

Abstract

MEDAGLIA, ANDRÉS L. Simulation Optimization Using Soft Computing. (Under
the direction of Dr. Shu-Cherng Fang and Dr. Henry L. W. Nuttle.)

To date, most of the research in simulation optimization has been focused on single

response optimization on the continuous space of input parameters. However, the

optimization of more complex systems does not fit this framework. Decision makers

often face the problem of optimizing multiple performance measures of systems with

both continuous and discrete input parameters. Previously acquired knowledge of the

system by experts is seldom incorporated into the simulation optimization engine.

Furthermore, when the goals of the system design are stated in natural language or

vague terms, current techniques are unable to deal with this situation. For these

reasons, we define and study the fuzzy single response simulation optimization (FSO)

and fuzzy multiple response simulation optimization (FMSO) problems.

The primary objective of this research is to develop an efficient and robust method

for simulation optimization of complex systems with multiple vague goals. This

method uses a fuzzy controller to incorporate existing knowledge to generate high

quality approximate Pareto optimal solutions in a minimum number of simulation

runs.

For comparison purposes, we also propose an evolutionary method for solving the

FMSO problem. Extensive computational experiments on the design of a flow line

manufacturing system (in terms of tandem queues with blocking) have been con-

ducted. Both methods are able to generate high quality solutions in terms of Zitzler

and Thiele’s “dominated space” metric. Both methods are also able to generate an

even sample of the Pareto front. However, the fuzzy controlled method is remarkably

more efficient, requiring far fewer simulation runs than the evolutionary method to

achieve the same solution quality.

To accommodate the complexity of natural language, this research also provides

a new Bezier curve–based mechanism to elicit knowledge and express complex vague

concepts. To date, this is perhaps the most flexible and efficient mechanism for both

automatic and interactive generation of membership functions for convex fuzzy sets.

A Olga Lućıa,
por confiar en mi y su apoyo incondicional.

A mis padres,
por la formación que me dieron y su constante sacrificio.

ii

Biography

Andrés Leonardo Medaglia was born on April 14, 1969 in Bogotá (Colombia), son

of Gloria González and Bonifacio Medaglia. He graduated from Rochester School in

1987 and earned a B.S. (1992) degree in Industrial Engineering from the Pontificia

Universidad Javeriana in Bogotá. Upon graduation, he was employed as a Technical

Support Engineer for NASCO S.A., the former representative of SAS Institute Inc.

in Colombia and Ecuador. In 1993, he entered Universidad de los Andes in Bogotá to

pursue graduate studies in Industrial Engineering. After completing his M.Sc. (1995)

degree, he was appointed as an instructor in the Mathematical Modeling Area of the

Industrial Engineering Department. During that time, he also worked as a consul-

tant for Flota Mercante Grancolombiana (now Transportadora Maŕıtima) on several

projects developing strategic decision support systems for logistics and planning. In

the Summer of 1996, he married Olga Lućıa Sarmiento in Bogotá and moved with her

to Raleigh, NC, to pursue his Ph.D. in the Operations Research Program of North

Carolina State University. In the Fall of 1996, he was appointed as a Research As-

sistant. During that time, he was awarded a membership in the Omega Rho Honor

Society and a Director’s Partnership Award by the National Textile Center. Since

the Summer of 1999, he has worked as an Optimization Specialist for the Operations

Research Department at SAS Institute Inc., located in Cary, NC.

iii

Acknowledgments

I thank Dr. Shu-Cherng Fang, for his guidance, responsiveness, and support as an ad-

visor. He always went beyond his duties and responsibilities as an advisor and taught

me valuable lessons that I will take with me for the rest of my life. Especially, I thank

him for his constant encouragement to look deeper into the essence of matters. His

dedication to doing the job well is really admirable. I thank Dr. Henry L. W. Nuttle

for his support and valuable contributions as co-advisor. Especially, I thank him for

his pragmatic view, which on many occasions shed light on my research. He also

had the patience and incredible ability to make sense out of my not–always–readable

manuscripts. I really appreciate all the time, energy, and resources he invested in me.

I thank Dr. Stephen D. Roberts for teaching me the principles of object–oriented

simulation, and above all, some principles of life. I thank Dr. James R. Wilson

for his thoroughness and for always being encouraging and supportive. His sense of

serving the community and passion for teaching are truly inspiring and will guide me

through the rest of my life.

I thank the students at the Fuzzy and Neural Group at North Carolina State

University. I always found their support on many facets of my life as a graduate

student. Special thanks to my “big brothers” Nanchieh Chiu and Ta-Wei Hung for

making my life easier. I thank Shyh-Huei Chen, who has been a good friend since

the first day I joined the group.

I thank Dr. Marc-david Cohen for his incredible support throughout the time

that I have been working at SAS. I especially appreciate his seasoned view of the

Operations Research world and I thank him for sharing it with me. I am grateful

to my colleagues at SAS, who provided me the perfect escape from school work and

helped me relieve the pressure.

Several organizations have contributed to my Ph.D. degree. First of all, I thank

Colciencias and Colfuturo for their significant contribution. I thank the National

Textile Center for the support I received through my research assistantship. I also

iv

thank the Universidad de los Andes and the Fulbright Commission for their initial

trust and support.

I have met people that have supported me along my life and they well deserve my

gratitude. I thank Carlos López-Duarte, the outstanding instructor who opened my

eyes to the exciting world of Operations Research. I thank Carmen Lucila Osorno,

who encouraged me to quit my job and pursue a Ph.D., when it seemed like a crazy

idea. I thank Luis Pinzón, Maŕıa Elsa Correal, Dr. Fernando Palacios, Mario Castillo,

and Gonzalo Torres, at the Universidad de los Andes, for their continuing support.

They all are among the most encouraging individuals I have ever met. I also thank my

very good old friends, Gabriel E. Pardo, Edgar E. Blanco, Juan Diego Londoño, and

Alejandro Sierra. All of them have provided me the inspiration that true friendship

always provides. I also thank my in-laws, Olguita and Rafael Sarmiento, for their

continuos support; and my brother-in-law, Ricardo Parra, who has helped me out

since the first time I met him. Last, but not least, I thank Ligia Restrepo, my

godmother, who has always been there to support me and my family through very

rough times. Without her support, I would not have made it through college.

I thank my mother, who has supported me unceasingly since the day she brought

me to this world. She has worked extremely hard and sacrificed herself to give me

the best education. ¡Gracias mamá! I thank my father, who despite his short life,

taught me many of the most important things in life. I just wish he could be here

with me. I thank Alexandra, my sister, who was my very first teacher and always

knew how to keep me grounded to reality.

Above all, I thank my loving wife Olga Lućıa. She was the one who believed in my

dreams and followed them faithfully. She encouraged me to pursue them when they

were just a blurry idea, not even visible far in the horizon. She believed in me, even

more so than I believed in myself. Olga Lućıa endured my bad moods and absences

with grace and understanding.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Simulation Optimization . 1
1.2 Simulation Optimization with Vague Goals 3
1.3 Scope and Objectives of Research . 4
1.4 Organization of the Dissertation . 5

2 Literature Review 6
2.1 Simulation Optimization . 6

2.1.1 Optimization Over a Finite Set 7
2.1.1.1 Multiple Comparison Procedures 7
2.1.1.2 Ranking and Selection 7

2.1.2 Response Surface Methodology 7
2.1.3 Gradient Based Algorithms 8

2.1.3.1 Stochastic Approximation 8
2.1.3.2 Gradient Estimation Techniques 9

2.1.3.2.1 Finite Differences 9
2.1.3.2.2 Perturbation Analysis 10
2.1.3.2.3 Likelihood Ratio Method 10
2.1.3.2.4 Frequency Domain Experimentation 10

2.1.4 Derivative–free Methods . 11
2.1.4.1 Nelder–Mead Based Methods 11
2.1.4.2 Simulated Annealing 11

2.1.5 Other Methods . 12
2.1.6 Multicriteria Simulation Optimization 12

2.2 Soft Computing . 12
2.2.1 Fuzzy Logic . 13
2.2.2 Neurocomputing . 13
2.2.3 Evolutionary Computing . 14

2.2.3.1 Multicriteria Evolutionary Optimization 15

vi

2.2.3.1.1 Aggregation Approaches
15

2.2.3.1.2 Non Pareto–based Approaches
16

2.2.3.1.3 Pareto–based Approaches
17

2.3 Simulation Optimization and Soft Computing 19

3 A Fuzzy Controlled Approach 20
3.1 Introduction . 20
3.2 Proposed Approach . 21

3.2.1 Simulator . 22
3.2.2 Fuzzy Controller . 23
3.2.3 Handling Multiple Criteria . 26
3.2.4 Algorithms . 28

3.2.4.1 Target Threshold for the FSO Problem 28
3.2.4.2 Pareto Optimization for the FMSO Problem 30

3.3 Knowledge Acquisition . 31
3.4 Application to Flow Line Design . 35

3.4.1 Introduction . 35
3.4.2 Framework . 36
3.4.3 Simulator . 37
3.4.4 Knowledge Base Design . 38

3.4.4.1 State and Control Variables 38
3.4.4.2 Linguistic Data Base Design 39
3.4.4.3 Rule Base Design . 40

3.4.4.3.1 Single Antecedent Rules 40
3.4.4.3.2 Multiple Antecedent Rules 41

3.4.5 Computational Experiments 43
3.4.5.1 Single Objective . 43
3.4.5.2 Multiple Objectives: Generating the Efficient Frontier 46

3.5 Concluding Remarks . 47

4 A Multicriteria Evolutionary Approach 49
4.1 Evolutionary Algorithm . 49

4.1.1 Representation . 51
4.1.2 Evaluation . 52
4.1.3 Fuzzification . 52
4.1.4 Fitness Assignment . 53

4.1.4.1 Example . 57
4.1.5 Selection . 59
4.1.6 Genetic Operators . 59

vii

4.1.7 Approximate Pareto Optimal Set 61
4.1.8 Elitism . 61

4.2 Application to the Flow Line Design Problem and Comparison with
the Fuzzy Controlled Approach . 63

4.3 Conclusions . 65

5 An Efficient and Flexible Mechanism for Constructing Membership
Functions 68
5.1 Introduction . 68
5.2 Membership Function Generation . 70

5.2.1 Overview . 70
5.2.2 Current Methods . 71

5.3 Proposed Mechanism . 72
5.3.1 Bézier Curves . 72
5.3.2 Mathematical Framework . 73
5.3.3 Methodology . 77

5.3.3.1 Basic Operations . 77
5.3.3.2 Data–driven Estimation 77

5.4 Performance . 82
5.4.1 Flexibility . 82
5.4.2 Numerical Examples . 83
5.4.3 Computational Efficiency . 88

5.5 Conclusion . 88

6 Summary and Recommendations 90
6.1 Summary . 90
6.2 Recommendations for Future Research 92

A Membership Functions 110
A.1 State Variables . 110
A.2 Control Variables . 116

B Rule Base for the Multiple Objective Scenario 121

C Results for the Fuzzy Controlled Approach 124

D Results for OSEA 127

viii

List of Tables

3.1 Flow line simulation inputs ranges 38
3.2 Initial conditions for the single–goal scenario with improved controlla-

bility . 45

4.1 Evaluated and fuzzified performance measures for E(t). 58
4.2 Comparison of fitness assignment methods. 59
4.3 Bounds on weights for OSEA experiments. 64

5.1 Control points (before change). 83
5.2 Sum of square errors (SSE) . 86
5.3 SSE progress for the test benchmark cases (ε = 0.0010; †: final solu-

tion). 86

A.1 Flow line fuzzy controller inputs. 111
A.2 Flow line fuzzy controller outputs . 116

ix

List of Figures

1.1 Simulation optimization framework 2

3.1 Fuzzy controlled simulation optimization 22
3.2 Target Threshold Algorithm . 29
3.3 Pareto Optimization Algorithm . 32
3.4 Fuzzy controlled simulation optimization and knowledge extraction . 34
3.5 Tandem of queues with blocking (flow line) 36
3.6 Flow line optimization framework . 37
3.7 Overall work–in–process ($) . 39
3.8 Utilization at station 1 (ϕ1) . 39
3.9 Change in server rate at station 1 (∆γ1) 40
3.10 Correlation coefficients extracted from the full correlation matrix . . . 41
3.11 Response surface for the work–in–process (s3 = 4, s4 = 6, b2 = 4,

b4 = 5, and s2 = 7) . 42
3.12 Response surface for the utilization at station 1 (s3 = 4, s4 = 6, b2 = 4,

b4 = 5, and s2 = 7) . 43
3.13 Control path for the overall work–in–process membership function for

the single–goal scenario. 45
3.14 Solution for different initial conditions for the single–goal scenario with

improved controllability . 46
3.15 Approximate Pareto front for the two-goal scenario 47
3.16 Zitzler and Thiele’s dominated space metric [150] for the two-goal sce-

nario . 48

4.1 Optimal Scoring Evolutionary Algorithm (OSEA) 50
4.2 Representation in OSEA. 52
4.3 Optimal fitness in performance space. The symbols N, •, and ¥ rep-

resent the first, second, and third tier of optimal scores, respectively. . 60
4.4 Stochastic Universal Sampling . 60
4.5 One–point crossover in OSEA. 61
4.6 Updating P∗

approximate(t) . 62
4.7 Comparison of the dominated space. 65
4.8 Comparison of the number of simulation runs. 66

x

4.9 Comparison of the Pareto front. 66

5.1 Types of membership functions. 76
5.2 Finding µÃ(x) given x . 78
5.3 Finding αÃ given α . 79
5.4 Data–driven estimation of the right membership function 82
5.5 Effect on the change of a single control point. 84
5.6 Data–driven estimation. Data: subject 35 (Old man). 85
5.7 Data-driven estimation (ε = 0.0010). 87

A.1 Overall work-in-process (w) . 112
A.2 Work-in-process at stage 1 (w1) . 112
A.3 Work-in-process at stage 2 (w2) . 112
A.4 Work-in-process at stage 3 (w3) . 113
A.5 Work-in-process at stage 4 (w4) . 113
A.6 Time in system (T) . 113
A.7 Utilization at station 1 (ρ1) . 114
A.8 Utilization at station 2 (ρ2) . 114
A.9 Utilization at station 3 (ρ3) . 114
A.10 Utilization at station 4 (ρ4) . 115
A.11 Change in server rate at station 1 (∆µ1) 118
A.12 Change in server rate at station 3 (∆µ3) 118
A.13 Change in servers at station 2 (∆s2) 118
A.14 Change in servers at station 3 (∆s3) 119
A.15 Change in servers at station 4 (∆s4) 119
A.16 Change in buffer space at station 2 (∆b2) 119
A.17 Change in buffer space at station 4 (∆b4) 120

C.1 Experiment # 1 of the two-goal scenario with the fuzzy controlled
approach. 124

C.2 Experiment # 2 of the two-goal scenario with the fuzzy controlled
approach. 125

C.3 Experiment # 3 of the two-goal scenario with the fuzzy controlled
approach. 125

C.4 Experiment # 4 of the two-goal scenario with the fuzzy controlled
approach. 126

C.5 Experiment # 5 of the two-goal scenario with the fuzzy controlled
approach. 126

D.1 Experiment # 1 of the flow line design problem with two goals solved
by OSEA. 127

D.2 Experiment # 2 of the flow line design problem with two goals solved
by OSEA. 128

xi

D.3 Experiment # 3 of the flow line design problem with two goals solved
by OSEA. 128

D.4 Experiment # 4 of the flow line design problem with two goals solved
by OSEA. 129

D.5 Experiment # 5 of the flow line design problem with two goals solved
by OSEA. 129

D.6 Experiment # 6 of the flow line design problem with two goals solved
by OSEA. 130

xii

Chapter 1

Introduction

1.1 Simulation Optimization

A system is a collection of entities that act and interact toward the accomplishment

of a logical end [116]. In order to study a system rigorously, the system is modeled

in the form of logical and mathematical relationships. If the model is simple enough,

the performance of the underlying system can be evaluated analytically. Nevertheless,

in real–world scenarios, the presence of stochastic elements and complex interactions

between the system entities often preclude the possibility of obtaining an analytical

solution. In these cases, the model can be studied using simulation. In this disserta-

tion, simulation refers to discrete event simulation.

In discrete event simulation, the state of the system may change with the occur-

rence of instantaneous events at separate and countable points in time [81]. Real

world computer, communication, and manufacturing networks are examples of highly

complex systems that are commonly evaluated using discrete event simulation [56,

81, 110, 113].

The simulation approach to problem solving, typically involves a series of trials

in which changes are made to the input variables so that resulting changes in the

output variables (responses or system performances) can be observed and identified

[19]. Even though simulation can provide a very detailed and accurate model, it is in

itself more of a descriptive than a prescriptive modeling tool [124].

The problem known as simulation optimization is that of finding the values for

the input parameters such that an expected system performance is optimized. Figure

1

1.1 depicts a simulation optimization framework. In this framework the output of a

complex model is introduced into an optimization strategy which adjusts and feeds

the inputs back to the model.

Optimization
Strategy

Feedback

Inputs Outputs

Simulation

Figure 1.1: Simulation optimization framework

Formally, the single response simulation optimization (SRSO) problem can be

stated as:

min
x∈X

f(x) (1.1)

where, f(x) = E[L(x, ω)] is the expected value of the system performance measure of

interest, L(x, ω) is the sample performance, ω represents the stochastic effects of the

system, x is a vector of N controllable parameters, and X is a closed set of constraints

on x.

The SRSO problem has received much attention by the simulation community.

Several reviews on the field of simulation optimization deal almost exclusively with

this problem [3, 5, 19, 45, 70, 90, 111]. Brief descriptions of various methods of simula-

tion optimization are given in Chapter 2.

In practice, most of the time an analyst has to consider several criteria simulta-

neously. In the presence of conflicting objectives, a simulation optimization method

must take into account the tradeoff between these criteria. The multiple response

simulation optimization (MRSO) problem is:

min
x∈X

{(f1(x), f2(x), . . . , fK(x))} (1.2)

where for k = 1, . . . , K, fk(x) = E[Lk(x, ω)] is the expected value of the k-th perfor-

mance measure of interest; Lk(x, ω) is the sample of the k-th performance; ω repre-

sents the stochastic effects of the system; x is the vector of controllable parameters;

and X is the closed set of constraints on x.

2

Despite of its real world applicability, relatively little research has been conducted

on the MRSO problem. Montgomery and Bettencourt [92] use the Geoffrion, Dyer,

Feinberg method (GDF) to optimize a simulation model with four criteria and two

input parameters. Clayton et al. [25] and Rees et al. [106] use a goal programming

approach. Biles and Swain [11, 12] propose and compare a first and second order

response surface approach with a direct search algorithm. Evans et al. [36] suggest

a set of guidelines for the multicriteria optimization of simulation models. A brief

description of these methods is given in Chapter 2.

1.2 Simulation Optimization with Vague Goals

Most of the time the goals for a system are stated in vague natural language by

the decision maker. For instance, in a manufacturing setting a decision maker may

want to design a system with low work–in–process and high utilization of a certain

expensive machine. In this case the vague terms low and high introduced by the

decision maker have to be incorporated into the analysis, deduced, and interpreted

according to the context. In this setting, the problem is to find the value of the

controllable parameters such that all the objectives of the system are satisfied to a

high degree.

Fuzzy technology provides a proven and efficient way to compute with words

and incorporate natural language into the area of simulation optimization. Fuzzy

set theory was first introduced in the 1960s by Lotfi A. Zadeh as a way to capture

uncertainty and vagueness often overlooked in the analysis of complex systems [144].

A fuzzy set Ã is characterized by its membership function µÃ, which maps each

element of the universe X to the interval [0, 1]. This function indicates the degree to

which each element belongs to the set.

Rewriting SRSO to incorporate vagueness, we have the fuzzy single response sim-

ulation optimization or fuzzy simulation optimization (FSO) problem:

max
x∈X

µG̃(f(x)) (1.3)

where, µG̃(f(x)) is a measure of the degree of satisfaction of the vague target repre-

sented by the fuzzy set G̃ and, as above, f(x) is the expected value of the performance

measure associated with the target, x is the vector of N controllable parameters, and

X is the closed set of constraints on x.

3

MRSO has its corresponding problem that incorporates vagueness, namely the

fuzzy multiple response simulation optimization or fuzzy multicriteria simulation op-

timization (FMSO) problem:

max
x∈X

{(
µG̃1

(f1(x)), µG̃2
(f2(x)), . . . , µG̃K

(fK(x))
)}

(1.4)

where for k = 1, . . . , K, µG̃k
(fk(x)) is the degree of satisfaction of the k-th vague

target represented by the fuzzy set G̃k; fk(x) is the expected value of the performance

measure associated with the k-th target.

1.3 Scope and Objectives of Research

The primary objective of this research is to develop an efficient and robust method

for the multicriteria optimization of simulated complex systems with vague goals.

This method, which uses a fuzzy controller, incorporates existing knowledge, satisfies

vaguely stated goals, generates a high quality approximate Pareto optimal set, and is

efficient in terms of simulation runs.

To date, most of the research in simulation optimization has been focused on sin-

gle response optimization on the continuous space of input parameters X . However,

the optimization of more complex systems does not fit this framework. For instance,

decision makers often face the problem of optimizing multiple performance measures

of systems with both continuous and discrete input parameters. Additionally, pre-

viously acquired knowledge of the system by experts has been largely ignored by

simulation optimization techniques proposed in the literature. These techniques do

not provide any means of incorporating this valuable knowledge into the optimization

engine. Furthermore, if the goals of the system design are stated in natural language

or vague terms, current techniques are simply unable to deal with this imprecision.

Our approach for simulation optimization will take into account the issues of con-

tinuous and discrete input parameters, multiple criteria, preexistent knowledge, and

vagueness in the system goals.

The objectives of this research may be summarized as follows.

1. Develop methods to solve problems FSO in (1.3) and FMSO in (1.4).

2. Develop a procedure for the solution of simulation optimization problems by

taking into consideration both continuous and discrete input parameters, pre-

4

viously acquired knowledge on the system, vagueness in the system goals, and

considering multiple criteria.

3. Develop an alternative and competitive approach to unveil the strengths and

weaknesses of the proposed approach in 2.

4. Conduct an extensive experimental performance evaluation of the proposed ap-

proaches on a Flow Line Design problem.

To validate the mechanisms proposed to achieve objectives 2 and 3, we use the

popular trapezoidal fuzzy sets. To further improve the expressive power of the vague

concepts used therein, we also

5. Investigate, formulate, and develop an efficient and flexible mechanism to rep-

resent virtually any vague concept expressed in natural language.

1.4 Organization of the Dissertation

In Chapter 2 we include a survey of previously proposed methods for simulation

optimization with single and multiple responses. We briefly review the elements of

soft computing and emphasize the existing multicriteria evolutionary optimization

techniques found in the literature. Chapter 3 presents a method, based on a fuzzy

controller, for solving problems FSO in (1.3) and FMSO in (1.4). We illustrate the

method on a Flow Line Design problem. In Chapter 4 we propose an alternative

evolutionary approach to the fuzzy controlled mechanism presented in Chapter 3.

This evolutionary approach, which we call Optimal Scoring Evolutionary Algorithm

(OSEA), provides a means to assess the quality of the approximate Pareto front gen-

erated by the fuzzy controlled approach to FMSO. An extensive comparison with the

fuzzy controlled mechanism on the Flow Line Design problem is presented. Chapter

5 presents an efficient and flexible Bézier curve–based mechanism for constructing

membership functions of convex normal fuzzy sets. This mechanism is useful for rep-

resenting virtually any kind of vague concept. Chapter 6 contains the conclusions

from our research and recommendations for future study.

5

Chapter 2

Literature Review

In the first part of this chapter, we summarize the existing alternatives to simula-

tion optimization. The second part, deals with an overview of soft computing with

emphasis on the existing literature on evolutionary multicriteria optimization.

2.1 Simulation Optimization

The dramatic improvement in computer technology, its relatively low cost, and broad

availability, have led researchers in industry and academia to increased efforts in the

area of simulation optimization of complex systems. Even though a lot of research

has been conducted in the last twenty–five years, many problems remain open and

unsolved. Due to these loose ends and the high impact on industry, the area keeps

growing and attracting researchers and practitioners year after year.

Several reviews on the field of simulation optimization are available [3–5, 19, 39,

45, 52, 70, 90, 111, 119]. The one written by Fu [45] presents an excellent overview of

the field. The main forum for simulation researchers and practitioners is the Winter

Simulation Conference (WSC). Its proceedings are a valuable source to keep up to

date on progress in the area.

In the remaining part of this section, we present the different methods that are

used to solve simulation optimization problems. Sections 2.1.1 to 2.1.5 refer to single–

response systems while Section 2.1.6 refers to multiple–response systems.

6

2.1.1 Optimization Over a Finite Set

The methods discussed here are useful when the number of choices is not too large,

say 2 to 20 [55]. They are basically statistical procedures that fall in one of two

categories: multiple comparison or ranking–and–selection.

2.1.1.1 Multiple Comparison Procedures

The purpose of these procedures is the construction of confidence intervals based on

pairwise comparisons. Some of the methods in this category are the all–pairwise

comparisons based on paired–t confidence intervals and the Bonferroni inequality;

multiple comparisons with the best (MCB); and all–pairwise multiple comparisons

(MCA) approach. The typical assumptions for these methods are independence and

normality of the performance measure of interest. For further details on this subject

the reader is referred to Goldsman and Nelson [55] and Law and Kelton [81].

2.1.1.2 Ranking and Selection

Ranking and selection methods are statistical procedures designed to select the best

system or a subset of systems that include the best one, from a finite set of choices.

Provided some assumptions are met, these methods guarantee that the correct se-

lection is made with at least a (user specified) probability. These methods can be

classified in two major categories: indifference zone and subset selection. The method

proposed by Dudewicz and Dalal [34] falls into the first category, while that proposed

by Sullivan and Wilson [123] falls into the subset selection methods category. Both

procedures are particularly useful for simulation optimization because they do not re-

quire variances to be equal or to be known. Again, for further details on this subject

the reader is referred to Goldsman and Nelson [55] and Law and Kelton [81].

2.1.2 Response Surface Methodology

Perhaps the most used technique in simulation optimization is response surface method-

ology (RSM). RSM techniques can be categorized into metamodels and sequential

procedures. In the metamodel methodology, a regression model is fitted to the re-

sponse of interest after evaluating it through the use of simulation at several values

7

of input parameters. Once a regression model is estimated, it is treated as a deter-

ministic function and is optimized [19].

In the literature, simulation optimization using RSM usually refers to the second

category, i.e., sequential procedures. The basic idea is to approach the vicinity of

the optimum through a sequence of first order regression models. Once an optimum

neighborhood is reached, higher order regression models are used. The optimum is

derived analytically.

The major disadvantage of RSM is that a large number of simulation runs may

be needed [70]. On the other hand, RSM has a strong theoretical basis and can be

applied to a broad variety of simulation problems [140].

For further details on this subject the reader is refer to the overview written by

Kleijnen [77], the review written by Jacobson and Schruben [70] and the classical

books by Myers and Montgomery [93] and Box and Draper [16].

2.1.3 Gradient Based Algorithms

These algorithms are based on improving the input parameters by moving iteratively

in the direction of the estimated gradient of the response of interest. One of the

major concerns with this type of algorithm is the estimation of the gradient and its

statistical properties.

2.1.3.1 Stochastic Approximation

The first stochastic approximation algorithms were introduced by Robbins and Monro

[109], and Kiefer and Wolfowitz [75]. The basic idea is that the single response

simulation optimization problem presented in (1.1) can be solved by finding a vector

x of input parameters such that

∇f(x) = 0. (2.1)

The general form of the stochastic approximation algorithm is:

xn+1 = ΠΘ(xn − αn∇̂f(xn)) (2.2)

where xn is the vector of input parameters at the n-th iteration, ∇̂f(xn) is an estimate

of the gradient ∇f(xn) from iteration n, αn is a positive step size, and ΠΘ is a

projection onto the set of continuous input parameters Θ.

8

If ∇̂f(xn) is an unbiased estimator of the gradient ∇f(xn), the algorithm is of the

Robbins–Monro [109] type. On the other hand, if the gradient is estimated by finite

differences (as described in Section 2.1.3.2.1 below), the algorithm is of the Kiefer–

Wolfowitz [75] type. Under fairly general conditions they converge almost surely

to the optimum. However, they could converge to a local optimum and may not

always work well [3]. Recently new algorithms have been proposed to improve some

of the weaknesses of these classical algorithms. A thorough review of new methods

on stochastic approximation can be found in [3] and [4].

2.1.3.2 Gradient Estimation Techniques

Naturally, the heart of gradient–based algorithms is the technique used to estimate

the gradient. Here we present the most common methods used in the simulation

optimization literature. For further details the reader is referred to [82].

2.1.3.2.1 Finite Differences This method is the simplest and the most com-

monly used. The gradient at x at the n-th iteration is estimated as follows:

∇̂f(xn) = [∇̂1f(xn), . . . , ∇̂pf(xn)]T , (2.3)

where,

∇̂fi(xn) =
f̂(xn − cnei) − f̂(xn + cnei)

2cn

(2.4)

is used for the finite–difference gradient estimator using central differences while

∇̂fi(xn) =
f̂(xn + cnei) − f̂(xn)

cn

(2.5)

is used for the finite–difference gradient estimator using forward differences. In (2.4)

and (2.5) ei represents the i-th unit vector. The total number of simulations needed

to estimate the gradient is 2p for the central differences estimator and p + 1 for the

forward differences estimator. The method of finite–differences has some known prob-

lems related to slow convergence, and bias and large variance of the gradient estimate

[3].

9

2.1.3.2.2 Perturbation Analysis Perturbation analysis (PA) is an approach of

using sample path analysis for gradient estimation. Perhaps the most common tech-

nique in this class is infinitesimal perturbation analysis (IPA). The main principle

behind IPA is that if an input parameter is perturbed by an infinitesimal amount,

the sensitivity of the output to that parameter can be estimated by tracking its effect

through the system. A basic requirement of IPA is that these small perturbations

should not cause changes in the sequence of events. Unfortunately, for complex sys-

tems this requirement is very difficult to guarantee. One strength of this technique

is that the gradient can be estimated by making just one simulation run. For more

information the reader is referred to [52].

2.1.3.2.3 Likelihood Ratio Method The Likelihood ratio (LR) method is also

known as the score function (SF). With this method the gradient is estimated by ex-

pressing the derivative of the expected value of the response with respect to an input

parameter as the expected value of a function of input and simulation parameters.

This value is recorded in the simulation run for a future estimation of the gradient.

This method requires only one simulation run to estimate the gradient and is more

generally applicable than IPA. A weakness of LR is that it may produce gradient

estimates with larger variance than those obtained through IPA [3, 45].

2.1.3.2.4 Frequency Domain Experimentation The basic idea behind fre-

quency domain experimentation (FDE) is to explore the sensitivity of the responses

by sinusoidal oscillations of the value of the input parameters during the simulation.

Initially, this method introduced by Schruben and Cogliano [117], was intended for

use in factor screening (i.e., identifying the relevant input parameters in a simulation

study). The input parameters are modulated as follows:

x(t) = x0 + γ sin(w̃t) (2.6)

where x0 is the vector of input parameters, γ is the vector of oscillation amplitudes,

w̃ is the vector of distinct oscillation frequencies, and t is the oscillation time index

(different from the simulation time).

10

While FDE has the desired property of being able to estimate the gradient in just

one simulation run, it has the problem of having to determine the oscillation index,

frequencies, and amplitudes (see (2.6)). A possible way to overcome this problem by

making changes in the event–generation code has been suggested in [45].

2.1.4 Derivative–free Methods

As the name of the section suggests, these methods do not move in the direction of

the estimated gradient. With fewer requirements and assumptions than the meth-

ods described above, these techniques and their variants can be used for simulation

optimization with discrete input parameters.

2.1.4.1 Nelder–Mead Based Methods

These methods are based on the classical algorithm for unconstrained nonlinear pro-

gramming proposed by Nelder and Mead [95]. Basically p + 1 vertices forming a

simplex in the p-dimensional space are maintained throughout the algorithm. The

algorithm proceeds by continuously replacing the worst vertex. The replacement is

found by moving in the reflection direction; i.e., in the negative of the direction de-

fined by the vector formed by the difference between the simplex centroid and the

worst point in the simplex (point which is being dropped). Several authors have pro-

posed different implementations for simulation optimization based on this classical

algorithm [8, 9, 66]. Box [17] proposed a constrained version of the Nelder–Mead al-

gorithm called complex search. A modified version of Box’s algorithm for simulation

optimization can be found at [6].

2.1.4.2 Simulated Annealing

Simulated annealing is an iterative stochastic search method, analogous to the physi-

cal annealing process in which material is cooled down until a minimum level of energy

is achieved. This method generates a sequence of solutions with a decreasing trend but

not always decreasing response (in the minimization case). By allowing hill–climbing

behavior, the possibility of being trapped in a local minima is reduced. This method

was proposed for deterministic optimization by Kirkpatrick et al. [76]. Several al-

gorithms for simulation optimization have been based on this approach [2, 46, 57].

Under suitable conditions, converges almost surely to the optimal solution.

11

2.1.5 Other Methods

Norkin et al. [96] proposed a method for discrete simulation optimization based

on the classical branch and bound integer programming technique. Glover et al.

have used scatter search and tabu search as the primary engine of their commercial

package OptQuest [51]. Nozari and Morris [98] have proposed a modification of the

classical algorithm of Hooke and Jeeves [62]. Healy and Schruben [60] proposed what

is called retrospective simulation response optimization that can be seen as the dual

of metamodeling [45]. Finally, genetic algorithms and evolutionary strategies have

also been proposed. These are discussed in Section 2.3 under the larger topic of soft

computing.

2.1.6 Multicriteria Simulation Optimization

In practice, when a simulation model is used, most of the time the analyst has to con-

sider more than one criterion simultaneously. Despite of this fact, most of the research

in the field has been done in the area of single response simulation optimization.

Montgomery and Bettencourt [92] used the Geoffrion, Dyer, Feinberg method

(GDF) to optimize a simulation model with four criteria and two input parame-

ters. A goal programming approach was used by Clayton et al. [25] and Rees et

al. [106]. Biles and Swain [11, 12] proposed and compared a first and second order

RSM approach with a direct search algorithm. Evans et al. [36] survey the area of

multicriteria simulation optimization.

2.2 Soft Computing

To get a better understanding of what this new term of soft computing really means,

let us quote Lotfi A. Zadeh, father of fuzzy logic and one of the leaders in the soft

computing community:

“In traditional –hard– computing, the prime desiderata are precision,

certainty and rigor. By contrast, the point of departure in soft computing

is the thesis that precision and certainty carry a cost and that computa-

tion, reasoning, and decision making should exploit –wherever possible–

the tolerance for imprecision and uncertainty” [146].

12

The following definition of soft computing is also given by Zadeh [73]:

“Soft computing is an emerging approach to computing which paral-

lels the remarkable ability of the human mind to reason and learn in an

environment of uncertainty and imprecision.”

Soft computing is an association of methodologies that mainly brings together

fuzzy logic, evolutionary computing, neurocomputing and probabilistic computing.

An essential aspect of soft computing is that these methodologies are complementary

rather than competitive or exclusive [147].

The remaining part of this section describes briefly the function of those soft

computing methodologies that will be used in the scope of our research on simulation

optimization via soft computing.

2.2.1 Fuzzy Logic

Fuzzy logic was invented in the sixties by Lotfi A. Zadeh [144], who being an expert

in control engineering, realized that control theory was unable to solve many complex

real system problems. In a narrow sense, fuzzy logic can be viewed as a logical system

that aims at a formalization of approximate reasoning. In a broad sense, fuzzy logic

is used as a synonym for fuzzy set theory. Fuzzy set theory has several branches such

as fuzzy arithmetic, fuzzy mathematical programming, fuzzy topology, fuzzy graph

theory, fuzzy data analysis, and fuzzy logic, among others [146].

The contribution of fuzzy logic1 to the area of soft computing is to introduce

flexibility in classification, querying and problem solving, and to capture imprecision

when there is lack of information [33].

In our context, fuzzy logic brings an effective way of compressing and representing

knowledge through the use of linguistic variables, linguistic values, and fuzzy if–then–

rules.

2.2.2 Neurocomputing

Fuzzy logic does not have adaptation or learning features, since it lacks the mechanism

to extract knowledge from existing data. On the other hand, this is the nature of

1From this point the term fuzzy logic is used in its broad sense unless otherwise expressed

13

neurocomputing and is what it brings to the soft computing arena. Neural networks

provide an efficient technique able to learn from examples of input–output pairs.

In our context, learning will refer to tuning a fuzzy controller’s linguistic terms

and the construction of the fuzzy if–then–rules. An example of a hybrid system that

uses neural networks to tune a fuzzy logic system is the work on Adaptive Neural

Fuzzy Inference Systems (ANFIS) [72, 73].

Bishop [13] presents a comprehensive treatment of neural networks. Jang et al.

[73] and Lin et al. [83] cover neurofuzzy systems.

2.2.3 Evolutionary Computing

Evolutionary computing provides to soft computing an efficient mechanism for solving

difficult problems through a systematic stochastic search based on the principles of

natural selection. There have been several schools of thought that have contributed

to and enriched the field, but share the same underlying principles, i.e., evolutionary

strategies [105, 118], evolutionary programming [40], and genetic algorithms [61].

Evolutionary–based algorithms have been applied to a variety of problems, many

of which conventional methods have failed to solve. For instance, in soft comput-

ing, the process of extracting knowledge for the fuzzy logic inference system requires

the solution of optimization problems which are often nonlinear and combinatorial.

Evolutionary–based algorithms can effectively solve these and other hard problems.

The basic idea of an evolutionary algorithm is to simulate the natural selection

process and obtain better individuals as the algorithm progresses. The evolutionary

algorithm maintains a population of individuals (or chromosomes), in which each

individual represents a potential solution to the problem. The representation is the

mapping of solutions to individuals. The form and complexity of the representation

is problem dependent. As the algorithm progresses, the population of individuals

evolves through successive iterations, called generations. In every generation, each

individual is evaluated and assigned a measure of its fitness for survival. New individ-

uals for the next generation are generated by combining and altering members of the

population through genetic operators or transformations. A common unary transfor-

mation is mutation, in which new individuals are created by applying modifications to

a single individual. Higher order transformations, such as crossover, are also a source

of new individuals. In crossover, several parents are combined to generate one or more

14

children. The population for the new generation is formed by selecting the more fit

among all individuals. After several generations, the algorithm converges to a good

population (i.e., good solutions), and possibly, to the best individual representing

the “optimum”. Good introductory material can be found in the books authored by

Michalewicz [91] and Gen and Cheng [48].

2.2.3.1 Multicriteria Evolutionary Optimization

Evolutionary algorithms are well suited for exploring a vast set of alternatives, par-

tially because they are based on evolving (a population of) solutions in parallel [150].

Contrary to classical mathematical programming techniques, evolutionary algorithms

can be designed to search for the entire set of Pareto optimal solutions in a single

run and do not make assumptions about the shape and mathematical properties (e.g.,

continuity) of the Pareto front [29]. Moreover, there are few, if any, competitive alter-

natives to multicriteria optimization, and even fewer methods available that tolerate

noisy and uncertain objective functions [63].

Since the pioneering work of Schaffer [114] on the Vector Evaluated Genetic Algo-

rithm (VEGA), a substantial amount of research has been conducted in the area of

evolutionary multicriteria optimization 2. Two recent reviews have surveyed the area

of evolutionary algorithms for multicriteria optimization [29, 134]. Other surveys are

[42, 63, 129]. An annotated bibliography by Ehrgott and Gandibleux [35] concentrates

on multicriteria combinatorial optimization.

In the next sections, we classify and review various evolutionary algorithms applied

to multicriteria optimization.

2.2.3.1.1 Aggregation Approaches

This is perhaps the most natural and common approach for fitness assignment

[29, 63]. For a given individual, the values of the multiple criteria are combined

into a single scalar using a linear or nonlinear combination. The main strength of

this approach is its computational efficiency and simple implementation. Its main

weakness is the difficulty to determine the value of the weights that reflect the relative

importance of each criterion. Daas and Dennis [31] have commented why a weighted

2A list of references on evolutionary multicriteria optimization is available at:
http://www.lania.mx/ ccoello/EMOO/EMOObib.html

15

sum approach does not work properly when the shape of the Pareto front is not

convex, regardless of the weights used. However, Daas and Dennis’ problem setting

is somewhat restrictive, with continuity and differentiability requirements.

Several applications of evolutionary algorithms using aggregation approaches have

been reported. A number of authors have provided examples of the use of the com-

mon method known as weighted–sum approach [10, 71, 74, 85, 127, 135, 142]. Gen et

al. [47, 48] have extended this approach to handle uncertainty using fuzzy logic.

Medaglia and Fang [88] have proposed the use of adaptive weights instead of pre-

determined fixed weights. Hajela and Lin [58] have used an evolutionary approach

(HLGA) in which the weights are discretized and encoded in the chromosome. Some

researchers have proposed a nonlinear aggregative method, closely related to goal

programming [21], called distance–to–target approach [112, 139]. Goal attainment is

a related technique that seeks to minimize the weighted difference between criteria

values and the corresponding goals [141]. Treating criteria threshold constraints by

means of penalty functions can be seen as another aggregation approach used by

several researchers [54, 86, 104, 107, 121]. Wallace [138] proposes the use of a decision

maker’s probability of acceptance function for each criterion, with the probability of

simultaneous acceptance being obtained by multiplication.

2.2.3.1.2 Non Pareto–based Approaches

In his pioneering work on evolutionary multicriteria optimization, Schaffer [114, 115]

proposed the Vector Evaluated Genetic Algorithm (VEGA). For a problem with K cri-

teria, the population size is equally divided in K subpopulations. The selection mech-

anism is applied to each subpopulation using the corresponding criterion. Then, the

subpopulations are shuffled together to obtain the main population, where crossover

and mutation are applied in the usual way. This method was the first evolutionary

approach developed to generate and search for the Pareto optimal set in a single

run. Because this technique selects individuals who excel in one criterion, without

considering the other criteria, a problem known as speciation may occur. Individu-

als with middling performance (i.e., acceptable performance in all dimensions) which

are desirable from a decision maker’s point of view, are simply not selected due to

their failure to excel in at least one criterion. Several researchers have applied and

proposed modifications of VEGA to different domains [108, 125, 126, 129, 130].

Fourman [44] suggested a selection scheme known as lexicographic ordering. In this

16

selection mechanism, criteria are assigned different priorities. Selection is performed

by comparing pairs of individuals according to the criterion with the highest priority.

If this results in a tie, then the criterion that follows in the priority list is used, and

so on. Fourman also proposed, as a variation of this scheme, to randomly select the

criterion to be used for comparison. Kursawe [79] proposed a multicriteria version

of evolution strategies [118] based on lexicographic ordering. As with VEGA, all of

these approaches experience speciation. Using an aggregation technique with random

weights, Ishibushi and Murata [69] claim to generalize Kursawe’s method and avoid

speciation.

In the spirit of VEGA, the use of genders has been proposed as yet another way

of defining subpopulations for each criterion. In a bicriteria optimization problem,

Allenson [1] proposed a VEGA–like algorithm that associates each criterion with a

gender. Lis and Eiben [84] extended this concept to multiple genders (i.e., multiple

criteria) and used panmictic reproduction (i.e., several parents generate a single child).

These gender–based methods impose mating restrictions at crossover.

Other non Pareto–based approaches have been proposed. Motivated by game the-

ory, Périaux et al. [100] proposed an evolutionary algorithm based on the concept of

Nash equilibrium [94]. Some researchers have used the concept of min–max optimum,

which compares relative deviations from separately attainable minima [26–28, 58, 99].

Valenzuela and Uresti [133] proposed a method based on learning classifier systems.

2.2.3.1.3 Pareto–based Approaches

Pareto–based fitness assignment was first proposed by Goldberg [54]. The idea

is to rank the population according to Pareto optimality. First, the nondominated

individuals are given rank one and then removed from the population. The newly

nondominated individuals are given rank two and then removed, and so on. Goldberg

also suggested niching and speciation methods to promote and maintain subpopula-

tions along the Pareto front.

In Fonseca and Fleming’s [41, 43] Multi–objective Genetic Algorithm (MOGA) the

individual’s rank corresponds to the number of individuals in the current population

by which it is dominated. After sorting the population according to the ranks, fitness

is assigned by interpolating from the best to the worst individuals in the population.

MOGA also uses fitness sharing [53] within a rank, such that the individuals are

further ranked according to their fitness sharing niche counts. The niche count is a

17

measure of the individual’s neighborhood crowding. In MOGA selection is performed

with stochastic universal sampling [7]. The main strengths of MOGA are its efficiency

and relatively easy implementation. Its main weakness is that its performance is

highly dependent on the sharing factor.

In Horn and Nafpliotis’ [64, 65] Niched Pareto Genetic Algorithm (NPGA) a se-

lection scheme based on Pareto domination tournaments is used. To determine the

dominance status of two competing individuals, a sample of (typically about 10)

other individuals from the current population is drawn. If one of the two individuals

is dominated by a member of the sample, while the other is not dominated, then

the nondominated individual wins the tournament. If both or neither are dominated,

then the result of the tournament is resolved by selecting the individual with the

lower niche count. The main strength of this method is that it is very fast because

does not apply Pareto selection to the entire population. Its main weakness is that

it requires tuning of the sharing parameter and tournament sample size.

Srinivas and Deb [120] proposed the Non–dominated Sorting Genetic Algorithm

(NSGA). NSGA follows Goldberg’s original idea on Pareto–based ranking very closely

[54]. In NSGA fitness sharing is done in the parameter value space, calculating dis-

tances between vectors in the solution space rather than in criteria space. The main

strength of NSGA is that sharing is performed in the solution space, allowing the

algorithm to discover multiple solutions and potentially generating an even distribu-

tion of the Pareto front. Some researchers [29] have reported that NSGA is highly

sensitive to the sharing parameter and could be computationally expensive.

Zitzler and Thiele [150] have proposed the Strength Pareto Evolutionary Algo-

rithm (SPEA). SPEA uses a secondary population of nondominated solutions in the

fitness assignment procedure. A solution in the population is assigned a fitness value

according to the number of vectors in the secondary population that dominates its

corresponding criteria vector. For computational efficiency, SPEA uses a clustering

procedure to reduce the size of the nondominated set while preserving its distribution.

Zitzler et al. [149] have compared several evolutionary algorithms using a compre-

hensive set of complex test functions. For their chosen test problems and parameter

settings, they found a clear hierarchy of algorithms in terms of the distance to the

theoretical Pareto optimal front. Sorting the algorithms from the best to the worst,

they found three tiers: SPEA is in the first tier; NSGA is in the second tier and;

VEGA, HLGA, NPGA, and MOGA, are in the third tier. Furthermore, note that

18

the only aggregation method considered is HLGA [58] and the only non–Pareto based

approach is VEGA [114].

2.3 Simulation Optimization and Soft Computing

We have seen that simulation optimization is a very complex problem that has been

treated by different approaches (see Section 2.1). We strongly believe that the idea of

bringing soft computing methodologies into the area of simulation optimization will

lead to the solution of real world system problem in an efficient manner.

To our knowledge, there is no study in the field of simulation optimization that

combines the search capabilities of genetic algorithms with the learning ability of

neural networks and the knowledge compression ability of fuzzy logic. The absence

of such a study combined with the synergistic view of soft computing is one of the

motivations of this research.

The use of genetic algorithms in simulation optimization has been reported in

the literature [14, 15, 59, 131, 143] merely as a random search technique working in

isolation. Of special interest is the work conducted by Boesel and Nelson [14, 15]

at Northwestern University who have tried to provide statistical guarantees on the

quality of the solution obtained when applying the genetic algorithm.

The use of neural networks in the field of simulation optimization has been re-

ported by Glover et al. [51]. Basically they give the user the option of engaging a

neural network accelerator to help their search engine in the screening of some values

of the input parameter vector.

19

Chapter 3

A Fuzzy Controlled Approach

Simulation optimization deals with finding the values of input parameters of a com-

plex simulated system which result in desired output. Traditional techniques may

require an enormous amount of simulation runs to evaluate the system. To alleviate

this problem, the approach proposed in this chapter provides the means of incorporat-

ing knowledge, expressed in natural language, that is often available among analysts

and decision makers. Using convenient linguistic representations, the proposed mech-

anism can satisfy vaguely stated goals to a high degree (e.g. “high utilization” or “low

inventory”). This mechanism is also able to generate an approximate Pareto optimal

set in the presence of multiple goals. The optimization strategy used here depends on

a fuzzy controller guided by a set of rules derived from statistical concepts, response

surface models, and experts’ knowledge. To illustrate this approach we present com-

putational experiments on the design of a flow line manufacturing system (in terms

of a tandem of queues with blocking) with one and two goals.

3.1 Introduction

Classical simulation optimization research has been primarily concerned with adapt-

ing classical mathematical programming techniques to primarily solve problem (1.1)

and, to a lesser extent, problem (1.2). Chapter 2 provides an overview of several of

these methods.

Unfortunately, valuable knowledge is put aside and not incorporated into the

optimization process simply because those techniques cannot handle words as a com-

20

puting element. In particular, the following two key issues were missed by classical

simulation optimization research:

1. Vague targets. Decision makers typically state their aspiration levels associated

with the system performance measures in vague manner. For instance, in a

manufacturing facility a high service level can become the driving goal, while

having a low cell loss can become the driving direction for a simulation study

of an ATM network. The vague terms high and low used by the decision maker

should be directly incorporated into the analysis and the optimization strategy

directed to satisfy such targets. Furthermore, these targets may involve multiple

criteria (e.g. high service level and low work in process).

2. Knowledge. Despite of the fact that knowledge is often expressed by rules using

natural language, the classical approaches to simulation optimization do not

provide any mechanism to incorporate this type of information. For instance,

in the manufacturing setting it is possible to come up with rules such as “if

the service level is low then the factory production rate should be increased by

a large amount”. Unfortunately knowledge expressed in terms of rules is not

included in any classical optimization strategy.

In this chapter, we propose a new mechanism for simulation optimization based on

fuzzy control that enhances existing optimization strategies by incorporating vague

targets and knowledge expressed in rules in an efficient and natural way. We are

interested in finding the values of the input parameters of a simulation model such

that all the objectives are satisfied to a high degree.

The chapter is organized as follows. In Section 3.2, we propose a fuzzy controlled

simulation optimization framework. Section 3.3 describes how the rules in the fuzzy

controller are designed. In Section 3.4, a flow line design problem in a manufacturing

setting is presented and used to illustrate our approach. Computational experiments

with one and two goals are presented. Finally, conclusions are given in Section 3.5.

3.2 Proposed Approach

Figure 3.1 shows the basic idea of our proposed approach. The system to be optimized

is modeled using a configurable simulator. The M performance measures of the

21

simulator are represented by linguistic variables and compressed using fuzzy sets

(linguistic values) by means of a fuzzification module. The fuzzified performance

measures become the inputs or state variables for a fuzzy controller, the core of our

optimization strategy. The fuzzy controller has a knowledge base composed of a

linguistic data base and a rule base (S rules). Based on the simulation performance

measures (state variables), the system consults the knowledge base and the fuzzy

controller determines the adjustments to be made to the simulation input parameters.

These adjustments are expressed in terms of fuzzy sets and need to be converted into

numbers through the defuzzification module. The defuzzified adjustments are used

to update the N simulation input parameters and then a new simulation model is

obtained. This cycle (iteration) continues until specified performance targets for the

simulated system are satisfied to a high degree. In this section we describe these

elements in more detail.

Simulated
System

Defuzzification
Module

Fuzzification
Module

Fuzzy
Inference
Engine

Knowledge
Base

Simulation inputs/
Controller outputs

Simulation Outputs/
Controller Inputs

Fuzzy Controller (Optimization Strategy)

())(,),()(1
t

M
tt ff xxxf �=

()ttt

N
xx ,,

1
�=x

()ttt

N
xx ∆∆=∆ ,,

1
�x

Rule Base

Data Base

QP
~~ →

(S rules)

'~
P

'~
Q

Figure 3.1: Fuzzy controlled simulation optimization

3.2.1 Simulator

The simulator is the component that contains the discrete event simulation model.

Depending on the system that is being modeled, different inputs can be controlled

and several responses can be measured.

22

Let x = (x1, . . . , xN) be the N -dimensional vector of input parameters, with x ∈ X
and xj ∈ Xj, for j = 1, . . . , N . This vector should be chosen in such a way that only

inputs relevant to the performance measures of interest are considered. For specific

applications, it may be helpful to have some factor screening procedure to identify

the relevant inputs before the controller is designed [77, 81, 117].

Let f(x) = (f1(x), . . . , fM(x)) be the M -dimensional vector of average system

performances measures, with f(x) ∈ Y and fi(x) = yi ∈ Yi, for i = 1, . . . , M . These

measures should be easily collectable and retrievable after the simulator completes a

batch of replications.

The simulator also has to be easily configurable to allow the adjustment of the

structural parameters, such as the number of replications, run length, and random

seeds.

3.2.2 Fuzzy Controller

When a simulation model is defined, the M inputs (or state variables) and N outputs

(or control variables) of the controller are identified. Figure 3.1 shows the correspon-

dence between the outputs of the simulation model and the inputs of the controller,

and the inputs of the simulation model with the outputs of the controller.

Our controller uses the concept of a linguistic variable in order to express natural

language or imprecise information. The approximate values of the variable are known

as linguistic terms. Fuzzy sets provide a convenient way to represent the linguistic

terms that refer to a base variable whose values range over a universe of discourse.

When the linguistic terms are expressed by fuzzy sets, the membership functions

capture the meaning of each term. Once the inputs and outputs of the controller are

identified, we have to select meaningful linguistic values for each linguistic variable.

For instance, the simulation optimization of a manufacturing system may have a

performance measure called utilization. As a linguistic variable, utilization could be

compressed into the terms low, medium and high, with each membership function

defined over the universe of discourse X = [0%, 100%].

In a fuzzy controller, knowledge is stored in the form of fuzzy inference rules. Our

approach uses rules of the following form [87]:

if p1 is P̃1 and . . . and pM is P̃M then qj is Q̃j (3.1)

23

where pi is a state linguistic variable with its corresponding linguistic value P̃i defined

over the universal set Yi (for i = 1, . . . ,M), and qj is a linguistic control variable

with its corresponding linguistic value Q̃j defined over the universal set ∆Xj, j =

{1, . . . , N}.
The fuzzification interface establishes a mapping between observed average values

of performance measures coming from the simulator and fuzzy sets defined in the

universe of the corresponding variables. Once these state variables are fuzzified they

become inputs for the fuzzy controller.

For i = 1, . . . ,M and r = 1, . . . , S we define the following mapping:

P̃ ′
ri = Fr(fi(x

t)) (3.2)

where, xt is the vector of simulation inputs for the t-th iteration (a full cycle in

Figure 3.1), P̃ ′
ri is a fuzzy set associated with the r-th rule and the observed i-th

average performance measure fi(x
t) defined over the universal set Yi, and Fr(·) is a

fuzzification function.

We use a special case of the fuzzification function called singleton fuzzification

[78]. This function constructs a fuzzy set P̃ ′
ri as follows:

µP̃ ′
ri
(fi(x)) =

{
1, if fi(x) = fi(x

t)

0, otherwise
(3.3)

Probably the most fundamental rule in logic is the rule of Modus Ponendo Ponens,

more familiarly known as Modus Ponens. Modus Ponens (MP) states that if we have

a conditional (rule) and a known antecedent (fact), then we can infer the consequent

(conclusion). To allow similar inference with linguistic variables, Zadeh [145] proposed

an extension of the classical Modus Ponens called the Generalized Modus Ponens

(GMP).

For a single rule with one antecedent and one consequent. GMP can be written

as

Rule if p is P̃ then q is Q̃

Fact p is P̃ ′

Conclusion q is Q̃′

where P̃, Q̃, P̃ ′, and Q̃′ are fuzzy sets and P̃ ′ is close to P̃ and Q̃′ is close to Q̃.

24

The fuzzy rule “if p is P̃ then q is Q̃” represents a fuzzy relation between P̃ and

Q̃. The fuzzy relation P̃ −→ Q̃ is expressed by a fuzzy set R̃ defined on the space

Y × ∆X.

Different definitions of union, intersection, and complement, lead to different ways

to express the fuzzy implication P̃ −→ Q̃. The standard intersection and union of

fuzzy sets (t-norm and t-conorm, respectively) are:

µÃ∩B̃(u) = min(µÃ(u), µB̃(u)) (3.4)

µÃ∪B̃(u) = max(µÃ(u), µB̃(u)) (3.5)

In particular, using (3.4), the Mamdani implication [87] is:

µR̃m
(y, ∆x) = min(µP̃(y), µQ̃(∆x)), for y ∈ Y, ∆x ∈ ∆X (3.6)

To complete the fuzzy inference engine we need a mechanism to derive the mem-

bership of the consequent (i.e., µQ̃′(∆x) for each x ∈ ∆X), once the fact is known (i.e.,

µP̃ ′(y) for each y ∈ Y). The most commonly used mechanism is the compositional

rule of inference (CRI) proposed by Zadeh [145]:

µQ̃′(∆x) = max
y∈Y

(
T (µP̃ ′(y), µR̃(y, ∆x))

)
, for ∆x ∈ ∆X (3.7)

where T is a t-norm.

Choosing Mamdani’s implication operator R̃m defined in (3.6), the standard fuzzy

intersection in (3.4) as the t-norm for T , and the fuzzy singleton fuzzification in (3.3),

the CRI reduces to the following expression for the single rule with one antecedent

and one consequent:

µQ̃′(∆x) = min(µP̃(f(xt)), µQ̃(∆x)), for ∆x ∈ ∆X, (3.8)

where µP̃(f(xt)) is called the firing strength of the rule when the performance level

f(xt) is obtained via the simulator.

For rules with multiple antecedents such as the one in (3.1), the consequent is

obtained by generalizing the idea of the CRI. For r = 1, . . . , S,

µQ̃′
rj

(∆xj) = min
(
min

(
µP̃r1

(f1(x
t)), . . . , µP̃rM

(fM(xt))
)
, µQ̃rj

(∆xj)
)

for ∆xj ∈ ∆Xj

(3.9)

where min(µP̃r1
(f1(x

t)), . . . , µP̃rM
(fM(xt))) is the “firing strength” of the r-th rule.

25

To aggregate the information obtained from these rules, a connective operator is

needed. Normally, the fuzzy union is used as this connective. Using the standard

fuzzy union presented in (3.5), the aggregate fuzzy set for input j, j = 1, . . . , N , is

given by

µQ̃′
j
(∆xj) = max

(
µQ̃′

1j
(∆xj), . . . , µQ̃′

Sj
(∆xj)

)
, for ∆xj ∈ ∆Xj (3.10)

This aggregation procedure produces one fuzzy (adjustment) set for each simulation

input.

The defuzzification mechanism maps the fuzzy sets obtained from the inference

procedure into crisp adjustments in the values of the inputs for the simulator.

There are a number of different defuzzification methods used in practice [78].

Among these, we have chosen to use the centroid of area as our defuzzification mech-

anism. With this mechanism, for j = 1, . . . , N ,

∆xt
j =

∫
∆xj

∆xjµQ̃′
j
(∆xj)d∆xj∫

∆xj
µQ̃′

j
(∆xj)d∆xj

(3.11)

3.2.3 Handling Multiple Criteria

The simulator collects information from M performance measures, namely f1(x), . . . , fM(x).

The level of performance in the system is measured against a set of vague targets for

K ≤ M of these, i.e.,

pi1 should be P̃i1 and . . . and piK should be P̃iK . (3.12)

where, ik ∈ {1, . . . ,M} for k = 1, . . . , K are the indices of state variables used as

vague targets and P̃ik is the desired linguistic value for the k-th vague target pik .

The degree of satisfaction of the k-th target is given by µP̃ik
(x) for k = 1, . . . , K

and its range is [0, 1]. A fully satisfied goal has value of 1.

Following Section 3.1, when K = 1 (i.e., a target is specified for only one perfor-

mance measure) then we have an FSO problem, while when K > 1 we have a FMSO

problem.

When dealing with different and conflicting goals simultaneously, and in the ab-

sence of a mathematical specification of the decision maker’s utility function, our

approach provides the decision maker with an approximate set of Pareto optimal

solutions. We introduce the following multicriteria terminology.

26

Definition 1. For x ∈ X , ik ∈ {1, . . . ,M}, and k = 1, . . . , K, ~µ(x) ,(
µP̃i1

(fi1(x)), . . . , µP̃iK
(fiK (x))

)
is called a criterion vector, and M = {~µ(x)|x ∈ X}

is called the criterion space.

Definition 2. A solution x∗ ∈ X is efficient or Pareto optimal if and only if there

does not exist any x ∈ X such that µP̃ik
(fik(x)) ≥ µP̃ik

(fik(x
∗)), for ik ∈ {1, . . . ,M}

and k = 1, . . . , K, and µP̃ik
(fik(x)) > µP̃ik

(fik(x
∗)) for at least one ik. The set of all

Pareto optimal solutions is denoted by P∗.

Definition 3. Let ~µ(x), ~µ(z) ∈ M be two criterion vectors. Then, ~µ(x) dominates

~µ(z) if and only if ~µk(x) ≥ ~µk(z), for k = 1, . . . , K, and ~µk(x) > ~µk(z) for at least

one k. The notation is ~µ(x) Â ~µ(z).

Definition 4. Let ~µ∗ ∈ M. Then, ~µ∗ is nondominated if and only if there does not

exist any ~µ ∈ M that dominates ~µ∗. Otherwise, ~µ∗ is a dominated criterion vector.

Definition 5. The Pareto front (efficient frontier) PF∗ is defined as

PF∗ , {~µ(x) ∈ M|x ∈ P∗}

For further detail on multicriteria optimization the reader is referred to Steuer [122].

Recall that the knowledge base of the fuzzy controller is composed of a set of S

rules. For r = 1, . . . , S let these rules be

if pr1 is P̃r1 and . . . and prM is P̃rM then qrj is Q̃rj (3.13)

Based on the fact that each of these rules is designed so that it is able to drive

the simulated system towards the achievement of at least one target, our method

activates (fires) to a greater extent those rules that drive the simulation toward the

achievement of the currently less fulfilled goals.

Let wr be the “weight” associated with the r-th rule (for r = 1, . . . , S) and defined

by

wr = max
k

{θrk(fik(x))} (3.14)

where ik ∈ {1, . . . ,M}, k = 1, . . . , K, and

θrk(fik(x)) = 1 − µP̃ik
(fik(x)), (3.15)

27

if the k-th target is addressed through the r-th rule, 0 otherwise; and fik(x) is the

k − th performance for the simulation experiment with input parameter vector x =

(x1, . . . , xN).

The normalized weights can be defined by

w′
r =

wr

maxr∈{1,...,S}{wr} , (3.16)

if maxr∈{1,...,S}{wr} 6= 0; w′
r = 0, otherwise.

We use the normalized weights to modify the aggregated fuzzy sets obtained in the

fuzzification step used to adjust the simulation inputs. When using multiple criteria,

Equation (3.10) is replaced by:

µQ̃′
j
(∆xj) = max

(
w′

1µQ̃′
1j

(∆xj), . . . , w
′
SµQ̃′

Sj
(∆xj)

)
, for ∆xj ∈ ∆Xj (3.17)

The normalized weights can be viewed as an adaptive pressure mechanism for

obtaining a significative portion of this Pareto optimal set. The weights are updated

every time the controller is invoked, so that diversity on the Pareto front is obtained

by affecting the firing strength (i.e., larger weights) of those rules that are able to

drive the simulation to the achievement of the currently less fulfilled goals.

3.2.4 Algorithms

3.2.4.1 Target Threshold for the FSO Problem

To solve the fuzzy single response simulation optimization (FSO) problem (1.3) we

developed a heuristic algorithm based on our fuzzy control mechanism. The algorithm

tries to meet a user specified threshold on the degree of satisfaction of the single vague

target represented by a fuzzy set.

Let xt = (xt
1, . . . , x

t
N) ∈ X , ∆xt = (∆xt

1, . . . , ∆xt
N) ∈ ∆X, and f(xt) =

(f1(x
t), . . . , fM(xt)) ∈ Y be the simulation inputs, input adjustments, and outputs at

iteration t, respectively. Let P̃ −→ Q̃ be the knowledge base with rules in the form

of (3.1). Let i1 ∈ {1, . . . , M} be the index of the state variable used as the vague

target and P̃i1 be its desired linguistic value. Thus in (1.3), G̃ = P̃i1 . Let g ∈ [0, 1]

be the minimum desired degree of satisfaction (threshold) for the vague target, i.e.,

if µP̃i1
(fi1(x

t)) ≥ g then the target is deemed to be satisfied. Let tmax be a maximum

allowable number of iterations. Figure 3.2 displays the algorithm that solves FSO.

28

Step 0: Initialization

t ← 1.

Generate an initial feasible solution x1 ∈ X .

x∗ ← x1.

g ← 1 − ε, where 0 ≤ ε ¿ 1.

Step 1: Simulation

Evaluate f(xt)

Step 2: Termination

if µP̃i1
(fi1(x

t)) ≥ g then

x∗ ← xt

t ← tmax

if t ≥ tmax then

return x∗, fi1(x
∗), and µP̃i1

(fi1(x
∗))

stop

Step 3: Fuzzification (P̃′)

For each r = 1, . . . , S and i = 1, . . . ,M

µP̃ ′
ri
(fi(x)) ← 1 , if fi(x) = fi(x

t);

µP̃ ′
ri
(fi(x)) ← 0 , otherwise (see (3.3)).

Step 4: Inference (Q̃′)

For each r = 1, . . . , S and j = 1, . . . , N

calculate µQ̃′
rj

(∆xj), for all ∆xj ∈ ∆Xj according to (3.9).

For j = 1, . . . , N , aggregate the fuzzy sets Q̃′
rj (for r = 1, . . . , S) into Q̃′

j using (3.10).

Step 5: Defuzzification

For each j = 1, . . . , N , calculate ∆xt
j according to (3.11).

Step 6: Update

xt+1 ← ΠX (xt + ∆xt)

t ← t + 1

Go to Step 1. ¥

Figure 3.2: Target Threshold Algorithm

29

Note that when X is taken to be lj ≤ xt
j ≤ uj, for all j ∈ {1, . . . , N},

the projection onto the set of feasible input parameters X , ΠX (xt + ∆xt) =

(ΠX1(x
t
1 + ∆xt

1), . . . ,ΠXN
(xt

N + ∆xt
N)), is defined by

ΠXj
(xt

j + ∆xt
j) =

inf(Xj), if xt
j + ∆xt

j < inf(Xj)

h(xt
j + ∆xt

j), if inf(Xj) ≤ xt
j + ∆xt

j ≤ sup(Xj)

sup(Xj), if xt
j + ∆xt

j > sup(Xj)

(3.18)

where inf(Xj) and sup(Xj) are the infimum and supremum of the set Xj, respectively;

and

h(xt
j + ∆xt

j) =

xt
j + ∆xt

j if j /∈ I

dxt
j + ∆xt

j − 1
2
e if xt

j + ∆xt
j < 0 and j ∈ I

bxt
j + ∆xt

j + 1
2
c if xt

j + ∆xt
j ≥ 0 and j ∈ I

(3.19)

where I ⊆ {1, . . . , N} is an index set such that xt
j ∈ Z, for all j ∈ I; d·e is the ceiling

function that denotes the least integer greater than or equal to the argument; and

b·c is the floor function that denotes the greatest integer less than or equal to the

argument.

3.2.4.2 Pareto Optimization for the FMSO Problem

For problems with multiple and conflicting criteria we developed a heuristic algorithm

to solve the fuzzy multicriteria simulation optimization (FMSO) problem (1.4). The

proposed algorithm discovers a significant portion of the Pareto optimal set by using

adaptive weights that affect the firing strength of the rules (see Section 3.2.3).

Let xt = (xt
1, . . . , x

t
N) ∈ X , ∆xt = (∆xt

1, . . . , ∆xt
N) ∈ ∆X, and f(xt) =

(f1(x
t), . . . , fM(xt)) ∈ Y be the simulation inputs, input adjustments, and outputs at

iteration t, respectively. Let P̃ −→ Q̃ be the knowledge base with rules in the form

of (3.1). Let ik ∈ {1, . . . ,M} (for k = 1, . . . , K) be the index of the state variable

used as the k-th vague target and P̃ik be its desired linguistic value (K ≤ M). Let

P∗
approximate ⊆ X be the approximate Pareto optimal set generated by the algorithm.

To stop the algorithm, we let gik ∈ [0, 1] be the minimum desired degree of satis-

faction (threshold) for the k-th vague target and tmax be the maximum number of

iterations. Due to the conflicting nature of the multiple criteria, gik can rarely be

30

achieved simultaneously for k = 1, . . . , K. In other words, these collection of val-

ues as a whole represents a multicriteria ideal target. Figure 3.3 shows the Pareto

Optimization Algorithm that solves problem FMSO.

Another important element of the proposed approach is the concept of knowledge

extraction; that is, the capability of the system to learn, evolve and adapt based on

the experience that is gained throughout the simulation runs. Initially, it is possible

to start the controller with limited knowledge. As the cycle described in Figure 3.1

is repeated, more and more simulations are performed. The idea is to obtain better

information on the relations between inputs and outputs as the iteration continues.

This is illustrated in Figure 3.4. The process of shaping and tuning the fuzzy controller

data and rule base is known as fuzzy system identification. Fuzzy system identification

is, itself, a complex optimization problem that has drawn the attention of many

researchers [73, 83, 128]. The objective of this work is to validate the fuzzy controlled

simulation optimization framework. The next section describes the essentially manual

approach to knowledge extraction we have used in the framework validation. An

automated soft computing based fuzzy system identification mechanism is out of the

scope of this dissertation.

3.3 Knowledge Acquisition

The rule structure of the approach presented in Section 3.2 allows knowledge from

experts to be incorporated into the optimization strategy. However, if the simulated

system is complex, important rules may be overlooked or it may be beneficial to

include rules that are difficult for an expert to recognize. This section briefly describes

some techniques that can be applied to generate rules in a systematic manner.

In order to build the rule base, it is necessary to explore the relations between

inputs and outputs of the simulated system. Experimental design provides a way

of planning which configurations to simulate so that the desired information can be

obtained with the least simulation effort [81]. In experimental design terminology,

the input parameters are called factors and the performance measures (outputs) are

called responses. The “experiment” is the execution of a simulation model with the

factors fixed at certain levels. A carefully planned design of experiments can provide

us with valuable data from which to extract rules based on the relations between

factors and responses. Depending on the complexity of the model, available time,

31

Step 0: Initialization

t ← 1

Generate an initial feasible solution x1 ∈ X .

x∗ ← x1

P∗
approximate = {x1};

gik ← 1 − εk (for k = 1, . . . , K), where 0 ≤ εk ¿ 1; and

Step 1: Simulation

Evaluate f(xt)

Step 2: Termination

if µP̃ik
(fik(x

t)) ≥ gik (for all k) or t ≥ tmax then

return P∗
approximate

stop

Step 3: Dominance

3.1. flag ← 1

3.2. For each d ∈ P∗
approximate

do

if ~µ(xt) Â ~µ(d) then P∗
approximate ← P∗

approximate \ {d}
if ~µ(d) Â ~µ(xt) then

flag ← 0

Go to Step 3.3.

end

3.3. if flag = 1 then P∗
approximate ← P∗

approximate ∪ {xt}
Step 4. Weights

For r = 1, . . . , S use (3.14),(3.15), and (3.16) to calculate

the adaptive firing strength weights w′
r.

Step 5: Fuzzification (P̃′)

For each r = 1, . . . , S and i = 1, . . . ,M

µP̃ ′
ri
(fi(x)) ← 1 , if fi(x) = fi(x

t);

µP̃ ′
ri
(fi(x)) ← 0 , otherwise (see (3.3)).

Figure 3.3: Pareto Optimization Algorithm

32

Step 6: Inference (Q̃′)

For each r = 1, . . . , S and j = 1, . . . , N

calculate µQ̃′
rj

(∆xj), for all ∆xj ∈ Xj according to (3.9).

For j = 1, . . . , N , aggregate the fuzzy sets Q̃′
rj (for r = 1, . . . , S) into Q̃′

j using (3.17).

Step 7: Defuzzification

For each j = 1, . . . , N , calculate ∆xt
j according to (3.11).

Step 8: Update

xt+1 ← ΠX (xt + ∆xt), where ΠX (·) is a projection onto X according to (3.18) and (3.19).

t ← t + 1

Go to Step 1. ¥

Figure 3.3: Pareto Optimization Algorithm (continued).

and computational resources, acceptable choices for our framework may be 2N or 3N

factorial designs (for N < 10). For further information on experimental design the

reader is referred to [16, 81, 93].

By executing the simulation model according to the experimental design, a set with

L observations of inputs (factors) and outputs (responses) is obtained. By examining

the associated matrix of correlation coefficients between inputs and outputs, single

antecedent rules of the type “if p is P̃ then q is Q̃” can be generated. The sample

correlation coefficient, for the input j ∈ {1, . . . , N} and output i ∈ {1, . . . ,M}, is

defined as:

ρji =

∑L
l=1(xjl − x̄j)(fil(xl) − f̄i)√∑L

l=1(xjl − x̄j)2

√∑L
l=1(fil(x) − f̄i)2

(3.20)

where L is the number of observations (experiments); xjl is the value of the j-th input

(factor) for the l-th observation; fil(xl) is the i-th output (response) obtained with in-

put parameters xl; x̄j =
∑L

l
xjl

L
is the average of the j-th input across all observations;

and f̄i =
∑L

l
fil(xl)

L
is the average of the i-th output across all observations.

The correlation coefficient ρji lies between -1 and +1. It measures the strength of

association between the input j and output i. Roughly speaking, a value of ρji > 0

implies that increasing the value of input j has the tendency to increase the value

33

Simulator
Configuration

Simulation

Activate Fuzzy
Rules/Logic

Goals met?

Stop

Input - Performance
Data

Fuzzy
System / Relationship

Identification

Knowledge
Extraction

Fuzzy Controlled
Simulation Optimization

Yes

No

Figure 3.4: Fuzzy controlled simulation optimization and knowledge extraction

of the output i, while decreasing the value of input j has the tendency to decrease

the value of the output i. On the other hand, a value of ρji < 0 implies that an

increase in the input j has a decremental effect on output i, while a decrease has an

incrementing effect. Based on this relationship and its strength (closeness to -1 and

+1), simple rules “if p is P̃ then q is Q̃” can be generated.

To enrich the expressive power of the rule base, rules of the type “if pi1 is P̃i1

and pi2 is P̃i2 then q is Q̃” (i1, i2 ∈ {1, . . . ,M}) may be considered. The correlation

coefficient does not provide any means measuring the effect of interactions among

multiple inputs with reference to a single output.

To get a feeling for these relationships we can use the method of least squares to

fit quadratic response surface regression models to the observations obtained through

the design of experiments [16, 93]. These response surface models or metamodels can

also be used to test for the significance of individual factors and interactions and to

predict new values of the response. The quadratic model can be expressed as

fi(x) = x′Ax + bx + e (3.21)

where x = (x1, . . . , xN)′ are the simulation inputs, fi(x) is the i-th performance

34

measure (for i = {1, . . . , M}), A is a N × N symmetric parameter matrix, b is a

linear parameter vector, and e is the error term.

By fitting these models to our responses, we can extrapolate the scattered mea-

surements obtained with the design of experiments and get a sense of the effect on

the outputs, obtained by changing multiple inputs simultaneously. In classical re-

sponse surface methodology [16, 93], the interest is on finding the best combination

of inputs to accurately predict the response. In our case, we just want to discover ba-

sic relationships between inputs and outputs that can be easily translated into fuzzy

rules.

3.4 Application to Flow Line Design

3.4.1 Introduction

We illustrate the proposed approach using a common problem that arises in manu-

facturing, namely the Flow Line Design Problem (FLDP). The flow line is a widely

used way to organize production, especially for products made in sufficient volume

to justify the investment in dedicated machines, operators, and material handling

systems.

The flow line that is modeled in this section is a single product line with human

unpaced workers [18]. The interarrival times are stochastic (not necessarily exponen-

tial). The line has V stations (or stages), with a buffer in front of every station.

There is no transit time between one station and the next one. Every station has one

or more identical servers. The service time is stochastic (not necessarily exponential).

This flow line, which falls into the category of asynchronous lines, does not have any

coordination of job movement between stations. An available operator starts a job as

soon as it is available and, upon completion, the job leaves the station provided there

is room for it in the next station. This mode of operation, may cause starvation and

blocking of servers. It is appropriate to model this flow line as a tandem queueing

network with blocking such as the one depicted in Figure 3.5, where λ is the arrival

rate to the flow line, and γv, sv, and bv, are the service rate, number of servers, and

buffer capacity for station v ∈ {1, . . . , V }, respectively.

For very small queueing networks with blocking, it is possible to solve numerically

for the stationary distribution of the underlying stochastic process. Unfortunately,

35

… … … …

1γ

1γ

2γ

2γ

3γ

3γ

4γ

4γ∞=1b 2b 3b 4b

1s 2s 3s 4s

λ

Figure 3.5: Tandem of queues with blocking (flow line)

this approach can be computationally intensive and impractical for most realistic

scenarios. One approach to analyze these configurations is through the use of an

approximation algorithm based on the idea of decomposition. The idea is to break

the tandem configuration into subsystems and to analyze each subsystem individually.

To perform this analysis in isolation, it is necessary to have input from the other

subsystems. Therefore, the approximate algorithm is designed as an iterative scheme

that tries to satisfy some convergence criterion in the system. An overview of these

algorithms can be found in [101].

Discrete event simulation provides a more flexible approach for analyzing the

system shown in Figure 3.5. This is the approach that we have used.

There is no unique Flow Line Design Problem (FLDP) definition. It can be

formulated as a problem of minimizing the labor cost of meeting a given throughput,

subject to constraints on meeting quality targets and keeping work–in–process or

space less than given maximum levels. An alternative formulation can be stated as

that of minimizing the sum of labor costs, work–in–process and space costs subject

to quality and throughput constraints [18]. Our approach is flexible enough to let

the user specify the goal to be targeted. Moreover, we allow the user to find a design

evaluated by multiple criteria.

3.4.2 Framework

Figure 3.6 shows the actual implementation of the simulation optimization framework,

presented in Figure 3.4, used to tackle the flow line design problem. Again, the basic

components are a discrete event simulator of the flow line and a fuzzy controller that

are tightly coupled. These components are described in the following sections. Figure

3.6 also indicates that the fuzzy controller was built off–line. In other words, first

the controller was built and then it was used to control the simulation. Once the

36

controller was built, new simulation runs did not affect the controller design.

Flow Line
Configuration

Simulation

Activate Fuzzy
Rules/Logic

Goals met?

Stop

Fuzzy Controller Design

Batch
Knowledge
Extraction

Simulation Optimization
Via Fuzzy Control

Start
Start

Design of Experiments

Correlation

Single rules

Rule base design

Response Surface Models Statistical Analysis

Linguistic data base design

Composite rules

Figure 3.6: Flow line optimization framework

3.4.3 Simulator

Arrivals of jobs to the system were generated according to a homogeneous Poisson

process with mean arrival rate λ. Each station v ∈ {1, . . . , V } had sv identical servers

with a controllable service rate γv. The service times were exponentially distributed.

Each station had a limited buffer size bv.

Table 3.1 lists all the input parameters and their possible values for the flow line

model shown in Figure 3.5. Note that those inputs for which the lower and upper

bound are identical, were considered fixed. In total, there were seven controllable

inputs (i.e., N = 7).

The performance measures that were collected by the simulator and define the

state variables of the fuzzy controller are the overall time in system (τ), overall work–

in–process or WIP ($), work–in–process at station v ($v), and server utilization at

station v (ϕv), for v = 1, . . . , 4. In total, there were ten system performance measures

(i.e., M = 10).

Throughout this work we used transient simulation analysis based on the method

of independent replications [80]. Note that in this particular case, it is not hard to

37

Parameter Station 1 Station 2 Station 3 Station 4

Min. Max. Min. Max. Min. Max. Min. Max.

Arrival rate (λ) 2 2 - - - - - -

Server rate (γ) 2.1 4.9 0.5 0.5 0.3 2.1 0.7 0.7

Servers (s) 1 1 5 9 1 7 3 9

Buffer size (b) ∞ ∞ 1 7 3 3 1 9

Table 3.1: Flow line simulation inputs ranges

find the set of conditions on the service rates that makes the flow line simulation reach

steady state (i.e., λ
sv ·γv

< 1 for every station v). However, in the more general case of

supply chain or telecommunication systems these conditions are frequently unknown.

To explore the relations between inputs and outputs of the flow line model, a

set of simulation experiments was executed. For each of the seven inputs or factors,

three different levels were specified. The levels were set to the minimum, maximum

and the mid point of the ranges in Table 3.1. The total number of combinations in

this 3N design is 2, 187 (i.e., 37), but only 1, 458 simulations were actually needed

due to the easily verifiable steady state condition cited above. For each experiment,

20 replications of 1,440 time units were conducted. The simulator was implemented

using AweSim [103].

3.4.4 Knowledge Base Design

3.4.4.1 State and Control Variables

Recall that, the state and control variables of the fuzzy controller are coupled to the

outputs and inputs of the simulator, respectively.

The state variables for the fuzzy controller and their possible values were specified

as follows: time in system (τ) can be short (S̃τ), medium (M̃τ), or long (L̃τ); overall

work–in–process ($) can be low (L̃$), medium (M̃$), or high (H̃$); work–in–process

at station v ($v) can be low (L̃$v), medium (M̃$v), or high (H̃$v); and utilization at

station v (ϕv) can be low (L̃ϕv), medium (M̃ϕv), or high (H̃ϕv).

Figure 3.7 and Figure 3.8, depict the fuzzy sets representing the possible values of

work–in–process and utilization at station 1, respectively. The rest of the fuzzy sets

are given in Appendix A.

38

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 10 20 30 40 50 60 70 80 90 100

Overall work-in-process

M
em

be
rs

hi
p

Low Medium High

Figure 3.7: Overall work–in–process ($)

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Utilization at station 1

M
em

be
rs

hi
p

Low Medium High

Figure 3.8: Utilization at station 1 (ϕ1)

The control variables for the fuzzy controller and their possible values were spec-

ified as follows: change in server rate at station v (∆γv) can be negatively large

(ÑL∆γv), negatively small (ÑS∆γv), zero (Z̃∆γv), positively small (P̃S∆γv), or posi-

tively large (P̃L∆γv); change in number of servers at station v (∆sv) can be negatively

large (ÑL∆sv), negatively small (ÑS∆sv), zero (Z̃∆sv), positively small (P̃S∆sv), or

positively large (P̃L∆sv); and change in buffer size at station v (∆bv) can be negatively

large (ÑL∆bv), negatively small (ÑS∆bv), zero (Z̃∆bv), positively small (P̃S∆bv), or

positively large (P̃L∆bv).

Figure 3.9 depicts the fuzzy sets representing the possible values of the change in

server rate at station 1. The rest of fuzzy sets are presented in Appendix A.

3.4.4.2 Linguistic Data Base Design

When a fuzzy controller is designed, the state and control variables and their values

are known qualitatively. The membership functions that encapsulate this knowledge,

have to be parameterized based on observed data or the opinion of experts.

For the flow line state variables, an off–line method based on univariate statistical

39

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8

Change in server rate at station 1

M
em

be
rs

hi
p

Low Medium High

Figure 3.9: Change in server rate at station 1 (∆γ1)

analysis was performed to tune these functions. Using data collected in the design of

experiments (see Section 3.4.3), descriptive statistics were calculated to obtain an idea

of the spread of the performance measures from the simulation (i.e., fuzzy controller

state variables). For instance, for the work–in–process ($), using The SAS System

[67] we calculated the 25th (11.4), 50th (29.8), and 75th (67.1) percentiles. These

values are reflected in the shapes of the values L̃$, M̃$, and H̃$, shown in Figure

3.7. The rest of state variables were tuned in a similar fashion.

The membership functions of the control variables were determined using the

information in Table 3.1. The range for each output was divided evenly into 5 fuzzy

sets: negatively large (ÑL·), negatively small (ÑS·), zero (Z̃·), positively small (P̃S·),

and positively large (P̃L·). For instance, let us consider the membership function for

the change in server rate at station 1 shown in Figure 3.9. From Table 3.1 we see

that the associated simulation input varies from 2.1 to 4.9. If the parameter is at

its lowest value, the maximum change that can be made in the server rate is +2.8.

Similarly, if the server rate is in its maximum (4.9), a maximum decrease of -2.8 is

possible. Therefore, the range of the control variable is -2.8 to 2.8. The rest of control

variables were tuned in a similar way.

3.4.4.3 Rule Base Design

3.4.4.3.1 Single Antecedent Rules After executing the simulation experiments

described in Section 3.4.3, the correlation matrix shown in Figure 3.10 was calculated.

The correlations in Figure 3.10 were used to estimate the magnitude and direction

of association between the simulation inputs and outputs. Based on this information

single antecedent rules were built. For instance, the strong and negative association

40

-0.9713 0.3152 0.0139 0.3085 -0.3406 -0.3653 0.221 0.0702 0.0534 -0.3403

0.0018 0.0122 -0.8609 0.0294 -0.0488 -0.0136 -0.1106 -0.6366 0.0122 -0.0493

0.0295 0.2187 0.0093 0.2079 -0.2056 -0.2184 0.0517 0.0694 0.038 -0.2055

0.0314 0.2748 0.4773 0.2686 -0.2627 -0.2755 -0.2595 0.2882 0.0718 -0.2625

0.0332 0.3076 0.0152 0.3265 -0.3474 -0.3013 -0.3488 -0.3884 -0.6377 -0.3472

0.0188 0.1126 0.008 0.1101 -0.1036 -0.1245 0.3654 0.0256 0.0175 -0.1036

0.0142 0.1307 0.009 0.1247 -0.1158 -0.1253 -0.0559 -0.0602 0.3583 -0.1156

1ϕ 2ϕ 3ϕ 4ϕ ϖ
1ϖ 2ϖ 3ϖ 4ϖ τ

1γ
3γ

2s

3s

4s

2b

4b

System performance measures

In
pu

ts
Figure 3.10: Correlation coefficients extracted from the full correlation matrix

between the server rate and the utilization at station 1 (i.e., -0.9713), suggests that

if we want to increase the level of utilization at that station we should consider

decreasing the server rate. On the other hand, if we increase the server rate, the

utilization will decrease. The following three rules were constructed based on this

particular correlation:

• If utilization at station 1 (ϕ1) is high (H̃ϕ1) then the change in the server rate

at station 1 (∆γ1) should be zero (Z̃∆γ1).

• If utilization at station 1 (ϕ1) is medium (M̃ϕ1) then the change in the server

rate at station 1 (∆γ1) should be negatively small (ÑS∆γ1).

• If utilization at station 1 (ϕ1) is low (L̃ϕ1) then the change in the server rate at

station 1 (∆γ1) should be negatively large (ÑL∆γ1).

Other single antecedent rules, which will be presented later, were generated in a

similar fashion.

3.4.4.3.2 Multiple Antecedent Rules To get a more detailed idea of the rela-

tions between inputs and outputs, response surfaces were fitted to the data obtained

from the simulation experiments.

For instance, the following quadratic model with interactions was obtained for the

overall work–in–process (R2 = 0.8143) using The SAS System [68]:

$ = 1118.934697 − 135.130079γ1 − 199.081179γ3 − 68.950721s2 − 74.839592s3 −
53.882586s4−22.531804b2−15.677057b4+11.144542γ2

1+1.870049γ3·γ1+51.294286γ2
3+

3.841387s2 · γ1 + 1.331735s2 · γ3 + 2.737977s2
2 + 0.909195 + s3 · γ1 + 0.449057s3 · γ3 +

41

2
2.5

3
3.5

4
4.5

5

0

0.5

1

1.5

2

2.5

-50

0

50

100

Server rate at stage 1

Server rate at stage 3

O
ve

ra
ll

w
or

k
in

 p
ro

ce
ss

Figure 3.11: Response surface for the work–in–process (s3 = 4, s4 = 6, b2 = 4, b4 = 5,

and s2 = 7)

1.085798s3 ·s2+4.23128s2
3−0.43481s4 ·γ1+2.986399s4 ·γ3−0.257443s4 ·s2+1.923021s4 ·

s3 + 2.588835s2
4 + 2.364254b2 · γ1 + 0.243739b2 · γ3 + 1.136898b2 · s2 + 0.164275b2 · s3 −

0.091285b2 ·s4+0.41866b2
2−0.063077b4 ·γ1+1.176102b4 ·γ3−0.021688b4 ·s2+0.829086b4 ·

s3 + 0.968249b4 · s4 − 0.002358b4 · b2 + 0.249043b2
4

An associated surface for the work–in–process ($) versus server rate at station 1

(γ1) and server rate at station 3 (γ3), with s3 = 4, s4 = 6, b2 = 4, b4 = 5, and s2 = 7

is shown in Figure 3.11.

Similar models were obtained for other responses. Figure 3.12 shows a response

surface for the utilization at the first station (ϕ1). The R2 for this full quadratic

model is 0.9960.

Composite rules can be derived from inspection of these surfaces. For instance,

looking at Figures 3.11 and 3.12 the following rule was created:

• If the overall work–in–process ($) is high (H̃$) and the utilization at station 1

(ϕ1) is high (H̃ϕ1) then the change in the server rate at station 1 (∆γ1) should

be positively large (P̃L∆γ1).

Other composite rules, which will be presented later, were generated in a similar

42

2
2.5

3
3.5

4
4.5

5

0
0.5

1
1.5

2
2.5
0.4

0.5

0.6

0.7

0.8

0.9

1

Server rate at stage 1Server rate at stage 3

U
til

iz
at

io
n

at
 s

ta
ge

 1

Figure 3.12: Response surface for the utilization at station 1 (s3 = 4, s4 = 6, b2 = 4,

b4 = 5, and s2 = 7)

fashion.

3.4.5 Computational Experiments

We present computational experience with single–goal and two–goal flow line design

scenarios to illustrate the application of the algorithms for the FSO and FMSO pre-

sented in Section 3.2.4.

3.4.5.1 Single Objective

We first consider the case of a single–goal scenario in which a flow line is to be designed

trying to achieve a low overall work–in–process.

The target threshold algorithm presented in Section 3.2.4.1 was used to design

the flow line. The initial feasible solution was set to x0 = (γ0
1 , γ

0
3 , s

0
2, s

0
3, s

0
4, b

0
2, b

0
4)

′ =

(2.5, 0.7, 5, 4, 4, 2, 2)′. The state variable overall work–in–process $ was used as the

target variable and L̃$ as its desired linguistic value shown in Figure 3.7. The algo-

rithm’s threshold on the degree of satisfaction of the low overall work–in–process tar-

get was set to g = 0.999 and the maximum number of iterations was set to tmax = 10.

43

The rule base was built using the techniques described in Section 3.4.4.3. The

rule base composed by 6 single and 2 multiple antecedent rules follows:

Rule 1. If the overall work–in–process ($) is high (H̃$) then the change in server rate

at station 1 (∆γ1) should be positively small (P̃S∆γ1).

Rule 2. If the overall work–in–process ($) is medium (M̃$) then the change in server

rate at station 1 (∆γ1) should be positively small (P̃S∆γ1).

Rule 3. If the overall work–in–process ($) is low (L̃$) then the change in server rate at

station 1 (∆γ1) should be zero (Z̃∆γ1).

Rule 4. If the overall work–in–process ($) is high (H̃$) then the change in the number

of servers at station 4 (∆s4) should be positively small (P̃S∆s4).

Rule 5. If the overall work–in–process ($) is medium (M̃$) then the change in the

number of servers at station 4 (∆s4) should be positively small (P̃S∆s4).

Rule 6. If the overall work–in–process ($) is low (L̃$) then the change in the number

of servers at station 4 (∆s4) should be zero (Z̃∆s4).

Rule 7. If the overall work–in–process ($) is high (H̃$) and the utilization at station 3

(ϕ3) is high (H̃ϕ3) then the change in the server rate at station 3 (∆γ3) should

be positively large (P̃L∆γ3).

Rule 8. If the overall work–in–process ($) is medium (M̃$) and the utilization at station

3 (ϕ3) is high (H̃ϕ3) then the change in the server rate at station 3 (∆γ3) should

be positively small (P̃S∆γ3).

The algorithm stopped with the solution x∗ = (γ∗
1 , γ

∗
3 , s

∗
2, s

∗
3, s

∗
4, b

∗
2, b

∗
4)

′ =

(3.6162, 1.4027, 5, 4, 6, 2, 2)′. The degree of satisfaction of the goal “low overall work–

in–process” (L̃$) as the algorithm progresses can be seen in Figure 3.13. This graph

shows that the objective becomes highly satisfied (i.e., 0.9920 on a scale from 0 to 1),

with dramatic improvement made in very few iterations using very few rules.

To illustrate the system’s controllability, ten runs of the algorithm presented in

Figure 3.2 were executed choosing random initial conditions. The initial conditions

are shown in Table 3.2. To improve the effectiveness of the algorithm, seven additional

multiple antecedent rules were added to the rule base. We set tmax ← 10 and g ← 1.

44

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experiment

M
em

be
rs

hi
p

Figure 3.13: Control path for the overall work–in–process membership function for

the single–goal scenario.

Run γ1 γ3 s2 s3 s4 b2 b4

1 2.1 2.1 5 1 3 1 1

2 4.4 1.4 7 6 7 5 3

3 3.2 1.1 6 6 6 1 9

4 2.9 1.9 8 3 5 3 4

5 4.6 0.9 6 6 7 6 4

6 3.3 1.9 8 2 8 5 9

7 4.2 1.8 5 4 4 2 4

8 3.4 0.9 9 3 4 3 7

9 3.4 1.4 5 6 3 1 6

10 4 0.9 8 5 8 6 2

Table 3.2: Initial conditions for the single–goal scenario with improved controllability

45

1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

11.5

O
ve

ra
ll

W
IP

Run

Full Membership Limit

Figure 3.14: Solution for different initial conditions for the single–goal scenario with

improved controllability

Regardless of the initial conditions (run number), the controller was able to find a

configuration of the simulated flow line such that the goal of low work–in–process level

is satisfied to the highest possible degree. Recall from Figure 3.7 that µL̃$
(x) = 1 for

x ≤ 11.4. The final solution (f$(x∗)) for each of the ten runs is illustrated in Figure

3.14.

3.4.5.2 Multiple Objectives: Generating the Efficient Frontier

In this section we present a scenario in which a flow line is designed based on two con-

flicting goals which we wish to satisfy simultaneously. The purpose of this example

is to illustrate how we can obtain an approximate Pareto front by guiding the simu-

lation of the flow line with a fuzzy controller using the algorithm presented in Figure

3.3. Specifically, we wish to design the flow line to achieve “low work–in–process”

and “high utilization at station 1”, simultaneously.

For the fuzzy controlled approach we developed a rule base composed of 18 rules

(Appendix B). The state variables used as vague targets were overall work–in–process

($) and utilization at station 1 (ϕ1) with values L̃$ (Figure 3.7) and H̃ϕ1 (Figure

3.8), respectively. We conducted ten runs of the algorithm shown in Figure 3.3, with

randomly selected initial conditions. For each run, we set g$ = 1 and gϕ1 = 1 and

tmax = 10.

46

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process
D

eg
re

e
of

 h
ig

h
ut

ili
za

tio
n

at
 s

ta
ge

 1

Figure 3.15: Approximate Pareto front for the two-goal scenario

Figure 3.15 shows the approximate Pareto front obtained by the proposed ap-

proach. With only 100 simulation runs the Pareto front is evenly generated and a

good sense of its shape is obtained.

Even though it is customary to assess the quality of the Pareto front by visual

inspection, Zitzler and Thiele [150] have recently proposed a metric based on the

dominated space defined by the nondominated vectors of the Pareto front. Because

each axis of the Pareto front is associated to the degree of satisfaction of a criterion,

the dominated space is bounded by 0 and 1, being 1 the best value possible. This

metric is further discussed in Section 4.2. In Figure 3.16 our visual assessment is

validated by Zitzler and Thiele’s metric, which after 100 simulation runs is 0.973.

Perhaps, the most revealing result is the fast convergence to a high quality solution.

Note that only 25 simulation runs are needed to generate a Pareto front with Zitzler

and Thiele’s metric of 0.962.

3.5 Concluding Remarks

We have proposed a new mechanism for the optimization of complex systems modeled

by discrete event simulation. Contrary to classical methods, our approach works

with imprecise concepts and natural language to aid the decision maker in the system

design process. A distinctive feature of our simulation optimization strategy is the use

of approximate reasoning through a fuzzy controller to drive the optimization process

using a small set of rules that encapsulates the relevant knowledge of the system.

47

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Iteration

D
om

in
at

ed
 s

pa
ce

Figure 3.16: Zitzler and Thiele’s dominated space metric [150] for the two-goal sce-

nario

Using these rules, which are easily generated from statistical correlation measures

and quadratic response surface models, the controller drives the system towards a

high degree of satisfaction of one or more vaguely stated targets. In the presence

of multiple and conflicting objectives, the proposed approach is able to construct an

approximate Pareto optimal set. The computational results confirm that the proposed

approach delivers a high quality solution (in terms of the size of the dominated space

[150]) in a fast and efficient manner.

48

Chapter 4

A Multicriteria Evolutionary

Approach

This chapter provides an alternative evolutionary approach to solving the fuzzy mul-

ticriteria simulation optimization (FMSO) problem. To the best of our knowledge,

there has been no study in the field of simulation optimization that combines the

search power of evolutionary algorithms and the natural multicriteria characteristics

of simulation. The absence of such study, combined with the synergistic view of these

techniques, has motivated us to develop the evolutionary algorithm presented in this

chapter. In addition, using this alternative approach we are able to assess the quality

of the solutions obtained by the method presented in the previous chapter. In the

first part of this chapter, we describe the evolutionary approach, while the second

part deals with the comparison of the performance of these two approaches in solving

the Flow Line Design Problem.

4.1 Evolutionary Algorithm

We propose a new approach to multicriteria optimization, which we call the Opti-

mal Scoring Evolutionary Algorithm (OSEA). This algorithm is designed to discover

Pareto optimal solutions. Although it is possible to apply OSEA to solve general mul-

ticriteria optimization problems, it has been designed specifically to solve the fuzzy

multicriteria simulation optimization problem (FMSO). The algorithm presented in

Figure 4.1 gives the pseudocode for OSEA.

49

t ← 0

Randomly generate the members of P (0)

Evaluate members of P (0) via simulation

Fuzzify observed performance levels for members of P (0)

Update P∗
approximate(0) from P (0)

E(0) ← P (0)

Assign fitness to members of E(0)

t ← 1

While t ≤ tmax then do

Select P (t) from E(t − 1)

Generate Cm(t) from P (t) (mutation)

Generate Cc(t) from P (t) (crossover)

C(t) = Cm(t) ∪ Cc(t)

Evaluate members of C(t) via simulation

Fuzzify observed performance levels for members of C(t)

Update P∗
approximate(t) from P (t)

Generate Ce(t) from P∗
approximate(t) (elitism)

E(t) = P (t) ∪ C(t) ∪ Ce(t)

Assign fitness to members of E(t)

t ← t + 1 ¥

Figure 4.1: Optimal Scoring Evolutionary Algorithm (OSEA)

50

where t is the generation number and tmax the maximum allowed number of genera-

tions. For the t-th generation, P (t) is the set (of size Pmax) of parents and C(t) is the

set of children, with Cm(t) being the children generated through mutation and Cc(t)

being the children generated through crossover. P∗
approximate(t) is the current approxi-

mate Pareto optimal set generated by the algorithm; Ce(t) is a subset of P∗
approximate(t)

selected for reinsertion into the population; and the set E(t) is the resulting expanded

population at iteration t.

In the remaining parts of this chapter we will describe the basic elements of the

algorithm shown in Figure 4.1.

4.1.1 Representation

Let xp = (xp
1, . . . , x

p
N) ∈ X be a vector of N controllable parameters of the simulation

model, where X is a closed set of constraints on xp, from the FMSO problem. In

OSEA we use a mixed representation, in which genes are encoded by integers and real

numbers. The j-th gene of the p-th chromosome (i.e., individual) is represented by

xp
j ∈ Xj, where Xj its the allowable range. Let I ⊆ {1, . . . , N} be an index set for the

integer genes. For each gene xp
j with j ∈ I, we use an integer encoding; while for xp

j

with j /∈ I, we use a floating point encoding [91]. Figure 4.2 (a) illustrates the mixed

representation for the p-th individual. As an example, let us consider an individual

in the flow line design problem (represented by a tandem of queues), discussed later

in Section 4.2. This p-th individual is represented by a six–dimensional vector, where

xp
1 ∈ [5, 9] is the number of servers allocated to the second station; xp

2 ∈ [1, 7] is the

size of the buffer space allocated to the second station; xp
3 ∈ [1, 7] is the number of

servers allocated to the third station; xp
4 ∈ [3, 9] is the number of servers allocated

to the fourth station; xp
5 ∈ [1, 9] is the size of the buffer space allocated to the

fourth station; xp
6 ∈ [2.1, 4.9] is the server rate in the first station; and xp

7 ∈ [0.3, 2.1]

is the server rate in the third station. Figure 4.2 (b) shows the p-th individual

xp = (6, 3, 3, 8, 5, 2.5, 0.9) as represented in OSEA. Furthermore, I = {1, 2, 3, 4, 5},
X1 = [5, 9], X2 = [1, 7], X3 = [1, 7], X4 = [3, 9], X5 = [1, 9], X6 = [2.1, 4.9], and

X7 = [0.3, 2.1].

51

p
jxpx1 � �

p
Ix p

jIx +
p
Nx��

p
Ix 1+

Integer portion Floating point portion

(a) Mixed representation.

336 8 0.92.5

Integer portion
Floating point

portion

px1
px2

px3
px4

px6
px7

5
px5

(b) Example of an in-
dividual in the Flow
Line Design Problem.

Figure 4.2: Representation in OSEA.

4.1.2 Evaluation

Let f(xp) = (f1(x
p), . . . , fM(xp)) be the M -dimensional vector of performance mea-

sures obtained by executing the simulation model with controllable parameters set to

xp. These measures should be easily collectable and retrievable after the simulator

completes a batch of replications. The mapping xp → f(xp) represents the evaluation

of the p-th individual of the population via the simulator.

Simulation optimization is computationally expensive due to the multiple number

of simulation scenarios evaluated. To streamline the evaluation process, we implement

a simulator accelerator. Before calling the simulator, a database with the history of

previously executed simulation runs is consulted. If the model defined by xp has

already been executed, the average performance measures are retrieved directly from

the database without invoking the simulator. If the model has not been run, the

simulator is invoked setting the controllable parameters to xp.

4.1.3 Fuzzification

The simulator collects information on M performance measures, namely

f1(x
p), . . . , fM(xp). The level of performance of the system is measured against a

subset of vague targets for K, K ≤ M , of these, i.e.,

gi1 should be G̃i1 and . . . and gik should be G̃ik . . . and giK should be G̃iK (4.1)

where, ik ∈ {1, . . . ,M} (for k = 1, . . . , K) are the indices of the system performance

measures used as vague targets, gik is the linguistic variable associated with the ik-th

52

system performance measure, and G̃ik is the desired linguistic value for gik . The degree

of satisfaction of the k-th target for the p-th individual is given by µG̃ik
(fik(x

p)) ∈ [0, 1]

for k = 1, . . . , K. To simplify the notation, we denote µG̃ik
(fik(x

p)) by µG̃ik
(xp). A

fully satisfied goal has value of 1. Fuzzification in OSEA can also be seen as a function

that maps the M -dimensional vector of observed performance levels obtained via

simulation to a K-dimensional vector of degree of satisfaction of the vague targets,

i.e., f(xp) → ~µ(xp).

To illustrate the use of fuzzy goals, in a simulation optimization model of a

telecommunications network, the desired level of performance of the system might

be stated as “low cell–loss and a high throughput”, where the terms low and high are

the desired vague values for the system performance measures cell–loss and through-

put, respectively.

4.1.4 Fitness Assignment

Evolutionary algorithms for multicriteria optimization differ mainly in the way of

assigning a fitness value to individuals in the population of solutions [150]. Several

different aggregation methods have been reported [63], with the most commonly used

involving the reduction of the multicriteria evaluation into a single scalar by means

of a linear combination. This linear combination is formed using previously specified

weights, proportional to the importance of each criterion. This aggregation approach’s

main strengths are its computational efficiency and ease of implementation; whereas

its main weakness is the difficulty in determining appropriate weights [29].

As the name suggests, OSEA (Optimal Scoring Evolutionary Algorithm) uses a

methodology that we call optimal scoring for fitness assignment. The basic idea of

optimal scoring is to evaluate each element of the expanded population E(t) using

a flexible aggregation approach. Optimal scoring addresses the main weakness of

aggregation approaches, namely the difficulty to agree upon a set of fixed weights, by

assigning “optimal” weights to each individual of the population under evaluation.

The idea is to let each individual choose weights which give it as high a score as

possible, subject to assigning weights and scores within the allowable ranges for all

individuals. After all the individuals in E(t) are optimally evaluated, their optimal

scores become their fitness assignment in the evolutionary algorithm.

Optimal scoring was developed following the principles of data envelopment anal-

53

ysis [22, 30]. Data Envelopment Analysis (DEA) is a linear programming based tech-

nique for measuring the relative performance of units, where the presence of multiple

inputs and outputs makes comparisons difficult. Contrary to classical DEA models,

optimal scoring considers outputs (i.e., system performance measures) exclusively.

However, as in DEA, optimal scoring requires the solution of a linear program [37]

for each individual (i.e., unit) under evaluation. This seems to be a very high price

to pay in the context of an evolutionary algorithm, but as it will be seen later, it is

possible to streamline the computation significantly.

For kr ∈ {1, . . . , K} (r ∈ {1, . . . , K}), let µG̃ikr

(xp) be the evaluated de-

gree of satisfaction of the kr-th target for the p-th individual in the expanded

population E(t) (see Section 4.1.3). Let µG̃ik1

(xp), µG̃ik1

(xp) · µG̃ik2

(xp), . . ., and

µG̃ik1

(xp) · µG̃ik2

(xp) · . . . · µG̃ikK

(xp), be the normalized counterparts for µG̃ik1

(xp),

µG̃ik1

(xp)·µG̃ik2

(xp), . . ., and µG̃ik1

(xp)·µG̃ik2

(xp)·. . .·µG̃ikK

(xp), respectively, where the

normalized fuzzified levels of performance are defined by µG̃ik1

(xp) =
µG̃ik1

(xp)

maxp∈E(t) µG̃ik1

(xp)

(for k1 ∈ {1, . . . , K}), µG̃ik1

(xp) · µG̃ik2

(xp) =
µG̃ik1

(xp)·µG̃ik2

(xp)

maxp∈E(t)

(
µG̃ik1

(xp)·µG̃ik2

(xp)

) (for k1, k2 ∈

{1, . . . , K}, k1 < k2)), . . . , µG̃ik1

(xp) · µG̃ik2

(xp) · . . . · µG̃ikK

(xp) =

µG̃ik1

(xp)·µG̃ik2

(xp)·...·µG̃ikK

(xp)

maxp∈E(t)

(
µG̃ik1

(xp)·µG̃ik2

(xp)·...·µG̃ikK

(xp)

) (for k1, k2, . . . , kK ∈ {1, . . . , K}, k1 < k2 <

. . . < kK).

Let βk1 be the weight for the k1-th criterion, βk1k2 (for k1 < k2) be the weight

for the interaction between the k1-th and k2-th criteria, ..., and βk1k2...kK
(for k1 <

k2 < . . . < kK) be the weight for the interaction among all criteria. The interactions

among criteria are considered to avoid speciation, i.e., the selection of individuals who

excel in just one dimension [29]. Let lk1 and uk1 be the lower and upper bounds for

βk1 , respectively; let lk1k2 and uk1k2 (for k1 < k2) be the lower and upper bounds

for βk1k2 , respectively; ...; and lk1k2...kK
and uk1k2...kK

(for k1 < k2 < . . . < kK)

the lower and upper bounds for βk1k2...kK
, respectively. By letting the β’s be the

decision variables, the optimal score (fitness assignment) for the p′-th individual in

the expanded population E(t), denoted z∗(xp′), is determined by solving the following

linear program:

54

max z(xp′) =
∑K

k1=1 βk1 · µG̃ik1

(xp′) +
K∑

k1=1

K∑
k2=1︸ ︷︷ ︸

k1<k2

βk1k2 · µG̃ik1

(xp′) · µG̃ik2

(xp′) + . . .

+
K∑

k1=1

K∑
k2=1

· · ·
K∑

kK=1︸ ︷︷ ︸
k1<k2<...<kK

βk1k2...kK
· µG̃ik1

(xp′) · µG̃ik2

(xp′) · . . . · µG̃ikK

(xp′)

(4.2)

subject to:

∑K
k1=1 βk1 · µG̃ik1

(xp) +
K∑

k1=1

K∑
k2=1︸ ︷︷ ︸

k1<k2

βk1k2 · µG̃ik1

(xp) · µG̃ik2

(xp) + . . .

+
K∑

k1=1

K∑
k2=1

· · ·
K∑

kK=1︸ ︷︷ ︸
k1<k2<...<kK

βk1k2...kK
· µG̃ik1

(xp) · µG̃ik2

(xp) · . . . · µG̃ikK

(xp) ≤ 1 for all xp ∈ E(t)

(4.3)

K∑
k1=1

βk1 +
K∑

k1=1

K∑
k2=1︸ ︷︷ ︸

k1<k2

βk1k2 + . . . +
K∑

k1=1

K∑
k2=1

· · ·
K∑

kK=1︸ ︷︷ ︸
k1<k2<...<kK

βk1k2...kK
= 1 (4.4)

lk1 ≤ βk1 ≤ uk1 for all k1 ∈ {1, . . . , K}
lk1k2 ≤ βk1k2 ≤ uk1k2 for all k1, k2 ∈ {1, . . . , K}, k1 < k2

...

lk1k2...kK
≤ βk1k2...kK

≤ uk1k2...kK
for all k1, k2, . . . , kK ∈ {1, . . . , K},
k1 < k2 < . . . < kK

(4.5)

βk1 ≥ 0 for all k1 ∈ {1, . . . , K}
βk1k2 ≥ 0 for all k1, k2 ∈ {1, . . . , K}, k1 < k2

...

βk1k2...kK
≥ 0 for all k1, k2, . . . , kK ∈ {1, . . . , K}, k1 < k2 < . . . < kK

(4.6)

55

Note that (4.2) represents the maximization of the optimal score of the p′-th

individual in E(t). This optimal score is a nonlinear aggregation function of the

degree of satisfaction of the observed performance levels, but a linear function of the

weights (β’s). The constraints in (4.3) force the assigned scores of all the individuals to

be within the allowable range between 0 to 1, while maximizing the score for the p′-th

individual. Furthermore, (4.4), (4.5), and (4.6), force the weights to be greater than

0, to fall within user–defined ranges, and to add up to 100%, respectively. Note that

additional constraints can be added to the model to include other problem specific

issues. It is worth mentioning that when the lower bounds equal the upper bounds

in (4.5), optimal scoring reduces to aggregation with fixed weights.

One linear program must be solved for each xp′ ∈ E(t). Solving |E(t)| linear

programs just for fitness assignment could be a very expensive process. However, we

can streamline the solution of the linear program described in (4.2)-(4.6) by using the

following Proposition:

Proposition 1. The constraints in (4.3) are redundant.

Proof. By definition, 0 ≤ µG̃ikr

(xp) ≤ 1. By (4.4) and (4.6), 0 ≤ βk1 ≤ 1,

0 ≤ βk1k2 ≤ 1, ..., 0 ≤ βk1k2...kK
≤ 1. Thus, the constraints in (4.3) are always

satisfied. ¦
By dropping the constraints in (4.3), the resulting linear program can be solved

efficiently using the following result.

Proposition 2. Let c1, c2, . . . , c2K−1 be the objective function coefficients in (4.2),

where c1 = µG̃i1
(xp), c2 = µG̃i2

(xp), . . . , cK = µG̃iK
(xp), . . . , cK+1 = µG̃i1

(xp) · µG̃i2
(xp),

cK+2 = µG̃i1
(xp) · µG̃i3

(xp), . . ., c
K+

K(K−1)
2!

= µG̃iK−1
(xp) · µG̃iK

(xp), . . . , c2K−1 =

µG̃i1
(xp) · µG̃i2

(xp) · . . . · µG̃iK
(xp). Let the decision variables of the linear program

defined by (4.2), (4.4), (4.5), and (4.6), be w1, w2, . . . , w2K−1, where w1 = β1, w2 =

β2, . . . , wK = βK , wK+1 = β1 2, wK+2 = β1 3, . . . , w
K+

K(K−1)
2!

= βK−1 K , . . .

, w2K−1 = β1 2 ... K . Let us rank the variables by a “primed indexing” so that

c1′ ≥ c2′ ≥ . . . ≥ c(2K−1)′ , where 1′, 2′, . . . , (2K − 1)′ constitute a permutation of

the numbers 1, 2, . . . , (2K −1). Then the linear program defined by (4.2), (4.4), (4.5),

and (4.6), is solved optimally by taking w1′ as large as possible without violating (4.4)

and the bounds in (4.5) and (4.6), then taking w2′ as large as possible subject to the

value already assigned w1′ and so on.

56

Proof. The linear program defined by (4.2), (4.4), (4.5), and (4.6) is a “bounded

variable” knapsack problem that can be solved using the “Greedy Algorithm” [50].¦
In summary, optimal scoring in OSEA defines a mapping from the K-dimensional

vector of degree of satisfaction of vague targets to a scalar representing the fitness

level of the p-th individual in E(t). Mathematically, it is a mapping ~µ(xp) → z∗(xp).

4.1.4.1 Example

To better understand how the fitness assignment in OSEA works, let us consider an

example with two system performance measures (M = 2), two criteria (K = 2), and

membership functions given by

µG̃1
(xp) =

0 if f1(x
p) < 5.9

f1(xp)−5.9
19.6

if 5.9 ≤ f1(x
p) ≤ 25.5

1 if f1(x
p) > 25.5

(4.7)

and

µG̃2
(xp) =

0 if f2(x
p) < 3.9

f2(xp)−3.9
21.6

if 3.9 ≤ f2(x
p) ≤ 25.5

1 if f2(x
p) > 25.5

(4.8)

The observed evaluations (see Section 4.1.2) and corresponding fuzzifications (see

Section 4.1.3) for each of the individuals in E(t) are given in Table 4.1. The per-

formance measure evaluations f1(x
p) and f2(x

p) are based on the first example pre-

sented by Zitzler and Thiele [150] to illustrate the fitness assignment mechanism in

their Strength Pareto Evolutionary Algorithm (SPEA).

In this example we let each criterion account for 20% to 40% of the total score,

while their interaction accounts for 30% to 50%.

For the 7-th individual, the linear program defined by (4.2), (4.4), (4.5), and (4.6),

is given by:

max z(x7) = 0.362β1 + 0.560β2 + 0.378β1 2

subject to:

β1 + β2 + β1 2 = 1

0.20 ≤ β1 ≤ 0.40

0.20 ≤ β2 ≤ 0.40

0.30 ≤ β1 2 ≤ 0.50

β1, β2, β1 2 ≥ 0

(4.9)

57

Table 4.1: Evaluated and fuzzified performance measures for E(t).

Fuzzification

p Evaluation µG̃1
(xp) µG̃2

(xp) µG̃1
(xp) · µG̃2

(xp) µG̃1
(xp) · µG̃2

(xp)

f1(x
p) f2(x

p)
(
= µG̃1

(xp)
) (

= µG̃2
(xp)

)
1 5 5 0.000 0.051 0.000 0.000

2 14 3 0.413 0.000 0.000 0.000

3 25 4 0.974 0.005 0.005 0.008

4 30 10 1.000 0.282 0.282 0.527

5 18 12 0.617 0.375 0.232 0.432

6 7 15 0.056 0.514 0.029 0.054

7 13 16 0.362 0.560 0.203 0.378

8 20 20 0.719 0.745 0.536 1.000

9 6 25 0.005 0.977 0.005 0.009

10 10 30 0.209 1.000 0.209 0.390

Using Proposition 2, β∗
1 = 0.2, β∗

2 = 0.4, and β∗
1 2 = 0.4. Thus, the optimal score

z∗(x7) = 0.378.

Table 4.2 compares the fitness assignments obtained through OSEA and SPEA

[150]. The second column shows the optimal fitness assignments obtained in OSEA

by solving a linear program for each individual in E(t). The third column, shows

the results for the fitness assignment in SPEA presented by Zitzler and Thiele [150].

The column labeled Dominated by Nondominated shows the number of nondominated

vectors that dominate the criteria vector associated with the p-th individual. The last

two columns assign a rank based on the sorted fitness assignment for each algorithm.

Note that the two rankings are very similar and lead to the exact same tiers in the

Dominated by Nondominated column.

Figure 4.3 presents graphically the optimal fitness assignments in criteria space.

Note that the fitness values obtained by optimal scoring are consistent in the Pareto

sense. For instance, the individuals in the first tier (i.e., N), which are nondominated,

are fitter than those in the third tier (i.e., ¥), which are dominated by at least two

nondominated vectors in E(t).

In conclusion, the fitness assignment mechanism in OSEA is consistent with the

one used in SPEA. Points closer to the Pareto front are more fit than those which are

58

Table 4.2: Comparison of fitness assignment methods.

p OSEA Fitness Zitzler and Thiele’s Dominated by Ranking

z∗(xp) SPEA Nondominated OSEA SPEA

8 0.636 0.625 0 1 3

4 0.569 0.375 0 2 2

10 0.526 0.375 0 3 1

5 0.415 1.625 1 4 6

9 0.394 1.375 1 5 5

3 0.393 1.375 1 6 4

7 0.378 1.625 1 7 7

6 0.231 2 2 8 8

2 0.165 2 2 9 9

1 0.02 2.375 3 10 10

farther from it [150].

4.1.5 Selection

OSEA selects Pmax individuals for generation t (i.e., P (t)), from the expanded pop-

ulation E(t − 1). For efficiency and to eliminate bias in the selection mechanism, we

use stochastic universal sampling [7], as shown in the pseudocode shown in Figure

4.4.

4.1.6 Genetic Operators

For the mutation operator, we use the uniform mutation [91]. In the uniform muta-

tion, every gene xp
j (for j = {1, . . . , N}) from each individual xp ∈ P (t) has a chance

pm of undergoing the mutation process. The result of the application of this operator

on the j′-th gene, implies that the new child will have a new gene xp
j′ randomly drawn

from the allowable range Xj′ . Thus, for any single parent, more than one gene can

be selected to undergo the mutation process, thereby generating a single child with

several mutated genes.

For the crossover operator, we use the one–point crossover [91]. Each individual

xp ∈ P (t) has a chance of pc of becoming a parent in the crossover process. If

59

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

f 1 (x p (t))

f 2
(x

p (t
))

p=10, z*=0.526

p=9, z*=0.394

p=6, z*=0.231

p=1, z*=0.020

p=7, z*=0.378

p=8, z*=0.636

p=5, z*=0.415

p=2, z*=0.165
p=3, z*=0.393

p=4, z*=0.569

Figure 4.3: Optimal fitness in performance space. The symbols N, •, and ¥ represent

the first, second, and third tier of optimal scores, respectively.

P (t) ← ∅
δ ← 1

Pmax

∆ ← δ · u, where u ∼ U [0, 1]

σ ← 0

for each xp ∈ E(t − 1) do

P{choosing xp} = z∗(xp)∑
xq∈E(t−1) z∗(xq)

σ ← σ + P{choosing xp}
while σ > ∆ do

P (t) ← P (t) ∪ {xp}
∆ ← ∆ + δ

return P (t) ¥

Figure 4.4: Stochastic Universal Sampling

60

1
'

p
jx1

1
px � �

1p
Ix 1p

jIx +
1p

Nx��

1

1
p
Ix +

Integer portion Floating point portion

2
'

p
jx2

1
px � �

2p
Ix 2p

jIx +
2p

Nx��

2

1
p
Ix +

Integer portion Floating point portion

Crossover point

1
1
px �

2
1'

p
jx + �

2p
Ix 2p

jIx +
2p

Nx��

2

1
p
Ix +

1
'

p
jx 2

'
p
jx2

1
px � �

1p
Ix 1p

jIx +
1p

Nx��

1

1
p
Ix +

1
1'

p
jx +

Crossover

Parent 1 Parent 2

Child 1 Child 2

Figure 4.5: One–point crossover in OSEA.

the individual is selected for crossover, we say that it joins the crossover pool of

parents. From the crossover pool, pairs of parents are randomly selected to undergo

the crossover operation, until the crossover pool is empty (or there are not enough

parents to form a pair). Figure 4.5 illustrates the case where the crossover point has

been randomly chosen to split the parents after the j′-th integer gene.

4.1.7 Approximate Pareto Optimal Set

As recommended by Van Veldhuizen and Lamont [134], OSEA was designed to main-

tain a secondary population consisting of the Pareto optimal solutions obtained so

far, namely P∗
approximate(t). OSEA not only maintains P∗

approximate(t), but uses this in-

formation in the elitism mechanism, discussed in Section 4.1.8, to improve the quality

of the population.

Let ~µ(xp) =
(
µG̃i1

(xp), . . . , µG̃iK
(xp)

)
be the criterion vector of fuzzified ob-

served performance levels for xp (Section 4.1.3). Let x̂p be the p-th individual in

P∗
approximate(t). Also let flag = 1, if the p-th individual in P (t) is efficient; flag = 0,

otherwise. The following pseudocode describes a mechanism to update P∗
approximate(t)

based on P (t).

4.1.8 Elitism

Traditionally, elitism has been used in single objective evolutionary optimization as

a selection mechanism that preserves the best individual for the next generation,

61

Step 0: Initialization.

B ← P (t).

Step 1: Termination.

if B ← ∅, then
return P∗

approximate(t).

stop.

Step 2: Checking Pareto optimality.

Pick any xp ∈ B and do:

flag ← 1

if P∗
approximate(t) = ∅, then go to Step 3.

for each x̂p ∈ P∗
approximate(t) do:

if ~µ(xp) Â ~µ(x̂p), then P∗
approximate(t) ← P∗

approximate(t) \ {x̂p}.
if ~µ(x̂p) Â ~µ(xp), then flag ← 0 and go to Step 3.

Step 3: Updating the approximate Pareto optimal set.

if flag = 1, then P∗
approximate(t) ← P∗

approximate(t) ∪ {xp}.
B ← B \ {xp} and go to Step 1. ¥

Figure 4.6: Updating P∗
approximate(t)

62

so that errors of sampling are corrected [48, 49]. Zitzler et al. [149] have found that

elitism is an important factor in evolutionary mulicriteria optimization. To implement

elitism in our algorithm, we use the approximate Pareto optimal set P∗
approximate(t) as

source of individuals to be preserved. Elitism is implemented in OSEA as a random

technique that reinserts elements of P∗
approximate(t) into the expanded population E(t).

The probability of selecting an individual from P∗
approximate(t) through the elitism

mechanism is pe.

4.2 Application to the Flow Line Design Problem

and Comparison with the Fuzzy Controlled Ap-

proach

In this section we present a scenario in which the flow line, depicted in Figure 3.5,

is designed based on two conflicting goals which we wish to satisfy simultaneously.

Specifically, we want to design the flow line to achieve “low work–in–process” and

“high utilization at station 1”, simultaneously.

The main purpose of this example is to compare the fuzzy controlled approach

presented in Chapter 3 and OSEA, in terms of both the quality of the approximate

Pareto front produced and algorithmic efficiency.

As described in Section 3.4.5.2, for the fuzzy controlled approach we developed

a rule base composed of 18 rules (Appendix B). The state variables used as vague

targets were overall work–in–process ($) and utilization at station 1 (ϕ1) with target

values L̃$ (Figure 3.7) and H̃ϕ1 (Figure 3.8), respectively. Five independent experi-

ments were conducted. Each experiment consisted of ten runs of the algorithm shown

in Figure 3.3, with randomly selected initial conditions. For each run, we set g$ = 1,

gϕ1 = 1, and tmax = 10.

For OSEA, six independent experiments were conducted. In each experiment, we

set Pmax = 20, tmax = 100, pc = 0.40, pm = 0.05, and pe=0.10. These parameters

represent in our experience the best settings for performance. Table 4.3 gives the

bounds on the weights used in the optimal scoring mechanism for fitness assignment.

One of the most challenging problems in multicriteria optimization is to measure

the quality of the solutions obtained [29]. Here we use a performance metric recently

proposed by Zitzler and Thiele [150] to compare the approximate Pareto fronts ob-

63

Table 4.3: Bounds on weights for OSEA experiments.

Bounds

β1 β2 β1 2

Experiment (H̃ϕ1) (L̃$) (H̃ϕ1 and L̃$)

l1 u1 l2 u2 l1 2 u1 2

1 0.25 0.45 0.25 0.45 0.15 0.30

2 0 1 0 1 0 1

3 0.25 0.45 0.25 0.45 0.25 0.45

4 0.15 0.30 0.15 0.30 0.30 0.60

5 0.30 0.60 0.15 0.30 0.15 0.30

6 0.15 0.30 0.30 0.60 0.15 0.30

tained by the fuzzy controlled approach with those obtained by OSEA. Zitzler and

Thiele’s metric is a measure of the size of the dominated space defined by the ap-

proximate Pareto front PF∗
approximate generated by each approach. In our case, where

two criteria are considered, each vector in PF∗
approximate, dominates a rectangular

area. The dominated space metric is estimated by calculating the area defined by the

union of the collection of rectangles defined by PF∗
approximate. After fuzzification, the

minimum and maximum degree of satisfaction are 0 and 1, respectively. If we were

to obtain an ideal solution, one that obtains full satisfaction of both criteria simulta-

neously, the value of Zitzler and Thiele’s metric would be 1. On the other hand, if

we were to obtain only solutions for which both criteria are not satisfied at all, the

metric would be 0. Therefore, in our case, Zitzler and Thiele’s metric is bounded by

0 and 1, with higher values preferred over lower values. Moreover, 1 is not actually

attainable due to the conflicting nature of the criteria.

The performance comparison is shown by Figures 4.7 to 4.9. From Figure 4.7

we can see that both approaches have the ability to generate high quality solutions

(with Zitzler and Thiele’s metric equal to 0.965), but the fuzzy controlled approach’s

metric achieves its peak much faster than that of OSEA. More specifically, the fuzzy

controlled approach takes about 25 iterations to reach a high quality solution while

the evolutionary approach takes about 60 iterations to reach the same level.

Figure 4.8 shows that for every iteration, the fuzzy controlled approach requires

far fewer simulation runs than OSEA. Specifically, the fuzzy controlled approach

64

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 10 20 30 40 50 60 70 80 90 100

Generation / Iteration

A
ve

ra
ge

 d
om

in
at

ed
 s

pa
ce

Fuzzy Controller OSEA

Figure 4.7: Comparison of the dominated space.

requires 25 simulation runs (in 25 iterations) to generate a high quality solution while

the evolutionary approach requires about 798 simulation runs (in 60 generations) to

generate a solution of the equivalent quality.

Figure 4.9 further confirms that both approaches have the capability to generate

a well distributed and solid Pareto front.

For further detail, the results for each experiment using the fuzzy controlled ap-

proach are given in Appendix C and for OSEA in Appendix D.

4.3 Conclusions

We have presented OSEA, an evolutionary approach for solving the FMSO problem.

OSEA is able to generate the approximate Pareto optimal set, using a methodology

that we called optimal scoring for fitness assignment. By using a flexible aggregating

approach, OSEA uses optimal scoring to assign a fitness value to each individual

of the population. Optimal scoring overcomes the main weakness of an aggregation

approach, the difficulty in selecting a set of predefined fixed weights. The idea behind

optimal scoring is to let each individual freely choose its weights so that it can score

as high as possible, while satisfying simultaneously basic ground rules applicable to

65

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100

Generation / Iteration

A
ve

ra
ge

 n
um

be
r

of
 s

im
ul

at
io

n
ru

ns

OSEA Fuzzy Controller

Figure 4.8: Comparison of the number of simulation runs.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

Fuzzy Controller OSEA

Figure 4.9: Comparison of the Pareto front.

66

all individuals. In order to find the optimal weights, optimal scoring requires the

solution of a linear program for each individual. We have shown that by exploiting

the structure of this linear program, the optimal score (i.e., fitness) can be found

efficiently. Our fitness assignment mechanism is validated by comparison with that

in SPEA [150].

We have also compared the results obtained by OSEA with those obtained with

the fuzzy controlled approach presented in Chapter 3 on the Flow Line Design prob-

lem. Both algorithms are able to generate a high quality solution in terms of the

dominated space metric proposed by Zitzler and Thiele [150]. Also, both algorithms

are able to generate an even sample of the Pareto front. The fuzzy controlled approach

is remarkably efficient, requiring far fewer simulation runs than the evolutionary ap-

proach to obtain the same solution quality. Moreover, it requires very few iterations

to obtain an acceptable solution. This directly translates into big savings in computer

time. Nevertheless, we have to say in behalf of OSEA, that it starts the search for

the Pareto front from scratch, without assuming any knowledge of the system being

optimized. In contrast, the fuzzy controlled approach uses the knowledge of the sys-

tem embedded in the rule base. In cases where there is a complete lack of knowledge

of the relationships between inputs and performance of the system, OSEA is the only

known alternative for solving the FMSO problem.

67

Chapter 5

An Efficient and Flexible

Mechanism for Constructing

Membership Functions

In the two previous chapters we have developed and compared methods for the solu-

tion of problems FSO and FMSO. In illustrating our methods, we used the popular,

but limited special case of convex normal fuzzy sets defined by trapezoidal mem-

bership functions. To further enhance the expressive power of vague concepts in

our methods, it is necessary to provide the user with an efficient mechanism to ex-

press the complexities and subtleties of natural language. This chapter introduces

a Bézier curve–based mechanism for constructing membership functions of convex

normal fuzzy sets that can represent virtually any vague concept. The mechanism

can fit any given data set with a minimum level of discrepancy. In the absence of

data, the mechanism can be intuitively manipulated by the user to construct mem-

bership functions with the desired shape. Some numerical experiments are included

to compare the performance of the proposed mechanism with conventional methods.

5.1 Introduction

A fuzzy set Ã is characterized by its membership function µÃ, which maps each

element of the universe X to the interval [0, 1]. This function indicates the degree of

belonging to Ã for each element of X. One of the most important concepts of fuzzy

68

sets is the concept of an α-cut. Given a fuzzy set Ã defined on X and α ∈ (0, 1], the

α-cut is defined as αÃ = {x ∈ X : µÃ(x) ≥ α}. For continuity purposes, we take
0Ã = limα→0

αÃ. A fuzzy set Ã is convex if and only if each of its α-cuts is a convex

set. A fuzzy set Ã is normal if 1Ã 6= ∅.
Even though there is no universal agreement on the proper characterization of

membership functions, Dombi [32] reported that there are some characteristics shared

by the majority of continuous membership functions found in the literature. Among

others, there is an apparent demand for membership functions with the following

properties: they should be piecewise monotone nonincreasing or nondecreasing; they

should achieve null and full membership for at least two different elements in the

universal set; and they should be able to represent fuzzy convex sets. Commonly

seen examples are the simple triangular, trapezoidal, and bell–shaped membership

functions.

Problem formulations based on fuzzy sets can have greater expressive power than

their counterparts based on crisp sets, but the applicability of fuzzy technology de-

pends on the ability to construct membership functions that appropriately represent

various concepts in different contexts [78]. To fully exploit the benefits provided by

fuzzy technology, we need an efficient membership function generating mechanism

with the following desirable characteristics:

1. Accurate. In the presence of data, the resulting membership functions should

reflect the knowledge contained in the data in the most accurate way possible.

Data in the form of membership values for points in the universe is usually

obtained from experts.

2. Flexible. The methodology should provide a broad family of membership func-

tions.

3. Computationally affordable. The method should be computationally tractable

in order to be of any practical use. Medasani [89] has highlighted the importance

of having membership functions that can be easily tuned and adjusted. Other

authors have expressed the need for methods in which computer graphics can

facilitate the process of constructing membership functions by allowing the user

an easy and direct manipulation of different shapes [20].

4. Easy to use. Once a membership function has been generated, it should be easy

69

to find µÃ(x) for a given x; and it should be easy to find αÃ for a given α.

In this chapter we propose a mechanism that exploits the properties of Bézier

curves to address these issues and to provide the user with a flexible and efficient way

of generating membership functions.

The chapter is organized as follows. In Section 5.2, we review the basic techniques

used for generating membership functions. Section 5.3 describes the proposed mech-

anism and some fundamental definitions and properties of Bézier curves. In Section

5.4, test problems found in the literature are used to illustrate the proposed mech-

anism and compare its performance with that of two methods which appear in the

literature. Finally, conclusions and current research directions are given in Section

5.5.

5.2 Membership Function Generation

5.2.1 Overview

Membership functions can be constructed from data when it is available. This data

can be elicited by interacting with experts using a direct approach (or direct rating)

[78, 97, 132]. The direct approach requires the degree of membership of a collection

of points in the universal set. A membership function that describes the underlying

concept is fitted to the collected set. This is known as data–driven membership

function estimation. Sometimes this approach can be overly precise in capturing

subjective judgment. By formulating easier and simpler questions, knowledge can

also be acquired through an indirect approach. We will not deal with the indirect

approach in this chapter, but the reader is referred to the paper by Chameau and

Santamarina [20] and the book by Klir and Yuan [78].

When data is not available in the form of value–membership pairs, a membership

function has to be constructed subjectively. In this case, the conventional approach

is to first pick the shape of the membership function from a list of families, and then

to fine–tune the values of the parameters of that function. It is always desirable to

have a parsimonious, meaningful parameterization of membership functions [32].

70

5.2.2 Current Methods

In the literature fuzzy sets are most commonly modeled by triangular, trapezoidal,

and bell–shaped membership functions. However, other parameterized functional

shapes are useful in particular situations. More details can be found in Dombi [32]

and Medasani et al. [89].

An effort to create a broad class of functions was made by Zysno [151] and Zim-

mermann and Zysno [148]. In their model, the membership function for a fuzzy set

Ã is given by:

µÃ(x) = mid

(
0,

(
1

1 + e−a(x+b)
− c

)
1

d
+

1

2
, 1

)
, ∀x ∈ X ⊆ R (5.1)

where a, b ∈ R, 0 ≤ c ≤ 1, and 0 ≤ d ≤ 2 min(1 − c, c). The function mid(0, f(x), 1)

is defined such that mid(0, f(x), 1) = f(x), if 0 ≤ f(x) ≤ 1; mid(0, f(x), 1) = 0, if

f(x) < 0; and mid(0, f(x), 1) = 1, if f(x) > 1.

Even though the model provides the user with a commonly used family of S-

shapes, the determination of the parameters from empirical data poses some problems

and there is no direct numerical method for optimal parameter estimation [148, 151].

The model may be used for estimating membership functions subjectively, with the

parameters a, b, c, and d, being fixed by the expert.

Dombi [32] proposed a model with properties similar to the one presented by Zysno

and Zimmermann. In his model a membership function for fuzzy set Ã is constructed

using the S-shaped monotonically increasing function

µÃ(x) =
(1 − ν)λ−1(x − a)λ

(1 − ν)λ−1(x − a)λ + νλ−1(b − x)λ
(5.2)

and/or the S-shaped monotonically decreasing function

µÃ(x) =
(1 − ν)λ−1(b − x)λ

(1 − ν)λ−1(b − x)λ + νλ−1(x − a)λ
(5.3)

where x ∈ [a, b]; a, b ∈ R; the steepness is given by λ ≥ 1; and the inflection point

is determined by 0 < ν < 1. When data is available, Dombi proposed a method for

estimating the parameters based on linearized forms of (5.2) and (5.3).

Both of these models provide similar membership functions because they use the

same underlying form, i.e., µÃ(x) = 1
1+d(x)

, where d(x) is a measure of distance. Even

71

though these models provide flexibility for estimating S-shaped functions, they fail

to provide more general monotonic curves.

Chen and Otto [23] present a novel method for constructing membership functions

using interpolation and measurement theory. Following a systematic approach, their

method is able to construct general monotonic functions from data. However, their

methodology does not provide a mechanism for adjusting or building a membership

function in the absence of data.

In the area of fuzzy system identification, sophisticated methods based on neural

networks and evolutionary algorithms have been proposed to generate and tune both

fuzzy rules and membership functions. However, they are basically case by case

approaches [73, 83].

In the next section we shall introduce an interactive and efficient approach for both

data–driven and subjective estimation of membership functions. Based on Bézier

curves, the method is able to generate a broad family of functions.

5.3 Proposed Mechanism

5.3.1 Bézier Curves

One of the major breakthroughs in computer aided design (CAD) is the theory of

Bézier curves and surfaces, independently developed by P. de Casteljau and P. Bézier

while working for the French automakers Citröen and Renault, respectively [38].

The theory of Bézier curves provides a mathematical foundation for representing

a smooth curve that passes through the vicinity of a set of control points. Definition

1 gives a formal expression of a Bézier curve in terms of Bernstein polynomials.

Definition 1. A Bézier curve with n + 1 control points p , (p0, . . . ,pn) is given by

f(t, n,p) ,
n∑

k=0

Bn,k(t)pk

where t ∈ [0, 1], pk , (xk, yk)
T , and Bn,k(t) =

(
n

k

)
tk(1 − t)n−k are the Bernstein

polynomials. Since f(t, n,p) ∈ R2, we usually denote f(t, n,p) = [fx(t, n,x), fy(t, n,y)]T ,

where x , (x0, . . . , xn)T , y , (y0, . . . , yn)T .

72

Bézier curves have several properties that are particularly useful in the context of

this chapter [38].

Property 1. The Bézier curve f(t, n,p) defined over t ∈ [0, 1], lies in the convex hull

of the polygon defined by the control points p , (p0, . . . ,pn).

Property 2. The Bernstein polynomial Bn,k(t) achieves its unique maximum at

t = k/n. If the control point pk is moved, then the curve is mostly affected in the

region around the parameter t = k/n.

Property 3. The Bézier curve interpolates its first (p0) and last (pn) control points.

In other words, f(0, n,p) = p0 and f(1, n,p) = pn.

These properties have practical effects in the curve design process. Property 1

guarantees that the curve will not fall outside the “control polygon”. By using this

property along with Property 2, a Bézier curve can be designed by exaggerating the

target shape using the control polygon. Even though a single control point displace-

ment will change the whole curve, this “pseudo–local control” property gives us the

sense that the control points work locally as magnets on the curve. Property 3 is very

useful for breaking the construction of a complex curve into simpler parts.

A complete discussion on Bézier curves and its properties can be found in the

book by Farin [38].

5.3.2 Mathematical Framework

In this section we give the mathematical framework of a broad family of membership

shapes based on Bézier curves.

Let Ã be a fuzzy set on the universal set X. The following conditions are commonly

required for its membership function, µÃ(·).
Condition 1. The membership function µÃ is a mapping from the universal set X

to [0, 1], i.e., µÃ : X → [0, 1].

Condition 2. There exist x1, x2 ∈ X such that µÃ(x1) = 1 and µÃ(x2) = 0. In other

words, we say that x1 ∈ X fully belongs to the set Ã, while x2 ∈ X does not belong

to Ã.

Condition 3. For x1, x2 ∈ X and λ ∈ [0, 1], we have µÃ(λx1 + (1 − λ)x2) ≥
min{µÃ(x1), µÃ(x2)}.

73

Condition 1 is conventional in the fuzzy literature. The normality requirement

implicit in Condition 2 (i.e., existence of x ∈ X such that µÃ(x) = 1) can be easily

relaxed, but we preserve it for the sake of clarity in our presentation. Condition 3

guarantees that the fuzzy set Ã is convex.

A convenient, parametric form for expressing our membership function model is:

µÃ(x(t)) =

0 if x(t) < mL − γ

µÃL
(x(t)) if mL − γ ≤ x(t) ≤ mL

1 if mL < x(t) < mR

µÃR
(x(t)) if mR ≤ x(t) ≤ mR + β

0 if x(t) > mR + β

(5.4)

where γ and β are the left and right spreads, respectively; mL,mR ∈ X are the lowest

and highest values with full membership, respectively; and µÃL
(x(t)) and µÃR

(x(t))

are the left and right membership values. Assume that pL = (pL,0, . . . ,pL,nL
)T and

pR = (pR,0, . . . ,pR,nR
)T are nL+1 and nR+1 control points for generating the left and

right membership functions, respectively. The left and right membership functions

are part of the following parametric expressions:

[x(t), µÃL
(x(t))]T = ~µÃL

(t, nL,pL) (5.5)

,
nL∑
k=0

BnL,k(t)pL,k

[x(t), µÃR
(x(t))]T = ~µÃR

(t, nR,pR) (5.6)

,
nR∑
k=0

BnR,k(t)pR,k

where ~µÃL
(·) and ~µÃR

(·) are the Bézier curves for the left and right membership

functions, respectively; t ∈ [0, 1]; pL,k , (xL,k, yL,k)
T is the k-th Bézier control point

for the left membership function (for k = 0, . . . , nL); pR,k , (xR,k, yR,k)
T is the

k-th Bézier control point for the right membership function (for k = 0, . . . , nR);

and BnL,k(t) and BnR,k(t) are Bernstein polynomials. As before, in two–dimensional

space, we denote ~µÃL
(t, nL,pL) = [fx(t, nL,xL), fy(t, nL,yL)]T and ~µÃR

(t, nR,pR) =

[fx(t, nR,xR), fy(t, nR,yR)]T , where xL , (xL,0, . . . , xL,nL
)T , yL , (yL,0, . . . , yL,nL

)T ,

xR , (xR,0, . . . , xR,nR
)T , and yR , (yR,0, . . . , yR,nR

)T .

74

The type of shapes that can be obtained using the family of membership functions

described by (5.4) are presented in Figure 5.1.

In order to satisfy Conditions 1 to 3 we need to impose some restrictions on the

parametric form expressed by (5.5) and (5.6).

For Conditions 1 and 2,

Proposition 3. The first and last control points of ~µÃL
(·) are pL,0 = (mL − γ, 0)T

and pL,nL
= (mL, 1)T .

Proof. It follows from Property 3 of the Bézier curves. ¦

Proposition 4. The first and last control points of ~µÃR
(·) are pR,0 = (mR, 1)T and

pR,nR
= (mR + β, 0)T .

Proof. It follows from Property 3 of the Bézier curves. ¦
For Condition 3,

Proposition 5. If the control points pL of ~µÃL
(·) are chosen such that xL,0 ≤ . . . ≤

xL,nL
and yL,0 ≤ . . . ≤ yL,nL

, then µÃL
(x(t)) is monotonically nondecreasing for

mL − γ ≤ x(t) ≤ mL and x(t) is monotonically nondecreasing for 0 ≤ t ≤ 1.

Proof.

f
′
y(t, nL,pL) = µ

′
ÃL

(x(t)) (5.7)

= lim
δ→0

µÃL
(x(t+δ))−µÃL

(x(t))

δ
x(t+δ)−x(t)

δ

=
f

′
y(t, nL,yL)

f ′
x(t, nL,xL)

=

∑nL

k=0 nL[BnL−1,k−1(t) − BnL−1,k(t)]yk∑nL

k=0 nL[BnL−1,k−1(t) − BnL−1,k(t)]xk

=

∑nL−1
k=0 BnL−1,k(t)∆yk∑nL−1
k=0 BnL−1,k(t)∆xk

where t ∈ [0, 1], ∆yk , yk+1 − yk, and ∆xk , xk+1 − xk, for k = 0, . . . , nL − 1. From

the result in (5.7), if ∆yk ≥ 0 and ∆xk ≥ 0, then µ
′
ÃL

(x(t)) ≥ 0. Thus we conclude

that µÃL
(x(t)) is monotonically nondecreasing. ¦

The basic results used in the proof of Proposition 5 can be found in Farin [38] and

Wagner and Wilson [137].

75

1.0

))((~ tx
A

µ

x(t)
m

R
+βm

R
m

Lm
L
-γ

))((~ tx
LA

µ))((~ tx
RA

µ

(a) Monotonic nondecreasing and nonincreasing.

1.0

))((~ tx
LA

µ

x(t)m
Lm

L
-γ

(b) Monotonic nondecreasing (left).

1.0

x(t)

))((~ tx
RA

µ

m
R
+βm

R

))((~ tx
A

µ

(c) Monotonic nonincreasing (right).

Figure 5.1: Types of membership functions.

76

Similar to Proposition 5, the following result applies for the monotonically nonin-

creasing membership function, ~µÃR
(·).

Proposition 6. If the control points pR of ~µÃR
(·) are chosen such that xR,0 ≤ . . . ≤

xR,nR
and yR,0 ≥ . . . ≥ yR,nR

, then µÃR
(x(t)) is monotonically nonincreasing for

mR ≤ x(t) ≤ mR + β and x(t) is monotonically nondecreasing for 0 ≤ t ≤ 1.

The next result follows from Propositions 5 and 6.

Proposition 7. If the control points pL of ~µÃL
(·) are chosen such that xL,0 ≤ . . . ≤

xL,nL
and yL,0 ≤ . . . ≤ yL,nL

; and the control points pR of ~µÃR
(·) are chosen such

that xR,0 ≤ . . . ≤ xR,nR
and yR,0 ≥ . . . ≥ yR,nR

, then the fuzzy set Ã is convex and

satisfies Condition 3.

5.3.3 Methodology

5.3.3.1 Basic Operations

In the previous section we imposed conditions on the placement of the control points

to guarantee the generation of membership functions that satisfy Conditions 1 to 3.

It remains to discuss how to calculate µÃ(x) given x and αÃ given α. Assuming

the location of the control points pL and pR are known, the algorithms presented in

Figures 5.2 and 5.3 can be used.

The computational burden of the algorithm presented in Figure 5.2 is the solution

a root finding problem on a polynomial of degree nL or nR. This problem can be

solved efficiently using the bisection method [24] or the methods proposed by Müller

or Laguerre [102].

Again the computational bottleneck of the algorithm presented in Figure 5.3 is a

root finding problem on a polynomial of degree nL or nR.

5.3.3.2 Data–driven Estimation

In a direct approach to knowledge acquisition, experts are required to provide the

degree of membership for each of a collection of points in the universal set [78]. The

resulting set of value–membership pairs is used to construct the membership function

of the underlying concept. This section provides a mechanism for constructing mem-

bership functions from data by determining the number of control points and their

locations in the (x, µ(x)) space.

77

if x ≤ mL − γ or x ≥ mR + β

then µÃ(x) = 0.

if mL ≤ x ≤ mR

then µÃ(x) = 1.

if mL − γ < x < mL

then

Find t ∈ [0, 1] such that∑nL

k=0

(
nL

k

)
tk(1 − t)nL−kxL,k = x

and compute

µÃ(x) =
∑nL

k=0

(
nL

k

)
tk(1 − t)nL−kyL,k.

if mR < x < mR + β

then

Find t such that∑nR

k=0

(
nR

k

)
tk(1 − t)nR−kxR,k = x

and compute

µÃ(x) =
∑nR

k=0

(
nR

k

)
tk(1 − t)nR−kyR,k.

return µÃ(x). ¥

Figure 5.2: Finding µÃ(x) given x

78

if α = 0

then l ← mL − γ, u ← mR + β.

else

if α = 1

then l ← mL, u ← mR.

else

if γ 6= 0

then

Find t ∈ [0, 1] such that∑nL

k=0

(
nL

k

)
tk(1 − t)nL−kyL,k = α

and compute

x =
∑nL

k=0

(
nL

k

)
tk(1 − t)nL−kxL,k.

set l ← x.

else l ← mL

if β 6= 0

then

Find t such that∑nR

k=0

(
nR

k

)
tk(1 − t)nR−kyR,k = α

and compute

x =
∑nR

k=0

(
nR

k

)
tk(1 − t)nR−kxR,k.

set u ← x.

else u ← mR

set αÃ ← [l, u].

return αÃ. ¥

Figure 5.3: Finding αÃ given α

79

The left side of the membership function can be estimated independently from the

right side. We formulate a mathematical model and propose an algorithm for estimat-

ing the monotonically nonincreasing portion (right side) of a membership function.

A similar approach can be used for estimating the nondecreasing (left side) portion.

Let the given data points be dR,i = (x̌R,i, y̌R,i)
T for i = 1, . . . ,MR, where MR

is the total number of data points and y̌R,i is the membership given by the expert

through the direct approach to the i-th value x̌R,i ∈ X. Without loss of gener-

ality, assume there are at least three data points (i.e., MR ≥ 3) which are sorted

in ascending order by their first component. Also let the nR + 1 control points be

pR = ((xR,0, yR,0) . . . (xR,nR
, yR,nR

))T .

Let the decision variables be xR,k and yR,k, the first and second coordinates of

the k-th control point (k = 0, . . . , nR); ti, the parameter value of the Bézier curve

for the i-th data point (i = 1, . . . ,MR); and nR, the maximum value of the index

associated with the control points to be placed. By Proposition 4, the first and last

control points are fixed in pR,0 = (x̌1, 1)T and pR,nR
= (x̌MR

, 0)T . Thus the final value

of some variables is known before performing any optimization, namely, xR,0 = x̌R,1,

yR,0 = 1, xR,nR
= x̌R,MR

, yR,nR
= 0, t1 = 0, and tMR

= 1.

The following mathematical program minimizes the sum of the squared errors

(SSE) between the fitted membership function and the empirical data.

min

MR−1∑
i=2

(
y̌R,i −

nR∑
k=0

(
nR

k

)
tki (1 − ti)

nR−kyR,k

)2

(5.8)

subject to:

80

∑nR

k=0

(
nR

k

)
tki (1 − ti)

nR−kxR,k = x̌R,i, for i = 2, . . . ,MR − 1

ti ≤ ti+1, for i = 1, . . . ,MR − 1

xR,k ≤ xR,k+1, for k = 0, . . . , nR − 1

yR,k ≥ yR,k+1, for k = 0, . . . , nR − 1

xR,k ≥ x̌R,1, for k = 1, . . . , nR − 1

xR,k ≤ x̌R,MR
, for k = 1, . . . , nR − 1

yR,k ≥ 0, for k = 1, . . . , nR − 1

yR,k ≤ 1, for k = 1, . . . , nR − 1

ti ≥ 0, for i = 2, . . . ,MR − 1

ti ≤ 1, for i = 2, . . . ,MR − 1

(5.9)

nR ∈ {2, 3, . . .} (5.10)

The fact that the number of control points is unknown and integer increases

dramatically the complexity of the problem described by (5.8), (5.9), and (5.10).

Fortunately, in most practical applications the number of control points required is

small. By treating this number as a parameter, we can solve a series of nonlinear

programs, instead of dealing directly with a more difficult mixed integer nonlinear

program. For a given nR, the nonlinear program has 2nR + MR − 4 continuous

variables, MR−2 nonlinear constraints, MR +2nR−1 linear constraints, and 2(MR +

2nR − 4) lower and upper bounds.

Given nR, let e(nR) be the sum of the square errors between the fitted mem-

bership function and the empirical data when nR + 1 control points are used. Let

NLP (dR, nR) be a function that solves the nonlinear program described by (5.8) and

(5.9). NLP (dR, nR) takes the empirical data dR and a specified value of nR as its

arguments and returns the optimal value of the objective function described in (5.8),

e(nR), and the optimal locations of the control points, pR(nR). Then the algorithm

shown in Figure 5.4 can be used to solve the data–driven estimation for the right

membership functions. The algorithm stops when the improvement in SSE is less

than a given small quantity ε0 (say, ε0 = 0.0010) or when the maximum number of

control points to be placed is reached.

81

set ε ← ε0, nR ← 1, e(1) ← +∞.

do

nR ← nR + 1

(e(nR),pR(nR)) ← NLP (dR, nR)

if e(nR − 1) − e(nR) ≤ ε or nR = MR − 1

if e(nR − 1) − e(nR) < 0

then return pR(nR − 1), e(nR − 1), nR − 1.

else

return pR(nR), e(nR), nR.

end

¥

Figure 5.4: Data–driven estimation of the right membership function

5.4 Performance

5.4.1 Flexibility

In current practice, users choose the shape of the membership functions from a pool

of commonly used parameterized families. After the shape is selected, the parameters

are manipulated to tune the shape. As discussed in Section 5.2.1 the pool of param-

eterized families of membership functions include triangular, trapezoidal, Gaussian,

generalized bell curve, sigmoid, and S-shaped. In contrast, our approach can be used

to produce the membership function of almost any imprecise concept. Basically, our

approach can be viewed as a generalized free form generator of membership functions

that satisfy the basic requirements presented in Section 5.3.2.

The example in Table 5.1 and Figure 5.5 illustrates the ease with which a mem-

bership function can be constructed and tuned interactively using our approach. By

placing the control points in the locations shown in Table 5.1, the membership func-

tion depicted in Figure 5.5(a), with the control points being represented by black

dots, can be obtained. By changing the location of the second control point on the

left side (k = 1) from (25, 0.1) to (15, 0.5), the curve bends toward the new point as if

82

Table 5.1: Control points (before change).

k pL,k pR,k

xL,k yL,k xR,k yR,k

0 10 0.0 50 1.0

1 25 0.1 60 0.3

2 30 0.8 70 0.2

3 50 1.0 75 0.0

there were some magnetic attraction between the control point and the membership

function (left portion). This is shown in Figure 5.5(b). Moreover, due to the Property

2 of the Bézier curves presented in Section 5.3.1, we observe that, even though this

change affects the whole left membership function, the change is more noticeable in

the vicinity of the control point.

This new flexible and interactive way of building and tuning a membership func-

tion can be leveraged by using a graphical user interface(GUI). Currently, we are

developing a GUI that helps the user add, move, and delete control points to obtain

the desired free–form membership function.

5.4.2 Numerical Examples

For data–driven estimation, we tested our approach using data originally published

by Zysno [151] and compared its performance to that of the methods reported in

Zysno [151] and Dombi [32]. Sixty–four persons from 21 to 25 years of age were asked

to rate 52 different statements related to age concepts. The group was divided into

four subgroups of 16. The individuals within a subgroup were asked to rate one of the

4 concepts: very young man, young man, old man, and very old man. The subjects

were asked to give the degree of membership in the designated fuzzy set of a man of

x years of age on a 0% to 100% scale.

Figure 5.6 shows the progress of our algorithm when applied to automatically

estimate the membership functions for the fuzzy set old man based on the data

collected by interviewing subject 35 in Zysno [151]. In the figure, a black square

represents a control point. A number beside a control point is used when more than

one control point shares the same location. The number represents the total number

of control points in the given location. Empty circles represent data points. Lines are

83

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

x

D
eg

re
e

(a) Before.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

x

D
eg

re
e

(b) After.

Figure 5.5: Effect on the change of a single control point.

84

25 30 35 40 45 50 55 60 65 70 75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ(
x)

(a) nL = 2, SSE = 0.08320

25 30 35 40 45 50 55 60 65 70 75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ(
x)

2

(b) nL = 5, SSE = 0.03517

25 30 35 40 45 50 55 60 65 70 75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ(
x)

2 3

(c) nL = 8, SSE = 0.02846

25 30 35 40 45 50 55 60 65 70 75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ(
x)

3 2

2

(d) nL = 11, SSE = 0.02469

Figure 5.6: Data–driven estimation. Data: subject 35 (Old man).

used to display the estimated membership functions.

As is customary in the literature, to compare our method with those of Zysno

and Dombi we used the sum of the squared errors (SSE) as the measure of goodness

of fit between a membership function model and the empirical data. Dombi used

data for subjects 9, 18, 35, 44 and 58 in Zysno [151] as his benchmark test cases and

measured the corresponding SSEs. Zysno estimated the parameters of his model for

all the data sets (64 subjects), but did not provide SSE as the measure of goodness

of fit. In order to make valid comparisons, we calculated the SSE for Zysno’s model

for the benchmark test cases chosen by Dombi. Table 5.2 gives the SSE for the

benchmark test cases for the three models, namely, Dombi, Zysno, and ours. The

85

Table 5.2: Sum of square errors (SSE)

Model Data set (subject)

9 18 35 44 58

Zysno 0.10074 0.05054 0.17808 0.07572 0.02641

Dombi 0.13204 0.05103 0.14841 0.05284 0.03027

Proposed Approach (ε = 0.0010) 0.07149 0.02390 0.02469 0.03610 0.01941

Table 5.3: SSE progress for the test benchmark cases (ε = 0.0010; †: final solution).

Control points Data set (subject)

(nR + 1) 9 18 35 44 58

3 0.09231 0.07353 0.08320 0.12333 0.06127

4 0.09044 0.04557 0.05242 0.04838 0.02100

5 0.08822 0.03420 0.04498 0.04071 0.01981

6 0.08167 0.02406 0.03517 0.03800 0.01941†

7 0.07538 0.02390† 0.03133 0.03665

8 0.07149† 0.03011 0.03610†

9 0.07428 0.02846

10 0.02715

11 0.02549

12 0.02469†

superior performance of our approach is clearly seen.

Table 5.3 shows the evolution of the SSE for each of the test benchmark cases when

our data–driven estimation mechanism is used. The resulting estimated membership

functions are shown in Figures 5.6 and 5.7. Note that most of the intermediate

solutions shown in Table 5.3 are better than the final solutions provided by Zysno

and Dombi. By monitoring the progress of the SSE, the algorithm may be interrupted

as soon as the user is satisfied with the current SSE. We have a very small ε that may

cause overfitting. However, our method for membership function generation can get

arbitrarily close to the empirical data.

A final remark should be made. After fitting a membership function to data,

the user can still go back and tune the membership by moving the control points as

described in Section 5.4.1. This high level of interaction and flexibility between the

86

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ(
x)

3

2

(a) Subject 9. nR = 7, SSE =
0.07149

30 35 40 45 50 55 60 65
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ(
x)

2

(b) Subject 18. nR = 6, SSE =
0.02390

35 40 45 50 55 60 65 70 75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ(
x)

5

(c) Subject 44. nR = 7, SSE =
0.03610

35 40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ(
x)

2

(d) Subject 58. nR = 5, SSE =
0.01941

Figure 5.7: Data-driven estimation (ε = 0.0010).

87

model and the user is a desirable feature when designing imprecise concepts.

5.4.3 Computational Efficiency

In the absence of data, our approach requires from the user the number and location of

the control points. We have shown in Section 5.4.1 how easy it is to change the shape

of the membership function by displacing the control points. It is important to note

that the computational effort needed to redraw a membership function, whenever a

control point is moved, is just the simple evaluation of (5.5) and (5.6).

Once a membership function has been generated (either with or without data),

as shown in Section 5.3.3.1, the calculations required to find µÃ(x) for a given x and

find αÃ for a given α reduce to solving a computationally inexpensive root finding

problem in a closed interval (t ∈ [0, 1]).

When our approach is used to fit membership functions to data, it was seen in

Section 5.3.3.2 that the computational bottleneck is finding a solution to a nonlinear

program with 2nR+MR−4 variables, MR−2 nonlinear constraints, MR+2nR−1 linear

constraints, and 2(MR+2nR−4) lower and upper bounds. For the numerical examples

presented in Section 5.4.2 we used AMPL as the algebraic modeling language and

MINOS 5.4 as the nonlinear optimizer. Using a computer with a 266 MHz Pentium

II processor, all the nonlinear programs took less than 4 seconds to run.

5.5 Conclusion

We have proposed a new mechanism based on Bézier curves for generating member-

ship functions well suited for a broad spectrum of fuzzy modeling. By placing control

points in different locations, the shape of the membership functions can be altered in

a very natural and intuitive way. Mechanisms for dealing with subjective and data–

driven estimation of membership functions were discussed. Some advantages of this

approach are its flexibility, ease of use, computational efficiency, and suitability for

a graphical interactive implementation. The major advantage is its immense power

of fitting data as close as possible without a priori assumption of the shape of the

function.

Several aspects of this work are in progress. First, a tailored interior point algo-

rithm that can exploit the structure of the nonlinear program presented in (5.8) and

88

(5.9) is currently under investigation [37]. We are currently exploring the application

of this methodology to the methods proposed in Chapters 3 and 4.

89

Chapter 6

Summary and Recommendations

6.1 Summary

In Chapter 1 we introduced simulation optimization, a fundamental problem which

has attracted the attention of many researchers in the simulation community, in

terms of the single response simulation optimization (SRSO) and multiple response

simulation optimization (MRSO) problems. Since the goals for a system are often

stated in vague natural language by the decision maker, we discussed the need for the

incorporation of vague goals into simulation optimization. This led to the study of

the fuzzy single response simulation optimization (FSO) and fuzzy multiple response

simulation optimization (FMSO) problems.

In Chapter 2 we surveyed the literature on simulation optimization and gave an

overview of soft computing. Within the framework of soft computing, we provided a

comprehensive review of evolutionary algorithms for multicriteria optimization. We

highlighted the absence of research on the synergistic merger of simulation optimiza-

tion with soft computing techniques.

In Chapter 3 we proposed a fuzzy controlled method for solving FSO and FMSO

problems. A distinctive feature of the proposed simulation optimization strategy is

the use of approximate reasoning through a fuzzy controller to drive the optimization

process, using a small set of rules that encapsulates the relevant knowledge of the

system. Using these rules, which can be generated from statistical correlation mea-

sures and quadratic response surface models, we showed how the controller is able

to drive a simulation model of a flow line, represented by a tandem of queues with

90

blocking, towards a high degree of satisfaction of one or more vaguely stated targets.

Moreover, in the presence of multiple and conflicting goals, the proposed approach

was able to construct a high quality approximate Pareto optimal solution set. The

quality of the solution set was measured in terms of Zitzler and Thiele’s metric based

on the size of dominated space [150].

In Chapter 4 we provided an alternative evolutionary method for solving the

FMSO problem. This evolutionary method (OSEA) provided a means to assess the

quality of the approximate Pareto front generated by the fuzzy controlled approach

proposed in Chapter 3. We showed how OSEA generates an approximate Pareto

optimal set, using a DEA1–based methodology called optimal scoring for fitness as-

signment. We discussed how optimal scoring overcomes the main difficulty in selecting

a set of predefined fixed weights for an aggregation approach. We also discussed how

optimal scoring requires the solution of a linear program for each individual. We

compared the results obtained by OSEA with those obtained by using the fuzzy con-

trolled approach presented in Chapter 3 on the Flow Line Design problem. Both

methods are capable of generating high quality solutions in terms of the dominated

space metric proposed by Zitzler and Thiele [150], and both are capable of generating

an even sample of the Pareto front. However, the fuzzy controlled method is remark-

ably more efficient, requiring far fewer simulation runs than the evolutionary method

to obtain the same level of solution quality.

In Chapter 5 we introduced a new Bézier curve–based mechanism for constructing

membership functions of normal convex fuzzy sets that can represent virtually any

vague concept. In particular, we showed how the Bezier curve–based mechanism

can fit any given data set with a minimum level of discrepancy. We tested our

approach using data originally published by Zysno [151] and compared its performance

with the methods reported in Zysno [151] and Dombi [32]. The advantages of this

approach include its flexibility, ease of use, computational efficiency, and suitability

for a graphical interactive implementation. To date, this is perhaps the most flexible

and efficient mechanism for both automatic and interactive generation of membership

functions for convex fuzzy sets.

Traditional simulation optimization techniques require an enormous number of

simulation runs to evaluate the system. This research shows that by incorporating

knowledge, expressed in natural language, that is often available among analysts and

1Data Envelopment Analysis.

91

decision makers, the FSO and FMSO problems can be solved efficiently using the

proposed fuzzy controlled method. In case there is a complete lack of knowledge of

the relationships between inputs and performance of the system, OSEA might be the

only alternative for solving the FMSO problem.

6.2 Recommendations for Future Research

This research has succeeded in bringing new elements into the area of simulation

optimization. While the results of our experiments on the flow line design problem

are generally good, there are still open avenues for future research.

1. The fuzzy–controlled approach implemented in this research used a controller

that was built off–line. Research may be conducted on the development of an

efficient and automatic mechanism for knowledge extraction. We envision a sys-

tem that is continuously learning and adapting along with the execution of new

simulation experiments. This problem is usually referred to as the fuzzy system

identification problem. It is conceivable that by combining neural networks,

fuzzy logic, and evolutionary algorithms, a system that will be continuously

learning and adapting while working to fulfill the system’s goals, could be de-

veloped.

2. OSEA has been specifically designed for solving the FMSO problem. However, it

is possible to generalize it to solve traditional formulations of multicriteria opti-

mization problems. Future research should be conducted in this generalization.

A thorough comparison with existing evolutionary algorithms for multicriteria

optimization (e.g., VEGA, NPGA, NSGA, SPEA, MOGA, and HLGA) could

be another interesting research topic.

3. The empirical results obtained so far with OSEA suggest that there is an under-

lying relation between the optimal fitness scores and the distance to the Pareto

front. The development of theoretical results along this line of research could

have significant computational effects.

4. In OSEA, it is possible to add additional constraints to the linear program be-

hind the optimal scoring for fitness assignment. These constraints may be used

92

to model complex relations among the criteria. Future research may consider

exploring the meaning and computational effects of these additional constraints.

5. The methods proposed in Chapters 3 and 4 evaluated a system by using average

performance measures. A possible research topic is to modify the proposed

methods based on the variance of the performance measures.

6. To alleviate the problem of having to make an enormous number of simulation

runs to evaluate a system, it is worthwhile to investigate the possibility of

implementing neuro-accelerators for fast evaluation of simulation models. If

successful, the results of this investigation could be integrated into the methods

proposed in Chapters 3 and 4.

7. This research used the flow line design problem to illustrate the proposed meth-

ods. It is important to expand the experiments to larger and more complex

systems, like those arising in the context of supply chain optimization.

8. Another avenue of research lies in the Bézier curve–based mechanism for con-

structing membership functions as proposed in Chapter 5. A thorough analysis

of the structure of the nonlinear program which must be solved within the auto-

mated curve–fitting process may result in a more efficient algorithm. A tailored

interior point algorithm [37] that exploits the structure of this nonlinear pro-

gram is currently under investigation. Advances made in this algorithm may

be extended to the research on using Bézier distributions to model simulation

input processes [136, 137].

93

Bibliography

[1] Robin Allenson. Genetic Algorithms with Gender for Multi-function Optimisa-

tion. Technical Report EPCC-SS92-01, Edinburgh Parallel Computing Centre,

Edinburgh, Scotland, 1992.

[2] M. H. Alrefaei and S. Andradóttir. A simulated annealing algorithm with con-

stant temperature for discrete stochastic optimization. Management Science,

45(5):748–764, 1999.

[3] S. Andradóttir. Handbook of Simulation, chapter Simulation optimization,

pages 307–333. John Wiley & Sons, 1998. Edited by Jerry Banks.

[4] S. Andradóttir. A review of simulation optimization techniques. In Proceedings

of the 1998 Winter Simulation Conference, pages 151–158, 1998.

[5] F. Azadivar. A tutorial on simulation optimization. In Proceedings of the 1992

Winter Simulation Conference, pages 198–204, 1992.

[6] F. Azadivar and Y. H. Lee. Optimization of discrete variable stochastic systems

by computer simulation. Mathematics and Computers in Simulation, 30:331–

345, 1988.

[7] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Pro-

ceedings of the Second International Conference on Genetic Algorithms, pages

14–21, 1987.

[8] R. R. Barton and J. S. Ivey. Modifications of the Nelder-Mead simplex method

for stochastic simulation response optimization. In Proceedings of the 1991

Winter Simulation Conference, pages 945–953, 1991.

94

[9] R. R. Barton and J. S. Ivey Jr. Nelder-Mead simplex modifications for simlation

optimization. Management Science, 42(7):954–973, 1996.

[10] B. Bhanu and S. Lee. Genetic Learning for Adaptive Image Segmentation.

Kluwer, Boston, MA, 1994.

[11] W. E. Biles and J. J. Swain. Strategies for optimization of multiple response

simulation models. In Proceedings of the 1977 Winter Simulation Conference,

pages 134–142, 1977.

[12] W. E. Biles and J. J. Swain. Mathematical programming and the optimization

of computer simulations. Mathematical Programming Study, 11:189–207, 1979.

[13] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-

versity Press, New York, 1995.

[14] J. Boesel and B. L. Nelson. Accounting for randomness in heuristic simula-

tion optimization. Technical report, Northwestern University, Department of

Industrial Engineering and Management Sciences, Evanston, Illinois, 1998.

[15] J. Boesel, B. L. Nelson, and Nobuaki Ishii. A framework for simulation-

optimization software. Technical report, Northwestern University, Department

of Industrial Engineering and Management Sciences, Evanston, Illinois, 1999.

[16] G. E. P Box and Norman R. Draper. Empirical Model-Building and Response

Surfaces. Wiley, New York, 1987.

[17] M. J. Box. A new method for constrained optimization and comparison with

other methods. Computer Journal, 8:42–52, 1965.

[18] John A. Buzacott and George Shanthikumar. Stochastic Models of Manufac-

turing Systems. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1993.

[19] Yolanda Carson and Anu Maria. Simulation optimization: Methods and ap-

plications. In Proceedings of the 1997 Winter Simulation Conference, pages

118–126, 1997. Edited by S. Andradóttir, K. J. Healy, D. H. Withers, and B.

L. Nelson.

95

[20] J. L. Chameau and J. C. Santamarina. Membership functions I: Comparing

methods of measurement. International Journal of Approximate Reasoning,

1:287–301, 1987.

[21] A. Charnes and W. W. Cooper. Management Models and Industrial Applica-

tions of Linear Programming, volume 1. John Wiley, New York, 1961.

[22] A. Charnes, Cooper W. W., and E. Rhodes. Measuring the efficiency of decision

making units. European Journal of Operations Research, 2:429–444, 1978.

[23] Joseph E. Chen and Kevin N. Otto. Constructing membership functions using

interpolation and measurement theory. Fuzzy Sets and Systems, 73:313–327,

1995.

[24] W. Cheney and D. Kincaid. Numerical Mathematics and Computing. Brooks-

Cole Publishing Co., Monterey, CA, 1980.

[25] E. R. Clayton, W. E. Weber, and B. W. Taylor III. A goal-programming

approach to the optimization of computer simulation models. IIE Transactions,

14(4):282–287, 1982.

[26] Carlos A. Coello and Alan D. Christiansen. Two New GA-based methods for

multiobjective optimization. Civil Engineering Systems, 15(3):207–243, 1998.

[27] Carlos A. Coello and Alan D. Christiansen. MOSES : A Multiobjective Op-

timization Tool for Engineering Design. Engineering Optimization, 31(3):337–

368, 1999.

[28] Carlos A. Coello, Alan D. Christiansen, and Arturo Hernández. Using a New

GA-Based Multiobjective Optimization Technique for the Design of Robot

Arms. Robotica, 16(4):401–414, July–August 1998.

[29] Carlos A. Coello Coello. A comprehensive survey of evolutionary-based multiob-

jective optimization techniques. Knowledge and Information Systems, 1(3):269–

308, 1999.

[30] William W. Cooper, Lawrence M. Seiford, and Kaoru Tone. Data Envelopment

Analysis : A Comprehensive Text with Models, Applications, References and

DEA-Solver Software. Kluwer Academic Publishers, 1999.

96

[31] Indraneel Daas and John Dennis. A closer look at drawbacks of minimizing

weighted sums of objectives for Pareto set generation in multicriteria optimiza-

tion problems. Structural Optimization, 14(1):63–69, 1997.

[32] J. Dombi. Membership function as an evaluation. Fuzzy Sets and Systems,

35:1–21, 1990.

[33] D. Dubois and H. Prade. Soft computing, fuzzy logic, and artificial intelligence.

Soft Computing, 2(1):7–11, 1998.

[34] E. J. Dudewicz and S. R. Dalal. Allocation of measurements in ranking and

selection with unequal variances. Sankhya, B37:28–78, 1975.

[35] Matthias Ehrgott and Xavier Gandibleux. An annotated bibliography of multi-

objective combinatorial optimization. Technical Report 62/2000, Universitat

Kaiserlautern. Fachbereich Mathematik., 2000.

[36] G. W. Evans, B. Stuckman, and M. Mollaghasemi. Multicriteria optimization

of simulation models. In Proceedings of the 1991 Winter Simulation Conference,

pages 894–900, 1991.

[37] S.-C. Fang and Sarat Puthenpura. Linear Programming and Extensions.

Prentice-Hall, Englewood Cliffs, NJ, 1993.

[38] Gerald E. Farin. Curves and Surfaces for Computer Aided Geometric Design:

A Practical Guide. Academic Press, 4th edition, 1997.

[39] W. Farrell. Literature review and bibliography of simulation optimization. In

Proceedings of the 1977 Winter Simulation Conference, pages 117–124, 1977.

[40] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through

Simulated Evolution. John Wiley, New York, 1966.

[41] Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjec-

tive Optimization: Formulation, Discussion and Generalization. In Stephanie

Forrest, editor, Proceedings of the Fifth International Conference on Genetic

Algorithms, pages 416–423, San Mateo, California, 1993. University of Illinois

at Urbana-Champaign, Morgan Kauffman Publishers.

97

[42] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algorithms

in multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

[43] Carlos M. Fonseca and Peter J. Fleming. Multiobjective Optimization and

Multiple Constraint Handling with Evolutionary Algorithms—Part I: A Unified

Formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A:

Systems and Humans, 28(1):26–37, 1998.

[44] M. P. Fourman. Compaction of Symbolic Layout using Genetic Algorithms. In

Genetic Algorithms and their Applications: Proceedings of the First Interna-

tional Conference on Genetic Algorithms, pages 141–153. Lawrence Erlbaum,

1985.

[45] Michael C. Fu. Optimization via simulation: a review. Annals of Operations

Research, 53:199–247, 1994. Simulation and modeling.

[46] S. B. Gelfand and S. K. Mitter. Simulated annealing with noisy or imprecise

energy measurements. Journal on Optimization Theory and Application, 62:49–

62, 1989.

[47] M. Gen, K. Ida, and Y. Li. Solving bicriteria solid transportation problem with

fuzzy numbers by genetic algorithm. International Journal of Computers and

Industrial Engineering, 29:537–543, 1995.

[48] Mitsuo Gen and Runwei Cheng. Genetic Algorithms & Engineering Design.

John Wiley & Sons, 1997.

[49] Mitsuo Gen and Runwei Cheng. Genetic Algorithms & Engineering Optimiza-

tion. John Wiley & Sons, 2000.

[50] F. Glover. Handbook of Operations Research: Foundations and Fundamentals,

chapter Integer Programming and Combinatorics, pages 120–146. Van Nostrand

Reinhold Company, 1978. Edited by J. J. Moder and S. E. Elmaghraby.

[51] F. Glover, J. P. Kelly, and M. Laguna. New advances and applications of

combining simulation and optimization. In Proceedings of the 1996 Winter

Simulation Conference, pages 144–152, 1996.

98

[52] P. W. Glynn. Optimization of stochastic systems via simulation. In Proceedings

of the 1989 Winter Simulation Conference, pages 90–105, 1989.

[53] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multi-

modal function optimization. In Genetic Algorithms and their Applications:

Proceedings of the Second International Conference on Genetic Algorithms,

pages 41–49, 1987.

[54] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

[55] David Goldsman and Barry L. Nelson. Handbook on simulation, chapter Com-

paring systems via Simulation, pages 273–306. Wiley, 1998. Edited by Jerry

Banks.

[56] MacDougall M. H. Simulating Computer Systems - Techniques and Tools.

M.I.T. Press, 1989.

[57] J. Haddock and J. Mittenthal. Simulation optimization using simulated anneal-

ing. Computers and Industrial Engineering, 22:387–395, 1992.

[58] P. Hajela and C. Y. Lin. Genetic search strategies in multicriterion optimal

design. Structural Optimization, 4:99–107, 1992.

[59] J. D. Hall, R. O. Bowden, and J. M. Usher. Using evolution strategies and sim-

ulation to optimize a pull production system. Journal of Materials Processing

Technology, 61:47–52, 1996.

[60] K. Healy and L. W. Schruben. Retrospective simulation response optimization.

In B. L. Nelson, W. D. Kelton, and G. M. Clark, editors, Proceedings of the

1991 Winter Simulation Conference, pages 901–906, Piscataway, New Jersey,

1991. IEEE.

[61] J. H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, 1975.

[62] R. Hooke and T. A. Jeeves. A direct search solution of numerical and statistical

problems. Journal of the ACM, 8:212–229, 1961.

99

[63] Jeffrey Horn. F1.9 multicriterion decision making. In Handbook of Evolutionary

Computation, Bristol, U.K., 1997. IOP Publishing Ltd and Oxford University

Press. T. Bäck, D. B. Fogel, and Z. Michalewicz.

[64] Jeffrey Horn and Nicholas Nafpliotis. Multiobjective Optimization using the

Niched Pareto Genetic Algorithm. Technical Report IlliGAl Report 93005,

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993.

[65] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A Niched Pareto

Genetic Algorithm for Multiobjective Optimization. In Proceedings of the First

IEEE Conference on Evolutionary Computation, IEEE World Congress on

Computational Intelligence, volume 1, pages 82–87, Piscataway, New Jersey,

June 1994. IEEE Service Center.

[66] D. G. Humphrey and J. R. Wilson. A revised simplex search procedure for

stochastic simulation response surface optimization. INFORMS Journal on

Computing, 12(4), 2000.

[67] SAS Institute Inc. SAS Procedures Guide, Version 6. SAS Institute Inc., Cary,

NC, 3rd edition, 1990.

[68] SAS Institute Inc. SAS/STAT User’s Guide, Version 6. SAS Institute Inc.,

Cary, NC, 4th edition, 2000.

[69] Hisao Ishibuchi and Tadahiko Murata. Multi-Objective Genetic Local Search

Algorithm. In Toshio Fukuda and Takeshi Furuhashi, editors, Proceedings of

the 1996 International Conference on Evolutionary Computation, pages 119–

124, Nagoya, Japan, 1996. IEEE.

[70] Sheldon H. Jacobson and Lee W. Schruben. Techniques for simulation response

optimization. Operations Research Letters, 8(1):1–9, 1989.

[71] W. Jakob, M. Gorges-Schleuter, and C. Blume. Application of Genetic Algo-

rithms to task planning and learning. In R. Männer and B. Manderick, edi-

tors, Parallel Problem Solving from Nature, 2nd Workshop, Lecture Notes in

Computer Science, pages 291–300, Amsterdam, 1992. North-Holland Publishing

Company.

100

[72] J.R. Jang. ANFIS: Adaptive-network-based-fuzzy-inference system. IEEE

Transactions on Systems, Man and Cybernetics, 23(3):665–685, 1993.

[73] Jyh-Shing Roger Jang, Chuen-Tsai Sun, and Elji Mizutani. Neuro-Fuzzy and

Soft Computing: A Computational Approach to Learning and Machine Intelli-

gence. Prentice-Hall, Upper Saddle River, New Jersey, 1997.

[74] Gareth Jones, Robert D. Brown, David E. Clark, Peter Willett, and Robert C.

Glen. Searching Databases of Two-Dimensional and Three-Dimensional Chem-

ical Structures using Genetic Algorithms. In Stephanie Forrest, editor, Pro-

ceedings of the Fifth International Conference on Genetic Algorithms, pages

597–602, San Mateo, California, 1993. Morgan Kaufmann.

[75] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression

function. Annals of Mathematical Statistics, 23:462–466, 1952.

[76] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vechi. Optimization by simulated

annealing. Science, 221:671–680, 1983.

[77] J. P. C. Kleijnen. Handbook on simulation, chapter Experimental design for

sensitivity analysis, optimization, and validation of simulation models, pages

173–223. Wiley, 1998. Edited by Jerry Banks.

[78] George J. Klir and Bo Yuan. Fuzzy sets and fuzzy logic: theory and applications.

Prentice-Hall Inc, Upper Saddle River, NJ, 1995.

[79] Frank Kursawe. A variant of evolution strategies for vector optimization. In

H. P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature.

1st Workshop, PPSN I, volume 496 of Lecture Notes in Computer Science, pages

193–197, Berlin, Germany, oct 1991. Springer-Verlag.

[80] Stephen S. Lavenberg, editor. Computer Performance Modeling Handbook,

chapter The Statistical Analysis of Simulation Results, pages 267–329. Aca-

demic Press, New York, New York, 1983.

[81] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis. Mc-

Graw-Hill, Singapore, 2nd edition, 1991.

101

[82] P. L’Ecuyer. An overview of derivative estimation. In B. L. Nelson, W. D.

Kelton, and G. M. Clark, editors, Proceedings of the 1991 Winter Simulation

Conference, pages 207–217, Piscataway, NJ, 1991. IEEE.

[83] C. T. Lin and C. S. George Lee. Neural Fuzzy Systems: A Neuro-Fuzzy Syn-

ergism to Intelligent Systems. Prentice-Hall, Upper Saddle River, New Jersey,

1996.

[84] Joanna Lis and A. E. Eiben. A Multi-Sexual Genetic Algorithm for Multiobjec-

tive Optimization. In Toshio Fukuda and Takeshi Furuhashi, editors, Proceed-

ings of the 1996 International Conference on Evolutionary Computation, pages

59–64, Nagoya, Japan, 1996. IEEE.

[85] Xiaojian Liu, D. W. Begg, and R. J. Fishwick. Genetic approach to optimal

topology/controller design of adaptive structures. International Journal for

Numerical Methods in Engineering, 41:815–830, 1998.

[86] Daniel H. Loughlin and S. Ranjithan. The Neighborhood constraint method: A

Genetic Algorithm-Based Multiobjective Optimization Technique. In Thomas

Bäck, editor, Proceedings of the Seventh International Conference on Genetic

Algorithms, pages 666–673, San Mateo, California, July 1997. Michigan State

University, Morgan Kaufmann Publishers.

[87] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a

fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1–13,

1975.

[88] A. L. Medaglia and S.-C. Fang. A genetic-based framework for solving (multi-

criteria) weighted matching problems. Technical report, North Carolina State

University, Raleigh, North Carolina, 2000. Submitted to the European Journal

of Operational Research.

[89] S. Medasani, J. Kim, and R. Krishnapuram. An overview of membership func-

tion generation techniques for pattern recognition. International Journal of

Approximate Reasoning, 19:391–417, 1998.

[90] M. Meketon. Optimization in simulation: A survey of recent results. In Pro-

ceedings of the 1987 Winter Simulation Conference, pages 58–67, 1987.

102

[91] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer, 3rd edition, 1996.

[92] D. C. Montgomery and V. M. Bettencourt Jr. Multiple response surface meth-

ods in computer simulation. Simulation, 29:113–121, 1977.

[93] R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process

and Product Optimization Using Designed Experiments. Wiley, New York, 1995.

[94] J. Nash. The bargaining problem. Econometrica, 18:155–162, 1950.

[95] J. A. Nelder and R. Mead. A simplex method for function minimization. Com-

puter Journal, 7:308–313, 1965.

[96] V. Norkin, Y. Ermoliev, and A. Ruszczynski. On optimal allocation of indivis-

ibles under uncertainty. Operations Research, 46(3):381–395, 1998.

[97] A. M. Norwich and I. B. Turksen. A model for the measurement of membership

and the consequences of its empirical implementation. Fuzzy Sets and Systems,

12:1–25, 1984.

[98] A. Nozari and J. S. Morris. Application of an optimization procedure to steady-

state simulation. In Proceedings of the 1984 Winter Simulation Conference,

pages 217–219, 1984.

[99] Andrzej Osyczka and Sourav Kundu. A new method to solve generalized mul-

ticriteria optimization problems using the simple genetic algorithm. Structural

Optimization, 10:94–99, 1995.

[100] Jacques Périaux, Mourad Sefrioui, and Bertrand Mantel. GA Multiple

Objective Optimization Strategies for Electromagnetic Backscattering. In

D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors, Genetic Algo-

rithms and Evolution Strategies in Engineering and Computer Science. Recent

Advances and Industrial Applications, chapter 11, pages 225–243. John Wiley

and Sons, West Sussex, England, 1997.

[101] Harry G. Perros. Queueing Networks with Blocking. Oxford University Press,

New York, New York, 1994.

103

[102] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes in C - The Art of Scientific Computing. Cambridge

University Press, 2nd edition, 1992.

[103] A. Alan B. Pritsker, Jean J. O’Reilly, and David K. La Val. Simulation with

Visual SLAM and AweSim. Wiley, 1997.

[104] Domenico Quagliarella and Alessandro Vicini. Coupling Genetic Algorithms

and Gradient Based Optimization Techniques. In D. Quagliarella, J. Périaux,

C. Poloni, and G. Winter, editors, Genetic Algorithms and Evolution Strategies

in Engineering and Computer Science. Recent Advances and Industrial Applica-

tions, chapter 14, pages 289–309. John Wiley and Sons, West Sussex, England,

1997.

[105] I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart,

Germany, 1973.

[106] L. P. Rees, E. R. Clayton, and B. W. Taylor III. Solving multiple response

simulation models using modified response surface methodology within a lexi-

cographic goal programming framework. IIE Transactions, 17(1):47–57, 1985.

[107] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard. Some guidelines

for genetic algorithms with penalty functions. In J. D. Schaffer, editor, Proceed-

ings of the 3rd International Conference on Genetic Algorithms, pages 191–197.

Morgan Kaufmann, San Mateo, CA, 1989.

[108] Brian J. Ritzel, J. Wayland Eheart, and S. Ranjithan. Using genetic algorithms

to solve a multiple objective groundwater pollution containment problem. Wa-

ter Resources Research, 30(5):1589–1603, may 1994.

[109] H. Robbins and S. Monro. A stochastic approximation method. Annals of

Mathematical Statistics, 22:400–407, 1951.

[110] Matthew N. O. Sadiku. Simulation of Local Area Networks. CRC Press, Boca

Raton, 1995.

[111] M. H. Safizadeh. Optimization in simulation - current issues and the future

outlook. Naval Research Logistics, 37(6):807–825, 1990.

104

[112] Eric Sandgren. Multicriteria design optimization by goal programming. In

Hojjat Adeli, editor, Advances in Design Optimization, chapter 23, pages 225–

265. Chapman & Hall, London, 1994.

[113] C. Sauer. Simulation of Computer Communication Systems. Prentice-Hall,

1983.

[114] J. David Schaffer. Multiple objective optimization with vector evaluated genetic

algorithms. In Genetic Algorithms and their Applications: Proceedings of the

First International Conference on Genetic Algorithms, pages 93–100, 1985.

[115] J. David Schaffer and John J. Grefenstette. Multiobjective Learning via Ge-

netic Algorithms. In Proceedings of the 9th International Joint Conference on

Artificial Intelligence (IJCAI-85), pages 593–595, Los Angeles, California, 1985.

AAAI.

[116] J. W. Schmidt and R. E. Taylor. Simulation and Analysis of Industrial Systems.

Richard D. Irwin, Homewood, IL, 1970.

[117] L. W. Schruben and V. J. Cogliano. An experimental procedure for simulation

response surface model identification. Communications of the Association for

Computing Machinery, 30:716–730, 1987.

[118] H. P. Schwefel. Numerical optimization of computer models. Wiley, Chichester,

1981.

[119] A. Shapiro. Simulation based optimization. In Proceedings of the 1996 Winter

Simulation Conference, pages 332–336, 1996.

[120] N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondomi-

nated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248,

fall 1994.

[121] Timothy J. Stanley and Trevor Mudge. A Parallel Genetic Algorithm for Mul-

tiobjective Microprocessor Design. In Larry J. Eshelman, editor, Proceedings

of the Sixth International Conference on Genetic Algorithms, pages 597–604,

San Mateo, California, July 1995. University of Pittsburgh, Morgan Kaufmann

Publishers.

105

[122] Ralph E. Steuer. Multiple Criteria Optimization. Series in Probability and

Mathematical Statistics. John Wiley & Sons, Inc., 1985.

[123] D. W. Sullivan and J. R. Wilson. Restricted subset selection procedures for

simulation. Operations Research, 37:52–71, 1989.

[124] R. Suri. An overview of evaluative models for flexible manufacturing systems.

In Proceedings of the First ORSA/TIMS Conference on Flexible Manufacturing

Systems, pages 8–15, 1984. Edited by K. E. Stecke and R. Suri.

[125] Patrick D. Surry and Nicholas J. Radcliffe. The COMOGA Method: Con-

strained Optimisation by Multiobjective Genetic Algorithms. Control and Cy-

bernetics, 26(3), 1997.

[126] Patrick D. Surry, Nicholas J. Radcliffe, and Ian D. Boyd. A Multi-Objective

Approach to Constrained Optimisation of Gas Supply Networks : The CO-

MOGA Method. In Terence C. Fogarty, editor, Evolutionary Computing. AISB

Workshop. Selected Papers, Lecture Notes in Computer Science, pages 166–180,

Sheffield, U.K., 1995. Springer-Verlag.

[127] Gilbert Syswerda and Jeff Palmucci. The Application of Genetic Algorithms to

Resource Scheduling. In Richard K. Belew and Lashon B. Booker, editors, Pro-

ceedings of the Fourth International Conference on Genetic Algorithms, pages

502–508, San Mateo, California, 1991. Morgan Kaufmann.

[128] T. Takagi and M. Sugeno. Fuzzy identification of systems and application to

modeling and control. Transactions on Systems, Man and Cybernetics, 15:116–

132, 1985.

[129] H. Tamaki, H. Kita, and S. Kobayashi. Multi-objective optimization by genetic

algorithms: A review. In Proceedings of the 1996 IEEE ICEC, pages 517–522,

1996.

[130] Hisashi Tamaki, M. Mori, M. Araki, Y. Mishima, and H. Ogai. Multi-Criteria

Optimization by Genetic Algorithms : A Case of Scheduling in Hot Rolling

Process. In Proceedings of the 3rd Conference of the Association of Asian-

Pacific Operational Research Societies within IFORS (APORS’94), pages 374–

381. World Scientific, 1995.

106

[131] G. Tompkins and F. Azadivar. Genetic algorithms in optimizing simulated

systems. In Proceedings of the 1995 Winter Simulation Conference, pages 757–

762, 1995.

[132] I. B. Turksen. Measurement of membership functions and their acquisition.

Fuzzy Sets and Systems, 40:5–38, 1991.

[133] Manuel Valenzuela and Eduardo Uresti. A Non-Generational Genetic Algorithm

for Multiobjective Optimization. In Thomas Bäck, editor, Proceedings of the

Seventh International Conference on Genetic Algorithms, pages 658–665, San

Mateo, California, July 1997. Michigan State University, Morgan Kaufmann

Publishers.

[134] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary

algorithms: Analyzing the state-of-the-art. Evolutionary Computation, 8(2):1–

26, 2000.

[135] V. Rao Vemuri and Walter Cede no. A New Genetic Algorithm for Multi

Objective Optimization in Water Resource Management. In Proceedings of the

Second IEEE International Conference on Evolutionary Computation, pages

495–500, Piscataway, New Jersey, 1995. IEEE Press.

[136] Mary Ann F. Wagner and James R. Wilson. Recent developments in input mod-

eling with Bézier distributions. In Proceedings of the 1996 Winter Simulation

Conference, pages 1448–1456, 1996.

[137] Mary Ann F. Wagner and James R. Wilson. Using univariate Bézier distri-

butions to model simulation input processes. IIE Transactions, 28:699–711,

1996.

[138] D. R. Wallace, M. J. Jakiela, and W. C. Flowers. Design search under probabilis-

tic specifications using genetic algorithms. Computer-Aided Design, 28:405–420,

1994.

[139] P. B. Wienke, C. Lucasius, and G. Kateman. Multicriteria target optimization

of analytical procedures using a genetic algorithm. Analytical Chimica Acta,

265(2):211–225, 1992.

107

[140] J. R. Wilson. Future directions in response surface methodology for simulation.

In Proceedings of the 1987 Winter Simulation Conference, pages 378–381, 1987.

[141] P. B. Wilson and M. D. Macleod. Low implementation cost IIR digital filter

design using genetic algorithms. In IEE/IEEE Workshop on Natural Algorithms

in Signal Processing, pages 4/1–4/8, Chelmsford, U.K., 1993.

[142] Xiaofeng Yang and Mitsuo Gen. Evolution program for bicriteria transportation

problem. In M. Gen and T. Kobayashi, editors, Proceedings of the 16th Inter-

national Conference on Computers and Industrial Engineering, pages 451–454,

Ashikaga, Japan, 1994. Pergamon Press.

[143] James M. Yunker and Jeffrey D. Tew. Simulation optimization by genetic

search. Mathematics and Computers in Simulation, 37(1):17–28, 1994.

[144] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[145] L. A. Zadeh. Outline of a new approach to the analysis of complex systems

and decision processes. IEEE Transactions on Systems, Man and Cybernetics,

3(1):28–44, 1973.

[146] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft computing. Communi-

cations of the ACM, 37(3):77–84, 1994.

[147] Lotfi A. Zadeh. Some reflections on soft computing, granular computing and

their roles in the conception, design and utilization of information/intelligence

systems. Soft Computing, 2(1):23–25, 1998.

[148] H. J. Zimmermann and P. Zysno. Quantifying vagueness in decision models.

European Journal of Operational Research, 22:148–158, 1985.

[149] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

[150] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compar-

ative case study and the strength pareto approach. IEEE Transactions on

Evolutionary Computation, 3(4):257–271, 1999.

108

[151] P. Zysno. Modelling membership functions. In B. Rieger, editor, Empirical

Semantics, pages 350–375, Bochum, 1981. Brockmeyer.

109

Appendix A

Membership Functions

A.1 State Variables

Table A.1 contains a complete list of all the fuzzy controller inputs for the flow line

design application in Section 3.4. For every input (linguistic variable), the linguistic

states and the number of the figure where the membership functions can be found

are given.

110

Linguistic Variable Linguistic Values Membership Functions

Low

Overall work-in-process (w) Medium See Figure A.1

High

Low

Work-in-process at stage 1 (w1) Medium See Figure A.2

High

Low

Work-in-process at stage 2 (w2) Medium See Figure A.3

High

Low

Work-in-process at stage 3 (w3) Medium See Figure A.4

High

Low

Work-in-process at stage 4 (w4) Medium See Figure A.5

High

Short

Time in system (T) Medium See Figure A.6

Long

Low

Utilization at stage 1 (ρ1) Medium See Figure A.7

High

Low

Utilization at stage 2 (ρ2) Medium See Figure A.8

High

Low

Utilization at stage 3 (ρ3) Medium See Figure A.9

High

Low

Utilization at stage 4 (ρ4) Medium See Figure A.10

High

Table A.1: Flow line fuzzy controller inputs.

111

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Work in process (overall)

M
em

be
rs

hi
p

Low Medium High

Figure A.1: Overall work-in-process (w)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Work in process at stage 1

M
em

be
rs

hi
p

Low Medium High

Figure A.2: Work-in-process at stage 1 (w1)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Work in process at stage 2

M
em

be
rs

hi
p

Low Medium High

Figure A.3: Work-in-process at stage 2 (w2)

112

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Work in process at stage 3

M
em

be
rs

hi
p

Low Medium High

Figure A.4: Work-in-process at stage 3 (w3)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Work in process at stage 4

M
em

be
rs

hi
p

Low Medium High

Figure A.5: Work-in-process at stage 4 (w4)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in system

M
em

be
rs

hi
p

short medium long

Figure A.6: Time in system (T)

113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization at station 1

M
em

be
rs

hi
p

low medium high

Figure A.7: Utilization at station 1 (ρ1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization at station 2

M
em

be
rs

hi
p

low medium high

Figure A.8: Utilization at station 2 (ρ2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization at station 3

M
em

be
rs

hi
p

low medium high

Figure A.9: Utilization at station 3 (ρ3)

114

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization at station 4

M
em

be
rs

hi
p

low medium high

Figure A.10: Utilization at station 4 (ρ4)

115

A.2 Control Variables

The fuzzy controller outputs for the flow line design application in Section 3.4 are

displayed in Table A.2. For every output (linguistic variable), the associated linguistic

states and the number of the figure where the membership functions can be found

are given.

Linguistic Variable Linguistic Values Membership Functions

Negatively large

Negatively small

Change in server rate Zero See Figure A.11.

at stage 1 (∆µ1) Positively small

Positively large

Negatively large

Negatively small

Change in server rate Zero See Figure A.12.

at stage 3 (∆µ3) Positively small

Positively large

Negatively large

Negatively small

Change in number of Zero See Figure A.13.

servers at stage 2 (∆s2) Positively small

Positively large

Negatively large

Negatively small

Change in number of Zero See Figure A.14.

servers at stage 3 (∆s3) Positively small

Positively large

Table A.2: Flow line fuzzy controller outputs

116

Linguistic Variable Linguistic Values Membership Functions

Negatively large

Negatively small

Change in number of Zero See Figure A.15.

servers at stage 4 (∆s4) Positively small

Positively large

Negatively large

Negatively small

Change in buffer space Zero See Figure A.16.

at stage 2 (∆b2) Positively small

Positively large

Negatively large

Negatively small

Change in buffer space Zero See Figure A.17.

at stage 4 (∆b4) Positively small

Positively large

Table A.2: Flow line fuzzy controller outputs (continued).

117

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change in server rate at station 1

M
em

be
rs

hi
p

Negatively large Negatively small Zero Positively small Positively large

Figure A.11: Change in server rate at station 1 (∆µ1)

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change in server rate at station 3

M
em

be
rs

hi
p

Negatively large Negatively small Zero Positively small Positively large

Figure A.12: Change in server rate at station 3 (∆µ3)

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change in number of servers at station 2

M
em

be
rs

hi
p

Negatively large Negatively small Zero Positively small Positively large

Figure A.13: Change in servers at station 2 (∆s2)

118

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change in number of servers at station 3

M
em

be
rs

hi
p

Negatively large Negatively small Zero Positively small Positively large

Figure A.14: Change in servers at station 3 (∆s3)

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change in number of servers at station 4

M
em

be
rs

hi
p

Negatively large Negatively small Zero Positively small Positively large

Figure A.15: Change in servers at station 4 (∆s4)

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change in buffer size at station 2

M
em

be
rs

hi
p

Negatively large Negatively small Zero Positively small Positively large

Figure A.16: Change in buffer space at station 2 (∆b2)

119

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Change in buffer size at station 4

M
em

be
rs

hi
p

Negatively large Negatively small Zero Positively small Positively large

Figure A.17: Change in buffer space at station 4 (∆b4)

120

Appendix B

Rule Base for the Multiple

Objective Scenario

The following rule base is the one used in the experiment on the flow line design

problem in Section 3.4.5.2 and Section 4.2.

Rule 1. If the overall work-in-process ($) is high (H̃$) then the change in server rate

at station 1 (∆γ1) should be positively small (P̃S∆γ1).

Rule 2. If the overall work-in-process ($) is medium (M̃$) then the change in server

rate at station 1 (∆γ1) should be positively small (P̃S∆γ1).

Rule 3. If the overall work-in-process ($) is low (L̃$) then the change in server rate at

station 1 (∆γ1) should be zero (Z̃∆γ1).

Rule 4. If the overall work-in-process ($) is high (H̃$) then the change in the number

of servers at station 4 (∆s4) should be positively small (P̃S∆s4).

Rule 5. If the overall work-in-process ($) is medium (M̃$) then the change in the

number of servers at station 4 (∆s4) should be positively small (P̃S∆s4).

Rule 6. If the overall work-in-process ($) is low (L̃$) then the change in the number of

servers at station 4 (∆s4) should be zero (Z̃∆s4).

Rule 7. If the overall work-in-process ($) is high (H̃$) and the utilization at station 3

(ϕ3) is high (H̃ϕ3) then the change in the server rate at station 3 (∆γ3) should

be positively large (P̃L∆γ3).

121

Rule 8. If the overall work-in-process ($) is medium (M̃$) and the utilization at station

3 (ϕ3) is high (H̃ϕ3) then the change in the server rate at station 3 (∆γ3) should

be positively small (P̃S∆γ3).

Rule 9. If the overall work-in-process ($) is medium (M̃$) and the utilization at station

3 (ϕ3) is medium (M̃ϕ3) then the change in the server rate at station 3 (∆γ3)

should be positively small (P̃S∆γ3).

Rule 10. If the overall work-in-process ($) is high (H̃$) and the utilization at station 2

(ϕ2) is high (H̃ϕ2) then the change in the number of servers at station 2 (∆s2)

should be positively large (P̃L∆s2).

Rule 11. If the overall work-in-process ($) is medium (M̃$) and the utilization at station

2 (ϕ2) is high (H̃ϕ2) then the change in the number of servers at station 2 (∆s2)

should be positively small (P̃S∆s2).

Rule 12. If the overall work-in-process ($) is medium (M̃$) and the utilization at station

2 (ϕ2) is medium (M̃ϕ2) then the change in the number of servers at station 2

(∆s2) should be positively small (P̃S∆s2).

Rule 13. If the overall work-in-process ($) is high (H̃$) and the utilization at station 3

(ϕ3) is high (H̃ϕ2) then the change in the number of servers at station 3 (∆s3)

should be positively large (P̃L∆s3).

Rule 14. If the overall work-in-process ($) is high (H̃$) and the utilization at station

3 (ϕ3) is medium (M̃ϕ2) then the change in the number of servers at station 3

(∆s3) should be positively small (P̃S∆s3).

Rule 15. If the overall work-in-process ($) is medium (M̃$) and the utilization at station

3 (ϕ3) is medium (M̃ϕ2) then the change in the number of servers at station 3

(∆s3) should be positively small (P̃S∆s3).

Rule 16. If the utilization at station 1 (ϕ1) is high (H̃ϕ1) then the change in server rate

at station 1 (∆γ1) should be zero (Z̃∆γ1).

Rule 17. If the utilization at station 1 (ϕ1) is medium (M̃ϕ1) then the change in server

rate at station 1 (∆γ1) should be negatively small (ÑS∆γ1).

122

Rule 18. If the utilization at station 1 (ϕ1) is low (L̃ϕ1) then the change in server rate at

station 1 (∆γ1) should be negatively large (ÑL∆γ1).

123

Appendix C

Results for the Fuzzy Controlled

Approach

The results presented in this appendix detail the summarized results for the fuzzy

controlled approach presented in Section 4.2.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Iteration

p

(b) Zitzler and Thiele’s dominated space
metric.

Figure C.1: Experiment # 1 of the two-goal scenario with the fuzzy controlled ap-

proach.

124

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Iteration

p

(b) Zitzler and Thiele’s dominated space
metric.

Figure C.2: Experiment # 2 of the two-goal scenario with the fuzzy controlled ap-

proach.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Iteration

p

(b) Zitzler and Thiele’s dominated space
metric.

Figure C.3: Experiment # 3 of the two-goal scenario with the fuzzy controlled ap-

proach.

125

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Iteration

p

(b) Zitzler and Thiele’s dominated space
metric.

Figure C.4: Experiment # 4 of the two-goal scenario with the fuzzy controlled ap-

proach.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Iteration

(b) Zitzler and Thiele’s dominated space
metric.

Figure C.5: Experiment # 5 of the two-goal scenario with the fuzzy controlled ap-

proach.

126

Appendix D

Results for OSEA

.

The results presented in this appendix detail the summarized results for OSEA

presented in Section 4.2.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Generation

D
om

in
at

ed
 s

pa
ce

(b) Zitzler and Thiele’s dominated space
metric.

Figure D.1: Experiment # 1 of the flow line design problem with two goals solved by

OSEA.

127

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Generation

D
om

in
at

ed
 s

pa
ce

(b) Zitzler and Thiele’s dominated space
metric.

Figure D.2: Experiment # 2 of the flow line design problem with two goals solved by

OSEA.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Generation

D
om

in
at

ed
 s

pa
ce

(b) Zitzler and Thiele’s dominated space
metric.

Figure D.3: Experiment # 3 of the flow line design problem with two goals solved by

OSEA.

128

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Generation

D
om

in
at

ed
 s

pa
ce

(b) Zitzler and Thiele’s dominated space
metric.

Figure D.4: Experiment # 4 of the flow line design problem with two goals solved by

OSEA.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Generation

D
om

in
at

ed
 s

pa
ce

(b) Zitzler and Thiele’s dominated space
metric.

Figure D.5: Experiment # 5 of the flow line design problem with two goals solved by

OSEA.

129

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Degree of low work-in-process

D
eg

re
e

of
 h

ig
h

ut
ili

za
tio

n
at

 s
ta

ge
 1

(a) Approximate Pareto front.

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 10 20 30 40 50 60 70 80 90 100

Generation

D
om

in
at

ed
 s

pa
ce

(b) Zitzler and Thiele’s dominated space
metric.

Figure D.6: Experiment # 6 of the flow line design problem with two goals solved by

OSEA.

130

