feature selection in supervised learning aims to find a feature subset that pro-
duces a higher classification accuracy given an induction algorithm. This is obtained
by eliminating noisy features that make it difficult for a learning algorithm to separate
useful signal from noise. Further, feature selection can eliminate deceptive features
that interact with the learning algorithm’s bias counter-productively and deteriorate
overall performance on unseen data. For example, consider a customer targeting
problem whose main goal is to identify potential customers who are most likely to
buy new products or services. An induction algorithm combined with a feature se-
lection routine searches the space of feature subsets in order to maximize predictive
accuracy while minimizing the number of features used. Our feature selection model
in supervised learning, ELSA /ANNs, uses ELSA to search through the possible com-
binations of features and artificial neural networks (ANNSs) to evaluate the quality of
each feature subset in terms of classification accuracy. Estimated predictive accuracy
is used to guide the search direction of ELSA.

In clustering or unsupervised learning, each example in a given data set con-

sists of an only unlabeled instance, a list of feature values. Thus, learning algorithms



are designed to find inherent structures in the data, finding natural grouping of the
examples in the feature space. The idea is to represent groups of points by a cluster
prototype after determining the inherent number of clusters in the given data set.
Clustering is especially useful when there is no or little prior information about data
or when it is necessary to minimize assumptions about the data. Clustering may be
performed using iterative methods such as K-means [100] or Expectation Maximiza-
tion (EM) [57, 28], probability models [47], or optimization models [30]. Recently
a set of novel clustering algorithms have been proposed in the database community
[214, 81]. For instance, Agrawal et al. [1] present an order-independent clustering
algorithm, CLIQUE, that forms clusters in large data sets.

In this thesis, the standard K-means algorithm [63] and the Expection Max-
imization (EM) algorithm [57] are used to do clustering. These algorithms group
unlabeled patterns into K clusters in such a way that patterns within the same clus-
ter are more similar to each other than other patterns in different clusters. Clustering
procedures consist of four steps: pattern representation, clustering, data abstraction
and cluster validity analysis [96]. Once the number of clusters K and proximity
measurements are defined in pattern representation, actual clustering is performed.
For further analysis, cluster prototypes or representative patterns are extracted to
describe each cluster. Final assessment of a clustering output is done using heuristic
criteria such as the compactness of each cluster and the separation among different

clusters.



Thus feature selection in unsupervised learning aims to find a good subset of
features that forms high quality of clusters for a given number of clusters. This is
harder problem because the interdependency between the clustering quality and the
number of clusters. Some researchers [1, 194] have studied feature selection and clus-
tering together. In particular, Devaney and Ram [58] combined a sequential forward
and backward search algorithm with two concept learning algorithms, COBWEB [70]
and AICC, an improved variant of COBWEB. The category utility score was em-
ployed as a quality measurement of feature subsets and the number of clusters was
one of the factors used for the computation of utility score. In [201], a Bayesian
framework with a unified objective function considering both the number of clusters
and the feature subset was applied to the problem of document clustering. Recently,
Dy and Brodley [65] proposed a wrapper approach that uses an EM algorithm to
form clusters. Feature subsets are evaluated in terms of clustering quality based on

either scatter separability or maximum likelihood.

1.2 Machine learning algorithms
In this section, we first review two representative machine learning algorithms
— decision tree and neural networks — that have been successfully adopted for feature
selection in supervised learning. We then review the clustering algorithms for use in

feature selection in unsupervised learning.



1.2.1 Decision trees

After the original work by [93], decision tree induction has become one of the
most popular algorithms in the machine learning community. Decision trees such
as ID3 [164], CART [37], Assistant 86 [45], and C4.5 [166] have been successfully
used for various classification systems. In particular, these algorithms enable human
experts to understand the models more easily by representing the learned pattern as
a decision tree or a corresponding set of decision rules. In this section, we limit our
focus to C4.5 exclusively because it is one of the most frequently used tree algorithms.

Typically, a decision tree is represented by nodes and edges. At each node,
each feature is evaluated to determine how well it classifies the associated data points
and the best feature is selected. Note that some decision tree algorithms choose a
subset or all features at each node. Various measurements such as information gain
[164, 144], gain ratio [166], gini index [37], and chi square [83] are used for evaluating
features. An empirical comparison among different metrics can be found in [144],
which claimed that random feature selection with pruning can achieve comparable
predictive accuracy to more elegant feature selection methods. However, a compar-
ative study on the same data sets in [40] refuted this claim and suggested possible
reasons for different conclusions from two experiments. Another comparative study
also supported the claim that decision trees constructed with elegant feature selec-
tion showed higher predictive accuracy than those constructed with random feature

selection [134].



Once the best feature is determined, edges descending from the current node
are constructed for each of the possible values (or intervals of continuous features)
of the selected feature. The training data is mutually exclusively partitioned along
those edges. Thus each intermediate node has its own training points and determines
the best feature using only the associated points. The process of selecting a new best
feature and partitioning the training points is repeated until it reaches a terminal
node in which all points belong to the same class or when all features are evaluated.
Decision rules can be obtained by following each path from the root node to a terminal

node.

f2=v4
4 5
Class 1 Class 2

Figure 1.1: The structure of a binary decision tree.

A simple example is shown in Figure 1.1. Node splitting starts from the root
node, node 1. After all features (f; and f;) are evaluated, f; is selected as the best

feature, which has only two possible values, v; and vy in this case. All points whose
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value of f; is v; take a path to node 2 which will be classified as class 1. However,
other points lead to node 3 which will be further split into node 4 and node 5 based on
the value of f5. Based on the class distribution at node 4 and node 5, tree induction
algorithms determine them as class 1 and class 2 respectively. The corresponding sets
of If-then rules are: If f; = vy or (fi = vo and fy = v3), then class 1. If f; = vy and
fo = vy, then class 2.

Features can appear at most once along any path through the decision tree
constructed by C4.5. All paths are mutually exclusive, meaning that any new example
will always satisfy one and only one path. For feature selection purposes, decision
tree algorithms can be used either solely, or can be combined with search algorithms
as in the wrapper approach. When a decision tree algorithm is used solely for feature
selection, the set of selected features at intermediate nodes are returned as a solution.
However, in the wrapper approach, a new decision tree is built using only selected
features by a search algorithm and its predictive accuracy is returned to a search
algorithm to guide the search direction. Practical issues in learning decision trees

include

determining how deeply to grow the decision tree,

discretizing continuous features,

choosing an appropriate measure to evaluate and select attributes,

handling training data with missing attribute values,
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e handling attributes with different costs,

e and improving computational efficiency.

Decision tree algorithms can avoid overfitting either by stopping growing the
tree before it reaches the point where it perfectly classifies the training data, or by
allowing the tree to overfit the data and then post-pruning the tree. Compared
to neural networks algorithms, decision tree algorithms are faster and have fewer
parameters with comparable classification accuracy. Further, graphical denotations
and corresponding sets of If-then rules are in particular easier to understand than
outputs from neural networks. More comparative experiments with decision tree
algorithms and other classification algorithms can be found in [61, 165, 184].

However, the solutions from decision tree algorithms might not be optimal in
the sense that the decision about the best feature at the current node is not back-
tracked. Once the current node is split based on the selected feature, that particular
decision is not reconsidered later. Further, it is not clear how to determine the appro-
priate size of and number of intervals for splitting continuous features, though this
problem is well-addressed in [167]. It is also known that there could be many different

trees that are consistent with given training data.

1.2.2  Neural networks
The development of the artificial neural networks (ANNs) [172, 177] has been

inspired in part by the fact that the most advanced learning system, human brains,
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consists of millions of interconnected neurons. Contrasted with decision tree algo-
rithms, ANNs can approximate well both real-valued and discrete-valued target func-
tions. In particular, ANNs have proven successful in many practical problems. For
example, ANNs has been applied in management sciences, finance, and marketing for
stock market prediction [176, 159], bankruptcy prediction [209], customer clustering
[74, 5] and market segmentation [92, 14] with some success.

It was proved in [54] that any function can be approximated to arbitrary
accuracy by a network with three layers of units when the output layer uses linear
units, and the hidden layer uses sigmoid units. The backpropagation algorithm [175]
is the most common network learning algorithm. We briefly review its structure and
learning process. Typically, the neural network model consists of a number of neurons
(nodes) which are connected by weighted links. We show a representative model with

three layers, an input layer, a hidden layer, and an output layer in Figure 1.2.

9 Output
Layer

Hidden
Layer

I nput
Layer
Figure 1.2: The structure of a neural network model. It consists of three layers; input

layer, hidden layer, and output layer. There is only one output node for two-class
concept learning.
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Each node in the input layer receives a corresponding feature from the input
data, and passes it via weighted connections to the units in the hidden layer. Each unit
1 computes its activation level o; using an activation function, typically the sigmoid

logistic function

1
0; = f(netz) = W (11)
where net; is defined as follows:
neti = Z 0 Wys- (12)

jepred(i)

In the above equation, pred(i) and w;; denotes the set of predecessors of unit ¢ and
the connection weight from unit j to unit ¢ respectively.

Learning in neural networks is done by adjusting network weights in order to

map input to output through examples in the training data set, x,,n = 1,---, V.

Each example z,, consists of feature values, T,,, and its corresponding class label %,,.

When an example with Z, is presented to the network, the distance between the

target ¢, and the actual output vector o, is measured as follows:

E=15 (ta— 00 (1.3)

2 neN
Fulfilling the learning goal now is equivalent to finding a minimum of E. The weights
in the network are changed along a search direction §(¢), driving the weights in the

direction of the estimated minimum:

wt+1) = w(t) +n * () (1.4)
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where the learning rate n determines the step size of weight changes and the negative
gradient —22 is used for the search direction 4(t).

By propagating the error back from the output layer towards the input layer
and applying the chain rule repeatedly, the Backpropagation algorithm computes %

for each weight in the network as follows:

o)) OFE 0o;

owj; do; wj;
OFE 0o; Onet;
80i 8neti 8wj,~
oF

= %, ['(net;)o;. (1.5)

Based on whether 4 is an output unit or not, the value of % is computed as follows:

e Case 1: ¢ is an output unit:

OF N 1 6(t, - Oz')2

= ———"=—(t; — 0;)- 1.6
8o,~ 2 801' ( ! OZ) ( )
e Case 2: ¢ is not an output unit:
o8 _ OF 9o
aoi k€upper(i) 80k 8Oi

8_E 0oy, Onety,
) Ooy, Onet, 0o;
oF ,

k€upper(i) Ok

k€upper(i

where upper(i) denotes the set of all units k£ in upper layers and the gradient infor-
mation is passed down from the output layer to input layer successively. Once the

gradient information is known, the weight update is computed as follows:

OF
awji

Dowgi(t) = =1 % (). (1.8)
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Neural networks with backpropagation learning have great representational power
and can be very effective for both discrete-valued and real-valued data that are often
noisy. However, it is more difficult for humans to understand the resulting models
from neural networks than learned rules from decision tree algorithms. Further, the
performance of ANNs also depends on many parameters such as the number of train-
ing epochs, the activation functions at the hidden and output layers, learning rate,
and number of hidden nodes. Longer training times than decision tree algorithms is
another factor that hinders the usage of ANNs for high-dimensional data sets. For
different neural networks algorithms, refer to [149] for recurrent networks that were
proposed for the analysis of time series data and [129] for optimal brain damage

approach that dynamically alters network structure.

1.2.3 Clustering algorithms

Clustering has many synonyms such as unsupervised learning [95], numerical
tazonomy [189], and wvector quantization [154] and makes it feasible to uncover mul-
tidimensional structures and interrelationship among the data points. In clustering,
no labeled data are provided and the problem is to group unlabeled patterns into
meaningful clusters in such a way that patterns within the same cluster are more
similar to each other than other patterns in different clusters. Clustering is especially
useful when there is no or little prior information about data or when it is necessary
to minimize assumptions about the data as much as possible.

Hierarchical clustering algorithms [100] proceed either by successively merg-
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ing different clusters or by successively splitting a cluster into two clusters. The first
approach, which is called an agglomerative approach, begins with the individual pat-
terns. Thus there are initially as many clusters as patterns. It successively combines
from a pair of the most similar clusters together until a certain similarity criterion
is satisfied. Eventually, as the similarity decreases, all subgroups are fused into one
cluster.! On the contrary, a partitional (divisive) method begins with all patterns in
a single cluster and performs splitting until a stopping criterion is met or each pattern
forms a group.

Nonhierarchical clustering algorithms are designed to group items into a col-
lection of K clusters, which can either be specified in advance or determined as part
of the clustering procedure. Nonhierarchical methods can be applied to much larger
data sets than hierarchical methods because a matrix of inter-cluster distances (sim-
ilarities) does not have to be determined. Nonhierarchical methods start from either
an initial partition of items into groups or an initial set of seed points, which form
the centroid or medoid? of clusters.

The K-means algorithm is the simplest and most commonly used nonhierar-
chical algorithm. It employs a squared error criterion and implicitly assumes that
clusters are represented by spherical Gaussian distributions located at the K cluster

means. Starting with a random initial partition, it iteratively assigns each data point

1By setting the similarity criterion at different levels, we could have different clusterings
of the same data.

2A medoid is the most centrally located point in a cluster.
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to the cluster whose centroid is located nearest to the given point, and recalculates
the centroids based on the new set of assignments until a convergence criterion is met.

The K-means algorithm is very efficient in terms of time complexity and it
generates the same partition of the data irrespective of the order in which the patterns
are presented. However, it is sensitive to the selection of the initial partition and may
converge to a local minimum of the criterion function. Another problem is that it
does not generalize well to the domains of discrete or categorical data because of the
distance-based metric. Further, K-means is a hard clustering method and thus does
not allow for uncertainty in the membership of patterns.

Unlike K-means, the mixture model, using Expectation Maximization (EM)
algorithm [57] for optimization, generalizes to include realistic situations in which
every data point belongs to all clusters with different membership probabilities. The
underlying assumption is that the patterns to be clustered are drawn from one of
several distributions, and the goal is to identify the parameters of each distribution
and their number. The EM procedure begins with an initial estimate of the parameter
vector and iteratively rescores the patterns using updated parameter estimates. In
a clustering context, the pattern scores measure the likelihood of being drawn from
particular components density function and thus give insights into the membership
of each pattern to all classes.

The EM algorithm has been shown to be superior to other alternatives [48,

76, 81, 20]. In experiments [138], the EM significantly outperforms a “winner take
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all” version of the EM and hierarchical agglomerative clustering. DBSCAN [68] is
a relatively new mode seeking algorithm. DBSCAN can find clusters with arbitrary
shaped clusters using two input parameters, the radius of the neighborhood of a point
and the minimum number of points in the neighborhood [81]. The performance of
DBSCAN, however, is sensitive to parameters and it can not handle data with many
features [1].

Other clustering algorithms took an evolutionary approach [169, 12|, deter-
ministic approach [119], or stochastic approach [182, 6]. When data sets are too big
to be stored in main memory, incremental clustering algorithms [84, 43, 70, 41] can be
used. These algorithms assign the first data item to a cluster and assign the new item
either to one of the existing clusters or to a new cluster based on the distance between
the new item and the existing cluster centroids. Though they are very efficient in
terms of time and space complexity, they are order dependent [96].

Recently, CLARANS [153], Focused CLARANS [67], and BIRCH [214] [81]
have been proposed for large data sets. However, those algorithms are not suitable
when clusters have different sizes or when clusters are non-spherical [81]. A new
algorithm, CURE, was proposed to handle huge data sets with non-spherical shapes
of clusters [81]. CURE first draws an appropriate number of samples from the whole
database based on Chernoff bounds and partially clusters them. Clusters with the
closest pair of representative points are merged into one cluster at each step. The

performance of CURE, however, depends on data representation order and selected
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samples.

A novel clustering algorithm CLIQUE [1] generates minimal cluster descrip-
tions in the form of DNF expressions without pre-assumptions of data distribution.
CLIQUE is different from other algorithms for large high dimensional data such as
BIRCH, CLARANS, and DBSCAN in the sense that it discovers clusters in subspaces
of the original data space. CLIQUE produces identical clustering results irrespective
of presented order of data records and has good scalability as the number of features

is increased.

1.3 Organization

The remainder of the thesis is organized as follows. In Chapter 2, we review
the definition of feature selection and motivation of feature selection along with the
relationship between relevant feature subsets and optimal feature subsets. We also
divide feature selection algorithms into three main categories: embedded, filter, and
wrapper approaches, and discuss their advantages and disadvantages. Various search
algorithms for feature selection from simple greedy sequential algorithms to recent
evolutionary algorithms are also discussed. Finally, our search algorithm, Evolution-
ary Local Selection Algorithm (ELSA), is proposed and explained in detail.

Chapter 3 presents an approach to feature selection using ELSA in supervised
learning. Our algorithm is applied to a real world database marketing problem to
identify and profile prospects who are most likely to respond to a direct marketing

campaign. After multiple objectives are proposed and justified, the ELSA/ANN
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model is explained in detail. Finally, the resulting model is evaluated and interpreted.

In Chapter 4, we propose a two-level evolutionary environment, Meta-Evolutionary
Ensembles (MEE), that uses feature selection as the mechanism for boosting diversity
and prediction accuracy of an individual classifier in an ensemble. In MEE, multiple
ensembles are considered simultaneously and each component classifier is allowed to
move into the best-fit ensemble. Genetic operators change the ensemble membership
of the individual classifiers, allowing the size and membership of the ensembles to
change over time.

Chapter 5 discusses the feature selection problem in unsupervised learning.
Since prior class information is not available in unsupervised learning, we utilize the
natural grouping based on the combination of a particular set of features and given the
number of clusters. This is a harder problem because the inter-dependency between
the number of clusters and the evaluation criteria of clustering results.

Finally Chapter 6 addresses directions of future research and concludes the

thesis.
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CHAPTER 2
FEATURE SUBSET SELECTION

This chapter first reviews the definition of feature selection. It next presents
the motivation of feature selection and reviews the definition of feature relevance.
Finally, it outlines the evolutionary local selection algorithm that will be used as our

search algorithm to search the feature subset space.

2.1 Definition
2.1.1 Feature selection in supervised learning

Feature subset selection commonly involves finding a “good” set of features
under some objective functions. As pointed out in [99], predictive accuracy, struc-
ture size, and the minimal use of input features are often used as objective functions.
These objectives are consistent with notions such as Occam’s razor [24], minimum
description length [173], or minimum message length [205]. The importance of each
objective is solely determined based on prior knowledge of problem domain. For
example, when features are associated with medical tests or surgeries that are expen-
sive or potentially hazardous, the minimal use of input features becomes the most
important objective.

Formally, feature selection is defined as the process of selecting a subset of

features which performs best with the underlying learning algorithms on a data set



22

with only the selected features in [97]. This definition captures most of the important
aspect of feature selection and puts more weight on the predictive performance of
the selected features together with the induction system. On the contrary, a some-
what different definition was proposed in [99] that puts more weight on the inherent
properties of the feature sets. They defined feature selection as the process of select-
ing all strongly relevant features and a useful subset of the weakly relevant features
that yield good performance.! Only irrelevant features should not be included in the
chosen solution.

The appropriateness of these two different definitions seems to be dependent
on the problem domain. If our main goal is to attain the highest predictive accuracy as
often is desired in classification, the definition in [97] can be more intuitive. However,
if we want to discover unknown patterns by observing each of the selected features
in the resulting model, the latter [99] can be more relevant. Weighting the two main

goals equally, we define feature selection in supervised learning as in Definition 1.

Definition 1 (Feature selection in supervised learning) Feature selection in su-
peruvised learning is the process of choosing a subset of the original features that op-
timizes the predictive performance of a considered model by eliminating redundant

features and those with little or no predictive information.

The relationship between feature selection and an learning algorithm’s per-

formance is dependent on whether or not the monotonicity assumption holds. The

1We will review the definition of strong and weak relevance in Section 2.3.



23

monotonicity assumption implies that the addition of a feature always provide addi-
tional discriminating power, improving the performance of learning algorithms such
as a Bayes classifier. Thus it is not recommended to restrict a Bayes classifier to a
subset of features [113]. When features interact, selecting and combining features can
find a better model even for naive Bayes [161].

However, the monotonicity assumption rarely holds because additional fea-
tures can interfere with other more useful features and deteriorate the performance
of learning algorithms [115]. Often additional noisy features can magnify noise in
training examples and make it difficult for a learning algorithm to separate useful
signal from noise. The more noisy features available, the less the learning algo-
rithm will be able to identify predictive features with the given number of training
points. Further, when deceptive features interact with the learning algorithm’s bias
counter-productively, these features deteriorate overall performance on unseen data.
Therefore, feature selection becomes an important issue from a practical point of
view.

Often feature extraction or construction methods such as Principal Component
Analysis (PCA) [100] are confused with feature selection because they are also used
to reduce problem dimensionality. Feature extraction, however, refers to more general
methods that create new features based on transformations or combinations of the
original feature set [97]. While the feature selection process might involve a trial-and-

error process where various feature subsets are selected and evaluated, PCA does not



24

require training using labeled data [96]. This distinction between feature selection
and feature extraction is also illustrated in [111, 97]. In this thesis, we intentionally
restrict our interests to only feature subset selection, the selection of feature subsets

from the ezisting collection of features.

2.1.2 Feature selection in unsupervised learning

When we do not have class information with which to evaluate different subsets
of features, we instead wish to find natural grouping of the examples in the feature
space via clustering or unsupervised learning and utilize the clustering results to eval-
uate solutions. The idea is to represent groups of points by a representative point
or prototype after determining the inherent number of clusters in the given data set.
Once the clusters have been formed based on some given features, we must evaluate
how well this model represents the complexity of the data. Based on this intuition,

we define feature selection in unsupervised learning as follows.

Definition 2 (Feature selection in unsupervised learning) Feature selection in
unsupervised learning is the process of choosing a subset of the original variables that

forms a high quality clustering for the given number of clusters.

Clustering may be performed using methods such as K-means [63], expectation
maximization (EM) [57], or optimization models [30]. Recently a set of novel cluster-
ing algorithms have been proposed in the database community [214, 81]. For instance,
Agrawal et al. [1] present an order-independent clustering algorithm, CLIQUE, that

forms clusters in large data sets.
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Feature selection in unsupervised learning can be considered as a sub-problem
of unsupervised model selection. The problem of determining an appropriate model in
unsupervised learning has gained popularity in the machine learning, pattern recog-
nition, and data mining communities. Unsupervised model selection addresses either
how to identify the optimal number of clusters K or how to select feature subsets
while determining the correct number of clusters. The latter problem is more diffi-
cult because of the inter-dependency between the number of clusters and the feature
subsets used to form the clusters [188]. To this point, most research on unsupervised
model selection has considered the problem of identifying the right number of clusters
using all available features [118, 188].

Other researchers [1, 194] have studied feature selection and clustering to-
gether. In particular, Devaney and Ram [58] combined a sequential forward and
backward search algorithm with two concept learning algorithms, COBWEB [70] and
AICC, an improved variant of COBWEB. The category utility score was employed as
a quality measurement of feature subsets and the number of clusters was one of the
factors used for the computation of utility score. In [201], a Bayesian framework with
a unified objective function considering both the number of clusters and the feature
subset was applied to the problem of document clustering. Recently, Dy and Brod-
ley [65] proposed a wrapper approach that uses an EM algorithm to form clusters.
Feature subsets are evaluated in terms of clustering quality based on either scatter

separability or maximum likelihood.
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2.2 Research motivation
In Section 2.1, we saw that feature selection becomes important in practical
learning scenarios because the monotonicity assumption rarely holds in the real world.
In this section, we review some other motivations for feature selection in supervised

and unsupervised learning.

2.2.1 Improved comprehensibility and generalization

Feature selection can significantly improve the comprehensibility of the result-
ing classifier models, generated rules, or relationships among features. For example,
top-down induction of decision trees, using such methods as CART [37], ID3 [164], or
C4.5 [166], on high-dimensional data sets can result in a very complex tree structure.
This makes it almost impossible for human inspectors to draw meaningful insights
and utilize them to solve real problems. Even if the resulting relationships repre-
sent true patterns in data, they may be considered useless if they are too complex
to comprehend. If a learning algorithm extracts most of information from a given
data set with the smallest number of features, the resulting structure will be simpler.
This simplified structure allows for better understanding on problem domains and
the simplified relationships among a smaller number of features can be more easily
inspected by human experts.

Feature selection can make learning algorithms generalize better on unseen
data by eliminating irrelevant features and/or correlated and redundant features.

Kira and Rendell [108] experimented with the effects of irrelevant features on ac-
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curacy in Boolean target concept learning by showing that introduced redundant
features degraded the performance of learning algorithms not only in speed but also
in predictive accuracy. It also has been shown that CART, ID3, C4.5, and near-
est neighbor algorithms suffer in the presence of irrelevant features. Naive Bayes
classifiers [125, 63|, which assume independence of features given the instance la-
bel, also degrade when using correlated and redundant features. Without correlated,
redundant and/or irrelevant features, learning algorithms could estimate predictive
performance more accurately from training data and generalize better on unseen data

through finite sample size effects [97].

2.2.2 Reduced costs and computational time

Feature selection can reduce the costs occurred in data collection and mainte-
nance dramatically by identifying whether features in the collected data are important
or not. Due to the information technology explosion of the last few decades, the largest
corporate databases are easily measured in terabytes. Those collected data represent
a wealth of information that can be used to improve business decision-making in var-
ious areas. However, collecting and maintaining such huge databases is not free at
all. It needs special equipment (e.g., scanners and bar-code readers) with software
to collect data. Once data are collected, they are sent to a central warehouse over
communication channels, incurring communication costs. Finally, database systems
(including backup systems) and human experts are required to keep and maintain

this high volume of data. If we can reduce data dimensionality through feature se-
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lection, costs can be reduced. For example, if the data are transmitted over a long
distance communication channel, it is cost efficient to extract the important features
at the sender and transmit only the discriminatory information, reducing the required
communication-channel capacity and time [111].

Feature selection is also very useful for reducing the computational time of
learning algorithms. In practical learning scenarios, the learning algorithms are sup-
posed to estimate the underlying patterns in data. In domains with a large number
of features, these patterns are very complex and of high dimension. This situation
becomes worse with the growing number of records. The time and space require-
ments for a learning algorithm often grow dramatically with the number of features,
rendering the algorithm impractical for problems with a large number of features
and records. For example, it is an well-known fact that a multilayer neural network
requires a significant processing time to learn data patterns. According to [102, 23],
training a three-node neural network in which the nodes use linear threshold function
is a NP-hard problem. Similarly, it is noticed in [94] that finding the optimal bi-
nary decision tree is a NP-hard problem. If we could reduce the original high feature
dimension into a manageable dimension, learning algorithms could return outputs

within a reasonable time.

2.2.3 Feature selection as an independent objective
Identifying and selecting a predictive subset of input variables itself has its own

significance as shown in [163, 193]. Punch et el. (1993) [163] provided an example
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in biology. Suppose that biologists took three sets of 100 soil samples from near the
crop roots (rhizosphere), away from the influence of the crop roots (non-rhizosphere),
and from a crop residue. A Biolog test is a common method to verify whether the
lack of diversity in the rhizosphere comes from the symbiotic relationship between the
roots and their neighbor microbes. Typically, Biolog consists of a plate of 96 wells
that contain a different substrate such as sugars, amino acids and other nutrients.
Different substrates respond to different sets of microbes. Once each sample was
tested on the 96 features, biologists could learn which of the Biolog features has the
most discriminative power to explain the difference among three different sets of soil
samples.

In [193], the result of feature selection can be used to determine whether an
expensive test or a potentially dangerous surgery is necessary for breast cancer prog-
nosis. Traditionally, the extent to which cancer is present in the lymph nodes has
been used as the strongest available prognostic indicator. This information is de-
termined by microscopic examination of lymph nodes only after they are surgically
removed from the patient’s armpit. This surgical procedure, however, not only in-
creases medical costs but also causes side effects such as infection and lymphoedema,
a severe swelling of the arm. By reducing a set of 32 features to five nuclear features,
they found that the traditional medical prognostic factors of tumor size and lymph
node status are not necessary for prognostic purpose. If those findings are confirmed,

the potentially hazardous surgical removal of lymph nodes from patients could be
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avoided.

2.3 Feature relevance
Through feature selection, we want to select relevant and predictive features,
while eliminating irrelevant or redundant features. There are several questions to be
asked, however. What are the criteria to discriminate relevant features from irrelevant
ones? Are relevant features the same as predictive features? Could these definitions be
applied without considering learning algorithms or should they be defined in terms of
learning algorithms? In this section, we propose answers to these questions by mainly

borrowing the contents from [113].

2.3.1 Review of existing definitions
One of the simplest definitions of relevance is proposed in [9] and summarized

in Definition 1.

Feature relevance 1 When all features including class label are Boolean and there
are no noisy features, a feature X; is relevant to the class label Y if X; appears in

every representation of Y.

Though this definition is simple to understand, Definition 1 is not useful because of
its strong assumptions. In order to overcome these restrictions, Gennari et al. [75]

proposed a new definition as in Definition 2.

Feature relevance 2 A feature X; is relevant iff there exists some x; and y for which
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p(X; = z;) > 0 such that

p(Y =y|Xi=z) #p(Y =vy).

In Definition 2, X; could be noisy and is not necessarily restricted to the Boolean
domain. The conditional dependency of class label Y on X; plays a critical role to
determine the relevance of a feature X;. As a result, the value of a relevant feature
X; changes systematically with Y [75]. Definition 2, however, can fail to identify
relevant features because when all unlabeled possible instances are equiprobable as
in parity learning, it does not consider other features X; to compute the conditional
dependency of Y on X;.

Considering the conditional dependency of Y on X; with given values of all
other features, Kohavi and John [113] proposed the following somewhat general defi-

nition.

Feature relevance 3 A feature X; is relevant iff there exists some x;, y, and s; for

which p(X; = ;) > 0 such that

p(Y =y, 5 = si|X; = ;) #p(Y =y, 5 = s))

where S; = {X1,--+, X;_1,Xi11, -, Xp} and s; is a value-assignment of all features

Under the Definition 3, feature X; is considered relevant only if, given the values of

the other features, the removal of X; changes the probability of the class label Y.
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None of the definitions of relevance so far consider the learning algorithms
being used. Other relevance definitions have been proposed to correct this problem
in [99, 113]. They assume a Bayes classifier as the learning algorithm and propose

two degrees of relevance: weak and strong relevance.

Feature relevance 4 (Strong relevance) A feature X; is strongly relevant iff there

exists some ;, y, and s; for which p(X; = x;,S; = s;) > 0 such that

p(Y = y| X = 24, S; = 83) # p(Y = y[S; = 54).

In other words, a feature X is strongly relevant if two examples o and 5 have the same
assignment to all features except to X; and c¢(«) # ¢(8) where ¢(a) and ¢(3) represents
the classes of a and f3, respectively [22]. Removing strongly relevant features increases
ambiguity to the sample and decreases predictive accuracy. Weakly relevant features
do not always contribute to predictive accuracy but they do sometimes. Formally,

weak relevance is defined by [113] as in Definition 5.

Feature relevance 5 (Weak relevance) A feature X; is weakly relevant iff it is
not strongly relevant, and there ezists a subset of features S; of S; for which there

exists some x;, y, and s, with p(X; = x;, S; = s}) > 0 such that

p(Y = y|Xi= 24,5 = 53) #p(Y =y[S; = 57).

A weakly relevant feature X; becomes strongly relevant after removing a subset of

the features [22]. Based on the Definition 4 and Definition 5, features are relevant if
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they are either strongly or weakly relevant, but other features can never contribute
to prediction accuracy.

From a different perspective, Blum and Langley [22] paid attention to useful-
ness [44] because a feature which contains information was not necessarily useful for

prediction.? They formalized incremental usefulness in the following definition.

Feature relevance 6 (Incremental usefulness) Given a learning algorithm A and
a feature set F', a feature X; is incrementally useful to A with respect to F' if X; U F

returns higher predictive accuracy than F does.

Now, we compare these different definitions through a simple example.?

Example 1 (Correlated XOR) There are five Boolean features and Xy and X3
are negations of X4 and X5, respectively. There are only eight possible instances, and

we assume they are equiprobable. The target concept is given as follows:

Y=X,86X, (& denotes XOR).

According to Definition 1, X5 and X5 are irrelevant because neither appears in the
target concept formula or its equivalent expression Y = X; @& X;. Both X, and X,
are also irrelevant because each feature appears only in one of two target expressions.

Note that each of them is replaced by the negation of the other. By Definition 2,

2For example, social security number of customer is a highly relevant feature in terms
of the contained information but useless for predicting whether she will buy a new product
or not.

3We borrow this example from Kohavi & John (1997), page 4.



34

all features are irrelevant because the conditional probability of output value y given
any feature value z is same as probability of y, 1/2. By Definition 3, every feature is
relevant. For example, X is relevant because if we are given s; = {1,1,0,0} * and

y =0, and if we know z; =1,

1 1
p(Y=y|Xi=$1,51=81)=§75P(Y=y,51=81)=1

This happens because when we are given an s;, knowing z; changes the probability
of four of the eight possible instances from 1/8 to zero. By Definition 4, X3 and
X5 are clearly irrelevant, and both X, and X, are irrelevant because they do not
add any information to S, and S,, respectively. X, and X, are weakly relevant by
Definition 5. Finally, we can easily check that X;, X5, X, are incrementally useful

by Definition 6. We summarize our findings in Table 2.1.

Table 2.1: Summary of feature relevance.

Definition Relevant Irrelevant
Feature relevance 1 Xi Xo, X3, X4, X5
Feature relevance 2 None All
Feature relevance 3 All None
Feature relevance 4 X X, X3, Xy, X5
Feature relevance 5 | Xy, Xy, X} X3, X5
Feature relevance 6 | X, Xy, X} X3, X5

“As defined in Definition 3, S; = {Xi,---,X;_1,Xit1, -+, Xp} and s; is a value-
assignment of all features in S;.

%X is strongly relevant.
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2.3.2 Optimal feature subset
According to Definition 4 and Definition 5, a feature is relevant if it is strongly
or weakly relevant. A Bayes classifier therefore must use all strongly relevant features
and possibly some weakly relevant features because it is based on the monotonicity
assumption. Many learning algorithms, however, do not have access to the underlying
distribution and sometimes work better for finite samples by ignoring relevant features
[114]. It means that a relevant feature might not be useful or predictive in an learning

algorithm (or vice versa). This notion leads to the definition of optimal features [113].

Definition 3 (Optimal feature subsets) Given an learning algorithm and a dataset,
an optimal feature set, S*, is a subset of features such that the accuracy of the induced

classifier is highest.

It is possible that there is more than one optimal feature subset. For example, if
p(Xi, X;) = 1 where ¢ # j, two different sets of features have same accuracy [113].
Now we show that relevant features do not imply the optimal features and optimal

features do not imply relevant features through following two examples.®

Example 2 (Relevance # optimality) Assume three Boolean features, X1, X,
X3 and uniform distribution of instances. If the target concept is c(Xi, X, X3) =
(X1 AX2)V X3, all features are relevant. If the hypothesis space, however, is the space

of monomaals, 1.e., conjunctions of literals, the only optimal feature subset is X5. The

6We borrow them from Kohavi & John (1997, page 6.).
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accuracy of the monomial X3 is 87.5%, and adding another feature to the monomial

will decrease the accuracy.

Example 3 (Optimality # relevance) If a feature X; is always set to 1, X; is
wrrelevant. Consider a limited Perceptron classifier that classifies new instances by
comparing the linear combination of weights of input nodes with a threshold. When
the threshold = 0, it has the same representation power as the reqular Perceptron

because of X;. Remowal of all irrelevant feature, however, would remove X; too.

From now on, we focus on finding optimal features rather than relevant features. This
is consistent with our approach in the sense that we try to maximize the accuracy
with respect to the specific learning algorithm and training set at hand. Since differ-
ent learning algorithms have different biases, optimal features will be different over
different algorithms. Different sizes of training data may also result in different sets

of optimal features.”

2.4 Feature selection algorithms
We divide existing feature selection algorithms into three categories, embed-
ded, filter, and wrapper approach as in [22].> We review each category in detail by

analyzing representative algorithms.

7If a training set is very small, it is recommended to reduce the number of features and
thus reduce the algorithm’s variance. If more instances are given, however, more features
can be chosen to reduce the algorithm’s bias.

8John et al. (1994) use only two groups, filter and wrapper.
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2.4.1 Embedded models

In [22], concept learning algorithms [145, 204] are illustrated as one of the
embedded models because they look for alternative subsets of features in the concept
description when they misclassify new points. Decision tree algorithms such as ID3
[164], CART [37] and C4.5 [166] also include feature selection as a subroutine. Tree
algorithms heuristically search for a good subset of features through the space of tree
structures. At each stage, each feature is evaluated to determine how well it classifies
the associated data points and the best feature is selected. Once the best feature
is determined, the data set is partitioned based on the selected feature. The same
process is repeated until it reaches a terminal node in which all points belong to the
same class or when all features are evaluated.

The concept learning and decision tree methods were believed to scale well to
domains with many irrelevant features because of their explicit mechanism for choos-
ing relevant features. However, their performance degrades significantly as irrelevant
features are inserted into target concepts [7, 108, 128]. Further they are effective only
in domains where there is little interaction among the relevant features [22]. Several
attempts have been made to consider interaction among features by applying looka-
head techniques [117] or by constructing new features from existing ones [158] with
some success.

Mathematical programming models have also been used to solve the com-

binatorial feature selection problem. The Robust Linear Program (RLP) [135, 18]
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formulates class separation as a linear program and solves it by minimizing the aver-
age distance in the feature space between the separating plane and the misclassified
examples. The RLP model was developed into the concave optimization feature se-
lection model [31] that penalizes the number of non-zero coefficient values. Recently
support vector machines (SVM) [203, 50] has been used for feature selection [29, 130].
The idea is based on the fact that linear SVM with 1-norm regularization inherently
performs variable selection. The subset of variables with nonzero weights in linear
SVM is used for obtaining nonlinear SVM with a nonlinear separating surface for
regression or classification purposes.

Artificial neural networks [129, 86] that dynamically adjust network structure
by removing links from input units can also be used for feature selection. The o
optimal brain damage (OBD) [129] uses an approximation to the second derivative
of the error with respect to each weight to determine the saliency of that weight. It
removes the link whose weight has the lowest saliency, or least importance. Optimal
brain surgeon (OBS) [86] computes the second derivatives (almost) exactly, but is
computationally very expensive. Setiono and Liu [183] proposed a method that uses
the network classification performance on a validation dataset instead of using a

saliency measure.

2.4.2 Filter models
Most feature selection algorithms in the statistics and pattern recognition com-

munities do not take into account the differences among learning algorithms [114].



39

These approach were named filter methods in [99], because the filtering step of orig-
inal features is done before the induction step. We represent the filter approach as

in Figure 2.1. In filter models, learning algorithms take data with only the selected

Datawith ; Datawith Classifier
—— 2| Feature Selection Learning Algorithm
full features Algorithm selected features 9719

Figure 2.1: The filter approach to feature selection.

features and evaluate its accuracy. Filter models rely on abstract measures of fea-
tures that indicate important properties of promising features such as orthogonality,
large variance, multi-modality of marginal distributions, high kurtosis, and low en-
tropy. The simplest filtering method used in text categorization tasks is to select the
k features with the highest correlation value with the target function [11]. Statisti-
cal dependence such as mutual information between the features and the class label
[15, 25] and distance metrics [59, 63, 110] also have been used.

A representative algorithm in filter models is FOCUS and its variants [7, 8, 9]
that find the minimum subset of features that partitions the training data in such
a way that no instances with the same values of the selected features have different
classes. As noted in [99], FOCUS is very sensitive to noise and selects relevant but

not useful features for generalization because of this restriction of pure partitions.®

9For example, FOCUS returns the patient’s social security number (SSN) as the minimal
feature subset to determine the label.
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Further, FOCUS is prone to overfitting [44] and not practical for data with more
than 25-30 features [115] because it will continuously select features to correct even
a single inconsistency [44].

Relief [108, 109] and its variants [116, 113] focus on the ability to discriminate
close pairs of examples that belong to different classes. Relief does not favor features
that have a large variety of values [117] and can rank features in the order of the
final relevance weights. Further, it considers the interaction among features and is
robust against noisy data. In comparative experiments [108], FOCUS+ID3 was more
effective than Relief+ID3 on noise-free data but Relief+ID3 was more accurate and
efficient on noisy data. Relief, however, selects most of the features if they are relevant
to the concept [108] and requires sufficient training examples.

Other filter algorithms have been tested with decision trees [42, 132, 133] and
naive Bayes classifiers [122] based on various selection measurements such as rough

sets theory [147], information theory [187], or cross-entropy [115].

2.4.3 Wrapper models
Another approach to feature selection uses the learning method as a subrou-
tine, not as a postprocessor. In this approach, the feature selection algorithm exists
as a wrapper around the learning algorithms as shown in Figure 2.2.
In the wrapper model, the feature selection algorithm searches for a good
subset using the learning algorithms to evaluate feature subsets. The wrapper models

first train the learning algorithms on training data with the selected features and
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Training data Full feature set
—+ +— EJebStsefteature Training data
’ Feature Subset Search Algorithm ‘ L
b’ v A Reauc " T~ Leaming agorithm | Classifier

’ Learning Algorithm ‘

Figure 2.2: The wrapper approach to feature selection.

evaluate the resulting classifier on holdout data to get the estimated accuracy.'® The
feature subset with the highest accuracy is chosen as the final model. However, this
approach can be very slow because the learning algorithm is called repeatedly.

Kohavi and John [113] showed that feature selection through the wrapper
model significantly boosted the predictive accuracy of classifiers such as C4.5 and
naive Bayes on several data sets. They used best first search based on accuracy
estimates to find a subset of attributes. In particular, their comparative experiments
between wrapper and filter models confirmed the old view noted by many researchers
[17, 185] that it is inappropriate to evaluate the usefulness of an input variable without
considering the algorithms that build the classification system.

Algorithms such as nearest-neighbor algorithms are expected to benefit from
the wrapper approach because it by default takes into account all features. Exper-

iments in [127] supported this fact. They proposed a heuristic wrapper algorithm,

0Holdout, bootstrap, and cross-validation are commonly used to estimate the predictive
accuracy. For more information, please refer to [207].
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OBLIVION, and compared it with simple nearest-neighbor algorithms and C4.5 on
synthetic data. OBVILION can learn more accurate classifiers from many fewer in-
stances in domains that involve irrelevant features.

BEAM is a nondeterministic search algorithm proposed by Aha and Bankert
for cloud classification tasks [2, 3]. Their framework maintains a queue of feature
subsets ordered by non-increasing 10-fold classification accuracy together with an
indication of which derivable subsets have not been evaluated. They used IB1 [4]
as an induction algorithm and beam-search variants of forward sequential selection
(FSS) and backward sequential selection (BSS). In experiments on a cloud data set
with 204 features and 1633 instances, feature selection using BEAM with FSS selected
eleven features and increase IB1’s 10-fold accuracy from 72.6% to 87.0%. On a sparse
data set with 98 features but only 69 instances, they report a similar improvement,
from 62.3% to 87.8%.

LVW [133] is a modified version of Las Vegas algorithms [32] and takes a
probabilistic approach to explore the high-order relationship among features without
resorting to exhaustive search. LVW generates random subsets of features and the
smallest subset with the lowest error rate on the training data is saved. This process
continues until the error rate is not updated for a certain number of cycles. LVW
guarantees the optimal solutions at the (k + 1)th experiment with the probability
/(2P — k) where D is the number of original features and [ is the number of optima

[133]. Though LVW with ID3 as a learning algorithm improved accuracy on some
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real data sets, LVW with C4.5 did not significantly improve accuracy. In another
experiment [126], the naive Bayes classifier was used with forward selection. The
wrapper model was extended to Bayesian networks in [187] and for numeric prediction

using k-nearest neighbor in [196].

2.4.4 Comparison of wrapper models with filter models

We compare wrapper models with filter models using four criteria: time com-
plexity, bias, predictive accuracy, and susceptibility of overfitting.

In terms of computational cost, the filter approach is clearly the winner. The
wrapper approach is slow because learning algorithms are called for each feature sub-
set to estimate predictive accuracy. When cross validation is used to get a predictive
estimate, time complexity in wrapper models gets much worse. Especially on large
data sets, the filter approach becomes very attractive. There has been some research
on improving the time complexity of wrapper models based on either caching [44] or
instance selection [148].

In terms of bias, there is no clear winner. Koller & Sahami (1996) focus on an
algorithm-independent paradigm for feature selection, viewing a learning algorithm
as a biased method for approximating the probability distribution of class labels and
transforming this distribution into a classification. By staying away from the bias of a
particular learning algorithm, a feature subset selected truly reflects properties of the
data itself and is independent of the learning algorithm. This, however, is clearly one

of the disadvantages of the filter model in the sense that the subset selection algorithm
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must take into account the biases of the learning algorithm. This is because ultimately
the selected features are plugged into the same learning algorithm to predict unseen
data [99, 113]. Selecting a subset of features should, therefore, not be based solely
on the intrinsic discriminant properties of the data, but should be made relative to
a given learning algorithm. Further, most of the learning algorithms conduct a very
limited search in the space of possibly hypotheses. Ignoring these limitations can lead
to feature subsets which are inappropriate for the learning algorithms used [112].

Since in the wrapper approach, the search bias for feature subsets is tailored
to a particular learning algorithm, the wrapper model has been expected to return
higher predictive accuracy. In [99, 113, 44], the wrapper approach was compared
to the filter approach in terms of predictive accuracy. The wrapper model using
various induction algorithms such as C4.5, ID3 and naive Bayes resulted in better
performance than the filter model and showed in the most significant improvement
on data sets with many features. However, the filter approach could be used as a
preprocessing step of the wrapper approach for analysis of huge data sets [115].

A learning algorithm overfits the data set if it models the training data too
well at the expense of generalization performance. Similarly, a search algorithm that
explores a large portion of the space and that is guided by the accuracy estimates
can choose a bad feature subset with a highly accurate estimate but poor predic-
tive power [113, 103]. In the filter model, FOCUS, which relies on consistency to

define the relevance of a feature to the target concept, is prone to overfit because
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it will continuously select features to correct even a single inconsistency [44]. For
the wrapper model, overuse of the accuracy estimates in feature subset selection can
cause overfitting because the selected solution that has high predictive accuracy on
the holdout data may not generalize well to test data. The effect of training data
size on the possibility of overfitting was addressed in [114]. As a general guide, many
algorithms employ the Occam’s Razor bias to build as simple a model as possible
that still achieves some acceptable level of performance on the training data.

Often, the tradeoff between more accurate estimates and more extensive ex-
ploration of the search space is referred to as the exploration versus exploitation
problem [103]. However, it has been claimed that more extensive search can increase
the probability of finding fluke rules that fit the data well but have low predictive
accuracy [168, 150]. They used the term oversearching to describe this negative effect
and provided a new search algorithm, layered search, to avoid the problems with over-
searching. While the overfitting models are typically more complex than necessary
to fit the training data, the final models in oversearching are not necessarily complex
but still misleading. Recently Jensen and Cohen [98] claim that one single mecha-
nism, multiple comparison procedures (MCPs), is responsible for attribute selection
errors, overfitting and oversearching. Several solutions including cross-validation and

Bonferroni adjustment are discussed in their paper [98].
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2.5 Search algorithms
2.5.1 Review of previous algorithms

In this section, we review several search algorithms that could be used in the
wrapper model when combined with a specific induction algorithm. They also could
be used for feature selection directly without learning algorithms when combined
with some feature selection criteria.!! We divide search algorithms mainly into three
groups: deterministic [137, 208, 191, 162], stochastic [186, 197, 198, 163, 79] and
optimal methods [151, 71, 123].

One of the simplest algorithms, backward sequential selection (BSS) was in-
troduced in [137]. This starts with the full set of features, and greedily removes the
one that most improves performance, or degrades performance slightly. Another sim-
ple algorithm, forward sequential selection (FSS) or bottom-up [208], starts with the
empty set of features, and greedily adds features. F'SS is computationally faster than
BSS because in BSS, the criterion function must be computed in larger dimensional
spaces. BSS, however, is able to monitor continuously the amount of information loss
incurred [111] and may capture interacting features more easily [113].

However, both algorithms produce suboptimal solutions because of their ir-
revocable selection process and inability to consider the interaction among features
[198]. BSS and FSS are generalized to GBSS(g) and GFSS(g) in such a way that

g features are evaluated at the same time and the best g-feature subset is chosen

HFor various measures and their formula, refer to [111], pages 63-70.
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for addition or deletion in the algorithms. The Plus [-take away r algorithm [191]
adds [ features by FSS and deletes r features by BSS and repeats this process. In
a generalized algorithm GPTA(/, r), GFSS(/) and GBSS(r) are used instead of FSS
and BSS in the inclusion and exclusion stage respectively [110]. The sequential for-
ward floating selection (SFFS) algorithm in [162] is another generalized version of
PTA(l,r). SFFS can backtrack indefinitely as long as the backtrack finds a better
feature subset than the feature subset obtained so far. However, no non-exhaustive
sequential procedure of feature selection can be guaranteed to produce the optimal
subset because the number of possibilities grows exponentially [52].

Genetic algorithms (GAs) were initially introduced in [89] and have been ap-
plied to many optimization problems because of their robustness in large search
spaces. Since GAs are domain independent, they are ideal for applications where do-
main knowledge and theory is not available [101]. GAs for feature selection have been
combined with various classifiers [186, 51, 211] and clustering algorithms [160, 82, 106].
In a GA approach, a given feature subset is represented as a binary string, a chromo-
some of length D, with a zero or one in position 7 denoting the absence or presence of
feature 7. Note that D is the total number of features and a fixed or variable-sized of
population of chromosomes is maintained over the generations. Each chromosome is

’ and may survive into the next generation and/or

evaluated to determine its “fitness,’
reproduce depending on its fitness. New chromosomes are created from old chromo-

somes by the processes of crossover and mutation. Instead of giving 0/1 weighting to
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the features in a chromosome, a broader range of weights, 0 to 10, was tested in [163].
Two other genetic search algorithms, CHC and Common Features/Random Sample
Climbing (CF/RSC) were proposed in [79].

The branch-and-bound (BAB) feature selection algorithm was proposed to
find the optimal solutions without resorting to exhaustive search [151]. However, its
monotonic assumption of the feature selection criterion may not be true and it is
still impractical for problems with very large feature sets because of the exponential
time complexity. Two variants of BAB were proposed, RBAB [71] that based on
approzimate monotonicity assumption and RBABM [123] that based on k-monotonic
assumption.'?

Comparative studies among search algorithms can be found in [186, 69, 97,

123].

2.5.2  Evolutionary Local Selection Algorithm (ELSA)

2.5.2.1 Local selection and algorithm details

ELSA springs from algorithms originally motivated by artificial life models of
adaptive agents in ecological environments [139]. Modeling reproduction in evolving
populations of realistic organisms requires that selection, like any other agent process,
be locally mediated by the environment in which the agents are situated.

In a standard evolutionary algorithm, an agent is selected for reproduction

12A criterion function J is k-monotonic if X' C X, |X| —|X'| > k = J(X') < J(X) for
every X', X. BAB does the optimal search only when J is 1-monotonic.
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based on how its fitness compares to that of other agents. In ELSA, an agent (can-
didate solution) may die, reproduce, or neither based on an endogenous energy level
that fluctuates via interactions with the environment. The energy level is compared
against a constant selection threshold for reproduction.

By relying on such local selection, ELSA reduces the communication among
agents to a minimum. The competition and consequent selective pressure is driven by
the environment [142]. There are no direct comparison with other agents. Further,
the local selection naturally enforces the diversity of the population by evaluating
genetic individuals based on both their quality measurements and on the number of
similar individuals in the neighborhood in objective space. The bias of ELSA toward
diversity makes it ideal for multi-objective optimization, giving the decision maker
a clear picture of Pareto-optimal solutions from which to choose. Previous research
has demonstrated the effectiveness of ELSA for feature selection in both supervised

[141, 107] and unsupervised [106] learning.

2.5.2.2 Agents, mutation and selection

Figure 2.3 outlines the ELSA algorithm at a high level of abstraction. Each
agent (candidate solution) in the population is first initialized with some random
solution and an initial reservoir of energy. The representation of an agent consists of
D bits and each of D bits is an indicator as to the corresponding feature is selected
or not (1 if a feature is selected, 0 otherwise). Mutation is the main operator used

to explore the search space, and crossover can be added if required depending on the
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initialize population of agents, each with energy 6/2
while there are alive agents and for T iterations
for each energy source c

for each » (0 .. 1)
Egnvt(v) A 2VE§ot
endfor
endfor

for each agent a
a' < mutate(crossover(a, randommate))
for each energy source c
v < Fitness(a’,c)
AFE < min(v, ES, .(v))
Egnvt(v) A Egn'ut (’U) —AE
Eq < Eqs + AE
endfor
Eq + Eq — Ecost
if (Eq>0)
insert a/ into population
Egr Ea/2
E, +— E, — E,
else if (E, <0)
remove a from population
endif
endfor
endwhile

Figure 2.3: ELSA pseudo-code. In each iteration, the environment is replenished
and then each alive agent executes the main loop. In sequential implementations,
the main loop calls agents in random order to prevent sampling effects. We stop the
algorithm after 7 iterations.

problem domain. The mutation operator randomly selects one bit of the agent and
flips it. The crossover operator could be implemented in a number of different ways
such as single-point, two-point, and uniform crossover [146]. In our experiments, we
adopt the commonality-based crossover framework [49], where the offsprings inherits
all the common features of the parents.

Each agent competes for a scare resource, energy, based on multi-dimensional
fitness and the proximity of other agents in solution space. That is, as we review in
detail in the following section, agents get energy from multiple objectives based on

their fitness and the environment to which they belong. In the selection part of the
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algorithm, each agent compares its current energy level with a constant reproduction
threshold . If its energy is higher than 6, the agent reproduces: the agent and its
mutated clone that was just evaluated become part of the new population, each with
half of the parent’s energy. If the energy level of an agent is positive but lower than
0, only the agent itself joins the new population. If an agent runs out of energy, it is
killed.

The population size is maintained dynamically over iterations and is deter-
mined by the carrying capacity of the environment depending on the costs incurred
by any action, and the replenishment of resources [142]. The population is also inde-
pendent of the reproduction threshold, # which only affects the energy stored by the

population at steady-state.

2.5.2.3 Energy allocation and replenishment

In each iteration of the algorithm, an agent explores a candidate solution
similar to itself. The agent collects AFE from the environment and is taxed with E,
for this action. The net energy intake of an agent is determined by its offspring’s
fitness. This is a function of how well the candidate solution performs with respect
to the criteria being optimized. But the energy also depends on the state of the
environment. The environment corresponds to the set of possible values for each of

the criteria being optimized.'> We have an energy source for each criterion, divided

13Continuous objective functions are discretized.
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into bins corresponding to its values. So, for criterion fitness F,. and bin value v, the

environment keeps track of the energy E¢

¢ .+ (v) corresponding to the value F, = v.

Further, the environment keeps a count of the number of agents P.(v) having F, = v.
The energy corresponding to an action (alternative solution) a for criterion F,

is given by

Fe(a)

Fitness(a,c) = Po(Fu(a)

(2.1)

Agents receive energy only inasmuch as the environment has sufficient resources;
if these are depleted, no benefits are available until the environmental resources are
replenished. Thus an agent is rewarded with energy for its high fitness values, but also
has an interest in finding unpopulated niches in objective space, where more energy
is available. The result is a natural bias toward diverse solutions in the population.
E s for any action is a constant (Eg.s < 6).

When the environment is replenished with energy, each criterion c is allocated

an equal share of energy as follows:

c pmazEcost
By, = Dmas Zoon (22)

where C' is the number of criteria considered. This energy is apportioned in linear
proportion to the values of each fitness criterion, so as to bias the population toward
more promising areas in objective space. Note that the total replenishment energy
that enters the system at each iteration is p,,a. + Feost, Which is independent of the
population size p but proportional to the parameter p;,.,. This way we can maintain

p below p.q.. on average, because in each iteration the total energy that leaves the
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system, p - E .5, cannot be larger than the replenishment energy.

2.5.2.4 Advantages and disadvantages

One of the major advantages of ELSA is its minimal centralized control over
agents. By relying on local selection, ELSA minimizes the communication among
agents, which makes the algorithm efficient in terms of time complexity. The possible
significant speedup with parallel programming in a distributed environment lead to
the development of an agent-based system for information retrieval [140].

In terms of scalability, ELSA shows good performance. ELSA maintains vary-
ing size of population through evolutionary process and does not need a prior knowl-
edge on problem domains to determine population size in advance. In the graph
search problem and the unitation versus pairs experiment with increasing problem
size, ELSA shows evidence of the scalability properties of local selection [141]. Note
also that ELSA can be easily combined with any other predictive models such as
artificial neural networks or decision trees.

For application, ELSA can be useful for various tasks in which the maintenance
of diversity within the population is more important than a speedy convergence to the
optimum. Feature selection is one such promising applications. Based on the well-
covered range of feature vector complexities, ELSA is able to find feature subsets that
are good or bad as a predictor. The superior ability to locate most of the Pareto front
was demonstrated in a comparative experiment with other multi-criteria evolutionary

algorithms in [141]. Further, once the Pareto front is located, we can easily find the
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maximum complexity of the feature subsets beyond which no increase in accuracy is
expected.

However, for problems requiring effective selection pressure, local selection
may not be ideal because of its weak selection scheme. The only selection pressure
that ELSA can apply comes from the sharing of resources. Therefore the way in
which environmental resources are coupled with the problem space in a particular
application of ELSA is crucial to its success. Another limitation of ELSA may be
in the fact that the appropriate mapping of a problem onto an environmental model

may be hard to determine [141].
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CHAPTER 3
FEATURE SELECTION IN SUPERVISED LEARNING

3.1 Introduction

Over last decade, feature selection has garnered a lot of attention from vari-
ous research area such as pattern recognition, machine learning, statistics, and data
mining. The main idea of feature selection is to choose a subset of the original vari-
ables that keeps most of predictive information. In a supervised learning context,
feature selection has been used to optimize the predictive performance of a consid-
ered model. Typically, the error rate on the test set is used to estimate the true error
rate of classifiers trained on the selected features of the training set.

It is well-known that GAs perform a global search of combinatorial search
spaces and are ideal for applications where domain knowledge is difficult to provide
[56]. GAs can capture the interaction among features by modifying many features
at a time through genetic operators. Further the GA-based approach does not rely
on the monotonicity assumption that is often assumed in greedy search algorithms.
This makes GAs ideal for feature selection of large-scale problems [123].

GAs have been combined with various learning algorithms for feature selection
purposes. In [186, 46, 38], GAs with k-nearest neighbor (k-NN) have been applied
to reduce the number of input variables for classification. In [170], GAs with £-NN

is used for both optimal feature weighting and feature selection on two biomedical
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problems. In their experiments, the use of feature selection improved the performance
of k-NN more than feature weighting alone.

GAs have been also combined with decision trees [13, 195] or rule induction
systems [199, 200] with some success. In particular, Cherkauer and Shavlik [51]
presented a new algorithm, SET-Gen, which combines GAs with C4.5. Within a
fixed-length chromosome, SET-Gen allows a feature to be selected multiple times for
promoting feature diversity. In order to evaluate candidate solutions, SET-Gen uses
a somewhat subjective fitness function that linearly combines two different measure-
ments, accuracy and simplicity. Compared to single pruned tree, SET-Gen showed
the comparable performance in terms of predictive accuracy on ten real-world data
sets while reducing the size of resulting trees significantly. In [171], a new approach,
Automatic Discoverer of Higher-Order Correlations (ADHOC), was introduced. AD-
HOC partitions the observed features into a number of clusters, called factors, and
GAs are used to select at most one feature from every factor. Using C4.5 as an in-
duction algorithm, ADHOC showed the better performance than single decision tree
on 11 out of 14 data sets.

There has been much research combining GAs with artificial neural networks
(ANNs) based on the fact that while ANNs are very effective for a local search, GAs
are appropriate for a global search. For example, GAs have been used to adjust the
weights of neural networks, to design neural architectures, and to find and extract

learning rules. A comprehensive review on evolutionary neural networks can be found
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in [212]. Several researchers have combined GAs with ANNs for feature selection
purposes [38, 211]. In particular, Yang and Honavar [211] proposed a wrapper-based
approach that evaluates individuals in terms of multiple criteria — accuracy and mea-
surement cost of features. They tested their algorithm on 26 data sets and reported
improved performance over single ANNs with the full set of features. However, they
combined multiple fitness criteria in a subjective manner because standard GAs can-
not consider multiple fitness criteria.

In order to address this limitation, a number of multi-objective extensions of
GAs have been proposed in recent years [179, 91, 190]. Good reviews on these algo-
rithms can be found in [202, 215]. Feature selection using multi-objective evolutionary
algorithms (MOEA) in supervised learning has also been studied [66, 141]. In [66], a
variation of the Niched Pareto Genetic Algorithm (NPGA) [91] is employed with two
different neural networks, probabilistic neural networks and multilayer perceptrons.
The misclassification rate and the feature subset size are used as the primary objec-
tives to be minimized. In their experiments on two real data sets, the NPGA-based
feature selection showed better coverage of Pareto fronts and identified at least as
good solutions as the sequential forward and backward selection, for each complexity
level.

The ability of ELSA to cover most of the objective space and to incorporate
multiple fitness functions is well-established in [141]. In comparative experiments

with other multi-criteria algorithms, ELSA covered a wider range of non-dominated
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Figure 3.1: The Pareto fronts constructed from the ELSA and NPGA populations
after 3, 10, 30 and 99 thousand function evaluations.
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solutions as shown in Figure 3.1. After 3, 10, 30 and 99 thousand function evaluations,
the ELSA population clearly covered more of the objective space than the NPGA
population. This is due to the local selection mechanism in ELSA, which makes
ELSA an ideal tool to be combined with neural networks for feature selection task.!

Based on this observation, we propose a new wrapper approach to feature
selection that combines ELSA with ANNs. The returned output of ELSA/ANNs
in the feature selection task will be the set of promising feature subsets of various
complexities. At that point, we can identify the maximum complexity of the feature
subsets that we should consider, beyond which no increase in accuracy is expected.
Or we can do more thorough and costly analysis for attractive candidates such as
cross-validation to obtain a more reliable estimate of generalization accuracy. This
works very well in an any-time learning context, in which little overhead is required
to maintain a record of the best individual encountered so far.

This chapter is organized as follows. Section 3.2 proposes a database mar-
keting problem, to which our ELSA/ANN model will be applied. In Section 3.3, we
describe the structure of the ELSA/ANN model, and review the feature subset selec-
tion procedure. In Section 3.4, we present experimental results of the ELSA/ANN
model, and compare it to a PCA /logit model. Using test-mailing responses on insur-

ance policies, we show that there is a trade-off between model interpretability and

INote that this framework can easily be adapted to other predictive models such as
decision trees or support vector machines.
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predictive accuracy. In particular, we obtain both high model interpretability and
high predictive accuracy only when the firm is specific about the way model forecasts
will be used to select households in future mailings. In contrast, interpretability must
be sacrificed to preserve predictive accuracy when the firm is vague about its selec-
tion rule. Section 3.5 concludes this chapter and provides suggestions about future

research directions.

3.2 Problem specification

One of the key problems in database marketing is the identification and pro-
filing of households who are most likely to be interested in a particular product or
service. Due to the growing interest in micro marketing, many firms devote consid-
erable resources to identifying households that may be open to targeted marketing
messages. The availability of data warehouses combining demographic, psychographic
and behavioral information further encourages marketing managers to use database-
based approaches to develop and implement marketing programs.

Database marketers use different tools, depending upon what is known about
particular households. Routine mailings to existing customers are typically based
upon the RFM (recency, frequency, monetary) approach that targets households us-
ing knowledge of the customer’s purchase history [181]. Mailings to households with
no prior relationship with the firm are based upon the analysis of the relationship be-
tween demographics and the response to a test mailing of a representative household

sample. Given the large number of potential demographics available, data dimen-
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sion reduction is an important factor in building a predictive model that is easy to
interpret, cost effective, and generalizes well to unseen cases. Commonly, principal
component analysis (PCA) of demographic information [100] is used to prepare new
variables for this type of analysis. These new variables are then used as predictors in
a logistic regression on the test mailing responses.

We propose a new approach to building predictive models for identifying
prospective households. The new methodology combines genetic algorithms (GAs)
for choosing predictive demographic variables with artificial neural networks (ANNs)
for developing a model of consumer response. We exploit the desirable characteristics
of GAs and ANNSs to achieve two principal goals of household targeting: model inter-
pretability and predictive accuracy. Our approach is different from previous studies
on direct marketing because of our consideration of multiple objectives [131] and data
reduction [19].

Data reduction of demographic information is performed via feature selection
in our approach. Feature selection can also significantly improve the comprehensibility
of the resulting classifier models. Even a complicated model - such as a neural network
- can be more easily understood if constructed only from a few variables. In database
marketing applications, it is important for managers to understand the key drivers of
consumer response. A predictive model that is essentially a “black box” is not useful
for developing comprehensive marketing strategies.

In our work, the Evolutionary Local Search Algorithm (ELSA) is used to search
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through the possible combinations of features. Two quality measurements — hit rate
(which is maximized) and complexity (which is minimized) — are used to evaluate the
quality of each feature subset. ELSA performs a local search in the space of feature
subsets by evaluating genetic individuals based on both their quality measurements
and on the number of similar individuals in the neighborhood in objective space.
The input features selected by ELSA are used to train an artificial neural
network that predicts “buy” or “not buy.” Using information from households with an
observed response, the ANN is able to learn the typical buying patterns of customers
in the dataset. The trained ANN is tested on an test set, and a proposed model is
evaluated in terms of both the hit rate and the complexity (number of features) of
the solution. This process is repeated many times as the algorithm searches for a
desirable balance between predictive accuracy and model complexity. The result is a
highly accurate predictive model that uses only a subset of the original features, thus
simplifying the model and reducing the risk of overfitting. Because the algorithm
identifies variables with no predictive value, it also provides useful information on

reducing future data collection costs.

3.3 ELSA/ANN model for customer targeting
3.3.1 Structure of ELSA/ANN model
Our predictive model of household buying behavior is a hybrid of the ELSA
and ANN procedures. In this approach, ELSA identifies relevant consumer descriptors

that are used by the ANN to forecast consumer choice. We focus here on the structure
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of the approach and the criteria used to select an appropriate predictive model.

The model setup is shown in Figure 3.2. ELSA searches for a set of feature
subsets and passes them to an ANN. The ANN extracts predictive information from
each subset and learns the patterns using a randomly selected 2/3 of the training
data. Once an ANN learns the data patterns, the trained ANN is evaluated on the
remaining 1/3 of the training data, and returns two evaluation metrics, Ficcuracy and
F omplezity, t0 ELSA. It is important to note that in both the learning and evaluation

procedures, the ANN uses only the selected features.

Training data Feature space

Y Y

Best feature  Training
Genetic Algorithm (ELSA) Subset data input
A
Feature Evaluation
Subset ' Results Y
Artificial Neural Networks (ANN) Artificial Neural
Networks (ANN)
|
Evaluation data Y Prospects
> Trained ANNs — -
prediction

Figure 3.2: The structure of ELSA/ANN model. ELSA searches for a good subset
of features and passes them to an ANN. The ANN calculates the “goodness” of each
subset and returns two evaluation metrics to ELSA.

Based on the returned metric values, ELSA biases its search as described in

Section 2.5.2.3 to maximize the two objectives. This routine continues until the max-
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imum number of iterations is attained. All evaluated solutions over the generations
are saved into an off-line solution set without comparison to previous solutions. In
this way, high-quality solutions are maintained without affecting the evolutionary
process.

Among all the evaluated subsets, we choose for further evaluation the set of
candidates that satisfy a minimum hit rate threshold. With these chosen candidates,
we start a more rigorous selection procedure, 10-fold cross validation. In this pro-
cedure, the training data is divided into 10 non-overlapping groups. We train an
ANN using the first nine groups of training data and test the trained ANN on the
remaining group. We repeat this procedure until each of the 10 groups is used as
a test set once. We then take the average of the accuracy measurements over the
10 folds and call it an intermediate accuracy. We repeat the 10-fold cross validation
procedure five times and average the five intermediate accuracy estimates. We call
this the estimated accuracy through the following sections.

For evaluation purposes, we select a single “best” solution in terms of both
estimated accuracy and complexity. We subjectively decided to pick a solution with
the minimal number of features at the marginal accuracy level.?2 Once we decide on
the best solution, we train the ANN using all the training data with the selected
features only. The trained model is then used to rank the potential customers (the

records in the evaluation set) in descending order by the probability of buying RV

2If other objective values are equal, we prefer to choose a solution with small variance.
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insurance, as predicted by the ANN. We finally select the top % of the prospects and
calculate the actual accuracy of our model using the actual choices of the evaluation

set households.

3.3.2 Evaluation metrics
We define two heuristic evaluation criteria, Fyocyracy and Feompiesity, to evaluate
selected feature subsets. Each objective, after being normalized into 25 intervals to

allocate energy, is maximized by ELSA.

Foccuracy: The purpose of this objective is to favor feature sets with a higher hit
rate. Each ANN takes a selected set of features to learn data patterns and
predicts which potential customers will actually purchase the product. In our
application, we define two different measures, F, ., o0y a0d Fipyrogy for two
different experiments. Experiment 1 assumes that the managers can specify in
advance the rule to be used in select households for mailings. We select the top

20% of potential customers in descending order of the probability of purchasing

the product and compute the ratio of the number of actual customers, AC, out

of the chosen prospects, TC. We calculate F,,.,,,., as follows:
1 AC
1
Faccuracy = Zl TC (3].)
accuracy
where Zéccumcy is an empirically derived constant to normalize F, alccumcy.

In Experiment 2, we consider a generalization of Experiment 1. We first divide

the range of customer selection percentages into 50 intervals with equal width
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(2%) and measure accuracy at the first m intervals only.> At each interval
i < m, we select the top (2 -7)% of potential customers in descending order of
the probability of purchasing the product and compute the ratio of the number
of actual customers, AC;, out of the total number of actual customers in the
evaluation data, Tot. We multiply the width of interval and sum those values

to get the area under the lift curve over m intervals. Finally we divide it by m

to get our final metric, F_..,, .., We formulate it as follows:
1 & AG
2
Faccur acy 2 (3 ° 2)
ZGCCUTGCy TOt
where Tot = 238, m = 25 and Z,,,,., is an empirically derived constant to

2
normalize Fy .00

Feomplexity: This objective is aimed at finding parsimonious solutions by minimizing
the number of selected features as follows:

d—1
Fcomplezcity =1- ﬁ (33)

where d and D represent the dimensionality of the selected feature set and of
the full feature set, respectively. Note that at least one feature must be used.
Other things being equal, we expect that lower complexity will lead to easier

interpretability of solutions as well as better generalization.

3This could be justified in terms of costs to handle the chosen prospects and the expected
accuracy gain. As we select more prospects, the expected accuracy gain will go down. If
the marginal revenue from an additional prospect is much greater than the marginal cost,
however, we could sacrifice the expected accuracy gain. Information on mailing cost and
customer value was not available in this study.
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3.4 Application

The new ELSA/ANN methodology is applied to the prediction of households
interested in purchasing an insurance policy for recreational vehicles. To benchmark
the new procedure, we contrast the performance of the ELSA/ANN methodology to
an industry-standard logit approach that summarizes household background infor-
mation using principal components analysis. We evaluate the ELSA/ANN approach
using two experiments. In Experiment 1, we inform the algorithm of the way in which
the predictive model will be used by managers to select households for a direct mail
solicitation. In Experiment 2, we leave this information vague. We show that the new
approach provides improvements in forecasting accuracy, but that model complexity

is contingent on the amount of information about the managerial decision rule.

3.4.1 Data description
The data are taken from a solicitation of 9,822 European households to buy
insurance for a recreational vehicle. These data, taken from the ColL 2000 forecasting
competition [105], provide an opportunity to assess the properties of the ELSA/ANN
procedure in a customer prospecting application.* In our analysis, we use two sepa-
rate datasets: a training set with 5822 households and an evaluation set with 4000

households. The training data is used to calibrate the model and to estimate the hit

“We use a dataset on consumer responses to a solicitation for “caravan” insurance poli-
cies. A “caravan” is similar to a recreational vehicle in the United States. For more
information about the ColL competition and the ColL datasets, refer to the Web site
http://www.dcs.napier.ac.uk/coil/challenge/.
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Table 3.1: Household background characteristics.

Feature ID | Feature Description

1

2

3
4-13

14-17
18-21

22-23
24-26
27
28-32

33-37
38-39
40-42
43-44
45-50

51
92-72

73-93

Number of houses owned by residents

Average size of households

Average age of residents

Psychographic segment: successful hedonists, driven growers, average
family, career loners, living well, cruising seniors, retired and religious,
family with grown ups, conservative families, or farmers

Proportion of residents with Catholic, Protestant, others and no religion
Proportion of residents of married, living together, other relation, and
singles

Proportion of households without children and with children
Proportion of residents with high, medium, and lower education level
Proportion of residents in high status

Proportion of residents who are entrepreneur, farmer, middle
management, skilled laborers, and unskilled laborers

Proportion of residents in social class A, B1, B2, C, and D

Proportion of residents who rented home and owned home

Proportion of residents who have 1, 2, and no car

Proportion of residents with national and private health service
Proportion of residents whose income level is < $30,000, $30,000-
$45,000, $45,000-$75,000, $75,000-$123,000, >$123,000, and average
Proportion of residents in purchasing power class

Scaled contribution to various types of insurance policies such as
private third party, third party firms, third party agriculture, car, van,
motorcycle/scooter, truck, trailer, tractor, agricultural M/C, moped, life,
private accident, family accidents, disability, fire, surfboard, boat,
bicycle, property, social security

Scaled number of households holding insurance policies for the

same categories as in scaled contribution attributes
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rate expected in the evaluation set. Of the 5822 prospects in the training dataset,
348 purchased RV insurance, resulting in a hit rate of 348/5822 = 5.97%. From the
manager’s perspective, this is the hit rate that would be expected if solicitations were
sent out randomly to consumers in the firm’s database.

The evaluation data is used to validate the predictive models. Our predictive
model is designed to return the top 2% of customers in the evaluation dataset judged
to be most likely to buy RV insurance. The model’s predictive accuracy is examined
by computing the observed hit rate among the selected households. It is important
to understand that only information in the training dataset is used in developing the
model. Data in the evaluation dataset is used exclusively for forecasting.

In addition to the observed RV insurance policy choices, each household’s
record also contains 93 additional variables, containing information on both socio-
demographic characteristics (variables 1-51) and ownership of various types of in-
surance policies (variables 52-93). Details are provided in Table 3.1. The socio-
demographic data are based upon postal code information. That is, all customers liv-
ing in areas with the same postal code have the same socio-demographic attributes.
The insurance firm in this study scales most socio-demographic variables on a 10-
point ordinal scale (indicating the relative likelihood that the socio-demographic trait
is found in a particular postal code area). This 10-point ordinal scaling includes vari-
ables denoted as “proportions” in Table 3.1. For the purposes of this study, all these

variables were regarded as continuous. The psychographic segment assignments (at-
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tributes 4-13), however, are household-specific and are coded into ten binary variables.

In our subsequent discussion, the word feature refers to one of the 93 variables
listed in Table 3.1. For example, the binary variable that determines whether or not a
household falls into the “successful hedonist” segment is a single feature. Accordingly,
in the feature selection step of the ELSA/ANN model, the algorithm can choose to

use any possible subset of the 93 variables in developing the predictive model.

3.4.2 Experiment 1

In Experiment 1, we maximize the hit rate when choosing the top 20% poten-
tial customers as in Kim and Street (2000). We select the top 20% of customers in
the evaluation dataset using the model created by the ELSA/ANN procedure. The
actual choices of these households provide a measure of the hit rate. For comparison
purposes, we implemented a principal component analysis (PCA) of the household
background characteristics followed by a logistic regression of the insurance policy
choice data. PCA is analogous to our feature selection procedure to reduce data
dimension. The logistic regression is, in fact, an example of a very simple ANN.
The PCA /logit approach is commonly used by industry consultants in developing
household selection rules.

We also implemented an intermediate model, ELSA /logit, for comparison pur-

poses. The ELSA /logit model is different from ELSA/ANN in the sense that it uses
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Apply PCA on training data Disqin

Determine appropriate number of PCs, n
Reduce the dimensionality of Dy.qin using n PCs, creating D;Tain

Perform logistic regression on D and save (3; and & where i =1,---,n.

train

Reduce the dimensionality of evaluation data D.,,; using n PCs, creating D

eval
Calculate p(not buy) for each record in D;val using

_exp(at+) " Ai-PCy)
- 1+exP(d+E?§ﬁ'PCl’)

Jelect 20% of records, R, with lowest p
for each selected record r
if r is an actual customer
counter = counter + 1
endif
endfor
Hitrate = counter /R

Figure 3.3: The implementation procedure of PCA /logit model.

only one hidden node.” We use the same criterion to select the final solution of
ELSA /logit as in ELSA/ANN. The motivation behind the ELSA /logit model is the
decomposition of the accuracy gain of ELSA/ANN into two sources: feature selection
and response function approximation. The difference in results between PCA /logit
and ELSA /logit can be attributed to characteristics of feature selection, while the
difference in results between ELSA /logit and ELSA/ANNs can be attributed to the
greater flexibility of ANN in approximating the response model.

Before discussing results, we first briefly summarize our implementation of the
PCA /logit benchmark model in Figure 3.3. We selected 22 principal components.
This is the minimum required to explain more than 90% of the variance in the training
set. In order to get the estimated hit rate, we implement 10-fold cross validation on

the training set as shown in Figure 3.4. In the cross validation procedure, the scores

SELSA /ANN models use v/node;, where node;, represents the number of input nodes.
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of the PC’s are estimated using different portions of the data each time to get the

estimated hit rate.

Divide training data Dyi,4i, into 10 equal-sized subsets
for each subsets Di,ginli], i =1,---,10
Define Dtrain[i]c = Dirain - Dtrain[i}
Apply PCA on Dipginli]®, and select n PCs
Reduce the dimensionality of Diygin[¢]® using n PCs
Do logistic regression on reduced Dipgin[i]°
Reduce the dimensionality of Dipgin[i] using n PC scores
Calculate p(not buy) using the formula in Figure 3.3
Pick 20% of records, RJ[i], with lowest p
for each selected record r
if r is an actual customer
counter[i] = counter[i] + 1
endif
endfor
endfor

Hitrate = 2221 counter][i]/ E:il R[]

Figure 3.4: The implementation procedure of cross-validation for PCA /logit model.
We used the same number of PCs, n = 22, as we did in Figure 3.3.

We set the values for ELSA parameters in the ELSA/ANN and ELSA /logit
models as follows: Pr(mutation) = 1.0, pmee = 1,000, E,s = 0.2, § = 0.3, and
T = 2,000. We select the single solution which has the highest expected hit rate
among those solutions that have fewer than 10 features selected in both models.
We evaluated each model on the evaluation set. Our results are summarized in
Table 3.2 and Figure 3.5. The hit rates from the three different models are shown
as percentages with standard deviation. The column marked “# Correct” shows the
number of actual customers who are included in the chosen top 20%. The number
in parenthesis represents the number of selected features except for the PCA /logit

model, where it represents the number of PCs selected.
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Table 3.2: Results of Experiment 1.

Training set Evaluation set
Model Fi
odel (# Features) Hit Rate + s.d # Correct
PCA /logit (22) 12.83% =+ 0.498% 109
ELSA /logit (6) 15.73% + 0.203% 115
ELSA/ANN (7) 15.92% + 0.146% 120
15.00
15
14.38
144 13.63
S 13+
8
c
T 12
11
10+
Models

Figure 3.5: Hit rates of three different models on the evaluation data set. Each model
chooses the best 20% of customers in the evaluation data set in terms of the estimated
probability of buying a caravan insurance policy.
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In terms of the actual hit rate, all three models work very well. Even the
model with lowest actual hit rate (PCA /logit) is 2.3 times better than the hit rate
expected by mailing to these households at random (5.97%). The model generated
by the ELSA/ANN procedure returns the highest actual hit rate. As noted earlier,
the difference in actual hit rate between PCA/logit and ELSA /logit provides an
estimate of the accuracy gain that comes from the ELSA feature selection procedure.
The difference in actual hit rate between ELSA /logit and ELSA/ANN provides an
estimate of the accuracy gain that comes from the additional flexibility that ANN
provides in approximating the true response function. Note that the highest hit
rate is (238/800 ~ 29.75%). In this application, both aspects of the ELSA/ANN
procedure contribute equally to the improved accuracy of the model (1.37% point).
This improvement in actual hit rate could lead to a significant gain in profit as the
number of targeted prospects increases.

Judging the interpretability of a model is necessarily subjective. An advan-
tage of the ELSA/ANN approach is that predictive features are clearly highlighted.
In contrast, the PCA /logit model uses all of the features in constructing the princi-
pal component scores. We show the seven features that the ELSA/ANN procedure
selected in Table 3.3.

With the exception of the “Average Family” psychographic segment, all other
features are reports of the insurance buying behavior of the household’s postal code

area. The feature reporting car insurance makes considerable sense, given the fact that
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Table 3.3: Selected features by ELSA/ANN in Experiment 1.

| Feature Type | Selected Features |

Demographic features | “Average Family” psychographic segment,

Behavioral features Amount of contribution to third party policy, car policy,
moped policy and fire policy, and number of households
holding third party policies and social security policies

the firm is soliciting households to buy insurance for recreational vehicles. Further
evaluation shows that prospects with at least two insured autos are the most likely
RV purchasers. Moped policy ownership is justified by the fact that many people
carry their mopeds or bicycles on the back of RVs. Those two features are selected
again by the ELSA /logit model.® Using this type of information, we are able to build
a potentially valuable profile of likely customers [105].

In general, the results are in line with marketing science work on customer
segmentation, which shows that information about current purchase behavior is most
predictive of future choices [174]. The fact that the ELSA/ANN model used only
seven features for customer prediction also implies that the firm could reduce data
collection and storage costs considerably. This is possible through reduced storage
requirements (86/93 & 92.5%), and the reduced labor and data transmission costs.

We also compare the three models in terms of lift curves.” Figure 3.6 shows the

6The other four features selected by the ELSA /logit model are: contribution to bicycle
and fire policy, and number of trailer and lorry policies.

"Lift is defined as the percentage of all buyers in the database who are in the group
selected for a direct mail solicitation. Under random sampling, the lift curve is a 45-degree
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Figure 3.6: Lift curves of three models that maximize the hit rate when targeting the
top 20% of prospects.

cumulative hit rate over the top 2 < x < 100 % prospects. Clearly, our ELSA/ANN
model is the best when the firm selects the top 20% of prospects for a direct mail solic-
itation. However, the performance of ELSA/ANN and ELSA /logit over all targeting
percentages was worse than that of PCA /logit. This occurs because our solution is

specifically designed to optimize the hit rate when managers select the top 20% of

line starting at the origin of the graph.



7

prospects. In contrast, the PCA /logit model is estimated without any knowledge of
how model forecasts will be used in decision-making. This observation motivated a
second experiment in which we attempt to improve the performance of ELSA/ANN

model over a greater range of decision rules.

3.4.3 Experiment 2

In this experiment, we search for the best solution that maximizes the accuracy
defined in a more global sense. The algorithm is designed to maximize the area
under the lift curve, up to the top 50% of potential customers. Logically, the best
solution from Experiment 1 is not necessarily the best solution in the more generalized
environment of Experiment 2. In fact, our results are consistent with this observation.
We also implemented the PCA /logit and the ELSA /logit model again for comparison
purposes. We first show the generalized procedure of PCA /logit to get the estimated
accuracy in Figure 3.7.

The ELSA/ANN and ELSA /logit models are adjusted to maximize the overall
area under the lift curve over the same intervals as in PCA/logit. Because this
new experiment is computationally much more expensive, we take a slightly different
approach to choose the final solutions of ELSA /ANN and ELSA /logit. We used 2-fold
cross validation estimates of all solutions and set the values of the ELSA parameters
identically with the previous experiment except pme: = 200 and T = 500. Based
on accuracy estimates, we choose a solution that has the highest estimated accuracy

with less than half of original features in both models. We evaluate three models on
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Apply PCA on training data Disqin

Determine appropriate number of PCs, n
Reduce the dimensionality of Dy.qin using n PCs, creating D;Tain

Perform logistic regression on D and save (3; and & where i =1,---,n.

train

Reduce the dimensionality of evaluation data D.,,; using n PCs, creating D

eval
Calculate p(not buy) for each record in D;val using

_exp(at+) " Ai-PCy)
- 1+exP(d+E?§ﬁ'PCl’)

for each i=1 to intpum
T = tnlwidth - ¢
Select z% records with lowest p
for each selected record r
if r is an actual customer
counter = counter + 1
endif
endfor
Hitpqte = counter/Tot
Accuracy = Accuracy + Hitrate * iNtwidih
endfor
Accuracy = Accuracy/intnum

Figure 3.7: The generalized implementation of PCA /logit model. We use n = 22 (as
in Experiment 1), int,ym = 25, intyian = 2, and Tot = 238.

the evaluation set and summarize results in Table 3.4 and in Figure 3.8. In Table 3.4,
the cumulative hit rates of the three models are shown over up to the top 50% of
prospects. In practice, we optimize over the first 25 intervals which have the same

width, 2%, to approximate the area under the lift curve.

Table 3.4: Summary of Experiment 2.

% of Selected
5 [ 10 [ 15 [ 20 [ 25 [ 30 | 35 | 40 | 45 | 50
PCA/logit (22) 20.06 20.06 16.04 13.63 12.44 11.20 10.81 10.22 9.87 9.38
ELSA/logit (46) 23.04 | 18.09 | 15.56 | 13.79 | 12.13 | 12.04 | 10.97 | 10.54 | 10.03 | 9.53
ELSA/ANN (44) 19.58 17.55 16.40 14.42 13.13 11.96 10.97 10.40 9.98 9.64

Model (# Features)
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Table 3.4 shows that the ELSA/ANN model has higher hit rates than PCA /logit
over the solicitation range between 15% and 50% of total households. In particular,
ELSA/ANN is best when choosing 15%, 20%, 25% and 50% of the targeting points,
and tied for the best at 30%, 35% and 45%. The overall performance of ELSA /logit
is better than that of PCA/logit. We attribute this to the fact that both models
benefit from the ELSA feature selection methodology.

The lift curves in Figure 3.8 show that the ELSA/ANN has much improved
global characteristics relative to Experiment 1. We, however, note that there are
significant costs associated with this improved performance. First, the hit rate of
ELSA/ANN at the 20% solicitation rate is now lower than in Experiment 1 (14.42%
versus 15.00%). Second, it is no longer clear which aspects of the ELSA/ANN model
are responsible for the improved global performance. Note that the rank order of
ELSA /logit and ELSA/ANN shows no consistent pattern across the various solicita-
tion percentages. Third, the well-established parsimony and interpretability of the
models selected by ELSA/ANN in Experiment 1 is largely lost in Experiment 2. We
attribute this partially to the fact that different selection points may have related but
different optimal subsets of features. Correlation among features seems to contribute
to the loss of parsimony. For instance, a particular variable related to insurance pol-
icy ownership that is part of the optimal subset at a 20% selection rate could easily
be replaced by a different, correlated feature at 30%. It should be noted that the

ELSA/ANN model is superior to PCA/logit model in the sense that ELSA/ANN
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Figure 3.8: Lift curves of three models that maximize the area under lift curve when

targeting upto top 50% of prospects. In practice, we optimize over the first 25 intervals
which have the same width, 2%, to approximate the area under the lift curve.

works with feature subsets, while PCA /logit always requires the whole feature set to
construct PC’s.

These aspects of the solution provide strong evidence that there exists a key
trade-off in building a predictive model. By focusing on a specific decision scenario
(as in Experiment 1), we are able to construct a procedure that is parsimonious and

has superior predictive performance. When the decision scenario is more ambiguous
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(as in Experiment 2), we can improve predictive performance over a broad range, but

sacrifice model interpretability.

3.5 Conclusion

In this chapter, we presented a novel approach for customer targeting in
database marketing. We used an evolutionary algorithm, ELSA, to search for possible
combinations of features and an artificial neural network (ANN) to score customers.
When the decision rule was precise, the overall performance of ELSA/ANN was su-
perior to the industry standard PCA /logit model both in terms of accuracy and in
terms of interpretability. However, this superiority in interpretability is confined to
specific decision conditions defined during model development and calibration. Under
a more general decision scenario, ELSA/ANN yielded a more accurate model over a
broad selection percentage range at the cost of increasing the number of predictive
features in the specification.

One of the clear strengths of the ELSA/ANN approach is its ability to con-
struct predictive models that reflect the direct marketer’s decision process. Unlike
a standard statistical approach like PCA /logit, the ELSA/ANN procedure can be
easily modified to take into account different objectives. With information of cam-
paign costs and profit per additional actual customer, a direct marketer could use
ELSA/ANN to choose the best selection point where expected total revenue is max-
imized. In this way, it would be possible to determine the type of decision rule

that the marketer should adopt, both in terms of solicitation percentage as well as
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predictive rule. Because all mailing lists do not all have the same potential for the
marketer, this approach would allow a predictive model and solicitation-mailing rule
to be customized as the firm’s database changes.

Our work provides additional evidence that there exists strong dependencies
between model specification and managerial decision-making. When managers are
clear about how a model will be used, the analyst can construct a highly specialized
model that does better than general approaches (such as PCA /logit). When managers
are vague, a less parsimonious model can be constructed which does better under
some region of the decision space. The ELSA/ANN approach provides a new tool
in which these trade-offs can be understood in the context of direct mail marketing

applications.



83

CHAPTER 4
META-EVOLUTIONARY ENSEMBLES

4.1 Introduction

In recent years, a great deal of interest in the machine learning community has
been generated by ensemble classifiers. These are predictive models that combine the
predictions of a collection of individual classifiers, such as decision trees or artificial
neural networks. Popular method such as Boosting, Bagging and Stacking differ in
the ways that individual predictors are constructed, and in how their votes are com-
bined. However, they have all demonstrated consistent — in some cases, remarkable
— improvements in predictive accuracy over standard methods.

Much of the power of these methods comes from the diversity of the compo-
nent classifiers. Intuitively, gathering a collection of problem solvers is only valuable
if they are both accurate and diverse in their solutions. For instance, Boosting ex-
plicitly rewards a component classifier for correctly predicting difficult points. The
diversity among component classifiers of ensemble has been proved critical to attain
higher generalization accuracy [121, 85, 157] and can be obtained in many ways. Of-
ten different learning algorithms for the base classifiers, various sampling or weighting
methods of the training examples, or projection of the examples onto different fea-
ture subspaces have been used to boost diversity among classifiers. However, little

attention has been paid to the idea of creating an optimal collection of classifiers, or
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indeed, what the idea of “optimality” might even mean in such a context.

We propose a new meta-ensembles algorithm to directly optimize ensembles
by creating an two-level evolutionary environment. The various ensembles in this
environment compete directly with one another, being judged on their estimated
predictive performance. In addition, the underlying classifiers also compete with each
other, being rewarded for correctly predicting the training examples. This reward is
greater if the point in question is difficult, i.e., if it has been incorrectly classified by
most of the other classifiers in the ensemble.

In particular, we employ feature selection not only to increase the predictive
accuracy of an individual classifier but also to promote diversity among component
classifiers in an ensemble [155]. Ensemble feature selection is based on the notion that
different feature subsets among component classifiers of an ensemble can provide the
necessary diversity. It is similar to the notion that different training samples among
component classifiers provide the necessary diversity in ordinary ensemble methods.

Our approach to feature selection is again based on the wrapper model [113]
of feature selection, which requires two components: a search algorithm that explores
the combinatorial space of feature subsets, and one or more criterion functions that
evaluate the quality of each subset based directly on the predictive model. In this
work, we use artificial neural networks (ANNs) and decision trees as induction algo-
rithms to evaluate the quality of the selected feature subsets. As a search algorithm,

we turn to ELSA. For the general framework of ELSA, refer to Chapter 2.5.2.
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In this chapter, we demonstrate the feasibility of such a model and show that
the predictive accuracy obtained is better than a single classifier. Our model not only
maintains higher or comparable predictive accuracy, but also builds ensembles smaller
than traditional ensemble methods. In particular, our model provides the framework
to answer how ensembles can best be constructed through the evolutionary process.
We examine the relationship between classifier diversity and ensembles size to and
the predictive accuracy of the ensemble. Finally, we compare the effectiveness of two
different classifiers, neural networks and decision trees, in the framework of ensemble
feature selection.

The remainder of this chapter is organized as follows. In Section 4.2 we review
ensemble methods and ensemble feature selection algorithms, both separately and in
combination. In Section 4.3 we present our bi-level approach to the ensemble feature
construction, Meta-Evolutionary Ensembles (MEE) in detail. Section 4.4 presents
and analyzes our experimental results. Section 4.5 addresses the directions of future

research and concludes this chapter.

4.2 Ensemble methods and feature selection
4.2.1 Ensemble methods
Recently many researchers have combined the predictions of multiple classifiers
to produce a better classifier, an ensemble, and often reported improved performance
(35, 16, 210]. Bagging [33] and Boosting [72, 180] are the most popular methods

for creating accurate ensembles. Bagging is a bootstrap ensemble method that trains
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each classifier on a randomly drawn training set. Each classifier’s training set consists
of the same number of examples randomly drawn from the original training set, with
the probability of drawing any given example being equal. Samples are drawn with
replacement, so that some examples may be selected multiple times while others may
not be selected at all. As a result, each classifier could return a higher test set error
than a classifier using all of the data. However, when these classifiers are combined
(typically by voting), the resulting ensemble produces lower test set error than a single
classifier. The diversity among individual classifiers compensates for the increase in
error rate of any individual classifier and improves prediction performance.

Boosting [72] produces a series of classifiers, with each training set based on
the performance of the previous classifiers. New classifiers are constructed to better
predict examples for which the current ensemble’s performance is poor. This is ac-
complished using adaptive resampling, i.e., examples that are incorrectly predicted
by previous classifiers are sampled more frequently, or alternately given a higher cost
of misclassification. Boosting can be implemented in two different ways, Arcing [34]
and AdaBoosting [72]. In Arcing, the classifiers’ votes are weighted equally, while
AdaBoost weights the predictions based on the classifiers’ training error.

The effectiveness of Bagging and Boosting can be explained based on the bias-
variance decomposition of classification error [16]. Bagging and Boosting are known
to reduce errors by reducing the variance term [34]. According to [72], Boosting

also reduces errors in the bias term by focusing on the misclassified examples. It
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is noted that Boosting’s effectiveness depends more on the data set than on the
component learning algorithms, and it is often more accurate than Bagging. However,
Boosting, unlike Bagging, can create ensembles that are much less accurate than
a single classifier. In particular, Bagging performs much better than Boosting on
noisy data sets because Boosting can easily overfit data by focusing more on the
misclassified examples [60]. In most cases, the improved performance of an ensemble

is largely obtained by combining the first few classifiers [156].

4.2.2 Ensemble feature selection algorithms

The improved performance of ordinary ensemble methods comes primarily
from the diversity caused by re-sampling training examples. However, ensemble meth-
ods typically use the complete set of features to train component classifiers. Recently
several attempts have been made to incorporate the diversity in feature dimension
into ensemble methods. The Random Subspace Method (RSM) in [88, 87] was one
early algorithm that constructed an ensemble by varying the feature subset. RSM
used C4.5 as a base classifier and randomly chose half of the original features to build
each classifier. Each classifier tree was constructed after all the training examples
were projected to the subspace of selected features. The predictions were combined
by simple majority voting. In comparative experiments, RSM demonstrated better
performance on four public data sets than a single tree classifier with all the features
and examples, and also outperformed Bagging and Boosting on the full-dimensional

data sets [88, 87].
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A more sophisticated way to select a subset of features for ensembles was
proposed in [80]. They used a genetic algorithm (GA) to explore the space of all
possible feature subsets. Their experiments paired four different ensemble methods,
including Bagging and AdaBoost, with three different feature selection algorithms:
complete, random, and genetic search. Using two table-based classification methods,
ensembles constructed using features selected by the GA showed the best performance,
followed by RSM. In [53], a new entropy measure of the outputs of the component
classifiers was used to explicitly measure the ensemble diversity and to produce good
feature subsets for ensemble using hill-climbing search.

Genetic Ensemble Feature Selection (GEFS) [155] also used a GA to search
for possible feature subsets. Component classifiers (ANNs) in GEFS were explicitly
evaluated in terms of both generalization accuracy and diversity. GEFS starts with an
initial population of classifiers built using up to 2- D features, where D is the complete
feature dimension. Using a variable feature subset size promotes diversity among the
classifiers and allows some features to be selected more than once. Crossover and
mutation operators search for new feature subsets, and new candidate classifiers are
built for each of the new feature sets. Finally, GEFS prunes the population to the 100
most-fit members and majority voting is applied to determine the ensemble prediction.
GEFS produces a good initial population, and in most cases produces better results
the longer it runs. GEFS reported better estimated generalization than Bagging and

AdaBoost on about two-thirds of 21 data sets tested. Longer chromosomes, however,
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make GEFS computationally expensive in terms of memory usage [80]. Further,
GEFS evaluates each classifier after combining two objectives in a subjective manner
using fitness = accuracy + A diversity, where diversity is the average difference
between the prediction of component classifiers and the ensemble. Since there is no
obvious way to set the value of A, GEFS dynamically adjusts the parameter based on
the discrete derivatives of the ensemble error, the average population error and the
average diversity within the ensemble.

Although all these methods reported improved performance using feature selec-
tion for ensemble construction ensemble, they have one common limitation in method-
ology: only one ensemble is considered. We propose a new algorithm for ensemble
feature selection, Meta-Evolutionary Ensembles (MEE), that considers multiple en-
sembles simultaneously and allows each component classifiers to move into the best-fit
ensemble. Genetic operators change the ensemble membership of the individual clas-
sifiers, allowing the size and membership of the ensembles to change over time. By
having the various ensembles compete for limited resources, we can optimize their
predictive performance.

In order to avoid costly global selection common to most GAs, we use a local
selection mechanism in which classifiers compete with each other only if they belong
to the same ensemble. Using ANNs as the base classifier and this EA for feature selec-
tion, we evaluate and reward each classifier based on two different criteria, accuracy

and diversity. A classifier that correctly predicts data examples that other classifiers
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in the same ensemble misclassify contributes more to the accuracy of the ensemble to
which it belongs. We imagine that some limited “energy” is evenly distributed among
the examples in the data set. Each classifier is rewarded with some portion of the
energy if it correctly predicts an example. The more classifiers that correctly classify
a specific example, the less energy is rewarded to each, encouraging them to correctly
predict the more difficult examples. The predictive accuracy of each ensemble deter-
mines the total amount of energy to be replenished at each generation. Finally, we

select the ensemble with the highest accuracy as our final classification model.

4.3 Meta-Evolutionary Ensembles

Pseudocode for the Meta-Evolutionary Ensembles (MEE) algorithm is shown
in Figure 4.1, and a graphical depiction of the energy allocation scheme is shown in
Figure 4.2. Each agent (candidate solution) in the population is first initialized with
randomly selected features, a random ensemble assignment, and an initial reservoir of
energy. The representation of an agent consists of D+log,(G) bits. D bits correspond
to the selected features (1 if a feature is selected, 0 otherwise). The remaining bits are
a binary representation of the ensemble index, where GG is the maximum number of
ensembles. Mutation and crossover operators are used to explore the search space. A
mutation operator randomly selects one bit of an agent and mutates it. Our crossover
operator takes two agents, a parent ¢ and a random mate, and scans through the bits
of the two agents. If a difference is found, the value of the bit in a is flipped with

a probability of 0.5. In this process, the mate contributes only to construct the
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offspring’s bit string, which inherits all the common features of the parents.

initialize population of agents, each with energy 6/2
while there are alive agents in Pop’ and i < T
for each ensemble g
for each record r in Datatest
prevCounty » = countg,,
countg,r =0
endfor
endfor
for each agent a in Pop’
a' = mutate(crossover(a, randomMate))
g = group(a)
train(a)
for each record r in Datatest
if (class(r) == prediction(r,a))
countg,r + +
ggE’T: ?%%fr/ m_inéSL,UprevCountg,r)
envt — " envt
E, =E, + AE
endif
endfor
a = Eq — Ecost
if (Eq>0)
insert a,a’ into Popit!
E, =Eq/2
Eq =Eq, — Eg
else if (E, > 0)
insert @ into Pop't!
endif
endfor
for each ensemble g
replenish energy based on predictive accuracy
endfor
i=1+1
endwhile

Figure 4.1: Pseudo-code of Meta-Evolutionary Ensembles (MEE) algorithm. In each
iteration, the environmental energy for each pair of an ensemble g and a test example
r is replenished based on the predictive accuracy of g. The main loop calls agents in
random order and agents are rewarded based on their accuracy on each test record
r, normalized by the number of other agents that correctly classify r in the same
ensemble.

In each iteration of the algorithm, an agent explores a candidate solution

(classifier) similar to itself, obtained via crossover and mutation. The agent’s bit
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Figure 4.2: Graphical depiction of energy allocation in the MEE algorithm. Individual
classifiers (small boxes in the environment) receive energy by correctly classifying test
points. Energy for each ensemble is replenished between generations based on the
accuracy of the ensemble. Ensembles with higher accuracy have their energy bins
replenished with more energy per classifier, as indicated by the varying widths of the
bins.

string is parsed to get a feature subset J. An ANN is then trained on the projection
of the data set onto J, and returns the predicted class labels for the test examples.
The agent collects AF from each example it correctly classifies, and is taxed once
with E.,;. The net energy intake of an agent is determined by its fitness. This is a
function of how well the candidate solution performs with respect to the classification
task. But the energy also depends on the state of the environment. We have an
energy source for each ensemble, divided into bins corresponding to each data point.
For ensemble g and record index r in the test data, the environment keeps track of
energy EZ,, and the number of agents in ensemble g, count,, that correctly predict
record r. The energy received by an agent for each correctly classified record r is
given by
E?T

AE = L . 4.1
min(5, prevCount, ) (4.1)
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An agent receives greater reward for correctly predicting an example that most in its
ensemble get wrong. The min function ensures that for a given point there is enough
energy to reward at least 5 agents in the new generation.! Candidate solutions receive
energy only inasmuch as the environment has sufficient resources; if these are depleted,
no benefits are available until the environmental resources are replenished. Thus an
agent is rewarded with energy for its high fitness values, but also has an interest in
finding unpopulated niches, where more energy is available. The result is a natural
bias toward diverse solutions in the population. FE.. for any action is a constant
(Ecost < 0).

In the selection part of the algorithm, an agent compares its current energy
level with a constant reproduction threshold 6. If its energy is higher than 6, the agent
reproduces: the agent and its mutated clone become part of the new population, with
the offspring receiving half of its parent’s energy. If the energy level of an agent is
positive but lower than €, only that agent joins the new population.

The environment for each ensemble is replenished with energy based on its
predictive accuracy, as determined by majority voting with equal weight among base
classifiers. We sort the ensembles in ascending order of estimated accuracy and appor-
tion energy in linear proportion to that ranking, so that the most accurate ensemble

is replenished with the greatest amount of energy per base classifier. Since the total

!Note that the number ’5’ is empirically determined through experiments. The better
approach to avoid this problem is to automatically adjust the number of energy bins, which
warrants further investigation.
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amount of energy replenished also depends on the number of agents in each ensem-
ble, it is possible that an ensemble with lower accuracy can be replenished with more

energy in total than an ensemble with higher accuracy.

4.4 Experimental results
4.4.1 Experimental results of MEE/ANN
We first tested the performance of MEE combined with neural networks on
several publicly available data sets [21]. We show the characteristics of our data sets

in Table 4.1. For comparison purposes we chose several data sets that were also used

in [155].
Table 4.1: Summary of the data sets used in experiments.
FEATURES NEURAL NETWORK
DATASET REcCORDS CrLAssSeEs | ConT. Disc. | INpuTsS EPOCHS
CREDITA 690 2 6 9 47 50
CREDITG 1000 2 7 13 63 50
DIABETES 768 2 8 - 8 50
GLASS 214 6 9 - 9 50
HEART-CLEVELAND 303 2 8 5 13 50
HEPATITIS 155 2 6 13 32 50
HOUSE-VOTES-84 435 2 - 16 16 50
HYPO 3772 4 6 21 31 50
IONOSPHERE 351 2 34 - 34 50
IRIS 150 3 4 - 4 50
KRVSKP 3196 2 - 36 40 50
LABOR 57 2 8 8 29 50
SEGMENT 2310 7 19 - 19 50
SICK 3772 2 6 21 31 50
SONAR 208 2 60 - 60 50
SOYBEAN 683 19 - 35 84 50
VEHICLE 846 4 18 - 18 50
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The weights and biases of the neural networks are initialized randomly between
0.5 and -0.5, and the number of hidden node is determined heuristically as \/inputs.
The other parameters for the neural networks include a learning rate of 0.1 and a
momentum rate of 0.9. The number of training epochs was kept small (50) for com-
putational reasons. The values for the various ELSA parameters are: Pr(mutation)
= 1.0, Pr(crossover) = 0.8, E,s = 0.2, 8 = 0.3, and T = 30. The value of EX , =
30 is chosen to maintain a population size around 100 classifier agents.

All computational results for MEE are based on the performance of the best
ensemble and are averaged over five standard 10-fold cross-validation experiments.
For each 10-fold cross-validation the original data set is first partitioned into 10 equal-
sized sets, each maintaining the original class distribution. Each set is in turn used
as an evaluation set while the classification system is trained on the other four sets.
Within the training algorithm, each ANN is trained on two-thirds of the training set
and tested on the remaining third for energy allocation purposes.

Experimental results are shown in Table 4.2. We present the performance of
a single neural network using the complete set of features as a baseline algorithm. In
the win-loss-tie results shown at the bottom of Table 4.2, a comparison is considered

a tie if the intervals defined by one standard error ? of the mean overlap. On the data

sets tested, MEE shows consistent improvement over a single neural network.

2In our experiments, standard error is computed as standard deviation / v/iter where
iter =5
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Table 4.2: Results of MEE/ANN with the fixed number of epochs.

Single Net MEE

Dataset Avg. S.D. | Bagging AdaBoost GEFS | Avg. S.D.
credita 85.4  0.87 86.2 84.3 86.8 | 85.9 0.72
creditg 71.7 043 75.8 4.7 75.2 | 75.6 0.78
diabetes 76.4  0.93 77.2 76.7 77.0 | 76.8 0.42
glass 56.6  2.27 66.9 68.9 69.6 | 58.8 1.21
cleveland 80.7 1.83 83.0 78.9 83.9 | 833 1.54
hepatitis 81.8 1.96 82.2 80.3 83.3 | 84.1 1.17
votes-84 95.4  0.30 95.9 94.7 95.6 | 95.6 0.52
hypo 93.8  0.09 93.8 93.8 94.1 | 93.9 0.06
ionosphere 90.2 0.38 90.8 91.7 94.6 | 92.7 0.42
iris 96.4 1.30 96.0 96.1 96.7 | 95.3 1.49
krvskp 98.8  0.63 99.2 99.7 99.3 | 99.3 0.10
labor 91.6  2.29 95.8 96.8 96.5 | 944 0.78
segment 923 097 94.6 96.7 96.4 | 93.2 0.28
sick 95.2 047 94.3 95.5 96.5 | 99.3 0.03
sonar 81.7 1.63 83.2 87.0 82.2 | 82.5 0.26
soybean 92.0 0.92 93.1 93.7 94.1 | 93.8 0.19
vehicle 74.7  0.48 79.3 80.3 81.0 | 76.4 1.12
Win-loss-tie | 12-0-5 5-5-7 7-6-4 2-6-9

We also include the results of Bagging, AdaBoost, and GEFS from [155] for
indirect comparison. In these comparisons, we did not have access to the accuracy
results of the individual runs. Therefore, a tie is conservatively defined as a test in
which the one-standard-deviation interval of our test contained the point estimate of
accuracy from [155].

However, MEE shows slightly worse performance compared to GEFS. We note
that such comparisons are inevitably inexact, since subtle methodological differences
can cause variations in estimated accuracy. For example, it is possible that the more

complex structure of neural networks used in GEF'S can learn more difficult patterns in
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Table 4.3: Results of MEE/ANN with a varying number of epochs.

Single Net MEE

Dataset Avg. S.D. | Bagging AdaBoost GEFS | Avg. S.D. Epoch
credita 84.3 0.30 86.2 84.3 86.8 | 86.4 0.52 40
creditg 71.7 043 75.8 4.7 75.2 | 75.6 0.78 50
diabetes 76.4  0.93 7.2 76.7 77.0 | 76.8 0.42 50
glass 57.1  2.69 66.9 68.9 69.6 | 61.1 1.73 100
cleveland 80.7 1.83 83.0 78.9 83.9 | 833 1.54 50
hepatitis 81.5 0.21 82.2 80.3 83.3 | 849 0.65 40
votes-84 959 0.41 95.9 94.7 95.6 | 96.1 0.44 40
hypo 93.8 0.09 93.8 93.8 94.1 | 93.9 0.06 50
ionosphere 89.3 0.85 90.8 91.7 94.6 | 93.5 0.81 100
iris 95.9 1.10 96.0 96.1 96.7 | 96.5 0.73 100
krvskp 98.8 0.63 99.2 99.7 99.3 | 99.3 0.10 50
labor 91.6 2.29 95.8 96.8 96.5 | 944 0.78 50
segment 923 0.97 94.6 96.7 96.4 | 93.2 0.28 50
sick 95.2 047 94.3 95.5 96.5 | 99.3 0.03 50
sonar 80.5 2.03 83.2 87.0 82.2 | 8.2 1.57 100
soybean 92.0 0.92 93.1 93.7 94.1 | 93.8 0.19 50
vehicle 74.7  0.48 79.3 80.3 81.0 | 76.4 1.12 50
Win-loss-tie | 15-0-2 7-4-6 9-6-2 4-7-6

data sets such as Glass and Labor data. Another factor to consider is training epochs.
While the training epochs in GEFS were empirically determined for each data set,
we used a uniform number of epochs on all data sets. In order to demonstrate this
effect, we summarize the results with a varying number of epochs on the given data
sets in Table 4.3. This simple parameter tuning improved the predictive accuracy on
some data sets and the overall win-loss-tie summary.

We note that while it is generally a good idea to overfit the individual classifiers
in an ensemble, we have not done so in the reported experiments, and may in fact be

underfitting. As we can see from the comparison between Table 4.3 and Table 4.2,
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on several data sets such as Sonar, Iris, Glass, and Ionospere, increasing the number
of epochs by 50 resulted in significantly improved performance.

From the perspective of computational cost, our algorithm can be very slow
compared to Bagging and Boosting. GEFS can be very slow compared to MEE be-
cause it uses at least twice as many as input features as used in MEE. In addition, the
larger number of hidden nodes and longer training epochs can make GEFS extremely

slow.

4.4.2 Experimental results of MEE/C4.5

In this section, we show the performance of MEE combined with C4.5 on the
same data sets used in both [72] and [155]. This experiment aims to compare the
performance of the two classifiers in the MEE framework. We used the same values
for the ELSA parameters. All computational results including win-loss-tie summary
are measured and reported in the same way as described in Section 4.4.1. In our
experiments, unpruned trees are used to build ensembles in order to overfit each
tree and thus promote the diversity. However, we use a pruned tree to estimate the
predictive performance of single tree. We show our experimental results in Table 4.4.
Bagging and AdaBoosting results were cited from [72], where 100 trees were used to
build one ensemble.

In terms of the overall performance, MEE/C4.5 demonstrates better perfor-

mance compared to single tree and Bagging, and comparable performance compared

to Boosting. We also compare the results of MEE/C4.5 and MEE/ANN to see
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Table 4.4: Results of MEE/C4.5.

Single tree MEE

Dataset Avg. S.D. | Bagging AdaBoost | Avg. S.D.
credita 85.9 0.86 86.4 86.2 86.0 0.85
creditg 70.9 0.78 75.4 75.0 74.2 0.75
diabetes 74.9 0.84 75.6 74.3 74.7  0.69
glass 67.4 2.67 74.3 77.3 73.3 1.25
cleveland 74.0 1.39 79.1 78.3 79.2 0.23
hepatitis 81.3 2.14 82.5 83.7 83.2 2.28
votes-84 96.6 0.16 96.4 94.9 95.6 0.84
hypo 99.5 0.02 99.2 99.0 99.5 0.07
ionosphere 89.2 1.07 93.8 94.2 93.1 1.04
iris 94.4 1.12 95.0 95.0 94.0 1.41
krvskp 99.4 0.06 99.4 99.7 99.4 0.03
labor 79.3 1.47 88.7 86.9 86.7 4.04
segment 97.0 0.17 97.3 98.6 98.2 0.34
sick 98.6 0.12 97.9 97.9 98.6 0.11
sonar 72.8 1.82 75.7 81.0 79.8 2.74
soybean 92.6 0.42 87.8 93.2 93.4 0.01
vehicle 72.8 0.92 73.9 77.4 73.7 0.74
Win-loss-tie | 9-1-7 5-2-10 4-5-8

whether the performance of MEE is dependent on the type of classifier. In terms of
predictive accuracy, MEE/C4.5 seems to be worse than MEE/ANN. This claim is sup-
ported by the observation that the win-loss-tie summary (7-7-3) of single ANN com-
pared to single tree is different from the win-loss-tie summary (10-4-3) of MEE/ANN
in Table 4.3 compared to MEE/C4.5. However, it warrants further investigation to see
whether the feature selection for tree ensembles is not as effective as feature selection
for neural networks ensembles and if so, why.

One clear advantage of MEE/C4.5 over MEE/ANN is its speed. MEE/C4.5

is much faster (roughly by a factor of 3 depending on the data dimension) than
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MEE/ANN to evaluate a fixed number of solutions. Further if no pruning is per-

formed, there is no parameter tuning with C4.5.

4.4.3 Guidelines toward optimized ensemble construction

In this section, we use MEE to examine ensemble characteristics and provide
some guidelines for building optimal ensembles. We expect that by optimizing the
ensemble construction process, MEE will in general achieve comparable accuracy to
other methods using fewer individuals. We use data collected from the first fold of
the first cross-validation routine for the following analyses.

We first investigate whether the ensemble size is positively related with the
predictive accuracy. It has been well-established that to a certain degree, the predic-
tive accuracy of an ensemble improves as the number of classifiers in the ensemble
increases. Our result in Figure 4.3 indicates that accuracy improvements flatten out
at an ensemble size of approximately 10-15, seeming to confirm the results in [156].
Note that some 95% confidence intervals (e.g., when ensemble is 13 or 31) are rel-
atively wider than others. This happens when MEE explores through evolutionary
process few ensembles with the same size but significantly different accuracy.

We also investigate whether the diversity among classifiers is positively related
with the ensemble’s classification performance. In our experiments, we measured the
diversity in two different ways. The first measurement of diversity is based on the

difference of predicted class between each classifier and the ensemble. We first define
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Accuracy vs. ensemble size
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Figure 4.3: The relationship between the predictive accuracy and ensemble size with
95% confidence interval on the Soybean data. We observed similar patterns on other
data sets.

a new operator @ as follows:

0 ifa=p
adf = (4.2)

1 otherwise

When an ensemble e consists of g classifiers, the diversity of ensemble e, diversity®,

is defined as follows:
g N _
Z (pred; @ preds)

15=1

2

diversity® = (4.3)

g-N

where N is the number of records in the test data and predj- and pred; represent
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the predicted class label for record j by classifier + and ensemble e respectively. The

larger the value of diversity®, the more diverse ensemble is.

Accuracy vs. diversity
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Figure 4.4: The relationship between the predictive accuracy and ensemble diversity
with 95% confidence interval on the Soybean data. Similar patterns were observed
on other data sets.

For the second diversity measurement, we slightly modified Yule’s Q statis-
tic [213]. According to [124], the @ statistic is the only measurement of diversity
that satisfies the requirement of orthogonality between accuracy and diversity. In
its original form, the () statistic is used to compute the relationship between a pair

of classifiers. When an ensemble consists of g classifiers, it is computed by taking
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the averaged @) statistics of all possible pairs of classifiers. However, our simplified
(Q* considers the relationship between an ensemble and its component classifiers in
order to avoid lengthy computation. Table 4.5 shows the four possible relationships

between the ensemble and a single classifier 7 prediction.

Table 4.5: Prediction relationships between the ensemble and a classifier.

Classifier
Correct | Incorrect
7 7
Ensemble Correct cty Ch
Incorrect Ci Co

For example, C%; is the number of records in the test set that both ensemble
e and classifier 7 correctly classify. For notational convenience, we denote a, b, ¢, and
d as the sums of Ci,, Cg,, Ci,, Ct, for all the classifiers that belongs to an ensemble
e. Now we can define our Q*(e) as follows:

ad — be

@(e)=1- ad + bc

(4.4)

If there is no dependence at all between ensemble and classifier, Q*(e) = 1. If there
is only one classifiers in ensemble, @*(e) = 0 by definition.

We show the relationship between the predictive accuracy and two measure-
ments of ensemble diversity in Figures 4.4 and 4.5. These two different measurements
show the expected the positive relationship between accuracy and diversity. However,

our results also show that too much diversity among classifiers can deteriorate en-
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Accuracy vs. Q* statistic
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Figure 4.5: The relationship between the predictive accuracy and Q* statistic with
95% confidence interval on Soybean data. We obtained similar results from other
data sets.

semble performance, as the final decision made by ensemble becomes a random guess.
Thus highly diverse ensembles are not well explored because MEE biases its search

toward more promising ensembles.

4.5 Conclusions
In this chapter, we propose a new ensemble construction algorithm, Meta-
Evolutionary Ensembles (MEE). This algorithm employs a novel two-level evolution-
ary search through the space of ensembles, using feature selection as the diversity

mechanism. At the first level, individual classifiers compete against each other to



105

correctly predict held-out examples. Classifiers are rewarded for predicting difficult
more points, relative to the other members of their respective ensembles. At the top
level, the ensembles compete directly based on classification accuracy.

Our model has several nice properties. First of all, our experimental results
indicate that this method shows very comparable classification accuracy while keeping
the ensemble size small by optimizing it directly. The final solution shows consistently
improved classification performance compared to a single classifier at the cost of
computational complexity. Compared to the traditional ensembles (Bagging and
Boosting) and GEFS, our resulting ensemble shows comparable performance while
maintaining a smaller ensemble.

Our model also makes it possible to understand and analyze how and why
ensemble methods achieve improved predictive accuracy. Our two-level evolution-
ary framework confirms that more diversity among classifiers can improve predictive
accuracy. Up to a certain level, the ensemble size also has a positive effect on the
ensemble performance. Further, our framework is a meta-search algorithm, meaning
that it is independent of classifier types and/or various mechanism to promote di-
versity among classifiers. For example, we use feature selection as the mechanisms
for individual diversity in this study. However, our flexible framework enables us to
use data sampling (or both) to promote diversity among classifiers as in traditional
ensemble methods. Our preliminary experiments show no big difference in overall

performance between two methods for promoting diversity.
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The next step is to compare this algorithm more rigorously to others on a larger
collection of data sets, and perform any necessary performance tweaks on the EA
energy allocation scheme. This new experiment is to verify Breiman’s claim [36] based
on experiments on synthetic data sets. He claimed that there is relatively little room
for other types of ensemble construction algorithm to obtain further improvement
because his decision forest method performs at or near the Bayes optimal level.

Along the way, we will examine the role of various characteristics of ensem-
bles (size, diversity, etc.) and classifiers (type, number of dimensions / data points,
etc.). By giving the system as many degrees of freedom as possible and observing
the characteristics that lead to successful ensembles, we can directly optimize these
characteristics and translate the results to a more scalable architecture [192] for large-
scale predictive tasks. For example, we will implement a new framework, where the
component classifiers move into a randomly chosen ensemble, rather than into the
best-fit ensemble. This way we can measure the effect of ensemble size and diver-
sity on the ensemble accuracy when the ensemble is a collection of randomly chosen
classifiers. By directly optimizing ensembles, we expect that our MEE algorithm
can construct smaller size of ensembles than a random method and the traditional
ensemble algorithms.

Another direction of future research is to investigate whether oversearching
affects the classification performance of our model. Through the evolutionary process,

MEE evaluates a number of ensemble models and selects one as the final solution.
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However, more extensive search can increase the probability of finding fluke rules
that fit the data well but have low predictive accuracy [168]. We will investigate the
relationship between the number of models and the predictive accuracy, particularly

on data sets where MEE did not perform well.
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CHAPTER 5
FEATURE SELECTION IN UNSUPERVISED LEARNING

5.1 Background

Feature selection has primarily been studied in a supervised learning context,
where predictive accuracy is commonly used to evaluate feature subsets. Specifically,
the data set could be divided into training and test sets, with the error rate on the
test set used to estimate the true error rate of classifiers. However, in many situations
we don’t have information about the class to which each data point belongs, and thus
we cannot apply supervised learning to estimate subset quality.

When we do not have prior information to evaluate candidate solutions, we
instead wish to find natural groupings of the examples in the feature space via clus-
tering or unsupervised learning and utilize the clustering results to evaluate solutions.
The idea is to represent groups of points by a cluster prototype after determining the
inherent number of clusters in the given data set. Once the clusters have been formed
based on some given features, we must evaluate how well this model represents the
complexity of the data.

The problem of determining an appropriate model in unsupervised learning
has gained popularity in the machine learning, pattern recognition, and data mining
communities. Unsupervised model selection addresses either how to identify the op-

timal number of clusters K or how to select feature subsets while determining the
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correct number of clusters. The latter problem is more difficult because of the inter-
dependency between the number of clusters and the feature subsets used to form
the clusters [188]. To this point, most research on unsupervised model selection has
considered the problem of identifying the right number of clusters using all available
features [118, 188]. Other researches have studied feature selection and clustering
together based on a heuristic sequential search with a single or unified criterion such
as density threshold [1], cluster separability [65], or the category utility score [58].

The model we propose differs from other approaches in two main aspects
of methodology: the evaluation of candidate solutions along multiple independent
heuristic criteria, and the use of a local evolutionary algorithm to effectively cover
the space of feature subsets and of cluster numbers.

First, we consider multiple fitness criteria simultaneously for evaluating clus-
tering models. A number of heuristic criteria, such as cluster compactness, inter-
cluster separation, and maximum likelihood have been proposed, and attempts have
been made to combine some or all of these into a single objective [55, 73]. Previous
research on unsupervised model selection [65, 58, 1] considered only one (single or
combined) criterion. We claim that our approach is a generalization of such previ-
ous work, in the sense that it could capture both linear and non-linear relationships
among the criteria.

From the perspective of knowledge discovery, our goal is to provide a clear

picture of the (possibly nonlinear) tradeoffs among the various objectives. This is
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important because no single criterion for unsupervised feature selection is best for
every application [64] and only the decision maker can determine the relative weights
of criteria for her application. In such situations we must use multi-objective or Pareto
optimization.

Our goal in Pareto optimization is to approximate as best possible the Pareto
front, presenting the decision maker with a set of high-quality compromise solutions
from which to choose. Non-Pareto solutions will not be considered because they are
inferior to those in the Pareto front by definition. By providing a set of alternative
solutions to the decision maker, our approach helps her to choose the right solution
at the right time. This could present a big advantage over other decision support
systems that provide the decision maker with a single solution, given that she might
not be familiar with how the algorithm reached such solution.

Secondly, as a search process, we turn to evolutionary algorithms (EAs) to
intelligently search the space of possible feature subsets and to determine the ap-
propriate number of clusters. Our choice of EAs as a search algorithm is reasonable
because of their potential capability to search through spaces in a more global fashion
than many other machine learning algorithms. EAs have also been used for clustering,
using an adjacency-based representation [160] or in conjunction with other algorithms
(106, 82].

This chapter is organized as follows. We motivate our approach by illustrating

possible application areas in Section 5.2. In Section 5.3 we review the K-means clus-
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tering algorithm and heuristic metrics to evaluate the quality of clusters constructed
by K-means. In Section 5.4 we present the EM algorithm and justify our clustering
quality metrics. We discuss our approach in detail in Section 5.5, illustrating the
evolutionary algorithm and describing how ELSA is combined with K-means or EM.
Sections 5.6 and 5.7 present some experimental results with a synthetic data set and
a real data set, and discuss the interpretation of the ELSA output to select a sub-
set of good features. Finally section 5.8 addresses directions of future research and

concludes this chapter.

5.2 Customer segmentation

Feature selection in unsupervised learning can be very useful for enhancing
customer relationship management (CRM) for market managers and finding critical
but unnoticed patterns for financial analysts. For example, in the marketing research
community, clustering and its variants [178, 206], neural networks [14] and conjoint
analysis [78] have been widely used for market structure analysis and market segmen-
tation. It is well known that manufacturers use different marketing strategies based
on customer behavior such as brand loyalty, price sensitivity, or quality sensitivity.
Furthermore, they can save time and expense by restricting their concern to a group
of customers who are most likely to buy their goods.

Standard application of cluster analysis uses the complete set of features or a
pre-selected subset of features. For instance, a market survey typically contains var-

ious types of questions with regard to respondents’ demographic and psychographic
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information, attitudes toward products and benefits sought. Commonly, separate
clustering analyses are implemented to find respondent segments and decide the num-
ber of segments based on each different type of variable. A market manager might
choose to cluster using only customer demographic variables, in order to offer different
campaign options to different customer segments based on their age, sex, education
level or income level. Or, the manager might consider customer responses to changes
in price, display style, or advertisements to define market segments. Therefore clus-
tering analysis has been implemented in a top-down fashion, dependent on the prior
knowledge of market managers who pre-determine the features to be used to segment
customers.

However, this top-down approach could not find and exploit interactions among
various types of features on segments. Further, some segments can be discovered only
if different types of variables are considered together. Therefore, the utility of such
a top-down approach is limited from the perspective of knowledge discovery, because
it cannot provide new marketing models that could be effective but have not been
considered. Our data-driven approach remedies this limitation by searching the space
of models, varying the feature subsets and the number of clusters. This way we can
present the decision maker with a set of high-quality solutions from which to choose.

As an example, consider the application of our approach to datasets like those
collected by insurance companies, containing customer information on both socio-

demographic characteristics and ownership of various types of insurance policies (see,
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for instance, the ColL data sets [105].) When insurers try to identify customers
that are likely to buy a new policy, they consider only a few models dependent on
the prior knowledge and past experience of the market managers. Our data-driven
approach searches a much broader space of models and provides a compact summary
of solutions over possible feature subset sizes and numbers of clusters. Among such
high-quality solutions, the manager can select a specific model after considering the
model’s complexity and accuracy. Further, newly-discovered feature subsets that
form well-differentiated clusters can affect the way new marketing campaigns should
be implemented. Let us suppose that an insurance company uses our data-driven
approach to campaign a new recreational vehicle policy. Let us also assume that our
model selects as a solution a set of features including ownership of moped and car
policies. The market manager notes that moped policy features are included in a final
solution, even though she has never used this information before to identify customer
segments. However, further investigation reveals that many people who purchase a
moped policy might also purchase a recreational vehicle policy because they often
carry their mopeds or bicycles on the back of their vehicles [107].

Similarly, our approach can be useful for the analysis of finance and accounting
data. For instance, forecasting corporate bankruptcy has been studied extensively
in the accounting, economics, and finance community [10]. However, we are more
interested in finding common and unknown factors that affect the financial structure

and eventually lead companies to go bankrupt. Our approach provides a number of
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clustering results from different sets of selected features. If, say, profitability-related
features form well-separated clusters in terms of how soon companies go bankrupt,
credit analysts can build a model that predicts bankruptcy time more accurately.
Or, if clustering analysis reveals that market-driven variables such as market size
have serious effects on the performance of the small-sized companies, forecasters of
corporate mergers should pay more attention to the changes in these variables than

in other variables.

5.3 K-means algorithm
5.3.1 Algorithm detail

K-means is one of the most often used nonhierarchical clustering methods
[73, 27]. Nonhierarchical clustering algorithms are designed to group items into a
collection of K clusters that can be specified in advance or determined as part of the
clustering procedure. Nonhierarchical methods start from either an initial partition of
items into groups or an initial set of seed points, which form the centroid or medoid*
of clusters.

The K-means algorithm employs a squared error criterion and implicitly as-
sumes that clusters are represented by spherical Gaussian distributions located at the
K cluster means [26]. Starting with a random initial partition, it iteratively assigns

each data point to the cluster whose centroid is located nearest to the given point,

' A medoid is the most centrally located point in a cluster.
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assign each data point to a randomly chosen cluster
calculate the centroid < of each cluster k
do
for each point z,, n € {1,---,N}
move I, to nearest cluster argming distance(Tn,Vk)
endfor
for each cluster k£ with changed membership
update 7y
endfor
while at least one point changed cluster assignment

Figure 5.1: K-means clustering algorithm.

and recalculates the centroids based on the new set of assignments until a convergence
criterion is met. Some variants of K-means have been suggested in order to improve
the efficiency of the algorithm, avoid initial seed value effects, or find the global opti-
mum [120, 12]. However, in our study we use the standard K-means algorithm [100]

as summarized in Figure 5.1.

5.3.2 Heuristic metrics for clustering evaluation

The most difficult part of unsupervised learning is how to measure the fitness
of each solution. A number of numerical measurements are available to evaluate clus-
tering quality [84, 55]. Most of them are based on geometric distance metrics and
therefore they are not directly applicable because they are biased by the dimension-
ality of the space, which is variable in feature selection problems. In our study we
use four heuristic fitness criteria, described below. Two of the criteria are inspired
by statistical metrics and two by Occam’s razor [24]. Each objective, after being

normalized into the unit interval, is to be maximized by the EA.

Fithin: This objective is meant to favor dense clusters by measuring cluster co-
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hesiveness. It is inspired by the total within-cluster sum of squares (TWSS)
measure. Formally, let z,,n = 1,---, N, be data points and z,; be the value
of the j-th feature of x,. Let d be the dimension of the selected feature set, J,
and K be the number of clusters. Now, define the cluster membership variables
ok as follows:

1 if x, belongs to cluster &

0 otherwise

where k=1,---, Kandn=1,---,N.
The centroid of the k-th cluster, 7, can be defined by its coordinates:

N
En:l ankxnj

Yej = T—N j eJ (52)
n=1 Qnk
Fitnin can be computed as follows:
1 K N

> Z Z Qnk Z Tnj = ki) (5.3)

Fotin = 1= szthm k=1n=1 jeJ
where the normalization by the number of selected features, d, is meant to
compensate for the dependency of the distance metric on the dimensionality
of the feature subspace. Z,nin 1S a normalization constant meant to achieve

Fitnin values spanning the unit interval. Its value is set empirically for each

data set.

Fpetween: This objective is meant to favor well-separated clusters by measuring their

distance from the global centroid. It is inspired by the total between-cluster
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sum of squares (TBSS) measure. We compute Fhetyeen as follows:

1 1 1 XX )
Fbetween = ] Z Z(l - aﬂk) Z(xnj - ’ij) (54)
dK —1 k=1n=1

Z between jeJ

where, as for F;pin, we normalize by the dimensionality of the selected feature

subspace and by the empirically derived constant Zyespeen-

Fusters: The purpose of this objective is to compensate for the previous metrics’
bias towards increasing the number of clusters. For example, F,;tpin = 1 in the
extreme case when we have the same number of clusters as the number of data
points, with each point allocated to its own cluster. Clearly such overfitting
makes the model more complex than can be justified by the data, and thus less

generalizable. Therefore, other things being equal, we want fewer clusters:

K — Kmm
Fclusters =1- K —7K 4 (55)

where Knap (Kpmin) is the maximum (minimum) number of clusters that can be

encoded into a candidate solution’s representation.

Feomplexity: The final objective is aimed at finding parsimonious solutions by mini-

mizing the number of selected features:

d—1
Fcomplem'ty =1- m (56)

Note that at least one feature must be used. Other things being equal, we
expect that lower complexity will lead to easier interpretability and scalability

of the solutions as well as better generalization.
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5.4 EM algorithm for mixture models
5.4.1 Algorithm detail

The expectation maximization algorithm [57] is based on the well-established
theory of probability and is one of the most often used statistical modeling algorithms
[48, 76]. The EM algorithm often significantly outperforms other clustering methods
[138] and is superior to the distance-based algorithms (e.g. K-means) in the sense
that it can handle categorical data. The EM algorithm for mixture models assumes
that the patterns are drawn from one of several given distributions, and the goal is to
identify the parameters of each distribution. In the EM framework, the parameters
of the clusters are unknown, and these are estimated from the given data.

The EM algorithm starts with an initial estimate of the parameters and itera-
tively recomputes the likelihood that each pattern is drawn from a particular density
function, and then updates the parameter estimates. Formally, let z,,n =1,--- N,
be a data point and z,; be the value of the j-th feature of z,. Let d be the dimen-
sion of the selected feature set, J, and K be the number of clusters. If we model
each cluster with a d-dimensional Gaussian distribution, we can approximate the
data distribution by fitting K density functions c¢;, £ = 1,---, K, to the data set
{zp|n =1, -+, N}. The probability density function evaluated at x, is the sum of all

densities:

P(z,) = kz_:Pk - (Tn|Ok) (5.7)

where the a priori probability py is the fraction of the data points in cluster £ and
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S r k=1, pr > 0. The functions ¢ (x,|0) are the density functions for patterns of
the cluster k and 6, represents the parameters of the density function. For Gaussian
distributions, the parameters are the mean p; and covariance matrix Y. For greater
efficiency and reduced overfitting, we ignore cross terms and represent ¥;, as a vector
of the variances for each dimension. The membership probability of pattern z, in
cluster k is computed as follows:

Pk + Ce(Tn|0k)
YK pi-ci(zn6))

pr(zn) = (5.8)

Now, the original problem of finding clusters is reduced to the problem of
how to estimate the parameters © = {6, --,0x} of the probability density [39].
Under the independence assumption among attributes within a given cluster, we can
represent each density function as a product of density functions over each selected
attribute j =1,---,d:
cr(@nlOk) = T] crj(zng|Oky) (5.9)
j€J
where 0, represents the parameters of the j-th feature of cluster k.

Finally, the multivariate Gaussian distribution for cluster £ = 1,---, K is

parameterized as follows:

D _ 1 (xnj - ,U'lcj)2 1
(T, k) = |] =exp 5 2 (5.10)
jeJ\/Qﬂ'ij —2 Ok

where p; and o,%j represent the mean and variance of the j-th feature of cluster

k, respectively.? Now we can quantify the quality of a given set of parameters ©

2Since small values of 0,% ; can cause overflow in our computations, we set a lower bound
value of ogj to 10719,
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t=20
initialize p'}c, u'}c, and Efc for each cluster k€ {1,---,K}
compute member Prob(t)
compute L(O%)
do
for each cluster k€ {1,---,K}

t+1 N
pk+ :anlp}i(wn)

N
pitl = Zn=1 Py (@n)-an
- N
k Z"=1 pi(mn)

S ph@n)@n =y )@=t
Z:=1 i (zn)
endfor

compute memberProb(t+ 1)
compute L(©t*1)
t=t+1
while |L(©%) — L(©*~1)| > € and t < mazIteration

t+1 _
X, =

compute member Prob(t)

{
for each patte{.‘n z(n , 7€ e t{)l, ---,N}
t _ ppcr(@nlpg,,By
€T =
g, (zn) Sor phei(onlut,nt)
endfor
}

Figure 5.2: Summary of the EM algorithm where € > 0 is a stopping tolerance and
pl, ut, and 3¢ represent the mixture model parameters of cluster k at iteration ¢. In
our implementation, we set ¢ = 1.0 and maxIteration = 15 for fast convergence.

using the Equation (5.10). At this point, our only problem is to find the mixture
parameters py, and Xy along with py. The maximum likelihood (ML) method [63] is
used to maximize the probability of the data set given a particular mixture model,

and often the log-likelihood is maximized for analytical purposes as follows:

n=1 n=1 k=1
The EM algorithm begins with an initial estimation of © and iteratively up-
dates it in such a way that the sequence of L(©) is non-decreasing. In our implementa-

tion, EM iterates until |L(©!) — L(0%)| <€, € > 0 or up to maxIteration iterations.
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We choose the somewhat loose convergence criteria, € = 1.0 and maxzIteration = 15
because the marginal likelihood gain per additional computing resource for more re-

strictive criteria is negligible. We outline the standard EM algorithm in Figure 5.2.

5.4.2 Heuristic metrics for clustering
In order to evaluate the quality of the clusters formed by the EM algorithm,
we use three heuristic fitness criteria, described below. One of the criteria is inspired
by statistical metrics and two by Occam’s razor. Each objective is again normalized

into the unit interval and maximized by the EA.

Fyccuracy: This objective is meant to favor cluster models with parameters whose
corresponding likelihood of the data given the model is higher. With estimated

distribution parameters p;, and Xg, Foceuracy 1S computed as follows:

1 N K
Faccumcy = Zi Z log (Z Pr - Ck ($n|:u'ka Ek)) (512)

accuracy p—=1 k=1
where Zyccuracy is an empirically derived, data-dependent normalization constant

meant to achieve Fyeeyrqey values spanning the unit interval.
Fysters: This criterion is defined in the same way as in Section 5.3 (Equation (5.5)).

Feomplezity: This is another criterion defined as in Section 5.3 (Equation (5.6)).

5.5 Evolutionary Local Selection Algorithm
We first show the wrapper model of ELSA with clustering algorithms in Fig-

ure 5.3. In our proposed wrapper model, there are three relevant spaces: search space,
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data space, and objective space. In search space, ELSA searches the space of feature
subsets and number of clusters K. Once a specific feature subset (e.g. ¢) and number
of clusters (e.g. K = 3) is selected, this information is encoded into a chromosome of
an agent. In data space, three clusters are formed via K-means or EM. In objective
space, clusters are evaluated in terms of the evaluation criteria and an agent is re-
warded energy from each objective based on its fitness and the local environment to
which it belongs. Each agent will survive, reproduce, or die depending on its energy
level, and ELSA biases its search in the direction of high energy levels. This process
is repeated for a fixed number of iterations, 7.

We outline the ELSA algorithm in Figure 5.4. Each agent (candidate solu-
tion) in the population is first initialized with some random solution and an initial
reservoir of energy. The representation of an agent consists of D + K., — 2 bits. D
bits correspond to the selected features (1 if a feature is selected, 0 otherwise). The
remaining bits are a unary representation of the number of clusters.> This represen-
tation is motivated by the desire to preserve the regularity of the number of clusters
under the genetic operators: changing any one bit will change K by one.

Mutation and crossover operators are used to explore the search space. The
mutation operator randomly selects one bit of an agent and flips it. Our crossover

operator follows the commonality-based crossover framework [49]. It takes two agents,

3The cases of zero or one cluster are meaningless, therefore we count the number of
clusters as K = k + 2 where k is the number of ones and K;;, =2 < K < Kpaz-
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Fealture ) bit

SEARCH
SPACE

Feature | bit

Figure 5.3: The wrapper model of ELSA with clustering algorithms.

a parent ¢ and a random mate, and scans through every bit of the two agents. If it
locates a different bit, it flips a coin to determine the offspring’s bit. In this process,
the mate contributes only to construct the offspring’s bit string, which inherits all
the common features of the parents.

For the search and evaluation routine, please refer to Section 2.5.2.3. For
the selection and energy replenishment part of the algorithm, please refer to Sec-
tion 2.5.2.2. In order to assign energy to a solution, ELSA must be informed of

clustering quality. In the experiments described here, the clusters to be evaluated are
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initialize pmas agents, each with energy 77/2
while there are alive agents in PopY and t < T
Replenishment ()
for each agent a in Pop9
Search & Evaluation()
Selection()
t=t+1
endfor
g=g+1
endwhile

Replenishment ()
{
for each energy source c€ {1,---,C}
for each v € {1/B,2/B,---,1} where B is number of bins
Egnvt(v) A 21}E§ot
endfor
endfor

}

Search & Evaluation()
{
a' < mutate(crossover(a, randommate))
for each energy source c€ {1,---,C}
v « Fitness(a’)
AE « min('u, Egnvt(v))
Egrwt(v) « Egnvt(v) - AE
Eq «+ Eq + AE
endfor
Eq < Eq — Ecost

}

Selection()

if (Ea > T})
insert a,a’ into Pop9t!
E, < E./2
B  Fq — Ey
else if (E, > 0)
insert a into Pop9t!
endif

Figure 5.4: ELSA pseudo-code. In each iteration, the environment is replenished
and then each alive agent executes the main loop. The program terminates after 7’
solutions (agents) are evaluated. The details of the algorithm are illustrated in the
text.
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constructed based on the selected features using a standard K-means or EM algorithm
(cf. Figure 5.3). Each time a new candidate solution is evaluated, the corresponding
bit string is parsed to get a feature subset J and a cluster number K. The clustering
algorithm is given the projection of the data set onto J, uses it to form K clusters,

and returns the fitness values.

5.6 Experiments on synthetic data set
5.6.1 Data description and baseline algorithm

It is difficult to evaluate the quality of an unsupervised learning algorithm, and
feature selection problems present the added difficulties that the clusters depend on
the dimensionality of the selected features and that any given feature subset may have
its own clusters, which may well be incompatible with those formed from different
subsets. In order to evaluate our approach, we construct a moderate-dimensional
synthetic data set, in which the distributions of the points and the significant features
are known, while the appropriate clusters in any given feature subspace are not known.
We evaluate the evolved solutions by their ability to discover five pre-constructed
clusters in a ten-dimensional subspace.

The data set has N = 500 points and D = 30 features. The feature set consists
of “significant” features, “Gaussian noise” features, and “white noise” features. It is
constructed so that the first 10 features are significant, with 5 “true” normal clusters
consistent across these features. The next 10 features are Gaussian noise, with points

randomly and independently assigned to 2 normal clusters along each of these di-
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Figure 5.5: A few 2-dimensional projections of the synthetic data set.

mensions. The remaining 10 features are white noise in which points are drawn from
uniform distributions. The standard deviation of the normal distributions is ¢ ~ 0.06
and the means are themselves drawn from uniform distributions in the unit interval,
so that the clusters may overlap. We present some 2-dimensional projections of the
synthetic data set in Figure 5.5.

For further comparisons we have implemented a greedy heuristic algorithm
known as the plus 2-take away 1 sequential selection algorithm [111]. This is a rea-
sonable choice for a comparative algorithm because we want our algorithm to out-

perform most commercial statistical programs (e.g. SAS and SPSS) that implement
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simpler search algorithms, such as sequential forward and backward selection, for
feature selection. Since the greedy algorithm we have implemented allows limited
backtracking, it performs better than feature selection algorithms typically used in
commercial programs. Our implementation of this algorithm for clustering requires a
set value of K and uses Fyithin and Fyetpeen for K-means, and Ficeyraey for EM as the
optimization criteria. It begins by finding the single dimension along which the ob-
jective is optimized. At each successive step, the algorithm adds an additional feature
that, when combined with the current set, forms the best clusters. It then checks to
see if the least significant feature in the current set can be eliminated to form a new
set with superior performance. This iteration is continued until all the features have
been added. We ran the algorithm for each of the values of K considered by ELSA.

Individuals are represented by 36 bits, 30 for the features and 6 for K (K40 =
8). There are 15 energy bins for all energy sources, Fiysters, Feompiexitys Fuwithin,
Fyetween, and Fyeouracy- The values for the various ELSA parameters are: Pr(mutation)
= 1.0, Pr(crossover) = 0.8, pmaz = 100, E o5t = 0.2, Eyppy = 40, n = 0.3, and T =

30,000.

5.6.2 Results using K-means
We first show two different types of Pareto approximation evolved by ELSA /K-
means in Figure 5.6, one based on Fy;p:, and the other one based on Fpepypeen, in order
to observe the usefulness of our two clustering quality metrics. Recall that both are

used in ELSA to evaluate the quality of clusters. We use the term candidate front for
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Figure 5.6: The ELSA/K-means fronts with composition of features selected for
Fomplezity corresponding to 10 features (see text). We omit the candidate fronts
of K = 8 because of its incomplete coverage of the search space.

the set of solutions with the highest measured clustering quality at every Fiompieqity
value for each K. We construct candidate fronts based on all solutions evaluated
during the evolutionary process with two different clustering quality measures, Fthin
and Fyeppeen- In order to show the candidate fronts of each different number of clusters
K, we sort all the non-dominated solutions by K.

We expect the candidate front based on F;in for any reasonable K to typ-
ically decrease from higher values of Fompiezity (lower complexity) to lower values of

Fomplesity (higher complexity). This is because we normalize F,;pi by the number of
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selected features d. Selecting more features make it more likely to select less relevant
features, deteriorating the clustering quality. The fronts based on F i, in Figure 5.6
show the trend that we expect. The clustering quality in terms of F;in improves as
the number of clusters approaches the true number of clusters, K = 5. In particular,
the fronts for K = 5 and K = 6 not only explore most Fiompiezity Values but also
show high clustering quality. A decision maker would determine the correct number
of clusters to be either 5 or 6.

The candidate fronts based on Fyeueen are less stable than those based on
Finin- We attribute this to the fact that Fyeipeen 1S more sensitive to outliers than
Fithin- Fretween 18 affected explicitly by both d and K in its computation, while F;pin
is affected explicitly by d but implicitly by K via clustering quality. However, the
fronts become stable with more than half of features selected because many features
neutralize the effects of outliers from certain features. Although we feel that Fyeppeen
captures useful information about the quality of the clusters, its instability makes it
inappropriate as a single metric to determine the best solution to be presented to a
decision maker.

We also show in Figure 5.6 the composition of selected features, i.e., the num-
ber of significant-Gaussian noise-white noise features selected at Fompiezity = 0.69 (10
features). Note that the selected features at this value of Fiompiezity are not necessarily
all the “significant” features that we constructed. We attribute this finding to the fact

that if one or more Gaussian noise features form good clusters with the previously
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selected significant features, the clustering quality can be improved by adding these
features. This is also consistent with the notion that not all strongly relevant fea-
tures are selected and some weakly relevant features could be selected as “relevant”
features [113]. Though even mixes of significant and Gaussian features are selected at
Fomplezity = 0.69, ELSA /K-means found a better composition of selected features at
values of Fiompiezity near 0.69. For example, the composition of selected features for
K = 5 based on Fypy, were 8-3-1, 7-3-1, 5-4-1, and 6-3-0 over 0.62 < Fioppieity <
0.73 (9-12 features), respectively.

Figure 5.7 shows snapshots of the candidate fronts with K = 5 based on
Fuithin at intervals of every 3,000 solution evaluations. It is evident that ELSA /K-
means identifies better solutions and explores an increasingly broad space of feature
subsets as it evaluates more solutions.* We show the improvement of the candidate

fronts by computing the coveragegs as follows:

coveragexar = > Flunin (5.13)

Z.EFcomplemity

where F! ... is the Fyipnin value at Foompiezity = 7. As ELSA finds new and better
solutions (with higher F;un), the coverage increases.

We finally evaluated ELSA /K-means in terms of classification accuracy. We
compute accuracy by assigning a class label to each cluster based on the majority
class of the points contained in the cluster, and then computing correctness on only

those classes, e.g., models with only two clusters are graded on their ability to find

4Similar results were obtained for different number of clusters K and for Fpetyeen-
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Figure 5.7: The candidate fronts for K = 5 based on Fypin evolved in ELSA /K-
means. It is captured every 3,000 evaluated solutions. There is no further improve-
ment in coverage after the 7th interval.

two classes. ELSA results represent individuals chosen from fronts based on Fv’accumcy
= Fithin - Fretween-> This criterion is based on the fact that neither F;;, nor
Fyerween truly represents the quality of the clusters. The classification accuracy of
candidate solutions based on either Fynin OF Fretween Was inferior to that based on
Facwmcy. Table 5.1 shows the classification accuracy with standard error of various
models formed by both ELSA/K-means and the greedy feature search. ELSA/K-
means results represent individuals with less than eight features from the candidate

fronts. All accuracy measures are averaged over five different runs of ELSA /K-means

5This new measurement is used only for selecting a final solution. In ELSA, Fy;ipin and
Fietween are considered separately.
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and of the greedy search.

The overall performance of ELSA/K-means is superior to that of the greedy
search on models with few features and few clusters — exactly the sort of models the
algorithm was designed to find. The last row and column shows the number of win-
loss-tie cases of ELSA /K-means compared with greedy search. A tie is assumed when
error bars overlap. The performance of ELSA /K-means for d = 3 across different K
is slightly inferior, although the difference is small for K = 3 and K = 5. For more
complex models with more than 10 selected features (not shown), the greedy method
is often better able to reconstruct the original classes. This is reasonable, since ELSA

by design does not concentrate on this part of the search space.

Table 5.1: The classification accuracy of ELSA/K-means and greedy.

K Number of selected features

2 3 4 5 6 7 | W-L-T

9 ELSA/KM 100+0.0 100+0.0 100+0.0 100+0.0 59+0.0 100+0.0 5.0-1
Greedy 5940.0 5940.0 5940.0 5940.0 5940.0 5940.0

3 ELSA/KM 93.245.2 | 39.4+0.4 | 98.6+1.4 10040.0 10040.0 10040.0 3.1-2
Greedy 40.6+0.3 | 40.8+0.2 | 40.2+0.2 | 63.6+3.9 100+0.0 100+0.0

4 ELSA/KM 85.2+4.1 | 31.4+0.3 92+44.9 10040.0 10040.0 10040.0 5-1-0
Greedy 30.8+0.2 5540.0 5540.0 5540.0 5540.0 5540.0

5 ELSA/KM 624+0.6 | 48.4+1.5 75+2.1 | 58.4+1.9 | 63.4+0.4 | 79.41+0.6 4-1-1
Greedy 25.6+0.3 | 53.4+£0.6 | 53.440.6 5540.0 63+0.0 | 66.4+3.4

W-L-T 4-0-0 1-3-0 4-0-0 4-0-0 1-0-3 3-0-1 17-3-4
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Figure 5.8: The candidate fronts of ELSA/EM model. We omit the candidate front
for K = 8 because of its inferiority in terms of clustering quality and incomplete
coverage of the search space. Composition of selected features is shown for Fiompieqity
corresponding to 10 features (see text).

5.6.3 Results using EM
We show the candidate fronts found by the ELSA/EM algorithm for each
different number of clusters K in Figure 5.8. In contrast with the ELSA/K-means
model, we have a single measurement of clustering quality Fyccyracy in ELSA/EM.
We did the same analysis to see whether our ELSA/EM model is able to identify the
correct number of clusters based on the shape of the candidate fronts across different
values of K and Ficeyracy- A different characteristic shape of the Pareto fronts is

observed in ELSA /EM because of the different measurement of clustering quality: an
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ascent in the range of higher values of Fompiesiry (lower complexity), and a descent
for lower values of Fiompiesity (higher complexity). This is reasonable because adding
additional significant features will have a good effect on the the clustering quality
with few previously selected features. However, adding noise features will have a neg-
ative effect on clustering quality in the probabilistic model, which, unlike Euclidean
distance, is not affected by dimensionality. Hence the curve forms a shape similar to
the supervised learning curve, with a global maximum indicating the optimal number

of features. The coverage of the ELSA/EM model shown in Figure 5.8 is defined as:

coveragepn = Z F? (5.14)

accuracy
Zchomple:cit;y

We note that the clustering quality and the search space coverage improve as
the evolved number of clusters approaches the “true” number of clusters, K = 5. The
candidate front for K = 5 not only shows the typical shape we expect but also an
overall improvement in clustering quality. The other fronts do not cover comparable
ranges of the feature space either because of the agents’ low Fusers ( K = 7) or
because of the agents’ low Fyceuracy and Frompiezity ( K = 2 and K = 3). A decision
maker again would conclude the right number of clusters to be 5 or 6.

As noticed in ELSA /K-means, the first 10 selected features, 0.69 < Fiompiexity <
1, are not all significant. This notion is again quantified through the number of
significant-Gaussian noise-white noise features selected at Fiomprezity = 0.69 (10 fea-

tures) in Figure 5.8.° None of the “white noise” features is selected and the overall

6For K = 2, we use Fomplesity = 0.76, which is the closest value to 0.69 represented in
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Figure 5.9: Candidate fronts for K = 5 based on Fyecyracy €volved in ELSA/EM. It
is captured at every 3,000 solution evaluations and two fronts (t = 18,000 and t =
24,000) are omitted because they have the same shape as the ones at t = 15,000 and
t = 21,000, respectively.

composition of selected features is better in ELSA/EM than in ELSA /K-means.

We also show snapshots of the ELSA/EM fronts for K = 5 at every 3,000
solution evaluations in Figure 5.9. Similarly to the ELSA /K-means model, ELSA /EM
explores a broad subset of the search space, and thus identifies better solutions across
F omplezity @s more solutions are evaluated. We observed similar results for different
number of clusters K.

Table 5.2 shows classification accuracy of various models formed by both

ELSA/EM and the greedy feature search. We compute accuracy in the same way

the front.
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that we did in ELSA/K-means. ELSA results represent individuals selected from

W o»

candidate fronts with less than eight features. The entry indicates that no solu-
tion is found by ELSA/EM. The number of win-loss-tie cases of ELSA /EM compared
with greedy search is shown in the last row and column. ELSA/EM consistently
outperforms the greedy search on models with few features and few clusters. As we

noticed in the ELSA/K-means case, for more complex models with more than 10

selected features, the greedy method often shows higher classification accuracy.

Table 5.2: The classification accuracy of ELSA/EM and greedy.

K Number of selected features

2 3 4 5 6 7 | W-L-T

9 ELSA/EM 52.61+0.3 | 56.61+0.6 | 92.845.2 10040.0 10040.0 10040.0 5-0-1
Greedy 51.84+1.3 | 52.840.8 | 55.44+1.1 | 56.6+0.4 | 62.843.2 | 80.248.5

3 ELSA/EM 83.24+4.8 5246.6 | 91.6+5.7 | 93.84+6.2 99+1.0 10040.0 4-0-2
Greedy 40.64+0.3 | 40.84+0.2 | 40.240.2 | 63.613.8 10040.0 10040.0

4 ELSA/EM 46.2+2.2 — | 50.6+0.6 | 89.6+5.9 52+1.0 | 60.61+5.1 4-2.0
Greedy 27.84+0.8 | 27.84+0.4 294+0.4 | 29.640.9 38+4.4 | 74.243.5

5 ELSA/EM 44.64+2.0 | 32.6+3.8 724+3.8 | 62.44+1.9 | 66.443.7 88 +4.9 5-0-1
Greedy 23+0.4 | 22.240.8 | 24.2+0.9 | 23.8+0.5 | 29.6+1.7 | 81.243.0

W-L-T 3-0-1 3-1-0 4-0-0 4-0-0 3-0-1 1-1-2 18-2-4

5.7 Experiments on WPBC data
In addition to the artificial data set discussed in Section 5.6, we also tested
our algorithm on a real data set, the Wisconsin Prognostic Breast Cancer (WPBC)
data [136]. This data set records 30 numeric features quantifying the nuclear grade

of breast cancer patients at the University of Wisconsin Hospital, along with two
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Figure 5.10: Candidate fronts evolved by ELSA /K-means on the WPBC data. The
front for K = 8 is omitted because of its incomplete coverage of the search space.

traditional prognostic variables — tumor size and number of positive lymph nodes.
This results in a total of 32 features for each of 198 cases. For the experiment,
individuals are represented by 38 bits, 32 for the features and 6 for K (K0 = 8).

Other ELSA parameters are the same as those used in the previous experiments.

5.7.1 Clustering analysis
In this experiment, we assume that we have no prior knowledge about the clus-
ters and the relevant features. We first show two different types of fronts evolved by

ELSA/K-means in Figure 5.10, one based on Fypi, and the other based on Fyeppeen-
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The candidate fronts based on F;p:, in Figure 5.10 again show a typical
decrease in quality from higher values of Fppieqity (lower complexity) to lower values
of Feomplezity (higher complexity). It is interesting to note that the fronts based on
Fyetween not only show much more stable patterns than those in Figure 5.6 but also
become almost identical to the fronts based on F;min, as K increases. We attribute
this partially to the composition of correlated features in the WPBC data. The
correlation among features comes from the fact that the mean, the standard error
and the largest value of the 10 measurements that quantify the nuclear grade of
breast cancer were recorded into the WPBC data, resulting in a highly correlated set
of 30 features. Further, none of these features is regarded as white noise because each
feature reflects some aspect of nuclear grade.

A decision maker might pick K = 5 as the correct number of clusters because
the candidate front for K = 5 not only explores most of F,,ppieqity values but also
shows a stable pattern with high clustering quality in terms of both F;:, and
Fyerween- However, let us select a model with K = 3 in order to compare our approach
to previous research in which three clusters have been used to analyze this data set.
In addition, the smaller number of clusters makes it easier to understand clustering
results and satisfies one of our criteria, the preference for parsimonious models.

We also select a “best” solution (feature set) for prognostic analysis based on
the value of F‘accmacy. In particular, we chose the solution with three clusters and the

highest value of ﬁ‘accumcy among solutions that have between five and ten features.
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Figure 5.11: Candidate fronts evolved by ELSA/EM on the WPBC data. The front
for K = 8 is omitted because of its incomplete coverage of the search space.

These minimum and maximum limits on the number of features are used to find a
robust but simple solution, respectively. The chosen solution has seven features and
its implication for prognostic analysis is discussed in Section 5.7.2.

Our findings by ELSA /K-means are confirmed in the candidate fronts evolved
by ELSA/EM, shown in Figure 5.11. The correlation among features and the absence
of white noise features result in a different characteristic shape of the candidate fronts
from those in Figure 5.8. The fronts show a steady increase from the range of higher
values of Fompiesity (lower complexity) to the range of lower values of Fropmpiesity (higher

complexity). However, the curves peak at a certain point (e.g., Fromplezity = 0.26 for
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K > 4) because most of the information in the feature set is already extracted through
previously selected features.

A decision maker might determine the correct number of clusters to be K
= 4 or K = 5 because those models not only explore most of the Fiompieqity values
but also show a stable pattern with high clustering quality in terms of Fyceyracy. For
prognostic analysis, however, we again will consider solutions with three clusters, in
order to be consistent with previous research. We note that the Ficcyrqcy values of
solutions with up to 10 features are steadily improving, which makes it difficult to
choose any one of them as our final solution. This makes us turn to the gradient
information in the candidate front for K = 3. We choose a solution that causes the
greatest improvement in clustering quality in terms of Ficeyracy- The chosen solution
has 11 features (Fiompiesity = 0.68) and we discuss its prognostic implication in the

following section.

5.7.2 Prognostic analysis
We analyzed performance on this data set by looking for clinical relevance in
the resulting clusters. Specifically, we observe the actual outcome (time to recurrence,
or known disease-free time) of the cases in the three clusters. Figure 5.12 shows
Kaplan-Meier estimates [104] of the true disease-free survival times for patients in
the clusters found by ELSA /K-means.
Figure 5.12 displays well-separated survival characteristics of three prognostic

groups: good (88 patients), intermediate (83 patients), and poor (27 patients). The



141

i

T

N — - Good
\ Yeos —— Intermediate
,,,,,, — — Poor M

o
©
T
-

|
|

)
®
T
Il

o
3
T
|

o
o
T
|

P(disease-free survival)
o o o
w e a
T T T
Il Il Il

o
[N}
T
|

°
P~
T
|

I I I I
0 20 40 60 80 100 120 140

Time (months)

Figure 5.12: Estimated survival curves for the three groups found by ELSA /K-means.

good prognostic group was significantly different from the intermediate group (p <
0.01) and the intermediate group was well-differentiated from the poor group (p <
0.06).

Five-year recurrence rates of these groups were 11.28%, 35.91%, and 47.96%,
respectively. The chosen solution used to cluster patients into three groups has seven
dimensions including the mean nuclear radius and area, the standard error of the ra-
dius and area, and the largest value of the radius, perimeter and area. It is interesting
that neither of the traditional medical prognostic factors, tumor size and lymph node
status, is selected by ELSA /K-means.

Similarly, Figure 5.13 shows the survival characteristics of three prognostic

groups found by ELSA/EM. The three groups showed well-separated survival char-
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Figure 5.13: Estimated survival curves for the three groups found by ELSA/EM.

acteristics and more balanced clustering quality in the sense that patients are more
evenly distributed. Out of 198 patients, 59 patients belong to the good prognostic
group, and 54 patients and 85 patients belong to intermediate and poor prognostic
groups, respectively. The good prognostic group was well-differentiated from the in-
termediate group (p < 0.076) and the intermediate group was significantly different
from the poor group (p < 0.036). Five-year recurrence rates were 12.61%, 21.26%,
and 39.85% for the patients in the three groups.

The chosen dimensions by ELSA/EM included a mix of nuclear morphometric
features such as the mean and the standard error of the radius, perimeter and area,
and the largest value of the area and symmetry along three other features. We note

that again neither of the traditional medical prognostic factors is chosen, which is
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consistent with the result of ELSA/K-means. This finding is potentially important
because one of the traditional prognostic factors, the lymph node status, can be de-
termined by microscopic examination of lymph nodes only after they are surgically
removed from the patient’s armpit [193]. Our experiments tend to support the hy-
pothesis that prognostic groups with significantly different expected outcomes can be
formed without this data.

In order to address this matter, we investigate whether other solutions with
lymph node information can form three prognostic groups as good as our EM chosen
solution. For this purpose, we selected Pareto solutions across all different K val-
ues that have fewer than 10 features including lymph node information and formed
three clusters using these selected features, disregarding the evolved value of K. The
survival characteristics of the three prognostic groups found by the best of these solu-
tions was very competitive with our chosen solution. The good prognostic group was
well-differentiated from the intermediate group (p < 0.10), and the difference between
the intermediate group and the poor group was significant (p < 0.026). This suggests
that lymph node status may indeed have strong prognostic effects, even though it is

excluded from the best models evolved by our algorithms.

5.8 Conclusions
We presented a novel evolutionary multi-objective local selection algorithm for
unsupervised feature selection. ELSA, an evolutionary local selection algorithm, was

used successfully in previous work in conjunction with supervised learning [141, 105].
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As an extension of our previous work [106], we used ELSA to search for possible com-
bination of features and numbers of clusters, with the guidance of two representative
clustering algorithms, K-means and EM. The combination of a multi-objective search
algorithm with unsupervised learning provides a promising framework for feature

selection. We summarize our findings as follows.

ELSA covers a large space of possible feature combinations while simultaneously

optimizing the multiple criteria separately.

e A number of possibly conflicting heuristic metrics can be plugged into the algo-

rithm, while remaining agnostic about their relative worth or their relationships.

e Our algorithm, both ELSA/K-means and ELSA/EM, outperforms a greedy

algorithm in terms of classification accuracy.

e Most importantly, in the proposed framework we can reliably select an appropri-
ate clustering model, including significant features and the number of clusters.
The result is a set of clusters that accurately models the data, and is more

interpretable and scalable due to the reduced dimensionality.

In future work we would like to compare the performance of ELSA on the
unsupervised feature selection task with other multi-objective EAs, using each in
conjunction with clustering algorithms.

Another promising future direction will be a direct comparison of different

clustering algorithms. In the results presented in this chapter, ELSA/EM shows
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better results than ELSA /K-means on the synthetic data in terms of the composition
of selected features and prediction accuracy. Furthermore, EM allows for easier choice
of best compromise solution because of single quality metric. However, ELSA /K-
means shows very competitive results on the real data set in terms of well-separated
survival curves. Further, ELSA/K-means is much faster (roughly by a factor of 3)
than ELSA/EM to evaluate the fixed number of solutions. Thus, it is possible for
ELSA/K-means to find better solutions given the same amount of computing time as
ELSA/EM.

From a knowledge discovery perspective, our algorithm offers several advan-
tages. Certainly the simplicity bias of Occam’s Razor is well-established as a means
for improving generalization on real-world data sets. Further, it is often the case
that the user can gain insight into the problem domain by finding the set of relevant
features; consider, for example, the problem of finding relevant prognostic factors in
breast cancer, or determining the variables that define relevant market segments.

Finally, a key problem in data mining is the scaling of predictive methods to
large data sets. Our algorithm can easily be used as a preprocessing step to determine
an appropriate set of features, allowing the application of iterative algorithms like K-

means on much larger problems.



146

CHAPTER 6
CONCLUSION

This chapter summarize the thesis and highlights its contributions. We then
draw conclusions from experiments conducted and addresses directions of future re-
search. The thesis began by emphasizing the importance of feature selection and
reviewed the fundamental concepts and representative algorithms for feature selec-
tion in supervised and unsupervised learning. Through the thesis, we restricted our
interests to the wrapper model of feature selection mainly because the wrapper model
has been proved to return higher predictive accuracy in supervised learning. As a
search algorithm, we used Evolutionary Algorithms (EAs) to intelligently search the
space of possible feature subsets for large-scale problems.

In particular, we note that each feature subset should be evaluated in terms
of multiple objectives. For example, both the number of selected features (which
should be minimized) and the accuracy (which should be maximized) are important
criteria for a feature selection task in supervised learning. The relative weights of
the various objectives can be determined only by the final decision maker for her
application. However, standard EAs assume a single (or combined) fitness function
to be optimized and thus cannot consider multiple fitness criteria effectively. We
claim that our approach is a generalization of such previous work, in the sense that

it could capture both linear and non-linear relationships among the criteria.
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From the perspective of knowledge discovery, our goal is to provide a clear
picture of the tradeoffs among the various objectives. This is important because no
single criterion for feature selection is best for every application. By providing a set
of alternative solutions to the decision maker, our approach helps the decision maker
to choose the right solution at the right time from a set of high-quality compromise
solutions. This could present a big advantage over other decision support systems
that provide the decision maker with a single solution, given that she might not be
familiar with how the algorithm reached the solution.

Though a number of multi-objective extensions of evolutionary algorithms
have been proposed, most of them employ computationally expensive selection mech-
anisms to favor dominating solutions and to maintain diversity. In this thesis, we pro-
posed an algorithm, Evolutionary Local Selection Algorithms (ELSA), where each in-
dividual solution is allocated to a local environment based on its criteria values. Each
solution competes with others to consume shared resources only if they are located in
the same environment. The more densely populated the local environment, the more
competition among individuals for resources, resulting in bias toward different local
environments.

This local selection mechanism minimizes the communication among agents,
which makes ELSA efficient and scalable. In particular, ELSA can be useful for
various tasks in which the maintenance of diversity within the population is more

important than a speedy convergence to the optimum. The superior ability to locate
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more of the Pareto front was proved in a comparative experiment with other multi-
criteria evolutionary algorithms. Based on this notion, we applied ELSA combined
with supervised and unsupervised learning algorithms to feature selection problems
over three chapters.

In Chapter 3, ELSA with neural networks model (ELSA/ANN) was proposed
for customer targeting in database marketing. In the ELSA/ANN model, ELSA and
neural networks were used to search for possible combinations of features and to score
customers based on the probability of buying new insurance product respectively.
The ELSA/ANN model showed promising results in two different experiments, when
market managers have clear decision scenario or not. When market managers are
clear about how a model will be used, the overall performance of ELSA/ANN was
superior to the industry standard PCA /logit model both in terms of accuracy and
in terms of interpretability. Under a more general decision scenario, ELSA/ANN
yielded a more accurate model over a broad selection percentage range at the cost of
increasing the number of predictive features in the specification.

The ELSA/ANN procedure can be easily modified to take into account differ-
ent objectives. With information of campaign costs and profit per additional actual
customer, a direct marketer could use ELSA/ANN to choose the best selection point
where expected total revenue is maximized. In this way, it would be possible to
determine the type of decision rule that the marketer should adopt, both in terms

of solicitation percentage as well as predictive rule. Because all mailing lists do not
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all have the same potential for the marketer, this approach would allow a predictive
model and solicitation-mailing rule to be customized as the firm’s database changes.

In Chapter 4, we proposed a new ensemble construction algorithm, Meta-
Evolutionary Ensembles (MEE), where the ensembles compete directly based on clas-
sification accuracy while individual classifiers in the same ensemble compete against
each other to correctly predict held-out examples. In MEE, feature selection is used as
the diversity mechanism among classifiers in the ensemble and classifiers are rewarded
for predicting difficult points, relative to the other members of their respective ensem-
bles. Our experimental results indicate that this method shows consistently improved
performance compared to a single classifier and comparable performance compared
to the traditional ensembles and GEFS.

Once we have a better understanding of how and why ensemble methods
achieve improved predictive accuracy, we can compare this algorithm more rigor-
ously to others on a larger collection of data sets. We also need to perform any
necessary performance tweaks on the EA energy allocation scheme. Along the way,
we will examine the role of classifiers type and various characteristics of ensembles
including size and diversity. By giving the system as many degrees of freedom as
possible and observing the characteristics that lead to successful ensembles, we can
directly optimize these characteristics and translate the results to a more scalable
architecture for large-scale predictive tasks.

In Chapter 5, ELSA was used for unsupervised feature selection. Specifically,
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we used ELSA to search for both possible combination of features and numbers of clus-
ters, with the guidance of two representative clustering algorithms, K-means and EM.
Our algorithm, both ELSA /K-means and ELSA /EM, outperforms a greedy algorithm
in terms of classification accuracy. Most importantly, in the proposed framework we
can reliably select an appropriate clustering model, including significant features and
the number of clusters.

One direction of future research on the unsupervised feature selection task
is to compare ELSA with other multi-objective EAs using each in conjunction with
clustering algorithms. Another promising future direction will be a direct comparison
of different clustering algorithms. In the results presented in Chapter 5, ELSA/EM
shows better results than ELSA /K-means on the synthetic data in terms of the com-
position of selected features and prediction accuracy. Furthermore, EM allows for
easier choice of best compromise solution because of single quality metric. However,
ELSA/K-means shows very competitive results on the real data set in terms of well-
separated survival curves and is much faster than ELSA/EM to evaluate the fixed
number of solutions. Thus, it is worthy to see whether ELSA /K-means can find better
solutions given the same amount of computing time as ELSA/EM.

In addition to research direction tailored to each specific tasks, there are some
more fundamental issues to be studied in future research. One major direction of
future research on the feature selection with ELSA is to find a way that can boost weak

selection pressure of ELSA while keeping its local selection mechanism. For problems
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requiring effective selection pressure, local selection may be too weak because the
only selection pressure that ELSA can apply comes from the sharing of resources.
Dynamically adjusting the local environmental structure based on the certain ranges
of the observed fitness values over a fixed number of generation could be a promising
solution. In this way, we could avoid the case in which the solution with the worst
performance can survive into the next generation because there are no other solutions
in its local environment.

Another major direction of future research is related with the scalability is-
sue. By minimizing the communication among agents, our local selection mechanism
makes ELSA efficient and scalable. However, our models suffer the inherent weakness
of the wrapper model, the computational complexity. Further by combining EAs
with ANN to take the advantages of both algorithms, it is possible that the combined
model can be so slow that it cannot provide solutions in a timely manner. With the
rapid growth of records and variables in database, this failure can be critical. Com-
bining ELSA with faster learning algorithms such as decision tree algorithms and

Support Vector Machine (SVM) will be worthy to pursue.
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