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BRAZILIAN BANK CHEQUES


Marisa Emika Morita


ABSTRACT


In this thesis, an HMM-MLP hybrid system for segmenting and recognizing uncon-
strained handwritten dates written on Brazilian bank cheques is presented. The
system evolves by dealing with many sources of variability, such as heterogeneous
data types and styles, variations present in the date �eld, and di�cult cases of seg-
mentation that make the recognizer task particular hard to do.


The system takes an HMM-based strategy for identifying and separating the date
into sub-�elds. It makes use of the concept of meta-classes of digits in order to reduce
the lexicon size of the day and year and produce a more precise segmentation. After
that, the three obligatory sub-�elds (day, month, and year) are recognized using
specialized classi�ers according to their respective data types which are known. In
such cases, we propose an HMM word recognition and veri�cation scheme to process
month words and an MLP approach to decipher strings of digits (day and year). The
digit string recognition strategy also makes use of the meta-classes of digits in order
to reduce the lexicon size on digit string recognition and improve the recognition
results. In addition to the date database, we have used other databases in order
to validate the strategies employed in digit string recognition and word veri�cation.
Experiments show encouraging results on date, word, and digit string recognition.
The system also contains a �nal decision module which makes an accept/rejection
decision.


Finally, a methodology for feature selection in unsupervised learning is proposed. It
makes use of an e�cient multi-objective genetic algorithm to generate a set of solu-
tions, which contain the more discriminant features and the more pertinent number
of clusters. The proposed strategy is assessed using two synthetic data sets where
the signi�cant features and the appropriate clusters in any given feature subspace
are known. Afterwards, it is applied to optimize classi�ers in a supervised learn-
ing context, i.e., handwritten word recognition. In this scenario, our approach is
evaluated by conducting some experiments on isolated month word recognition. In
this thesis, it is also used to optimize the word veri�er of the date recognition sys-
tem. Comprehensive experiments demonstrate the feasibility and e�ciency of the
proposed methodology.
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SOMMAIRE


Cette thèse présente un système hybride HMM-MLP pour la segmentation et la
reconnaissance de l'écriture manuscrite non-contrainte et plus particulièrement des
dates présentes sur les chèques brésiliens. Le système développé doit tenir compte
de nombreuses sources de variabilité, tel que les di�érents styles et types de données,
les variations présentes dans le champ correspondant aux dates ou encore les cas
de segmentation di�cile. Tous ceci rend bien évidemment la tâche particulièrement
complexe.


Le système présenté s'appuie sur une modélisation Markovienne (HMM) pour iden-
ti�er et séparer la date en sous-champs. Le concept de méta-classes de chi�res est
utilisé a�n de réduire la dimension du lexique des jours et des années et permettre
ainsi une segmentation plus précise. Ensuite, les trois sous-champs principaux (jour,
mois et année) sont reconnus en utilisant le classi�eur spécialisé relatif au type de
données identi�é. Dans ce cas, nous proposons d'utiliser un système HMM pour
reconnaître et véri�er le mot correspondant au mois et un réseau MLP pour décoder
les chi�res représentant le jour et l'année. La stratégie de reconnaissance des chaînes
de chi�res utilise aussi des méta-classes de chi�res de manière à réduire la taille du
lexique et à améliorer les taux de reconnaissance. De plus, a�n de valider notre
stratégie combinant la reconnaissance des chaînes de chi�res et la véri�cation au
niveau mot, nous avons utilisé d'autre base de données que celle des dates. D'autre
part, le système comprend un module de décision �nal intégrant la notion de rejet.


En�n, nous proposons une approche de sélection de caractéristiques adaptée aux
apprentissages non-supervisés. Pour ce faire, nous utilisons un algorithme géné-
tique multi-critères qui génère un ensemble de solutions, correspondant aux meilleurs
compromis entre les caractéristiques discriminantes et le nombre de regroupements
pertinents. La stratégie proposée a été évaluée sur des problèmes synthétiques où
les caractéristiques signi�catives et les regroupements appropriés sont connus pour
tous les sous-espaces de caractéristiques possibles. Elle a ensuite été utilisée pour
l'optimisation des HMM dans le contexte d'un apprentissage supervisé. Notre ap-
proche est alors évaluée en e�ectuant un certain nombre d'expériences sur la re-
connaissance des mots isolés correspondant au mois. L'approche a aussi été utilisée
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pour optimiser la véri�cation de mots du système de reconnaissance de date. Ainsi,
nous avons démontré expérimentalement la faisabilité et l'e�cacité de l'approche
proposée.
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RÉSUMÉ


L'écriture fut durant ce dernier siècle le mode de collecte, de stockage et de transmis-
sion de l'information le plus couramment utilisé. Aujourd'hui ce mode de commu-
nication ne se limite plus à l'échange entre les êtres humains mais il est aussi utilisé
comme interface entre l'homme et la machine. Ainsi, la lecture automatique de
l'écriture fut durant ces trente dernières années l'objet d'intenses recherches. Toute-
fois, les travaux initiateurs sou�raient des limitations des ordinateurs de l'époque,
en termes d'espace mémoire et de puissance de calcul. Mais avec l'explosion des
technologies de l'information qui a lieu depuis le début des années 80, la quantité
de recherche dans le domaine a énormément augmenté. D'autre part, l'intérêt sus-
cité par ce champ de recherche n'est pas uniquement motivé par le fabuleux dé�
technologique, mais également par les nombreuses applications commerciales et les
béné�ces que peuvent apporter un système de lecture automatique robuste.


En e�et, chaque jour plus d'un milliard de documents commerciaux et �nanciers
sont traités par ordinateur. La grande majorité d'entre eux sont traités manuelle-
ment par des opérateurs humains qui doivent lire puis retranscrire le contenu de
chaque document ce qui représente une tâche fastidieuse et très coûteuse en temps.
Il est donc naturel de chercher à automatiser ce processus en remplaçant l'opérateur
humain par un système de reconnaissance capable d'e�ectuer le même travail. Les
avancés récents dans le domaine de l'analyse et de la reconnaissance des documents,
ainsi que la baisse des coûts de la puissance de calcul permettent aujourd'hui le
développement de systèmes e�caces qui tentent de minimiser les interventions hu-
maines. Cependant, la route est encore longue avant d'arriver à l'obtention d'une
machine capable de simuler parfaitement le processus de la lecture chez l'être hu-
main, tout particulièrement dans le cas de la reconnaissance hors-ligne d'écriture
manuscrite non-contrainte.


Parmi les nombreuses études présentées dans la littérature la plupart portent sur
la reconnaissance de sous-unités isolées d'écriture, tels que les caractères, les mots
ou les chaînes de chi�res. Mais ce n'est que récemment que l'on a commencé à
s'intéresser à la reconnaissance de �phrases� composées de séquences de mots. Les
applications visées sont alors la lecture de pages de texte, des adresses postales ou
encore du montant et de la date présents sur les chèques. Dans le cas des chèques
bancaires, de nombreux systèmes ont déjà été développés pour extraire l'information
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pertinente, véri�er la signature ou le montant. Mais il n'existe que très peu d'études
concernant le traitement des dates présentes sur les chèques, une étape essentielle
pour la lecture des chèques. En e�et, dans de nombreux pays comme le Brésil ou le
Canada, il est illégal de post-dater un chèque, la véri�cation de la date indiquée sur
le chèque est alors indispensable. Ainsi, notre travail porte sur la lecture hors-ligne
d'écriture manuscrite non-contrainte dans le cadre de la reconnaissance des dates
présentes sur les chèques brésiliens.


Le développement d'un système e�cace de reconnaissance de dates est un dé� in-
téressant car ceci nécessite de gérer de nombreux niveaux de complexité. Le système
doit fonctionner indépendamment du scripteur et tenir compte de di�érents types de
données comme les chaînes de chi�res ou les mots manuscrits non-contraints (écri-
ture bâton, cursive ou mixte). Bien que la dimension du lexique des noms de mois
soit limitée, il existe certaines classes tel que �Setembro� (septembre), �Novembro�
(novembre) et �Dezembro� (décembre) qui contiennent une sous-chaîne commune
(�embro�) ce qui complique fortement la tâche de reconnaissance. D'autre part, le
système doit aussi tenir compte des variations présentes dans le champ correspon-
dant à la date : Est-ce que le jour est représenté par un ou deux chi�res et l'année
par deux ou quatre chi�res ? Y-a-t-il des séparateurs de champs ou un nom ville ?
De plus, le système doit donc diviser le champ en sous-champs et gérer des cas où la
segmentation est di�cile étant donné que parfois les espaces entre les sous-champs
et ceux localisés à l'intérieur d'un même sous-champ peuvent être similaires. Dans
de tel cas de �gure, il est très di�cile de détecter correctement les espaces entre
les sous-champs en utilisant une méthode de segmentation basée sur l'analyse des
relations géométriques entre les di�érentes composantes connexes de l'image. Ceci
peut s'expliquer par le fait que cette stratégie montre rapidement ses limites lorsque
la segmentation correcte ne correspond pas avec la règle de segmentation prédé�nie.


Le but principal de notre recherche est donc de développer un système de recon-
naissance de dates manuscrites non-contraintes. A�n d'évaluer un tel système, nous
avons collecté une base de données d'environ 2.000 images des chèques bancaires
brésiliens. Puisque séparer une date en sous-champs en utilisant une méthode à base
de règles est une tâche di�cile, nous avons préféré opter pour une stratégie basée sur
une modélisation Markovienne (HMM) pour segmenter et identi�er simultanément
les dates en sous-champs. Ensuite, les trois sous-champs principaux (jour, mois et
année) sont reconnus en utilisant le classi�eur spécialisé pour ce type de données.
Dans ce cas, nous proposons d'utiliser un système HMM pour reconnaître et véri�er
le mot correspondant au mois et un système basé sur des réseaux de neurones de
type MLP pour décoder les chi�res représentant le jour et l'année. En e�et, il a été
démontré que les réseaux de type MLP sont des classi�eurs plus discriminants que
les HMM pour e�ectuer la reconnaissance des chaînes numériques. Par contre, les
approches basées sur la modélisation Markovienne sont plus e�caces pour e�ectuer
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la segmentation des champs d'intérêts et la reconnaissance des mots manuscrits.
D'autre part, le système comprend un module de décision �nal intégrant la notion
de rejet.


Le second aspect de nos travaux porte sur l'optimisation du système de reconnais-
sance. Mais étant donné la complexité de ce type de système, nous avons préféré
concentrer nos e�orts sur l'optimisation du véri�cateur de mots. Ainsi, nous pro-
posons une approche de sélection de caractéristiques adaptée aux apprentissages
non-supervisés. Pour ce faire, nous utilisons un algorithme génétique multi-critères
qui génère un ensemble de solutions correspondant aux meilleurs compromis en-
tre les caractéristiques discriminantes et le nombre de regroupements pertinents. La
stratégie proposée a été évaluée sur des problèmes synthétiques où les caractéristiques
signi�catives et les regroupements appropriés sont connus pour tous les sous-espaces
de caractéristiques possibles. Elle a ensuite été utilisée pour l'optimisation de classi-
�eurs dans le contexte d'un apprentissage supervisé. Notre approche est alors évaluée
en e�ectuant un certain nombre d'expériences sur la reconnaissance des mots isolés
correspondant au mois. Nous savons que le développement d'un système hybride
utilisant respectivement HMM et MLP pour la reconnaissance de mots et de chaînes
de chi�res n'est pas un concept nouveau. Toutefois, la contribution principale de ce
travail de doctorat porte sur quatre aspects. Le premier repose sur l'utilisation d'une
approche Markovienne pour segmenter les dates en sous-champs. Pour ce faire, nous
utilisons le concept de méta-classes de chi�res de manière à réduire la dimension du
lexique lors de la reconnaissance du jour et de l'année et améliorer les résultats de la
segmentation. Un second point important de nos travaux de recherche concerne la
méthode adoptée pour réduire la dimension du lexique utilisé pour la reconnaissance
des chaînes de caractères et ainsi augmenter signi�cativement les taux de reconnais-
sance. La stratégie utilise les méta-classes et la longueur des chaînes de chi�res, c'est
à dire que le nombre de chi�res correspondant au jour et à l'année est obtenu en
sortie des HMM. Le troisième aspect porte sur le système de véri�cation de mots.
Les expériences apportent des résultats encourageant lors de la reconnaissance de
dates, de mots et de chaînes de caractères et mettent en avant le rôle important du
véri�cateur de mots dans le système. En plus de la base de données de dates nous
avons utilisé la base NIST SD19 et une base de montants de chèques brésiliens pour
valider les stratégies respectivement employées pour la reconnaissance des chaînes
de chi�res et la véri�cation des mots. Pour �nir, la dernière contribution impor-
tante concerne l'approche de sélection de caractéristique non-supervisée qui a été
développée pour la reconnaissance de mots manuscrits. Ainsi, nous avons démontré
expérimentalement la faisabilité et l'e�cacité de l'approche proposée.
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INTRODUCTION


Writing, which has been the most natural mode of collecting, storing, and trans-
mitting information through the centuries, now serves not only for communication
among humans but also serves for communication of humans and machines. Machine
simulation of human reading has been the subject of intensive research for the last
three decades. However, the early investigations were limited by the memory and
power of the computer available at that time. With the explosion of information
technology, there has been a dramatic increase of research in this �eld since the
beginning of 1980s. The interest devoted to this �eld is not explained only by the
exciting challenges involved, but also the huge bene�ts that a system, designed in
the context of a commercial application, could bring.


According to the way handwriting data is generated, two di�erent approaches can be
distinguished: on-line and o�-line. In the former, the data are captured during the
writing process by a special pen on an electronic surface. In the latter, the data are
acquired by a scanner after the writing process is over. In this case, the recognition
of o�-line handwriting is more complex than the on-line case due to the presence
of noise in the image acquisition process and the loss of temporal information such
as the writing sequence and the velocity. This information is very helpful in a
recognition process. O�-line and on-line recognition systems are also discriminated
by the applications they are devoted to. The o�-line recognition is dedicated to bank
check processing, mail sorting, reading of commercial forms, etc, while the on-line
recognition is mainly dedicated to pen computing industry and security domains such
as signature veri�cation and author authentication. In this thesis, we are concerned
with the o�-line recognition.


Each day, billions of business and �nancial documents have to be processed by com-
puter. The great bulk of them are still processed manually by human operators, the
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most common and labor-consuming operation being document amount reading and
typing. A common way to automate this process is to replace the human operator
with an o�-line recognition system that is able to do the operator's job. Recent
advances in the �eld of document analysis and recognition and the availability of
relatively inexpensive computer power can now allow the development of e�ective
systems, which have attempted to minimize the manual e�ort involved. Neverthe-
less, there is still a long way to go in order to reach the ultimate goal of machine
simulation of �uent human reading, especially for unconstrained o�-line handwriting.


Problem Statement


Many studies on the recognition of isolated units of writing such as characters, words
or strings of digits can be found in the literature. Only recently the recognition
of a sentence composed of a sequence of words or di�erent data types has been
investigated. Some typical applications on sentence recognition are reading texts
from pages [72], street names from postal addresses [123], processing of legal amounts
[48] and dates [109] on cheques.


With respect to bank processing, many systems have been developed for information
extraction, courtesy amount and legal amount recognition, and signature veri�cation.
Comparatively, there is very limited published work on the processing of date infor-
mation on cheques even though this is a necessity in some application environments,
e.g., in Brazil and Canada, it is illegal to process post-dated cheques. The focus of
this work is the o�-line recognition of unconstrained handwritten dates written on
Brazilian bank cheques.


In this application, the date from left to right can consist of the following sub-
�elds: city name, �rst separator (Sep1), day, second separator (Sep2), month, third
separator (Sep3) and year. Figure 1 details the lexicon of each date sub-�eld present
in the laboratory database and Figure 2 shows some samples of handwritten dates.
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In both images, the grey color represents the obligatory date sub-�elds (day, month
and year).


Curitiba


Ctba


City


Comma


Period
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(0)1


(0)2


(0)3


.


.


.


29
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Day
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Abril
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Junho
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Setembro


Outubro


Novembro


Dezembro


Month


Comma


Period


De


Sep3


(19)97


(19)98


(19)99


.


.


.


(20)18


(20)19


(20)20


Year


Figure 1 Lexicon of each date sub-�eld (the common sub-strings are highlighted
by underlines)


The development of an e�ective o�-line date processing system is very challenging
because it has to tackle many levels of complexity. Firstly, the o�-line approach
is more complex than the on-line approach. Besides, the system is not writer-
dependent (multiple writer or omni-writer) and it must consider di�erent data types
such as strings of digits and unconstrained handwritten words (handprinted, cursive,
or mixed). As shown in Figure 1, although the lexicon size of month words is limited,
there are some classes such as �Setembro� (September), �Novembro� (November) and
�Dezembro� (December) that contain a common sub-string (�embro�) and can a�ect
the performance of the recognizer. The system must also take into account the varia-
tions present in the date �eld such as 1- or 2-digit day, 2- or 4-digit year, the presence
or absence of the city name and separators.


In addition, the system must segment a sentence into its constituent parts and deal
with di�cult cases of segmentation since there are handwritten dates where the
spaces between sub-�elds (inter-sub-�eld) and within a sub-�eld (intra-sub-�eld) are
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Sep1
City MonthSep2 Sep3Day Year


(a)


(b)


(c)


(d)


(e)


(f)


(g)


(h)


Figure 2 Samples of handwritten dates on Brazilian bank cheques


similar as shown in Figures 2(b) and 2(c). For example, in Figure 2(b) the intra-
sub-�eld space between �1� and �0� is almost the same as the inter-sub-�eld spaces
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between �Curitiba� and �3� or �Fevereiro� and �10�. In such a case, it will be very
di�cult to detect the correct inter-sub-�eld spaces using a segmentation method
based on an analysis of the geometric relationship of adjacent components in an
image, which is perhaps the most frequently used method. This can be explained
by the fact that this strategy shows its limits rapidly when the correct segmentation
does not �t with the pre-de�ned rules of the segmenter.


Goals of the Research


The primary goal of our research is to develop a recognition system for unconstrained
handwritten dates. Due to the complexity of processing the whole date at the same
time, the baseline system discussed in this thesis �rst segments the date sub-�elds and
then recognizes the three obligatory ones (day, month, and year) using specialized
classi�ers. The segmentation of a date image into sub-�elds is performed through the
Hidden Markov Models (HMMs). We use the Multi-Layer Perceptron (MLP) neural
networks to deal with strings of digits (day and year) and the HMMs to recognize
and verify words (month).


The second aspect of our research lies in the optimization of the baseline system.
But due to the magnitude of this kind of system, our focus will be the optimization
of the word veri�er. In order to perform this task, we propose a methodology for
feature selection in unsupervised learning.


Contributions


The starting point of our research was the recognition of isolated month words. For
this reason, our �rst contributions were made on word recognition and afterwards
on date recognition. They are summarized as follows.
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We built a database of about 2,000 images of Brazilian bank cheques, which we
have used to evaluate the proposed system. The speci�cations of this database are
reported in [25] and Appendix 1.


A combination strategy involving both holistic and analytical HMM approaches was
presented in [83] to recognize isolated month words. We achieved satisfactory results
given the small size of our date database and the limitations of our feature set
based on the detection of loops, ascenders, and descenders, namely global features.
Other results using di�erent word recognition models were reported in [82]. In [88],
we improved the foregoing results by combining the global and concavity features
through HMMs considering only the analytical approach. Besides, we used the legal
amount database in order to increase the frequency of characters in training.


An HMM-MLP hybrid system was presented in [84] to process complex date im-
ages written on Brazilian bank cheques. Firstly, the system splits the date sub-�elds
considering multiple-hypotheses of segmentation. After that, a recognition and veri-
�cation strategy is used to recognize the three obligatory date sub-�elds (day, month,
and year) considering di�erent classi�ers. Since separating a date into sub-�elds us-
ing a rule-based segmentation method is a di�cult task, the HMMs were employed
to identify and segment such sub-�elds through the recognition process. MLPs and
HMMs were adopted to deal with strings of digits (day and year) and words (month)
respectively. This is justi�ed by the fact that MLPs have been widely used for
digit recognition and the literature shows better results using this kind of classi�er
[36, 91] than HMMs [46]. On the other hand, HMMs have been successfully applied
to handwritten word recognition more recently [79, 121]. In [85] we improved the
results presented in [84] by using a simpler approach that does not consider multiple
hypotheses of segmentation and the digit string veri�cation as well. Furthermore, in
[86] we validated the strategy we developed for word recognition and veri�cation by
conducting some experiments using the legal amount database and comparing the
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results achieved with an other study which makes use of the same database. This
was done since it is very di�cult to compare our work with others due to its special
application, i.e., date recognition on Brazilian bank cheques. Besides, comparison in
the same context with other approaches is very delicate when di�erent databases and
formats are used, di�erent word classes are involved, and di�erent sizes of databases
are considered.


A methodology for feature selection in unsupervised learning for handwritten word
recognition was proposed in [87]. It makes use of an e�cient multi-objective genetic
algorithm to generate a set of solutions, which contain the more discriminant features
and the more pertinent number of clusters. The proposed strategy is assessed using
two synthetic data sets where the signi�cant features and the appropriate clusters in
any given feature subspace are known. Afterwards, it is applied to optimize classi�ers
in a supervised learning context, i.e., handwritten word recognition. In this scenario,
our approach is evaluated by conducting some experiments on isolated month word
recognition. In this thesis, it is also used to optimize the word veri�er of the date
recognition system.


We have knowledge that the development of a hybrid system using HMMs and MLPs
is not a new concept for word and digit string recognition respectively. However, the
main contributions of our research focus on four aspects. The �rst one lies in the
HMM-based approach for separating date sub-�elds. It makes use of the concept
of meta-classes of digits in order to reduce the lexicon size of the day and year and
produce a more precise segmentation. The second important feature of our research
is the scheme adopted to reduce the lexicon size on digit string recognition to im-
prove the recognition results. Such a strategy uses the meta-classes of digits and
the output of the HMMs in the form of digit string length, i.e., the information
on the number of digits present in a string (day or year). The third aspect is the
word veri�cation scheme. Experiments show encouraging results on date recognition
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and the important role of the word veri�er in the system. In addition to the date
database, we have used the NIST (National Institute for Standards and Technology)
SD19 and legal amount databases to validate the strategies employed in digit string
recognition and word veri�cation respectively. Finally, the last main contribution
is the unsupervised feature selection methodology we have developed for handwrit-
ten word recognition. Comprehensive experiments demonstrate the feasibility and
e�ciency of the proposed methodology.


Outline of the Thesis


This document consists of nine chapters (including the introduction and the conclu-
sion) and �ve appendixes. The current chapter outlines the problem we are facing
with, the goals, and the main contributions of this thesis. A review of the state of
the art for o�-line handwriting recognition is given in Chapter 1.


In Chapter 2 we provide a brief overview of the date recognition system and we
introduce all de�nitions related to the system. Firstly, the concept of meta-classes
of digits is de�ned. Then, the Markovian and Neural classi�ers used in the system
are described. Finally, the de�nitions about levels of veri�cation are presented.


Chapter 3 is devoted to the �rst module of the system, namely preprocessing. This
module consists of several preprocessing steps which aim at producing images that
are easy for the system to operate more accurately.


Chapter 4 addresses the HMM-based strategy we have developed for separating a
date image into sub-�elds. All steps necessary to perform segmentation are detailed
in this chapter. The segmentation steps include the description of the feature sets
that feed our Markovian classi�ers, the training mechanism, and the way segmenta-
tion is done.
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The module that recognizes the strings of digits is reported in Chapter 5. In this
chapter, we also describe the word recognizer and veri�er and how they interact
with each other. Additionally, we present the �nal decision module which makes an
accept/rejection decision.


In order to support the ideas proposed in this thesis, Chapter 6 presents compre-
hensive experiments, which are conducted on three di�erent databases: dates, legal
amounts, and NIST SD19. The speci�cations of such databases are reported in
Appendix 1.


In Chapter 7 we discuss the technique we have investigated in order to optimize
the word veri�er of the data recognition system: feature selection in unsupervised
learning. Finally, the �nal chapter concludes this thesis and gives some directions
for future work.


As mentioned before, this thesis contains �ve appendixes. The �rst one, Appendix
1, describes the databases used by the system, which are the date, legal mount, and
NIST SD19 databases. The second one, Appendix 2, reports the theory of HMMs. In
Appendixes 3 and 4, we describe the weighted least square approach and the process
of vector quantization respectively used in the system. The last one, Appendix 5,
details the distance features, which are employed in the optimization of the word
veri�er. Nevertheless, the theory of neural networks and genetic algorithms is not
discussed in detail in this thesis because we have assumed that the reader is familiar
with such subjects. For those who do not feel comfortable in these �elds we would
suggest the reading of the following references: [5] for neural networks and [31] for
genetic algorithms.







CHAPTER 1


STATE OF THE ART


Automatic processing of unconstrained handwritten dates on bank cheques repre-
sents a typical application in the �eld of o�-line handwriting recognition. In this
chapter, we address the main topics related to our research. First of all, we review
some recognition techniques for handwriting recognition. After that, we discuss the
problem of handwritten digit string recognition, handwritten word recognition, and
handwritten sentence recognition since processing of dates on cheques is related to
such �elds. Furthermore, we show the performance of some date recognition systems
on cheques.


1.1 Handwriting Recognition Techniques


Numerous techniques for handwriting recognition have been investigated based on
four general approaches of pattern recognition, as suggested by [42]: template match-
ing, statistical techniques, structural techniques, and neural networks. Such ap-
proaches are neither necessary independent nor disjointed from each other. Occa-
sionally, a technique in one approach can also be considered to be a member of other
approaches.


Template matching operations determine the degree of similarity between two vectors
(groups of pixels, shapes, curvatures, etc) in the feature space. Matching techniques
can be grouped into three classes: direct matching [27], deformable templates and
elastic matching [17], and relaxation matching [116].


Statistical techniques is concerned with statistical decision functions and a set of
optimally criteria, which determine the probability of the observed pattern belonging
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to a certain class. Several popular handwriting recognition approaches belong to this
domain:


• The k-Nearest-Neighbor (k-NN) rule is a popular non-parametric recognition
method, where the a posteriori probability is estimated from the frequency
of nearest neighbors of the unknown pattern. Good recognition results for
handwriting recognition have been reported by using this approach [34]. The
problem with this method is the high computational cost when the classi�cation
is conducted. To surpass such a problem some researchers have been proposed
faster k-NNs methods. A comparison of fast nearest neighbor classi�ers for
handwriting recognition is given in [76].


• The Bayesian classi�er assigns a pattern to a class with the maximum a pos-
teriori probability. Class prototypes are used in the training stage to estimate
the class-conditional probability density function for a feature vector [18].


• The polynomial discriminant classi�er assigns a pattern to a class with the
maximum discriminant value which is computed by a polynomial in the com-
ponents of a feature vector. The class models are implicitly represented by the
coe�cients in the polynomial [99].


• Hidden Markov Model (HMM) is a doubly stochastic process, with an underly-
ing stochastic process that is not observable (hence the word hidden), but can
be observed through another stochastic process that produces the sequence of
observations [96]. An HMM is called discrete if the observations are naturally
discrete or quantized vectors from a codebook or continuous if these observa-
tions are continuous. HMMs have been proven to be one of the most powerful
tools for modeling speech and later on a wide variety of other real-world sig-
nals. These probabilistic models o�er many desirable properties for modeling
characters or words. One of the most important properties is the existence
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of e�cient algorithms to automatically train the models without any need of
labeling presegmented data. The algorithms for training and recognition the
HMMs we have used in this thesis are discussed in Appendix 2. HMMs have
been extensively applied to handwritten word recognition [33, 59, 101, 121] and
their applications to handwritten digit recognition [47, 8] have been growing.
The literature presents two basic approaches for handwriting recognition using
HMM: Model-Discriminant HMM and Path-Discriminant HMM. In the former,
a model is constructed for each class (word, character, or segmentation unit)
in the training phase. In the latter, a single HMM is constructed for the whole
language or context. The performances of these two approaches are compared
in various experiments by utilizing di�erent lexicon sizes [59].


• Fuzzy set reasoning is a technique that employs fuzzy set elements to describe
the similarities between the features of the characters. Fuzzy set elements give
more realistic result when there is not a priori knowledge about the data,
and therefore, the probabilities cannot be calculated. The literature reports
di�erent approaches based on this technique such as fuzzy graphs [1], fuzzy
rules [28], and linguistic fuzzy [60].


• Support Vector Machine (SVM) is based on the statistical learning theory [112]
and quadratic programming optimization. An SVM is basically a binary clas-
si�er and multiple SVMs can be combined to form a system for multi-class
classi�cation. In the past few years, SVM has received increasing attention in
the community of machine learning due to its excellent generalization perfor-
mance. More recently, some SVM classi�cation systems have been developed
for handwriting digit recognition, and some promising results have been re-
ported [3, 7].
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In structural techniques the characters are represented as unions of structural prim-
itives. It is assumed that the character primitives extracted from handwriting are
quanti�able, and one can �nd the relations among them. Basically, structural meth-
ods can be categorized into two classes: grammatical methods [103] and graphical
methods [51].


A Neural Network (NN) is de�ned as a computing structure consisting of a massively
parallel interconnection of adaptative �neural� processors. The main advantages of
neural networks are: the ability to be trained automatically from examples, good
performance with noisy data, possible parallel implementation, and e�cient tools
for learning large databases. NNs have been widely used in this �eld and promising
results have been achieved, especially in handwriting digit recognition. The most
widely studied and used neural network is the Multi-Layer Perceptron (MLP) [5].
Such an architecture trained with back-propagation [63] is among the most popular
and versatile forms of neural network classi�ers and is also among the most frequently
used traditional classi�ers for handwriting recognition. See [125] for a review. Other
architectures include Convolutional Network (CN) [62], Self-Organized Maps (SOM)
[124], Radial Basis Function (RBF) [5], Space Displacement Neural Network (SDNN)
[75], Time Delay Neural Network (TDNN) [67], Quantum Neural Network (QNN)
[127], and Hop�eld Neural Network (HNN) [68].


The above review indicates that there are many recognition techniques available
for handwriting recognition systems. All of them have their own superiorities and
weaknesses. In recent years, many researchers have combined such techniques in
order to improve the recognition results. The idea is not rely on a single decision
making scheme. Various classi�er combination schemes have been devised and it
has been experimentally demonstrated that some of them consistently outperform a
single best classi�er [54, 117].
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Another strategy that can increase the recognition rate in a relatively easy way with
a small additional cost is through the use of veri�cation. Such a scheme consists of
re�ning the top few candidates in order to enhance the recognition rate economically.
Such a kind of scheme has been successfully applied to handwriting recognition in
[46, 56, 91].


1.2 Handwritten Digit String Recognition


Intensive research on the recognition of isolated digits in the past decade has led to
recognition rates close to 99% (zero-rejection level) [36, 91]. Many experiments have
been conducted on the CENPARMI (Centre for Pattern Recognition and Machine In-
telligence), CEDAR (Center of Excellence for Document Analysis and Recognition),
and NIST (National Institute for Standards and Technology) databases, which are
well-known databases used by researchers in this domain. The recent e�orts have
focussed on digit string recognition due to its large number of potential applications.
The recognition of numerical strings di�ers from that of isolated digits by including
the classi�cation of digit groups and segmentation of touching digits. It is also di�er-
ent from the problem of recognizing handwritten words in the sense that almost no
contextual information is available, i.e., any digit can follow any other one. Segmen-
tation of numerical strings is generally a di�cult task because individual numerals in
a string can overlap or touch each other, or a digit can be broken into several parts.


Strategies for handwritten numerical string recognition can be divided into segmenta-
tion-then-recognition [102, 103] and segmentation-based recognition [37, 74]. In the
former, the segmentation module provides a single sequence hypothesis where each
sub-sequence should contain an isolated character, which is submitted to the recog-
nizer. This technique shows its limits rapidly when the correct segmentation does
not �t with the pre-de�ned rules of the segmenter.
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The segmentation-based recognition strategy is based on a probabilistic assumption
where the �nal decision must express the best segmentation-recognition score of the
input image. Usually, the system yields a list of hypotheses from the segmentation
module and each hypothesis is then evaluated by the recognition. Finally, the list
is post-processed taking into account the contextual information. Although this
approach gives a better reliability than the previous one, the main drawback lies in
the computational e�ort needed to compare all the hypotheses generated. Moreover,
the recognition module has to discriminate various con�gurations such as fragments,
isolated characters, and connected characters. In this strategy, segmentation can
be explicit when based on cut rules [10, 67, 91] or implicit when each pixel column
[47] or slide window [49, 64, 73] is a potential cut location. A good review about
segmentation can be found in [9].


In the remaining of this section we discuss some important works on handwritten
digit string recognition. The results claimed by authors are reported in Table I on
the NIST database (this database is described in Appendix 1). In this Table, the
results were presented for 2-digit and 4-digit strings without the knowledge of its
length.


Ha et al in [37] build a system upon four main components. A pre-segmentation
module divides the input numeral string into independent groups of digits, which
are processed by a cascade of two recognition methods. The digit detection module
identi�es and recognizes groups containing isolated digits and a classi�er recognizes
the remaining groups containing an arbitrary number of digits. The global decision
module merges all results and makes an accept/reject decision. They have used
about 5,000 strings of the NIST SD3 in their experiments.


Oliveira et al in [91] propose a segmentation-based recognition where the segmen-
tation is explicitly performed. They present a recognition and veri�cation strategy
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based on MLP classi�ers. The veri�cation scheme contains two veri�ers in order
to deal with the problems of over-segmentation and under-segmentation. They use
12,802 strings of the NIST SD19 (hsf_7 series).


In opposite, Lee and Kim in [64] make use of an implicit segmentation. They in-
troduce a new type of cascade neural network to train the spatial dependencies in
connected handwritten numerals. This cascade neural network was originally ex-
tended from MLP to improve the discrimination and generalization power. They use
5,000 strings of digits but they did not specify the used data.


In the same vein, Britto Jr. et al in [47] propose a handwritten numeral string
recognition method composed of two HMM-based stages. The �rst stage uses an
implicit segmentation strategy based on string contextual information to provide
multiple segmentation-recognition hypotheses. These hypotheses are veri�ed and
re-ranked by using a veri�cation stage based on a isolated digit classi�er. Such a
strategy allows the use of two sets of features and numeral models: one taking into
account of both segmentation and recognition aspects in a implicit segmentation-
based strategy and another considering just the recognition aspects of isolated digits.
They use 12,802 strings of the NIST SD19 (hsf_7 series).


As stated before, Table I summarizes the recognition rates (RRs) with zero-rejection
level. Although the publications shown in this table use the same database, compar-
ison is possible only between Oliveira et al [91] and Britto Jr et al [47] due to they
consider the same subset and samples of the NIST database. In such a case, Oliveira
et al achieved better results based on their proposed explicit segmentation-based
recognition strategy using neural classi�ers.


In real applications, the reliability needs to be very high, especially for cheque or
other �nancial document processing systems. It has been estimated that a system
becomes commercially e�cient only when the error rate is 1% or lower. However,
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Table I


Recognition rates on NIST database reported in the literature


Authors Classi�er String RR Tested Database Year
Length (%) Strings


Ha et al [37] MLP 2 96.2 981 NIST SD3 1998
4 93.2 988


Lee and Kim [64] MLP 2 95.2 1,000 NIST 1999
4 80.6 1,000


Oliveira et al [91] MLP 2 96.8 2,370 NIST SD19 2002
4 93.3 2,345 (hsf_7 series)


Britto Jr. et al [47] HMM 2 94.8 2,370 NIST SD19 2002
4 91.2 2,345 (hsf_7 series)


processing numerical amounts in bank cheques is a di�cult task due to the nature
of the handwritten material. For instance, bank cheque systems have to take into
account the great variability in the representation of a numerical amount, e.g., the
number of components to be identi�ed, which is not necessary, for example, for a zip-
code system since the number of digits is �xed and known a priori. The performance
of some bank check processing systems found in the literature are reported in Table
II.


Table II


Performance on courtesy amount recognition


System Classi�er RR Error Test Database Year
(%) (%) Set


Lethelier et al [67] RBF-TDNN 60.0 40.0 10,000 French cheques 1995
Lee et al [68] HNN 72.7 27.3 121 Brazilian cheques 1997
Parascript [20] Matching 53.0 1.0 5,000 American cheques 1997
Kaufmann et al [48] MLP 79.3 20.7 1,500 Swiss cheques 2000
Oliveira et al [91] MLP 57.1 0.5 500 Brazilian cheques 2002
Zhang et al [126] MLP 69.8 1.0 400 Canadian cheques 2002
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It is impossible to compare the results presented in Table II, since di�erent databases
and formats are used, di�erent non-numerical classes are involved, and di�erent sizes
of databases are considered. However, we can observe that the recognition rates of
those systems that implemented a rejection mechanism (error rate �xed at 1% or
lower) vary from 50 to 70%.


1.3 Handwritten Word Recognition


The majority of research in handwritten word recognition has integrated the lexicon
as constraint to build lexicon-driven strategies in opposite to handwritten digit string
recognition. The lexicon is a list of possible words that could possibly occur in an
image. This lexicon is usually determined by the application at hand. This aims at
decreasing the complexity of the problem since the ambiguity makes many characters
unidenti�able without referring to context. Indeed, the same representation may lead
to several interpretations, in the absence of the context which can be a lexicon or
grammatical constraints. In Figure 3, for instance, the group of letters in the word
�junho� shown inside the circle could be interpreted as `june`�, �fune�, ��ne�, etc.


Figure 3 Ambiguity in handwritten words


Handwritten word techniques use either analytic or holistic approaches for training
and recognition. In an analytic approach, the segmentation of words into segments
that relate to characters is required. Nevertheless, this is not a trivial task due
to problems such as touching, overlapping, or broken characters as stated before.
Moreover, this operation is made more di�cult because of the ambiguity encoun-
tered in handwritten words. Therefore, most successful analytical methods employ
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segmentation-based recognition strategies where the segmentation can be explicit
[2, 59, 121] or implicit [11, 30, 79].


In an holistic approach, word recognition is performed considering the whole word.
In such a case, there is no attempt to split the word image into segments. Still, it is
possible that the image would be segmented in order to produce a sequence of obser-
vations. Unlike analytical methods, holistic methods are constrained to applications
with a small lexicon size as in bank cheque processing systems [17, 23, 38].


Most works in handwritten word recognition assume that the word has been already
segmented by an algorithm appropriate to the application domain prior to being
processed by word recognizer. Some of them are described as follows. The location
and segmentation of handwritten words from their surroundings is a complex task
for most real applications and it is discussed in Section 1.4.


Mohamed and Gader in [79] combine implicit segmentation-based continuous HMM
and explicit segmentation-based dynamic programming (DP) techniques for uncon-
strained handwritten word recognition. The combination module uses di�erences in
classi�er capabilities to achieve signi�cantly better performance. They report results
on the BD test set of the CEDAR database that contains 317 city name images.


El Yacoubi et al in [121] design a system to recognize unconstrained handwritten
words for large vocabularies. After preprocessing, a word image is divided explicitly
into a sequence of segments and then two feature sets are extracted from the sequence
of segments. The word models are made up of the concatenation of appropriate letter
models and an HMM-based interpolation technique is used to optimally combine the
two feature sets. They consider two rejection mechanisms depending on whether
or not the word image is guaranteed to belong to the lexicon. The experiments
are carried out on 4,313 French city name images manually localized on real mail
envelopes.







20


Kim et al in [52] take an HMM-MLP hybrid system for recognizing cursive script
words. They have designed explicit segmentation-based HMM and an holistic ap-
proach for the MLP. The main contributions of this work lie in the HMM-based
approach and a new multiplication method of combining two distinct classi�ers. Ex-
periments are carried out on the handwritten cursive legal words of the CENPARMI
database (English set). They use 2,482 word images for testing.


Arika et al in [2] propose an analytic scheme, which makes use of a sequence of
segmentation and recognition algorithms, for cursive handwriting recognition. First,
some global parameters, such as slant angle, baselines, and stroke width and height
are estimated. Second, a segmentation method �nds character segmentation paths
by combining gray scale and binary information. Third, HMM is employed for shape
recognition to label and rank the character candidates. The estimation of feature
space information and HMM ranks are combined in a graph optimization problem for
word-level recognition. The performance of the system is tested using 2,000 words of
the database of Lancester-Oslo/Bergen corpus, which contains single author cursive
handwriting.


The performance of some recent applications found in the literature, including those
discussed above, are reported in Table III. The recognition rates are shown for di�er-
ent lexicon sizes at zero-rejection level. In such a case, it is very di�cult to compare
the results because of the experiments were conducted on di�erent databases, di�er-
ent classes of words, and di�erent number of testing samples. Generally, the larger
the lexicon is, the results get less satisfactory. Besides the lexicon size, the results also
depend on the ambiguity among the classes of words being considered and whether
a system is writer-dependent or not (omni-writer). However, the results are helpful
in order to illustrate the current state of art on word recognition.
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Table III


Recent results on word recognition


Authors Classi�er Lexicon RR Test Database Comments
Size (%) Set


Oliveira Jr. et al [14] MLP 12 87.2 1,200 Month words UNC,
(POR) OMNI


Xu et al [118] HMM-MLP 29 85.3 2,063 Month words UNC,
(FR/ENG) OMNI


Knerr et al [55] HMM-NN 30 92.9 40,000 LA words CUR,
(FR) OMNI


Guillevic et al [35] HMM-k-NN 30 86.7 4,500 LA words UNC,
(FR) OMNI


Kim et al [52] HMM-MLP 32 92.2 2,482 LA words CUR,
(ENG) OMNI


Freitas et al [24] HMM 39 70.6 2,387 LA words UNC,
(POR) OMNI


Mohamed et al [79] HMM-DP 100 89.3 317 City names UNC,
(ENG) OMNI


Kundu et al [59] HMM 100 88.2 3,000 Postal words UNC,
(ENG) OMNI


El Yacoubi et al [121] HMM 100 96.3 4,313 City names UNC,
(FR) OMNI


Bunke et al [6] HMM 150 98.4 3,000 Words CUR,
(ENG) WD


El Yacoubi et al [121] HMM 1,000 88.9 4,313 City names UNC,
(FR) OMNI


Arika et al [2] HMM 1,000 90.8 2,000 Words CUR,
(ENG) WD


LA:Legal Amount, FR:French, POR:Portuguese, ENG:English
UNC:Unconstrained,CUR:Cursive, OMNI:Omni-writer, WD:Writer-Dependent
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1.4 Handwritten Sentence Recognition


Recognition of numeral strings and words has been extensively studied in the liter-
ature. Only recently the recognition of a sentence composed of a sequence of words
or di�erent data types has been investigated. Some typical applications on sentence
recognition are reading texts from pages [22, 71, 72], street names from postal ad-
dresses [50, 94, 95, 105, 123], processing of legal amounts [32, 48] and dates [109, 119]
on cheques. In such applications, sentences are segmented into its constituent parts
and make use of word and numeral string recognition techniques. In the literature
two main di�erent strategies of segmentation can be observed: segmentation-based
and segmentation-free methods.


In the segmentation-based strategy, the most frequently used method splits explicitly
a sentence into its parts usually based on spatial distance clues, i.e., the distances
(gaps) between adjacent components [22, 70, 71, 100]. Notwithstanding, the segmen-
tation based on gap metrics shows its limits rapidly when handwritten sentences do
not have a uniform spacing. Besides, the gaps between components can not be easily
estimated by a 1-dimensional metric. In order to overcome the foregoing problem,
Kim et al in [50] propose an intelligent word segmentation method applied to street
name images. This method incorporates the author's writing style in terms of spac-
ing using an NN. In the same vein, Xu et al in [119] make use of di�erent kinds of
knowledge at di�erent segmentation stages. The knowledge includes information on
the writing style by using an NN to di�erentiate between numeric and alphabetic
data, and syntactic and semantic constraints.


In this strategy, multiple hypotheses of segmentation are often considered in order to
improve the performance of segmentation. The idea is to generate a list of segmenta-
tion hypotheses where each word candidate of each sentence hypothesis is submitted
to recognition. The result of segmentation and linguistic analysis can be used to rank
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each sentence hypothesis. In [50], an NN has been designed to split a sentence into
segments and then an exhaustive combination of word segments is submitted to a
word recognizer with given a lexicon. Statistical characteristics of character segmen-
tation are used to limit the number of combinations. Further improvements of this
methods was given in [95]. Favata et al in [22] take a two step approach to sentence
recognition. After a sentence has been divided into segments, they group segments
as a function of their spatial inter-relationship and then as a function of their re-
sponse to recognizer. The output of the recognizer is a directed graph which contains
multiple interpretations of the sentence. The second step searches this graph with
a linguistic processor which ranks each path according to statistics of the language
and certain measured statistical characteristics of the recognizer.


On the other hand, the segmentation-free strategy treats complete handwritten sen-
tences as single units. Scagliola in [98] proposes a system for recognizing legal
amounts on Italian cheques without word segmentation. The author demonstrates
that when the a priori knowledge is described by a regular grammar, the phrase
recognition can be performed by a simple extension of the dynamic programming
algorithms used for single word recognition.


Marti et al in [72] present a system for reading unconstrained handwritten text. The
kernel of the system is an HMM for handwriting recognition. This HMM is enhanced
by a statistical language model incorporating linguistic information beyond the word
level. The HMM has a hierarchical structure with character models at the lowest
level. These models are concatenated to words and to whole sentences. Under such
an architecture, the segmentation of a text line into individual words is not required,
instead, it is obtained during the recognition process.


In the same manner, El Yacoubi et al in [123] build an embedded HMM network
connecting street name HMMs with extraneous HMMs in order to conjointly locate







24


and recognize street name without the need of an a priori segmentation of the street
line.


In Table IV, we show the performance of some applications on sentence recognition
found in the literature. In such cases, part of the recognitions errors can come from
the segmentation stage.


Table IV


Performance on sentence recognition


Authors Application Sentence Level Word Level
(zero-rejection level)


RR Error Test RR Lexicon Test
(%) (%) Set (%) Size Set


Marti et al [71] Text lines - - - 73.4 412 3,899
(ENG)


Marti et al [72] Text lines - - - 61.8 2,703 11,000
(ENG)


Kaufmann et al [48] Legal amount 71.9 8.1 1,500 - - -
(GER)


El Yacoubi et al [123] Street names 45.6 1.5 2,856 - - -
(FR)


FR:French, ENG:English, GER:German


1.4.1 Date Recognition on Cheques


With respect to cheque processing, a strong demand exists elsewhere. Millions of
bank cheques issued from thousands of banks and �nancial institutions are daily
used over the world for monetary transactions. Thus, a machine capable of reading
bank cheques will have wide applications in banks and those companies where huge
quantities of cheques have to be processed since most of the cheques are still processed
manually by human operators. Usually, bank cheque processing is performed in big
centers or at branch agencies which are equipped with fast scanners/sorters, archiving
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systems, and videocoding terminals for operators who make data entry. Operators
look at cheque images one by one and enter the cheque amounts.


Nowadays, there exist various works related to the processing of courtesy [20, 48, 67,
91, 108] and legal [32, 48] amount recognition on cheques. Nevertheless, very few
studies have been made on the processing of date information on cheques [21, 117]
even though the ability to automatically process handwritten dates is important in
application environment where cheques cannot be cashed prior to the dates shown.


Table V shows the performance of two date recognition systems written on Canadian
bank checks. In both cases, each date image can appear in any one of two patterns:
MM S DD S 19 Y Y and DD S MM S 19 Y Y where MM , S, DD, and Y Y


refer to month, separator, day and year sub-�elds respectively. The month sub-�eld
can be written in di�erent data types (digits or words in English or French), while
the day and year sub-�elds only in digits. In these systems, the date image is �rst
segmented into day, month, and year sub-�elds and then specialized classi�ers are
used to recognize such sub-�elds and their di�erent data types. In such a case, the
work presented by Xu in [117] is an extension of the work presented by Fan et al in
[21].


Table V


Performance on date recognition


Authors RR Error Test Database Year
(%) (%) Set


Fan et al [21] 21.8 78.2 4,564 CENPARMI 1998
Xu [117] 44.5 5.2 1,197 CENPARMI 2002


(English set)
Xu [117] 36.4 5.0 2,088 CENPARMI 2002


(French set)







26


1.5 Discussion


By analyzing the state-of-the-art systems, we can observe that NNs have been suc-
cessfully applied to handwritten numeral string recognition and HMMs widely used
in word recognition.


Standard databases such as NIST, CENPARMI, and CEDAR are being extensively
used for the evaluation of a method. By using standard databases, meaningful
comparison of performances between recognition algorithms has become possible.
Nevertheless, we have seen that it is di�cult to carry out a deeper analysis since
di�erent databases, di�erent number of testing samples, and di�erent classes are
used. Sometimes the authors use just one part of the database even when the entire
set is available.


The literature indicates recognition rates close to 99% for handwritten isolated digits.
When the topic comes to numerical string recognition, the performances go dramat-
ically down due to problems such as touching digits, overlapping, and unknown
number of digits. In this context, almost no contextual information is available in
opposite to handwritten word recognition systems.


We have seen that holistic methods have usually been used for the recognition of
handwritten words and applications with a small lexicon size. However, an example
of an holistic approach for the recognition of touching-digit pairs can be found in
[114]. Although analytical methods requires the segmentation of a word into seg-
ments, they have advantages over global ones. The �rst is that for a given learning
set, is more reliable to train a small set of units such as characters than whole words.
Indeed, the frequency of each word is far lower than the frequency of its letters,
which are shared by all the words of the lexicon. Furthermore, global methods do
not satisfy the portability criterion, since for each new application, the set of words
of the associated lexicon must be trained.
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Regarding segmentation-based recognition strategies, explicit methods have to face
touching characters usually through heuristic-based algorithms, which usually are
time-consuming and di�cult to de�ne. For this reason, several researchers have
been investigated how to avoid it by using implicit segmentation. But due to the
bi-dimensional nature of images and the overlap between characters, implicit meth-
ods are less e�cient here than in on-line handwriting recognition. Indeed, vertical
sampling loses the sequential aspect of the strokes, which is better represented by
explicit methods. For instance, we can cite [37, 91] that surpass all methods based on
implicit segmentation we have found in the literature [47, 49, 64, 73]. Nevertheless,
implicit methods complement explicit ones and are particulary e�cient in dealing
with touching characters, for which it is hard to �nd regularly explicit segmentation
points.


The recognition of handwritten words and strings of digits are present in almost every
application involving handwriting recognition, for instance, such as postal address
reading, processing of tax and census forms, and amounts and dates on cheques.
Considering bank check systems, the literature indicates various studies on processing
of amounts. Notwithstanding, we have observed that very few papers have been
published on date recognition. Date recognition systems is a typical application on
sentence recognition. This kind of application requires the segmentation of a sentence
into parts, which is an important stage since it a�ects the performance on sentence
recognition. Most of segmentation methods are based on an analysis of the geometric
relationship of adjacent components in an image. However, the main drawback of
this strategy is when the correct segmentation does not �t with the pre-de�ned rules
of the segmenter, e.g., handwritten sentences that do not have a uniform spacing.
In order to overcome this problem, some researchers have used segmentation-free
methods where the segmentation is performed through the recognition process.
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Although various studies have been done in the last decade and a variety of recog-
nition techniques have emerged, there is still a long way to go in order to reach the
ultimate goal of machine simulation of �uent human reading, especially for uncon-
strained o�-line handwriting. Nevertheless, we have seen that important contribu-
tions on this subject have been made.


1.6 Summary


In this chapter we have presented a state of the art of the main topics related to our
research: handwritten numerical string recognition, handwritten word recognition,
and handwritten sentence recognition. We have seen that several and important
contributions have been made in these �elds. Some recent works have been brie�y
described in terms of types of classi�ers, test databases, and results. Di�erent ap-
proaches for recognizing strings of digits, words, and sentences have also been pre-
sented and discussed. In addition, the performance of some date recognition systems
has been reported. In the next chapter we will introduce our system with a brief
overview and we will present the de�nitions related to such a system.







CHAPTER 2


SYSTEM OVERVIEW AND DEFINITIONS


The purpose of this chapter is to provide a brief overview of the date recognition
system and present all the de�nitions related to the system.


2.1 System Overview


The date recognition system discussed in this thesis is designed to deal with uncon-
strained handwritten dates written on Brazilian bank cheques by multiple-writers.
The system receives a 256-grey level date image as input. It takes an HMM-based
strategy for separating the date sub-�elds since we have seen that this is a di�cult
task without resorting to recognition. After the date sub-�elds have been identi�ed
through the HMMs we can recognize the three obligatory ones (day, month and year)
using specialized classi�ers according to their respective data types which are known.
In such cases, an MLP approach has been used to deal with strings of digits (day
and year) and an HMM strategy to recognize and verify words (month). The system
also contains a �nal decision module which makes an accept/rejection decision.


Figure 4 shows the modules of the system which are: preprocessing, segmentation
into sub-�elds, digit string recognition, word recognition and veri�cation, and �nal
decision. In the following chapters we give a more in-depth description of these mod-
ules composing our date recognition system. In Chapters 3 and 4, we describe the
parts of preprocessing and segmentation that correspond the modules of preprocess-
ing and segmentation into sub-�elds respectively. In Chapter 5, we report the part of
recognition which includes the modules of digit string recognition, word recognition
and veri�cation, and �nal decision. Finally, in Chapter 6, we show the results of
experiments carried out.
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Figure 4 Block diagram of the date recognition system


2.2 De�nitions


In this section the de�nitions related to the date recognition system are introduced.
Section 2.2.1 presents the concept of meta-classes of digits. Sections 2.2.2 and 2.2.3
describe the HMMs and MLPs used in the HMM-MLP hybrid system respectively.
In Section 2.2.4 we discuss the veri�cation and its di�erent levels as well.


2.2.1 Meta-Classes of Digits


We have de�ned four meta-classes of digits (C0,1,2,3, C1,2, C0,9 and C0,1,2,9) based on
the classes of digits present in each position of 1- or 2-digit day and 2- or 4-digit year
as shown in Figure 5. A meta-class of digits is formed by the union of two or more
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of the original classes in order to break down the complexity of their segmentation
and the following recognition processes [29, 58]. This is possible because the lexicon
of the day and year is known and limited. While the class of digits C0−9 deals
with the 10 numerical classes, the meta-classes of digits represented by the shaded
boxes in Figure 5 work with speci�c classes of digits. The objective is to build HMMs
based on these meta-classes in order to reduce the lexicon size of the day and year and
improve the precision of their segmentation. Besides, it can be applied to digit string
recognition to improve the recognition results since very often confusions between
some classes of digits can be avoided (e.g., 4 and 9, 8 and 0). We can observe the
e�ciency of this strategy in Section 6.2.


0


1


2


3


C
0,1,2,3


0


1


9


C
0-9


1


2


C
1,2


0


9


C
0,9


0


1


2


9


C
0,1,2,9


0


1


9


C
0-9


1- or 2-digit Day 2- or 4-digit Year


Figure 5 Classes of digits present in each position of 1- or 2-digit day and 2- or
4-digit year


2.2.2 Hidden Markov Models


HMMs are �nite stochastic processes that have been proven to be one of the most
powerful tools for modeling speech and later on a wide variety of other real-world
signals. These probabilistic models o�er many desirable properties for modeling
characters, words, or sentences. One of the most important properties is the existence
of e�cient algorithms to automatically train the models without any need of labeling
presegmented data. This constitutes a key feature of the approach we developed for
segmentation into sub-�elds, word recognition and veri�cation. The algorithms for
training and recognition the HMMs we have used in our system are reported in
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Appendix 2. In our study, we are dealing with the discrete HMMs. Furthermore, we
are segmenting explicitly each image into segments (graphemes) based on cut rules
for feature extraction.


As pointed out earlier, a date image can consist of city name, separators (Sep1, Sep2,
and Sep3), day, month and year sub-�elds. Due to the huge size of the vocabulary of
dates, our elementary HMMs are built at city, space, and character levels. Thus, the
word, date, and its sub-�eld models are formed by the concatenation of appropriate
elementary HMMs. In the following sections we explain the justi�cation behind
the proposed models. In Section 2.2.2.1 we present the elementary HMMs used in
the system and in Section 2.2.2.2 we describe the word models employed in word
recognition and veri�cation. Section 2.2.2.3 reports the date and its sub-�eld models
used in segmentation. Finally, the decision rules we have adopted in segmentation
and word recognition are addressed in Section 2.2.2.4.


2.2.2.1 Elementary Models


In this section, we introduce the topologies of the elementary HMMs used in the
system. Such models are built at city, space and character levels and they are
employed in the following modules of the system: segmentation into sub-�elds (SSF),
word recognition (WR) and veri�cation (WV).


The model depicted in Figure 6(a) was adopted to represent all the city names and
noise (e.g., Sep1). The objective of this model is to identify them in the sentence.


A left-right topology has been used to model spaces and characters such as digits
and letters. The topology of the space models is very simple as shown in Figure 6(b).
It consists of two states linked by two transitions that encode a space (transition t01)
or no space (transition t01 = Φ). Besides the inter-sub-�eld model, we have de�ned
two more HMMs that model the intra-digit and intra-word spaces.
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Figure 6 (a) Topology of the city model and (b) Topology of the space models


Two topologies of character models were chosen based on the output of our seg-
mentation algorithm that may produce a correct segmentation of a character, a
character under-segmentation or a character over-segmentation into two, three, or
four graphemes depending on each character (a detailed description of the segmen-
tation algorithm is given in Section 4.2.2). Only the characters �M�, �m�, �E�, �F�,
and �2� may produce an over-segmentation into four graphemes. In order to cope
with these con�gurations of segmentations, we have designed topologies with three
di�erent paths leading from the initial state to the �nal state. Figures 7(a) and 7(b)
show examples of both topologies.
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Figure 7 (a) and (b) Topologies of the character models


The model in Figure 7(a) is employed in the segmentation and word recognition
modules. In such a topology, the transition t03 either (a) models under-segmentation
and emits the null symbol Φ, or (b) models a character correctly and emits a sym-
bol. The transitions t01, t12 and t23 model character segmentation into two or three
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graphemes. The model in Figure 7(b) is used in the word veri�cation module and it
is based on the previous one, but in this case the model has transitions (t12, t34, t57


and t67 of Figure 7(b)) that encode the way that the graphemes are linked together,
e.g., if there is a segmentation point we can encode whether its vertical position is
closer to the upper or lower base lines. Considering uppercase and lowercase letters,
we need 40 models since the month alphabet is reduced to 20 letter classes and we
are not considering the unused ones. Thus, regarding the two topologies, we have 80
HMMs. For the digit case, we have de�ned �ve HMMs based on the topology of the
character model shown in Figure 7(a). One model considers the 10 numerical classes
(M0−9) and the other ones are de�ned based on the meta-classes of digits (e.g., the
M1,2 model copes with the class of digits C1,2 and so forth) (see Figure 5).


Therefore, considering one city, three space, 80 letter and �ve digit models, the
system takes into consideration 89 elementary HMMs which were trained using the
Baum-Welch algorithm with the Cross-Validation procedure (see Appendix 2). Table
VI describes those models as well as where they are used in the system.


2.2.2.2 Word Models


Basically, the word models consist of the concatenation of the foregoing topologies.
Since no information on word recognition is available on the handwritten style (up-
percase, lowercase), we propose to use the architecture of the word model shown
in Figure 8(a) which can deal with the problem of mixed handwritten words. This
architecture consists of an initial state (I) and a �nal state (F), two elementary let-
ter HMMs in parallel and four elementary intra-word space HMMs linked by four
transitions: two uppercase letters (UU), two lowercase letters (LL), one uppercase
letter followed by one lowercase letter (UL), and one lowercase letter followed by
one uppercase-letter (LU). The probabilities of these transitions are estimated by
their occurrence frequency in the training set. In the same manner, the probabilities
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Table VI


Description of the elementary HMMs used in the system


Model Topology Classes Usage
Mcity Figure 6(a) Curitiba and Ctba SSF
Mspace Figure 6(b) Inter-sub-�eld space SSF
Mdigit


space Figure 6(b) Intra-digit space SSF
Mword


space Figure 6(b) Intra-word space SSF and WR
Ma Figure 7(a) a SSF and WR
MA Figure 7(a) A SSF and WR. . . .. . . .. . . .
Mv Figure 7(a) v SSF and WR
MV Figure 7(a) V SSF and WR
Ma′ Figure 7(b) a WV
MA


′ Figure 7(b) A WV. . . .. . . .. . . .
Mv


′ Figure 7(b) v WV
MV ′ Figure 7(b) V WV


M0,1,2,3 Figure 7(a) 0,1,2, and 3 (C0,1,2,3) SSF
M0−9 Figure 7(a) 0-9 (C0−9) SSF
M1,2 Figure 7(a) 1 and 2 (C1,2) SSF
M0,9 Figure 7(a) 0 and 9 (C0,9) SSF


M0,1,2,9 Figure 7(a) 0,1,2, and 9 (C0,1,2,9) SSF


of beginning a word by an uppercase-letter (0U) or a lowercase letter (0L) are also
estimated in the training set.


Figure 8(a) shows the architecture of the word models adopted on word recognition,
while Figure 8(b) illustrates the architecture used for word veri�cation. We can
observe that the architecture shown in Figure 8(b) diverges only in two aspects: it
does not consider the space models and its elementary HMMs contains transitions
that encode the way that the graphemes are linked together.
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Figure 8 Word models of class �Maio� (May): (a) Recognition and (b) Veri�cation


2.2.2.3 Date and its Sub-Field Models


Based on the fact that during the process of segmenting the image into sub-�elds,
we do not want to recognize the content of each sub-�eld, i.e., their identi�cation is
su�cient, the date model has been simpli�ed by reducing the date lexicon size to
improve the segmentation results.


This is performed by considering one model to represent all the city names and the
�rst separator (Sep1), and the same �De� model to represent the second and third
separators (Sep2 and Sep3). Besides, the concept of meta-classes of digits described
in Section 2.2.1 has been used to build the day and year models. Figures 9(a) and
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9(b) respectively show the date models without and with lexicon size reduction of
an image with all the sub-�elds.
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Figure 9 Date models: (a) Without lexicon size reduction and (b) With lexicon
size reduction


We can observe from Figure 9(b) that the lexicon size of month words has not been
reduced since it can help to identify the other sub-�elds. Besides, the date model
shown in Figure 9(b) represents an image with all the sub-�elds. Considering that
some sub-�elds are optional and there is one model for each sub-�eld, we have eight
possible date models which are created by concatenating appropriate sub-�eld models
and by considering the inter-sub-�eld space as a model. Such date models act as
a segmentation engine of the date into sub-�elds. The date sub-�eld models are
described in Table VII and the eight date models are presented in Table VIII where
Mspace stands for the inter-sub-�eld space model de�ned in Table VI.
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Table VII


Description of the date sub-�eld models


Model Description
Mcity City model (plus Sep1)
Mday 1- or 2-digit day model
Mde �De� separator model (Sep2 and Sep3)


Mmonth Month model (12 word classes)
Myear 2- or 4-digit year model


Table VIII


Date models


No. Date Model
1 Mcity Mspace Mday Mspace Mde Mspace Mmonth Mspace Mde Mspace Myear


2 Mday Mspace Mde Mspace Mmonth Mspace Mde Mspace Myear


3 Mcity Mspace Mday Mspace Mde Mspace Mmonth Mspace Myear


4 Mday Mspace Mde Mspace Mmonth Mspace Myear


5 Mcity Mspace Mday Mspace Mmonth Mspace Mde Mspace Myear


6 Mday Mspace Mmonth Mspace Mde Mspace Myear


7 Mcity Mspace Mday Mspace Mmonth Mspace Myear


8 Mday Mspace Mmonth Mspace Myear


Basically, the month model consists of an initial state (I), a �nal state (F), and 12
models in parallel that represent the 12 word classes. The architecture of each word
model and the �De� separator model are the same shown in Figure 8 (a). The day
model consists of an initial state (I), a �nal state (F), and the 2-digit day model in
parallel with the 1-digit day model as shown in Figure 10. The 2-digit day model
is formed by concatenating the following elementary models shown in Table VI:
M0,1,2,3, Mdigit


space, and M0−9. The 1-digit day model is related to the M0−9 model. The
probabilities of being 1- (1D) or 2-digit (2D) day are estimated in the training set of
the date database. The year model is built in the same manner.
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Figure 10 Day model for 1- or 2-digit strings


2.2.2.4 Decision Rules


The decision rules used in the segmentation into-sub-�elds and word recognition
are based on the maximization of the a posteriori probability that a pattern x has
generated an unknown observation sequence O, such as:


P (x|O) = max
x


P (x|O) (2.1)


Applying Bayes rule, we obtain the fundamental equation of pattern recognition:


P (x|O) =
P (O|x)P (x)


P (O)
(2.2)


Since P (O) does not depend on x, recognition becomes equivalent to maximizing the
joint probability:


P (x,O) = P (O|x)P (x) (2.3)
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where P (x) is the a priori probability of the pattern x (class distribution in the
training set). In this case, we prefer to consider P (x) as equiprobable due to the
small date training set. Besides, the distribution of each word class is very similar
to the other ones. The estimation of P (O|x) requires a probabilistic model that
accounts for the shape variation of x. We assume that such a model consists of a
global Markov created by concatenating elementary HMMs.


2.2.3 Neural Networks


Although many types of neural networks can be used for classi�cation purposes [69],
we opted for an MLP which is the most widely studied and used neural network clas-
si�er. Moreover, MLPs are e�cient tools for learning large databases [61]. Therefore,
all classi�ers presented in this work are MLPs trained with the gradient descent ap-
plied to a sum-of-squares error function [5]. The transfer function employed is the
familiar sigmoid function.


In order to monitor the generalization performance during learning and terminate
the algorithm when the improvement levels o�, we have used the method of cross-
validation. Such a method takes into account a validation set, which is not used for
learning, to measure the generalization performance of the network. During learning,
the performance of the network on the training set will continue to improve, but its
performance on the validation set will only improve to the point where the network
starts to over�t the training set, that the learning algorithm is terminated.


Let Ω be a pattern space which consists of NS mutually exclusive sets Ω = ω1 ∪
. . . ∪ ωNS


, each of ωi, i ∈ Λ = 1, . . . , NS representing a set of speci�ed patterns
called a class. Let x be an input pattern that should be assigned to one of the NS


existing classes. e means the classi�er and e(x) = mi(x)|∀i(1 ≤ i ≤ NS) means that
the classi�er e assigns the input x to each class i with a measurement value mi(x).
This de�nition is used for all neural classi�ers of the system.
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We have adopted one 10-numerical-class classi�er (e0−9) and four MLPs specialized
in the lexicon of the four meta-classes of digits (e.g., the e1,2 classi�er works with
the lexicon of the class of digits C1,2 and so on) (see Figure 5). In this case, the
digit string recognition module will determine which of these classi�ers will be used
according to the sub-�eld (day or year) and its number of digits obtained by the
segmentation module. This scheme aims at reducing the lexicon size on digit string
recognition to increase the recognition results (see Chapter 6). Table IX details these
classi�ers which have one hidden layer where the units of input and output are fully
connected with the units of the hidden layer. The number of hidden units used,
which were determined empirically, are also described in this table. The learning
rate and the momentum term were set at high values in the beginning to make the
weights quickly �t the long ravines in the weight space, then these parameters were
reduced several times according to the number of iterations to enable the weights �t
the sharp curvatures.


Table IX


Description of the MLPs used in the system


Classi�er Hidden Units Classes
e0,1,2,3 70 0,1,2 and 3 (C0,1,2,3)
e0−9 80 0-9 (C0−9)


e0,1,2,9 70 0,1,2 and 9 (C0,1,2,9)
e0,9 70 0 and 9 (C0,9)
e1,2 70 1 and 2 (C1,2)


The rule that de�nes how the classi�er assigns an input pattern x to a class i is
known as decision rule. In this work, the decision rule applied to all classi�ers is
de�ned as:
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e(x) = max
i∈Λ


mi(x) (2.4)


2.2.4 Levels of Veri�cation


Takahashi and Gri�n in [110] de�ne three kinds of veri�cation: absolute veri�cation
for each class (Is it a �0� ?), one-to-one veri�cation between two categories (Is it
a �4� or a �9� ?) and veri�cation in clustered, visually similar categories (Is it a
�0�,�6� or �8� ?). In addition to these de�nitions, Oliveira et al in [91] introduce the
concepts of high and low-level veri�cations. The idea of the high-level veri�cation is
to con�rm or deny the hypotheses produced by the classi�er by recognizing them.
On the other hand, the low-level veri�cation does not recognize a hypothesis, but
rather determines whether a hypothesis generated by the classi�er is valid or not.


Based on these concepts, we propose to use an absolute high-level word veri�er in
order to improve the recognition rate and reliability of the system. The objective
of an absolute high-level word veri�er is to re-rank the N best hypotheses of month
word recognition using a specialized word classi�er. The word recognizer takes into
account both segmentation and recognition aspects, while the veri�er considers just
the recognition aspects. This veri�er deals with the loss in terms of recognition per-
formance brought by the word recognition module. A similar strategy was adopted
by Britto Jr. et al in [46]. Section 5.2 presents more details on this veri�er.


2.3 Summary


In this chapter all de�nitions used by the system were presented. We have seen
that di�erent classi�ers were used to cope with the di�erent data types. A neural
approach has been adopted to decipher strings of digits (day and year) and a Marko-
vian strategy to recognize and verify words (month). In addition, the concepts about
meta-classes of digits, which is an underpinning idea in the strategy we have devel-
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oped for date segmentation and digit string recognition, were introduced. We also
discuss the veri�cation and its di�erent levels as well. In the next chapter the �rst
module depicted in Figure 4 is described in detail.







CHAPTER 3


PREPROCESSING


In this chapter we describe the �rst part of the system, which involves the prepro-
cessing module. The goal of preprocessing in handwriting recognition systems is
to reduce irrelevant information such as noise and intra-class variability (e.g., slant
correction) that increase the task complexity in a writer-independent recognizer. In
our system, the following preprocessing steps have been implemented and applied to
all date images, which were acquired at 300 DPI (Dots Per Inch) and 256 gray levels
(a detailed description of such database is given in Appendix 1): binarization, slant
correction, and smoothing. In such cases, we have used well known techniques which
are described throughout this chapter. For this reason, we do not devote much at-
tention to such subjects. Besides, although the preprocessing is an important part of
a recognition system, our main contributions lie in the segmentation and recognition
aspects as mentioned before as well as the optimization of the system.


3.1 Binarization


In order to reduce data storage and increase processing speed, it is often desirable
to represent gray-scale or color images as binary images. In order to accomplish
this task, we have used Otsu's method [93] which is based on a global thresholding
technique. In such a case, one threshold value is picked for the entire image. This is
a well-known method that has been widely used in the literature [6, 79]. It is based
solely on the statistical distribution of gray values. For each possible threshold value,
Otsu's method divides the histogram into two classes and calculates ratio of between
class variance to the variance of the total image. The optimum threshold is the one
that maximizes the variance between the two classes. Figure 11 shows the result of
Otsu's technique.
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(a)


(b)


Figure 11 Result of Otsu's technique: (a) Gray level image and (b) Image after
binarization


3.2 Slant Correction


The technique we have used is based on primary contours of the connected compo-
nents detected in a date image (the contour detection is described in Section 3.2.1).
Such a technique is based on [120] and it works as follows. The primary contour
is divided into segments with the same length as the stroke thickness (see Section
3.2.2). The global slant (θ) is obtained by the median slant of all segments and its
correction is made using a shear transformation de�ned in Equation 3.1. Figure 12
illustrates the result of such a slant correction algorithm.







x
′
= x− (y × tan(θ))


y
′
= y


(3.1)


3.2.1 Contour Detection


Firstly, the connected components of an image are detected and then their contours
are determined by following the 8-Freeman direction. In our system, the contours
can be classi�ed as primary or secondary [66].
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(a)


(b)


Figure 12 Result of the slant correction algorithm: (a) Original image and (b)
Image after slant correction


The primary contours correspond to the external contours of the connect components
that are completely or partially located in the median region between the upper
and lower baselines of a date image. Such lines are determined from the median
line, which is the ordinate that corresponds to the highest peak of the horizontal
transition histogram as shown in Figure 13. If the histogram contains two or more
equal peaks we keep the one with the highest ordinate, taking into consideration
that the reading of an image starts in the upper left corner and continues downwards
column by column. To �nd the upper (lower) baseline we search for the �rst ordinate
of the histogram above (below) the median line that has 50% of the density of the
highest peak (see Figure 13(b)). In both cases, the threshold was chosen based on
experimentation.


The primary contours are composed of upper and lower contours as shown in Figures
14(c) and 14(d) respectively. The upper contour of a connect component begins
(ends) in the leftmost (rightmost) point in the median region. If there are two
or more points located in the same abscissa we maintain the one with the highest
ordinate. The lower contour is the remaining part of the primary contour. The
objective of detecting the foregoing points in the median region is to obtain more
precise upper and lower contours (see Figure 15) since such contours are relevant
information used in segmentation (Chapter 4).
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Figure 13 (a) and (b) Horizontal transition histogram ((1) median line, (2) upper
baseline, and (3) lower baseline)


(a) (b)
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Figure 14 (a) Contour detection of word �Janeiro�, (b) Secondary contours, (c)
Upper primary contours, and (d) Lower primary contours


The secondary contours are situated outside of the median region or they are the
internal contours of the primary ones (loops) (see Figure 14(b)). The loops are an
important piece of information used throughout the system.
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in the connect component


(c)


Figure 15 (a) Horizontal transition histogram, (b) A more precise detection of the
upper contour of �set�, and (c) A less precise detection of the upper
contour of �set�


3.2.2 Stroke Thickness


The stroke thickness of an image is obtained from the vertical histogram. For each
column we analysis the stroke thicknesses and their frequency. Thus, after evaluating
all the columns of an image we pick the thickness which had the highest occurrence.
Figure 16 illustrates an image which contains the �a� character and its histogram.
In such a case, the stroke thickness chosen was �ve.
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Figure 16 Vertical histogram of stroke thickness
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3.3 Smoothing


After slant correction, a smoothing operation is done to regularize the edges in the
image and to remove small bits of noise. This technique is based on [107] and it works
as follows. A 3×3 mask (see Figure 17) is passed over the entire image to smooth it.
The mask begins in the lower right corner and processes each row moving upwards
row by row. The pixel in the center of the mask is the target. Pixels overlaid by
squares marked �X� are ignored. If the pixels overlaid by the squares marked �=� all
have the same value, i.e., all zero, or all one, then the target pixel is forced to match
them, otherwise it is not changed. This test is done four times for each target pixel,
once for each possible rotation of the mask.


X X X


= T =


= = =


Figure 17 3× 3 mask for smoothing


The result is that single-pixel indentations in all edges are �lled and single-pixel
bumps are removed. Furthermore, the mask modi�es the identical image that it
scans, so that lines that are one pixel thick will be completely eroded. This is
a small price to pay for a single and e�cient smoothing operation. Indeed, it is
extremely rare anything other than noise is removed by this �lter. Figure 17 shows
the result of this smoothing algorithm.


3.4 Summary


In this chapter we have presented the �rst module of our system, which is composed
of the following preprocessing techniques: binarization, slant correction, and smooth-
ing. In such cases, we have used well known techniques found in the literature. This
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(a) (b)


Figure 18 Result of the smoothing operation: (a) Original image and (b) Image
after smoothing


module aims at producing data that are easy for the system to operate accurately.
In the next chapter we will discuss the strategy we have used to segment a date
image into sub-�elds.







CHAPTER 4


SEGMENTATION


After preprocessing, the next step is the segmentation. The purpose of this module is
to divide the whole date image into sub-�elds and at the same time identify each sub-
�eld. Thus, the day, month, and year sub-�elds can be processed by the system using
specialized classi�ers. In this chapter we present the strategy we have developed for
segmentation and the steps necessary to perform this task.


4.1 Segmentation Strategy


We have seen that the most frequently used segmentation strategy splits explicitly
a sentence into its parts usually based on spatial distance clues. However, we have
seen that the main drawback of this strategy is when the correct segmentation does
not �t with the pre-de�ned rules of the segmenter, e.g., handwritten sentences that
do not have a uniform spacing.


In our application, the handwritten dates present a great variability in terms of
spaces as shown in Figure 30. In the case of Figures 19(a) and 19(b), the date inter-
sub-�eld spaces are well de�ned and easy to detect. But it will be very di�cult to
correctly detect all of them in Figures 19(c), 19(d), 19(e), and 19(f) without resorting
to recognition due to the similarities among some inter-sub-�eld and intra-sub-�eld
spaces. For example, in Figure 19(c) the intra-sub-�eld space between �2� and �003�
is almost the same as the inter-sub-�eld spaces between �de� and �janeiro� or �janeiro�
and �2003�.


Hence, we opted by using a segmentation-free strategy. We are considering an HMM-
based approach to perform the date segmentation into sub-�elds. Since we are dealing
with the discrete HMMs, each preprocessed date image must be transformed as a
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(a)


(b)


(c)


(d)


(e)


(f)


Figure 19 Samples of handwritten dates on Brazilian bank cheques


whole into a sequence of observations. This is done by performing three steps: refer-
ence line detection, segmentation, and feature extraction. The �rst step is required
to carry out the other ones. The segmentation step splits explicitly a date image into
a sequence of segments (graphemes), each of which consists of a full character, a piece
of a character, or more than a character. Then, two feature sets are extracted from
the sequence of graphemes and combined using a multiple-codebook-based HMM.
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4.2 Description of the Segmentation Sub-Modules


In Sections 4.2.1, 4.2.2, and 4.2.3 we describe how we detect the reference lines, the
grapheme segmentation algorithm, and the two feature sets respectively. Besides, we
report in Section 4.2.4 the mechanism we have used to train the elementary models
employed at this stage. Finally, in Section 4.2.5 we describe how the segmentation
is performed.


4.2.1 Reference Line Detection


Considering a cursive word, we can de�ne �ve reference lines (e.g., the word �Junho�
in Figure 20(c)): (1) median line, (2) upper baseline, (3) lower baseline, (4) upper
line, and (5) lower line. We can observe from this �gure that such lines delimit the
upper, median, and lower regions. Usually, the median region contains the lowercase
letters and the upper and lower regions possess the ascenders and descenders.


Since we are dealing with a sentence composed of di�erent data types such as strings
of digits and words, we split a date image into parts in order to detect the reference
lines in each sub-image and improve the precision of their estimation. At this level,
there is no problem if a sub-image does not correspond to a date sub-�eld, e.g., the
second sub-image of Figure 20(b) contains the day (�05�) and the �de� separator. The
steps to determine the reference lines are shown in Figure 20 and they are described
as follows.


The sub-images are located by looking for the more relevant spaces present in the
date, e.g., the three spaces (Space 1, 2, and 3) shown in Figure 20(b). In order to
perform this search, we �rst detect the spaces between the connected components
that are completely or partially situated in the median region between the upper
and lower baselines of a date image. In such a case, the median region is determined
through the horizontal transition histogram (see Figure 20(a)). Basically, this is
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Figure 20 (a) Horizontal transition histogram, (b) Location of the date sub-images,
and (c) Detection of the reference lines in each sub-image ((1) median
line, (2) upper baseline, (3) lower baseline, (4) upper line, and (5) lower
line)


performed in the same manner as we did to identify the primary contours (the
contour detection is described in Section 3.2.1). After that, we compute the average
space from all detected spaces and those ones greater than it are considered as the
more relevant spaces.


Thus, for each sub-image the upper (lower) baseline is determined based on the upper
contour maxima (lower contour minima) and it corresponds to their average height.
In such a case, we try to eliminate the undesirable maxima (minima) (e.g., the second
minimum of Figure 21(b)) by using an approach that is based on the weighted least
square technique (see Appendix 3). This approach yields a more precise estimation
of the upper and lower baselines than the horizontal transition histogram. The upper
(lower) line corresponds to the highest (lowest) point of the upper (lower) contour.
The median line is the midway between the upper and lower baselines.
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Figure 21 (a) and (b) Filtering of maxima and minima, and (c) Reference lines
((1) median line, (2) upper baseline, (3) lower baseline, (4) upper line,
and (5) lower line)


4.2.2 Segmentation into Graphemes


Our segmentation strategy is based on explicit methods. Since we have seen that it is
very di�cult to correctly segment a word or a digit string image into characters, our
concern is to design a segmentation process that supplies several segmentation points
(SPs) where the optimal ones are determined during recognition. Our algorithm
makes use of upper and lower contours, upper contour minima, loops, reference
lines, spaces, and some heuristics to identify SPs. All the thresholds we have used
were chosen after carrying out several experiments on the validation set. As output,
such an algorithm provides a sequence of graphemes where each one consists of a
correctly segmented, an under-segmented, or an over-segmented character.


This algorithm takes into account two types of SPs. The former corresponds to a
natural SP, while the latter one is a physical SP which is located at the upper contour
minimum (MP) or its neighborhood (see Figure 22). However, in order for an MP
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to give rise to an SP, it must satisfy some empirical rules which are described as
follows.


(2)


(3)


(4)


(5)


Upper limit


Lower limit


Natural SPPhysical SP


Median region


Grapheme


(a)


Figure 22 Types of SPs: natural and physical ((1) median line, (2) upper baseline,
(3) lower baseline, (4) upper line, and (5) lower line)


Usually, the SPs are identi�ed next or inside the median region of a handwritten word
as we can observe in Figure 22. Based on this hypothesis, we consider the upper
contour minima (MPs) situated between the upper and lower limits. The lower limit
is computed by summing the lower baseline and 40% of the median region height,
only if this limit does not exceed the lower line. Otherwise, the lower limit will be
the same as the lower line. Basically, the upper limit is determined in the same way.


Furthermore, we take into account the MPs that permit a vertical projection from the
upper contour to the lower contour. In particular cases, we look in the neighborhood
of an MP:


• If the vertical projection crosses a loop before reaching the lower contour (loop
con�guration) (e.g., Figure 23(a))


• If the vertical projection is tangent to the lower contour (tangency con�gura-
tion) (e.g., the grey segment in Figure 23(b))
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• If the length of the vertical projection from the upper contour to the lower
contour is greater than stroke_thickness × 2.0 (length con�guration) (e.g.,
Figure 23(c))


MP SP


(a)


MP SP


(b)


MP SP


(c)


Figure 23 Con�guration of MPs: (a) Loop con�guration, (b) Tangency con�gura-
tion, and (c) Length con�guration


For the foregoing cases, our algorithm tries to �nd an SP in the upper contour to the
right neighborhood of an MP. It starts from the MP and follows the upper contour
until stroke_thickness× 2.0 (the description of stroke thickness is given in Section
3.2.2). The upper contour point that minimizes the vertical projection from the
upper contour to the lower contour without crossing a loop or touching the tangent
of the lower contour will correspond to an SP. If the vertical projection of the SP
passes beside a loop (Figure 24(a)), we permit this SP to be cut in the vertical
direction followed by the horizontal direction (Figure 24(b)). Notwithstanding, if
the algorithm does not detect an SP in the right neighborhood of the MP, this same
search is performed to the left neighborhood of the MP.


After the identi�cation of SPs in an image, we evaluate them and discard those ones
which have the following characteristics:
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SP


(a)


SP


(b)


Figure 24 (a) MP that minimizes the vertical projection, (b) SP cut in the vertical
and horizontal directions


• If the geodesic distance between two SPs belonging to the same upper contour is
lower than stroke_thickness×2.0, we remove the one with the lowest ordinate


• If the geodesic distance between an SP and the initial or �nal point of upper
contour is lower than stroke_thickness× 2.0


The objective of eliminating SPs in such cases is to avoid small segments (e.g., the
grey segments in Figure 25). Although we have used a smoothing algorithm (see
Section 3.3) that regulates the edge of an image and as a consequence decreases the
detection of SPs, this preprocessing is not su�cient.


SP SP


SP SP SP


(a)


SP SP


(b)


Figure 25 Examples of small segments (the grey ones)


As a result, our segmentation algorithm may produce a correct segmentation of a
character, a character under-segmentation or a character over-segmentation into two,
three, or four graphemes depending on each character.
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4.2.2.1 Discussion


In this section, an analysis of the proposed segmentation algorithm is carried out. It
tries to segment the ligatures within a word by seeking for SPs located at the MPs
or their neighborhoods. Therefore, such an algorithm is more suitable for cursive
words (e.g., �Curitiba� and �março� in Figure 26(a)) than uppercase words (e.g.,
�FEVEREIRO� in Figure 26(e)) or strings of digits (e.g., �17� in Figure 26(d)).


(a)


(b)


(c)


(d)


(e)


(f)


Figure 26 Examples of images segmented into graphemes
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Moreover, it attempts to avoid a character under-segmentation by looking for an SP
in the neighborhood of an MP, which has a loop, tangency or length con�guration
as discussed before. Nevertheless, a character under-segmentation can happen in the
following cases:


• Absence of an MP (e.g, the string �EI� in �FEVEREIRO� in Figure 26(e))


• Occurrence of loop con�guration (e.g., the strings �00� in �2005�, �ete� in �setem-
bro�, and �go� in �Agosto� in Figures 26(a), 26(c), and 26(f) respectively)


• An MP situated outside the region between the upper and lower limits (e.g.,
the string �ze� in �dezembro� in Figure26(b))


Finally, this algorithm is not invariant to the slant correction since we cut an SP in
its vertical projection. In our system, we correct the slant in the preprocessing stage
as stated in Section 3.2.


4.2.3 Feature Extraction


As we pointed out earlier, HMMs are fed by two feature sets. The �rst set targets
the recognition of cursive handwriting, it is based on global features such as loops,
ascenders, and descenders. The second one, targets the discrimination of both letters
and digits, is based on concavity measurements. Both feature sets are combined with
the space primitives. In Figure 27, we show an example of a segmented date image
represented by these two feature sets. While F1 corresponds to a mixture of global
and space features, F2 is related to a mixture of concavity and space features.


4.2.3.1 Global Features


Ascenders, descenders, and loops are detected through the upper contour maxima,
lower contour minima, and secondary contours respectively.
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F1: h-   h s4 -h s1o s0  -  -  -   -   - s1  -   -     - s6 -     0      - s0h


F2: 60  0 s4 28s10 s0 1 2 6 7 8  9 s1  2  4    3 s6 3    4      9 s07


Figure 27 Image segmented into a sequence of graphemes where each one is repre-
sented by two feature sets (F1 and F2)


Ascenders and descenders are usually located in the upper and lower regions respec-
tively. Unfortunately, because of the variability of handwriting, it is very di�cult to
precisely detect such regions. Consequently, this can lead to the detection of false
ascenders and descenders. For example, in Figure 28 the letter �b� in �dezembro� is
considered as a descender due to it exceeds the lower baseline. This explains why we
are identifying ascenders (descenders) in the region between the upper (lower) line
and upper (lower) limit (the upper and lower limits are de�ned in Section 4.2.2).


Furthermore, we are classing them into big or small primitives according to their po-
sition (maxima and minima) in such regions. The region of small ascenders (descen-
ders) is situated between the upper (lower) limit and this limit decreased (increased)
by 40% of the median region height. The remaining of the upper (lower) region is
considered the area of big ascenders (descenders). In both cases, the threshold we
have used was chosen based on experimentation carried out on the validation set.
Therefore, if an upper contour maximum (lower contour minima) is located in the
small or big region, it corresponds to a small or big ascender (descender) respectively.
An example of the detection of these regions is illustrated in Figure 28.


Loops can be identi�ed in any of the three regions (upper, median, and lower) de-
pending on the position of their gravity centers. Loops belonging to the median
region are encoded in two ways (big or small). The big loops are those ones greater
than the half of the median region height.
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Figure 28 Detection of small and big regions ((1) median line, (2) upper baseline,
(3) lower baseline, (4) upper line, and (5) lower line)


Thus, the combination of the foregoing primitives plus a primitive that determines
if a grapheme does not contain ascender, descender, and loop produces a 20-symbol
alphabet (see Table X). Each symbol has been evaluated in the training set in order
to avoid that either it does not occur or has few samples. In this case, we are not
taking into consideration the horizontal order of ascender, descender, and loop within
a grapheme.


4.2.3.2 Concavity Features


The basic idea of concavity measurements [39] is the following: for each white pixel
in the grapheme, we search in 4-Freeman directions (Figure 29(c)), to �nd out which
directions reach black pixels, as well as which directions do not reach any black pixels.
When black pixels are reached in all directions (e.g., point x1 in Figure 29(a)), we
branch out in four auxiliary directions (s1 to s4 in Figure 29(b)) in order to con�rm
if the current white pixel is really inside a closed contour. Those pixels that reach
just one black pixel are discarded.


Thereafter, we increment the position in the feature vector according to the results
returned by the search (Figure 29(a)). In this �gure we represent the feature vector
where each component has two labels. The superior label means the number of
directions which reached black pixels during the search, while the inferior label means
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Table X


Description of the 20-symbol alphabet


Symbol Description
O Big loop in the median region
o Small loop in the median region
H Big ascender
h Small ascender
B Big descender
b Small descender
L Big ascender and a loop in the upper region
l Small ascender and a loop in the upper region
Z Big or small descender and a loop in the superior region
- Absence of ascender, descender, and loops
D Big ascender and a big or small loop in the median region
d Small ascender and a big loop in the median region
s Small ascender and a small loop in the median region
Q Big descender and a big or small loop in the median region
q Small descender and a big or small loop in the median region
K Big or small ascender, a loop in the upper region, and


a big or small loop in the median region
G Big or small descender, a loop in the upper region, and


a big or small loop in the median region
M Big or small ascender and descender
F Big or small descender and a loop in the upper or lower region
x Big or small descender and a big or small loop in the median region


the directions where black pixels were not reached. For example, the pixel x2 in
Figure 29(a) reaches the black pixel in directions 1 and 2. Therefore, the position 3
of the feature vector is incremented. For the pixel x1, the position 11 is incremented
because it reaches the black pixel in all four directions. However, using the auxiliary
direction s3 we con�rm that it is not inside a closed contour. When the pixel is
inside a closed contour, the position incremented is the 8th.


Since we are dividing each grapheme into two equal zones (horizontal) as shown in
Figure 29(a), we consider two feature vectors of 13 components each. Therefore, in
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Figure 29 Concavity measurements: (a) Concavities and feature vector, (b) Aux-
iliary directions, and (c) 4-Freeman directions


this �gure the pixel x2 will update the �rst vector while the pixel x1 will update the
second one. Finally, the overall concavity feature vector is composed of 26 (13× 2)
components which are normalized between 0 and 1 by summing up their values and
then dividing each one by this summation. The remaining concavity feature vectors
considered in this work are normalized in the same way. Since we are working with
the discrete HMMs, the concavity vectors are clustered into symbols by a vector
quantization algorithm (see Appendix 4). In this case, the codebook size we have
adopted was 100. This number was chosen after several tests carried out on the
validation set.


4.2.3.3 Space features


The spaces in the median region between two connected components have been ex-
tracted from a date image and then they are combined with the global and concavity
features. The space values are also clustered into symbols by a vector quantization
algorithm (see Appendix 4). The codebook size we have used was eight, which was
chosen based on experimentation carried out on the validation set.
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4.2.4 Training Mechanism


The mechanism we have used to train the elementary models consists of two steps
of training.


In the �rst step, the city model is trained using images of city names extracted
from the date database. The number of states we have chosen was �ve which was
determined after several tests considering di�erent numbers of states. We have used
about 980 and 370 images of city names for training and validation respectively.


In the second step, besides the date database we have also considered the legal
amount database, which is composed of isolated words, in order to increase the
training and validation sets. Indeed, the performance of a system strongly depends
on the size of the training set. This was possible because our system takes into
consideration one model for each letter. The use of meta-classes of digits also allows
the sharing of data during training and consequently it increases the training and
validation sets. In this case, the parameters of the city model are initialized based
on the parameters obtained in the �rst step of training. Then, the other elementary
models presented in the date and word images are trained systematically by concate-
nating them. We have used about 1,200 and 400 date images as well as 8,300 and
1,900 word images for training and validation respectively (a detailed description of
the database is given in Appendix 1).


4.2.5 How the Segmentation is Performed


The segmentation of a date into sub-�elds is delivered by the HMMs as a byproduct
of the recognition process. This is made by backtracking the best path produced
by the Viterbi algorithm (see Appendix 2). In this case, the system takes into
account the result of the segmentation of the best date model (among the eight
possibilities presented in Section 2.2.2.3) that represents a date image. In [84] we have
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experimented two hypotheses of segmentation instead of one. But using this strategy,
the complexity of the system increased, in opposite to the date recognition results.
For this reason, we have considered in our system one hypothesis of segmentation.
Figure 30 illustrates the entire process and in Section 6.1.1 we show the e�ciency of
our segmentation approach.


(a)


F1: HH----------HH--LL--OO s2 00s0oo s1 00--- s1 hh--00----oo-------LL--00---- s1ss00s1 00s0--


F2: 6004060895618476840 s2 28s002 s1 05502 s1 3906056906550608292238 s10848s113s094


(b)


[City] [Day] [Sep2] [Month] [Sep3] [Year]


(c)


Figure 30 (a) Original image, (b) Image segmented into a sequence of graphemes
where each one is represented by two feature sets (F1 and F2), and (c)
Result of the segmentation into sub-�elds


4.3 Summary


In this chapter we have presented the module of segmentation into sub-�elds. It
takes an HMM-based strategy for separating the date sub-�elds since we have seen
that this is a di�cult task without resorting to recognition. The main strength of
such an approach lies in the modeling phase. We have built HMMs based on the
concept of the meta-classes of digits in order to reduce the lexicon size of the day
and year and improve the precision of their segmentation.
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Given an approach based on the discrete HMMs, each date image must be represented
by a sequence of observations. To ful�ll this requirement, three steps were carried
out: reference line detection, segmentation, and feature extraction. Each step has
been described in this chapter. The �rst one is essential for the segmentation and
feature extraction steps that come next. In order to improve the estimation of the
reference lines, we have detected them in each sub-image, each of which consists of
a sub-�eld, part of a sub-�eld, or more than a sub-�eld. In the second step, we
have detailed our segmentation algorithm which aims at providing a sequence of
graphemes from a given date image, where each grapheme comprises of a correctly
segmented, an under-segmented, or an over-segmented character. Finally, the last
step extracts two feature sets at the grapheme level. Both feature sets are combined
with the space primitives.


After that, the two feature sets are used as input to HMMs, which are devoted to
segment the date sub-�elds. In our system, we have considered only one hypothesis
of segmentation.


The mechanism we have used to train the elementary HMMs employed in segmen-
tation is also been reported in this chapter. In the next chapter, we will discuss the
recognition part of our system, which involves three modules: digit string recogni-
tion, word recognition and veri�cation, and �nal decision.







CHAPTER 5


RECOGNITION


In this chapter we describe the following three modules of the system: digit string
recognition, word recognition and veri�cation, and �nal decision. Section 5.1 de-
scribes the digit string recognition module and Section 5.2 presents the word recog-
nition and veri�cation scheme we have developed. Finally, in Section 5.3 we discuss
the �nal decision module which makes an accept/rejection decision.


5.1 Digit String Recognition


After segmenting a date image into its constituent parts, the sub-images of the day
and year are used as input to the digit string recognizer. Moreover, the number of
digits supplied by the HMMs is used as information a priori on digit string recogni-
tion to determine which classi�ers will be employed depending on the sub-�eld (day
or year). As discussed in Section 2.2.3, we have de�ned �ve neural classi�ers. e0−9


copes with the 10 numerical classes and the other classi�ers e0,1,2,3, e0,1,2,9, e0,9, and
e1,2 are specialized in the lexicon of the meta-classes of digits C0,1,2,3, C0,1,2,9, C0,9,
and C1,2 respectively. This strategy aims at reducing the lexicon size on digit string
recognition to improve the recognition results. Figure 31 shows the block diagram of
the digit string recognition system to be described below. It is based on the system
developed by Oliveira et al in [91] that recognizes strings of digits. Nevertheless,
their system makes use of one classi�er that works with 10 numerical classes, i.e.,
without the concept of meta-classes.


The digit segmentation module shown in Figure 31 is based on the relationship
of three complementary sets of structural features, namely, contour, pro�le, and
skeletal points. The segmentation hypotheses are generated through a segmentation
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Figure 31 Block diagram of the digit string recognition system


graph, which is decomposed into linear sub-graphs representing the segmentation
hypotheses. More details on such an algorithm can be found in [90].


For each segmentation hypothesis a mixture of concavity / contour is extracted.
We have used six concavity feature vectors of 13 components each since we are
dividing the image into six zones. In this way, the overall concavity feature vector
is composed of 78 (13 × 6) components normalized between 0 and 1. Basically,
the employed concavity features in digit string recognition are very similar to the
concavity features described in Section 4.2.3.2, they di�er in the size of concavity
vector and the zoning used.
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Figure 32 Contour measurement: (a) Contour image of the upper right corner
zone, (b) Feature vector, and (c) 8-Freeman directions


The contour information is extracted from a histogram of contour directions. For
each zone, the contour line segments between neighboring pixels are grouped into 8-
Freeman directions (Figure 32(c)). The number of line segments of each orientation
is counted (Figure 32(b)). Therefore, the contour feature vector is composed of 48
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(8× 6) components normalized between 0 and 1. Finally, the last part of the feature
vector is related to the character surface. We simply count the number of black
pixels in each zone and normalize this value between 0 and 1. Thus, the �nal feature
vector, which feeds our classi�ers, has 132 (78 + 48 + 6) components.


In order to train those classi�ers, we have used images of isolated digits extracted
from the courtesy amount and date databases. Table XI describes the databases
used for training (TR), validation (VL) and testing (TS) as well as the recognition
rates achieved on validation (RR VL) and test (RR TS) sets (a detailed description
of the database is given in Appendix 1).


Table XI


Description of the classi�ers


Classi�er Classes TR VL TS RR VL RR TS
(%) (%)


e0,1,2,3 0,1,2 and 3 (C0,1,2,3) 7,302 1,774 2,305 99.7 99.4
e0−9 0-9 (C0−9) 14,211 3,217 4,710 99.0 98.9


e0,1,2,9 0,1,2 and 9 (C0,1,2,9) 7,377 1,787 2,345 99.7 99.4
e0,9 0 and 9 (C0,9) 3,594 845 1,111 99.9 99.8
e1,2 1 and 2 (C1,2) 3,783 942 1,234 99.8 99.5


Since we are dealing with multi-hypotheses of segmentation and recognition the
generation of k best hypotheses of a string of digits is carried out by means of a
Modi�ed Viterbi algorithm, which ensures the calculation of the k best paths of
segmentation-recognition graph [91]. Thus, the �nal probability for a hypothesis of
segmentation-recognition is given by the product of the probabilities produced by
the classi�ers as shown in Figure 33. For simplicity, this �gure presents just one
hypothesis of segmentation. Afterwards, each hypothesis is submitted to the post-
processor module depicted in Figure 31, which veri�es whether it belongs to the
lexicon of the day or year depending on the sub-�eld.







71


Digit


Segmentation


Concavity


and Contour


Concavity


and Contour


e
0,1,2,3


e
0-9


P(09)=0.998


Neural


Networks


No. of Digits Provided


by Segmentation into


Sub-Fields


2


Digit


Segmentation


Concavitiy


and Contour


Concavity


and Contour


e
0,1,2,9


e
0-9


P(07)=0.9882


Feature


Extraction


[Day]


[Year]


0.999


0.999


0.998


0.990


Figure 33 Digit string recognition through an example


5.2 Word Recognition and Veri�cation


In this section, we describe the HMM-based word recognition and veri�cation ap-
proach. The recognizer is devoted to the word segmentation and recognition aspects
once it uses the same models employed in segmentation into sub-�elds, while the
proposed veri�er is specialized in the word recognition problem. This veri�er deals
with the loss in terms of recognition performance brought by the word recognition
module and it aims at improving the word recognition results and reliability of the
system. The word models employed in word recognition and veri�cation are built
by concatenating elementary letter models as discussed in Section 2.2.2.2. The word
recognition and veri�cation scheme takes an analytical approach based on an explicit
segmentation.


5.2.1 Word Recognizer


The word recognizer receives as input the two sequences of observations related to
the word image identi�ed in the sentence, that were extracted in the segmentation
into sub-�eld module. Then, the word recognizer computes the word probabilities
for the 12 word models using the Forward procedure (see Appendix 2). However,
only the two best hypotheses generated by the word recognizer will be con�rmed by
the word veri�er.
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5.2.2 Word Veri�er


The word veri�er takes a word image as input which is transformed into a sequence
of observations. This is done by segmenting the image into graphemes and then
two feature sets are extracted from the sequence of graphemes. The �rst set is
based on global features, while the second one is a mixture of concavity and contour
features. Both feature sets are combined with the segmentation primitives. Since the
segmentation algorithm and the global features are the same described throughout
this thesis, here we explain the concavity and contour features, which di�er in the
size of concavity and contour vector, and the segmentation primitives.


Since we are dividing a grapheme into two equal zones (horizontal) and for the
concavity features we are considering only those white pixels that reach three or
more black pixels, we have two concavity vectors of 9 components each instead of 13
components as employed in date segmentation. For each vector, we have introduced
eight more components related to the information about the contour image. They
have been used to increase the discrimination between some pairs of letters (e.g.,
�L� (JULHO) and �N� (JUNHO)). In this manner, the �nal feature vector has 34
(2× (9+8)) components. The feature vectors are clustered into symbols by a vector
quantization algorithm (see Appendix 4). We have used a codebook with the size of
100 chosen after carrying out several tests on the validation set.


The segmentation features have been used to reduce confusions such as �n� (junho)
and �l� (julho) and �i� (maio) and �r� (marco) since they try to re�ect the way that
the graphemes are linked together. For connected graphemes, we encode the nature
of segmentation points in two ways depending on whether its vertical position is
closer to the upper or lower baselines. We have also de�ned a primitive to indicate
no segmentation point between two graphemes.
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Therefore, given an input word image, the output of the feature extraction process
is a pair of symbolic descriptions of equal length, each consisting of an alternating
sequence of grapheme shapes and associated segmentation point symbols. In order
to train the elementary models employed in word veri�cation, we have used about
9,500 and 2,300 word images for training and validation respectively extracted from
the date and legal amount databases (see Appendix 1).


5.2.3 How the Word Veri�er interacts with the Word Recognizer


The objective of the absolute high-level word veri�er is to re-rank the output of the
word recognizer. Basically, the word veri�er computes the probabilities for two word
models that correspond to the two best hypotheses (Top1 and Top2) generated by the
word recognizer using the Forward procedure. Then, we multiply the probabilities
produced by the word recognizer and veri�er. In Figure 34, we present an example
of how the word veri�er interacts with the word recognizer. We can see in this �gure
that the word recognizer generates the list of hypotheses which contain the correct
one (�Novembro�), but it is not in the top of the list. On the other hand, the word
veri�er succeeds in re-ranking the correct hypothesis to the top of the list (0.48 ×
0.90 > 0.50 × 0.10). In such an example, we have used �ctitious probabilities in
order to better illustrate the problem. In Section 6.1.2 we will see the improvements
produced by this scheme of veri�cation.


Feature
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HMM Word


Verifier


HMM Word


Recognizer


hh--00----oo-------LL--00----


3906056906550608292238


Top 1: Setembro  (0.50)


Top 2: Novembro (0.48)


max P(Novembro)=0.43


P(Setembro)=0.10


P(Novembro)=0.90


x


x


Figure 34 Example of how the word veri�er interacts with the word recognizer







74


5.3 Final Decision


The �nal decision module accepts the recognition result when all three obligatory
date sub-�elds are correctly classi�ed, otherwise it rejects it. The goal of rejection
is to minimize the number of recognition errors for a given number of rejects. The
scheme of rejection we have used is based on Fumera et al [26].


Basically, this technique suggests the use of multiple reject thresholds for the di�er-
ent data classes (T0, . . . , Tn) to obtain the optimal decision and reject regions. In
such a case, we have considered one threshold for each class of digits and for each
month word. In order to de�ne such thresholds we have developed an iterative al-
gorithm, which takes into account a decreasing function of the threshold variables
R(T0, . . . , Tn) and a �xed error rate Terror. We start from all threshold values equal
to 1, i.e., the error rate equal to 0 since all images are rejected. Then, at each step,
the algorithm decreases the value of one of the thresholds in order to increase the
accuracy until the error rate exceeds Terror. The error rate is de�ned in Equation
6.2 (see Chapter 6).


Thereafter, the rejection of an image is straightforward. We just compare the prob-
ability of its components (month and digits) with their corresponding thresholds. If
any of the components has the probability less than its corresponding threshold, the
entire string is rejected, otherwise it is accepted.


We will see in the next chapter that this strategy of rejection produces interesting
error-reject trade-o�s. We will present experimental results considering di�erent
values of Terror.
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5.4 Summary


In this chapter we have presented the part of recognition which includes the modules
of digit string recognition, word recognition and veri�cation, and �nal decision.


Besides the date segmentation into sub-�elds, the scheme we have proposed to reduce
the lexicon size on digit string recognition is an important contribution of our work
and it aims at improving the recognition results. This strategy makes use of the
output of the HMMs in the form of digit string length, i.e., the information on the
number of digits present in a string (day or year) and the meta-classes of digits.


The word veri�cation scheme we have developed is another important feature pre-
sented in this chapter. In the next chapter we show the results of experiments carried
out and the importance of the role of the word veri�er is in the system.







CHAPTER 6


EXPERIMENTS AND ANALYSIS


This chapter is devoted to the experiments conducted on three databases to assess
our approach. The �rst database contains about 2,000 images of handwritten dates
and it aims at evaluating the performance of the system on the recognition of dates
written on Brazilian bank cheques. The second database is the NIST SD19 (hsf_7
series) and it aims at validating the concept of meta-classes of digits on digit string
recognition on a well-known database. Finally, the last one corresponds to the legal
amount database which have about 10,500 isolated images of handwritten words.
The purpose is to validate the word recognition and veri�cation scheme since it
is very di�cult to compare our work with others due to its special application,
i.e., date recognition on Brazilian bank cheques. Besides, comparison in the same
context with other approaches is very delicate when di�erent databases and formats
are used, di�erent word classes are involved, and di�erent sizes of databases are
considered. In order to assess the recognition and veri�cation scheme, we carried
out some experiments on word recognition using a legal amount database and then
we compare the results achieved with other study which makes use of the same
database. A detailed description of the foregoing databases is given in Appendix 1.


For all reported results we used the following de�nitions of the recognition rate, error
rate, rejection rate and reliability rate. Let TS be a test set with NTS string images.
If the recognition system rejects Nrej, classi�es correctly Nrec and misclassi�es the
remaining Nerr, then:


Recognition Rate =
Nrec


NTS


× 100 (6.1)
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Error Rate =
Nerr


NTS


× 100 (6.2)


Rejection Rate =
Nrej


NTS


× 100 (6.3)


Reliability =
Recognition Rate


Recognition Rate + Error Rate × 100 (6.4)


Therefore, the recognition rate, error rate and rejection rate sum up to 100%.


6.1 Experiments on Date


This section reports the experiments carried out on the date database which contains
about 2,000 handwritten date images. It was divided into three sets:


• Training: 1,182 images


• Validation: 396 images


• Test: 401 images


6.1.1 Date Segmentation Results


The �rst step of our system is to �nd the best date model (among the eight possi-
bilities presented in Section 2.2.2.3) that represents a date image. At this level the
system reached 93.6% and 95.5% on the validation and test sets respectively. Table
XII details the segmentation rate of each date sub-�eld on the validation (VL) and
test (TS) sets as well as the result when the number of digits present in a string (day
or year) is correctly estimated by the HMMs. The results shown in this table were
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evaluated automatically by the system. This was possible because we have a labelled
database which also contains information about the position of each date sub-�eld.


Table XII


Segmentation results


Set City Day Sep2 Month Sep3 Year No. of Digits
Day Year


VL 94.9% 94.1% 94.6% 97.9% 98.9% 100.0% 91.1% 100.0%
TS 95.7% 96.2% 95.5% 99.5% 100.0% 100.0% 92.2% 100.0%


We can notice in Table XII that the results on year segmentation is higher than the
results reached on day segmentation. In this application, the year segmentation is
less complex than the day due to the low frequency of the �De� separator before the
year and its location (i.e., the year is the last sub-�eld present in the date �eld).


Figure 35 shows examples where the date sub-�elds are missegmented and Figure 36
demonstrates di�cult cases of segmentation, where the spaces between sub-�elds and
within sub-�elds are very similar. However in such cases, our approach succeeded in
segmenting the date sub-�elds correctly.


By analyzing the errors on date segmentation on the validation set, we observed that
they are generalized by the confusions between the following two sub-�elds: city and
day (Figures 35(a) and 35(b)), day and Sep2 (Figure 35(b)), Sep1 and day (Figure
35(c)), month and Sep2 or Sep3 (Figure 35(d)), and day and month (Figure 35(e)).
These errors can be visualized in Table XIII. From this table we can note that the
main confusions come from City-Day and Day-Sep2 sub-�elds. Consequently, the
segmentation rates of the city, day, and Sep2 sub-�elds are lower than the other ones
as shown in Table XII.
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Figure 35 Examples of missegmented date images
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Figure 36 Examples of well-segmented date images


Table XIII


Confusions on date sub-�eld segmentation on the validation set


Confusion Error Rate
(%)


City-Day 38
Day-Sep2 36
Sep1-Day 10


Month-Sep2/Sep3 14
Day-Month 2
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6.1.2 Date Recognition Results


Table XIV reports the improvements on date recognition using the word veri�er on
the validation (VL) and test (TS) sets (zero-rejection level). A date image is counted
as correctly classi�ed if the three obligatory sub-�elds are correctly classi�ed. Be-
sides, this table presents the results on digit string recognition and word recognition
with veri�cation.


Table XIV


Performance of the system (−: results without veri�cation and √: results with
veri�cation


Set Word Date Month 1-digit 2-digit 2-digit 4-digit
Veri�er Day Day Year Year


VL − 79.5% 89.6% 60.0% 93.2% 97.2% -√
82.5% 93.1% 60.0% 93.2% 97.2% -


TS − 80.7% 89.5% 71.4% 92.6% 97.7% 100.0%√
82.5% 91.5% 71.4% 92.6% 97.7% 100.0%


From Table XIV we can notice that the veri�cation brings an increase in the recog-
nition rates on date by 3.0% and 1.8% on the validation and test sets respectively.
Furthermore, we were able to increase the word recognition rates by 3.5% and 2.0%
on the validation and test sets respectively. We observed on the validation set that
the presence of common sub-strings among some word classes can a�ect the perfor-
mance on month word recognition such as:


• The termination in �eiro� for �Janeiro� and �Fevereiro�;


• The termination in �embro� for �Setembro�, �Novembro� and �Dezembro�;


• Almost all characters between �Junho� and �Julho� and between �Maio� and
�Março�.
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Indeed, the foregoing confusions can be visualized in Table XV, which shows the
confusion matrix on month word recognition and veri�cation carried out on the test
set. The last column of this table details the recognition rate (RR) of each word
class (�1� for �Janeiro�, �2� for �Fevereiro�, �3� for �Março�, �4� for �Abril�, �5� for
�Maio�, �6� for �Junho�, �7� for �Julho�, �8� for �Agosto�, �9� for �Setembro�, �10� for
�Outubro�, �11� for �Novembro�, and �12� for �Dezembro�). Figures 37(e) and 37(f)
show some misclassi�ed date images because the month words were not correctly
recognized. In such cases, the errors correspond to under-segmentation problems
due to the lack of local minima and confusion of the word classi�ers respectively.


Table XV


Confusion matrix on month word recognition and veri�cation on the test set


Class 1 2 3 4 5 6 7 8 9 10 11 12 No. of RR
Images (%)


1 38 0 0 0 0 0 0 0 0 0 1 0 39 97.4
2 0 29 0 0 0 0 0 0 1 1 1 0 32 90.6
3 1 0 30 0 5 0 0 0 0 0 0 0 36 83.3
4 0 0 0 35 4 0 0 0 0 0 0 0 39 89.7
5 1 0 3 0 34 0 0 0 0 0 0 0 38 89.4
6 0 0 0 0 1 28 0 0 0 0 0 0 29 96.5
7 2 0 0 0 0 4 25 0 0 1 0 0 32 78.1
8 0 0 0 0 0 0 0 28 0 0 0 0 28 100.0
9 0 0 0 0 0 0 0 0 30 1 0 0 31 96.7
10 0 0 0 0 0 0 0 0 0 30 0 0 30 100.0
11 0 0 0 0 0 0 0 0 1 0 32 1 34 94.1
12 1 0 0 0 0 1 0 1 1 0 1 28 33 84.8


Furthermore, we can notice in Table XIV that the results on year recognition are
higher for 2-digit strings than the results achieved on day recognition for 2-digit
strings. This can be explained by the fact that in our application the year segmenta-
tion is less complex than the day as discussed before. The low recognition rates for
1-digit day on the test and validation sets and the di�erence of about 11% between
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Figure 37 Examples of misclassi�ed date images (the correct string is the one in
parentheses): errors that come from (a) Digit segmentation, (b) Digit
string recognition, (c) Number of digits, (d) Day segmentation, (e)
Grapheme segmentation, and (f) Word recognition and veri�cation
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them can be explained by the fact that we have few images for 1-digit day on the
test (21 images) and validation (25 images) sets. In the validation set, for example,
one misclassi�ed image means 4% of error.


By analyzing the errors on digit string recognition on the validation set, we noted
that they can be classi�ed into 5 classes: errors caused by recognition (Rec.), frag-
mentation (Frag.), digit segmentation (Digit Seg.), and date segmentation when our
HMM-based approach does not correctly segment the day and year sub-�elds (Seg.
into Sub-Fields) or it does not properly identify the number of digits present in a
string (day or year) (No. of Digits), e.g., two digits were identi�ed in Figure 37(c)
instead of one. The confusions produced by fragmentation are found basically when
the digit segmentation algorithm groups the fragmented part with the wrong neigh-
bor. Usually, it fails for images that have neighbors (left and right) with similar
distances to the fragmented part and for images with poor quality. The digit seg-
mentation errors can be caused either by under-segmentation (Figure 37(a)), which
is due to a lack of basic points in the neighborhood of the connection stroke, or wrong
segmentation. These errors can be visualized in Table XVI while some examples are
illustrated in Figure 37(a), 37(b), 37(c), and 37(d). In respect of day recognition,
this table shows that the day missegmentation is the main source of errors.


Table XVI


Error analysis on digit string recognition on the validation set


Sub-Field Seg. into Sub-Fields Rec. Frag. Digit Seg. No. of Digits
Day 57.1% 17.2% 8.5% - 17.2%
Year - 58.3% 16.7% 25.0% -


As mentioned before, Figure 37 show some examples of misrecognized date images,
while Figure 38 illustrates some well-classi�ed date images. Although the day in
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Figure 38(e) was not correctly segmented, the digit string recognizer was capable of
classifying it properly. In the same manner, the word recognition and veri�cation
scheme was able to classify appropriately the month word in Figure 38(f).


Since bank cheque systems demand low error rates, two experiments were carried
out on date recognition using the test set where the error rates were �xed at 1.2%
and 2.0% respectively. Table XVII presents recognition (RR), rejection (RJ), and
reliability (RL) rates at these two error levels, while Figure 39 shows the evolution of
the recognition rate, error rate and reliability as a function of the rejection rate. We
can observe from this �gure that the strategy of rejection which considers multiple
reject thresholds produces interesting error-reject trade-o�s.


Table XVII


Recognition rates (RR), Rejection rates (RJ) and Reliability rates (RL) for
di�erent error rates on date recognition


Error = 1.2% Error = 2.0%
RR(%) RJ(%) RL(%) RR(%) RJ(%) RL(%)
62.1 36.6 98.1 65.3 32.6 97.0


6.2 Experiments on NIST SD19


In order to validate the concept of meta-classes of digits on digit string recognition,
we performed two experiments using a subset of the validation set of the NIST SD19
database (hsf_7 series). In such experiments, we have considered images of 2-digit
strings related to the lexicon of 2-digit day. Table XVIII summarizes the recognition
rates (RR) achieved on these experiments. The former (Exp. I) considers the concept
of meta-classes of digits using the classi�ers e0,1,2,3 and e0−9, while the latter (Exp.
II) makes use of the e0−9 classi�er, i.e., without the concept of meta-classes. The
use of this concept on digit string recognition seems to be a good strategy when the
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Figure 38 Examples of classi�ed date images


lexicon is known and limited since it enhanced the recognition results from 97.1%







87


Figure 39 Error rate versus rejection rate for date recognition


to 99.2% as shown in Table XVIII. To train the classi�ers e0,1,2,3 and e0−9 we have
used 78,000 and 195,000 images of isolated digits respectively from hsf_{0,1,2,3}.


Table XVIII


Recognition rates on NIST database for 2-digit strings


Experiment No. of Images RR
(%)


Exp. I 986 99.2
Exp. II 986 97.1


6.3 Experiments on Isolated Words of Legal Amount


This section addresses the experiments conducted on legal amount database, which
contains about 10,500 isolated images of handwritten words from a vocabulary of 40
words. It was divided into three sets: 6,264, 2,092, and 2,074 images for training,
validation, and testing respectively.







88


As mentioned before, the idea of using such a database is to assess the word recog-
nition and veri�cation scheme. In order to accomplish this task, we have performed
some experiments. Table XIX reports the two best recognition rates (Top1 and
Top2) on the test set without considering the word veri�er. In this case, the objec-
tive is to compare the performance of our word recognizer with the one developed by
Freitas et al in [24]. This was possible since we have used the same database. Their
work considers one global Markov model for each class of words and makes use of
global, concavity, and convexity features. However, in this case modeling characters
is better than modeling words due to the small number of images for training some
classes of words which do not have a uniform distribution. Thus, by considering
character models we can increase the training set and improve the performance on
word recognition. We can observe from Table XIX the improvements on word recog-
nition using our approach. The recognition rates for Top1 and Top2 were increased
by 15.2% and 9.9% respectively.


Table XIX


The two best recognition rates on word recognition on the test set


Work Word Recognizer Word Recognizer and Veri�er
Top1 (%) Top2 (%) Top1 (%)


Current 85.8 92.3 88.1
Freitas et al [24] 70.6 82.4 -


In the top of it, the word veri�er brings an improvement of the recognition rate on
word recognition on the test set from 85.8% to 88.1% (Top1). The results show the
e�ciency of the strategy we have developed for word recognition and veri�cation.
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6.4 Discussion


It is very di�cult to compare with other sentence recognition engines due to the spe-
cial application of our work. Comparison in the same context with other approaches
is very delicate when we consider bank check recognition systems since di�erent
databases and formats are used, di�erent word classes are involved, and di�erent
sizes of databases are considered. Besides, the literature indicates few studies on
this area. For example, Suen et al in [109] present a system for segmenting date
images into sub-�elds written on Canadian bank checks. In this application each
date image can appear in any one of two patterns: MM S DD S 19 Y Y and DD


S MM S 19 Y Y where MM , S, DD, and Y Y refer to month, separator, day and
year sub-�elds respectively. The month sub-�eld can be written in di�erent data
types (digits or words in English or French), while the day and year sub-�elds only
in digits. They claim a segmentation rate of 83.1% on the test set of 310 French and
499 English cheques from CENPARMI_IRIS database. Xu et al in [119] present an
extension of the previous work. It focuses on the more di�cult task of separating
the day and month sub-�elds. The result achieved was 89.9% using 1,000 English
date images from the CENPARMI_IRIS database. Considering our approach, we
reached an interesting segmentation rate of 95.5% on the test set.


More recently, Xu in [117] presents a complete date processing system. In this
work, the author achieved recognition rates of 44.5% and 36.4% on date recognition
using the CENPARMI database where the error rates were �xed at 5.2% and 5.0%
respectively. While the �rst experiment was carried out on the English set composed
of 1,197 date images, the second one was performed on the French set which consists
of 2,088 date images. At this level, our system reached a recognition rate of 65.3%
on the test set with a �xed error rate of 2.0%.
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In respect of month word recognition, Xu et al in [118] report a modi�ed product rule
to combine two MLP classi�ers and an HMM classi�er. Their goal is to recognize
month words in English and French. The recognition rate got was 85.36% using a test
set of 2,063 samples from a separate set of CENPARMI_IRIS database. Oliveira Jr.
et al in [14] consider the same classes of month words we have used, but they make
use of a di�erent database. Their best result on month word recognition obtained was
87.2% by combining (average) two MLP classi�ers on the test set composed of 1,200
isolated images of month words. In [13], Oliveira Jr. et al improved their results
by combining (multiplication) HMM and two NNs. They achieved a recognition
rate of 90.4% on month word recognition on the test set. Concerning our system,
we achieved a recognition rate of 91.5% on month word recognition on the test set
considering the word veri�er. We believe that this result is quite promising since we
must take into consideration the segmentation aspects.


Since a direct comparison of our work with others is not possible due to its special
application, i.e., date recognition on Brazilian bank cheques, we carried out some
experiments on legal amount and NIST SD19 databases in order to assess the pro-
posed digit string recognition and word recognition and veri�cation schemes. We
have seen encouraging results using such schemes. This con�rms the e�ciency of
our strategies we have developed for digit string recognition and word recognition
and veri�cation.


Lastly, we consider that our system has achieved good performance taking into ac-
count its complexity. In spite of the fact the system has reached comprehensive re-
sults, we have seen that it has various sources of errors, for instance, errors generated
by date segmentation, digit segmentation, digit string recognition, word recognition
and veri�cation, etc. Therefore, the system still can be improved. To accomplish
this, we will optimize one part of the system due to the its magnitude. Our focus
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will be the optimization of the word veri�er. We will address this issue in the next
chapter.







CHAPTER 7


OPTIMIZATION OF THE WORD VERIFIER


So far, we have described in detail all modules of the date recognition system and
how they interact with each other. Besides, we have reported the results we achieved
on date recognition using the laboratory date database. We have also demonstrated
through experimentation using the NIST and legal amount databases, the feasibility
and e�ciency of the strategies we developed for digit string and word recognition.
Although the system has achieved compelling results, we have seen in the last chap-
ter that the system still has di�erent sources of errors that can come from date
segmentation, digit segmentation, digit string recognition, grapheme segmentation,
word recognition and veri�cation, etc. In this light, we decided to make some ef-
forts towards the performance of the system. But due to the magnitude of the date
recognition system, our focus will be the optimization of the word veri�er since the
performance on word recognition is lower than digit string recognition. Regarding
the word recognition problem, the word recognizer takes into consideration both seg-
mentation and recognition aspects, while the word veri�er considers just the recog-
nition ones. Thus, as starting point it seems simpler to optimize the word veri�er.
In this chapter we discuss the technique we have investigated: feature selection in
unsupervised learning.


7.1 Unsupervised Feature Selection


The choice of features to represent the patterns a�ects several aspects of the pattern
recognition problem such as accuracy, required learning time, and the necessary
number of samples. In this way, the selection of the best discriminative features
plays an important role when constructing classi�ers. Nevertheless, this is not a
trivial task especially when dealing with a lot of features. In order to choose a
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subset of the original features by reducing irrelevant and redundant ones automated
feature selection algorithms have been used. The literature contains several studies
on feature selection for supervised learning [92, 104]. But only recently, the feature
selection for unsupervised learning has been investigated [19, 53].


The objective in unsupervised feature selection is to search for a subset of features
that best uncovers �natural� groupings (clusters) from data according to some crite-
rion. This is a di�cult task because to �nd the subset of features that maximizes
the performance criterion, the clusters have to be de�ned. The problem is made
more di�cult when the number of clusters is unknown beforehand which happens in
most real-life situations. Hence, it is necessary to explore di�erent numbers of clus-
ters using traditional clustering methods such as the K-Means algorithm [41] and its
variants. Thus, clustering can become a trial-and-error work. Besides, its result may
not be very promising especially when the number of clusters is large and not easy
to estimate.


In this context, feature selection presents a multi-criterion optimization function, e.g.,
the number of features and a validity index to measure the quality of the clusters.
Genetic algorithm (GA) o�ers a particularly attractive approach to solve this kind
of problems since they are generally quite e�ective in rapid global search of large,
non-linear, and poorly understood spaces. In the last decade, GA has been largely
applied to the feature selection problem. The approach often combines di�erent
optimization objectives into a single objective function. The main drawback of this
kind of strategy lies in the di�culty of exploring di�erent possibilities of trade-o�s
among objectives. In order to overcome this kind of problem, some authors [53]
propose the use of a multi-objective genetic algorithm to perform feature selection.


A methodology for feature selection in unsupervised learning for handwritten word
recognition is presented in the following sections. It makes use of the Nondominated
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Sorting Genetic Algorithm (NSGA) proposed by Srinivas and Deb in [106] which
deals with multi-objective optimization. The objective is to �nd a set of nondomi-
nant solutions which contain the more discriminant features and the more pertinent
number of clusters. In order to guide this search we have used two criteria: minimiza-
tion of the number of features and minimization of a validity index that measures
the quality of clusters. A standard K-Means algorithm is applied to form the given
number of clusters based on the selected features. The proposed strategy is assessed
using two synthetic data sets where the signi�cant features and the appropriate clus-
ters in any given feature subspace are known. Afterwards, it is applied to optimize
classi�ers in a supervised learning context, i.e., handwritten word recognition. In
this practical scenario, our approach is �rst evaluated by conducting some experi-
ments on isolated handwritten month word recognition and then we try to optimize
the word veri�er of the date recognition system.


This section is organized as follows. In Section 7.1.1, we review some related works in
unsupervised feature selection. Section 7.1.2 presents the method of multi-objective
optimization we have adopted. In Section 7.1.3, we describe the proposed method-
ology and in Section 7.1.4, we assess our approach using two synthetic data sets.
Section 7.1.5 reports the preliminary results we achieved on isolated handwritten
month word recognition. Finally, the experiments carried out on date recognition
are presented in Section 7.1.6.


7.1.1 Related Works


Most of works concerning feature selection have been carried out under the supervised
learning paradigm, paying little attention to unsupervised learning tasks. Supervised
feature selection algorithms are used when class labels of the data are available,
otherwise unsupervised feature selection algorithms are employed.
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Conventional methods of feature selection involve evaluating di�erent feature subsets
using some index and selecting the best among them. The index usually measures
the capability of the respective subsets in classi�cation or clustering depending on
whether the selection process is supervised or unsupervised. A problem of these
methods, when applied to large data sets, is the high computational complexity in-
volved in searching. Since complete search over all possible subsets of a feature set
(2N where N is the number of features) is not computationally feasible in practice,
several authors have explored the use of heuristics for feature subset selection, of-
ten in conjunction with branch and bound search. Forward selection and backward
elimination are the most common sequential branch and bound search algorithms
used in feature selection [44]. Most of the current approaches assume monotonic-
ity of some measure of classi�cation or clustering performance. This ensures that
adding features does not worsen the performance. However, many practical scenar-
ios do not satisfy the monotonicity assumption. Moreover, this kind of search is not
designed to handle multiple selection criteria. Recently, several researchers have ex-
plored the use of genetic algorithms to perform feature selection. The advantage of
feature selection techniques that employ GAs is that they do not require the restric-
tive monotonicity assumption since they can deal with the use of multiple selection
criteria. Comparison and discussion of some of the above methods may be found in
[57].


In a supervised learning context, feature selection algorithms can be classi�ed into
two categories based on whether or not feature selection is performed independently
of the learning algorithm used to construct the classi�er. If feature selection is
done independently of the learning algorithm, the technique is said to follow a �lter
approach. Otherwise, it is said to follow a wrapper approach [44].


In order to maintain the de�nition of wrapper/�lter approaches used in supervised
feature selection, Dy and Brodley in [19] de�ne a wrapper approach in unsupervised
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learning when applying a clustering algorithm to each feature subset in the search
space and then evaluating the feature subset by criterion function that utilizes the
clustering result. On the other hand, a �lter approach makes use of some intrinsic
property of the data to select features without utilizing the clustering algorithm.
Since our interest lies with unsupervised feature selection, we discuss here some
related works in this domain.


Devaney and Ram [16] combine a sequential forward and backward search. In this
study, they evaluate each feature subset by measuring the category utility of clus-
ters, which were found by applying COWEB (a hierarchical clustering algorithm).
Talavera in [111] applies blind (similar to the �lter) and feedback (analogous to
the wrapper) approaches to COWEB, and uses a feature dependence measure to
select features. Dy and Brodley in [19] propose a wrapper approach that uses an
expectation-maximization clustering algorithm with order identi�cation. Feature
subsets are evaluated in terms of clustering quality based on scatter separability or
maximum likelihood.


Mitra et al in [78] present an algorithm for unsupervised feature selection that uses
feature dependency/similarity for redundancy reduction and does not require any
search process. Besides, a new feature similarity measure, called maximum informa-
tion compression index, is introduced. Kim et al in [53] make use of an evolutionary
local selection algorithm to search for possible combination of features and number
of clusters, with the guidance of the K-Means algorithm. In this study, they consider
as �tness criteria the within-cluster scatter, between-cluster separation, number of
selected features, and number of selected clusters.


Following the de�nition proposed by Dy and Brodley in [19], our unsupervised feature
selection method can be classi�ed as a wrapper approach. Basically, it works in the
same vein as Kim et al [53]. Notwithstanding, our approach makes use of a di�erent
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search algorithm and di�erent �tness criteria. Besides, this approach is the only one
we have knowledge that is applied to optimize classi�ers in a supervised learning
context.


7.1.2 Multi-Objective Optimization using Genetic Algorithms


7.1.2.1 De�nitions


A general multi-objective optimization problem consists of a number of objectives
and it is associated with a number of inequality and equality constraints. Mathe-
matically, the problem can be written as follows [97].


Minimize (or Maximize) fi(x) i = 1, . . . , N


subject to:







gj(x) ≤ 0 j = 1, 2, . . . , J


hk(x) = 0 k = 1, 2, . . . , K
(7.1)


The parameter x is a p dimensional vector having p decision variables. Solutions to
a multi-objective optimization problem can be expressed mathematically in terms
of nondominated or superior points. In a minimization problem, a vector x(1) is
partially smaller than another vector x(2), (x(1) ≺ x(2)), when no value of x(2) is
smaller than x(1) and at least one value of x(2) is strictly greater than x(1). If x(1)


is partially smaller than x(2), we say that the solution x(1) dominates x(2). Any
member of such vectors which is not dominated by any other member is said to be
nondominated. The optimal solutions to a multi-objective optimization problem are
nondominated solutions. They are also known as Pareto-optimal solutions.


For example, in the case of minimization for two criteria,
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Minimize f(x) = (f1(x), f2(x))


such that x ∈ X(the feasible region)


a potential solution x(1) is said to dominate x(2) if:


∀i ∈ {1, 2} : fi(x
(1)) ≤ fi(x


(2)) ∧
∃j ∈ {1, 2} : fj(x


(1)) < fj(x
(2)) (7.2)


7.1.2.2 Nondominated Sorting Genetic Algorithm (NSGA)


Over the past decade, a number of multi-objective evolutionary algorithms have
been proposed. Zitzler et al in [128] provide a systematic comparison of various
evolutionary approaches to multi-objective optimization using six carefully chosen
test functions. In this work, they found that NSGA (with elitism) proposed by
Srinivas and Deb in [106] surpasses several other methods. Besides, such a method
has been applied to solve various problems [77, 115]. For these reasons we opted to
use such an algorithm in our study.


The idea behind the NSGA is that a ranking selection method is used to empha-
size good points and a niche method is used to maintain stable subpopulations of
good points. It di�ers from simple GA only in the way the selection operator works.
The crossover and mutation remain as usual. Before the selection is performed, the
population is ranked based on an individual's nondomination. The nondominated
individuals present in the population are �rst identi�ed from the current population.
Then, all these individuals are assumed to constitute the �rst nondominated front in
the population and assigned a large dummy �tness value. The same �tness value is
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assigned to give an equal reproductive potential to all these nondominated individu-
als. This is exempli�ed in Figure 40a. In such a case, a population of six individuals
was classi�ed into three nondominated fronts and each individual of the �rst front
received a large dummy �tness (6.00 in this example).
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Figure 40 Sorting population: (a) The population is classi�ed into three nondom-
inated fronts and (b) Shared �tness values of six solutions


In order to maintain the diversity in the population, these classi�ed individuals are
then shared with their dummy �tness values. Sharing is achieved by performing
selection operation using degraded �tness values obtained by dividing the original
�tness value of an individual by a quantity proportional to the number of individuals
around it. After sharing, these nondominated individuals are ignored temporarily
to process the remaining population in the same way to identify individuals for the
second nondominated front. These new sets of points are then assigned a new dummy
�tness which is kept smaller than the minimum shared dummy �tness of the previous
front. This process is continued until the entire population is classi�ed into several
fronts. This process is illustrate in Figure 40b. It can be observed from this Figure
that the individuals �1� and �3� had their �tness shared because they are close to
each other. In this case, their �tness were reduced from 6.00 to 4.22. Then, the
dummy �tness is assigned to the individuals of the second front by multiplying the







100


lowest value of the �rst front by a constant k (let us say k = 0.95 for this example).
Therefore, the individuals of the second front will receive a dummy �tness of 4.00
(4.22 × 0.95). Since the two individuals of the second front are not close to each
other, their dummy �tness is maintained and a dummy �tness is assigned to the
individual of the last front 3.80 (4.00× 0.95).


The population is then reproduced according to the dummy �tness values. Since in-
dividuals in the �rst front have the maximum �tness value, they get more copies than
the rest of the population. This was intended to search for the nondominated regions
of Pareto-optimal fronts. The e�ciency of NSGA lies in the way multiple objectives
are reduced to a dummy �tness function using nondominated sorting procedures.
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Figure 41 Flow chart of NSGA


Figure 41 shows a �ow chart of NSGA. The algorithm is similar to a simple GA
except for the classi�cation of nondominated fronts and the sharing operation. The
sharing in each front is achieved by calculating a sharing function value between two
individuals in the same front as:


Sh(d(i, j)) =







1−
(


d(i,j)
σshare


)2 if d(i, j) < σshare


0 otherwise
(7.3)
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where d(i, j) is the distance between two individuals i and j in the current front
and σshare is the maximum distance allowed between any two individuals to become
members of a niche. In any application of sharing, we can implement either genotypic
sharing, since we always have a genotype (the encoding), or phenotypic sharing.
However, Deb and Goldberg in [15] indicate that in general, phenotypic sharing is
superior to genotypic sharing. Thus, we have used a phenotypic sharing which is
calculated from the normalized Euclidean distance between the objective functions.


The parameter σshare can be calculated as follows [15]:


σshare ≈ 0.5
p
√


q
(7.4)


where q is the desired number of distinct Pareto-optimal solutions and p is the number
of decision variables. Although the calculation of σshare depends on this parameter
q, it has been shown [106] that the use of the above equation with q ≈ 10 works in
many test problems.


7.1.3 Proposed Methodology


7.1.3.1 Objective Functions


As stated before, we have used two criteria: minimization of a validity index and
minimization of the number of features.


In order to measure the quality of clusters, the within-cluster scatter and between-
cluster separation have been widely used by various researchers. Kim et al in [53]
make use of two objective functions to compute these measurements independently.
Vesanto et al in [113] and Bandyopadhyay et al in [4] combine them in one objective
function using the Davies-Bouldin (DB) index proposed by Davies et al in [12]. To
make such indices suitable for our problem, they must be normalized by the number
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of selected features. This is due to the fact that they are based on geometric distance
metrics and are therefore not directly applicable here because they are biased by
the dimensionality of the space, which is variable in feature selection problems. In
our experiments, we have considered the normalized DB index. Both criteria are
described as follows.


The DB index is a function of the ratio of the sum of within-cluster scatter to
between-cluster separation. The scatter within the ith cluster is computed as follows:


Si =
1


|Ci|
∑


X∈Ci


{||X − Zi||} (7.5)


and the distance between clusters Ci and Cj is de�ned as:


dij = {||Zi − Zj||} (7.6)


Si is the average Euclidean distance of the vectors X in cluster Ci with respect to
its centroid Zi. dij is the Euclidean distance between the centroids Zi and Zj of the
clusters Ci and Cj respectively. Subsequently, we compute:


Ri = max
j,j 6=i


{Si + Sj


dij


} (7.7)


The DB index is then de�ned as:


IDB =
1


D


1


K


K∑


i=1


Ri 0 ≤ IDB ≤ 1 (7.8)







103


where K corresponds to the number of selected clusters and D is the number of
selected features. The objective is to achieve proper clustering by minimizing the
DB index.


We have observed through experimentation (see Section 7.1.4.2) that the value of
DB index decreases as the number of features increases by normalizing such an index
by D. In order to compensate this e�ect we have also considered as objective the
minimization of the number of features. In this case, one feature must be set at
least.


7.1.3.2 Implementation of NSGA


For all experiments, NSGA is based on bit representation (binary codi�cation), one
point crossover, bit-�ip mutation and roulette wheel selection (with elitism). In such
experiments, we have used the Equation 7.4 with q = 10 in order to have some
insight about the parameter of NSGA σshare. However, this parameter and the other
ones were tuned based on experimentation.


Since the proposed strategy tries to �nd a set of solutions with the more discriminant
features and a proper value of the number of clusters, each chromosome in the
population encodes these two types of information. While the �rst positions encode
the features, the remaining is devoted to the number of clusters. In order to �nd high-
quality solutions, we have considered two objectives: minimization of the number of
features and minimization of the DB index.


Computing the �rst objective is simple, i.e., the bits equal to 1 in the �rst part
of the chromosome provide the number of selected features. The second one is
evaluated after performing clustering. In this case, a standard K-Means algorithm
(see Appendix 4) is applied to form the clusters based on the selected features and
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the number of selected clusters, which is obtained by computing the bits equal to 1
in the second part of the chromosome.


7.1.4 Evaluation of the Methodology on Two Synthetic Data Sets


It is not easy to evaluate the quality of an unsupervised learning algorithm especially
performing feature selection at the same time due to the fact that the clusters de-
pend on the dimensionality of the selected features. In order to assess the proposed
methodology and improve our insight about it, we carried out two experiments using
two synthetic data sets, where the distributions of their points, the signi�cant fea-
tures, and the appropriate clusters in any given feature subspace are known. In such
cases, we can evaluate the solutions found in the Pareto-optimal front by examining
the selected features and the number of selected clusters as well.


7.1.4.1 Experiment I


The �rst synthetic data set has 300 points, two signi�cant features in which the
points form three well de�ned clusters. All clusters are formed by generating points
from a pseudo-Gaussian distribution with standard deviation equal to 0.04. Figure
42 illustrates this data set.


In this experiment, the chromosomes are composed of 12 bits, the �rst two bits
encode the features, while the remaining (position 3 to 12) encode the number of
clusters that can vary from 2 to 10. The cases of zero or one cluster are meaningless
in this application. The NSGA parameters are: population size=20, number of
generations=100, probability of crossover=0.8, probability of mutation=1/12, and
the niche distance=0.4.


Table XX shows the set of nondominant solutions found by NSGA. We can notice
in this table that both solutions describe the data set depicted in Figure 42 very
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Figure 42 Data set of Experiment I


well. The solutions Sol1 and Sol2 are extremely good along one of the two criteria.
However, the solution with three clusters and one feature (feature 2) was not in
the �nal population because it was dominated by the solution Sol2 along DB index
criterion.


Table XX


Solutions for Experiment I


Solution No. of DB Index No. of Features
Clusters Features


Sol1 3 0.074246 2 1 and 2
Sol2 2 0.086910 1 1


7.1.4.2 Experiment II


The second synthetic data set has 300 points and ten features and it is constructed
as follows. Three clusters are formed along features 1 and 2 in the same way as the
�rst data set. Features 3, 4, and 5 are similar to feature 2. Finally, for features
6, 7, 8, 9, and 10 the points are distributed uniformly. All the clusters are formed
by generating points from a pseudo-Gaussian distribution with standard deviation
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equal to 0.04. Figure 43 illustrates this data set by projecting the points onto some
of the feature subspaces with two dimensions.


The chromosomes are represented by 20 bits, the �rst ten bits encode the features,
while the remaining (position 11 to 20) encode the number of clusters that can
vary from 2 to 10. The NSGA parameters are: population size=20, number of
generations=100, probability of crossover=0.8, probability of mutation=1/20, and
the niche distance=0.4.


Table XXI shows the set of nondominant solutions found by NSGA. We can observe
from this table that the features 6 through 10 which have no signi�cance were not
selected. Besides, the solutions describe the data set depicted in Figure 43 very
well. In this experiment, the interaction between our two optimization criteria can
be visualized as discussed before in Section 7.1.3.1.


Table XXI


Solutions for Experiment II


Solution No. of DB Index No. of Features
Clusters Features


Sol1 3 0.037460 5 1, 2, 3, 4 and 5
Sol2 3 0.043207 4 1, 2, 3 and 4
Sol3 3 0.052015 3 1, 2, and 4
Sol4 3 0.073910 2 1 and 4
Sol5 2 0.090448 1 1


Furthermore, although the selected features and the number of selected clusters
of Sol2 (Exp. I) and Sol5 (Exp. II) shown in Tables XX and XXI respectively are
basically the same, they have di�erent indices. It is possible that for the same feature
subspace and number of selected clusters, there exist di�erent DB index since the
K-Means results are highly dependent on the initialization procedure.
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Figure 43 Some 2-dimensional projections of the data set of Experiment II
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7.1.5 Methodology Applied to Isolated Month Word Recognition


Regarding the results achieved in the experiments using the synthetic data sets, it
can be concluded that the proposed methodology is capable of identifying the more
signi�cant features and the more relevant number of clusters. The next step lies in
evaluating its e�ect on isolated month word recognition.


Basically, our methodology works as follows. NSGA produces automatically a set of
nondominant solutions called Pareto-optimal, which corresponds to the best trade-
o�s between the number of features and quality of clusters. However, when applying
such a strategy to a supervised learning context, one solution from Pareto-optimal
front must be chosen to be used in the system. In order to perform this task, �rstly we
train each solution of the Pareto-optimal front to validate the best solutions found by
NSGA. In this case, we have not considered those solutions with few features (number
of features lower or equal to 10) since we have knowledge that using few ones are not
su�cient for classi�cation. Thereafter, such classi�ers are used in the system and
the solution that supplies the best word recognition result on the validation set is
chosen.


In this section we describe the three experiments carried out on month word recog-
nition. The word classi�er used in such experiments is based on the word veri�er of
the date recognition system we have presented so far (see Section 5.2.2). The word
veri�cation module splits a word image into graphemes, each of which consists of a
correctly segmented, under-segmented, or and over-segmented character. Then, two
feature sets are extracted from the sequence of graphemes to feed the Markovian clas-
si�er. However, in order to better assess our approach, in these experiments we have
considered only one feature set, which is combined with segmentation primitives.


The feature set we have used in the �rst experiment (Exp. I) is based on a mixture
of concavity and contour features, which were employed in word veri�cation. As
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discussed before, each grapheme is divided into two zones where for each region a
concavity and contour feature vector of 17 components is extracted. In this manner,
the �nal feature vector has 34 components. The other two experiments make use of
a di�erent feature set which is based on distance features, namely DDD features (see
Appendix 5). In the second experiment (Exp. II), we have adopted the same zoning
used in the �rst one. But in this case, for each region a vector of 16 components is
extracted. This leads to a �nal feature vector of 32 components which are normalized
between 0 and 1 by summing up their values and then dividing each one by this
summation. For the third experiment (Exp. III), we have tried a di�erent zoning.
We are dividing each grapheme into four zones using the reference baselines (see
Figure 44), and therefore we have four feature vectors of 16 components each. The
overall feature vector is composed of 64 components which are normalized between
0 and 1 in the same way. Such experiments are summarized in Table XXII.


Median


region


(2)


(4)


(3)


(5)


Upper region


Lower region


(a)


(2)


(4)


(3)


(5)


(b)


Figure 44 Zoning for Exp. III: (a) Reference line detection and (b) Zoning ((2)
upper baseline, (3) lower baseline, (4) upper line, and (5) lower line)


Since the word classi�er is based on discrete HMMs and the preceding feature vectors
contain real values (low-level features), we must convert them into symbols (high-
level features) by using a clustering technique. Instead of using a traditional strategy
as we did in word veri�cation, which considers the entire feature set and tries exhaus-
tively various number of clusters, we propose to use the foregoing methodology to
�nd automatically the most representative concepts (clusters) and the more discrim-
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Table XXII


Description of the experiments on isolated month word recognition


Exp. Features No. of
Features


I Conc&Contour 34
II DDD 32
III DDD 64


inant features. However, in order to evaluate the results achieved by our approach,
we compare them with the results obtained from the traditional strategy.


7.1.5.1 Experimental Results and Analysis


This section is devoted to the three experiments conducted on a database in which
we do not have knowledge about the clusters and relevant features. This database
contains about 2,000 isolated images of handwritten Brazilian month words and it
was divided into three sets: 1,182, 396, and 401 images for training, validation, and
testing respectively. In order to increase the training and validation sets, we have
also considered 8,325 and 1,906 word images respectively extracted from the legal
amount database. For clustering we have used about 80,000 feature vectors extracted
from the training set of 9,507 words.


In the �rst experiment (Exp. I), the chromosomes are represented by 184 bits. The
�rst thirty four bits encode the concavity and contour features, while the remaining
(position 35 to 184) encode the number of clusters that can vary from 2 to 150. The
NSGA parameters are: population size=96, number of generations=1,000, probabil-
ity of crossover=0.8, probability of mutation=1/184, and the niche distance=0.3.


For the second experiment (Exp. II), the chromosomes contain 182 bits. While the
�rst thirty two bits encode the DDD features, the remaining (position 33 to 182)
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encode the number of clusters that can vary from 2 to 150. The parameters of NSGA
are: population size=98, number of generations=1,000, probability of crossover=0.8,
probability of mutation=1/182, and the niche distance=0.3.


Finally, the chromosomes in the last experiment (Exp. III) are composed of 214 bits.
The �rst sixty four bits encode the DDD features, while the remaining (position 65
to 214) encode the number of clusters that can vary from 2 to 150. The NSGA
parameters are: population size=98, number of generations=1,000, probability of
crossover=0.8, probability of mutation=1/214, and the niche distance=0.3.


Figures 45, 46, and 47 illustrate the Pareto-optimal front found by NSGA in such
experiments respectively. Furthermore, such �gures show the relationship between
the number of clusters × number of features and the recognition rate (RR) on the
validation set × number of features. The selected solution in the �rst experiment,
which supplied the best word recognition result on the validation set, was the solution
Sol2 (29 concavity and contour features and 36 clusters). In the second experiment,
the selected solution was Sol9 (23 DDD features and 24 clusters), while in the last
was Sol11 (53 DDD features and 63 clusters). Regarding the selected solutions Sol2


(Exp. I), Sol9 (Exp. II), and Sol11 (Exp. III), the recognition rates (RRs) (with zero-
rejection level) on the validation (VL) and test (TS) sets are reported in Table XXIII.
From Figures 45(a), 46(a), and 47(a) we can visualize that the value of the DB index
decreases as the number of features increases. Moreover, as we expected, the number
of nondominant solutions augments as the number of features gets bigger, e.g., in
Exp. III . In such a case, the number of solutions to be trained is also increased as
a consequence.


Table XXIV reports the recognition rates (with zero-rejection level) achieved on
month word recognition on the validation set by using the traditional scheme for
each experiment where the number of clusters was �xed at 20, 40, 60, 80, 100, 120,
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(a)


(b)


(c)


Figure 45 Exp. I: (a) Pareto-optimal front, (b) Number of clusters × number of
features, and (c) RR × number of features







113


(a)


(b)


(c)


Figure 46 Exp. II: (a) Pareto-optimal front, (b) Number of clusters × number of
features, and (c) RR × number of features
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(a)


(b)


(c)


Figure 47 Exp III: (a) Pareto-optimal front, (b) Number of clusters × number of
features, and (c) RR × number of features
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Table XXIII


The best solutions obtained by NSGA and their RRs on month word recognition


Exp. Solution No. of DB No. of RR VL RR TS
Clusters Index Features (%) (%)


I Sol2 36 0.039582 29 88.6 86.0
II Sol9 24 0.054439 23 78.0 71.0
III Sol11 63 0.030852 53 78.2 77.2


Table XXIV


The best solution obtained by the traditional strategy and their RRs on month
word recognition


Exp. Solution No. of No. of RR (VL) RR (TS)
Clusters Features (%) (%)


I Sol4 80 34 88.3 86.2
II Sol2 40 32 79.0 73.0
III Sol3 60 64 64.3 64.5


and 140. The solution that brought better results in Exp. I was Sol4 (34 features
and 80 clusters), while in Exp. II and III were solutions Sol2 (32 features and 40
clusters) and Sol3 (64 features and 60 clusters), respectively. Table XXIV also details
the word recognition results reached on the test set. It can be observed that the best
word recognition results achieved using our approach are similar or higher to the
results reached using the traditional strategy, which makes use of the entire feature
vector and tries empirically various number of clusters without performing feature
selection. For instance, in Exp. I and II, the results are very closed taking into
consideration the small validation and test sets we have used.


The foregoing experiments con�rm the e�ciency of the proposed methodology in
selecting a powerful subset of features and a proper value of the number of clusters.
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Besides, it reduced the number of features (Exp. I: from 34 to 29, Exp. II: from 32 to
23, and Exp. III: from 64 to 53) and found proper number of clusters while keeping
the recognition rates at the same level or higher as the traditional strategy. We can
notice that using our approach the improvements on word recognition were expressive
in Exp. III. In this case, it is easier to get better results when the original feature
set performs poorly. On the other hand, the main drawback of this methodology is
the processing time since for each solution found by NSGA, the K-Means algorithm
is executed to form clusters based on the selected features and the selected number
of clusters.


7.1.6 Optimization of the Word Veri�er of the Date Recognition System


We have seen so far that the proposed strategy was assessed on two synthetic data
sets where the number of clusters is known. Then, it was applied to a more complex
problem with high-dimension space and where we do not have knowledge about the
number of clusters, i.e., the recognition of isolated handwritten month words. Since
comprehensive experiments have demonstrated the feasibility and e�ciency of the
proposed methodology, our next step concerns in optimizing the word veri�er of
the baseline date recognition system. To accomplish this, we have conducted three
experiments using the optimized features obtained in the previous experiments on
isolated month word recognition. After that, we compare the results achieved with
those obtained from the baseline system.


7.1.6.1 Experimental Results


The three experiments described in this section were carried out on the test set of
401 date images, the same one used by the baseline system. In order to train the
word veri�er, we have used about 9,500 and 2,300 images of handwritten words for
training and validation respectively.
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As mentioned before, the word veri�er of the baseline system considers two feature
sets. The former is global features (20-symbol alphabet), while the latter is a mixture
of concavity and contour features (34 features and 100 clusters). Both feature sets
are combined with the segmentation primitives.


For the three experiments, the word veri�er also makes use of two feature sets. The
�rst experiment (Exp. IV) employs global and the optimized concavity and contour
features (29 features and 36 clusters). For the other ones (Exp. V and VI), we
consider the optimized DDD and concavity and contour features as well. Table XXV
reports the performance of the system using the optimized features and the baseline
system. This table details recognition rates (with zero-rejection level) achieved on
the validation (VL) and test (TS) sets for date and month word recognition.


Table XXV


Performance on date and word recognition


System Feature No. of No. of Date Month
Set Features Clusters VL TS VL TS


Baseline Global 20 20 82.5% 82.5% 93.1% 91.5%
Conc&Contour 34 100


Exp. IV Global 20 20 82.3% 82.7% 92.4% 91.0%
Conc&Contour 29 36
(optimized)


Exp. V DDD 23 24 82.5% 82.5% 92.9% 91.0%
(optimized)


Conc&Contour 29 36
(optimized)


Exp. VI DDD 53 63 82.3% 81.2% 93.1% 89.7%
(optimized)


Conc&Contour 29 36
(optimized)
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From Table XXV, we can note that in Exp. IV, by reducing the number of con-
cavity and contour features from 34 to 29 and the number of clusters from 100 to
36, the recognition rates on date and month word recognition were very similar to
the baseline system. The same happens when employing the optimized DDD and
concavity and contour features. For the next experiments, we �xed the error rates
around 2.0% on the test set. Table XXVI presents the recognition (RR), rejection
(RJ), and reliability (RL) rates on date recognition. In such cases, we have also
reached similar results by comparing with the baseline system.


Table XXVI


Recognition Rates (RR), Rejection Rates (RJ), and Reliability Rates (RL) on date
recognition


System Error ≡ 2.0
RR (%) RJ (%) RL (%)


Baseline 65.3 32.6 97.0
Exp. IV 66.0 31.6 96.7
Exp. V 65.8 31.9 96.7
Exp. VI 67.3 30.4 96.8


7.1.7 Discussion


In this chapter a methodology for feature selection in unsupervised learning based on
multi-objective optimization has been presented. It generates a set of nondominant
solutions called Pareto-optimal which corresponds to the best trade-o�s between the
number of features and quality of clusters. The proposed strategy was evaluated
using two synthetic data sets and then applied to handwritten month word recogni-
tion in order to optimize the word classi�ers as well as the word veri�ers of the date
recognition system. Even though the main weakness of our approach is related to its
processing time, the results achieved show the e�ciency of the proposed methodology
where the number of features was reduced, a proper number of clusters was found,
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and the recognition rates were kept at the same level or higher as the traditional
strategy. Therefore, it can be successfully applied to the problem of feature selection
in unsupervised learning and extended for use in a supervised learning context as we
have demonstrated through experimentation.







CONCLUSION


In this thesis, we have presented an HMM-MLP hybrid system for segmenting and
recognizing date images written on Brazilian bank cheques. The system evolves by
dealing with many sources of variability, such as heterogeneous data types and styles,
variations present in the date �eld, and di�cult cases of segmentation that make the
recognizer task particular hard to do.


The proposed system takes an HMM-based strategy for separating the date into sub-
�elds since we have seen that this is a di�cult task without resorting to recognition.
Thus, it is not necessary to perform a priori segmentation and premature errors can
be avoided. Besides, by identifying each date sub-�eld through the HMMs we can
recognize the three obligatory ones using specialized classi�ers according to their
respective data types which are known. However, the main strength of such an
approach lies in the modeling phase. We have built HMMs based on the concept
of the meta-classes of digits in order to reduce the lexicon size of the day and year
and improve the precision of their segmentation. We have shown di�cult cases of
segmentation in which our strategy works well.


In order to deal with the heterogeneous data types, we propose to use HMMs and
MLPs to work with words and strings of digits respectively. This is justi�ed by the
fact that HMMs have been successfully applied to handwritten word recognition and
MLPs to digit recognition. Moreover, the literature has shown better results on digit
recognition using MLPs [36, 91] than HMMs [46]. Although such methods are very
well known, this work presents an interesting strategy for lexicon size reduction that
makes use of the output of the HMMs (the number of digits present in a string)
and the concept of meta-classes of digits, which are bene�cial to the digit string
component. We have seen that the use of meta-classes of digits on digit string
recognition for 2-digit strings reached encouraging results on NIST SD19 database.
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We also have demonstrated that the proposed word veri�cation scheme brought an
increase in the overall recognition rate of the system. In order to assess such an
approach we have conducted experiments on legal amount database and compared
the results reached with an other system that makes use of the same database.
The results we achieved show the e�ciency of the strategy we developed for word
recognition and veri�cation.


Even though the system has achieved good performance taking into account its com-
plexity, we have seen that the system still has di�erent sources of errors that can
come from date segmentation, digit segmentation, digit string recognition, grapheme
segmentation, word recognition and veri�cation, etc. In order to improve the per-
formance of the system, we have focused on the optimization of the word veri�er.
We have proposed a wrapper approach for feature selection in unsupervised learning
based on multi-objective optimization. It generates a set of nondominant solutions
which contain the more discriminant features and the more pertinent number of
clusters. Firstly, this strategy was assessed using two synthetic data sets and then it
was applied to handwritten month word recognition in order to optimize the word
classi�ers as well as the word veri�ers of the date recognition system. The results
achieved show the e�ciency of the proposed methodology where the number of fea-
tures was reduced while the recognition rates were kept at the same level as the
traditional strategy. Our approach is the only one we have knowledge that makes
use of unsupervised learning in the context of the supervised learning [40].


Future Work


In order to improve the performance of the system, we believe that the following
directions can be investigated as future work:
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• The algorithm that splits an image into graphemes attempts to avoid a char-
acter under-segmentation. Nevertheless, we have seen that in the presence of
loops in an image a character under-segmentation can still occur. In order to
deal with such cases, some rules to segment loops can be introduced.


• The date segmentation module makes use of two feature sets that feed the
discrete HMMs. The former is based on high-level global features, while the
second one is based on low-level concavity measurements that are converted
into a sequence of symbols by a vector quantization algorithm. Instead of using
the traditional strategy for searching a proper number of clusters, the proposed
methodology for unsupervised feature selection can be used to �nd the number
of clusters and the more discriminant features. Besides, we can investigate
other optimized feature sets to be employed in date segmentation.


• Investigate other optimized feature sets to be used by the word veri�er.


• Design a digit veri�cation scheme in order to deal with the main confusions
generated by our classi�er. It could be interesting to investigate di�erent clas-
si�ers and feature sets.


• Regarding the proposed methodology for unsupervised feature selection, we can
explore other validity indices that measure the quality of clusters in order to
guide the search towards the more discriminant features and the best number
of clusters. In addition, we can investigate a mechanism that performs the
same search but for di�erent types of zoning instead of one.







APPENDIX 1


Databases
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Laboratory Database of Brazilian Bank Cheques


This database was collected at the campus of the Ponti�cal Catholic University
of Paraná (PUCPR) in Curitiba, Brazil. It contains isolated handwritten images of
date, courtesy and legal amounts where writers were basically students of the campus.
They were written in a separate blank sheet of paper which was put under a form
of a Brazilian bank cheque. Figure 48 illustrates an example of a Brazilian bank
cheque. In this way, we do not consider any extraction process of these �elds from
the background of cheques. There were no constraints on the writing style. However,
we consider only blue or black pen to �ll in the information on the paper. At the
moment the database consists of a total of almost 2,000 laboratory cheques. There
are about 2,000 handwritten images of date, and the same value for the amounts. All
images were acquired in 300 DPI and 256 gray levels. Besides, they were binarized
using the Otsu's method [93] described in Chapter 3. A detailed description of this
database is reported in [25].


Date


Legal amount


Courtesy amount


Signature


Figure 48 Example of a Brazilian bank cheque


The date database contains about 2,000 date images and it was divided into three
sets: 1,182, 396, and 401 images for training (TR), validation (VL), and testing (TS)
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respectively. As stated before, the date from left to right can consist of the following
sub-�elds: city name, �rst separator (Sep1), day, second separator (Sep2), month,
third separator (Sep3) and year. Figure 49 illustrates some samples of handwritten
dates. In such images, the grey color represents the obligatory date sub-�elds (day,
month and year). We can observe from this �gure that some writers put their own
�De� separators. However, the �De� separators are usually printed on real cheques
(see Figure 48). Some statistics of the date database are shown in Table XXVII.


In order to increase the training and validation sets of digits and letters, we have
considered the legal (LA) and courtesy (CA) amount databases. For the legal amount
database, we have used 8,325 and 1,906 word images for training and validation
respectively. Table XXVIII summarizes the distribution of each class of uppercase
(U) and lowercase (L) letters presented in the date and legal amount databases. The
courtesy amount database was divided into three subsets as shown in Table XXIX.
From these subsets we have extracted 14,172 images of isolated digits.


In order to assess the word recognition and veri�cation scheme, we have conducted
experiments using 10,430 images of isolated words extracted from the legal amount
database. For such experiments, we have divided the legal amount database into
three di�erent sets: 6,264, 2,092, and 2,074 images for training, validation, and
testing respectively. Table XXX shows the number of each class of words extracted
from these subsets and Table XXXI summarizes the distribution of the isolated
letters extracted from the training and validation sets.
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City Sep1 Sep2 Month Sep3 YearDay


Figure 49 Samples of handwritten date images
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Table XXVII


Distribution of each class presented in the date database


Class TR VL TS
Curitiba 848 321 300
Ctba 128 44 55


Total (2 classes of city names) 976 365 355
. 22 7 3
, 419 146 126


Total (2 classes of Sep1) 441 153 129
1-digit day 116 25 21
2-digit day 1,066 371 380


Total (classes of 1- and 2-digit day) 1,182 396 401
De 75 9 18
. 16 2 4
, 3 0 4


Total (3 classes of Sep2) 94 11 26
Janeiro 115 39 39
Fevereiro 94 32 32
Março 105 35 36
Abril 115 38 39
Maio 111 37 38
Junho 86 28 29
Julho 95 33 32
Agosto 84 28 28


Setembro 91 31 31
Outubro 87 29 30
Novembro 99 33 34
Dezembro 100 33 33


Total (12 classes of month words) 1,182 396 401
De 32 1 2
. 2 1 2
, 1 0 0


Total (3 classes of Sep3) 35 2 4
2-digit year 1,085 395 393
4-digit year 97 1 8


Total (classes of 2- or 4-digit year) 1,182 396 401
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Table XXVIII


Distribution of each letter presented in the date and legal amount databases


Class Database
Date LA Date + LA


TR VL TR VL TR VL
a (A) 394 (136) 136 (41) 3,276 (683) 761 (163) 3,670 (819) 897 (204)
b (B) 425 (67) 146 (18) 0 (0) 0 (0) 425 (67) 146 (18)
c (C) 86 (19) 25 (10) 1,864 (486) 407 (110) 1,950 (505) 432 (120)
d (D) 72 (28) 24 (9) 437 (161) 92 (39) 509 (189) 116 (48)
e (E) 746 (132) 261 (35) 6,449 (1,248) 1,450 (270) 7,195 (1,380) 1,711 (305)
f (F) 55 (39) 19 (13) 0 (0) 0 (0) 55 (39) 19 (13)
g (G) 73 (11) 22 (6) 0 (0) 0 (0) 73 (11) 22 (6)
h (H) 156 (25) 51 (10) 136 (38) 31 (2) 292 (63) 82 (12)
i (I) 365 (70) 130 (16) 3,680 (636) 868 (150) 4,045 (706) 998 (166)
j (J) 193 (103) 45 (55) 0 (0) 0 (0) 193 (103) 45 (55)
l (L) 173 (37) 63 (8) 711 (167) 182 (39) 884 (204) 245 (47)
m (M) 416 (90) 132 (37) 908 (197) 239 (48) 1,324 (287) 371 (85)
n (N) 241 (59) 75 (25) 4,493 (1,000) 1,024 (200) 4,734 (1,059) 1,099 (225)
o (O) 1,116 (221) 364 (84) 3,992 (888) 842 (191) 5,108 (1,109) 1,206 (275)
q (Q) 0 (0) 0 (0) 722 (316) 173 (81) 722 (316) 173 (81)
r (R) 744 (156) 253 (49) 1,792 (446) 420 (109) 2,536 (602) 673 (158)
s (S) 150 (25) 48 (11) 4,432 (1,145) 1,037 (248) 4,582 (1,170) 1,085 (259)
t (T) 230 (32) 74 (14) 5,585 (1,020) 1,255 (242) 5,815 (1,052) 1,329 (256)
u (U) 297 (58) 100 (19) 1,192 (226) 292 (70) 1,489 (284) 392 (89)
v (V) 161 (32) 57 (8) 1,354 (328) 258 (55) 1,515 (360) 315 (63)
z (Z) 82 (18) 27 (6) 495 (128) 95 (26) 577 (146) 122 (32)


Total L 6,175 2,052 41,518 9,426 47,693 11,478
Total U 1,358 474 9,113 2,043 10,471 2,517
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Table XXIX


Isolated digits extracted from the date and courtesy amount databases


Class Database
Date CA Date + CA


TR VL TS TR VL TS TR VL TS
0 1,120 353 350 1,190 210 309 2,310 563 659
1 1,102 385 369 908 160 289 2,010 545 658
2 730 213 240 1,043 184 336 1,773 397 576
3 267 103 96 942 166 316 1,209 269 412
4 218 66 69 897 158 316 1,115 224 385
5 231 66 67 925 163 317 1,156 229 384
6 205 67 74 905 159 302 1,110 226 376
7 258 86 86 929 163 310 1,187 249 396
8 249 91 99 808 142 313 1,057 233 412
9 426 131 149 858 151 303 1,284 282 452


Total 4,806 1,561 1,599 9,405 1,656 3,111 14,211 3,217 4,710
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Table XXX


Classes extracted from the legal amount database


Class TR VL TS
Cem 3 1 1


Cento 119 40 40
Cinquenta 177 59 58
Dezenove 23 8 8
Dezessete 20 7 6


Dois 203 68 68
Duzentos 121 41 40
Nove 178 60 60


Noventa 171 57 56
Oito 170 57 54
Onze 28 9 10


Quatorze 17 6 6
Quatrocentos 108 36 35


Quinze 21 7 8
Seis 174 58 58


Sessenta 178 59 60
Seiscentos 111 37 37


Tres 186 62 61
Trezentos 127 42 42


Um 181 61 60
Centavos 535 179 177
Setecentos 121 40 40


Cinco 177 59 59
Dez 27 9 10


Dezesseis 13 4 5
Dezoito 18 6 7
Doze 16 5 6
Mil 671 224 223


Novecentos 112 37 37
Oitenta 187 62 63


Oitocentos 129 43 41
Quarenta 182 61 61
Quatro 164 55 54


Quinhentos 120 40 39
Reais 670 223 222
Sete 169 57 52


Setenta 200 67 66
Treze 20 7 7
Trinta 213 71 69
Vinte 204 68 68


Total (40 classes of words) 6,264 2,092 2,074
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Table XXXI


Distribution of each letter presented in the legal amount database


Class TR VL
a (A) 2,491 (493) 799 (197)
c (C) 1,406 (351) 460 (125)
d (D) 331 (110) 96 (52)
e (E) 4,899 (878) 1,553 (375)
h (H) 104 (27) 30 (10)
i (I) 2,813 (451) 893 (193)
l (L) 556 (117) 170 (54)
m (M) 713 (142) 220 (66)
n (N) 3,426 (696) 1,075 (300)
o (O) 3,010 (611) 955 (254)
q (Q) 537 (252) 184 (80)
r (R) 1,354 (333) 439 (124)
s (S) 3,371 (838) 1,081 (326)
t (T) 4,241 (722) 1,353 (304)
u (U) 924 (167) 295 (71)
v (V) 1,009 (214) 311 (98)
z (Z) 369 (83) 114 (37)


Total L 31,554 10,028
Total U 6,485 2,666
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NIST SD19 Database


The SD19 is composed of 3,669 full-page binary images of Handwritten Sample
Forms (HSF), which are organized in eight series, denoted by hsf_{0,1,2,3,4,6,7,8}.
A total of 814,255 handwritten labelled characters (digit and alphabetic) have been
segmented from these forms and organized by class, �eld and writer (upper and lower
cases are merged). These isolated characters, as well as the full-page images, can be
found on the original SD19 compact disc.


Table XXXII


HSF series distribution


Series No. of Images
hsf_0 500
hsf_1 500
hsf_2 500
hsf_3 600
hsf_4 500
hsf_6 499
hsf_7 500
hsf_8 70
Total 3,669


An example of a full-page NIST form or HSF page is shown in Figure 50. We can see
that an HSF page consists of 34 �elds, 28 of which contain only numeric characters.
The �eld descriptions are presented in Table XXXIII.


A total of 100 HSF templates were used to �ll up the HSF pages. The number,
size and location of the �elds are the same in all template variations. However,
they present di�erent strings of characters. These templates are provided by NIST
SD19 in the form of truth �les �refxx.txt�, where �xx� represents a NIST template
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Figure 50 Handwriting Sample Form (HSF full-page form)
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Table XXXIII


Handwriting sample form (HSF) �elds


Field Description
�d_0 Name
�d_1 Date
�d_2 City/State/ZIP


�d_3, . . . �d_30 Numerical �elds
�d_31 Lower case character box
�d_32 Upper case character box
�d_33 Free format text


from 00 to 99. Similarly, the page image �les (or forms) have name of the form
�fyyyy_xx.tif�, where yyyy identi�es the writer and �xx� the template number.


Numerical Fields


As part of his doctoral research, Britto Jr. [45] developed a system to extract strings
of digits from NIST forms. He built a test set that contains 12,802 distributed into
six classes: 2-digit (2,370), 3-digit (2,385), 4-digit (2,345), 5-digit (2,316), 6-digit
(2,169), and 10-digit (1,217) string, respectively. These data were extracted from
hsf_7 series.


For the experiments conducted on digit string recognition, the test set we have used
is a subset of 2-digit strings of hsf_7 series. In this case, the test set contains
986 images of 2-digit strings related to the lexicon of 2-digit day. For training and
validation, we have used 195,000 and 28,124 images of isolated digits extracted from
hsf_{0,1,2,3}.







APPENDIX 2


Hidden Markov Models
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The Hidden Markov Model Concept


A Hidden Markov Model (HMM) is a doubly stochastic process, with an underly-
ing stochastic process that is not observable (hence the word hidden), but can be
observed through another stochastic process that produces the sequence of observa-
tions [96]. The hidden process consists of a set of states connected to each other by
transitions with probabilities, while the observed process consists of a set of outputs
or observations, each of which may be emitted by each state according to some out-
put probability density function (pdf). Depending on the nature of this pdf, several
kinds of HMMs can be distinguished. If the observations are naturally discrete or
quantized using vector quantization [41], and drawn from an alphabet or a codebook,
the HMM is called discrete. If these observations are continuous we are dealing with
a continuous HMM, with a continuous pdf usually approximated by a mixture of
normal distributions. In the context of this thesis we consider discrete HMMs.


In some applications, it is more convenient to produce observations by transitions
rather than by states. Furthermore, it is sometimes useful to allow transitions with
no output in order to model, for instance, the absence of an event in a given stochastic
process. If we add the possibility of using more than one feature set to describe the
observations, we must modify the classic formal de�nition of HMMs [96]. These
modi�cations can be found in [122] and they are also described in this appendix. In
this case, the following parameters are required:


• T : length of the observation sequence O = {o0, o1, . . . , oT−1}, where ot =


(o0
t , o


1
t , . . . , o


P−1
t ), the observation op


t at time t being drawn from the pth �nite
feature set, and p = 0, 1, . . . , P − 1.


• N : number of states in the model.


• Mp: number of possible observation symbols for the pth feature set.
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• S = {s0, s1, . . . , sN−1}: set of possible states of the model.


• Q = {qt}: qt denotes the state at time t.


• Vp = {vp
0, v


p
1, . . . , v


p
M−1}: codebook or discrete set of possible observation sym-


bols corresponding to the pth feature set.


• A = {aij}, aij = P [qt+1 = sj|qt = si]: probability of going from state si at time
t to state sj at time (t+1), and at the same time producing a real observation
ot at time t.


• A′ = {a′ij}, a′ij = P [qt = sj|qt = si]: probability of null transition from state
si at time t to state sj at time t, producing null observation symbol Φ. Note
here that there is no increase over time since no real observation is produced.


• Bp = {bp
ij(k)}, bp


ij(k) = P [op
t = vp


k|qt = si, qt+1 = sj]: output pdf of observing
the kth symbol in the pth feature set when a transition from state si at time t to
state sj at time (t+1) is taken. If we assume the P output pdfs are independent
(multiple codebooks), we can compute the output probability bij(k) as the
product of P output probabilities:


bij(k) =
P−1∏


p=0


bp
ij(k) (2.1)


• π = {πi}, πi = P [q0 = si]: initial state distribution. In general, it is more
convenient to have prede�ned initial and �nal states s0 and sN−1 that do not
change over time. In this case, π0 = 1 and πi = 1, 2, . . . , N − 1.


A, A′, Bp, and π obey the stochastic constraints:


N−1∑


j=0


[aij + a′ij] = 1
Mp−1∑


k=0


bp
ij(k) = 1


N−1∑


i=0


πi = 1 (2.2)
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p = 0, 1, . . . , P − 1


It can be seen that a complete speci�cation of an HMM requires speci�cation of two
model parameters, N and M , speci�cation of observation symbols, and the speci�ca-
tion of the four sets of probability measures A, A′, Bp and π where p = 0, 1, . . . , P−1.
For convenience, we use the compact notation λ = (A,A′, Bp, π) to indicate the com-
plete parameter set of the model. This parameter set, of course, de�nes a probability
measure for O, i.e., P (O|λ), which we discuss along this Appendix.


Types of HMMs


There are two important types of HMMs: ergodic and left-right or Bakis model
[96]. The ergodic model is a speci�c case of a fully-connected model when all aij are
positive. In this type of model, the states are interconnected in such a way that any
state can be reached from any other state. Figure 51(a) shows a 4-state ergodic HMM
model. The left-right model presents an important kind of state interconnection for
text recognition modeling, which has the property:


aij = 0, j < i (2.3)


This property means that no transitions are allowed to states whose indices are lower
than that of the current state. Since the state sequence must begin in state 0 (and
end in state N − 1), the initial state probabilities have the following property:


πi =







0, i 6= 0


1, i = 0
(2.4)
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Often, with left-right models, additional constraints are used in order to avoid great
changes in state indices, such as:


aij = 0, j > i + ∆ (2.5)


The value of ∆ is used as a limit for jumps. For instance, in 51(b), ∆ is two, that
is, no jumps of more than two states are allowed.


1 2


43


(a)


1 2 3 4


(b)


Figure 51 Types of HMMs: (a) Ergodic model, and (b) Left-right model


The Three Basic Problems for HMMs


Given a model, three basic problems of interest must be solved for the model to be
useful in real-word applications. These problems are the following:


• The evaluation problem: given an observation sequence O = (o0, o1, . . . , oT−1),
and a model λ = (A, A′, B, π), how do we compute P (O|λ), the probability of
O given λ ?


• The decoding problem: given the observation sequence O = (o0, o1, . . . , oT−1),
and the model λ, how do we �nd the optimal state sequence in λ that has
generated O ?
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• The training problem: given a set of observation sequences and an initial model
λ, how can we re-estimate the model parameters so as to increase the likelihood
of generating this set of sequences ?


The Evaluation Problem


To compute P (O|λ), we modify the well-known Forward-Backward procedure [96]
to take into account the assumption that symbols are emitted along transitions, the
possibility of null transitions, and the use of multiple codebooks. Hence, we de�ne
the forward probability αt(i) as:


αt(i) = P (o0, o1, . . . , ot−1, qt = si|λ) (2.6)


where αt(i) is the probability of the partial observation sequence (o0, o1 . . . , ot−1)


(until time t− 1) and the state si reached at time t given the model λ. αt(i) can be
inductively computed as follows.


1. Initialization


α0(0) = 1.0 (2.7)


α0(j) =
N−1∑


i=0


a′ijα0(i) j = 0, 1, . . . , N − 1


given that s0 is the only possible initial state.


2. Induction


αt(j) =
N−1∑


i=0



aij






P−1∏


p=0


bp
ij(ot−1)



 αt−1(i) + a′ijαt(i)



 (2.8)
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j = 0, 1, . . . , N − 1 and t = 1, 2, . . . , T


3. Termination


P (O|λ) = αT (N − 1) (2.9)


given that sN−1 is the only possible terminal state. Similarly, we de�ne the backward
probability βt(i) by:


βt(i) = P (ot, ot+1, . . . , oT−1|qt = si, λ) (2.10)


where βt(i) is the probability of the partial observation sequence from the time t


to the end, given state si reached at time t and the model λ. βt(i) can also be
inductively computed as follows.


1. Initialization


βT (N − 1) = 1.0 (2.11)


βT (i) =
N−1∑


j=0


a′ijβT (j) i = 0, 1, . . . , N − 1


given that sN−1 is the only possible terminal state.


2. Induction


βt(i) =
N−1∑


j=0



aij






P−1∏


p=0


bp
ij(ot)



 βt+1(j) + a′ijβt(j)



 (2.12)
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t = T − 1, T − 2, . . . , 0 and i = 0, 1, . . . , N − 1


3. Termination


P (O|λ) = β0(0) (2.13)


given that q0 is the only possible initial state.


The Decoding Problem


The decoding problem is solved using a near-optimal procedure, the Viterbi algo-
rithm, by looking for the best state sequence Q = (q0, q1, . . . , qT ) for the given obser-
vation sequence O = (o0, o1, . . . , oT−1). Again, we modify the classic algorithm [96]
in the following way.


δt(i) = max
q0,q1,...,qt−1


P [q0, q1, . . . , qt, qt = si, o0, o1, . . . , ot−1|λ] (2.14)


where δt(i) is the probability of the best path that accounts for the �rst t observations
and ends at state si at time t. The function Ψt(i) is de�ned to recover the best
state sequence by a procedure called Backtracking. Ψt(i) e δt(i) can be recursively
computed as follows.


1. Initialization


δ0(0) = 1.0 (2.15)


Ψ0(0) = 0
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δ0(j) = max
0≤i≤N−1


[δ0(i)a
′
ij] j = 0, 1, . . . , N − 1


Ψ0(j) = arg max
0≤i≤N−1


[δ0(i)a
′
ij] j = 0, 1, . . . , N − 1


given that s0 is the only possible initial state.


2. Recursion


δt(j) = max
0≤i≤N−1



aij






P−1∏


p=0


bp
ij(ot−1)



 δt−1(i); a


′
ijδt(i)



 (2.16)


t = 1, 2, . . . , T and j = 0, 1, . . . , N − 1


Ψt(j) = arg max
0≤i≤N−1



aij






P−1∏


p=0


bp
ij(ot−1)



 δt−1(i); a


′
ijδt(i)



 (2.17)


t = 1, 2, . . . , T and j = 0, 1, . . . , N − 1


3. Termination


P ∗ = δT (N − 1) (2.18)


q∗T = (N − 1) (2.19)


given that sN−1 is the only possible terminal state.
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4. Backtracking procedure


q∗t = Ψt+1(q
∗
t+1), t = T − 1, T − 2, . . . , 0 (2.20)


As shown above, except for the Backtracking procedure, Viterbi and Forward pro-
cedures are similar. The only di�erence is that the summation is replaced by maxi-
mization.


The Training Problem


The main strength of HMMs is the existence of a procedure called the Baum-Welch
algorithm [43, 96] that iteratively and automatically adjusts HMM parameters given
a training set of observation sequences. This algorithm, which is an implementation
of the Expectation-Maximization algorithm [80], guarantees the model to converge
to a local maximum of the probability of observation of the training set according to
the maximum likelihood estimation criterion. This maximum depends strongly on
the initial parameters.


To re-estimate HMM parameters, we �rst de�ne ξ1
t (i, j), the probability of being in


state si at time t and in state sj at time (t + 1), producing a real observation Ot,
given the model and the observation O, and ξ2


t (i, j), the probability of being in state
i at time t and in state j at time t, producing the null observation Φ, given the model
and the observation O.


ξ1
t (i, j) = P (qt = si, qt+1 = sj|O, λ) (2.21)


ξ2
t (i, j) = P (qt = si, qt = sj|O, λ) (2.22)
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The development of these quantities leads to:


ξ1
t (i, j) =


αt(i)aij


(∏P−1
p=0 bp


ij(ot)
)
βt+1(j)


P (O|λ)
(2.23)


ξ2
t (i, j) =


αt(i)a
′
ijβt(j)


P (O|λ)
(2.24)


We also de�ne γt(i) as the probability of being in state si at time t, given the model
and the observation sequence.


γt = P (qt = si|O, λ) (2.25)


γt(i) is related to ξ1
t (i, j) and ξ2


t (i, j) by the following equation:


γt =
N−1∑


j=0


[ξ1
t (i, j) + ξ2


t (i, j)] =
αt(i)βt(i)


P (O|λ)
(2.26)


The re-estimations of HMM parameters {aij}, {a′ij} e {bp
ij(k)} are:


aij =
expected number of transitions from si at time t to sj at time (t + 1)


expected number of being in si


(2.27)


a′ij =
expected number of transitions from si at time t to sj at time t and observing Φ


expected number of being in si


(2.28)


bp
ij(k) =


expected number of symbols vp
k
in transition from si at time t to sj at time (t + 1)


expected number of transitions in si at time t to sj at time (t + 1)
(2.29)







146


Given the de�nitions of ξ1
t (i, j), ξ2


t (i, j), and γt(i), it is easy to see, when we are using
one observation sequence O:


aij =


∑T−1
t=0 ξ1


t (i, j)∑T
t=0 γt(i)


=


∑T−1
t=0 αt(i)aij


(∏P−1
p=0 bp


ij(ot)
)
βt+1(j)


∑T
t=0 αt(i)βt(i)


(2.30)


a′ij =


∑T−1
t=0 ξ2


t (i, j)∑T
t=0 γt(i)


=


∑T−1
t=0 αt(i)a


′
ijβt(j)∑T


t=0 αt(i)βt(i)
(2.31)


bp
ij(k) =


∑T−1
t=0 δ(op


t , v
p
k)ξ


1
t (i, j)∑T−1


t=0 ξ1
t (i, j)


=


∑T−1
t=0 δ(op


t , v
p
k)αt(i)aij


(∏P−1
p=0 bp


ij(ot)
)
βt+1(j)


∑T−1
t=0 αt(i)aij


(∏P−1
p=0 bp


ij(ot)
)
βt+1(j)


(2.32)


where δ(x, y) =






1 ifx = y


0 ifx 6= y






For a set of training sequences O(0), O(1), . . . , O(U − 1) (size U), as is usually the
case in real world applications, the above formulas become:


aij =


∑U−1
u=0


∑T−1
t=0 ξ1


t (i, j, u)
∑U−1


u=0


∑T
t=0 γt(i, u)


=


∑U−1
u=0


1
P (u)


∑T−1
t=0 αt(i, u)aij


(∏P−1
p=0 bp


ij(o
p
t (u))


)
βt+1(j, u)


∑U−1
u=0


1
P (u)


∑T
t=0 αt(i, u)βt(i, u)


(2.33)


a′ij =


∑U−1
u=0


∑T−1
t=0 ξ2


t (i, j, u)
∑U−1


u=0


∑T
t=0 γt(i, u)


=


∑U−1
u=0


1
P (u)


∑T−1
t=0 αt(i, u)a′ijβt(j, u)


∑U−1
u=0


1
P (u)


∑T
t=0 αt(i, u)βt(i, u)


(2.34)


bp
ij(k) =


∑U−1
u=0


∑T−1
t=0 δ(op


t (u), vp
k)ξ


1
t (i, j, u)


∑U−1
u=0


∑T−1
t=0 ξ1


t (i, j, u)
(2.35)
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bp
ij(k) =


∑U−1
u=0


1
P (u)


∑T−1
t=0 δ(op


t (u), vp
k)αt(i, u)aij


(∏P−1
p=0 bp


ij(o
p
t (u))


)
βt+1(j, u)


∑U−1
u=0


1
P (u)


∑T−1
t=0 αt(i, u)aij


(∏P−1
p=0 bp


ij(o
p
t (u))


)
βt+1(j, u)


In the above equations, the index u is introduced into α, β, ξ1, ξ2, and γ to indicate
the observation sequence O(u) currently used. Note that a new quantity P (u) =


P (O(u)|λ) appears, since this term is now included in the summation and cannot be
eliminated as before.


If we de�ne the current model as λ = (A,A′, Bp, π) and the re-estimated model
as λ = (A,A′, Bp, π), and we iteratively use λ in place of λ and repeat the re-
estimation calculation, we can then improve the probability of O being observed
from the model until some limiting point is reached. The �nal result of this re-
estimation procedure is a maximum likelihood estimate of the HMM. It should be
pointed out that the Forward-Backward algorithm leads to a local maxima only, and
that in most problems of interest, the likelihood function is very complex and has
many local maxima.







APPENDIX 3


Weighted Least Square Approach
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The approach we have used to eliminate the undesirable maximum (minimum) points
is based on the weighted least square technique [81] and it works as follows. After
the maxima (minima) have been detected, they are adjusted to a straight line. A
common way would be apply the least square method using the mathematical model
y = ax + b, where a is the skew of the straight line, b is the intercept, and x and y


are the coordinates of the maxima (minima).


The criterion of minimizing the sum of the squares of the remainder, vk, must be
applied when there are more than two maxima (minima) in the handwriting, i.e.,
n > 2. In mathematical notation, the least square method is de�ned by:


minimize(
n∑


k=1


v2
k) = minimize(a,b∈<)(


n∑


k=1


[axk + b− yk]
2) (3.1)


When di�erent weights are applied to the remainder, the weighted least square
method is de�ned by minimizing:


n∑


k=1


v2
kpk (3.2)


where pk is the weight of the corresponding remainder vk. The parameters are
obtained, both for the weighted case and for the case in which the weights are
considered units, by deriving the above equation in relation to the parameters and
equaling them to zero.


The method we have used to detect the undesirable maxima (minima) is known in
geodesy as changing weights [65]. It consists in decreasing, at each iteration, the
weight of the points of the remainder which surpasses a given pre-�xed iteration
value. One of the weighting function method [65] is:
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pk+1 = pk







pke
−(


|vk|
3σ


) if |vk| ≥ 3σ


pk if |vk| < 3σ
with σ =


√∑n
k=1 pkv2


k


n− 2
(3.3)


where σ is the standard deviation.


As a rule, the �rst iteration is performed without weights. In our case, a di�erent ap-
proach was adopted to increase the e�ciency of the method. Such approach consists
initially in de�ning and employing weights since the �rst iteration. The criterion
adopted to de�ne the weights pk, with k = 1, . . . , n, is:


pk =
1


d2
k


(3.4)


where dk = δk


min(δk)
, with k = 1, . . . , n and δk = (yk − yk−1)


2 + (yk − yk+1)
2.


Then, the weight of the remainders greater than the standard deviation value is
decreased for the �rst two iterations. For the next iterations, the criterion adopted
is to decrease the weight of the remainders surpassing 3σ. Furthermore, better
results were achieved using 2σ instead of 3σ in the weighting function exponential
denominator.







APPENDIX 4


Vector Quantization Process
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To use the HMMs described in Appendix 2, we need to represent an image as a
sequence of discrete symbols. To do so, each feature vector extracted from the image
that contains real values (low-level-feature) needs to be quantized to one of the
discrete symbols (high-level feature) available in a previously computed codebook.
To create this codebook, it is necessary to apply the concept of vector quantization
[41].


Let us assume that X = [X1, X2, . . . , Xd] is a d-dimensional vector whose components
{Xk, 1 ≤ k ≤ d} are real-valued, continuous-amplitude random variables. In vector
quantization, the vector X is mapped onto another real-valued, discrete-amplitude
d-dimensional vector Z. It is used to say that X is quantized as Z. This can be
denoted by:


Z = q(X) (4.1)


where q() is the quantization operator. Z takes one of a �nite set of values W =


{Zi, 1 ≤ i ≤ L} where Zi = [Zi1, Zi2, . . . , Zid]. The set W is referred to as the
codebook, L is the size of codebook (or number of levels in the codebook), and {Zi}
is the set of codewords. To design a codebook, we divide the d-dimensional space of
the original random vector X into L regions or cells {Ci, 1 ≤ i ≤ L} and associate
with each cell Ci a vector Zi. The quantizer then assigns the codeword Zi if X is in
Ci.


q(X) = Zi, if X ∈ Ci (4.2)


The mapping of X onto Z results in a quantization error, and a distortion measure
d(X, Z) can be de�ned between X and Z to measure the quality of quantization.
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In this case, we have used the Euclidean distance which is the most commonly used
distortion measure.


Quantization is optimal when the overall average distortion de�ned in Equation 4.5
is minimized over all L-levels of the quantizer. There are two necessary conditions
for optimality. The �rst condition is that the optimal quantizer is realized by using
a nearest neighbor selection rule.


q(X) = Zi, iff d(X, Zi) ≤ d(X, Zj), j 6= i, 1 ≤ j ≤ L (4.3)


This means that the quantizer selects the codeword vector that results in the mini-
mum distortion with respect to X. The second condition for optimality is that each
codeword Zi is chosen to minimize the average distortion in cell Ci. Let us consider
{X(n), 1 ≤ n ≤ M} as a set of training vectors and Ki as a subset of vectors located
in cell Ci. The average distortion Di in cell Ci and the overall average distortion
Doverall are then given by:


Di =
1


Ki


∑


X∈Ci


d(X,Zi) (4.4)


Doverall =
L∑


i=1


Di (4.5)


The vector that minimizes the average distortion in cell Ci is called the centroid of
Ci, and it is denoted as:


Zi = cent(Ci) (4.6)
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Zi is then obtained from:


Zi =
1


Ki


∑


X∈Ci


X (4.7)


One well-known method for codebook design is an iterative clustering algorithm
known in the pattern recognition literature as the K-Means algorithm [41]. The
basic idea of such an algorithm is to divide the set of training vectors into L clusters
Ci{1 ≤ i ≤ L} in such a way that the two necessary conditions for optimality are
satis�ed. The algorithm can be described as follows:


• Initialization step: choose randomly a set of initial centroids (Zi, 1 ≤ i ≤ L).


• Classi�cation step: classify each element of training vectors X(n) into one of
the clusters Ci by choosing the nearest codeword Zi(X ∈ Ci, iff d(X,Zi) ≤
D(X, Zj) for all j 6= i).


• Codebook updating step: update the codeword of each cluster by computing
the centroid of the training vectors in each cluster (Zi = cent(Ci), 1 ≤ i ≤ L).


• Termination step: if the decrease in the overall distortion Doverall at the current
iteration relative to the overall distortion at the previous iteration is below a
certain threshold, stop; otherwise go to the classi�cation step.







APPENDIX 5


Directional Distance Distribution
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To each of the pixels in the binary input pattern map (Figure 52), two sets of 8 bytes
which we call the W (White) set and B (Black) set are allocated as shown in Figure
53. For a white pixel, the set W is used to encode the distances to the nearest black
pixels in 8 directions. The set B is simply �lled with value zero without computing
the distances. Likewise, for a black pixel, the set B is used to encode the distances
to the nearest white pixels in 8 directions. The set W is �lled with value zero (The
8-direction codes are 0(E), 1(NE), 2(N), 3(NW), 4(W), 5(SW), 6(S), 7(SE)).


Figure 52 A sample pattern


For the sample pattern in Figure 52, the pixel at coordinates (8,2) will have the WB
encoding at the top of Figure 53. Because this pixel is white, the B set is �lled with
value zero. For the set W, to compute the distance value in all 8 directions, the
pixel shoots a ray in each direction, which proceeds until it hits a black pixel. In
case of hitting, the distance travelled is recorded into the byte corresponding to the
ray direction. As an example, for the direction 0, the ray will travel the sequence,
(8, 2)W → (9, 2)W → (10, 2)W → (11, 2)W → (12, 2)B. So the travel distance 4 is
recorded in the �rst byte of the W set.


Figure 53 shows another example of the WB encoding for the black pixel located
at (8,1). In this example, a case occurs when the ray arrives at the map boundary
without hitting any white pixel. For example, the ray for the direction 3 travels the
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Figure 53 An example of WB encoding


sequence, (8, 1)B → (7, 0)B → boundary, and it meets the boundary before hitting a
white pixel. In this case, the ray should stop at the boundary. So the following travel
sequence will be followed; (8, 1)B → (7, 0)B → boundary, and the travel distance is
determined to be 2. This information is recorded in the fourth byte of B set which
corresponds to the direction 3. For more details see [89].
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