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PREFACE 
 
 This study classifies existing Multiobjective Evolutionary Algorithms (MOEAs) 

and analyzes several state-of-the-art MOEAs based on different design procedures of 

those crucial building blocks. A Rank-Density based Genetic Algorithm (RDGA) is 

designed by synergistically integrates important features of existing MOEAs in a unique 

way. From the simulation results, RDGA has shown its capability in finding a near-

complete and near-optimal Pareto set at the final and successfully applied in a neural 

network design problem. In addition, an MOEA with dynamic population size—Dynamic 

Multiobjective Evolutionary Algorithm (DMOEA) is derived from RDGA. Regulated by 

dynamic population strategies, DMOEA generation is found to be competitive with, or 

even superior to, other representative MOEAs in terms of keeping the diversity of the 

individuals along the trade-off surface, tending to extend the Pareto front to new areas, 

finding a well-approximated Pareto optimal front, and achieve optimal population size 

according to desired density value and approximated number of trade-off hyper-areas. 

Based on extensive studies on MOEAs, an MOEA Toolbox is designed to provide 

flexible choices to the users by combining different building blocks. To increase the 

convergence speed of DMOEA, a Particle Swarm Optimization (PSO) technique 

combined with genetic selection is proposed in a Dynamic Particle Swarm Evolutionary 

Algorithm (DPSEA). The comparison results show that DPSEA improves both efficiency 

and efficacy of evolutionary process and can be potentially applied to time varying 

multiobjective optimization problems in future work.  
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I. INTRODUCTION 

 

1.1 Motivation 

Many real-world problems in engineering, science, business, and natural and 

social sciences are largely characterized by the need to allocate limited resources to a 

collection of activities in application areas, such as inventory control, transportation 

networks, queuing analysis, task scheduling, capital investment, delivery of health 

services, water-resource management, and energy procurement programs. These 

problems involve multiple measures of performance, or objectives, which should be 

optimized simultaneously. In certain cases, objective functions may be optimized 

independently from each other to achieve the best result in each performance dimension. 

However, suitable solutions to the overall problem can hardly be found in this way. 

Optimal performance according to one objective, if such an optimum exists, may lead to 

unacceptably low performance in one or more of the other objectives. For example, in the 

design of an automobile, an engineer may wish to maximize crash resistance for safety 

and minimize weight for fuel economy. This is a multiobjective optimization problem 

with two conflicting goals, that is, a step towards improving one of the objectives, say 

enhancing crash resistance, is generally a step away from improving the other, increasing 

weight. Obviously, in this case, the notion of “optimum” has to be redefined since a 

single optimal point will not satisfy both objectives simultaneously. 

 

In large-scale systems, these Multiobjective Optimization Problems (MOPs) are 

even more complicated. For instance, in a plant production study, one may not be 
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satisfied with only knowing what actions lead to minimizing production costs. Instead, 

the study may be taken so that it identifies additional objectives such as short-term and 

long-term capital gains, employee satisfaction and well-being, product diversification, 

and energy conservation managements. Obviously, some of these objectives are 

competing, or even conflicting, which cannot achieve an optimal solution at the same 

time. A suitable solution to such problems involving conflicting objectives should offer 

“acceptable” performance, though possibly sub-optimal in the single-objective sense, in 

all objective dimensions, where “acceptable” is problem-dependent and ultimately 

subjective.  

 

1.2 Objective 

The simultaneous optimization of multiple, possibly conflicting, objective 

functions deviates from single function optimization in that it seldom result in a single, 

global optimal solution. Instead, MOPs tend to be characterized by a family of 

alternatives that must be considered equivalent in the absence of information concerning 

the relative importance of each objective to the others. The family of solutions to a 

multiobjective optimization problem is composed of all those elements of the search 

space that are components of the corresponding objective vectors which cannot be all 

simultaneously improved. This is known as the concept of Pareto optimality [1]. A 

formal definition of Pareto optimality is given as follows [2]. Consider, without loss of 

generality, the minimization of the n components  of a vector function  

of a vector variable x  in a universe , where  

,,,1, nkf k K= f

µ

))(,),(),(()( 21 xxxxf nfff K= .               (1.1)  
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Then a decision vector  is said to be Pareto-optimal if and only if there is no 

 for which  dominates , that is, there 

is no x  such that  

µµ ∈x

()( v v=xµ∈vx

v

),,1 nvK= fv ),,()( 1 nu uu K== xfu

µ∈

ii uvni ≤∈∀ },,,1{ K     .       (1.2) and ii uvni <∈∃ |},,1{ K

The set of all Pareto-optimal decision vectors is called the Pareto-optimal set of 

the problem. The corresponding set of objective vectors is called the non-dominated set, 

or Pareto front. Apparently, the Pareto front dominates all other possible solutions and in 

most cases, it is located on the boundary of the objective vector space (i.e., feasible 

solution space) as shown in Figure 1.1 for a two-objective optimization problem 

( and  refer to two cost functions of interest). 1f 2f

1f

Feasible Range

Pareto front

A

B

C

1f

2f

1f

Feasible solution space

Pareto front

A

B

C

1f

2f
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Point C: dominated point
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Point C: dominated point

Figure 1.1 Graphical illustration of the Pareto optimality of a two-objective minimization problem 

 

Conventional optimization techniques, such as gradient-based and simplex-based 

methods [3], and less conventional ones, such as simulated annealing [4] and tabu search 

[5], are difficult to extend to solve MOPs, because they were not designed with multiple 

solutions in mind. In practice, MOPs have to be reformulated as a single objective 

function prior to optimization, leading to the production of a single solution per run of the 
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optimizer. In literature, weighting objectives method [3,6], goal programming method [7-

9] and Min-Max optimum method [10] are some representative decision making 

algorithms combined with conventional optimization techniques above to achieve a 

single solution in multiobjective optimization problems. 

 

Evolutionary Algorithms (EAs) [11] have been recognized to be well suited to 

multiobjective optimization early in their development. In EAs, multiple individuals can 

search for multiple solutions in parallel, eventually taking advantage of any similarities 

available in the family of possible solutions to the problem. The ability to handle 

complex problems, involving features such as discontinuities, multimodality, disjoint 

feasible spaces and noisy function evaluations, reinforces the potential effectiveness of 

EAs in multiobjective search and optimization, which is perhaps the problem area where 

evolutionary computation really distinguishes itself from other algorithms. 

 

Since the 1980’s, several Multiobjective Evolutionary Algorithms (MOEAs) have 

been proposed and applied in MOPs [2]. These algorithms share the same purpose—

approximate a uniformly distributed, near-optimal and near-complete Pareto front for a 

given MOP. However, this goal is very difficult to be achieved because the true Pareto 

front is a high-dimensional solution set instead of a single solution point, which is much 

more complicated than many single objective optimization problems.  Generally, the 

approximation of the Pareto-optimal set involves two objectives: the distance to the true 

Pareto front is to be minimized while the diversity of the generated solutions is to be 

maximized [9]. Unfortunately, these two objectives are also contradictive. In one respect, 
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Evolutionary Algorithms encourage those better-fit individuals to restrict their searching 

efforts within local areas in order to search for solutions with even higher fitness values. 

On the other hand, most of the MOPs require the computational resources to be 

homogenously distributed in a high dimensional search space to maintain the diversity of 

resulting population. For this reason, a Pareto-based fitness assignment (ranking scheme) 

and a density estimation method are usually designed in some existing MOEAs [12-14] 

in order to guide the search towards a near-complete approximation of the ideal Pareto 

optimal front. Although some of the most advanced MOEAs have been shown to be able 

to solve some of the challenging multibojective optimization problems, several critical 

issues are still not well attended in both algorithm domain and problem domain. 

Therefore, the goal of this research is to study the characteristics of MOPs and exploit the 

advantages and disadvantages of the existing MOEAs; and propose some feasible 

innovations in MOEA designs in order to develop a state-of-the-art MOEA for practical 

uses in real-world multiobjective optimization applications. 

 

The remainder of this dissertation is organized as follows.  Chapter II introduces 

Evolutionary Algorithm (EAs) and its categories. As the most representative algorithm in 

EAs, genetic algorithm is reviewed in details. Its operation procedure, advantages over 

traditional heuristic optimization algorithms and open issues are also discussed in 

Chapter II.  Chapter III defines multiobjective optimization functions and Pareto 

optimality. Three traditional decision making approaches for multiobjective optimization 

are highlighted therein. Chapter IV reviews existing literature on several well-regarded 

MOEAs and the incorporated characteristics applied by these MOEAs (e.g., fitness 
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assignment, diversity maintenance, and elitism). A Rand-Density based Genetic 

Algorithm (RDGA) is proposed and its main design procedures are discussed in Chapter 

V. In Chapter VI, based on the study of the challenging characteristics embedded in 

different types of MOPs, several representative MOEAs along with the proposed RDGA 

are examined by four benchmark MOP test functions. The results show that RDGA is 

competitive, or even superior to, the other MOEAs in terms of finding a near-complete 

and near-optimal set of Pareto points. Additionally, as a real application, a Radial-Basis 

Function Neural Network (RBFNN) design problem is formulated as a bi-objective MOP 

and an RDGA with hierarchical chromosome representation is implemented in order to 

search for a set of non-dominated neural network candidates to predict a chaotic time 

series. Chapter VII explores a study on dynamic population strategies in MOEA. Based 

on RDGA, a Dynamic Multiobjective Evolutionary Algorithm (DMOEA) is designed. In 

one aspect, a population growing strategy is proposed in order to encourage all of the 

created individuals contribute their valuable schemas adequately. On the other hand, 

those ill-performed and outdated individuals are eliminated from generation to generation 

to control the computation cost by preventing the explosion of the population size. By 

examining the selected performance indicators on a benchmark problem, DMOEA is 

found to be efficient and effective in regulating an optimal population size, keeping the 

diversity of the individuals along the trade-off surface, tending to extend the Pareto front 

to new areas, and finding a well-approximated Pareto optimal front. Additionally, 

dynamic population mechanism eliminates the guesswork from heuristically assigning an 

initial fixed population size. Based on the study of MOEAs, in Chapter VIII, a module-

based, user-friendly MOEA toolbox is designed. Since an MOEA can be divided into 
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several crucial building blocks, such as ranking methods, density estimation approaches, 

fitness assignment strategies, elitism schemes and some other necessary routines. 

Synergistic combinations of these building blocks can result in different types of MOEAs 

existed, or even some novel ones. Therefore, a module-based toolbox can provide 

designers with flexibility in dealing with different types of MOPs with their favorite 

design procedures. In Chapter XI, a new class of evolutionary algorithm—Particle 

Swarm Optimization (PSO) is introduced. Based on PSO’s characteristics of faster 

convergence, a Dynamic Particle Swarm Multiobjective Optimization (DPSMO) 

algorithm and a Dynamic Particle Swarm Evolutionary Algorithm (DPSEA) are devised. 

From simulation results, although DPSMO can significantly improve the efficiency of 

evolutionary process, it may also produce relatively poorer quality of final Pareto front 

comparing to DMOEA. However, DPSEA shows great potential in improving both 

efficiency and efficacy of evolutionary process, which makes DPSEA a potential 

approach for time varying or even real-time multiobjective optimization problems. 

Finally, Chapter X concludes this report with a few pertinent observations and proposes 

future research directions in the field of evolutionary algorithms in mutiobjective 

optimization problems. 
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II. EVOLUTIONARY ALGORITHMS  

 

2.1 Overview of Optimization Algorithms 

In general, optimization (or search) techniques can be classified into two 

categories [15]: enumerative (deterministic) and stochastic (random). Table 2.1 shows 

common examples of each type. 

Table 2.1 General optimization approaches 
Enumerative 

(Deterministic) 
Stochastic 
(Random)  

Greedy Random Search (Walk) 

Hill-Climbing Simulated Annealing 

Branch & Bound Monte Carlo 

Depth-First Tabu Search 

Breadth-First Evolutionary Algorithms 

Best-First 

Calculus-Based 

 

Mathematical Programming 

 

Enumerative schemes are perhaps the simplest search strategy—each possible 

solution is evaluated within some defined finite search space. However, it is apparent that 

this technique will be inefficient or even infeasible as search space becomes extremely 

large. Since many real world problems are computationally complex, some means of 

limiting the search space must be implemented to find “acceptable” solutions within 

“reasonable” time. Deterministic search attempts this by incorporating problem domain 

knowledge. Many of these are considered as graph/tree search algorithms, such as greedy 

algorithms, hill-climbing, branch & bound, etc [16-17,4,18]. Although these techniques 

had been successfully used in solving a wide variety of problems [16,19-20], they have 

 8 



difficulty to deal with problems involving high-dimensionality, multi-modality, or NP-

Complete characteristics According to [15], the problems exhibit one or more of these 

characteristics are termed irregular [21]. 

 

Because enumerative and deterministic techniques are unsuitable for the irregular 

optimization problems, stochastic search and optimization approaches are developed as 

alternative approaches for solving these irregular problems.  These methods include 

Random Search, Simulated Annealing, Monte Carlo, Tabu Search and Evolutionary 

Algorithm (EA). Stochastic methods require a function assigning fitness values to 

possible solutions and an encode/decode mechanism between the problem and algorithm 

domains. In general, they provide good solutions to a wide range of optimization 

problems that traditional deterministic search methods find difficult [19]. 

 

2.1.1 Random Search (Walk) 

A random search is the simplest stochastic search strategy, as it merely evaluates 

a given number of randomly selected solutions. A random walk is similar except that the 

next solution is randomly selected by using the last evaluated solution as a starting point 

[22]. Random searches can generally expect to do no better than enumerative ones [19]. 

 

 

2.1.2 Simulated Annealing 

Simulated Annealing is an algorithm explicitly modeled on an annealing analogy. 

For example, a liquid is heated and then gradually cooled until it freezes and a “moving” 

 9 



will be chosen randomly. If the “moving” improves the current optimal point, it is always 

executed; otherwise it will be executed with some probability. This probability 

exponentially decreases either by time or with the amount by which the current optimum 

is worsened [4]. If the liquid’s temperature is cooled slowly enough, it will attain a lowest 

energy configuration. Therefore, basic mechanism of Simulated Annealing is to obtain 

the global optimum if the “moving” probability decreases slowly enough. 

 

2.1.3 Monte Carlo 

In general, Monte Carlo methods involve simulations dealing with stochastic 

events; they employ a pure random search where any selected trail solution is fully 

independent of any previous choice and its outcome [5]. The current “best” solution and 

associated decision variables are stored as a comparator. In the next step, the “best” 

solution may be updated, and so on. 

 

2.1.4 Tabu Search 

Tabu Search is a meta-strategy developed method in order to avoid getting 

“stuck” on local optima. It keeps a record of both visited solutions and the “path”, which 

reached the solutions in different “memories”. This information restricts the choice of 

solutions to evaluate in the next step. Tabu search is often integrated with other 

optimization methods [5]. 

 

All these approaches are single-point-based methods, which is significantly 

different from the population-based searching scheme used by Evolutionary Algorithm.  
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2.2 What is an Evolutionary Algorithm? 

The principle of evolution is one of the most general conceptions of biology, 

which links every organism together in a historical chain of events. Every creature in the 

chain is the product of a series of  “accidents” that have been sorted out thoroughly under 

selective pressure from the environment. Over many generations, random variation and 

natural selection modify the characteristics of individuals and species to fit the demands 

of their living environments. This fit has no intrinsic purpose—it is only the effect of 

natural variation acting upon and within populations and species and it makes evolution 

capable of “engineering” solutions to the problems of survival. 

 

What advantages does the evolutionary process offer when applied to engineering 

problems?  It could provide a means for solving problems that are difficult, if not 

impossible, to traditional algorithms. Indeed, the field of evolutionary computation is one 

of the fastest growing areas in computer science and engineering simply because of this 

reason [17]. Engineers and scientists with quite different backgrounds have come 

together to tackle some of the most difficult problems using this very promising set of 

stochastic search algorithms, Evolutionary Algorithms (EAs) [23,24].  

 

2.3 Classification of Evolutionary Algorithms 

There are three main types of EAs: Genetic Algorithm (GA) [11,25], 

Evolutionary Programming (EP) [26,27] and Evolutionary Strategies (ES) [28,5]. Each 

type has numerous variants due to different parameter settings and implementations. 

Which EA is the best depends upon the problem. There is no universally best algorithm 

 11 



that can achieve optimal performance for all problems. Different representations or 

encoding schemes, selection schemes, and search operations will define different EA.  

For example, GA normally uses crossover and mutation as search operators, while ES 

only involves mutation. GA often emphasizes genetic evolution, while EP pays more 

attention to the evolution of behavior. Table 2.2 illustrates the key implementation 

differences among GA, ES and EP. 

Table 2.2 Comparison of three major types of evolutionary algorithms 
EA Type Representation  Evolutionary Operatotors 

GA Normally binary;  

Real values can be adopted 

Mutation, recombination, 

crossover and selection 

ES Real values and  

Strategy parameters 

Mutation, and  or 

 selection [24] 

)( λµ +

),( λµ

EP Real values Mutation and  

selection alone 

)( λµ +

 

In this study, due to its flexibility in solving complex optimization problems, 

genetic algorithm is chosen as a preferred searching algorithm.  Moreover, as both GP 

and ES are originated from GA [23], we will mainly discuss the characteristics of genetic 

algorithms in this chapter. 

 

2.4 Genetic Algorithm 

The basic principles of Genetic Algorithm (GA) were first proposed by Holland 

[29] in 1970’s. Thereafter, a series of literature becomes available [25,30-32]. GA is 

inspired by the mechanism of natural selection proposed by Darwin, in which better-

fitted individuals are more likely to be the winners in a competing environment, or so 

called “survival of fittest law.” GA uses a direct analogy to natural evolution 
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characteristics, where the optimal solutions can be evolved and represented by the final 

winners of the genetic process. Generally speaking, a GA is defined by the following four 

elements: representation, fitness evaluation, selection, and genetic operations. The whole 

process is described in Table 2.3. 

Table 2.3 A standard genetic algorithm process 
 
 
 
 
 
 
 
 
 
 

 

1. Generate the initial population P(0) at random, and set iteration index i=0; 
 
2. REPAET 

 
  (a) Evaluate the fitness of each individual in P(i); 
 
  (b) Select parents from P(i) based on their fitness in P(i); 
 
  (c) Apply genetic operations to the selected parents and obtain next generation P(i+1); 
 
              UNTIL the stop criterion are meet. 

2.4.1 Representation 

GA presumes that the potential solution of any problem is an individual that can 

be represented by a set of parameters. These parameters are regarded as the genes of a 

chromosome and can be structured by a string of values in binary form. The chromosome 

representation that is encoded from the possible physical solution is called genotype; the 

corresponding physical representation is called phenotype. A suitable genetic 

representation for the given problem is always a critical part of genetic algorithms.  

 

2.4.2 Fitness evaluation 

A nonnegative value, generally known as a fitness value, is used to reflect the 

degree of “goodness” of a chromosome for the corresponding genotype, which would be 

highly related with its objective value. Fitness evaluation gives the performance of a 
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given chromosome for a specific objective in the phenotype. This is a very important link 

between GA and the system it represents. 

 

2.4.3 Genetic selection 

After a fitness evaluation, a better chromosome has a higher tendency to survive 

and reproduce good quality offspring.  In a practical GA application, a population pool of 

chromosomes has to be built. These chromosomes can be randomly set initially. The size 

of the population varies based on the problem of interest. In each cycle of an evolving 

process, a given number of parents are selected by a selection routine to generate a 

mating pool for genetic reproduction. 

 

 

 

 

 

 

 

 

crossover 

offspring2 

offspring1 

parent2 

parent1 

0000101001 101

1010011001 011

0000101001 011

1010011001 101

Figure 2.1 Illustration of crossover operation 

 parent 
 

offspring

1010001001 101

mutation 

1010011001 101
 
 
 
 
 
 

 
Figure 2.2 Illustration of mutation operation 
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2.4.4 Genetic operations 

In mating pool, the genes of selected parents are mixed and recombined for the 

production of offspring for a given proportion of the next generation, which is called 

crossover (Figure 2.1). Mutation is occasionally applied (Figure 2.2), to introduce some 

new genes into the whole population. It is expected that from this process of evolution 

(manipulation of genes), the “better” chromosomes will create a larger number of 

offspring, having a higher chance of surviving in the next generation, and emulating the 

“survival-of-the-fittest” mechanism in nature. 

 

2.4.5 Stopping criteria 

The cycle of evolution is repeated until some desired termination criteria are 

reached. These criteria can be set by the number of evolution cycles (computational 

runs), the amount of variation of individuals between different generations, or a 

predefined value of fitness. 

 

2.5 Difference between GA and Traditional Algorithms 

Using GA to solve optimization problems is by far the most active area in 

evolutionary computation. Compare to those traditional algorithms, the benefits of 

applying GA in this field are mainly credited to “no assumption” and “parallel 

searching.” 

 

To be applicable, traditional algorithms for discovering the solutions for 

optimization problems require users to make many assumptions about how to evaluate 
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the fitness of a solution. For example, linear programming algorithms demand the cost 

functions to be linear, i.e., a sum of weighted individual cost terms. Another popular 

approach, the gradient-based search, by which we try to find the point of zero gradients, 

requires a smooth, differentiable cost function. In addition, it is unable to deal with a cost 

function having discontinuities. However, GA requires no such assumptions. In GA, the 

fitness of each individual solution in a population is evaluated and scored; it means one 

solution must be determined to be better than another in some way. This makes a broad 

range of problems that are outside the scope of traditional algorithms feasible to genetic 

algorithms. 

 

Another attractive feature of GA is that it is population based. This makes GA to 

equip with the ability of parallel searching. In each generation, all the individuals of the 

population are trying to search in all the directions within the searching space, this allows 

GA to avoid entrapment in a local optimum and outperform the traditional pure hill-

climbing algorithms. 

 

2.6 GA Design and Open Problems 

GA has the unique ability to search for and optimize a solution for a complex 

system. However, due to its evolutionary characteristics, a standard GA may not be 

flexible enough for practical applications which tend to be complicated, multi-tasking 

problems with various subgoals. Therefore, a means of modifying the GA structure needs 

to be made to meet the design criteria. 
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2.6.1 Chromosome representation 

The coding of the chromosome representation may vary according to the nature of 

the problem. In general, bit string encoding is the most classic method used by GA 

because of its simplicity and traceability.  

 

Recently, a direct manipulation of real-value chromosomes raised considerable 

interest. This representation was introduced especially to deal with problems with real 

parameters. In [33], the result indicated that floating point representation would be faster 

in computation and more consistent from the basis of run-to-run. At the same time, its 

performance can be enhanced to achieve a higher accuracy. However, the opinion given 

by [15] suggested that a real-value coded GA would not necessarily yield better result in 

some situations. By far, there is not sufficient consensus to support the superiority of 

either. 

 

2.6.2 Objective and fitness function 

An objective function is an assessment mechanism used to evaluate the goodness 

of a chromosome. Since each individual has a distinguished behavior, the evaluated 

values vary from one range to another. To maintain uniformity, the objective value, O, is 

mapped into a fitness value [25], shown in Equation (2.1), with a map Ψ  where the 

domain of F is usually greater than zero. 

FO →Ψ :                (2.1) 
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Linear scaling 

 The fitness value of chromosome i, , has a linear relationship with the objective 

value o  as: 

if

i

              (2.2) baof ii +=

where a and b are chosen to enforce the equality of the objective value and the average 

fitness value and cause the maximum scaled fitness to be a specified multiple of the 

average fitness. This method can reduce the effect of genetic drift to produce a very good 

chromosome. However, it may introduce a negative fitness value that must be avoided in 

the GA operation [32]. Thus, the choice of a and b depends upon the knowledge of the 

range of the objective values. 

 

Sigma truncation 

 This method avoids the negative fitness value and incorporates the problem 

dependent information into the scaling mechanism. The fitness value  of chromosome 

i is calculated according to:  

if

)( σcoof ii −−=                  (2.3) 

where c is a small integer, o  denotes the mean of the objective values, andσ is the 

standard deviation in the population. To prevent negative values of f, any negative result 

(i.e., ) is set to zero.  The chromosomes whose fitness values are less than c  will 

not be selected. 

0<f σ
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Power law scaling  

 The actual fitness values is taken as a specific power of the objective value, : io

k
ii of =              (2.4) 

where k is problem dependent or even varies during the evolution process [34]. 

 

2.6.3 Selection methods 

To generate good offspring, an effective parent selection mechanism is essential. 

The chance of selecting one chromosome to be a parent should be directly proportional to 

the number of offspring produced. Baker [35] presented three measures of performance 

for the selection algorithms: Bias, Spread and Efficiency. 

 

Bias defines the absolute difference between individuals in actual and expected 

probability of selection. Optimal zero bias is achieved when an individual’s probability 

equals its expected number of trials. 

 

Spread is a range of the possible number of trials that an individual may achieve. 

If  is the actual number of trials due to each individual i, then the “minimum spread” 

is the smallest spread that theoretically permits zero bias, i.e. 

)(ig

])(),([)( ietietig ∈                   (2.5)    
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where  is the expected number of trials of individual i, and underlined and overlined 

denote floor and ceiling operators, respectively. Thus, the spread of a selection method 

measures its consistency. 

)(iet

 

Efficiency is related to the overall time complexity of the algorithms.  

Table 2.4 Rule of Roulette Wheel parent selection 
 

 
1. Sum the fitness of all the population members; named as total fitness (Fsum); 

 
2. Generate a random number (n) between 0 and total fitness Fsum; 

 
3.   Return the first individual whose fitness, added to the fitness of the preceding 

individual, is greater than or equal to n 

 

 

 

 

 

By far, many selection techniques employ Roulette Wheel Mechanism as listed in 

Table 2.4 and shown in Figure 2.3.  SSR (Stochastic Sampling with Replacement), SSPR 

(Stochastic Sampling with Partial Replacement) and SUS (Stochastic Universal 

Sampling) are three popular roulette wheel selection methods [25]. 

 

 

 

 

 

 

 

 

Random number 

Chromosome 

Chromosome 

Chromosome 

Chromoso
me 

 

Figure 2.3 Illustration of random Roulette Wheel parent selection indicator 
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2.6.4 Genetic operation 

Schema theory and building block hypothesis 

 Consider a simple three-dimensional space as shown in Figure 2.4, and assume 

that the searching space of the solution of a problem can be encoded with three bits; this 

can be represented as a simple cube with string “000” at the origin. The corners in this 

cube are numbered by bit strings and all adjacent corners are labeled by bit strings that 

differ by exactly 1 bit. If “*” represents a “don’t care” or “wild card” match symbol, then 

the front plane of the cube can be represented by the special string “0**”. Strings that 

contain “*” are referred to as schemata and each schema corresponds to a hyperplane in 

the searching space. A schema represents all strings which match it on all position other 

than “*”. It is clear that each schema matches exactly 2  strings, where r is the number 

of don’t care symbols, ‘*’, in the schema template. Every binary encoding is a 

“chromosome” which corresponds to a corner in the hypercube and is a member of the 

-1 different hyperplanes, where L is the length of the binary encoding. 

r

L2

010

100
101

111

110

011

001000

010

100
101

111

110

011

001000

Figure 2.4 Three-dimensional cube to explain schemata 
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How can genetic algorithm be formulated to search for good schema? 

Michalewicz indicated, “A genetic algorithm seeks for near-optimal performance through 

the juxtaposition of short, low-order, high performance schemata, called the building 

block [31].”  

 

Crossover and mutation 

 The genetic operations, which are generally referred to as crossover and mutation, 

have the ability to generate, promote and juxtapose (side by side) building blocks to form 

the optimal strings. Crossover tends to conserve the genetic information present in the 

parent strings. Thus, when these strings are similar, their capacity to generate new 

building blocks decreases. Mutation is not a conservative operator but is capable of 

generating new building blocks rapidly. 

 

Although one-point crossover method was inspired by biological processes, it has 

one major drawback in that certain combinations of schema cannot be combined in some 

situations [25]. 

 

 For example, assume that there are two high-performance schemata: 

  S = 1 0  1   *   *   *   *   1 1

 = * *  *   *   1   1   *   *. 2S

There are two chromosomes  and  in the population matched by  and : 1I 2I 1S 2S

  = 1 0  1   1   0   0   0   1 1I

 = 0  1   1   0   1   1   0   0. 2I
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If only one point crossover is performed, it is impossible to obtain the chromosome that 

can be matched by the following schema ( ) as the first schema will be destroyed, 3S

  = 1 0  1   *   1   1   *   1. 3S

A multi-point crossover can be introduced to overcome this problem. As a result, the 

performance of generated offspring is greatly improved. Another approach is the uniform 

crossover. This generates offspring from the parents, based on a randomly generated 

crossover mask. The operation is demonstrated in Figure 2.5. The resulting offspring 

contains a mixture of genes from each parent. The number of effective crossing points is 

not fixed, but will be averaged to L/2 (where L is the chromosome length). 

 

mask 

Uniform 

offspring

parent

1 0 1 0 0 1 1 1 1 0 1 0 0 

 

 

 

 

 

 

 

Figure 2.5 Example of uniform crossover 

 

The preference of using which crossover techniques is still a debatable issue. 

DeJong [36] concluded that a two-point crossover seemed to be an optimal number for 

multi-point crossover. However, no analytical justification is given. Since the uniform 

crossover exchanges bits rather than segments, it can combine features regardless of their 
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relative location. This ability may outweigh the disadvantage of destroying building 

block solutions and make uniform crossover superior for some problems [37].  Therefore, 

the crossover technique used to improve offspring production is very much problem 

dependent. The basic concept in crossover is to exchange gene information between 

chromosomes. An effective crossover design would greatly increase the convergence rate 

of the evolutionary process. 

 

Originally, mutation was designed only for the binary represented chromosomes. 

To adopt the concept of introducing variants into the chromosome, a random mutation 

[38] for the real number chromosome algorithm was proposed: 

( )σµψ ,+= gg                (2.6) 

where g is the real value gene, ψ  is a random function (Gaussian or normally 

distributed), and   denote the mean and variance related with the random function, 

respectively. 

,µ σ

 

Operational rates setting 

Another controversial debate for both analytical and empirical investigations is 

the choice of an optimal probability operation rate for crossover and mutation [31-33]. 

The increase of crossover probability would promote the recombination of building block 

and at the same time, it may disrupt the evolutionary process of good chromosomes. On 

the other hand, increasing the mutation probability would transform the genetic search 

into a random search, but would reintroduce the lost genetic material. 
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III. MULTIOBJECTIVE OPTIMIZATION 

 

3.1 Introduction 

In engineering practices, it is often a challenge to formulate a design when there 

are several criteria or design objectives to be met simultaneously. If the objectives are 

conflicting, then the problem becomes one of finding the best possible design that 

satisfies the conflicting objectives under different trade-off scenarios. With these multiple 

objectives and constraints taken into consideration, an optimum design problem can then 

be formulated. This type of problem is known as a multiobjective, multicriteria, or vector 

optimization problem.  

 

Leibniz (1646-1716) and Euler (1707-1783) used infinitesimal calculus to find the 

extreme values of functions. This made it possible for researchers to study various new 

fields of mechanics. J. Bernoulli (1655-1705), D. Bernoulli (1700-1782), and Sir Isaac 

Newton (1643-1727) used these methods to lead them into their findings; Newton in 

minimizing the resistance of a revolving body while the Bernoulli's in solving 

isoperimetric problems. Lagrange (1736-1813) and Hamilton (1805-1865) developed 

several theorems that serve as the basis for the solution of all optimum design problems. 

Later, function approximations were developed by Rayleigh (1842-1919), Ritz (1878-

1909), Galerkin (1871-1945) and others to solve complicated time-consuming functions, 

because they could be approximated relatively accurately.  
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A French-Italian economist named Pareto (1848-1923) first developed the 

principle of multiobjective optimization for use in economics. His theories became 

collectively known as Pareto's optimality concept.  

 

3.1.1 Problem solution  

SO solution 

A Multiple-Objective (MO) optimum design problem is solved similarly to the 

Single-Objective (SO) problem. In a SO problem, the idea is to find a set of values for the 

design variables that, when subject to a number of constraints, yields an optimum value 

for the sole objective (or cost) function.  

 

MOP ideal solution  

In MOPs, the designer tries to find the values for the design variables, which 

optimize multiple objective functions simultaneously, in this manner the solution is 

chosen from a so-called Pareto optimal set. In general, for multiobjective problems the 

optimal solutions obtained by individual optimization of the objectives (i.e., SO 

optimization) is not a feasible solution to the multiobjective problem.  

 

3.2 Definition 

3.2.1 Design variables 

The first step in the optimization process is the formulation of the problem. A 

mathematical model needs to be developed which will closely describe the behavior of 

the physical system in all possible situations. 
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A general multiobjective optimization problem can be described as a vector 

function f that maps a set of m parameters (decision variables) to a set of n objectives 

min/max                   (3.1) ))(,),(),(()( 21 xxxxfy nfff K==

subject to  Xxxx m ∈= ),,,( 21 Kx

      y ,  Yyyy n ∈= ),,,( 21 K

where  is called decision vector which includes m decision variables,  is the 

parameter space, 

x X

y is the objective vector which includes n objectives,  and Y  is the 

objective space. 

 

3.2.2 Constraints  

The next step in the formulation of the problem is to identify the constraints. 

Constraints are conditions that must be satisfied, in order for the design to function 

according to the physical problems. Constraints are expressed as inequalities and/or 

equalities. 

 

Inequality constraints  

Inequalities are usually specified by g  (where 0)( ≤x g  is a vector representing 

the constraints , ). The standard form of an inequality constraint is shown 

below  

jg Jj ,...,1=

0)( ≤xjg ,      .         (3.2) Jj ,...,1=
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Equality Constraints  

Equality constraints are shown as . In a scalar form they are written as  0)( =xh

0)( =xkh ,       k .            (3.3) K,...,1=

 

3.2.3 Objective functions  

The final step in the problem statement is to define the objective functions. These 

are the quantities that the designer wishes to optimize. These functions are expressed as 

))(,),(),(()( 21 xxxxf nfff K= .                (3.4) 

 Sometimes the functions may be defined so that they are all maximized.  

))(min()(max xx ii ff −−= .              (3.5) 

 

3.2.4 Standard form  

The problem, when written in what is termed the standard form, will appear as 

follows 

}0)(,0)(:)({min ≤=
ℜ∈

xxx
x

ghf
n

.                 (3.6) 

The above notation can be interpreted as follows: to find the real values of the design 

variables (i.e., that belong to ℜ ), which will result in the smallest values of the 

objective functions subject to both equality and inequality constraints.  

n
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3.3 Pareto Optimal and Traditional Decision Making Methods 

3.3.1 Introduction  

In a multiobjective optimization problem, we wish to find a set of values for the 

decision variables that optimizes a set of objective functions. The set of decision 

variables that produces the optimal result is designated to be the optimal set and is 

denoted by 
*

x . The optimal set is referred to as the Pareto optimal set, and it yields a set 

of possible answers from which we may choose the desired values of the design 

variables.  

 

3.3.2 Definition of a Pareto optimum  

 

 

 

 

 

 

 

 

Figure 3.1 Graphical definition of the Pareto optimality 

 

As shown in Figure 3.1, a set of points is said to be Pareto optimal if, moving 

from one point (e.g., point A) to another point (e.g., point B) in the set, any improvement 

in one of the objective functions from its current value would cause at least one of the 
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other objective functions to deteriorate from its current value. Note that, based on this 

definition, point C is not Pareto optimal.  

 

A more formal definition of Pareto optimality is given as follows [2]. Consider, 

without loss of generality, the minimization of the n components  of a 

vector function f  of a vector variable x  in a universe , where  

,,,1, nkf k K=

µ

))(,),(),(()( 21 xxxxf nfff K= .              (3.7)  

Then a decision vector  is said to be Pareto-optimal if and only if there is no 

 for which  dominates , that is, there 

is no x  such that  

µµ ∈x

()( v v=xµ∈vx

v

),,1 nvK= fv ),,()( 1 nu uu K== xfu

µ∈

ii uvni ≤∈∀ },,,1{ K     .       (3.8) and ii uvni <∈∃ |},,1{ K

The set of all Pareto-optimal decision vectors is called the Pareto-optimal set of the 

problem. The corresponding set of objective vectors is called the non-dominated set, or 

Pareto front. Apparently, the Pareto front dominates all other possible solutions and in 

most cases, it is located on the boundary of the objective vector space (i.e., feasible 

solution space) as shown in Figure 1.1 for a two-objective optimization problem. 

 

3.3.3 Popular decision making methods 

 Several methods have been recognized as popular decision-making methods for 

solving multiobjective optimization problem. Among all of these methods, weighting 
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objective method, goal programming method and Min-Max optimum method are the 

most representative ones. 

 

3.3.4 Weighting objectives method  

This method [3] takes each objective function and multiplies it by a fraction of 

one, the "weighting coefficient", which is represented by . The modified functions are 

then added together to obtain a single cost function, which can be easily solved using any 

SO method. Mathematically, the new function is written as  
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where  , and  . 10 ≤≤ iw ∑
=

=
k

i
iw

1
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If the problem is convex, then a complete set of non-inferior or Pareto solutions 

can be iteratively found. However, if the problem is not convex, then there is no 

guarantee that this method will yield the entire Pareto set.  

 

In this method, the weighting coefficients are determined beforehand. The 

coefficients are then varied to yield a set of feasible optima, the Pareto Optimal set. The 

designer is expected to pick the values of the variables from this set of solutions.  

 

3.3.5 Goal programming method  

This is perhaps the most well known method of solving MOPs [9]. This method 

was originally developed by Charnes and Cooper [3] and Ijiri [8]. In this method, the 
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designer must construct a set of goals (which may or may not be realistic) that should be 

obtained (if possible) for the objective functions. The user then assigns weighting factors 

to rank the goals in order of importance. Finally a single objective function is written as 

the minimization of the deviations from these goals.  

 

A "goal constraint" is slightly different than a "real constraint" in goal 

programming problems. A "goal constraint" is a constraint that needs to be satisfied for 

the given MOP, but a slight deviation above or below this constraint is acceptable.  

 

3.3.6 Min-max optimum  

If one solves for the optimization of each of the objective functions individually, 

the min-max optimum is the set of points, which will give the smallest values of the 

relative deviations from the individual objective function [10]. This optimum assumes 

that each of the objective functions is equally important.  

Before the min-max optimum can be defined mathematically, a number of 

functions must be defined first.  

||
|)(|

)(
0

0

i

ii
i f

ff
z

x
x

−
=              (3.10a) 

|)(|
|)(|

)(
*

0
*

x
x

x
i

ii
i f

ff
z

−
=         (3.10b) 

)}(),(max{)( * xx iii zzxZ =         (3.10c) 

 

 32 



In the above equations,  and . A point is a 

min-max optimum if for every x  in the feasible region the following series of steps is 

satisfied.  

)(min0 xii ff = ))(min(max* xii ff =

Step 1:  

)}({maxmin)( *
1 xzxv iiXx∈

=             (3.11) 

where  denotes the decision space. We also define  as the index for the value of 

 which is maximized. If there is another set of solutions X  that meets the 

requirements for the first step, proceed to the second step.  

X 1I

)(xzi X⊂1

Step 2:  

)}({maxmin)(
11

*
1 xzxv iIiXx ∉∈

=            (3.12) 

Now, , where  is the index at which the value of the z vector is 

maximized in step 2. The procedure continues on in an iterative manner until there is not 

a set of solutions which are feasible that satisfy the conditions established in the previous 

(the second to last) step.  

{ 211 , III = } 2I

  

Although these conventional algorithms have some differences in their design 

procedures, they all are based in a similar spirit that converts a multiobjective 

optimization problem into a single objective optimization problem. These conversions are 

always directed by the preferences of the decision-maker. However, from the definition 

of the Pareto optimality [2], “an MOP tends to be characterized by a family of trade-off 

solutions, which must be considered equivalent in the absence of the information of the 
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relevance of each objective relative to the others” [2]. Therefore, with this spirit in mind, 

Multiobjective Evolutionary Algorithms (MOEAs) have drawn more and more attentions 

from the researchers in this field. 
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IV. EVOLUTIONARY ALGORITHMS IN 

 MULTIOBJECTIVE OPTIMIZATION 

 

4.1 Introduction 

In Chapter III, several traditional multiobjective optimization methods are 

introduced. All these methods try to either combine the multiple objectives in an ad hoc 

manner so that a scalar objective function is formed, or turn the objectives into 

constraints. The goal is to turn multiobjective problems into single-objective problems. 

Meanwhile, gradient-based or simplex-based optimization techniques are usually applied 

as a searching tool for the optimal solution, which may result in a local optimum solution 

for complicated optimization problems.   

 

However, in many real-world multiobjective optimization problems, a suitable 

solution for the overall problem can hardly be found via the methods outlined in Chapter 

III since the objectives are different, sometimes even conflicting. Generally speaking, the 

simultaneous optimization of multiple, possibly competing, and conflicting objective 

functions are more attractive in that it seldom admits single, perfect solution. Instead, 

multiobjective optimization problems tend to be characterized by a family of alternatives 

that must be considered equivalent in the absence of information concerning the 

importance of each objective relative to others. A suitable solution to problems involving 

conflicting objectives should offer “acceptable” performance in all objective dimensions, 

although this solution is possibly sub-optimal for some objectives alone. 
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In their early development, Evolutionary Algorithms (EAs), a class of population-

based optimization approaches, have been recognized to be well suited for multiobjective 

optimization. In EAs, multiple individuals search for multiple solutions in parallel, 

advantageously producing a family of feasible solutions to the problem. The ability to 

handle complex problems involving features such as discontinuities, multimodality and 

disjoint objective vector spaces, reinforces the potential effectiveness of EAs in 

multiobjective search and optimization, which is perhaps the problem area where EAs 

most distinguish themselves from the other algorithms [2]. 

 

Since the 1980’s, several Multiobjective Evolutionary Algorithms (MOEAs) have 

been proposed and applied in Multiobjective Optimization Problems (MOPs) [13]. These 

algorithms share the same purpose—approximate a uniformly distributed, near-optimal 

and near-complete Pareto front for a given MOP. However, this purpose is very difficult 

to be achieved because the true Pareto front is a high-dimensional solution set, which is 

much more complicated than many single objective optimization problems combined 

together.  Generally, the approximation of the Pareto-optimal set involves two conflicting 

objectives: the distance to the true Pareto front is to be minimized while the diversity of 

the evolved solutions is to be maximized [12]. For the first objective, a Pareto-based 

fitness assignment (ranking scheme) is usually designed in some state-of-the-art MOEAs 

[13] in order to guide the search towards the ideal Pareto optimal front. For the second 

objective, some successful MOEAs provide a density estimation method to preserve the 

population diversity. In addition, several other techniques have also been adopted such 

as: elitism scheme [12,14], crowded comparison [14], archive truncation [12] and etc.  
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Although all of these techniques are very important for MOEAs, the fitness assignment 

scheme, population density preservation method and elitism archive are considered the 

most crucial approaches, which have been applied in all the most successful MOEAs. 

 

4.2 Fitness Assignment 

In all the current studies of multiobjective evolutionary algorithms, assigning the 

fitness function is the critical part. Several MOEAs are categorized and different fitness 

assignment strategies are introduced. In particular, they are distinguished as plain 

aggregating approaches, population-based non-Pareto approaches, and Pareto-based 

approaches. 

 

4.2.1 Aggregating methods 

Similar to the linear weighting method introduced in the previous chapter, 

aggregating methods combine the objectives into a single scalar function that is used for 

fitness calculation.  Linear weighting is still used when applying an EA and these 

aggregation approaches have the advantage of producing one single solution. However, 

three disadvantages exist in this kind of methods. 

• If the objective functions are not commensurable with each other, the 

weighted combined objective function may cause difficulty to a user in 

choosing an appropriate set of weighting factors to derive a reasonable 

solution to the problem. 

• Different objective functions may have different ranges of values, thus 

producing unequal importance to all objective functions. To avoid this issue, 
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we can normalize the objective functions before solving the optimization 

equations. However, this approach requires prior knowledge of the lower and 

upper bounds of each objective function. Unfortunately, this kind of domain 

knowledge is often not available.   

• As mentioned in Chapter II, simple weighting techniques will not be able to 

respond to problems having non-convex feasible decision space. 

The weighted sum approach, target vector optimization, and the method of goal 

attainment [39] are the most popular aggregation approaches.  

 

4.2.2 Population-based non-Pareto approaches 

These approaches are able to evolve multiple non-dominated solutions 

concurrently in a single simulation run. Known as the Vector Evaluated Genetic 

Algorithm (VEGA) (Figure 4.1), the method proposed by Schaffer [40] evolves the 

whole population to several sub-populations in the next generation according to each of 

the objectives, separately. Crossover and mutation are applied as usual after shuffling all 

the subpopulations together. Non-dominated individuals are identified by monitoring the 

population as it evolves. Shuffling and merging all subpopulations correspond to 

averaging the normalized fitness components associated with each of the objectives. The 

overall fitness corresponds to a linear function of the objectives where the weights 

depend on the distribution of the population at each generation. Therefore, different non-

dominated individuals are generally assigned different fitness values, in contrast to what 

the definition of nondominance would suggest. 
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Fourman [41] proposed a method where selection is performed by comparing 

pairs of individuals with respect to one of the objectives. In this method, objectives are 

assigned different priorities by the user and individuals are compared according to the 

objective with the highest priority. If this results in a tie, the objective with the second 

highest priority is used, and so on. This is known as the lexicographic ordering, which is 

a type of goal programming method that was briefly introduced in Chapter III. 
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Figure 4.1 Outline of generation replacement of VEGA 

 

VEGA is a pioneering work of multiobjective optimization by GA. However, this 

approach has difficulties in that it tends to generate the solutions that one of the 

objectives has extremely good performance at the cost of the others. Furthermore, VEGA 

can be shown to perform an implicitly weighted sum of the objectives [2]. This leads to 

the same difficulty found in aggregation genetic algorithms to search for a Pareto front 

when the problem involves a concave trade-off surface [2]. 
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4.2.3 Population-based Pareto approaches 

All the methods mentioned above attempt to promote the generation of multiple 

non-dominated solutions. However, none of them makes direct use of the actual 

definition of Pareto optimality. At most, the population is monitored for non-dominated 

solutions, as discussed in [40]. 
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Figure 4.2 Illustration of Goldberg’s Pareto-based ranking scheme 

 

Pareto-based fitness assignment was first proposed by Goldberg [25], as a means 

of assigning equal probability of reproduction to all non-dominated individuals in the 

population. The method consisted of Pareto-based fitness ranking which assigns rank 1 to 

the non-dominated individuals and removing them from contention, then finding a new 

set of non-dominated individuals, ranked 2, and so on (Figure 4.2). This ranking 

approach was adopted by several MOEAs, including Niched Pareto Genetic Algotithm 

(NPGA) [42] and Non-dominated Sorting Genetic Algorithm I [43] and II [14] (NSGA I, 

II). 
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In the Multiobjective Genetic Algorithm (MOGA) proposed in [44], Fonseca 

further improved the ranking method by including the density information into the rank 

value—an individual’s rank corresponds to how many individuals in the current 

population that dominate it. For example, consider an individual  at generation , 

which is dominated by  individuals in the current generation. Its rank value is given 

by [13], 

y t

)(tp

)(1),( tptyrank += .                                               (4.1) 

All the non-dominated individuals are assigned rank value 1, while dominated ones are 

penalized according to the population density of the corresponding region of the trade-off 

surface.   Therefore, by this ranking method, an individual’s rank value not only 

possesses its Pareto dominance status, but also incorporates its density information. This 

type of ranking scheme will be helpful in preserving the population diversity during the 

evolutionary process. Figure 4.3 shows the rank values resulted form this ranking method 

for the same population distribution as shown in Figure 4.2. 
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Figure 4.3 Illustration of Fonseca’s Pareto-based ranking scheme 
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Figure 4.4 Illustration of the Pareto-based ranking scheme adopted by SPEA II 

 

Another well-known MOEA is Strength Pareto Evolutionary Algorithm I [13] and 

II [12] (SPEA I, II), which devised a “strength” value instead of using the rank value. In 

SPEA II, a modified fitness assignment strategy based on strength values are proposed in 

order to overcome some difficulties the existing ranking approach has encountered. In 

detail, each individual  in the population  is assigned a strength value , 

representing the number of solutions it dominates: 

i P )(iS

|}|{|)( jiPjjiS f∧∈= ,           (4.2) 

where |  denotes the cardinality of a set and the symbol  corresponds to the Pareto 

dominance relation. On the basis of the  value, the raw fitness of an individual i  is 

calculated: 

| ⋅ f
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∈
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From Equation (4.3), the raw fitness  is determined by the strengths of its 

dominators in both archive and main population. In addition, similar to Fonseca’s 

)(iR
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MOGA, the raw fitness values (rank values) produced by this algorithm also include 

some density information. The rank values resulted by this scheme is shown in Figure 

4.4. 

 

Therefore, according to how much preference information is incorporated into the 

fitness function, the approaches range from complete preference information given, as in 

combining objective functions directly or prioritizing them, to no preference information 

given, as in Pareto-based ranking. Which approach is best is determined by the problem 

to be solved. Although by now, non-informative Pareto-based ranking methods are at the 

dominant position in this research field, in some cases, partial preference information is 

also studied to restrict the searching to only one part of Pareto set. Although a specified 

ranking scheme can maintain the population diversity to some extent based on the 

concept of Pareto dominance, it may fail when most individuals do not dominate each 

other. For this reason, ranking scheme still cannot replace a real density preservation 

strategy. In most state-of-the-art MOEAs, a fitness sharing or density estimation method 

is always applied and the population density value is optimized as well. 

 

4.3 Maintenance of Diversity 

 In solving multiobjective optimization problems, it is required that the solutions 

are Pareto-optimal, and at the same time they are uniformly sampled from the Pareto-

optimal set. The Pareto-based approaches mentioned above achieve the first requirement. 

However, the approaches by themselves cannot meet the second criterion. In most 

evolutionary algorithms, it is known that the genetic diversity of the population is lost 
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due to their stochastic selection processes. This phenomenon is called “genetic drift” 

[45,46], by which genetic algorithms can exploit the “good” individuals and explore 

better ones by genetic operation. Although “genetic drift” effect has its advantages in 

single objective optimization, in MOEAs, loss of diversity due to the “genetic drift” 

needs to be restrained as shown in Figure 4.5.  

���������������������������������������������������������������������������������
������������������������������������������������������������������������������

���������������������������������������������������������������������������������
������������������������������������������������������������������������������

���������������������������������������������������������������������������������
������������������������������������������������������������������������������
������������������������������������������������������������������������������

����������������������������������������������
�������������������������������������������������

����������������������������������������������
����������������������������������������������

�������������������������������������������������
����������������������������������������������

�������������������������������������������������
����������������������������������������������

�������������������������������������������������
����������������������������������������������
����������������������������������������������

f2

f1

���������������������������������������������������������������������������������
������������������������������������������������������������������������������

���������������������������������������������������������������������������������
������������������������������������������������������������������������������

���������������������������������������������������������������������������������
������������������������������������������������������������������������������
������������������������������������������������������������������������������

����������������������������������������������
�������������������������������������������������

����������������������������������������������
����������������������������������������������

�������������������������������������������������
����������������������������������������������

�������������������������������������������������
����������������������������������������������

�������������������������������������������������
����������������������������������������������
����������������������������������������������

f2

f1

������ 
f2

��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

f1

f2

��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

f1

��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������
��������������������������������������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

f1

���
���
���
��� 

������������ 

������������ 
���
���
���
���
���
���
���
��� 

 
                  (a) Population diversity is preserved               (b) Population diversity is not preserved 

Figure 4.5 Illustration of the effect of population diversity preservation 
 
 
4.3.1 Niched fitness sharing technique 

To maintain the diversity, a technique, so called “fitness sharing”, is widely used 

[25]. In the fitness sharing method, the fitness value of each individual is reduced if there 

exists other individuals in its neighborhood. Therefore an individual located in a more 

crowded area leaves less offspring [42]. Thus, we can obtain a population distributed 

more uniformly over the Pareto-optimal set. Niche induction [42] technique is one of the 

representative fitness sharing methods that is adopted by Niched Pareto Genetic 

Algorithm (NPGA). In NPGA, a niche radius is chosen and individuals within the 

distance defined by the niche radius degrade each other’s fitness, since they are in the 

same niche (shown in Figure 4.6). Thus the convergence occurs within a niche, but the 
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convergence of the whole population is avoided. Based on this fitness sharing technique, 

the more individuals a niche contains, the more its members’ fitness values degrade.  
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Figure 4.6 Illustration of niched fitness sharing technique 

 

Since NPGA only applies Pareto selection to a portion of the entire population in 

each generation, it is relatively fast compared to the other Pareto-based approaches. In 

addition, it can produce good non-dominated solutions that can be kept for a large 

number of generations. Currently, many MOEAs implement niched fitness sharing 

strategies (e.g., [46-49]). The limitation of NPGA is that it requires heuristic choices of 

the sharing factor and the size of the tournament, which makes the process relatively 

complex in practice. Moreover, as the sharing technique degrades the fitness value, 

“harmful” individuals may be generated that may slow down the speed of the entire 

population to evolve in a correct direction to the Pareto front [50].  

 

4.3.2 Density estimation technique 

Some newly developed MOEAs apply a “density estimation” technique in order 

to provide a density value to each individual. The density value represents the crowdness 

of the area the interested individual located in. Crowding distance assignment and k-th 
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nearest neighbor methods belong to this category and have been used in NSGA-II and 

SPEA II, respectively. 

 

In NSGA-II, to obtain an estimate of the density of individuals surrounding a 

particular point in the population, the average distance of two neighboring points on 

either side of the concerned individual along each dimension is taken. This quantity i  

serves as an estimate of the size of the largest cuboid enclosing the individual  without 

including any other point in the population, which is called crowding distance. As shown 

in Figure 4.7, the crowding distance of the ith solution in its front (marked with dark 

points) is the average side length of the cuboid. 
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Figure 4.7 Illustration of crowding distance estimation approach 

 

The density estimation technique used in SPEA II is an adapted k-th nearest 

neighbor method, where the density at any individual is a decreasing function of the 

distance to its k-th nearest neighbor (data point). The density estimate is taken as the 

inverse of the distance to the k-th nearest neighbor, which is denoted as σ . In SPEA II, k 

is set to be equal to the square root of a sample size , thus, 

k
i

N Nk = , and the density 

 corresponding to  is defined by  )(iD i
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where two is added to ensure that  value is greater than zero and less than 1/2. )(iD

  

4.4 Fitness Assignment Scheme of NSGA-II and SPEA II 

As two of the most recent and successful MOEAs, both NSGA-II [14] and SPEA 

II [12] clearly classified individual Pareto rank value and density value as two major 

fitness. However, their fitness assignment schemes are totally different. In fitness 

assignment, between two individuals, NSGA-II used a tournament scheme, by which 

NSGA-II prefers the point with a lower rank value, or the point located in a region with 

less numbers of points if both of the points belong to the same front.  However, SPEA II 

calculates the fitness value for each individual by simply adding density value  to 

the raw fitness . Considering the ranking and density estimation schemes of different 

MOEAs, it is impossible to state that which ranking or density scheme is the best without 

synergistically integrating them together by an appropriate fitness assignment. On the 

other hand, according to the No Free Lunch (NFL) theorem [51], no formal assurances of 

an algorithm’s general effectiveness exists if insufficient knowledge of the problem 

domain is incorporated into the algorithm domain. A study of benchmark MOP itself to 

exploit specific problem characteristics is also an important issue, which will be 

discussed in Chapter VI. 

)(iD
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4.5 Other Significant Techniques Used in MOEAs 

In order to improve the performance of an MOEA, several interesting techniques 

are also designed by different researchers. Among them, elitism scheme, mating 

restriction, and archive truncation are the most significant ones. 

 

4.5.1 Elitism scheme 

Originated from Evolutionary Strategy (ES), elitism scheme has been applied by 

almost all of the advanced MOEAs [12-14] in that it can further improve the performance 

of the resulting solutions. In detail, an archive with a fixed number of elitists will be set 

up besides the main population and the non-dominated individuals generated by the main 

population will be considered as a set of elitists and kept into the archive. Additionally, at 

each generation, a certain number of elitists will be copied into the main population to 

perform crossover. Therefore, by this two-way communication method, the elitist’s 

archive will be updated generation by generation and the valuable schemas of an elitist 

can also be inherited by their offspring. For this reason, elitism scheme has the potential 

to help the entire population converge into a near-optimal Pareto front.  

 

By now, Pareto Archive Evolutionary Strategy (PAES) is the one of the most 

successful MOEAs whose performance mainly depends on elitism. As a local search 

algorithm that simulates a random mutation hill-climbing strategy, PAES may represent 

the simplest possible, yet effective, nontrivial algorithm capable of generating diverse 

solutions in the Pareto optimal set [52]. In PAES, pure mutation operation is adopted to 

fulfill local search scheme. A reference archive of previously found non-dominated 

solutions is updated at each generation in order to identify the dominance ranking of all 
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the resulting solutions. Although (1+1)-PAES is originated as the simplest version, PAES 

can also generate  mutants by mutating one of the  current solutions, which is called 

( )-PAES [52]. Since PAES does not perform population-based search, only 

tournament selection can be applied to determine the survivors of the next generation.  It 

is worthy to mention that although the archive size has to be pre-determined, PAES 

implements a population incrementing scheme by continuously adding new non-

dominated individuals to the archive. 

λ µ

λµ +

 

4.5.2 Mating restriction 

The variability of mating is another important aspect as the population distributes 

itself around multiple regions of optimality. Different regions of the trade-off surface 

generally have very different genetic representations, which constrain mating to happen 

only locally to ensure viability [53]. So far, mating restriction has only been implemented 

based on the distance between individuals in the objective domain, either directly or 

indirectly. The use of mating restriction in multiobjective GAs does not appear to be 

widespread. 

 

4.5.3 Archive truncation 

In elitism scheme, an elitist’s archive needs to be updated by comparing new 

introduced elitist with the existing ones in order to keep the archive size fixed. Therefore, 

an archive truncation technique is designed in SPEA II [12]. By this technique, an elitist 

that has minimum distance to another elitist is chosen at each stage as a member of the 
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archive, if there are several elitists with the same minimum distance, the tie is broken by 

considering the second smallest distances and so forth. 
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V. RANK DENSITY BASED MULTIOBJECTIVE GENETIC 

ALGORITHM  

 

5.1 Introduction 

From the literature review, the primary difficulty in the existing MOEAs lies on 

designing a suitable fitness assignment strategy in order to search for a near-complete 

and near-optimal approximated Pareto front for the given optimization problem. 

Unfortunately, these two objectives are contradictory. In one respect, the “genetic drift” 

character needs to be exploited to converge the solution to a nearly optimal point. On the 

other hand, the  “genetic drift” phenomenon must be avoided in order to sketch a 

uniformly sampled trade-off surface for the final Pareto front. Based on these 

considerations, two of the best-known MOEAS [12-14], (i.e. NSGA-II and SPEA II) 

attempt to represent the fitness value of an individual by a Pareto rank value and a density 

value, and then optimize these two sub-fitness values using a specified assignment 

method. However, there remain several deficiencies in these algorithms. Especially, both 

NSGA-II and SPEA II do not treat rank value and density value equally in their selection 

process. In NSGA-II, Pareto rank value is considered more important than density value 

and the parent selection is mainly based on the rank value, whereas density value is 

merely treated as a reference in the tournament selection. SPEA II combines the rank and 

density values into a single fitness value by using a linear weighting method. Although 

the weights of rank and density are equal, there still exists a bias to rank value calculation 

because the maximum density value cannot be higher than 0.5 according to SPEA II. For 

this reason, the density value can hardly be minimized until the rank value has almost 
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converged. Therefore, both algorithms prefer taking advantages of “genetic drift” effect 

than controlling it, which may result into difficulties to find a uniformly distributed 

Pareto front. 

 

To respond to these deficiencies, a Rank-Density based Genetic Algorithm 

(RDGA) [54], which synergistically integrates selected features of existing MOEAs in a 

unique way, is proposed. Although RDGA also converts a high dimensional MOP into a 

bi-objective optimization problem to minimize fitness rank values and cell densities, it 

adopts several additional techniques in order to achieve a near-complete and near-

optimal Pareto front [55]. 

 

5.2 Critical Procedures of RDGA Design 

There are five crucial procedures involved in RDGA design, which are discussed 

as follows. 

 

5.2.1 Automatic Accumulated Ranking Strategy (AARS) 

In RDGA, we propose an Automatic Accumulated Ranking Strategy (AARS). In 

AARS, an individual’s rank value is defined as the summation of the rank values of the 

individuals that dominate it. For example, assuming at generation t , individual  is 

dominated by  individuals , whose rank values are already known as 

, rank , L . Its rank value can be computed by  
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By AARS, all the non-dominated individuals are still assigned rank value 1, while 

dominated ones are penalized to reduce the population density and redundancy. For 

instance, suppose we want to minimize two objectives,  and , and MOEAs generate 

eleven individuals, and their rank values based on four ranking techniques proposed by 

NSGA-II [14], MOGA [44], SPEA II [12] and AARS [54] are illustrated in Figure 5.1, 

where each dot represents a candidate phenotype solution. Considering all the individuals 

located in the lower-right area, AARS provides the exact same rank values as those 

computed by pure Pareto ranking method (adopted by NSGA-II [14]) since all the 

individuals are clearly aligned and not crowded at all. Therefore, adding extra density 

information (resulted by SPEA II) may not be necessary in this case.  Meanwhile, AARS 

does impose penalty to the dominated individuals located in the upper-left area. The 

reason of penalizing all the dominated individuals in this area is because there exist 

several non-dominated individuals that can mostly represent the dominated points. 

Therefore, without increasing the population size, the population diversity will be 

maintained by penalizing those dominated individuals in AARS.  
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Figure 5.1 Individual rank values resulting from MOGA/NSGA-II/ SPEA II/ RDGA ranking 
methods 
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5.2.2 Adaptive density estimation 

According to [13], although AARS and other ranking schemes [52,56] provide a 

sort of niching mechanism based on the concept of Pareto dominance, they may fail when 

most individuals do not dominate each other. Therefore, additional density information is 

incorporated to discriminate between individuals having identical raw fitness values. In 

RDGA, to deal with this problem, we adopt a modified adaptive cell density evaluation 

scheme originated from [52] as shown in Figure 5.2. The cell width in each objective 

dimension can be formed as  
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where  is the width of the cell in the ith dimension,  denotes the number of cells 

designated for the ith dimension (i.e., in Figure 5.2,  and ), and  is taken 

from the whole decision space . As the maximum and minimum fitness values in 

objective space will change with different generations, the cell size will vary from 

generation to generation to maintain the accuracy of the density calculation. The density 

value of an individual is defined as the number of the individuals located in the same cell. 

Note that in PAES [52], the grid location of a solution in objective space is obtained by 

repeatedly bisecting the range in each objective and finding in which half the solution is.  

However, RDGA uses a different scheme to locate which cell an individual belongs to. 

First, the cells are created by dividing the range of current objective space based on  

and given initial population. Second, the center position of each cell will be obtained and 

stored as a matrix. Third, each individual of initial population will search for its nearest 

id iK
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X
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cell center and identify this cell as its “home address” and consider the other individuals 

who share the same “home address” as its “family members.” Then for each of these 

“homes,” the number of “family members” who dwell in it will be counted and saved as 

its density value. Fourth, when an offspring is generated and accepted, its “home address” 

can be easily located by following the third step and the density value of its home will 

increase by one. Meanwhile, if an old individual is removed, its “home” will be notified 

and the density value of its “home” will decrease by one. Therefore, at each generation, 

an individual can access its “home address” and then obtain the corresponding density 

value. The “home address” is merely a “pointer” to inform an individual where to find its 

density value. For instance, as shown in Figure 5.2, the “home address” and density value 

of individual A are (4,3) and 4, respectively. Therefore, if a new generated or a removed 

individual does not change the boundary of the range of current objective space, only the 

density value of its ”home” will changes, the density values of the other “homes” (cells) 

will not be affected. This setting can avoid the unnecessary recalculation of unchanged 

Figure 5.2 Illustration of density map

range of objective space and density values.  

 and density grid applied by RDGA 
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5.2.3 Rank and density based fitness assignment 

t fitness and population diversity, 

respect

First, instead of minimizing the density value of an individual, we minimize the 

density

individual will 

Second, after the rank and density values of each individual have been extracted, 

a modi

Because rank and density values represen

ively, we assigned them as two important attributes to each individual. Therefore, 

any multiobjective optimization problem can be converted into a bi-objective 

optimization problem. On the other hand, since we need to minimize rank value together 

with density value, some further modifications need to be made to the original notation. 

 

 value of the entire population. Based upon the definition of the cell density, an 

individual located in a crowded cell must have a relatively higher density value, which 

contributes much more to the population density value than an individual in the sparse 

area does. For example, a cell containing ten individuals will contribute 1001010 =×  to 

the population density value, whereas a cell containing only one 

contribute only 1 to the population density value.  

 

fied VEGA is applied to fulfill fitness assignment. As discussed in Chapter IV, 

VEGA possesses two deficiencies: 1) it does not have a scheme to maintain the diversity 

of the evolved Pareto front, and 2) it has difficulty in dealing with the problems with 

concave trade-off surfaces. As mentioned above, the goal of RDGA is to find the non-

dominated individuals with the rank value equal to 1 and at the same time reduce the 

population density value to obtain a uniformly distributed trade-off surface. In this 

setting, there is no concern about keeping the population diversity in the rank-density 
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(algorithm) domain. Furthermore, whether the “Pareto front” in the rank-density domain 

is concave or not is not an issue since it is not a real Pareto front for the MO problem 

under consideration. Therefore, a simple VEGA is effective enough to fulfill fitness 

assignment after the original optimization problem has been transformed into the rank-

density domain. It is worthy of noting that the idea of converting multiobjective into a 

domination measure function and neighboring density function was also adopted by 

Borges and Barbosa [57]. However, in their paper, two newly formulated objective 

functions were chosen from Goldberg’s ranking scheme [25] and Horn’s niche sharing 

method [42]. Afterwards, they combined two objective functions into one non-linear 

fitness function, which is the final fitness function. Because rank and density values have 

totally different characteristics, it is very difficult for this algorithm to designate a 

suitable coefficient in ad hoc to bias the preference during the evolutionary process.   

Figure 5.3 Illustration of the “diffusion” scheme 

Best individual

Selected parent

Best individual

Selected parent

 

5.2.4 rossover and mutation operations 

nd replacement schemes are borrowed from 

Cellula

C

For crossover, the parent selection a

r GA [53] to explore the new search area by “diffusion” (see Figure 5.3).  For each 

subpopulation, a fixed number of parents are randomly selected for crossover. Then, each 

selected parent performs crossover with the best individual (the one with the lowest rank 

value) within the same cell and the nearest neighboring cells that contain individuals. If 
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one offspring produces better fitness (a lower rank value or a lower population density 

value) than its corresponding parent, it replaces its parent. The replacement scheme of the 

mutation operation is analogous.  

Figure 5.4 Illustratio
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eanwhile, as RDGA takes the minimization of the population density value as 

one of 

M

the objectives, it is expected that the entire population may move toward an 

opposite direction to the Pareto front where the population density value is being 

minimized. Although moving away from the true Pareto front can reduce population 

density value, obviously, these individuals are harmful to the population to converge to 

the Pareto front.  To prevent “harmful” offspring surviving and affecting the evolutionary 

direction and speed, a forbidden region concept is proposed in the replacement scheme 

for the density subpopulation, thereby preventing the “backward” effect. The forbidden 

region includes all the cells dominated by the selected parent. The offspring located in 

the forbidden region will not survive in the next generation, and thus the selected parent 

will not be replaced. As shown in Figure 5.4, suppose our goal is to minimize objectives 

1f  and 2f , and a resulting offspring of the selected parent p is located in the forbidden 
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reg y

s discussed in Subsection 5.2.1, Automatic Accumulated Ranking Strategy 

(AARS

5.2.5 Constraint handling 

s, every new generated offspring will be tested against all 

the con

fitness value, otherwise, it will be discarded. 

ion. B  RDGA, this offspring will be eliminated even if it reduces the population 

density because this kind of offspring has the tendency to push the entire population away 

from the desired evolutionary direction.  

 

A

) includes the scheme of punishing the individuals located in a crowded area, 

which means we add a bias to avoid the population density value from expanding too 

much when RDGA is implementing the minimization of population rank values. 

Meanwhile, a forbidden region is brought in to introduce another bias to prevent the 

offspring from having higher ranks than their parents when RDGA is evolving a lower 

population density value. Therefore, RDGA can be interpreted as trying to convert an 

MOP in problem domain into two new single objective optimization problems in 

algorithm domain—minimizing population rank and density values, and then performing 

an evolutionary process to optimize each of the objectives in turn. It is necessary to note 

that these two biases make two objectives of RDGA highly correlated. When one 

objective is being optimized, the corresponding bias will take the other objective as a 

constraint to keep the computation resources homogeneously distributed between two 

objectives. 

 

To handle the constraint

straint functions in order to determine if it is a valid solution. If the offspring 

satisfies for all the constraints, it will be evaluated by the fitness function to obtain its 
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5.2.6 Elitism strategy 

The elitism scheme in [58] is also adopted in RDGA. At each generation, the non-

ted from main population will be copied and stored to an 

archive

dominated individuals genera

. Meanwhile, a non-dominated solution in archive may also be selected with a 

certain probability as a parent to perform genetic operations. This probability t
ep  is called 

“elitism intensity” and according to [13], at each generation t, the probability of sampling 

an individual from the archive is given by  

)
||||

(1
BA

pe +
−= ,   2|| Bt

in population, e vely.  After the 

                    (5.3) 

where A and B represents archive of elitists and ma r specti

evolution process has terminated, the resulting solutions in both main population and 

archive will be compared to derive the final Pareto front.     
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VI. BENCHMARK TEST FUNCTION STUDY AND  

    EXPERIMENTAL RESULTS 

 

6.1

ccording to [15], in order to compare the performance of different MOEAs, the 

P benchmark problems and performance metrics is essential. 

Becaus

 Introduction 

A

design of a variety of MO

e a multiobjective optimization problem can be closely related to a combination of 

Single objective Optimization Problems (SOPs), some literature review on the features of 

SOP test functions can be helpful. In De Jong’s SOP test bed study [36], he declared that 

six problem characteristics need to be examined: continuous and discontinuous, convex 

and non-convex, uni-modal and multi-modal, quadratic and non-quadratic, low and high 

dimensionality, and deterministic and stochastic. In addition, Michalewicz [59] addressed 

other issues that need to be considered for SOP test bed design, such as the number of 

constraints, type of constraints and ratio between the feasible and complete search space. 

Apparently, some of these properties are also valuable for an MOP and must be 

incorporated into the test bed design. Nevertheless, because the purpose of solving an 

MOP is to find a near-complete set of non-dominated solutions (Pareto front), the 

features that cause the true Pareto front difficult to be found are the primary concerns in 

MOP test function design. Therefore, we focus our investigation on five distinct features 

of a Pareto front. They are discontinuity, concavity, global/local optimality high-

dimensional decision space and high dimensional objective space. In addition, since a 

neural network design problem can be considered as a bi-objective MOP, RDGA is 

applied to design a Radial Basis Function (RBF) neural network.  
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6.2 Performance Merit Indicator Design  

Five MOEAs— MOGA, PAES, NSGA-II, SPEA II and the proposed RDGA are 

e algorithms for 50 times to obtain the 

statistic

deployed in the simulation and run each of th

al results. For each run, a new initial population with 100 individuals is randomly 

generated and used by each of four population-based MOEAs (i.e., MOGA, NSGA-II, 

SPEA II and RDGA), while only one initial individual is generated for PAES according 

to its design procedure [52] and the archive size is set to be 100 for all the selective 

MOEAs that involve elitism scheme.  We use three indicators derived from final 

generation of 50 runs to benchmark the comparison results via statistical Box plots. They 

are: average individual rank value, average individual density value and average 

individual distance. As discussed in Chapter V, for an individual, different ranking 

schemes will produce different rank values, which will be used in respective fitness 

evaluations and selections. However, for a fair comparison in terms of ranking indicators 

of different MOEAs, we use Goldberg’s pure Pareto ranking method [25] to recalculate 

the rank value for each individual resulted by each applied MOEAs. Meanwhile, as 

shown in Figure 5.2, the average individual density value is calculated as the mean value 

of all the individual density values. Here, according to the population size, we choose the 

number of grids for each objective dimension to be 20. This setting will not change the 

minimum and maximum individual density values, which are 1 and 100, respectively. 

Furthermore, because the rank is a relative value, it must be stated that we cannot 

guarantee the final population will be a true Pareto set even if all its individuals have rank 

values 1s as shown in Figure 5.3. For this reason, we use “final average individual 

distance” as the third indicator to measure how far the non-dominated points on the 
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resulting final Pareto front finalPF  are away from the true Pareto front truePF  as shown in 

Figure 6.1, where PF  is known in a priori for the given test functions in this paper. 

individual distance s defined as 

true

This indicator was originally introduced by 

 G  i

m
G i i== 1 ,                  

Veldhuizen and Lamont [60], where the final 

dm∑ 2/12 )(

of individuals in finalPF , and id is the Euclidean distance between 

                                                                              (6.1) 

where  is the number 

each of these individuals and a point on est to it. A result of

indicates the convergence  deviates from

 

 

 Moreover, in min  rela ionship between two 

opulations resulted by two different MOEAs, the coverage of two sets (  value) [13] is 

asur

m

. 

truePF that is the clos

; any other value indicates 

 0=G  

 truefinal PFPF = finalPF

truePF

Figure 6.1 Difference between truePF and finalPF  

 

 

 

 

order to compare the do ance t

p C

me ed to show how the final population of one algorithm dominate the final 

population of another. Function C  maps the ordered pair ),( ji XX  to the interval [0, 1], 
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where iX  and jX  denote the final populations resulted from algorithm i and j, 

respectively. The value 0),( =ji XXC  means that all points in jX  are dominated by or 

equal to points in iX . Th 1),( =ji XX , represents the situation when none of 

the points in jX re covered by . Note that both 1),( =ji XXC  and 

1),( =ij XXC  need to be considered indep dently since they stinct 

 

e opposite, C

th

our indicators repres

MOEA Comparison and Genetic Operator D

 a e set iX

en

ent qualitative m

have the di

ibe the quality

proposed RDG

meanings.  

of the 

.3 

the tes

Therefore, f easures that descr

d the

 

esign 

n  A on 

final result of selected MOEAs— the average individual rank value shows the 

dominated relationship between different individuals, the average individual density 

value illustrates how good the population diversity is preserved, the average individual 

distance measures distance between finalPF and truePF , which provides the quality of the 

resulting Pareto front, and the C  value compares the domination relationship of a pair of 

MOEAs. All values of four indicators generated at the final generation are illustrated by 

Box plots to show the statistical comparison results. 

 

6

To examine the performances of the selected MOEAs a

t functions with different Pareto front features, we explore four numerical test 

functions in the simulation study. Function F1 is advanced from an existing MOP to 

create discontinuous and concave Pareto front [61]. Functions F2-1 and F2-2 are 

designed to explore local and global Pareto optimality caused by objective function and 
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constraints, respectively. Function F3 and F4 has a high-dimensional decision space, 

while function F4 involves a high-dimensional objective space.  For a fair comparison, 

the stopping generation, the chromosome length of each decision variable, the crossover 

rate and the mutation rate are chosen to be 10,000, 15, 0.7, and 0.1, respectively for all 

population-based MOEAs considered. One point crossover is used for all the population 

based MOEAs. In addition, we select (1+10)-PAES and a bit flip mutation rate k/1  is 

used for a chromosome of k  genes and the tournament size domt  is chosen to be 2. 

 

6.3.1 F1— MOP with discontinuous and concave Pareto front 

oncave Pareto fronts is 

that so

ere, a modified Tanaka’s MOP [61] is chosen to be the test function with a 

discont

Minimi , where 
  

                                                   (6.2) 

The rationale of exploiting MOPs with discontinuous and c

me MOEAs using plain aggregating schemes have been proven of having 

difficulty in finding the Pareto points on the discontinuous and concave segments. 

MOEA’s ability of finding nonconvex Pareto front is one of the most important reasons 

of using EA’s other than traditional gradient-based or simplex-based algorithms in 

multiobjective optimization.  

 

H

inuous and concave Pareto front.  
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                 (c) NSGA-II 
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 Decision space and Pareto optimal set             (b) Objective space and true Pareto front 

Figure 6.2 (a) Decision space, objective space and Pareto front of Function F1 
 

comp cated nstrai  in 

Equation (6.2). The Pareto optim reto front are the same for this 

problem

 

 

    (a)

 

 

 

 

(a)True Pareto front and initial popu
 

 

 

 

 

lation            (b) MOGA   

 

 

 

 

         (d) PAES  

Figure 6.3 True Pareto front and

              (e) RDGA   

 Pareto fronts resulted by MOGA,
SPEA II on Function F1 

    (f) SPEA II  

 NSGA-II, PAES, RDGA and 

Indeed, the concave feature is created by the li co nts imposed

al set and the true Pa

 since each objective variable is equal to one decision variable. Figure 6.2(a) 

shows the Pareto optimal set and Figure 6.2(b) shows the corresponding Pareto front, 

which includes five discontinuous segments and all of them possess concavity features. 

Figure 6.3(a) shows the true Pareto front and a randomly generated initial population 
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                    ),( 512 −XXC    

using the same initial population for all population-based MOEAs. Figure 6.3(b) – (f) 

show the resulting Pareto fronts by five MOEAs. The Box plots for the average values of 

three indicators over 50 runs are illustrated in Figures 6.4(a), (b) and (c), respectively. 

The performance measures of  for the comparison sets between algorithms 

and  are shown in Figure 6.5, where algorithms 1 – 5 represent MOGA, NSGA-II, 

PAES, RDGA and SPEA II in alphabetica

 

 

 
 

       
     

),( ji XXC i  

j

l order, respectively. 

 

 

 

 
     

           (a) average rank value        

Figure 6.4 Box plots of av

 

                  (b) average density value       

erage individual rank, density and dist
 

        (c) average distance value 

ance values on Function F1 

 
 
 

 
 
 
 
  
  ),( 511 −XXC  

 
 

          ),( 513 −XXC  
 
 
 

 
 
 
 

       
    ),( 514 −XXC   

Figure 6.5 Box plots using 

                  ),( 515 −XXC  

C measure on Function F1 
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Apparently, co ring the resulting Pareto fronts and indicator values in Figures 

6.3 – 6.5, we can see s of all the indicator 

values,

dominate the rest of the solution sets resulted by the other selective MOEAs. However, it 

y to mentio

 
— Local and global Pareto optimality 

eb [48] proposed a multimodal two-objective optimization problem that 

t MOEAs might have a great 

tendenc

6.3.2.a F2-1——  Local optimality resulted by objective function 

A two-variable, two-objective local-Pareto testing problem with a local Pareto 

front ca

mpa

 that MOGA has the lowest performance in term

 while the other four MOEAs provide competitive results. In particular, RDGA 

produces more complete Pareto fronts than the other four MOEAs and it also provides the 

highest ),( XXC  values, which means the solution set resulted by RDGA most likely 

is worth n that the solution set resulted by RDGA also has relatively high 

density and distance values, which can be explained as RDGA creates more Pareto points 

than the other MOEAs and some of these points are not true non-dominated points.  This 

problem can be solved if we let RDGA runs longer time instead of the predetermined 

10,000 generations. 

 

6.3.2 F2-1 & F2-2

5~14

D

possesses a local and a global Pareto front.  He suggested tha

y to converge to the local Pareto front instead of the global one if a certain kind of 

initial population was used. However, he did not elaborate the detail of the design 

procedure and how to make the problem more challenging. Moreover, a further study is 

needed if the local optimality is caused by constraints instead of objective functions, 

because two different rules behind each of them may result in dissimilar effects. 

 

n be designed as: 
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Minimize ),( 211 xxf and ),( 212 xxf , where 
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qu on (6.3), we can see in , parameter  affects the lowest 

bound of the feasible solution space and Pareto front; and ine the optimality 

of  a

A test function F2-1 is created from the general model in Equation (6.3) as: 
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1

1

q

p

A

determ

 

1

m

1

2

1

2p

2

2

th

1y

im

nd y . If pp > , y  will be the glob al point, and y  will be the local 

optimal point. Otherwise, y  will be the global optimum, and y  will be the local 

opt um. Meanwhile, the deviation between y  and y  determines the distance of the 

gap between local and global optima. Parameters q  and q  deter ine how sharp the 

curves around the optimal points y  and y will be. If q<< , a global optimal point is 

created with a spike around y , and the sharper the s ike is, e thinner the global Pareto 

optimal set will be.  
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                (6.4)  

In Equation (6.4), there are two optimal values of 

, which are global optimum and local optimum for 

2 ,

(2 x

 ,2 global
x

)2x , respectively. 8.0,2 =localx ,1f

x 1.0=  and 
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pulation           (b) MOGA      

This effect will construct the final local and gl  shown in F

6.6(a) with

Pareto front is a very thin curve, which is separated from the major range that contains 

the local Pareto front. 

 

 

 

ve sp

 

                            

function F2-1. Figure 6.7(b) – (f) show the resulting Pareto fronts by five MOEAs for a 

obal Pareto fronts as igure 

 a sampling rate equal to 0.01 for both decision variables. The true (global) 

 

 

 

 
 

       (a) Decision space and Pareto optimal set  
Figure 6.6 Decision space, objecti

 

 

     (b) Objective space and true Pareto front 

ace and Pareto fronts of Function F2-1 

 

 
 
 
                            

(a) True reto front and initial po

 

 

                                                                 
                   (c) NSGA-II Pa

 

 

 

 

 

         (d) PAES      

Figure 6.7True Pareto front Pareto

Figure 6.6(a) shows decision space and local 

                   (e) RDGA   

 fronts resulted by MOGA, NSGA
on Function F2-1 

and

       (f) SPEA II 

-II, PAES, RDGA and SPEA II 

 global Pareto optimal sets, while 

Figure 6.6(b) shows the objective space and local and global Pareto fronts for the test 
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random

 

 

 

sol by 

RDGA

ly generated initial population, which is shown in Figure 6.7(a) with a true Pareto 

front. The Box plots for the average values of three indicators over 50 runs are illustrated 

in Figures 6.8(a), (b) and (c), respectively. The performance measures of ),( ji XXC  for 

the comparison sets between algorithms i  and j  are shown in Figure 6.9, where 

algorithms 1 – 5 represent MOGA, NSGA-II, PAES, RDGA and SPEA II in alphabetical 

order, respectively. 

 

 
 

 

 

 
           (a) average rank value              

Figure 6.8 Box plots of average

rom

Particularly, RDGA’s lowest C value is gr

            (b) average density value 

 individual rank, density and

 Figure 6.9, we can see that RDGA 

              (c) average distance value 

 distance values on Function F2-1 

and SPEA II provide the best results. 

eater than 0.8, which means most of the

F

utions resulted by the other four MOEAs are dominated or equal to the solutions 

.  Moreover, RDGA produces the lowest rank and distance values. The highest 

density values generated by RDGA and SPEA II are caused by the partial local and 

partial global Pareto fronts as shown in Figure 6.7(e) and (f), which may result in a very 

crowded partial global segment. From Figure 6.7, it is obvious that the resulting Pareto 

front can be pure global, pure local or partial local and partial global. Indeed, the shapes 

of the resulting Pareto fronts significantly rely on different types of initial populations for 

this test function. Therefore, two sets of initial populations are used for comparison. Set 1 

includes 50 initial populations where none of their individuals belongs to the global 
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Pareto front. For set 2, at least one individual is located on the global Pareto front for 

each of 50 initial populations. 

 

 

 

         

C measure on Function F2-1 

Tables 6.1 and 6.2 show the indicator values for set 1 and set 2 correspondingly. 

 

 

 

        

Figure 6.9 Box plots using 

Comparing the observations from Table 6.1 with Table 6.2, we can see that all of the 

selected MOEAs are very sensitive to the initial population. When the initial population 

contain

 

 
     

 

 

 ),( 511 −XXC  ),( 512 −XXC  ),( 513 −XXC  

 

                                   

  

 

 

 ),( 514 −XXC  ),( 515 −XXC  

 

s at least one individual that belongs to the global Pareto front, there will be a 

higher probability for the final population to converge to the global Pareto front, and 

otherwise it is most likely to converge to a local Pareto front. Moreover, different choices 

of parameters 212121 ,,,,,, yyqqppA  will produce various Pareto optimality 

characteristics. For instance, Figures 6.10(a) and (b) show how parameters q  and q  

affect the selected MOEAs in finding a global Pareto front for the initial population Sets 

1 2

 72 



1 and 2, respectively. When the ratio of 12 / qq  increases, the percentage that the final 

population is located on the global Pareto front will decrease correspondingly.  

Table 6.1 Final simulation results for Function by five MOEAs using initial population set 1 

of runs generation individual individual generation produce produc

 F2-1 
Final 

averag

density

 

 F
Final 

a
individual 

ensit

obal Pa

 gl

  
Number 

 
Stop 

Final 
average 

rank value 

e 

 

Final  
average 

distance 

Number 
of runs 

pure 

Number 
of runs 

e 
local 

Number 
of runs 
produce 
partial 

l value global Pareto globa
Pareto 
front 

front* Pareto 
front 

50 10,000 
 

1.02 3.21 0.59 0 49 1 

1 5.03 0.51 1 45 4 

 
0 49 1 

RDGA 50 10, 00 0
 

1 6.15 0.43 2 40 8 

SPEA II 50 10,000 
 

1  .01 5.32 0.46 0 42 8 

Table 6.2 Fin imulat lts for nction  five M s using itial population set
  

Number 
of runs generation 

Final 
a

individual 
rank value y 

Final  
a

generation 
distance 

Number 
of runs 
produce 

pure 

Number 
of runs 
produce 

pure 

Number 
of runs 
produce 
partial 

l 

al s ion resu Fu 2-1 by OEA  in  2 
 

Stop verage verage verage 

MOGA 

NSGA-II 50 10,000 
 

PAES 50 10,000 1 3.54 0.55 

d
value global 

Pareto 
local 

Pareto 
globa
Pareto 

front front* front 
50 10,000 

 
1.03 3.74 0.14 37 0 13 

1.03 3.30 0.05 45 0 5 

 
41 0 9 

RDGA 50 10, 00 0
 

1.12 3.44 0.07 
 

44 0 6 

SPEA II 50 10,000 
 

1.15 3.21 0.06 
 

44 0 6 

e

In , w 00 , / 12 qq obal  opti

MOGA 

NSGA-II 50 10,000 
 

PAES 50 10,000 1 4.05 0.09 

*Not : In Table 1 and 2, we consider a pseudo-gl reto front as a local Pareto front 

deed hen the Pareto mal set is already very thin, 

ce global 

Pareto 

ont will not be the glob  

cal and glo

0,10=

en when 2x  t

, the resulting Pareto fr

,2 global

,2optimality. Ev akes a very close value to 1.0=x , such as 

Figure 6.11. From Figure 6.11, we also see that the gap between lo bal Pareto 

global

al one, which is shown in09995.02 =x

which means there is only a very small deviation from 1.0=x  to produ

 73 



 

                                 

 population set 1  

Figure 6. ratio af

front is not e

 

 

 

Figure .11 Ps ratio 

6.3.2.b 

 nd glo al optim eff

that is represented by  

mpty. Some pseudo-global Pareto fronts will emerge when the y  value is 

getting close to 1.02 =globalx .  Therefore, instead of being trapped by the local Pareto 

front, the resulting non-dominated points may be stuck on a pseudo-global Pareto front as 

well.  This effect becomes prominent when the ratio of 12 / qq  increases. In this scenario, 

although RDGA may perform better than the other selected MOEAs on average, it will 

still be difficult to find a global Pareto front if none of the individuals of the initial 

population are located exactly on the global Pareto front. 

 

 

    

 (a) using initial

10 Illustration of

eudo-global Pareto 

  F2-2

 (b) using init

s findin

2 globalx

t

al a

 

nt 

,10

al 

 

 

 

 

   

    ial population set 2   

fects MOEA g global Pareto fro   12 / qq
 

 

 

 

 

 

 

 

fronts when  approaches to 

—Local optimality resulted by constrain  

6 2x 1.0= ( )000/ 12 =qq

 Applying constraints may also create the similar loc b ect 
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Minimize ),( 211 xxf and ),( 212 xxf , where 

2 1211 )sin(),( xxxf π
=  

arcta21

subject to 10 1 ≤≤ x and 1001.00999.0 2 ≤≤ x , or 179.0 2 ≤≤ x . 

In Equation (6.5), parameter 21 qq = , implies there will not be any spike in the 

function ),( yxT , thus the search space will not be separated into two parts. Inde
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ed, there 

 only mal point for . However, as we designed a new 

constraint for the decision variables in Equation (6.5), we still can produce similar local-

global optimality results shown in Figure 6.12. Under this scenario, the global Pareto 

front and local Pareto front still exists, except they are created by a strict constraint.  

 

 

 

 

        l s  

Fi

show the indicator values for Sets 1 and 2 correspondingly.  

is one opti )y  at x,(xT 28.02 ≈

 

 

 

 (a) Decision space and local and global Pareto optima

gure 6.12 Decision space, objective space and loc
 

Under the same conditions, we run f

ets     (b) Objective space and Pareto fronts 

al and global Pareto fronts of Function F2-2 

our selected MOEAs and the proposed 

 

RDGA, given the initial population set 1 and set 2 for comparison. Tables 6.3 and 6.4 
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Table .3 Final simulation results for function F2-2 by five MOEAs using initial population set 1 
  

Number 
of runs 

 
Stop 

generation 

Final 
average 

individual 
rank value 

Final 
average 

individual 
density 
value 

Final  
average 

generation 
distance 

Number 
of runs 
produce 

pure 
global 
Pareto 

Number 
of runs 
produce 

pure 
local 

Pareto 

Number 
of runs 
produce 
partial 
global 
Pareto 

 

 6

front front front
MOGA 50 10,000 

 
1.21 3.33 0.32 4 18 28 

50 10,000 1 5.01 0.27 6 15 29 

3.96 5 20 25 

 
9 13 28 

  

bl
 Final Final Final 

NSGA-II 
 

PAES 
 

50 10,000 1 0.35 

RDGA 50 10,000 1.13 5.61 0.22 

SPEA II 50 10,000 1.08 5.05 0.24 10 15 25 

 

Ta e 6.4 Final simulation results for function F2-2 by five MOEAs using initial population set 2 
  

 Number 
of runs 

Stop 
generation 

average 
individual 
rank value 

average 
individual 

density 

 
average 

generation 
distance 

Number 
of runs 
produce 

pure 
global 
Pareto 

Number 
of runs 
produce 

pure 
local 

Pareto 

Number 
of runs 
produce 
partial 
global 
Pareto 

 

value 

front front front
MOGA 50 10,000 

 
1.04 3.20 0.08 45 0 5 

50 10,000 1 4.61 0.03 48 0 2 

3.83 44 0 6 

 
48 0 2 

 

.2, we c ee t r the f n F2-2

NSGA-II 
 

PAES 
 

50 10,000 1 0.08 

RDGA 50 10,000 1 4.09 0.02 

SPEA II 50 10,000 1 4.52 0.02 49 0 1 

 

Comparing the indicator values in Tables 6.3 and 6.4 with those in Tables 6.1 and 

6 an s hat fo unctio , the global Pareto fronts, resulted by imposing 

constraints, are easier to be found by MOEAs than those resulted from objective 

functions. This occurrence can be explained as the local optimality represented in 

Equation (6.3) having multilayer pseudo-global Pareto fronts, each of which contributes a 

new local Pareto front. In this case, instead of finding the global Pareto front, MOEAs are 

easily trapped by a local or pseudo-global Pareto front. Nevertheless, the local optimality 

caused by constraints does not enclose these pseudo-global Pareto fronts. The gap 
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between local and global Pareto fronts is completely blank, which means the resulting 

non-dominated points are most likely located on either of them, thus simplifying the 

searching complexity. 

 

For the local optimality created by Equation (6.5), the smaller the constraint range 

for in Equation (6.5)) the more difficult for MOEAs to 

find a real Pareto front will be, because the global Pareto optimal set will be a thinner 

band when the constraint range is small.   

 

 
  inimi  and , where 

                      (6.6) 

globalx2 ( 1001.00999.0 2 ≤≤ globalx

6.3.3 F3—MOP with high-dimensional decision space  
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Fi tion F3 

 
This test fun ensional decision 

space and local Pareto front in objective space as shown in Figure 6.13. Figure 6.14(b) – 

(f) sho

 
 

gure 6.13 Objective space and Pareto front of Func

ction is proposed in [14 as an MOP with high-dim] 

w the resulting Pareto fronts by five chosen MOEAs for a randomly generated 

initial population, which is shown in Figure 6.14(a) with an ideal Pareto front. The Box 

plots for the average values of three indicators over 50 runs are illustrated in Figures 
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6.15(a), (b) and (c), respectively. The performance measures of ),( ji XXC  for the 

comparison sets between algorithms i  and j  are shown in Figure 6.16, where algorithms 

1 – 5 represent MOGA, NSGA-II, PAES, RDGA and SPEA II in alphabetical order, 

respectively. 

 

 

               (e) RDGA  

nt and Pareto fronts resulted by MO
SPEA II on Function F3 

 

 

 

 (d) PAES  

Figure 6.14 Tr Pareto fro

 
From Figures 6.14 – 6.16, it is obvious that MOGA has great difficulty in finding 

the true Pareto front of this MOP. On the other hand, NSGA-II, SPEA and RDGA always 

identify

 

(a) True  front and initial population      (b) MOGA  

 

 

 
Pareto                  (c) NSGA-II 

 

 

 

 

 

  (f) SPEA II 

GA, NSGA-II, PAES, RDGA and ue 

 some points on the global Pareto front.  Moreover, comparing to NSGA-II and 

SPEA II, RDGA has the lowest density value, which means RDGA tends to produce a 

more homogenously distributed Pareto front by minimizing individual’s density value 

independently. 
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6.3.4 F4—MOP with high-dimensional ob ective  

  Minimize

  

 

 

 

 

 
           (a) average rank value                    

Figure 6.15 Box plots of average

      (b) average density value   

 individual rank, density and

            (c) average distance value 

 distance values on Function F3 
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Figure 6.16 Box plots using C

         ),( 515 −XXC  

 measure on Function F3 

j  space

 1f 2 3

272

),( yx , ),( yxf , and ),( yxf , where 
)sin()(5.0),(1 yxyxyxf  

22 +−+−

2222 +++=
)1()423( yxyx

su
 

                            (6.7) 

 



 

(a) Decision space and Pareto optimal set 

Figure 6.17 Decision space, objective 
 

Indeed, test function F4 

Originally designed by Viennet [62], this test function has been adopted by many 

researc t it provides th e partial-contradict objective functions as shown in 

Fig re 

abetical or

 

 

high-dimensional objective space, discontinuous Pareto optimal set and several local 

inima

hers in tha re

u 6.17.  Figure 6.18(b) – (f) show resulting Pareto fronts by five MOEAs for a 

randomly generated initial population, which is shown in Figure 6.18(a). The Box plots 

for the average values of three indicators over 50 runs are depicted in Figures 6.19(a), (b) 

and (c), respectively. The performance measures of ),( ji XXC  for the comparison sets 

between algorithms i  and j  are shown in Figure 6.20, where algorithms 1– 5 represent 

MOGA, NSGA-II, PAES, RDGA and SPEA II in alph der, respectively. 

 

 
 

 
 
 
 
 
 
 

    (b) Objective space and Pareto front 
 

space and Pareto front on Function F4 

possesses several challenging characteristics such as: 

m  in objective functions.  From the resulting Pareto fronts and Box plots of the 

performance indicators in Figure 6.18 – 6.20, RDGA, NSGA-II, PAES, and SPEA II all 

show the ability to approximate the true Pareto front and the population-based MOEAs 

(i.e., RDGA, SPEA II and NSGA-II) provide higher C value as shown in Figure 6.20. 

Furthermore, we can see that RDGA produces smallest average individual density value 

and distance value comparing to NSGA-II and SPEA II. Because RDGA converts 
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ial population   (b) MOGA      

original objective space into a bi-objective rank-density domain, it is not so sensitive to 

the complexity of high-dimensional objective spaces. Therefore, RDGA holds the 

potential promise in solving these types of MOPs.  

 

 
 

 

 

(d) PAES     (f) SPEA II 

Figure 6.18 True Pa y MOGA, NSGA-II, PAES, 
F4 

 
 

RD  it 

converges relatively fast in the rank domain (Figure 6.21(a)). This phenomenon can be 

 

 

 

 

(a) True areto front and init

 

 

 

 P             (c) NSGA-II 

 

 

 

   (e) RDGA   

reto front and Pareto fronts resulted b
RDGA and SPEA II on Function 

 

 
 
 
 
 
 
 
 
 

           (a) average rank value              

Figure 6.19 Box plots of ave

            (b) average density value       

rage individual rank, density and di

        (c) average distance value 

stance values on Function F4 

han 
 

As shown in Figure 6.21(b) and (c), Although NSGA-II performs worse t

GA and SPEA II in terms of density preservation and distance minimization,
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partially credited from the pure Pareto ranking scheme used by NSGA-II, which will not 

be affected by the density information during the evolutionary process. However, fast 

convergence of rank value does not imply density and distance values will converge fast 

as well, and ves versa.  As shown in Figure 6.21(a) – (c), although RDGA converges 

much slower than the other three population-based MOEAs in terms of rank indicator, it 

has the fastest convergence speed in terms of distance indicator comparing to all the other 

selected MOEAs. This effect can be explained by the restricted mating method and 

“forbidden region” scheme applied by RDGA. On one hand, instead of using roulette 

wheel or tournament selection scheme, RDGA randomly selects an individual as one of 

the parent to mate with the best individuals located in the neighboring cells, which 

ensures those worst individuals have the same probabilities with the elitists to be selected 

and updated by their better fitted offspring, Although this strategy may sacrifice the 

convergence speed of an elitist in finding a single true non-dominated point, it yet offers 

those ill performed individuals a fair chance to catch up the better ones and draws the 

entire population to the true Pareto front.  On the other hand, the “forbidden region” 

concept prevents an individual leading to a wrong direction when the density 

subpopulation is evolved. In this case, whether a new generated offspring can survive is 

not only because it has lower density value than its corresponding parent, also because it 

has equal or higher rank value comparing to the selected parent. For this reason, as an 

extra constraint of RDGA, “forbidden region” concept also helps compress the entire 

population and push it closer to the true Pareto front. Therefore, both “restricted mating” 

and “forbidden region” techniques contribute low variance and fast convergence of 

average individual distance value as shown in Figure 6.19(c) and Figure 6.21(c) (note: 
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these two consequences are particularly significant for function F4, which may easily 

result in an extremely high variance of distance value during the evolutionary process if 

an ill performed individual has never been updated since the beginning). In addition, it is 

worthy to note that PAES is not a population-based algorithm and only non-dominated 

individuals are stored in the archive at each generation. These characteristics distinct 

PAES from other MOEAs mainly in two aspects: its initial rank and density values are 

always equal to one and the average individual rank value will remain to be one during 

the entire evolutionary process. From the simulation study, although PAES outperforms 

MOGA for all the test functions, it cannot provide competitive results comparing to the 

other two most advanced MOEAs (i.e., NSGA-II and SPEA II) and the proposed RDGA 

in terms of rank, density, distance indicators and C measure. 
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6.4 Neural Network Design by RDGA 

Since the original emergence of Artifici l Neural Network (ANN) in 1940’s, there 

has been an extensive qualitative and quantitative analysis on different classes of neural 

and training algorithms. Without a proven 

guideli
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Figure 6.21 Evolutionary tr
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ajectories of rank, density and di

 

          (c) average distance value 

stance values on Function F4 

a

networks possessing various architectures 

ne, the design of an optimal neural network for a given problem is often regarded 

as an ad hoc process. Given a sufficient number of neurons, more than one neural 

network structure (i.e., with different weighting coefficients and numbers of neurons) can 

be trained to solve a given problem within an error bound if given enough training time.  

The decision of “which network is the best” is often decided by which network will better 

meet the user’s needs for a given problem.  It is known that the performance of neural 

networks is sensitive to the number of hidden neurons. Too few neurons can result in 

underfitting problems (poor approximation), while too many neurons may contribute to 

overfitting problems. Obviously, achieving a better network performance and simplifying 

the network topology are two conflicting objectives. This has promoted research on how 

to identify an optimal and efficient neural network structure. AIC (Akaike Information 

Criterion) [63] and PMDL (Predictive Minimum Description Length) [64] are two well-
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adopted approaches. However, AIC can be inconsistent and has a tendency to overfit a 

model, while PMDL only succeeds in relatively simple neural network structures and 

seemed very difficult to extend to a complex NN structure optimization problem. 

Moreover, all of these approaches tend to produce a single neural network by each run, 

which does not offer the designers with alternative choices.  

 

Over the past decade, evolutionary algorithms have been successfully applied to 

the design of network topologies and the choice of learning parameters [65]. They 

reported some encouraging results that are comparable with conventional neural network 

design 

ical applicability, several 

essential conditions need to be considered. 

ch for the optimal parameters (i.e., weights and 

e the network complexity and ensure it to be 

sufficient for solving the given training problem. 

approaches. However, the multiobjective trade-off characteristic of the neural 

network design has not been well studied and applied in the real world applications. 

Therefore, in the similar spirit of RDGA, a Hierarchical Rank Density Genetic Algorithm 

(HRDGA) is devised for neural network design in order to evolve a set of near-optimal 

neural networks.  Without loss of generality, the type of the evolved neural networks is 

restricted to the Radial Basis Function (RBF) neural network.   

 

6.4.1 Neural network design dilemma 

To generate a neural network that possesses the pract

1) A training algorithm that can sear

biases) for the specified network structure and training task. 

2) A rule or algorithm that can regulat
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3) A metric or measure to evaluate the reliability and generalization of the produced 

neural network. 

 

 all of these three problems.  As 

output  is the minimization of the expectation of a cost function 

            (6.8) 

 denotes the 

The design of an optimal neural network involves

given in [66], the ultimate goal of the construction of a neural network with the input-
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Obviously, the solutions of this task need not result into a unique network. In 

[67], if several structures ,  meet the criterion as shown in Equation (6.10), 

the one with the minima ber of hidden neurons is defined as an optimal. However, 

as a neural network can only tune the weights by the given training data sets, and these 

data se

anc

 

 

L,*
2

*
1 NSNS

l num

NS

ts are always finite, there will be a trade-off between NN learning capability and 

the variation of the hidden neuron numbers. A network with insufficient neurons might 

not be able to approximate well enough the functional relationship between input and 

target output. On the other hand, if the number of neurons is excessive, the realized 

network function will depend greatly on the resulting realization of the limited training 

set.  This trade-off characteristic implies that a single optimal neural network is very 

difficult to find as extracting )(* xf  from F  by using a finite training data set is a 

difficult task, if not impossible [67]. Therefore, instead of trying to obtain a single 

optimal neural network, finding a set of near-optimal networks with different network 

structures seems more feasible. Each individual in this set of neural networks may 

provide different training and testing perform es for different training and testing data 

sets. Moreover, the idea of providing “a set of” candidate networks to the decision 

makers can offer more flexibilities in selecting an appropriate network judged by their 

own preferences. For this reason, genetic algorithms and multiobjective optimization 

techniques can be introduced in neural network design problems to evolve network 

topology along with parameters and present a set of alternative candidates networks. 

 

 

NS
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6.4.2 Hierarchical genetic algorithm in neural network design 

In the literature of using genetic algorithms to assist neural networks design, 

veral approaches have been proposed for evolving NN structure together with weights 

nd biases [65,68-69]. Among all these methods, a hierarchical genotype representation is 

corporated into an RBF neural network design. 

 

al network 

 

et. al., [70] for 

ership. In the proposed 

er Perceptron (MLP) 

neural network. The chromosome structure (genotype) is shown in Figure 6.22(a).  As 

shown in Figure 6.22 responding to a neural network 

se

a

in

1 1 0 1 0 1 1 0 0 0 0 1

(a) Genotype structure of an MLP neural network         
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     (b) Phenotype of the neural network 

Figure 6.22 Genotype and phenotype of HGA based MLP neur

Hierarchical Genetic Algorithm (HGA) was first proposed by Ke, 

fuzzy controller design using two layer genes to evolve memb

HGA-NN [69], a three-layer HGA is used to evolve a Multi-lay

(a), each candidate chromosome cor
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is assumed to have four hidden layers (shown in the high-level layer genes), where the 

first an

g neuron activated. The active status of one control gene determines 

whether the parameters of the next level controlled by this gene will be activated or not. 

As an example, a genetic chromosome (genotype) shown in Figure 6.22(a) corresponds to 

an individual neural network (phenotype) with two hidden layers and two neurons in the 

first hidden layer and one neuron in the second layer as shown in Figure 6.22(b). By 

using this hierarchical genotype design, a problem, so called “one phenotype mapping 

different genotypes” can be prevented [69]. 

 

In a similar spirit, HGA is tailored to evolve an RBF (Radial-Basis Function) 

neural network. A radial-basic function can be formed as  

                                                               (6.11) 

where  denotes the center of the ith localized function,  is the weighting coefficient 

on, and m is the number of 

Gaussian neurons in the hidden layer. Without loss of generality, we choose the variance 

as unity for each Gaussian neuron

 

d the third hidden layers are activated and the second and the fourth hidden layers 

are deactivated.   

 

The mid-level neuron genes indicate that two out of three neurons in the first 

hidden layer are activated, while only one neuron in the third hidden layer is activated. 

The low-level parameter genes are then used to represent the weighting parameters of 

each correspondin

)||||exp()( 2
iif cxx −−= ∑ω              

1

m

i=

.  

i i

connecting the ith Gaussian neuron to the output neur

c ω
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Figure 6.23 Genotype and Phenotyp of HGA based RBF neural network 

 

genes. The lengths of these 

three k rmines the 

activation status (off or on) of the corresponding weight gene and center gene.  The 

weight genes and center genes are represented by real values. Control genes and weight 

genes a

]. The HRDGA operators are designed as followed. Figure 6.24 

shows the flow chart of HRDGA for NN design procedure. 

 

e 

In HGA based RBF neural network design, ge

into three categories: control genes, weight genes and center 

inds of genes are the same. The value of

nes in the genotype are classified 

 each control gene (0 or 1) dete

re randomly initialized and the center genes are randomly selected from given 

training data samples. Figure 6.23 shows the genotype and phenotype of HGA based 

RBF neural network. 

 

6.4.3 HRDGA for neural network design 

To assist RBF network design, RDGA and HGA are combined as a Hierarchical 

Rank-Density based Genetic Algorithm to carry out the fitness evaluation and mating 

selection schemes [71
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1) 

sen ad hoc according to the 

omplexity of the problem to be solved. 

nary value mutation was adopted.  In the 

 

3) 

lue is 

calculated. Then the new rank and density fitness values of each individual will be 

In HRDGA, each individual (chromosome) represents a candidate neural network. 

The control genes are binary bits (0 or 1). For the weight and center genes, real 

values are adopted as the gene representation to reduce the length of the 

chromosome.  The population size is fixed and cho

c

2) One-point crossover is used in the control gene segment and two-point crossover 

in the other two gene segments.  The crossover points were randomly selected, 

and the crossover rates were chosen to be 0.8, 0.7 and 0.7 for the control, weight 

and center genes, respectively.  One-point mutation was applied in each segment. 

In the control gene segment, common bi

weight and center gene segments, real value mutation was performed by adding a 

Gaussian noise with zero mean and unit variance.  The mutation rates were set to 

be 0.1, 0.05 and 0.05 for the control, weight and center genes, respectively. 

Since HRDGA is applied to optimize the neural network topology along with its 

performance, we need to convert them into the rank-density domain. Therefore, 

the original fitness—network performance and number of neurons—of each 

individual in a generation is evaluated and ranked, and the density va

evaluated, and the individuals with higher fitness measures will reproduce and 

crossover with other high fitness individuals with a certain probability. Their 

offspring replaces the low fitness parents forming a new generation.  Mating is 

then iteratively processed. 
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4) 

Figure 6.24 Fl

 
 
6.4.4 Experimental 

together with its best perform

time series prediction or pattern classification.  For a feasibility check, we use the 

RDGA assisted NN design to predict the Mackey-Glass chaotic time series. 

When the desired number of generations is met, the evolutionary process 

stops. 

In itia lize  popu la tion  and  

and  opera to r va lues

In itia lize  popu la tion  and  

and  opera to r va lues

 

owchart of the main procedure of HRDGA based neural network design 

study—Mackey-Glassy chaotic time series prediction 

Since the proposed HRDGA is designed to evolve the neural network topology 

ance, it proves useful in solving complex problems such as 
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The Mackey-Glass time series is a continuous time-delay data series. The time-

delay differential equation is: 

))(1()( τtxtd c −+
−× )()())(( txbτtxatxd

×−=

  In this experimental study, HRDGA is used to 

.                                                                  (6.12)   

The chaotic behavior of the Mackey-Glass time series is determined by the delay 

parameter .  Some examples are listed in Table 6.5.  Larger values of  produce more 

chaotic dynamics which are much more difficult to predict. Here  and 

are signed for Equation (6.12).

 predict a chaotic Mackey-Glass time .  The 

Delay parameter  Chaotic characteristics 

τ

 as

evolve neural networks to

τ

2.0=a

 series with τ

, 1.0=b

150=

10=c  

network is set to predict )6( +tx  based on )12(),6(),( −− txtxtx  and )18( −tx . 

Table 6.5 Characteristics of Mackey-Glass time series 
τ

53.4τ <  A stable fixed point attractor 

3.13τ53.4 <<  A stable limit cycle attractor 

8.163.13 << τ  Period limit cycle doubles 

8.16τ >  Chaotic attractor characterized by τ  

G l center genes are selected, 15

ly  as well. Population size was s

e wn center selection methods—KN

 

In the proposed HRD A, 150 initia 0 control genes 

and 150 weight genes are initial  generated et to be 400.  

 

For comparison, thre  well-kno N (K-Nearest 

Neighbour) [72], GRNN (Generalized Regression Neural Network) [73] and OLS 

(Orthogonal Least Square Error) [74] methods are applied on the same time series 
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prediction problem.  For KNN and GRNN types of networks, 70 networks are generated 

with the neuron numbers increasing from 11 to 80 with the step size of one. Each of these 

networks will be trained by KNN and GRNN methods. For the OLS method, the 

selection of the tolerance parameter  determines the trade-off between the performance 

and complexity of the network. Ideally,  should be larger than, but very close to, the 

ratio , where  is the variance of the residuals, and  is the variance of the 

m  value will produce a neural network with more neuron 

num  value ge lly results in a network with less number of 

neurons. Therefore, by using different  values, we generated a group of neural 

networks with various training perform ces and numbers of hidden neurons. For the 

ey-Glass tim ,  values, 

which range from 0.01 to 0.4 with the step size of 0.01. The stop criteria for KNN, 

GRNN and OLS algorithms is either the epochs exceeds 5,000, or the training Sum 

 

 
       (b) Resulting Pareto front 
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 seri ρ

Square Error (SSE) between two sequential generations is smaller than 0.01.  For 

HRDGA, the stopping generation is set to be 5,000. 
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Figure 6.25 Training performances and Pareto 
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Figure 6.28 Training performances and Pareto 
different number of hidden neurons for
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                                (b) Resulting Pareto front 

fronts for the resulting neural networks with 
 testing set #3 



For the given time series, first 250 seconds of the data is used as the training data 

set, and then the data from 250 – 499, 500 – 749, 750 – 999 and 1,000 – 1,249 seconds 

are used as the corresponding testing data sets to be predicted by four different 

tain 

the statistical averag ining SSE of neural 

networ

 

 

    
 

approaches. Each approach runs 30 times with different parameter initializations to ob

e. Figure 6.25(a) shows the resulting average tra

ks with different number of hidden neurons by four training approaches. Figure 

6.25(b) shows the approximated Pareto fronts (i.e., non-dominated sets) by the selected 

four approaches. Figure 6.26(a) shows the average testing SSEs of the resulting networks 

by using the first testing data set for each approach, and Figure 6.26(b) shows their 

corresponding Pareto fronts. Furthermore, Figures 6.27(a) and (b), Figures 6.28(a) and 

(b) and Figures 6.29(a) and (b) show the same types of results by using the second, third 

and fourth testing data sets, respectively. 

 

 

 

 

 

          

  (a) Testing performances                      

Figure 6.29 Training performances and Pareto fronts
different number of hidden neurons for

 

For each algorithm, the resulting network th

selected from the final Pareto front as the 

ominated individual network will be

      

                 (b) Resulting Pareto front 

 for the resulting neural networks with 
 testing set #4 

at provides the best training result is 

best network for the training set. Meanwhile, 

 evaluated by each of the testing set, and each non-d
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the the 

corresponding testing set.  

Table 6.6 shows the performances and their corresponding numbers of hidden 

neurons of the best networks for the training and testing sets.  
 

rformance comparison between KNN, OLS, GRNN and HRDGA 

 

From Figures 6.25 – 6.29, comparing to KNN and GRNN, HRDGA and OLS 

algorithms much smal nin d t erro or e n ork ure

KNN trained networks produce the worst performanc bec e R  ce f th

KNN algorithm are randomly selected, which make KNN to achieve at best a “local 

optimu

n is only partially 

Best performance 
for Training set 

Best performance 
for Testing set #1 

Best performance 
for Testing set #2 

Best performance 
for Testing set #3 

Best performance 
for Testing set #4 

one which provides best testing performance is extracted as the best network for 

 

Table 6.6 Structure and pe

 

n 
r 

Training 
SSE 

Neuron 
number 

Testing 
SSE 

Neuron 
number 

Testing 
SSE 

Neuron 
number 

Testing 
SSE 

Neuron 
number 

Testing 
SSE 

Neuro
numbe

           
KNN 2.8339 69 3.3693 42 3.4520 42 

 
4.8586 

 
48 

 
4.8074 
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2.3382 

 
68 

 
2.7720 
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3.0711 
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2.9644 
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3.2348 

 have ler trai g an esting rs f the sam etw  struct s. 

es, ause th BF nters o e 
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2.3329 60 

  
2.4601 46 

  
2.5856 50 

  
2.5369 37 

  
2.7199 54 

HR
 

DGA 
 

2.2901 
 

74 
 

2.4633 
 

47 
 

2.5534 
 

52 
 

2.5226 
 

48 
 

2.7216 
 

58 

m” solution. Since GA always seeks “global optimum”, and the orthogonal result 

is near optimal, the performances of OLS are comparable to HRDGA. 

 

Moreover, from Figure 6.25, it is found that when the network complexity 

increases, the training error decreases. This phenomenon can be observed from the results 

by all of the selected training approaches.  However, this phenomeno
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maintained for the relationship between the testing performances and the network 

comple

 by 

increasing or decreasing the neuron numbers at will. On the other hand, although the OLS 

algorith

xity.  Before the number of hidden neurons reaches a certain threshold, the testing 

error still decreases as the network complexity increases. After that, the testing error has 

the tendency to fluctuate even when the number of hidden neurons continuously 

increases. This occurrence can be considered as that the resulting networks are overfitted. 

The network with the best testing performance before overfitting occurs is called the 

optimal network and judged as the final solution by conventional NN design algorithms 

[66]. However, from Figures 6.25 – 6.29 and Table 6.6, it is very difficult to identify a 

single optimal network that can offer the best performances for all the testing data sets, 

since these data sets possess different traits.  Therefore, instead of searching for a single 

optimal neural network, an algorithm that can result in a near-complete set of near-

optimal networks can be a more reasonable and applicable option. This is the essential 

reason that MOEAs can be justified for this type of neural network design problems. 

 

From the simulation results, although KNN and GRNN approaches did not 

provide better training and testing results comparing to the other two approaches, they 

have share the advantage that the designer can control the network complexity

m always provides near-optimal network solutions with good training and testing 

performance, it also has serious problem to generate a set of network solutions in that the 

designers cannot manage the network structure directly. The trade-off characteristic 

between network performance and complexity totally depends on the value of tolerance 

parameter ρ . Same ρ  value means completely different trade-off features for different 
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NN design problems. In addition, as shown in Figure 6.30, the relationship between ρ  

value and network topology is a nonlinear, many-to-one mapping, which may cause a 

redundant computation effort in order to generate a near-complete neural network 

solution set. Compared with the other three training approaches, HRDGA does not have 

problems in designing trade-off parameters, because it treats each objective equally and 

independently, and its population diversity preserving techniques help it to build a near-

uniformly distributed non-dominated solution set. 

 

 

 

e 

Figure 6.30 Relationship between  values and network complexiti

 
paring to the other three traditional training app

DGA algorithm offers several benefits for the neural network design 
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rms of:  

es 

herefore, com roaches, th

proposed HR

problems in te

ty; 

T

a) Providing a set of candidate solutions, which is evolved by GA’s 

population-based optimization capability and the definition of Pareto 

optimali
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b) Presenting competitive or even superior individuals with high training and 

testing performances. This is resulted from GA’s feature of seeking 

“global optimum” and HRDGAs’ Pareto ranking technique; and 

e and the 

 

 

 

 

c) Offering a near-complete, non-dominated set and long-extended Pareto 

front, which is credited from HRDGA’s population diversity keeping 

design that can be found in AARS, density preserving techniqu

concept of “forbidden region.” 
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VII. DYNAMIC POPULATION SIZE IN MOEA DESIGN 

 

7.1 Introduction 

In the prev iewed and 

xamined by a set of MOP test functions. From the design procedures of these MOEAs, 

algorithms share the same purpose—searching for a uniformly 

distribu

ves have been proposed [76-79]. Since 

ious three chapters, several existing MOEAs were rev

e

we know that all of these 

ted, near-optimal and near-complete Pareto front for a given MOP. However, this 

ultimate goal is far from being accomplished by the existing MOEAs in terms of dealing 

with some of MOPs with special challenging characteristics as discussed in Chapter VI. 

In one respect, most of the MOPs are very complicated and require the computational 

resources to be homogenously distributed in a high dimensional search space. On the 

other hand, those better-fit individuals generally have strong tendencies to restrict 

searching efforts within local areas because of the “genetic drift” phenomenon, which 

results into the loss of diversity due to stochastic sampling. This phenomenon is a well-

known trade-off decision pertaining to the efficiency and efficacy dilemma [75]. 

Additionally, most of the existing MOEAs adopt a heuristically chosen population size to 

initialize the evolutionary process. However, as addressed in [76], evolutionary algorithm 

may suffer from premature convergence if the population size if too small, whereas a 

over estimated population size will result in a heavy burden of undesired computation 

and a long waiting time for fitness improvement.   

 

In the case of Single Objective (SO) optimization, several methods of determining 

an optimal population size from different perspecti

 101



the purpose of solving an SO problem is to search for a single optimal solution at the 

final ge

 in some elitism based MOEAs, main population and elitist 

archive are separated and updated by exchanging elitists between them, the size of the 

main p

neration, the distribution characteristics of the final population is not an issue to 

be concerned. However, in order to solve MOPs, an MOEA needs to uniformly distribute 

its computation effort in all the explored and unexplored areas and locate reasonable 

number of possible non-dominated points to sketch a near-complete Pareto front. In 

general, the size of final Pareto set yielded by most MOEAs remains to be equivalent to 

the size of initial population. As indicated in [6], the exact trade-off surface of an MOP is 

often unknown in a priori, it is difficult to estimate an optimal number of individuals 

necessary for effective exploration of the solution space as well as a good representation 

of the trade-off surface. This difficulty implies that a “guessed” size of the initial 

population is not appropriate in a real world application. Therefore, a dynamic population 

size autonomously adjusted by the on-line characteristics of population trade-off and 

density distribution information will be more efficient and effective than a constant 

population size in terms of avoiding premature convergence and unnecessary 

computational complexity.  

 

As pointed out in [80], the issue of dynamic population in MOEAs has not been 

well attended yet. Although

opulation or the sum of the main population and the archive is still fixed [10-12]. 

Therefore, either a “guessed” size of initial population is needed in some of these 

algorithms or a maximum size of archive is predetermined [52]. Tan, Lee and Khor 

proposed an Incrementing Multiobjective Evolutionary Algorithm (IMOEA) [80], which 
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devises a fuzzy boundary local perturbation technique and a dynamic local fine-tuning 

method in order to achieve broader neighborhood explorations and eliminate gaps and 

discontinuities along the Pareto front. However, this algorithm adopts a heuristic method 

to estimate the desired population size )(ndps  for next generation according to the 

approximated trade-off hyperareas of current generation, but not based on the dominance 

and density information of the entire objective space. Therefore, the computation load 

may be wrongly determined if the approx n of )(ndps  value is inaccurate, which 

may force IMOEA adjust grid density to reach the incorrect “optimal” population size. 

Moreover, IMOEA is relatively complicated and not compared with those most recently 

designed MOEAs (i.e., PAES, SPEA II, NSGA-II and RDGA). Its robustness needs to be 

further examined by different initial populations.  

 

In this Chapter, based on RDGA, a Dynamic population-size Multiobjective 

Evolutionary Algorithm (DMOEA) is proposed.

imatio

 In DMOEA, a cell-based rank and 

density calculation strategy is devised and an MOP will be converted into a bi-objective 

optimization problem in terms of individual’s rank and density values [54]. Meanwhile, a 

population growing strategy is designed based on the converted fitness and three types of 

qualitative indicators—age, health and crowd— are associated with each individual in 

order to determine the likelihood of eliminating an individual. In addition, an objective 

space compression strategy is devised and the resulting Pareto front is continuously 

refined based on different steady states.  Three recently designed complex test functions 

are used to examine the efficiency and effectiveness of the proposed DMOEA. For a fair 

comparison, five representative MOEAs (PAES [52], SPEA II [12], NSGA-II [14], 
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RDGA [54] and IMOEA [80]) are also tested by the chosen benchmark problems. By 

examining four performance measures and the resulting Pareto fronts, DMOEA is found 

to be competitive with, or even superior to, the five selected MOEAs in terms of keeping 

the diversity of the individuals along the trade-off surface, tending to extend the Pareto 

front to new areas and finding a well-approximated Pareto optimal front. Moreover, from 

simulation results, DMOEA shows the potential to autonomously converging to the 

optimal population size, which is found insensitive to the initial population size chosen. 

 

7.2 Incrementing Multiobjective Evolutionary Algorithm 

Although Pareto Archive Evolutionary Strategy (PAES) implements a population 

increm e by keeping adding new non-dominated individuals to the archive, 

menting Multiobjective 

Evoluti

 are the lower and upper bound for the desired population size 

, respectively. In addition, IMOEA applied the method used in [81] to estimate the 

approximated number of hyperareas by  

enting schem

the first MOEA that applies dynamic population strategy is Incre

onary Algorithm (IMOEA) proposed by Tan, Lee and Khor [80]. In IMOEA, the 

method of fuzzy boundary local perturbation was incorporated with interactive local fine-

tuning for boarder neighborhood exploration to increase population size with competent 

offspring. Considering an m-dimension objective space, the desired population size 

)(ndps , with the desired population size per unit volume, ppv , and the approximated 

tradeoff hyperarea of )(nA discovered by the population at generation n  is defined as  

to )()( ,                     (7.1) 

where lowbps  and  up

to

upbpsnAppvndpslowbps ≤×=≤

bps

)(ndps
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where )  is the diameter of the hypersphere at generation n. Therefore, based on the 

ulting population s  and estim ired population size 

(ndps , IMOEA adaptively filled in or filtered out individuals according to their rank and 

density status. In the simulation results, NSGA and SPEA are compared with IMOEA on 

three test functions and IMOEA shown better performance than the other two in terms of 

several selected indicators. However, none of the advanced MOEAs (i.e., PAES, SPAE 

II, NSGA-II and RDGA) was used and compared with IMOEA and the robustness of 

IMOEA on different initial population size is not carefully examined.  

 

7.3 Dynamic Multiobjective Evolutionary Algorithm 

Generally, the approximation of the Pareto-optimal set involves two objectives: 

the distance to the true Pareto front is to be minimized while the diversity of the 

generated solutions is to be maximized [54]. For the first objective, a Pareto-based fitness 

assignment (ranking scheme) is usually designed in many existing MOEAs [12] in order 

to guide the search towards the ideal Pareto optimal front. For the second objective, some 

MOEAs provide a density estimation method to preserve the population diversity. 

Unfortunately, these two objectives are conflicting since the diversity preservation 

process will slow down the convergence speed, or even degrade the quality of the 

resulting Pareto front. In one respect, as a general GA, MOEA exploits the “genetic drift” 

characteristic to converge the solution to each of the optimal point. On the other hand, the  

(nd

difference between res

)
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“genetic drift” phenomenon must be avoided in order to sketch a uniformly sampled 

trade-off surface for the final Pareto front.   This contradicted issue is very difficult to be 

solved by MOEAs with fixed population size, since they have to homogenously distribute 

the predetermined computation resource to all the possible directions in the objective 

space. Therefore, to cope with this contradiction, a Dynamic Multiobjective Evolutionary 

Algorithm (DMOEA) is proposed in this chapter.  

 

Similar to the other advanced MOEAs [12-14,54], DMOEA also converts the 

original MOP into a bi-objective optimization problem—minimizing individual rank 

value and maintaining individual density value [84]. However, as adding or removing an 

individ

nsional objective space is divided into 

cells (i.e. grids), thus the cell width in the ith objective dimension 

 

ual will affect the rank and density values of other individuals, the rank and 

density values of each individual need to be recalculated after the population has been 

updated. This recalculation will cost more computation time as the population size 

increases to a larger number. Therefore, to solve this problem, we design a novel cell-

based rank and density calculation scheme.  

 

7.3.1 Cell-based Rank and Density Calculation Scheme  

In DMOEA, the original n-dime

nKKK ××× K1 id  

i

K
, ni ,...,1= ,                                                        (7.  3)

2

can be formed as  

i

i
i

FF
d

minmax −
=
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where   and a  the esti for th  ith o

dimension. After the objective space has been determined and divided, as shown in 

 7.1( ente

max
iF min

iF  

Figure a), the c r position of each cell will be obtained and two matrixes are set up 

to store the rank and density values of each cell, which initially are 1 and 0, respectively 

(shown in Figure 7.1(b) – (c)). Second, each individual of initial population will search 

for its nearest cell center and identify this cell as its “home address” and consider the 

other individuals who share the same “home address” as its “family members”. Then as 

shown in Figure 7.2(a) – (c), for each of these “homes”, the number of “family members” 

who dwell in it will be counted and saved as the density value of the “home”. In addition, 

the rank values of the cells that dominated by any of these “homes” will be increased by 

the density values of those “home”.   Third, when an offspring is generated and accepted 

(individual C in Figure 7.3(a)), its “home address” can be easily located by following the 

second step and the density value of its “home” will increase by one and the rank values 

of the cells dominated by its “home” will be increased by one. Meanwhile, if an old 

individual (individual B in Figure 7.2(a)) is removed, its “home” will be notified and the 

density value of its “home” will decrease by one and the rank values of the cells 

dominated by its “home” will be decreased by one, correspondingly. Therefore, at each 

generation, an individual can access its “home address” and then obtain the 

corresponding rank and density values. The “home address” is merely a “pointer” to 

inform an individual where to find its rank and density values. For instance, as shown in 

Figure 7.3, the “home address”, rank and density values of individual A are (5,2), 2 and 

1, respectively. Therefore, if the estimated objective space is large enough that a newly 

generated or a removed individual does not change the boundary of the range of current 

re mated high and low boundaries e bjective 
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objective space, the size of each cell will not change, which means an individual’s “home 

address” will never change if this individual is not removed. By this means, the original 

objective of searching for a near-complete, near-optimal and uniformly distributed Pareto 

front has been converted to locate as many optimal “home addresses” as possible, each of 

which contains ppv number of these individuals.  

        (a) divided objective space     (b) initial density matrix        (c) initial rank matrix  
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Although the genetic operations (i.e., crossover and mutation) a sre till performed 

by genotype chromosomes, the fitness evaluation of whether the resulting offspring is 

good or not is based on its location on the rank and density matrices. By this method, the 

procedure of updating rank and density matrixes is totally irrelevant to the procedure of 

fitness evaluation on an individual. On one respect, as each crossover or mutation 

operation can only produce at most two new individuals, the computation load on 

updating the rank and density will be trivial for each generation. On the other hand, when 

two individuals are compared, they just need to provide their “home addresses” and the 

current rank or density status of their “home addresses” can be evaluated to determine 

which individual is better fitted. Therefore, no matter how large the population size is, the 

computation effort of both matrixes updating and fitness evaluation will not be affected, 

which provide an efficient way in applying dynamic population size in evolutionary 

process. 

 

7.3.2 Cell Rank and Health Indicator  

Once the rank and density values of each cell have been obtained by using the 

method described as Subsection 7.3.1, two indicators that are associated with rank and 

density values are designed to determine if a cell is “comfortable” enough for an 

individual to inhabit. They are health and crowd indicators.  

 

In DOMGA, we convert the rank value of a cell into a health indicator in order to 

measure the dominance status of the concerned cell comparing to the other cells. Assume 
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at generation , a cell  has a rank value , the health value of cell c  at 

generation  is given as 

n c ),( ncrank

n

),(
1),(

ncrank
ncH = .                    (7.4) 

From Equation (7.4), a cell with rank value 1, which is the healthiest, will have an 

 value equal to 1 and a cell with higher rank value will have a lower  value that is 

more closer to 0 (Figure 7.4). Therefore, an  value indicates the Pareto rank 

information of a cell and the relationship between a cell’s rank value and  value is not 

linear. In one aspect,  values drop very fast if rank values are greater than 1, which 

results in a significant difference between dominated and non-dominated cells in terms of 

health condition. On the other hand,  values also saturate very fast, which assigns all 

the dominated cells very low H values (near zero) if their rank values are very high. This 

characteristic can be used by the individual elimination scheme that will be discussed 

later.  

H H

H

H

H

H

 

 

 

 

 
 

Figure 7.4 Relationship between rank value and health value. 
 
 
7.3.3 Cell Density and Crowd Indicators 

Referring to [80], consider an m-dimension objective space, the desired 

population size, , with the desired population size per unit volume, , and the )(ndps ppv
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explored trade-off hyper-area, , discovered by the population at generation  can 

be defined as Equation (7.1). Therefore, with given population size per unit volume, 

, the optimal population size can be obtained if an MOEA can correctly discover all 

the trade-off hyper-areas for an MOP. In DMOEA, instead of estimate the trade-off 

hyper-area  for each generation [80], we concentrate on searching for a near-

complete final set of trade-off hyper-areas and ensure each of these areas contains  

number of non-dominated individuals. Therefore, by using DMOEA, the optimal 

population size and final Pareto front will be found simultaneously at the final generation. 

)(nAto n

ppv

)(nAto

ppv

n) =

 

As discussed in Subsection 7.3.1, the density value of a cell is defined as the 

number of the individuals located in it. The finer the resolution of the cell is, the better 

performance DMOEA can provide. A crowdness is associated with each cell to show 

current density information of the concerned cell. Assume at generation , the density 

value of cell c  is , the crowdness indicator of cell  is defined as  

n

),( ncdensity c

  
ppv

ncdensityc ),(,(D .            (7.5) 

Therefore, by using crowdness indicator, we can obtain the information about how 

congested each cell is, comparing to the desired  value. ppv

 
7.3.4 Population growing strategy 

In general, if an MOEA has a fixed population size, a “replacement” scheme is 

always applied. In this scheme, in order to keep the population size unchanged, a 

newborn offspring will replace one of its parents if its fitness value is higher than that of 
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the parent. However, this scheme brings up a problem that some of the replaced parents 

may still be very valuable and have not been well exploited yet before they are replaced. 

Although some MOEAs (i.e. NSGA-II and SPEA II) adopt an elitist archive in addition 

to the main population in order to store some of the non-dominated individuals generated 

during the evolutionary process, this problem is still not completely resolved. Therefore, 

DMOEA applies two independent strategies—population growing strategy and 

population decline strategy. The first strategy only focus on pure population increment 

and ensures each of the individual survives enough generations so that it can contribute 

its valuable schemas. Meanwhile a population declining strategy is also designed to 

prevent the population size growing excessively. The second strategy will be discussed in 

the next Subsection.  

 

Because exploring the cells with minimum rank values and maintaining these 

cells densities to a desired value are two converted objectives of DMOEA, crossover and 

mutation operations need to be devised to fit both of the purposes. For crossover, a 

reproduction pool with a fixed number of selected parents is setup; a Cellular GA [53] is 

then applied to explore the new search area by “diffusion”— each selected parent 

performs crossover with a randomly selected individual located in the nearest cell that 

dominates the concerned cell. If a resulting offspring is located in a cell with a better 

fitness (a lower rank value or a lower density value) than its selected parents, it will be 

kept to the next generation; otherwise, it will not survive. The mutation operation is 

analogous. As a result, this strategy will guarantee that a newborn individual will have a 

better fitness value than at least one of its parents, which helps DMOEA to cover all the 
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unexplored cells in the objective space. To prevent “harmful” offspring from surviving 

and affecting the evolutionary direction and speed,  forbidden region concept is applied 

in the offspring-generating scheme for the density subpopulation. 

 

7.3.5 Population declining strategy 

As discussed in Subsection 7.3.4, a population declining strategy is necessary to 

prevent the population size growing unbounded. In DMOEA, whether an individual will 

be removed or not depends on its health and crowdness indicators we mentioned in 

Subsection 7.3.2 and 7.3.3. Moreover, to ensure that each appeared individual has enough 

lifespan to contribute its valuable schemas, an age indictor is also designed in DMOEA. 

For an individual in the initial population, its age value is assigned to be one, and its age 

will increase by one if the individual survives at the next generation. Similarly, the age of 

a newborn offspring is one and grows generation by generation as long as it lives. 

Assume at generation , an individual  has an age value , its age indicator 

 is given by 

n y ),( nyage

),( nyA

n
Anyage

nyA th−
=

),(
),( ,           (7.6) 

where  is a pre-specified age threshold, which means that an individual will not be 

eliminated if its age is less than  . 

thA

thA

 

To ensure that an eliminated individual has a low fitness value, DMOEA 

moderately removes three types of individuals with different livelihoods: 
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1) Likelihood of removing the most unhealthy individuals 

At generation , find a set Y  that contains all the individuals with the highest rank value 

. Therefore, if  is larger than 1, the likelihood of individual  to be 

eliminated is given by  

n r

maxr maxr ri Yy ∈

),()),(1( 2
1

nyAncHl ii
i ×−= ,                          (7.7) 

where 
max

1),(
r

ncH i =

iy

 denotes the health indicator value of the cell c  that contains 

individual  at generation n . 

i

 

2) Likelihood of removing the unhealthy individuals in the most crowded cells 

At generation , find a set Y  that contains all the individuals with the highest density 

value, and then find a set Y  that includes all the individuals with the highest cell 

rank value . In addition, denote the pure Pareto rank of individual  to be r . 

Therefore, if r  is greater than 1, the likelihood of individual  to be eliminated is 

given by 

n

max

d

d

dr ⊆ dY

dr dri Yy ∈ di

max iy

),()1),(()11()),(1( 22
2 nyAncD

r
ncHl ii

di
i

i ×−×−×−= ,                               (7.8) 

where 
max

1),(
d

i r
ncH = and  represent the health and crowdness values of the cell 

 that contains individual  at generation . It is noted that  represents the 

local rank value of the individuals of set Y  and is calculated by pure Pareto ranking 

scheme proposed by Goldberg [25].  Although all the individuals located in the same cell 

),( ncD i

iyic n

dr

}{ didr rR =
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share the same rank value, they may still have local dominance relationship as shown in 

Figure 7.5, where individuals A and B have the highest and lowest local (pure Pareto) 

rank values, respectively. Therefore, by measuring local rank values among all the 

individuals in one cell, DMOEA can determine the likelihood of eliminating an 

Figure 7.5 Illustration of th

individual more precisely.   

e pure Pareto ranking for the individuals located in the same cell  

 
3) lls 

 is equal to 1, find a set  that contains all the individuals with 

max
2F

max
1Fmin

1F
min

2F

A

B

max
2F

max
1Fmin

1F
min

2F

A

B

Likelihood of removing non-dominated individuals from the most crowded ce

after convergence 

At generation n , if maxr rcY

the highest density value, and their local pure Pareto rank values of individual rci Yy ∈  to 

be dir . Therefore, the likelihood of individual iy  to be eliminated is given by  

1 2i ),()1()1),((
3

nyA
r

ncDl i
di

i ×−×−= ,                    (7.9) 

 represents the crowdness value of the cell  that contains individual 

ration n.

where ),( ncD i ic iy  

at gene  
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To determine if an individual  will be eliminated, three random numbers 

between [0, 1] are generated to compare with the concerned likelihood, l ,  and , 

according to the situation of the given individual. If the likelihood is larger than the 

corresponding random number, the selected individual will be removed from the 

population. Otherwise, the selected individual will survive to the next generation. 

Therefore, from Equations (7.7) – (7.9), we can draw some observations as follows. 

iy

i
1

il
2

il
3

 

1) Because the age indicator  influences all of three likelihood, ,  and  

will be negative number if the age of the concerned individual is smaller than the age 

threshold . This implies that if an individual is not old enough, it will not be 

eliminated from the population no matter how high its rank and density value is. 

),( nyA i 1l 2l 3l

thA

2) At each generation, DMOEA will remove those most unhealthy individuals 

according to likelihood l , based on their rank values and ages. Assume the age indicator 

of an individual  is , the relationship between its rank value and l  value is 

illustrated in Figure 7.6. Without considering the effects of other indicators, when an 

unhealthy individual in the set Y  has a very high  value, it will have a very high 

likelihood ( l ) to be eliminated, since it is too far away from the current Pareto front. 

Moreover, as  drops and gets closer to 1, l  will decrease very fast, and the concerned 

individual will not be removed easily because it is very likely to be evolved into an elitist 

in the future. Therefore, this “shell removing” strategy will keep eliminating the 

individuals located on the outside layer with an adaptive probability until the entire 

population converges into a non-dominated set. 

1

(yAy 1), ≈n 1

r maxr

1

maxr 1
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Figure 6 Relationship between rank values and l values  1

3) Because all the individuals in the same cell share the fixed computation resource (or 

“living resource”), the individuals located in a crowded cell have to compete much harder 

for the limited resource than those located in a sparse cell. Therefore, another elimination 

scheme based on crowdness indicator values is designed in DMOEA in order to remove 

some unhealthy individuals that stay in the most crowded areas. From Equation (7.8), at 

each generation, if an individual belongs to the set Y , it will have the likelihood of l  to 

be eliminated based on its age, health, and local rank value and density condition. From 

this scheme, the population tends to be homogeneously distributed by eliminating the 

redundant individuals. 

dr 2

4) After every individual has converged into a Pareto point, another elimination 

scheme is implemented based on  values. Therefore, the resulting trade-off hyperareas 

 are counted, and the final population is truncated to ensure each cell contains 

 number of individuals; thus the optimal population size can be calculated by 

Equation (7.1).  

3l

)(nAto

ppv
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7.4 Objective Space Compression Strategy 

Although the cell-based rank and density calculation scheme discussed in 

Subsection 7.3.1 can significantly improve the efficiency of DMOEA during its 

evolutionary process, it cannot guarantee the accuracy of the resulting Pareto front since 

an individual’s rank value is represented by the rank value of its “home address”, not by 

its own dominance status. Because the size of true Pareto front is generally unknown, the 

boundaries of the objective are usually selected to be very large, which may be far away 

from the true Pareto front, to ensure entire true Pareto front is covered by the estimated 

objective space. In this case, if the predetermined cell scale are not chosen to be 

correspondingly large enough, the size of a cell will be too spacious comparing to the true 

Pareto front, which may result in a set of inaccurate Pareto optimal set.  This 

phenomenon can be illustrated as Figure 7.7 (a), where the rank value of both cell A and 

B is 1 since they contain true Pareto front. In this case, all the resulting individuals 

located in cells A and B are non-dominated solutions according to proposed cell-based 

rank calculation scheme.  However, if we examine these individuals by using pure Pareto 

ranking method, we will find that most of these individuals are dominated points.  To 

address this problem, we can either increase the cell scale  to a very large 

number or adaptively compress objective space. Nevertheless, the first method will 

increase the computation time because it leaves too many redundant empty cells when the 

resulting Pareto front approaches true Pareto front.  Therefore, an objective space 

compression strategy is designed to adjust the size of objective space and make it suitable 

to search for the true Pareto front with a high precision. Assume at generation n , the high 

nKK ,,1 K

K ,,1 K nK
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and low boundaries of the ith dimension of the objective space and current population are 

, , and . Then three criteria are evaluated: max
iF min

iF

( iF

thA

max
iF

min
iF

max
iP

max
iP−

(P=

(P=

min
iP

.0) >

iF+

iF+

1) maximum cell rank value of all the individuals is 1; 

2)  and (       (7.10) )(1 minmaxmax
ii FF − )(1.0) minmaxminmin

iiii FFFP −>−

3) minimum age value of all the individuals is greater than predefined age threshold 

. 

The ratio, 0.1 in Equation (7.10) is chosen heuristically. Therefore, if all of above 

three criteria are satisfied, a new-generated high boundary of the objective space is 

defined as: 

2/)maxmax
i ,                    (7.11) 

which means the distance between the updated high boundary of the objective space and 

the high boundary of the current population has decreased to half of its original value. 

Similarly,  

 ,         (7.12) 2/)minmin
i

which means the distance between the updated low boundary of the objective space and 

the low boundary of the current population has decreased to half of its original value.  

The rationale of introducing the first criterion is to ensure the approximated area of the 

true Pareto front has been discovered before the objective space is compressed, which can 

avoid incorrect truncation of potential non-dominated cells. Moreover, after a 

compression strategy is performed, the cell rank and density value will not remain the 

same as before, and the “home address” of each individual may change correspondingly. 

As a consequence, the cell rank and density values need to be recalculated, which may 
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cost tremendous amounts of computing time. For these reasons, the objective space is not 

compressed at each generation.. 

 

Comparing Figure 7.7(a) with 7.7(b), we can see that the proposed objective 

space compression strategy results in three effects: 

1) Some individuals that are originally considered as Pareto points are pushed out of 

the updated non-dominated cells, which implies the resulting Pareto front are 

refined. 

2) The density values of the updated non-dominated cells are reduced. 

3) Some new non-dominated cells may be created (cell C in Figure 7.7(b)). 

Therefore, by continuously compressing the objective space, the resulting non-dominated 

set can be tuned and a more extended and homogenously distributed Pareto front can be 

obtained. 
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                          (a) Original objective space   (b) Compressed objective sapce           

Figure 7.7 Illustration of objective space compression strategy 

 
7.5 Convergence Properties and Final Refinement Method 

Based on all the techniques introduced from Subsection 7.3—7.4, we can 

determine if DMOEA has converged by examining the following criteria: 

a. The rank values of all cells are 1s. 
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b. The objective space cannot be compressed anymore. 

c. Each resulting non-dominated cell contains  individuals. ppv

When all three criteria are met, the resulting non-dominated set can hardly be 

refined by DMOEA any further. At this stage, DMOEA will keep running and the cell-

based rank calculation scheme will be replaced by pure Pareto ranking scheme [25], 

whereas cell-based density calculation scheme remains unchanged.  The reason of this 

step is because another criterion “the Pareto ranks of all resulting individuals are equal to 

1” should be satisfied as well to guarantee there is no dominance relationship among 

resulting Pareto solutions at the final generation.  Figure 7.8 shows the flowchart of 

proposed DMOEA. 

Figure 7.8 Flow chart of DMOEA  
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7.6 Simulation I—Testing Study on DMOEA 

Here a modified MOP  as the test function F5 that 

ormance of DMOEA. Figures 7.9(a) 

and (b)

 designed by Deb [82] is used

has a discontinuous Pareto front to examine the perf

 show the Pareto optimal set (i.e., in terms of decision variables, , xx ) and true 

Pareto front  (i.e., in terms of objective variables, , ff ) for this problem. 

  Minimize ),( 211 xxf and ),( 212 xxf , where 

21

21
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             (b) Pareto front of function F5 

 set and Pareto front of function F5 

e boundary of the feasible objective space 

to be [0  and 

initial population sizes—2, 30 and 100—are chosen to test the robustness of DMOEA. 

The age 

 

 

 

         

    (a) Pareto optimal set of function F5                   

            Figure 7.9 Illustration of Pareto optimal

For the given test function, we select th

 

        

, 1] and [-1, 2.5] and the number of cells of each dimension to be 1 =K 50

12 =K 00 . The desired population size per cell is predefined as 5=ppv . Three specified 

threshold, the stopping generation, the chromosome length of each decision 

variable, the crossover rate and the mutation rate are chosen to be 10, 2000, 15, 0.7, and 
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0.1, respectively in the simulation. DMOEA is run for 50 times for each selected 

population size to obtain the average results and for each run, a new initial population 

with the specified number of individuals is randomly generated and evolved by DMOEA.  

Moreover, three indicators derived from each generation to quantitatively measure the 

performance: average population rank value, average population density value and 

average generational distance value. The final average population rank value, final 

average population density value and final average generational distance are derived from 

the last generation and illustrated via Box plots for the test function considered.  

 

 
 

 

 

       ) Evolutionary trajectories of population sizes   
 
 
 

 
 
 
 
 
 
 

The evolutionary trajectories for the average sizes of populations and the values 

of th  (d) 

 
(a        (b) Trajectories of average rank values  

 
 
 
 
 
 
             

          (c) Trajectories of average density values        

re 7.10 Evolutionary trajectories for 
resulting by DMOEA with three different 

 
 
       (d) Trajectories of average distance values 

the population size and the values of three indicators 
initial population sizes ( ) on Function F5 

 

Figu
10=thA

ree indicators over 50 runs are illustrated in Figure 7.10(a), (b), (c) and
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(c) Box plots for population distance values 

of three indicators with three different initial populatio
Functi F5 

respectively. The corresponding Box plots of the average final indicator values are shown 

in Figure 7.11. Figure 7.12(a) shows the objective space and true Pareto front of the given 

test function and Figure 7.12(b) shows the final Pareto front resulted by DMOEA with 

initial population size . From Figures 7.10 and 7.11, we can observe that for the 

given MOP test function, chosen grid of cells and predefined  value, 275 individuals 

 

             
 

Figure 7.11 Box plots n sizes ( ) on 

 
 

 

2=P

ppv

are determined as the final optimal population size (Pareto set). This implies that there 

are 55 trade-off cells (hyper-areas )(nAto ) that contain non-dominated individuals 

discovered by DMOEA at the final generation. 

. 

.   
 
 
 

            (a) Box plots for population rank values          

 
 
 
 
 

        (b) Box plots for population density values 
 
 
 
 
 
 
 

 

10=thA

on 
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           (a) Objective space and Pareto front             

Figure 7.12 Comparison of the true Pareto fron
) on Fun

 

 

 

 

 

  

7.

 order to compare the performance of DMOEA with other advanced MOEAs, 

 m SPEA II, 

NSGA-

gene

                (b) Resulting final Pareto front  

t and the final Pareto front resulted by DMOEA 
ction F5 ( 2=P

7 Simulation II—Comparison Study on DMOEA with Other MOEAs 

 

In

three ore complex benchmark problems are tested by six MOEAs— PAES, 

II, RDGA, IMOEA and the proposed DMOEA in the simulation, and each of the 

algorithms runs for 50 times to obtain the statistical results. For each test function, 

DMOEA will run with the initial population size equal to 2 and achieve an approximated 

desired population size dps . Afterwards, for each of fifty runs, an initial population with 

dps  individuals is randomly generated and used by each of three population-based 

MOEAs (i.e., NSGA-II, SPEA II and RDGA), while only one initial individual is 

rated for PAES according to its design procedure [52]. The archive size is set to be 

100 for all these MOEAs that involve the elitism scheme. For IMOEA, its initial 

population size is also set to be 2 for a fair comparison. We use three indicators derived 

from the final generations of 50 runs to benchmark the comparison results via statistical 

Box plots. They are: average individual rank value, average individual density value and 

average individual distance. As discussed in Subsections 4.2.3, for an individual, 
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different ranking schemes will produce different rank values, which will be used in 

respective fitness evaluations and selections. Therefore, for a fair comparison in terms of 

ranking indicators among different MOEAs, we use Goldberg’s pure Pareto ranking 

method [25] to recalculate the rank value for each individual resulted by each applied 

MOEAs. Meanwhile, the average individual density value is calculated as the mean value 

of all the individual density values. Furthermore, the “final average individual distance” 

is also used as the third indicator to show how far the non-dominated points on the 

resulting final Pareto front finalPF are away from the true Pareto front truePF , where truePF  

is known in a priori for the given test functions. Moreover, in order to compare the 

dominance relationship between two final populations resulted by two rent MO  

the coverage of two sets (C  value) [13] is also measured to show how the final 

population of one algorithm dominate the final population of another algorithm.  

 

diffe

rical

EAs,

hmark

To exam selected MOEAs and the proposed DMOEA 

on the test functions with different Pareto front features, three nume  benc  

problem

ine the performances of the 

s are used in the simulation study. Function F3 has been used in Chapter VI, 

which has a high-dimensional decision space and local and global Pareto fronts in 

objective space [82]. Function F6 has a high-dimensional decision and a high-

dimensional objective space [83]; and its true Pareto front is a surface instead of a curve.  

Function F7 is advanced from function F6, which also involves high-dimensional 

decision and objective spaces and the true Pareto front is 1/8 of a unit sphere. For a fair 

comparison, the stopping generation, the chromosome length of each decision variable, 

the crossover rate and the mutation rate are chosen to be 10,000, 15, 0.7 and 0.1, 

respectively for all population-based MOEAs considered. One point crossover is used for 
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all the population based MOEAs. In addition, we select (1+10)-PAES, and a bit flip 

mutation rate k/1  is used for a chromosome of k  genes. The tournament size domt  is 

chosen to be 2. 

 

P=156 

P=93 

   (b) 100th generaion  

               (e) 1,300th generation  
e spaces and populations resulted

P=112 

(c) 250th generation  

7.7.1 F3—MOP with high-dimensional decision space  

As an MOP with a high-dimensional decision space and local Pareto fronts in 

(6.6) and its objective space is 

illustra

OE

 

) First generation 

objective space, this test function is described as Equation 

ted as Figure 6.11.  For DMOEA, the initial population, the age threshold, the 

population size per unit volume, ppv  and the cell scales 1K  and 2K  are selected as 2, 10, 

3, 50 and 50, respectively. Figures 7.13(a) – (f) show the snapshots of the objective space 

and individuals resulted from DM A at generations 1, 100, 250, 750, 1,300 and 10,000, 

respectively. Similarly, Figures 14(a) – (f) and Figures 15(a) – (f) show the 

corresponding rank and density values of these individuals resulted from DMOEA at 

those generations, respectively. 
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 (d) 700th generation               

Figure 13 Snapshots of objectiv
 

 (f) 10,000th generation 
 from DMOEA on Function F3   7.
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Figure 7.14 Snapshots of objectiv
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From Figures 7.13 – 7.15, we can observe that although the initial population size 

is selected to be a very small number, DMOEA can find the true Pareto front easily as 

shown 

 and e until all the individuals are non-dominated 

points, and the density value  each cell is equal to  as shown in Figures 7.13(f), 

7.14(f) and 7.15(f).  

in Figure 7.13(f). In the beginning, two parents are randomly generated (i.e., 

2=P ) and perform genetic operations (i.e., crossover and mutation). As these two 

individuals do not dominate each other, and they are located in different “home 

sses”, their rank and density values are all 1 (Figure 14(a) and 15(a)). At the 

following generations, because the initial population is far away from the true Pareto 

front, and the population size is much fewer than the optimal one, the proposed 

population growing strategy affects the evolutionary process more than the population 

declining strategy. For this reason, both the population size and rank values of the 

dominated cells increase very fast to ensure those newly generated individuals disperse to 

the true Pareto front (Figures 7.13(b) and (c) and Figures 7.14(b) and (c)). Meanwhile, as 

cell density is preserved by DMOEA, the density values of all the individuals does not 

change very much as shown in Figures 7.15(b) and (c). When the population moves 

closer to the true Pareto front, it will be more difficult for the parents to generate better-

fitted offspring, which means the population growing strategy has difficulty in balancing 

the population declining strategy, and both the population size and the cell ranks will 

decrease as shown in Figures 7.13(d) and 7.14(d). When all the cells rank values drops to 

1 and density values are 3 ( ppv  value), the objective space will be compressed, and the 

new structure of cells will be created based on the new objective space and the original 

addre

1K 2K . This procedure will continu

of ppv
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       (e) RDGA   
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Function F3 

 

 

 

 

         (d) PAES   
Figure 16 Pareto fronts result
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with a 

 

 

 

       (a) IMOEA  

 

 

 

          (b) DMOEA                        (c) NSGA-II 

 

 

     (f) SPEA II 
PAES, RDGA and SPEA II on 7.

 

 

       (a) Average individual rank

Figure 7.17 Box plots of ave

 

 
 value  (b) Average individual density

rage individual rank, density and

 value  (c) Averge individual distance value  

 distance values on Function F3 

As obtained from the result of DMOEA, the optimal population size for the given 

 scale K  and K  is around 110. Therefore, we run NSGA-II, RDGA and SPEA1 2

fixed initial population size of 100 for a fair comparison. In addition, PAES with 

one initial individual and IMOEA with two initial individuals are also run for 10,000 

generations. The lowbps , ppv  and upbps  in IMOEA are chosen to be 1, 3 and 5, 

respectively. Figure 7.16(a) – (f) show the resulting Pareto fronts by six chosen MOEAs, 

while the Box plots for the average values of three indicators over 50 runs are illustrated 
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in Figures 7.17(a), (b) and (c), respectively. The performance measures of ),( ji XXC  for 

the comparison sets between algorithms i  and j  are shown in Figure 7.18, where 

algorithms 1 – 6 represent IMOEA, DMOEA, NSGA-II, PAES, RDGA and SPEA II, 

respectively. 
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 Figures 7.16 – 7.18, it is obvious that AES as gre fi ing 

the true Pareto front of this MOP. On the other hand, NSGA-II, SPEA II and RDGA can 

always
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Figure 7.18 B

 

 

 
),( 614 −XXC , 615 −XC  (C

From  P h at dif  f

                  

ox plots using C mea ure on 

        

Function F3 

 

 identify some points on the global Pareto front. IMOEA and the proposed 

DMOEA can always find a near-complete, near-optimal Pareto front. In addition, PAES 

and IMOEA also result in about 100 individuals at the final generation, which is similar 

to the optimal population size found from DMOEA. Nevertheless, many individuals 

resulted from PAES are not located on the global Pareto front and thus PAES produces 

very low ),( 614 −XXC  values as shown in Figure 7.18. Moreover, as shown in Figure 
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7.17(b), the average individual density value generated by IMOEA is 4 instead of 3 (pre-

defined pp ince IMOEA’s goal is to meet the desired population size )(ndps  

at generation n as estimated by Equations (7.1) and (7.2), the cell density value has to be 

higher th ppv  to keep the population size close to its optimal value if some of the 

hyperareas are not explored. However, for DMOEA, finding )(ndps  of each generation is 

not its primary concern since the final optimal population size can be easily calculated as 

the cell density is preserved and a complete set of hyperareas are discovered.  In this case, 

DMOEA produces a more complete Pareto front than those by the other five MOEAs, 

and it also provides the highest ),( 612 −XXC  values, which means the solution set that 

was resulted from DMOEA most likely going to dominate the rest of the solution sets 

resulted from the other chosen MO
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This test function is proposed in [84] as an MOP with high-dim

b s. Meanwhile, the true Pareto front of F6 is exac
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Figure 7.19 Objective space and Pareto front of Function 

 
The objective space (space between two spheres) and th

shown in Figure 7.19. For DMOEA and IMOEA,

the dis

cha ge

 

 
 
 
 

F6  

e true Pareto front are 

 the initial population, the population 

size per unit volu cted as 2, 3, 20, 

20 and

 on itial population

tance between the final and true Pareto front can be precisely calculated. The 

desired population size can be determined based on the ppv  value and the grid scales 

K — K .  According to [84], although NSGA-II can locate most of the population at its 

final generation on the true Pareto front, the resulting non-dominated individuals are not 

homogeneously distributed, which implies that this test function produces a great 

llen  for MOEAs in searching for a good representation of the true Pareto front when 

it is a surface instead of a curve. 

 

 

 
 

1 3

 
 

me, ppv  and the cell scales 1K , 2K  and 3K .  are sele

 20, respectively. The age threshold is chosen to be 10 in DMOEA. At the final 

generation, DMOEA results in about 1,800 individuals as the approximated optimal 

population size. Based this estimation, the in  size for NSGA-II, RDGA 

and SPEA II is chosen to be 1,800. Figures 7.20(a) – (f) show the resulting Pareto fronts 

by six chosen MOEAs and the Box plots for the average values of three indicators over 

50 runs are illustrated in Figures 7.21(a), (b) and (c), respectively. The performance 
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  (e) RDGA   
 

ed from IMOEA, DMOEA, NSGA-II, 
Function F6 

measures of ),( ji XXC  for the comparison sets between algorithms i  and j  are shown 

in Figure 7.22, where algorithms 1 – 6 represent IMOEA, DMOEA, NSGA-II, PAES, 

RDGA and SPEA II, respectively. Moreover, the evolutionary trajectories of the 

population size and average individual rank, density and distance values over 50 runs by 

six selected MOEAs are shown in Figures 7.23 (a) – (d), respectively. 
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22 Box plots using C measure on Funct

From Figures 7.20– 7.22, it is obvious that

 
 
 
 

 
 

          

Figure 

 

and homogenously distributed Pareto front comparing to the other advanced MOEAs.  

Indeed, if the initial population size is correctly chosen, the MOEAs with the fixed 

populat

 
 
 
 

         

 

),( 611 −XXC  ),( 612 −XXC  ),( 613 −XXC                 
 
 
 
 
 

 
 

),( 614 −XXC ),( 615 −XXC   ),( 616 −XXC      

ion F6 

 DMOEA produces a more accurate 

ion size (i.e., NSGA-II, RDGA and SPEA II) also yield to a competent Pareto 

front in terms of rank, density and distance values as shown in Figures 7.21 (a) – (c) and 

Figures 7.23(c) and (d). In addition, as the true Pareto front is a surface instead of a 

curve, it is difficult for the resulting non-dominated sets from any two MOEAs to cover 

each other. As the result, the C values are relatively low as seen in Figure 7.22. In 

particular, because the Pareto points resulting from DMOEA have the lowest average 

individual distance values and a converged average individual density value (as shown in 

Figures 7.23(d) and 7.23(c)), they are very competitive, which makes the resulting Pareto 
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front of all the other five MOEAs have great difficulty to cover, and ),( 21 XXC , 

),(,),,( XXCXXC L values are all near zero. 
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(c) Average individual density values     

Fi re 7.23 Evolutionary trajectories of popul
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Furthermore, Figures 7.23(a) – (d) also show the convergence speeds of chosen 

MOEAs. Generally, IMOEA converges very fast since the Fuzzy Boundary Local 

Perturb
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ation sizes and average individual rank, densit
MOEAs over 50 runs on Function F6 

gu

 

ation method is used to assist EA in discovering better-fitted individuals at each 

generation. However, as discussed in Subsection 7.2, IMOEA’s primary goal is to 

estimate )(ndps  by Equation (7.1), however, the cell density value is not carefully 

preserved. As a result, the final population size produced by IMOEA is not very accurate, 

and the average density value shows an appreciable deviation from ppv  value as shown 

in Figures 7.23(a) and (c). Indeed, for an MOP whose true Pareto front is known, the 
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optimal population size can be computed if the population per unit volume ppv  and cell 

scales mKKK ××× K21  are given. For instance, for the test function F6, assume 

3=ppv  and 20==== KKKr , the desired population size dps  can be calculated 

as 

321

4
8
32 ××≈r

 (7.1), for the sam

4
8
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××= ppvdps π

which is very close to th

ing to Equation
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Thus the desired population size  for IMOEA at generation alc

,  (7.17) 

e from

lev

shown

)(ndps

28269423)()( =×=×= nAppvndps to

which is much larger than the correct valu

reach the infeasible high value of the desired population size, IMOEA is forced to 

increase the population size by encouraging more individuals to dwell in the same cell, 

which explains the high average individual density values shown in Figures 7.21(b) and 

7.23(c). Nevertheless, because the lower and upper bound for )(ndps — lowbps  and 

upbps  are hard constraints, the cell density value cannot be larger than upbps . Therefore, 

the final population size resulting from IMOEA is still held at sona el as 

 in Figure 7.23(a). 
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It is also interesting to observe that some fluctuations occur on the population, 

rank and density trajectories resulting from DMOEA in Figures 7.23 (a) – (c).  This effect 

is credited to the proposed objective space compression strategy if the original objective 

space is greater than the surface of the true Pareto front. Each time when all three criteria 

described in Subsection 7.4 are satisfied, the objective space will be compressed to an 

extent. As a result, the size of each cell will decrease, and some of individuals originally 

located in a non-dominated cell will be pushed into a dominated cell, which implies that 

some cells will have higher rank or lower density values comparing to their previous 

status. Therefore, the steady state is disturbed, and the population growing and declining 

strategies start their process simultaneously to fill those sparse areas and remove 

dominated individuals, and then reach a new steady population size. Because the increase 

of the rank values is not significant, the likelihood of eliminating those dominated 

individuals 1l  is low as shown in Figure 7.4, which makes the population growing 

strategy dominates the population declining strategy and the population size will rise 

from this stage. When all the sparse cells are filled with certain numbers of new 

individuals, DMOEA will experience difficulty in finding a better-fitted offspring. 

Therefore, from this stage, the population declining strategy affects the population more 

than the population growing strategy, and the population size will decrease until a new 

steady state is reached. This process keeps refining the population as well as the cell size 

until the objective space does not have any room to be compressed at the final steady 

state. In addition, at the final steady state, all the non-dominated cells discovered by 

DMOEA should have a ppv number of individuals. It is also worthy to note that the 

individual distance value continuous to drop without any oscillation during the objective 
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space compression process (Figure 7.23(d)), which helps DMOEA search for near-

optimal Pareto points. 

 

7.7.3 F7—MOP with high-dimensional objective space and local Pareto fronts 
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Figure 7.24 Objective space and Pareto front of Functio

nction is proposed in [84 as an MOP with high-dim] 

es. In addition, function )(xg  introduces )13( 12 −  loc

and one global (true) Pareto front as shown in Figure 7.24. For DMOEA and 

IMOEA, the initial population, the popula size per uni e, ppv  and the cell 

scales 1K , 2K  and 3K  are selected as 2, 3, 20, 20 and 20, respectively. The age threshold 

tion t volum
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               (b) DMOEA        

is chosen to be 10 in DMOEA. At final generation, DMOEA results in about 1,700 

individuals as the approximated optimal population size. Based on this value, the initial 

population size for NSGA-II, RDGA, SPEA II is chosen to be 1,700. Figures 7.25(a) – (f) 

show the resulting Pareto fronts by six chosen MOEAs, while the Box plots for the 

average values of three indicators over 50 runs are illustrated in Figures 7.26 (a), (b) and 

(c), respectively. The performance measures of ),( ji XXC  for the comparison sets 

between algorithms i  and j  are shown in Figure 27, where algorithms 1 – 6 represent 

IMOEA, DMOEA, NSGA-II, PAES, RDGA and SPEA II, respectively. 
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for an MOEA to locate the true Pareto front. As shown in Figure 7.24, many local Pareto 

onts exist near the true Pareto front, which means even the rank values of all the 

individuals are 1, the resulting population may not represent a true Pareto front (Figures 

7.25 (a) – (f)). However, comparing to the other five selected MOEAs, DMOEA yields 

the lowest average individual distance value and a constant individual density value, 

which implies that DMOEA provides a better performance than the selected MOEAs in 

terms of discovering a uniformly distributed, near-optimal and near-complete Pareto 

front. At the final generation, the population sizes resulting from PAES and IMOEA are 

about 450 and 1,300, respectively, and as shown in Figures 7.25 (a) and (d), many of 

these individuals stay on the local Pareto fronts. In addition, DMOEA generates higher C 

values than the other chosen MOEAs, and none of the solutions by the other five MOEAs 
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covers the final population of DMOEA since ),( 21 XXC , ,),,( 23 KXXC ),( 26 XXC  

values are all near zero. 

  

 
7.8 ROBUSTNESS STUDY 

From the description in Subsection 7.1, the performance of DMOEA may be 

eral parameters such as the initial population size , age threshold , 

 and the grid scale . Among these 

parame

(c) show the evolutionary trajectories of the population size, average individual density 

value and aver e individual d ance value resu d from DMOEA for the given six

affected by sev 0P

,K

thA

ppv

. Figures 7.28(a) – (c), Figures 

mKK ,1

th 0

7.29(a) – (c) and Figures 7.30(a) – 

ters, the initial population size and age threshold are the most important ones since 

the other two parameters are mostly determined by users based on their preferences and 

requirements in the resolution of the resulting Pareto front. In general, a user may not 

clearly understand the design mechanism of DMOEA and just randomly select an initial 

population size and age threshold. Therefore, the relationship between these two 

parameters and the performances of the final Pareto front needs to be characterized in 

order to study the robustness of DMOEA based on these two parameters. In Subsection 

7.6, DMOEA with different initial population size has been examined by test function 

F5. The results imply that DMOEA is not sensitive to the setting of initial population 

size. To further investigate the robustness of DMOEA on different parameter settings, 

three other test functions—F3, F6 ad F7 are used and DMOEA is run for six settings of 

0P  and thA  on all of three test functions described in Section IV. These settings are: 

10,2 == AP ; 30,2 == AP ; 100,2 == AP ; 10,30 == AP ; 10,100 == AP  

ag ist lte   

0 th

and 10500=

0 th

=

0 th 0 th

,0 AP th

the population size per unit volume, 
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settings over fifty runs on each of three test functions. Note that average individual rank 

value is not shown in these figures since the rank values are almost always 1 for all the 

individuals at the final generations. In addition, because test function F3 is relatively 

simple and DMOEA converges faster on this problem, only the first 3,000 generations 

are illustrated in Figure 7.28, whereas 10,000 generations are exemplified on functions 

F6 and F7 as shown in Figures 7.29 and 7.30. 

 

From Figures 7.28– 7.30, it is apparent that no matter which setting we select on 

DMOEA, the population size, average individual density and average individual distance 

all converge to a constant value at the final generation, which implies different 

combin

 

ations of initial population size and age threshold may not change the resulting 

optimal population size and qualities of final Pareto front. However, convergence speed 

may vary according to different settings. In particular, when initial population size or age 

threshold values are chosen to be relatively high, the convergence speed will be slow due 

to the high population size generated in the middle of evolutionary process. Nevertheless, 

based on the objective compression strategy, this significant high-population size only 

occurs at the first lobe when the compression action has not started yet. Meanwhile, 

according to the cell-based rank and density fitness assignment scheme described in 

Subsection 3.1, the computational complexity will not increase remarkably when the 

population size increases, thus the computation time will not alter very much even the 

population size is extraordinary high. Table 7.1 shows the average computation time for 

test function F7 with 10,000 generations from IMOEA, PAES, NSGA-II, RDGA, SPEA 

II and DMOEA with six settings over 50 runs. 
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The “CPUTIME” command from MATLAB (version 6.1) is used to measure the 

me elapsed a E p te  E O r i

computer with dual 2-GHz processors and 1-GByte RAM. It is worthy of noting the time 

shown in Table 7.1 provides only a relative ong chosen MOEAs based on the 

comple

s. In addition, different settings will not change the 

computation efforts of DMOEA and makes the final result of DMOEA robust in terms of 

both ef

 

 

 

ti for e ch MO A im lemen d in MATLAB. ach M EA is unning n a HP 

 measure am

xity of the algorithms. 

 

From Table 7.1, we can observe that among all chosen MOEAs, DMOEA 

demands the shortest running time and the improvement is significant comparing to the 

other state-of-the-art MOEA

ficiency and effectiveness.  
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VIII. EMO TOOLBOX DESIGN 

 

As discussed in previous chapters, there are many existing MOEAs in literature 

nd being used by researchers and designers in different research or application fields. 

Although most of these algorithm  algorithms or pseudo 

codes are optimized, they still require the users (designers) equipped with certain 

comput

 
an 

f skel

a

s were well designed and the

er programming expertise and an extensive understanding of all the techniques 

devised. Since most of MOEAs are quite sophisticated due to the complexity of MOPs, 

the programming effort can be tedious and time consuming and needs to be completed 

before users can start their design task for which they should really be engaged in [85]. 

Therefore, a simple solution is to design a user-friendly computer-aided toolbox that 

includes certain MOEA modules to assist the designers in dealing with particular MOP. 

The designers merely select a series of build-in modules according to their basic 

knowledge of MOEAs or help files of the toolbox and input the specific decision 

variables, objective functions and constraints for the given problem to be solved. 
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By now, an MOEA Toolbox built on MATLAB platform has been designed by 

Tan et al [85]. Ho vanced MOEAs 

(i.e. NSGA-II, SPEA II and RDGA) and a fixed population size needs to be chosen 

heuristically by users before the running of a specified MOEA. Furthermore, this toolbox 

follows the exact design procedure specified by each MOEA to build a fixed object as 

shown in Figure 8.1(a). However, as mentioned in Chapters IV and V, an MOEA can be 

divided into several crucial building blocks, such as ranking methods, density estimation 

approaches, fitness assignment strategies, elitism schemes and some other supplementary 

routines. Different combinations of these building blocks can result in different types of 

MOEAs existed, or even lead into some novel MOEAs. For instance, a new MOEA can 

be configured as: AARS (RDGA) + Crowding distance estimation method (NSGA-II) + 

elitism + mating restriction (RDGA) + archive truncation (SPEA II), which may provide 

high performances for some kinds of MOPs. Therefore, by using this building block 

strategy and dynamic population size, a new Evolutionary Multiobjective Optimization 

(EMO) Toolbox is designed. This toolbox offers users more flexibilities in choosing their 

favorite method for each building block; and the population growing and declining 

strategy can help the resulting algorithms produce a near-optimal and near-complete 

Pareto front with an optimal number of individuals. The skeleton of the proposed toolbox 

is shown in Figure 8.1(b).  

 

The main Graphical User Interface (GUI) of EMO toolbox is shown in Figure 8.2, 

which includes eight functions. We will describe each of them in this Chapter. 

 

 

wever, this toolbox does not incorporate those most ad
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Figure 8.2 Main graphical user interface of EMO Toolbox 

Figure 8.3 GUI of model selection 

Setting 

This function is the main function of toolbox. It provides tw

to the users. The first choice lists six advanced MOEAs (i.e., DMOEA, IMOEA, R

8.1 MOEA 

o alternative choices 

DGA, 

NSGA2, SPEA II and PAES ters, a user can choose any 

one of them as the algorithm used for the optimization. The design scheme of each of 

these algorithms is fixed as a build-in function, whereas the design parameters are 

) as discussed in previous chap
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specifie

Figure 8.4 GUI of main design procedure and error message  

in design procedure includes four steps with a 

predefined sequence: genotype design (GenoDesign), decision variable design 

special parameter design 

be fulfilled until its previous procedure is 

)). 

As shown in Figure 8.5, genotype parameters (crossover rate, mutation rate, 

lection method, population size, stopping generations) can be chosen and inputted 

directly. In addition, current parameter setting can be saved as a MATLAB data file and a 

previously saved setting can also be loaded to the MATLAB workspace from an existing 

data file and read by the sliders and editors of the GUI. 

d by users. The second choice offers users more flexible choices when they prefer 

to design an MOEA by selecting and combining their favorite modules. The GUI for 

selecting a model is shown as Figure 8.3. 

                               (a) main design procedure                                (b) an error message sample 

 
8.1.1 Main procedure of fixed MOEA model design 

As shown in Figure 8.4(a), the ma

(DecDesign), objective function design (ObjDesign) and 

(SpecDesign). The later design procedure cannot 

finished, otherwise an error message will appear (Figure 8.4(b

  
8.1.1.a Genotype Design  

se
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Figure 8.5 GUI of genotype parame

150

                   (b) GUI of loading an existing setting  
 

decision variable setting 

ter design 

 

8.1.1.b Decision variable setting 

As shown in Figure 8.6 ree parameters 

need to be determ some length (gene 

number). For each  set and if the number of 

variables are larger tically.  Similar to 

 

well. 

    
   

                           
 (a) GUI of starting a new setting           

Figure 8.6 GUI of 

(a), for each decision variable, there are th

ined, maximum value, minimum value and chromo

 design page, at most 9 variables can be

 than 9, the next design page will appear automa

genotype design, the decision variable setting can be saved and loaded (Figure 8.6(b) as

 



Figure 8.7 GUI of objective function and constraint setting 

 

8.1.1.c Objective function and constraint setting 

As shown in Figure 8.7, for each objective function, there are three parameters 

need to be determined, maximum value, minimum value and expression of each objective 

Figure 8.8 Error message for input syntax error 
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function. The mathematical function expression should be compatible to MATLAB 

format. Moreover, the number of constraints and the constraint expression can also be 

determined through this GUI (Figure 8.7).  When “OK” button is clicked, the function 

expression will be crosschecked and error messages will appear if there is any syntax 

error in the expression (Figure 8.8). The error must be corrected before next design 

procedure starts. 

 
8.1.1.d Special parameter setting 

For each specified MOEA model, there are several key parameters need to be 

determined. For example, Dynamic Multiobjective Evolutionary Algorithm (DMOEA ) 

needs “age thresho  be set before the 

algorithm can properly run (Figure 8.9). After all four steps of main design procedure 

have been completed, the setting of MOEA parameters is over. 

Figure 8.9 GUI of special parameter setting 

 
8.1.2 Main procedure of free MOEA model design 

The first three  decision variable and 

bjective function) are the same as those in fixed model design. However, in free model 

design,

density preservation and elitism) in MOEA design.  

ld”, “density grid scale” and “population per cell to

steps of free model design (i.e., genotype,

o

 designers need to choose a particular method for those key schemes (i.e., ranking, 
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Figure 8.10 GUI of ranking method  setting 

8.1.2.a Ranking scheme setting 

As shown in Figure 8.10, there are four types of ranking methods can be selected 

by the designers. For each method, a figure is illustrated in order to visualize how the 

selected method will work. If none of the method is selected, Pure Ranking method used 

in (NPGA) will be considered as the defaul. 

Figure 8.11 GUI of density preservation method  setting 

8.1.2.b Density scheme setting 

As shown in Figure 8.11, there are four types of density preservation methods can 

ure is illustrated in order to visualize 

 

be selected by the designers. For each method, a fig
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how the selected method will work. If none of the method is chosen, the Niching method 

will be considered as the default and the niche radius needs to be determined as shown in 

Figure 8.12 

12 GUI of determining niche radius 

elitism scheme e 

Figure 8.13 GUI of elitism scheme setting 

 

Figure 8.

 

8.1.2.c Elitism scheme setting 

As shown in Figure 8.13, there are three ratios need to be input when designing an 

. The figure on the right side illustrates the meaning of each ratio. If all th

ratios are 0%, there will be no elitism scheme used in the algorithm.  

8.1.2.d Local search setting 

As shown in Figure 8.14, the local search computation can be restricted within a 

single cell or the neighboring cells around the concerned cell. The figure on the right side 
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illustrates how these tow settings will work. If none of the methods are chosen, the 

designed algorithm will not include local search scheme. 

 

8.1.2.e 

F  

e setting information can be viewed as 

shown 

Figure 8.14 GUI of local search setting 

apply forbidden region during its evolutionary process.   

 

Forbidden region setting 

As shown in Figure 8.15, the forbidden region concept will be applied in the 

designed algorithm if “Yes” button is clicked. Otherwise, the free model MOEA will not 

igure 8.15 GUI of forbidden region setting

After all the schemes have been set, th

in Figure 8.16. Moreover, if the designers are not satisfied with the current setting, 

they can change any of them by click the “Reset” button. 
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Figure 8.16 GUI of viewing all parts of free model setting  

Figure 8.17 GUI of visualization setting  

 
8.2 Visualization Setting 

In order to help the users to view the quality of the results during the evolutionary 

process, visualization parameters need to be set before the algorithm starts running. For 

example, as shown in Figure 8.17, for each 10 generations, the evolutionary trajectory of 

the population size, average rank value and average density value will be displayed. 

 156



Meanw

specified data file for each 10 generations according to the setting in Figure 8.17.                

 

8.3 Start Running 

When the “Start” button is clicked, Figure 8.18 will show the chosen settings for 

all the parameters. If the users are satisfied with current setting, the specified MOEA will 

start running. Otherwise, the parameters will be reset. 

Figure 8.18 GUI of listing of all the chosen parameters. 

 

When the MOEA starts running, it will not stop till the pre-determined 

visualization interval is met. When the evolutionary result is shown in Figure 8.19, the 

user can choose “Save Figure” to save the illustrated figure, “Save Data” to save the 

ue running or “Stop” to stop program running. 

hile, the resulting Pareto front and the statistical box plots of current population 

rank and density values will be shown as well. The resulting data will be saved to a user 

resulting data, “Continue” to contin
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Figure 8.19 G tain intervals  

 

Figure 8.20 GUI of loading data files for analysis 

 
8.4 Data Analysis 

EMO toolbox can also help users to analyze existing data as shown in Figure 

8.20. By loading a rd of evolutionary 

trajectories, statistical Box plots and final Pareto front can be visualized (Figure 8.21(a)). 

UI of visualizing the evolutionary result for cer

n MOEA resulting data file, the history reco
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Moreov

         (a) GUI 

 
Figure 8.22 GUI of toolbox demonstration 

 

er, the toolbox allows users to perform comparisons of more than one data files 

resulting from different MOEAs. The Box plots of final rank, density and C values can be 

compared (Figure 8.21(b)). 

of single data set analysis;                 

Figure 8.21 Data anal

            (b) multiple data sets comparison 

ysis for resulting data  
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8.5 Demonstrations 

To guide the complete procedure of designing an MOEA by using EMO toolbox, 

a RDGA is designed as the demonstration for the MOP test function described as 

Equation (6.2). Each design step can be illustrated by clicking one of five buttons above 

the figure. The figure will show the movie file of how the population and resulting Pareto 

front will evolve as RDGA runs with given parameter settings (Figure 8.22). 

 

8.6 Help Files 

A complete help file is created and associated with each “Help” button in all the 

GUIs. Figure 8.23 illustrates the “Help Contents” of EMO toolbox. 

 

Figure 8.23 GUI of help contents of EMO toolbox 
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IX.   PARTICL SWARM OPTIMIZATION IN MOEA  

 

Although evolutionary algorithms have shown their unique advantages in solving 

multiobjective optimization problems, their drawback is also obvious—need relatively 

longer time in producing a high quality Pareto front comparing to the traditional 

optimization methods (i.e., linear weighting method). This low-efficiency problem is 

resulted from EA’s population-based information sharing and random variation 

characteristics, which cannot be overcome by evolutionary algorithm itself. Although in 

Chapter VII, Dynamic Mul OEA) proposed a 

promising way to improve the computational efficiency of MOEA by applying dynamic 

population strategies, it is still restricted by EA’s intrinsic properties. Therefore, in order 

to aim at improving efficiency of MOEA, we need to search for a clever technique to 

assist MOEA to achieve a near-complete, near-optimal and uniformly distributed Pareto 

front with a faster convergence speed. Particle Swarm Optimization (PSO) is considered 

to be such a candidate. 

 

9.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was first proposed by Kennedy and Eberhart 

[86] in 1995, which was inspired by the choreography of a bird flock. This technique can 

be seen as a distributed b dimensional search [87]. 

ccording to PSO, the behavior of each individual is affected by either the best local or 

the best global individual to help it fly through a hyperspace. Moreover, an individual can 

learn from its past experiences to adjust its flying speed and direction. Therefore, by 

tiobjective Evolutionary Algorithm (DM

ehavior algorithm that performs multi

A
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observing the behavior of the flock and memorizing their flying histories, all the 

individuals in the swarm can quickly converge to near-optimal geographical positions 

with well-preserved population density distribution.  

 

 is considered as an evolutionary computation approach in that it 

uses th

2. It searches for the optimum by updating generations. 

3. The adjustments of individuals are analogous to real value crossover operation in 

evolutionary algorithms. 

4. Fitness evaluation is evaluated by objective functions. 

However, the updates of the individuals are not accomplished by random crossover or 

mutation of genes, an equation can compute the new velocity of each individual  at the 

 dimension based on its current location , previous velocity  , previous 

 at which the highest fi

and the population global location ( h the highes lue the 

population has achieved. Therefore, the velocity updating equation is 

 

,      (9.1) 

 where  is an inertia weight value [88] and  and  are two random numbers 

between 0 and 1. After the velocity is updated, the new location of  individual at the 

 dim nsion can be calculated as 

Normally, PSO

e common evolutionary computation techniques such as: 

1. It is initialized with a population of random solutions. 

i

a

jth ),( jix
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is a one-way information sharing mechanism [89]. The entire population focuses on the 

best individual and converges to the best solution quickly. 

 

Due to PSO’s single-point-centered characteristic, it is unable to locate the Pareto 

front since there are more than one best individuals exist in the population. However, 

with certain modifications (i.e., Pareto ranking [43]+ niche sharing [42], neighborhood 

method [54]), PSO can become suitable to solve MOPs. By now, there are very few 

papers [89-92] found to extend PSO in solving MOPs, this research area is still in its 

beginning stage. 

 

9.2 Dynamic Particle Swarm Multiobjective Optimization (DPSMO)  

In this research, to tackle multiobjective optimization problems, PSO is devised 

with dynamic population size proposed in Chapter VI. In another word, DMOEA’s 

crossover and mutation scheme is replaced by PSO’s information sharing method in order 

to improve convergence speed. To prevent the degradation of the effectiveness and 

efficiency of the algorithm, the following strategies are applied in the new algorithm: 

),(),(),( jiVjixjix p+=            (9.2)  

 

Comparing to evolutionary algorithms, the information sharing mechanism in PSO is 

significantly different. In EAs, individuals share their information with each other by 

crossover and the whole population moves like one group towards an optimal point. In 

PSO, only )( jg  provides the information to other individuals to adjust their speeds. It best
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1. The genotype of each individual will be a real number instead of binary genes. 

2. For each individual, its genotype will includes two types of velocity parameters—

rank velocity and density velocity. On each dimension of the decision vector, an 

the individuals with rank 

iduals. However, for any 

that dominate it will be 

ith lowest dens  value will be selected as the 

of individual A. 

4. For any individual A, its local best (rank) individual  is randomly selected 

from the individuals that are located in the same minate A. If there is 

no such kind of individual exists,  will be individual A itself. 

5. Cell density value of each individual is calculated. For any individual A, its best 

(density) global individual  is the individual that has the lowest cell 

density value (except those reside in “forbidden region”).  

6. For an individual A, its local best (density) individual  is randomly 

selected from the individuals that are located in the same cell or neighboring cells 

an he

izing rank value and maintaining density value, 

respectively. All the individuals will be cloned and the location of its copy will be 

individual will be assigned with a rank and a density velocity. 

3. Cell rank value of each individual is still calculated, all 

value equal to 1 are the global best (rank) indiv

individual A, only those best (rank) individuals 

considered as the candidates of A’s rankbestg _ . If more than one candidates of 

g  exists, the one wrankbest _ ity rankbestg _  

rankbestp _

 cell and do

rankbestp _

denbestg _

denbestp _

(except those reside in “forbidden region”) d has t  lowest cell density value.  

7. The entire population is equally and randomly divided into two subpopulations 

that responsible for minim
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updated based on its new

it belongs to. 

From the procedures of Particle Swarm Multiobjective Optimization with 

Dynamic population size (DPSMO), we can see: 

1. As final result will be a set of solutions instead of a single solution, the geography 

restriction described as step 3 or 5 has to be applied to assign an individual a 

global best target to follow. Otherwise, any non-dominated individuals may affect 

an individual’s new location at each generation, thus we may see all the 

individuals jump around and converge slowly. 

2. To obtain optimal solutions with uniformly distribution, the population density 

value needs to be preserved as well as the minimization of population rank value. 

Therefore, each individual has two types of velocities, rank velocity and density 

velocity, which will guarantee both Pareto optimality and uniform distribution of 

the final results will be achieved. 

3. Dynamic population strategy is applied. For an individual, Equations (9.1) and 

(9.2) update its velocities and locations on each dimension of the decision space. 

Indeed, this action implies a crossover operation among an individual, its local 

best and its global best. The newly updated individual can be considered as an 

offspring.  For this reason, “population growing strategy” in DMOEA is not 

 rank or density velocities according to the subpopulation 

8. Both offspring and its parent will survive to the next generation. 

9. Population declining strategy performs the same task as described in DMOEA. 

10. Objective compression strategy performs same as described in DMOEA. 
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applied in DPSMO since an individual is supposed to know “where to go” before 

it moves in particle swarm. Moreover, instead of applying “population growing 

strategy”, using simple offspring updating method based on Equation (9,1) and 

4. 

each ind eme to

keep the newly explored better-fitted individuals. This method is crucial for 

DPSMO because it guarantees the population converges to the correct direction. 

5. Ill-fitted individuals will be removed based on “population declining strategy”, 

thus the population size can be controlled and the population quality will be 

increased. 

9.3  

F3 as the benchmark 

 mathe

and tru

populat  

les 

those f

generat

by DMOEA and DPSMO. The evolutionary trajectories of the population size and 

(9.2) will save significant running time spent in DMOEA on evaluating an 

offspring’s fitness value and comparing with its parents. 

As there may be more than one particles affect an individual’s moving speed and 

direction, and most importantly, there are two types of velocities associated with 

ividual, the “cloning” method in step 7 implements an elitism sch  

 

Simulation Study on DPSMO

To validate proposed DPSMO, we selected Function 

problem in the simulation. Equation (6.6) and Figure 6.13 show the matic formula 

e Pareto front of this problem respectively. For a fair comparison, the initial 

ion, the age threshold, the population size per unit volume, ppv  and the cell

sca 1K  and 2K  are selected as 2, 10, 3, 50 and 50, respectively, which are same with 

or DMOEA in Subsection 7.7.1. Both algorithms run 50 times and the stopping 

ion is set to be 2,000. Figure 9.1 shows the true Pareto front, resulting Pareto front 
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gure 9.1 Resulting Pareto fronts by DMOEA and DPSMO on F

average

DPSMO are shown in Figures 9.2 (a) – (d), respectively. 

 

 
 
 
 
 

 

Fi unction F3 

 

DPSM

Figure 9.2(d), which shows the final Pareto front of DMOEA is closer to the true Pareto 

of Fun F3

closer 

better-f

local best individuals can provide the moving information to the entire population, it is 

Pareto 

DPSM

one loc

 

 individual rank, density and distance values over 50 runs by DMOEA and 

 

 

 

 

 

Form Figure 9.1, apparently, there are many final solutions resulting from 

O are dominated by those from DMOEA. This result can also be verified by 

front than that of DPSMO. This effect can partly explained by the intrinsic characteristics 

ction ’s local and global optimality—when the resulting Pareto front is getting 

to the true (global) Pareto front, both algorithms have more difficulty to yield 

itted offspring. Moreover, for DPSMO, since only the global best individuals and 

more possible for DPSMO to stuck on a middle stage if all the current individuals are 

optimal and there is no even better-fitted bestg  is generated. This problem will hold 

O from locating true Pareto front, especially when the given MOP has more than 

al Pareto fronts. 
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zes          (b) Trajectories of average rank values 

 
 
 
 
 
 
 
 
 
 

(a) Evolutionary trajectories of population si
 
 
 
 
 
 
 
 

 
 

(c) Trajectories of average density value                 (d) Trajectories of average distance values 
Figu tionary trajectories for the population size and the values of three indicators 

resulting by DMOEA and DPSMO on Function F3 

OEA does not have this problem because 

evoluti

 

 

re 9.2 Evolu

 

Comparing to DPSMO, DM

onary algorithm applies a population-based information sharing mechanism. A 

better-fitted offspring can be generated by a crossover operation between any two 

individuals, no matter how good these parents are. However, from Figure 9.2 (a) – (c), we 

can also see the advantage of DPSMO since it produces much faster convergence speed. 

In DPSMO, each particle knows its moving direction and how fast it should go if there 

exists another individual with better performance.  Therefore, before it is trapped by a 

local Pareto front, the probability that an individual generates a better-fitted offspring by 

DPSMO is much higher than that of DMOEA. This characteristic will result in both less 



evaluation time and less generation numbers, which are the major reasons that DPSMO is 

almost much faster than DMOEA on Function F3 in terms of converging entire 

population to a uniformly distributed Pareto front. 

.4 Dynamic Particle Swarm Evolutionary Algorithm (DPSEA) 

Since both DMOEA and DPSMO have significant benefit and drawback, we can 

tegrate particle swarm and evolutionary algorithm together in order to take advantages 

f both algorithms and improve the quality of the evolved solutions. In one aspect, 

volutionary algorithm can help each individual share its information with any other 

dividuals instead of only focusing on the best individuals. On the other hands, particle 

swarm 

Swarm Evolutionary Algorithm (DPSEA) is designed to improve  and 

 

g st

pplied to remove an existing ill-fitted individual. Therefore, 

comparing to DPSMO, the only change in DPSEA is adding a crossover operation and a 

 

9

in

o

e

in

can inform an individual which direction will be the best way to go and how fast 

its velocities should be. Therefore, inspired by both algorithms, a Dynamic Particle 

efficiency efficacy 

of evolutionary process. 

The main skeleton of DPSEA is constructed based on DPSMO.  Nevertheless, in 

addition to the location updating strategy of particle swarm, the individuals will perform 

crossover operation as well. At each generation, an offspring may be generated through 

two mechanisms—updating the location of a cloned individual or performing crossover 

between two selected parents. Population growin rategy will be used to determine if an 

offspring generated through crossover can survive to the next generation and population 

declining strategy is a

 169



population growing strategy borrowed from DMOEA in both of rank and density 

bpopulations. By adding these two operations, the running interval for each generation 

ay increase comparing to DMOEA and DPSMO because there are two information-

aring actions performed in DPSEA. However, this sacrifice will be worthy if these two 

ctions can prompt each other and find more valuable individuals than using only one 

formation sharing action. 

.5 Comparison Study on DMOEA, DPSMO and DPSEA 

To compare the performance of DPSEA with DMOEA and DPSMO, two 

enchmark problems— Function F3 and F6 are tested. For Function F3, the initial 

opulation, the age threshold, the population size per unit volume, , the cell scales 

 and  and stopping generations are selected as 2, 10, 3, 50, 50 and 2,000, 

p on 

 per  volume, , the cell scales ,  and  and stopping generations are 

selected

su

m

sh

a

in

 

9

b

p ppv

1

res

ze unit ppv 1K 2K 3K

K 2K

ectively. For Function F6, the initial population, the age threshold, the populati

si

 as 2, 10, 3, 20, 20, 20 and 10,000, respectively. For each test function, final 

Pareto front, trajectories of population size, average rank, density and distance values, 

Box plots of final rank, density and distance values and C values resulting from all three 

algorithms are illustrated. 

 

9.5.1 Simulation on Function F3 

Figure 9.3 shows the zoomed sample of the true Pareto front and the resulting 

Pareto fronts by DMOEA, DPMO and DPSEA. . Figures 9.4(a) – (c) show the Box plots 

for the final rank, density and distance indicators over 50 runs, respectively. The 
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performance measures of ),( ji XXC  for the comparison sets between algorithms i  and 

j  are shown in Figure 9.5, where algorithms 1 – 3 represent DPSMO, DMOEA and 

DPSEA, respectively. Moreover, the evolutionary trajectories of the population size and 

verage individual rank, density and distance values over 50 runs by three algorithms are 

 

Figure 9.3 Resulting Pareto fronts by DMOEA, DPSMO and DPSEA on Function F3 

(a) Final rank value  (b) Final density value                  (c) Final distance value 

From Figures 9.3 – 9.6, we can see that all three algorithms have the capability to 

converge to a Pareto front with rank value and density value equal to 1 and 3, 

respectively. However, from Figures 9.3 and 9.4(c), it is obvious that DPSEA’s resulting 

Pareto front is closer to the true Pareto front than those produced by the other two 

a

shown in Figures 9.6 (a) – (d), respectively. 

 

 

 

 

 

 

 

 
 
 
 

 
 

 

Figure 9.4 Box plots of three indicators on Function F3 
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algorithms. In addition, Figure 9.5 (c) shows that about 70% and 45% of final 

populations resulting from DPSMO and DMOEA are covered by DPSEA and 0% and 

10% of population resulting from DPSEA are covered by DPSMO and DMOEA, 

respectively. This result proves that DPSEA produce better Pareto fronts than the other 

two algorithms in terms of finding near-optimal, near-complete and uniformly distributed 

Pareto front. 

 

 
 
 
 

 
 

      ),( 311 −XXC                       ),( 312 −XXC                     ), 313 −X  

Form Figures 9.6 (a) – (d), it is observed that DPESA is even faster than DPSMO 

in terms of generation numbers to con rge. This phenomenon shows that two 

information-sharing techniques can promote each other and help entire population 

converges relatively faster than any one of them. When both of the techniques assist 

evolutionary process, it will be much easier for an individual to find a better-fitted 

offspring. These newly ge

(XC

Figure 9.5 Box plots using C measure on Function F3 

 

ve

nerated offspring will keep approaching true Pareto front and 

ush previously non-dominated individual into a dominated one, which will be 

 strategy. This mechanism explains why DPSEA 

produc

p

eliminated by population declining

es lowest distance value within smallest number of generations as shown in Figure 

9.6(d). 
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            (a) Evolutionary trajectories of population sizes      (b) Trajectories of average rank values  
 

 

 

 

 

 

 (c) Trajectories of average density value                (d) Trajectories of average distance values 
Fig rs 

resulting by DMOEA and DPSMO and DPSEA on Function F3 

.5.2 Simulation on Function F6 

The mathematical formula and true Pareto front for Function F6 are given in 

quation (7.14) and Figure 7.19. The first quadrant of a unit sphere is exactly the true 

areto front. Figure 9.7(a) – (c) shows the resulting Pareto fronts by DMOEA, DPMO 

and DPSEA, respec for the final rank, 

ensity and distance indicators over 50 runs, respectively. The performance measures of 

 for the comparison sets between algorithms  and  are shown in Figure 9.9, 

ure 9.6 Evolutionary trajectories for the population size and the values of three indicato

9

E

P

tively. Figures 9.8(a) – (c) show the Box plots 

d

),( XXC  i  jji

where algorithms 1 – 3 represent DPSMO, DMOEA and DPSEA, respectively. 

Moreover, the evolutionary trajectories of the population size and average individual 
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rank, density and distance values over 50 runs by three algorithms are shown in Figures 

9.10(a) – (d), respectively. 

  

 

 

 

 

 

(a) DMOEA      

Figure 9.7 Resulting Pareto fro

           (b) DPSMO                          

nts from DMOEA, DPSMO an

             (c) DPSEA 

d DPSEA on Function F6 

 

 

 

Figure 9.8 Box plots of three indicators on Function F6 

From Figures 9.7(a) – (c), we can see that all three algorithms result in completive 

Pareto fronts from their appearances. Meanwhile, from Figures 9.8 (a) – (c) and 9.9 (a) – 

three algorithms as well. Since Function F6 does not generate any local Pareto front, 

there will be no hindrance for DPSMO to locate true Pareto front. However, by applying 

two information-sharing techniques, DPSEA still shows its ability to approximate more 

accurate Pareto front than the other two algorithms as shown in Figure 9.8(c) and 9.10(d).  

 

(a) Final rank value  (b) Final density value                  (c) Final distance value 

 

(c), we cannot find significant differences from the indicators of final results from all 
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Figure 9.10 Evolutionary trajectories for the population size and the values of three indicators 

 

 

 

 

 
                           ),( 311 −XXC  ),( 312 −XXC  ),( 313 −XXC                     

Figure 9.9 Box plots using C measure on Function F6 

 

 

 

 

 

 

(a) Evolutionary trajectories of population sizes      (b) Trajectories of average rank values 

 

 

 

 

(c) Trajectories of average density value                 (d) Trajectories of average distance values 

resulting by DMOEA and DPSMO and DPSEA on Function F6 

However, by examining the evolutionary trajectories as shown in Figures 9.10 (a) 

– (d), we can see remarkable difference among three algorithms in terms of convergence 
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property. It only takes DPSMO less than 1,000 generations to converge and DMOEA 

needs about 7,000 and 35,00 generations, respectively. Table 9.1 shows the average 

nning time per generation for each of three algorithms. The “CPUTIME” command 

om MATLAB (version 6.1) is used to measure the time elapsed for each algorithm 

plemented in MATLAB and a HP computer with dual 2-GHz processors and 1-GByte 

AM is used for simulation. From Table 9.1, we can see that DPSMO runs than DMOEA 

nd DPSEA faster at each generation. This is contributed by DPSMO’s population 

rowing method, which does not evaluate newly generated offspring and filter the 

incomp as escrib  DMOEA 

nce it applies two information-sharing techniques at each generation. However, because 

e most time consuming parts are population declining strategy and objective 

ompression strategy, which are used by all three algorithms, the difference of time 

onsuming per generation for these algorithms is not remarkable. Therefore, from the 

above clea  that D rg  it 

spends least time  of generations to 

converg

ru

fr

im

R

a

g

etence ones  d ed in Subscetion 9.2. DPSEA is a bit slower than

si

th

c

c

observations, it is r PSMO has the fastest conve ence speed since

on each generation and takes smallest number

e. Although DPSEA will spend a bit longer time on each generation than 

DMOEA, the total time consuming of convergence for DPSEA is still significantly 

shorter than DMOEA since DPSEA takes much smaller generations to converge. In 

addition, we need to keep in mind that DPSEA will produce more accurately 

approximated Pareto front than the other two algorithms in terms of distance values and 

DPSMO may generate less competitive Pareto front, especially there are local Pareto 

fronts exist for the given MOP. Nevertheless, combining particle swarm optimization 
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with evolutionary algorithms provides a potential way to design an MOEA in solving real 

orld MOPs that need fast processing time to generate qualified Pareto fronts. 

 

Table 9.1 Comparison results of computation time of F6 from DMOEA, DPSMO and DPSEA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 DMOEA DPSMO DPSEA 

w

T
(sec) 

ime 0.18 0.15 0.20 
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X. CONCLUSIONS AND FUTURE WORKS 

 

Although the conventional algorithms, such as linear weighting, goal 

programming and min-max optimization are still widely used to solve MOPs, 

multiobjective evolutionary algorithms have drawn growing attentions from more and 

more researchers in that they are designed to deal simultaneously with a set of candidate 

solutions. This characteristic allows MOEAs to find an entire set of Pareto optimal 

solutions in a single run of the algorithms, instead of having to perform a series of 

separate runs as in the cases of the conventional mathematical programming techniques. 

In addition, evolutionary algorithms are less susceptible to the concavity, discontinuity 

and local optimality of the Pareto front, whereas these issues are critical concerns for 

those conventional approaches. 

 

According to the No Free Lunch (NFL) theorem [51], no formal assurances of an 

algorithm’s general effectiveness exists if insufficient knowledge of the problem domain 

is incorporated into the algorithm domain. Therefore, some of the studies on the MOP 

test suite are included in this research and seven benchmark MOP test functions are 

examined by some state-of-the-art MOEAs (i.e. NSGA-II, SPEA II). From the 

comparison and analysis of the simulation results, although some of the difficulties 

cannot be thoroughly addressed by these MOEAs, it is clear that three techniques are the 

crucial building blocks in a successful MOEA design procedure. These techniques 

include: a Pareto ranking scheme, a density estimation and preservation method and an 

elitism scheme. A Pareto ranking scheme helps the initial population converges to a 
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Pareto front at the final generation, a density estimation and preservation method can 

prevent the emergence of the “too crowded” areas, and an elitism scheme stores those 

non-dominated individuals to avoid losing any the Pareto points generated throughout the 

ent  

schemes (i.e., mating restriction, forbidde ), a ensity based Genetic 

Algorithm (RDGA) [54] is desig nd inve ted by t iven MOP test suite. By 

examining the selected performance indicators, RDGA is found to be competitive with, 

or even superior to, the other advanced MOEAs in terms of keeping the diversity of the 

individuals along the trade-off surface, tending to extend the Pareto front to new areas, 

and finding a well-approximated Pareto optimal front. Moreover, RDGA is manipulated 

by using a hierarchical gene representation to solve a real multiobjective optimization 

problem—a radial basis neural network design problem.  

 

Although RDGA shows its capability in coping with several types of challenging 

MOPs, it still cannot tackle the confliction between avoiding and exploiting “genetic 

drift” phenomenon. In fact, if an MOEA has fixed population size, it will be difficult, if 

not impossible, to solve this problem since the limited computation resource cannot be 

congregated and homogeneously distributed simultaneously. Therefore, based on the 

principal ideas of RDGA, a Dynamic Muleiobjective Evolutionary Algorithm (DMOEA) 

[84] is proposed in this research. In DMOEA, in one aspect, an offspring will be added 

into the population if its fitness value is higher than one of its parents while the 

corresponding parent is still maintained. This intention constructs a pure population 

growing strategy in order to excite the population covering those unexplored areas. On 

ire evolutionary process.  By synergistically integrating these techniques and other

n region  Rank-D

ned a stiga he g
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the other hand, thr uals are computed 

based on the dynamic situations of the individuals’ rank and density values.  By 

adaptiv

ased on the extensive study of MOEAs, a module-based EMO Toolbox is 

designe

ee kinds of probabilities of “eliminating” individ

ely removing those incompetent individuals in terms of their rank and density 

values, DMOEA can control the population size within a reasonable number. In addition, 

the cell-based rank and density calculation technique and objective compression strategy 

offers DMOEA less computation effort on fitness evaluation even a large population size 

if involved. From the experiment result, DMOEA can effectively exploit an optimal 

population size by locating all the trade-off hyper-areas and approximate a near-optimal, 

near-complete Pareto front. Meanwhile, DMOEA shows its potential in solving 

complicated MOPs with different characteristics (i.e., local optimality, non-uniformly 

distributed and high dimensional decision and objective spaces). 

 

B

d on MATLAB platform. This toolbox most of the advanced MOEAs (i.e. 

NSGA-II, SPEA II, RDGA, IMOEA, PAES and DMOEA) are provided to the users. 

Moreover, as an MOEA can be considered as a hybrid of several key techniques (ranking 

scheme, density estimation, elitism, etc.) and for each technique, there are several 

variations exist in literature, this toolbox provides users a free model design function. A 

designer or user can have more flexibility in choosing their favorite method for each 

building block; and the population growing and declining strategy can help the resulting 

algorithms produce a near-optimal and near-complete Pareto front with optimal number 

of individuals.  The user-friendly visualization Graphical User Interface (GUI), Data 

Analysis GUI and on-line Help link and Demonstrations also help users effectively 
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design a MOEA and efficiently apply it to solve real world multiobjective optimization 

problems. 

 

 

 

~ 

 (a) t=0~1 min    (b) t=0~2 min   (c) t=0~3 min 

 

 

 

 

 (d) t=0~4 min   (e) t=0~5 min   (f) t=0~6 min 

Figure 10.1 An example of MOP with time varying objective function and Pareto front 

 

Although evolutionary algorithms have been successfully applied in solving many 

multiobjective optimization problems, it is also worthy to note that MOEA is not an 

efficient approach in dealing with MOPs with time-varying decision variables, objective 

functions and Pareto fronts. For example, Equation (10.1) represents an MOP with such 

characteristics. 

 

Minimi  and , where 
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The objective space and Pareto fronts for different time interval are illustrated in 

Figures 10.1(a) – (f). It is apparent that MOEAs will not satisfy the time constraint and 

response fast enough to cope with this type of problem. Therefore, a Dynamic Particle 

Multiobjective Optimization (DPSMO) algorithm is designed by combining Particle 

Swarm Optimization (PSO) technique with dynamic population strategy. According to 

PSO, as an individual will know where to fly and how fast its speed should be, it can 

quickly move to an optimal position based on its historical trajectories and the knowledge 

of the location of the best individual in the swarm. However, as PSO only performs a 

point-centered, one-way information sharing mechanism, it may have difficulty in 

approximating true Pareto fronts on MOPs with local Pareto optimality. For this reason, a 

hybrid Dynamic Particle Swarm Evolutionary Algorithm (DPSEA) is devised to take 

advantages of PSO’s fast convergence characteristic and EA’s population-based 

information sharing capability. From the simulation results, DPSMO dramatically 

improves the convergence speed comparing to DMOEA and DPSEA produces better 

Pareto fronts than DMOEA and DPSMO. Although DPSMO and DPSEA provide a novel 

solution for MOEA in dealing with MOPs that need fast convergence speed, further study 

and investigation are still needed to test the abilities of these two algorithms and improve 

their performances. 

 

Some other interesting issues may also be studied in future work. These issues 

include: convergence characteristics of MOPs, dynamic or noisy fitness evaluation in 

MOEA, on-line and real time MOEAs, mathematical representation of true Pareto front 

and the existence and uniqueness quantification of Pareto front. In summary, these issues 
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can be categorized into three types: theoretical study, algorithm development and the 

investigation of the real applications. Especially, a suitable MOP in real world 

nvironment needs to be developed and studied to examine all kinds of state-of-the-art 

ultiobjective evolutionary algorithms. 
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