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APPENDIX C 

DERIVATION OF ANALYTICAL FORMULATION FOR EXPECTED LIFETIME 

SEISMIC DAMAGE COST 

 
 This appendix provides detailed derivation of the analytical formulation used in Chapter 7 to 

calculate the expected seismic damage cost over the lifetime. Only a single seismic hazard case 

is discussed; cases dealing with multiple hazards (earthquake, wind, etc.) can be found in Kang 

and Wen (2000). The following material is based on Wen and Kang (2001a,b). 

 
C.1  General analytical formulation 

 Evaluation of the expected lifetime seismic failure cost necessitates consideration of the 

random number of occurrences and random occurrence times of the seismic hazard as well as the 

discounting of cost over time. Over a time period T, which may be the design life of a new 

structure or the remaining life of a retrofitted structure, the expected lifetime seismic damage 

cost can be expressed as a function of T and the design variable vector X:  
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where E[.] = expectation operator; X = design variable vector; i = number of severe seismic 

loading occurrence; it = loading occurrence time, a random variable; N(T) = number of severe 

seismic loading occurrences in T, a random variable; jC = cost in present monetary value of the 

j-th damage state being reached at the time of loading occurrence; te λ− = a discount factor of over 

time t that converts future damage-induced monetary cost into the present monetary value, in 

which λ = constant annual monetary discount rate; ijP = probability of the j-th damage state 

being reached given the i-th hazard occurrence; K = total number of damage states considered. It 
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is noted that this formula implicitly assumes that the structural system will be immediately 

retrofitted to its original intact condition after each damage-inducing hazard occurrence. 

 Assumption of time-invariance for structural resistance as well as for damage state monetary 

cost simplifies Equation C.1 as 
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where jP  is the mean value of the j-th damage state probability given seismic occurrence. 

 Under the assumption that the number of damage states of concern is small and the demands 

that cause these damage states are due to severe seismic hazards that occur infrequently, a simple 

Poisson process model of seismic hazard occurrences with an annual occurrence rate of ν would 

be appropriate. Conditioning the random number of occurrences N on n in the time interval (0, 

T), the occurrence times jt (j = 1,2,…, n) of the seismic hazard are independent and uniformly 

distributed in (0, T) (Ang and Tang 1975). Taking the expectation with respect to the random 

hazard occurrence times jt , one obtains 
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 Application of the total probability theorem (Ang and Tang 1975) on the random seismic 

occurrence number leads to the following unconditional expected value: 
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 Substitution of the above result into Equation C.1 leads to the final closed-form formula: 
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which is also Equation 7.1. 

 
C.2  Evaluation of damage state probabilities given seismic occurrence  

 Seismic performance indices (e.g., maximum interstory drift ratio) of a structure subject to 

each of the designated seismic hazard levels with t-year exceedance probability are calculated; 

then a lognormal curve is fitted for pairs of maximum drift ratio and the associated t-year 

exceedance probability (which could possibly be corrected to incorporate 

randomness/uncertainty effects). At this stage, the exceedance probability for drift ratio limits 

that define all damage states can be readily read from the fitted curve.  This t-year exceedance 

probability of the drift ratio limit has to be converted to exceedance probabilities given seismic 

occurrence as needed in Equation C.4.  

 Because seismic occurrences are modeled as a Poisson process with an annual occurrence 

rate ν , the annual probability of exceeding the drift ratio limit j∆ is then ( )jPν ∆ > ∆ , where 

( )jP ∆ > ∆  is the exceedance probability given seismic occurrence yet to be determined. The 

exceedance probability over a time period (0, t) is given by 

   ( ) 0 ( ) ( )1 ( ) 0! 1j jP t P t
t j jP P t e eν νν − ∆>∆ − ∆>∆ ∆ > ∆ = − ∆ > ∆ = −                            (C.5) 

from which one solves 
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The damage state probability given seismic occurrence is then 
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 Substitution of Equations C.7 into C.6 shows that the annual earthquake occurrence rate ν  is 

not needed if 1 0C = . 

 

 

 


