

Abstract


MEDAGLIA, ANDRÉS L. Simulation Optimization Using Soft Computing. (Under
the direction of Dr. Shu-Cherng Fang and Dr. Henry L. W. Nuttle.)


To date, most of the research in simulation optimization has been focused on single


response optimization on the continuous space of input parameters. However, the


optimization of more complex systems does not fit this framework. Decision makers


often face the problem of optimizing multiple performance measures of systems with


both continuous and discrete input parameters. Previously acquired knowledge of the


system by experts is seldom incorporated into the simulation optimization engine.


Furthermore, when the goals of the system design are stated in natural language or


vague terms, current techniques are unable to deal with this situation. For these


reasons, we define and study the fuzzy single response simulation optimization (FSO)


and fuzzy multiple response simulation optimization (FMSO) problems.


The primary objective of this research is to develop an efficient and robust method


for simulation optimization of complex systems with multiple vague goals. This


method uses a fuzzy controller to incorporate existing knowledge to generate high


quality approximate Pareto optimal solutions in a minimum number of simulation


runs.


For comparison purposes, we also propose an evolutionary method for solving the


FMSO problem. Extensive computational experiments on the design of a flow line


manufacturing system (in terms of tandem queues with blocking) have been con-


ducted. Both methods are able to generate high quality solutions in terms of Zitzler


and Thiele’s “dominated space” metric. Both methods are also able to generate an


even sample of the Pareto front. However, the fuzzy controlled method is remarkably


more efficient, requiring far fewer simulation runs than the evolutionary method to


achieve the same solution quality.


To accommodate the complexity of natural language, this research also provides







a new Bezier curve–based mechanism to elicit knowledge and express complex vague


concepts. To date, this is perhaps the most flexible and efficient mechanism for both


automatic and interactive generation of membership functions for convex fuzzy sets.
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5.3.1 Bézier Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Mathematical Framework . . . . . . . . . . . . . . . . . . . . 73
5.3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 77


5.3.3.1 Basic Operations . . . . . . . . . . . . . . . . . . . . 77
5.3.3.2 Data–driven Estimation . . . . . . . . . . . . . . . . 77


5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.1 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.3 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . 88


5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88


6 Summary and Recommendations 90
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Recommendations for Future Research . . . . . . . . . . . . . . . . . 92


A Membership Functions 110
A.1 State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.2 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116


B Rule Base for the Multiple Objective Scenario 121


C Results for the Fuzzy Controlled Approach 124


D Results for OSEA 127


viii







List of Tables


3.1 Flow line simulation inputs ranges . . . . . . . . . . . . . . . . . . . 38
3.2 Initial conditions for the single–goal scenario with improved controlla-


bility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45


4.1 Evaluated and fuzzified performance measures for E(t). . . . . . . . . 58
4.2 Comparison of fitness assignment methods. . . . . . . . . . . . . . . . 59
4.3 Bounds on weights for OSEA experiments. . . . . . . . . . . . . . . . 64


5.1 Control points (before change). . . . . . . . . . . . . . . . . . . . . . 83
5.2 Sum of square errors (SSE) . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 SSE progress for the test benchmark cases (ε = 0.0010; †: final solu-


tion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86


A.1 Flow line fuzzy controller inputs. . . . . . . . . . . . . . . . . . . . . 111
A.2 Flow line fuzzy controller outputs . . . . . . . . . . . . . . . . . . . . 116


ix







List of Figures


1.1 Simulation optimization framework . . . . . . . . . . . . . . . . . . . 2


3.1 Fuzzy controlled simulation optimization . . . . . . . . . . . . . . . . 22
3.2 Target Threshold Algorithm . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Pareto Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . 32
3.4 Fuzzy controlled simulation optimization and knowledge extraction . 34
3.5 Tandem of queues with blocking (flow line) . . . . . . . . . . . . . . . 36
3.6 Flow line optimization framework . . . . . . . . . . . . . . . . . . . . 37
3.7 Overall work–in–process ($) . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Utilization at station 1 (ϕ1) . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Change in server rate at station 1 (∆γ1) . . . . . . . . . . . . . . . . 40
3.10 Correlation coefficients extracted from the full correlation matrix . . . 41
3.11 Response surface for the work–in–process (s3 = 4, s4 = 6, b2 = 4,


b4 = 5, and s2 = 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.12 Response surface for the utilization at station 1 (s3 = 4, s4 = 6, b2 = 4,


b4 = 5, and s2 = 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.13 Control path for the overall work–in–process membership function for


the single–goal scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.14 Solution for different initial conditions for the single–goal scenario with


improved controllability . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.15 Approximate Pareto front for the two-goal scenario . . . . . . . . . . 47
3.16 Zitzler and Thiele’s dominated space metric [150] for the two-goal sce-


nario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48


4.1 Optimal Scoring Evolutionary Algorithm (OSEA) . . . . . . . . . . . 50
4.2 Representation in OSEA. . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Optimal fitness in performance space. The symbols N, •, and ¥ rep-


resent the first, second, and third tier of optimal scores, respectively. . 60
4.4 Stochastic Universal Sampling . . . . . . . . . . . . . . . . . . . . . . 60
4.5 One–point crossover in OSEA. . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Updating P∗


approximate(t) . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Comparison of the dominated space. . . . . . . . . . . . . . . . . . . 65
4.8 Comparison of the number of simulation runs. . . . . . . . . . . . . . 66


x







4.9 Comparison of the Pareto front. . . . . . . . . . . . . . . . . . . . . . 66


5.1 Types of membership functions. . . . . . . . . . . . . . . . . . . . . . 76
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Chapter 1


Introduction


1.1 Simulation Optimization


A system is a collection of entities that act and interact toward the accomplishment


of a logical end [116]. In order to study a system rigorously, the system is modeled


in the form of logical and mathematical relationships. If the model is simple enough,


the performance of the underlying system can be evaluated analytically. Nevertheless,


in real–world scenarios, the presence of stochastic elements and complex interactions


between the system entities often preclude the possibility of obtaining an analytical


solution. In these cases, the model can be studied using simulation. In this disserta-


tion, simulation refers to discrete event simulation.


In discrete event simulation, the state of the system may change with the occur-


rence of instantaneous events at separate and countable points in time [81]. Real


world computer, communication, and manufacturing networks are examples of highly


complex systems that are commonly evaluated using discrete event simulation [56,


81, 110, 113].


The simulation approach to problem solving, typically involves a series of trials


in which changes are made to the input variables so that resulting changes in the


output variables (responses or system performances) can be observed and identified


[19]. Even though simulation can provide a very detailed and accurate model, it is in


itself more of a descriptive than a prescriptive modeling tool [124].


The problem known as simulation optimization is that of finding the values for


the input parameters such that an expected system performance is optimized. Figure


1







1.1 depicts a simulation optimization framework. In this framework the output of a


complex model is introduced into an optimization strategy which adjusts and feeds


the inputs back to the model.


Optimization
Strategy


Feedback


Inputs Outputs


Simulation


Figure 1.1: Simulation optimization framework


Formally, the single response simulation optimization (SRSO) problem can be


stated as:


min
x∈X


f(x) (1.1)


where, f(x) = E[L(x, ω)] is the expected value of the system performance measure of


interest, L(x, ω) is the sample performance, ω represents the stochastic effects of the


system, x is a vector of N controllable parameters, and X is a closed set of constraints


on x.


The SRSO problem has received much attention by the simulation community.


Several reviews on the field of simulation optimization deal almost exclusively with


this problem [3, 5, 19, 45, 70, 90, 111]. Brief descriptions of various methods of simula-


tion optimization are given in Chapter 2.


In practice, most of the time an analyst has to consider several criteria simulta-


neously. In the presence of conflicting objectives, a simulation optimization method


must take into account the tradeoff between these criteria. The multiple response


simulation optimization (MRSO) problem is:


min
x∈X


{(f1(x), f2(x), . . . , fK(x))} (1.2)


where for k = 1, . . . , K, fk(x) = E[Lk(x, ω)] is the expected value of the k-th perfor-


mance measure of interest; Lk(x, ω) is the sample of the k-th performance; ω repre-


sents the stochastic effects of the system; x is the vector of controllable parameters;


and X is the closed set of constraints on x.
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Despite of its real world applicability, relatively little research has been conducted


on the MRSO problem. Montgomery and Bettencourt [92] use the Geoffrion, Dyer,


Feinberg method (GDF) to optimize a simulation model with four criteria and two


input parameters. Clayton et al. [25] and Rees et al. [106] use a goal programming


approach. Biles and Swain [11, 12] propose and compare a first and second order


response surface approach with a direct search algorithm. Evans et al. [36] suggest


a set of guidelines for the multicriteria optimization of simulation models. A brief


description of these methods is given in Chapter 2.


1.2 Simulation Optimization with Vague Goals


Most of the time the goals for a system are stated in vague natural language by


the decision maker. For instance, in a manufacturing setting a decision maker may


want to design a system with low work–in–process and high utilization of a certain


expensive machine. In this case the vague terms low and high introduced by the


decision maker have to be incorporated into the analysis, deduced, and interpreted


according to the context. In this setting, the problem is to find the value of the


controllable parameters such that all the objectives of the system are satisfied to a


high degree.


Fuzzy technology provides a proven and efficient way to compute with words


and incorporate natural language into the area of simulation optimization. Fuzzy


set theory was first introduced in the 1960s by Lotfi A. Zadeh as a way to capture


uncertainty and vagueness often overlooked in the analysis of complex systems [144].


A fuzzy set Ã is characterized by its membership function µÃ, which maps each


element of the universe X to the interval [0, 1]. This function indicates the degree to


which each element belongs to the set.


Rewriting SRSO to incorporate vagueness, we have the fuzzy single response sim-


ulation optimization or fuzzy simulation optimization (FSO) problem:


max
x∈X


µG̃(f(x)) (1.3)


where, µG̃(f(x)) is a measure of the degree of satisfaction of the vague target repre-


sented by the fuzzy set G̃ and, as above, f(x) is the expected value of the performance


measure associated with the target, x is the vector of N controllable parameters, and


X is the closed set of constraints on x.
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MRSO has its corresponding problem that incorporates vagueness, namely the


fuzzy multiple response simulation optimization or fuzzy multicriteria simulation op-


timization (FMSO) problem:


max
x∈X


{(
µG̃1


(f1(x)), µG̃2
(f2(x)), . . . , µG̃K


(fK(x))
)}


(1.4)


where for k = 1, . . . , K, µG̃k
(fk(x)) is the degree of satisfaction of the k-th vague


target represented by the fuzzy set G̃k; fk(x) is the expected value of the performance


measure associated with the k-th target.


1.3 Scope and Objectives of Research


The primary objective of this research is to develop an efficient and robust method


for the multicriteria optimization of simulated complex systems with vague goals.


This method, which uses a fuzzy controller, incorporates existing knowledge, satisfies


vaguely stated goals, generates a high quality approximate Pareto optimal set, and is


efficient in terms of simulation runs.


To date, most of the research in simulation optimization has been focused on sin-


gle response optimization on the continuous space of input parameters X . However,


the optimization of more complex systems does not fit this framework. For instance,


decision makers often face the problem of optimizing multiple performance measures


of systems with both continuous and discrete input parameters. Additionally, pre-


viously acquired knowledge of the system by experts has been largely ignored by


simulation optimization techniques proposed in the literature. These techniques do


not provide any means of incorporating this valuable knowledge into the optimization


engine. Furthermore, if the goals of the system design are stated in natural language


or vague terms, current techniques are simply unable to deal with this imprecision.


Our approach for simulation optimization will take into account the issues of con-


tinuous and discrete input parameters, multiple criteria, preexistent knowledge, and


vagueness in the system goals.


The objectives of this research may be summarized as follows.


1. Develop methods to solve problems FSO in (1.3) and FMSO in (1.4).


2. Develop a procedure for the solution of simulation optimization problems by


taking into consideration both continuous and discrete input parameters, pre-
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viously acquired knowledge on the system, vagueness in the system goals, and


considering multiple criteria.


3. Develop an alternative and competitive approach to unveil the strengths and


weaknesses of the proposed approach in 2.


4. Conduct an extensive experimental performance evaluation of the proposed ap-


proaches on a Flow Line Design problem.


To validate the mechanisms proposed to achieve objectives 2 and 3, we use the


popular trapezoidal fuzzy sets. To further improve the expressive power of the vague


concepts used therein, we also


5. Investigate, formulate, and develop an efficient and flexible mechanism to rep-


resent virtually any vague concept expressed in natural language.


1.4 Organization of the Dissertation


In Chapter 2 we include a survey of previously proposed methods for simulation


optimization with single and multiple responses. We briefly review the elements of


soft computing and emphasize the existing multicriteria evolutionary optimization


techniques found in the literature. Chapter 3 presents a method, based on a fuzzy


controller, for solving problems FSO in (1.3) and FMSO in (1.4). We illustrate the


method on a Flow Line Design problem. In Chapter 4 we propose an alternative


evolutionary approach to the fuzzy controlled mechanism presented in Chapter 3.


This evolutionary approach, which we call Optimal Scoring Evolutionary Algorithm


(OSEA), provides a means to assess the quality of the approximate Pareto front gen-


erated by the fuzzy controlled approach to FMSO. An extensive comparison with the


fuzzy controlled mechanism on the Flow Line Design problem is presented. Chapter


5 presents an efficient and flexible Bézier curve–based mechanism for constructing


membership functions of convex normal fuzzy sets. This mechanism is useful for rep-


resenting virtually any kind of vague concept. Chapter 6 contains the conclusions


from our research and recommendations for future study.
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Chapter 2


Literature Review


In the first part of this chapter, we summarize the existing alternatives to simula-


tion optimization. The second part, deals with an overview of soft computing with


emphasis on the existing literature on evolutionary multicriteria optimization.


2.1 Simulation Optimization


The dramatic improvement in computer technology, its relatively low cost, and broad


availability, have led researchers in industry and academia to increased efforts in the


area of simulation optimization of complex systems. Even though a lot of research


has been conducted in the last twenty–five years, many problems remain open and


unsolved. Due to these loose ends and the high impact on industry, the area keeps


growing and attracting researchers and practitioners year after year.


Several reviews on the field of simulation optimization are available [3–5, 19, 39,


45, 52, 70, 90, 111, 119]. The one written by Fu [45] presents an excellent overview of


the field. The main forum for simulation researchers and practitioners is the Winter


Simulation Conference (WSC). Its proceedings are a valuable source to keep up to


date on progress in the area.


In the remaining part of this section, we present the different methods that are


used to solve simulation optimization problems. Sections 2.1.1 to 2.1.5 refer to single–


response systems while Section 2.1.6 refers to multiple–response systems.
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2.1.1 Optimization Over a Finite Set


The methods discussed here are useful when the number of choices is not too large,


say 2 to 20 [55]. They are basically statistical procedures that fall in one of two


categories: multiple comparison or ranking–and–selection.


2.1.1.1 Multiple Comparison Procedures


The purpose of these procedures is the construction of confidence intervals based on


pairwise comparisons. Some of the methods in this category are the all–pairwise


comparisons based on paired–t confidence intervals and the Bonferroni inequality;


multiple comparisons with the best (MCB); and all–pairwise multiple comparisons


(MCA) approach. The typical assumptions for these methods are independence and


normality of the performance measure of interest. For further details on this subject


the reader is referred to Goldsman and Nelson [55] and Law and Kelton [81].


2.1.1.2 Ranking and Selection


Ranking and selection methods are statistical procedures designed to select the best


system or a subset of systems that include the best one, from a finite set of choices.


Provided some assumptions are met, these methods guarantee that the correct se-


lection is made with at least a (user specified) probability. These methods can be


classified in two major categories: indifference zone and subset selection. The method


proposed by Dudewicz and Dalal [34] falls into the first category, while that proposed


by Sullivan and Wilson [123] falls into the subset selection methods category. Both


procedures are particularly useful for simulation optimization because they do not re-


quire variances to be equal or to be known. Again, for further details on this subject


the reader is referred to Goldsman and Nelson [55] and Law and Kelton [81].


2.1.2 Response Surface Methodology


Perhaps the most used technique in simulation optimization is response surface method-


ology (RSM). RSM techniques can be categorized into metamodels and sequential


procedures. In the metamodel methodology, a regression model is fitted to the re-


sponse of interest after evaluating it through the use of simulation at several values
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of input parameters. Once a regression model is estimated, it is treated as a deter-


ministic function and is optimized [19].


In the literature, simulation optimization using RSM usually refers to the second


category, i.e., sequential procedures. The basic idea is to approach the vicinity of


the optimum through a sequence of first order regression models. Once an optimum


neighborhood is reached, higher order regression models are used. The optimum is


derived analytically.


The major disadvantage of RSM is that a large number of simulation runs may


be needed [70]. On the other hand, RSM has a strong theoretical basis and can be


applied to a broad variety of simulation problems [140].


For further details on this subject the reader is refer to the overview written by


Kleijnen [77], the review written by Jacobson and Schruben [70] and the classical


books by Myers and Montgomery [93] and Box and Draper [16].


2.1.3 Gradient Based Algorithms


These algorithms are based on improving the input parameters by moving iteratively


in the direction of the estimated gradient of the response of interest. One of the


major concerns with this type of algorithm is the estimation of the gradient and its


statistical properties.


2.1.3.1 Stochastic Approximation


The first stochastic approximation algorithms were introduced by Robbins and Monro


[109], and Kiefer and Wolfowitz [75]. The basic idea is that the single response


simulation optimization problem presented in (1.1) can be solved by finding a vector


x of input parameters such that


∇f(x) = 0. (2.1)


The general form of the stochastic approximation algorithm is:


xn+1 = ΠΘ(xn − αn∇̂f(xn)) (2.2)


where xn is the vector of input parameters at the n-th iteration, ∇̂f(xn) is an estimate


of the gradient ∇f(xn) from iteration n, αn is a positive step size, and ΠΘ is a


projection onto the set of continuous input parameters Θ.
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If ∇̂f(xn) is an unbiased estimator of the gradient ∇f(xn), the algorithm is of the


Robbins–Monro [109] type. On the other hand, if the gradient is estimated by finite


differences (as described in Section 2.1.3.2.1 below), the algorithm is of the Kiefer–


Wolfowitz [75] type. Under fairly general conditions they converge almost surely


to the optimum. However, they could converge to a local optimum and may not


always work well [3]. Recently new algorithms have been proposed to improve some


of the weaknesses of these classical algorithms. A thorough review of new methods


on stochastic approximation can be found in [3] and [4].


2.1.3.2 Gradient Estimation Techniques


Naturally, the heart of gradient–based algorithms is the technique used to estimate


the gradient. Here we present the most common methods used in the simulation


optimization literature. For further details the reader is referred to [82].


2.1.3.2.1 Finite Differences This method is the simplest and the most com-


monly used. The gradient at x at the n-th iteration is estimated as follows:


∇̂f(xn) = [∇̂1f(xn), . . . , ∇̂pf(xn)]T , (2.3)


where,


∇̂fi(xn) =
f̂(xn − cnei) − f̂(xn + cnei)


2cn


(2.4)


is used for the finite–difference gradient estimator using central differences while


∇̂fi(xn) =
f̂(xn + cnei) − f̂(xn)


cn


(2.5)


is used for the finite–difference gradient estimator using forward differences. In (2.4)


and (2.5) ei represents the i-th unit vector. The total number of simulations needed


to estimate the gradient is 2p for the central differences estimator and p + 1 for the


forward differences estimator. The method of finite–differences has some known prob-


lems related to slow convergence, and bias and large variance of the gradient estimate


[3].
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2.1.3.2.2 Perturbation Analysis Perturbation analysis (PA) is an approach of


using sample path analysis for gradient estimation. Perhaps the most common tech-


nique in this class is infinitesimal perturbation analysis (IPA). The main principle


behind IPA is that if an input parameter is perturbed by an infinitesimal amount,


the sensitivity of the output to that parameter can be estimated by tracking its effect


through the system. A basic requirement of IPA is that these small perturbations


should not cause changes in the sequence of events. Unfortunately, for complex sys-


tems this requirement is very difficult to guarantee. One strength of this technique


is that the gradient can be estimated by making just one simulation run. For more


information the reader is referred to [52].


2.1.3.2.3 Likelihood Ratio Method The Likelihood ratio (LR) method is also


known as the score function (SF). With this method the gradient is estimated by ex-


pressing the derivative of the expected value of the response with respect to an input


parameter as the expected value of a function of input and simulation parameters.


This value is recorded in the simulation run for a future estimation of the gradient.


This method requires only one simulation run to estimate the gradient and is more


generally applicable than IPA. A weakness of LR is that it may produce gradient


estimates with larger variance than those obtained through IPA [3, 45].


2.1.3.2.4 Frequency Domain Experimentation The basic idea behind fre-


quency domain experimentation (FDE) is to explore the sensitivity of the responses


by sinusoidal oscillations of the value of the input parameters during the simulation.


Initially, this method introduced by Schruben and Cogliano [117], was intended for


use in factor screening (i.e., identifying the relevant input parameters in a simulation


study). The input parameters are modulated as follows:


x(t) = x0 + γ sin(w̃t) (2.6)


where x0 is the vector of input parameters, γ is the vector of oscillation amplitudes,


w̃ is the vector of distinct oscillation frequencies, and t is the oscillation time index


(different from the simulation time).
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While FDE has the desired property of being able to estimate the gradient in just


one simulation run, it has the problem of having to determine the oscillation index,


frequencies, and amplitudes (see (2.6)). A possible way to overcome this problem by


making changes in the event–generation code has been suggested in [45].


2.1.4 Derivative–free Methods


As the name of the section suggests, these methods do not move in the direction of


the estimated gradient. With fewer requirements and assumptions than the meth-


ods described above, these techniques and their variants can be used for simulation


optimization with discrete input parameters.


2.1.4.1 Nelder–Mead Based Methods


These methods are based on the classical algorithm for unconstrained nonlinear pro-


gramming proposed by Nelder and Mead [95]. Basically p + 1 vertices forming a


simplex in the p-dimensional space are maintained throughout the algorithm. The


algorithm proceeds by continuously replacing the worst vertex. The replacement is


found by moving in the reflection direction; i.e., in the negative of the direction de-


fined by the vector formed by the difference between the simplex centroid and the


worst point in the simplex (point which is being dropped). Several authors have pro-


posed different implementations for simulation optimization based on this classical


algorithm [8, 9, 66]. Box [17] proposed a constrained version of the Nelder–Mead al-


gorithm called complex search. A modified version of Box’s algorithm for simulation


optimization can be found at [6].


2.1.4.2 Simulated Annealing


Simulated annealing is an iterative stochastic search method, analogous to the physi-


cal annealing process in which material is cooled down until a minimum level of energy


is achieved. This method generates a sequence of solutions with a decreasing trend but


not always decreasing response (in the minimization case). By allowing hill–climbing


behavior, the possibility of being trapped in a local minima is reduced. This method


was proposed for deterministic optimization by Kirkpatrick et al. [76]. Several al-


gorithms for simulation optimization have been based on this approach [2, 46, 57].


Under suitable conditions, converges almost surely to the optimal solution.
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2.1.5 Other Methods


Norkin et al. [96] proposed a method for discrete simulation optimization based


on the classical branch and bound integer programming technique. Glover et al.


have used scatter search and tabu search as the primary engine of their commercial


package OptQuest [51]. Nozari and Morris [98] have proposed a modification of the


classical algorithm of Hooke and Jeeves [62]. Healy and Schruben [60] proposed what


is called retrospective simulation response optimization that can be seen as the dual


of metamodeling [45]. Finally, genetic algorithms and evolutionary strategies have


also been proposed. These are discussed in Section 2.3 under the larger topic of soft


computing.


2.1.6 Multicriteria Simulation Optimization


In practice, when a simulation model is used, most of the time the analyst has to con-


sider more than one criterion simultaneously. Despite of this fact, most of the research


in the field has been done in the area of single response simulation optimization.


Montgomery and Bettencourt [92] used the Geoffrion, Dyer, Feinberg method


(GDF) to optimize a simulation model with four criteria and two input parame-


ters. A goal programming approach was used by Clayton et al. [25] and Rees et


al. [106]. Biles and Swain [11, 12] proposed and compared a first and second order


RSM approach with a direct search algorithm. Evans et al. [36] survey the area of


multicriteria simulation optimization.


2.2 Soft Computing


To get a better understanding of what this new term of soft computing really means,


let us quote Lotfi A. Zadeh, father of fuzzy logic and one of the leaders in the soft


computing community:


“In traditional –hard– computing, the prime desiderata are precision,


certainty and rigor. By contrast, the point of departure in soft computing


is the thesis that precision and certainty carry a cost and that computa-


tion, reasoning, and decision making should exploit –wherever possible–


the tolerance for imprecision and uncertainty” [146].
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The following definition of soft computing is also given by Zadeh [73]:


“Soft computing is an emerging approach to computing which paral-


lels the remarkable ability of the human mind to reason and learn in an


environment of uncertainty and imprecision.”


Soft computing is an association of methodologies that mainly brings together


fuzzy logic, evolutionary computing, neurocomputing and probabilistic computing.


An essential aspect of soft computing is that these methodologies are complementary


rather than competitive or exclusive [147].


The remaining part of this section describes briefly the function of those soft


computing methodologies that will be used in the scope of our research on simulation


optimization via soft computing.


2.2.1 Fuzzy Logic


Fuzzy logic was invented in the sixties by Lotfi A. Zadeh [144], who being an expert


in control engineering, realized that control theory was unable to solve many complex


real system problems. In a narrow sense, fuzzy logic can be viewed as a logical system


that aims at a formalization of approximate reasoning. In a broad sense, fuzzy logic


is used as a synonym for fuzzy set theory. Fuzzy set theory has several branches such


as fuzzy arithmetic, fuzzy mathematical programming, fuzzy topology, fuzzy graph


theory, fuzzy data analysis, and fuzzy logic, among others [146].


The contribution of fuzzy logic1 to the area of soft computing is to introduce


flexibility in classification, querying and problem solving, and to capture imprecision


when there is lack of information [33].


In our context, fuzzy logic brings an effective way of compressing and representing


knowledge through the use of linguistic variables, linguistic values, and fuzzy if–then–


rules.


2.2.2 Neurocomputing


Fuzzy logic does not have adaptation or learning features, since it lacks the mechanism


to extract knowledge from existing data. On the other hand, this is the nature of


1From this point the term fuzzy logic is used in its broad sense unless otherwise expressed
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neurocomputing and is what it brings to the soft computing arena. Neural networks


provide an efficient technique able to learn from examples of input–output pairs.


In our context, learning will refer to tuning a fuzzy controller’s linguistic terms


and the construction of the fuzzy if–then–rules. An example of a hybrid system that


uses neural networks to tune a fuzzy logic system is the work on Adaptive Neural


Fuzzy Inference Systems (ANFIS) [72, 73].


Bishop [13] presents a comprehensive treatment of neural networks. Jang et al.


[73] and Lin et al. [83] cover neurofuzzy systems.


2.2.3 Evolutionary Computing


Evolutionary computing provides to soft computing an efficient mechanism for solving


difficult problems through a systematic stochastic search based on the principles of


natural selection. There have been several schools of thought that have contributed


to and enriched the field, but share the same underlying principles, i.e., evolutionary


strategies [105, 118], evolutionary programming [40], and genetic algorithms [61].


Evolutionary–based algorithms have been applied to a variety of problems, many


of which conventional methods have failed to solve. For instance, in soft comput-


ing, the process of extracting knowledge for the fuzzy logic inference system requires


the solution of optimization problems which are often nonlinear and combinatorial.


Evolutionary–based algorithms can effectively solve these and other hard problems.


The basic idea of an evolutionary algorithm is to simulate the natural selection


process and obtain better individuals as the algorithm progresses. The evolutionary


algorithm maintains a population of individuals (or chromosomes), in which each


individual represents a potential solution to the problem. The representation is the


mapping of solutions to individuals. The form and complexity of the representation


is problem dependent. As the algorithm progresses, the population of individuals


evolves through successive iterations, called generations. In every generation, each


individual is evaluated and assigned a measure of its fitness for survival. New individ-


uals for the next generation are generated by combining and altering members of the


population through genetic operators or transformations. A common unary transfor-


mation is mutation, in which new individuals are created by applying modifications to


a single individual. Higher order transformations, such as crossover, are also a source


of new individuals. In crossover, several parents are combined to generate one or more


14







children. The population for the new generation is formed by selecting the more fit


among all individuals. After several generations, the algorithm converges to a good


population (i.e., good solutions), and possibly, to the best individual representing


the “optimum”. Good introductory material can be found in the books authored by


Michalewicz [91] and Gen and Cheng [48].


2.2.3.1 Multicriteria Evolutionary Optimization


Evolutionary algorithms are well suited for exploring a vast set of alternatives, par-


tially because they are based on evolving (a population of) solutions in parallel [150].


Contrary to classical mathematical programming techniques, evolutionary algorithms


can be designed to search for the entire set of Pareto optimal solutions in a single


run and do not make assumptions about the shape and mathematical properties (e.g.,


continuity) of the Pareto front [29]. Moreover, there are few, if any, competitive alter-


natives to multicriteria optimization, and even fewer methods available that tolerate


noisy and uncertain objective functions [63].


Since the pioneering work of Schaffer [114] on the Vector Evaluated Genetic Algo-


rithm (VEGA), a substantial amount of research has been conducted in the area of


evolutionary multicriteria optimization 2. Two recent reviews have surveyed the area


of evolutionary algorithms for multicriteria optimization [29, 134]. Other surveys are


[42, 63, 129]. An annotated bibliography by Ehrgott and Gandibleux [35] concentrates


on multicriteria combinatorial optimization.


In the next sections, we classify and review various evolutionary algorithms applied


to multicriteria optimization.


2.2.3.1.1 Aggregation Approaches


This is perhaps the most natural and common approach for fitness assignment


[29, 63]. For a given individual, the values of the multiple criteria are combined


into a single scalar using a linear or nonlinear combination. The main strength of


this approach is its computational efficiency and simple implementation. Its main


weakness is the difficulty to determine the value of the weights that reflect the relative


importance of each criterion. Daas and Dennis [31] have commented why a weighted


2A list of references on evolutionary multicriteria optimization is available at:
http://www.lania.mx/ ccoello/EMOO/EMOObib.html
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sum approach does not work properly when the shape of the Pareto front is not


convex, regardless of the weights used. However, Daas and Dennis’ problem setting


is somewhat restrictive, with continuity and differentiability requirements.


Several applications of evolutionary algorithms using aggregation approaches have


been reported. A number of authors have provided examples of the use of the com-


mon method known as weighted–sum approach [10, 71, 74, 85, 127, 135, 142]. Gen et


al. [47, 48] have extended this approach to handle uncertainty using fuzzy logic.


Medaglia and Fang [88] have proposed the use of adaptive weights instead of pre-


determined fixed weights. Hajela and Lin [58] have used an evolutionary approach


(HLGA) in which the weights are discretized and encoded in the chromosome. Some


researchers have proposed a nonlinear aggregative method, closely related to goal


programming [21], called distance–to–target approach [112, 139]. Goal attainment is


a related technique that seeks to minimize the weighted difference between criteria


values and the corresponding goals [141]. Treating criteria threshold constraints by


means of penalty functions can be seen as another aggregation approach used by


several researchers [54, 86, 104, 107, 121]. Wallace [138] proposes the use of a decision


maker’s probability of acceptance function for each criterion, with the probability of


simultaneous acceptance being obtained by multiplication.


2.2.3.1.2 Non Pareto–based Approaches


In his pioneering work on evolutionary multicriteria optimization, Schaffer [114, 115]


proposed the Vector Evaluated Genetic Algorithm (VEGA). For a problem with K cri-


teria, the population size is equally divided in K subpopulations. The selection mech-


anism is applied to each subpopulation using the corresponding criterion. Then, the


subpopulations are shuffled together to obtain the main population, where crossover


and mutation are applied in the usual way. This method was the first evolutionary


approach developed to generate and search for the Pareto optimal set in a single


run. Because this technique selects individuals who excel in one criterion, without


considering the other criteria, a problem known as speciation may occur. Individu-


als with middling performance (i.e., acceptable performance in all dimensions) which


are desirable from a decision maker’s point of view, are simply not selected due to


their failure to excel in at least one criterion. Several researchers have applied and


proposed modifications of VEGA to different domains [108, 125, 126, 129, 130].


Fourman [44] suggested a selection scheme known as lexicographic ordering. In this
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selection mechanism, criteria are assigned different priorities. Selection is performed


by comparing pairs of individuals according to the criterion with the highest priority.


If this results in a tie, then the criterion that follows in the priority list is used, and


so on. Fourman also proposed, as a variation of this scheme, to randomly select the


criterion to be used for comparison. Kursawe [79] proposed a multicriteria version


of evolution strategies [118] based on lexicographic ordering. As with VEGA, all of


these approaches experience speciation. Using an aggregation technique with random


weights, Ishibushi and Murata [69] claim to generalize Kursawe’s method and avoid


speciation.


In the spirit of VEGA, the use of genders has been proposed as yet another way


of defining subpopulations for each criterion. In a bicriteria optimization problem,


Allenson [1] proposed a VEGA–like algorithm that associates each criterion with a


gender. Lis and Eiben [84] extended this concept to multiple genders (i.e., multiple


criteria) and used panmictic reproduction (i.e., several parents generate a single child).


These gender–based methods impose mating restrictions at crossover.


Other non Pareto–based approaches have been proposed. Motivated by game the-


ory, Périaux et al. [100] proposed an evolutionary algorithm based on the concept of


Nash equilibrium [94]. Some researchers have used the concept of min–max optimum,


which compares relative deviations from separately attainable minima [26–28, 58, 99].


Valenzuela and Uresti [133] proposed a method based on learning classifier systems.


2.2.3.1.3 Pareto–based Approaches


Pareto–based fitness assignment was first proposed by Goldberg [54]. The idea


is to rank the population according to Pareto optimality. First, the nondominated


individuals are given rank one and then removed from the population. The newly


nondominated individuals are given rank two and then removed, and so on. Goldberg


also suggested niching and speciation methods to promote and maintain subpopula-


tions along the Pareto front.


In Fonseca and Fleming’s [41, 43] Multi–objective Genetic Algorithm (MOGA) the


individual’s rank corresponds to the number of individuals in the current population


by which it is dominated. After sorting the population according to the ranks, fitness


is assigned by interpolating from the best to the worst individuals in the population.


MOGA also uses fitness sharing [53] within a rank, such that the individuals are


further ranked according to their fitness sharing niche counts. The niche count is a
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measure of the individual’s neighborhood crowding. In MOGA selection is performed


with stochastic universal sampling [7]. The main strengths of MOGA are its efficiency


and relatively easy implementation. Its main weakness is that its performance is


highly dependent on the sharing factor.


In Horn and Nafpliotis’ [64, 65] Niched Pareto Genetic Algorithm (NPGA) a se-


lection scheme based on Pareto domination tournaments is used. To determine the


dominance status of two competing individuals, a sample of (typically about 10)


other individuals from the current population is drawn. If one of the two individuals


is dominated by a member of the sample, while the other is not dominated, then


the nondominated individual wins the tournament. If both or neither are dominated,


then the result of the tournament is resolved by selecting the individual with the


lower niche count. The main strength of this method is that it is very fast because


does not apply Pareto selection to the entire population. Its main weakness is that


it requires tuning of the sharing parameter and tournament sample size.


Srinivas and Deb [120] proposed the Non–dominated Sorting Genetic Algorithm


(NSGA). NSGA follows Goldberg’s original idea on Pareto–based ranking very closely


[54]. In NSGA fitness sharing is done in the parameter value space, calculating dis-


tances between vectors in the solution space rather than in criteria space. The main


strength of NSGA is that sharing is performed in the solution space, allowing the


algorithm to discover multiple solutions and potentially generating an even distribu-


tion of the Pareto front. Some researchers [29] have reported that NSGA is highly


sensitive to the sharing parameter and could be computationally expensive.


Zitzler and Thiele [150] have proposed the Strength Pareto Evolutionary Algo-


rithm (SPEA). SPEA uses a secondary population of nondominated solutions in the


fitness assignment procedure. A solution in the population is assigned a fitness value


according to the number of vectors in the secondary population that dominates its


corresponding criteria vector. For computational efficiency, SPEA uses a clustering


procedure to reduce the size of the nondominated set while preserving its distribution.


Zitzler et al. [149] have compared several evolutionary algorithms using a compre-


hensive set of complex test functions. For their chosen test problems and parameter


settings, they found a clear hierarchy of algorithms in terms of the distance to the


theoretical Pareto optimal front. Sorting the algorithms from the best to the worst,


they found three tiers: SPEA is in the first tier; NSGA is in the second tier and;


VEGA, HLGA, NPGA, and MOGA, are in the third tier. Furthermore, note that
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the only aggregation method considered is HLGA [58] and the only non–Pareto based


approach is VEGA [114].


2.3 Simulation Optimization and Soft Computing


We have seen that simulation optimization is a very complex problem that has been


treated by different approaches (see Section 2.1). We strongly believe that the idea of


bringing soft computing methodologies into the area of simulation optimization will


lead to the solution of real world system problem in an efficient manner.


To our knowledge, there is no study in the field of simulation optimization that


combines the search capabilities of genetic algorithms with the learning ability of


neural networks and the knowledge compression ability of fuzzy logic. The absence


of such a study combined with the synergistic view of soft computing is one of the


motivations of this research.


The use of genetic algorithms in simulation optimization has been reported in


the literature [14, 15, 59, 131, 143] merely as a random search technique working in


isolation. Of special interest is the work conducted by Boesel and Nelson [14, 15]


at Northwestern University who have tried to provide statistical guarantees on the


quality of the solution obtained when applying the genetic algorithm.


The use of neural networks in the field of simulation optimization has been re-


ported by Glover et al. [51]. Basically they give the user the option of engaging a


neural network accelerator to help their search engine in the screening of some values


of the input parameter vector.
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Chapter 3


A Fuzzy Controlled Approach


Simulation optimization deals with finding the values of input parameters of a com-


plex simulated system which result in desired output. Traditional techniques may


require an enormous amount of simulation runs to evaluate the system. To alleviate


this problem, the approach proposed in this chapter provides the means of incorporat-


ing knowledge, expressed in natural language, that is often available among analysts


and decision makers. Using convenient linguistic representations, the proposed mech-


anism can satisfy vaguely stated goals to a high degree (e.g. “high utilization” or “low


inventory”). This mechanism is also able to generate an approximate Pareto optimal


set in the presence of multiple goals. The optimization strategy used here depends on


a fuzzy controller guided by a set of rules derived from statistical concepts, response


surface models, and experts’ knowledge. To illustrate this approach we present com-


putational experiments on the design of a flow line manufacturing system (in terms


of a tandem of queues with blocking) with one and two goals.


3.1 Introduction


Classical simulation optimization research has been primarily concerned with adapt-


ing classical mathematical programming techniques to primarily solve problem (1.1)


and, to a lesser extent, problem (1.2). Chapter 2 provides an overview of several of


these methods.


Unfortunately, valuable knowledge is put aside and not incorporated into the


optimization process simply because those techniques cannot handle words as a com-
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puting element. In particular, the following two key issues were missed by classical


simulation optimization research:


1. Vague targets. Decision makers typically state their aspiration levels associated


with the system performance measures in vague manner. For instance, in a


manufacturing facility a high service level can become the driving goal, while


having a low cell loss can become the driving direction for a simulation study


of an ATM network. The vague terms high and low used by the decision maker


should be directly incorporated into the analysis and the optimization strategy


directed to satisfy such targets. Furthermore, these targets may involve multiple


criteria (e.g. high service level and low work in process).


2. Knowledge. Despite of the fact that knowledge is often expressed by rules using


natural language, the classical approaches to simulation optimization do not


provide any mechanism to incorporate this type of information. For instance,


in the manufacturing setting it is possible to come up with rules such as “if


the service level is low then the factory production rate should be increased by


a large amount”. Unfortunately knowledge expressed in terms of rules is not


included in any classical optimization strategy.


In this chapter, we propose a new mechanism for simulation optimization based on


fuzzy control that enhances existing optimization strategies by incorporating vague


targets and knowledge expressed in rules in an efficient and natural way. We are


interested in finding the values of the input parameters of a simulation model such


that all the objectives are satisfied to a high degree.


The chapter is organized as follows. In Section 3.2, we propose a fuzzy controlled


simulation optimization framework. Section 3.3 describes how the rules in the fuzzy


controller are designed. In Section 3.4, a flow line design problem in a manufacturing


setting is presented and used to illustrate our approach. Computational experiments


with one and two goals are presented. Finally, conclusions are given in Section 3.5.


3.2 Proposed Approach


Figure 3.1 shows the basic idea of our proposed approach. The system to be optimized


is modeled using a configurable simulator. The M performance measures of the
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simulator are represented by linguistic variables and compressed using fuzzy sets


(linguistic values) by means of a fuzzification module. The fuzzified performance


measures become the inputs or state variables for a fuzzy controller, the core of our


optimization strategy. The fuzzy controller has a knowledge base composed of a


linguistic data base and a rule base (S rules). Based on the simulation performance


measures (state variables), the system consults the knowledge base and the fuzzy


controller determines the adjustments to be made to the simulation input parameters.


These adjustments are expressed in terms of fuzzy sets and need to be converted into


numbers through the defuzzification module. The defuzzified adjustments are used


to update the N simulation input parameters and then a new simulation model is


obtained. This cycle (iteration) continues until specified performance targets for the


simulated system are satisfied to a high degree. In this section we describe these


elements in more detail.
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Figure 3.1: Fuzzy controlled simulation optimization


3.2.1 Simulator


The simulator is the component that contains the discrete event simulation model.


Depending on the system that is being modeled, different inputs can be controlled


and several responses can be measured.
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Let x = (x1, . . . , xN) be the N -dimensional vector of input parameters, with x ∈ X
and xj ∈ Xj, for j = 1, . . . , N . This vector should be chosen in such a way that only


inputs relevant to the performance measures of interest are considered. For specific


applications, it may be helpful to have some factor screening procedure to identify


the relevant inputs before the controller is designed [77, 81, 117].


Let f(x) = (f1(x), . . . , fM(x)) be the M -dimensional vector of average system


performances measures, with f(x) ∈ Y and fi(x) = yi ∈ Yi, for i = 1, . . . , M . These


measures should be easily collectable and retrievable after the simulator completes a


batch of replications.


The simulator also has to be easily configurable to allow the adjustment of the


structural parameters, such as the number of replications, run length, and random


seeds.


3.2.2 Fuzzy Controller


When a simulation model is defined, the M inputs (or state variables) and N outputs


(or control variables) of the controller are identified. Figure 3.1 shows the correspon-


dence between the outputs of the simulation model and the inputs of the controller,


and the inputs of the simulation model with the outputs of the controller.


Our controller uses the concept of a linguistic variable in order to express natural


language or imprecise information. The approximate values of the variable are known


as linguistic terms. Fuzzy sets provide a convenient way to represent the linguistic


terms that refer to a base variable whose values range over a universe of discourse.


When the linguistic terms are expressed by fuzzy sets, the membership functions


capture the meaning of each term. Once the inputs and outputs of the controller are


identified, we have to select meaningful linguistic values for each linguistic variable.


For instance, the simulation optimization of a manufacturing system may have a


performance measure called utilization. As a linguistic variable, utilization could be


compressed into the terms low, medium and high, with each membership function


defined over the universe of discourse X = [0%, 100%].


In a fuzzy controller, knowledge is stored in the form of fuzzy inference rules. Our


approach uses rules of the following form [87]:


if p1 is P̃1 and . . . and pM is P̃M then qj is Q̃j (3.1)
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where pi is a state linguistic variable with its corresponding linguistic value P̃i defined


over the universal set Yi (for i = 1, . . . ,M), and qj is a linguistic control variable


with its corresponding linguistic value Q̃j defined over the universal set ∆Xj, j =


{1, . . . , N}.
The fuzzification interface establishes a mapping between observed average values


of performance measures coming from the simulator and fuzzy sets defined in the


universe of the corresponding variables. Once these state variables are fuzzified they


become inputs for the fuzzy controller.


For i = 1, . . . ,M and r = 1, . . . , S we define the following mapping:


P̃ ′
ri = Fr(fi(x


t)) (3.2)


where, xt is the vector of simulation inputs for the t-th iteration (a full cycle in


Figure 3.1), P̃ ′
ri is a fuzzy set associated with the r-th rule and the observed i-th


average performance measure fi(x
t) defined over the universal set Yi, and Fr(·) is a


fuzzification function.


We use a special case of the fuzzification function called singleton fuzzification


[78]. This function constructs a fuzzy set P̃ ′
ri as follows:


µP̃ ′
ri
(fi(x)) =


{
1, if fi(x) = fi(x


t)


0, otherwise
(3.3)


Probably the most fundamental rule in logic is the rule of Modus Ponendo Ponens,


more familiarly known as Modus Ponens. Modus Ponens (MP) states that if we have


a conditional (rule) and a known antecedent (fact), then we can infer the consequent


(conclusion). To allow similar inference with linguistic variables, Zadeh [145] proposed


an extension of the classical Modus Ponens called the Generalized Modus Ponens


(GMP).


For a single rule with one antecedent and one consequent. GMP can be written


as


Rule if p is P̃ then q is Q̃


Fact p is P̃ ′


Conclusion q is Q̃′


where P̃, Q̃, P̃ ′, and Q̃′ are fuzzy sets and P̃ ′ is close to P̃ and Q̃′ is close to Q̃.
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The fuzzy rule “if p is P̃ then q is Q̃” represents a fuzzy relation between P̃ and


Q̃. The fuzzy relation P̃ −→ Q̃ is expressed by a fuzzy set R̃ defined on the space


Y × ∆X.


Different definitions of union, intersection, and complement, lead to different ways


to express the fuzzy implication P̃ −→ Q̃. The standard intersection and union of


fuzzy sets (t-norm and t-conorm, respectively) are:


µÃ∩B̃(u) = min(µÃ(u), µB̃(u)) (3.4)


µÃ∪B̃(u) = max(µÃ(u), µB̃(u)) (3.5)


In particular, using (3.4), the Mamdani implication [87] is:


µR̃m
(y, ∆x) = min(µP̃(y), µQ̃(∆x)), for y ∈ Y, ∆x ∈ ∆X (3.6)


To complete the fuzzy inference engine we need a mechanism to derive the mem-


bership of the consequent (i.e., µQ̃′(∆x) for each x ∈ ∆X), once the fact is known (i.e.,


µP̃ ′(y) for each y ∈ Y ). The most commonly used mechanism is the compositional


rule of inference (CRI) proposed by Zadeh [145]:


µQ̃′(∆x) = max
y∈Y


(
T (µP̃ ′(y), µR̃(y, ∆x))


)
, for ∆x ∈ ∆X (3.7)


where T is a t-norm.


Choosing Mamdani’s implication operator R̃m defined in (3.6), the standard fuzzy


intersection in (3.4) as the t-norm for T , and the fuzzy singleton fuzzification in (3.3),


the CRI reduces to the following expression for the single rule with one antecedent


and one consequent:


µQ̃′(∆x) = min(µP̃(f(xt)), µQ̃(∆x)), for ∆x ∈ ∆X, (3.8)


where µP̃(f(xt)) is called the firing strength of the rule when the performance level


f(xt) is obtained via the simulator.


For rules with multiple antecedents such as the one in (3.1), the consequent is


obtained by generalizing the idea of the CRI. For r = 1, . . . , S,


µQ̃′
rj


(∆xj) = min
(
min


(
µP̃r1


(f1(x
t)), . . . , µP̃rM


(fM(xt))
)
, µQ̃rj


(∆xj)
)


for ∆xj ∈ ∆Xj


(3.9)


where min(µP̃r1
(f1(x


t)), . . . , µP̃rM
(fM(xt))) is the “firing strength” of the r-th rule.
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To aggregate the information obtained from these rules, a connective operator is


needed. Normally, the fuzzy union is used as this connective. Using the standard


fuzzy union presented in (3.5), the aggregate fuzzy set for input j, j = 1, . . . , N , is


given by


µQ̃′
j
(∆xj) = max


(
µQ̃′


1j
(∆xj), . . . , µQ̃′


Sj
(∆xj)


)
, for ∆xj ∈ ∆Xj (3.10)


This aggregation procedure produces one fuzzy (adjustment) set for each simulation


input.


The defuzzification mechanism maps the fuzzy sets obtained from the inference


procedure into crisp adjustments in the values of the inputs for the simulator.


There are a number of different defuzzification methods used in practice [78].


Among these, we have chosen to use the centroid of area as our defuzzification mech-


anism. With this mechanism, for j = 1, . . . , N ,


∆xt
j =


∫
∆xj


∆xjµQ̃′
j
(∆xj)d∆xj∫


∆xj
µQ̃′


j
(∆xj)d∆xj


(3.11)


3.2.3 Handling Multiple Criteria


The simulator collects information from M performance measures, namely f1(x), . . . , fM(x).


The level of performance in the system is measured against a set of vague targets for


K ≤ M of these, i.e.,


pi1 should be P̃i1 and . . . and piK should be P̃iK . (3.12)


where, ik ∈ {1, . . . ,M} for k = 1, . . . , K are the indices of state variables used as


vague targets and P̃ik is the desired linguistic value for the k-th vague target pik .


The degree of satisfaction of the k-th target is given by µP̃ik
(x) for k = 1, . . . , K


and its range is [0, 1]. A fully satisfied goal has value of 1.


Following Section 3.1, when K = 1 (i.e., a target is specified for only one perfor-


mance measure) then we have an FSO problem, while when K > 1 we have a FMSO


problem.


When dealing with different and conflicting goals simultaneously, and in the ab-


sence of a mathematical specification of the decision maker’s utility function, our


approach provides the decision maker with an approximate set of Pareto optimal


solutions. We introduce the following multicriteria terminology.
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Definition 1. For x ∈ X , ik ∈ {1, . . . ,M}, and k = 1, . . . , K, ~µ(x) ,(
µP̃i1


(fi1(x)), . . . , µP̃iK
(fiK (x))


)
is called a criterion vector, and M = {~µ(x)|x ∈ X}


is called the criterion space.


Definition 2. A solution x∗ ∈ X is efficient or Pareto optimal if and only if there


does not exist any x ∈ X such that µP̃ik
(fik(x)) ≥ µP̃ik


(fik(x
∗)), for ik ∈ {1, . . . ,M}


and k = 1, . . . , K, and µP̃ik
(fik(x)) > µP̃ik


(fik(x
∗)) for at least one ik. The set of all


Pareto optimal solutions is denoted by P∗.


Definition 3. Let ~µ(x), ~µ(z) ∈ M be two criterion vectors. Then, ~µ(x) dominates


~µ(z) if and only if ~µk(x) ≥ ~µk(z), for k = 1, . . . , K, and ~µk(x) > ~µk(z) for at least


one k. The notation is ~µ(x) Â ~µ(z).


Definition 4. Let ~µ∗ ∈ M. Then, ~µ∗ is nondominated if and only if there does not


exist any ~µ ∈ M that dominates ~µ∗. Otherwise, ~µ∗ is a dominated criterion vector.


Definition 5. The Pareto front (efficient frontier) PF∗ is defined as


PF∗ , {~µ(x) ∈ M|x ∈ P∗}


For further detail on multicriteria optimization the reader is referred to Steuer [122].


Recall that the knowledge base of the fuzzy controller is composed of a set of S


rules. For r = 1, . . . , S let these rules be


if pr1 is P̃r1 and . . . and prM is P̃rM then qrj is Q̃rj (3.13)


Based on the fact that each of these rules is designed so that it is able to drive


the simulated system towards the achievement of at least one target, our method


activates (fires) to a greater extent those rules that drive the simulation toward the


achievement of the currently less fulfilled goals.


Let wr be the “weight” associated with the r-th rule (for r = 1, . . . , S) and defined


by


wr = max
k


{θrk(fik(x))} (3.14)


where ik ∈ {1, . . . ,M}, k = 1, . . . , K, and


θrk(fik(x)) = 1 − µP̃ik
(fik(x)), (3.15)
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if the k-th target is addressed through the r-th rule, 0 otherwise; and fik(x) is the


k − th performance for the simulation experiment with input parameter vector x =


(x1, . . . , xN).


The normalized weights can be defined by


w′
r =


wr


maxr∈{1,...,S}{wr} , (3.16)


if maxr∈{1,...,S}{wr} 6= 0; w′
r = 0, otherwise.


We use the normalized weights to modify the aggregated fuzzy sets obtained in the


fuzzification step used to adjust the simulation inputs. When using multiple criteria,


Equation (3.10) is replaced by:


µQ̃′
j
(∆xj) = max


(
w′


1µQ̃′
1j


(∆xj), . . . , w
′
SµQ̃′


Sj
(∆xj)


)
, for ∆xj ∈ ∆Xj (3.17)


The normalized weights can be viewed as an adaptive pressure mechanism for


obtaining a significative portion of this Pareto optimal set. The weights are updated


every time the controller is invoked, so that diversity on the Pareto front is obtained


by affecting the firing strength (i.e., larger weights) of those rules that are able to


drive the simulation to the achievement of the currently less fulfilled goals.


3.2.4 Algorithms


3.2.4.1 Target Threshold for the FSO Problem


To solve the fuzzy single response simulation optimization (FSO) problem (1.3) we


developed a heuristic algorithm based on our fuzzy control mechanism. The algorithm


tries to meet a user specified threshold on the degree of satisfaction of the single vague


target represented by a fuzzy set.


Let xt = (xt
1, . . . , x


t
N) ∈ X , ∆xt = (∆xt


1, . . . , ∆xt
N) ∈ ∆X, and f(xt) =


(f1(x
t), . . . , fM(xt)) ∈ Y be the simulation inputs, input adjustments, and outputs at


iteration t, respectively. Let P̃ −→ Q̃ be the knowledge base with rules in the form


of (3.1). Let i1 ∈ {1, . . . , M} be the index of the state variable used as the vague


target and P̃i1 be its desired linguistic value. Thus in (1.3), G̃ = P̃i1 . Let g ∈ [0, 1]


be the minimum desired degree of satisfaction (threshold) for the vague target, i.e.,


if µP̃i1
(fi1(x


t)) ≥ g then the target is deemed to be satisfied. Let tmax be a maximum


allowable number of iterations. Figure 3.2 displays the algorithm that solves FSO.
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Step 0: Initialization


t ← 1.


Generate an initial feasible solution x1 ∈ X .


x∗ ← x1.


g ← 1 − ε, where 0 ≤ ε ¿ 1.


Step 1: Simulation


Evaluate f(xt)


Step 2: Termination


if µP̃i1
(fi1(x


t)) ≥ g then


x∗ ← xt


t ← tmax


if t ≥ tmax then


return x∗, fi1(x
∗), and µP̃i1


(fi1(x
∗))


stop


Step 3: Fuzzification (P̃′)


For each r = 1, . . . , S and i = 1, . . . ,M


µP̃ ′
ri
(fi(x)) ← 1 , if fi(x) = fi(x


t);


µP̃ ′
ri
(fi(x)) ← 0 , otherwise (see (3.3)).


Step 4: Inference (Q̃′)


For each r = 1, . . . , S and j = 1, . . . , N


calculate µQ̃′
rj


(∆xj), for all ∆xj ∈ ∆Xj according to (3.9).


For j = 1, . . . , N , aggregate the fuzzy sets Q̃′
rj (for r = 1, . . . , S) into Q̃′


j using (3.10).


Step 5: Defuzzification


For each j = 1, . . . , N , calculate ∆xt
j according to (3.11).


Step 6: Update


xt+1 ← ΠX (xt + ∆xt)


t ← t + 1


Go to Step 1. ¥


Figure 3.2: Target Threshold Algorithm
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Note that when X is taken to be lj ≤ xt
j ≤ uj, for all j ∈ {1, . . . , N},


the projection onto the set of feasible input parameters X , ΠX (xt + ∆xt) =


(ΠX1(x
t
1 + ∆xt


1), . . . ,ΠXN
(xt


N + ∆xt
N)), is defined by


ΠXj
(xt


j + ∆xt
j) =






inf(Xj), if xt
j + ∆xt


j < inf(Xj)


h(xt
j + ∆xt


j), if inf(Xj) ≤ xt
j + ∆xt


j ≤ sup(Xj)


sup(Xj), if xt
j + ∆xt


j > sup(Xj)


(3.18)


where inf(Xj) and sup(Xj) are the infimum and supremum of the set Xj, respectively;


and


h(xt
j + ∆xt


j) =






xt
j + ∆xt


j if j /∈ I


dxt
j + ∆xt


j − 1
2
e if xt


j + ∆xt
j < 0 and j ∈ I


bxt
j + ∆xt


j + 1
2
c if xt


j + ∆xt
j ≥ 0 and j ∈ I


(3.19)


where I ⊆ {1, . . . , N} is an index set such that xt
j ∈ Z, for all j ∈ I; d·e is the ceiling


function that denotes the least integer greater than or equal to the argument; and


b·c is the floor function that denotes the greatest integer less than or equal to the


argument.


3.2.4.2 Pareto Optimization for the FMSO Problem


For problems with multiple and conflicting criteria we developed a heuristic algorithm


to solve the fuzzy multicriteria simulation optimization (FMSO) problem (1.4). The


proposed algorithm discovers a significant portion of the Pareto optimal set by using


adaptive weights that affect the firing strength of the rules (see Section 3.2.3).


Let xt = (xt
1, . . . , x


t
N) ∈ X , ∆xt = (∆xt


1, . . . , ∆xt
N) ∈ ∆X, and f(xt) =


(f1(x
t), . . . , fM(xt)) ∈ Y be the simulation inputs, input adjustments, and outputs at


iteration t, respectively. Let P̃ −→ Q̃ be the knowledge base with rules in the form


of (3.1). Let ik ∈ {1, . . . ,M} (for k = 1, . . . , K) be the index of the state variable


used as the k-th vague target and P̃ik be its desired linguistic value (K ≤ M). Let


P∗
approximate ⊆ X be the approximate Pareto optimal set generated by the algorithm.


To stop the algorithm, we let gik ∈ [0, 1] be the minimum desired degree of satis-


faction (threshold) for the k-th vague target and tmax be the maximum number of


iterations. Due to the conflicting nature of the multiple criteria, gik can rarely be
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achieved simultaneously for k = 1, . . . , K. In other words, these collection of val-


ues as a whole represents a multicriteria ideal target. Figure 3.3 shows the Pareto


Optimization Algorithm that solves problem FMSO.


Another important element of the proposed approach is the concept of knowledge


extraction; that is, the capability of the system to learn, evolve and adapt based on


the experience that is gained throughout the simulation runs. Initially, it is possible


to start the controller with limited knowledge. As the cycle described in Figure 3.1


is repeated, more and more simulations are performed. The idea is to obtain better


information on the relations between inputs and outputs as the iteration continues.


This is illustrated in Figure 3.4. The process of shaping and tuning the fuzzy controller


data and rule base is known as fuzzy system identification. Fuzzy system identification


is, itself, a complex optimization problem that has drawn the attention of many


researchers [73, 83, 128]. The objective of this work is to validate the fuzzy controlled


simulation optimization framework. The next section describes the essentially manual


approach to knowledge extraction we have used in the framework validation. An


automated soft computing based fuzzy system identification mechanism is out of the


scope of this dissertation.


3.3 Knowledge Acquisition


The rule structure of the approach presented in Section 3.2 allows knowledge from


experts to be incorporated into the optimization strategy. However, if the simulated


system is complex, important rules may be overlooked or it may be beneficial to


include rules that are difficult for an expert to recognize. This section briefly describes


some techniques that can be applied to generate rules in a systematic manner.


In order to build the rule base, it is necessary to explore the relations between


inputs and outputs of the simulated system. Experimental design provides a way


of planning which configurations to simulate so that the desired information can be


obtained with the least simulation effort [81]. In experimental design terminology,


the input parameters are called factors and the performance measures (outputs) are


called responses. The “experiment” is the execution of a simulation model with the


factors fixed at certain levels. A carefully planned design of experiments can provide


us with valuable data from which to extract rules based on the relations between


factors and responses. Depending on the complexity of the model, available time,
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Step 0: Initialization


t ← 1


Generate an initial feasible solution x1 ∈ X .


x∗ ← x1


P∗
approximate = {x1};


gik ← 1 − εk (for k = 1, . . . , K), where 0 ≤ εk ¿ 1; and


Step 1: Simulation


Evaluate f(xt)


Step 2: Termination


if µP̃ik
(fik(x


t)) ≥ gik (for all k) or t ≥ tmax then


return P∗
approximate


stop


Step 3: Dominance


3.1. flag ← 1


3.2. For each d ∈ P∗
approximate


do


if ~µ(xt) Â ~µ(d) then P∗
approximate ← P∗


approximate \ {d}
if ~µ(d) Â ~µ(xt) then


flag ← 0


Go to Step 3.3.


end


3.3. if flag = 1 then P∗
approximate ← P∗


approximate ∪ {xt}
Step 4. Weights


For r = 1, . . . , S use (3.14),(3.15), and (3.16) to calculate


the adaptive firing strength weights w′
r.


Step 5: Fuzzification (P̃′)


For each r = 1, . . . , S and i = 1, . . . ,M


µP̃ ′
ri
(fi(x)) ← 1 , if fi(x) = fi(x


t);


µP̃ ′
ri
(fi(x)) ← 0 , otherwise (see (3.3)).


Figure 3.3: Pareto Optimization Algorithm
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Step 6: Inference (Q̃′)


For each r = 1, . . . , S and j = 1, . . . , N


calculate µQ̃′
rj


(∆xj), for all ∆xj ∈ Xj according to (3.9).


For j = 1, . . . , N , aggregate the fuzzy sets Q̃′
rj (for r = 1, . . . , S) into Q̃′


j using (3.17).


Step 7: Defuzzification


For each j = 1, . . . , N , calculate ∆xt
j according to (3.11).


Step 8: Update


xt+1 ← ΠX (xt + ∆xt), where ΠX (·) is a projection onto X according to (3.18) and (3.19).


t ← t + 1


Go to Step 1. ¥


Figure 3.3: Pareto Optimization Algorithm (continued).


and computational resources, acceptable choices for our framework may be 2N or 3N


factorial designs (for N < 10). For further information on experimental design the


reader is referred to [16, 81, 93].


By executing the simulation model according to the experimental design, a set with


L observations of inputs (factors) and outputs (responses) is obtained. By examining


the associated matrix of correlation coefficients between inputs and outputs, single


antecedent rules of the type “if p is P̃ then q is Q̃” can be generated. The sample


correlation coefficient, for the input j ∈ {1, . . . , N} and output i ∈ {1, . . . ,M}, is


defined as:


ρji =


∑L
l=1(xjl − x̄j)(fil(xl) − f̄i)√∑L


l=1(xjl − x̄j)2


√∑L
l=1(fil(x) − f̄i)2


(3.20)


where L is the number of observations (experiments); xjl is the value of the j-th input


(factor) for the l-th observation; fil(xl) is the i-th output (response) obtained with in-


put parameters xl; x̄j =
∑L


l
xjl


L
is the average of the j-th input across all observations;


and f̄i =
∑L


l
fil(xl)


L
is the average of the i-th output across all observations.


The correlation coefficient ρji lies between -1 and +1. It measures the strength of


association between the input j and output i. Roughly speaking, a value of ρji > 0


implies that increasing the value of input j has the tendency to increase the value
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Figure 3.4: Fuzzy controlled simulation optimization and knowledge extraction


of the output i, while decreasing the value of input j has the tendency to decrease


the value of the output i. On the other hand, a value of ρji < 0 implies that an


increase in the input j has a decremental effect on output i, while a decrease has an


incrementing effect. Based on this relationship and its strength (closeness to -1 and


+1), simple rules “if p is P̃ then q is Q̃” can be generated.


To enrich the expressive power of the rule base, rules of the type “if pi1 is P̃i1


and pi2 is P̃i2 then q is Q̃” (i1, i2 ∈ {1, . . . ,M}) may be considered. The correlation


coefficient does not provide any means measuring the effect of interactions among


multiple inputs with reference to a single output.


To get a feeling for these relationships we can use the method of least squares to


fit quadratic response surface regression models to the observations obtained through


the design of experiments [16, 93]. These response surface models or metamodels can


also be used to test for the significance of individual factors and interactions and to


predict new values of the response. The quadratic model can be expressed as


fi(x) = x′Ax + bx + e (3.21)


where x = (x1, . . . , xN)′ are the simulation inputs, fi(x) is the i-th performance
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measure (for i = {1, . . . , M}), A is a N × N symmetric parameter matrix, b is a


linear parameter vector, and e is the error term.


By fitting these models to our responses, we can extrapolate the scattered mea-


surements obtained with the design of experiments and get a sense of the effect on


the outputs, obtained by changing multiple inputs simultaneously. In classical re-


sponse surface methodology [16, 93], the interest is on finding the best combination


of inputs to accurately predict the response. In our case, we just want to discover ba-


sic relationships between inputs and outputs that can be easily translated into fuzzy


rules.


3.4 Application to Flow Line Design


3.4.1 Introduction


We illustrate the proposed approach using a common problem that arises in manu-


facturing, namely the Flow Line Design Problem (FLDP). The flow line is a widely


used way to organize production, especially for products made in sufficient volume


to justify the investment in dedicated machines, operators, and material handling


systems.


The flow line that is modeled in this section is a single product line with human


unpaced workers [18]. The interarrival times are stochastic (not necessarily exponen-


tial). The line has V stations (or stages), with a buffer in front of every station.


There is no transit time between one station and the next one. Every station has one


or more identical servers. The service time is stochastic (not necessarily exponential).


This flow line, which falls into the category of asynchronous lines, does not have any


coordination of job movement between stations. An available operator starts a job as


soon as it is available and, upon completion, the job leaves the station provided there


is room for it in the next station. This mode of operation, may cause starvation and


blocking of servers. It is appropriate to model this flow line as a tandem queueing


network with blocking such as the one depicted in Figure 3.5, where λ is the arrival


rate to the flow line, and γv, sv, and bv, are the service rate, number of servers, and


buffer capacity for station v ∈ {1, . . . , V }, respectively.


For very small queueing networks with blocking, it is possible to solve numerically


for the stationary distribution of the underlying stochastic process. Unfortunately,
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Figure 3.5: Tandem of queues with blocking (flow line)


this approach can be computationally intensive and impractical for most realistic


scenarios. One approach to analyze these configurations is through the use of an


approximation algorithm based on the idea of decomposition. The idea is to break


the tandem configuration into subsystems and to analyze each subsystem individually.


To perform this analysis in isolation, it is necessary to have input from the other


subsystems. Therefore, the approximate algorithm is designed as an iterative scheme


that tries to satisfy some convergence criterion in the system. An overview of these


algorithms can be found in [101].


Discrete event simulation provides a more flexible approach for analyzing the


system shown in Figure 3.5. This is the approach that we have used.


There is no unique Flow Line Design Problem (FLDP) definition. It can be


formulated as a problem of minimizing the labor cost of meeting a given throughput,


subject to constraints on meeting quality targets and keeping work–in–process or


space less than given maximum levels. An alternative formulation can be stated as


that of minimizing the sum of labor costs, work–in–process and space costs subject


to quality and throughput constraints [18]. Our approach is flexible enough to let


the user specify the goal to be targeted. Moreover, we allow the user to find a design


evaluated by multiple criteria.


3.4.2 Framework


Figure 3.6 shows the actual implementation of the simulation optimization framework,


presented in Figure 3.4, used to tackle the flow line design problem. Again, the basic


components are a discrete event simulator of the flow line and a fuzzy controller that


are tightly coupled. These components are described in the following sections. Figure


3.6 also indicates that the fuzzy controller was built off–line. In other words, first


the controller was built and then it was used to control the simulation. Once the
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controller was built, new simulation runs did not affect the controller design.
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Response Surface Models Statistical Analysis
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Figure 3.6: Flow line optimization framework


3.4.3 Simulator


Arrivals of jobs to the system were generated according to a homogeneous Poisson


process with mean arrival rate λ. Each station v ∈ {1, . . . , V } had sv identical servers


with a controllable service rate γv. The service times were exponentially distributed.


Each station had a limited buffer size bv.


Table 3.1 lists all the input parameters and their possible values for the flow line


model shown in Figure 3.5. Note that those inputs for which the lower and upper


bound are identical, were considered fixed. In total, there were seven controllable


inputs (i.e., N = 7).


The performance measures that were collected by the simulator and define the


state variables of the fuzzy controller are the overall time in system (τ), overall work–


in–process or WIP ($), work–in–process at station v ($v), and server utilization at


station v (ϕv), for v = 1, . . . , 4. In total, there were ten system performance measures


(i.e., M = 10).


Throughout this work we used transient simulation analysis based on the method


of independent replications [80]. Note that in this particular case, it is not hard to
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Parameter Station 1 Station 2 Station 3 Station 4


Min. Max. Min. Max. Min. Max. Min. Max.


Arrival rate (λ) 2 2 - - - - - -


Server rate (γ) 2.1 4.9 0.5 0.5 0.3 2.1 0.7 0.7


Servers (s) 1 1 5 9 1 7 3 9


Buffer size (b) ∞ ∞ 1 7 3 3 1 9


Table 3.1: Flow line simulation inputs ranges


find the set of conditions on the service rates that makes the flow line simulation reach


steady state (i.e., λ
sv ·γv


< 1 for every station v). However, in the more general case of


supply chain or telecommunication systems these conditions are frequently unknown.


To explore the relations between inputs and outputs of the flow line model, a


set of simulation experiments was executed. For each of the seven inputs or factors,


three different levels were specified. The levels were set to the minimum, maximum


and the mid point of the ranges in Table 3.1. The total number of combinations in


this 3N design is 2, 187 (i.e., 37), but only 1, 458 simulations were actually needed


due to the easily verifiable steady state condition cited above. For each experiment,


20 replications of 1,440 time units were conducted. The simulator was implemented


using AweSim [103].


3.4.4 Knowledge Base Design


3.4.4.1 State and Control Variables


Recall that, the state and control variables of the fuzzy controller are coupled to the


outputs and inputs of the simulator, respectively.


The state variables for the fuzzy controller and their possible values were specified


as follows: time in system (τ) can be short (S̃τ ), medium (M̃τ ), or long (L̃τ ); overall


work–in–process ($) can be low (L̃$), medium (M̃$), or high (H̃$); work–in–process


at station v ($v) can be low (L̃$v), medium (M̃$v), or high (H̃$v); and utilization at


station v (ϕv) can be low (L̃ϕv), medium (M̃ϕv), or high (H̃ϕv).


Figure 3.7 and Figure 3.8, depict the fuzzy sets representing the possible values of


work–in–process and utilization at station 1, respectively. The rest of the fuzzy sets


are given in Appendix A.
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Figure 3.7: Overall work–in–process ($)
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Figure 3.8: Utilization at station 1 (ϕ1)


The control variables for the fuzzy controller and their possible values were spec-


ified as follows: change in server rate at station v (∆γv) can be negatively large


(ÑL∆γv), negatively small (ÑS∆γv), zero (Z̃∆γv), positively small (P̃S∆γv), or posi-


tively large (P̃L∆γv); change in number of servers at station v (∆sv) can be negatively


large (ÑL∆sv), negatively small (ÑS∆sv), zero (Z̃∆sv), positively small (P̃S∆sv), or


positively large (P̃L∆sv); and change in buffer size at station v (∆bv) can be negatively


large (ÑL∆bv), negatively small (ÑS∆bv), zero (Z̃∆bv), positively small (P̃S∆bv), or


positively large (P̃L∆bv).


Figure 3.9 depicts the fuzzy sets representing the possible values of the change in


server rate at station 1. The rest of fuzzy sets are presented in Appendix A.


3.4.4.2 Linguistic Data Base Design


When a fuzzy controller is designed, the state and control variables and their values


are known qualitatively. The membership functions that encapsulate this knowledge,


have to be parameterized based on observed data or the opinion of experts.


For the flow line state variables, an off–line method based on univariate statistical
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Figure 3.9: Change in server rate at station 1 (∆γ1)


analysis was performed to tune these functions. Using data collected in the design of


experiments (see Section 3.4.3), descriptive statistics were calculated to obtain an idea


of the spread of the performance measures from the simulation (i.e., fuzzy controller


state variables). For instance, for the work–in–process ($), using The SAS System


[67] we calculated the 25th (11.4), 50th (29.8), and 75th (67.1) percentiles. These


values are reflected in the shapes of the values L̃$, M̃$, and H̃$, shown in Figure


3.7. The rest of state variables were tuned in a similar fashion.


The membership functions of the control variables were determined using the


information in Table 3.1. The range for each output was divided evenly into 5 fuzzy


sets: negatively large (ÑL·), negatively small (ÑS·), zero (Z̃·), positively small (P̃S·),


and positively large (P̃L·). For instance, let us consider the membership function for


the change in server rate at station 1 shown in Figure 3.9. From Table 3.1 we see


that the associated simulation input varies from 2.1 to 4.9. If the parameter is at


its lowest value, the maximum change that can be made in the server rate is +2.8.


Similarly, if the server rate is in its maximum (4.9), a maximum decrease of -2.8 is


possible. Therefore, the range of the control variable is -2.8 to 2.8. The rest of control


variables were tuned in a similar way.


3.4.4.3 Rule Base Design


3.4.4.3.1 Single Antecedent Rules After executing the simulation experiments


described in Section 3.4.3, the correlation matrix shown in Figure 3.10 was calculated.


The correlations in Figure 3.10 were used to estimate the magnitude and direction


of association between the simulation inputs and outputs. Based on this information


single antecedent rules were built. For instance, the strong and negative association
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-0.9713 0.3152 0.0139 0.3085 -0.3406 -0.3653 0.221 0.0702 0.0534 -0.3403
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Figure 3.10: Correlation coefficients extracted from the full correlation matrix


between the server rate and the utilization at station 1 (i.e., -0.9713), suggests that


if we want to increase the level of utilization at that station we should consider


decreasing the server rate. On the other hand, if we increase the server rate, the


utilization will decrease. The following three rules were constructed based on this


particular correlation:


• If utilization at station 1 (ϕ1) is high (H̃ϕ1) then the change in the server rate


at station 1 (∆γ1) should be zero (Z̃∆γ1).


• If utilization at station 1 (ϕ1) is medium (M̃ϕ1) then the change in the server


rate at station 1 (∆γ1) should be negatively small (ÑS∆γ1).


• If utilization at station 1 (ϕ1) is low (L̃ϕ1) then the change in the server rate at


station 1 (∆γ1) should be negatively large (ÑL∆γ1).


Other single antecedent rules, which will be presented later, were generated in a


similar fashion.


3.4.4.3.2 Multiple Antecedent Rules To get a more detailed idea of the rela-


tions between inputs and outputs, response surfaces were fitted to the data obtained


from the simulation experiments.


For instance, the following quadratic model with interactions was obtained for the


overall work–in–process (R2 = 0.8143) using The SAS System [68]:


$ = 1118.934697 − 135.130079γ1 − 199.081179γ3 − 68.950721s2 − 74.839592s3 −
53.882586s4−22.531804b2−15.677057b4+11.144542γ2


1+1.870049γ3·γ1+51.294286γ2
3+


3.841387s2 · γ1 + 1.331735s2 · γ3 + 2.737977s2
2 + 0.909195 + s3 · γ1 + 0.449057s3 · γ3 +
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Figure 3.11: Response surface for the work–in–process (s3 = 4, s4 = 6, b2 = 4, b4 = 5,


and s2 = 7)


1.085798s3 ·s2+4.23128s2
3−0.43481s4 ·γ1+2.986399s4 ·γ3−0.257443s4 ·s2+1.923021s4 ·


s3 + 2.588835s2
4 + 2.364254b2 · γ1 + 0.243739b2 · γ3 + 1.136898b2 · s2 + 0.164275b2 · s3 −


0.091285b2 ·s4+0.41866b2
2−0.063077b4 ·γ1+1.176102b4 ·γ3−0.021688b4 ·s2+0.829086b4 ·


s3 + 0.968249b4 · s4 − 0.002358b4 · b2 + 0.249043b2
4


An associated surface for the work–in–process ($) versus server rate at station 1


(γ1) and server rate at station 3 (γ3), with s3 = 4, s4 = 6, b2 = 4, b4 = 5, and s2 = 7


is shown in Figure 3.11.


Similar models were obtained for other responses. Figure 3.12 shows a response


surface for the utilization at the first station (ϕ1). The R2 for this full quadratic


model is 0.9960.


Composite rules can be derived from inspection of these surfaces. For instance,


looking at Figures 3.11 and 3.12 the following rule was created:


• If the overall work–in–process ($) is high (H̃$) and the utilization at station 1


(ϕ1) is high (H̃ϕ1) then the change in the server rate at station 1 (∆γ1) should


be positively large (P̃L∆γ1).


Other composite rules, which will be presented later, were generated in a similar
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Figure 3.12: Response surface for the utilization at station 1 (s3 = 4, s4 = 6, b2 = 4,


b4 = 5, and s2 = 7)


fashion.


3.4.5 Computational Experiments


We present computational experience with single–goal and two–goal flow line design


scenarios to illustrate the application of the algorithms for the FSO and FMSO pre-


sented in Section 3.2.4.


3.4.5.1 Single Objective


We first consider the case of a single–goal scenario in which a flow line is to be designed


trying to achieve a low overall work–in–process.


The target threshold algorithm presented in Section 3.2.4.1 was used to design


the flow line. The initial feasible solution was set to x0 = (γ0
1 , γ


0
3 , s


0
2, s


0
3, s


0
4, b


0
2, b


0
4)


′ =


(2.5, 0.7, 5, 4, 4, 2, 2)′. The state variable overall work–in–process $ was used as the


target variable and L̃$ as its desired linguistic value shown in Figure 3.7. The algo-


rithm’s threshold on the degree of satisfaction of the low overall work–in–process tar-


get was set to g = 0.999 and the maximum number of iterations was set to tmax = 10.
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The rule base was built using the techniques described in Section 3.4.4.3. The


rule base composed by 6 single and 2 multiple antecedent rules follows:


Rule 1. If the overall work–in–process ($) is high (H̃$) then the change in server rate


at station 1 (∆γ1) should be positively small (P̃S∆γ1).


Rule 2. If the overall work–in–process ($) is medium (M̃$) then the change in server


rate at station 1 (∆γ1) should be positively small (P̃S∆γ1).


Rule 3. If the overall work–in–process ($) is low (L̃$) then the change in server rate at


station 1 (∆γ1) should be zero (Z̃∆γ1).


Rule 4. If the overall work–in–process ($) is high (H̃$) then the change in the number


of servers at station 4 (∆s4) should be positively small (P̃S∆s4).


Rule 5. If the overall work–in–process ($) is medium (M̃$) then the change in the


number of servers at station 4 (∆s4) should be positively small (P̃S∆s4).


Rule 6. If the overall work–in–process ($) is low (L̃$) then the change in the number


of servers at station 4 (∆s4) should be zero (Z̃∆s4).


Rule 7. If the overall work–in–process ($) is high (H̃$) and the utilization at station 3


(ϕ3) is high (H̃ϕ3) then the change in the server rate at station 3 (∆γ3) should


be positively large (P̃L∆γ3).


Rule 8. If the overall work–in–process ($) is medium (M̃$) and the utilization at station


3 (ϕ3) is high (H̃ϕ3) then the change in the server rate at station 3 (∆γ3) should


be positively small (P̃S∆γ3).


The algorithm stopped with the solution x∗ = (γ∗
1 , γ


∗
3 , s


∗
2, s


∗
3, s


∗
4, b


∗
2, b


∗
4)


′ =


(3.6162, 1.4027, 5, 4, 6, 2, 2)′. The degree of satisfaction of the goal “low overall work–


in–process” (L̃$) as the algorithm progresses can be seen in Figure 3.13. This graph


shows that the objective becomes highly satisfied (i.e., 0.9920 on a scale from 0 to 1),


with dramatic improvement made in very few iterations using very few rules.


To illustrate the system’s controllability, ten runs of the algorithm presented in


Figure 3.2 were executed choosing random initial conditions. The initial conditions


are shown in Table 3.2. To improve the effectiveness of the algorithm, seven additional


multiple antecedent rules were added to the rule base. We set tmax ← 10 and g ← 1.
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the single–goal scenario.


Run γ1 γ3 s2 s3 s4 b2 b4


1 2.1 2.1 5 1 3 1 1


2 4.4 1.4 7 6 7 5 3


3 3.2 1.1 6 6 6 1 9


4 2.9 1.9 8 3 5 3 4


5 4.6 0.9 6 6 7 6 4


6 3.3 1.9 8 2 8 5 9


7 4.2 1.8 5 4 4 2 4


8 3.4 0.9 9 3 4 3 7


9 3.4 1.4 5 6 3 1 6


10 4 0.9 8 5 8 6 2


Table 3.2: Initial conditions for the single–goal scenario with improved controllability
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Figure 3.14: Solution for different initial conditions for the single–goal scenario with


improved controllability


Regardless of the initial conditions (run number), the controller was able to find a


configuration of the simulated flow line such that the goal of low work–in–process level


is satisfied to the highest possible degree. Recall from Figure 3.7 that µL̃$
(x) = 1 for


x ≤ 11.4. The final solution (f$(x∗)) for each of the ten runs is illustrated in Figure


3.14.


3.4.5.2 Multiple Objectives: Generating the Efficient Frontier


In this section we present a scenario in which a flow line is designed based on two con-


flicting goals which we wish to satisfy simultaneously. The purpose of this example


is to illustrate how we can obtain an approximate Pareto front by guiding the simu-


lation of the flow line with a fuzzy controller using the algorithm presented in Figure


3.3. Specifically, we wish to design the flow line to achieve “low work–in–process”


and “high utilization at station 1”, simultaneously.


For the fuzzy controlled approach we developed a rule base composed of 18 rules


(Appendix B). The state variables used as vague targets were overall work–in–process


($) and utilization at station 1 (ϕ1) with values L̃$ (Figure 3.7) and H̃ϕ1 (Figure


3.8), respectively. We conducted ten runs of the algorithm shown in Figure 3.3, with


randomly selected initial conditions. For each run, we set g$ = 1 and gϕ1 = 1 and


tmax = 10.
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Figure 3.15: Approximate Pareto front for the two-goal scenario


Figure 3.15 shows the approximate Pareto front obtained by the proposed ap-


proach. With only 100 simulation runs the Pareto front is evenly generated and a


good sense of its shape is obtained.


Even though it is customary to assess the quality of the Pareto front by visual


inspection, Zitzler and Thiele [150] have recently proposed a metric based on the


dominated space defined by the nondominated vectors of the Pareto front. Because


each axis of the Pareto front is associated to the degree of satisfaction of a criterion,


the dominated space is bounded by 0 and 1, being 1 the best value possible. This


metric is further discussed in Section 4.2. In Figure 3.16 our visual assessment is


validated by Zitzler and Thiele’s metric, which after 100 simulation runs is 0.973.


Perhaps, the most revealing result is the fast convergence to a high quality solution.


Note that only 25 simulation runs are needed to generate a Pareto front with Zitzler


and Thiele’s metric of 0.962.


3.5 Concluding Remarks


We have proposed a new mechanism for the optimization of complex systems modeled


by discrete event simulation. Contrary to classical methods, our approach works


with imprecise concepts and natural language to aid the decision maker in the system


design process. A distinctive feature of our simulation optimization strategy is the use


of approximate reasoning through a fuzzy controller to drive the optimization process


using a small set of rules that encapsulates the relevant knowledge of the system.
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Figure 3.16: Zitzler and Thiele’s dominated space metric [150] for the two-goal sce-


nario


Using these rules, which are easily generated from statistical correlation measures


and quadratic response surface models, the controller drives the system towards a


high degree of satisfaction of one or more vaguely stated targets. In the presence


of multiple and conflicting objectives, the proposed approach is able to construct an


approximate Pareto optimal set. The computational results confirm that the proposed


approach delivers a high quality solution (in terms of the size of the dominated space


[150]) in a fast and efficient manner.
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Chapter 4


A Multicriteria Evolutionary


Approach


This chapter provides an alternative evolutionary approach to solving the fuzzy mul-


ticriteria simulation optimization (FMSO) problem. To the best of our knowledge,


there has been no study in the field of simulation optimization that combines the


search power of evolutionary algorithms and the natural multicriteria characteristics


of simulation. The absence of such study, combined with the synergistic view of these


techniques, has motivated us to develop the evolutionary algorithm presented in this


chapter. In addition, using this alternative approach we are able to assess the quality


of the solutions obtained by the method presented in the previous chapter. In the


first part of this chapter, we describe the evolutionary approach, while the second


part deals with the comparison of the performance of these two approaches in solving


the Flow Line Design Problem.


4.1 Evolutionary Algorithm


We propose a new approach to multicriteria optimization, which we call the Opti-


mal Scoring Evolutionary Algorithm (OSEA). This algorithm is designed to discover


Pareto optimal solutions. Although it is possible to apply OSEA to solve general mul-


ticriteria optimization problems, it has been designed specifically to solve the fuzzy


multicriteria simulation optimization problem (FMSO). The algorithm presented in


Figure 4.1 gives the pseudocode for OSEA.
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t ← 0


Randomly generate the members of P (0)


Evaluate members of P (0) via simulation


Fuzzify observed performance levels for members of P (0)


Update P∗
approximate(0) from P (0)


E(0) ← P (0)


Assign fitness to members of E(0)


t ← 1


While t ≤ tmax then do


Select P (t) from E(t − 1)


Generate Cm(t) from P (t) (mutation)


Generate Cc(t) from P (t) (crossover)


C(t) = Cm(t) ∪ Cc(t)


Evaluate members of C(t) via simulation


Fuzzify observed performance levels for members of C(t)


Update P∗
approximate(t) from P (t)


Generate Ce(t) from P∗
approximate(t) (elitism)


E(t) = P (t) ∪ C(t) ∪ Ce(t)


Assign fitness to members of E(t)


t ← t + 1 ¥


Figure 4.1: Optimal Scoring Evolutionary Algorithm (OSEA)
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where t is the generation number and tmax the maximum allowed number of genera-


tions. For the t-th generation, P (t) is the set (of size Pmax) of parents and C(t) is the


set of children, with Cm(t) being the children generated through mutation and Cc(t)


being the children generated through crossover. P∗
approximate(t) is the current approxi-


mate Pareto optimal set generated by the algorithm; Ce(t) is a subset of P∗
approximate(t)


selected for reinsertion into the population; and the set E(t) is the resulting expanded


population at iteration t.


In the remaining parts of this chapter we will describe the basic elements of the


algorithm shown in Figure 4.1.


4.1.1 Representation


Let xp = (xp
1, . . . , x


p
N) ∈ X be a vector of N controllable parameters of the simulation


model, where X is a closed set of constraints on xp, from the FMSO problem. In


OSEA we use a mixed representation, in which genes are encoded by integers and real


numbers. The j-th gene of the p-th chromosome (i.e., individual) is represented by


xp
j ∈ Xj, where Xj its the allowable range. Let I ⊆ {1, . . . , N} be an index set for the


integer genes. For each gene xp
j with j ∈ I, we use an integer encoding; while for xp


j


with j /∈ I, we use a floating point encoding [91]. Figure 4.2 (a) illustrates the mixed


representation for the p-th individual. As an example, let us consider an individual


in the flow line design problem (represented by a tandem of queues), discussed later


in Section 4.2. This p-th individual is represented by a six–dimensional vector, where


xp
1 ∈ [5, 9] is the number of servers allocated to the second station; xp


2 ∈ [1, 7] is the


size of the buffer space allocated to the second station; xp
3 ∈ [1, 7] is the number of


servers allocated to the third station; xp
4 ∈ [3, 9] is the number of servers allocated


to the fourth station; xp
5 ∈ [1, 9] is the size of the buffer space allocated to the


fourth station; xp
6 ∈ [2.1, 4.9] is the server rate in the first station; and xp


7 ∈ [0.3, 2.1]


is the server rate in the third station. Figure 4.2 (b) shows the p-th individual


xp = (6, 3, 3, 8, 5, 2.5, 0.9) as represented in OSEA. Furthermore, I = {1, 2, 3, 4, 5},
X1 = [5, 9], X2 = [1, 7], X3 = [1, 7], X4 = [3, 9], X5 = [1, 9], X6 = [2.1, 4.9], and


X7 = [0.3, 2.1].
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Figure 4.2: Representation in OSEA.


4.1.2 Evaluation


Let f(xp) = (f1(x
p), . . . , fM(xp)) be the M -dimensional vector of performance mea-


sures obtained by executing the simulation model with controllable parameters set to


xp. These measures should be easily collectable and retrievable after the simulator


completes a batch of replications. The mapping xp → f(xp) represents the evaluation


of the p-th individual of the population via the simulator.


Simulation optimization is computationally expensive due to the multiple number


of simulation scenarios evaluated. To streamline the evaluation process, we implement


a simulator accelerator. Before calling the simulator, a database with the history of


previously executed simulation runs is consulted. If the model defined by xp has


already been executed, the average performance measures are retrieved directly from


the database without invoking the simulator. If the model has not been run, the


simulator is invoked setting the controllable parameters to xp.


4.1.3 Fuzzification


The simulator collects information on M performance measures, namely


f1(x
p), . . . , fM(xp). The level of performance of the system is measured against a


subset of vague targets for K, K ≤ M , of these, i.e.,


gi1 should be G̃i1 and . . . and gik should be G̃ik . . . and giK should be G̃iK (4.1)


where, ik ∈ {1, . . . ,M} (for k = 1, . . . , K) are the indices of the system performance


measures used as vague targets, gik is the linguistic variable associated with the ik-th
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system performance measure, and G̃ik is the desired linguistic value for gik . The degree


of satisfaction of the k-th target for the p-th individual is given by µG̃ik
(fik(x


p)) ∈ [0, 1]


for k = 1, . . . , K. To simplify the notation, we denote µG̃ik
(fik(x


p)) by µG̃ik
(xp). A


fully satisfied goal has value of 1. Fuzzification in OSEA can also be seen as a function


that maps the M -dimensional vector of observed performance levels obtained via


simulation to a K-dimensional vector of degree of satisfaction of the vague targets,


i.e., f(xp) → ~µ(xp).


To illustrate the use of fuzzy goals, in a simulation optimization model of a


telecommunications network, the desired level of performance of the system might


be stated as “low cell–loss and a high throughput”, where the terms low and high are


the desired vague values for the system performance measures cell–loss and through-


put, respectively.


4.1.4 Fitness Assignment


Evolutionary algorithms for multicriteria optimization differ mainly in the way of


assigning a fitness value to individuals in the population of solutions [150]. Several


different aggregation methods have been reported [63], with the most commonly used


involving the reduction of the multicriteria evaluation into a single scalar by means


of a linear combination. This linear combination is formed using previously specified


weights, proportional to the importance of each criterion. This aggregation approach’s


main strengths are its computational efficiency and ease of implementation; whereas


its main weakness is the difficulty in determining appropriate weights [29].


As the name suggests, OSEA (Optimal Scoring Evolutionary Algorithm) uses a


methodology that we call optimal scoring for fitness assignment. The basic idea of


optimal scoring is to evaluate each element of the expanded population E(t) using


a flexible aggregation approach. Optimal scoring addresses the main weakness of


aggregation approaches, namely the difficulty to agree upon a set of fixed weights, by


assigning “optimal” weights to each individual of the population under evaluation.


The idea is to let each individual choose weights which give it as high a score as


possible, subject to assigning weights and scores within the allowable ranges for all


individuals. After all the individuals in E(t) are optimally evaluated, their optimal


scores become their fitness assignment in the evolutionary algorithm.


Optimal scoring was developed following the principles of data envelopment anal-
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ysis [22, 30]. Data Envelopment Analysis (DEA) is a linear programming based tech-


nique for measuring the relative performance of units, where the presence of multiple


inputs and outputs makes comparisons difficult. Contrary to classical DEA models,


optimal scoring considers outputs (i.e., system performance measures) exclusively.


However, as in DEA, optimal scoring requires the solution of a linear program [37]


for each individual (i.e., unit) under evaluation. This seems to be a very high price


to pay in the context of an evolutionary algorithm, but as it will be seen later, it is


possible to streamline the computation significantly.


For kr ∈ {1, . . . , K} (r ∈ {1, . . . , K}), let µG̃ikr


(xp) be the evaluated de-


gree of satisfaction of the kr-th target for the p-th individual in the expanded


population E(t) (see Section 4.1.3). Let µG̃ik1


(xp), µG̃ik1


(xp) · µG̃ik2


(xp), . . ., and


µG̃ik1


(xp) · µG̃ik2


(xp) · . . . · µG̃ikK


(xp), be the normalized counterparts for µG̃ik1


(xp),


µG̃ik1


(xp)·µG̃ik2


(xp), . . ., and µG̃ik1


(xp)·µG̃ik2


(xp)·. . .·µG̃ikK


(xp), respectively, where the


normalized fuzzified levels of performance are defined by µG̃ik1


(xp) =
µG̃ik1


(xp)


maxp∈E(t) µG̃ik1


(xp)


(for k1 ∈ {1, . . . , K}), µG̃ik1


(xp) · µG̃ik2


(xp) =
µG̃ik1


(xp)·µG̃ik2


(xp)


maxp∈E(t)


(
µG̃ik1


(xp)·µG̃ik2


(xp)


) (for k1, k2 ∈


{1, . . . , K}, k1 < k2)), . . . , µG̃ik1


(xp) · µG̃ik2


(xp) · . . . · µG̃ikK


(xp) =


µG̃ik1


(xp)·µG̃ik2


(xp)·...·µG̃ikK


(xp)


maxp∈E(t)


(
µG̃ik1


(xp)·µG̃ik2


(xp)·...·µG̃ikK


(xp)


) (for k1, k2, . . . , kK ∈ {1, . . . , K}, k1 < k2 <


. . . < kK).


Let βk1 be the weight for the k1-th criterion, βk1k2 (for k1 < k2) be the weight


for the interaction between the k1-th and k2-th criteria, ..., and βk1k2...kK
(for k1 <


k2 < . . . < kK) be the weight for the interaction among all criteria. The interactions


among criteria are considered to avoid speciation, i.e., the selection of individuals who


excel in just one dimension [29]. Let lk1 and uk1 be the lower and upper bounds for


βk1 , respectively; let lk1k2 and uk1k2 (for k1 < k2) be the lower and upper bounds


for βk1k2 , respectively; ...; and lk1k2...kK
and uk1k2...kK


(for k1 < k2 < . . . < kK)


the lower and upper bounds for βk1k2...kK
, respectively. By letting the β’s be the


decision variables, the optimal score (fitness assignment) for the p′-th individual in


the expanded population E(t), denoted z∗(xp′), is determined by solving the following


linear program:
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max z(xp′) =
∑K


k1=1 βk1 · µG̃ik1


(xp′) +
K∑


k1=1


K∑
k2=1︸ ︷︷ ︸


k1<k2


βk1k2 · µG̃ik1


(xp′) · µG̃ik2


(xp′) + . . .


+
K∑


k1=1


K∑
k2=1


· · ·
K∑


kK=1︸ ︷︷ ︸
k1<k2<...<kK


βk1k2...kK
· µG̃ik1


(xp′) · µG̃ik2


(xp′) · . . . · µG̃ikK


(xp′)


(4.2)


subject to:


∑K
k1=1 βk1 · µG̃ik1


(xp) +
K∑


k1=1


K∑
k2=1︸ ︷︷ ︸


k1<k2


βk1k2 · µG̃ik1


(xp) · µG̃ik2


(xp) + . . .


+
K∑


k1=1


K∑
k2=1


· · ·
K∑


kK=1︸ ︷︷ ︸
k1<k2<...<kK


βk1k2...kK
· µG̃ik1


(xp) · µG̃ik2


(xp) · . . . · µG̃ikK


(xp) ≤ 1 for all xp ∈ E(t)


(4.3)


K∑
k1=1


βk1 +
K∑


k1=1


K∑
k2=1︸ ︷︷ ︸


k1<k2


βk1k2 + . . . +
K∑


k1=1


K∑
k2=1


· · ·
K∑


kK=1︸ ︷︷ ︸
k1<k2<...<kK


βk1k2...kK
= 1 (4.4)


lk1 ≤ βk1 ≤ uk1 for all k1 ∈ {1, . . . , K}
lk1k2 ≤ βk1k2 ≤ uk1k2 for all k1, k2 ∈ {1, . . . , K}, k1 < k2


...


lk1k2...kK
≤ βk1k2...kK


≤ uk1k2...kK
for all k1, k2, . . . , kK ∈ {1, . . . , K},
k1 < k2 < . . . < kK






(4.5)


βk1 ≥ 0 for all k1 ∈ {1, . . . , K}
βk1k2 ≥ 0 for all k1, k2 ∈ {1, . . . , K}, k1 < k2


...


βk1k2...kK
≥ 0 for all k1, k2, . . . , kK ∈ {1, . . . , K}, k1 < k2 < . . . < kK






(4.6)
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Note that (4.2) represents the maximization of the optimal score of the p′-th


individual in E(t). This optimal score is a nonlinear aggregation function of the


degree of satisfaction of the observed performance levels, but a linear function of the


weights (β’s). The constraints in (4.3) force the assigned scores of all the individuals to


be within the allowable range between 0 to 1, while maximizing the score for the p′-th


individual. Furthermore, (4.4), (4.5), and (4.6), force the weights to be greater than


0, to fall within user–defined ranges, and to add up to 100%, respectively. Note that


additional constraints can be added to the model to include other problem specific


issues. It is worth mentioning that when the lower bounds equal the upper bounds


in (4.5), optimal scoring reduces to aggregation with fixed weights.


One linear program must be solved for each xp′ ∈ E(t). Solving |E(t)| linear


programs just for fitness assignment could be a very expensive process. However, we


can streamline the solution of the linear program described in (4.2)-(4.6) by using the


following Proposition:


Proposition 1. The constraints in (4.3) are redundant.


Proof. By definition, 0 ≤ µG̃ikr


(xp) ≤ 1. By (4.4) and (4.6), 0 ≤ βk1 ≤ 1,


0 ≤ βk1k2 ≤ 1, ..., 0 ≤ βk1k2...kK
≤ 1. Thus, the constraints in (4.3) are always


satisfied. ¦
By dropping the constraints in (4.3), the resulting linear program can be solved


efficiently using the following result.


Proposition 2. Let c1, c2, . . . , c2K−1 be the objective function coefficients in (4.2),


where c1 = µG̃i1
(xp), c2 = µG̃i2


(xp), . . . , cK = µG̃iK
(xp), . . . , cK+1 = µG̃i1


(xp) · µG̃i2
(xp),


cK+2 = µG̃i1
(xp) · µG̃i3


(xp), . . ., c
K+


K(K−1)
2!


= µG̃iK−1
(xp) · µG̃iK


(xp), . . . , c2K−1 =


µG̃i1
(xp) · µG̃i2


(xp) · . . . · µG̃iK
(xp). Let the decision variables of the linear program


defined by (4.2), (4.4), (4.5), and (4.6), be w1, w2, . . . , w2K−1, where w1 = β1, w2 =


β2, . . . , wK = βK , wK+1 = β1 2, wK+2 = β1 3, . . . , w
K+


K(K−1)
2!


= βK−1 K , . . .


, w2K−1 = β1 2 ... K . Let us rank the variables by a “primed indexing” so that


c1′ ≥ c2′ ≥ . . . ≥ c(2K−1)′ , where 1′, 2′, . . . , (2K − 1)′ constitute a permutation of


the numbers 1, 2, . . . , (2K −1). Then the linear program defined by (4.2), (4.4), (4.5),


and (4.6), is solved optimally by taking w1′ as large as possible without violating (4.4)


and the bounds in (4.5) and (4.6), then taking w2′ as large as possible subject to the


value already assigned w1′ and so on.
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Proof. The linear program defined by (4.2), (4.4), (4.5), and (4.6) is a “bounded


variable” knapsack problem that can be solved using the “Greedy Algorithm” [50].¦
In summary, optimal scoring in OSEA defines a mapping from the K-dimensional


vector of degree of satisfaction of vague targets to a scalar representing the fitness


level of the p-th individual in E(t). Mathematically, it is a mapping ~µ(xp) → z∗(xp).


4.1.4.1 Example


To better understand how the fitness assignment in OSEA works, let us consider an


example with two system performance measures (M = 2), two criteria (K = 2), and


membership functions given by


µG̃1
(xp) =






0 if f1(x
p) < 5.9


f1(xp)−5.9
19.6


if 5.9 ≤ f1(x
p) ≤ 25.5


1 if f1(x
p) > 25.5


(4.7)


and


µG̃2
(xp) =






0 if f2(x
p) < 3.9


f2(xp)−3.9
21.6


if 3.9 ≤ f2(x
p) ≤ 25.5


1 if f2(x
p) > 25.5


(4.8)


The observed evaluations (see Section 4.1.2) and corresponding fuzzifications (see


Section 4.1.3) for each of the individuals in E(t) are given in Table 4.1. The per-


formance measure evaluations f1(x
p) and f2(x


p) are based on the first example pre-


sented by Zitzler and Thiele [150] to illustrate the fitness assignment mechanism in


their Strength Pareto Evolutionary Algorithm (SPEA).


In this example we let each criterion account for 20% to 40% of the total score,


while their interaction accounts for 30% to 50%.


For the 7-th individual, the linear program defined by (4.2), (4.4), (4.5), and (4.6),


is given by:


max z(x7) = 0.362β1 + 0.560β2 + 0.378β1 2


subject to:


β1 + β2 + β1 2 = 1


0.20 ≤ β1 ≤ 0.40


0.20 ≤ β2 ≤ 0.40


0.30 ≤ β1 2 ≤ 0.50


β1, β2, β1 2 ≥ 0


(4.9)
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Table 4.1: Evaluated and fuzzified performance measures for E(t).


Fuzzification


p Evaluation µG̃1
(xp) µG̃2


(xp) µG̃1
(xp) · µG̃2


(xp) µG̃1
(xp) · µG̃2


(xp)


f1(x
p) f2(x


p)
(
= µG̃1


(xp)
) (


= µG̃2
(xp)


)
1 5 5 0.000 0.051 0.000 0.000


2 14 3 0.413 0.000 0.000 0.000


3 25 4 0.974 0.005 0.005 0.008


4 30 10 1.000 0.282 0.282 0.527


5 18 12 0.617 0.375 0.232 0.432


6 7 15 0.056 0.514 0.029 0.054


7 13 16 0.362 0.560 0.203 0.378


8 20 20 0.719 0.745 0.536 1.000


9 6 25 0.005 0.977 0.005 0.009


10 10 30 0.209 1.000 0.209 0.390


Using Proposition 2, β∗
1 = 0.2, β∗


2 = 0.4, and β∗
1 2 = 0.4. Thus, the optimal score


z∗(x7) = 0.378.


Table 4.2 compares the fitness assignments obtained through OSEA and SPEA


[150]. The second column shows the optimal fitness assignments obtained in OSEA


by solving a linear program for each individual in E(t). The third column, shows


the results for the fitness assignment in SPEA presented by Zitzler and Thiele [150].


The column labeled Dominated by Nondominated shows the number of nondominated


vectors that dominate the criteria vector associated with the p-th individual. The last


two columns assign a rank based on the sorted fitness assignment for each algorithm.


Note that the two rankings are very similar and lead to the exact same tiers in the


Dominated by Nondominated column.


Figure 4.3 presents graphically the optimal fitness assignments in criteria space.


Note that the fitness values obtained by optimal scoring are consistent in the Pareto


sense. For instance, the individuals in the first tier (i.e., N), which are nondominated,


are fitter than those in the third tier (i.e., ¥), which are dominated by at least two


nondominated vectors in E(t).


In conclusion, the fitness assignment mechanism in OSEA is consistent with the


one used in SPEA. Points closer to the Pareto front are more fit than those which are


58







Table 4.2: Comparison of fitness assignment methods.


p OSEA Fitness Zitzler and Thiele’s Dominated by Ranking


z∗(xp) SPEA Nondominated OSEA SPEA


8 0.636 0.625 0 1 3


4 0.569 0.375 0 2 2


10 0.526 0.375 0 3 1


5 0.415 1.625 1 4 6


9 0.394 1.375 1 5 5


3 0.393 1.375 1 6 4


7 0.378 1.625 1 7 7


6 0.231 2 2 8 8


2 0.165 2 2 9 9


1 0.02 2.375 3 10 10


farther from it [150].


4.1.5 Selection


OSEA selects Pmax individuals for generation t (i.e., P (t)), from the expanded pop-


ulation E(t − 1). For efficiency and to eliminate bias in the selection mechanism, we


use stochastic universal sampling [7], as shown in the pseudocode shown in Figure


4.4.


4.1.6 Genetic Operators


For the mutation operator, we use the uniform mutation [91]. In the uniform muta-


tion, every gene xp
j (for j = {1, . . . , N}) from each individual xp ∈ P (t) has a chance


pm of undergoing the mutation process. The result of the application of this operator


on the j′-th gene, implies that the new child will have a new gene xp
j′ randomly drawn


from the allowable range Xj′ . Thus, for any single parent, more than one gene can


be selected to undergo the mutation process, thereby generating a single child with


several mutated genes.


For the crossover operator, we use the one–point crossover [91]. Each individual


xp ∈ P (t) has a chance of pc of becoming a parent in the crossover process. If


59







0


5


10


15


20


25


30


35


0 5 10 15 20 25 30 35


f 1 ( x p (t))


f 2
(x


p (t
))


p=10, z*=0.526


p=9, z*=0.394


p=6, z*=0.231


p=1, z*=0.020


p=7, z*=0.378


p=8, z*=0.636


p=5, z*=0.415


p=2, z*=0.165
p=3, z*=0.393


p=4, z*=0.569


Figure 4.3: Optimal fitness in performance space. The symbols N, •, and ¥ represent


the first, second, and third tier of optimal scores, respectively.


P (t) ← ∅
δ ← 1


Pmax


∆ ← δ · u, where u ∼ U [0, 1]


σ ← 0


for each xp ∈ E(t − 1) do


P{choosing xp} = z∗(xp)∑
xq∈E(t−1) z∗(xq)


σ ← σ + P{choosing xp}
while σ > ∆ do


P (t) ← P (t) ∪ {xp}
∆ ← ∆ + δ


return P (t) ¥


Figure 4.4: Stochastic Universal Sampling
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Figure 4.5: One–point crossover in OSEA.


the individual is selected for crossover, we say that it joins the crossover pool of


parents. From the crossover pool, pairs of parents are randomly selected to undergo


the crossover operation, until the crossover pool is empty (or there are not enough


parents to form a pair). Figure 4.5 illustrates the case where the crossover point has


been randomly chosen to split the parents after the j′-th integer gene.


4.1.7 Approximate Pareto Optimal Set


As recommended by Van Veldhuizen and Lamont [134], OSEA was designed to main-


tain a secondary population consisting of the Pareto optimal solutions obtained so


far, namely P∗
approximate(t). OSEA not only maintains P∗


approximate(t), but uses this in-


formation in the elitism mechanism, discussed in Section 4.1.8, to improve the quality


of the population.


Let ~µ(xp) =
(
µG̃i1


(xp), . . . , µG̃iK
(xp)


)
be the criterion vector of fuzzified ob-


served performance levels for xp (Section 4.1.3). Let x̂p be the p-th individual in


P∗
approximate(t). Also let flag = 1, if the p-th individual in P (t) is efficient; flag = 0,


otherwise. The following pseudocode describes a mechanism to update P∗
approximate(t)


based on P (t).


4.1.8 Elitism


Traditionally, elitism has been used in single objective evolutionary optimization as


a selection mechanism that preserves the best individual for the next generation,
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Step 0: Initialization.


B ← P (t).


Step 1: Termination.


if B ← ∅, then
return P∗


approximate(t).


stop.


Step 2: Checking Pareto optimality.


Pick any xp ∈ B and do:


flag ← 1


if P∗
approximate(t) = ∅, then go to Step 3.


for each x̂p ∈ P∗
approximate(t) do:


if ~µ(xp) Â ~µ(x̂p), then P∗
approximate(t) ← P∗


approximate(t) \ {x̂p}.
if ~µ(x̂p) Â ~µ(xp), then flag ← 0 and go to Step 3.


Step 3: Updating the approximate Pareto optimal set.


if flag = 1, then P∗
approximate(t) ← P∗


approximate(t) ∪ {xp}.
B ← B \ {xp} and go to Step 1. ¥


Figure 4.6: Updating P∗
approximate(t)
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so that errors of sampling are corrected [48, 49]. Zitzler et al. [149] have found that


elitism is an important factor in evolutionary mulicriteria optimization. To implement


elitism in our algorithm, we use the approximate Pareto optimal set P∗
approximate(t) as


source of individuals to be preserved. Elitism is implemented in OSEA as a random


technique that reinserts elements of P∗
approximate(t) into the expanded population E(t).


The probability of selecting an individual from P∗
approximate(t) through the elitism


mechanism is pe.


4.2 Application to the Flow Line Design Problem


and Comparison with the Fuzzy Controlled Ap-


proach


In this section we present a scenario in which the flow line, depicted in Figure 3.5,


is designed based on two conflicting goals which we wish to satisfy simultaneously.


Specifically, we want to design the flow line to achieve “low work–in–process” and


“high utilization at station 1”, simultaneously.


The main purpose of this example is to compare the fuzzy controlled approach


presented in Chapter 3 and OSEA, in terms of both the quality of the approximate


Pareto front produced and algorithmic efficiency.


As described in Section 3.4.5.2, for the fuzzy controlled approach we developed


a rule base composed of 18 rules (Appendix B). The state variables used as vague


targets were overall work–in–process ($) and utilization at station 1 (ϕ1) with target


values L̃$ (Figure 3.7) and H̃ϕ1 (Figure 3.8), respectively. Five independent experi-


ments were conducted. Each experiment consisted of ten runs of the algorithm shown


in Figure 3.3, with randomly selected initial conditions. For each run, we set g$ = 1,


gϕ1 = 1, and tmax = 10.


For OSEA, six independent experiments were conducted. In each experiment, we


set Pmax = 20, tmax = 100, pc = 0.40, pm = 0.05, and pe=0.10. These parameters


represent in our experience the best settings for performance. Table 4.3 gives the


bounds on the weights used in the optimal scoring mechanism for fitness assignment.


One of the most challenging problems in multicriteria optimization is to measure


the quality of the solutions obtained [29]. Here we use a performance metric recently


proposed by Zitzler and Thiele [150] to compare the approximate Pareto fronts ob-
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Table 4.3: Bounds on weights for OSEA experiments.


Bounds


β1 β2 β1 2


Experiment (H̃ϕ1) (L̃$) (H̃ϕ1 and L̃$)


l1 u1 l2 u2 l1 2 u1 2


1 0.25 0.45 0.25 0.45 0.15 0.30


2 0 1 0 1 0 1


3 0.25 0.45 0.25 0.45 0.25 0.45


4 0.15 0.30 0.15 0.30 0.30 0.60


5 0.30 0.60 0.15 0.30 0.15 0.30


6 0.15 0.30 0.30 0.60 0.15 0.30


tained by the fuzzy controlled approach with those obtained by OSEA. Zitzler and


Thiele’s metric is a measure of the size of the dominated space defined by the ap-


proximate Pareto front PF∗
approximate generated by each approach. In our case, where


two criteria are considered, each vector in PF∗
approximate, dominates a rectangular


area. The dominated space metric is estimated by calculating the area defined by the


union of the collection of rectangles defined by PF∗
approximate. After fuzzification, the


minimum and maximum degree of satisfaction are 0 and 1, respectively. If we were


to obtain an ideal solution, one that obtains full satisfaction of both criteria simulta-


neously, the value of Zitzler and Thiele’s metric would be 1. On the other hand, if


we were to obtain only solutions for which both criteria are not satisfied at all, the


metric would be 0. Therefore, in our case, Zitzler and Thiele’s metric is bounded by


0 and 1, with higher values preferred over lower values. Moreover, 1 is not actually


attainable due to the conflicting nature of the criteria.


The performance comparison is shown by Figures 4.7 to 4.9. From Figure 4.7


we can see that both approaches have the ability to generate high quality solutions


(with Zitzler and Thiele’s metric equal to 0.965), but the fuzzy controlled approach’s


metric achieves its peak much faster than that of OSEA. More specifically, the fuzzy


controlled approach takes about 25 iterations to reach a high quality solution while


the evolutionary approach takes about 60 iterations to reach the same level.


Figure 4.8 shows that for every iteration, the fuzzy controlled approach requires


far fewer simulation runs than OSEA. Specifically, the fuzzy controlled approach
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Figure 4.7: Comparison of the dominated space.


requires 25 simulation runs (in 25 iterations) to generate a high quality solution while


the evolutionary approach requires about 798 simulation runs (in 60 generations) to


generate a solution of the equivalent quality.


Figure 4.9 further confirms that both approaches have the capability to generate


a well distributed and solid Pareto front.


For further detail, the results for each experiment using the fuzzy controlled ap-


proach are given in Appendix C and for OSEA in Appendix D.


4.3 Conclusions


We have presented OSEA, an evolutionary approach for solving the FMSO problem.


OSEA is able to generate the approximate Pareto optimal set, using a methodology


that we called optimal scoring for fitness assignment. By using a flexible aggregating


approach, OSEA uses optimal scoring to assign a fitness value to each individual


of the population. Optimal scoring overcomes the main weakness of an aggregation


approach, the difficulty in selecting a set of predefined fixed weights. The idea behind


optimal scoring is to let each individual freely choose its weights so that it can score


as high as possible, while satisfying simultaneously basic ground rules applicable to
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Figure 4.8: Comparison of the number of simulation runs.
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Figure 4.9: Comparison of the Pareto front.
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all individuals. In order to find the optimal weights, optimal scoring requires the


solution of a linear program for each individual. We have shown that by exploiting


the structure of this linear program, the optimal score (i.e., fitness) can be found


efficiently. Our fitness assignment mechanism is validated by comparison with that


in SPEA [150].


We have also compared the results obtained by OSEA with those obtained with


the fuzzy controlled approach presented in Chapter 3 on the Flow Line Design prob-


lem. Both algorithms are able to generate a high quality solution in terms of the


dominated space metric proposed by Zitzler and Thiele [150]. Also, both algorithms


are able to generate an even sample of the Pareto front. The fuzzy controlled approach


is remarkably efficient, requiring far fewer simulation runs than the evolutionary ap-


proach to obtain the same solution quality. Moreover, it requires very few iterations


to obtain an acceptable solution. This directly translates into big savings in computer


time. Nevertheless, we have to say in behalf of OSEA, that it starts the search for


the Pareto front from scratch, without assuming any knowledge of the system being


optimized. In contrast, the fuzzy controlled approach uses the knowledge of the sys-


tem embedded in the rule base. In cases where there is a complete lack of knowledge


of the relationships between inputs and performance of the system, OSEA is the only


known alternative for solving the FMSO problem.
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Chapter 5


An Efficient and Flexible


Mechanism for Constructing


Membership Functions


In the two previous chapters we have developed and compared methods for the solu-


tion of problems FSO and FMSO. In illustrating our methods, we used the popular,


but limited special case of convex normal fuzzy sets defined by trapezoidal mem-


bership functions. To further enhance the expressive power of vague concepts in


our methods, it is necessary to provide the user with an efficient mechanism to ex-


press the complexities and subtleties of natural language. This chapter introduces


a Bézier curve–based mechanism for constructing membership functions of convex


normal fuzzy sets that can represent virtually any vague concept. The mechanism


can fit any given data set with a minimum level of discrepancy. In the absence of


data, the mechanism can be intuitively manipulated by the user to construct mem-


bership functions with the desired shape. Some numerical experiments are included


to compare the performance of the proposed mechanism with conventional methods.


5.1 Introduction


A fuzzy set Ã is characterized by its membership function µÃ, which maps each


element of the universe X to the interval [0, 1]. This function indicates the degree of


belonging to Ã for each element of X. One of the most important concepts of fuzzy
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sets is the concept of an α-cut. Given a fuzzy set Ã defined on X and α ∈ (0, 1], the


α-cut is defined as αÃ = {x ∈ X : µÃ(x) ≥ α}. For continuity purposes, we take
0Ã = limα→0


αÃ. A fuzzy set Ã is convex if and only if each of its α-cuts is a convex


set. A fuzzy set Ã is normal if 1Ã 6= ∅.
Even though there is no universal agreement on the proper characterization of


membership functions, Dombi [32] reported that there are some characteristics shared


by the majority of continuous membership functions found in the literature. Among


others, there is an apparent demand for membership functions with the following


properties: they should be piecewise monotone nonincreasing or nondecreasing; they


should achieve null and full membership for at least two different elements in the


universal set; and they should be able to represent fuzzy convex sets. Commonly


seen examples are the simple triangular, trapezoidal, and bell–shaped membership


functions.


Problem formulations based on fuzzy sets can have greater expressive power than


their counterparts based on crisp sets, but the applicability of fuzzy technology de-


pends on the ability to construct membership functions that appropriately represent


various concepts in different contexts [78]. To fully exploit the benefits provided by


fuzzy technology, we need an efficient membership function generating mechanism


with the following desirable characteristics:


1. Accurate. In the presence of data, the resulting membership functions should


reflect the knowledge contained in the data in the most accurate way possible.


Data in the form of membership values for points in the universe is usually


obtained from experts.


2. Flexible. The methodology should provide a broad family of membership func-


tions.


3. Computationally affordable. The method should be computationally tractable


in order to be of any practical use. Medasani [89] has highlighted the importance


of having membership functions that can be easily tuned and adjusted. Other


authors have expressed the need for methods in which computer graphics can


facilitate the process of constructing membership functions by allowing the user


an easy and direct manipulation of different shapes [20].


4. Easy to use. Once a membership function has been generated, it should be easy
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to find µÃ(x) for a given x; and it should be easy to find αÃ for a given α.


In this chapter we propose a mechanism that exploits the properties of Bézier


curves to address these issues and to provide the user with a flexible and efficient way


of generating membership functions.


The chapter is organized as follows. In Section 5.2, we review the basic techniques


used for generating membership functions. Section 5.3 describes the proposed mech-


anism and some fundamental definitions and properties of Bézier curves. In Section


5.4, test problems found in the literature are used to illustrate the proposed mech-


anism and compare its performance with that of two methods which appear in the


literature. Finally, conclusions and current research directions are given in Section


5.5.


5.2 Membership Function Generation


5.2.1 Overview


Membership functions can be constructed from data when it is available. This data


can be elicited by interacting with experts using a direct approach (or direct rating)


[78, 97, 132]. The direct approach requires the degree of membership of a collection


of points in the universal set. A membership function that describes the underlying


concept is fitted to the collected set. This is known as data–driven membership


function estimation. Sometimes this approach can be overly precise in capturing


subjective judgment. By formulating easier and simpler questions, knowledge can


also be acquired through an indirect approach. We will not deal with the indirect


approach in this chapter, but the reader is referred to the paper by Chameau and


Santamarina [20] and the book by Klir and Yuan [78].


When data is not available in the form of value–membership pairs, a membership


function has to be constructed subjectively. In this case, the conventional approach


is to first pick the shape of the membership function from a list of families, and then


to fine–tune the values of the parameters of that function. It is always desirable to


have a parsimonious, meaningful parameterization of membership functions [32].
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5.2.2 Current Methods


In the literature fuzzy sets are most commonly modeled by triangular, trapezoidal,


and bell–shaped membership functions. However, other parameterized functional


shapes are useful in particular situations. More details can be found in Dombi [32]


and Medasani et al. [89].


An effort to create a broad class of functions was made by Zysno [151] and Zim-


mermann and Zysno [148]. In their model, the membership function for a fuzzy set


Ã is given by:


µÃ(x) = mid


(
0,


(
1


1 + e−a(x+b)
− c


)
1


d
+


1


2
, 1


)
, ∀x ∈ X ⊆ R (5.1)


where a, b ∈ R, 0 ≤ c ≤ 1, and 0 ≤ d ≤ 2 min(1 − c, c). The function mid(0, f(x), 1)


is defined such that mid(0, f(x), 1) = f(x), if 0 ≤ f(x) ≤ 1; mid(0, f(x), 1) = 0, if


f(x) < 0; and mid(0, f(x), 1) = 1, if f(x) > 1.


Even though the model provides the user with a commonly used family of S-


shapes, the determination of the parameters from empirical data poses some problems


and there is no direct numerical method for optimal parameter estimation [148, 151].


The model may be used for estimating membership functions subjectively, with the


parameters a, b, c, and d, being fixed by the expert.


Dombi [32] proposed a model with properties similar to the one presented by Zysno


and Zimmermann. In his model a membership function for fuzzy set Ã is constructed


using the S-shaped monotonically increasing function


µÃ(x) =
(1 − ν)λ−1(x − a)λ


(1 − ν)λ−1(x − a)λ + νλ−1(b − x)λ
(5.2)


and/or the S-shaped monotonically decreasing function


µÃ(x) =
(1 − ν)λ−1(b − x)λ


(1 − ν)λ−1(b − x)λ + νλ−1(x − a)λ
(5.3)


where x ∈ [a, b]; a, b ∈ R; the steepness is given by λ ≥ 1; and the inflection point


is determined by 0 < ν < 1. When data is available, Dombi proposed a method for


estimating the parameters based on linearized forms of (5.2) and (5.3).


Both of these models provide similar membership functions because they use the


same underlying form, i.e., µÃ(x) = 1
1+d(x)


, where d(x) is a measure of distance. Even
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though these models provide flexibility for estimating S-shaped functions, they fail


to provide more general monotonic curves.


Chen and Otto [23] present a novel method for constructing membership functions


using interpolation and measurement theory. Following a systematic approach, their


method is able to construct general monotonic functions from data. However, their


methodology does not provide a mechanism for adjusting or building a membership


function in the absence of data.


In the area of fuzzy system identification, sophisticated methods based on neural


networks and evolutionary algorithms have been proposed to generate and tune both


fuzzy rules and membership functions. However, they are basically case by case


approaches [73, 83].


In the next section we shall introduce an interactive and efficient approach for both


data–driven and subjective estimation of membership functions. Based on Bézier


curves, the method is able to generate a broad family of functions.


5.3 Proposed Mechanism


5.3.1 Bézier Curves


One of the major breakthroughs in computer aided design (CAD) is the theory of


Bézier curves and surfaces, independently developed by P. de Casteljau and P. Bézier


while working for the French automakers Citröen and Renault, respectively [38].


The theory of Bézier curves provides a mathematical foundation for representing


a smooth curve that passes through the vicinity of a set of control points. Definition


1 gives a formal expression of a Bézier curve in terms of Bernstein polynomials.


Definition 1. A Bézier curve with n + 1 control points p , (p0, . . . ,pn) is given by


f(t, n,p) ,
n∑


k=0


Bn,k(t)pk


where t ∈ [0, 1], pk , (xk, yk)
T , and Bn,k(t) =


(
n


k


)
tk(1 − t)n−k are the Bernstein


polynomials. Since f(t, n,p) ∈ R2, we usually denote f(t, n,p) = [fx(t, n,x), fy(t, n,y)]T ,


where x , (x0, . . . , xn)T , y , (y0, . . . , yn)T .
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Bézier curves have several properties that are particularly useful in the context of


this chapter [38].


Property 1. The Bézier curve f(t, n,p) defined over t ∈ [0, 1], lies in the convex hull


of the polygon defined by the control points p , (p0, . . . ,pn).


Property 2. The Bernstein polynomial Bn,k(t) achieves its unique maximum at


t = k/n. If the control point pk is moved, then the curve is mostly affected in the


region around the parameter t = k/n.


Property 3. The Bézier curve interpolates its first (p0) and last (pn) control points.


In other words, f(0, n,p) = p0 and f(1, n,p) = pn.


These properties have practical effects in the curve design process. Property 1


guarantees that the curve will not fall outside the “control polygon”. By using this


property along with Property 2, a Bézier curve can be designed by exaggerating the


target shape using the control polygon. Even though a single control point displace-


ment will change the whole curve, this “pseudo–local control” property gives us the


sense that the control points work locally as magnets on the curve. Property 3 is very


useful for breaking the construction of a complex curve into simpler parts.


A complete discussion on Bézier curves and its properties can be found in the


book by Farin [38].


5.3.2 Mathematical Framework


In this section we give the mathematical framework of a broad family of membership


shapes based on Bézier curves.


Let Ã be a fuzzy set on the universal set X. The following conditions are commonly


required for its membership function, µÃ(·).
Condition 1. The membership function µÃ is a mapping from the universal set X


to [0, 1], i.e., µÃ : X → [0, 1].


Condition 2. There exist x1, x2 ∈ X such that µÃ(x1) = 1 and µÃ(x2) = 0. In other


words, we say that x1 ∈ X fully belongs to the set Ã, while x2 ∈ X does not belong


to Ã.


Condition 3. For x1, x2 ∈ X and λ ∈ [0, 1], we have µÃ(λx1 + (1 − λ)x2) ≥
min{µÃ(x1), µÃ(x2)}.
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Condition 1 is conventional in the fuzzy literature. The normality requirement


implicit in Condition 2 (i.e., existence of x ∈ X such that µÃ(x) = 1) can be easily


relaxed, but we preserve it for the sake of clarity in our presentation. Condition 3


guarantees that the fuzzy set Ã is convex.


A convenient, parametric form for expressing our membership function model is:


µÃ(x(t)) =






0 if x(t) < mL − γ


µÃL
(x(t)) if mL − γ ≤ x(t) ≤ mL


1 if mL < x(t) < mR


µÃR
(x(t)) if mR ≤ x(t) ≤ mR + β


0 if x(t) > mR + β


(5.4)


where γ and β are the left and right spreads, respectively; mL,mR ∈ X are the lowest


and highest values with full membership, respectively; and µÃL
(x(t)) and µÃR


(x(t))


are the left and right membership values. Assume that pL = (pL,0, . . . ,pL,nL
)T and


pR = (pR,0, . . . ,pR,nR
)T are nL+1 and nR+1 control points for generating the left and


right membership functions, respectively. The left and right membership functions


are part of the following parametric expressions:


[x(t), µÃL
(x(t))]T = ~µÃL


(t, nL,pL) (5.5)


,
nL∑
k=0


BnL,k(t)pL,k


[x(t), µÃR
(x(t))]T = ~µÃR


(t, nR,pR) (5.6)


,
nR∑
k=0


BnR,k(t)pR,k


where ~µÃL
(·) and ~µÃR


(·) are the Bézier curves for the left and right membership


functions, respectively; t ∈ [0, 1]; pL,k , (xL,k, yL,k)
T is the k-th Bézier control point


for the left membership function (for k = 0, . . . , nL); pR,k , (xR,k, yR,k)
T is the


k-th Bézier control point for the right membership function (for k = 0, . . . , nR);


and BnL,k(t) and BnR,k(t) are Bernstein polynomials. As before, in two–dimensional


space, we denote ~µÃL
(t, nL,pL) = [fx(t, nL,xL), fy(t, nL,yL)]T and ~µÃR


(t, nR,pR) =


[fx(t, nR,xR), fy(t, nR,yR)]T , where xL , (xL,0, . . . , xL,nL
)T , yL , (yL,0, . . . , yL,nL


)T ,


xR , (xR,0, . . . , xR,nR
)T , and yR , (yR,0, . . . , yR,nR


)T .
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The type of shapes that can be obtained using the family of membership functions


described by (5.4) are presented in Figure 5.1.


In order to satisfy Conditions 1 to 3 we need to impose some restrictions on the


parametric form expressed by (5.5) and (5.6).


For Conditions 1 and 2,


Proposition 3. The first and last control points of ~µÃL
(·) are pL,0 = (mL − γ, 0)T


and pL,nL
= (mL, 1)T .


Proof. It follows from Property 3 of the Bézier curves. ¦


Proposition 4. The first and last control points of ~µÃR
(·) are pR,0 = (mR, 1)T and


pR,nR
= (mR + β, 0)T .


Proof. It follows from Property 3 of the Bézier curves. ¦
For Condition 3,


Proposition 5. If the control points pL of ~µÃL
(·) are chosen such that xL,0 ≤ . . . ≤


xL,nL
and yL,0 ≤ . . . ≤ yL,nL


, then µÃL
(x(t)) is monotonically nondecreasing for


mL − γ ≤ x(t) ≤ mL and x(t) is monotonically nondecreasing for 0 ≤ t ≤ 1.


Proof.


f
′
y(t, nL,pL) = µ


′
ÃL


(x(t)) (5.7)


= lim
δ→0


µÃL
(x(t+δ))−µÃL


(x(t))


δ
x(t+δ)−x(t)


δ


=
f


′
y(t, nL,yL)


f ′
x(t, nL,xL)


=


∑nL


k=0 nL[BnL−1,k−1(t) − BnL−1,k(t)]yk∑nL


k=0 nL[BnL−1,k−1(t) − BnL−1,k(t)]xk


=


∑nL−1
k=0 BnL−1,k(t)∆yk∑nL−1
k=0 BnL−1,k(t)∆xk


where t ∈ [0, 1], ∆yk , yk+1 − yk, and ∆xk , xk+1 − xk, for k = 0, . . . , nL − 1. From


the result in (5.7), if ∆yk ≥ 0 and ∆xk ≥ 0, then µ
′
ÃL


(x(t)) ≥ 0. Thus we conclude


that µÃL
(x(t)) is monotonically nondecreasing. ¦


The basic results used in the proof of Proposition 5 can be found in Farin [38] and


Wagner and Wilson [137].
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Figure 5.1: Types of membership functions.
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Similar to Proposition 5, the following result applies for the monotonically nonin-


creasing membership function, ~µÃR
(·).


Proposition 6. If the control points pR of ~µÃR
(·) are chosen such that xR,0 ≤ . . . ≤


xR,nR
and yR,0 ≥ . . . ≥ yR,nR


, then µÃR
(x(t)) is monotonically nonincreasing for


mR ≤ x(t) ≤ mR + β and x(t) is monotonically nondecreasing for 0 ≤ t ≤ 1.


The next result follows from Propositions 5 and 6.


Proposition 7. If the control points pL of ~µÃL
(·) are chosen such that xL,0 ≤ . . . ≤


xL,nL
and yL,0 ≤ . . . ≤ yL,nL


; and the control points pR of ~µÃR
(·) are chosen such


that xR,0 ≤ . . . ≤ xR,nR
and yR,0 ≥ . . . ≥ yR,nR


, then the fuzzy set Ã is convex and


satisfies Condition 3.


5.3.3 Methodology


5.3.3.1 Basic Operations


In the previous section we imposed conditions on the placement of the control points


to guarantee the generation of membership functions that satisfy Conditions 1 to 3.


It remains to discuss how to calculate µÃ(x) given x and αÃ given α. Assuming


the location of the control points pL and pR are known, the algorithms presented in


Figures 5.2 and 5.3 can be used.


The computational burden of the algorithm presented in Figure 5.2 is the solution


a root finding problem on a polynomial of degree nL or nR. This problem can be


solved efficiently using the bisection method [24] or the methods proposed by Müller


or Laguerre [102].


Again the computational bottleneck of the algorithm presented in Figure 5.3 is a


root finding problem on a polynomial of degree nL or nR.


5.3.3.2 Data–driven Estimation


In a direct approach to knowledge acquisition, experts are required to provide the


degree of membership for each of a collection of points in the universal set [78]. The


resulting set of value–membership pairs is used to construct the membership function


of the underlying concept. This section provides a mechanism for constructing mem-


bership functions from data by determining the number of control points and their


locations in the (x, µ(x)) space.
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if x ≤ mL − γ or x ≥ mR + β


then µÃ(x) = 0.


if mL ≤ x ≤ mR


then µÃ(x) = 1.


if mL − γ < x < mL


then


Find t ∈ [0, 1] such that∑nL


k=0


(
nL


k


)
tk(1 − t)nL−kxL,k = x


and compute


µÃ(x) =
∑nL


k=0


(
nL


k


)
tk(1 − t)nL−kyL,k.


if mR < x < mR + β


then


Find t such that∑nR


k=0


(
nR


k


)
tk(1 − t)nR−kxR,k = x


and compute


µÃ(x) =
∑nR


k=0


(
nR


k


)
tk(1 − t)nR−kyR,k.


return µÃ(x). ¥


Figure 5.2: Finding µÃ(x) given x
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if α = 0


then l ← mL − γ, u ← mR + β.


else


if α = 1


then l ← mL, u ← mR.


else


if γ 6= 0


then


Find t ∈ [0, 1] such that∑nL


k=0


(
nL


k


)
tk(1 − t)nL−kyL,k = α


and compute


x =
∑nL


k=0


(
nL


k


)
tk(1 − t)nL−kxL,k.


set l ← x.


else l ← mL


if β 6= 0


then


Find t such that∑nR


k=0


(
nR


k


)
tk(1 − t)nR−kyR,k = α


and compute


x =
∑nR


k=0


(
nR


k


)
tk(1 − t)nR−kxR,k.


set u ← x.


else u ← mR


set αÃ ← [l, u].


return αÃ. ¥


Figure 5.3: Finding αÃ given α
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The left side of the membership function can be estimated independently from the


right side. We formulate a mathematical model and propose an algorithm for estimat-


ing the monotonically nonincreasing portion (right side) of a membership function.


A similar approach can be used for estimating the nondecreasing (left side) portion.


Let the given data points be dR,i = (x̌R,i, y̌R,i)
T for i = 1, . . . ,MR, where MR


is the total number of data points and y̌R,i is the membership given by the expert


through the direct approach to the i-th value x̌R,i ∈ X. Without loss of gener-


ality, assume there are at least three data points (i.e., MR ≥ 3) which are sorted


in ascending order by their first component. Also let the nR + 1 control points be


pR = ((xR,0, yR,0) . . . (xR,nR
, yR,nR


))T .


Let the decision variables be xR,k and yR,k, the first and second coordinates of


the k-th control point (k = 0, . . . , nR); ti, the parameter value of the Bézier curve


for the i-th data point (i = 1, . . . ,MR); and nR, the maximum value of the index


associated with the control points to be placed. By Proposition 4, the first and last


control points are fixed in pR,0 = (x̌1, 1)T and pR,nR
= (x̌MR


, 0)T . Thus the final value


of some variables is known before performing any optimization, namely, xR,0 = x̌R,1,


yR,0 = 1, xR,nR
= x̌R,MR


, yR,nR
= 0, t1 = 0, and tMR


= 1.


The following mathematical program minimizes the sum of the squared errors


(SSE) between the fitted membership function and the empirical data.


min


MR−1∑
i=2


(
y̌R,i −


nR∑
k=0


(
nR


k


)
tki (1 − ti)


nR−kyR,k


)2


(5.8)


subject to:
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∑nR


k=0


(
nR


k


)
tki (1 − ti)


nR−kxR,k = x̌R,i, for i = 2, . . . ,MR − 1


ti ≤ ti+1, for i = 1, . . . ,MR − 1


xR,k ≤ xR,k+1, for k = 0, . . . , nR − 1


yR,k ≥ yR,k+1, for k = 0, . . . , nR − 1


xR,k ≥ x̌R,1, for k = 1, . . . , nR − 1


xR,k ≤ x̌R,MR
, for k = 1, . . . , nR − 1


yR,k ≥ 0, for k = 1, . . . , nR − 1


yR,k ≤ 1, for k = 1, . . . , nR − 1


ti ≥ 0, for i = 2, . . . ,MR − 1


ti ≤ 1, for i = 2, . . . ,MR − 1






(5.9)


nR ∈ {2, 3, . . .} (5.10)


The fact that the number of control points is unknown and integer increases


dramatically the complexity of the problem described by (5.8), (5.9), and (5.10).


Fortunately, in most practical applications the number of control points required is


small. By treating this number as a parameter, we can solve a series of nonlinear


programs, instead of dealing directly with a more difficult mixed integer nonlinear


program. For a given nR, the nonlinear program has 2nR + MR − 4 continuous


variables, MR−2 nonlinear constraints, MR +2nR−1 linear constraints, and 2(MR +


2nR − 4) lower and upper bounds.


Given nR, let e(nR) be the sum of the square errors between the fitted mem-


bership function and the empirical data when nR + 1 control points are used. Let


NLP (dR, nR) be a function that solves the nonlinear program described by (5.8) and


(5.9). NLP (dR, nR) takes the empirical data dR and a specified value of nR as its


arguments and returns the optimal value of the objective function described in (5.8),


e(nR), and the optimal locations of the control points, pR(nR). Then the algorithm


shown in Figure 5.4 can be used to solve the data–driven estimation for the right


membership functions. The algorithm stops when the improvement in SSE is less


than a given small quantity ε0 (say, ε0 = 0.0010) or when the maximum number of


control points to be placed is reached.


81







set ε ← ε0, nR ← 1, e(1) ← +∞.


do


nR ← nR + 1


(e(nR),pR(nR)) ← NLP (dR, nR)


if e(nR − 1) − e(nR) ≤ ε or nR = MR − 1


if e(nR − 1) − e(nR) < 0


then return pR(nR − 1), e(nR − 1), nR − 1.


else


return pR(nR), e(nR), nR.


end


¥


Figure 5.4: Data–driven estimation of the right membership function


5.4 Performance


5.4.1 Flexibility


In current practice, users choose the shape of the membership functions from a pool


of commonly used parameterized families. After the shape is selected, the parameters


are manipulated to tune the shape. As discussed in Section 5.2.1 the pool of param-


eterized families of membership functions include triangular, trapezoidal, Gaussian,


generalized bell curve, sigmoid, and S-shaped. In contrast, our approach can be used


to produce the membership function of almost any imprecise concept. Basically, our


approach can be viewed as a generalized free form generator of membership functions


that satisfy the basic requirements presented in Section 5.3.2.


The example in Table 5.1 and Figure 5.5 illustrates the ease with which a mem-


bership function can be constructed and tuned interactively using our approach. By


placing the control points in the locations shown in Table 5.1, the membership func-


tion depicted in Figure 5.5(a), with the control points being represented by black


dots, can be obtained. By changing the location of the second control point on the


left side (k = 1) from (25, 0.1) to (15, 0.5), the curve bends toward the new point as if
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Table 5.1: Control points (before change).


k pL,k pR,k


xL,k yL,k xR,k yR,k


0 10 0.0 50 1.0


1 25 0.1 60 0.3


2 30 0.8 70 0.2


3 50 1.0 75 0.0


there were some magnetic attraction between the control point and the membership


function (left portion). This is shown in Figure 5.5(b). Moreover, due to the Property


2 of the Bézier curves presented in Section 5.3.1, we observe that, even though this


change affects the whole left membership function, the change is more noticeable in


the vicinity of the control point.


This new flexible and interactive way of building and tuning a membership func-


tion can be leveraged by using a graphical user interface(GUI). Currently, we are


developing a GUI that helps the user add, move, and delete control points to obtain


the desired free–form membership function.


5.4.2 Numerical Examples


For data–driven estimation, we tested our approach using data originally published


by Zysno [151] and compared its performance to that of the methods reported in


Zysno [151] and Dombi [32]. Sixty–four persons from 21 to 25 years of age were asked


to rate 52 different statements related to age concepts. The group was divided into


four subgroups of 16. The individuals within a subgroup were asked to rate one of the


4 concepts: very young man, young man, old man, and very old man. The subjects


were asked to give the degree of membership in the designated fuzzy set of a man of


x years of age on a 0% to 100% scale.


Figure 5.6 shows the progress of our algorithm when applied to automatically


estimate the membership functions for the fuzzy set old man based on the data


collected by interviewing subject 35 in Zysno [151]. In the figure, a black square


represents a control point. A number beside a control point is used when more than


one control point shares the same location. The number represents the total number


of control points in the given location. Empty circles represent data points. Lines are
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Figure 5.5: Effect on the change of a single control point.
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(c) nL = 8, SSE = 0.02846
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(d) nL = 11, SSE = 0.02469


Figure 5.6: Data–driven estimation. Data: subject 35 (Old man).


used to display the estimated membership functions.


As is customary in the literature, to compare our method with those of Zysno


and Dombi we used the sum of the squared errors (SSE) as the measure of goodness


of fit between a membership function model and the empirical data. Dombi used


data for subjects 9, 18, 35, 44 and 58 in Zysno [151] as his benchmark test cases and


measured the corresponding SSEs. Zysno estimated the parameters of his model for


all the data sets (64 subjects), but did not provide SSE as the measure of goodness


of fit. In order to make valid comparisons, we calculated the SSE for Zysno’s model


for the benchmark test cases chosen by Dombi. Table 5.2 gives the SSE for the


benchmark test cases for the three models, namely, Dombi, Zysno, and ours. The
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Table 5.2: Sum of square errors (SSE)


Model Data set (subject)


9 18 35 44 58


Zysno 0.10074 0.05054 0.17808 0.07572 0.02641


Dombi 0.13204 0.05103 0.14841 0.05284 0.03027


Proposed Approach (ε = 0.0010) 0.07149 0.02390 0.02469 0.03610 0.01941


Table 5.3: SSE progress for the test benchmark cases (ε = 0.0010; †: final solution).


Control points Data set (subject)


(nR + 1) 9 18 35 44 58


3 0.09231 0.07353 0.08320 0.12333 0.06127


4 0.09044 0.04557 0.05242 0.04838 0.02100


5 0.08822 0.03420 0.04498 0.04071 0.01981


6 0.08167 0.02406 0.03517 0.03800 0.01941†


7 0.07538 0.02390† 0.03133 0.03665


8 0.07149† 0.03011 0.03610†


9 0.07428 0.02846


10 0.02715


11 0.02549


12 0.02469†


superior performance of our approach is clearly seen.


Table 5.3 shows the evolution of the SSE for each of the test benchmark cases when


our data–driven estimation mechanism is used. The resulting estimated membership


functions are shown in Figures 5.6 and 5.7. Note that most of the intermediate


solutions shown in Table 5.3 are better than the final solutions provided by Zysno


and Dombi. By monitoring the progress of the SSE, the algorithm may be interrupted


as soon as the user is satisfied with the current SSE. We have a very small ε that may


cause overfitting. However, our method for membership function generation can get


arbitrarily close to the empirical data.


A final remark should be made. After fitting a membership function to data,


the user can still go back and tune the membership by moving the control points as


described in Section 5.4.1. This high level of interaction and flexibility between the
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Figure 5.7: Data-driven estimation (ε = 0.0010).
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model and the user is a desirable feature when designing imprecise concepts.


5.4.3 Computational Efficiency


In the absence of data, our approach requires from the user the number and location of


the control points. We have shown in Section 5.4.1 how easy it is to change the shape


of the membership function by displacing the control points. It is important to note


that the computational effort needed to redraw a membership function, whenever a


control point is moved, is just the simple evaluation of (5.5) and (5.6).


Once a membership function has been generated (either with or without data),


as shown in Section 5.3.3.1, the calculations required to find µÃ(x) for a given x and


find αÃ for a given α reduce to solving a computationally inexpensive root finding


problem in a closed interval (t ∈ [0, 1]).


When our approach is used to fit membership functions to data, it was seen in


Section 5.3.3.2 that the computational bottleneck is finding a solution to a nonlinear


program with 2nR+MR−4 variables, MR−2 nonlinear constraints, MR+2nR−1 linear


constraints, and 2(MR+2nR−4) lower and upper bounds. For the numerical examples


presented in Section 5.4.2 we used AMPL as the algebraic modeling language and


MINOS 5.4 as the nonlinear optimizer. Using a computer with a 266 MHz Pentium


II processor, all the nonlinear programs took less than 4 seconds to run.


5.5 Conclusion


We have proposed a new mechanism based on Bézier curves for generating member-


ship functions well suited for a broad spectrum of fuzzy modeling. By placing control


points in different locations, the shape of the membership functions can be altered in


a very natural and intuitive way. Mechanisms for dealing with subjective and data–


driven estimation of membership functions were discussed. Some advantages of this


approach are its flexibility, ease of use, computational efficiency, and suitability for


a graphical interactive implementation. The major advantage is its immense power


of fitting data as close as possible without a priori assumption of the shape of the


function.


Several aspects of this work are in progress. First, a tailored interior point algo-


rithm that can exploit the structure of the nonlinear program presented in (5.8) and
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(5.9) is currently under investigation [37]. We are currently exploring the application


of this methodology to the methods proposed in Chapters 3 and 4.
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Chapter 6


Summary and Recommendations


6.1 Summary


In Chapter 1 we introduced simulation optimization, a fundamental problem which


has attracted the attention of many researchers in the simulation community, in


terms of the single response simulation optimization (SRSO) and multiple response


simulation optimization (MRSO) problems. Since the goals for a system are often


stated in vague natural language by the decision maker, we discussed the need for the


incorporation of vague goals into simulation optimization. This led to the study of


the fuzzy single response simulation optimization (FSO) and fuzzy multiple response


simulation optimization (FMSO) problems.


In Chapter 2 we surveyed the literature on simulation optimization and gave an


overview of soft computing. Within the framework of soft computing, we provided a


comprehensive review of evolutionary algorithms for multicriteria optimization. We


highlighted the absence of research on the synergistic merger of simulation optimiza-


tion with soft computing techniques.


In Chapter 3 we proposed a fuzzy controlled method for solving FSO and FMSO


problems. A distinctive feature of the proposed simulation optimization strategy is


the use of approximate reasoning through a fuzzy controller to drive the optimization


process, using a small set of rules that encapsulates the relevant knowledge of the


system. Using these rules, which can be generated from statistical correlation mea-


sures and quadratic response surface models, we showed how the controller is able


to drive a simulation model of a flow line, represented by a tandem of queues with
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blocking, towards a high degree of satisfaction of one or more vaguely stated targets.


Moreover, in the presence of multiple and conflicting goals, the proposed approach


was able to construct a high quality approximate Pareto optimal solution set. The


quality of the solution set was measured in terms of Zitzler and Thiele’s metric based


on the size of dominated space [150].


In Chapter 4 we provided an alternative evolutionary method for solving the


FMSO problem. This evolutionary method (OSEA) provided a means to assess the


quality of the approximate Pareto front generated by the fuzzy controlled approach


proposed in Chapter 3. We showed how OSEA generates an approximate Pareto


optimal set, using a DEA1–based methodology called optimal scoring for fitness as-


signment. We discussed how optimal scoring overcomes the main difficulty in selecting


a set of predefined fixed weights for an aggregation approach. We also discussed how


optimal scoring requires the solution of a linear program for each individual. We


compared the results obtained by OSEA with those obtained by using the fuzzy con-


trolled approach presented in Chapter 3 on the Flow Line Design problem. Both


methods are capable of generating high quality solutions in terms of the dominated


space metric proposed by Zitzler and Thiele [150], and both are capable of generating


an even sample of the Pareto front. However, the fuzzy controlled method is remark-


ably more efficient, requiring far fewer simulation runs than the evolutionary method


to obtain the same level of solution quality.


In Chapter 5 we introduced a new Bézier curve–based mechanism for constructing


membership functions of normal convex fuzzy sets that can represent virtually any


vague concept. In particular, we showed how the Bezier curve–based mechanism


can fit any given data set with a minimum level of discrepancy. We tested our


approach using data originally published by Zysno [151] and compared its performance


with the methods reported in Zysno [151] and Dombi [32]. The advantages of this


approach include its flexibility, ease of use, computational efficiency, and suitability


for a graphical interactive implementation. To date, this is perhaps the most flexible


and efficient mechanism for both automatic and interactive generation of membership


functions for convex fuzzy sets.


Traditional simulation optimization techniques require an enormous number of


simulation runs to evaluate the system. This research shows that by incorporating


knowledge, expressed in natural language, that is often available among analysts and


1Data Envelopment Analysis.
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decision makers, the FSO and FMSO problems can be solved efficiently using the


proposed fuzzy controlled method. In case there is a complete lack of knowledge of


the relationships between inputs and performance of the system, OSEA might be the


only alternative for solving the FMSO problem.


6.2 Recommendations for Future Research


This research has succeeded in bringing new elements into the area of simulation


optimization. While the results of our experiments on the flow line design problem


are generally good, there are still open avenues for future research.


1. The fuzzy–controlled approach implemented in this research used a controller


that was built off–line. Research may be conducted on the development of an


efficient and automatic mechanism for knowledge extraction. We envision a sys-


tem that is continuously learning and adapting along with the execution of new


simulation experiments. This problem is usually referred to as the fuzzy system


identification problem. It is conceivable that by combining neural networks,


fuzzy logic, and evolutionary algorithms, a system that will be continuously


learning and adapting while working to fulfill the system’s goals, could be de-


veloped.


2. OSEA has been specifically designed for solving the FMSO problem. However, it


is possible to generalize it to solve traditional formulations of multicriteria opti-


mization problems. Future research should be conducted in this generalization.


A thorough comparison with existing evolutionary algorithms for multicriteria


optimization (e.g., VEGA, NPGA, NSGA, SPEA, MOGA, and HLGA) could


be another interesting research topic.


3. The empirical results obtained so far with OSEA suggest that there is an under-


lying relation between the optimal fitness scores and the distance to the Pareto


front. The development of theoretical results along this line of research could


have significant computational effects.


4. In OSEA, it is possible to add additional constraints to the linear program be-


hind the optimal scoring for fitness assignment. These constraints may be used
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to model complex relations among the criteria. Future research may consider


exploring the meaning and computational effects of these additional constraints.


5. The methods proposed in Chapters 3 and 4 evaluated a system by using average


performance measures. A possible research topic is to modify the proposed


methods based on the variance of the performance measures.


6. To alleviate the problem of having to make an enormous number of simulation


runs to evaluate a system, it is worthwhile to investigate the possibility of


implementing neuro-accelerators for fast evaluation of simulation models. If


successful, the results of this investigation could be integrated into the methods


proposed in Chapters 3 and 4.


7. This research used the flow line design problem to illustrate the proposed meth-


ods. It is important to expand the experiments to larger and more complex


systems, like those arising in the context of supply chain optimization.


8. Another avenue of research lies in the Bézier curve–based mechanism for con-


structing membership functions as proposed in Chapter 5. A thorough analysis


of the structure of the nonlinear program which must be solved within the auto-


mated curve–fitting process may result in a more efficient algorithm. A tailored


interior point algorithm [37] that exploits the structure of this nonlinear pro-


gram is currently under investigation. Advances made in this algorithm may


be extended to the research on using Bézier distributions to model simulation


input processes [136, 137].
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Bäck, editor, Proceedings of the Seventh International Conference on Genetic


Algorithms, pages 666–673, San Mateo, California, July 1997. Michigan State


University, Morgan Kaufmann Publishers.


[87] E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a


fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1–13,


1975.


[88] A. L. Medaglia and S.-C. Fang. A genetic-based framework for solving (multi-


criteria) weighted matching problems. Technical report, North Carolina State


University, Raleigh, North Carolina, 2000. Submitted to the European Journal


of Operational Research.


[89] S. Medasani, J. Kim, and R. Krishnapuram. An overview of membership func-


tion generation techniques for pattern recognition. International Journal of


Approximate Reasoning, 19:391–417, 1998.


[90] M. Meketon. Optimization in simulation: A survey of recent results. In Pro-


ceedings of the 1987 Winter Simulation Conference, pages 58–67, 1987.


102







[91] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.


Springer, 3rd edition, 1996.


[92] D. C. Montgomery and V. M. Bettencourt Jr. Multiple response surface meth-


ods in computer simulation. Simulation, 29:113–121, 1977.


[93] R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process


and Product Optimization Using Designed Experiments. Wiley, New York, 1995.


[94] J. Nash. The bargaining problem. Econometrica, 18:155–162, 1950.


[95] J. A. Nelder and R. Mead. A simplex method for function minimization. Com-


puter Journal, 7:308–313, 1965.


[96] V. Norkin, Y. Ermoliev, and A. Ruszczynski. On optimal allocation of indivis-


ibles under uncertainty. Operations Research, 46(3):381–395, 1998.


[97] A. M. Norwich and I. B. Turksen. A model for the measurement of membership


and the consequences of its empirical implementation. Fuzzy Sets and Systems,


12:1–25, 1984.


[98] A. Nozari and J. S. Morris. Application of an optimization procedure to steady-


state simulation. In Proceedings of the 1984 Winter Simulation Conference,


pages 217–219, 1984.


[99] Andrzej Osyczka and Sourav Kundu. A new method to solve generalized mul-


ticriteria optimization problems using the simple genetic algorithm. Structural


Optimization, 10:94–99, 1995.


[100] Jacques Périaux, Mourad Sefrioui, and Bertrand Mantel. GA Multiple


Objective Optimization Strategies for Electromagnetic Backscattering. In


D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, editors, Genetic Algo-


rithms and Evolution Strategies in Engineering and Computer Science. Recent


Advances and Industrial Applications, chapter 11, pages 225–243. John Wiley


and Sons, West Sussex, England, 1997.


[101] Harry G. Perros. Queueing Networks with Blocking. Oxford University Press,


New York, New York, 1994.


103







[102] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-


nery. Numerical Recipes in C - The Art of Scientific Computing. Cambridge


University Press, 2nd edition, 1992.


[103] A. Alan B. Pritsker, Jean J. O’Reilly, and David K. La Val. Simulation with


Visual SLAM and AweSim. Wiley, 1997.


[104] Domenico Quagliarella and Alessandro Vicini. Coupling Genetic Algorithms


and Gradient Based Optimization Techniques. In D. Quagliarella, J. Périaux,


C. Poloni, and G. Winter, editors, Genetic Algorithms and Evolution Strategies


in Engineering and Computer Science. Recent Advances and Industrial Applica-


tions, chapter 14, pages 289–309. John Wiley and Sons, West Sussex, England,


1997.


[105] I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach


Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart,


Germany, 1973.


[106] L. P. Rees, E. R. Clayton, and B. W. Taylor III. Solving multiple response


simulation models using modified response surface methodology within a lexi-


cographic goal programming framework. IIE Transactions, 17(1):47–57, 1985.


[107] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard. Some guidelines


for genetic algorithms with penalty functions. In J. D. Schaffer, editor, Proceed-


ings of the 3rd International Conference on Genetic Algorithms, pages 191–197.


Morgan Kaufmann, San Mateo, CA, 1989.


[108] Brian J. Ritzel, J. Wayland Eheart, and S. Ranjithan. Using genetic algorithms


to solve a multiple objective groundwater pollution containment problem. Wa-


ter Resources Research, 30(5):1589–1603, may 1994.


[109] H. Robbins and S. Monro. A stochastic approximation method. Annals of


Mathematical Statistics, 22:400–407, 1951.


[110] Matthew N. O. Sadiku. Simulation of Local Area Networks. CRC Press, Boca


Raton, 1995.


[111] M. H. Safizadeh. Optimization in simulation - current issues and the future


outlook. Naval Research Logistics, 37(6):807–825, 1990.


104







[112] Eric Sandgren. Multicriteria design optimization by goal programming. In


Hojjat Adeli, editor, Advances in Design Optimization, chapter 23, pages 225–


265. Chapman & Hall, London, 1994.


[113] C. Sauer. Simulation of Computer Communication Systems. Prentice-Hall,


1983.


[114] J. David Schaffer. Multiple objective optimization with vector evaluated genetic


algorithms. In Genetic Algorithms and their Applications: Proceedings of the


First International Conference on Genetic Algorithms, pages 93–100, 1985.


[115] J. David Schaffer and John J. Grefenstette. Multiobjective Learning via Ge-


netic Algorithms. In Proceedings of the 9th International Joint Conference on


Artificial Intelligence (IJCAI-85), pages 593–595, Los Angeles, California, 1985.


AAAI.


[116] J. W. Schmidt and R. E. Taylor. Simulation and Analysis of Industrial Systems.


Richard D. Irwin, Homewood, IL, 1970.


[117] L. W. Schruben and V. J. Cogliano. An experimental procedure for simulation


response surface model identification. Communications of the Association for


Computing Machinery, 30:716–730, 1987.


[118] H. P. Schwefel. Numerical optimization of computer models. Wiley, Chichester,


1981.


[119] A. Shapiro. Simulation based optimization. In Proceedings of the 1996 Winter


Simulation Conference, pages 332–336, 1996.


[120] N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondomi-


nated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248,


fall 1994.


[121] Timothy J. Stanley and Trevor Mudge. A Parallel Genetic Algorithm for Mul-


tiobjective Microprocessor Design. In Larry J. Eshelman, editor, Proceedings


of the Sixth International Conference on Genetic Algorithms, pages 597–604,


San Mateo, California, July 1995. University of Pittsburgh, Morgan Kaufmann


Publishers.


105







[122] Ralph E. Steuer. Multiple Criteria Optimization. Series in Probability and


Mathematical Statistics. John Wiley & Sons, Inc., 1985.


[123] D. W. Sullivan and J. R. Wilson. Restricted subset selection procedures for


simulation. Operations Research, 37:52–71, 1989.


[124] R. Suri. An overview of evaluative models for flexible manufacturing systems.


In Proceedings of the First ORSA/TIMS Conference on Flexible Manufacturing


Systems, pages 8–15, 1984. Edited by K. E. Stecke and R. Suri.


[125] Patrick D. Surry and Nicholas J. Radcliffe. The COMOGA Method: Con-


strained Optimisation by Multiobjective Genetic Algorithms. Control and Cy-


bernetics, 26(3), 1997.


[126] Patrick D. Surry, Nicholas J. Radcliffe, and Ian D. Boyd. A Multi-Objective


Approach to Constrained Optimisation of Gas Supply Networks : The CO-


MOGA Method. In Terence C. Fogarty, editor, Evolutionary Computing. AISB


Workshop. Selected Papers, Lecture Notes in Computer Science, pages 166–180,


Sheffield, U.K., 1995. Springer-Verlag.


[127] Gilbert Syswerda and Jeff Palmucci. The Application of Genetic Algorithms to


Resource Scheduling. In Richard K. Belew and Lashon B. Booker, editors, Pro-


ceedings of the Fourth International Conference on Genetic Algorithms, pages


502–508, San Mateo, California, 1991. Morgan Kaufmann.


[128] T. Takagi and M. Sugeno. Fuzzy identification of systems and application to


modeling and control. Transactions on Systems, Man and Cybernetics, 15:116–


132, 1985.


[129] H. Tamaki, H. Kita, and S. Kobayashi. Multi-objective optimization by genetic


algorithms: A review. In Proceedings of the 1996 IEEE ICEC, pages 517–522,


1996.


[130] Hisashi Tamaki, M. Mori, M. Araki, Y. Mishima, and H. Ogai. Multi-Criteria


Optimization by Genetic Algorithms : A Case of Scheduling in Hot Rolling


Process. In Proceedings of the 3rd Conference of the Association of Asian-


Pacific Operational Research Societies within IFORS (APORS’94), pages 374–


381. World Scientific, 1995.


106







[131] G. Tompkins and F. Azadivar. Genetic algorithms in optimizing simulated


systems. In Proceedings of the 1995 Winter Simulation Conference, pages 757–


762, 1995.


[132] I. B. Turksen. Measurement of membership functions and their acquisition.


Fuzzy Sets and Systems, 40:5–38, 1991.


[133] Manuel Valenzuela and Eduardo Uresti. A Non-Generational Genetic Algorithm


for Multiobjective Optimization. In Thomas Bäck, editor, Proceedings of the
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Appendix A


Membership Functions


A.1 State Variables


Table A.1 contains a complete list of all the fuzzy controller inputs for the flow line


design application in Section 3.4. For every input (linguistic variable), the linguistic


states and the number of the figure where the membership functions can be found


are given.
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Linguistic Variable Linguistic Values Membership Functions


Low


Overall work-in-process (w) Medium See Figure A.1


High


Low


Work-in-process at stage 1 (w1) Medium See Figure A.2


High


Low


Work-in-process at stage 2 (w2) Medium See Figure A.3


High


Low


Work-in-process at stage 3 (w3) Medium See Figure A.4


High


Low


Work-in-process at stage 4 (w4) Medium See Figure A.5


High


Short


Time in system (T ) Medium See Figure A.6


Long


Low


Utilization at stage 1 (ρ1) Medium See Figure A.7


High


Low


Utilization at stage 2 (ρ2) Medium See Figure A.8


High


Low


Utilization at stage 3 (ρ3) Medium See Figure A.9


High


Low


Utilization at stage 4 (ρ4) Medium See Figure A.10


High


Table A.1: Flow line fuzzy controller inputs.
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Figure A.1: Overall work-in-process (w)
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Figure A.2: Work-in-process at stage 1 (w1)
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Figure A.3: Work-in-process at stage 2 (w2)
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Figure A.4: Work-in-process at stage 3 (w3)
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Figure A.5: Work-in-process at stage 4 (w4)
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Figure A.6: Time in system (T )
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Figure A.7: Utilization at station 1 (ρ1)
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Figure A.8: Utilization at station 2 (ρ2)
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Figure A.9: Utilization at station 3 (ρ3)
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Figure A.10: Utilization at station 4 (ρ4)
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A.2 Control Variables


The fuzzy controller outputs for the flow line design application in Section 3.4 are


displayed in Table A.2. For every output (linguistic variable), the associated linguistic


states and the number of the figure where the membership functions can be found


are given.


Linguistic Variable Linguistic Values Membership Functions


Negatively large


Negatively small


Change in server rate Zero See Figure A.11.


at stage 1 (∆µ1) Positively small


Positively large


Negatively large


Negatively small


Change in server rate Zero See Figure A.12.


at stage 3 (∆µ3) Positively small


Positively large


Negatively large


Negatively small


Change in number of Zero See Figure A.13.


servers at stage 2 (∆s2) Positively small


Positively large


Negatively large


Negatively small


Change in number of Zero See Figure A.14.


servers at stage 3 (∆s3) Positively small


Positively large


Table A.2: Flow line fuzzy controller outputs
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Linguistic Variable Linguistic Values Membership Functions


Negatively large


Negatively small


Change in number of Zero See Figure A.15.


servers at stage 4 (∆s4) Positively small


Positively large


Negatively large


Negatively small


Change in buffer space Zero See Figure A.16.


at stage 2 (∆b2) Positively small


Positively large


Negatively large


Negatively small


Change in buffer space Zero See Figure A.17.


at stage 4 (∆b4) Positively small


Positively large


Table A.2: Flow line fuzzy controller outputs (continued).
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Figure A.11: Change in server rate at station 1 (∆µ1)
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Figure A.12: Change in server rate at station 3 (∆µ3)
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Figure A.13: Change in servers at station 2 (∆s2)


118







-6 -4 -2 0 2 4 6
0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1


Change in number of servers at station 3


M
em


be
rs


hi
p


Negatively large Negatively small Zero Positively small Positively large


Figure A.14: Change in servers at station 3 (∆s3)
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Figure A.15: Change in servers at station 4 (∆s4)
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Figure A.16: Change in buffer space at station 2 (∆b2)
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Figure A.17: Change in buffer space at station 4 (∆b4)
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Appendix B


Rule Base for the Multiple


Objective Scenario


The following rule base is the one used in the experiment on the flow line design


problem in Section 3.4.5.2 and Section 4.2.


Rule 1. If the overall work-in-process ($) is high (H̃$) then the change in server rate


at station 1 (∆γ1) should be positively small (P̃S∆γ1).


Rule 2. If the overall work-in-process ($) is medium (M̃$) then the change in server


rate at station 1 (∆γ1) should be positively small (P̃S∆γ1).


Rule 3. If the overall work-in-process ($) is low (L̃$) then the change in server rate at


station 1 (∆γ1) should be zero (Z̃∆γ1).


Rule 4. If the overall work-in-process ($) is high (H̃$) then the change in the number


of servers at station 4 (∆s4) should be positively small (P̃S∆s4).


Rule 5. If the overall work-in-process ($) is medium (M̃$) then the change in the


number of servers at station 4 (∆s4) should be positively small (P̃S∆s4).


Rule 6. If the overall work-in-process ($) is low (L̃$) then the change in the number of


servers at station 4 (∆s4) should be zero (Z̃∆s4).


Rule 7. If the overall work-in-process ($) is high (H̃$) and the utilization at station 3


(ϕ3) is high (H̃ϕ3) then the change in the server rate at station 3 (∆γ3) should


be positively large (P̃L∆γ3).
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Rule 8. If the overall work-in-process ($) is medium (M̃$) and the utilization at station


3 (ϕ3) is high (H̃ϕ3) then the change in the server rate at station 3 (∆γ3) should


be positively small (P̃S∆γ3).


Rule 9. If the overall work-in-process ($) is medium (M̃$) and the utilization at station


3 (ϕ3) is medium (M̃ϕ3) then the change in the server rate at station 3 (∆γ3)


should be positively small (P̃S∆γ3).


Rule 10. If the overall work-in-process ($) is high (H̃$) and the utilization at station 2


(ϕ2) is high (H̃ϕ2) then the change in the number of servers at station 2 (∆s2)


should be positively large (P̃L∆s2).


Rule 11. If the overall work-in-process ($) is medium (M̃$) and the utilization at station


2 (ϕ2) is high (H̃ϕ2) then the change in the number of servers at station 2 (∆s2)


should be positively small (P̃S∆s2).


Rule 12. If the overall work-in-process ($) is medium (M̃$) and the utilization at station


2 (ϕ2) is medium (M̃ϕ2) then the change in the number of servers at station 2


(∆s2) should be positively small (P̃S∆s2).


Rule 13. If the overall work-in-process ($) is high (H̃$) and the utilization at station 3


(ϕ3) is high (H̃ϕ2) then the change in the number of servers at station 3 (∆s3)


should be positively large (P̃L∆s3).


Rule 14. If the overall work-in-process ($) is high (H̃$) and the utilization at station


3 (ϕ3) is medium (M̃ϕ2) then the change in the number of servers at station 3


(∆s3) should be positively small (P̃S∆s3).


Rule 15. If the overall work-in-process ($) is medium (M̃$) and the utilization at station


3 (ϕ3) is medium (M̃ϕ2) then the change in the number of servers at station 3


(∆s3) should be positively small (P̃S∆s3).


Rule 16. If the utilization at station 1 (ϕ1) is high (H̃ϕ1) then the change in server rate


at station 1 (∆γ1) should be zero (Z̃∆γ1).


Rule 17. If the utilization at station 1 (ϕ1) is medium (M̃ϕ1) then the change in server


rate at station 1 (∆γ1) should be negatively small (ÑS∆γ1).
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Rule 18. If the utilization at station 1 (ϕ1) is low (L̃ϕ1) then the change in server rate at


station 1 (∆γ1) should be negatively large (ÑL∆γ1).
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Appendix C


Results for the Fuzzy Controlled


Approach


The results presented in this appendix detail the summarized results for the fuzzy


controlled approach presented in Section 4.2.
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Figure C.1: Experiment # 1 of the two-goal scenario with the fuzzy controlled ap-


proach.
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Figure C.2: Experiment # 2 of the two-goal scenario with the fuzzy controlled ap-


proach.
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Figure C.3: Experiment # 3 of the two-goal scenario with the fuzzy controlled ap-


proach.
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Figure C.4: Experiment # 4 of the two-goal scenario with the fuzzy controlled ap-


proach.
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Figure C.5: Experiment # 5 of the two-goal scenario with the fuzzy controlled ap-


proach.
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Appendix D


Results for OSEA


.


The results presented in this appendix detail the summarized results for OSEA


presented in Section 4.2.
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Figure D.1: Experiment # 1 of the flow line design problem with two goals solved by


OSEA.
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Figure D.2: Experiment # 2 of the flow line design problem with two goals solved by


OSEA.
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Figure D.3: Experiment # 3 of the flow line design problem with two goals solved by


OSEA.
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Figure D.4: Experiment # 4 of the flow line design problem with two goals solved by


OSEA.
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Figure D.5: Experiment # 5 of the flow line design problem with two goals solved by


OSEA.


129







0.50


0.55


0.60


0.65


0.70


0.75


0.80


0.85


0.90


0.95


1.00


0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00


Degree of low work-in-process


D
eg


re
e 


of
 h


ig
h 


ut
ili


za
tio


n 
at


 s
ta


ge
 1


(a) Approximate Pareto front.


0.4000


0.5000


0.6000


0.7000


0.8000


0.9000


1.0000


0 10 20 30 40 50 60 70 80 90 100


Generation


D
om


in
at


ed
 s


pa
ce


(b) Zitzler and Thiele’s dominated space
metric.


Figure D.6: Experiment # 6 of the flow line design problem with two goals solved by


OSEA.
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