
 STATE-OF-THE-ART MULTIOBJECTIVE

 EVOLUTIONARY ALGORITHMS—PARETO

 PANKING, DENSITY ESTIMATION

 AND DYNAMIC POPULATION

 By

 HAIMING LU

 Bachelor of Engineering

 Tsinghua University

 Beijing, China

 1995

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirement for
 the Degree of

 DOCTOR OF PHILOSOPHY
 August, 2002

 STATE-OF-THE-ART MULTIOBJECTIVE

 EVOLUTIONARY ALGORITHMS—PARETO

 PANKING, DENSITY ESTIMATION

 AND DYNAMIC POPULATION

 Thesis Approved:

 __
 Thesis Advisor

 __

 __

 __

 Dean of the Graduate College

 ii

PREFACE

 This study classifies existing Multiobjective Evolutionary Algorithms (MOEAs)

and analyzes several state-of-the-art MOEAs based on different design procedures of

those crucial building blocks. A Rank-Density based Genetic Algorithm (RDGA) is

designed by synergistically integrates important features of existing MOEAs in a unique

way. From the simulation results, RDGA has shown its capability in finding a near-

complete and near-optimal Pareto set at the final and successfully applied in a neural

network design problem. In addition, an MOEA with dynamic population size—Dynamic

Multiobjective Evolutionary Algorithm (DMOEA) is derived from RDGA. Regulated by

dynamic population strategies, DMOEA generation is found to be competitive with, or

even superior to, other representative MOEAs in terms of keeping the diversity of the

individuals along the trade-off surface, tending to extend the Pareto front to new areas,

finding a well-approximated Pareto optimal front, and achieve optimal population size

according to desired density value and approximated number of trade-off hyper-areas.

Based on extensive studies on MOEAs, an MOEA Toolbox is designed to provide

flexible choices to the users by combining different building blocks. To increase the

convergence speed of DMOEA, a Particle Swarm Optimization (PSO) technique

combined with genetic selection is proposed in a Dynamic Particle Swarm Evolutionary

Algorithm (DPSEA). The comparison results show that DPSEA improves both efficiency

and efficacy of evolutionary process and can be potentially applied to time varying

multiobjective optimization problems in future work.

 iii

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my academic advisor, Professor Gary G.

Yen, for he has guided, instructed, encouraged, inspired and continually motivated me for

four years. I feel fortunate to have him as a mentor and a friend. My genuine appreciation

draws to my other committee members Professor Jong-Moon Chung, Professor Guoliang

Fan, Professor R. Russell Rhinehart and Professor R. K. Yarlagadda whose direction,

reassurance and acquaintance are also worthwhile.

I am indebted to all my friends and colleagues in Stillwater. Many thanks are due

to all of them, especially the past and present members in Intelligent Systems and Control

Laboratory at Oklahoma State University for their supportive help.

I would also like to thank to my family—my parents and brother, for encouraging

me to do a good job all the time, to appreciate the value of hard work, and most

importantly, for never giving up.

Finally, special honor and appreciation is given to my wife, Huan Wang. Without

her understanding love, constant help, happy smile and especially joyful prayer, I would

never have the moral and spiritual strength necessary for the completion of this research

and dissertation.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ...1
1.1 Motivation..1
1.2 Objective ..2

II. EVOLUTIONARY ALGORITHMS...8
2.1 Overview of Optimization Algorithms ..8

2.1.1 Random Search (Walk)..9
2.1.2 Simulated Annealing..9
2.1.3 Monte Carlo ...10
2.1.4 Tabu Search ...10
All these approaches are single-point-based methods, which is significantly
different from the population-based searching scheme used by Evolutionary
Algorithm..10

2.2 What is an Evolutionary Algorithm? ...11
2.3 Classification of Evolutionary Algorithms ..11
2.4 Genetic Algorithm ...12

2.4.1 Representation..13
2.4.2 Fitness evaluation...13
2.4.3 Genetic selection..14
2.4.4 Genetic operations ...15
2.4.5 Stopping criteria...15

2.5 Difference between GA and Traditional Algorithms.....................................15
2.6 GA Design and Open Problems...16

2.6.1 Chromosome representation ..17
2.6.2 Objective and fitness function ...17
2.6.3 Selection methods ..19
2.6.4 Genetic operation ...21

III. MULTIOBJECTIVE OPTIMIZATION..25
3.1 Introduction..25

3.1.1 Problem solution ..26
3.2 Definition ...26

3.2.1 Design variables...26
3.2.2 Constraints ...27
3.2.3 Objective functions ..28
3.2.4 Standard form...28

3.3 Pareto Optimal and Traditional Decision Making Methods29
3.3.1 Introduction..29

 v

3.3.2 Definition of a Pareto optimum ...29
3.3.3 Popular decision making methods ...30
3.3.4 Weighting objectives method ..31
3.3.5 Goal programming method..31
3.3.6 Min-max optimum ...32

IV. EVOLUTIONARY ALGORITHMS IN..35

MULTIOBJECTIVE OPTIMIZATION..35
4.1 Introduction..35
4.2 Fitness Assignment ..37

4.2.1 Aggregating methods ...37
4.2.2 Population-based non-Pareto approaches ..38
4.2.3 Population-based Pareto approaches..40

4.3 Maintenance of Diversity...43
4.3.1 Niched fitness sharing technique ...44
4.3.2 Density estimation technique...45

4.4 Fitness Assignment Scheme of NSGA-II and SPEA II47
4.5 Other Significant Techniques Used in MOEAs...48

4.5.1 Elitism scheme ...48
4.5.2 Mating restriction...49
4.5.3 Archive truncation ...49

V. RANK DENSITY BASED..51

MULTIOBJECTIVE GENETIC ALGORITHM ..51
5.1 Introduction..51
5.2 Critical Procedures of RDGA Design..52

5.2.1 Automatic Accumulated Ranking Strategy (AARS)52
5.2.2 Adaptive density estimation...54
5.2.3 Rank and density based fitness assignment ...56
5.2.4 Crossover and mutation operations..57
5.2.5 Constraint handling..59
5.2.6 Elitism strategy ..60

VI. BENCHMARK TEST FUNCTION STUDY AND ..61

EXPERIMENTAL RESULTS...61
6.1 Introduction..61
6.2 Performance Merit Indicator Design ...62
6.3 MOEA Comparison and Genetic Operator Design64

6.3.1 F1— MOP with discontinuous and concave Pareto front......................65
6.3.2 F2-1 & F2-2— Local and global Pareto optimality...............................68
6.3.3 F3—MOP with high-dimensional decision space77
6.3.4 F4—MOP with high-dimensional objective space79

6.4 Neural Network Design by RDGA..84
6.4.1 Neural network design dilemma ..85

 vi

6.4.2 Hierarchical genetic algorithm in neural network design88
6.4.3 HRDGA for neural network design ...90
6.4.4 Experimental study—Mackey-Glassy chaotic time series prediction ...92

VII. DYNAMIC POPULATION SIZE IN MOEA DESIGN..101
7.1 Introduction..101
7.2 Incrementing Multiobjective Evolutionary Algorithm104
7.3 Dynamic Multiobjective Evolutionary Algorithm.......................................105

7.3.1 Cell-based Rank and Density Calculation Scheme..............................106
7.3.2 Cell Rank and Health Indicator..109
7.3.3 Cell Density and Crowd Indicators..110
7.3.4 Population growing strategy ..111
7.3.5 Population declining strategy...113

7.4 Objective Space Compression Strategy ...118
7.5 Convergence Properties and Final Refinement Method120
7.6 Simulation I—Testing Study on DMOEA...122
7.7 Simulation II—Comparison Study on DMOEA with Other MOEAs125

7.7.1 F3—MOP with high-dimensional decision space127
7.7.2 F6—MOP with high-dimensional objective space132
7.7.3 F7—MOP with high-dimensional objective space and local Pareto
fronts 139

7.8 ROBUSTNESS STUDY..142

VIII. EMO TOOLBOX DESIGN..146
8.1 MOEA Setting ...148

8.1.1 Main procedure of fixed MOEA model design149
8.1.2 Main procedure of free MOEA model design152

8.2 Visualization Setting..156
8.3 Start Running ...157
8.4 Data Analysis ...158
8.5 Demonstrations ..160
8.6 Help Files ...160

IX. PARTICL SWARM OPTIMIZATION IN MOEA ...161
9.1 Particle Swarm Optimization...161
9.2 Dynamic Particle Swarm Multiobjective Optimization (DPSMO)163
9.3 Simulation Study on DPSMO..166
9.4 Dynamic Particle Swarm Evolutionary Algorithm (DPSEA)169
9.5 Comparison Study on DMOEA, DPSMO and DPSEA...............................170

9.5.1 Simulation on Function F3...170
9.5.2 Simulation on Function F6...173

X. CONCLUSIONS AND FUTURE WORKS..178

BIBLIOGRAPHY..184

 vii

LIST OF TABLES

Table Page

Table 2.1 General optimization approaches.. 8

Table 2.2 Comparison of three major types of evolutionary algorithms 12

Table 2.3 A standard genetic algorithm process... 13

Table 2.4 Rule of Roulette Wheel parent selection .. 20

Table 6.1 Final simulation results for Function F2-1 by five MOEAs using initial
population set 1 ... 73

Table 6.2 Final simulation results for Function F2-1 by five MOEAs using initial
population set 2 ... 73

Table 6.3 Final simulation results for function F2-2 by five MOEAs using initial
population set 1 ... 76

Table 6.4 Final simulation results for function F2-2 by five MOEAs using initial
population set 2 ... 76

Table 6.5 Characteristics of Mackey-Glass time series .. 93

Table 6.6 Structure and performance comparison between KNN, OLS, GRNN and
HRDGA .. 97

Table 7.1 Comparison results of computation time of F3 from selected MOEAs and
DMOEA with different settings.. 144

Table 9.1 Comparison results of computation time of F6 from DMOEA, DPSMO and
DPSEA.. 177

 viii

LIST OF FIGURES

Figure Page

Figure 1.1 Graphical illustration of the Pareto optimality of a two-objective minimization
problem ... 3

Figure 2.1 Illustration of crossover operation... 14

Figure 2.2 Illustration of mutation operation.. 14

Figure 2.3 Illustration of random Roulette Wheel parent selection indicator................... 20

Figure 2.4 Three-dimensional cube to explain schemata.. 21

Figure 2.5 Example of uniform crossover .. 23

Figure 3.1 Graphical definition of the Pareto optimality.. 29

Figure 4.1 Outline of generation replacement of VEGA.. 39

Figure 4.2 Illustration of Goldberg’s Pareto-based ranking scheme 40

Figure 4.3 Illustration of Fonseca’s Pareto-based ranking scheme 41

Figure 4.4 Illustration of the Pareto-based ranking scheme adopted by SPEA II 42

Figure 4.5 Illustration of the effect of population diversity preservation 44

Figure 4.6 Illustration of niched fitness sharing technique... 45

Figure 4.7 Illustration of crowding distance estimation approach.................................... 46

Figure 5.1 Individual rank values resulting from MOGA/NSGA-II/ SPEA II/ RDGA
ranking methods.. 53

Figure 5.2 Illustration of density map and density grid applied by RDGA...................... 55

Figure 5.3 Illustration of the “diffusion” scheme ... 57

Figure 5.4 Illustration of the valid range and the forbidden region 58

 ix

Figure 6.1 Difference between and .. 63 truePF finalPF

Figure 6.2 (a) Decision space, objective space and Pareto front of Function F1 66

Figure 6.3 True Pareto front and Pareto fronts resulted by MOGA, NSGA-II, PAES,
RDGA and SPEA II on Function F1 .. 66

Figure 6.4 Box plots of average individual rank, density and distance values on Function
F1 .. 67

Figure 6.5 Box plots using C measure on Function F1 .. 67

Figure 6.6 Decision space, objective space and Pareto fronts of Function F2-1.............. 70

Figure 6.7True Pareto front Pareto fronts resulted by MOGA, NSGA-II, PAES, RDGA
and SPEA II on Function F2-1 ... 70

Figure 6.8 Box plots of average individual rank, density and distance values on Function
F2-1... 71

Figure 6.9 Box plots using C measure on Function F2-1 ... 72

Figure 6.10 Illustration of 12 / qq ratio affects MOEAs finding global Pareto front.......... 74

Figure 6.11 Pseudo-global Pareto fronts when 2x approaches to
1.02 =globalx ()000,10/ 12 =qq ratio ... 74

Figure 6.12 Decision space, objective space and local and global Pareto fronts of
Function F2-2.. 75

Figure 6.13 Objective space and Pareto front of Function F3 .. 77

Figure 6.14 True Pareto front and Pareto fronts resulted by MOGA, NSGA-II, PAES,
RDGA and SPEA II on Function F3 .. 78

Figure 6.15 Box plots of average individual rank, density and distance values on Function
F3 .. 79

Figure 6.16 Box plots using C measure on Function F3 .. 79

Figure 6.17 Decision space, objective space and Pareto front on Function F4 80

Figure 6.19 Box plots of average individual rank, density and distance values on Function
F4 .. 81

 x

Figure 6.22 Genotype and phenotype of HGA based MLP neural network..................... 88

Figure 6.23 Genotype and Phenotype of HGA based RBF neural network 90

Figure 6.24 Flowchart of the main procedure of HRDGA based neural network design 92

Figure 6.25 Training performances and Pareto fronts for the resulting neural networks
with different number of hidden neurons.. 94

Figure 6.26 Testing performances and Pareto fronts for the resulting neural networks with
different number of hidden neurons for testing set #1 .. 95

Figure 6.27 Testing performances and Pareto fronts for the resulting neural networks with
different number of hidden neurons for testing set #2 .. 95

Figure 6.28 Training performances and Pareto fronts for the resulting neural networks
with different number of hidden neurons for testing set #3...................................... 95

Figure 6.29 Training performances and Pareto fronts for the resulting neural networks
with different number of hidden neurons for testing set #4...................................... 96

Figure 6.30 Relationship between ρ values and network complexities 99

Figure 7.1 Estimated objective space, initial density matrix and initial rank matrix...... 108

Figure 7.2 Initial population and its corresponding density and rank matrices 108

Figure 7.3 (a) Updated population and its corresponding density matrix and rank matrix
... 108

Figure 7.4 Relationship between rank value and health value.. 110

Figure 7.5 Illustration of the pure Pareto ranking for the individuals located in the same
cell... 115

Figure 6 Relationship between rank values and l1 values.. 117

Figure 7.7 Illustration of objective space compression strategy..................................... 120

Figure 7.8 Flow chart of DMOEA.. 121

Figure 7.9 Illustration of Pareto optimal set and Pareto front of function F5 122

Figure 7.10 Evolutionary trajectories for the population size and the values of three
indicators resulting by DMOEA with three different initial population sizes (10=thA)
on Function F5 .. 123

 xi

Figure 7.11 Box plots of three indicators with three different initial population sizes
(10=thA) on Function F5... 124

Figure 7.12 Comparison of the true Pareto front and the final Pareto front resulted by
DMOEA (2=P) on Function F5 .. 125

Figure 7.13 Snapshots of objective spaces and populations resulted from DMOEA on
Function F3 ... 127

Figure 7.14 Snapshots of objective spaces and rank values resulted from DMOEA on
Function F3 ... 128

Figure 7.15 Snapshots of objective spaces and density values resulted from DMOEA on
Function F3 ... 128

Figure 7.16 Pareto fronts resulted from IMOEA, DMOEA, NSGA-II, PAES, RDGA and
SPEA II on Function F3 ... 130

Figure 7.17 Box plots of average individual rank, density and distance values on Function
F3 .. 130

Figure 7.18 Box plots using C measure on Function F3 .. 131

Figure 7.19 Objective space and Pareto front of Function F6 .. 133

Figure 7.20 Pareto fronts resulted from IMOEA, DMOEA, NSGA-II, PAES, RDGA and
SPEA II on Function F6 ... 134

Figure 7.21 Box plots of average individual rank, density and distance values on Function
F6 .. 134

Figure 22 Box plots using C measure on Function F6 ... 135

Figure 7.23 Evolutionary trajectories of population sizes and average individual rank,
density and distance values from six selected MOEAs over 50 runs on Function F6
... 136

Figure 7.24 Objective space and Pareto front of Function F7 .. 139

Figure 7.25 Pareto fronts resulted from IMOEA, DMOEA, NSGA-II, PAES RDGA and
SPEA II on Function F7 ... 140

Figure 7.26 Box plots of average individual rank, density and distance values on Function
F7 .. 140

Figure 7.27 Box plots using C measure on Function F7 .. 141

 xii

Figure 7.28 Evolutionary trajectories of population sizes and average individual density
and distance values from six settings of DMOEA over 50 runs on Function F3 ... 144

Figure 7.28 Evolutionary trajectories of population sizes and average individual density
and distance values from six settings of DMOEA over 50 runs on Function F6 ... 144

Figure 7.28 Evolutionary trajectories of population sizes and average individual density
and distance values from six settings of DMOEA over 50 runs on Function F7 ... 144

Figure 8.1 Comparison of skeletons of two MOEA Toolboxes 146

Figure 8.2 Main graphical user interface of EMO Toolbox ... 148

Figure 8.3 GUI of model selection ... 148

Figure 8.4 GUI of main design procedure and error message .. 149

Figure 8.5 GUI of genotype parameter design.. 150

Figure 8.6 GUI of decision variable setting.. 150

Figure 8.7 GUI of objective function and constraint setting .. 151

Figure 8.8 Error message for input syntax error ... 151

Figure 8.9 GUI of special parameter setting... 152

Figure 8.10 GUI of ranking method setting... 153

Figure 8.11 GUI of density preservation method setting... 153

Figure 8.12 GUI of determining niche radius... 154

Figure 8.13 GUI of elitism scheme setting ... 154

Figure 8.14 GUI of local search setting .. 155

Figure 8.15 GUI of forbidden region setting .. 155

Figure 8.16 GUI of viewing all parts of free model setting ... 156

Figure 8.17 GUI of visualization setting... 156

Figure 8.18 GUI of listing of all the chosen parameters... 157

Figure 8.19 GUI of visualizing the evolutionary result for certain intervals.................. 158

 xiii

Figure 8.20 GUI of loading data files for analysis.. 158

Figure 8.21 Data analysis for resulting data ... 159

Figure 8.22 GUI of toolbox demonstration... 159

Figure 8.23 GUI of help contents of EMO toolbox .. 160

Figure 9.1 Resulting Pareto fronts by DMOEA and DPSMO on Function F3 167

Figure 9.2 Evolutionary trajectories for the population size and the values of three
indicators resulting by DMOEA and DPSMO on Function F3 168

Figure 9.3 Resulting Pareto fronts by DMOEA, DPSMO and DPSEA on Function F3 171

Figure 9.4 Box plots of three indicators on Function F3 .. 171

Figure 9.5 Box plots based on C measure on Function F3 ... 172

Figure 9.6 Evolutionary trajectories for the population size and the values of three
indicators resulting by DMOEA and DPSMO and DPSEA on Function F3 173

Figure 9.7 Resulting Pareto fronts from DMOEA, DPSMO and DPSEA on Function F6
... 174

Figure 9.8 Box plots of three indicators on Function F6 .. 174

Figure 9.9 Box plots based on C measure on Function F6 ... 175

Figure 9.10 Evolutionary trajectories for the population size and the values of three
indicators resulting by DMOEA and DPSMO and DPSEA on Function F6 175

Figure 10.1 An example of MOP with time varying objective function and Pareto front
... 181

 xiv

I. INTRODUCTION

1.1 Motivation

Many real-world problems in engineering, science, business, and natural and

social sciences are largely characterized by the need to allocate limited resources to a

collection of activities in application areas, such as inventory control, transportation

networks, queuing analysis, task scheduling, capital investment, delivery of health

services, water-resource management, and energy procurement programs. These

problems involve multiple measures of performance, or objectives, which should be

optimized simultaneously. In certain cases, objective functions may be optimized

independently from each other to achieve the best result in each performance dimension.

However, suitable solutions to the overall problem can hardly be found in this way.

Optimal performance according to one objective, if such an optimum exists, may lead to

unacceptably low performance in one or more of the other objectives. For example, in the

design of an automobile, an engineer may wish to maximize crash resistance for safety

and minimize weight for fuel economy. This is a multiobjective optimization problem

with two conflicting goals, that is, a step towards improving one of the objectives, say

enhancing crash resistance, is generally a step away from improving the other, increasing

weight. Obviously, in this case, the notion of “optimum” has to be redefined since a

single optimal point will not satisfy both objectives simultaneously.

In large-scale systems, these Multiobjective Optimization Problems (MOPs) are

even more complicated. For instance, in a plant production study, one may not be

 1

satisfied with only knowing what actions lead to minimizing production costs. Instead,

the study may be taken so that it identifies additional objectives such as short-term and

long-term capital gains, employee satisfaction and well-being, product diversification,

and energy conservation managements. Obviously, some of these objectives are

competing, or even conflicting, which cannot achieve an optimal solution at the same

time. A suitable solution to such problems involving conflicting objectives should offer

“acceptable” performance, though possibly sub-optimal in the single-objective sense, in

all objective dimensions, where “acceptable” is problem-dependent and ultimately

subjective.

1.2 Objective

The simultaneous optimization of multiple, possibly conflicting, objective

functions deviates from single function optimization in that it seldom result in a single,

global optimal solution. Instead, MOPs tend to be characterized by a family of

alternatives that must be considered equivalent in the absence of information concerning

the relative importance of each objective to the others. The family of solutions to a

multiobjective optimization problem is composed of all those elements of the search

space that are components of the corresponding objective vectors which cannot be all

simultaneously improved. This is known as the concept of Pareto optimality [1]. A

formal definition of Pareto optimality is given as follows [2]. Consider, without loss of

generality, the minimization of the n components of a vector function

of a vector variable x in a universe , where

,,,1, nkf k K= f

µ

))(,),(),(()(21 xxxxf nfff K= . (1.1)

 2

Then a decision vector is said to be Pareto-optimal if and only if there is no

 for which dominates , that is, there

is no x such that

µµ ∈x

()(v v=xµ∈vx

v

),,1 nvK= fv),,()(1 nu uu K== xfu

µ∈

ii uvni ≤∈∀ },,,1{ K . (1.2) and ii uvni <∈∃ |},,1{ K

The set of all Pareto-optimal decision vectors is called the Pareto-optimal set of

the problem. The corresponding set of objective vectors is called the non-dominated set,

or Pareto front. Apparently, the Pareto front dominates all other possible solutions and in

most cases, it is located on the boundary of the objective vector space (i.e., feasible

solution space) as shown in Figure 1.1 for a two-objective optimization problem

(and refer to two cost functions of interest). 1f 2f

1f

Feasible Range

Pareto front

A

B

C

1f

2f

1f

Feasible solution space

Pareto front

A

B

C

1f

2f
Points A, B: nondominated points
Point C: dominated point

1f1f

Feasible Range

Pareto front

A

B

C

1f1f

2f2f

1f1f

Feasible solution space

Pareto front

A

B

C

1f1f

2f2f
Points A, B: nondominated points
Point C: dominated point

Figure 1.1 Graphical illustration of the Pareto optimality of a two-objective minimization problem

Conventional optimization techniques, such as gradient-based and simplex-based

methods [3], and less conventional ones, such as simulated annealing [4] and tabu search

[5], are difficult to extend to solve MOPs, because they were not designed with multiple

solutions in mind. In practice, MOPs have to be reformulated as a single objective

function prior to optimization, leading to the production of a single solution per run of the

 3

optimizer. In literature, weighting objectives method [3,6], goal programming method [7-

9] and Min-Max optimum method [10] are some representative decision making

algorithms combined with conventional optimization techniques above to achieve a

single solution in multiobjective optimization problems.

Evolutionary Algorithms (EAs) [11] have been recognized to be well suited to

multiobjective optimization early in their development. In EAs, multiple individuals can

search for multiple solutions in parallel, eventually taking advantage of any similarities

available in the family of possible solutions to the problem. The ability to handle

complex problems, involving features such as discontinuities, multimodality, disjoint

feasible spaces and noisy function evaluations, reinforces the potential effectiveness of

EAs in multiobjective search and optimization, which is perhaps the problem area where

evolutionary computation really distinguishes itself from other algorithms.

Since the 1980’s, several Multiobjective Evolutionary Algorithms (MOEAs) have

been proposed and applied in MOPs [2]. These algorithms share the same purpose—

approximate a uniformly distributed, near-optimal and near-complete Pareto front for a

given MOP. However, this goal is very difficult to be achieved because the true Pareto

front is a high-dimensional solution set instead of a single solution point, which is much

more complicated than many single objective optimization problems. Generally, the

approximation of the Pareto-optimal set involves two objectives: the distance to the true

Pareto front is to be minimized while the diversity of the generated solutions is to be

maximized [9]. Unfortunately, these two objectives are also contradictive. In one respect,

 4

Evolutionary Algorithms encourage those better-fit individuals to restrict their searching

efforts within local areas in order to search for solutions with even higher fitness values.

On the other hand, most of the MOPs require the computational resources to be

homogenously distributed in a high dimensional search space to maintain the diversity of

resulting population. For this reason, a Pareto-based fitness assignment (ranking scheme)

and a density estimation method are usually designed in some existing MOEAs [12-14]

in order to guide the search towards a near-complete approximation of the ideal Pareto

optimal front. Although some of the most advanced MOEAs have been shown to be able

to solve some of the challenging multibojective optimization problems, several critical

issues are still not well attended in both algorithm domain and problem domain.

Therefore, the goal of this research is to study the characteristics of MOPs and exploit the

advantages and disadvantages of the existing MOEAs; and propose some feasible

innovations in MOEA designs in order to develop a state-of-the-art MOEA for practical

uses in real-world multiobjective optimization applications.

The remainder of this dissertation is organized as follows. Chapter II introduces

Evolutionary Algorithm (EAs) and its categories. As the most representative algorithm in

EAs, genetic algorithm is reviewed in details. Its operation procedure, advantages over

traditional heuristic optimization algorithms and open issues are also discussed in

Chapter II. Chapter III defines multiobjective optimization functions and Pareto

optimality. Three traditional decision making approaches for multiobjective optimization

are highlighted therein. Chapter IV reviews existing literature on several well-regarded

MOEAs and the incorporated characteristics applied by these MOEAs (e.g., fitness

 5

assignment, diversity maintenance, and elitism). A Rand-Density based Genetic

Algorithm (RDGA) is proposed and its main design procedures are discussed in Chapter

V. In Chapter VI, based on the study of the challenging characteristics embedded in

different types of MOPs, several representative MOEAs along with the proposed RDGA

are examined by four benchmark MOP test functions. The results show that RDGA is

competitive, or even superior to, the other MOEAs in terms of finding a near-complete

and near-optimal set of Pareto points. Additionally, as a real application, a Radial-Basis

Function Neural Network (RBFNN) design problem is formulated as a bi-objective MOP

and an RDGA with hierarchical chromosome representation is implemented in order to

search for a set of non-dominated neural network candidates to predict a chaotic time

series. Chapter VII explores a study on dynamic population strategies in MOEA. Based

on RDGA, a Dynamic Multiobjective Evolutionary Algorithm (DMOEA) is designed. In

one aspect, a population growing strategy is proposed in order to encourage all of the

created individuals contribute their valuable schemas adequately. On the other hand,

those ill-performed and outdated individuals are eliminated from generation to generation

to control the computation cost by preventing the explosion of the population size. By

examining the selected performance indicators on a benchmark problem, DMOEA is

found to be efficient and effective in regulating an optimal population size, keeping the

diversity of the individuals along the trade-off surface, tending to extend the Pareto front

to new areas, and finding a well-approximated Pareto optimal front. Additionally,

dynamic population mechanism eliminates the guesswork from heuristically assigning an

initial fixed population size. Based on the study of MOEAs, in Chapter VIII, a module-

based, user-friendly MOEA toolbox is designed. Since an MOEA can be divided into

 6

several crucial building blocks, such as ranking methods, density estimation approaches,

fitness assignment strategies, elitism schemes and some other necessary routines.

Synergistic combinations of these building blocks can result in different types of MOEAs

existed, or even some novel ones. Therefore, a module-based toolbox can provide

designers with flexibility in dealing with different types of MOPs with their favorite

design procedures. In Chapter XI, a new class of evolutionary algorithm—Particle

Swarm Optimization (PSO) is introduced. Based on PSO’s characteristics of faster

convergence, a Dynamic Particle Swarm Multiobjective Optimization (DPSMO)

algorithm and a Dynamic Particle Swarm Evolutionary Algorithm (DPSEA) are devised.

From simulation results, although DPSMO can significantly improve the efficiency of

evolutionary process, it may also produce relatively poorer quality of final Pareto front

comparing to DMOEA. However, DPSEA shows great potential in improving both

efficiency and efficacy of evolutionary process, which makes DPSEA a potential

approach for time varying or even real-time multiobjective optimization problems.

Finally, Chapter X concludes this report with a few pertinent observations and proposes

future research directions in the field of evolutionary algorithms in mutiobjective

optimization problems.

 7

II. EVOLUTIONARY ALGORITHMS

2.1 Overview of Optimization Algorithms

In general, optimization (or search) techniques can be classified into two

categories [15]: enumerative (deterministic) and stochastic (random). Table 2.1 shows

common examples of each type.

Table 2.1 General optimization approaches
Enumerative

(Deterministic)
Stochastic
(Random)

Greedy Random Search (Walk)

Hill-Climbing Simulated Annealing

Branch & Bound Monte Carlo

Depth-First Tabu Search

Breadth-First Evolutionary Algorithms

Best-First

Calculus-Based

Mathematical Programming

Enumerative schemes are perhaps the simplest search strategy—each possible

solution is evaluated within some defined finite search space. However, it is apparent that

this technique will be inefficient or even infeasible as search space becomes extremely

large. Since many real world problems are computationally complex, some means of

limiting the search space must be implemented to find “acceptable” solutions within

“reasonable” time. Deterministic search attempts this by incorporating problem domain

knowledge. Many of these are considered as graph/tree search algorithms, such as greedy

algorithms, hill-climbing, branch & bound, etc [16-17,4,18]. Although these techniques

had been successfully used in solving a wide variety of problems [16,19-20], they have

 8

difficulty to deal with problems involving high-dimensionality, multi-modality, or NP-

Complete characteristics According to [15], the problems exhibit one or more of these

characteristics are termed irregular [21].

Because enumerative and deterministic techniques are unsuitable for the irregular

optimization problems, stochastic search and optimization approaches are developed as

alternative approaches for solving these irregular problems. These methods include

Random Search, Simulated Annealing, Monte Carlo, Tabu Search and Evolutionary

Algorithm (EA). Stochastic methods require a function assigning fitness values to

possible solutions and an encode/decode mechanism between the problem and algorithm

domains. In general, they provide good solutions to a wide range of optimization

problems that traditional deterministic search methods find difficult [19].

2.1.1 Random Search (Walk)

A random search is the simplest stochastic search strategy, as it merely evaluates

a given number of randomly selected solutions. A random walk is similar except that the

next solution is randomly selected by using the last evaluated solution as a starting point

[22]. Random searches can generally expect to do no better than enumerative ones [19].

2.1.2 Simulated Annealing

Simulated Annealing is an algorithm explicitly modeled on an annealing analogy.

For example, a liquid is heated and then gradually cooled until it freezes and a “moving”

 9

will be chosen randomly. If the “moving” improves the current optimal point, it is always

executed; otherwise it will be executed with some probability. This probability

exponentially decreases either by time or with the amount by which the current optimum

is worsened [4]. If the liquid’s temperature is cooled slowly enough, it will attain a lowest

energy configuration. Therefore, basic mechanism of Simulated Annealing is to obtain

the global optimum if the “moving” probability decreases slowly enough.

2.1.3 Monte Carlo

In general, Monte Carlo methods involve simulations dealing with stochastic

events; they employ a pure random search where any selected trail solution is fully

independent of any previous choice and its outcome [5]. The current “best” solution and

associated decision variables are stored as a comparator. In the next step, the “best”

solution may be updated, and so on.

2.1.4 Tabu Search

Tabu Search is a meta-strategy developed method in order to avoid getting

“stuck” on local optima. It keeps a record of both visited solutions and the “path”, which

reached the solutions in different “memories”. This information restricts the choice of

solutions to evaluate in the next step. Tabu search is often integrated with other

optimization methods [5].

All these approaches are single-point-based methods, which is significantly

different from the population-based searching scheme used by Evolutionary Algorithm.

 10

2.2 What is an Evolutionary Algorithm?

The principle of evolution is one of the most general conceptions of biology,

which links every organism together in a historical chain of events. Every creature in the

chain is the product of a series of “accidents” that have been sorted out thoroughly under

selective pressure from the environment. Over many generations, random variation and

natural selection modify the characteristics of individuals and species to fit the demands

of their living environments. This fit has no intrinsic purpose—it is only the effect of

natural variation acting upon and within populations and species and it makes evolution

capable of “engineering” solutions to the problems of survival.

What advantages does the evolutionary process offer when applied to engineering

problems? It could provide a means for solving problems that are difficult, if not

impossible, to traditional algorithms. Indeed, the field of evolutionary computation is one

of the fastest growing areas in computer science and engineering simply because of this

reason [17]. Engineers and scientists with quite different backgrounds have come

together to tackle some of the most difficult problems using this very promising set of

stochastic search algorithms, Evolutionary Algorithms (EAs) [23,24].

2.3 Classification of Evolutionary Algorithms

There are three main types of EAs: Genetic Algorithm (GA) [11,25],

Evolutionary Programming (EP) [26,27] and Evolutionary Strategies (ES) [28,5]. Each

type has numerous variants due to different parameter settings and implementations.

Which EA is the best depends upon the problem. There is no universally best algorithm

 11

that can achieve optimal performance for all problems. Different representations or

encoding schemes, selection schemes, and search operations will define different EA.

For example, GA normally uses crossover and mutation as search operators, while ES

only involves mutation. GA often emphasizes genetic evolution, while EP pays more

attention to the evolution of behavior. Table 2.2 illustrates the key implementation

differences among GA, ES and EP.

Table 2.2 Comparison of three major types of evolutionary algorithms
EA Type Representation Evolutionary Operatotors

GA Normally binary;

Real values can be adopted

Mutation, recombination,

crossover and selection

ES Real values and

Strategy parameters

Mutation, and or

 selection [24]

)(λµ +

),(λµ

EP Real values Mutation and

selection alone

)(λµ +

In this study, due to its flexibility in solving complex optimization problems,

genetic algorithm is chosen as a preferred searching algorithm. Moreover, as both GP

and ES are originated from GA [23], we will mainly discuss the characteristics of genetic

algorithms in this chapter.

2.4 Genetic Algorithm

The basic principles of Genetic Algorithm (GA) were first proposed by Holland

[29] in 1970’s. Thereafter, a series of literature becomes available [25,30-32]. GA is

inspired by the mechanism of natural selection proposed by Darwin, in which better-

fitted individuals are more likely to be the winners in a competing environment, or so

called “survival of fittest law.” GA uses a direct analogy to natural evolution

 12

characteristics, where the optimal solutions can be evolved and represented by the final

winners of the genetic process. Generally speaking, a GA is defined by the following four

elements: representation, fitness evaluation, selection, and genetic operations. The whole

process is described in Table 2.3.

Table 2.3 A standard genetic algorithm process

1. Generate the initial population P(0) at random, and set iteration index i=0;

2. REPAET

 (a) Evaluate the fitness of each individual in P(i);

 (b) Select parents from P(i) based on their fitness in P(i);

 (c) Apply genetic operations to the selected parents and obtain next generation P(i+1);

 UNTIL the stop criterion are meet.

2.4.1 Representation

GA presumes that the potential solution of any problem is an individual that can

be represented by a set of parameters. These parameters are regarded as the genes of a

chromosome and can be structured by a string of values in binary form. The chromosome

representation that is encoded from the possible physical solution is called genotype; the

corresponding physical representation is called phenotype. A suitable genetic

representation for the given problem is always a critical part of genetic algorithms.

2.4.2 Fitness evaluation

A nonnegative value, generally known as a fitness value, is used to reflect the

degree of “goodness” of a chromosome for the corresponding genotype, which would be

highly related with its objective value. Fitness evaluation gives the performance of a

 13

given chromosome for a specific objective in the phenotype. This is a very important link

between GA and the system it represents.

2.4.3 Genetic selection

After a fitness evaluation, a better chromosome has a higher tendency to survive

and reproduce good quality offspring. In a practical GA application, a population pool of

chromosomes has to be built. These chromosomes can be randomly set initially. The size

of the population varies based on the problem of interest. In each cycle of an evolving

process, a given number of parents are selected by a selection routine to generate a

mating pool for genetic reproduction.

crossover

offspring2

offspring1

parent2

parent1

0000101001 101

1010011001 011

0000101001 011

1010011001 101

Figure 2.1 Illustration of crossover operation

 parent

offspring

1010001001 101

mutation

1010011001 101

Figure 2.2 Illustration of mutation operation

 14

2.4.4 Genetic operations

In mating pool, the genes of selected parents are mixed and recombined for the

production of offspring for a given proportion of the next generation, which is called

crossover (Figure 2.1). Mutation is occasionally applied (Figure 2.2), to introduce some

new genes into the whole population. It is expected that from this process of evolution

(manipulation of genes), the “better” chromosomes will create a larger number of

offspring, having a higher chance of surviving in the next generation, and emulating the

“survival-of-the-fittest” mechanism in nature.

2.4.5 Stopping criteria

The cycle of evolution is repeated until some desired termination criteria are

reached. These criteria can be set by the number of evolution cycles (computational

runs), the amount of variation of individuals between different generations, or a

predefined value of fitness.

2.5 Difference between GA and Traditional Algorithms

Using GA to solve optimization problems is by far the most active area in

evolutionary computation. Compare to those traditional algorithms, the benefits of

applying GA in this field are mainly credited to “no assumption” and “parallel

searching.”

To be applicable, traditional algorithms for discovering the solutions for

optimization problems require users to make many assumptions about how to evaluate

 15

the fitness of a solution. For example, linear programming algorithms demand the cost

functions to be linear, i.e., a sum of weighted individual cost terms. Another popular

approach, the gradient-based search, by which we try to find the point of zero gradients,

requires a smooth, differentiable cost function. In addition, it is unable to deal with a cost

function having discontinuities. However, GA requires no such assumptions. In GA, the

fitness of each individual solution in a population is evaluated and scored; it means one

solution must be determined to be better than another in some way. This makes a broad

range of problems that are outside the scope of traditional algorithms feasible to genetic

algorithms.

Another attractive feature of GA is that it is population based. This makes GA to

equip with the ability of parallel searching. In each generation, all the individuals of the

population are trying to search in all the directions within the searching space, this allows

GA to avoid entrapment in a local optimum and outperform the traditional pure hill-

climbing algorithms.

2.6 GA Design and Open Problems

GA has the unique ability to search for and optimize a solution for a complex

system. However, due to its evolutionary characteristics, a standard GA may not be

flexible enough for practical applications which tend to be complicated, multi-tasking

problems with various subgoals. Therefore, a means of modifying the GA structure needs

to be made to meet the design criteria.

 16

2.6.1 Chromosome representation

The coding of the chromosome representation may vary according to the nature of

the problem. In general, bit string encoding is the most classic method used by GA

because of its simplicity and traceability.

Recently, a direct manipulation of real-value chromosomes raised considerable

interest. This representation was introduced especially to deal with problems with real

parameters. In [33], the result indicated that floating point representation would be faster

in computation and more consistent from the basis of run-to-run. At the same time, its

performance can be enhanced to achieve a higher accuracy. However, the opinion given

by [15] suggested that a real-value coded GA would not necessarily yield better result in

some situations. By far, there is not sufficient consensus to support the superiority of

either.

2.6.2 Objective and fitness function

An objective function is an assessment mechanism used to evaluate the goodness

of a chromosome. Since each individual has a distinguished behavior, the evaluated

values vary from one range to another. To maintain uniformity, the objective value, O, is

mapped into a fitness value [25], shown in Equation (2.1), with a map Ψ where the

domain of F is usually greater than zero.

FO →Ψ : (2.1)

 17

Linear scaling

 The fitness value of chromosome i, , has a linear relationship with the objective

value o as:

if

i

 (2.2) baof ii +=

where a and b are chosen to enforce the equality of the objective value and the average

fitness value and cause the maximum scaled fitness to be a specified multiple of the

average fitness. This method can reduce the effect of genetic drift to produce a very good

chromosome. However, it may introduce a negative fitness value that must be avoided in

the GA operation [32]. Thus, the choice of a and b depends upon the knowledge of the

range of the objective values.

Sigma truncation

 This method avoids the negative fitness value and incorporates the problem

dependent information into the scaling mechanism. The fitness value of chromosome

i is calculated according to:

if

)(σcoof ii −−= (2.3)

where c is a small integer, o denotes the mean of the objective values, andσ is the

standard deviation in the population. To prevent negative values of f, any negative result

(i.e.,) is set to zero. The chromosomes whose fitness values are less than c will

not be selected.

0<f σ

 18

Power law scaling

 The actual fitness values is taken as a specific power of the objective value, : io

k
ii of = (2.4)

where k is problem dependent or even varies during the evolution process [34].

2.6.3 Selection methods

To generate good offspring, an effective parent selection mechanism is essential.

The chance of selecting one chromosome to be a parent should be directly proportional to

the number of offspring produced. Baker [35] presented three measures of performance

for the selection algorithms: Bias, Spread and Efficiency.

Bias defines the absolute difference between individuals in actual and expected

probability of selection. Optimal zero bias is achieved when an individual’s probability

equals its expected number of trials.

Spread is a range of the possible number of trials that an individual may achieve.

If is the actual number of trials due to each individual i, then the “minimum spread”

is the smallest spread that theoretically permits zero bias, i.e.

)(ig

])(),([)(ietietig ∈ (2.5)

 19

where is the expected number of trials of individual i, and underlined and overlined

denote floor and ceiling operators, respectively. Thus, the spread of a selection method

measures its consistency.

)(iet

Efficiency is related to the overall time complexity of the algorithms.

Table 2.4 Rule of Roulette Wheel parent selection

1. Sum the fitness of all the population members; named as total fitness (Fsum);

2. Generate a random number (n) between 0 and total fitness Fsum;

3. Return the first individual whose fitness, added to the fitness of the preceding

individual, is greater than or equal to n

By far, many selection techniques employ Roulette Wheel Mechanism as listed in

Table 2.4 and shown in Figure 2.3. SSR (Stochastic Sampling with Replacement), SSPR

(Stochastic Sampling with Partial Replacement) and SUS (Stochastic Universal

Sampling) are three popular roulette wheel selection methods [25].

Random number

Chromosome

Chromosome

Chromosome

Chromoso
me

Figure 2.3 Illustration of random Roulette Wheel parent selection indicator

 20

2.6.4 Genetic operation

Schema theory and building block hypothesis

 Consider a simple three-dimensional space as shown in Figure 2.4, and assume

that the searching space of the solution of a problem can be encoded with three bits; this

can be represented as a simple cube with string “000” at the origin. The corners in this

cube are numbered by bit strings and all adjacent corners are labeled by bit strings that

differ by exactly 1 bit. If “*” represents a “don’t care” or “wild card” match symbol, then

the front plane of the cube can be represented by the special string “0**”. Strings that

contain “*” are referred to as schemata and each schema corresponds to a hyperplane in

the searching space. A schema represents all strings which match it on all position other

than “*”. It is clear that each schema matches exactly 2 strings, where r is the number

of don’t care symbols, ‘*’, in the schema template. Every binary encoding is a

“chromosome” which corresponds to a corner in the hypercube and is a member of the

-1 different hyperplanes, where L is the length of the binary encoding.

r

L2

010

100
101

111

110

011

001000

010

100
101

111

110

011

001000

Figure 2.4 Three-dimensional cube to explain schemata

 21

How can genetic algorithm be formulated to search for good schema?

Michalewicz indicated, “A genetic algorithm seeks for near-optimal performance through

the juxtaposition of short, low-order, high performance schemata, called the building

block [31].”

Crossover and mutation

 The genetic operations, which are generally referred to as crossover and mutation,

have the ability to generate, promote and juxtapose (side by side) building blocks to form

the optimal strings. Crossover tends to conserve the genetic information present in the

parent strings. Thus, when these strings are similar, their capacity to generate new

building blocks decreases. Mutation is not a conservative operator but is capable of

generating new building blocks rapidly.

Although one-point crossover method was inspired by biological processes, it has

one major drawback in that certain combinations of schema cannot be combined in some

situations [25].

 For example, assume that there are two high-performance schemata:

 S = 1 0 1 * * * * 1 1

 = * * * * 1 1 * *. 2S

There are two chromosomes and in the population matched by and : 1I 2I 1S 2S

 = 1 0 1 1 0 0 0 1 1I

 = 0 1 1 0 1 1 0 0. 2I

 22

If only one point crossover is performed, it is impossible to obtain the chromosome that

can be matched by the following schema () as the first schema will be destroyed, 3S

 = 1 0 1 * 1 1 * 1. 3S

A multi-point crossover can be introduced to overcome this problem. As a result, the

performance of generated offspring is greatly improved. Another approach is the uniform

crossover. This generates offspring from the parents, based on a randomly generated

crossover mask. The operation is demonstrated in Figure 2.5. The resulting offspring

contains a mixture of genes from each parent. The number of effective crossing points is

not fixed, but will be averaged to L/2 (where L is the chromosome length).

mask

Uniform

offspring

parent

1 0 1 0 0 1 1 1 1 0 1 0 0

Figure 2.5 Example of uniform crossover

The preference of using which crossover techniques is still a debatable issue.

DeJong [36] concluded that a two-point crossover seemed to be an optimal number for

multi-point crossover. However, no analytical justification is given. Since the uniform

crossover exchanges bits rather than segments, it can combine features regardless of their

 23

relative location. This ability may outweigh the disadvantage of destroying building

block solutions and make uniform crossover superior for some problems [37]. Therefore,

the crossover technique used to improve offspring production is very much problem

dependent. The basic concept in crossover is to exchange gene information between

chromosomes. An effective crossover design would greatly increase the convergence rate

of the evolutionary process.

Originally, mutation was designed only for the binary represented chromosomes.

To adopt the concept of introducing variants into the chromosome, a random mutation

[38] for the real number chromosome algorithm was proposed:

()σµψ ,+= gg (2.6)

where g is the real value gene, ψ is a random function (Gaussian or normally

distributed), and denote the mean and variance related with the random function,

respectively.

,µ σ

Operational rates setting

Another controversial debate for both analytical and empirical investigations is

the choice of an optimal probability operation rate for crossover and mutation [31-33].

The increase of crossover probability would promote the recombination of building block

and at the same time, it may disrupt the evolutionary process of good chromosomes. On

the other hand, increasing the mutation probability would transform the genetic search

into a random search, but would reintroduce the lost genetic material.

 24

III. MULTIOBJECTIVE OPTIMIZATION

3.1 Introduction

In engineering practices, it is often a challenge to formulate a design when there

are several criteria or design objectives to be met simultaneously. If the objectives are

conflicting, then the problem becomes one of finding the best possible design that

satisfies the conflicting objectives under different trade-off scenarios. With these multiple

objectives and constraints taken into consideration, an optimum design problem can then

be formulated. This type of problem is known as a multiobjective, multicriteria, or vector

optimization problem.

Leibniz (1646-1716) and Euler (1707-1783) used infinitesimal calculus to find the

extreme values of functions. This made it possible for researchers to study various new

fields of mechanics. J. Bernoulli (1655-1705), D. Bernoulli (1700-1782), and Sir Isaac

Newton (1643-1727) used these methods to lead them into their findings; Newton in

minimizing the resistance of a revolving body while the Bernoulli's in solving

isoperimetric problems. Lagrange (1736-1813) and Hamilton (1805-1865) developed

several theorems that serve as the basis for the solution of all optimum design problems.

Later, function approximations were developed by Rayleigh (1842-1919), Ritz (1878-

1909), Galerkin (1871-1945) and others to solve complicated time-consuming functions,

because they could be approximated relatively accurately.

 25

A French-Italian economist named Pareto (1848-1923) first developed the

principle of multiobjective optimization for use in economics. His theories became

collectively known as Pareto's optimality concept.

3.1.1 Problem solution

SO solution

A Multiple-Objective (MO) optimum design problem is solved similarly to the

Single-Objective (SO) problem. In a SO problem, the idea is to find a set of values for the

design variables that, when subject to a number of constraints, yields an optimum value

for the sole objective (or cost) function.

MOP ideal solution

In MOPs, the designer tries to find the values for the design variables, which

optimize multiple objective functions simultaneously, in this manner the solution is

chosen from a so-called Pareto optimal set. In general, for multiobjective problems the

optimal solutions obtained by individual optimization of the objectives (i.e., SO

optimization) is not a feasible solution to the multiobjective problem.

3.2 Definition

3.2.1 Design variables

The first step in the optimization process is the formulation of the problem. A

mathematical model needs to be developed which will closely describe the behavior of

the physical system in all possible situations.

 26

A general multiobjective optimization problem can be described as a vector

function f that maps a set of m parameters (decision variables) to a set of n objectives

min/max (3.1)))(,),(),(()(21 xxxxfy nfff K==

subject to Xxxx m ∈=),,,(21 Kx

 y , Yyyy n ∈=),,,(21 K

where is called decision vector which includes m decision variables, is the

parameter space,

x X

y is the objective vector which includes n objectives, and Y is the

objective space.

3.2.2 Constraints

The next step in the formulation of the problem is to identify the constraints.

Constraints are conditions that must be satisfied, in order for the design to function

according to the physical problems. Constraints are expressed as inequalities and/or

equalities.

Inequality constraints

Inequalities are usually specified by g (where 0)(≤x g is a vector representing

the constraints ,). The standard form of an inequality constraint is shown

below

jg Jj ,...,1=

0)(≤xjg , . (3.2) Jj ,...,1=

 27

Equality Constraints

Equality constraints are shown as . In a scalar form they are written as 0)(=xh

0)(=xkh , k . (3.3) K,...,1=

3.2.3 Objective functions

The final step in the problem statement is to define the objective functions. These

are the quantities that the designer wishes to optimize. These functions are expressed as

))(,),(),(()(21 xxxxf nfff K= . (3.4)

 Sometimes the functions may be defined so that they are all maximized.

))(min()(max xx ii ff −−= . (3.5)

3.2.4 Standard form

The problem, when written in what is termed the standard form, will appear as

follows

}0)(,0)(:)({min ≤=
ℜ∈

xxx
x

ghf
n

. (3.6)

The above notation can be interpreted as follows: to find the real values of the design

variables (i.e., that belong to ℜ), which will result in the smallest values of the

objective functions subject to both equality and inequality constraints.

n

 28

3.3 Pareto Optimal and Traditional Decision Making Methods

3.3.1 Introduction

In a multiobjective optimization problem, we wish to find a set of values for the

decision variables that optimizes a set of objective functions. The set of decision

variables that produces the optimal result is designated to be the optimal set and is

denoted by
*

x . The optimal set is referred to as the Pareto optimal set, and it yields a set

of possible answers from which we may choose the desired values of the design

variables.

3.3.2 Definition of a Pareto optimum

Figure 3.1 Graphical definition of the Pareto optimality

As shown in Figure 3.1, a set of points is said to be Pareto optimal if, moving

from one point (e.g., point A) to another point (e.g., point B) in the set, any improvement

in one of the objective functions from its current value would cause at least one of the

 29

other objective functions to deteriorate from its current value. Note that, based on this

definition, point C is not Pareto optimal.

A more formal definition of Pareto optimality is given as follows [2]. Consider,

without loss of generality, the minimization of the n components of a

vector function f of a vector variable x in a universe , where

,,,1, nkf k K=

µ

))(,),(),(()(21 xxxxf nfff K= . (3.7)

Then a decision vector is said to be Pareto-optimal if and only if there is no

 for which dominates , that is, there

is no x such that

µµ ∈x

()(v v=xµ∈vx

v

),,1 nvK= fv),,()(1 nu uu K== xfu

µ∈

ii uvni ≤∈∀ },,,1{ K . (3.8) and ii uvni <∈∃ |},,1{ K

The set of all Pareto-optimal decision vectors is called the Pareto-optimal set of the

problem. The corresponding set of objective vectors is called the non-dominated set, or

Pareto front. Apparently, the Pareto front dominates all other possible solutions and in

most cases, it is located on the boundary of the objective vector space (i.e., feasible

solution space) as shown in Figure 1.1 for a two-objective optimization problem.

3.3.3 Popular decision making methods

 Several methods have been recognized as popular decision-making methods for

solving multiobjective optimization problem. Among all of these methods, weighting

 30

objective method, goal programming method and Min-Max optimum method are the

most representative ones.

3.3.4 Weighting objectives method

This method [3] takes each objective function and multiplies it by a fraction of

one, the "weighting coefficient", which is represented by . The modified functions are

then added together to obtain a single cost function, which can be easily solved using any

SO method. Mathematically, the new function is written as

iw

∑
=

=
k

i
ii fwf

1
)()(xx (3.9)

where , and . 10 ≤≤ iw ∑
=

=
k

i
iw

1
1

If the problem is convex, then a complete set of non-inferior or Pareto solutions

can be iteratively found. However, if the problem is not convex, then there is no

guarantee that this method will yield the entire Pareto set.

In this method, the weighting coefficients are determined beforehand. The

coefficients are then varied to yield a set of feasible optima, the Pareto Optimal set. The

designer is expected to pick the values of the variables from this set of solutions.

3.3.5 Goal programming method

This is perhaps the most well known method of solving MOPs [9]. This method

was originally developed by Charnes and Cooper [3] and Ijiri [8]. In this method, the

 31

designer must construct a set of goals (which may or may not be realistic) that should be

obtained (if possible) for the objective functions. The user then assigns weighting factors

to rank the goals in order of importance. Finally a single objective function is written as

the minimization of the deviations from these goals.

A "goal constraint" is slightly different than a "real constraint" in goal

programming problems. A "goal constraint" is a constraint that needs to be satisfied for

the given MOP, but a slight deviation above or below this constraint is acceptable.

3.3.6 Min-max optimum

If one solves for the optimization of each of the objective functions individually,

the min-max optimum is the set of points, which will give the smallest values of the

relative deviations from the individual objective function [10]. This optimum assumes

that each of the objective functions is equally important.

Before the min-max optimum can be defined mathematically, a number of

functions must be defined first.

||
|)(|

)(
0

0

i

ii
i f

ff
z

x
x

−
= (3.10a)

|)(|
|)(|

)(
*

0
*

x
x

x
i

ii
i f

ff
z

−
= (3.10b)

)}(),(max{)(* xx iii zzxZ = (3.10c)

 32

In the above equations, and . A point is a

min-max optimum if for every x in the feasible region the following series of steps is

satisfied.

)(min0 xii ff =))(min(max* xii ff =

Step 1:

)}({maxmin)(*
1 xzxv iiXx∈

= (3.11)

where denotes the decision space. We also define as the index for the value of

 which is maximized. If there is another set of solutions X that meets the

requirements for the first step, proceed to the second step.

X 1I

)(xzi X⊂1

Step 2:

)}({maxmin)(
11

*
1 xzxv iIiXx ∉∈

= (3.12)

Now, , where is the index at which the value of the z vector is

maximized in step 2. The procedure continues on in an iterative manner until there is not

a set of solutions which are feasible that satisfy the conditions established in the previous

(the second to last) step.

{ 211 , III = } 2I

Although these conventional algorithms have some differences in their design

procedures, they all are based in a similar spirit that converts a multiobjective

optimization problem into a single objective optimization problem. These conversions are

always directed by the preferences of the decision-maker. However, from the definition

of the Pareto optimality [2], “an MOP tends to be characterized by a family of trade-off

solutions, which must be considered equivalent in the absence of the information of the

 33

relevance of each objective relative to the others” [2]. Therefore, with this spirit in mind,

Multiobjective Evolutionary Algorithms (MOEAs) have drawn more and more attentions

from the researchers in this field.

 34

IV. EVOLUTIONARY ALGORITHMS IN

 MULTIOBJECTIVE OPTIMIZATION

4.1 Introduction

In Chapter III, several traditional multiobjective optimization methods are

introduced. All these methods try to either combine the multiple objectives in an ad hoc

manner so that a scalar objective function is formed, or turn the objectives into

constraints. The goal is to turn multiobjective problems into single-objective problems.

Meanwhile, gradient-based or simplex-based optimization techniques are usually applied

as a searching tool for the optimal solution, which may result in a local optimum solution

for complicated optimization problems.

However, in many real-world multiobjective optimization problems, a suitable

solution for the overall problem can hardly be found via the methods outlined in Chapter

III since the objectives are different, sometimes even conflicting. Generally speaking, the

simultaneous optimization of multiple, possibly competing, and conflicting objective

functions are more attractive in that it seldom admits single, perfect solution. Instead,

multiobjective optimization problems tend to be characterized by a family of alternatives

that must be considered equivalent in the absence of information concerning the

importance of each objective relative to others. A suitable solution to problems involving

conflicting objectives should offer “acceptable” performance in all objective dimensions,

although this solution is possibly sub-optimal for some objectives alone.

 35

In their early development, Evolutionary Algorithms (EAs), a class of population-

based optimization approaches, have been recognized to be well suited for multiobjective

optimization. In EAs, multiple individuals search for multiple solutions in parallel,

advantageously producing a family of feasible solutions to the problem. The ability to

handle complex problems involving features such as discontinuities, multimodality and

disjoint objective vector spaces, reinforces the potential effectiveness of EAs in

multiobjective search and optimization, which is perhaps the problem area where EAs

most distinguish themselves from the other algorithms [2].

Since the 1980’s, several Multiobjective Evolutionary Algorithms (MOEAs) have

been proposed and applied in Multiobjective Optimization Problems (MOPs) [13]. These

algorithms share the same purpose—approximate a uniformly distributed, near-optimal

and near-complete Pareto front for a given MOP. However, this purpose is very difficult

to be achieved because the true Pareto front is a high-dimensional solution set, which is

much more complicated than many single objective optimization problems combined

together. Generally, the approximation of the Pareto-optimal set involves two conflicting

objectives: the distance to the true Pareto front is to be minimized while the diversity of

the evolved solutions is to be maximized [12]. For the first objective, a Pareto-based

fitness assignment (ranking scheme) is usually designed in some state-of-the-art MOEAs

[13] in order to guide the search towards the ideal Pareto optimal front. For the second

objective, some successful MOEAs provide a density estimation method to preserve the

population diversity. In addition, several other techniques have also been adopted such

as: elitism scheme [12,14], crowded comparison [14], archive truncation [12] and etc.

 36

Although all of these techniques are very important for MOEAs, the fitness assignment

scheme, population density preservation method and elitism archive are considered the

most crucial approaches, which have been applied in all the most successful MOEAs.

4.2 Fitness Assignment

In all the current studies of multiobjective evolutionary algorithms, assigning the

fitness function is the critical part. Several MOEAs are categorized and different fitness

assignment strategies are introduced. In particular, they are distinguished as plain

aggregating approaches, population-based non-Pareto approaches, and Pareto-based

approaches.

4.2.1 Aggregating methods

Similar to the linear weighting method introduced in the previous chapter,

aggregating methods combine the objectives into a single scalar function that is used for

fitness calculation. Linear weighting is still used when applying an EA and these

aggregation approaches have the advantage of producing one single solution. However,

three disadvantages exist in this kind of methods.

• If the objective functions are not commensurable with each other, the

weighted combined objective function may cause difficulty to a user in

choosing an appropriate set of weighting factors to derive a reasonable

solution to the problem.

• Different objective functions may have different ranges of values, thus

producing unequal importance to all objective functions. To avoid this issue,

 37

we can normalize the objective functions before solving the optimization

equations. However, this approach requires prior knowledge of the lower and

upper bounds of each objective function. Unfortunately, this kind of domain

knowledge is often not available.

• As mentioned in Chapter II, simple weighting techniques will not be able to

respond to problems having non-convex feasible decision space.

The weighted sum approach, target vector optimization, and the method of goal

attainment [39] are the most popular aggregation approaches.

4.2.2 Population-based non-Pareto approaches

These approaches are able to evolve multiple non-dominated solutions

concurrently in a single simulation run. Known as the Vector Evaluated Genetic

Algorithm (VEGA) (Figure 4.1), the method proposed by Schaffer [40] evolves the

whole population to several sub-populations in the next generation according to each of

the objectives, separately. Crossover and mutation are applied as usual after shuffling all

the subpopulations together. Non-dominated individuals are identified by monitoring the

population as it evolves. Shuffling and merging all subpopulations correspond to

averaging the normalized fitness components associated with each of the objectives. The

overall fitness corresponds to a linear function of the objectives where the weights

depend on the distribution of the population at each generation. Therefore, different non-

dominated individuals are generally assigned different fitness values, in contrast to what

the definition of nondominance would suggest.

 38

Fourman [41] proposed a method where selection is performed by comparing

pairs of individuals with respect to one of the objectives. In this method, objectives are

assigned different priorities by the user and individuals are compared according to the

objective with the highest priority. If this results in a tie, the objective with the second

highest priority is used, and so on. This is known as the lexicographic ordering, which is

a type of goal programming method that was briefly introduced in Chapter III.

Selection Crossover
&mutation

(i+1)-th generation ith generation

 Sub-pop
 p

Sub-pop
1

population population

Figure 4.1 Outline of generation replacement of VEGA

VEGA is a pioneering work of multiobjective optimization by GA. However, this

approach has difficulties in that it tends to generate the solutions that one of the

objectives has extremely good performance at the cost of the others. Furthermore, VEGA

can be shown to perform an implicitly weighted sum of the objectives [2]. This leads to

the same difficulty found in aggregation genetic algorithms to search for a Pareto front

when the problem involves a concave trade-off surface [2].

 39

4.2.3 Population-based Pareto approaches

All the methods mentioned above attempt to promote the generation of multiple

non-dominated solutions. However, none of them makes direct use of the actual

definition of Pareto optimality. At most, the population is monitored for non-dominated

solutions, as discussed in [40].

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

f2

f1

1

2

1

2

1

3

2

2

3 4

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

f2

f1

1

2

1

2

1

3

2

2

3 4

Figure 4.2 Illustration of Goldberg’s Pareto-based ranking scheme

Pareto-based fitness assignment was first proposed by Goldberg [25], as a means

of assigning equal probability of reproduction to all non-dominated individuals in the

population. The method consisted of Pareto-based fitness ranking which assigns rank 1 to

the non-dominated individuals and removing them from contention, then finding a new

set of non-dominated individuals, ranked 2, and so on (Figure 4.2). This ranking

approach was adopted by several MOEAs, including Niched Pareto Genetic Algotithm

(NPGA) [42] and Non-dominated Sorting Genetic Algorithm I [43] and II [14] (NSGA I,

II).

 40

In the Multiobjective Genetic Algorithm (MOGA) proposed in [44], Fonseca

further improved the ranking method by including the density information into the rank

value—an individual’s rank corresponds to how many individuals in the current

population that dominate it. For example, consider an individual at generation ,

which is dominated by individuals in the current generation. Its rank value is given

by [13],

y t

)(tp

)(1),(tptyrank += . (4.1)

All the non-dominated individuals are assigned rank value 1, while dominated ones are

penalized according to the population density of the corresponding region of the trade-off

surface. Therefore, by this ranking method, an individual’s rank value not only

possesses its Pareto dominance status, but also incorporates its density information. This

type of ranking scheme will be helpful in preserving the population diversity during the

evolutionary process. Figure 4.3 shows the rank values resulted form this ranking method

for the same population distribution as shown in Figure 4.2.

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

f2

f1

1

3

1

2

1

5

2

2

3 4

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

f2

f1

1

3

1

2

1

5

2

2

3 4

Figure 4.3 Illustration of Fonseca’s Pareto-based ranking scheme

 41

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

f2

f1

0

5

0

3

0

7

4

4

8 9
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

f2

f1

0

5

0

3

0

7

4

4

8 9

Figure 4.4 Illustration of the Pareto-based ranking scheme adopted by SPEA II

Another well-known MOEA is Strength Pareto Evolutionary Algorithm I [13] and

II [12] (SPEA I, II), which devised a “strength” value instead of using the rank value. In

SPEA II, a modified fitness assignment strategy based on strength values are proposed in

order to overcome some difficulties the existing ranking approach has encountered. In

detail, each individual in the population is assigned a strength value ,

representing the number of solutions it dominates:

i P)(iS

|}|{|)(jiPjjiS f∧∈= , (4.2)

where | denotes the cardinality of a set and the symbol corresponds to the Pareto

dominance relation. On the basis of the value, the raw fitness of an individual i is

calculated:

| ⋅ f

S)(iR

 . (4.3) ∑
∈

=
jiPj

jSiR
f,

)()(

From Equation (4.3), the raw fitness is determined by the strengths of its

dominators in both archive and main population. In addition, similar to Fonseca’s

)(iR

 42

MOGA, the raw fitness values (rank values) produced by this algorithm also include

some density information. The rank values resulted by this scheme is shown in Figure

4.4.

Therefore, according to how much preference information is incorporated into the

fitness function, the approaches range from complete preference information given, as in

combining objective functions directly or prioritizing them, to no preference information

given, as in Pareto-based ranking. Which approach is best is determined by the problem

to be solved. Although by now, non-informative Pareto-based ranking methods are at the

dominant position in this research field, in some cases, partial preference information is

also studied to restrict the searching to only one part of Pareto set. Although a specified

ranking scheme can maintain the population diversity to some extent based on the

concept of Pareto dominance, it may fail when most individuals do not dominate each

other. For this reason, ranking scheme still cannot replace a real density preservation

strategy. In most state-of-the-art MOEAs, a fitness sharing or density estimation method

is always applied and the population density value is optimized as well.

4.3 Maintenance of Diversity

 In solving multiobjective optimization problems, it is required that the solutions

are Pareto-optimal, and at the same time they are uniformly sampled from the Pareto-

optimal set. The Pareto-based approaches mentioned above achieve the first requirement.

However, the approaches by themselves cannot meet the second criterion. In most

evolutionary algorithms, it is known that the genetic diversity of the population is lost

 43

due to their stochastic selection processes. This phenomenon is called “genetic drift”

[45,46], by which genetic algorithms can exploit the “good” individuals and explore

better ones by genetic operation. Although “genetic drift” effect has its advantages in

single objective optimization, in MOEAs, loss of diversity due to the “genetic drift”

needs to be restrained as shown in Figure 4.5.

���
��

���
��

���
��
��

��
���

��
��

���
��

���
��

���
��
��

f2

f1

���
��

���
��

���
��
��

��
���

��
��

���
��

���
��

���
��
��

f2

f1

������
f2

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

f1

f2

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

f1

��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

f1

���
���
���
���

������������

������������
���
���
���
���
���
���
���
���

 (a) Population diversity is preserved (b) Population diversity is not preserved

Figure 4.5 Illustration of the effect of population diversity preservation

4.3.1 Niched fitness sharing technique

To maintain the diversity, a technique, so called “fitness sharing”, is widely used

[25]. In the fitness sharing method, the fitness value of each individual is reduced if there

exists other individuals in its neighborhood. Therefore an individual located in a more

crowded area leaves less offspring [42]. Thus, we can obtain a population distributed

more uniformly over the Pareto-optimal set. Niche induction [42] technique is one of the

representative fitness sharing methods that is adopted by Niched Pareto Genetic

Algorithm (NPGA). In NPGA, a niche radius is chosen and individuals within the

distance defined by the niche radius degrade each other’s fitness, since they are in the

same niche (shown in Figure 4.6). Thus the convergence occurs within a niche, but the

 44

convergence of the whole population is avoided. Based on this fitness sharing technique,

the more individuals a niche contains, the more its members’ fitness values degrade.

A niche

���
���
���
���
���
���
���
���

f2
Feasible Range

Pareto set

A C
B

f1

A niche

���
���
���
���
���
���
���
���

f2
Feasible Range

Pareto set

A C
B

f1

Figure 4.6 Illustration of niched fitness sharing technique

Since NPGA only applies Pareto selection to a portion of the entire population in

each generation, it is relatively fast compared to the other Pareto-based approaches. In

addition, it can produce good non-dominated solutions that can be kept for a large

number of generations. Currently, many MOEAs implement niched fitness sharing

strategies (e.g., [46-49]). The limitation of NPGA is that it requires heuristic choices of

the sharing factor and the size of the tournament, which makes the process relatively

complex in practice. Moreover, as the sharing technique degrades the fitness value,

“harmful” individuals may be generated that may slow down the speed of the entire

population to evolve in a correct direction to the Pareto front [50].

4.3.2 Density estimation technique

Some newly developed MOEAs apply a “density estimation” technique in order

to provide a density value to each individual. The density value represents the crowdness

of the area the interested individual located in. Crowding distance assignment and k-th

 45

nearest neighbor methods belong to this category and have been used in NSGA-II and

SPEA II, respectively.

In NSGA-II, to obtain an estimate of the density of individuals surrounding a

particular point in the population, the average distance of two neighboring points on

either side of the concerned individual along each dimension is taken. This quantity i

serves as an estimate of the size of the largest cuboid enclosing the individual without

including any other point in the population, which is called crowding distance. As shown

in Figure 4.7, the crowding distance of the ith solution in its front (marked with dark

points) is the average side length of the cuboid.

dist

i

��
��
��
��
��
��
��
��
��

f2
Feasible Range

i

Cuboid
i+1

i-1

f1

��
��
��
��
��
��
��
��
��

f2
Feasible Range

i

Cuboid
i+1

i-1

��
��
��
��
��
��
��
��
��

f2
Feasible Range

i

Cuboid
i+1

i-1

f1

Figure 4.7 Illustration of crowding distance estimation approach

The density estimation technique used in SPEA II is an adapted k-th nearest

neighbor method, where the density at any individual is a decreasing function of the

distance to its k-th nearest neighbor (data point). The density estimate is taken as the

inverse of the distance to the k-th nearest neighbor, which is denoted as σ . In SPEA II, k

is set to be equal to the square root of a sample size , thus,

k
i

N Nk = , and the density

 corresponding to is defined by)(iD i

 46

2
1)(
+

=
k
i

iD
σ

, (4.4)

where two is added to ensure that value is greater than zero and less than 1/2.)(iD

4.4 Fitness Assignment Scheme of NSGA-II and SPEA II

As two of the most recent and successful MOEAs, both NSGA-II [14] and SPEA

II [12] clearly classified individual Pareto rank value and density value as two major

fitness. However, their fitness assignment schemes are totally different. In fitness

assignment, between two individuals, NSGA-II used a tournament scheme, by which

NSGA-II prefers the point with a lower rank value, or the point located in a region with

less numbers of points if both of the points belong to the same front. However, SPEA II

calculates the fitness value for each individual by simply adding density value to

the raw fitness . Considering the ranking and density estimation schemes of different

MOEAs, it is impossible to state that which ranking or density scheme is the best without

synergistically integrating them together by an appropriate fitness assignment. On the

other hand, according to the No Free Lunch (NFL) theorem [51], no formal assurances of

an algorithm’s general effectiveness exists if insufficient knowledge of the problem

domain is incorporated into the algorithm domain. A study of benchmark MOP itself to

exploit specific problem characteristics is also an important issue, which will be

discussed in Chapter VI.

)(iD

)(iR

 47

4.5 Other Significant Techniques Used in MOEAs

In order to improve the performance of an MOEA, several interesting techniques

are also designed by different researchers. Among them, elitism scheme, mating

restriction, and archive truncation are the most significant ones.

4.5.1 Elitism scheme

Originated from Evolutionary Strategy (ES), elitism scheme has been applied by

almost all of the advanced MOEAs [12-14] in that it can further improve the performance

of the resulting solutions. In detail, an archive with a fixed number of elitists will be set

up besides the main population and the non-dominated individuals generated by the main

population will be considered as a set of elitists and kept into the archive. Additionally, at

each generation, a certain number of elitists will be copied into the main population to

perform crossover. Therefore, by this two-way communication method, the elitist’s

archive will be updated generation by generation and the valuable schemas of an elitist

can also be inherited by their offspring. For this reason, elitism scheme has the potential

to help the entire population converge into a near-optimal Pareto front.

By now, Pareto Archive Evolutionary Strategy (PAES) is the one of the most

successful MOEAs whose performance mainly depends on elitism. As a local search

algorithm that simulates a random mutation hill-climbing strategy, PAES may represent

the simplest possible, yet effective, nontrivial algorithm capable of generating diverse

solutions in the Pareto optimal set [52]. In PAES, pure mutation operation is adopted to

fulfill local search scheme. A reference archive of previously found non-dominated

solutions is updated at each generation in order to identify the dominance ranking of all

 48

the resulting solutions. Although (1+1)-PAES is originated as the simplest version, PAES

can also generate mutants by mutating one of the current solutions, which is called

()-PAES [52]. Since PAES does not perform population-based search, only

tournament selection can be applied to determine the survivors of the next generation. It

is worthy to mention that although the archive size has to be pre-determined, PAES

implements a population incrementing scheme by continuously adding new non-

dominated individuals to the archive.

λ µ

λµ +

4.5.2 Mating restriction

The variability of mating is another important aspect as the population distributes

itself around multiple regions of optimality. Different regions of the trade-off surface

generally have very different genetic representations, which constrain mating to happen

only locally to ensure viability [53]. So far, mating restriction has only been implemented

based on the distance between individuals in the objective domain, either directly or

indirectly. The use of mating restriction in multiobjective GAs does not appear to be

widespread.

4.5.3 Archive truncation

In elitism scheme, an elitist’s archive needs to be updated by comparing new

introduced elitist with the existing ones in order to keep the archive size fixed. Therefore,

an archive truncation technique is designed in SPEA II [12]. By this technique, an elitist

that has minimum distance to another elitist is chosen at each stage as a member of the

 49

archive, if there are several elitists with the same minimum distance, the tie is broken by

considering the second smallest distances and so forth.

 50

V. RANK DENSITY BASED MULTIOBJECTIVE GENETIC

ALGORITHM

5.1 Introduction

From the literature review, the primary difficulty in the existing MOEAs lies on

designing a suitable fitness assignment strategy in order to search for a near-complete

and near-optimal approximated Pareto front for the given optimization problem.

Unfortunately, these two objectives are contradictory. In one respect, the “genetic drift”

character needs to be exploited to converge the solution to a nearly optimal point. On the

other hand, the “genetic drift” phenomenon must be avoided in order to sketch a

uniformly sampled trade-off surface for the final Pareto front. Based on these

considerations, two of the best-known MOEAS [12-14], (i.e. NSGA-II and SPEA II)

attempt to represent the fitness value of an individual by a Pareto rank value and a density

value, and then optimize these two sub-fitness values using a specified assignment

method. However, there remain several deficiencies in these algorithms. Especially, both

NSGA-II and SPEA II do not treat rank value and density value equally in their selection

process. In NSGA-II, Pareto rank value is considered more important than density value

and the parent selection is mainly based on the rank value, whereas density value is

merely treated as a reference in the tournament selection. SPEA II combines the rank and

density values into a single fitness value by using a linear weighting method. Although

the weights of rank and density are equal, there still exists a bias to rank value calculation

because the maximum density value cannot be higher than 0.5 according to SPEA II. For

this reason, the density value can hardly be minimized until the rank value has almost

 51

converged. Therefore, both algorithms prefer taking advantages of “genetic drift” effect

than controlling it, which may result into difficulties to find a uniformly distributed

Pareto front.

To respond to these deficiencies, a Rank-Density based Genetic Algorithm

(RDGA) [54], which synergistically integrates selected features of existing MOEAs in a

unique way, is proposed. Although RDGA also converts a high dimensional MOP into a

bi-objective optimization problem to minimize fitness rank values and cell densities, it

adopts several additional techniques in order to achieve a near-complete and near-

optimal Pareto front [55].

5.2 Critical Procedures of RDGA Design

There are five crucial procedures involved in RDGA design, which are discussed

as follows.

5.2.1 Automatic Accumulated Ranking Strategy (AARS)

In RDGA, we propose an Automatic Accumulated Ranking Strategy (AARS). In

AARS, an individual’s rank value is defined as the summation of the rank values of the

individuals that dominate it. For example, assuming at generation t , individual is

dominated by individuals , whose rank values are already known as

, rank , L . Its rank value can be computed by

y

)(tp

(y

)(,,, 21 tp
yyy L

),()(ty tp
),(1 tyrank),2 t , rank

∑
=

+=
)(

1
),(1),(

tp

j
j tyranktyrank . (5.1)

 52

By AARS, all the non-dominated individuals are still assigned rank value 1, while

dominated ones are penalized to reduce the population density and redundancy. For

instance, suppose we want to minimize two objectives, and , and MOEAs generate

eleven individuals, and their rank values based on four ranking techniques proposed by

NSGA-II [14], MOGA [44], SPEA II [12] and AARS [54] are illustrated in Figure 5.1,

where each dot represents a candidate phenotype solution. Considering all the individuals

located in the lower-right area, AARS provides the exact same rank values as those

computed by pure Pareto ranking method (adopted by NSGA-II [14]) since all the

individuals are clearly aligned and not crowded at all. Therefore, adding extra density

information (resulted by SPEA II) may not be necessary in this case. Meanwhile, AARS

does impose penalty to the dominated individuals located in the upper-left area. The

reason of penalizing all the dominated individuals in this area is because there exist

several non-dominated individuals that can mostly represent the dominated points.

Therefore, without increasing the population size, the population diversity will be

maintained by penalizing those dominated individuals in AARS.

1f f 2

f1

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

f2

1{1](0)[1]

2{5}(12)[5]

2{5}(12)[5]

3{7}(15)[15]

1{1}(0)[1]

2{2}(3)[2]

3{3}(5)[3]

4{4}(6)[4]

AARS
SPEA II

NSGA-II
MOGA

f1

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

f2

1{1](0)[1]

2{5}(12)[5]

2{5}(12)[5]

3{7}(15)[15]

1{1}(0)[1]

2{2}(3)[2]

3{3}(5)[3]

4{4}(6)[4]

AARS
SPEA II

NSGA-II
MOGA

Figure 5.1 Individual rank values resulting from MOGA/NSGA-II/ SPEA II/ RDGA ranking
methods

 53

5.2.2 Adaptive density estimation

According to [13], although AARS and other ranking schemes [52,56] provide a

sort of niching mechanism based on the concept of Pareto dominance, they may fail when

most individuals do not dominate each other. Therefore, additional density information is

incorporated to discriminate between individuals having identical raw fitness values. In

RDGA, to deal with this problem, we adopt a modified adaptive cell density evaluation

scheme originated from [52] as shown in Figure 5.2. The cell width in each objective

dimension can be formed as

i

iXiX
i K

ff
d

)(min)(max xx
xx ∈∈

−
= , , (5.2) ni ,...,1=

where is the width of the cell in the ith dimension, denotes the number of cells

designated for the ith dimension (i.e., in Figure 5.2, and), and is taken

from the whole decision space . As the maximum and minimum fitness values in

objective space will change with different generations, the cell size will vary from

generation to generation to maintain the accuracy of the density calculation. The density

value of an individual is defined as the number of the individuals located in the same cell.

Note that in PAES [52], the grid location of a solution in objective space is obtained by

repeatedly bisecting the range in each objective and finding in which half the solution is.

However, RDGA uses a different scheme to locate which cell an individual belongs to.

First, the cells are created by dividing the range of current objective space based on

and given initial population. Second, the center position of each cell will be obtained and

stored as a matrix. Third, each individual of initial population will search for its nearest

id iK

6=1K 42 =K x

X

iK

 54

cell center and identify this cell as its “home address” and consider the other individuals

who share the same “home address” as its “family members.” Then for each of these

“homes,” the number of “family members” who dwell in it will be counted and saved as

its density value. Fourth, when an offspring is generated and accepted, its “home address”

can be easily located by following the third step and the density value of its home will

increase by one. Meanwhile, if an old individual is removed, its “home” will be notified

and the density value of its “home” will decrease by one. Therefore, at each generation,

an individual can access its “home address” and then obtain the corresponding density

value. The “home address” is merely a “pointer” to inform an individual where to find its

density value. For instance, as shown in Figure 5.2, the “home address” and density value

of individual A are (4,3) and 4, respectively. Therefore, if a new generated or a removed

individual does not change the boundary of the range of current objective space, only the

density value of its ”home” will changes, the density values of the other “homes” (cells)

will not be affected. This setting can avoid the unnecessary recalculation of unchanged

Figure 5.2 Illustration of density map

range of objective space and density values.

 and density grid applied by RDGA

f1

f2

1 2 3 4 5 6

4

3

2

1

A

f1

f2

1 2 3 4 5 6

4

3

2

1

A

 55

5.2.3 Rank and density based fitness assignment

t fitness and population diversity,

respect

First, instead of minimizing the density value of an individual, we minimize the

density

individual will

Second, after the rank and density values of each individual have been extracted,

a modi

Because rank and density values represen

ively, we assigned them as two important attributes to each individual. Therefore,

any multiobjective optimization problem can be converted into a bi-objective

optimization problem. On the other hand, since we need to minimize rank value together

with density value, some further modifications need to be made to the original notation.

 value of the entire population. Based upon the definition of the cell density, an

individual located in a crowded cell must have a relatively higher density value, which

contributes much more to the population density value than an individual in the sparse

area does. For example, a cell containing ten individuals will contribute 1001010 =× to

the population density value, whereas a cell containing only one

contribute only 1 to the population density value.

fied VEGA is applied to fulfill fitness assignment. As discussed in Chapter IV,

VEGA possesses two deficiencies: 1) it does not have a scheme to maintain the diversity

of the evolved Pareto front, and 2) it has difficulty in dealing with the problems with

concave trade-off surfaces. As mentioned above, the goal of RDGA is to find the non-

dominated individuals with the rank value equal to 1 and at the same time reduce the

population density value to obtain a uniformly distributed trade-off surface. In this

setting, there is no concern about keeping the population diversity in the rank-density

 56

(algorithm) domain. Furthermore, whether the “Pareto front” in the rank-density domain

is concave or not is not an issue since it is not a real Pareto front for the MO problem

under consideration. Therefore, a simple VEGA is effective enough to fulfill fitness

assignment after the original optimization problem has been transformed into the rank-

density domain. It is worthy of noting that the idea of converting multiobjective into a

domination measure function and neighboring density function was also adopted by

Borges and Barbosa [57]. However, in their paper, two newly formulated objective

functions were chosen from Goldberg’s ranking scheme [25] and Horn’s niche sharing

method [42]. Afterwards, they combined two objective functions into one non-linear

fitness function, which is the final fitness function. Because rank and density values have

totally different characteristics, it is very difficult for this algorithm to designate a

suitable coefficient in ad hoc to bias the preference during the evolutionary process.

Figure 5.3 Illustration of the “diffusion” scheme

Best individual

Selected parent

Best individual

Selected parent

5.2.4 rossover and mutation operations

nd replacement schemes are borrowed from

Cellula

C

For crossover, the parent selection a

r GA [53] to explore the new search area by “diffusion” (see Figure 5.3). For each

subpopulation, a fixed number of parents are randomly selected for crossover. Then, each

selected parent performs crossover with the best individual (the one with the lowest rank

value) within the same cell and the nearest neighboring cells that contain individuals. If

 57

one offspring produces better fitness (a lower rank value or a lower population density

value) than its corresponding parent, it replaces its parent. The replacement scheme of the

mutation operation is analogous.

Figure 5.4 Illustratio

��
��
��
��

��
��

���������������
���������������
���������������
���������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

��
��
��
��
��

The cell where the selected parent p locates in
������
������
������

Valid range where parent p’s offspring can locate in
Forbidden region where parent p’s offspring cannot locate in

parent p

1f

2f

��
��
��
��

��
��

���������������
���������������
���������������
���������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

��
��
��
��
��

The cell where the selected parent p locates in
������
������
������

Valid range where parent p’s offspring can locate in
Forbidden region where parent p’s offspring cannot locate in

parent p

1f

2f

n of the valid range and the forbidden region

eanwhile, as RDGA takes the minimization of the population density value as

one of

M

the objectives, it is expected that the entire population may move toward an

opposite direction to the Pareto front where the population density value is being

minimized. Although moving away from the true Pareto front can reduce population

density value, obviously, these individuals are harmful to the population to converge to

the Pareto front. To prevent “harmful” offspring surviving and affecting the evolutionary

direction and speed, a forbidden region concept is proposed in the replacement scheme

for the density subpopulation, thereby preventing the “backward” effect. The forbidden

region includes all the cells dominated by the selected parent. The offspring located in

the forbidden region will not survive in the next generation, and thus the selected parent

will not be replaced. As shown in Figure 5.4, suppose our goal is to minimize objectives

1f and 2f , and a resulting offspring of the selected parent p is located in the forbidden

 58

reg y

s discussed in Subsection 5.2.1, Automatic Accumulated Ranking Strategy

(AARS

5.2.5 Constraint handling

s, every new generated offspring will be tested against all

the con

fitness value, otherwise, it will be discarded.

ion. B RDGA, this offspring will be eliminated even if it reduces the population

density because this kind of offspring has the tendency to push the entire population away

from the desired evolutionary direction.

A

) includes the scheme of punishing the individuals located in a crowded area,

which means we add a bias to avoid the population density value from expanding too

much when RDGA is implementing the minimization of population rank values.

Meanwhile, a forbidden region is brought in to introduce another bias to prevent the

offspring from having higher ranks than their parents when RDGA is evolving a lower

population density value. Therefore, RDGA can be interpreted as trying to convert an

MOP in problem domain into two new single objective optimization problems in

algorithm domain—minimizing population rank and density values, and then performing

an evolutionary process to optimize each of the objectives in turn. It is necessary to note

that these two biases make two objectives of RDGA highly correlated. When one

objective is being optimized, the corresponding bias will take the other objective as a

constraint to keep the computation resources homogeneously distributed between two

objectives.

To handle the constraint

straint functions in order to determine if it is a valid solution. If the offspring

satisfies for all the constraints, it will be evaluated by the fitness function to obtain its

 59

5.2.6 Elitism strategy

The elitism scheme in [58] is also adopted in RDGA. At each generation, the non-

ted from main population will be copied and stored to an

archive

dominated individuals genera

. Meanwhile, a non-dominated solution in archive may also be selected with a

certain probability as a parent to perform genetic operations. This probability t
ep is called

“elitism intensity” and according to [13], at each generation t, the probability of sampling

an individual from the archive is given by

)
||||

(1
BA

pe +
−= , 2|| Bt

in population, e vely. After the

 (5.3)

where A and B represents archive of elitists and ma r specti

evolution process has terminated, the resulting solutions in both main population and

archive will be compared to derive the final Pareto front.

 60

VI. BENCHMARK TEST FUNCTION STUDY AND

 EXPERIMENTAL RESULTS

6.1

ccording to [15], in order to compare the performance of different MOEAs, the

P benchmark problems and performance metrics is essential.

Becaus

 Introduction

A

design of a variety of MO

e a multiobjective optimization problem can be closely related to a combination of

Single objective Optimization Problems (SOPs), some literature review on the features of

SOP test functions can be helpful. In De Jong’s SOP test bed study [36], he declared that

six problem characteristics need to be examined: continuous and discontinuous, convex

and non-convex, uni-modal and multi-modal, quadratic and non-quadratic, low and high

dimensionality, and deterministic and stochastic. In addition, Michalewicz [59] addressed

other issues that need to be considered for SOP test bed design, such as the number of

constraints, type of constraints and ratio between the feasible and complete search space.

Apparently, some of these properties are also valuable for an MOP and must be

incorporated into the test bed design. Nevertheless, because the purpose of solving an

MOP is to find a near-complete set of non-dominated solutions (Pareto front), the

features that cause the true Pareto front difficult to be found are the primary concerns in

MOP test function design. Therefore, we focus our investigation on five distinct features

of a Pareto front. They are discontinuity, concavity, global/local optimality high-

dimensional decision space and high dimensional objective space. In addition, since a

neural network design problem can be considered as a bi-objective MOP, RDGA is

applied to design a Radial Basis Function (RBF) neural network.

 61

6.2 Performance Merit Indicator Design

Five MOEAs— MOGA, PAES, NSGA-II, SPEA II and the proposed RDGA are

e algorithms for 50 times to obtain the

statistic

deployed in the simulation and run each of th

al results. For each run, a new initial population with 100 individuals is randomly

generated and used by each of four population-based MOEAs (i.e., MOGA, NSGA-II,

SPEA II and RDGA), while only one initial individual is generated for PAES according

to its design procedure [52] and the archive size is set to be 100 for all the selective

MOEAs that involve elitism scheme. We use three indicators derived from final

generation of 50 runs to benchmark the comparison results via statistical Box plots. They

are: average individual rank value, average individual density value and average

individual distance. As discussed in Chapter V, for an individual, different ranking

schemes will produce different rank values, which will be used in respective fitness

evaluations and selections. However, for a fair comparison in terms of ranking indicators

of different MOEAs, we use Goldberg’s pure Pareto ranking method [25] to recalculate

the rank value for each individual resulted by each applied MOEAs. Meanwhile, as

shown in Figure 5.2, the average individual density value is calculated as the mean value

of all the individual density values. Here, according to the population size, we choose the

number of grids for each objective dimension to be 20. This setting will not change the

minimum and maximum individual density values, which are 1 and 100, respectively.

Furthermore, because the rank is a relative value, it must be stated that we cannot

guarantee the final population will be a true Pareto set even if all its individuals have rank

values 1s as shown in Figure 5.3. For this reason, we use “final average individual

distance” as the third indicator to measure how far the non-dominated points on the

 62

resulting final Pareto front finalPF are away from the true Pareto front truePF as shown in

Figure 6.1, where PF is known in a priori for the given test functions in this paper.

individual distance s defined as

true

This indicator was originally introduced by

 G i

m
G i i== 1 ,

Veldhuizen and Lamont [60], where the final

dm∑ 2/12)(

of individuals in finalPF , and id is the Euclidean distance between

 (6.1)

where is the number

each of these individuals and a point on est to it. A result of

indicates the convergence deviates from

 Moreover, in min rela ionship between two

opulations resulted by two different MOEAs, the coverage of two sets (value) [13] is

asur

m

.

truePF that is the clos

; any other value indicates

 0=G

 truefinal PFPF = finalPF

truePF

Figure 6.1 Difference between truePF and finalPF

order to compare the do ance t

p C

me ed to show how the final population of one algorithm dominate the final

population of another. Function C maps the ordered pair),(ji XX to the interval [0, 1],

 63

where iX and jX denote the final populations resulted from algorithm i and j,

respectively. The value 0),(=ji XXC means that all points in jX are dominated by or

equal to points in iX . Th 1),(=ji XX , represents the situation when none of

the points in jX re covered by . Note that both 1),(=ji XXC and

1),(=ij XXC need to be considered indep dently since they stinct

e opposite, C

th

our indicators repres

MOEA Comparison and Genetic Operator D

 a e set iX

en

ent qualitative m

have the di

ibe the quality

proposed RDG

meanings.

of the

.3

the tes

Therefore, f easures that descr

d the

esign

n A on

final result of selected MOEAs— the average individual rank value shows the

dominated relationship between different individuals, the average individual density

value illustrates how good the population diversity is preserved, the average individual

distance measures distance between finalPF and truePF , which provides the quality of the

resulting Pareto front, and the C value compares the domination relationship of a pair of

MOEAs. All values of four indicators generated at the final generation are illustrated by

Box plots to show the statistical comparison results.

6

To examine the performances of the selected MOEAs a

t functions with different Pareto front features, we explore four numerical test

functions in the simulation study. Function F1 is advanced from an existing MOP to

create discontinuous and concave Pareto front [61]. Functions F2-1 and F2-2 are

designed to explore local and global Pareto optimality caused by objective function and

 64

constraints, respectively. Function F3 and F4 has a high-dimensional decision space,

while function F4 involves a high-dimensional objective space. For a fair comparison,

the stopping generation, the chromosome length of each decision variable, the crossover

rate and the mutation rate are chosen to be 10,000, 15, 0.7, and 0.1, respectively for all

population-based MOEAs considered. One point crossover is used for all the population

based MOEAs. In addition, we select (1+10)-PAES and a bit flip mutation rate k/1 is

used for a chromosome of k genes and the tournament size domt is chosen to be 2.

6.3.1 F1— MOP with discontinuous and concave Pareto front

oncave Pareto fronts is

that so

ere, a modified Tanaka’s MOP [61] is chosen to be the test function with a

discont

Minimi , where

 (6.2)

The rationale of exploiting MOPs with discontinuous and c

me MOEAs using plain aggregating schemes have been proven of having

difficulty in finding the Pareto points on the discontinuous and concave segments.

MOEA’s ability of finding nonconvex Pareto front is one of the most important reasons

of using EA’s other than traditional gradient-based or simplex-based algorithms in

multiobjective optimization.

H

inuous and concave Pareto front.

ze),(211 xxf and),(212 xxf

1

 xf =
 ,

ubjecti to

))arctan(16cos(1.0)(
2

12
2

2
1 ≤++−

x
x

xx .

211),(xxxf =

s
2212),(xx

 ≤ ,0 ,05.0(2
21 <− xx π≤21 xx ,)5.0(5)2 −−

 01+

 65

 (c) NSGA-II

 66

 Decision space and Pareto optimal set (b) Objective space and true Pareto front

Figure 6.2 (a) Decision space, objective space and Pareto front of Function F1

comp cated nstrai in

Equation (6.2). The Pareto optim reto front are the same for this

problem

 (a)

(a)True Pareto front and initial popu

lation (b) MOGA

 (d) PAES

Figure 6.3 True Pareto front and

 (e) RDGA

 Pareto fronts resulted by MOGA,
SPEA II on Function F1

 (f) SPEA II

 NSGA-II, PAES, RDGA and

Indeed, the concave feature is created by the li co nts imposed

al set and the true Pa

 since each objective variable is equal to one decision variable. Figure 6.2(a)

shows the Pareto optimal set and Figure 6.2(b) shows the corresponding Pareto front,

which includes five discontinuous segments and all of them possess concavity features.

Figure 6.3(a) shows the true Pareto front and a randomly generated initial population

 66

),(512 −XXC

using the same initial population for all population-based MOEAs. Figure 6.3(b) – (f)

show the resulting Pareto fronts by five MOEAs. The Box plots for the average values of

three indicators over 50 runs are illustrated in Figures 6.4(a), (b) and (c), respectively.

The performance measures of for the comparison sets between algorithms

and are shown in Figure 6.5, where algorithms 1 – 5 represent MOGA, NSGA-II,

PAES, RDGA and SPEA II in alphabetica

),(ji XXC i

j

l order, respectively.

 (a) average rank value

Figure 6.4 Box plots of av

 (b) average density value

erage individual rank, density and dist

 (c) average distance value

ance values on Function F1

),(511 −XXC

),(513 −XXC

),(514 −XXC

Figure 6.5 Box plots using

),(515 −XXC

C measure on Function F1

 67

Apparently, co ring the resulting Pareto fronts and indicator values in Figures

6.3 – 6.5, we can see s of all the indicator

values,

dominate the rest of the solution sets resulted by the other selective MOEAs. However, it

y to mentio

— Local and global Pareto optimality

eb [48] proposed a multimodal two-objective optimization problem that

t MOEAs might have a great

tendenc

6.3.2.a F2-1—— Local optimality resulted by objective function

A two-variable, two-objective local-Pareto testing problem with a local Pareto

front ca

mpa

 that MOGA has the lowest performance in term

 while the other four MOEAs provide competitive results. In particular, RDGA

produces more complete Pareto fronts than the other four MOEAs and it also provides the

highest),(XXC values, which means the solution set resulted by RDGA most likely

is worth n that the solution set resulted by RDGA also has relatively high

density and distance values, which can be explained as RDGA creates more Pareto points

than the other MOEAs and some of these points are not true non-dominated points. This

problem can be solved if we let RDGA runs longer time instead of the predetermined

10,000 generations.

6.3.2 F2-1 & F2-2

5~14

D

possesses a local and a global Pareto front. He suggested tha

y to converge to the local Pareto front instead of the global one if a certain kind of

initial population was used. However, he did not elaborate the detail of the design

procedure and how to make the problem more challenging. Moreover, a further study is

needed if the local optimality is caused by constraints instead of objective functions,

because two different rules behind each of them may result in dissimilar effects.

n be designed as:

 68

Minimize),(211 xxf and),(212 xxf , where

211),(),(21 xxRxxf =

=),(212 xxf
),
),(

2

21

x
xxT

 where

 (6.3)
(1xS

2

2
22

1

2
12)(

2

)

121),(q
yx

q
yx

epepAxxT
−

−
−

×−×−=

From E ati

(
−

,
subject to .

qu on (6.3), we can see in , parameter affects the lowest

bound of the feasible solution space and Pareto front; and ine the optimality

of a

A test function F2-1 is created from the general model in Equation (6.3) as:

),(21 xxC

),(21 xxT

p

al optim

1

1

q

p

A

determ

1

m

1

2

1

2p

2

2

th

1y

im

nd y . If pp > , y will be the glob al point, and y will be the local

optimal point. Otherwise, y will be the global optimum, and y will be the local

opt um. Meanwhile, the deviation between y and y determines the distance of the

gap between local and global optima. Parameters q and q deter ine how sharp the

curves around the optimal points y and y will be. If q<< , a global optimal point is

created with a spike around y , and the sharper the s ike is, e thinner the global Pareto

optimal set will be.

2 21 1

2

1

2

1 2

Minimize),(211 xxf and),(212 xxf , where

2 1211

)100ctan(

)5.),(
1

8.0
)8.0(

0001.0
)1.0(

212

2
2

2
2

x
eexxf

xx −
−

−
−

=

subject to 1,0 21 ≤≤ xx .

)sin(),(xxxf π
=

01()1(−+−
ar

 (6.4)

In Equation (6.4), there are two optimal values of

, which are global optimum and local optimum for

2 ,

(2 x

 ,2 global
x

)2x , respectively. 8.0,2 =localx ,1f

x 1.0= and

 69

pulation (b) MOGA

This effect will construct the final local and gl shown in F

6.6(a) with

Pareto front is a very thin curve, which is separated from the major range that contains

the local Pareto front.

ve sp

function F2-1. Figure 6.7(b) – (f) show the resulting Pareto fronts by five MOEAs for a

obal Pareto fronts as igure

 a sampling rate equal to 0.01 for both decision variables. The true (global)

 (a) Decision space and Pareto optimal set
Figure 6.6 Decision space, objecti

 (b) Objective space and true Pareto front

ace and Pareto fronts of Function F2-1

(a) True reto front and initial po

 (c) NSGA-II Pa

 (d) PAES

Figure 6.7True Pareto front Pareto

Figure 6.6(a) shows decision space and local

 (e) RDGA

 fronts resulted by MOGA, NSGA
on Function F2-1

and

 (f) SPEA II

-II, PAES, RDGA and SPEA II

 global Pareto optimal sets, while

Figure 6.6(b) shows the objective space and local and global Pareto fronts for the test

 70

random

sol by

RDGA

ly generated initial population, which is shown in Figure 6.7(a) with a true Pareto

front. The Box plots for the average values of three indicators over 50 runs are illustrated

in Figures 6.8(a), (b) and (c), respectively. The performance measures of),(ji XXC for

the comparison sets between algorithms i and j are shown in Figure 6.9, where

algorithms 1 – 5 represent MOGA, NSGA-II, PAES, RDGA and SPEA II in alphabetical

order, respectively.

 (a) average rank value

Figure 6.8 Box plots of average

rom

Particularly, RDGA’s lowest C value is gr

 (b) average density value

 individual rank, density and

 Figure 6.9, we can see that RDGA

 (c) average distance value

 distance values on Function F2-1

and SPEA II provide the best results.

eater than 0.8, which means most of the

F

utions resulted by the other four MOEAs are dominated or equal to the solutions

. Moreover, RDGA produces the lowest rank and distance values. The highest

density values generated by RDGA and SPEA II are caused by the partial local and

partial global Pareto fronts as shown in Figure 6.7(e) and (f), which may result in a very

crowded partial global segment. From Figure 6.7, it is obvious that the resulting Pareto

front can be pure global, pure local or partial local and partial global. Indeed, the shapes

of the resulting Pareto fronts significantly rely on different types of initial populations for

this test function. Therefore, two sets of initial populations are used for comparison. Set 1

includes 50 initial populations where none of their individuals belongs to the global

 71

Pareto front. For set 2, at least one individual is located on the global Pareto front for

each of 50 initial populations.

C measure on Function F2-1

Tables 6.1 and 6.2 show the indicator values for set 1 and set 2 correspondingly.

Figure 6.9 Box plots using

Comparing the observations from Table 6.1 with Table 6.2, we can see that all of the

selected MOEAs are very sensitive to the initial population. When the initial population

contain

),(511 −XXC),(512 −XXC),(513 −XXC

),(514 −XXC),(515 −XXC

s at least one individual that belongs to the global Pareto front, there will be a

higher probability for the final population to converge to the global Pareto front, and

otherwise it is most likely to converge to a local Pareto front. Moreover, different choices

of parameters 212121 ,,,,,, yyqqppA will produce various Pareto optimality

characteristics. For instance, Figures 6.10(a) and (b) show how parameters q and q

affect the selected MOEAs in finding a global Pareto front for the initial population Sets

1 2

 72

1 and 2, respectively. When the ratio of 12 / qq increases, the percentage that the final

population is located on the global Pareto front will decrease correspondingly.

Table 6.1 Final simulation results for Function by five MOEAs using initial population set 1

of runs generation individual individual generation produce produc

 F2-1
Final

averag

density

 F
Final

a
individual

ensit

obal Pa

 gl

Number

Stop

Final
average

rank value

e

Final
average

distance

Number
of runs

pure

Number
of runs

e
local

Number
of runs
produce
partial

l value global Pareto globa
Pareto
front

front* Pareto
front

50 10,000

1.02 3.21 0.59 0 49 1

1 5.03 0.51 1 45 4

0 49 1

RDGA 50 10, 00 0

1 6.15 0.43 2 40 8

SPEA II 50 10,000

1 .01 5.32 0.46 0 42 8

Table 6.2 Fin imulat lts for nction five M s using itial population set

Number
of runs generation

Final
a

individual
rank value y

Final
a

generation
distance

Number
of runs
produce

pure

Number
of runs
produce

pure

Number
of runs
produce
partial

l

al s ion resu Fu 2-1 by OEA in 2

Stop verage verage verage

MOGA

NSGA-II 50 10,000

PAES 50 10,000 1 3.54 0.55

d
value global

Pareto
local

Pareto
globa
Pareto

front front* front
50 10,000

1.03 3.74 0.14 37 0 13

1.03 3.30 0.05 45 0 5

41 0 9

RDGA 50 10, 00 0

1.12 3.44 0.07

44 0 6

SPEA II 50 10,000

1.15 3.21 0.06

44 0 6

e

In , w 00 , / 12 qq obal opti

MOGA

NSGA-II 50 10,000

PAES 50 10,000 1 4.05 0.09

*Not : In Table 1 and 2, we consider a pseudo-gl reto front as a local Pareto front

deed hen the Pareto mal set is already very thin,

ce global

Pareto

ont will not be the glob

cal and glo

0,10=

en when 2x t

, the resulting Pareto fr

,2 global

,2optimality. Ev akes a very close value to 1.0=x , such as

Figure 6.11. From Figure 6.11, we also see that the gap between lo bal Pareto

global

al one, which is shown in09995.02 =x

which means there is only a very small deviation from 1.0=x to produ

 73

 population set 1

Figure 6. ratio af

front is not e

Figure .11 Ps ratio

6.3.2.b

 nd glo al optim eff

that is represented by

mpty. Some pseudo-global Pareto fronts will emerge when the y value is

getting close to 1.02 =globalx . Therefore, instead of being trapped by the local Pareto

front, the resulting non-dominated points may be stuck on a pseudo-global Pareto front as

well. This effect becomes prominent when the ratio of 12 / qq increases. In this scenario,

although RDGA may perform better than the other selected MOEAs on average, it will

still be difficult to find a global Pareto front if none of the individuals of the initial

population are located exactly on the global Pareto front.

 (a) using initial

10 Illustration of

eudo-global Pareto

 F2-2

 (b) using init

s findin

2 globalx

t

al a

nt

,10

al

 ial population set 2

fects MOEA g global Pareto fro 12 / qq

fronts when approaches to

—Local optimality resulted by constrain

6 2x 1.0= ()000/ 12 =qq

 Applying constraints may also create the similar loc b ect

 74

Minimize),(211 xxf and),(212 xxf , where

2 1211)sin(),(xxxf π
=

arcta21

subject to 10 1 ≤≤ x and 1001.00999.0 2 ≤≤ x , or 179.0 2 ≤≤ x .

In Equation (6.5), parameter 21 qq = , implies there will not be any spike in the

function),(yxT , thus the search space will not be separated into two parts. Inde

)100n(1
2 x

)5.01()1(),(
8.0

)8.0(
8.0

)1.0(2
2

2
2

eexxf

xx −
−

−
−

−+−
= (6.5)

ed, there

 only mal point for . However, as we designed a new

constraint for the decision variables in Equation (6.5), we still can produce similar local-

global optimality results shown in Figure 6.12. Under this scenario, the global Pareto

front and local Pareto front still exists, except they are created by a strict constraint.

 l s

Fi

show the indicator values for Sets 1 and 2 correspondingly.

is one opti)y at x,(xT 28.02 ≈

 (a) Decision space and local and global Pareto optima

gure 6.12 Decision space, objective space and loc

Under the same conditions, we run f

ets (b) Objective space and Pareto fronts

al and global Pareto fronts of Function F2-2

our selected MOEAs and the proposed

RDGA, given the initial population set 1 and set 2 for comparison. Tables 6.3 and 6.4

 75

Table .3 Final simulation results for function F2-2 by five MOEAs using initial population set 1

Number
of runs

Stop

generation

Final
average

individual
rank value

Final
average

individual
density
value

Final
average

generation
distance

Number
of runs
produce

pure
global
Pareto

Number
of runs
produce

pure
local

Pareto

Number
of runs
produce
partial
global
Pareto

 6

front front front
MOGA 50 10,000

1.21 3.33 0.32 4 18 28

50 10,000 1 5.01 0.27 6 15 29

3.96 5 20 25

9 13 28

bl
 Final Final Final

NSGA-II

PAES

50 10,000 1 0.35

RDGA 50 10,000 1.13 5.61 0.22

SPEA II 50 10,000 1.08 5.05 0.24 10 15 25

Ta e 6.4 Final simulation results for function F2-2 by five MOEAs using initial population set 2

 Number
of runs

Stop
generation

average
individual
rank value

average
individual

density

average

generation
distance

Number
of runs
produce

pure
global
Pareto

Number
of runs
produce

pure
local

Pareto

Number
of runs
produce
partial
global
Pareto

value

front front front
MOGA 50 10,000

1.04 3.20 0.08 45 0 5

50 10,000 1 4.61 0.03 48 0 2

3.83 44 0 6

48 0 2

.2, we c ee t r the f n F2-2

NSGA-II

PAES

50 10,000 1 0.08

RDGA 50 10,000 1 4.09 0.02

SPEA II 50 10,000 1 4.52 0.02 49 0 1

Comparing the indicator values in Tables 6.3 and 6.4 with those in Tables 6.1 and

6 an s hat fo unctio , the global Pareto fronts, resulted by imposing

constraints, are easier to be found by MOEAs than those resulted from objective

functions. This occurrence can be explained as the local optimality represented in

Equation (6.3) having multilayer pseudo-global Pareto fronts, each of which contributes a

new local Pareto front. In this case, instead of finding the global Pareto front, MOEAs are

easily trapped by a local or pseudo-global Pareto front. Nevertheless, the local optimality

caused by constraints does not enclose these pseudo-global Pareto fronts. The gap

 76

between local and global Pareto fronts is completely blank, which means the resulting

non-dominated points are most likely located on either of them, thus simplifying the

searching complexity.

For the local optimality created by Equation (6.5), the smaller the constraint range

for in Equation (6.5)) the more difficult for MOEAs to

find a real Pareto front will be, because the global Pareto optimal set will be a thinner

band when the constraint range is small.

 inimi and , where

 (6.6)

globalx2 (1001.00999.0 2 ≤≤ globalx

6.3.3 F3—MOP with high-dimensional decision space

)1)(()(
g

xgxf −=
2

)4/(41)(∑
=

+=
i

ixxg ,

 subject to ,10 ≤≤ ix .5,,1 K=i

ze)(1 xf)(2 xf

2)(x

M
)6(sin1)(1

64
1

1 xexf x π−−=
21)(xf 25.0

5

Fi tion F3

This test fun ensional decision

space and local Pareto front in objective space as shown in Figure 6.13. Figure 6.14(b) –

(f) sho

gure 6.13 Objective space and Pareto front of Func

ction is proposed in [14 as an MOP with high-dim]

w the resulting Pareto fronts by five chosen MOEAs for a randomly generated

initial population, which is shown in Figure 6.14(a) with an ideal Pareto front. The Box

plots for the average values of three indicators over 50 runs are illustrated in Figures

 77

6.15(a), (b) and (c), respectively. The performance measures of),(ji XXC for the

comparison sets between algorithms i and j are shown in Figure 6.16, where algorithms

1 – 5 represent MOGA, NSGA-II, PAES, RDGA and SPEA II in alphabetical order,

respectively.

 (e) RDGA

nt and Pareto fronts resulted by MO
SPEA II on Function F3

 (d) PAES

Figure 6.14 Tr Pareto fro

From Figures 6.14 – 6.16, it is obvious that MOGA has great difficulty in finding

the true Pareto front of this MOP. On the other hand, NSGA-II, SPEA and RDGA always

identify

(a) True front and initial population (b) MOGA

Pareto (c) NSGA-II

 (f) SPEA II

GA, NSGA-II, PAES, RDGA and ue

 some points on the global Pareto front. Moreover, comparing to NSGA-II and

SPEA II, RDGA has the lowest density value, which means RDGA tends to produce a

more homogenously distributed Pareto front by minimizing individual’s density value

independently.

 78

79

 15
8

),(++=yxf

)(
223

22
1.1

)1(
1),(yxe
yx

yxf −−−
++

=

bject to 30,30 ≤≤− yx .

6.3.4 F4—MOP with high-dimensional ob ective

 Minimize

 (a) average rank value

Figure 6.15 Box plots of average

 (b) average density value

 individual rank, density and

 (c) average distance value

 distance values on Function F3

 (511 −XXC),

),(512 −XXC),(513 −XXC

),(514 −XXC

Figure 6.16 Box plots using C

),(515 −XXC

 measure on Function F3

j space

 1f 2 3

272

),(yx ,),(yxf , and),(yxf , where
)sin()(5.0),(1 yxyxyxf

22 +−+−

2222 +++=
)1()423(yxyx

su

 (6.7)

(a) Decision space and Pareto optimal set

Figure 6.17 Decision space, objective

Indeed, test function F4

Originally designed by Viennet [62], this test function has been adopted by many

researc t it provides th e partial-contradict objective functions as shown in

Fig re

abetical or

high-dimensional objective space, discontinuous Pareto optimal set and several local

inima

hers in tha re

u 6.17. Figure 6.18(b) – (f) show resulting Pareto fronts by five MOEAs for a

randomly generated initial population, which is shown in Figure 6.18(a). The Box plots

for the average values of three indicators over 50 runs are depicted in Figures 6.19(a), (b)

and (c), respectively. The performance measures of),(ji XXC for the comparison sets

between algorithms i and j are shown in Figure 6.20, where algorithms 1– 5 represent

MOGA, NSGA-II, PAES, RDGA and SPEA II in alph der, respectively.

 (b) Objective space and Pareto front

space and Pareto front on Function F4

possesses several challenging characteristics such as:

m in objective functions. From the resulting Pareto fronts and Box plots of the

performance indicators in Figure 6.18 – 6.20, RDGA, NSGA-II, PAES, and SPEA II all

show the ability to approximate the true Pareto front and the population-based MOEAs

(i.e., RDGA, SPEA II and NSGA-II) provide higher C value as shown in Figure 6.20.

Furthermore, we can see that RDGA produces smallest average individual density value

and distance value comparing to NSGA-II and SPEA II. Because RDGA converts

 80

ial population (b) MOGA

original objective space into a bi-objective rank-density domain, it is not so sensitive to

the complexity of high-dimensional objective spaces. Therefore, RDGA holds the

potential promise in solving these types of MOPs.

(d) PAES (f) SPEA II

Figure 6.18 True Pa y MOGA, NSGA-II, PAES,
F4

RD it

converges relatively fast in the rank domain (Figure 6.21(a)). This phenomenon can be

(a) True areto front and init

 P (c) NSGA-II

 (e) RDGA

reto front and Pareto fronts resulted b
RDGA and SPEA II on Function

 (a) average rank value

Figure 6.19 Box plots of ave

 (b) average density value

rage individual rank, density and di

 (c) average distance value

stance values on Function F4

han

As shown in Figure 6.21(b) and (c), Although NSGA-II performs worse t

GA and SPEA II in terms of density preservation and distance minimization,

 81

partially credited from the pure Pareto ranking scheme used by NSGA-II, which will not

be affected by the density information during the evolutionary process. However, fast

convergence of rank value does not imply density and distance values will converge fast

as well, and ves versa. As shown in Figure 6.21(a) – (c), although RDGA converges

much slower than the other three population-based MOEAs in terms of rank indicator, it

has the fastest convergence speed in terms of distance indicator comparing to all the other

selected MOEAs. This effect can be explained by the restricted mating method and

“forbidden region” scheme applied by RDGA. On one hand, instead of using roulette

wheel or tournament selection scheme, RDGA randomly selects an individual as one of

the parent to mate with the best individuals located in the neighboring cells, which

ensures those worst individuals have the same probabilities with the elitists to be selected

and updated by their better fitted offspring, Although this strategy may sacrifice the

convergence speed of an elitist in finding a single true non-dominated point, it yet offers

those ill performed individuals a fair chance to catch up the better ones and draws the

entire population to the true Pareto front. On the other hand, the “forbidden region”

concept prevents an individual leading to a wrong direction when the density

subpopulation is evolved. In this case, whether a new generated offspring can survive is

not only because it has lower density value than its corresponding parent, also because it

has equal or higher rank value comparing to the selected parent. For this reason, as an

extra constraint of RDGA, “forbidden region” concept also helps compress the entire

population and push it closer to the true Pareto front. Therefore, both “restricted mating”

and “forbidden region” techniques contribute low variance and fast convergence of

average individual distance value as shown in Figure 6.19(c) and Figure 6.21(c) (note:

 82

these two consequences are particularly significant for function F4, which may easily

result in an extremely high variance of distance value during the evolutionary process if

an ill performed individual has never been updated since the beginning). In addition, it is

worthy to note that PAES is not a population-based algorithm and only non-dominated

individuals are stored in the archive at each generation. These characteristics distinct

PAES from other MOEAs mainly in two aspects: its initial rank and density values are

always equal to one and the average individual rank value will remain to be one during

the entire evolutionary process. From the simulation study, although PAES outperforms

MOGA for all the test functions, it cannot provide competitive results comparing to the

other two most advanced MOEAs (i.e., NSGA-II and SPEA II) and the proposed RDGA

in terms of rank, density, distance indicators and C measure.

Figure 6.20 Box plots using

),(511 −XXC),(512 −XXC),(513 −XXC

),(514 −XXC),(515 −XXC

C measure on Function F4

 83

6.4 Neural Network Design by RDGA

Since the original emergence of Artifici l Neural Network (ANN) in 1940’s, there

has been an extensive qualitative and quantitative analysis on different classes of neural

and training algorithms. Without a proven

guideli

 a) average rank value

Figure 6.21 Evolutionary tr

 ((b) average density value

ajectories of rank, density and di

 (c) average distance value

stance values on Function F4

a

networks possessing various architectures

ne, the design of an optimal neural network for a given problem is often regarded

as an ad hoc process. Given a sufficient number of neurons, more than one neural

network structure (i.e., with different weighting coefficients and numbers of neurons) can

be trained to solve a given problem within an error bound if given enough training time.

The decision of “which network is the best” is often decided by which network will better

meet the user’s needs for a given problem. It is known that the performance of neural

networks is sensitive to the number of hidden neurons. Too few neurons can result in

underfitting problems (poor approximation), while too many neurons may contribute to

overfitting problems. Obviously, achieving a better network performance and simplifying

the network topology are two conflicting objectives. This has promoted research on how

to identify an optimal and efficient neural network structure. AIC (Akaike Information

Criterion) [63] and PMDL (Predictive Minimum Description Length) [64] are two well-

 84

adopted approaches. However, AIC can be inconsistent and has a tendency to overfit a

model, while PMDL only succeeds in relatively simple neural network structures and

seemed very difficult to extend to a complex NN structure optimization problem.

Moreover, all of these approaches tend to produce a single neural network by each run,

which does not offer the designers with alternative choices.

Over the past decade, evolutionary algorithms have been successfully applied to

the design of network topologies and the choice of learning parameters [65]. They

reported some encouraging results that are comparable with conventional neural network

design

ical applicability, several

essential conditions need to be considered.

ch for the optimal parameters (i.e., weights and

e the network complexity and ensure it to be

sufficient for solving the given training problem.

approaches. However, the multiobjective trade-off characteristic of the neural

network design has not been well studied and applied in the real world applications.

Therefore, in the similar spirit of RDGA, a Hierarchical Rank Density Genetic Algorithm

(HRDGA) is devised for neural network design in order to evolve a set of near-optimal

neural networks. Without loss of generality, the type of the evolved neural networks is

restricted to the Radial Basis Function (RBF) neural network.

6.4.1 Neural network design dilemma

To generate a neural network that possesses the pract

1) A training algorithm that can sear

biases) for the specified network structure and training task.

2) A rule or algorithm that can regulat

 85

3) A metric or measure to evaluate the reliability and generalization of the produced

neural network.

 all of these three problems. As

output is the minimization of the expectation of a cost function

 (6.8)

 denotes the

The design of an optimal neural network involves

given in [66], the ultimate goal of the construction of a neural network with the input-

relation (y NSf=),ωx

 as)),,((YX ωNSTg

yx,NSTNST

where),(yxyx,f joint pdf that depends on the input vector x and the target

y .

f

yxyxyωxYωX ∫ ∫= ddffgfgE),()),,(()]),,(([

 netw f n may be

output vector NS

ting

. In order to choose the

a

)},({ ωxNSf

dominated by

need to find the determ

ectiv

NSF =

form

be

the resp e weights

ω ,

ination of the network function

s the

tio

am

'NS

al neural network, we

ily F

"NS "' NSNS FF ⊂

) that give

)(* xNSf

e with*ω NS

)]),(())(* YωXx * ,fgff NSLNSNS == , (6.9)

and the determination of the network structure 'NS that realizes the minimal cost value

within a set of structure }{NS

Given a network structure , a family of input-output relations

, parameterized by consis of all ork unc s that

ed with different choices of the weights can be assigned. The structure is said to

 if optim

 (i.e., the determination of

 minim l cost valu in the f

s

[minarg,(Eωx
ω

 (6.10)

)]),(([minarg ** YXE NSTFNS
fgNS

NS∈
= .

 86

Obviously, the solutions of this task need not result into a unique network. In

[67], if several structures , meet the criterion as shown in Equation (6.10),

the one with the minima ber of hidden neurons is defined as an optimal. However,

as a neural network can only tune the weights by the given training data sets, and these

data se

anc

L,*
2

*
1 NSNS

l num

NS

ts are always finite, there will be a trade-off between NN learning capability and

the variation of the hidden neuron numbers. A network with insufficient neurons might

not be able to approximate well enough the functional relationship between input and

target output. On the other hand, if the number of neurons is excessive, the realized

network function will depend greatly on the resulting realization of the limited training

set. This trade-off characteristic implies that a single optimal neural network is very

difficult to find as extracting)(* xf from F by using a finite training data set is a

difficult task, if not impossible [67]. Therefore, instead of trying to obtain a single

optimal neural network, finding a set of near-optimal networks with different network

structures seems more feasible. Each individual in this set of neural networks may

provide different training and testing perform es for different training and testing data

sets. Moreover, the idea of providing “a set of” candidate networks to the decision

makers can offer more flexibilities in selecting an appropriate network judged by their

own preferences. For this reason, genetic algorithms and multiobjective optimization

techniques can be introduced in neural network design problems to evolve network

topology along with parameters and present a set of alternative candidates networks.

NS

 87

6.4.2 Hierarchical genetic algorithm in neural network design

In the literature of using genetic algorithms to assist neural networks design,

veral approaches have been proposed for evolving NN structure together with weights

nd biases [65,68-69]. Among all these methods, a hierarchical genotype representation is

corporated into an RBF neural network design.

al network

et. al., [70] for

ership. In the proposed

er Perceptron (MLP)

neural network. The chromosome structure (genotype) is shown in Figure 6.22(a). As

shown in Figure 6.22 responding to a neural network

se

a

in

1 1 0 1 0 1 1 0 0 0 0 1

(a) Genotype structure of an MLP neural network

00 ,bW
11,bW 22 ,bW 33 ,bW

44 ,bW00 ,bW
11,bW 22 ,bW 33 ,bW

44 ,bW

1 0 1 0
genes

Neuron

Parameter

1 0 1 01 0 1 01 0 1 0
genes

Neuron

Parameter

1,1b1,1W 3,1b3,1W2,1b2,1W

Layer

genes

genes

1 1 0 1 0 1 1 0 0 0 0 1

1,1b1,1W 3,1b3,1W2,1b2,1W

1 1 0 1 0 1 1 0 0 0 0 11 1 0 1 0 1 1 0 0 0 0 1

1,1b1,1W 3,1b3,1W2,1b2,1W

Layer

genes

genes

 (b) Phenotype of the neural network

Figure 6.22 Genotype and phenotype of HGA based MLP neur

Hierarchical Genetic Algorithm (HGA) was first proposed by Ke,

fuzzy controller design using two layer genes to evolve memb

HGA-NN [69], a three-layer HGA is used to evolve a Multi-lay

(a), each candidate chromosome cor

 88

is assumed to have four hidden layers (shown in the high-level layer genes), where the

first an

g neuron activated. The active status of one control gene determines

whether the parameters of the next level controlled by this gene will be activated or not.

As an example, a genetic chromosome (genotype) shown in Figure 6.22(a) corresponds to

an individual neural network (phenotype) with two hidden layers and two neurons in the

first hidden layer and one neuron in the second layer as shown in Figure 6.22(b). By

using this hierarchical genotype design, a problem, so called “one phenotype mapping

different genotypes” can be prevented [69].

In a similar spirit, HGA is tailored to evolve an RBF (Radial-Basis Function)

neural network. A radial-basic function can be formed as

 (6.11)

where denotes the center of the ith localized function, is the weighting coefficient

on, and m is the number of

Gaussian neurons in the hidden layer. Without loss of generality, we choose the variance

as unity for each Gaussian neuron

d the third hidden layers are activated and the second and the fourth hidden layers

are deactivated.

The mid-level neuron genes indicate that two out of three neurons in the first

hidden layer are activated, while only one neuron in the third hidden layer is activated.

The low-level parameter genes are then used to represent the weighting parameters of

each correspondin

)||||exp()(2
iif cxx −−= ∑ω

1

m

i=

.

i i

connecting the ith Gaussian neuron to the output neur

c ω

 89

1 0 0���������
���������

���������
���������

���������
���������

���������
���������

1 0 1 ���������
���������

���������
���������

Control
genes

genes
Center
genes

Weight

1 0 0���������
���������

���������
���������

���������
���������

���������
���������

1 0 1 ���������
���������

���������
���������

Control
genes

genes
Center
genes

Weight

Figure 6.23 Genotype and Phenotyp of HGA based RBF neural network

genes. The lengths of these

three k rmines the

activation status (off or on) of the corresponding weight gene and center gene. The

weight genes and center genes are represented by real values. Control genes and weight

genes a

]. The HRDGA operators are designed as followed. Figure 6.24

shows the flow chart of HRDGA for NN design procedure.

e

In HGA based RBF neural network design, ge

into three categories: control genes, weight genes and center

inds of genes are the same. The value of

nes in the genotype are classified

 each control gene (0 or 1) dete

re randomly initialized and the center genes are randomly selected from given

training data samples. Figure 6.23 shows the genotype and phenotype of HGA based

RBF neural network.

6.4.3 HRDGA for neural network design

To assist RBF network design, RDGA and HGA are combined as a Hierarchical

Rank-Density based Genetic Algorithm to carry out the fitness evaluation and mating

selection schemes [71

 90

1)

sen ad hoc according to the

omplexity of the problem to be solved.

nary value mutation was adopted. In the

3)

lue is

calculated. Then the new rank and density fitness values of each individual will be

In HRDGA, each individual (chromosome) represents a candidate neural network.

The control genes are binary bits (0 or 1). For the weight and center genes, real

values are adopted as the gene representation to reduce the length of the

chromosome. The population size is fixed and cho

c

2) One-point crossover is used in the control gene segment and two-point crossover

in the other two gene segments. The crossover points were randomly selected,

and the crossover rates were chosen to be 0.8, 0.7 and 0.7 for the control, weight

and center genes, respectively. One-point mutation was applied in each segment.

In the control gene segment, common bi

weight and center gene segments, real value mutation was performed by adding a

Gaussian noise with zero mean and unit variance. The mutation rates were set to

be 0.1, 0.05 and 0.05 for the control, weight and center genes, respectively.

Since HRDGA is applied to optimize the neural network topology along with its

performance, we need to convert them into the rank-density domain. Therefore,

the original fitness—network performance and number of neurons—of each

individual in a generation is evaluated and ranked, and the density va

evaluated, and the individuals with higher fitness measures will reproduce and

crossover with other high fitness individuals with a certain probability. Their

offspring replaces the low fitness parents forming a new generation. Mating is

then iteratively processed.

 91

4)

Figure 6.24 Fl

6.4.4 Experimental

together with its best perform

time series prediction or pattern classification. For a feasibility check, we use the

RDGA assisted NN design to predict the Mackey-Glass chaotic time series.

When the desired number of generations is met, the evolutionary process

stops.

In itia lize popu la tion and

and opera to r va lues

In itia lize popu la tion and

and opera to r va lues

owchart of the main procedure of HRDGA based neural network design

study—Mackey-Glassy chaotic time series prediction

Since the proposed HRDGA is designed to evolve the neural network topology

ance, it proves useful in solving complex problems such as

R andom ly d ivide popu la tion in to tw o subpopu la tion
based on ind ividual's R ank and D ensity va lue

For each subpopula tion , random ly
se lec t a m ating pool

D o crossover and m uta tion

O ffsp ring loca te in fo rb id den region?

N o

R eplace paren ts b y the ir o ffsp rin g

Y es

U pdate new popu la tion

R andom ly d ivide popu la tion in to tw o subpopu la tion
based on ind ividual's R ank and D ensity va lue

For each subpopula tion , random ly
se lec t a m ating pool

D o crossover and m uta tion

O ffsp ring loca te in fo rb id den region?

N o

R eplace paren ts b y the ir o ffsp rin g

Y es

U pdate new popu la tion

all H R D G A chrom osom e

S atisfy stopp in g
crite ria?

N o
P are to front

N o
P are to front

S to re a ll the Pare to po in ts in se t P

R ank and density ca lcu la tion

Y es
E valuate se t P
A chieve fina l

a ll H R D G A chrom osom e

S atisfy stopp in g
crite ria?

Y es
E valuate se t P
A chieve fina l

S to re a ll the Pare to po in ts in se t P

R ank and density ca lcu la tion

H

 92

The Mackey-Glass time series is a continuous time-delay data series. The time-

delay differential equation is:

))(1()(τtxtd c −+
−×)()())((txbτtxatxd

×−=

 In this experimental study, HRDGA is used to

. (6.12)

The chaotic behavior of the Mackey-Glass time series is determined by the delay

parameter . Some examples are listed in Table 6.5. Larger values of produce more

chaotic dynamics which are much more difficult to predict. Here and

are signed for Equation (6.12).

 predict a chaotic Mackey-Glass time . The

Delay parameter Chaotic characteristics

τ

 as

evolve neural networks to

τ

2.0=a

 series with τ

, 1.0=b

150=

10=c

network is set to predict)6(+tx based on)12(),6(),(−− txtxtx and)18(−tx .

Table 6.5 Characteristics of Mackey-Glass time series
τ

53.4τ < A stable fixed point attractor

3.13τ53.4 << A stable limit cycle attractor

8.163.13 << τ Period limit cycle doubles

8.16τ > Chaotic attractor characterized by τ

G l center genes are selected, 15

ly as well. Population size was s

e wn center selection methods—KN

In the proposed HRD A, 150 initia 0 control genes

and 150 weight genes are initial generated et to be 400.

For comparison, thre well-kno N (K-Nearest

Neighbour) [72], GRNN (Generalized Regression Neural Network) [73] and OLS

(Orthogonal Least Square Error) [74] methods are applied on the same time series

 93

prediction problem. For KNN and GRNN types of networks, 70 networks are generated

with the neuron numbers increasing from 11 to 80 with the step size of one. Each of these

networks will be trained by KNN and GRNN methods. For the OLS method, the

selection of the tolerance parameter determines the trade-off between the performance

and complexity of the network. Ideally, should be larger than, but very close to, the

ratio , where is the variance of the residuals, and is the variance of the

m value will produce a neural network with more neuron

num value ge lly results in a network with less number of

neurons. Therefore, by using different values, we generated a group of neural

networks with various training perform ces and numbers of hidden neurons. For the

ey-Glass tim , values,

which range from 0.01 to 0.4 with the step size of 0.01. The stop criteria for KNN,

GRNN and OLS algorithms is either the epochs exceeds 5,000, or the training Sum

 (b) Resulting Pareto front

ρ

ρ

nera

ρ

an

es prediction problem

22 / dσσ ε

desired output. A s

bers, whereas

given Mack

2
εσ

aller

 a larger

e

2
dσ

 we selected 100 different

ρ

ρ

 seri ρ

Square Error (SSE) between two sequential generations is smaller than 0.01. For

HRDGA, the stopping generation is set to be 5,000.

 (a) Training performances

 94

Figure 6.25 Training performances and Pareto
different number

fronts for the resulting neural networks with
of hidden neurons

 95

 (a) Testing performances

Figure 6.28 Training performances and Pareto
different number of hidden neurons for

Figure esting performances and Pareto fronts
number of hidden ne

 (a) Testing performances (b) Resulting Pareto front

6.26 T for the resulting neural networks with different
urons for testing set #1

rmances (b) Resu (a) Testing perfo

6.27 Testing performances and Pareto fronts
number of hidden ne

lting Pareto front

for the resulting neural networks with different
urons for testing set #2

Figure

 (b) Resulting Pareto front

fronts for the resulting neural networks with
 testing set #3

For the given time series, first 250 seconds of the data is used as the training data

set, and then the data from 250 – 499, 500 – 749, 750 – 999 and 1,000 – 1,249 seconds

are used as the corresponding testing data sets to be predicted by four different

tain

the statistical averag ining SSE of neural

networ

approaches. Each approach runs 30 times with different parameter initializations to ob

e. Figure 6.25(a) shows the resulting average tra

ks with different number of hidden neurons by four training approaches. Figure

6.25(b) shows the approximated Pareto fronts (i.e., non-dominated sets) by the selected

four approaches. Figure 6.26(a) shows the average testing SSEs of the resulting networks

by using the first testing data set for each approach, and Figure 6.26(b) shows their

corresponding Pareto fronts. Furthermore, Figures 6.27(a) and (b), Figures 6.28(a) and

(b) and Figures 6.29(a) and (b) show the same types of results by using the second, third

and fourth testing data sets, respectively.

 (a) Testing performances

Figure 6.29 Training performances and Pareto fronts
different number of hidden neurons for

For each algorithm, the resulting network th

selected from the final Pareto front as the

ominated individual network will be

 (b) Resulting Pareto front

 for the resulting neural networks with
 testing set #4

at provides the best training result is

best network for the training set. Meanwhile,

 evaluated by each of the testing set, and each non-d

 96

the the

corresponding testing set.

Table 6.6 shows the performances and their corresponding numbers of hidden

neurons of the best networks for the training and testing sets.

rformance comparison between KNN, OLS, GRNN and HRDGA

From Figures 6.25 – 6.29, comparing to KNN and GRNN, HRDGA and OLS

algorithms much smal nin d t erro or e n ork ure

KNN trained networks produce the worst performanc bec e R ce f th

KNN algorithm are randomly selected, which make KNN to achieve at best a “local

optimu

n is only partially

Best performance
for Training set

Best performance
for Testing set #1

Best performance
for Testing set #2

Best performance
for Testing set #3

Best performance
for Testing set #4

one which provides best testing performance is extracted as the best network for

Table 6.6 Structure and pe

n
r

Training
SSE

Neuron
number

Testing
SSE

Neuron
number

Testing
SSE

Neuron
number

Testing
SSE

Neuron
number

Testing
SSE

Neuro
numbe

KNN 2.8339 69 3.3693 42 3.4520 42

4.8586

48

4.8074

19

GR

37 NN

2.3382

68

2.7720

38

3.0711

43

2.9644

40

3.2348

 have ler trai g an esting rs f the sam etw struct s.

es, ause th BF nters o e

OLS

2.3329 60

2.4601 46

2.5856 50

2.5369 37

2.7199 54

HR

DGA

2.2901

74

2.4633

47

2.5534

52

2.5226

48

2.7216

58

m” solution. Since GA always seeks “global optimum”, and the orthogonal result

is near optimal, the performances of OLS are comparable to HRDGA.

Moreover, from Figure 6.25, it is found that when the network complexity

increases, the training error decreases. This phenomenon can be observed from the results

by all of the selected training approaches. However, this phenomeno

 97

maintained for the relationship between the testing performances and the network

comple

 by

increasing or decreasing the neuron numbers at will. On the other hand, although the OLS

algorith

xity. Before the number of hidden neurons reaches a certain threshold, the testing

error still decreases as the network complexity increases. After that, the testing error has

the tendency to fluctuate even when the number of hidden neurons continuously

increases. This occurrence can be considered as that the resulting networks are overfitted.

The network with the best testing performance before overfitting occurs is called the

optimal network and judged as the final solution by conventional NN design algorithms

[66]. However, from Figures 6.25 – 6.29 and Table 6.6, it is very difficult to identify a

single optimal network that can offer the best performances for all the testing data sets,

since these data sets possess different traits. Therefore, instead of searching for a single

optimal neural network, an algorithm that can result in a near-complete set of near-

optimal networks can be a more reasonable and applicable option. This is the essential

reason that MOEAs can be justified for this type of neural network design problems.

From the simulation results, although KNN and GRNN approaches did not

provide better training and testing results comparing to the other two approaches, they

have share the advantage that the designer can control the network complexity

m always provides near-optimal network solutions with good training and testing

performance, it also has serious problem to generate a set of network solutions in that the

designers cannot manage the network structure directly. The trade-off characteristic

between network performance and complexity totally depends on the value of tolerance

parameter ρ . Same ρ value means completely different trade-off features for different

 98

NN design problems. In addition, as shown in Figure 6.30, the relationship between ρ

value and network topology is a nonlinear, many-to-one mapping, which may cause a

redundant computation effort in order to generate a near-complete neural network

solution set. Compared with the other three training approaches, HRDGA does not have

problems in designing trade-off parameters, because it treats each objective equally and

independently, and its population diversity preserving techniques help it to build a near-

uniformly distributed non-dominated solution set.

e

Figure 6.30 Relationship between values and network complexiti

paring to the other three traditional training app

DGA algorithm offers several benefits for the neural network design

ρ

rms of:

es

herefore, com roaches, th

proposed HR

problems in te

ty;

T

a) Providing a set of candidate solutions, which is evolved by GA’s

population-based optimization capability and the definition of Pareto

optimali

 99

b) Presenting competitive or even superior individuals with high training and

testing performances. This is resulted from GA’s feature of seeking

“global optimum” and HRDGAs’ Pareto ranking technique; and

e and the

c) Offering a near-complete, non-dominated set and long-extended Pareto

front, which is credited from HRDGA’s population diversity keeping

design that can be found in AARS, density preserving techniqu

concept of “forbidden region.”

 100

VII. DYNAMIC POPULATION SIZE IN MOEA DESIGN

7.1 Introduction

In the prev iewed and

xamined by a set of MOP test functions. From the design procedures of these MOEAs,

algorithms share the same purpose—searching for a uniformly

distribu

ves have been proposed [76-79]. Since

ious three chapters, several existing MOEAs were rev

e

we know that all of these

ted, near-optimal and near-complete Pareto front for a given MOP. However, this

ultimate goal is far from being accomplished by the existing MOEAs in terms of dealing

with some of MOPs with special challenging characteristics as discussed in Chapter VI.

In one respect, most of the MOPs are very complicated and require the computational

resources to be homogenously distributed in a high dimensional search space. On the

other hand, those better-fit individuals generally have strong tendencies to restrict

searching efforts within local areas because of the “genetic drift” phenomenon, which

results into the loss of diversity due to stochastic sampling. This phenomenon is a well-

known trade-off decision pertaining to the efficiency and efficacy dilemma [75].

Additionally, most of the existing MOEAs adopt a heuristically chosen population size to

initialize the evolutionary process. However, as addressed in [76], evolutionary algorithm

may suffer from premature convergence if the population size if too small, whereas a

over estimated population size will result in a heavy burden of undesired computation

and a long waiting time for fitness improvement.

In the case of Single Objective (SO) optimization, several methods of determining

an optimal population size from different perspecti

 101

the purpose of solving an SO problem is to search for a single optimal solution at the

final ge

 in some elitism based MOEAs, main population and elitist

archive are separated and updated by exchanging elitists between them, the size of the

main p

neration, the distribution characteristics of the final population is not an issue to

be concerned. However, in order to solve MOPs, an MOEA needs to uniformly distribute

its computation effort in all the explored and unexplored areas and locate reasonable

number of possible non-dominated points to sketch a near-complete Pareto front. In

general, the size of final Pareto set yielded by most MOEAs remains to be equivalent to

the size of initial population. As indicated in [6], the exact trade-off surface of an MOP is

often unknown in a priori, it is difficult to estimate an optimal number of individuals

necessary for effective exploration of the solution space as well as a good representation

of the trade-off surface. This difficulty implies that a “guessed” size of the initial

population is not appropriate in a real world application. Therefore, a dynamic population

size autonomously adjusted by the on-line characteristics of population trade-off and

density distribution information will be more efficient and effective than a constant

population size in terms of avoiding premature convergence and unnecessary

computational complexity.

As pointed out in [80], the issue of dynamic population in MOEAs has not been

well attended yet. Although

opulation or the sum of the main population and the archive is still fixed [10-12].

Therefore, either a “guessed” size of initial population is needed in some of these

algorithms or a maximum size of archive is predetermined [52]. Tan, Lee and Khor

proposed an Incrementing Multiobjective Evolutionary Algorithm (IMOEA) [80], which

 102

devises a fuzzy boundary local perturbation technique and a dynamic local fine-tuning

method in order to achieve broader neighborhood explorations and eliminate gaps and

discontinuities along the Pareto front. However, this algorithm adopts a heuristic method

to estimate the desired population size)(ndps for next generation according to the

approximated trade-off hyperareas of current generation, but not based on the dominance

and density information of the entire objective space. Therefore, the computation load

may be wrongly determined if the approx n of)(ndps value is inaccurate, which

may force IMOEA adjust grid density to reach the incorrect “optimal” population size.

Moreover, IMOEA is relatively complicated and not compared with those most recently

designed MOEAs (i.e., PAES, SPEA II, NSGA-II and RDGA). Its robustness needs to be

further examined by different initial populations.

In this Chapter, based on RDGA, a Dynamic population-size Multiobjective

Evolutionary Algorithm (DMOEA) is proposed.

imatio

 In DMOEA, a cell-based rank and

density calculation strategy is devised and an MOP will be converted into a bi-objective

optimization problem in terms of individual’s rank and density values [54]. Meanwhile, a

population growing strategy is designed based on the converted fitness and three types of

qualitative indicators—age, health and crowd— are associated with each individual in

order to determine the likelihood of eliminating an individual. In addition, an objective

space compression strategy is devised and the resulting Pareto front is continuously

refined based on different steady states. Three recently designed complex test functions

are used to examine the efficiency and effectiveness of the proposed DMOEA. For a fair

comparison, five representative MOEAs (PAES [52], SPEA II [12], NSGA-II [14],

 103

RDGA [54] and IMOEA [80]) are also tested by the chosen benchmark problems. By

examining four performance measures and the resulting Pareto fronts, DMOEA is found

to be competitive with, or even superior to, the five selected MOEAs in terms of keeping

the diversity of the individuals along the trade-off surface, tending to extend the Pareto

front to new areas and finding a well-approximated Pareto optimal front. Moreover, from

simulation results, DMOEA shows the potential to autonomously converging to the

optimal population size, which is found insensitive to the initial population size chosen.

7.2 Incrementing Multiobjective Evolutionary Algorithm

Although Pareto Archive Evolutionary Strategy (PAES) implements a population

increm e by keeping adding new non-dominated individuals to the archive,

menting Multiobjective

Evoluti

 are the lower and upper bound for the desired population size

, respectively. In addition, IMOEA applied the method used in [81] to estimate the

approximated number of hyperareas by

enting schem

the first MOEA that applies dynamic population strategy is Incre

onary Algorithm (IMOEA) proposed by Tan, Lee and Khor [80]. In IMOEA, the

method of fuzzy boundary local perturbation was incorporated with interactive local fine-

tuning for boarder neighborhood exploration to increase population size with competent

offspring. Considering an m-dimension objective space, the desired population size

)(ndps , with the desired population size per unit volume, ppv , and the approximated

tradeoff hyperarea of)(nA discovered by the population at generation n is defined as

to)()(, (7.1)

where lowbps and up

to

upbpsnAppvndpslowbps ≤×=≤

bps

)(ndps

 104

2/)1

21
)(

−

×
−

≈to m
nA

ize ated des

1()(

)!
2

(

−

mm ndπ (7.2)

where) is the diameter of the hypersphere at generation n. Therefore, based on the

ulting population s and estim ired population size

(ndps , IMOEA adaptively filled in or filtered out individuals according to their rank and

density status. In the simulation results, NSGA and SPEA are compared with IMOEA on

three test functions and IMOEA shown better performance than the other two in terms of

several selected indicators. However, none of the advanced MOEAs (i.e., PAES, SPAE

II, NSGA-II and RDGA) was used and compared with IMOEA and the robustness of

IMOEA on different initial population size is not carefully examined.

7.3 Dynamic Multiobjective Evolutionary Algorithm

Generally, the approximation of the Pareto-optimal set involves two objectives:

the distance to the true Pareto front is to be minimized while the diversity of the

generated solutions is to be maximized [54]. For the first objective, a Pareto-based fitness

assignment (ranking scheme) is usually designed in many existing MOEAs [12] in order

to guide the search towards the ideal Pareto optimal front. For the second objective, some

MOEAs provide a density estimation method to preserve the population diversity.

Unfortunately, these two objectives are conflicting since the diversity preservation

process will slow down the convergence speed, or even degrade the quality of the

resulting Pareto front. In one respect, as a general GA, MOEA exploits the “genetic drift”

characteristic to converge the solution to each of the optimal point. On the other hand, the

(nd

difference between res

)

 105

“genetic drift” phenomenon must be avoided in order to sketch a uniformly sampled

trade-off surface for the final Pareto front. This contradicted issue is very difficult to be

solved by MOEAs with fixed population size, since they have to homogenously distribute

the predetermined computation resource to all the possible directions in the objective

space. Therefore, to cope with this contradiction, a Dynamic Multiobjective Evolutionary

Algorithm (DMOEA) is proposed in this chapter.

Similar to the other advanced MOEAs [12-14,54], DMOEA also converts the

original MOP into a bi-objective optimization problem—minimizing individual rank

value and maintaining individual density value [84]. However, as adding or removing an

individ

nsional objective space is divided into

cells (i.e. grids), thus the cell width in the ith objective dimension

ual will affect the rank and density values of other individuals, the rank and

density values of each individual need to be recalculated after the population has been

updated. This recalculation will cost more computation time as the population size

increases to a larger number. Therefore, to solve this problem, we design a novel cell-

based rank and density calculation scheme.

7.3.1 Cell-based Rank and Density Calculation Scheme

In DMOEA, the original n-dime

nKKK ××× K1 id

i

K
, ni ,...,1= , (7. 3)

2

can be formed as

i

i
i

FF
d

minmax −
=

 106

where and a the esti for th ith o

dimension. After the objective space has been determined and divided, as shown in

 7.1(ente

max
iF min

iF

Figure a), the c r position of each cell will be obtained and two matrixes are set up

to store the rank and density values of each cell, which initially are 1 and 0, respectively

(shown in Figure 7.1(b) – (c)). Second, each individual of initial population will search

for its nearest cell center and identify this cell as its “home address” and consider the

other individuals who share the same “home address” as its “family members”. Then as

shown in Figure 7.2(a) – (c), for each of these “homes”, the number of “family members”

who dwell in it will be counted and saved as the density value of the “home”. In addition,

the rank values of the cells that dominated by any of these “homes” will be increased by

the density values of those “home”. Third, when an offspring is generated and accepted

(individual C in Figure 7.3(a)), its “home address” can be easily located by following the

second step and the density value of its “home” will increase by one and the rank values

of the cells dominated by its “home” will be increased by one. Meanwhile, if an old

individual (individual B in Figure 7.2(a)) is removed, its “home” will be notified and the

density value of its “home” will decrease by one and the rank values of the cells

dominated by its “home” will be decreased by one, correspondingly. Therefore, at each

generation, an individual can access its “home address” and then obtain the

corresponding rank and density values. The “home address” is merely a “pointer” to

inform an individual where to find its rank and density values. For instance, as shown in

Figure 7.3, the “home address”, rank and density values of individual A are (5,2), 2 and

1, respectively. Therefore, if the estimated objective space is large enough that a newly

generated or a removed individual does not change the boundary of the range of current

re mated high and low boundaries e bjective

 107

objective space, the size of each cell will not change, which means an individual’s “home

address” will never change if this individual is not removed. By this means, the original

objective of searching for a near-complete, near-optimal and uniformly distributed Pareto

front has been converted to locate as many optimal “home addresses” as possible, each of

which contains ppv number of these individuals.

 (a) divided objective space (b) initial density matrix (c) initial rank matrix

Figure 7.1 Estimated objective space, initial den

max
1F

max
2F

min
1F

min
2F

max
1F

max
2F

min
1F

min
2F

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 1
1 1 1 1 1 11 1 1 1 1 1
1 1 1 1 1 11 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 1
1 1 1 1 1 11 1 1 1 1 1

sity matrix and initial rank matrix

tio ing de trices

 (

io ponding den nk matrix

 (a) initial population

Figure 7.2 Initial popula

max
1Fmin

1F
min

2F

A
B

max
1Fmin

1F
min

2F

A
B

max
2F

 (b) density matrix

n and its correspond

0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 00 0 0 0 0 0
0 1 0 0 1 00 1 0 0 1 0

 (c) rank matrix

nsity and rank ma

1 1 1 1 1 1
1 1 2 2 2 3
1 1 1 1 1 11 1 1 1 1 1
1 1 2 2 2 31 1 2 2 2 3

 (a) updated population

Figure 7.3 (a) Updated populat

max
1Fmin

1F
min

2F

A
C

max
1Fmin

1F
min

2F

A
C

 (b) density matrix

n and its corres

0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 00 0 0 0 0 0
0 1 0 0 1 00 1 0 0 1 0

c) rank matrix

sity matrix and ra

1 1 1 1 1 1
1 1 2 2 2 3
1 1 1 1 1 11 1 1 1 1 1
1 1 2 2 2 31 1 2 2 2 3

0 0 0 0 0 0
0 0 0 1 0 00 0 0 1 0 00 0 0 1 0 0 1 2 4 4 6 61 2 4 4 6 61 2 4 4 6 6
0 0 2 0 0 0
0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

0 0 2 0 0 00 0 2 0 0 0
0 0 0 0 0 00 0 0 0 0 0

1 2 4 5 6 6

1 2 2 4 5 5
1 2 2 2 3 3

1 2 4 5 6 61 2 4 5 6 6

1 2 2 4 5 51 2 2 4 5 5
1 2 2 2 3 31 2 2 2 3 3

max
2F

max
2F max
2F

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 1 3 4 5 6 61 3 4 5 6 61 3 4 5 6 6
0 0 0 1 0 0
0 0 1 0 1 0
1 0 0 0 0 0

0 0 0 1 0 00 0 0 1 0 0
0 0 1 0 1 00 0 1 0 1 0
1 0 0 0 0 01 0 0 0 0 0

1 3 4 4 6 6
1 3 3 4 5 5
1 3 3 2 3 3

1 3 4 4 6 61 3 4 4 6 6
1 3 3 4 5 51 3 3 4 5 5
1 3 3 2 3 31 3 3 2 3 3

 108

Although the genetic operations (i.e., crossover and mutation) a sre till performed

by genotype chromosomes, the fitness evaluation of whether the resulting offspring is

good or not is based on its location on the rank and density matrices. By this method, the

procedure of updating rank and density matrixes is totally irrelevant to the procedure of

fitness evaluation on an individual. On one respect, as each crossover or mutation

operation can only produce at most two new individuals, the computation load on

updating the rank and density will be trivial for each generation. On the other hand, when

two individuals are compared, they just need to provide their “home addresses” and the

current rank or density status of their “home addresses” can be evaluated to determine

which individual is better fitted. Therefore, no matter how large the population size is, the

computation effort of both matrixes updating and fitness evaluation will not be affected,

which provide an efficient way in applying dynamic population size in evolutionary

process.

7.3.2 Cell Rank and Health Indicator

Once the rank and density values of each cell have been obtained by using the

method described as Subsection 7.3.1, two indicators that are associated with rank and

density values are designed to determine if a cell is “comfortable” enough for an

individual to inhabit. They are health and crowd indicators.

In DOMGA, we convert the rank value of a cell into a health indicator in order to

measure the dominance status of the concerned cell comparing to the other cells. Assume

 109

at generation , a cell has a rank value , the health value of cell c at

generation is given as

n c),(ncrank

n

),(
1),(

ncrank
ncH = . (7.4)

From Equation (7.4), a cell with rank value 1, which is the healthiest, will have an

 value equal to 1 and a cell with higher rank value will have a lower value that is

more closer to 0 (Figure 7.4). Therefore, an value indicates the Pareto rank

information of a cell and the relationship between a cell’s rank value and value is not

linear. In one aspect, values drop very fast if rank values are greater than 1, which

results in a significant difference between dominated and non-dominated cells in terms of

health condition. On the other hand, values also saturate very fast, which assigns all

the dominated cells very low H values (near zero) if their rank values are very high. This

characteristic can be used by the individual elimination scheme that will be discussed

later.

H H

H

H

H

H

Figure 7.4 Relationship between rank value and health value.

7.3.3 Cell Density and Crowd Indicators

Referring to [80], consider an m-dimension objective space, the desired

population size, , with the desired population size per unit volume, , and the)(ndps ppv

 110

explored trade-off hyper-area, , discovered by the population at generation can

be defined as Equation (7.1). Therefore, with given population size per unit volume,

, the optimal population size can be obtained if an MOEA can correctly discover all

the trade-off hyper-areas for an MOP. In DMOEA, instead of estimate the trade-off

hyper-area for each generation [80], we concentrate on searching for a near-

complete final set of trade-off hyper-areas and ensure each of these areas contains

number of non-dominated individuals. Therefore, by using DMOEA, the optimal

population size and final Pareto front will be found simultaneously at the final generation.

)(nAto n

ppv

)(nAto

ppv

n) =

As discussed in Subsection 7.3.1, the density value of a cell is defined as the

number of the individuals located in it. The finer the resolution of the cell is, the better

performance DMOEA can provide. A crowdness is associated with each cell to show

current density information of the concerned cell. Assume at generation , the density

value of cell c is , the crowdness indicator of cell is defined as

n

),(ncdensity c

ppv

ncdensityc),(,(D . (7.5)

Therefore, by using crowdness indicator, we can obtain the information about how

congested each cell is, comparing to the desired value. ppv

7.3.4 Population growing strategy

In general, if an MOEA has a fixed population size, a “replacement” scheme is

always applied. In this scheme, in order to keep the population size unchanged, a

newborn offspring will replace one of its parents if its fitness value is higher than that of

 111

the parent. However, this scheme brings up a problem that some of the replaced parents

may still be very valuable and have not been well exploited yet before they are replaced.

Although some MOEAs (i.e. NSGA-II and SPEA II) adopt an elitist archive in addition

to the main population in order to store some of the non-dominated individuals generated

during the evolutionary process, this problem is still not completely resolved. Therefore,

DMOEA applies two independent strategies—population growing strategy and

population decline strategy. The first strategy only focus on pure population increment

and ensures each of the individual survives enough generations so that it can contribute

its valuable schemas. Meanwhile a population declining strategy is also designed to

prevent the population size growing excessively. The second strategy will be discussed in

the next Subsection.

Because exploring the cells with minimum rank values and maintaining these

cells densities to a desired value are two converted objectives of DMOEA, crossover and

mutation operations need to be devised to fit both of the purposes. For crossover, a

reproduction pool with a fixed number of selected parents is setup; a Cellular GA [53] is

then applied to explore the new search area by “diffusion”— each selected parent

performs crossover with a randomly selected individual located in the nearest cell that

dominates the concerned cell. If a resulting offspring is located in a cell with a better

fitness (a lower rank value or a lower density value) than its selected parents, it will be

kept to the next generation; otherwise, it will not survive. The mutation operation is

analogous. As a result, this strategy will guarantee that a newborn individual will have a

better fitness value than at least one of its parents, which helps DMOEA to cover all the

 112

unexplored cells in the objective space. To prevent “harmful” offspring from surviving

and affecting the evolutionary direction and speed, forbidden region concept is applied

in the offspring-generating scheme for the density subpopulation.

7.3.5 Population declining strategy

As discussed in Subsection 7.3.4, a population declining strategy is necessary to

prevent the population size growing unbounded. In DMOEA, whether an individual will

be removed or not depends on its health and crowdness indicators we mentioned in

Subsection 7.3.2 and 7.3.3. Moreover, to ensure that each appeared individual has enough

lifespan to contribute its valuable schemas, an age indictor is also designed in DMOEA.

For an individual in the initial population, its age value is assigned to be one, and its age

will increase by one if the individual survives at the next generation. Similarly, the age of

a newborn offspring is one and grows generation by generation as long as it lives.

Assume at generation , an individual has an age value , its age indicator

 is given by

n y),(nyage

),(nyA

n
Anyage

nyA th−
=

),(
),(, (7.6)

where is a pre-specified age threshold, which means that an individual will not be

eliminated if its age is less than .

thA

thA

To ensure that an eliminated individual has a low fitness value, DMOEA

moderately removes three types of individuals with different livelihoods:

 113

1) Likelihood of removing the most unhealthy individuals

At generation , find a set Y that contains all the individuals with the highest rank value

. Therefore, if is larger than 1, the likelihood of individual to be

eliminated is given by

n r

maxr maxr ri Yy ∈

),()),(1(2
1

nyAncHl ii
i ×−= , (7.7)

where
max

1),(
r

ncH i =

iy

 denotes the health indicator value of the cell c that contains

individual at generation n .

i

2) Likelihood of removing the unhealthy individuals in the most crowded cells

At generation , find a set Y that contains all the individuals with the highest density

value, and then find a set Y that includes all the individuals with the highest cell

rank value . In addition, denote the pure Pareto rank of individual to be r .

Therefore, if r is greater than 1, the likelihood of individual to be eliminated is

given by

n

max

d

d

dr ⊆ dY

dr dri Yy ∈ di

max iy

),()1),(()11()),(1(22
2 nyAncD

r
ncHl ii

di
i

i ×−×−×−= , (7.8)

where
max

1),(
d

i r
ncH = and represent the health and crowdness values of the cell

 that contains individual at generation . It is noted that represents the

local rank value of the individuals of set Y and is calculated by pure Pareto ranking

scheme proposed by Goldberg [25]. Although all the individuals located in the same cell

),(ncD i

iyic n

dr

}{ didr rR =

 114

share the same rank value, they may still have local dominance relationship as shown in

Figure 7.5, where individuals A and B have the highest and lowest local (pure Pareto)

rank values, respectively. Therefore, by measuring local rank values among all the

individuals in one cell, DMOEA can determine the likelihood of eliminating an

Figure 7.5 Illustration of th

individual more precisely.

e pure Pareto ranking for the individuals located in the same cell

3) lls

 is equal to 1, find a set that contains all the individuals with

max
2F

max
1Fmin

1F
min

2F

A

B

max
2F

max
1Fmin

1F
min

2F

A

B

Likelihood of removing non-dominated individuals from the most crowded ce

after convergence

At generation n , if maxr rcY

the highest density value, and their local pure Pareto rank values of individual rci Yy ∈ to

be dir . Therefore, the likelihood of individual iy to be eliminated is given by

1 2i),()1()1),((
3

nyA
r

ncDl i
di

i ×−×−= , (7.9)

 represents the crowdness value of the cell that contains individual

ration n.

where),(ncD i ic iy

at gene

 115

To determine if an individual will be eliminated, three random numbers

between [0, 1] are generated to compare with the concerned likelihood, l , and ,

according to the situation of the given individual. If the likelihood is larger than the

corresponding random number, the selected individual will be removed from the

population. Otherwise, the selected individual will survive to the next generation.

Therefore, from Equations (7.7) – (7.9), we can draw some observations as follows.

iy

i
1

il
2

il
3

1) Because the age indicator influences all of three likelihood, , and

will be negative number if the age of the concerned individual is smaller than the age

threshold . This implies that if an individual is not old enough, it will not be

eliminated from the population no matter how high its rank and density value is.

),(nyA i 1l 2l 3l

thA

2) At each generation, DMOEA will remove those most unhealthy individuals

according to likelihood l , based on their rank values and ages. Assume the age indicator

of an individual is , the relationship between its rank value and l value is

illustrated in Figure 7.6. Without considering the effects of other indicators, when an

unhealthy individual in the set Y has a very high value, it will have a very high

likelihood (l) to be eliminated, since it is too far away from the current Pareto front.

Moreover, as drops and gets closer to 1, l will decrease very fast, and the concerned

individual will not be removed easily because it is very likely to be evolved into an elitist

in the future. Therefore, this “shell removing” strategy will keep eliminating the

individuals located on the outside layer with an adaptive probability until the entire

population converges into a non-dominated set.

1

(yAy 1), ≈n 1

r maxr

1

maxr 1

 116

Figure 6 Relationship between rank values and l values 1

3) Because all the individuals in the same cell share the fixed computation resource (or

“living resource”), the individuals located in a crowded cell have to compete much harder

for the limited resource than those located in a sparse cell. Therefore, another elimination

scheme based on crowdness indicator values is designed in DMOEA in order to remove

some unhealthy individuals that stay in the most crowded areas. From Equation (7.8), at

each generation, if an individual belongs to the set Y , it will have the likelihood of l to

be eliminated based on its age, health, and local rank value and density condition. From

this scheme, the population tends to be homogeneously distributed by eliminating the

redundant individuals.

dr 2

4) After every individual has converged into a Pareto point, another elimination

scheme is implemented based on values. Therefore, the resulting trade-off hyperareas

 are counted, and the final population is truncated to ensure each cell contains

 number of individuals; thus the optimal population size can be calculated by

Equation (7.1).

3l

)(nAto

ppv

 117

7.4 Objective Space Compression Strategy

Although the cell-based rank and density calculation scheme discussed in

Subsection 7.3.1 can significantly improve the efficiency of DMOEA during its

evolutionary process, it cannot guarantee the accuracy of the resulting Pareto front since

an individual’s rank value is represented by the rank value of its “home address”, not by

its own dominance status. Because the size of true Pareto front is generally unknown, the

boundaries of the objective are usually selected to be very large, which may be far away

from the true Pareto front, to ensure entire true Pareto front is covered by the estimated

objective space. In this case, if the predetermined cell scale are not chosen to be

correspondingly large enough, the size of a cell will be too spacious comparing to the true

Pareto front, which may result in a set of inaccurate Pareto optimal set. This

phenomenon can be illustrated as Figure 7.7 (a), where the rank value of both cell A and

B is 1 since they contain true Pareto front. In this case, all the resulting individuals

located in cells A and B are non-dominated solutions according to proposed cell-based

rank calculation scheme. However, if we examine these individuals by using pure Pareto

ranking method, we will find that most of these individuals are dominated points. To

address this problem, we can either increase the cell scale to a very large

number or adaptively compress objective space. Nevertheless, the first method will

increase the computation time because it leaves too many redundant empty cells when the

resulting Pareto front approaches true Pareto front. Therefore, an objective space

compression strategy is designed to adjust the size of objective space and make it suitable

to search for the true Pareto front with a high precision. Assume at generation n , the high

nKK ,,1 K

K ,,1 K nK

 118

and low boundaries of the ith dimension of the objective space and current population are

, , and . Then three criteria are evaluated: max
iF min

iF

(iF

thA

max
iF

min
iF

max
iP

max
iP−

(P=

(P=

min
iP

.0) >

iF+

iF+

1) maximum cell rank value of all the individuals is 1;

2) and ((7.10))(1 minmaxmax
ii FF −)(1.0) minmaxminmin

iiii FFFP −>−

3) minimum age value of all the individuals is greater than predefined age threshold

.

The ratio, 0.1 in Equation (7.10) is chosen heuristically. Therefore, if all of above

three criteria are satisfied, a new-generated high boundary of the objective space is

defined as:

2/)maxmax
i , (7.11)

which means the distance between the updated high boundary of the objective space and

the high boundary of the current population has decreased to half of its original value.

Similarly,

 , (7.12) 2/)minmin
i

which means the distance between the updated low boundary of the objective space and

the low boundary of the current population has decreased to half of its original value.

The rationale of introducing the first criterion is to ensure the approximated area of the

true Pareto front has been discovered before the objective space is compressed, which can

avoid incorrect truncation of potential non-dominated cells. Moreover, after a

compression strategy is performed, the cell rank and density value will not remain the

same as before, and the “home address” of each individual may change correspondingly.

As a consequence, the cell rank and density values need to be recalculated, which may

 119

cost tremendous amounts of computing time. For these reasons, the objective space is not

compressed at each generation..

Comparing Figure 7.7(a) with 7.7(b), we can see that the proposed objective

space compression strategy results in three effects:

1) Some individuals that are originally considered as Pareto points are pushed out of

the updated non-dominated cells, which implies the resulting Pareto front are

refined.

2) The density values of the updated non-dominated cells are reduced.

3) Some new non-dominated cells may be created (cell C in Figure 7.7(b)).

Therefore, by continuously compressing the objective space, the resulting non-dominated

set can be tuned and a more extended and homogenously distributed Pareto front can be

obtained.

max
2F

max
1Fmin

1F
min

2F

True Pareto
front

A B

max
2F

max
1Fmin

1F
min

2F

True Pareto
front

A B

max
2F

min
1F

min
2F C

A
B

max
1F

max
2F

min
1F

min
2F C

A
B

max
1F

 (a) Original objective space (b) Compressed objective sapce

Figure 7.7 Illustration of objective space compression strategy

7.5 Convergence Properties and Final Refinement Method

Based on all the techniques introduced from Subsection 7.3—7.4, we can

determine if DMOEA has converged by examining the following criteria:

a. The rank values of all cells are 1s.

 120

b. The objective space cannot be compressed anymore.

c. Each resulting non-dominated cell contains individuals. ppv

When all three criteria are met, the resulting non-dominated set can hardly be

refined by DMOEA any further. At this stage, DMOEA will keep running and the cell-

based rank calculation scheme will be replaced by pure Pareto ranking scheme [25],

whereas cell-based density calculation scheme remains unchanged. The reason of this

step is because another criterion “the Pareto ranks of all resulting individuals are equal to

1” should be satisfied as well to guarantee there is no dominance relationship among

resulting Pareto solutions at the final generation. Figure 7.8 shows the flowchart of

proposed DMOEA.

Figure 7.8 Flow chart of DMOEA

Initial population,calculate
for each dimension, initial generation n=0

Are all the
objective space compression

conditions satisfied?

min
iF max

iF max
iPmin

iP

Yes

No

Compress objective space

Population declining strategy

Divide main population into
two subpopulations

Crossover and mutation in
subpopulation #1 to
minimize rank value

Crossover and mutation in
subpopulation #2 to

maintain density value

Fitness evaluation and
Population growing strategy

Is population
Converged and stop

criteria met?
Stop evolutionary process

YesNo

n=n+1

Initial population,calculate
for each dimension, initial generation n=0

Are all the
objective space compression

conditions satisfied?

min
iF max

iF max
iPmin

iP

Yes

No

Compress objective space

Population declining strategy

Divide main population into
two subpopulations

Crossover and mutation in
subpopulation #1 to
minimize rank value

Crossover and mutation in
subpopulation #2 to

maintain density value

Fitness evaluation and
Population growing strategy

Is population
Converged and stop

criteria met?
Stop evolutionary process

YesNo

n=n+1

 121

7.6 Simulation I—Testing Study on DMOEA

Here a modified MOP as the test function F5 that

ormance of DMOEA. Figures 7.9(a)

and (b)

 designed by Deb [82] is used

has a discontinuous Pareto front to examine the perf

 show the Pareto optimal set (i.e., in terms of decision variables, , xx) and true

Pareto front (i.e., in terms of objective variables, , ff) for this problem.

 Minimize),(211 xxf and),(212 xxf , where

21

21

 ,

)10sin()
1

1()1(),(1
2

121
21 x

x
xxxxxf π×−

+
−×+=

 1,0 21 ≤≤ xx .

1211),(xxxf =

with
12

22 x +
 (7.13)

 (b) Pareto front of function F5

 set and Pareto front of function F5

e boundary of the feasible objective space

to be [0 and

initial population sizes—2, 30 and 100—are chosen to test the robustness of DMOEA.

The age

 (a) Pareto optimal set of function F5

 Figure 7.9 Illustration of Pareto optimal

For the given test function, we select th

, 1] and [-1, 2.5] and the number of cells of each dimension to be 1 =K 50

12 =K 00 . The desired population size per cell is predefined as 5=ppv . Three specified

threshold, the stopping generation, the chromosome length of each decision

variable, the crossover rate and the mutation rate are chosen to be 10, 2000, 15, 0.7, and

 122

0.1, respectively in the simulation. DMOEA is run for 50 times for each selected

population size to obtain the average results and for each run, a new initial population

with the specified number of individuals is randomly generated and evolved by DMOEA.

Moreover, three indicators derived from each generation to quantitatively measure the

performance: average population rank value, average population density value and

average generational distance value. The final average population rank value, final

average population density value and final average generational distance are derived from

the last generation and illustrated via Box plots for the test function considered.

) Evolutionary trajectories of population sizes

The evolutionary trajectories for the average sizes of populations and the values

of th (d)

(a (b) Trajectories of average rank values

 (c) Trajectories of average density values

re 7.10 Evolutionary trajectories for
resulting by DMOEA with three different

 (d) Trajectories of average distance values

the population size and the values of three indicators
initial population sizes () on Function F5

Figu
10=thA

ree indicators over 50 runs are illustrated in Figure 7.10(a), (b), (c) and

 123

(c) Box plots for population distance values

of three indicators with three different initial populatio
Functi F5

respectively. The corresponding Box plots of the average final indicator values are shown

in Figure 7.11. Figure 7.12(a) shows the objective space and true Pareto front of the given

test function and Figure 7.12(b) shows the final Pareto front resulted by DMOEA with

initial population size . From Figures 7.10 and 7.11, we can observe that for the

given MOP test function, chosen grid of cells and predefined value, 275 individuals

Figure 7.11 Box plots n sizes () on

2=P

ppv

are determined as the final optimal population size (Pareto set). This implies that there

are 55 trade-off cells (hyper-areas)(nAto) that contain non-dominated individuals

discovered by DMOEA at the final generation.

.

.

 (a) Box plots for population rank values

 (b) Box plots for population density values

10=thA

on

 124

 (a) Objective space and Pareto front

Figure 7.12 Comparison of the true Pareto fron
) on Fun

7.

 order to compare the performance of DMOEA with other advanced MOEAs,

 m SPEA II,

NSGA-

gene

 (b) Resulting final Pareto front

t and the final Pareto front resulted by DMOEA
ction F5 (2=P

7 Simulation II—Comparison Study on DMOEA with Other MOEAs

In

three ore complex benchmark problems are tested by six MOEAs— PAES,

II, RDGA, IMOEA and the proposed DMOEA in the simulation, and each of the

algorithms runs for 50 times to obtain the statistical results. For each test function,

DMOEA will run with the initial population size equal to 2 and achieve an approximated

desired population size dps . Afterwards, for each of fifty runs, an initial population with

dps individuals is randomly generated and used by each of three population-based

MOEAs (i.e., NSGA-II, SPEA II and RDGA), while only one initial individual is

rated for PAES according to its design procedure [52]. The archive size is set to be

100 for all these MOEAs that involve the elitism scheme. For IMOEA, its initial

population size is also set to be 2 for a fair comparison. We use three indicators derived

from the final generations of 50 runs to benchmark the comparison results via statistical

Box plots. They are: average individual rank value, average individual density value and

average individual distance. As discussed in Subsections 4.2.3, for an individual,

 125

different ranking schemes will produce different rank values, which will be used in

respective fitness evaluations and selections. Therefore, for a fair comparison in terms of

ranking indicators among different MOEAs, we use Goldberg’s pure Pareto ranking

method [25] to recalculate the rank value for each individual resulted by each applied

MOEAs. Meanwhile, the average individual density value is calculated as the mean value

of all the individual density values. Furthermore, the “final average individual distance”

is also used as the third indicator to show how far the non-dominated points on the

resulting final Pareto front finalPF are away from the true Pareto front truePF , where truePF

is known in a priori for the given test functions. Moreover, in order to compare the

dominance relationship between two final populations resulted by two rent MO

the coverage of two sets (C value) [13] is also measured to show how the final

population of one algorithm dominate the final population of another algorithm.

diffe

rical

EAs,

hmark

To exam selected MOEAs and the proposed DMOEA

on the test functions with different Pareto front features, three nume benc

problem

ine the performances of the

s are used in the simulation study. Function F3 has been used in Chapter VI,

which has a high-dimensional decision space and local and global Pareto fronts in

objective space [82]. Function F6 has a high-dimensional decision and a high-

dimensional objective space [83]; and its true Pareto front is a surface instead of a curve.

Function F7 is advanced from function F6, which also involves high-dimensional

decision and objective spaces and the true Pareto front is 1/8 of a unit sphere. For a fair

comparison, the stopping generation, the chromosome length of each decision variable,

the crossover rate and the mutation rate are chosen to be 10,000, 15, 0.7 and 0.1,

respectively for all population-based MOEAs considered. One point crossover is used for

 126

all the population based MOEAs. In addition, we select (1+10)-PAES, and a bit flip

mutation rate k/1 is used for a chromosome of k genes. The tournament size domt is

chosen to be 2.

P=156

P=93

 (b) 100th generaion

 (e) 1,300th generation
e spaces and populations resulted

P=112

(c) 250th generation

7.7.1 F3—MOP with high-dimensional decision space

As an MOP with a high-dimensional decision space and local Pareto fronts in

(6.6) and its objective space is

illustra

OE

) First generation

objective space, this test function is described as Equation

ted as Figure 6.11. For DMOEA, the initial population, the age threshold, the

population size per unit volume, ppv and the cell scales 1K and 2K are selected as 2, 10,

3, 50 and 50, respectively. Figures 7.13(a) – (f) show the snapshots of the objective space

and individuals resulted from DM A at generations 1, 100, 250, 750, 1,300 and 10,000,

respectively. Similarly, Figures 14(a) – (f) and Figures 15(a) – (f) show the

corresponding rank and density values of these individuals resulted from DMOEA at

those generations, respectively.

P=257
P=420

P=2

(a

 (d) 700th generation

Figure 13 Snapshots of objectiv

 (f) 10,000th generation
 from DMOEA on Function F3 7.

 127

 (b) 100th generation

) First generation

(a (c) 250th generation

(d) 700th generation

Figure 7.14 Snapshots of objectiv

 (e) 1300th generation

e spaces and rank values resulted fr

 (f) 10,000th generation

om DMOEA on Function F3

(a) First generation

 (b) 100th generation (c) 250th generation

(d) 700th generation

Figure 15 Snapshots of objecti
 (e) 1300th generation
ve spaces and density values resulte

 (f) 10,000th generation
d from DMOEA on Function F3 7.

 128

From Figures 7.13 – 7.15, we can observe that although the initial population size

is selected to be a very small number, DMOEA can find the true Pareto front easily as

shown

 and e until all the individuals are non-dominated

points, and the density value each cell is equal to as shown in Figures 7.13(f),

7.14(f) and 7.15(f).

in Figure 7.13(f). In the beginning, two parents are randomly generated (i.e.,

2=P) and perform genetic operations (i.e., crossover and mutation). As these two

individuals do not dominate each other, and they are located in different “home

sses”, their rank and density values are all 1 (Figure 14(a) and 15(a)). At the

following generations, because the initial population is far away from the true Pareto

front, and the population size is much fewer than the optimal one, the proposed

population growing strategy affects the evolutionary process more than the population

declining strategy. For this reason, both the population size and rank values of the

dominated cells increase very fast to ensure those newly generated individuals disperse to

the true Pareto front (Figures 7.13(b) and (c) and Figures 7.14(b) and (c)). Meanwhile, as

cell density is preserved by DMOEA, the density values of all the individuals does not

change very much as shown in Figures 7.15(b) and (c). When the population moves

closer to the true Pareto front, it will be more difficult for the parents to generate better-

fitted offspring, which means the population growing strategy has difficulty in balancing

the population declining strategy, and both the population size and the cell ranks will

decrease as shown in Figures 7.13(d) and 7.14(d). When all the cells rank values drops to

1 and density values are 3 (ppv value), the objective space will be compressed, and the

new structure of cells will be created based on the new objective space and the original

addre

1K 2K . This procedure will continu

of ppv

 129

 (e) RDGA
ed from IMOEA, DMOEA, NSGA-II,

Function F3

 (d) PAES
Figure 16 Pareto fronts result

grid II

with a

 (a) IMOEA

 (b) DMOEA (c) NSGA-II

 (f) SPEA II
PAES, RDGA and SPEA II on 7.

 (a) Average individual rank

Figure 7.17 Box plots of ave

 value (b) Average individual density

rage individual rank, density and

 value (c) Averge individual distance value

 distance values on Function F3

As obtained from the result of DMOEA, the optimal population size for the given

 scale K and K is around 110. Therefore, we run NSGA-II, RDGA and SPEA1 2

fixed initial population size of 100 for a fair comparison. In addition, PAES with

one initial individual and IMOEA with two initial individuals are also run for 10,000

generations. The lowbps , ppv and upbps in IMOEA are chosen to be 1, 3 and 5,

respectively. Figure 7.16(a) – (f) show the resulting Pareto fronts by six chosen MOEAs,

while the Box plots for the average values of three indicators over 50 runs are illustrated

 130

in Figures 7.17(a), (b) and (c), respectively. The performance measures of),(ji XXC for

the comparison sets between algorithms i and j are shown in Figure 7.18, where

algorithms 1 – 6 represent IMOEA, DMOEA, NSGA-II, PAES, RDGA and SPEA II,

respectively.

)

)

s

(X

(X

), 613 −XX

), 616 −XX

culty in ind

 Figures 7.16 – 7.18, it is obvious that AES as gre fi ing

the true Pareto front of this MOP. On the other hand, NSGA-II, SPEA II and RDGA can

always

),(611 −XXC , 612 −XC (C

Figure 7.18 B

),(614 −XXC , 615 −XC (C

From P h at dif f

ox plots using C mea ure on

Function F3

 identify some points on the global Pareto front. IMOEA and the proposed

DMOEA can always find a near-complete, near-optimal Pareto front. In addition, PAES

and IMOEA also result in about 100 individuals at the final generation, which is similar

to the optimal population size found from DMOEA. Nevertheless, many individuals

resulted from PAES are not located on the global Pareto front and thus PAES produces

very low),(614 −XXC values as shown in Figure 7.18. Moreover, as shown in Figure

 131

7.17(b), the average individual density value generated by IMOEA is 4 instead of 3 (pre-

defined pp ince IMOEA’s goal is to meet the desired population size)(ndps

at generation n as estimated by Equations (7.1) and (7.2), the cell density value has to be

higher th ppv to keep the population size close to its optimal value if some of the

hyperareas are not explored. However, for DMOEA, finding)(ndps of each generation is

not its primary concern since the final optimal population size can be easily calculated as

the cell density is preserved and a complete set of hyperareas are discovered. In this case,

DMOEA produces a more complete Pareto front than those by the other five MOEAs,

and it also provides the highest),(612 −XXC values, which means the solution set that

was resulted from DMOEA most likely going to dominate the rest of the solution sets

resulted from the other chosen MO

v

an

7.7.2 F6—MOP

inim

value). S

with high-dimensional objective space

EAs.

and)(3 xf , where ize

)2 ,

t of

a unit sphere. As the mathematical expression o reto fr

)(1 xf ,)(2 xf

)
2

s((1gf x=

M

 cos()cos())(1()(1 xxgxf ππx+= (7.14)
221

)
2

sin(co))1()(2
2

xxx ππ
+ ,

)
2

sin())(1()(1
3

xgxf πx+= ,

2
12

1
)5.0()(∑

=

−=
i

ixg x ,

 subject to ,10 ≤≤ ix .12,,1 K=i

This test function is proposed in [84] as an MOP with high-dim

b s. Meanwhile, the true Pareto front of F6 is exac

ensional decision

and o t the first quadran

f the true Pa ont is clearly defined,

jective space

 132

Figure 7.19 Objective space and Pareto front of Function

The objective space (space between two spheres) and th

shown in Figure 7.19. For DMOEA and IMOEA,

the dis

cha ge

F6

e true Pareto front are

 the initial population, the population

size per unit volu cted as 2, 3, 20,

20 and

 on itial population

tance between the final and true Pareto front can be precisely calculated. The

desired population size can be determined based on the ppv value and the grid scales

K — K . According to [84], although NSGA-II can locate most of the population at its

final generation on the true Pareto front, the resulting non-dominated individuals are not

homogeneously distributed, which implies that this test function produces a great

llen for MOEAs in searching for a good representation of the true Pareto front when

it is a surface instead of a curve.

1 3

me, ppv and the cell scales 1K , 2K and 3K . are sele

 20, respectively. The age threshold is chosen to be 10 in DMOEA. At the final

generation, DMOEA results in about 1,800 individuals as the approximated optimal

population size. Based this estimation, the in size for NSGA-II, RDGA

and SPEA II is chosen to be 1,800. Figures 7.20(a) – (f) show the resulting Pareto fronts

by six chosen MOEAs and the Box plots for the average values of three indicators over

50 runs are illustrated in Figures 7.21(a), (b) and (c), respectively. The performance

 133

 (e) RDGA

ed from IMOEA, DMOEA, NSGA-II,
Function F6

measures of),(ji XXC for the comparison sets between algorithms i and j are shown

in Figure 7.22, where algorithms 1 – 6 represent IMOEA, DMOEA, NSGA-II, PAES,

RDGA and SPEA II, respectively. Moreover, the evolutionary trajectories of the

population size and average individual rank, density and distance values over 50 runs by

six selected MOEAs are shown in Figures 7.23 (a) – (d), respectively.

OEA

AES

areto fronts re

 (c)

, RD

-II

 and

d) P

Figure 20 P sult

) IM

(a (b) DMOEA NSGA

 ((f) SPEA II

PAES GA SPEA II on 7.

 (a) Average individual rank value (b)

igure 7.21 Box plots of average

 Average individual density value (c

 individual rank, density and dist

) Averge individual distance value

ance values on Function F6 F

 134

22 Box plots using C measure on Funct

From Figures 7.20– 7.22, it is obvious that

Figure

and homogenously distributed Pareto front comparing to the other advanced MOEAs.

Indeed, if the initial population size is correctly chosen, the MOEAs with the fixed

populat

),(611 −XXC),(612 −XXC),(613 −XXC

),(614 −XXC),(615 −XXC),(616 −XXC

ion F6

 DMOEA produces a more accurate

ion size (i.e., NSGA-II, RDGA and SPEA II) also yield to a competent Pareto

front in terms of rank, density and distance values as shown in Figures 7.21 (a) – (c) and

Figures 7.23(c) and (d). In addition, as the true Pareto front is a surface instead of a

curve, it is difficult for the resulting non-dominated sets from any two MOEAs to cover

each other. As the result, the C values are relatively low as seen in Figure 7.22. In

particular, because the Pareto points resulting from DMOEA have the lowest average

individual distance values and a converged average individual density value (as shown in

Figures 7.23(d) and 7.23(c)), they are very competitive, which makes the resulting Pareto

 135

front of all the other five MOEAs have great difficulty to cover, and),(21 XXC ,

),(,),,(XXCXXC L values are all near zero.

2623

(c) Average individual density values

Fi re 7.23 Evolutionary trajectories of popul
distance values from six selected

y and

Furthermore, Figures 7.23(a) – (d) also show the convergence speeds of chosen

MOEAs. Generally, IMOEA converges very fast since the Fuzzy Boundary Local

Perturb

 (a)

(a) Population sizes

 (b)

 (b) Average individual rank values

 (d) Average individual distance values

ation sizes and average individual rank, densit
MOEAs over 50 runs on Function F6

gu

ation method is used to assist EA in discovering better-fitted individuals at each

generation. However, as discussed in Subsection 7.2, IMOEA’s primary goal is to

estimate)(ndps by Equation (7.1), however, the cell density value is not carefully

preserved. As a result, the final population size produced by IMOEA is not very accurate,

and the average density value shows an appreciable deviation from ppv value as shown

in Figures 7.23(a) and (c). Indeed, for an MOP whose true Pareto front is known, the

 136

optimal population size can be computed if the population per unit volume ppv and cell

scales mKKK ××× K21 are given. For instance, for the test function F6, assume

3=ppv and 20==== KKKr , the desired population size dps can be calculated

as

321

4
8
32 ××≈r

 (7.1), for the sam

4
8
1

××= ppvdps π

which is very close to th

ing to Equation

,

e final population size discovered by DMOEA. However,

e setting, the num

 (7.15)

ber of hyperareas is accord

n is c

 Equation (7.15). For this reason, to

 a rea ble

188540014.3 =×

approximated by IMOEA as:

203
2

)(

)!1(

12/)1(×

−

−−π
mm

to

nd
m

942)
2

(

2

)(2 =×=

×≈ πnA

 ulated as

. (7.16)

Thus the desired population size for IMOEA at generation alc

, (7.17)

e from

lev

shown

)(ndps

28269423)()(=×=×= nAppvndps to

which is much larger than the correct valu

reach the infeasible high value of the desired population size, IMOEA is forced to

increase the population size by encouraging more individuals to dwell in the same cell,

which explains the high average individual density values shown in Figures 7.21(b) and

7.23(c). Nevertheless, because the lower and upper bound for)(ndps — lowbps and

upbps are hard constraints, the cell density value cannot be larger than upbps . Therefore,

the final population size resulting from IMOEA is still held at sona el as

 in Figure 7.23(a).

 137

It is also interesting to observe that some fluctuations occur on the population,

rank and density trajectories resulting from DMOEA in Figures 7.23 (a) – (c). This effect

is credited to the proposed objective space compression strategy if the original objective

space is greater than the surface of the true Pareto front. Each time when all three criteria

described in Subsection 7.4 are satisfied, the objective space will be compressed to an

extent. As a result, the size of each cell will decrease, and some of individuals originally

located in a non-dominated cell will be pushed into a dominated cell, which implies that

some cells will have higher rank or lower density values comparing to their previous

status. Therefore, the steady state is disturbed, and the population growing and declining

strategies start their process simultaneously to fill those sparse areas and remove

dominated individuals, and then reach a new steady population size. Because the increase

of the rank values is not significant, the likelihood of eliminating those dominated

individuals 1l is low as shown in Figure 7.4, which makes the population growing

strategy dominates the population declining strategy and the population size will rise

from this stage. When all the sparse cells are filled with certain numbers of new

individuals, DMOEA will experience difficulty in finding a better-fitted offspring.

Therefore, from this stage, the population declining strategy affects the population more

than the population growing strategy, and the population size will decrease until a new

steady state is reached. This process keeps refining the population as well as the cell size

until the objective space does not have any room to be compressed at the final steady

state. In addition, at the final steady state, all the non-dominated cells discovered by

DMOEA should have a ppv number of individuals. It is also worthy to note that the

individual distance value continuous to drop without any oscillation during the objective

 138

space compression process (Figure 7.23(d)), which helps DMOEA search for near-

optimal Pareto points.

7.7.3 F7—MOP with high-dimensional objective space and local Pareto fronts

 inimize , where)(1 xf ,)(2 xf and)(3 xf

2

os(() 1gf =

M

)cos()cos())(1()(21 xxgxf ππx+= ,
221

(7.18)

)
2

sin()c))1((2
2

xxx ππx+ ,

)
2

sin())(1()(1
3

xgxf πx+= ,

))5.0(20cos()5.0(12)(2
12

1

−−−+= ∑
=

i
i

i xxg πx ,

 subject to ,10 ≤≤ ix .12,,1 K=i

n F7

This test fu ensional decision

and objective spac al Pareto optimal

fronts

Figure 7.24 Objective space and Pareto front of Functio

nction is proposed in [84 as an MOP with high-dim]

es. In addition, function)(xg introduces)13(12 − loc

and one global (true) Pareto front as shown in Figure 7.24. For DMOEA and

IMOEA, the initial population, the popula size per uni e, ppv and the cell

scales 1K , 2K and 3K are selected as 2, 3, 20, 20 and 20, respectively. The age threshold

tion t volum

 139

 (b) DMOEA

is chosen to be 10 in DMOEA. At final generation, DMOEA results in about 1,700

individuals as the approximated optimal population size. Based on this value, the initial

population size for NSGA-II, RDGA, SPEA II is chosen to be 1,700. Figures 7.25(a) – (f)

show the resulting Pareto fronts by six chosen MOEAs, while the Box plots for the

average values of three indicators over 50 runs are illustrated in Figures 7.26 (a), (b) and

(c), respectively. The performance measures of),(ji XXC for the comparison sets

between algorithms i and j are shown in Figure 27, where algorithms 1 – 6 represent

IMOEA, DMOEA, NSGA-II, PAES, RDGA and SPEA II, respectively.

 (a) IMOEA

 (c) NSGA-II

 (d) PAES

gure 7.25 Pareto fronts resulted fr

 (e) RDGA

om IMOEA, DMOEA, NSG
Function F7

 (f) SPEA-II

A-II, PAES RDGA and SPEA II on Fi

 (a) Average individual rank value
Figure 7.26 Box plots of average

 (b) Average individual density value (c

 individual rank, density and dist
) Average individual distance value
ance values on Function F7

 140

for an MOEA to locate the true Pareto front. As shown in Figure 7.24, many local Pareto

onts exist near the true Pareto front, which means even the rank values of all the

individuals are 1, the resulting population may not represent a true Pareto front (Figures

7.25 (a) – (f)). However, comparing to the other five selected MOEAs, DMOEA yields

the lowest average individual distance value and a constant individual density value,

which implies that DMOEA provides a better performance than the selected MOEAs in

terms of discovering a uniformly distributed, near-optimal and near-complete Pareto

front. At the final generation, the population sizes resulting from PAES and IMOEA are

about 450 and 1,300, respectively, and as shown in Figures 7.25 (a) and (d), many of

these individuals stay on the local Pareto fronts. In addition, DMOEA generates higher C

values than the other chosen MOEAs, and none of the solutions by the other five MOEAs

),(611 −XXC),(612 −XXC),(613 −XXC

Figure 7.

Apparently, from Figures

),(614 −XXC),(615 −XXC ,(616 −XXC

27 Box plots using C measure on

 7.25– 7.27, test function

)

Function F7

F7 produces great challenges

fr

 141

covers the final population of DMOEA since),(21 XXC , ,),,(23 KXXC),(26 XXC

values are all near zero.

7.8 ROBUSTNESS STUDY

From the description in Subsection 7.1, the performance of DMOEA may be

eral parameters such as the initial population size , age threshold ,

 and the grid scale . Among these

parame

(c) show the evolutionary trajectories of the population size, average individual density

value and aver e individual d ance value resu d from DMOEA for the given six

affected by sev 0P

,K

thA

ppv

. Figures 7.28(a) – (c), Figures

mKK ,1

th 0

7.29(a) – (c) and Figures 7.30(a) –

ters, the initial population size and age threshold are the most important ones since

the other two parameters are mostly determined by users based on their preferences and

requirements in the resolution of the resulting Pareto front. In general, a user may not

clearly understand the design mechanism of DMOEA and just randomly select an initial

population size and age threshold. Therefore, the relationship between these two

parameters and the performances of the final Pareto front needs to be characterized in

order to study the robustness of DMOEA based on these two parameters. In Subsection

7.6, DMOEA with different initial population size has been examined by test function

F5. The results imply that DMOEA is not sensitive to the setting of initial population

size. To further investigate the robustness of DMOEA on different parameter settings,

three other test functions—F3, F6 ad F7 are used and DMOEA is run for six settings of

0P and thA on all of three test functions described in Section IV. These settings are:

10,2 == AP ; 30,2 == AP ; 100,2 == AP ; 10,30 == AP ; 10,100 == AP

ag ist lte

0 th

and 10500=

0 th

=

0 th 0 th

,0 AP th

the population size per unit volume,

 142

settings over fifty runs on each of three test functions. Note that average individual rank

value is not shown in these figures since the rank values are almost always 1 for all the

individuals at the final generations. In addition, because test function F3 is relatively

simple and DMOEA converges faster on this problem, only the first 3,000 generations

are illustrated in Figure 7.28, whereas 10,000 generations are exemplified on functions

F6 and F7 as shown in Figures 7.29 and 7.30.

From Figures 7.28– 7.30, it is apparent that no matter which setting we select on

DMOEA, the population size, average individual density and average individual distance

all converge to a constant value at the final generation, which implies different

combin

ations of initial population size and age threshold may not change the resulting

optimal population size and qualities of final Pareto front. However, convergence speed

may vary according to different settings. In particular, when initial population size or age

threshold values are chosen to be relatively high, the convergence speed will be slow due

to the high population size generated in the middle of evolutionary process. Nevertheless,

based on the objective compression strategy, this significant high-population size only

occurs at the first lobe when the compression action has not started yet. Meanwhile,

according to the cell-based rank and density fitness assignment scheme described in

Subsection 3.1, the computational complexity will not increase remarkably when the

population size increases, thus the computation time will not alter very much even the

population size is extraordinary high. Table 7.1 shows the average computation time for

test function F7 with 10,000 generations from IMOEA, PAES, NSGA-II, RDGA, SPEA

II and DMOEA with six settings over 50 runs.

 143

 (a) Population sizes (b
Figure 7.28 Evolutionary trajectori

values from six se

) Average individual density values c)

es of population sizes and average
ttings of DMOEA over 50 runs on

Average individual distance values
individual density and distance
Function F3

 (a) Population sizes (b) A
Figure 7.28 Evolutionary trajectori

values from six se

 verage individual density values c)
es of population sizes and average i
ttings of DMOEA over 50 runs on

Average individual distance values
ndividual density and distance
Function F6

 (a) Population sizes (b) A
Figure 7.28 Evolutionary trajectori

values from six se

Ta e 7.1 Comparison results of co

 IMOE PAE NSGA- RDG

 verage individual density values c)
es of population sizes and average i
ttings of DMOEA over 50 runs on

mputation time of F3 from select
different settings

SPEA DMOEA DMOEA DMO

Average individual distance values
ndividual density and distance
Function F7

ed MOEAs and DMOEA with

EA DMOEA DMOEA DMOEA

bl

A S II A II (2,10) (2,30) (2,100) (30,10) (100,10) (500,10)

 Time
in)

106

133 251 684 407 25 25 25 26

26

27 (m

 144

The “CPUTIME” command from MATLAB (version 6.1) is used to measure the

me elapsed a E p te E O r i

computer with dual 2-GHz processors and 1-GByte RAM. It is worthy of noting the time

shown in Table 7.1 provides only a relative ong chosen MOEAs based on the

comple

s. In addition, different settings will not change the

computation efforts of DMOEA and makes the final result of DMOEA robust in terms of

both ef

ti for e ch MO A im lemen d in MATLAB. ach M EA is unning n a HP

 measure am

xity of the algorithms.

From Table 7.1, we can observe that among all chosen MOEAs, DMOEA

demands the shortest running time and the improvement is significant comparing to the

other state-of-the-art MOEA

ficiency and effectiveness.

 145

VIII. EMO TOOLBOX DESIGN

As discussed in previous chapters, there are many existing MOEAs in literature

nd being used by researchers and designers in different research or application fields.

Although most of these algorithm algorithms or pseudo

codes are optimized, they still require the users (designers) equipped with certain

comput

an

f skel

a

s were well designed and the

er programming expertise and an extensive understanding of all the techniques

devised. Since most of MOEAs are quite sophisticated due to the complexity of MOPs,

the programming effort can be tedious and time consuming and needs to be completed

before users can start their design task for which they should really be engaged in [85].

Therefore, a simple solution is to design a user-friendly computer-aided toolbox that

includes certain MOEA modules to assist the designers in dealing with particular MOP.

The designers merely select a series of build-in modules according to their basic

knowledge of MOEAs or help files of the toolbox and input the specific decision

variables, objective functions and constraints for the given problem to be solved.

population

VEGA

NSGA

Final
Pareto frontpopulation

VEGA

NSGA

Final
Pareto front

Initial
population

Method 1

Method n

Method 3 Final
Pareto fr

Block I—
Ranking

Method 1

Method m

Method 3

Block II—
Density

Method 1

Method r

Method 3

Block N—
Elitism

Initial
population

Method 1

Method n

Method 3 Final
Pareto fr

Block I—
Ranking

Method 1

Method m

Method 3

Block II—
Density

Method 1

Method r

Method 3

Block N—
Elitism

(a) Skeleton of MOEA Toolbox designed by T

Figure 8.1 Comparison o

SPEASPEA

Initial

HLGA

NPGA

MOGA

Initial

HLGA

NPGA

MOGA

(b) Skeleton of envisioned MOEA Toolbox

etons of two MOEA Toolboxes

Population increment & decline strategiesPopulation increment & decline strategies

Method 2

ont

Scheme

Method 2

Estimation

Method 2

Scheme

Method 2

ont

Scheme

Method 2

Estimation

Method 2

Scheme

 146

By now, an MOEA Toolbox built on MATLAB platform has been designed by

Tan et al [85]. Ho vanced MOEAs

(i.e. NSGA-II, SPEA II and RDGA) and a fixed population size needs to be chosen

heuristically by users before the running of a specified MOEA. Furthermore, this toolbox

follows the exact design procedure specified by each MOEA to build a fixed object as

shown in Figure 8.1(a). However, as mentioned in Chapters IV and V, an MOEA can be

divided into several crucial building blocks, such as ranking methods, density estimation

approaches, fitness assignment strategies, elitism schemes and some other supplementary

routines. Different combinations of these building blocks can result in different types of

MOEAs existed, or even lead into some novel MOEAs. For instance, a new MOEA can

be configured as: AARS (RDGA) + Crowding distance estimation method (NSGA-II) +

elitism + mating restriction (RDGA) + archive truncation (SPEA II), which may provide

high performances for some kinds of MOPs. Therefore, by using this building block

strategy and dynamic population size, a new Evolutionary Multiobjective Optimization

(EMO) Toolbox is designed. This toolbox offers users more flexibilities in choosing their

favorite method for each building block; and the population growing and declining

strategy can help the resulting algorithms produce a near-optimal and near-complete

Pareto front with an optimal number of individuals. The skeleton of the proposed toolbox

is shown in Figure 8.1(b).

The main Graphical User Interface (GUI) of EMO toolbox is shown in Figure 8.2,

which includes eight functions. We will describe each of them in this Chapter.

wever, this toolbox does not incorporate those most ad

 147

Figure 8.2 Main graphical user interface of EMO Toolbox

Figure 8.3 GUI of model selection

Setting

This function is the main function of toolbox. It provides tw

to the users. The first choice lists six advanced MOEAs (i.e., DMOEA, IMOEA, R

8.1 MOEA

o alternative choices

DGA,

NSGA2, SPEA II and PAES ters, a user can choose any

one of them as the algorithm used for the optimization. The design scheme of each of

these algorithms is fixed as a build-in function, whereas the design parameters are

) as discussed in previous chap

 148

specifie

Figure 8.4 GUI of main design procedure and error message

in design procedure includes four steps with a

predefined sequence: genotype design (GenoDesign), decision variable design

special parameter design

be fulfilled until its previous procedure is

)).

As shown in Figure 8.5, genotype parameters (crossover rate, mutation rate,

lection method, population size, stopping generations) can be chosen and inputted

directly. In addition, current parameter setting can be saved as a MATLAB data file and a

previously saved setting can also be loaded to the MATLAB workspace from an existing

data file and read by the sliders and editors of the GUI.

d by users. The second choice offers users more flexible choices when they prefer

to design an MOEA by selecting and combining their favorite modules. The GUI for

selecting a model is shown as Figure 8.3.

 (a) main design procedure (b) an error message sample

8.1.1 Main procedure of fixed MOEA model design

As shown in Figure 8.4(a), the ma

(DecDesign), objective function design (ObjDesign) and

(SpecDesign). The later design procedure cannot

finished, otherwise an error message will appear (Figure 8.4(b

8.1.1.a Genotype Design

se

 149

Figure 8.5 GUI of genotype parame

150

 (b) GUI of loading an existing setting

decision variable setting

ter design

8.1.1.b Decision variable setting

As shown in Figure 8.6 ree parameters

need to be determ some length (gene

number). For each set and if the number of

variables are larger tically. Similar to

well.

 (a) GUI of starting a new setting

Figure 8.6 GUI of

(a), for each decision variable, there are th

ined, maximum value, minimum value and chromo

 design page, at most 9 variables can be

 than 9, the next design page will appear automa

genotype design, the decision variable setting can be saved and loaded (Figure 8.6(b) as

Figure 8.7 GUI of objective function and constraint setting

8.1.1.c Objective function and constraint setting

As shown in Figure 8.7, for each objective function, there are three parameters

need to be determined, maximum value, minimum value and expression of each objective

Figure 8.8 Error message for input syntax error

 151

function. The mathematical function expression should be compatible to MATLAB

format. Moreover, the number of constraints and the constraint expression can also be

determined through this GUI (Figure 8.7). When “OK” button is clicked, the function

expression will be crosschecked and error messages will appear if there is any syntax

error in the expression (Figure 8.8). The error must be corrected before next design

procedure starts.

8.1.1.d Special parameter setting

For each specified MOEA model, there are several key parameters need to be

determined. For example, Dynamic Multiobjective Evolutionary Algorithm (DMOEA)

needs “age thresho be set before the

algorithm can properly run (Figure 8.9). After all four steps of main design procedure

have been completed, the setting of MOEA parameters is over.

Figure 8.9 GUI of special parameter setting

8.1.2 Main procedure of free MOEA model design

The first three decision variable and

bjective function) are the same as those in fixed model design. However, in free model

design,

density preservation and elitism) in MOEA design.

ld”, “density grid scale” and “population per cell to

steps of free model design (i.e., genotype,

o

 designers need to choose a particular method for those key schemes (i.e., ranking,

 152

Figure 8.10 GUI of ranking method setting

8.1.2.a Ranking scheme setting

As shown in Figure 8.10, there are four types of ranking methods can be selected

by the designers. For each method, a figure is illustrated in order to visualize how the

selected method will work. If none of the method is selected, Pure Ranking method used

in (NPGA) will be considered as the defaul.

Figure 8.11 GUI of density preservation method setting

8.1.2.b Density scheme setting

As shown in Figure 8.11, there are four types of density preservation methods can

ure is illustrated in order to visualize

be selected by the designers. For each method, a fig

 153

how the selected method will work. If none of the method is chosen, the Niching method

will be considered as the default and the niche radius needs to be determined as shown in

Figure 8.12

12 GUI of determining niche radius

elitism scheme e

Figure 8.13 GUI of elitism scheme setting

Figure 8.

8.1.2.c Elitism scheme setting

As shown in Figure 8.13, there are three ratios need to be input when designing an

. The figure on the right side illustrates the meaning of each ratio. If all th

ratios are 0%, there will be no elitism scheme used in the algorithm.

8.1.2.d Local search setting

As shown in Figure 8.14, the local search computation can be restricted within a

single cell or the neighboring cells around the concerned cell. The figure on the right side

 154

illustrates how these tow settings will work. If none of the methods are chosen, the

designed algorithm will not include local search scheme.

8.1.2.e

F

e setting information can be viewed as

shown

Figure 8.14 GUI of local search setting

apply forbidden region during its evolutionary process.

Forbidden region setting

As shown in Figure 8.15, the forbidden region concept will be applied in the

designed algorithm if “Yes” button is clicked. Otherwise, the free model MOEA will not

igure 8.15 GUI of forbidden region setting

After all the schemes have been set, th

in Figure 8.16. Moreover, if the designers are not satisfied with the current setting,

they can change any of them by click the “Reset” button.

 155

Figure 8.16 GUI of viewing all parts of free model setting

Figure 8.17 GUI of visualization setting

8.2 Visualization Setting

In order to help the users to view the quality of the results during the evolutionary

process, visualization parameters need to be set before the algorithm starts running. For

example, as shown in Figure 8.17, for each 10 generations, the evolutionary trajectory of

the population size, average rank value and average density value will be displayed.

 156

Meanw

specified data file for each 10 generations according to the setting in Figure 8.17.

8.3 Start Running

When the “Start” button is clicked, Figure 8.18 will show the chosen settings for

all the parameters. If the users are satisfied with current setting, the specified MOEA will

start running. Otherwise, the parameters will be reset.

Figure 8.18 GUI of listing of all the chosen parameters.

When the MOEA starts running, it will not stop till the pre-determined

visualization interval is met. When the evolutionary result is shown in Figure 8.19, the

user can choose “Save Figure” to save the illustrated figure, “Save Data” to save the

ue running or “Stop” to stop program running.

hile, the resulting Pareto front and the statistical box plots of current population

rank and density values will be shown as well. The resulting data will be saved to a user

resulting data, “Continue” to contin

 157

Figure 8.19 G tain intervals

Figure 8.20 GUI of loading data files for analysis

8.4 Data Analysis

EMO toolbox can also help users to analyze existing data as shown in Figure

8.20. By loading a rd of evolutionary

trajectories, statistical Box plots and final Pareto front can be visualized (Figure 8.21(a)).

UI of visualizing the evolutionary result for cer

n MOEA resulting data file, the history reco

 158

Moreov

 (a) GUI

Figure 8.22 GUI of toolbox demonstration

er, the toolbox allows users to perform comparisons of more than one data files

resulting from different MOEAs. The Box plots of final rank, density and C values can be

compared (Figure 8.21(b)).

of single data set analysis;

Figure 8.21 Data anal

 (b) multiple data sets comparison

ysis for resulting data

 159

8.5 Demonstrations

To guide the complete procedure of designing an MOEA by using EMO toolbox,

a RDGA is designed as the demonstration for the MOP test function described as

Equation (6.2). Each design step can be illustrated by clicking one of five buttons above

the figure. The figure will show the movie file of how the population and resulting Pareto

front will evolve as RDGA runs with given parameter settings (Figure 8.22).

8.6 Help Files

A complete help file is created and associated with each “Help” button in all the

GUIs. Figure 8.23 illustrates the “Help Contents” of EMO toolbox.

Figure 8.23 GUI of help contents of EMO toolbox

 160

IX. PARTICL SWARM OPTIMIZATION IN MOEA

Although evolutionary algorithms have shown their unique advantages in solving

multiobjective optimization problems, their drawback is also obvious—need relatively

longer time in producing a high quality Pareto front comparing to the traditional

optimization methods (i.e., linear weighting method). This low-efficiency problem is

resulted from EA’s population-based information sharing and random variation

characteristics, which cannot be overcome by evolutionary algorithm itself. Although in

Chapter VII, Dynamic Mul OEA) proposed a

promising way to improve the computational efficiency of MOEA by applying dynamic

population strategies, it is still restricted by EA’s intrinsic properties. Therefore, in order

to aim at improving efficiency of MOEA, we need to search for a clever technique to

assist MOEA to achieve a near-complete, near-optimal and uniformly distributed Pareto

front with a faster convergence speed. Particle Swarm Optimization (PSO) is considered

to be such a candidate.

9.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was first proposed by Kennedy and Eberhart

[86] in 1995, which was inspired by the choreography of a bird flock. This technique can

be seen as a distributed b dimensional search [87].

ccording to PSO, the behavior of each individual is affected by either the best local or

the best global individual to help it fly through a hyperspace. Moreover, an individual can

learn from its past experiences to adjust its flying speed and direction. Therefore, by

tiobjective Evolutionary Algorithm (DM

ehavior algorithm that performs multi

A

 161

observing the behavior of the flock and memorizing their flying histories, all the

individuals in the swarm can quickly converge to near-optimal geographical positions

with well-preserved population density distribution.

 is considered as an evolutionary computation approach in that it

uses th

2. It searches for the optimum by updating generations.

3. The adjustments of individuals are analogous to real value crossover operation in

evolutionary algorithms.

4. Fitness evaluation is evaluated by objective functions.

However, the updates of the individuals are not accomplished by random crossover or

mutation of genes, an equation can compute the new velocity of each individual at the

 dimension based on its current location , previous velocity , previous

 at which the highest fi

and the population global location (h the highes lue the

population has achieved. Therefore, the velocity updating equation is

, (9.1)

 where is an inertia weight value [88] and and are two random numbers

between 0 and 1. After the velocity is updated, the new location of individual at the

 dim nsion can be calculated as

Normally, PSO

e common evolutionary computation techniques such as:

1. It is initialized with a population of random solutions.

i

a

jth),(jix

tness value

)j) at whic

),(jiVp

this individual has been achieved,

t fitness v

location),(jipbest

(gbest

)),()(()),(),((),(),(21 jixjgRjixjipRjiVjiV bestbestpp −+−+= ω

ω

e

1R 2R

ith

jth

 162

is a one-way information sharing mechanism [89]. The entire population focuses on the

best individual and converges to the best solution quickly.

Due to PSO’s single-point-centered characteristic, it is unable to locate the Pareto

front since there are more than one best individuals exist in the population. However,

with certain modifications (i.e., Pareto ranking [43]+ niche sharing [42], neighborhood

method [54]), PSO can become suitable to solve MOPs. By now, there are very few

papers [89-92] found to extend PSO in solving MOPs, this research area is still in its

beginning stage.

9.2 Dynamic Particle Swarm Multiobjective Optimization (DPSMO)

In this research, to tackle multiobjective optimization problems, PSO is devised

with dynamic population size proposed in Chapter VI. In another word, DMOEA’s

crossover and mutation scheme is replaced by PSO’s information sharing method in order

to improve convergence speed. To prevent the degradation of the effectiveness and

efficiency of the algorithm, the following strategies are applied in the new algorithm:

),(),(),(jiVjixjix p+= (9.2)

Comparing to evolutionary algorithms, the information sharing mechanism in PSO is

significantly different. In EAs, individuals share their information with each other by

crossover and the whole population moves like one group towards an optimal point. In

PSO, only)(jg provides the information to other individuals to adjust their speeds. It best

 163

1. The genotype of each individual will be a real number instead of binary genes.

2. For each individual, its genotype will includes two types of velocity parameters—

rank velocity and density velocity. On each dimension of the decision vector, an

the individuals with rank

iduals. However, for any

that dominate it will be

ith lowest dens value will be selected as the

of individual A.

4. For any individual A, its local best (rank) individual is randomly selected

from the individuals that are located in the same minate A. If there is

no such kind of individual exists, will be individual A itself.

5. Cell density value of each individual is calculated. For any individual A, its best

(density) global individual is the individual that has the lowest cell

density value (except those reside in “forbidden region”).

6. For an individual A, its local best (density) individual is randomly

selected from the individuals that are located in the same cell or neighboring cells

an he

izing rank value and maintaining density value,

respectively. All the individuals will be cloned and the location of its copy will be

individual will be assigned with a rank and a density velocity.

3. Cell rank value of each individual is still calculated, all

value equal to 1 are the global best (rank) indiv

individual A, only those best (rank) individuals

considered as the candidates of A’s rankbestg _ . If more than one candidates of

g exists, the one wrankbest _ ity rankbestg _

rankbestp _

 cell and do

rankbestp _

denbestg _

denbestp _

(except those reside in “forbidden region”) d has t lowest cell density value.

7. The entire population is equally and randomly divided into two subpopulations

that responsible for minim

 164

updated based on its new

it belongs to.

From the procedures of Particle Swarm Multiobjective Optimization with

Dynamic population size (DPSMO), we can see:

1. As final result will be a set of solutions instead of a single solution, the geography

restriction described as step 3 or 5 has to be applied to assign an individual a

global best target to follow. Otherwise, any non-dominated individuals may affect

an individual’s new location at each generation, thus we may see all the

individuals jump around and converge slowly.

2. To obtain optimal solutions with uniformly distribution, the population density

value needs to be preserved as well as the minimization of population rank value.

Therefore, each individual has two types of velocities, rank velocity and density

velocity, which will guarantee both Pareto optimality and uniform distribution of

the final results will be achieved.

3. Dynamic population strategy is applied. For an individual, Equations (9.1) and

(9.2) update its velocities and locations on each dimension of the decision space.

Indeed, this action implies a crossover operation among an individual, its local

best and its global best. The newly updated individual can be considered as an

offspring. For this reason, “population growing strategy” in DMOEA is not

 rank or density velocities according to the subpopulation

8. Both offspring and its parent will survive to the next generation.

9. Population declining strategy performs the same task as described in DMOEA.

10. Objective compression strategy performs same as described in DMOEA.

 165

applied in DPSMO since an individual is supposed to know “where to go” before

it moves in particle swarm. Moreover, instead of applying “population growing

strategy”, using simple offspring updating method based on Equation (9,1) and

4.

each ind eme to

keep the newly explored better-fitted individuals. This method is crucial for

DPSMO because it guarantees the population converges to the correct direction.

5. Ill-fitted individuals will be removed based on “population declining strategy”,

thus the population size can be controlled and the population quality will be

increased.

9.3

F3 as the benchmark

 mathe

and tru

populat

les

those f

generat

by DMOEA and DPSMO. The evolutionary trajectories of the population size and

(9.2) will save significant running time spent in DMOEA on evaluating an

offspring’s fitness value and comparing with its parents.

As there may be more than one particles affect an individual’s moving speed and

direction, and most importantly, there are two types of velocities associated with

ividual, the “cloning” method in step 7 implements an elitism sch

Simulation Study on DPSMO

To validate proposed DPSMO, we selected Function

problem in the simulation. Equation (6.6) and Figure 6.13 show the matic formula

e Pareto front of this problem respectively. For a fair comparison, the initial

ion, the age threshold, the population size per unit volume, ppv and the cell

sca 1K and 2K are selected as 2, 10, 3, 50 and 50, respectively, which are same with

or DMOEA in Subsection 7.7.1. Both algorithms run 50 times and the stopping

ion is set to be 2,000. Figure 9.1 shows the true Pareto front, resulting Pareto front

 166

 167

gure 9.1 Resulting Pareto fronts by DMOEA and DPSMO on F

average

DPSMO are shown in Figures 9.2 (a) – (d), respectively.

Fi unction F3

DPSM

Figure 9.2(d), which shows the final Pareto front of DMOEA is closer to the true Pareto

of Fun F3

closer

better-f

local best individuals can provide the moving information to the entire population, it is

Pareto

DPSM

one loc

 individual rank, density and distance values over 50 runs by DMOEA and

Form Figure 9.1, apparently, there are many final solutions resulting from

O are dominated by those from DMOEA. This result can also be verified by

front than that of DPSMO. This effect can partly explained by the intrinsic characteristics

ction ’s local and global optimality—when the resulting Pareto front is getting

to the true (global) Pareto front, both algorithms have more difficulty to yield

itted offspring. Moreover, for DPSMO, since only the global best individuals and

more possible for DPSMO to stuck on a middle stage if all the current individuals are

optimal and there is no even better-fitted bestg is generated. This problem will hold

O from locating true Pareto front, especially when the given MOP has more than

al Pareto fronts.

 168

zes (b) Trajectories of average rank values

(a) Evolutionary trajectories of population si

(c) Trajectories of average density value (d) Trajectories of average distance values
Figu tionary trajectories for the population size and the values of three indicators

resulting by DMOEA and DPSMO on Function F3

OEA does not have this problem because

evoluti

re 9.2 Evolu

Comparing to DPSMO, DM

onary algorithm applies a population-based information sharing mechanism. A

better-fitted offspring can be generated by a crossover operation between any two

individuals, no matter how good these parents are. However, from Figure 9.2 (a) – (c), we

can also see the advantage of DPSMO since it produces much faster convergence speed.

In DPSMO, each particle knows its moving direction and how fast it should go if there

exists another individual with better performance. Therefore, before it is trapped by a

local Pareto front, the probability that an individual generates a better-fitted offspring by

DPSMO is much higher than that of DMOEA. This characteristic will result in both less

evaluation time and less generation numbers, which are the major reasons that DPSMO is

almost much faster than DMOEA on Function F3 in terms of converging entire

population to a uniformly distributed Pareto front.

.4 Dynamic Particle Swarm Evolutionary Algorithm (DPSEA)

Since both DMOEA and DPSMO have significant benefit and drawback, we can

tegrate particle swarm and evolutionary algorithm together in order to take advantages

f both algorithms and improve the quality of the evolved solutions. In one aspect,

volutionary algorithm can help each individual share its information with any other

dividuals instead of only focusing on the best individuals. On the other hands, particle

swarm

Swarm Evolutionary Algorithm (DPSEA) is designed to improve and

g st

pplied to remove an existing ill-fitted individual. Therefore,

comparing to DPSMO, the only change in DPSEA is adding a crossover operation and a

9

in

o

e

in

can inform an individual which direction will be the best way to go and how fast

its velocities should be. Therefore, inspired by both algorithms, a Dynamic Particle

efficiency efficacy

of evolutionary process.

The main skeleton of DPSEA is constructed based on DPSMO. Nevertheless, in

addition to the location updating strategy of particle swarm, the individuals will perform

crossover operation as well. At each generation, an offspring may be generated through

two mechanisms—updating the location of a cloned individual or performing crossover

between two selected parents. Population growin rategy will be used to determine if an

offspring generated through crossover can survive to the next generation and population

declining strategy is a

 169

population growing strategy borrowed from DMOEA in both of rank and density

bpopulations. By adding these two operations, the running interval for each generation

ay increase comparing to DMOEA and DPSMO because there are two information-

aring actions performed in DPSEA. However, this sacrifice will be worthy if these two

ctions can prompt each other and find more valuable individuals than using only one

formation sharing action.

.5 Comparison Study on DMOEA, DPSMO and DPSEA

To compare the performance of DPSEA with DMOEA and DPSMO, two

enchmark problems— Function F3 and F6 are tested. For Function F3, the initial

opulation, the age threshold, the population size per unit volume, , the cell scales

 and and stopping generations are selected as 2, 10, 3, 50, 50 and 2,000,

p on

 per volume, , the cell scales , and and stopping generations are

selected

su

m

sh

a

in

9

b

p ppv

1

res

ze unit ppv 1K 2K 3K

K 2K

ectively. For Function F6, the initial population, the age threshold, the populati

si

 as 2, 10, 3, 20, 20, 20 and 10,000, respectively. For each test function, final

Pareto front, trajectories of population size, average rank, density and distance values,

Box plots of final rank, density and distance values and C values resulting from all three

algorithms are illustrated.

9.5.1 Simulation on Function F3

Figure 9.3 shows the zoomed sample of the true Pareto front and the resulting

Pareto fronts by DMOEA, DPMO and DPSEA. . Figures 9.4(a) – (c) show the Box plots

for the final rank, density and distance indicators over 50 runs, respectively. The

 170

performance measures of),(ji XXC for the comparison sets between algorithms i and

j are shown in Figure 9.5, where algorithms 1 – 3 represent DPSMO, DMOEA and

DPSEA, respectively. Moreover, the evolutionary trajectories of the population size and

verage individual rank, density and distance values over 50 runs by three algorithms are

Figure 9.3 Resulting Pareto fronts by DMOEA, DPSMO and DPSEA on Function F3

(a) Final rank value (b) Final density value (c) Final distance value

From Figures 9.3 – 9.6, we can see that all three algorithms have the capability to

converge to a Pareto front with rank value and density value equal to 1 and 3,

respectively. However, from Figures 9.3 and 9.4(c), it is obvious that DPSEA’s resulting

Pareto front is closer to the true Pareto front than those produced by the other two

a

shown in Figures 9.6 (a) – (d), respectively.

Figure 9.4 Box plots of three indicators on Function F3

 171

algorithms. In addition, Figure 9.5 (c) shows that about 70% and 45% of final

populations resulting from DPSMO and DMOEA are covered by DPSEA and 0% and

10% of population resulting from DPSEA are covered by DPSMO and DMOEA,

respectively. This result proves that DPSEA produce better Pareto fronts than the other

two algorithms in terms of finding near-optimal, near-complete and uniformly distributed

Pareto front.

),(311 −XXC),(312 −XXC), 313 −X

Form Figures 9.6 (a) – (d), it is observed that DPESA is even faster than DPSMO

in terms of generation numbers to con rge. This phenomenon shows that two

information-sharing techniques can promote each other and help entire population

converges relatively faster than any one of them. When both of the techniques assist

evolutionary process, it will be much easier for an individual to find a better-fitted

offspring. These newly ge

(XC

Figure 9.5 Box plots using C measure on Function F3

ve

nerated offspring will keep approaching true Pareto front and

ush previously non-dominated individual into a dominated one, which will be

 strategy. This mechanism explains why DPSEA

produc

p

eliminated by population declining

es lowest distance value within smallest number of generations as shown in Figure

9.6(d).

 172

 (a) Evolutionary trajectories of population sizes (b) Trajectories of average rank values

 (c) Trajectories of average density value (d) Trajectories of average distance values
Fig rs

resulting by DMOEA and DPSMO and DPSEA on Function F3

.5.2 Simulation on Function F6

The mathematical formula and true Pareto front for Function F6 are given in

quation (7.14) and Figure 7.19. The first quadrant of a unit sphere is exactly the true

areto front. Figure 9.7(a) – (c) shows the resulting Pareto fronts by DMOEA, DPMO

and DPSEA, respec for the final rank,

ensity and distance indicators over 50 runs, respectively. The performance measures of

 for the comparison sets between algorithms and are shown in Figure 9.9,

ure 9.6 Evolutionary trajectories for the population size and the values of three indicato

9

E

P

tively. Figures 9.8(a) – (c) show the Box plots

d

),(XXC i jji

where algorithms 1 – 3 represent DPSMO, DMOEA and DPSEA, respectively.

Moreover, the evolutionary trajectories of the population size and average individual

 173

rank, density and distance values over 50 runs by three algorithms are shown in Figures

9.10(a) – (d), respectively.

(a) DMOEA

Figure 9.7 Resulting Pareto fro

 (b) DPSMO

nts from DMOEA, DPSMO an

 (c) DPSEA

d DPSEA on Function F6

Figure 9.8 Box plots of three indicators on Function F6

From Figures 9.7(a) – (c), we can see that all three algorithms result in completive

Pareto fronts from their appearances. Meanwhile, from Figures 9.8 (a) – (c) and 9.9 (a) –

three algorithms as well. Since Function F6 does not generate any local Pareto front,

there will be no hindrance for DPSMO to locate true Pareto front. However, by applying

two information-sharing techniques, DPSEA still shows its ability to approximate more

accurate Pareto front than the other two algorithms as shown in Figure 9.8(c) and 9.10(d).

(a) Final rank value (b) Final density value (c) Final distance value

(c), we cannot find significant differences from the indicators of final results from all

 174

Figure 9.10 Evolutionary trajectories for the population size and the values of three indicators

),(311 −XXC),(312 −XXC),(313 −XXC

Figure 9.9 Box plots using C measure on Function F6

(a) Evolutionary trajectories of population sizes (b) Trajectories of average rank values

(c) Trajectories of average density value (d) Trajectories of average distance values

resulting by DMOEA and DPSMO and DPSEA on Function F6

However, by examining the evolutionary trajectories as shown in Figures 9.10 (a)

– (d), we can see remarkable difference among three algorithms in terms of convergence

 175

property. It only takes DPSMO less than 1,000 generations to converge and DMOEA

needs about 7,000 and 35,00 generations, respectively. Table 9.1 shows the average

nning time per generation for each of three algorithms. The “CPUTIME” command

om MATLAB (version 6.1) is used to measure the time elapsed for each algorithm

plemented in MATLAB and a HP computer with dual 2-GHz processors and 1-GByte

AM is used for simulation. From Table 9.1, we can see that DPSMO runs than DMOEA

nd DPSEA faster at each generation. This is contributed by DPSMO’s population

rowing method, which does not evaluate newly generated offspring and filter the

incomp as escrib DMOEA

nce it applies two information-sharing techniques at each generation. However, because

e most time consuming parts are population declining strategy and objective

ompression strategy, which are used by all three algorithms, the difference of time

onsuming per generation for these algorithms is not remarkable. Therefore, from the

above clea that D rg it

spends least time of generations to

converg

ru

fr

im

R

a

g

etence ones d ed in Subscetion 9.2. DPSEA is a bit slower than

si

th

c

c

observations, it is r PSMO has the fastest conve ence speed since

on each generation and takes smallest number

e. Although DPSEA will spend a bit longer time on each generation than

DMOEA, the total time consuming of convergence for DPSEA is still significantly

shorter than DMOEA since DPSEA takes much smaller generations to converge. In

addition, we need to keep in mind that DPSEA will produce more accurately

approximated Pareto front than the other two algorithms in terms of distance values and

DPSMO may generate less competitive Pareto front, especially there are local Pareto

fronts exist for the given MOP. Nevertheless, combining particle swarm optimization

 176

with evolutionary algorithms provides a potential way to design an MOEA in solving real

orld MOPs that need fast processing time to generate qualified Pareto fronts.

Table 9.1 Comparison results of computation time of F6 from DMOEA, DPSMO and DPSEA

 DMOEA DPSMO DPSEA

w

T
(sec)

ime 0.18 0.15 0.20

 177

X. CONCLUSIONS AND FUTURE WORKS

Although the conventional algorithms, such as linear weighting, goal

programming and min-max optimization are still widely used to solve MOPs,

multiobjective evolutionary algorithms have drawn growing attentions from more and

more researchers in that they are designed to deal simultaneously with a set of candidate

solutions. This characteristic allows MOEAs to find an entire set of Pareto optimal

solutions in a single run of the algorithms, instead of having to perform a series of

separate runs as in the cases of the conventional mathematical programming techniques.

In addition, evolutionary algorithms are less susceptible to the concavity, discontinuity

and local optimality of the Pareto front, whereas these issues are critical concerns for

those conventional approaches.

According to the No Free Lunch (NFL) theorem [51], no formal assurances of an

algorithm’s general effectiveness exists if insufficient knowledge of the problem domain

is incorporated into the algorithm domain. Therefore, some of the studies on the MOP

test suite are included in this research and seven benchmark MOP test functions are

examined by some state-of-the-art MOEAs (i.e. NSGA-II, SPEA II). From the

comparison and analysis of the simulation results, although some of the difficulties

cannot be thoroughly addressed by these MOEAs, it is clear that three techniques are the

crucial building blocks in a successful MOEA design procedure. These techniques

include: a Pareto ranking scheme, a density estimation and preservation method and an

elitism scheme. A Pareto ranking scheme helps the initial population converges to a

 178

Pareto front at the final generation, a density estimation and preservation method can

prevent the emergence of the “too crowded” areas, and an elitism scheme stores those

non-dominated individuals to avoid losing any the Pareto points generated throughout the

ent

schemes (i.e., mating restriction, forbidde), a ensity based Genetic

Algorithm (RDGA) [54] is desig nd inve ted by t iven MOP test suite. By

examining the selected performance indicators, RDGA is found to be competitive with,

or even superior to, the other advanced MOEAs in terms of keeping the diversity of the

individuals along the trade-off surface, tending to extend the Pareto front to new areas,

and finding a well-approximated Pareto optimal front. Moreover, RDGA is manipulated

by using a hierarchical gene representation to solve a real multiobjective optimization

problem—a radial basis neural network design problem.

Although RDGA shows its capability in coping with several types of challenging

MOPs, it still cannot tackle the confliction between avoiding and exploiting “genetic

drift” phenomenon. In fact, if an MOEA has fixed population size, it will be difficult, if

not impossible, to solve this problem since the limited computation resource cannot be

congregated and homogeneously distributed simultaneously. Therefore, based on the

principal ideas of RDGA, a Dynamic Muleiobjective Evolutionary Algorithm (DMOEA)

[84] is proposed in this research. In DMOEA, in one aspect, an offspring will be added

into the population if its fitness value is higher than one of its parents while the

corresponding parent is still maintained. This intention constructs a pure population

growing strategy in order to excite the population covering those unexplored areas. On

ire evolutionary process. By synergistically integrating these techniques and other

n region Rank-D

ned a stiga he g

 179

the other hand, thr uals are computed

based on the dynamic situations of the individuals’ rank and density values. By

adaptiv

ased on the extensive study of MOEAs, a module-based EMO Toolbox is

designe

ee kinds of probabilities of “eliminating” individ

ely removing those incompetent individuals in terms of their rank and density

values, DMOEA can control the population size within a reasonable number. In addition,

the cell-based rank and density calculation technique and objective compression strategy

offers DMOEA less computation effort on fitness evaluation even a large population size

if involved. From the experiment result, DMOEA can effectively exploit an optimal

population size by locating all the trade-off hyper-areas and approximate a near-optimal,

near-complete Pareto front. Meanwhile, DMOEA shows its potential in solving

complicated MOPs with different characteristics (i.e., local optimality, non-uniformly

distributed and high dimensional decision and objective spaces).

B

d on MATLAB platform. This toolbox most of the advanced MOEAs (i.e.

NSGA-II, SPEA II, RDGA, IMOEA, PAES and DMOEA) are provided to the users.

Moreover, as an MOEA can be considered as a hybrid of several key techniques (ranking

scheme, density estimation, elitism, etc.) and for each technique, there are several

variations exist in literature, this toolbox provides users a free model design function. A

designer or user can have more flexibility in choosing their favorite method for each

building block; and the population growing and declining strategy can help the resulting

algorithms produce a near-optimal and near-complete Pareto front with optimal number

of individuals. The user-friendly visualization Graphical User Interface (GUI), Data

Analysis GUI and on-line Help link and Demonstrations also help users effectively

 180

design a MOEA and efficiently apply it to solve real world multiobjective optimization

problems.

~

 (a) t=0~1 min (b) t=0~2 min (c) t=0~3 min

 (d) t=0~4 min (e) t=0~5 min (f) t=0~6 min

Figure 10.1 An example of MOP with time varying objective function and Pareto front

Although evolutionary algorithms have been successfully applied in solving many

multiobjective optimization problems, it is also worthy to note that MOEA is not an

efficient approach in dealing with MOPs with time-varying decision variables, objective

functions and Pareto fronts. For example, Equation (10.1) represents an MOP with such

characteristics.

Minimi and , where

 ,

ze)(xf)(xf1 2

)()()(txtxxf ×= , (10.1)
)()(32 txxf = ,

 tetx 20
2)(= ,
1

subject to min60 ≤≤ t

211

)100sin()(1 ttx =

)100cos()(ttx =

 181

The objective space and Pareto fronts for different time interval are illustrated in

Figures 10.1(a) – (f). It is apparent that MOEAs will not satisfy the time constraint and

response fast enough to cope with this type of problem. Therefore, a Dynamic Particle

Multiobjective Optimization (DPSMO) algorithm is designed by combining Particle

Swarm Optimization (PSO) technique with dynamic population strategy. According to

PSO, as an individual will know where to fly and how fast its speed should be, it can

quickly move to an optimal position based on its historical trajectories and the knowledge

of the location of the best individual in the swarm. However, as PSO only performs a

point-centered, one-way information sharing mechanism, it may have difficulty in

approximating true Pareto fronts on MOPs with local Pareto optimality. For this reason, a

hybrid Dynamic Particle Swarm Evolutionary Algorithm (DPSEA) is devised to take

advantages of PSO’s fast convergence characteristic and EA’s population-based

information sharing capability. From the simulation results, DPSMO dramatically

improves the convergence speed comparing to DMOEA and DPSEA produces better

Pareto fronts than DMOEA and DPSMO. Although DPSMO and DPSEA provide a novel

solution for MOEA in dealing with MOPs that need fast convergence speed, further study

and investigation are still needed to test the abilities of these two algorithms and improve

their performances.

Some other interesting issues may also be studied in future work. These issues

include: convergence characteristics of MOPs, dynamic or noisy fitness evaluation in

MOEA, on-line and real time MOEAs, mathematical representation of true Pareto front

and the existence and uniqueness quantification of Pareto front. In summary, these issues

 182

can be categorized into three types: theoretical study, algorithm development and the

investigation of the real applications. Especially, a suitable MOP in real world

nvironment needs to be developed and studied to examine all kinds of state-of-the-art

ultiobjective evolutionary algorithms.

e

m

 183

BIBLIOGRAPHY

[1] H. Eschenauer, J. Koski and A. Osyczka, Multicriteria Design Optimization :

Procedures and Applications, Springer-Verlag, New York. 1986.

[2] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in

multiobjective optimization,” Evol. Comput., vol. 3, pp. 1-16, 1995.

[3] A. Charnes, and W. Cooper, Management Models and Industrial Applications of

Linear Programming, John Wiley & Sons, New York. 1961.

[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice

Hall, Upper Saddle River, NJ. 1995.

[5] H. Schwefel, Evolution and Optimum Seeking, John Wiley & Sons, New York.

1995.

[6] K. Iwata, Y. Murotsu, T. Iwatsubo, and S. Fuji, “A probabilistic approach to the

determination of the optimum cutting condition,” ASME, Journal of Engineering

for Industry, vol. 4, pp. 1099-1107. 1972

[7] S. Fenster and A. Ugural, Advanced Strength and Applied Elasticity, Elsevier,

New York. 1987.

[8] Y. Ijiri, Management Goals and Accounting for Control, North Holland,

Amsterdam. 1965.

[9] R. Philipson, and A. Ravindran, “Application of goal programming to

machinability data optimization,” ASME, Journal of Mechanical Design, vol. 3,

pp. 286-291. 1978.

[10] A. Osyczka, Multicriterion Optimization in Engineering with Fortran Programs.

John Wiley & Sons, New York. 1984.

 184

[11] J. Holland, Adaption in Natural and Artificial Systems, MIT press, 2nd Ed.,

Cambridge, 1992.

[12] E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the Strength Pareto

Evolutionary Algorithm, Technical Report TIK-Report 103, Swiss Federal

stitute of Technology, 2001.

[13] . Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative

ase study and the strength Pareto approach,” IEEE Trans. Evol. Comput., vol. 3,

p. 257-271, 1999.

[14] . Deb, S. Agrawal, A. Pratap and T. Meyarivan, “A fast elitist non-dominated

rting genetic algorithm for multi-objective optimization: NSGA-II,” in Proc.

arallel Problem Solving from Nature—PPSN VI, pp. 849-858, 2000.

[15] . A. Van Veldhuizen, Multiobjective Evolutionary Algorithms: Classifications,

nalyses, and New Innovations. PhD thesis, Department of Electrical and

omputer Engineering, Air Force Institute of Technology, Wright-Patterson AFB,

hio, May 1999.

[16] . Brassard and P. Brately, Algorithms: Theory and Practice, Prentice Hall, NJ,

988.

[17] . Husbands, “Genetic algorithms in optimization and adaptation,” Advances in

arallel Algorithms, pp. 227-276, 1992.

[18] J. Pearl, Heuristics, Addison-Wesley, MA, 1989.

[19] . E. Goldberg, From Genetic and Evolutionary Optimization to the Design of

onceptual Machines, Technical Report 98008, University of Illinois at Urbana-

hampaign, 1998.

In

E

c

p

K

so

P

D

A

C

O

G

1

P

P

D

C

C

 185

[20] R. Neapolitan and N. Kuma gorithms, D. C. Heath and

Company, MA, 1996.

[21] G. B. Lamont (ed.), Compendium of Parallel Parograms for the Intel iPSC

Computers. Department of Electrical and Computer Engineering, Air Force

Institute of Technology, Wright-Patterson AFB, 1993.

[22] A. Vicini and D. Quagliarella, Multipoint Transonic Airfoil Design by Means of a

Multiobjective Genetic Algorithm, Technical Report AIAA-97-0082,

Washington, D.C., AIAA, 1997.

[23] L. Eshelman, (ed.). Proc. Of the Sixthe Int’l Conf. On Genetic Algorithms.

Morgan Kaufmann, San Mateo, Cambridge, 1995.

[24] J. McDonnell, R. Reynolds and D. Fogel (ed.). Evolutionary Programming IV:

Proceedings of the Fourth Annual Conference on Evolutionary Programming.

MIT Press, 1995.

[25] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading, 1989.

[26] L. Fogel, A. Owens and M. Walsh, Artificial Intelligence Through Simulated

Evolution. John Wiely & Sons, New York, 1996.

[27] D. Fogel, System Identification Through Simulated Evolution: A Machine

Learning Approach to Modeling, Ginn Press, Needham Heights, 1991.

[28] H. Schwefel, Numerical Optimization of Computer Models, John Wiley & Sons,

Chichester, 1981.

[29] J. Holland, Adaption in Natural and Artificial Systems. MIT Press, 1st Ed.,

Cambridge, 1975.

rss, Foundation of Al

 186

[30] L. Davis, Handbook of Genetic Algorithms. Van Nostrand Reinhold, Amsterdam,

1991.

[31] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Program. 2nd

Ed., Springer-Verlag, New York, 1993.

D. Beasley, D. Bull and R. Ma[32] rtin, “An overview of genetic algorithms: Part 1,

[33]

sentations in genetic algorithms,” in Proc. 4th Int. Conf.

[34]

f

[36]

sity of Michigan, Ann Arbor, 1985.

f.

c Algorithms, pp. 2-9, 1989.

f.

etic algorithms,” Handbook of

[40] c

c. 1st Int. Conf. Genetic Algorithms, pp. 93-100, 1985.

Fundamentals,” University Computing, vol. 2, pp. 58-69, 1993.

C. Janikow and Z. Michalewicz, “An experimental comparison of binary and

floating point repre

Genetic Algorithms, pp. 31-36, 1991.

A. Gillies, Machine Learning Procedures for Generating Image Domain Feature

Detectors. PhD thesis, University of Michigan, Ann Arbor, 1985.

[35] G. Baker, “Adaptive selection methods for genetic algorithms”, Proceedings o

the 2nd Int. Conf. Genetic Algorithms, pp. 14-21, 1987.

K. De Jong, The Analysis and Behavior of A Class of genetic Adaptive Systems.

PhD thesis, Univer

[37] G. Syswerda, “Uniform crossover in genetic algorithms,” in Proc 3rd Int. Con

Geneti

[38] L. Davis, “Job shop scheduling with genetic algorithms,” in Proc 1st Int. Con

Genetic Algorithms, pp. 136-140, 1985.

[39] G. Syswerda, “Schedule optimization using gen

Genetic Algorithms, pp. 2-9, 1989.

J. Schaffer, “Multiple objective optimization with vector evaluated geneti

algorithms,” in Pro

 187

[41] Fourman, M., “Compaction of symbolic layout using genetic algorithm

Proc. 1st Int. Conf. Gen

s,” in

etic Algorithms, pp. 141-153, 1985.

m for

ation,

248, 1994.

[44] etic algorithms for multiobjective optimization:

[46] d, X. S. Hu and J. G. D’Ambrosio, “Fitness functions for

tic Algorithms 4 (FOGA96), pp. 437-455, 1996.

s, pp. 674-681, 1997.

f. Genetic

[49] Talbi and P. Reininger, “A multiobjective genetic algorithm for

[42] J. Horn, N. Nafpliotis and D. E. Goldberg, “A niched pareto genetic algorith

multiobjetcive optimization,” in Proc. 1st IEEE Cong. Evolutionary Comput

pp. 82-87, 1994.

[43] N. Srinivas and K. Deb, “Multi-Objective function optimization using non-

dominated sorting genetic algorithms,” Evol. Comput., vol. 2, pp. 221-

C. Fonseca and P. Fleming, “Gen

formulation, discussion and generalization”, in Proc. 5th Int. Conf. Genetic

Algorithms, pp. 416-423, 1993.

[45] S. W. Mahfoud, “Genetic drift in sharing methods,” in Proc. 1st IEEE Cong.

Evolutionary Computation, vol. 1, pp. 67-72, 1994.

G. W. Greenwoo

multiple objective optimization problems: Combining preferences with Pareto

rankings,” in Foundations of Gene

[47] D. S. Todd and P. Sen, “A multiple criteria genetic algorithm for containership

loading,” in Proc. 7th Int. Conf. Genetic Algorithm

[48] A. G. Cunha, P. Olivera and J. Covas, “Use of genetic algorithms in multicriteria

optimization to solve industrial problems,” in Proc. 7th Int. Con

Algorithms, pp. 682-688, 1997.

H. Meunier, E. G.

radio network optimization,” in Proc. 7th IEEE Cong. Evolutionary Computation,

pp. 317-324, 2000.

 188

[50] D. H. Loughlin and S. Ranjithan, “The neighborhood constraint-method: A

genetic algorithm-based multiobjective optimization technique,” in Proc. 7th Int.

[51] o free lunch theorem for optimization,”

[52] inated front using

[53] eter control using agent based patchwork

[54] algorithm,” in

[55] ign via genetic algorithm,”

[56] ptimization and multiple

rnetics, vol. 28, pp. 26-37, Jan. 1998.

 IEEE Cong. Evolutionary Computation,

[58] ied model for multi-objective

Conf. Genetic Algorithms, pp. 666-673, 1997.

D. H. Wolpert and W. G. Macready, “N

IEEE Trans. Evol. Comput., vol.1, pp. 67-82, 1997.

J. D. Knowles and D. W. Corne, “Approximating the non-dom

the Pareto archived evolutionary strategy,” Evol. Comput., vol. 8, pp.149-172,

2000.

T. Krink and R. K. Ursem, “Param

model,” in Proc. 7th IEEE Cong. Evolutionary Computation, pp. 77-83, 2000.

H. Lu and G. G. Yen, “Rank-density based multiobjective genetic

Proc. 9th IEEE Cong. Evolutionary Computation, pp.944-949, 2002.

H. Lu and G. G. Yen, “Multiobjective optimization des

in Proc. 2001 IEEE Conf. Control Applications, pp.1190-1195, 2001.

C. M. Fonseca and P. J. Fleming, “Multiobjective o

constraint handling with evolutionary algorithms—part I: A unified formulation,”

IEEE Trans. System, Man, and Cybe

[57] C. C. H. Borges and H. J. C. Barbosa, “A non-generational genetic algorithm for

multiobjective optimization,” in Proc. 7th

pp. 172-179, 2000.

M. Laumanns, E. Zitzler, and L. Thiele, “ A unif

evolutionary algorithms with elitism,” in Proc. 7th IEEE Cong. Evolutionary

Computation, pp. 46-53, 2000.

 189

[59] Z. Michalewicz, “Genetic algorithms, numerical optimization, and constraints,” in

Proc. 6th Int. Conf. Genetic Algorithms, pp. 151-158, 1995.

[60] D. A. Van Veldhuizen and G. B. Lamont, “On measuring multiobjective

evolutionary algorithm performance,” in Proc. 7th IEEE Cong. Evolutionary

Computation, pp. 204-211, 2000.

95-500, 1995.

icial neural network model,”

[64]

[65] f Neural

[66]

 Trans. Neural Networks, vol. 8, pp. 307-317,

[67]

omput., vol. 2, pp. 303-314, 1989.

[61] M. Tanaka, “GA-based decision support system for multicriteria optimization,” in

Proc. Int. Conf. Systems, Man, and Cybernetics, pp. 1556-1561, 1995.

[62] V. R. Vemuri and W. Cedeño, “A new genetic algorithm for multiobjective

optimization in water resource management,” in Proc. 2nd IEEE Cong.

Evolutionary Computation, pp. 4

[63] N. Murata, S. Yoshizawa and S. Amari, “Network information criterion—

determining the number of hidden units for an artif

IEEE Trans. Neural Networks, vol. 5, pp. 865-872, 1994.

X. M. Gao, S. J. Ovaska and Z. O. Hartimo, “Speech signal restoration using an

optimal neural network structure,” in Proc. IEEE Int. Conf. Neural Networks, pp.

1841-1846, 1996.

X. Yao, “Evolving artificial neural network,” International Journal o

Systems, vol. 4, pp. 203-222, 1993.

A. Doering, M. Galicki and H. Witte, “Structure optimization of neural networks

with the A*-Algorithm,” IEEE

1997.

S. Geman, E. Bienenstock and R. Dousat, “Neural networks and the bias/variance

dilemma,” Neural C

 190

[68] B. Zhang and D. Cho, “Evolving neural trees for time series prediction using

Bayesian evolutionary algorithms,” in Proc. 1st IEEE Symp. Combination of

Evolutionary Computation and Neural Networks, pp. 17-23, 2000.

tems, pp. 31-45, 2002.

nics, pp. 584-588, 1998.

-30,

[72] asis function

[74] earning

[75] mnon, “Evolutionary strategies for a parallel multi-objective

[69] G. G. Yen and H. Lu, “Hierarchical genetic algorithm based feed-forward neural

network design,” International Journal of Neural Sys

[70] T. Y. Ke, K. S. Tang, K. F. Man and P. C. Luk, “Hierarchical genetic fuzzy

controller for a solar power plant,” in Proc. IEEE Int. Symp. Industrial

Electro

[71] G. G. Yen and H. Lu, “Hierarchical rank density genetic algorithm for radial-basis

function design,” in Proc. 9th IEEE Cong. Evolutionary Computation, pp.25

2002.

T. Kaylani and S. Dasgupta, “A new method for initializing radial b

classifiers,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, pp. 2584-

2587, 1994.

[73] P. D. Wasserman, Advanced Method in Neural Computing, New York: Van

Nostrand Reinhold, 1993

S. Chen, C. F. Cowan and P. M. Grant, “Orthogonal least square l

algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol.

2, pp. 302-309, 1991.

S. Ricardo and B. A

genetic algorithm,” in Proc. 9th Int. Conf. Genetic Algorithms, pp. 227-234, 2000.

 191

[76] J. Arabas, Z. Michalewicz and J. Mulawka, “ GAVaPS-A genetic algorithm with

varying population size,” in Proc. 1st Cong. Evolutionary Computation, pp. 73-74,

[77]

 Proc. IEEE Symp. Circuits and Systems, pp.

[78] s,” IEEE

[79]

Engineering, pp. 65-70, 1992.

01.

3, 1999.

 7, pp. 205-230, 1999.

1648-1653, 2002.

1994.

N. Zhuang, M. Benten and P. Cheung, “Improved variable ordering of BDDS

with novel genetic algorithm,” in

414-417, 1996.

J. Grefenstte, “Optimization of control parameters for genetic algorithm

Trans. Systems, Man and Cybernetics, vol. 16, pp. 122-128, 1986.

J. Alander, “On optimal population size of genetic algoriths,” in Proc. IEEE

Conference on Computer Systems and Software

[80] K. Tan, T. Lee and E. Khor, “Incrementing multi-objective evolutionary

algorithms: performance studies and comparisons,” in Proc. 1st Evolutionary

Multi-Criterion Optimization (EMO’2001), pp. 111-125, 20

[81] K. Tan, T Lee and E. Khor, “Evolutionary algorithms with goal and priority

information for multi-objective optimization,” in Proc. 6th IEEE Cong. Evol.

Comput., pp.106-11

[82] K. Deb, “Multiobjective genetic algorithms: problem difficulties and construction

of test problems,” Evol. Comput., vol.

[83] K. Deb, L. Thiele, M. Laumanns and E. Zitzler, “Scalable Multi-objectvie

optimization test problems,” in Proc. 9th IEEE Cong. Evol. Comput., pp. 825-830,

2002.

[84] H. Lu and G. G. Yen, “Dynamic population size in multiobjective evolutionary

algorithm,” in Proc. 9th IEEE Cong. Evol. Comput., pp.

 192

K. Tan, T. Lee, D. Khoo and E. Khor, “MOEA toolbox for computer aided multi-

objective optimization,” IEEE Trans. Systems, Man and Cyberneti

[85]

cs, vol. 31, pp.

[86] E Int.

[87]

nary Computation, pp. 303-308, 1997.

[89] and R.C. Eberhart, “Multiobjective optimization using dynamic

[90] d R. Chapman, Application of particle swarm to multiobjetcive

[92] Lechuga, “MOPSO: A proposal for multiple objective

537-556, 2001.

J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” in Proc. IEE

Conf. Neural Networks, pp. 1942-1948, 1995.

J. Kennedy, “The particle swarm optimization: social adaptation of knowledge,”

in Proc. 4th IEEE Cong. Evolutio

[88] Y, Shi and R.C. Eberhart, “A modified particle swarm optimizer,” in Proc. 5th

IEEE Cong. Evolutionary Computation, pp. 69-73, 1998.

X, Hu

neighborhood particle swarm optimization,” in Proc. 9th IEEE Cong. Evol.

Comput., pp. 1677-1681, 2002.

J. Moore an

optimization, Department of Computer Science and Software Engineering,

Auburn University, 1999.

[91] T. Ray, T. Kang and S. K. Chye, “Multiobjective design optimization by

evolutionary algorithm,” Engineering Optimization, 2002 (in Press).

C.A.Coello and M. S.

particle swarm optimization,” in Proc. 9th IEEE Cong. Evol. Comput., pp. 1051-

1056, 2002.

 193

	Table 2.1 General optimization approaches
	Table 2.2 Comparison of three major types of evolutionary algorithms
	Table 2.3 A standard genetic algorithm process
	Linear scaling
	Sigma truncation
	
	
	Power law scaling
	
	
	
	Table 2.4 Rule of Roulette Wheel parent selection

	Schema theory and building block hypothesis
	Crossover and mutation
	Operational rates setting
	
	
	
	Table 6.1 Final simulation results for Function F2-1 by five MOEAs using initial population set 1
	Table 6.2 Final simulation results for Function F2-1 by five MOEAs using initial population set 2
	Table 6.3 Final simulation results for function F2-2 by five MOEAs using initial population set 1
	Table 6.4 Final simulation results for function F2-2 by five MOEAs using initial population set 2

	The Mackey-Glass time series is a continuous time-delay data series. The time-delay differential equation is:
	
	Table 6.5 Characteristics of Mackey-Glass time series

	Chaotic characteristics
	
	
	
	
	
	Table 6.6 Structure and performance comparison between KNN, OLS, GRNN and HRDGA
	Table 7.1 Comparison results of computation time of F3 from selected MOEAs and DMOEA with different settings
	Table 9.1 Comparison results of computation time of F6 from DMOEA, DPSMO and DPSEA

