Multi-Objective Evolutionary
Algorithms

Data Structures, Convergence, and Diversity

Zur Erlangung des akademischen Grades
DOKTOR-INGENIEUR (Dr.-Ing.)
der Fakultit Elektrotechnik, Informatik und Mathematik
der Universitat Paderborn
genehmigte Dissertation
von
M.Sc. Sanaz Mostaghim
aus
Teheran, Iran

Referent: Prof. Dr.-Ing. Jiirgen Teich
Erster Korreferent: Prof. Dr. Michael Dellnitz
Zweiter Korreferent: Prof. Dr.-Ing. Klaus Meerkotter

Tag der miindlichen Priifung: 21.09.2004

Paderborn, den 22. November 2004

Diss. 14/205

In Loving Memory of
My Mother

Abstract

Many real-world optimization problems consist of several conflicting objectives, the
solutions of which is a set of trade-offs called the Pareto-optimal set. During the last
decade, Evolutionary Algorithms (EAs) have been utilized to find an approximation
of the Pareto-optimal set. However, the approximation set must possess solutions
with high convergence towards the Pareto-optimal set and hold a good diversity in
order to demonstrate a good approximation.

The subject of this thesis is to improve the existing Multi-Objective Evolutionary
Algorithms (MOEAs) and to develop new techniques in order to achieve approxi-
mated sets with high convergence and diversity in low computational time.
Reducing the computational time has been attained by incorporating various data
structures and archiving techniques in the storage of the approximated solutions. A
desirable convergence of solutions has been accomplished by applying a controllable
search strategy to MOEAs in a hybrid MOEA.

Since 1995, the search strategy of EAs has been modified by a new optimization
technique called Particle Swarm Optimization (PSO), inspired by the simulation of
social behavior of bird flocking. In this thesis, a novel approach in Multi-Objective
Particle Swarm Optimization (MOPSO) has been developed which leads to a better
convergence and diversity of solutions than MOEAs. This has been demonstrated
by several test problems and two real-world applications in antenna design and
molecular force field parameterization in computational chemistry. Furthermore, a
new quantitative metric for measuring the diversity of the approximated set has
been developed and applied to the obtained solutions.

Zusammenfassung

Viele alltagliche Optimierungsprobleme bestehen aus gegensitzlichen Zielen, die
gleichzeitig erfiillt werden miissen. Die Losungen, die Kompromisse zwischen diesen
Optimierungszielen erreichen, bilden eine so genannte Pareto-optimale Menge. In
den vergangenen Jahren sind evolutiondre Algorithmen (engl. Evolutionary Al-
gorithm (EA)) eingesetzt worden, um Anndhrungen zu diesen Pareto-Mengen zu
finden, die auf der einen Seite so gut wie moglich in Richtung der Elemente dieser
Menge konvergieren, und auf der anderen Seite einen grofien Teil dieser Menge
iberdecken (Diversitit).

Diese Arbeit beschéftigt sich mit der Verbesserung vorhandener Methoden fiir die
Mehrziel-Evolutionaren-Algorithmen (engl. Multi-objective Evolutionary Algorithm
(MOEA)) und die Entwicklung neuer Methoden, um bessere Konvergenz und Di-
versitat in geringer Rechenzeit zu erreichen.

Die Verkiirzung der Rechenzeit ist durch die Nutzung geeigneter Datenstrukturen
und neuer Archivierungsmethoden fiir die Elemente der Anndhrungsmengen erreicht
worden. Ein neuer hybrider MOEA ist hier durch die Erganzung bestehender MOEA
mit einer kontrollierbaren Suchmethode entwickelt worden, die eine erwiinschte Kon-
vergenz liefert.

Seit 1995 wird die Suchstrategie von evolutiondren Algorithmen durch neue Ver-
fahren — Particle Swarm Optimization (PSO) genannt — verbessert. PSO liegt
die Beobachtung des sozialen Verhaltens von Tieren zugrunde, welche in groflen
Verbanden leben und ihr Verhalten einem in der Regel am besten ausgebildeten
Leittier anpassen.

Hier wird das neue Verfahren Mehrziel-PSO (engl. Multi-Objective PSO (MOPSO))
vorgestellt, welches bessere Konvergenz und Diversitiat von Losungen bietet als die
bisher existierenden MOEA. Die Uberlegenheit von MOPSO ist durch zahlreiche
Testaufgaben und zwei realistische Problemstellungen — namlich Antennenentwurf
und Parametrisierung von Kraftfeldern — gezeigt worden. Auflerdem ist ein neues
Maf fiir die Diversitdt der Anndhrungspunkte vorgeschlagen und an den betra-
chteten Problemen angewandt worden.

I would like to thank my supervisor Prof. Dr.-Ing. Jiirgen Teich for giving me
the opportunity of doing a PhD, for his support, and for teaching me how to work
efficiently.

Gratitude goes also to my two co-referents Prof. Dr. Michael Dellnitz and Prof.
Dr.-Ing. Klaus Meerkotter for agreeing to do this important task.

I would also like to thank Safoora Sedigh for the careful English proofreading.

Contents

List of Acronyms
List of Symbols

Introduction

1.1 Multi-objective Optimization
1.2 Existing Worko oo
1.3 Challenges and Problems
1.4 Research Goals and Specific Objectives
1.5 Document Organization

Multi-Objective Evolutionary Algorithm (MOEA)
2.1 Evolutionary Algorithms
2.2 MOEA Methods
2.2.1 Strength Pareto Evolutionary Algorithm 2 (SPEA2)
2,22 SUMMATY e e e
2.3 Convergence i e e e e
2.4 Test Functions L L
2.5 Performance Metrics oL
2.5.1 Cardinality-based Performance Metrics
2.5.2 Convergence-based Performance Metrics
2.5.3 Diversity-based Performance Metrics
2.6 Conclusiono

Data Structures

3.1 Linear Lists oo
3.2 Dominated and Non-dominated Trees
3.3 Quad-trees
3.4 Data Structures in MOEA
3.0 Experiments L

13
13
17
20
22
23
24
25
27
27
30
33

ii CONTENTS
3.5.1 Influence of Population Size 51

3.5.2 Influence of Number of Objectives 54

3.5.3 Influence of Archive Size 55

3.5.4 Comparison 58

3.6 Conclusion 61

4 Hybrid Multi-Objective Evolutionary Algorithm (HMOEA) 63
4.1 Subdivision Technique L. 64
4.2 HMOEA 66
4.2.1 Static Recoveringo 0oL 68

4.2.2 Dynamic Recovering 69

4.3 Experiments 70
4.3.1 Discussion Lo 72

4.4 Conclusion L L 74

5 Multi-Objective Particle Swarm Optimization (MOPSO) 75
5.1 Particle Swarm Optimization (PSO) 76
5.2 MOPSO e 7
5.3 Finding Best Local Guides, 79
5.3.1 Sigma Method 0oL 81

5.4 Turbulence Factor Lo Lo 85
5.5 MOPSO vs. MOEA 85
5.5.1 Archivingin MOPSO L. 87

5.6 Sigma Diversity Metric o o000 88
5.6.1 Median Sigma Value (&) 93

5.7 Experiments oL 96
5.7.1 2-objective MOPs 96

5.7.2 3-objective MOPs oo 100

5.7.3 4-objective MOPs oo 103

5.7.4 Parameter Setting of a MOPSO 105

5.8 Covering Pareto-fronts by MOPSO 109
5.8.1 Experiments 111

5.9 Conclusion L 115

6 «MOPSO 117
6.1 Definitions Lo 118
6.2 Bounding the Archive Size oo oL 119
6.2.1 Clustering e 119

6.2.2 Lebesgue Archiving Hill Climber (LAHC) 120

CONTENTS iii
6.2.3 edominance 121

6.3 Experiments 123
6.3.1 Results. 123

6.3.2 Influence on Computational Time 124

6.3.3 Influence on Convergence 124

6.3.4 Influence on Diversity 126

6.4 Conclusion e 128

7 Applications 133
7.1 Application in Antenna Designo 0L 133
7.1.1 Experiments 134

7.2 Application in Computational Chemistry 137
7.2.1 Parameterization of Molecular Force Fields 137

7.2.2 Molecular Force Fields 138

7.2.3 Description of Objective Functions 140

724 Experiments 142

7.2.5 Case Study: Set of Two Alcohols 143

7.2.6 Comparison of Different Algorithms 143

7.2.7 Analysis of Physical Properties 146

7.3 Conclusion 151

8 Conclusion and Outlook 153
8.1 Fundamental Results 153
8.2 Future Directions in MOEA 154

A Convergence of MOEA 157
A1l Background 157
A.1.1 Markov Chains 158

A2 Convergence i e 159
A21 Proof. 160

List of Acronyms

AGA Adaptive Grid Archiving

ANN Artificial Neural Network

AR1 Rudolph and Agapie’s Elitist Genetic Algorithm
CHARMM Chemistry at Harvard Molecular Mechanics
EA Evolutionary Algorithm

ER Error Ratio

GD Generational Distance

HMOEA Hybrid MOEA

LAHC Lebesgue Archiving Hill Climber

MM3 Molecular Mechanics version 3

MO Multi-objective Optimization

MOEA Multi-Objective Evolutionary Algorithm
MOP Multi-objective Optimization Problem

MOPSO Multi-Objective Particle Swarm Optimization
NSGAII Non-dominated Sorting Genetic Algorithm II

PAES Pareto-Archived Evolution Strategy
PSO Particle Swarm Optimization

SBX Simulated Binary Cross-over

SPEA Strength Pareto Evolutionary Algorithm

VEGA Vector Evaluated Genetic Algorithm

List of Symbols

Number of parameters
Number of objectives
Decision vector

L

Objective vector

&

Feasible decision space

Archive

Population

Maximum number of generations

PR LIV T

Population size
Mutation probability

=
3

Cross-over probability

Strength value of individual %
Raw Fitness value of individual ¢
Inertia weight

:UCI)G@
—_—~
~. o~
~—

g

Velocity

.

Best position of individual 7 in the parameter space
Global best position
Turbulence factor

k"B
o

ﬂ

Composite vector

List of composite vectors
Successorship

k-Set

Sigma vector

T N L Ay

~
—~~

Eayd
~—

Performance metric (median Sigma vector)
Performance metric (C' metric)

5 Q @

Performance metric (Sigma diversity metric)

=

Box covering

Sy

Box in parameter space
Set of test points

=

Chapter 1

Introduction

In our daily lives we are inevitably involved in optimization. How to get to the uni-
versity in the least time is a simple optimization problem that we encounter every
morning. Just looking around ourselves we can see many examples of optimization
problems even with conflicting objectives and higher complexities. It is natural to
want everything to be as good as possible, in other words optimal. The difficulty
arises when there are conflicts between different goals and objectives. Indeed, many
real-world optimization problems with multiple conflicting objectives exist in sci-
ence and industry, which are of great complexity. We call them Multi-objective
Optimization Problems (MOPs).

Over the past decade, lots of new ideas have been investigated and studied to solve
optimization problems. Any new development in optimization which leads to a
better solution of a particular problem is of considerable value to science and indus-
try. Therefore, many utilities are available besides classical optimization techniques
that use stochastic iterative search methods like Evolutionary Algorithms (EAs) and
Particle Swarm Optimization (PSO).

At the beginning of this chapter, a brief introduction on MOP and existing works
are outlined. Then the challenges and problems are studied and followed by the
overview and objectives of this thesis. Finally, a document organization is given to
sketch the remaining chapters.

1.1 Multi-objective Optimization

Multi-objective Optimization (MO) methods are used when there exist several ob-
jectives to be optimized at the same time. Consider the functions fi(z) and fo(z)
in Figure 1.1 (a). We observe that the minimum of each of these functions are f;(0)
and f5(1), i.e.,in £ = 0 and z = 1. Now, if we try to minimize both of them at the

2 Introduction

Optimal solutions

~

o
—
w
N

2
£1(x)

Figure 1.1: (a) 2-objective optimization problem (b) Objective space

same time, there is no single minimum. z = 0 is not a minimum of fy(z) and z = 1
is not a minimum of fi(x). In this case the x values in [0, 1] are called the optimal
solutions. Indeed, multiple optimal solutions in multi-objective optimization arise
because of trade-offs between conflicting objectives. Therefore, without further in-
formation no solution from the set of optimals can be considered better than any
other. In the following, we state the multi-objective optimization problem in its
general form:
A MOP has several objective functions which are to be minimized or maximized
at the same time:

minimize §= f(&) = (@), (@), , ()

&) = (e1(2), e2(), - ex()) < 0

€S (1.1)

subject to

8y

involving m(> 2) conflicting objective functions f; : R* — R that we want to
minimize simultaneously. The decision vectors® ¥ = (x1, T2, ,z,)T belong to the
feasible region S C R". The feasible region is formed by constraint functions é(Z).
We denote the image of the feasible region by Z C R™ and call it feasible objective
region. The elements of Z are called objective vectors and they consist of objective
(function) values f(Z) = (f1(Z), fo(D), - - , fm(Z)). Figure 1.1 (b) shows the set of
optimal solutions of Figure 1.1 (a) in the objective space. Indeed in the objective
space, each objective is assigned to one of the coordinate axis.

For clarity and simplicity of the treatment we assume that all the objective functions

are to be minimized. If an objective function f; is to be maximized, it is equivalent

!Decision vectors are also called parameters.

1.1 Multi-objective Optimization 3

to minimize the function — f;.
In the following, some general concepts and notations are presented. All the vectors
are assumed to be column vectors.

Definition 1.1 (Dominance) A decision vector #; € S is said to dominate a
decision vector Ty € S (denoted T < Zs) if:

1. The decision vector Iy is not worse than ¥y in all objectives, or
fi(@) < fil@y) Vi=1, ..., m.

2. The decision vector Iy is strictly better than ¥y in at least one objective, or
fi(Z1) < fi(Z3) for at least onei=1,...,m.

A decision vector T € S weakly dominates 7, € S (denoted &1 < Z5) if:
The decision vector &1 is not worse than Zo in all objectives, or
fi(@) < fi(d2) Vi=1,...,m.

A decision vector T € S is indifferent to T, € S (denoted & ~ Zy) if:

Ty R To NTy R Ty
Figure 1.2 (a) shows an example of Definition 1.1 graphically.

Definition 1.2 (Non-dominated Set) Among a set of solutions P, the non-dominated
set of solutions P contains those solutions that are not dominated by any member
of the set P.

(a) b
. . (b)
6 ° Set P
f(x5) f(x2)
3 ° ° ° e
x1 is indifferent | x1 dominates x2 S SetP
to x5 4 o o
= f(x1) =
N2 S °
- 3 .
f(x3) f(x4)
1 ° ® 2 L f °
x3 dominates x1 x1 is indifferent 1 °
to x4
0 0
0 1 2 3 4 0 2 4
f1(x) f1(x)

Figure 1.2: Objective space (a) an example of domination (b) P is a set of solutions
and P’ is the non-dominated set

4 Introduction

Figure 1.2 (b) shows an example of the non-dominated set P’, graphically. The
members of P’ are the non-dominated solutions of the set P.

Definition 1.3 (Weakly Non-dominance) A decision vector #, € S is a weakly
non-dominated solution if there is no Ty € S such that f;(Z2) < fi(Z1) Vi =
1,...,m.

Among a set of solutions P, the weakly non-dominated set of solutions P" contains
weakly non-dominated solutions of the set P.

Figure 1.3 (a) shows a set of weakly non-dominated solutions and a non-dominated
set.

(a) (b)

f2(x) f2(x)

Pareto—optimal set
non/dominated set

\ weakly non-dominated set N

locally Pareto-optimal set

f1(x) f1(x)

Figure 1.3: (a) Weakly non-dominated set (b) Locally Pareto-optimal set

Pareto Terminology

In MOP it is not possible to find a single solution that would be optimal for all the
objectives simultaneously. In this case, there exist some optimal solutions where
none of their objective values can be improved without deterioration of at least
one of the other objective values. In other words, there is no way to improve an
objective value of an optimal solution without increasing® other objective values.
Edgeworth presented this definition in 1881 [Edg81]. However, the definition is
called Pareto optimality, named after the French-Italian economist and sociologist
Vilfredo Pareto [Par06, Mie99].

Definition 1.4 (Pareto-optimal Solution) A decision vector #; € S is called
Pareto-optimal if there is no other ¥y € S that dominates it. An objective vector is
called Pareto-optimal if the corresponding decision vector is Pareto-optimal.

2This is considered in the minimization cases.

1.2 Existing Work 5

A multi-objective optimization problem is solved mathematically, when all its Pareto-
optimal solutions are found.

Definition 1.5 (Pareto-optimal Set) The non-dominated set of the entire feasi-
ble search space S, is called the Pareto-optimal set. The Pareto-optimal set in the
objective space 1s called Pareto-optimal front or simply Pareto-optimal front.

An approximation of the Pareto-optimal set contains a finite number of non-dominated
solutions, which are very close to the set of Pareto-optimal solutions. It is also called
quality set.

Definition 1.6 (Locally Pareto-optimal Set) If for any member Z; € S in a set
P" there is no solution Ty € S (in the neighborhood of T1 such that ||Zy — 71| < €,
where € > 0) dominating any member of the set P", then the solutions belonging to
the set P constitute a locally Pareto-optimal set.

Figure 1.3 (b) shows an example of a locally Pareto-optimal set and a (global)
Pareto-optimal set in the objective space.

1.2 Existing Work

One of the first ideas in solving a MOP is to convert it to a single-objective optimiza-
tion problem. This has been done in a family of weighting methods about 40 years
ago [Zad63]. The weighting method is known as a classical method. Other classical
methods are also available such as; the e-constraint method, min-max goal program-
ming, sequential quadratic programming, and homotopy approach [Mie99, Deb01,
Hil01]. Most of these classical methods can find Pareto-optimal solutions. How-
ever, when dealing with special problems with non-convex Pareto-optimal fronts,
they cannot find all the Pareto-optimal solutions. In most of the classical methods,
only one Pareto-optimal solution can be found in one simulation run and most of
these algorithms require some prior knowledge such as suitable weights or e val-
ues [Deb01]. Hence, scientists have searched for a method to find a set of optimal
solutions in each simulation run. This was made possible during the last decade by
using population-based stochastic search and optimization methods like EAs.

In EAs, since a population of solutions are processed in each iteration, the outcome
is also a population of solutions. If an optimization problem has a single optimum,
then all the population members can be expected to converge to that optimum so-
lution. However, if an optimization problem has multiple optimal solutions, the
Evolutionary Algorithm is used to capture multiple solutions in its final population.

6 Introduction

Due to this particular property of multi-objective optimization problems, Evolu-
tionary Algorithms are being studied more and more during the last decade. These
methods are called Multi-Objective Evolutionary Algorithms (MOEAs).

The history of MOEAs goes back to the first MOEA, called Vector Evaluated Ge-
netic Algorithm (VEGA), introduced by Schaffer in 1985 [Sch85]. This method is
based on objective-wise selection. VEGA is the simplest possible MOEA and is
a straightforward extension of a single-objective EA. It works efficiently for some
generations, but in some cases suffers from the principal of not using the domination
criterion in fitness evaluation. Therefore, it is not able to deliver a good spread of
solutions in some cases. In 1991, Kursawe introduced his method, which uses the
same idea as VEGA [Kur91|. Later, Fonseca and Fleming (MOGA) [FF93|, Horn
and Nafpliotis (NPGA) [HNG94|, and Srinivas and Deb (NSGA) [SD94] introduced
other kinds of MOEAs which use Pareto-based (domination-based) selection, nich-
ing and visual comparisons. In these methods, the difficulty of VEGA in finding a
good diversity of solutions is eliminated by introducing the non-domination concept
and an explicit diversity-preserving operator.

In 1999, Zitzler and Thiele added elitism as an important part in MOEA [ZT99],
which can guarantee convergence. Their method, Strength Pareto Evolutionary Al-
gorithm (SPEA) and also later methods from Knowles and Corne (PAES, PESA,
1999, 2000) [KC99], Deb et al. (NSGAII, 2000) [DAPMO00] and Zitzler et al.
(SPEA2, 2001) [ZLT02] made another category of MOEA based on archiving, elitism,
and quantitative performance metrics. These methods are supposedly faster and
better than the previous methods. This is due to the elite-preserving operator. An
elite-preserving operator gives the elite solutions to be directly carried over to the
next generations. Therefore, it ensures that the fitness of the best solution does not
deteriorate.

Hence, the MOEA methods are arranged into Pioneers, Classic, and Elitist cate-
gories. These methods constitute the basic part of the MOEA, however there are
many other recorded MOEA methods for particular problems [CVL02, Deb01].

In the search for faster population-based stochastic search methods, researchers have
come to the Particle Swarm Optimization (PSO) technique [KEO1]. The single-
objective PSO is recorded to be faster than Evolutionary Algorithms. Therefore,
the scientists are also motivated to work on a multi-objective version of PSO. The
first Multi-Objective Particle Swarm Optimization (MOPSO) methods have been
suggested by Coello Coello and Lechuga [CL02] and Hu and Eberhart [HE02] in 2002.

1.3 Challenges and Problems 7

1.3 Challenges and Problems

Multi-objective optimization methods must be able to find optimal solutions with
the following four properties:

e several optimal solutions as the output,
e convergence of the solutions to the Pareto-optimal front,
e diversity of the solutions,

e low computational time.

Indeed, obtaining high convergence and diversity of solutions in low computational
time is always the goal of MO methods. The computational time of MO increases,
especially when elitism in the form of an external population is used. Existence of the
external population or the archive increases the convergence of the solutions, since
the discovered non-dominated solutions of each generation are stored in it. How-
ever, since it must be updated in each generation, therefore the computational time
increases. One possibility to reduce the update time of the archive is to make the up-
dating process faster by using improved data structures. Until 2002, linear lists were
used as the data structure for storing the archive members. However, they require a
lot of computational time the large archive and population sizes. In 2002, Mostaghim
et al. investigated Quad-trees [Hab83| as another data structure, for the first time in
the context of MOEA [MTT02, MT03b]. Quad-trees need less computational time
than linear lists, particularly for larger sized populations. Later in 2002, Fieldsend
et al. introduced the dominated-tree data structure [FES02], which reduces the com-
putational time of MOEAs with small populations and large numbers of generations.
Indeed, both the Quad-tree and dominated-tree data structures reduce the computa-
tional time of MOEA methods. However, they are not comparable with each other,
since the dominated-tree requires less computational time than linear lists, when it
is used in MOEAs with small populations, large numbers of generations, and large
archives, whereas, the Quad-trees require less computational time than linear lists
when they are integrated in the MOEAs with large populations and small archives
with low number of objectives. Here, it must be emphasized that the archive must
be updated after each generation. This makes a considerable difference when we
don’t use these data structures in MOEAs [Hab83, SS96b, SS96a, Sch03, Sch04].

Also, the archive size plays an important role in the diversity of solutions and the
computational time. Bounding the archive size not only makes the method faster,
but also allows for diverse solutions [FES02, Zit99]. On the other hand, a restricted
amount of solutions in the archive is desired by many decision makers. In gen-
eral, storing only a bounded number of non-dominated solutions is desirable due to

8 Introduction

the following; true non-dominated sets are infinitely large, the computational and
memory overheads of maintaining the archive are reduced, and diversity of solutions
can be obtained by removing the selection pressure. Truncation [ZLT02], cluster-
ing [Zit99], and Adaptive Grid Archiving (AGA) [KC03] techniques are methods
for restricting the archive size while keeping diverse solutions. However, bounding
the archive size requires a high computational time and any other technique which
bounds the archive size by keeping diverse solutions has considerable importance.
Until now, elitism has been discussed as a satisfactory step in MOEAs for obtaining
good convergence of solutions. However, convergence is not obtained only by the
archive, but by the effective search strategy of the Evolutionary Algorithms, i.e.,
cross-over and mutation. Indeed, the inheritance property obtained from recom-
bination of solutions makes the method to find good solutions during generations.
The search process is controlled by recombination, fitness evaluation, and random
selection. Fitness evaluation has been an important topic and is studied by many
researchers [Sch85, FF93, HNG94, SD94, ZT99, KC99, DAPMO00, ZLT02]. The re-
sult of the search process is that Evolutionary Algorithms are able to find some very
good (converged) solutions in a low number of generations. However, covering the
entire Pareto-front requires an extensive number of generations. Indeed, the search
process explores the whole search space in each generation; the good solutions (with
better fitness values) are selected as well, but it can result in an already explored
region being explored again. This brings the idea of changing the search process in
some sense to a controllable search method. Controllable exploration is proposed by
using binary search methods [Hug03], and combining Evolutionary Algorithms with
subdivision methods [SMDT03, BHO3]. The basic idea of the subdivision techniques
is to divide the search space into subspaces [DJ98, DH97].

Controllable exploration brings the new idea of using the PSO [KE01, KE95] method.
In PSO, there is no selection, the solutions are assigned some velocities and move
towards the optimum. A turbulence factor is also defined, similar to the muta-
tion operator, in order to avoid local optimum. The results of single-objective PSO
are very satisfactory [KE01]. However, changing the PSO to MOPSO has been
investigated first in 2002 by Coello Coello and Lechuga [CL02]. Later, Fieldsend
and Singh [FS02] and Mostaghim and Teich [MT03b] proposed other variants of
MOPSO with the aim of obtaining better convergence and diversity of solutions.
The comparisons with MOEAs show that MOPSO is a good method to optimize
MOPs. However, obtaining better diversity and convergence of solutions for high
number of objectives must be investigated further.

Another important issue in MO is the quantitative comparison of the performance
of different algorithms. The outcome of the MOEA or MOPSO is usually an ap-

1.4 Research Goals and Specific Objectives 9

proximation of the Pareto-optimal front, which is denoted as an approximation
set, leading many researchers to investigate the evaluation methods of the quality
of the approximated front, e.g., [KC02, Deb01, ZTL*02, HJ98]. The approxima-
tion sets can be compared by measuring the diversity and convergence of solutions
in the objective space separately. There also exist convergence and diversity met-
rics [FMAO02, Zit99, DMMO03a|. However, before comparing the diversity of solutions,
it must be clear what percentage of the space is occupied by the solutions and where
the solutions are. This is more important, when we increase the number of objec-
tives. For example, it is not possible to observe the solutions of a 4-objective MOP
graphically. This is the problem of most of the diversity metrics, they only compute
a value of for example the hyper-volume of the region made by the approximation
set. This value is useful when comparing two approximated sets.

Motivation for optimization comes from real-world optimization problems. The im-
provements in the MO techniques are completed step by step by encountering differ-
ent problems of different levels of difficulties. Therefore, there are many challenges
involved in solving real-world optimization problems.

1.4 Research Goals and Specific Objectives

The main goal of this thesis is to improve elitist MOEAs in order to achieve bet-
ter convergence and diversity of solutions in low computational time. The major
achievements of this thesis can be summarized as follows:

In a category of elitist MOEASs, the elite solutions of each generation are stored into
an archive. The data structures and algorithms for storing and updating archives
may have a great impact on the computational time, especially when optimizing
continuous problems with larger population sizes. Therefore, the first objective is to
study the data structures of the archive. Here, the problem of storing the Pareto-
optimal solutions in the archive is addressed in such a way, which helps to attain
the desired results in the least possible time. Hence, an efficient data structure is
required in order to hold these solutions.

Objective 1: Possible data structures for storing non-
dominated solutions in the archive in order to reduce
computational time

The second objective is to investigate a Hybrid MOEA (HMOEA) in order to obtain
good convergence and diversity of the solutions. This is performed by HMOEA,
which is a combination of MOEA and subdivision techniques. One good property of
the HMOEA is the controllable exploration of the search space, which helps to attain

10 Introduction

good convergence of solutions and even covering the approximated Pareto-optimal
front.

Objective 2: Possible combination of MOEAs with other
non-stochastic methods

The disadvantage of using HMOEAs is the high computational time needed for
MOPs with high number of parameters. As the third objective, Multi-objective
PSO is studied and compared with MOEAs in terms of convergence and diversity
of solutions.

Objective 3: Formulation of Multi-Objective Particle
Swarm Optimization (MOPSO) techniques

Indeed, MOPSO should take less computational time than MOEAs, since there is no
fitness evaluation, selection, and recombination involved. Another time-consuming
part of a MOEA is the process of bounding the archive size. A bounding technique
must be applied when the size of the archive exceeds a fixed size. Therefore, the
fourth objective is dedicated to the investigation of a technique called e-dominance
for bounding the archive size.

Objective 4: Demonstration of the influences of -
dominance on the size of the archive, convergence and
diversity of solutions

The fifth objective of this thesis concerns the metrics on measuring the diversity
of the solutions. There are several diversity metrics, each of them having some
disadvantages as well as advantages. The previous diversity metrics become more
complicated when dealing with high dimensional spaces and they do not express any
knowledge about the solutions on the approximated Pareto-optimal front (e.g., the
percentage of the objective space occupied by the solutions). Therefore, the next
objective is to investigate a variant of a diversity measure which provides us with
more information about the found solutions along the approximated Pareto-optimal
front.

Objective 5: Development of a metric to measure the
diversity of solutions along an approximated Pareto-

optimal front

The last objective concerns the application of MOEAs and MOPSOs for solving
real-world problems. This is achieved by two real-world examples in antenna design
and computational chemistry.

Objective 6: Demonstration of the ability of MOEAs
and MOPSOs in solving real-world problems

1.5 Document Organization 11

1.5 Document Organization

This thesis is organized as follows. Chapter 2 reviews the basic concepts of Evo-
lutionary Algorithms and MOEAs. In this chapter, different test functions and
comparison metrics, which are referred to during the thesis, are studied. Chapter 3
is dedicated to data structures for storing non-dominate solutions in archive-based
MOEAs. In Chapter 4, Hybrid MOEAs and covering the approximated Pareto-
optimal front are studied. PSO and MOPSO methods are investigated in Chap-
ter 5. In this chapter, the so-called Sigma method and the Sigma diversity metrics
are introduced and covering the approximated Pareto-optimal front by MOPSO is
studied. Chapter 6 is being dedicated to bounding the archive size by using a so-
called eMOPSO method. In Chapter 7, the applications of MOPSO and MOEA
methods using two real-world examples are studied, and Chapter 8 concludes the
thesis.

12

Introduction

Chapter 2

Multi-Objective Evolutionary
Algorithm (MOEA)

Even though an algorithm is in fact a purely algebraic event, it seems that computer
scientists find it easier to grasp an abstract phenomenon when it is grounded in
a familiar metaphor, whether it is evolution, insect swarming, immune systems,

pheromone following or neural dynamics.
J. Kennedy and R. Eberhart!

In this chapter, the basic concepts of Evolutionary Algorithms (EAs) and Multi-
Objective Evolutionary Algorithms (MOEASs) are briefly reviewed. Particularly, the
Strength Pareto Evolutionary Algorithm (SPEA) [ZLT02] is studied, as it plays an
important role in comparing methods in this thesis. Test problems and comparison
metrics are also other issues in MOEAs, which are outlined later in this chapter.

It must be emphasized, that the algorithms and the methods explained here do not
reflect EAs and MOEAs for a general form. The parameters and operators can be
defined in other ways, which are not presented here. Various aspects of EAs and
MOEAs may be found in [CVL02, Deb01, Gol89, Biac96, Fog95s].

2.1 Evolutionary Algorithms

EAs denote a famous class of population-based iterative search methods, which are
based on abstractions of the processes of Darwinism evolution. Actually, they have
the potential to find a set of optimal solutions in a single simulation run. Different
kinds of EA methods exist, whereas, all EAs have some basic elements in common,

'From the book New Ideas in Optimization, D. Corne et. al [CDG99].

14 Multi-Objective Evolutionary Algorithm (MOEA)

as follows:

e EAs typically work with a population of candidate solutions at a time, rather
than a single candidate solution.

e EAs incorporate a selection method based on the fitness values. The better
the fitness of a candidate solution, the more often it is selected, and the more
parts of it will be passed on to later generations.

e Inheritance: The new candidate solutions are obtained by recombining the
selected candidate solutions.

Therefore, an EA is characterized by the fact that a number, NV, of potential solutions
(called individuals j € X, where X represents the space of all possible individuals)
of the optimization problem simultaneously sample the search space. This popula-
tion, P = {41, jo, - - - , jn}, is modified according to the natural evolutionary process:
selection and recombination are executed in a loop for a fixed number of iterations.
Each run of the loop is called a generation and P, denotes the population at gen-
eration t. Algorithm 1 shows a typical basic algorithm for EAs. In the following,
different parts of the Algorithm 1 are explained.

Input and Output
The input parameters of an EA are:
e N: number of individuals in the population (population size).
e T: maximum number of generations (to determine the stopping criterion).

® p,, and p.: probabilities of applying mutation and cross-over operators, re-
spectively.

The output of the algorithm is the optimal solution, which is stored in A (|A| = 1).

Population Initialization

The population P at generation t, P;, consists of N individuals, j7;, ¢ = 1,--- , N,
which are initialized at random. Depending on the problem to be solved, various
codings for individuals exist, e.g., the individuals are represented by bit strings,
vectors of integers or reals, trees, and graphs. Bitstring individuals are also known
as Chromosomes. The population itself is typically arranged as a linear list, which
must be updated at the end of each generation t.

2.1 Evolutionary Algorithms 15

Fitness Evaluation

The quality of an individual, j;, is measured by a fitness function, F'(j;). The fitness
value of each individual is calculated by the fitness function, and is not necessarily
equal to the objective value. The fitness function is a measure of the quality of the
candidate solution. This step plays the most important role for selection in the next
step. The constraints can also be handled in this step by using penalty functions
to penalize potential solutions that are infeasible. Penalty functions degrade the
fitness values of infeasible population members, but still allow them to remain in
the population and influence the final solution.

Algorithm 1 : Basic Evolutionary Algorithm
Input: N, T, p., pm
Output: 4

1. Initialize population: P, =0, t =0
fori =1to N do
Find a random j; € X
P, =P Uy
end for
2. Fitness Evaluation:
fori =1to N do
Calculate F(j;)
end for
3. Selection: P' = (P': mating pool)
fori =1to N do
Select one individual j, according to the selection method
P =P Uj
end for
4. Recombination:
cross-over: Choose two individuals randomly from P. Apply cross-over operator on them
with a probability of p.. Replace the (new) individuals in P'.
mutation: Choose one individual randomly from P’. Apply mutation operator on it with
a probability of p,,. Replace it in P
5. Termination: P, = Pot=t+1
if t > T then
A=P, STOP
else
goto Step 2
end if

16 Multi-Objective Evolutionary Algorithm (MOEA)

Selection

The selection operator is intended to improve the average quality of the population
by giving individuals of higher quality a higher probability of survival. Selection
thereby focuses the search on promising regions in the search space. There are
different kinds of selection operators, e.g., Tournament and Roulette Wheel Selec-
tion [Gol89, Deb01]. In Tournament Selection, k individuals are chosen at random
and the best one is selected, whereas in Roulette Wheel Selection, each population
member is assigned a proportion of the Roulette Wheel equal to the ratio of its
fitness to the sum of the entire population’s fitness. Depending on the problems
and their restrictions, certain characteristics can be applied on the selection pro-
cess. If the selection operator uses much selection pressure, i.e., it emphasizes the
population’s best solution by assigning many copies of it, the algorithm loses the
diversity of its solutions very quickly. On the other hand, if the selection pressure is
very low, the method will behave like a random search. The speed with which the
best solution in a population is emphasized can be determined by the characteristic
time of a selection operator. Take over time is defined as the time required for the
best solution in the population to occupy all of the population slots by repetitive
application of the selection operator alone. The handling of the constraints can also
be carried out in the selection step [Deb01]. This method compares two selected
individuals, if both of them are feasible, the individual with ”better” fitness value is
selected. In the case that one of them is infeasible, the feasible individual is selected
and when both of them are infeasible, the individual with smaller overall constraint
violation is chosen.

Recombination

Recombination changes the genetic material in the population, either by cross-over
or by mutation, in order to explore new points in the search space. The choice of
coding also determines the recombination operator.

e Cross-over: There are various kinds of cross-over operators, depending on
the coding of individuals, the problem, the search space, and many other pa-
rameters. For example, the cross-over operators for string (bitstring or integer
value) individuals are: single point, n point, uniform, and edge, whereas, for
real value individuals the cross-over operators are: linear, blend, simulated
binary cross-over operators [Spe98, Deb01]. Indeed, the main idea in utilizing
cross-over is searching the search space locally. This is particularly achieved
for bitstring coding of individuals. The cross-over operator is usually applied
on two randomly selected individuals with a probability of p. [Spe98].

2.2 MOEA Methods 17

Single point cross-over: This is achieved by randomly choosing a crossing
point along the string. All the string elements (bits) following the crossing
point are exchanged.

— n point cross-over: This operator functions similarly to the single point
cross-over operator, except that 2n cross-over points are randomly chosen.
The segments of the string between the 2n points are exchanged.

— Uniform cross-over: This operator is the extreme version of the previous
operators. It randomly chooses different bits from each of the parents,
with equal probabilities.

— Simulated binary cross-over (SBX): This operator is introduced by Deb
et al. [Deb01] for real vector individuals. Indeed, SBX simulates the single
point cross-over on real vectors.

e Mutation: Mutation operators also depend on the coding of the individu-
als [Spe98]. These operators are applied on the individuals of a population
with a probability of p,,. For bitstring individuals, it changes a bit from 0 to
1 and vice versa. There are different mutation operators for different kinds of
individuals. The aim of mutation is to apply a sudden large change on the
bitstring individuals for performing global searching.

Termination

An EA can terminate when a termination criterion is fulfilled. Termination criteria
can be defined by a maximum number of generations (e.g., 7' in Algorithm 1) or
when there has been no change in the population for a given number of generations.

2.2 MOEA Methods

One of the goals of multi-objective optimization is to approximate the set of Pareto-
optimal solutions. Sets of solutions can be easily found in one simulation run by
EAs. Indeed, EAs explore the search space by several individuals in the population.
Therefore, they can simultaneously explore the search space and under certain ad-
ditional assumptions can converge to a set of optimal solutions. In other words, in
single-objective optimization the whole population converges to a single minimum,
whereas in multi-objective optimization they can theoretically converge to the set
of Pareto-optimal solutions [Rud98, RA00]. This advantage has attracted many re-
searchers to solve MOPs using Multi-objective Evolutionary Algorithms (MOEAsS).

18 Multi-Objective Evolutionary Algorithm (MOEA)

The structure of MOEA is very similar to EA, with some differences, e.g., in fit-
ness evaluation. There are many MOEA methods, which are divided into different
categories (see Section 1.2). One group of MOEA methods are elitist MOEAs.
There, the best solutions of each generation are passed to the next generation either
by adding them directly to the next population or by storing them in an external
population called archive. In fact, the elites cannot be lost during generations and
their presence enhances the probability of creating better offsprings. It has been
proved [Rud98] that a class of EAs converges to the global optimal solution of some
functions in the presence of elitism (see Section 2.3). Elitist MOEAs are investigated
in algorithms like Non-dominated Sorting Genetic Algorithm (NSGAII) [DAPMO00],
Pareto-Archived Evolution Strategy (PAES) [KC99], Rudolph and Agapie’s Elitist
(AR) [RA00], and Strength Pareto Evolutionary Algorithms (SPEA2) [ZLT02] (re-
fer to [Deb01, CVLO02] for more details). However, a large number of publications
are generated each year with respect to the interest in MOEA. In the years 2001 and
2003, the first and second international conferences on MOEA were held in Zurich,
Switzerland and Faro, Portugal, respectively. These conferences were dedicated to
MOEAs; theory, design, analysis, and applications. Also, in other conferences there
are special sessions dedicated to MOEAs, where international researchers discuss
different issues in MOEAs. These points illustrate the intense interest in MOEAs
for solving academic and real-world MOPs?.

In the following, some of these recently proposed algorithms are briefly reviewed.

Rudolph and Agapie’s Elitist Genetic Algorithm (AR1)

Rudolph and Agapie suggested AR as an elitist MOEA [RA00]. In AR1, u parents
are used to create A (A > u) offsprings using genetic operators. So in each generation,
there are two populations, the parent population P; and the offspring population
(Q¢- The algorithm works in three phases.

1. Non-dominated solutions of (); are identified, deleted from ();, and placed into
an elite population A;.

2. Each solution ¢ of A; is compared with each solution of the parent population
P,. If ¢ dominates a solution in P, that solution is deleted from P, and ¢ is
moved into a set P/. On the other hand, if ¢ is indifferent to the solutions in
P,, it is removed from A; and out into another set, Q.

20ne of the most complete listings of publications in the MOEA field is maintained in a database
at the web address http://www.lania.mx/ ccoello/EMOO/EMOOconferences.html by Dr. Carlos
Coello Coello. Currently, this database contains over 1000 MOEA citations.

2.2 MOEA Methods 19

3. In the third phase, all the above sets are arranged in a special order of per-
formance. First, P, and P/ are combined. If together they do not fill up the
whole population, solutions are taken from the sets in the following order: @),
A; and Q.

This algorithm guarantees convergence to the true Pareto-optimal front. However,
a disadvantage is that it doesn’t guarantee a good distribution of diverse solutions
on the Pareto-optimal front [Deb01].

Elitist Non-dominated Sorting Genetic Algorithm (NSGAII)

In this algorithm [DAPMOO] introduced by Deb et al., the offspring population @
of size N is created from the parent population P, of size N. First, these two pop-
ulations are combined to form a population R; of size 2N. Then, a non-dominated
sorting procedure is used to classify the entire population R; as follows:

1. Non-dominated individuals are calculated from R; and are called non-dominat-
ed solutions of front 1. Then, these are temporarily disregarded from R;
and the non-dominated solutions of the remaining elements of R; are then
determined and called non-dominated solutions of front 2. This procedure is
continued until all the members of R; are classified into a non-dominated front.
This is called sorting process.

2. After the sorting process, the new population is filled with solutions of different
non-dominated fronts, one at a time. The filling starts with the best non-
dominated front. Since R; has 2N solutions and the new population must
have N solutions, just N best solutions appear in the new population (N
solutions from the best fronts). In the case of inadequate available space in
the new population to accommodate all solutions of a non-dominated set, a
crowding strategy is used to identify solutions which reside in less crowded
areas (in the objective space).

In this algorithm, the non-dominated solutions of each generation are added to the
next population. Therefore, they will not be lost during generations. A new variant
of NSGA2 is called CNSGA2 [DMMO03al, which uses a clustering technique instead
of a crowding strategy in the second step.

Pareto-Archived Evolution Strategy (PAES)

In this algorithm [KC99] introduced by Knowles and Corne, the offspring population
Q; of size N is created from the parent population P, of size N. Then each offspring

20 Multi-Objective Evolutionary Algorithm (MOEA)

is compared with its parents. If it dominates a parent, it is accepted as a parent in
the next generation. If one of the parents dominates it, the offspring is discarded
and a new offspring must be created. In the case that both are indifferent, the
offspring will be compared with an archive of current best solutions. If it dominates
any member in the archive, it will be a parent in the next generation. But if it
does not dominate any member in the archive, both of its parents and the offspring
are compared for their nearness (distance) to the members of the archive. If the
offspring resides in a least crowded region (in objective space), it is accepted as a
parent and will be added to the archive. In the case that the offspring and the
parents have the same nearness (distance) to the archive, one of them is selected at
random.

In this algorithm, the non-dominated solutions of each generation are stored in an
external population (archive).

2.2.1 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA2 [ZLT02] is the second version of the SPEA [Zit99] method and in contrast
to its predecessor, it incorporates a fine-grained fitness assignment strategy and a
density estimation technique that are explained in the following. This method uses
Pareto-dominance based selection [Gol89] and elitism where the policy is to always
include the N best individuals of the current generation into the next generation in
order not to lose them during exploration. These N best individuals are stored in
an archive A;. In order to maintain a high diversity within the population, it uses
an enhanced truncation method. Altogether, SPEA2 has shown to provide superior
results compared to existing approaches (see, e.g., [ZLT02] for many problems of
interest). The algorithm of SPEA?2 is listed in Algorithm 2.

Fitness Assignment

In SPEA2 [ZLT02], both dominating and dominated solutions are taken into ac-
count for calculating the fitness value of each individual (to avoid the situation that
individuals dominated by the same archive members get identical fitness values). In
detail, a strength value S(j) is assigned to each individual j in the archive A, and
the population P;, representing the number of solutions it dominates:

S(j):‘{3|}€PtUAtAJ<7}‘ (2.1)
On the basis of the strength S, the raw fitness R(j) of an individual j is calculated:

RG) = > SO (2.2)

JEPUA, G

2.2 MOEA Methods 21

For example, Figure 2.1 shows the raw fitness values for a given population and a
minimization problem with two objectives fi and fs.

Algorithm 2 : SPEA2 Algorithm
Input: N, N, T
Output: A

1. Initialization: Initialize B, 4; =0,t =0
2. Fitness Assignment: Calculate fitness values of individuals in P, and A;
3. Update: Copy all non-dominated individuals in P, and A; to Ay
if |[A;11| > N then
reduce A¢+1 by means of the truncation operator
else if |A;11| < N then
fill A;y1 with dominated individuals in A; and P;
end if
4. Termination:
if t > T or another stopping criterion is satisfied then
A= A4, STOP
end if
5. Selection: Perform binary tournament selection with replacement on A;y; in order to
fill the mating pool
6. Recombination: Apply recombination and mutation operators to the mating pool and
set Py to the resulting population
t=1+1, goto Step 2

Additional density information is incorporated to discriminate between individuals
having identical raw fitness values. The density estimation technique used in SPEA2
is an adaptation of a kth nearest neighbor method, where the density at any objective
vector j is a function D(j) of the distance to the kth nearest objective vector. The
final fitness value will be F(j) = R(j) + D(j). In this case, the final fitness values
of the non-dominated points are less than one and not zero anymore.

Truncation Method

In this part which is also called environmental selection, the first step is to copy all
non-dominated individuals, i.e., those with a fitness lower than one, from archive
and population to the archive of the next generation:

A ={j|j€PUANAF(G) <1} (2.3)

22 Multi-Objective Evolutionary Algorithm (MOEA)

f2(x) M . non-dominated

‘ 6@ 11.
0(5,,,,,,,,;,(,350),,;,,,,,,,j ,,,,,,,,)./ L

=2 1/

4 sz0)
8=
_ 3 30
(S=4) | S=0)
0 O rrevrrieeene

(5=3)

Figure 2.1: Raw fitness values for a minimization problem with two objectives f;(z)
and fo(z) using SPEA2

where F'(j) is the fitness value of j. If the non-dominated front fits exactly into
the archive, the environmental selection step is completed. Otherwise, there can
be two situations: Either the archive is too small or too large. In the first case,
the best dominated individuals in the previous archive and population are copied
to the new archive. In the second case, the archive must be truncated and some of
the individuals in the archive must be deleted. In SPEA2, the individual with the
minimum objective distance to another individual is chosen at each stage; if there
are several individuals with minimum distance, the tie is broken by considering the
second smallest distance, and so forth.

2.2.2 Summary

By studying previous elitist MOEAs, we can construct a typical simple structure (see
Figure 2.2). This typical structure is valid for those elitist MOEAs that store non-
dominated solutions in an archive. Indeed, this structure is one possible structure
and shows different blocks, which consume most of the computational time. The
blocks Calculating non-dominated solutions, Update, and Clustering are related to
the elitism. We refer to these blocks as the Archiving. Clustering is playing the same
role as the truncation method in SPEA2. The blocks Fitness Evaluation, Selection
and Recombination are referred to the general steps of a MOEA method.

2.3 Convergence 23

v v
Initialize Population Initialize Archive
) ') Calculate
| Fitness Evaluation Non-dominated—
Solutions
v y
Selection |« Clustering =1 Update
Y
Recombination
1
No
y Yes
End

Figure 2.2: A typical structure of an elitist MOEA

2.3 Convergence

Elitism in EAs and MOEAs is aimed at keeping track of the best solutions dur-
ing the generations. Therefore, one of the reasons for using elitism is to obtain
convergence, since the best solutions are not lost during generations. However, it
is recorded that under certain conditions the convergence of a single-objective EA
does not necessarily depend on elitism [Rud94, Rud98]. It is also shown that the
results known from the theory of EAs do not carry over to the MOEA case [Rud98].
Proof of convergence of a MOEA is studied for different structures of MOEAs with
Elitism in [RA00, Rud98|. In Appendix A, a basic structure of MOEAS is considered
(Figure 2.2) and the convergence proof of such a structure is explained as in [RA00].
Indeed, it is assumed that the Evolutionary Algorithms are Markov processes [Hag02],
which cope with partially ordered fitness values. All the Pareto-optimal solutions
will enter the archive in finite time with probability one and the dominated solu-
tions will be discarded. Since Pareto-optimal solutions cannot get lost, one gets
convergence with probability one.

Markov chains are also used in the convergence proof of other stochastic iterative
search methods such as simulated annealing [Hig02].

24 Multi-Objective Evolutionary Algorithm (MOEA)

2.4 Test Functions

Deb et al. [DTLZ02, Deb01, Zit99] have suggested a series of test functions which
are suitable for testing MOEAs. In general form, the test problems must be easy
to construct and scalable to have any number of decision variables or number of
objectives. Also, the resulting Pareto-optimal front must be easy to comprehend
and its exact shape and location must be known. Indeed, the task of the test
functions is to test the convergence and diversity abilities of a MOEA method.
Testing the convergence can be achieved by placing some local Pareto-optimal at-
tractors, or biased density of solutions away from the Pareto-optimal front. The
diversity ability can be achieved by test functions with non-convex, discrete Pareto-
optimal fronts, or having variable density of solutions along the front [DTLZ02].
In this thesis, a good variety of test functions are selected from [DTLZ02, Deb01] to
test the ability of the proposed methods. The test functions are listed in Table 2.1.
In the following, the properties of the Pareto-optimal fronts and the difficulties
integrated in the test functions are summarized.

e ZDT1: (2-objective, 30 parameters)
Pareto-optimal front: Convex, continuous, uniform distribution of solutions
Difficulty: Large number of parameters

e ZDT2: (2-objective, 30 parameters)
Pareto-optimal front: Non-convex, continuous
Difficulties: Large number of parameters, non-convex front

e ZDT3: (2-objective, 30 parameters)
Pareto-optimal front: Convex, disconnected-continuous
Difficulties: Large number of parameters, discontinuous front

e ZDT4: (2-objective, 10 parameters)
Pareto-optimal front: Convex, continuous
Difficulty: Large number (21°) of local Pareto-optimal fronts

e ZDT5: (2-objective, 11 parameters) Boolean function over bitstrings
Pareto-optimal front: Discontinuous
Difficulty: Large number (1023) of local Pareto-optimal fronts

e ZDT6 3: (2-objective, 10 parameters)
Pareto-optimal front: Non-convex, non-uniform density of solutions, disconnected-

3This function is constructed like ZDT6 in [Deb01]; here the second objective is modified.

2.5 Performance Metrics 25

continuous
Difficulties: Adverse density of solutions, non-convex front

e TEST1, TEST2: 2- and 3-objective simple examples used in Chapter 4

e CP3: (3-objective, 3 parameters)
Pareto-optimal front: Comet-like, continuous
Difficulty: Narrow Pareto-optimal region

e DLZT: (3-objective, 3 parameters)
Pareto-optimal front: Disconnected-continuous
Difficulties: Non-linearity (tests the ability to find a good distribution of so-
lutions), non-uniform density in solutions in the search space

e GSPm: (m-objective, m parameters)
Pareto-optimal front: Continuous, uniform solutions
Difficulty: Possible high number of objectives

In Table 2.1, GSP and CP are the abbreviations for Generic Sphere Problem and
Comet Problem, respectively.

2.5 Performance Metrics

The result of a MOEA is indeed an approximation of a Pareto-optimal front and
this set of solutions should achieve the goals of the MOEA: (i) good convergence of
solutions with (ii) high diversity along the obtained approximated front. To measure
the quality of the approximated front, we need to examine the convergence and
diversity of solutions. This can be achieved by some performance metrics, although
in some cases there are visible differences. We also require a metric for comparing the
results of different methodologies. Comparing two (approximated) non-dominated
sets is possible by comparing the convergence and diversity of solutions, as well as
the computational time for obtaining them. Also, there are other metrics, such as
the number of obtained solutions. An excellent survey on metrics for comparing
non-dominated sets is investigated in [KC02, Zyd03, HJ98, ZTL*02, OJS03|. Here,
several comparison metrics are outlined in three categories of cardinality-based,
convergence-based, and diversity-based performance metrics.

In the following, R is considered a set of Pareto-optimal solutions or a reference set,
and A is dedicated to a non-dominated set of solutions, which is an approximation
of a Pareto-optimal front. The goal is to measure the quality of A or compare the
qualities of two non-dominated sets A; and As.

26 Multi-Objective Evolutionary Algorithm (MOEA)
Table 2.1: Test Functions

test Function

ZDT1 | g(z2, -+ ,2n) =14+ 931 5 2;)/(n —1) € [0, 1]
h(fi,9)=1—+/fi/g n =30
fl(xl):xl i:1,2,...,n
f2(Z) = g(@2,--- ,2n) - h(f1,9)

ZDT2 | g(z2, "+ ,Tn) = 1 +9(X 1, mi)/(n—1) €0, 1]
h(fl,g)—l—(fl/g) n =30
fl(.fll'l):iL'l i=1,2,...,n
f2(Z) = g(z2,- -+ , @) - h(f1,9)

ZDT3 | g(z2, - ,2n) =14+ 931, z:)/(n—1) € [0, 1]
h(f1,9) =1—=+/fi/g9— (f1/9)sin(107 f1) n =30
f1(.’171):$1 i:1,2,...,n
f2(f) = g(.’lfz, e ’xn)) h(flag) +1

ZDT4 | g(z2, -+ ,2n) =1+ 10(n — 1) + (X1, (a7 — 10cos(4r;)) | z1 € [0, 1]
h(f1,9) =1-+/fi/g € [-5, 3]
fl(wl) =T n =10
fo(Z) = g(x2, -+ ,zp) - h(f1,9) i=2,...,n

ZDT5 | g(za,--- ,2n) = Y r o v(u(z;)) z1 = 30 bits
h(fl,g) =]./fl(.Z') Ty = 5 bits
f1(.'171) = 1+U($1) n=11
f2(Z) = g(@2,--- ,2n) - h(f1,9) 1=2,...,n

2 +u(x;) ifu(x;) <5
v(u(z:) = { 1 ifu(z;) =5

ZDT6 | g(za, - ,2n) =14+ 9[>, 2i)/9]%%° €0, 1]
h(f1,9) =1—+/z1/g n =10
fi(z1) =1 — exp(—4x;)sinb(67z;) i=1,2,...,n
fQ(E):g(m%' 75”71) (fla)

TEST1 fl(.'i") = (.CL'l —].)2 + (1172 — 1)4 x1,2 € [—3, 3]
fo(Z) = (21 +1) + (22 + 1)° n=2

TEST?2 fl(.fi") = (.Z'l - 1)4 + ($2 - 1)2 + ($3 — 1)2 T1,2,3 € [—5, 5]
fo(@) = (21 +1)% + (22 + D)* + (23 + 1) n=3
[@) = (@1 =1+ (@2 +1)* + (23— 1)

CP3 fl(.ff’) = (1 + .%'3)(23? % — 10z, — 4.’11'2) 1<z <35
fo(Z) = (1 + z3) (2323 — 1031 + 425) —2<12<2
f3(.’l_i") :3(1+.€E3)$% 0S.’E3 S 1

DLZT | fi(Z) == €0, 1]
fg(f) =9 n = 3
f3(&) =3.5 =21, 2x;sin(nnx;) i=1,2,...,n

GSPm | f1(Z) = (1 + 22,)) cos(z17/2) - - - cO8(T 17/ 2) € [0, 1]
f2(2) = (1 + 22,) cos(zym/2) - - - sin(z,,_17/2) n=m
: i=1,...,m—1
fm 1@ =(+ x2,) cos(z17/2) sin(xam/2) Tm € [-1, 1]

fm (&) = (1 + 27,) sin(z.17/2)

2.5 Performance Metrics 27

2.5.1 Cardinality-based Performance Metrics

In the case of Cardinality-based performance metrics, the quality of a non-dominated
set is assessed from counting the number of non-dominated solutions. Indeed, the
simplest cardinality-based metric introduced in [Vel99] is to count the number of
non-dominated solutions, i.e., |A|. This can also be achieved by calculating the
ratio |A|/|R|. Of course, computing this ratio requires prior knowledge of the set
R. 1If we know a Pareto-optimal set R, then we can compute Error Ratio (ER)
introduced by [Vel99] as follows:

|4

ER(A,R) = () _ei)/|Al (2.4)

i=1

where e; = 0, if the solution a; € A is in R, and 1 otherwise. Lower values of FR
represent better non-dominated sets.

Another cardinality-based metric is to compute a ratio C, of the solutions in A,
which are not dominated by R [HJ98]:

{ac Alpre R:r < a}l

(2.5)

These performance metrics have several drawbacks. Knowledge of R is required
and no information is delivered about the accuracy and distribution of solutions.
However, they can be used, for test problems, as a quick and rough means of assessing
progress towards the Pareto-optimal set R during generations.

2.5.2 Convergence-based Performance Metrics

Convergence-based performance metrics compute the accuracy of the non-dominated
solutions. The accuracy demonstrates how closely the obtained solutions have con-
verged to the Pareto-optimal front. In the following, different methods of this group
are briefly reviewed.

Generational Distance (GD)

This method [Vel99, VLO0] computes the average distance from the obtained non-
dominated set A and a Pareto-optimal set R as follows:

4]

GD(A,R) = | | > _d*| /IA] (2.6)

28 Multi-Objective Evolutionary Algorithm (MOEA)

where d; is the distance in objective space between the solution a; € A and the
nearest member of R. Lower values of G'D represent better convergence of solu-
tions. This method requires knowledge of R and cannot be used confidently for
non-dominated sets that are changing in cardinality.

Seven Point Average Distance (SPAD) [Sch95] and Mazimum Pareto Front Error
(MPFE) [Vel99] are also other accuracy metrics, which are based on calculating the
distance between a Pareto-optimal set and a non-dominated set. However, all of
these methods require prior knowledge of a Pareto-optimal set R, which may not be
trivial for some real-world applications. These methods can also be influenced by
the spread and distribution of R.

Size of dominated space (S metric)

This metric [Zit99] measures the hyper-volume of a region made by the set A and
a reference point in the objective space. Figure 2.3 shows two sets A; and A, and a
reference point Ref. The set A; has a good diversity, therefore the defined region

(@) (b)
f2(x) , Ref 200, Ref

Aq

M T

f1

Y
Y

,\
3
=
—-
=
=
=

Figure 2.3: S metric (a) Set A; (b) Set A

has a larger area than the area made by the set As.

However, this measurement depends on the position of Ref. This method requires
a high computational effort when the number of objectives increases. The result
of this measurement is a hyper-volume value which gives us information about the
region between the solutions and the reference point. This metric is used when
we compare the diversity (and also the convergence) of two non-dominated sets.
Therefore, we do not obtain knowledge of the non-dominated front itself.

A simpler way to calculate the hyper-volume of a 2-dimensional non-dominated set
is proposed by Dunn and Olague in [DO04]. The computation of the hyper-volume is

2.5 Performance Metrics 29

simplified by calculating the area of each triangle formed by two adjacent elements of
the non-dominated set and the reference point. The function values are normalized
in such a way that the maximal total area is 1. Figure 2.4 illustrates this method.

(a) (b)

f2(x)

f2(x) Ref ‘ Ref

Figure 2.4: Computing the hyper-volume of a two-objective non-dominated set pro-
posed by Dunn and Olague [DO04].(a) Set A; (b) Set Ay

This method is efficient when the two non-dominated fronts have similar spread and
distribution of solutions. This can also be seen in Figure 2.4.

A modified way of calculating the hyper-volumes is introduced by Fleischer [Fle03].
Fleischer’s Algorithm (LebMeasure Algorithm) is a simple and efficient method for
computing the hyper-volume of any set of non-dominated solutions. The algorithm
is as follows: From a non-dominated set of solutions, we can find a dominated
region that does not intersect with other dominated regions, e.g., the region A in
Figure 2.5. This region can be easily identified and lopped off. Moreover, the hyper-
volume of such a non-dominated region is trivial to compute, as it is a rectangular
polytope. In the next step, other such regions are lopped off repeatedly until no
region is left. The hyper-volume is the sum of hyper-volumes of the lopped off
regions. This method can be easily computed for any number of objectives.

The hyper-volume measurement requires defining an upper boundary of the region
within which all feasible solutions lie. This is defined arbitrarily and can cause
different ordering of non-dominated sets. It also has a large computational time
overhead, O(]A|™"!), where m is the number of objectives. The output of this
measurement does not have any units and therefore, it can be used in comparing
two sets of solutions.

30 Multi-Objective Evolutionary Algorithm (MOEA)

f2(x) & f2(x))

u2 u2

T ut 119

Figure 2.5: Computing the hyper-volume of a two-objective non-dominated set using
Fleischer’'s Algorithm. In the first step, region A is lopped off. The regions B, C,
and D are lopped off in the next steps, respectively. ul and u2 are the upperbounds
of each of the objectives.

Convergence of two sets (C' metric)

This metric [Zit99] is aimed to compare the convergence of two non-dominated sets
A; and A, as follows:
o ‘{UQ € AQEIal € Al tap X 0/2}‘

C(Ar, A) = A (2.7)

The value of C (A1, A2) = 1 means that all the members of A, are weakly dominated
by the members of A;. We can also conclude that C(A;, A2) = 0 means that none of
the members of A, is weakly dominated by the members of A;. However, C(A;, Ay)
is not equal to 1 —C/(Ag, A1), and we have to consider both C' (A1, Ay) and C(As, A1)
for comparison.

This metric has low computational time compared to the S metric. It requires no
information about a Pareto-optimal front or a reference point and for two evenly-
distributed sets of the same cardinality gives results compatible with the intuitive
notation of quality. However, if the sets are of different cardinality or the distribution
of the sets are non-uniform, then it gives unreliable results.

2.5.3 Diversity-based Performance Metrics

These methods compute distribution and spread of the solutions along the obtained
non-dominated front. Most of these methods consider the objective space.
One possible way to compute the distribution of solutions is to calculate the distances

2.5 Performance Metrics 31

between the non-dominated solutions. Deb et al. [DAPMO00] proposed a method to
measure the distribution of non-dominated solutions along the approximated front.
In this method, we have to compute the Euclidian distance d; between the solutions
in A and then calculate their average as d. Then, the distribution metric A is as

follows:
|Al-1 7
_ 2.
ST L)

This method is able to compute the distribution of solutions in 2-objective spaces.
However, it cannot be used for MOPs with more than two objectives, as consec-
utive sorting is involved. This method is modified by Deb et al. in [Deb01,
DAPMOO0], which also considers the spread of solutions. Also, it works only for
2-objective MOPs.

Another method called Spacing is introduced by Schott [Sch95]. This method is
based on computing the shortest distances between the non-dominated solutions
along each axis. In the cases that solutions are gathered in small groups along the
non-dominated front, the distances between the groups are not considered, because
only the shortest distances are computed. In this case, this method may be mislead-
ing. Also, there are methods for computing the spread and distribution of solutions
such as Mazimum Spread [ZDTO00], Chi-Square-Like Deviation [Deb01], and Uni-
form Distribution [TLKO1]. In the following, two recent diversity metrics, which
outperform the previous diversity measurements, are briefly reviewed.

Entropy approach

This method [FMAO02] can quantitatively assess the distribution quality of a solution
set. Each solution provides some information about its neighborhood in the feasible
region. This can be modeled as a function, called the influence function. Each indi-
vidual ¢ will have an influence function €2;, which is defined in the objective space,
i.e., ; : R™ — R. This function must be a decreasing function of the distance to the
1th individual, e.g., a Gaussian function. Figure 2.6 shows Gaussian functions for
several individuals in a one-dimensional domain [FMAOQ2]. In the next step, a den-
sity function is defined as an aggregation of the influence functions (Figure 2.6). The
sharp peaks of the density function correspond to the high-density areas, and the
deep valleys to low-density areas, respectively. Indeed, a flat density function shows
well-distributed solutions. An entropy metric is used for calculating the flatness
of the density function. A non-dominated set with well-distributed solutions has
a higher entropy value than other non-well-distributed ones. To apply the entropy

32 Multi-Objective Evolutionary Algorithm (MOEA)

) Density function

1 v

\ .
' 1 Influence function

Feasible line segment

Figure 2.6: Entropy approach [FMA02]

measurement, the solutions of the non-dominated set must be projected on a hyper-
plane. The Gram-Schmidt Orthogonalization is applied to find a hyper-plane for
mapping the solutions from m-dimensional space to m-1-dimensional space. Then,
the entropy measurement is applied to the solutions. The higher the entropy, the
better the distribution of the solutions achieved. This diversity measurement is ap-
plied on 3-objective test functions and also suggested for m—dimensional objective
spaces by using hypersurface density functions. The entropy measure has two major
applications: The first being a diversity measurement, and the second as a stop-
ping criterion, by applying it at the end of each generation to the non-dominated
solutions.

This method does not find the real distribution of solutions, because it projects the
solutions from m—dimensional space to m-1-dimensional space. The real distribution
of solutions on approximated fronts is distorted by applying the Gram-Schmidt
orthogonalization (refer to [FMA02, OJS03] for more details).

Sparsity measure

This method [DMMO03a] is similar to the entropy approach. The non-dominated
solutions are first projected on a hyper-plane with the unit normal vector n. A
hyper-box of a certain size d is centered around each projected solution. Figure 2.7
shows an example of the sparsity measure for a 3-objective space. The total hyper-
cube covered by hyper-boxes is a measure of the sparsity of solutions. When the
solutions are not well-distributed, the hyper-boxes overlap and therefore the total
covered area of the hyper-cube is less than when there are no overlaps. In this
measurement the parameter d is playing an important role as well as 7. Like the
entropy measure, this method cannot find the exact distribution of the solutions

2.6 Conclusion 33

f1(x)

Figure 2.7: Sparsity measure. The solutions are projected on the hyper-plane with
coordinate axis of (; and {, [DMMO03a]

because of the projection of solutions.

Discussion

The above measurements on convergence and diversity of the approximated Pareto-
optimal solutions provide very good information, especially when comparing two
approximated sets. However, a hyper-volume value or an entropy measure of so-
lutions does not contain any information about the front itself. There are still
some open questions, e.g., what percentage of the objective space is occupied by
the non-dominated solutions? Where are the solutions concentrated? The answers
to these questions are particularly valuable for high dimensional fronts (e.g., for 4-
and higher-objective spaces). Also projecting the non-dominated solutions in the
entropy approach and Sparsity measure into hyper-planes makes it very difficult to
find the exact diversity measure of non-dominated sets.

2.6 Conclusion

In this chapter, the basic concepts of MOEA, test functions and comparison metrics,
which are also used in the thesis, are reviewed. It must be emphasized that only
those EA and MOEA methods that are referred to in the thesis are explained here.
The background of the basic notations in EAs and the MOEA methods, especially
the SPEA2 method, are reviewed. For comparison purposes, SPEA2 is used several
times in the thesis.

Also, different test functions with various degrees of difficulties are introduced. In-
deed, the task of the test functions is to test the abilities of the investigated methods.

34

Multi-Objective Evolutionary Algorithm (MOEA)

Chapter 3

Data Structures for Storing
Non-dominated Solutions

The existence of an archive for storing non-dominated solutions is important for
the convergence to the Pareto-optimal front (see Section 2.3). The reason is that
we must not lose the best solutions obtained so far. On the other hand, having
the archive members participate in the selection process increases the probability of
achieving better offsprings. Therefore, we never lose the non-dominated solutions
until a new solution enters the archive and dominates any of them.

In elitist MOEAS, the data structures for storing and updating archives may have a
great impact on the required computational time, especially when optimizing high
dimensional problems with large non-dominated sets. In this chapter, different data
structures for storing non-dominated solutions, such as Quad-trees and dominated
tree data structures, are studied as alternatives to linear lists.

In the following, we assume that at any generation ¢, the archive A; must always be
kept domination-free, i.e., the archive members do not dominate each other.

3.1 Linear Lists

A linear list is the most straightforward way to implement an archive. In order to
keep an archive domination-free, the following basic operation must be performed,
namely Insertion with Update of complexity O(m - |A|-|P|): In the worst case, each
candidate & of a population P has to be tested against each member of the archive
A for inclusion. In case Z is not dominated by any member of A, we assume it is
either inserted (e.g., at the end), or else rejected. On the other hand, if ¥ dominates
members of A, these members must be deleted from the archive. Hence, the overall
run time complexity of maintaining a domination-free linear list is O(m - |A] - | P|).

36 Data Structures

In a MOEA such as SPEA [ZT99], non-dominated solutions (objective vectors) are
stored in an array. In this archive, if a candidate # is not dominated with respect
to other members of P and also if it does not dominate any vector in the archive
A, it is added to the end of the array. On the other hand, if the new vector ¥ is
dominated by another vector i € A, then Z is rejected. If # dominates ¢, then ¥ is
deleted.

3.2 Dominated and Non-dominated Trees

Dominated and non-dominated tree data structures are proposed by Fieldsend et
al. [FES02, Fie03] for storing queries and updating the archive through several gener-
ations. These data structures are developed to store all the non-dominated solutions
in MOEAs, arguing that this improves the convergence of the MOEA. Therefore,
these data structures must store a large number of solutions. The dominated and
non-dominated trees are constructed in the first generation, before inserting a new
solution into the archive:

e The dominated tree is used to check if the new candidate solution for insertion
is dominated by the archive members.

e The non-dominated tree is used to check if the archive members are dominated
by the new candidate solution for insertion.

In the following, construction of dominated and non-dominated trees are briefly
explained. For more details please refer to [FES02, Fie03].

Dominated Tree

The dominated tree consists of a list 7 of L = [|A|/m]| composite points ¢, ..., ¢L
ordered by a weak dominance relation, where |A| is the cardinality of the archive
and m is the number of objectives:

In the dominated tree, each composite point is a vector of m elements and each
element is constructed from the archive A = {g;|1 < j < |A[} as follows: The first
composite point ¢; is constructed by finding the solution ¢; € A with maximum first
coordinates; this value forms the first coordinate of the composite point:

= ; 2
C1,1 %}gﬁ(yg,l) (32)

3.2 Dominated and Non-dominated Trees 37

(a) (b)
2094 204 R
3 3 3 3 B Composite point
| o uCl e | ' | e Archive memeber
.o L e
——————— e e
- P g
********** L T
1 ® R @ - ----—--------
® L @®----------
¢ . G o
f1(x) f1(x)

Figure 3.1: Example of (a) dominated and (b) non-dominated trees

The solution ¥}, is now associated with ¢; and is not considered anymore. Likewise,
the second coordinate of ¢; is given by the maximum second coordinates of the
remaining solutions in A:

c12 = max (y; 3.3

12 = o A\T(?/m) (3-3)
This procedure is repeated to construct subsequent composite points until all el-
ements of A are associated in the tree. In general, the dth coordinate of the ith
composite point is given by:

Ciq = max (y; 3.4
= max (1) (3.4)
Figure 3.1 (a) shows this method for a two-objective example, where ¢, ..., & are

composite points.

Non-dominated Tree

The non-dominated tree is constructed in the same way as a dominated tree. It
consists of a list of L = [|A|/m| composite points ordered by a weak dominance
relation:

The construction proceeds by starting with the minimum coordinate of each objec-
tive and successively inserting points, with a minimum coordinate remaining in each
dimension. An example of a non-dominated tree is shown in Figure 3.1 (b).

38 Data Structures

Inserting a new solution is achieved in two phases:

1. In the first phase, dominated trees are used to check if a new solution ¢ is
dominated by an archive member. First, the list 7 is searched to find indices A
and [. ¢, dominates ¢ and ¢ is dominated by ¢. Then, the least composite point
that dominates ¢, must be found and is named c¢g. Since ¢, < ¢, it is clear
that all the solutions making the composite point & (¢; < &), also dominate
q. Also, since ¢’ < ¢ and the solutions making the composite point ¢ have at
least one coordinate equal to a coordinate of ¢, it may be concluded that ¢
is not dominated by any solutions making the composite points ¢, ..., ¢.
Therefore, ¢ must be checked by the solutions making the composite points
with indices 7, [< ¢ < H to determine whether it is dominated by them or
not.

2. In the second phase, the non-dominated tree is used to determine which archive
members are dominated by the new solution ¢. It is clear that when ¢ dom-
inates a composites point ¢;, all the solutions making the composite points
Ci+1, ---, Cr are also dominated and candidates for deletion.

If the new solution is dominated by at least one of the archive members, it must be
discarded. In the case that it is not dominated, it must be inserted into the archive
and also in an appropriate place in the dominated tree. The dominated members
of the archive must be deleted from the archive as well. The insertion and deletion
processes in dominated trees are as follows.

Insertion
Suppose that the new solution ¢ should be inserted into the dominated tree 7:

1. If § < €L, then the corresponding composite point of 7, ¢’ (weakly) dominates
¢r, and should be appended to 7 as €.

2. If ¥ £ ¢, a bisection search is used to locate a new composite point corre-
sponding to i. The bisection search is done in the dominated tree such that
Ci+1 A ¥ and ¥ < ¢;. Then, the new composite point ¢’ can be constructed as
follows.

! m

Gi = max(yx, i) (3.6)

=/ . . — —
¢ should be inserted in 7 between ¢;1; and c;.

3.2 Dominated and Non-dominated Trees 39

Deletion

Deletion of an archive member ¢ is more complicated than insertion, since the corre-
sponding composite point of it, let’s say ¢;, must still remain (weakly) dominated by
Cj+1 after deletion. If i/ defines the kth coordinate of ¢j, then upon deletion of ¥, the
deleted coordinate of ¢; must be replaced by the kth coordinate of ¢j;;. Therefore,
Cik < Cjy1k and Gy X Cj.

Figure 3.2: Dominated tree (a) inserting a new solution a needs to create the com-
posite point &, Deletion is illustrated in (b)

Figures 3.2 (a) and (b) show examples of insertion and deletion. It can be ob-
served that there are some archive members contributing to more than one compos-
ite points, after insertion and deletion. Indeed, the dominated tree contains more
composite points than necessary (|A|/m). Therefore, the dominated tree must be
cleaned by the cleaning process after each insertion and deletion. In practice, it is
not efficient to clean the tree after each insertion and deletion, it can be done occa-
sionally, when the number of composite points exceed a certain threshold [FES02].

Discussion

In MOEAs, the archive is represented by one dominated and one non-dominated
tree data structure. The computational complexities for constructing the dominated
tree, insertion, deletion, and cleaning are estimated as O(|A|.m), O(logs(|A|/m)),
O(km), and O(Lm — |Al), respectively (refer to [FES02]), where k is the number of
composite points to which the deleted solution has contributed. However, to gain a
more realistic idea of the performance of these data structures in MOEA, Fieldsend
et al. have carried out different experiments [FES02, Fie03]. The experiments show
that these data structures consume particularly low computational time for large
number of generations and very low number of individuals in the population. This

40 Data Structures

has been investigated for different 2-objective test functions. Indeed, the population
size has a great impact on the computational time.

3.3 Quad-trees

A Quad-tree [Hab83, SS96b| is a tree-based data structure for storing objective
vectors. Each node is a vector with m elements and can have at most 2™ sons
(branches), which are defined by a successorship. A Quad-tree is a domination-free
data structure. In order to explain this data structure, the following definitions are
necessary. Let £ and ¢ denote m-dimensional objective vectors.

Definition 3.1 (k-Successor) A node I is called k-Successor of node § where k is
a binary string* of the form k = (ki,...,kn)s and

{ 0 ifx; <y (3.8)

Definition 3.2 (k-Son) Node Z is k-Son of node ¥, if T is a k-Successor of §j and
also the direct son of y.

Definition 3.3 (k-Set) S;(k) denotes the set of positions k;, where k; = j

)2} (3.9)
s km)2} (3.10)

Since a Quad-tree is a domination-free data structure, there are no branches with
the successorship (00...0) and (11...1), because nodes with £ = (00...0) will
by definition dominate the root and the nodes with £ = (11...1) will always be

So(k) = {ilk; = 0,k = (ky, ks, ..

s km
Sl(k):{l‘kzzl,k:(kl,kg, k

dominated by the root.
Nodes with the above properties may be graphically represented by a tree structure.
Example 1:

Figure 3.3 shows an example of a tree for storing non-dominated 3-objective vectors.
Each node of this tree has m = 3 elements. Therefore, each node can have at most

1k can be considered as a scalar value [Hab83, SS96b] as follows:

=Y kone (37)
i=1

3.3 Quad-trees 41

8 sons. This tree is not domination-free and hence not a Quad-tree, because the
root (10 10 10) has a (000)-Son and a (111)-Son. The (000)-Son of the root, (5 5
5), dominates the root and the (111)-Son of the root, (12 15 18), is dominated by
the root.

U

10
10
10

000 001 010 011 100 101 110 111
5 5 4 6 40 45 14 12
5 5 25 16 4 2 18 15
5 23 2 22 5 32 6 18

Figure 3.3: Example of a tree-structure for storing non-dominated solutions. Node
(5 5 5) dominates the root (10 10 10) and node (12 15 18) is dominated by the root.

Example 2:

Consider the following k-Successor: £ = (111001101). The corresponding k-Sets are
Si1(k) ={1,3,4,7,8,9} and Sy(k) = {2, 5,6}.

O
When processing a vector for possible inclusion into a domination-free Quad-tree,
the vector is either discarded as being dominated by a node already in the Quad-
tree, or it is inserted into the Quad-tree. However, when a vector is inserted, it
may dominate other nodes in the Quad-tree. Then, these nodes must be deleted as
well. By deleting a node, we obviously destroy the structure of the subtree rooted
at the deleted node. This means that all the successors of the deleted node must be
reconsidered for inclusion in the Quad-tree. The corresponding algorithm is shown
in Algorithm 3.
The way in which vectors are processed for possible inclusion in the Quad-tree
in order to maintain it domination-free is very important. Suppose that we are
processing & € R? for possible inclusion into a domination-free Quad-tree rooted at
7 € R®, and such that Z is a k-Successor of §. With the definitions of Sy(k) and
S1(k), observe that:

e The only places in the Quad-tree where there may be vectors that dominate
Z are in those subtrees whose roots are sons of 7, and have zeros in at least

42 Data Structures

Algorithm 3 : Quad-treel

Input: Z to be inserted into a Quad-tree rooted at ¥
Output: Updated (domination-free) Quad-tree
1. Start: Let i be the root of the tree
2. Successorship: Calculate k such that & is the k-Successor of 4
if k= (11...1) or z; = y;,Vi € So(k) then
STOP
else if £ = (00...0) then
delete 7 and its subtree {% is dominated by Z}
end if
3. Dominance test 1: for all Z' such that Zis a [-Son of ¥, [< k and Sy(k) C Sy(l),
Execute TEST1(Z,2) {Check if Z is dominated by Z or a son of z}
4. Dominance test 2: for all Z such that Z'is a [-Son of 4, kK < [and S1(k) C Si(l),
Execute TEST2(Z,2) {Check if & dominates Z or a son of 7}
5. Insertion:
if a k-Son of ¢ already exists then
replace & by the k-Son and goto Step 2
else
T is the k-Son of ¢ and STOP
end if

Algorithm 4 : TEST1(Z,2)

TEST1(Z,2): {Check if Z is dominated by Z or a son of Z7}
Calculate k such that Z is the k-Successor of 2
if z, =2;,Vi€ S()(k) then
STOP
end if
for all ¥, such that ¥ is a I-Son of Zz and Sy(k) C Sy(l), Execute TEST1(Z,7)

Algorithm 5 : TEST2(Z,?)

TEST2(Z,Z): {Check if Z dominates Z or a son of z}
Calculate k such that Z is the k-Successor of 2’
if £ =0 then
delete 2" and reinsert all its subtrees from the global root
end if
for all ¥, such that ¥ is a [-Son of 2 and S1(k) C Si(l), Execute TEST2(Z,%)

3.3 Quad-trees 43

all locations that k£ does. That is the subtree rooted at [-Sons of i for which
I < k and Sg(k) C Sy(l). For example, in the case that k¥ = (110), only the
I = (010)- and (100)-Successors of § must be checked whether they dominate
Z or not.

e The only places in the Quad-tree where there may be vectors that are domi-
nated by & are in those subtrees whose roots are sons of ¢, and have ones in
at least all locations that k& does. That is the subtree rooted at [-Sons of ¥
for which [> k and S;(k) C Si(l). For example, in the case that & = (100),
only the [= (101)- and (110)-Successors of § must be checked whether they
are dominated by Z or not.

An objective vector is admitted to a Quad-tree if and only if it is not dominated
by any of the vectors already in the Quad-tree. Moreover, when admitted to the

Quad-tree, all objective vectors in the Quad-tree dominated by the new entry must
be identified and deleted.

Example 3:

Figure 3.4 (a) shows a Quad-tree in which we want to insert the new vector (4 8 12).
According to the Algorithm 3, the k-Successorship of (4 8 12) to (10 10 10) is
calculated in Step 2 as k = (001). In the next step (Step 4), we must look in the
(011)- and (101)-Successors of (10 10 10) for nodes that are dominated by (4 8 12).
The node (6 16 22) is dominated by (4 8 12) and must be deleted. After deleting
(6 16 22), we have to reinsert all the nodes in the subtree of (6 16 22), again from the
root (10 10 10). Here, (3 25 16) is reinserted as the (011)-Successor of (10 10 10),
(see Figure 3.4 (b)). Then, we go to step 5 to insert (4 8 12) as a (001)-Son of
(10 10 10). Since (10 10 10) has already a (001)-Son namely (5 5 23), we consider
(5 5 23) as the new root in the algorithm (Step 5) and then try to insert (4 8 12)
in its subtree. (4 8 12) is the (010)-Successor of (5 5 23), therefore the (011)- and
(110)-Successors of (5 5 23) must be checked whether they are dominated by (4 8 12)
or not. (9 8 18) is indeed dominated by (4 8 12), so it must be deleted. Since (5 5
23) has no other sons, we insert (4 8 12) as its (010)-Successor. Figure 3.4 (b) shows
the Quad-tree after insertion.
U

According to the above algorithm, the data structure Quad-treel has two disadvan-
tages:

1. The form and depth of the Quad-tree depends on the order of insertion of a
given set of vectors.

44 Data Structures

4 10 10
8 10 10
12 10 10
001 011 110 001 011 110
5 6 14 5
5 16 18 5
23 22 6 23
110 010 001 101 010
9 3 11 40 4
8 25 15 16 8
18 16 9 7 12
—

(a) Before insertion

(b) After insertion

Figure 3.4: Insertion in a Quad-tree (Example 3)

2. Deleting a node destroys the structure of the Quad-tree and requires the rein-
sertion of all of the nodes of the subtrees of the deleted node. Therefore,
deletions combined with reinsertions will be time-critical and one should care-

fully avoid having to reinsert a vector multiple times.

Hence, the following variants of the Quad-tree data structure (Quad-tree2, Quad-
tree3) are proposed, in which the deletion process is improved [MTT02, MT04b].
In Quad-tree2, a discovered dominated node is not deleted immediately, it is
marked as deleted by a flag. Then its subtrees are traversed again, setting flags
for all encountered dominated nodes instead of immediately reinserting all subtrees.
After finishing this recursive descent, only those nodes in the subtrees are rein-
serted that are not marked deleted. The algorithm called Quad-tree2 is shown in
Algorithm 6 and Example 4 illustrates it.

Example 4:

Consider Figure 3.4 (b) and let us tentatively insert the new vector (12 15 5).
(12 15 5) is the (110)-Successor of the root (10 10 10). Since (10 10 10) already has
a (110)-Son, (14 18 6), we consider (14 18 6) as the new root in the algorithm (Step 5)
and try to insert (12 15 5) in its subtree. (12 15 5) is the (000)-Successor of (14 18 6).
It means that (14 18 6) must be deleted. Contrary to algorithm Quad-treel, we do
not delete it and reinsert all nodes of corresponding subtrees immediately. Instead,

3.3 Quad-trees 45

Algorithm 6 : Quad-tree2

Input: Z to be inserted into a Quad-tree rooted at ¥/
Output: Updated (domination-free) Quad-tree
1. Start: Let i be the root of the tree
2. Successorship: Calculate k£ such that # is the k-Successor of i
if t=(11...1) or z; = y;, Vi € Sp(k) then
STOP
end if
if £k = (00...0) {7 is dominated by Z} then
Flag =0
MARK(Z, 7)
Replace i by Z. Delete all the marked nodes in the subtree of &
Reinsert the nodes with the reinserted mark in subtrees of T at &
STOP
end if
3. Dominance test 1: for all Z such that 2’ is a [-Son of ¥, [< k and Sy(k) C So(1),
Execute TEST1(Z,2) {Check if Z is dominated by Z or a son of Z}
4. Dominance test 2: for all 2 such that Z'is a [-Son of 7, k < [and Si(k) C Si(l),
Execute TEST3(Z,Z) {Check if & dominates Z" or a son of z7}
5. Insertion:
if a k-Son of ¥/ already exists then
replace 4 by the k-Son and goto Step 2
else
Place Z as the k-Son of §. Delete all the marked nodes in the Quad-tree. Reinsert the
nodes with the reinserted mark from the global root. STOP
end if

Algorithm 7 : MARK(Z,?)

MARK(Z,2):

for all sons Z of 4/

if Zis a (00...0)-Son of Z then
mark 2" as deleted and Flag = 1

else if Flag = 1 then

mark Z as reinserted
end if
MARK(Z, 7)

46 Data Structures

Algorithm 8 : TEST3(Z,2)

TEST3(Z,2): {Check if Z dominates Z or a son of z}
Calculate k£ such that & is the k-Successor of 2’
if £ =0 then
mark Z as deleted and Flag =1
else if Flag = 1 then
mark Z as reinserted
end if
for all ¥, such that ¥ is a [-Son of Z and Si1(k) C Si(l), Execute TEST3(Z,?)

we only mark it as deleted. Then we look for other dominated nodes in its subtrees.
(40 16 7) is also dominated by (12 15 5) and must be deleted. Therefore, we also
mark it as deleted. Then, we replace (14 18 6) with (12 15 5). Before finishing Step
2, we clean the subtrees from the marked nodes and reinsert only those nodes that
remain un-flagged, i.e., node (11 15 9) in the example. Figures 3.5 (a) and 3.5 (b)
show the corresponding Quad-tree2 before and after inserting the vector (12 15 5).

0
12 10
15 10
5 10
001 011 110 001 011 110
5 3 14 5 3 12
5 25 18 | Flag: Deleted 5 25 15
23 16 6 23 16 5
4 4 11
8 Flag: Deleted 8 15
12 12 9
N N
(a) Before insertion (b) After insertion

Figure 3.5: Inserting the new solution vector (12 15 5) (Example 4)

In Algorithm Quad-tree3 [SS96b, MTT02, MT04b] the deletion problem is solved
differently. The complete algorithm is shown in Algorithm 9 and the included rou-
tines are described as follows.

3.3 Quad-trees 47

Algorithm 9 : Quad-tree3

Input: Z to be inserted into a Quad-tree rooted at ¢/
Output: Updated (domination-free) Quad-tree
1. Start: Let i be the root of the tree
2. Successorship: Calculate k such that Z is the k-Successor of 4
if £k = (11 - 1) or x; =y;, Vi € S()(k) then
STOP {Z is dominated by ¥}
end if
if £ =(00...0) {7 is dominated by Z} then
REPLACE(,)
STOP
end if
3. Dominance test 1: for all Z such that Z'is a [-Son of ¥, [< k and Sy(k) C So(1),
Execute TESTI(Z,2) {Check if Z is dominated by Z or a son of Z}
4. Dominance test 2: for all Z such that Z'is a [-Son of 7, k < [and Si(k) C Si(l),
Execute TEST4(Z,Z) {Check if & dominates Z' or a son of z7}
5. Insertion:
if a k-Son of i already exists then
replace 4 with the k-Son and goto Step 2
else
Z is the k-Son of ¢ and STOP
end if

Algorithm 10 : TEST4(%,2)

TEST4(Z,2): {Check if £ dominates 2" or a son of z’}
Calculate & such that Z is the k-Successor of 2
if £ =(00...0) then
DELETE(Z)
end if
for all ¥/, such that ¥ is a [-Son of Z'and S (k) C Si(l), Execute TEST4(Z,7)

48 Data Structures

In the following routines, the successorships should be changed from binary strings
to scalar values (refer to Equation (3.7)).

DELETE(Z): This routine deletes the node Z. If Z has at least one son, then the
lowest numbered son of Z becomes the new root of the subtree. Therefore, only the
nodes in the subtrees of the other sons must be considered for reinsertion:

1. Let £k = 1. Detach the subtree rooted at Z.

2. If the k-Son of Z exists, denote it by ¢, move ¢ to the position of Z in the
Quad-tree and goto 4.

3. Let k=k+ 1. If £ > 2™ — 2, RETURN, otherwise goto 2.

4. For each k such that £+ 1 < k < 2™ — 2, if the k-Son of 7 exists, denote it by
& and execute REINSERT (7, 5).

—

REPLACE(C, 5): In this routine, ¢ is replaced by 3, because ¢ is dominated by §.
Therefore, the successorships in the subtrees of ¢ are no longer valid and corre-
sponding nodes must be reconsidered:

1. Detach the subtree rooted at ¢. Replace ¢ by s.

2. For each k such that 1 < k < 2™ — 2, if the k-Son of ¢ exists in the detached
subtree, denote it by ¢ and execute RECONSIDER(3,).

3. Discard .

REINSERT(E, §): This routine finds the right position in the subtree rooted at ¢ at
which to insert § and its successors. This routine is called only when there is no
need for domination test. This case happens for example in the routine DELETE,
where the lowest successor of the deleted root is selected as the new root. Since all
other vectors in the detached subtree are non-dominated with respect to the new
root, these vectors need only be reinserted into the subtree, without any dominance
tests:

1. For each k such that 1 < k < 2™ — 2. if the k-Son of § exists, denote it by
and execute REINSERT(Z, £);

2. Determine [such that §'is a I-Successor of ¢. If the [-Son of ¢ exists, denote it
by ¢ and execute REINSERT(Z, 5). If the [-Son of & does not exist, move 5 to
the position of the /[-Son of ¢.

RECONSIDER(E, §): This routine is called in the REPLACE routine, when a deleted
root is replaced directly by a new vector. In this case, the successors § of the deleted
root may also be dominated by the new vector ¢. This means that each successor §
of the deleted root must be tested for dominance before being inserted into the new
subtree rooted at ¢:

3.3 Quad-trees 49

1. For each k such that 1 < k < 2™ — 2, if the k-Son of § exists, denote it by ¢
and execute RECONSIDER(C, t);

2. Determine [such that s is a I-Successor of ¢
3. If I = 2™, discard s, RETURN.

4. Tf the I-Son of € exists, denote it by # and execute REINSERT(, 5), else move
§ to the position of [-Son of ¢ in the Quad-tree.

Example 5:

This example is dedicated to illustrating the routine DELETE of the Algorithm
Quad-tree3. Consider the Quad-tree in Figure 3.6 (a) and let us insert the node
(12 8 4). As explained throughout previous examples and in the corresponding
algorithms, it is obvious that node (14 18 6) is dominated by (12 8 4) and must
be deleted. In the routine DELETE of Quad-tree3, node (14 18 6) is deleted and
node (11 14 9), since it is the (001)-Son of it, is moved to its place and the node
(40 12 3) is reinserted again from (11 14 9). The result of this insertion is shown in
Figure 3.6 (b).

Ol
10 10
10 10
10 10
001 011 110100 001 011 110 100
5 3 12 5 3 11 12
5 25 8 5 25 14 8
23 16 4 23 16 9 4
010 001 101 010 100
4 ° 5 4 40
8 2 Z 8 12
12 = K 12 3
(a) Before insertion (b) After insertion

Figure 3.6: Insertion in a Quad-tree (Example 5)

50 Data Structures

Discussion

The computational complexities of the Quad-tree approaches depend highly on the
shape of the constructed Quad-tree. Habenicht [Hab83] has indicated that the
worst case happens when every node has at most two sons, independently of the
dimensionality of the vectors under consideration. This case occurs, if all pairs
of vectors are different in all components. However, he has carried out different
experiments to get a more realistic idea of the computational complexity of the
Quad-tree. These experiments are also followed by Sun and Steuer [SS96b]. Here,
these data structures are being considered in MOEA and their performances are
examined through different experiments in Section 3.5.

3.4 Data Structures in MOEA

The classical data structure for the archive in a group of elitist MOEAs is a lin-
ear list [Zit99, Deb01, CVL02]. In the year 2002, Quad-trees and later dominated
trees have been developed as alternative data structures [MTT02, MT04b, FES02].
These data structures are used for archiving the non-dominated solutions. As men-
tioned in Section 2.2.2, archiving refers to a) finding the non-dominated solution, b)
updating the archive, c) clustering in MOEAs or bounding the archive size. Here,
clustering is not studied, i.e., the size of the archive is not constant. Quad-trees and
dominated trees [MTT02, MT04b, FES02] have some common properties as well as
some differences when used in MOEA; summarized as follows.

e The domination check using the dominated tree data structure is accomplished
by making two kinds of dominated and non-dominated trees. Indeed, two
data structures are required to check the domination criterion, whereas in
Quad-tress, the successorships are calculated and compared with correspond-
ing branches. Hence, the domination check in Quad-tree is easier than in the
dominated tree approach.

e Replacement is a worthwhile step in Quad-trees, whereas it does not exist in
dominated trees.

e The dominated tree must be cleaned after each insertion and deletion.

e Deletion is an expensive part for both of the data structures as compared to
linear lists.

3.5 Experiments 51

3.5 Experiments

In this section, the influence of the archive size, population size, and number of
objectives on the computational time of a MOEA are studied. In these experiments,
the population size varies from 100 to 10000 and the number of objectives from 2
to 10. The archive size is not restricted (intentionally) and the influences of each
of these parameters on the computational time is studied. Here, the linear list and
the Quad-tree data structures are integrated into the SPEA method [Zit99, ZT99.
Dominated trees are not studied, because they are recorded to be more efficient
than linear lists for very low population sizes (e.g., 20) and for a high number of
generations [FES02, Fie03], which is not the case here. The data structures are
evaluated using different test functions from Section 2.4.

In each generation, each individual of the actual population is tentatively inserted
into the archive. It is obvious that only non-dominated solutions do remain in the
Quad-tree, because the Quad-tree is domination-free. In SPEA, the archive, as
well as the population, undergoes selection, and tournament selection is applied to
individuals of the archive and the actual population.

3.5.1 Influence of Population Size |P| on CPU-time for Test
Functions with m = 2

The first experiments are performed using the test functions ZDT1, ZDT2,... ,ZDT6
with m = 2 dimensions (objective space) and unbounded archive size. Therefore, the
free parameter is the size | P| of the population. Figure 3.7 and Table 3.1 present and
compare the average CPU-times over different runs when running each algorithm
for 400 generations and for different population sizes. The recorded archive size
for different test functions range between 110 — 127 for ZDT1, 20 — 30 for ZDT2,
190 — 215 for ZDT3, 25 — 33 for ZDT4, 10 — 15 for ZDT5, and 29 — 38 for ZDT6,
depending on the initial seed, and independent of the use of linear lists or Quad-
trees. Therefore, for all these experiments the archive size |A| is rather small as
compared to the population size |P|, i.e., |A| < |P|. Also, the archive sizes did not
grow with increasing population size (between 100 and 5000).

Discussion

e Comparison of Quad-treel, Quad-tree2, and Quad-tree3: In Figure 3.7, it
can be seen that for large population sizes, there is almost no difference in
CPU-time between the three different Quad-tree variants. However, for small
population sizes, Quad-tree3 is always the faster implementation among the

52

Data Structures

2-objective test function (ZDT1)

-
N

=
o

©

CPU-time in seconds (log)
(o)}

| --—- Quad-tree1
al/ ---- Quad-tree2
1 — Quad-tree3
- - - Linear list
2
0 2000 4000 6000 8000 10000

2-objective test function (ZDT4)

—_
\V]

—
(o] o

D

IS

CPU-time in seconds (log)

4000 6000 8000 10000

population size

2 L
0 2000

2-objective test function (ZDT3)

N

CPU-time in seconds (log)

2
0

12

2000 4000 6000 8000 10000

2-objective test function (ZDT6)

—_
o

[ee]

[¢)]

CPU-time in seconds (log)

N

4000 6000 8000 10000

population size

2000

Figure 3.7: Average CPU-time for different 2-objective test functions for different

population sizes |P|

three.

e Comparison of Quad-tree and linear list archives: In Figure 3.7, one can also
see that linear list archives perform better for small population sizes, and
depending on the test function, there is a certain population size in the range
of 1000 to 5000, which from then on, the Quad-tree implementation becomes
faster. For example, in Table 3.1, implementation using the Quad-tree3 is
almost 10 times faster than the implementation using the linear list for larger

population sizes.

As a summary, it can be concluded that for small dimensions m of the objective
space and for problems with |A| < |P|, Quad-trees are a better data structure for

large population sizes.

3.5 Experiments 53

Table 3.1: Average CPU-times in seconds for different population sizes of the six
2-objective test functions ZDT1 to ZDT6 (from top to bottom) (T;/L is the ratio
of Quad-tree;’s CPU-time to the CPU-time when using linear lists)

Test |P| linear list Quad-treel Quad-tree2 Quad-tree3 T1/L T2/L T3/L
ZDT1 100 30.68 332.9 232.83 118.99 10.85 7.59 3.88
500 294.71 3629.58 1859.02 1133.81 12.32 6.31 3.8
1000 818.54 4952.93 2840.45 1937.81 6.06 3.47 2.37
5000 11299.92 2774.41 2826.68 2794.71 0.25 0.25 0.25
10000 42274.91 4898.97 5100.49 5160.54 0.12 0.12 0.12

ZDT2 100 24.21 120.6 91.05 74.68 498 3.76 3.08
500 186.61 244.68 253.87 234.2 131 1.36 1.26
1000 537.58 418.46 446.45 456.18 0.78 0.83 0.85

5000 10328.27 2066.73 2218.92 2326.68 0.2 021 0.23
10000 40091.71 4142.21 4385.24 4517.08 0.1 0.11 0.11

ZDT3 100 31.82 370.47 234.36 126.56 11.64 737 3.98
500 318.48 4389.25 2515.66 1387.84 13.78 79 4.36
1000 916.46 9097.29 5283.9 3178.6 9.93 5.77 3.47
5000 12234.25 5383.5 4484.65 4300 0.44 037 035
10000 44055.57 6163.18 6212.26 6195.52 0.14 0.14 0.14
ZDT4 100 23.35 105.75 99.5 75.45 453 4.26 3.23
500 216.72 586.77 363.53 387.83 271 1.68 1.79
1000 626.88 745.08 640.92 580.44 1.19 1.02 0.93
5000 10524.19 2176.9 2336.12 2393.23 0.21 0.22 0.23
10000 40317.49 4355.43 4707.76 4655.86 0.11 0.12 0.12
ZDT5 100 20.2 41.66 44.25 45.8 206 219 2.27
500 176.19 207.11 216.82 228.72 1.18 1.23 1.3
1000 546.19 417 437.26 459.84 0.76 08 0.84
5000 10415.29 2104.2 2223.27 2375.99 0.2 021 0.23
10000 40410.43 4244.57 4454.04 4632.82 0.11 0.11 0.11
ZDT6 100 14.5 76.92 69.04 36.82 5.3 476 2.54
500 161.5 209.84 201.86 165.53 1.3 1.25 1.02
1000 555.29 345.7 342.95 324.13 0.62 0.62 0.58

5000 12090.32 1430.13 1451.23 1543.43 0.12 0.12 0.13
10000 47489.3 2728.1 2819.97 3038.54 0.06 0.06 0.06

54 Data Structures

3.5.2 Influence of Number of Objectives m and Population
Size |P| on CPU-time

The second set of experiments involves the test of the influence of the dimensionality
m of the objective space and archive size |A| on the CPU-time, again compared to
the linear list and the three Quad-tree implementations.

Figure 3.8 shows the measured CPU-times of different test functions for different
number of objectives, and again for different population sizes. Since the measured
results of Quad-tree3 were also better than the two other Quad-tree implementations
(this will be discussed later), we only compare Quad-tree3 with the linear list archive.

2-objective test function (ZDT3) 3-objective test function (GSP3)
12 20
(=) (=)
10
2 2451
[%2] [%2]
2 2
g ° S
o) o 10
(%] (%]
£ 6 £
(0] (0]
£ E 54
T 4y 1 T i
= — Quad-tree S5 |
o - L i o
5) Linear list 5 0/
0 2000 4000 6000 8000 10000 0 0.5 1 1.5 2
x10*
4-objective test function (GSP4) 5-objective test function (GSP5)
14 14
312 g2
e B 10}
510 5
[&] [&]
3 g 8
£ 8 £
0} o 61
£ £
-— 6 -—
3 T 4l
o o
o ,L ‘ ‘ ‘ o, ‘ ‘ ‘
0 0.5 1 1.5 2 0 0.5 1 1.5 2
population size x 10* population size x 10*

Figure 3.8: Average CPU-time of m-objective test functions for different popula-
tion sizes

3.5 Experiments 55

Discussion

e Influence of m on CPU-time: In Figure 3.8, we can see that for the 3-objective
test function, the implementation using the linear lists can be up to 10 times
faster than the implementation using the Quad-tree archive with the break-
even point of equal CPU-time shifted here up to a population size of |P| =
15000. The implementation using the Quad-tree is faster here, only for larger
population sizes. In the case of the even higher-dimensional test functions (4
and 5), the linear list implementation is faster — for population sizes up to
20000 individuals — than the Quad-tree.

e Influence of archive size |A| on CPU-time: Contrary to the test functions with
only 2 objectives, we found out that in all of these higher-dimensional test
functions, the archive sizes increased with increasing population size. Fig-
ure 3.9 shows the recorded archive sizes for different population sizes for the
4-objective test function GSP4. The archive size of this test function con-
tains more than 60000 vectors, when the population size has been chosen to
be 20000. As it seems that it is not the number m of objectives alone but
the dimensionality of the approximated Pareto-front, and as a consequence,
the archive size |A| that must be taken into account. In order to compare
linear lists with Quad-trees, we need to take a deeper look at the number of
reinsertions that must be performed as that might become the bottleneck in
performance for problems with large archive sizes.

3.5.3 Influence of Archive Size |A| and m on CPU-time for
Large Constant Population Size |P|

Figure 3.10 shows the CPU-times of the Quad-tree and the linear list implemen-
tations in relation to different archive size bounds and a fixed population size of
|P| = 20000 for the four test functions GSPm with m = 3, 4, 5, 6. It can be
seen that the Quad-tree algorithm is faster when the archive size is less than about
2000 for the 3-objective test function, 3000 for the 4-objective test, 6000 for the
b-objective test, and 7000 for the 6-objective test function.

Discussion:

e The above observation confirms that for increasing archive sizes, the Quad-tree
implementation becomes less competitive than the linear list implementation.
This may be related to the fact that for larger archive sizes, the number of
costly reinsertions of already inserted points can destroy the advantage gained

56

Data Structures

x10*

archive size

0 05 1 15 2
population size x 10*

Figure 3.9: Archive sizes of the 4-objective test function according to different pop-
ulation sizes

when not having to traverse the whole list of non-dominated solutions. Rein-
sertion takes place for all nodes of the subtrees when their root node is domi-
nated and must be deleted. Therefore, we also record the number of deletions
and reinsertions relative to the archive size.

Table 3.2 lists the number of recorded deletions and reinsertions in a Quad-tree for

different population and archive sizes and test functions with different numbers of
objectives.

Discussion:

e We can see that the above test functions and SPEA behave such that when

the population size increases, the archive size increases as well.
The archive size can be much larger than the population size (|P| < |A]).

Consider now all rows of equal population size 1000 in Table 3.2. We observe
that for a certain archive size, higher values of m reduce the number of rein-
sertions and deletions. This is because each node in the tree can have at most
2™ — 2 sons, and for higher values of m, the width of the tree is considerably
higher, whereas for smaller values of m, the depth is considerably higher. For
example, for m = 10, each node can have up to 1022 sons, whereas for m = 4,
it can have only up to 14 sons. Hence, for a given archive size and large m,
the tree will not have a large depth but rather a large width.

3.5 Experiments 57

3-objective test function (GSP3) 4-objective test function (GSP4)
3500 3500
— Quad-tree
3000(| - - - Linear list 3000
8 2500 8 2500
5 5
@ 2000 8 2000
(7] (7]
£ 1500 £ 1500
(0] ()
€ £
% 1000 < 1000
-] -]
% 500 % 500
0 0
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000
5-objective test function (GSP5) 6-o0bjective test function (GSP6)
5000 6000
5000
» 4000 *
2 2
S S 4000
o 3000 @
£ £ 3000
2 2000 2
'*% gT 2000
o o
& 1000 S 1000
0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
archive size x 10* archive size x 10*

Figure 3.10: Average CPU-time of m-objective test functions GSPm, m = 3, 4, 5, 6
according to different archive size bounds |A| and fixed population size |P| = 20000

e For lower values of m and given archive size, the deletion of a dominated
node therefore requires a large number, in average, of reinsertions because the
subtrees will be longer in average than for trees with higher values of m.

e Finally, the CPU-time increases with increasing m because the number of
required comparisons increases. For each insertion, at most 2™~! — 1 nodes
must be checked if they are dominated by the new vector.

All the above experiments present average values obtained from several runs of the
MOEA with different seeds and equal number of generations. The values of crossover
and mutation probabilities have also been constant.

58 Data Structures

Table 3.2: Number of deletions and reinsertions in the Quad-tree archive for the
m-objective test functions GSPm (T is the CPU-time in seconds).

m |P| |A| Deletion Reinsertion T

4 100 290 1111 2600 22
500 1180 6080 15600 432
1000 3300 12200 36150 1280
2000 7150 22050 49500 3235
5000 16350 68650 149770 17200

5 1000 4200 12500 30400 1830
5000 19950 50071 105600 17850

6 1000 3800 12710 29000 2280
5000 18750 57488 127750 30500

7 1000 5200 10000 23000 4240
5000 23400 56400 117650 56700

10 1000 5150 3170 11245 17400
5000 23542 33216 88074 314131

3.5.4 Comparison

From the results and discussions in the previous section, it can be concluded that
the number of comparisons and the computational time depend on three factors:

e number of objectives (m),
e archive size?(|A|),
e population size (|P|).

It must be emphasized that the number of generations is also playing an impor-
tant role in the computational time. Here, it has been kept constant during the
comparison of the data structures in MOEA. Also, the convergence and diversity of
solutions are not studied here.

It is recorded by Sun and Steuer [SS96b] that Quad-trees always have better compu-
tational times than linear lists for storing non-dominated solutions, especially when
there is a large number of solutions to insert. They have studied 2- to 8-objective
tests with 100 — 10000 randomly generated vectors to be considered for inclusion
into an initially empty tree. Hence, they never obtained a tree of a size larger than

2Here, only continuous problems have been considered. In reality, there are many discrete
problems with small cardinality of the Pareto-optimal solutions.

3.5 Experiments 59

m ﬁ

|Al

linear lists

Dominated-trees

Quad-trees
[
Dominated-trees

Figure 3.11: Regions of applicability of linear list, Quad-tree, and dominated tree

as archive data structures within MOEA relative to archive size |A|, population size
|P|, and number of objectives m

this number of solutions, i.e., 10000. Indeed, with randomly generated sequences,
the archive size in their experiments was always much smaller. These conclusions
are valid in our context for optimization problems with only one generation.

In MOEA, the archive size can grow much larger than the population size, as the
results of implementing the archive data structure into a MOEA, and dynamically
updating the archive with elements of the actual population from generation to
generation, have been shown. In that case, the Quad-tree archives can become
slower than linear list implementations. For example, in experiments done by Sun
and Steuer [SS96b], the archive size for an example with 8 objectives and 10000
vectors for inclusion has been about 2400 (when the search space is [0,1]). However,
here in the GSPm test functions, the archive size can even become as big as 60000.
This is the reason why the Quad-trees can be worse than linear list implementations.
Unfortunately, little is known about the average height of a tree e.g., binary trees,
when both insertion and deletion are used [CLR90]. Therefore, as a rule of thumb,
Quad-trees are more efficient than linear list archives when used in MOEAs when a)
the archive sizes are small and b) the population sizes are large. When dealing with
smaller population sizes and larger archive sizes, the experiments indicate that linear
lists take less computational time than Quad-trees. Figure 3.11 tries to identify
regions of better usefulness of both kinds of data structures.

Therefore, Quad-trees must be used if the size of the archive is rather small. Keeping
the size of the archive as a fixed value is also a desired property of the MOEA
methods, like SPEA, PAES, and others.

60 Data Structures

Under this restriction, we are able to conclude that Quad-trees take less computa-
tional time than linear lists when used inside MOEAs with restricted archive size.
Also, Figure 3.11 identifies the region, where dominated trees are more efficient than
linear lists in terms of the computational time. Fieldsend et al. [FES02] computed
the computational time of an implementation using the dominated trees for several
continuous test functions and compared them with linear lists. Their results show
that for small population sizes, e.g., | P| = 20, and for a large number of generations,
e.g., 5000, the implementation using the dominated trees require less computational
time than the implementation using linear lists. This approach is applied to large
unrestricted archive sizes, e.g., |A| = 8000.

Discussion

As mentioned several times in the thesis, archiving is an important block in MOEAs,
which helps to attain better convergence of solutions. However, as studied in this
chapter, the size of the archive has a great impact on the computational time. It
is one of the reasons to use bounding methods for fixing the cardinality of the
archive members to a certain (relatively small) amount. By bounding the archive
size, it is possible to use Quad-trees to reduce the computational time. However,
there are questions such as: Is there a possibility to deal with large archive sizes?
How can we obtain the solutions of a problem with many Pareto-optimal solutions?
Indeed, there are different possibilities to deal with such problems, e.g., reducing
the computational time by approximating the Pareto-optimal front or by using an
approximation model of the problem [ND03, KTW02, ETP03|.

Nain and Deb [NDO3] propose a concept of combining an Evolutionary Algorithm
with an approximate evaluation technique in order to achieve a computationally
effective search and optimization procedure by using an approximation model of the
problem. The major idea is to apply EAs on computationally expensive problems.
This method is tested in conjunction with Artificial Neural Networks (ANNs) as an
approximation technique. There, EA is run for a relative small number of genera-
tions, then the output is used as the training data of ANN. In the next steps, the
ANN is utilized to determine the function values. Indeed, this method is efficient
when we solve problems with very expensive function evaluations.

Klamroth et al. [KTWO02] propose another method to approximate the Pareto-
optimal front linearly. In their approach, the approximation comes in the form of a
polyhedral distance measure that is being successively constructed during the execu-
tion of the algorithm. The measure is being utilized both to evaluate the quality of
the approximation and to generate additional non-dominated solutions. However,
the algorithm requires an initial approximation of a (or a set of) non-dominated

3.6 Conclusion 61

(@) v (b)

<—lyO

Y2

Y

Figure 3.12: An example of inner approximation technique in the objective
space [KTWO02]. The linear approximation is achieved through several iterations.

solution(s), e.g., Nadir point3. In order to deal with convex and non-convex Pareto-
optimal fronts, they propose inner and outer approximation techniques. Figure 3.12
shows an example of inner approximation for a 2-objective space. In this figure,
starting from (a), the initial approximation is achieved according to (b). This initial
approximation is done according to the knowledge of having the Nadir point 7, and
therefore ¢; and 7,. In each iteration a polyhedral distance measure is executed.
It is therefore resulted in other non-dominated solutions 73 in (c) and 7 in (e).
The stopping criteria for this algorithm can be a maximum number of iterations
(for more details refer to [KTWO02, SKWO01]). A similar approach is also studied
by Ehrgott and Tenfelde-Podehl [ETP03], to find Nadir points and solve discrete
problems.

3.6 Conclusion

This chapter is dedicated to archiving and the required computational time for
keeping the elite solutions in the archive. The following data structures have been
studied:

3The Nadir point ¢V is characterized by the component-wise supremum of all the solutions in
the Pareto front P (in the objective space): ij =sup,¢p fj(); j=1,---,m.

62

Data Structures

1. Linear list: It is the conventional data structure to store non-dominated solu-

tions of a MOEA in the archive. It is efficient for a low number of objectives,
small populations, and large archive sizes.

. Dominated and non-dominated trees: These data structures can be used to

decrease the computational time, when dealing with small population sizes
and a high number of generations.

. Quad-trees: These data structures decrease the computational time, par-

ticularly for MOEAs with high population sizes that have a high number of
objectives but low archive sizes. This is usually the case in MOEAs when
optimizing discrete test functions or continuous test functions with bounded
archive sizes.

Here, Quad-trees and linear lists have been implemented as data structures for the
archive of an elitist MOEA. It has been shown through different experiments that the

Quad-tree data structures take less computational time than linear lists when used
as the archive for the MOEAs with large population sizes and small archive sizes.

Hence, as a rule of thumb, it is recommended to use the Quad-trees for problems
with large populations but small archive sizes. This is the case for problems with

large search spaces but where the Pareto-fronts are non-continuous curves or just

point sets of small cardinality.

Chapter 4

Hybrid Multi-Objective
Evolutionary Algorithm
(HMOEA)

In MOEA, the search space is explored by applying recombination operators. How-
ever, after terminating the MOEA, we are not sure if we could obtained the Pareto-
optimal solutions. One reason is that we have no control on the search process. The
search process explores the space by local and global searching (cross-over and mu-
tation operators), but there may be some parts of the space that are not explored,
and some parts which are explored several times.

One possible solution for having a controllable exploration is to use subdivision
techniques [DJ98, DH97|. Indeed, subdivision techniques are based on the division
of the search space (parameter space) into subspaces (boxes). Then, the boxes which
contain good solutions are divided again into boxes. This procedure is repeated
several times until an acceptable granularity for the approximated Pareto-optimal
front is reached. Subdivision techniques have been used by interpreting the iteration
scheme as a dynamical system in [Sch04, SSW02, DSHO03|.

The goal of this chapter is to introduce a combined global/local search technique
that combines subdivision exploration techniques with local search, using MOEA
in each box during subdivisions. This hybrid technique is called Hybrid MOEA
(HMOEA).

The combination of MOEA methods with other methods is not a new topic. Many
researchers have tried to combine MOEASs - because of their properties - with other
optimization techniques, e.g., Memetic algorithms [CDG99]. Also, dividing the space
into subspaces is not a new idea. In 2003, E. Hughes has used binary space subdivi-
sion to approximate the unexplored regions in [Hug03]. There is another algorithm,

64 Hybrid Multi-Objective Evolutionary Algorithm (HMOEA)

which uses interval constraints [BH03] to obtain a controllable search. However, in-
terval constraints are used in the case of uncertainties of objective functions [Tei01].
The main interest here, in using the combination of MOEAs with subdivision tech-
nique, is to obtain a) a high convergence and b) high diversity of solutions for
problems of a high number of parameters, where obtaining a desirable solution is
not possible by using MOEAs or subdivision methods alone.

In the following, subdivision techniques and the HMOEA are explained. Then, the
HMOEA is tested on a real world example and used to cover the approximated
Pareto-optimal fronts.

4.1 Subdivision Technique

Figure 4.1 shows an example of the subdivision technique [DH97, DJ98, DSHO03,
SSW02]. This figure shows four steps of the subdivision technique in the parameter
space. In the first step, the parameter space is divided into two parts (boxes).
Then, a selection process decides to keep either both of the boxes, or one of them.
In this figure, both of the boxes are being kept, because both contain at least one
good solution (this will be explained later). In the next step, each of the boxes is
divided into two boxes (2 divisions) and the selection process keeps just three of these
boxes for further division. This process of subdivision and selection is iteratively
repeated until a desired granularity of solutions is obtained. Algorithm 11 explains
the subdivision technique.

Algorithm 11 : Sampling Algorithm

1. Subdivision
Construct from Bji_1 a new system l§k of subsets such that
UB= U B
BeB, BeBg—1
and diam(Bk) = O diam(Bg_1), where 0 < Opin < O < Oppar < 1.
2. Selection
VB € Bk: Choose a set of test points Pg
N := non-dominated points of |J Pg
BeBy,
B = {BEBk:HpEPBﬂN}

The algorithm! starts with a (large) compact set (box?) in parameter space. By a

'In this algorithm diam(B.,) = 2||r||» and diam(B) = maxpcp diam(B).
2An n-dimensional box can be represented by a center ¢ € R® and a radius r € R®. Thus
B:BC’T = {Z'ERn 1<z <c+r; Vi= 1,..,n}.

4.1 Subdivision Technique

65

1 division 2 divisions
3 3
2 2
x20 / x20 /
-1 -1
-2 -2
e)
-3 -2 -1 0 1 -3 -2 -1 0 1
x1 x1
6 divisions 10 divisions
3
2 2
1 / 1 : | I
L \
X20 X20 - [:r i
7
-1 / -1 H
-2 -2
_nl _N
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x1 x1

Figure 4.1: An example of the subdivision technique (2-dimensional parame-
ter space)

repeated bisection and selection of boxes, the box coverings By get tighter until the
desired granularity of this outer approximation is reached. The selection process in
Step 2 of Algorithm 11 is based on a finite set of test points within each box. Indeed,
in this step several test points are defined in each box. Then, the non-dominated
solutions among all the test points in all the boxes are stored in the set N. The
boxes which contain at least one of the non-dominated solutions in the set N can
survive for further subdivision.

Discussion

If the number of test points in each box is chosen too high, the computational time
will be too long. On the other hand, too few test points causes the algorithm to
not find a good approximation of the Pareto-optimal front. By using this algorithm
it is possible to detect a good approximation of the Pareto-optimal front. This
subdivision technique possess a ”smoothing” property: A box is kept if it contains
at least one ”good” point.

Subdivision techniques work particularly well for low number of objective functions

66 Hybrid Multi-Objective Evolutionary Algorithm (HMOEA)

3 3
2t X X X 2
x % X X
1 1 x x
0 0
<2 X/ o X}/)/
1 1
-2 X -2
X
-3 _n
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x1 x1

Figure 4.2: Parameter space (a) 10 initial individuals (b) 10 individuals after 10
generations. The Pareto-optimal set is illustrated with a solid line.

and parameters. Otherwise, the number of boxes created in the subdivision proce-
dure is getting too large and indeed, the computational time increases.

4.2 HMOEA

Due to selection, recombination, and elitism, MOEAs can typically generate some
solutions very close to the true Pareto-optimal front in low number of generations, in
other words very quickly. This is illustrated by the following minimization example.
Consider the test function TEST1 in Table 2.1. Figure 4.2 shows the parameter
space and the Pareto-optimal front of the test function.

In Figure 4.2 (a), a starting population consisting of 10 randomly chosen individuals
in the domain @ = [—3,3] x [—3, 3] is shown. Figure 4.2 (b) shows the resulting
population after 10 generations using the SPEA2 method (see Section 2.2.1). Here,
we observe that after just 10 generations, there are some individuals close to the
Pareto-optimal front. This property makes it possible to improve the sampling
algorithm described above.

Instead of using many test points to evaluate a (high-dimensional) box, our idea is
to take just a few test points as the initial population of a ”short” MOEA 3. The
MOEA must be run for a short time in a box B. The box B is kept if it contains at
least one solution in N, namely the set of non-dominated solutions of the total set
of test points (Step 2, Algorithm 11).

Therefore, the HMOEA is a combination of MOEA and the subdivision technique:
The exploration of each box created by subdivision is achieved by running a short MOEA.

3A short MOEA is characterized by a short running time; that means small initial population
and few generations.

4.2 HMOEA 67

This is shown in Algorithm 12, where MOFE A(B) means to run a MOEA in the box
B. The output of the MOEA (as it is shown in Algorithm 2) is the set of solutions
in the last archive.

Algorithm 12 : Hybrid MOEA Algorithm

1. Subdivision

The same as in Algorithm 11

2. Pre-optimization

VB € By, P = MOEA(B)

3. Selection

N := non-dominated points of |J Pg
BeBy,

By = {BEB/C:HPEPBHN}

Example 1

The HMOEA is tested on a 3-objective test function TEST2 from Table 2.1. This
test function has 3 parameters and 3 objectives. The Pareto-optimal front is con-
tinuous in both the parameter and objective space. Figure 4.3 shows the result of
the HMOEA in the parameter space.

O
As it is shown in Figure 4.3, there are some empty regions in the approximated
Pareto-optimal set. Indeed, it may be the case that in the course of the subdi-
vision procedure, boxes get lost although they are part of the Pareto-optimal set.

Figure 4.3: Result of applying HMOEA to test function TEST2 (parameter space)

68 Hybrid Multi-Objective Evolutionary Algorithm (HMOEA)

__/"l" e

(a) covering (b) local search (c) recovering

Figure 4.4: Working principle of Static Recovering [SMDTO03]. The solid line illus-
trates the Pareto-optimal set P in the Parameter space. (a) Just one box is found.
(b) The size of the box is extended to a larger box. In the extended box, HMOEA
is run. (c) The result of the HMOEA inside the extended box is a set of four boxes.

To avoid gaps in the Pareto-optimal front, a strategy called Static Recovering is
proposed [SMDT03]. The idea is to run the HMOEA and obtain possible optimal
solutions. Then, the Static Recovering is applied on the solutions to fill the gaps.

4.2.1 Static Recovering

Static Recovering is proposed by Schiitze et al. [SMDT03] to fill the gaps made in the
Pareto-optimal set in HMOEA (for the case that the covering of the Pareto-optimal
set is not complete).

The aim of the algorithm is to extend the given box collection step by step along the
covered parts of the Pareto-optimal set until no more boxes are added. In order to
find the corresponding neighboring boxes of a given box B with center ¢ and radius
r, a MOEA is run in the extended box B given by center ¢ and radius A-r with A > 1,
say A = 3. Afterwards, the box collection is extended by the boxes, which contain
points from the resulting population. In the beginning of the Static Recovering,
this process is completed for all boxes from the box collection. Otherwise, this local
search has to be done only in the neighborhood of the boxes that were added in the
preceding step.

Example 2

The Static Recovering algorithm is applied to the result obtained from the Exam-
ple 1. Figure 4.5 shows the obtained result. Here, we observe that there are no gaps
in the approximated Pareto-optimal set.

4.2 HMOEA 69

Figure 4.5: Result of applying Static Recovering on the result shown in Figure 4.3

Discussion

Static Recovering allows the addition of boxes into the given collection. The desired
coverage of the set of Pareto-optimal solutions cannot get worse, but will improve
if the parameters of the algorithm are adjusted properly. On the other hand, Static
Recovering does not work adequately in the case where a box does not contain
some parts of the Pareto-set but is possibly far away. In this case, the algorithm
would extend the box covering by many undesired regions on their way towards
the Pareto-optimal set (in particular in higher dimensions). Thus, when there are
some boxes far from the Pareto-optimal set, a dynamic recovering strategy has been
proposed [SMDTO03].

4.2.2 Dynamic Recovering

The principle of the Dynamic Recovering algorithm is the same as Static Recovering.
The sizes of existing boxes are extended by a factor A. Then, a MOEA is run in
each extended box. In Dynamic Recovering, only those boxes are kept which contain
at least one non-dominated solution (Static Recovering keeps boxes containing the
final population).

This recovering algorithm has the disadvantage that some boxes close to the Pareto-
optimal set can be deleted while they have been computed once. The speed of the
algorithm depends — besides the MOEA — on the choice of the extension factor A.
A larger value of A yields faster convergence. In general, the number of generations
and the size of the population should increase with \. Dynamic Recovering is indeed
a local recovering technique and can be used to improve the result of a MOEA. In

70 Hybrid Multi-Objective Evolutionary Algorithm (HMOEA)

Figure 4.6: Application of Dynamic Recovering in a simple example. The solid line
illustrates the Pareto-optimal set in parameter space. (a) initial box collection; there
is one box far from the Pareto-optimal set, (b) one step after Dynamic Recovering,
(c) last step in recovering. The box collection covers the Pareto-optimal set

this case, MOEA should deliver solutions with a good diversity and convergence to
the Pareto-optimal set. The convergence of the MOEA should be good enough in
order not to insert too many superfluous boxes.

Example 3

An example of Dynamic Recovering technique is shown in Figure 4.6. In this figure,
Dynamic Recovering is applied to a chosen initial box collection. The algorithm

stops after 2 iterations with a total covering of the Pareto-optimal set.
O

4.3 Experiments

The HMOEA together with the Static Recovering technique are tested on a real-
world MOP in antenna design ([JJK97]). The MOP is a two-objective problem with
12 parameters. The objective functions are as follows:

n 2

PSR AGIEETS

v=—n

filzy,yy) = —47?

I’

n 2

> () O + iy,)

v=—n

fo(z,,y,) = max 472
n=0,..,5

4.3 Experiments 71

250 ‘ ‘ ‘ ‘ ‘ 250
200} 1 200}
150[- : 150

& 100} 1 & 100f

N
\.\\
L < i L
50 ~ 50
.\\-'\\

—800 -250 —-200 -150 -100 -50 0 —gOO —-250 -200 -150 -100 -50 0
f1 f1

Figure 4.7: Results of (left) MOEA method and (right) HMOEA using Static Re-

covering

subject to the constraints

T,y ER (v EZ, |v| <n),

n
2w Z(zﬁ—{—yi)gl

v=—n

with the specific discretization points s, = %ﬂ' + n{;- Here, J, denotes the Bessel
function of v-th order. The algorithms are tested for n = 5 and ¢ = 10. Since
T () = (=1)"J_,(z) and C = R?, this leads to a model with 12 free parameters.
Figure 4.7 shows the results of running a MOEA and the HMOEA using the Static
Recovering technique. The MOEA method tested here is the SPEA [Zit99] algorithm
with the following parameter settings:

population size: 300,

length of individual bitstrings: 7,

number of generations: 300,

e archive size : 300.

The total running time is 20 minutes for the MOEA and 15 minutes for the HMOEA.
Indeed, the Static Recovering technique is used to speed up the running time while
the total performance of HMOEA is maintained.

Furthermore, another experiment using the MOEA with the following parameters
has been performed:

72 Hybrid Multi-Objective Evolutionary Algorithm (HMOEA)

250 ‘ 250
200 ° — 200
\
,
150 \ 150
"
.,
.,
100} .. — 100}
50] 50
o L L L o L L L L I
-300 250 -200 -150 -100 -50 0 -300 250 -200 -150 -100 -50 0

Figure 4.8: Results of (left) MOEA method and (right) HMOEA using Static Re-
covering technique

e population size: 1000,
e length of individual bitstrings: 13,
e number of generations: 500,

e archive size: 1000.

Figure 4.8 shows the results of the MOEA and the HMOEA using the Static Recov-
ering technique. Here, the selected population size is very high (1000), since a high
convergence and diversity of solutions is needed. Also, the archive size is selected
very high (1000). The existence of the restricted archive is necessary to obtain good
diversity of solutions. On the other hand, the high value of the archive size helps
the recovering technique to operate fast enough to cover the front. As observed
in Figure 4.8, there are local improvements. The total running time is 7.5 hours
for the MOEA method, and 20 minutes for the application of the HMOEA using
Static Recovering on it. Figure 4.9 shows the comparisons of selected areas from
Figures 4.7 and 4.8. Indeed, the HMOEA together with the recovering technique
provides a better convergence within comparable computational time.

4.3.1 Discussion

The above experiments illustrate a possible covering of the approximated Pareto-
optimal front by the HMOEA. Here, covering means to find a finite number of
solutions, which are very close to each other. Indeed, it is impossible to find all
the Pareto-optimal solutions of a continuous front. Also, the Static Recovering

4.3 Experiments 73

1700 ‘~\;% - Recover || 2000 \
160 ™ 1

150
1401
1301
1201
1101
1001

1901

1801

1701

160

150

1401

0r 1301

80r] 120+

—260 —240 —ZéO —260 —1é0 —2é0 —2%0 —2é0 —250 —240 —250 -220
Figure 4.9: Comparison of selected areas of Pareto-fronts from (left) Figures 4.7 and

(right) 4.8

method improves the results of the MOEA. The question is, can the MOEA cover the
approximated Pareto-optimal front itself? Indeed, it should be possible by running
the MOEA for a large number of generations. It must be emphasized that the class
of MOEA methods, which use the domination criteria are able to approximate some
solutions, but fail to find the (exact) Pareto-optimal front. Figure 4.10 shows the
above argument for a very simple example. In this figure, some solutions are not
on the Pareto-optimal front, although all the solutions are indifferent to each other.
This is because of the domination criteria, and it occurs when a finite number
of solutions are found by the MO method. This is also argued by D. Biiche et
al. [BMKO3|. In this case, the recovering process may facilitate a way to overcome
this problem in some cases. This can be observed in Figure 4.9.

The recovering techniques reduce the computational time for obtaining a good ap-
proximation of a Pareto-optimal front. This has also been studied in the experi-
ments. The MOEA requires a high computational time to find a large number of
solutions. This is due to the size of the archive. As discussed in the last chapter,
large archive sizes increase the computational time of the MOEA. Therefore, the
idea of running a MOEA with a small fixed size archive, and then applying a re-
covering technique, may decrease the computational time. However, the recovering
techniques improve the solutions of the MOEA locally.

74 Hybrid Multi-Objective Evolutionary Algorithm (HMOEA)

2(x) |

Figure 4.10: Each of the solutions E, F, and G are indifferent to each of the Pareto-
optimal solutions (A, B, C and D), but do not lie on the Pareto-optimal front.

4.4 Conclusion

This chapter is dedicated to studying the controllable exploration of the search
space by MOEAs. MOEAs find good convergence and diversity of solutions, but
covering the Pareto-optimal front in low computational time is not often possible
with MOEAs. Therefore, a combination of MOEA and subdivision techniques is
investigated here to obtain high convergence of solutions and to cover the Pareto-
optimal front. The subdivision methods cannot solve discrete problems and need
high computational time when optimizing problems with a high number of param-
eters. Therefore, the Hybrid MOEA (HMOEA) is studied to omit the problems of
both of the methods. It is also tested on a real-world example. However, it is also
shown in an example that the subdivision method may in some cases fail to find an
exact approximation of the Pareto-optimal front. This is then solved by proposing
a Static Recovering technique to cover the Pareto-optimal front. Static Recovering
is tested on an antenna design problem. It must be mentioned that the HMOEA
depends on the result obtained by the MOEA, indeed the recovering process is just a
local improvement of the obtained Pareto-optimal front. The results of this chapter
are further analyzed in Chapter 7.

Chapter 5

Multi-Objective Particle Swarm
Optimization (MOPSO)

Different from evolutionary computation techniques, Particle Swarm Optimization
(PSO) [KE95, SE98] is motivated from the simulation of the social behavior of bird
flocking and fish schooling. PSO was originally designed and developed by Eber-
hart and Kennedy [KEO1]. However, it shares many similarities with evolutionary
computation techniques. The system is initialized with a population of random so-
lutions and searches for optima by updating generations. Unlike EA, PSO has no
evolution operators such as crossover and mutation. In PSO, the potential solutions
fly through the problem space by following the current optimum particles.

PSO simulates the behaviors of bird flocking. Suppose the following scenario: A
group of birds are randomly searching food in an area. There is only one piece of
food in the area being searched. All the birds do not know where the food is. But
they know how far the food is in each iteration. So what is the best strategy to find
the food? The effective one is to follow the bird nearest to the food. PSO learned
from this scenario and uses it to solve optimization problems. In PSO, each single
solution is a ”bird” in the search space. We call it ”particle”. All of the particles
have fitness values, which are evaluated by a fitness function to be optimized, and
have velocities which direct the flying of the particles. The particles fly through the
problem space by following the current optimum particle called guide.

Recently, researchers are paying more and more attention to PSO, for solving multi-
objective problems [CL02, FS02, HE02, PV02a, Fie03, MT03b]. Changing a PSO
to optimize a multi-objective problem requires a redefinition of what a guide is in
order to obtain a front of optimal solutions. In Multi-Objective Particle Swarm
Optimization (MOPSO), non-dominated solutions must be used to determine the
guide for each particle. Selecting the guide (the best local guide) from the set of

76 Multi-Objective Particle Swarm Optimization (MOPSO)

non-dominated solutions for each particle of the population [FS02] is very difficult,
yet an important problem for attaining convergence and diversity of solutions.

In this chapter, the basic concepts of PSO and MOPSO are briefly reviewed. Then,
a new method called Sigma method is introduced. Sigma method is actually a
technique for selecting the best local guides for particles in the population. This
method is tested on different test functions and compared with other methods. The
implementation results show that by using the Sigma method in a MOPSO, we can
achieve a very good convergence and diversity of solutions. Following the Sigma
method, a new metric for measuring the diversity of a non-dominated set is also
introduced in this chapter.

Covering the Pareto-optimal front is another task that is easily solvable by MOPSO.
This is also investigated at the end of this chapter.

5.1 Particle Swarm Optimization (PSO)

PSO consists of a population of particles, which contrary to EA, survive up to the
last generation. The particles search the variable space by moving with a special
speed towards the best global particle (guide) by using their experience from the
past generations. A PSO method can be formulated as follows. A set of N particles
are considered as a population P; in the generation ¢. Each particle ¢ has a position
defined by 7 = (z%, %, - -- , 2% and a velocity defined by " = (v%, v}, --- ,v%) in the
variable space S. In generation ¢ + 1, the velocity and position of each particle 7 is
updated as below:

i _ i i i g i
Vi = wup+caRi(p), — 2h,) + caRa(pyi — 25,)

Tjgr1 = Tjp Vi (5.1)
where j=1,...,n,2=1,..., N, and
e w is the so called inertia weight of the particle,

e ¢; and ¢y are two positive constants,

Ry and R, are random values in the range [0, 1],

ﬁti’g is the position of the global best particle in the population, which guides

the particles to move towards the optimum,

Pt is the best position that particle i could find so far. Indeed, it is like a
memory for the particle ¢ and is updated in each generation.

5.2 MOPSO 77

In PSO, the performance of each particle is measured according to a pre-defined
fitness function, which is related to the problem to be solved.

Inertia Weight

The inertia weight w is employed to control the impact of the previous history of
velocities on the current velocity, thus to influence the trade-off between global and
local exploration abilities of the particles [SE98, KEO1]. A larger inertia weight w
facilitates global exploration while a smaller inertia weight tends to facilitate local
exploration to fine-tune the current search area. Suitable selection of the inertia
weight w can provide a balance between global and local exploration abilities and
thus requires less iterations on average to find the optimum [SE98, KEO1]. A nonzero
inertia weight introduces the preference for the particle to continue moving in the
same direction it was going on the previous iteration.

Control Parameter

In Equation (5.1), ¢; Ry and ¢ Ry are called control parameters or acceleration con-
stants [KEO1]. These two control parameters determine the type of trajectory the
particle travels. If R; and R are 0.0, it is obvious that v = v+ 0 and x = z + v (for
w = 1). It means the particles move linearly. If they are set to very small values,
the trajectory of z rises and falls slowly over time.

Particle Interaction

The effectiveness of the particle swarm algorithm comes from interactions of particles
with their neighbors. As one particle discovers an optimum, it becomes the best in
the neighborhood and attracts (guides) the other particles to itself. Indeed, there is
no selection process in a PSO method, unlike EAs.

5.2 MOPSO

The important part in multi-objective particle swarm optimization (MOPSO) is to
determine the best global particle ﬁti’g for each particle 7 of the population. In
single-objective PSO, the global best particle is determined easily by selecting the
particle that has the best position. Since the goal in multi-objective optimization
is to cover the Pareto-optimal front, each particle of the population must select one
of the Pareto-optimals as its global best particle, which we call the best local guide.
Algorithm 13 shows a possible structure of a MOPSO with elitism, where ¢ denotes

78 Multi-Objective Particle Swarm Optimization (MOPSO)

the generation index, P; the population, and A; the archive at generation t. The
algorithm begins with NV particles in the population. Here, elitism is considered by
storing the non-dominated solutions in the archive A;. In Algorithm 13, the function
FEvaluate evaluates the particles in the population P;, the function Update(P;, A;)
compares whether members of the current population P; are non-dominated with
respect to the members of the actual archive A;, how and which of such candidates
should be considered for insertion into the archive, and which should be removed.
Thereby, the archive is kept domination-free. Obviously, during execution of the
function Update, dominated solutions must be removed.

Algorithm 13 : MOPSO Algorithm

Input: N
Output: A
1. Initialization: Initialize population P, ¢t = 0:
fori=1to N do
Initialize Z,’, 7," = 0 and ' = &,°
end for
Initialize the archive A; := {}
2. Evaluate: Fuvaluate(P;)
3. Update: A1 := Update(P;, A)
4. Move: Pyy1 := Move(P;, Ay)
fori=1to N do
7,9 := FindBestLocal(Ay11,7,")
for j =1tondo

) _ 7 7 7 1,9)
Vipp1 = Wiy + Ra(phy — af,) + Ra(pyi — o3,)

Tipp1 = Ty + 0500
end for
if Z,', < p,’ then
15;511 = ftfu
else
Py =Py’
end if
end for
5. Termination: Unless a termination criterion is met t =t + 1 and goto Step 2

Selecting the best local guide is achieved in the function FindBestLocal (A1, T,*)
for each particle i. In this function, each particle has to change its position Z,*
towards the position of a local guide, which must be selected from the updated
set of non-dominated solutions stored in the archive A;.;. This function will be
discussed in the next section. In Step 4, the position p'* of the particle 4 is updated.

5.3 Finding Best Local Guides 79

p ¢ is like a memory for the particle 7 and keeps the non-dominated (best) position
of the particle by comparing the new position Z,%, in the objective space with p,’
(p,* is the last non-dominated (best) position of the particle 7).

The steps of an elitist MOPSO are iteratively repeated until a termination criterion
is met, such as a maximum number of generations (7), or when there has been no
change in the set of non-dominated solutions found for a given number of generations.
The output of an elitist MOPSO method is the set of non-dominated solutions stored
in the final archive.

5.3 Finding Best Local Guides

As mentioned before, several MOPSO methods [HE02, HES03, CL02, FS02, PV02a,
Fie03, MT03b, Li03] are already available. In each of these methods (apart from
the differences in the main algorithm), there is also a suggestion for finding the best
local guides. In most of these methods, there is an inspiration from Multi-Objective
Evolutionary Algorithms. In this section, some of the MOPSO methods are briefly
reviewed and then a new method for finding best local guides is introduced.

Hu and Eberhart’s MOPSO

Hu and Eberhart [HE02] present a MOPSO that uses a dynamic neighborhood
strategy. In their method explained for two-objective optimization, the best local
guide 7 %9 for the particle 7 is found in the objective space as follows.

e The distance of the particle ¢ to other particles is calculated in terms of the
first objective value, which is called fized objective.

e k local neighbors based on the calculated distances are found.

e The local optimum among the neighbors in terms of the second objective value
is selected as the best local guide § %9 for the particle i.

In this method, the selection of the fized objective requires a priori knowledge of the
objective functions and one-dimensional optimization is used to deal with multiple
objectives. Therefore, selecting the best local guides depends on just one of the
objectives. It also depends on the value of k.

Coello Coello and Lechuga’s MOPSO

Coello Coello and Lechuga [CL02] propose a MOPSO which has the same structure
as in Algorithm 13. In this method, the following steps are carried out, before

80 Multi-Objective Particle Swarm Optimization (MOPSO)

selecting the best local guide 7“9 for each particle i:

e The objective space is divided into hypercubes, as if putting a grid on the
objective space.

e A fitness value is assigned to each hypercube depending on the number of elite
particles that lie in it. The more elite particles in a hypercube, the less its
fitness value.

e Then, roulette-wheel selection is applied on the hypercubes and one of them
is selected.

e 7 "9 is a random particle selected from the selected hypercube.

Therefore, the best local guide is selected by using the roulette-wheel selection
method, which is a random selection. Indeed, it is possible that a particle does
not select a suitable guide as its local guide.

Fieldsend and Singh’s MOPSO

Fieldsend and Singh [FS02] present a MOPSO which uses an unconstrained archive.
In their method, a dominated tree data structure (see also Section 3.2) is used for
storing the elite particles, which facilitates the choice of a best local guide for each
particle of the population. By using this special archive, they address the issue of
finding the best local guide and thereby consider all the objectives. In their method,
they store the non-dominated solutions in the archive called dominated tree. The
dominated tree is explained in Section 3.2.

Figure 5.1 shows this method for a two-objective example, where ¢, ..., ¢, are com-
posite points. The selection of the best local guide for a particle in the population is
based on its closeness (in objective space) to a particle in the archive. The best local
guide for a particle ¢ is that archive member of the composite point ¢; contributing
to the vertex, which is less than or equal to the corresponding objective in 7. This
is also shown in Figure 5.1. In the case that a composite point has more than one
vertex less or equal to particle i, one of the vertices that meets the condition is
selected at random (for more details see [FS02]).

Discussion

The way in which the local guides are selected in Fieldsend and Singh’s MOPSO is
considered better than the method proposed by Coello Coello and Lechuga [FS02].
However, they have both tested their algorithms for two-objective test functions.

5.3 Finding Best Local Guides 81

f2(x) |

Figure 5.1: Choosing the best local guide among the archive members for each
particle in the population by Fieldsend and Singh‘s method [FS02]. (m: archive
member, o: particle of the current population and x: composite points)

Considering higher dimensional objective spaces, Fieldsend and Singh’s MOPSO
just tries to guide the particles by particular members of the archive. This can also
be observed in Figure 5.1 for a two objective example. The particles that have both
of their objective values greater than ¢; must select one of the archive members
making the composite point ¢i, whereas for most of them, other guides coming from
composite points ¢, or ¢3 are more suitable. However, the aim of MOPSO is to let
the particles move towards the best solutions, and in this method the particles are
blocked by the composite points. This fact creates difficulties in attaining diversity
of solutions, especially for high dimensional objective spaces. In the next section,
another variant of MOPSO methods is studied, which avoids blocking particles when
moving towards the Pareto-optimal front.

5.3.1 Sigma Method

In this section, a new method for finding the best local guide for each particle -
called Sigma method - is proposed. Before explaining the method, the basic idea
of the Sigma method is discussed in its general form. Later, finding the best local
guide for each particle of the population in the objective space is explained.

In the Sigma method, a value o; is assigned to each point with coordinates (fi, f2;)
so that all the points which are on the line fo = af; have the same value of o.
Therefore, we can define ¢ as follows:

_ -
ft+ 13

(5.2)

82 Multi-Objective Particle Swarm Optimization (MOPSO)

According to Equation (5.2)!, all the points on the line f, = af; have the same o
values: 0; = (1 —a?)/(1 + @®). Figure 5.2 (a) shows the values of o for different
lines. For the point with the coordinates (f1;, fo;), if fi; = f24, 0 = 0. In the case
that fo; =0, 0 =1 and in the case f;; = 0, 0 = —1. Therefore, when a > 1, o is
negative and when a < 1, ¢ has a positive value. Indeed, o states the angle between
the lines fo = 224 f; and fi = fo.

fi
3x) 4 _
- S B
e A%
8 s/
Vi 7
6
‘ 00
! =9
; o=C110_ iy
j L " 04,
I N 0y
l C
‘ ‘ Y
1 4 6 f1(x) f1(x)
(a) 2-objective (b) 3-objective

Figure 5.2: Examples of the Sigma method

In the general case, let & be a vector of (Z‘) elements, where m is the dimension
of the objective space. In this case, each element of & is the combination of two
coordinates in terms of the Equation (5.2). For example, for three coordinates f,
fo, and f3, it is defined as follows:

=15
F=| B-fF)/ H+HE+E) (5.3)
f3 =1

Different values of & for different values of fi, f», and f3 are shown in Figure 5.2 (b).
In the general case, when a point has the same position in each dimension (e.g.,
fi = f» = f5 in 3 dimensional space), & = 0.

Tt must be emphasized that Equation (5.2) can have other definitions, e.g., 0 = fife The
important issue is that all the points lying on the line fo = afi; must have the same o value. The
first idea of Equation (5.2) comes from the value of cos(e) - sin(a), where « is the angle between
the lines f2 = f1 and f2 = af1

5.3 Finding Best Local Guides 83

f2(x)

K2

Figure 5.3: Finding the best local guide for each particle of the population using
the Sigma method. (m: archive member, o: particle of the current population)

Finding the Best Local Guides

By using the basic idea of the Sigma method and by considering the objective
space, the best local guide (p,"?) among the archive members for particle 7 of the

population, can be found as follows:

e For each particle j in the archive and particle 7 in the population, the values
of o; and o; are calculated, respectively.

e Then, the distance between o; and o, Vj =1,...,|A| must be computed.

e The particle k£ in the archive, where o, has the minimum distance to o; is
selected as the best local guide for particle .

Therefore, the particle ﬁti’g = #* is the best local guide for particle i. In other
words, each particle that has a closer? Sigma value to the Sigma value of the archive
member, must select that archive member as the best local guide.

Figure 5.3 shows how we can find the best local guide among the archive members
for each particle of the population for a 2-objective example.

The reason for selecting particle k& from the archive members as the best local guide
is that oy has the closest distance to o; among the archive members. When two
o values are close to each other, it means that the two particles are on two lines
(e.g., fo = a1 f1 and fy = ay fiin two-dimensional space) that are close to each other

2In the case of two dimensional objective space, closer means the difference between the Sigma
values and in the case of m-dimensional objective space, it means the m-Euclidian distance between
the Sigma values.

84 Multi-Objective Particle Swarm Optimization (MOPSO)

(there is just a small angle between them). When comparing the Sigma method to
the method proposed by Fieldsend and Singh [FS02] (see Figure 5.1), we observe
that the Sigma method lets the particles fly directly towards the Pareto-optimal
front, whereas in [FS02] the particles are blocked by the composite points.

The algorithm of the Sigma method is shown in Algorithm 14. There, the func-
tion Sigma calculates the value of & and calcdist computes the Euclidian distance
between its inputs. In this algorithm, 7; denotes the objective vector of the jth
element of the archive A and the set o, contains the Sigma vectors of the archive
members.

Algorithm 14 : FindBestLocal Algorithm

Input: A, &, 04 = {Ga,1,502: " ,Fa,ja|}
Output: p'»9

Calculate &; for the particle i:
oi = Sigma(f(&))
dist = calcdist(oq,1,0%)
for j =2 to |A| do
tempdist = calcdist(oq,j,0;)
if tempdist < dist then
dist = tempdist
g=1J
end if
end for

Discussion

The Sigma method can be applied to problems with an arbitrary number of objec-
tives. For each particle in the space, a ¢ value must be calculated. However, it must
be noticed that:

e By definition of the Sigma value in Equation (5.2), the Sigma method works for
those MOPs which all of their objectives are either in the positive or negative
part of the coordinate axis. For example, for a 2-objective MOP with f; €
[0,10] and fo € [—5,2], we have to transform either f; to [—10,0] and f5 to
[—7,0] or f5 to [0,7].

e In the Sigma method, it is desired to have the line with o0 = 0, in the middle
of the space (e.g., in 2-objective space, f; = fo line has an angle of 7/2 to

5.4 Turbulence Factor 85

f1)- This is possible when two objective functions are in the same ranges. In
the case that the objectives are not in the same range, ¢ can be scaled. For
example, for a two-objective space it can be changed to:

(H2f1)? — (K1 fo)?

T K T (Kaho)? &4)

where K; and K, are the maximum values of the first and second objective

values of the particles in the population, respectively (Figure 5.3). The val-
ues of Ky and K, can also be calculated from the maximum corresponding
objective values of the particles in the current generation.

5.4 Turbulence Factor

To avoid local optima, a new factor called turbulence is added to MOPSO. This is
known as craziness in PSO and is introduced by Kennedy and Eberhart [KE95].
Later, its name is changed to turbulence factor [FS02]. This parameter is similar
to the mutation operator in EAs and is applied by adding a random value to the
current position of each particle. The turbulence factor can be defined as follows:

xi, = 5, + Rr aj, (5.5)

where Ry is a random value in [—1, 1], which is added to the updated position of
each particle with a probability. The probability, like the probability of mutation
in EAs, has a very low value e.g., 0.01. However, it depends on the problem to be
solved.

5.5 MOPSO vs. MOEA

Figure 5.4 shows a possible structure of a MOPSO method. This structure is valid
for those elitist MOPSOs that store non-dominated solutions in an archive. Indeed,
it shows different blocks of the algorithm, which consume most of the computational
time. Compared to Figure 2.2 in Section 2.2.2, MOPSO and MOEA methods have
several blocks in common, as well as some differences. The blocks Calculating non-
dominated solutions, Update, and Clustering are related to the elitism, which are
the same in both methods. The blocks Fwvaluate and Move refer to the main parts
of the Algorithm 13. Comparing the simple structures of a MOEA with MOPSO
in Sections 2.2.2 and 5.5, some major differences of the methods can be observed.
In the following, the differences as well as the common parts of these methods are
outlined.

86 Multi-Objective Particle Swarm Optimization (MOPSO)

v Y
Initialize Population Initialize Archive
' Calculate
= Evaluate > Non—-dominated——
Solutions
v y
Move Clustering = Update
N
Yes
End

Figure 5.4: A possible structure of a MOPSO

Evaluation

In MOPSO there is no fitness evaluation like in MOEAs, e.g., in the SPEA2 method,
strength and raw fitness values are calculated. Only the positions of the particles
are evaluated in each generation.

Recombination

MOPSO does not have a cross-over operator. Acceleration towards personal and lo-
cal best solutions is a similar concept. A mutation operator is necessary in MOEAs,
as well as the turbulence factor in MOPSO. However, in MOPSO without a turbu-
lence factor, any particle can eventually go anywhere in the space.

Selection

There is no selection in MOPSO; all particles survive until the last generation.

Interaction

In MOEA, there is interaction between randomly selected population members,
whereas in MOPSO the topology is constant; a neighbor is a neighbor.

5.5 MOPSO vs. MOEA 87

Archiving

Archiving is used in both of the methods. It helps to attain better convergence of
solutions. The size of the archive is an important issue in MOPSO.

Parameters

Inertia weight is the only key parameter in MOPSO which must be selected carefully.
In MOEAS, cross-over and mutation probabilities, the selection operator (the size
of the mating pool) have a great impact on the solutions. However, in both of the
methods, population size, archive size, and number of generations must be defined
by the optimizer in the beginning.

The influences of the parameters on the MOPSO method are studied later in this
chapter.

5.5.1 Archiving in MOPSO

The archive is used as an external population to store the non-dominated solu-
tions. However, in MOPSO methods it is not only used as an archive to store the
solutions, but also its members guide the population members towards the Pareto-
optimal front. The same holds for MOEAs. The archive is also used in the selection
process and it increases the probability of making better offsprings. However, in
MOPSO, each archive member takes the responsibility of guiding the particles in its
neighborhood. Therefore, the archive in MOPSO has more impact on the diversity
and convergence of solutions than in MOEA. In other words, the good diversity of
archive members leads the particles to a good diversity of solutions.

In the MOPSO methods, the initial archive is typically empty. In the first generation,
the non-dominated solutions of the initial population are stored in the archive.
Therefore, the particles of the population should select their best local guides among
these archive members. Selecting the first local guides from the archive has a great
impact on the diversity of solutions in the next generations, especially when using the
Sigma method or the method proposed by Fieldsend and Singh [FS02, MT03b]. But
if the initial archive is not empty and contains some well-distributed non-dominated
solutions, the solutions converge faster than before, while keeping a good diversity.
Figure 5.5 (a) shows an example of an initial population and the non-dominated
particles among them, which are stored in the previously empty archive. In this
figure, particles select one of these archive members as the local guide by using
the Sigma method, and one can imagine that after one generation, particles will
move towards the left part of the space. In Figure 5.5 (b), the initial archive was

88 Multi-Objective Particle Swarm Optimization (MOPSO)

(a) (b)

o
O

— i/ f/ / :

f1(x) f1(x)

Figure 5.5: The influence of the initial archive (a) There is no initial archive. The
particles must select one of the non-dominated solutions as the local best guide
(b) The particles select one of the members of the initial archive (o: particle of the
current population, ®: non-dominated solution of the current population, m: member
of the initial archive)

chosen not to be empty, but it has some members which dominate all the particles
in the population. This time, the particles will obtain a better diversity in the next
generation than in Figure 5.5 (a).

Now, the question is how to find a good initial archive. One possibility is to run the
MOPSO with an empty archive for a large population and few generations. The large
population gives a good diversity and few generations (e.g., 5 generations) develop
the population to just a little convergence. Another possibility is to use the results
of a short MOEA (see Section 4.2). Here, short means a MOEA with few individuals
and a small number of generations (e.g., 10 individuals and 10 generations).

5.6 Sigma Diversity Metric

In Section 2.5, different existing diversity metrics, such as the S metric, the Entropy
approach, and the Sparsity measure are briefly studied. These methods compare
the diversity of two non-dominated sets by calculating hyper-volume, or an entropy
measure. However, as mentioned before, these measurements are suitable when
comparing two sets and do not obtain information about a non-dominated set, itself.
This is more important when the number of objectives is higher than 3, because
the diversity of the solutions cannot be illustrated graphically. Indeed, for decision
makers it is important to know where the solutions are located and how many percent

5.6 Sigma Diversity Metric 89

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
1

Figure 5.6: 2-objective Sigma Diversity Metric. Black points are the solutions of a
2-objective test function and the lines are reference lines

of the space is occupied by them. The disadvantages of the existing methods can
thus be outlined as follows:

e High computational time, especially for high number of objectives (S metric).

e The methods can be used for comparing only two non-dominated sets. The
hyper-volume does not give us information about the non-dominated set.

e Mapping of solutions does not reflect the exact diversity of convex non-dominated
fronts (in Entropy and Sparsity measures).

Therefore, another diversity metric is studied here, which is inspired from the Sigma
method. Indeed, the position of each solution in 2- and 3-objective spaces may be
considered by a different coordinate axis, as well as by polar coordinates (r and 0)
and spherical (r, # and ¢) coordinates, respectively. Inspired from these coordinates,
we can formulate the diversity of solutions by a well distribution in terms of their
angles 6 for 2-objective spaces and 6 and ¢ for 3-objective spaces. However, for
higher dimensional objective spaces, we cannot define a coordinate axis which gives
us a simple distribution, like in polar or spherical coordinates. Therefore, a new
method is suggested to calculate the position of the solutions in the objective space,
which uses the concept of the Sigma method. Actually, the Sigma method is easy
to implement for any desirable number of objectives, and therefore it is easy to
use it as a diversity metric. Figure 5.6 shows the idea of using the Sigma method

90 Multi-Objective Particle Swarm Optimization (MOPSO)

as a diversity metric for 2-objective spaces. In this figure, |A| solution points are
illustrated. Also, |A| lines are drawn from the origin. A possible good diversity of
solution is to have one solution on each line, or enclosed between two lines. But how
can we find these lines for any number of objectives?

Reference Lines

As is shown in Figure 5.6, k+ 1 lines with different Sigma values are drawn from the
origin. These lines are called reference lines and have the angle %(g) to the fi-axis,
where ¢ = 0,1, ..., k. We consider k+1 reference lines for computing the diversity of
an archive with the size of |A| (|JA| = k+1). For higher dimensional spaces, the ref-
erence lines are also defined by lines passing through the origin. In order to find the
angles between the lines and each coordinate axis, it is easier to find reference points
located on the reference lines. Hence in an m-dimensional space, the coordinate of
each reference point is a vector of m elements. Algorithm 15 calculates the coordi-
nates of the reference points. For example, we obtain (1,0), (1,tan(%)), (1,tan(3)),
for m = 2 and k£ = 3. Indeed in this algorithm, the first coordinate of point ¢ is kept
constant (f;; = 1) and the other coordinates are changing. However, to obtain the
entire set of reference points, the algorithm must be repeated m times, each time
one of the coordinates must be kept constant. In our example, we keep the second
coordinate constant in the second run and obtain (0,1), (tan(%),1), (tan(%),1).

Algorithm 15 : Calculate coordinates of reference points

Input: m, k
Output: (fl,i, fz,z', ce ,fm,i), Vi=1,2,...,1
=1

for jy =0to k—1do
for o =0to k— 1 do

for j,,_1 =0tok—1do
fii=1
fai = f1i tan(m j1/2k)
f3,i = f1,i tan(m j2/2k)

fmi = fri tan(m jm—1/2k)
1=1+1
end for
end for
end for
I=4

5.6 Sigma Diversity Metric 91

3

0.54

05

Figure 5.7: Reference lines in 3-objective space (k = 4)

The number of reference points produced by Algorithm 15 depends on k£ and m.
In 2-objective spaces, the number of reference lines is equal to £ + 1. In higher
dimensional spaces k is the number of regions, which are separated by reference
lines on the plane generated by only two of the coordinate axes. For example, in
Figure 5.7, there are four regions separated by reference lines on the plane generated
by the fi- and fs-axes. In higher dimensional spaces, the number of reference
points made by Algorithm 15 is more than the required number of reference lines,
because by repeating the algorithm, some points lie on the same reference line. In
the previous example, the points (1,%an(%)) and (tan(3),1), and (1,tan(%)) and
(tan(%),1) are on the same line. Therefore, the number of reference lines can be
calculated after finding the Sigma value (vector) of each reference point (this will be
explained later). Table 5.1 shows the number of reference lines for different values
of k in 3-objective spaces.

Diversity Metric

The Sigma diversity metric can easily be computed as follows:
e Find reference lines according to Algorithm 15.

e Compute the Sigma value of each reference line (reference Sigma value) accord-
ing to Section 5.3.1. The points located on a reference line will have the same
Sigma vectors and the number of reference lines is the number of non-repeated
reference Sigma vectors.

92 Multi-Objective Particle Swarm Optimization (MOPSO)

Table 5.1: k is the number of regions separated by reference lines on the plane
generated by only two of the coordinate axes, number of ref. is the number of
reference lines, and d is the radius of the neighborhood defined around each reference
line.

k number of ref. d

4 25 0.15
6 67 0.1
8 133 0.1
10 223 0.1
12 337 0.1
14 475 0.05
16 637 0.05
18 823 0.05
20 1033 0.05

e Keep a binary flag beside each reference Sigma vector. The flag is 0 in the
beginning. The flag of each reference Sigma vector can only turn to 1, when at
least one solution has an equal Sigma vector or an Euclidian distance less than
d, to it. The value of d depends on the test function, however it should decrease
by increasing the number of reference lines. Table 5.1 shows an example of
choosing d for a continuous 3-objective test function.

e A counter C counts the reference lines with flags equal to 1 and the diversity
metric D becomes:
C
D= (5.6)

number of reference lines

The Sigma diversity measurement expresses the percentage of the space that is oc-
cupied by the found non-dominated solutions. This metric is easy to implement
and it is easy to compute the diversity of solutions in high dimensional spaces. The
2-objective Sigma diversity metric seems to have some similarities to the Entropy
approach [FMAOQ2] and the Sparsity measurement [DMMO03a, KYDO03] (see also Sec-
tion 2.5), especially when measuring the diversity of convex objective fronts. But
in comparison to them, it is easy to calculate the diversity of solutions in high di-
mensional spaces. The Sigma diversity metric, like the Sigma method, can also be
scaled for different ranges of the objective values. However, the objective values
must only contain the positive values, and the negative values must be transferred

5.6 Sigma Diversity Metric 93

to the positive part (i.e., upper right quadrant of a circle in two dimensions). This
is possible without any loss of generality.

5.6.1 Median Sigma Value (5)

Another valuable information that can be obtained from the Sigma method is to
find the position of the solutions by using a simple measurement. In other words,
we know from D in Equation (5.6), that the solutions are distributed along the non-
dominated front with D percent. If the value of D is high, it means that the solutions
are well distributed. But when D is small, it means that the solutions are either
concentrated in one part of the space, or distributed in small groups along the front.
Indeed, there is a difference between these two kinds of solutions. Figure 5.8 shows
the difference between two sets of solutions with the same D values. But their
diversities (spreads) are different, because the solutions have different positions.
Using the concept of the Sigma method again, we can measure the positions of the
solutions. Let’s consider 2-objective spaces, first. As shown in Figure 5.2 (a), the
Sigma value is changing from 1 to 0 and to -1, by changing the angle between the
line fs = a - f; and the coordinate axis f;. We can use this property and find the
median of the Sigma values of the solutions. If our solutions have good diversity and
spread, then the median of their Sigma values is zero. Negative and positive values
of the median mean that the solutions are concentrated in the left and right hand
side of the front, respectively. However, the zero value of the median, is also valid
when the solutions are all concentrated in the middle of the non-dominated front.
The same idea applies for higher number of objectives as well. The line in the middle
has the Sigma vector equal to 0 (see Figure 5.2 (b)). This time, the median vector
must be considered.

2(x) |

1(x)

Figure 5.8: Different diversities (spreads) of solutions, but with the same D values

94 Multi-Objective Particle Swarm Optimization (MOPSO)

\ 2
- 3(x) cl<0 K
62<0 //
G3>O ’ 61<0
. S // >, 02>0
.'."‘ o ’///Q g;:g 63>0 -0=000)
. 4 -7
l.' . // 6 G3>O / //(//((//{/‘/\%:@
. // cl>0 \ G—(—()i)l())
o. // . 62<0 61<O
. // N (5>0 63<0

Figure 5.9: Properties of the median of the Sigma values in (a) 2- and (b) 3-objective
spaces

Consider o = {&1, -+, d|4|} as the set of Sigma vectors of the solutions in the archive
A. Then, the jth element of the median vector & is defined as follows:
- Ul,ja lf ‘A| = 2l -+ 1
g; = . 5.7
’ { s(0@, + o) if [A] =21 (57)

Figure 5.9 shows different parts of the space for different median values for 2- and 3-

objective spaces. In this figure, o; is the ¢th element of the Sigma vector. Calculating
the median value is useful when the diversity measure D is small.

Discussion

The Sigma diversity metric and the median Sigma value deliver information about
the diversity and spread of obtained solutions along the approximated Pareto-
optimal front. The advantages of these measurements in comparison to other diver-

sity and spread metrics such as the S metric, the Entropy, and Sparsity measure-
ments, are as follows:

e Computing the metric is very easy for any desired number of objectives.

e They can deliver information about one approximated front, where the other
methods compare two approximated fronts. Indeed, the output of the Sigma
diversity metric is a percentage of the objective space; the other methods

deliver a scalar value representing the hyper volume or Entropy measure, which
are used to compare two sets.

5.6 Sigma Diversity Metric 95

e The median Sigma value computes the positions of the solutions in the ob-
jective space. This is a good metric for the objective spaces with high di-
mensionality, i.e., m > 3, where the graphical illustration of solutions is not
possible.

Figure 5.10 illustrates an example of three different non-dominated sets with dif-
ferent spreads and diversities of solutions. In Figure 5.10 (a), the solutions are
well-distributed. Therefore, both of the Sigma diversity measure and the median
Sigma value are satisfactory, i.e., D = 100% and & = 0. In Figure 5.10 (b), there
is a large gap between the solutions and therefore, the Sigma diversity measure is
less than the desired value. The positive median value indicates that most of the
solutions are concentrated on the right hand side of the non-dominated front. In
fact, the median value can be applied as a measurement of the spread of the solu-
tions. In Figure 5.10 (c), solutions are not well-distributed. Therefore, the Sigma
diversity measure is less than 100%. These solutions have better spread than those
in Figure 5.10 (b). This is also indicated by the median Sigma value.

The Sigma diversity metric requires information about d, the neighborhood defined
around each reference line. The value of d depends highly on the shape of the
Pareto-optimal front. The reference lines must be computed once for each number
of objectives and the corresponding values can be stored in a table.

() (b) ©
f2(x) f2(x) f2(x)

0 5>0 6=0
100% D < 100% D < 100%

f1(x) f:(x) f1(x)

Figure 5.10: An example of different non-dominated sets with different diversity of
solutions. (a) Solutions are well-distributed: D = 100% and 6 = 0. (b),(c) Solutions
are not well-distributed: D # 100%. Median Sigma value, &, indicates the spread
of solutions.

96 Multi-Objective Particle Swarm Optimization (MOPSO)

5.7 Experiments

The experiments are applied on the 2-; 3- and 4-objective test functions from Ta-
ble 2.1. Here, three kinds of MOPSO methods and one MOEA method are imple-
mented for comparison. The MOPSO methods are Sigma, Dtree, and Random.
Sigma and Dtree are implementations of the Sigma method and Fieldsend and
Singh’s method [FS02] of the MOPSO (outlined in Algorithm 13). The Random
method is a simple implementation of a MOPSO. In this method, the local guides
are chosen from the archive randomly. SPEA2 method is selected as the MOEA
method (see Section 2.2.1) for more details.

Each experiment consists of 5 runs with different initial seeds and run on 500 MHZ
SUN UltraSPARC Ile workstation. The mean values are recorded.

The comparison of different methods is based on the Sigma diversity metric and the
C metric (for convergence). In the case that the archive size exceeds the maximum
defined size, clustering is applied on the elite particles in the archive [Zit99]. The
initial population consists of uniformly distributed particles in the variable space.

5.7.1 2-objective MOPs

2-objective test functions are selected from Table 2.1, i.e., ZDT1—ZDT6. The
selected parameters for these test functions are:

e Inertia weight: 0.4,

e Turbulence factor: 0.07,

e Population size: 100 for ZDT6, 200 for ZDT1 and ZDT3, 300 for ZDT4,

e Number of generations: 200 for ZDT1 and ZDT3, 2000 for ZDT4 and ZDT6,
e Archive size: 50,

e Recombination: (for SPEA2 method) cross-over probability of 0.8 and muta-
tion rate of 0.01.

Here, the termination criterion is defined as a maximum number of generations.
For the test functions ZDT4 and ZDT6 the number of generations is increased to
2000. This is because the test function ZDT4 has 21° local minima and converging
requires a high number of generations. Also, the test function ZDT6 has adverse
density of solutions across the Pareto-optimal front, coupled with the non-convex
nature of the front which make it difficult to converge.

Figures 5.11-5.14 show the results of the MOPSO techniques and SPEA2 on the
test functions ZDT1-ZDT6, respectively.

5.7 Experiments 97

(a) Sigma (b) Dtree
1 1
08" 1 08[
Y "\
o 06 1 o 06
... . .\..
0.4 1 0.4 .
02 * 02
0 : 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
f1 f1
(c) Random (d) SPEA2
3.5
1
3 :
0.8} ..
\‘
25 T
o o 0.6 .
2 0.4
1.5 . i 0.2
1 0 -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

f1 f1

Figure 5.11: Results of the (a) Sigma, (b) Dtree, (¢) Random, and (d) SPEA2
methods applied on the test function ZDT1 in Table 2.1

Comparison

Tables 5.2 and 5.3 summarize a quantitative comparison of the methods. Table 5.2
shows the comparisons of the diversity of solutions using the Sigma diversity metric
D and the median Sigma value . Large values of D indicate a better diversity,
and low absolute values of & show that the solutions are symmetrically distributed
along the front. Table 5.3 shows the convergence comparison of different methods
with the Sigma method using the C' metric. Large values of C'(A, B) and low values
of C(B, A) mean that A has better solutions than B. However, when both of them
have low values, it means that they have many indifferent solutions, which do not
dominate each other.

In the following, each method is compared with other methods in terms of conver-
gence and diversity of solutions:

e Random: As it is shown in Figures 5.11-5.14, Random cannot find solutions

98

Multi-Objective Particle Swarm Optimization (MOPSO)

f2

f2

(a) Sigma (b) Dtree
2t 2F
. “
- \. \
15} kY 1 15} \
K3 N . '
1 S Tt ‘\
H
0.5¢ k H 0.5}
%
0 : : : : 0 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1 1
(c) Random (d) SPEA2
4.5
2}
0 .
4f o
. 15} '
3.5} : K
3
N 1 K
3l \
25| g — 0.5} T
t
5 ‘ ‘ ‘ . 0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

f1 f1

Figure 5.12: Results of the (a) Sigma, (b) Dtree, (¢) Random, and (d) SPEA2
methods applied on the test function ZDT3 in Table 2.1

with good diversity and convergence like the other methods. The results of this
method are clear enough in the figures, therefore no quantitative comparison
is applied. This method cannot find solutions with acceptable convergence in
a low number of generations.

Sigma: This method finds solutions with very good diversities for all of the
test functions. The high values of the Sigma diversity measure D, together
with very low values of the median Sigma values show that the solutions are
well-distributed and symmetric along the approximated Pareto-optimal front.
The values of the C' metric obtained for the test function ZDT4 expresses
that the Sigma method outperforms the SPEA2 and Dtree method. Also
it outperforms the SPEA2 method for the test functions ZDT1, ZDT3, and
ZDT6.

e Dtree: High values of the median Sigma value shows that the solutions are

5.7 Experiments

99

(a) Sigma (b) Dtree
25 5.25
b 5.24 A
2 Y
5231 %,
N15 N 522
5.21 .
1 .
---- 5.2
0.5 : : : : 5.19 :
0 0.2 0.4 0.6 0.8 1 0 2 4 6
f1 f1 x10™
(c) Random (d) SPEA2
30 3
29
25
28
.
N 27 N2
26 N
1.5 .
25 *
24 : : : 1 : : : :
0 0.05 0.1 0.15 0.2 0 0.2 0.4 0.6 0.8 1

f1

f1

Figure 5.13: Results of the (a) Sigma, (b) Dtree, (¢) Random, and (d) SPEA2
methods applied on the test function ZDT4 in Table 2.1

concentrated in one part of the space. This can also be observed in Figure 5.11—
5.13. This method cannot obtain a good diversity of solutions. However, these
solutions have better convergence than the solutions of the Sigma method for
the ZDT1 and ZDT3 test functions. This can be observed in the convergence
comparisons. Dtree method concentrates only on one part of the space, so
it cannot find a good diversity of solutions. On the other hand, the Sigma
method works on a wide area in the search space and finds non-dominated
solutions in most parts of the search space.

SPEA2: This method finds a good diversity of solutions for the ZDT1, ZDT3,
and ZDT4 test functions. The results, however, are not as good as for the
Sigma method. Also, all of these solutions have less convergence than the
solutions of the Sigma method. The results for the ZDT6 test function have a
worse diversity than the Sigma and the Dtree methods.

100 Multi-Objective Particle Swarm Optimization (MOPSO)

(a) Sigma (b) Dtree
1 1
0.8 0.8}
0.6 : 0.6
& e N
0.4 3 0.4}
0.2 0.2}
0 0 -
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
f1 1
(c) Random (d) SPEA2
7 0.8
° -~
i
6 : 0.6
N5 N 0.4
4 0.2
3 0 :
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

f1 f1

Figure 5.14: Results of the (a) Sigma, (b) Dtree, (¢) Random, and (d) SPEA2
methods applied on the test function ZDT6 in Table 2.1

It must be emphasized that all of these methods are able to find solutions with high
diversity and convergence when we increase the number of generations.

5.7.2 3-objective MOPs

The MOPSO methods are studied on the 3-objective GSP3, CP3, and DLZT test
functions from the Table 2.1. Figures 5.15-5.17 show the results of the Sigma, Dtree,
Random, and SPEA2 methods with the following parameters:

e Inertia weight: 0.4,

e Turbulence factor: 0.07,

Population size: 200,

Number of generations: 300,

Archive size: 100 for GSP3 and CP3, 200 for DLZT,

5.7 Experiments 101

Table 5.2: Diversity measures of the 2-objective test functions, S: Sigma, Dt: Dtree,
R: Random, and SP: SPEA2 method (D: Diversity metric in percent, & : median
Sigma value)

Test Dg as Dpt optree Dsp 0sp
7ZDT1 84% +0.07 78% -0.63 68% -0.13
ZDT3 66% -0.20 32% -0.84 50% -0.37
ZDT4 74% -0.58 6.0% -0.99 44% -0.54
7ZDT6 80% +0.29 74% +0.28 20% +0.99

Table 5.3: Convergence comparison of the 2-objective test functions, S: Sigma, Dt:
Dtree, R: Random, and SP: SPEA2 method (C: C metric)
Test C(S,Dt) C(Dt,S) C(S,SP) C(SP,S)

ZDT1 0.04 0.14 0.76 0.0
7ZDT3 0.1 0.2 0.32 0.02
ZDT4 1.0 0.0 1.0 0.0
7ZDT6 0.1 0.2 0.0 0.1

e Recombination: (for SPEA2 method) cross-over probability of 0.8 and muta-
tion rate of 0.1.

The selected test functions have continuous or disconnected-continuous Pareto-
optimal fronts.

Comparison

As is shown in Figures 5.15-5.17, Tables 5.4, and 5.5, almost all three MOPSO
methods find solutions with good diversity. The Sigma method finds solutions with
better diversity than the other methods for the test function GSP3. The very low
values of the median Sigma vectors express a symmetric spread of solutions on the
approximated Pareto-optimal front. Here, the Random method also finds some good
solutions. This is due to the low number of parameters. It means that the search
space in these test functions is not so large (in comparison with the 2-objective test
functions with 30 parameters). The SPEA2 method finds solutions with comparable
convergence to the Sigma method, but with lower diversity. This can be observed
for the test function GSP3 (Table 5.4). The convergence values of the solutions are
equal for all of the MO methods.

102 Multi-Objective Particle Swarm Optimization (MOPSO)

(a) Sigma (b} Diree

15 45 fl L 1818 fl

(c) Random (d) SPEAZ

15 15 fl o 1818 fl

Figure 5.15: Results of the (a) Sigma, (b) Dtree, (¢) Random, and (d) SPEA2
methods applied on the test function GSP3 in Table 2.1

Altogether, the Sigma method can find solutions with good diversity. The median
Sigma values in Table 5.4 indicate that the solutions lie in the same parts of the
space (see Figure 5.9) for all the MO methods. The & has all of its elements near
zero for the test function GSP3. It means that all the solutions are symmetrically
well-distributed on the front. It can be observed that for the other test functions the
median Sigma value is not zero, because the solutions are just concentrated in one
part of the space. The low values of C' metric in Table 5.5 is due to the differences
in the diversities of the solutions, and therefore, the solutions are incomparable.

5.7 Experiments 103

(a) Sigma (b) Dtree

Figure 5.16: Results of the (a) Sigma, (b) Dtree, (¢) Random, and (d) SPEA2
methods applied on the test function DLZT in Table 2.1

5.7.3 4-objective MOPs

The Sigma and the SPEA2 methods are studied on the 4-objective test function
GSP4 from Table 2.1. The following parameters are selected:

Inertia weight: 0.4,
Turbulence factor: 0.07,
Population size: 200,
Number of generations: 300,
Archive size: 100,

Recombination: (for SPEA2 method) cross-over probability of 0.8 and mu-
tation rate of 0.1.

104 Multi-Objective Particle Swarm Optimization (MOPSO)

(a) Sigma (b) Dtree
80+ 80 - s,
. s, ..
60 . 60 -
© 401 © 401

20 40 60 go 100 ¢4 20 40 60 go 100 ¢
f2 f2
(c) Random (d) SPEA2
‘
80 - 80
60 60
et :t
© 40 § wi © 40 i
207 0 209 P 0
0~ 0~
0 0
20 40 g0 5o 100 g 200 40 g0 g 100 ¢
f2 f2

Figure 5.17: Results of the (a) Sigma, (b) Dtree, (¢) Random, and (d) SPEA2
methods applied on the test function CP3 in Table 2.1

Table 5.6 shows the diversity values. The convergence comparison between these two
methods shows that they both obtain indifferent solutions (C(Sigma, SPEA2) =
0.02 and C(SPEA2, Sigma) = 0.0).

Comparison

From Table 5.6, it can be concluded that the Sigma method finds solutions with
higher diversity than the SPEA2 method. The & indicates that the solutions of
the Sigma method are symmetrically well-distributed on the non-dominated front
in the objective space. Because all the elements of the & are close to zero. Also, the
SPEA2 method cannot find solutions with high diversity. Also, the solutions are not
symmetrically distributed on the non-dominated front. The convergence comparison
indicates that both of the methods find solutions, which do not dominate each other.
This arises from the differences in the diversity of solutions.

5.7 Experiments 105

Table 5.4: Diversity measures of the 3-objective test functions, S: Sigma, Dt: Dtree,
R: Random, and SP: SPEA2 method (D: Diversity metric in percent, & : median
Sigma value)

Test Dg as Dp O Dtree Dgp asp
+0.01 +0.02 +0.00
GP3 88% —0.00 7% -0.01 71% +0.02
—-0.01 +0.00 —0.00
—0.00 —0.00 +0.00
DLZT 19% —0.81 22% —0.82 16% —0.83
+0.80 +0.82 +0.84
—0.00 +0.00 +0.03
CP3 22% +0.38 29% +0.35 28% +0.38
—0.37 —0.36 —0.42

Table 5.5: Convergence comparison of the 3-objective test functions, S: Sigma, Dt:
Dtree, R: Random, and SP: SPEA2 method (C: C metric)

Test C(S,Dt) C(Dt,S) C(S,SP) C(SP,S)

GP3 0.06 0.04 0.0 0.04
DLZT 0.02 0.02 0.0 0.0
CP3 0.08 0.02 0.02 0.1

5.7.4 Parameter Setting of a MOPSO

Selecting parameters such as population size, archive size, number of generations,
turbulence factor, and inertia weight is a confusing part of the optimization method.
However, MOPSO methods have less number of parameters compared to MOEAs.
For example, there is no mating pool, cross-over, and selection in MOPSO tech-
niques. All the parameters have a great impact on convergence and diversity of
solutions and like the MOEAs, it is difficult for the user to fix the parameters. In
this section, the influence of each of the parameters on the convergence and diversity
of solutions is studied. The tests are performed on the two test functions ZDT1 and
ZDT3 from Table 2.1. These functions have 30 parameters. The influence of the
parameters are tested as follows:

The set A of solutions is found by selecting parameters as before (population size
= 200, number of generations = 200, archive size = 50, turbulence factor = 0.07,

106 Multi-Objective Particle Swarm Optimization (MOPSO)

Table 5.6: Diversity measures on the 4-objective test function GSP4 (D: Diversity
metric in percent, & : median Sigma value)

method D o

Sigma 79% (+0.00, —0.00, +0.01, —0.02, —0.00, —0.00)

SPEA2 62% (—0.00,—0.14,+0.12, +0.06, +0.03, +0.18)

and inertia weight = 0.4). Then the tests are run with different parameters, and the
results are stored in the set B.

Influence of Population Size

By increasing the population size, the diversity of solutions increases. This is valid
for all the MOPSO methods. However, the computational time increases as well.
The convergence of the solutions depends on the population size and at the same time
on the turbulence factor. For higher values of turbulence factor and low number of
particles in the population, it is not possible to obtain good convergence of solutions
in a limited number of generations. This is clear, because a high value of turbulence
factor makes many particles change their positions to find the global optimum.
Therefore, it takes time for them to converge. The population size depends also on
the MOP, number of parameters, and the number of objective functions.

Table 5.7: Different population sizes
test size C(A,B) C(B,A) D(B) ¢m

ZDT1 50 0.5 0.02 66% -0.80
100 0.02 0.2 78% -0.41
150 0.0 0.26 82% +0.04
200(4) - - 84% 40.07

ZDT3 50 0.56 0.06 44% -0.85
100 0.2 0.1 42% -0.86
150 0.18 0.14 42% +0.03
200(4) - - 66% -0.20

Table 5.7 shows the diversity and convergence comparisons for the test functions
ZDT1 and ZDT3. In this table, A means the results of the Sigma method with
population size 200 and B is the method with various population sizes. Also, in this
table the diversity of solutions increases by increasing the population size. The con-
vergence comparisons indicate that with low values of C(Sigma, Dtree) and C(Dtree,

5.7 Experiments 107

Sigma), the solutions are indifferent to each other, i.e., both of the Sigma and Dtree
methods find solutions with the same convergence.

The size of the population also has an upper limit, which depends on the test
function. The reason for having an upper bound is as follows. In the first generation,
we have uniformly distributed solutions in the search space. If we increase the
population size, there will be some solutions on the Pareto-optimal front which
dominate the other solutions. It means that the dominated solutions must leave
their positions and move towards the non-dominated solutions. Therefore we loose
diversity.

Influence of Archive Size

The existence of the archive increases the convergence. In the Sigma and Dtree
methods, the archive must have a fixed size: If the archive is not restricted, the
selection process (selecting the best local guide) of each particle of the population
will take a lot of computational time. On the other hand, the restricted archive
size helps us to obtain a good diversity of solutions. If we just keep a fixed size of
well-distributed solutions in the archive, then the particles will also obtain a better
diversity in the next generations. The archive size depends on the population size
and turbulence factor. The size of the archive also depends on the decision maker,
since the archive is the output of the optimization method. For 2-objective MOPs,
low values of archive size (e.g., 30 to 50) lead the population to a good diversity and
also convergence (Table 5.8). However, for obtaining good convergence, the number
of generations must be increased. For higher number of objectives, the archive size
must be increased, e.g., to 100 for 3-objective MOPs.

Table 5.8: Different archive sizes
test size C(A,B) C(B,A) D(B) o5

ZDT1 10 1.0 0.0 80% +0.01
30 0.23 0.04 76% -0.32
50(A) - - 84% +0.07
70 0.16 0.0 80% +0.07
90 0.05 0.34 64% -0.89

ZDT3 10 1.0 0.0 60% -0.60
30 0.0 0.14 68% -0.35
50(A) - - 66% -0.20
70 0.11 0.2 41% -0.83

90 0.16 0.34 40% -0.84

108 Multi-Objective Particle Swarm Optimization (MOPSO)

Influence of Turbulence Factor

The turbulence factor aims to avoid local optima. In MOPSO methods, a high
value of turbulence decreases the convergence of solutions in a limited number of
generations. On the other hand, very low values of the turbulence factor decrease
the diversity as well as the convergence. Also, it highly depends on the MOP,
the number of parameters, and objectives. Proposed values are between 0.01 and
0.07. Table 5.9 shows the diversity and convergence comparisons when varying
the turbulence factor. This table indicates that the diversity and convergence of

Table 5.9: Different turbulence factors; tf denotes the turbulence factor
test tf C(A,B) C(B,A) D(B) og

ZDT1 0.07(4) - - 84% +0.07
0.025 0.0 0.14 64% -0.82
0.015 0.28 0.02 74% -0.61
0.01 0.3 0.0 82% +0.15

ZDT3 0.07(4) - - 66% -0.20
0.025 0.1 0.08 68% -0.29
0.015 0.0 0.18 66% -0.25
0.01 0.1 0.1 30% -0.89

solutions decrease when the turbulence factor decreases. However, high values of
the turbulence factor have the same effect. It means that the turbulence factor is
necessary to find a global optimum. But its value must not be more or less than a
certain limit.

Influence of Inertia Weight

Inertia weight is a parameter, which controls the exploration of the search space.
Indeed, it considers the effects of the previous velocities of the particles on the new
velocities. Very low values of inertia weight makes the methods very slow and the
particles search only their neighborhoods. In other words, it forces the particles to
follow their previous paths. The proposed value is a real value between 0 and 1.
Here, 0.4 is considered. Table 5.10 shows the results of various inertia weights. Very
low values of the w (e.g., 0.0 and 0.2) lead to high diversity of solutions with very low
convergence, and very high values (e.g., 0.8 and 1.0) lead to high convergence and low
diversity of solutions. High absolute values of the & for w = 1.0 in Table 5.10 indicate
that the solutions are all concentrated on the upper left part of the objective space.

5.8 Covering Pareto-fronts by MOPSO 109

Table 5.10: Different inertia weights; w denotes the inertia weight

test w C(A,B) C(B,A) D(B) o8

ZDT1 0.0 0.96 0.0 84% -0.02
0.2 0.64 0.0 84% -0.14
0.4(4) - - 84% +0.07
0.6 0.02 0.12 50% -0.93
0.8 0.02 0.3 64% -0.89
1.0 0.0 0.3 80% -0.16

ZDT3 0.0 0.84 0.0 62% -0.57
0.2 0.28 0.0 68% -0.32
0.4(A) - - 66% -0.20
0.6 0.1 0.22 48% -0.84
0.8 0.12 0.14 48% -0.81
1.0 0.04 0.38 66% -0.77

However, these solutions have better convergence than other solutions obtained from
lower w values.

Influence of Number of Generations

The number of generations is the simplest parameter in a MOPSO. The higher the
number of generations, the more convergence of solutions we obtain. However, the
desired convergence and diversity of solutions can be obtained after some generations
when we have a restricted archive size.

5.8 Covering Pareto-fronts by MOPSO

A multi-objective optimization problem is mathematically solved, when all its Pareto-
optimal solutions are found. Indeed, the goal of MO methods is to find the set of
optimal solutions in one simulation run, in contrast to classical optimization meth-
ods e.g., weighting sum methods. However, it is impossible to find the entire set of
Pareto-optimal solutions of a continuous front. Indeed, the size of the output, which
in our case is the archive, is always kept constant. Restricting the size of the archive
also has influences on the diversity of solutions and the computational time, as stud-
ied in the previous section. Therefore, the results obtained by most MOPSO meth-
ods have restricted amount of solutions in the output, by keeping a good diversity
along the Pareto-optimal front. Diversity of solutions is studied by applying methods

110 Multi-Objective Particle Swarm Optimization (MOPSO)

like niching, clustering, or truncation, by several researchers [Deb01, Zit99, ZLT02].
These techniques often require a high computational time and at last we have a
restricted number of solutions in the output [Zit99, ZLT02].

In most of the MOPSO and MOEA methods, the archive is restricted to a certain
size. This is done because of the following reasons:

e Most of MO methods require a high computational time when the size of the
archive increases (see Chapter 3).

e Diversity of solutions increases when the archive size is fixed, particularly in
MOPSO.

e The computational time for finding the best local guides increases, if we store
a high number of solutions in the archive.

Therefore, the solutions stored in the archive are just a selection of the approximated
set, of Pareto-optimal solutions. The MO methods try to keep a good diversity of
solutions, so the decision maker has the possibility to access the entire approximated
Pareto-optimal front. If we can find a good cover of the entire approximated Pareto-
optimal front, in some cases, the task of the decision makers would be easier in
selecting the desired solutions.

A new method for covering the approximated Pareto-optimal front is proposed here
to perform the covering in low computational time. The MOPSO methods are able
to find solutions with high convergence and diversity (see Section 5.2). One can use
this knowledge and cover the approximated front as follows:

e Initial run: The MOPSO is run with a restricted archive size. We expect rel-
atively well-distributed solutions very close to the Pareto-optimal front. The
restriction on the archive can be achieved using the e-dominance strategy pre-
sented in [MT03b] (see also Chapter 6).

e Covering: The non-dominated solutions obtained from the initial run are
considered as the input archive of a new MOPSO called covering MOPSQO. The
covering MOPSO must have more particles in the population and no restriction
on the archive size. The particles in the population are divided into subswarms
around each non-dominated solution after the first generation. The task of the
subswarms is to cover the gaps between the non-dominated solutions obtained
from the initial run. Not having a restriction on the archive makes this method
faster, because no clustering or truncation method is needed.

The initial run searches the entire space for obtaining good diversity of solutions.
The covering is aimed to send subswarms of particles around the non-dominated

5.8 Covering Pareto-fronts by MOPSO 111

f2(x) o f2(x)
I o
[} /’ © [e]
/
° | .
o Oo o e ° o h
” o /’
o , I
o . e
e oo i
, o o]
| ° Lo
I
o o ° .O"‘, .
o :,Oo o
[¥e) o .
° o ! o E . Subswarm
. m°
| | o o o L
o B 0.6
- . e}
o 58000 ©;
] o Ho -
° o ~0 0T
-0 o
- o LT . OOO.O
o -
f1(x) f1(x)

Figure 5.18: Covering the Pareto-front using initial archive members. The ini-
tial archive members guide subswarms of solutions around themselves to cover the
Pareto-front. (o: Particles of the initial population of the covering MOPSO, m:
Result of the initial MOPSO)

solutions on the non-dominated front. Covering the front is then completed by
these subswarms, which search only the neighborhood around each non-dominated
solution. Figure 5.18 shows this scenario for covering the approximated Pareto-
optimal front by MOPSO. The subswarms are generated by the Sigma method in
finding the local best guides. All the particles in a subswarm have one common
local best guide, which is in the non-dominated set made by the initial run. The
size of each subswarm varies through generations and depends on the size of the
initial population of the covering MOPSO.

It must be considered that any knowledge of the solutions helps the methods to find
better solutions than before. In the covering process, the size of the population has
a great impact in covering the front faster. The larger the population size, the more
particles gather in a subswarm, and the front will be searched faster.

5.8.1 Experiments
Figure 5.19-5.22 show the results of covering the ZDT1, ZDT3, and ZDT6 test

functions. The parameters are selected the same as in the last section for the initial
run. The covering MOPSO has the following parameters:

e Inertia weight: 0.4,

e Turbulence factor: 0.07,

e Population size: 200,

e Number of generations: 500 for ZDT1 and ZDT3, 2000 for ZDT4 and ZDT6,

112 Multi-Objective Particle Swarm Optimization (MOPSO)

e Archive size: not restricted.

Covering the test function ZDT4 is not as simple as the other test functions. This
test function has a lot of local Pareto-fronts. By running the covering MOPSO to
cover the front, it is observed that the solutions are not already converged to the true
Pareto-optimal front. In this case, the covering MOPSO improves the convergence
of solutions. The solutions shown in Figure 5.22 (1st Run) are not actually on the
true Pareto-optimal front, although the MOPSO method has obviously obtained
higher converged solutions than the other methods, e.g., [Zit99]. One reason is the
restricted number of generations. We have to notice that the obtained solutions
from the first run have a good diversity. Therefore, these solutions are considered
as the initial archive of another run and the output of this second run is given as
the initial archive of the next run. This procedure is repeated several times, until
the approximated Pareto-optimal front is found. Now the covering process can be
started in order to cover the front.

Figures 5.22 (a) and (b) show different steps in optimizing the test function ZDT4.
The reason for repeating the MOPSO instead of running it for a large number of
generations is that when there are many local optima, the optimization method
requires a lot of computational time to find solutions with high convergence and
diversity of solutions, simultaneously. The initial archive helps the initial particles
to be divided in small groups, and to search the space faster. The covering result
in Figure 5.22 (b) shows the good potential of MOPSO (Sigma method) in solving
very difficult MOPs, where the recorded results of the MOEA method [Zit99] are

(@) (b)
14 : : : : 14 ‘ ‘
1.2}] 1.2}
1 1
08} . | 08l
06 . 1 06f
0.4} Tl 1 0.4}
0.2}] 0.2}
0 : : : : : 0 : : : :
0 02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 038 1

f1 f1

Figure 5.19: Solutions of the ZDT1 test function (a) with clustering (a = 50),
(b) covered front

5.8 Covering Pareto-fronts by MOPSO 113

2.2 T T T T 2.2

f2
- N
f2
- &
—

0.8 '] 0.8f \

06)] 0.6f

0.4] 0.4f \
02, : : : = ‘ ‘ ‘ :

0.2
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

f1 f1

Figure 5.20: Solutions of the ZDT3 test function (a) with clustering (a = 50),
(b) covered front

(a) (b)

1 1
0.9 0.9
0.8 0.8
0.7 0.7 ~———
0.6 0.6

N05 N05 ——
0.4 0.4
S
0.3 0.3
b
0.2 0.2 1
~

0.1 0.1 1

0 . . . 0

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

f1 f1

Figure 5.21: Solutions of the ZDT6 test function (a) with clustering (a = 50),
(b) covered front

not so close to the true Pareto-optimal front.

For evaluation of the covered solutions, the Euclidian distance between two neighbor
solutions is computed. Here, the covering means to find a set of finite solutions very
close to each other. Therefore, one good metric is the distances between two neighbor
solutions. Table 5.11 shows the minimum and maximum obtained distance between
any pair of the covered solutions in the objective space. The computational times
are also recorded in this table.

114 Multi-Objective Particle Swarm Optimization (MOPSO)

(@) 5 (b)
v 1stRun .
A 2nd Run |
> 8th Run
<I__4th Run ||
VW
VVW 1t
v
V&7 \
VW 4 \
Vv
o AAAAAAA A% W N
LA A A]
TA%N
0.5¢
P
14:.‘,"’ > > - \
< 4 % > > > - \\
05} 19 agq . ~.
< b e
. ‘ ‘ y «\J‘ < \4:“ d 4 ‘ 0) ‘ ‘ ‘ \~~,‘\
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.22: Solutions of the ZDT4 test function (a) with clustering, obtaining the
converged front needs several runs, (b) covered front

Very low values of D,,,, show that the solutions are very close to each other. How-
ever, if we run the MOPSO for a larger number of generations than the recorded
value, we obtain more solutions, and closer to each other. For obtaining faster re-
sults we can also apply the e MOPSO algorithm (see Chapter 6). € can be larger for
the initial run, than for the covering process.

Discussion

Covering the Pareto-optimal front in low computational time is possible by using
the covering MOPSO technique. Here, covering means to find a finite set of optimal
solutions very close to each other. The proposed covering MOPSO method uses the
property of moving particles in MOPSO and divides the population of the covering

Table 5.11: Computational time of initial (T},;) and covering (Tpper) Tuns of
MOPSO, in seconds. D,,;, and D,,,, are the minimum and maximum distances
between the non-dominated solutions of the approximated Pareto-front

test Tinit Teover Dypin, Do
ZDT1 103.41 117.93 0.000 0.014
ZDT3 20.70 35.71 0.000 0.009
ZDT4 71.15 300.50 0.0024 0.025
ZDT6 17.08 500.37 0.000 0.007

5.9 Conclusion 115

MOPSO into subswarms by using the concept of the Sigma method. Each subswarm
must contain a good amount of particles. Therefore, the population of the covering
MOPSO must be considerably larger than that of the initial run, particularly for
covering high dimensional approximated Pareto-optimal fronts. The subswarms try
to cover the gaps between the non-dominated solutions found in the initial run.
Here, the covering MOPSO method is tested with different test functions. However,
it must be emphasized that this method is not only applicable to 2-objective multi-
objective optimization problems, but also can be used for any desired number of
objectives.

5.9 Conclusion

In this chapter, MOPSO methods as alternatives to MOEAs are studied. These
methods are able to solve MOPs with high convergence and diversity of solutions.
This is tested on different test functions and compared with the results of MOEAs.
The following topics are investigated in this chapter:

e Finding local best guides in MOPSO is studied and a new strategy, called
Sigma method, is developed. In comparison to its previously proposed MOPSO
approaches, the Sigma method finds solutions with good convergence and di-
versity. This is examined on different 2-, 3-, and 4-objective test functions.
The Sigma method is easy to implement and can be carried out on different
MOPs with desired number of objectives and parameters.

e New diversity measures, namely the Sigma diversity metric and the median
Sigma value, are introduced. These measurements provide information about
the distribution of the solutions in the objective space. The output of the
Sigma diversity metric is a percentage of the objective space, which is oc-
cupied by the set of the non-dominated solutions. The median Sigma value
complements the information about the space and tells us where the solutions
are. This measurement is very worthwhile for higher dimensional objective
spaces.

e Three variants of MOPSO methods and also the SPEA2 (MOEA) method
are tested on 2-, 3-, and 4-objective test functions with different numbers of
parameters. The MOPSO methods are the Sigma method, Dtree method (best
local guides are selected by using the method of the Fieldsend and Singh), and
the Random method (best local guides are selected at random).

116

Multi-Objective Particle Swarm Optimization (MOPSO)

The results show that the Sigma method can find solutions with higher diver-
sity and convergence than the other methods. The SPEA2 method finds good
solutions in most cases with good convergence, but not a good diversity. In
some cases, the Dtree method behaves the same as the Sigma method, but
with a less diversity of solutions. The Random method needs a large number
of generations to converge.

These results hold for all the recorded number of generations and population
sizes, however, all of these methods can find solutions with good convergence
and diversity after a large number of generations. We have to note that since
the Sigma method can only work on positive values of the objective space, all
the test functions must have positive objective values. Thus, a shift must be
done and it requires an approximate prior knowledge of the test functions.

The influence of different parameters are studied on the MOPSO methods:

— Population size: Large population size increases the diversity of MOPSO
methods. However, it increases the computational time.

— Archive size: Elitism (existence of archive) in MOPSO, like in MOEAs,
increases the convergence of the solutions. Fixed-sized archives drive the
MOPSO to obtain solutions with a good diversity.

— Turbulence factor: It avoids stoking in a local minimum.
— Inertia weight: It controls the solutions to follow their previous paths.

— Number of generations: For higher number of generations, we obtain
better convergence of solutions.

Covering the approximated Pareto-front is achieved by applying the covering
MOPSO strategy. This method can only be used by a MOPSO algorithm. The
obtained results show that the approximated Pareto-optimal front can easily
be covered by MOPSO (here, covering means to find a set of finite solutions,
where the solutions are to a certain value very close to each other).

Chapter 6

e-MOPSO

In the previous chapters, archiving is used as an important part of MO methods. The
archive must be kept domination-free and is therefore updated in each generation.
The time needed to update the archive depends on several parameters, i.e., the
archive size, population size, and the number of objectives and dramatically increases
when increasing the values of these three factors (see Chapter 3). One possibility
for reducing the computational time is to restrict the archive size and to use other
available data structures to update the archive. Various data structures for the
archive are studied in Chapter 3. However, these data structures also take lots of
computational time for a large archive size. Therefore, it is required to restrict the
archive size. Indeed, the existence of a restricted size archive in MOPSO methods
causes a good diversity of solutions. On the other hand, from the decision maker’s
point of view, presenting the whole non-dominated set is useless when the size
exceeds a certain bound. Therefore, it is demanded to fix the size of the archive.
There are several methods like clustering [Zit99], truncation [ZLT02], and crowd-
ing [Deb01] techniques to fix the archive size. Also, there is a recent work on using
the Lebesgue measure to bound the archive [KCF03]. In order to keep a good di-
versity, these methods become the most time-consuming part during the update
procedure.

In this chapter, the idea of e-dominance as proposed in [PY00, LTDZ02| is used
to fix the size of the archive to a certain amount. Using the e-dominance in the
context of MO is not new: Laumanns et al. [LTDZ02] have used it to increase the
convergence of solutions. In this chapter, e-dominance is used to bound the archive
size. However, it also has influences on the convergence and diversity of solutions
and the question is: what is the trade-off between computational time, diversity,
and convergence of the solutions? Here, the concept of e-dominance is integrated
into MOPSO methods and compared with the clustering [Zit99] method.

118 e-MOPSO

6.1 Definitions

This section is dedicated to the definitions concerning domination and e-domination.
Required basic definitions are given in Section 1.1.

Definition 6.1 (e-domination) A decision vector #1 € S is said to e-dominate a
decision vector Ty € S for some € > 0 (denoted Ty <. T3) if:

- filZ1) /(1 +€) < fi(Z2) for at least onei=1,...,m.
Figure 6.1 shows the concept of e-domination.

Definition 6.2 (e-approximate Pareto-front) Let ' C R™ be a set of vectors
and € > 0. The e-approrimate Pareto-front F, C F contains all vectors ¥, € F
which are not e-dominated by any vector ¥y € F':

V.’E"Q e F:4 fl such that .fl ~e .fg (61)

We have to note that the set F, is not unique, but contains just a certain amount of
vectors, depending on the e-value. This has been studied in [PY00, LTDZ02]. For
any finite € and any set F' with objective vectors 1 < f; < K, Vi € {1,...,m}, there
exists a set F, containing at most:

logk .4
ogllxq)) | (6.2)

vectors. Here, we consider that € is the same for all objectives. Figure 6.2 illustrates

[Fe[= OI(

an example of an e-approximate Pareto-front in the objective space (m = 2). In this
figure, the number of non-dominated solutions is bounded. Here, if K1 = K2 = 2
and € = 0.08, then the e-approximate Pareto-front can have at most 9 solutions.

dominated by f € —dominated by f
N\

\

P S f

fo
fol(1+e) |

fy fy/(1+e) f4

Figure 6.1: Domination and e-domination in the objective space

6.2 Bounding the Archive Size 119

f2(x)

K2

K2/ (1+€)

K2/ (1+ef

K2/ (1+e)

K1/ (14ef K1/(1+e) K1 f1(x)

Figure 6.2: An example of e-dominance

6.2 Bounding the Archive Size

The archive of most of the MO methods should contain a certain number of solutions,
while keeping a good diversity of solutions, due to the following reasons:

e From the decision maker’s point of view, presenting the entire non-dominated
set is useless when the size increases a certain bound.

e Diversity of solutions increases when the archive size is fixed, particularly in
MOPSO.

e In MOEA methods, non-restricted archives increase the selection pressure. In
MOPSO methods, it is useless to store non-restricted solutions in the archive.
In this case finding best local guides takes a long computational time. In-
deed, a few well-distributed solutions in the archive are more useful than an
unrestricted number of solutions.

Therefore, the archive of most of the MO methods is restricted, or fixed to a certain
size. In the following, three variants of bounding methods are briefly reviewed.

6.2.1 Clustering

The main aim of the clustering method is to prune a non-dominated set and generate
a representative subset, which maintains the characteristics of the original set. The
clustering technique [Zit99] used in SPEA is a hierarchical clustering method, which
works iteratively by joining adjacent clusters until the required size of the set is
obtained. This method is first introduced by Morse [Mor80] and is named average
linkage method. At the beginning, each solution in the set is a cluster. Then the two

120 e-MOPSO

clusters, which are closest to each other, are joined to make a bigger cluster. This is
done iteratively, until the required number of clusters is achieved. The two clusters
are selected according to the nearest neighbor criterion to make a new cluster. At
the end, the solution with minimal average distance to other solutions inside each
cluster is kept and the others are removed. This is shown in Figure 6.3.

As soon as the number of non-dominated solutions in the archive increases the fixed
archive size, this clustering technique is used. However, we have to note that by
increasing the size of the archive, the computational time increases. It has been
shown in Chapter 3 that by increasing the number of objectives and population
size, and particularly the archive size, the computational time of the MO methods
increases dramatically.

In some MO methods (e.g., SPEA2 in Section 2.2.1), the archive has a fixed size
and in the case that the number of non-dominated solutions is less than the fixed
size, some particles of the population are selected at random to be inserted into the
archive. In the case that the size of the set of non-dominated solutions becomes
higher than the fixed size, an improved truncation technique is applied.

6.2.2 Lebesgue Archiving Hill Climber (LAHC)

In Section 2.5, Fleischer’s algorithm is explained as a method to calculate the
hyper-volume contribution of a single solution of a set of non-dominated solutions.
Knowles et al. have used this idea and have proposed a method to bound the archive
size [KCF03]. The principle behind their approach, called LAHC, is to remove the
solution that has the least contribution to the hyper-volume. This is done whenever
the archive is full and there is a new solution available to be added. This method is
recorded to outperform the clustering method in some cases. However, the computa-
tional time is also another criteria which should be considered. Fleischer’s algorithm
is an efficient method of computing changes to the Lebesgue measure when one point

f2(x) f2(x) f2(x)

. A
o o
* .

%Q S
\% \\\\

1(x) 1(x) 1(x)

_ o7

Figure 6.3: Clustering method [Zit99]

6.2 Bounding the Archive Size 121

v 1
Initialize Population Initialize Archive
' Calculate
| Evaluate = £ non-dominated
i Solutions

Move |« Update

No

Yes

End

Figure 6.4: A typical structure of eMOPSO

is added or removed from a set. However, it is expensive to find the solution that has
the least contribution to the hyper-volume, before inclusion of each new solution.
Therefore, as is also mentioned in [KCF03], this method would be impractical in
most of the applications for high dimensional (m > 3) objective spaces.

Discussion

Bounding the archive size by clustering, truncation, LAHC, and also other methods
is implemented as a block consuming a large computational time in MOEA and
MOPSO methods. In Sections 2.2.2 and 5.5, this has been shown as the Clustering
block. However, another possible way is to omit this block completely and use the
concept of e-dominance in the block Calculate Non-dominated Solutions. This is
shown in Figure 6.4 and is explained in the next section.

6.2.3 e-dominance

From the definition of e-dominance, we know that the size of the e-approximate
Pareto-front has an upper bound. Hence, if we use the concept of e-domination
instead of domination when updating the archive, the size of the archive is restricted
to an upper bound. It means instead of comparing the particles using the standard

domination criterion, we compare them using the e-dominance criterion. Therefore,
logK

log(1+€)

solutions, where K is the upper bound of the objective values. It is obvious that

the size of the archive will have an upper bound of O()™~!] non-dominated

122 e-MOPSO

the size of the archive depends on the e-value. Hence by using this e-dominance,
we can keep the size of the archive limited and reduce the computational time.
The algorithm using e-dominance is outlined in Algorithm 16. In this algorithm, it
is checked if @ e-dominates b. Indeed, the domination criterion is also used here.

Algorithm 16 : e-domination

Input: 4, b
Output: e-non-dominated solution(s)
if @ < b then
return @
else if b < @ then
return 5
else if @ <. b then
return @
else
return @ and b
end if

The reason is shown within an example in Figure 6.5. In this figure, the simple
domination criterion is used to check the dominated solutions in the dashed areas.
The solution @ dominates b1 and b2 dominates @. Let us not consider b2 anymore.
We can say that @ e-dominates b3 and the solution b4 is indifferent to d, therefore it
must remain in the archive. We have to remark here that if we do not use the first
domination criterion, @ e-dominates b2 and b2 will be discarded. Applying the e-

f2(x)4
. A
f2@@) |
. ®h3
f2(a)/ (1+e) |- : ; —
] . Opq _
f1(@)/ (1+e) f1(3) f1(x)

Figure 6.5: e-dominance in MO

6.3 Experiments 123

dominance in MOPSO techniques also has influence on the convergence and diversity
of the solutions. This will be discussed throughout the following experiments.

6.3 Experiments

In the following experiments, two MOPSO methods are compared. For each the
archive size is bounded. Both of these methods use the Sigma method (see Sec-
tion 5.2) for finding the best local guides.

e cMOPSO: MOPSO using the e-dominance
e CMOPSO: MOPSO using the clustering technique [Zit99]"

Here, an initial archive (see Section 5.5.1) is also used for each test function. The
initial archives are the results of a short MOPSO using the Sigma method. The
short MOPSOs have a larger population size than the usual MOPSO and are run
for a few generations. In this section, we study the influence of e-dominance on
the computational time, convergence, and diversity of solutions and compare the
convergence and diversity of solutions.

The experiments are performed on 2- and 3-objective test functions from Table 2.1.
The eMOPSO is run for different € values. Then the maximum archive size in
CMOPSO is set to the archive size obtained by the eMOPSO. The results are com-
pared in terms of computational time, convergence (by using the C' metric), and
diversity of solutions (by using the Sigma diversity metric, Section 5.6).

6.3.1 Results

The 2- and 3-objective test functions ZDT1, ZDT3, GSP3, and DLZT are selected
from Table 2.1. The Sigma method is run with the following parameters:

o Inertia weight: 0.4,

Turbulence factor: 0.01,

Population size: 120,

Number of generations: 300,

Archive size: 50.

Tt is recorded in [KCF03, ZLT02] that the clustering method requires less computational time
than the truncation and LAHC methods. Therefore, here the clustering method is selected for
comparisons.

124 e-MOPSO

The initial archives are obtained by running a MOPSO with population size 200,
100 generations for both of the 2-objective test functions, with population size 500,
and 10 generations for the 3-objective test functions GSP3 and DLZT.

Table 6.1 shows the results obtained from the test functions. In this table, A and
B refer to the results of eMOPSO and CMOPSO, respectively. Size denotes the
archive size, t4 and tp are the required CPU-times for running each MOPSO on a
500 MHz SUN Ultra-SPARC-IIe workstation, N4pg refers to the number of solutions
in B that are weakly dominated by A, D is the Sigma diversity metric value in
percent, and ¢ indicates the median Sigma value for comparing the diversity of the
solutions. All the values recorded in Table 6.1 are average values from five different
runs with different initial populations.

6.3.2 Influence on Computational Time

Figure 6.6 shows the computational times of the two methods (from Table 6.1)
graphically, where size is the archive size and the computational time is shown in
logarithmic milliseconds values. For all the test functions, the computational time
increases for the increasing values of the archive size. We have to note that when
the limit of the archive size is larger than the number of non-dominated solutions,
clustering is not applied to the archive. This can be observed particularly for both of
the 2-objective test functions. The computational time of the CMOPSO decreases
for large archive sizes. In both the 2- and 3-objective test functions the computa-
tional time of the eMOPSO is much less than the CMOPSO; the CMOPSO takes in
some cases more than 100 times the eMOPSO to find the same number of solutions.
In Table 6.1, * refers to the number of solutions obtained by CMOPSO. The
eMOPSO method finds 941 solutions for the test function ZDT1, when ¢ = 0.0001.
But if we apply the method using the clustering technique (CMOPSO), we see that
we never reach the number of 941 as the archive size in order to apply clustering on
it, therefore it will take less time than the eMOPSO method.

6.3.3 Influence on Convergence

In Table 6.1, the factor N4p shows the number of solutions in set B that are weakly
dominated by the solutions in set A, i.e.:

Nap = [{beB|Fda€ A:a =< b} (6.3)

By comparing Nsp and Npyu, where A is the eMOPSO and B is the CMOPSO
method, we can conclude that for the same archive sizes the results of eMOPSO
dominate more solutions of the results of CMOPSO. This also depends on the archive

6.3 Experiments

125

Table 6.1: A: eMOPSO, B: CMOPSO (times in milliseconds)

test € size ta te Nap Npa Djs Dgp
ZDT1 0.1 16 3041 33429 4 0 87 87
0.05 26 3312 37006 4 0 80 &0
0.025 48 3305 144151 1 1 93 91
0.01 109 3754 204412 13 12 77 74
0.005 204 4401 318432 80 13 93 87
0.001 517 6331 23294 398 13 93 93
0.0001 941 8083 6096* 828 7T 97 93
0 616 6096 - - - - -
ZDT3 0.025 20 3127 86329 0 9 50 45
0.01 40 3229 11807 3 5 30 28
0.0075 52 3300 12270 0 11 27 30
0.005 71 3358 15102 6 14 34 48
0.0025 123 3635 11509 80 2 43 53
0.001 170 3909 55498 33 54 51 60
0.0005 220 4353 78289 32 65 59 58
0.00025 249 4416 40306 179 7 61 61
0.0001 507 5868 41203 460 2 5 3l
0 730 7560 - - - - -
GSP3 0.1 68 2968 164954 16 0 7r 91
0.07 113 3368 254867 17 0 83 &3
0.06 130 3740 321244 12 0 8 93
0.05 176 4188 555989 19 2 91 93
0.04 219 5191 510482 25 1 98 98
0.03 351 6979 1161747 34 8§ 70 83
0.02 660 12126 3277912 73 7 92 93
0.015 956 16694 6154627 135 11 98 97
0 10692 172782 - - - - -
DLZT 0.1 30 2839 165275 3 0 32 28
0.05 76 3275 298039 1 0 23 29
0.04 84 3505 353349 1 1 23 28
0.03 133 4194 552847 1 0 22 25
0.025 157 4735 715612 1 1 21 24
0.02 216 5788 1001681 7 1 24 27
0.015 331 8103 1907411 2 0 18 19
0.01 610 13574 5152398 10 1 19 21
0 21351 373641 - - - - -

126 e-MOPSO

(a) ZDT1 (b) ZDT3
13 115 T
-~ — - clustering #
A7 N — eMOPSO Tl + 0
12 4 N S | \+_ _____ .
S / N S105f | /
2 ! N o | !
;; 11 | AN o E 10 | /
£ il > ; B
1 10 >+ 5 95 4
o
(&} 9
9
M/ 85 M/X
8 : : 8 : :
0 200 400 600 0 200 400 600
(c) GSP3 (d) DLZT
16 1
_ - -7 ® _+
4 -
14 + = - 14 _ =
+
- +
> P > g
o Ny o
= 12 ¥ 5 12
(0] [0]
£ £
4 10 4 10
o o
(@) W (&) M/X/X
8 8
6 6
0 200 400 600 800 1000 0 200 400 600 800
archive size archive size

Figure 6.6: Comparison of computational time (CPU-time) of the CMOPSO and
eMOPSO methods in milliseconds

size and the number of objectives. For test functions ZDT1, ZDT3, and GSP3, the
values of N4p are much higher than Npgy4, from which we can conclude a better
convergence. However, for the 3-objective test function DLZT, they are comparable.

6.3.4 Influence on Diversity

The diversity of solutions are measured by the Sigma diversity metric D and the
median Sigma value ¢. In Table 6.1, the D values are shown in percentages. Here,
we study the results of 2- and 3-objective test functions separately:

2-objective Test Functions

Comparing the diversity of the results of the eMOPSO method with the results of the
CMOPSO method by using D values, we conclude that for larger archive sizes the
results of the eMOPSO have larger D values, which means a better diversity. In some

6.3 Experiments 127

cases the results of the CMOPSO obtains higher D values than eMOPSO. However,
the diversity of solutions is comparable. Figure 6.7 show the results graphically. The

(a) eMOPSO (b) CMOPSO
1 1
0.8f", 1 0.8/
Q08f : o 08
0.4} 1 0.4
0.2f R — 0.2
0 ‘ ‘ ‘ — 0 ‘ ‘ ‘ ‘ -
0 02 04 06 08 1 0O 02 04 06 08 1
1 1
(c) eMOPSO (d) CMOPSO
25 ‘ ‘ 25 ‘ ‘
2 i. 2 R
N~ .
15} \ : 15 'y
o \ N v
1 \ 1 LY
Y
. '
0.5} . . 1 05 * i
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0O 02 04 06 08 1 0O 02 04 06 08 1

1 f1

Figure 6.7: (a),(b) Results of ZDT1 (e = 0.025, |A| = 48); (c),(d) Results of ZDT3
(e = 0.0075, |A| = 52)

archive sizes are 48 and 52 for the ZDT1 and the ZDT3 test functions, respectively.
It can be observed that the eMOPSO cannot find solutions with comparable diversity
to CMOPSO. This is more obvious for the test function ZDT3.

Quantitatively, Table 6.2 shows the median Sigma values of the solutions. The
median Sigma value shows how the solutions are symmetrically distributed along
the non-dominated front. These results show that, although the D values shown in
Table 6.1 are high, by increasing the number of solutions in the archive, the solutions
tend to move toward the left upper part of the non-dominated front. Indeed, this is
valid for both the eMOPSO and CMOPSO methods. However, CMOPSO obtains
solutions with very good symmetry on the approximated Pareto-optimal front. For

128 e-MOPSO

Table 6.2: Median Sigma values applied on the results of the 2-objective test function
(A: eMOPSO, B: CMOPSO)
ZDT1 € 0.1 0.05 0.025 0.01 0.005 0.001 0.0001 0.0
oa -0.42 +0.28 -0.08 -0.02 +40.03 +0.61 +0.81 +0.71
ocg +0.0562 +0.12 -0.084 -0.14 -0.05 +0.42 +0.71 —
ZDT3 € 0.025 0.01 0.005 0.0025 0.001 0.00025 0.0001 0.0
ca -0.83 -0.86 -0.81 -0.76 -0.36 -0.24 -0.039 +0.67
ogp -0.37 -0.34 -0.29 -0.28 -0.29 -0.25 +0.47 -

example, consider the results of the ZDT1 test function in Table 6.2. In most of the
cases, the results of the CMOPSO have lower absolute values of the median Sigma
than the results of eMOPSO. It means that the solutions of CMOPSO are better
distributed than the eMOPSO.

3-objective Test Functions

Considering the 3-objective test functions, the CMOPSO method obtains a better
diversity of solutions than the eMOPSO method. One of the reasons may be the
shape of the approximated Pareto-front. Figures 6.8 and 6.9 show the results of
the GSP3 and DLZT test functions and also the 6-¢ axis of the solutions (spherical
coordinates), for having a better observation on the diversity of solutions. We can
observe that the eMOPSO method cannot obtain some solutions, therefore the diver-
sity of solutions, especially for test function GSP3, is not as good as the CMOPSO
method. Indeed, this is due to the convex shape of the GSP3 test function.

Table 6.3 shows the median Sigma vectors of the solutions for different values of e.
Together with the D values in Table 6.1, the position of the solutions on the front
can be studied in more detail. The absolute values of each element of the median
Sigma vector must be zero for both the GSP3 and DLZT test functions. Therefore,
it can also be quantitatively concluded that the solutions of the CMOPSO method
are better symmetrically well-distributed than the results of eMOPSO. However, the
eMOPSO also finds solutions with (acceptable) good diversity.

6.4 Conclusion

In this chapter, methods for bounding the archive size are studied and compared.
Restricting the archive is performed by using clustering or similar techniques devel-
oped in the past. However, clustering takes a lot of computational time, since it

6.4 Conclusion 129

(a) eMOPSO (b) CMOPSO

1.5

» 0.5
2

(d) CMOPSO

] S R | 05 L e B T

0 0.5 1 1.5 0 0.5 1 1.5

Figure 6.8: GSP3 test function (e = 0.02). (a),(b) objective space, and (c),(d) 8 — ¢
axis of the spherical coordinate

must keep a good diversity of solutions. Here, a method called e-domination is stud-
ied as an alternative solution for guaranteeing bounded archive size. By extending
the domination test to e-dominance according to [PY00, LTDZ02], we can guarantee
that only a bounded number of solutions according to Equation (6.2) may be non-
dominated. Therefore, the archive is bounded. Indeed, the size of the archive has an
upper bound. This method is called eMOPSO and compared to the MOPSO using
the clustering technique called CMOPSO. The attractive property of eMOPSO is
that it maintains a good diversity of solutions, without increasing the computational
time. The computational time, diversity, and convergence of solutions are tested on
different test functions:

e The computational time of eMOPSO is much less than of CMOPSO. In some
cases 10 to 100 time less than CMOPSO.

e The obtained solutions from eMOPSO have comparable convergence and diver-

130 eMOPSO

(a) eMOPSO (b) CMOPSO

U P,

ol :
0 05 p 05
05 05

10 g 10 g
f1 f1
(c) eMOPSO (d) CMOPSO
1.5 . 1.5 P

2 ¥

SE N

e KX

“o e ,-..'z:

1 M 1 i
S 5, =S N H
.O.ol‘...::.l .é":'j{

05} a2l B % 1 0.5} 40 L5 v T
N * g Y < RN
B F Gk e

o bamow e 9 e AR ASANI LTI vy 2200 g olagied b Bt € IR St
0 0.5 1 1.5 0 0.5 1 1.5

0 0

Figure 6.9: DLZT test function (e = 0.01). (a),(b) objective space, and (c),(d) 6 — ¢

axis of the spherical coordinate

sity to the solutions of CMOPSO and in some cases have better convergence,

especially for 2-objective test functions.

e The diversities of the solutions are compared with the Sigma diversity metric
and median Sigma value. According to these metrics, the diversity of the
solutions obtained by eMOPSO is getting worse than the CMOPSO for higher
number of objectives. But they keep an acceptable symmetry on the front.

Indeed, there is a trade-off between computational time and diversity of solutions. In
the cases that the computational time is very important, the eMOPSO is suggested.
However, we have to consider that the results are just for the recorded number of
generations. Also, eMOPSO is suggested to be used when several solutions with
high convergence are required, for example in the covering of the Pareto-optimal

front using MOPSO (in Section 5.8).

6.4 Conclusion 131

Table 6.3: Median Sigma values applied on the results of the 3-objective test function
(A: eMOPSO, B: CMOPSO)

GSP3

€ 0.1 0.06 0.04 0.02 0.015 0.0

+0.11 +0.00 —0.02 +0.00 —-0.01 —0.00
oA (+0.00) (+0.00) (+0.03) (—0.00) (—0.02) (—0.18)
—-0.11 +0.01 +0.00 +0.01 +0.02 +0.16
—0.05 —0.00 0.0 -0.01 0.0
oB (+0.02) (+0.00) (—0.00) (—-0.01) < —0.00) -
+0.01 —0.00 —0.01 +0.01 +0.01

€ 0.05 0.03 0.02 0.015 0.01 0.0

—0.00 0.0 0.0 0.0 0.0 —0.00
oA (—0.06) (—0.06) (—0.06) (—0.06) (—0.05) (—0.05)
+0.06 +0.06 +0.06 +0.06 +0.05 +0.05
+0.00 0.0 0.0 0.0 —0.00
OB (+0.02) (+0.02) (+0.01) (+0.02) < +0.01) -
—0.01 —0.00 —0.02 —0.02 —0.01

132 e-MOPSO

Chapter 7

Applications

In this chapter, two real-world multi-objective problems are studied. These problems
are optimized using the methods investigated in the thesis. The first application is an
antenna design problem which is also studied in Chapter 4. The second application,
which is the main application of this study, is a real-world problem in computational
chemistry. The solutions of these problems are compared with the solutions of the
existing MOEA method.

7.1 Application in Antenna Design

It is a basic problem in antenna design to construct the shape or choose the feeding
of the antenna to optimize the performance of the antenna. There are different types
of problems in designing the antenna. Here, the geometry of the antenna is kept
constant and the feeding of the antenna is varying. In other words, the optimization
problem is to direct the power of the antenna in a specific direction. The bicriterial
problem for the fixed geometry of the antenna and the wave propagation of the
fields generated by currents on the antenna are studied by [JJK97]. The antenna
is considered as a hollow infinite cylinder in the z direction! with constant cross
section. The optimization problem is formulated as follows:

1. Maximize the radiation efficiency in a particular direction f. The radiation
efficiency is defined as the ratio of the power radiated in the particular direction
to the total power fed to the antenna (more details are explained in [JJK97]).

2. Minimize the power radiated in other directions.

Figure 7.1 shows an example of radiation characteristics of points on the non-
dominated front. This figure is shown just as an example for clarifying the multi-

'We consider the 3 dimensional space of x, y, and z directions

134 Applications

f2(x)

Figure 7.1: Radiation characteristics of the points on the approximated front

objective problem. The figure consists of a non-dominated front of the optimization
problem, the horizontal intersection of the antenna, and the wave radiation in differ-
ent directions. As shown in the figure, the first objective maximizes the radiation in
one direction and the second objective minimizes the radiation in other directions.
This antenna design problem is studied in Chapter 4. There, covering the Pareto-
optimal front and controllable exploration of the search space is studied by HMOEA
(hybrid MOEA). The test functions and parameters are also explained in Section 4.3.
The number of parameters is considered to be 12. Here, this example is studied again
and the MOPSO covering method is applied to it.

7.1.1 Experiments

In the experiments, the MOPSO method is applied and compared with the pre-
sented results in Chapter 4. Also, the approximated front is covered by the covering
MOPSO technique (see Chapter 5). The selected parameters are set as follows:

e Inertia weight: initial run: 0.75, covering: 0.5,

e Turbulence factor: 0.7,

e Population size: 500,

e Number of generations: initial run: 500, covering: 1000,

e Archive size: initial run: 50, covering: unrestricted.
For the initial run, the inertia weight is selected 0.75, which is larger than for the
covering process. The reason is as follows: The high value of the inertia weight leads
the solutions to high convergence, and together with clustering (restricted archive)

to a good diversity of solutions. But in the covering process, we need to explore the
area around each non-dominated solution. Therefore, the inertia value should be

7.1 Application in Antenna Design 135
(a) Initial MOPSO (b) Covered
250 : : : 250 :
200} 200f 1
150 150
™ sv_
100} 100f
50{ 50t
0 L L L L “ e o 0 L L L L n
-300 -250 -200 -150 100 -50 -300 -250 -200 -150 100 -50 0

f1

f1

Figure 7.2: Antenna design problem, results of MOPSO (a) archive size: 50 (b) cov-

ered approximated Pareto-optimal front

decreased and the particles may have the chance to search their neighborhood areas.
Figure 7.2 shows the results of the Sigma method and the covered approximated
Pareto-optimal front.
The experiments are also compared with the same results of the MOEA (SPEA2)
in Section 4.3. The selected parameters for the MOEA method is the same as in
the second run in Section 4.3. Figure 7.3 (b) shows the results in a selected part

250

(a) MOEA

200f

150

f2

100

50

0
-300

-250

-200 -150 -100
f1

-50

f2

(b) Comparison

2101

200

190

1801

1701

160}

150

1401

130

1201

110

A MOPSO |4
- MOEA

-280

-270 -260 -250 -240 -230 -220
f1

Figure 7.3: Antenna design problem (a) Result of MOEA (b) Comparison of MOEA

and MOPSO in the selected space

136 Applications

T
2100 < MOPSO ||
% MOEA
4 - HMOEA
200f s

190 -

180 -

160 -

140

130

I I I I I I ~
-280 -270 -260 -250 -240 -230 -22C

Figure 7.4: Comparison of HMOEA, MOEA and MOPSO for the selected part of
the objective space of the antenna design problem

of the objective space for better observable comparison. The computational times
for the initial run and the covering are 70.52 and 385 seconds, respectively. The
quantitative comparison between the solutions is done by applying the C' metric:

e C(MOPSO, MOEA) = 0.97
e C(MOPSO, MOEA) = 0.00

It clearly shows that the MOPSO obtains solutions with better convergence than
the MOEA.

For more detailed comparison, Figure 7.4 shows the results of the covered approx-
imated Pareto-optimal front using the HMOEA in Chapter 4, MOEA and covered
MOPSO. The total running time for HMOEA is 20 minutes for the MOEA re-
sult and another 15 minutes for the recovering process. The computational time
of the method is much higher than the covering MOPSO technique. Also, it can
be observed that for the selected part of the objective space, the MOPSO method
can find solutions with better convergence than the other methods. The minimum,
maximum, and average distances between the covered solutions by MOPSO are
D,pin = 1.6808¢ — 04, D,yor = 4.9609, and D,,, = 0.0816, respectively.

The distances between the solutions on the approximated front can be fixed to a
lower bound, in the case of using eMOPSO. However, the MOPSO covering process
can be terminated by assigning a threshold to the maximum distance between the
neighbor solutions.

7.2 Application in Computational Chemistry 137

7.2 Application in Computational Chemistry

In this section, a real world application in parameterization of molecular force fields
with three objectives is studied. In the following, a brief introduction is dedicated
to this application. For more details please refer to [Jen99, PC03].

7.2.1 Parameterization of Molecular Force Fields

The notion of describing molecules by letters symbolizing atoms and lines symbol-
izing bonds can be declared as the most common way among the chemists and also
others familiar with basic concepts of chemistry. An obvious choice for describ-
ing molecules is hence inspired by this graphical view. In so-called ball-and-springs
models, atoms are represented by more or less elastic balls interconnected by springs
representing the deformability of the structure. Also, in terms of the molecular force
fields, these models can be used to explore, explain and predict a large variety of
molecular properties. Common properties are for instance, the most favorable geo-
metrical arrangement of atoms that correspond to a stable molecule (conformations),
the relative energies of different arrangements, properties of these, or the models of
the dynamical behavior of molecular structures such as the probability of transition
between different conformations. Molecular force fields can be used for modeling a
variety of chemical systems, ranging from the metal compounds used in industrial
catalysts to biomolecular systems.

One crucial characteristic of molecular force field methods is the imperative of pa-
rameterizing the underlying functions, which is a tedious task since force fields in-
volve a large number of parameters and a number of objectives that describe specific
properties of the system.

One important aim for the force field parameterization is to obtain the best descrip-
tion of the reference data. Genetic algorithms are well suited for finding solutions
close to the global best solution for this optimization problem.

When using conventional optimization techniques, either iterative techniques have
to be employed — where each of the objectives is optimized one by one until a
self-consistent state has been reached — or suitable weighting functions have to be
introduced for reducing the dimensionality of the optimization problem [WKO1].
Also, different approaches have been made using genetic algorithms. Busold and
Strassner [Bus01, SBRO1] describe an approach for parameterizing metalloorganic
compounds in the framework of the Molecular Mechanics version 3 (MM3) force
field [AYL89] using genetic algorithms. In similar (earlier) publications of Huttner
et al., natural parameters for the MM2 force field for molybdenum compounds were
parameterized using the rmsd values to a large number of reference structures as

138 Applications

the objective function [HH99, HBH*98]. The authors optimize the parameters that
can directly be deduced from the objective function. Wang and Kollmann [WKO1]
describe the parameterization using genetic algorithms and a combination of differ-
ent objectives with weighting functions. This approach however, has the intrinsic
problem outlined above.

So far, there is no research on the application of MOEA or MOPSO for force field
parameterization. Therefore, the application of MOEA on this problem is stud-
ied here.

7.2.2 Molecular Force Fields

The fundamental characteristic in describing a molecule or properties of a molecule
is the energy of the system as a function of the nuclear coordinates. In force field
methods this is realized by a parametric function that connects coordinates with
energies. The work presented here is focused on the parameterization of a class 11
force field, namely the CHARMM [BBO83] force field.

The molecular force field is of the functional form denoted in Equations (7.1)-(7.3).
In these equations interactions in molecules are classified into interactions mediated
by bonds, termed intramolecular Equation (7.2), and interactions between atoms
separated by three or more bonds, termed intermolecular Equation (7.3). The total
energy term describing a molecule is the sum of inter- and intramolecular energy
contributions:

E = Eintra, + Einter (71)

A natural choice of coordinates for the intramolecular interactions is one that is
directly derived from the topology of the molecule using bond lengths, angles, and
dihedral angles (see Figure 7.5). The intramolecular potential describes the varia-
tion of energy connected to deviations from given geometrical parameters (natural
parameters).

mtra - Z kb b - bO Z k@ 9 90

bonds angles

+ Y kg (1+ cos(ng — 6,)) (7.2)

torsions n

Einte'r = Z g qj + Z

nonbonded, Z] nonbonded,
1<j 1<j

7.2 Application in Computational Chemistry 139

The first term in (Equation 7.2) describes the necessary energy for lengthening and
shortening bond lengths b, relative to a natural bond length by. The potential is
harmonic with a force constant k,. In the same fashion, deviations of bond angles
f from a natural bond angle 6, are described. The description of the dihedral
coordinates ¢ differs as the function is required to satisfy periodicity. Force field
parameterization includes the determination of suitable values for the force constants
of bonds k;, angles ky, and dihedral angles k4, as well as their associated natural
values by, 6y, and the phase for the dihedral angles ¢,,. For the description of non-
bonded interactions the partial charges g for the electrostatic energy and the Lenard-
Jones Parameters ¢;; and Ry, q; for the description of van der Waals interactions
must be determined (see [Jen99, PC03] for more details).

To obtain a reasonable description, all of these parameters must be adapted for
different atom types, i.e., different chemical elements and bonding situations. Hence,
the force field parameters are specific for each term summed over. For instance, a
carbon-carbon bond in a benzene ring and a carbon-carbon bond in an alcohol
represent different bonding Situations, and different values for both k, and b, are
required. Simultaneously, force field parameters must be as transferable as possible,
meaning that the parameters must be applicable to a different molecule showing
a similar bonding situation. In many cases parameters can be adapted directly to
other molecules (parameterization by analogy), while in some cases the description
can be significantly improved by re-parameterization [Mac03].

(a) (b) (©)

Figure 7.5: Relevant intramolecular geometry measures used in molecular force
fields: a) bond lengths b) bond angles ¢) dihedral angles.

140 Applications

7.2.3 Description of Objective Functions

For the parameterization of force field terms, both experimental and ab initio* data
can be employed. Here, the reproduction of ab initio molecular geometries, molecular
vibrations, and rotational barriers are studied. As components of the decision vector,
the force field parameters £y, by, kg, 0, and k,4 are used. The number of components
of the decision vector & is defined by the particular parameterization problem. As
explained above, for each specific chemical bonding situation different parameters
are required. In this study we consider three objective functions as follows.

Objective 1: Reproduction of Molecular Geometries

The first objective is to take the maximum component of the energy gradient in
Cartesian coordinates for the reproduction of molecular geometries Equation (7.4)3.
Indeed, the test parameters can be used to exert the forces on the atoms of the
reference structure. If the potential generated by the force field has a minimum at
the same place as the reference structure, the forces, i.e., the gradients, should be
zero [DI89]. This argument is followed and it is suggested to take the maximum
component of the energy gradient in Cartesian coordinates as the objective function
as follows:

f1:= Jnax, |\V,E)| (7.4)
Here, N specifies the number of atoms in the molecule and V; is the gradient vector
with respect to the position of the i-th atom.

Objective 2: Reproduction of Molecular Vibrations

The interpretation of vibrational spectra suffers from the identification problem.
It describes the task of assigning each calculated vibration to the corresponding
reference vibration, i.e., an experimentally observed one or one calculated using
ab-initio methods. Due to this problem a direct fitting, which only compares the
vibrations directly sorted by frequency, can lead to unphysical results and may
prevent, correct optimization.

To circumvent this problem a better choice is to compare the force matrices in inter-
nal coordinates. Molecular vibrations in harmonic approximation, i.e., vibrational
frequencies, and normal coordinates are obtained using the second derivatives of the
energy. For more details about this objective please refer to [MHK™04].

2 ab initio refers to quantum mechanical calculations where no a priori information is required

3 The units for objective functions f; and f3 are kcal (mol A)i1 and (kcal mol™")2, respectively.

7.2 Application in Computational Chemistry 141

The elements Fi(jc) of the Cartesian force matrix F(¢) in the direction of the Cartesian
()

displacement coordinates g;
(C) 62 E

g aqz(c)aq](c)

are calculated according to Equation (7.5):
1<14,j <3N (7.5)

In internal coordinates the deformations of a molecule are not described using dis-
placements in terms of an external Cartesian coordinate system, but regarding
changes of internal coordinates of the molecule, e.g., bond lengths, bond angles
and dihedral angles. The definition of the internal coordinates used in this work is
based on Pulay et al. in [PFPB79].

These internal coordinates q can be described as a function of the displacement
in Cartesian coordinates q(9:

q® = q(q) (7.6)

This function is not linear in general. But under the assumption of small displace-
ments the transformation from Cartesian to internal coordinates can be linearized.

q® = Bq® (7.7)

The construction of the matrix B was first described by Wilson et al. [EBDC55].
In this work the (3N —6, 3V)-dimensional B matrix respective to its pseudo-inverse
BT is used to transform the force matrix into internal coordinates [Reb98].

F(® = BRI Bf (7.8)

One of the advantages of this approach is that the problem is decoupled from the
external coordinate system. Therefore, a more natural description of the system
can be achieved at the cost of choosing a proper set of non-redundant internal
coordinates and transforming the calculated matrices into internal coordinates. In
order to minimize the identification problem, the relative deviation in Equation (7.9)
of the diagonal elements of the force constant matrix in internal coordinates, with
respect to a reference matrix, is used as our second objective. Comparing only
the diagonal elements is possible, because after the transformation the off-diagonal
elements are smaller than the diagonal elements by several orders of magnitude.

BN6 ((i) _ pli)ref\ ?
Y pt
— 2 : J3 Jj
f2 T (F(i),ref > (79)

Jj=1 Jj

142 Applications

The choice of absolute deviations leads to a good description of vibrations associ-
ated with the diagonal elements that are large, i.e., bond stretching, but a weak
description of vibrations where the associated diagonal elements are small. Hence,
we choose relative deviations.

Objective 3: Reproduction of Energetics for Different Conformations

A force field must be able to reproduce the relative energies for different conforma-
tions as well as the barriers between them. Therefore, the third objective function is
defined by the sum over quadratic energy deviations for all relevant conformations
and the barriers between them 3:

fs=> (B — E[Ty (7.10)

7.2.4 Experiments

The experiments are carried out using the MOPSO and MOEA methods, namely the
Sigma and SPEA2 methods, respectively. The computational details of the physical
point of view are selected as in [MHK'04]. The MOEA and MOPSO methods are
run with the following parameters:

e Inertia weight: 0.4,

e Turbulence factor: 0.01,

e Mutation probability: 0.01, 0.1,

e Cross-over probability: 0.8,

Population size: 300,
e Archive size: 200.

For validation, the force field parameters were determined for primary alcohols.
While the force field parameters for these alcohols are available in common force
fields, they are used for wvalidation of the methods described here. They are of
simple structure and allow the testing of the new suggested procedure.

Aliphatic alcohols whose parameters were fitted in this study have the general struc-
ture depicted in Figure 7.6. In the series k is a nonnegative integer describing the
length of the alcohol.

7.2 Application in Computational Chemistry 143

— TLO0—H
H
>‘c——c-\
H
Y
- Tk

Figure 7.6: General structure of non-branched, primary, aliphatic alcohols. The
index k indicates how often the unit contained within the brackets is repeated.

7.2.5 Case Study: Set of Two Alcohols

The case study is aimed to find the force field parameters for a set of two alcohols:
methanol k = 0 and ethanol k = 1. The number of parameters and objectives are
36 and 3, respectively. The set of parameters is composed of 6 parameters for k;
and by, 9 parameters for ky and 0y, and 6 parameters for k,4. The objectives are the
functions introduced in Equations (7.4), (7.9), and (7.10), where the values for the
two molecules are summed up, e.g., f& = firethanol 4 fethanol For the computation
of the objective function fy, 12 and 21 (for methanol and ethanol, respectively)
internal coordinates are defined for calculating the force matrices in Equation (7.9)

(for more details refer to [MHK™04]).

7.2.6 Comparison of Different Algorithms

The first experiments are carried out using the MOEA method with different prob-
abilities of mutation (p,,), namely 0.01 and 0.1. The optimization process is ter-
minated after 3000 generations. Figures 7.7 (a) and 7.7 (b) show the results of the
MOEA with different mutation probabilities. It can be observed that the MOEA
with higher p,, finds better solutions in terms of the first objective. However, the
quantitative C' metric values are as follows:

C(MOEA()_]_, MOEA()_Q]_) = 8%
C(MOEAo_Ol, MOEAOl) - 73%

For additional comparisons we also compare the results of the 10 runs of MOPSO
after 3000 generations, and the best run is further analyzed (the same as the MOEA
results). Figure 7.7 (c) shows the non-dominated set in the objective space. The

144 Applications

values of the quantitative measures (C' metric) are as follows:

C(MOPSO,MOEA,,) = 9%
C(MOEAy,, MOPSO) = 0%

C(MOEAyo, MOPSO) = 2%

These values show that the solutions of the MOPSO dominate most of the solutions
of the MOEA with p,, = 0.1 and 42% of the solutions of the MOEA with p,, =
0.01. This can also be observed in Figure 7.7. Although, the MOEA with a lower
Pm is able to obtain solutions with better convergence than with higher probability,
42 % of its solutions are still dominated by the solutions of the MOPSO. However,

(a) (b)

Figure 7.7: The non-dominated front in objective space obtained for the best three
runs of (a) MOEA, p,,=0.01, (b) MOEA, p,,=0.1, (¢) MOPSO after 3000 genera-
tions. (d) the result of MOPSO after 10000 generations

7.2 Application in Computational Chemistry 145

MOPSO is able to achieve solutions which show a higher convergence than those
obtained with MOEA for the same number of generations.

Stopping Criteria

As the single evaluations of the objective functions are computationally expensive,
the applicability for real-world parametrizations critically depends on the number of
generations required. Furthermore, the results of the optimization are, in general,
unknown. Hence, we require a reliable criterion for estimating whether further gen-
erations significantly improve the physical results obtained. However, the following
issues must be considered in this application:

e A relatively small set of solutions is required, i.e., here it is not necessary to
use unconstrained archives to find the whole set of Pareto-optimal solutions.

e Convergence of solutions is more important than a good distribution of solu-
tions along the approximated Pareto-optimal front. Further convergence only
makes sense up to a certain threshold, after which the improvements are no
longer of physical significance because of other sources of errors (e.g., in the
reference or the model).

e As calculating the objective functions is the most time consuming part in this
application, the number of generations, and also the number of particles in the
population should be selected as low as possible.

For obtaining a stopping criterion for this case study, we run the MOPSO for a large
number of generations, e.g., 10000. Then, the solutions of every 500 generations
are compared in terms of their convergence. The results of MOPSO after 10000
generations is shown in Figure 7.9. It can be observed that the MOPSO obtained
lower objective values than when it is run for 3000 generations. This is also confirmed
quantitatively:

C(MOPSO™® MOPSO*™) = 85%
C(MOPSO*® MOPSO™) = 0%

For finding the least number of generations, the following experiment was performed:
After running 10 independent optimizations using MOPSO for each of the runs we
compared the non-dominated set (A;) of generation ¢ with the non-dominated set
of generation t — At (A; a¢) using the C metric.

Figure 7.8 shows the trend of this measure, averaged over these 10 runs, together
with its standard deviation. For further examinations in this chapter, one of the
results (runl) is being selected.

146 Applications

We can observe that after a certain number of generations (approx. 6500) the
measure is nearly constant and below 20%. From this, we assume that the differences
between following non-dominated sets [A;_ay,A¢] are small and the cost/gain of the
accuracy ratio, i.e., the amount of generations required for further improvements,
is high. Hence, we suggest to take a C' metric threshold as termination criteria
instead of running it for a fixed number of generations. Later, the results obtained
after 6500 generations, and the final results after 10000 generations (for runl) are
analyzed. When comparing the non-dominated sets in objective space, we can see
that the differences between them are minor.

7.2.7 Analysis of Physical Properties

In the following, four solutions (A, B, C, D), taken from the approximated Pareto-
fronts by MOPSO after 6500 and 10000, are further analyzed. The selected solutions
A, B, and C have the best objective functions and D is manually picked out of the
center of the surface defined by the non-dominated set. The solution D was chosen
under the assumption that it represents a reasonable compromise for the different
objective functions. The position of the parameter sets in objective space are shown
in Figure 7.9. The corresponding objective values are listed in Table 7.1. The

100 ave
1l —C 7 (AB)
o4l e C™(B,A)
] T Cmm(A,B)
80 4 . Crun1(B’A)

70
60 —
50

40 4

Comparison (percent)

30

20

104

0+ -.__-—s:.:e-——:.I.‘.:{T:.’ZI-'..‘-.:.L'-:"}':T-I':.._..:.l:....... e R Rl el Reciat S
T T T T T T T T T T T T T T T T T T T
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Generation

Figure 7.8: C metric comparison of the non-dominated set of generations ¢ and
t— At (A - At, B - At—Ata At - 500)

7.2 Application in Computational Chemistry 147

04 25 f1 08 30 f1

Figure 7.9: The non-dominated set obtained using MOPSO after (a) 6500 and (b)
10000 generations

Table 7.1: Objective values for the parameter sets picked from run 1 after 6500 and
10000 generations. The line max. denotes the maximum value of the respective
objective within the non-dominated set.

fi J2 I3
6500 / A 10000 6.3 /6.3 0.038 /0.037 0.42/0.40
B6500 /310000 11.5 / 17.7 0.036 / 0.034 0.46 / 0.43
(06500 /(310000 17.9 /17.9 0.345 / 0.345 0.008 / 0.008
D500 /710000 7.3 /7.0 0.060 / 0.055 0.21 / 0.22

max.5%00 /max 10000 245 /27.8 0.355 / 0.547 0.46 / 0.43

objectives values defined by f; (Equation (7.4)) and f, (Equation (7.9)) are not
directly related to observable physical properties and hence it is difficult to judge
the quality of the force field parameters obtained. Therefore, we analyze more
descriptive properties in the following.

Structural Analysis

The molecules were optimized with respect to the energy function defined by the
force field in Equations (7.1)-(7.3), using the parameter sets A-D after 6500 and

148 Applications

10000 steps. Some characteristic geometrical parameters, obtained using the pa-
rameter sets attained after 6500 generations, are shown in Table 7.2. For all of the
sets, the geometrical data shows good agreement with the reference. The deviations
from the reference are less than the usual error bar and hence not significant from
a physical point of view. The data obtained with the parameter sets after 10000
steps of MOPSO show the same picture (data not shown). We conclude that the
accuracy obtained here after 6500 generations is sufficient for application purposes
no matter which of the parameter sets A-D is chosen.

Vibrational spectra

The Vibrational spectra were calculated for each of the parameter sets at the en-
ergetic minimum. A simple ordering of the vibrational frequencies by magnitude
can lead to wrong assignments of vibrations. Hence, the vibrational modes of the
different test sets were manually assigned those of the reference. The vibrational

D%9% in comparison to

spectrum for the two alcohols calculated with parameter set
the reference is shown in Figure 7.10. For most vibrations of both alcohols, good
correspondence is found, although various swappings of vibrational modes can be
observed. This is common when comparing different methodologies and is not a
problem per se, as relative shifts are more meaningful.

A few of the vibrational modes are significantly shifted, leading to the large maxi-
mal absolute deviations, as listed in Table 7.3. Closer observation of the vibrational

spectrum shows that the modes responsible for the maximum deviations are the

Table 7.2: Characteristical geometry parameters for minimum geometries for pa-
rameter sets A-D. Distances d are in A, angles a in °.

A6500 B6500 06500 D 6500 Ref.

Methanol

d(H-0) 096 096 0.96 0.96 0.96
d(0-C) 1.42 1.42 1.43 1.42 1.43
a(H-O-C) 108.3 108.3 108.5 108.3 108.9
Ethanol

d(H-0) 096 096 0.96 0.96 0.96
d(0-C) 1.43 1.43 1.43 1.42 1.43
d(C-C) 1.51 1.51 1.50 1.51 1.52

(
(
a(H-O-C) 109.1 109.0 109.1 109.0 109.0
a(O-C-C) 107.3 107.6 1079 107.5 108.0

7.2 Application in Computational Chemistry 149

same ones for all parameter sets and similar ones for both alcohols. In all of these
descriptions, these modes are too high compared to the reference. We can also
observe this problem with the CHARMM27 parametrization [MBB*98]. Not con-
sidering this problem, the maximum absolute deviations are about 100 em ™" or less.
The large maximum absolute deviation for ethanol, using parameter set B9 is
therefore not significant for the overall quality of the fit.

Apart from this deviation, the comparison of the maximum absolute deviations
clearly shows that vibrational spectra are generally better described with parameter
set B or D than with parameter set C. Parameter set A describes the vibrational
modes with comparable quality to the descriptions of sets B and D. This correlates
well with the corresponding values of f;. The same tendency can be observed for
the rmsd and the mean absolute deviation. The parameter sets B and D again
give the best results, whereas set C gives poor results. The quality of description
obtained with set A is different for ethanol and methanol. The trends of the quality
of description are well reflected in the objective values fs.

methanol ethanol
4000 2000
3800 T | 38001
3600- 3600-
3400- 3400
3200] 32004
3000p———— - T e 30004
-E- 1400+ o 1400-
5 S _
-E 1200+ S 1200-
2 —— _
@ 1000 1000

®©

g 1 4
800+ 800+
600+ 600+
400 400+
200 200

D*® reference reference Do

Figure 7.10: Reference vibrational spectra and vibrational spectra obtained with
parameter set D% The dotted lines connect corresponding modes.

150 Applications

Energetics of different conformations

From both the deviations from the rotational profile by f3, and the individual ro-
tational profiles, it is obvious that for all of the sets in the approximated Pareto-
optimal front, the deviations are well below the accuracy of the reference calculations
(AE < /fs kcal/mol). Also, the qualitative features are well represented for all
of the parameter sets considered here. This is depicted in an example for one ro-
tational profile in Figure 7.11 for one bond in ethanol and the parameters obtained
after 6500 generations. This particular torsional angle was chosen for illustration, as
it shows the most prominent deviations. Even those parameters which lead to the
larger deviations in terms of f3, show the required features of maxima and minima
at the respective angles. Nevertheless, we observe that parameter sets C and D
best reproduce the rotational profile. When taking a closer look at the curves at
60° we get the impression that the curve generated by parameter set D is superior
to set C in its description of the rotational profile. This is counterintuitive on first
glance with respect to the objective values f;. However we have to keep in mind
that f; measures the fit of all rotational profiles, in some of which the deviations of
D are larger. Similar behavior as for this dihedral rotation is observed for the other

Table 7.3: Vibrational frequency deviations (in terms of wavenumbers cm™') for
parameter sets A-D

A 6500 B6500 (6500 6500
(A10000) (B10000Y ((10000) ([)10000)

Methanol
rmsd 51.4 52.1 64.8 52.2
(51.5) (52.7) (64.8) (52.2)
mean abs. dev. 32.2 32.9 44.9 33.8
(32.3) (33.8) (44.9) (33.5)
max abs. dev. 145.5 148.0 187.6 150.1
(145.7) (149.9) (187.6) (148.9)

Ethanol

rmsd 51.1 51.6 62.0 51.6
(51.1) (55.2) (62.0) (51.6)
mean abs. dev. 38.6 39.3 49.4 38.2
(38.6) (39.7) (49.4) (38.3)
max abs. dev. 130.6 126.0 157.8 135.3

(130.1) (174.4) (157.7) (134.2)

7.3 Conclusion 151

rotational profiles (data not shown).

Discussion

In contrast to previously investigated methods by evolutionary algorithms [Bus01,
Reb98, HH99, HBH98, WKO01], the approach presented here delivers a multitude of
different solutions. A reasonable choice of a parameter set from the non-dominated
set can lead to a good description of all physical properties concerned. Also, we
introduced a set of objective functions for the purpose of parametrization. The
results confirm that the choice of objective functions is suitable for this task.

7.3 Conclusion

This chapter is dedicated to the applications of MOPSO and MOEA on real-world
optimization problems. Here, two real-world applications are studied and the results
are compared with the results of existing methods.

The first application concerns the multi-objective optimization problem in antenna
design. The antenna design problem arises in directing the power of the antenna
in a specific direction, and it is assumed that the geometry of the antenna is fixed.
This problem has already been studied in Chapter 4 by HMOEA methods. Here, the

2,5

—a— reference A/féj}
e A A i:‘—li
] el
20 | ~—4A-B A
] o d
s s
1| —o— /
15 ,o";/
= 154 BB “
g i .":'-. | “‘ita"jﬁ:&-
= % ﬁ,ﬁ—gg-ﬁ-ﬁ_ﬁ_@_@ﬁ .
g] e
5 "] o
e
e] /
o
05
1 g
-
O’OT 71 T T T " T T T
0 30 60 90 120 150 180

dihedral angle []

Figure 7.11: Comparison of the rotational profile around the C-C[-]O-H bond in
ethanol. The rotational angles and energies are relative to the conformational min-
imum at 0 ° (staggered conformation).

152 Applications

MOPSO method is applied on it and compared with the existing results of HMOEA.
The results show that MOPSO obtains more solutions than the MOEA and even
HMOEA. The solutions also have better convergence. Covering the approximated
front is also studied by the covering MOPSO method.

The second application is focused on the computational chemistry and the parame-
terization of the molecular force field. This application is studied for the first time
by applying the multi-objective optimization methods namely, MOEA and MOPSO
methods. The most important issue in solving this MOP is that the Pareto-optimal
front is not known. Therefore, the physical analysis plays an important role. Here,
the MOPSO method outperforms the MOEA method. Therefore, the results of the
MOPSO method are further analyzed physically. The analysis shows that the re-
sults of MOPSO are very close to the desired solutions. This is also confirmed by
applying the C' metric convergence comparison on different generations.

Chapter 8

Conclusion and Outlook

8.1 Fundamental Results

This dissertation emphasizes on methodologies for achieving better convergence and
diversity of solutions than existing methods in Multi-objective Evolutionary Algo-
rithms (MOEAs). In detail, the major contributions are summarized as follows:

Different data structures for the archive in elitist MOEAs are investigated.
Quad-tree data structures are presented to potentially increase computational
efficiency of MOEAs and proposed for continuous problems with large popu-
lation sizes and high number of objectives with small archives.

Controllable exploration of the search space by MOEA is investigated in order
to achieve better convergence of solutions than in MOEA. This is achieved
by proposing a Hybrid MOEA (HMOEA). This method is used to cover the
Pareto-optimal front.

Multi-objective Particle Swarm Optimization (MOPSO) methods are investi-
gated and compared with MOEAs. A novel strategy in MOPSO is introduced
in order to obtain good convergence and diversity of solutions. The method is
compared with existing MOEA and MOPSO methods.

Covering techniques for the Pareto-optimal front have been advanced through
a new method using MOPSO. These are compared with HMOEA for a real-
world example.

The clustering and truncation in elitist MOEA and MOPSO often require a
high computational time. Here, eMOPSO is proposed to omit the clustering
process and reduce the computational time of the MOPSO. The influence of
using eMOPSO on the convergence and diversity of solutions is studied.

154 Conclusion and Outlook

e The performances of the above methods are validated on two real-world ap-
plications: a) Antenna design problem and b) Molecular force field parame-
terization in computational chemistry. In the second example, the results are
also evaluated by physical analysis.

e A new quantitative measure for comparing and measuring the diversity of a
set of non-dominated solutions is developed. This so-called Sigma diversity
metric is used to compare different non-dominated sets. The Sigma diversity
metric — in contrast to previous approaches — provides us with information
about the non-dominated fronts and the distribution of solutions on them.

8.2 Future Directions in MOEA

The presented methods and the validated results illustrate good efficiency, effective-
ness, and motivation for future research in the area of multi-objective optimization
using particle swarm optimization techniques. However, the future of the multi-
objective optimization techniques such as MOEAs and MOPSOs can be classified
into a few areas outlined in the following:

e Techniques to deal with dynamic problems: There are several techniques using
EA and PSO methods to solve single-objective dynamic problems, e.g., [Bra0l,
AS02]. However, the question is how to deal with multi-objective dynamic
problems, and what are the performance metrics for evaluating the results of
a dynamic problem?

e Algorithms that can handle many objectives: Recently, Purshouse and Flem-
ing have analyzed the existing MOEAs for solving MOPs with a large number
of objectives [PF03]. It has been shown that the convergence of solutions gets
worse for high number of objectives. So the question is: what must be done
when dealing with such problems, and how should the performance metrics
evaluate the results in a high dimensional objective space?

e Real-world applications: Real-world applications have been the motivation
for developing different techniques in MO. Handling large number of param-
eters and objectives, defining stopping criteria and performance metrics are
the challenges, which differ for each application and should be investigated
further. Some real-world problems require a large computational time to com-
pute the objective values and therefore methods that demand less evaluation
of objective values are desirable.

8.2 Future Directions in MOEA 155

Altogether, in the future we can also be engaged in other directions, such as handling
constraints as objectives, developing covering techniques, and approximating the
Pareto-optimal front in less computational time.

156 Conclusion and Outlook

Appendix A

Convergence of MOEA

A.1 Background

Definition A.1 (Partially Ordered Sets) Let F be a set. A reflexive, antisym-
metric, and transitive relation < on F 1is termed a partial order relation, whereas a
strict partial order relation < must be anti-reflexive, antisymmetric, and transitive.
If the partial order relation is valid on a set F, then the pair (F, <) is called a
partially ordered set (poset).

If x < y for some z, y € F then z is said to dominate y. Distinct points =, y € F
are said to be comparable when either x < y or y < z. Otherwise x and y are
incomparable or indifferent to each other.

Definition A.2 (Chain) If each pair of distinct points of a poset (F,=) is compa-
rable, then (F,=) is called a totally ordered set or a chain. If each pair of distinct
points of a poset (F, =) is incomparable, then (F, <) is called an antichain.

Definition A.3 (Minimal element) An element x* € F is called a minimal el-
ement of the poset (F, =), if there is no x € F such that x < x*. The set of all
minimal elements, denoted by M(F, =) is said to be complete if for each x € F
there is at least one x* € M(F,=X), such that z* < x.

Let f : S — F be a mapping from some set S to the poset (F,<). For some
A C S the set M (A, <) contains those elements from A whose images are minimal
elements in the image space f(A).

M4, 2)={ac A : fla) e M(f(A),2)} (A1)

158 Convergence of MOEA

A.1.1 Markov Chains

Here, only the required definitions are studied. Please refer to [H&g02] for more
details.

Definition A.4 (Homogeneous Markov chain) Let P be a k X k matriz with
elements {P;; : i,j = 1,...,k}. A random process (Xo, X1,...) with finite state
space S = {s1,...,s;} is said to be a homogeneous Markov chain with tran-
sition matrix P, if for all n, all i,5 € {1,...,k} and all ig,...,i,—1 € {1,...,k}
we have

P(X"+1 = $j|X0 = Sip» Xl = Si1y ey anl = Sip_1s Xn = Sin)
= P(Xn—|—1 = Sj|Xn = Si)
_p,, (A2)

The elements of the transition matrix P are called transition probabilities. The
transition probability P; ; is the conditional probability of being in state s; in time
t+1, given that we are in state s; in t > 0. Another important characteristic - besides
the transition matrix - of a Markov chain (X, X1, ...), is the initial distribution,
which tells us how the Markov chain starts. The initial distribution is represented

as a row vector /J,(O), given by
T (RN ST
= (P(XO = 81), P(XO = 82), P ,P(X() = Sk)) (A3)

Since (%) represents a probability distribution, we have

k
=1

It can be proved that the distribution x™ at time n can be calculated by:
p™ = ,© pr (A.5)

Irreducibility is another definition, which loosely speaking, is the property that
all states of Markov chain can be reached from all others. The chain is irreducible
if for any s;,s; € S we can find an n such that (P"); ; > 0.

Definition A.5 (Stationary Distribution) Let (Xo, X1,...) be a Markov chain
with state space S = {s1,...,sx} and transition matriz P. A row vector m =

A.2 Convergence 159

(71, ..., k) 1s said to be a stationary distribution for the Markov chain, if it
satisfies:

k
(i)m >0 fori=1,---,k and Zmzl
i=1

k
(ii) 7P = 7, meaning that ZmPi,j =7; forj=1,--+,k (A.6)

=1

The existence and uniqueness of stationary distributions have been studied in [Hag02].
It can be shown that for any irreducible and aperiodic Markov chain, there is at least
one stationary distribution.

Theorem 1 (The Markov chain convergence theorem) Let (X, X1,...) be an
irreducible aperiodict Markov chain with state space S, transition matriz P, and
arbitrary initial distribution pY. Then for each stationary distribution @ for the
transition matriz P, p converges to m as n — oo.

A.2 Convergence

Let P, be the population of an Evolutionary Algorithm (EA) at generation ¢ and
F, = f(P,) its associated set of objective vectors. The EA is said to converge with
probability 1 to the entire set of optimal solutions? F* if:

d(Fy, F*) — 0 with probability 1, as t — oo (A.7)

whereas it is said to converge with probability 1 to the set of optimal solutions F*
if:

dr«(F;) — 0 with probability 1, as t — oo (A.8)

Here, d(F;, F*) refers to the Hamming distance between associated incidence vectors
F; and F*. It means that the population size will eventually grow at least to the
size of the set F*. 07 (F;) means the number of elements that are in F; but not in
F*.

If there is only a single objective, (F, <) is a chain, then |F*| = 1. But if there are
several objectives, (F, <) is not a chain, then |F*| > 1.

'If period d(s;) of the state s; is equal to 1, the state s; is aperiodic. d(s;) = ged{n > 1 :
(P™);,; > 0}. A Markov chain is aperiodic when all its states are aperiodic.
2Here, optimal solutions are the minimal elements.

160 Convergence of MOEA

Let S be the finite search space and f : S — F = {f(z) : z € S} the fitness
function, where (F, <), is a partially ordered set. The target of the MOEA is to
find the set of optimal solutions M (F, <). Algorithm 17 shows the base algorithm
that is going to be discussed here?. In this algorithm, A, and P, are the archive and
the population in generation %, respectively.

Algorithm 17 : Basic MOEA
P(0) is drawn at random from S
A(0) = M;(P(0), %)

t = 0 generation counter
repeat
P,.1 = generate(F;)
A1 = My(A U Pyq, X)
t=t+1
until stopping criteria fulfilled

The algorithm stores the generated non-dominated solutions of P; in A;. Here, the
size of A; can grow to the size of F* i.e., the size of the archive is not bounded to
a certain size.

A.2.1 Proof

If the sequence (P;)i>o is a homogeneous finite Markov chain with irreducible tran-
sition matriz then d(f(As), F*) — 0 with probability one as t — oo.

Proof:

By construction of the algorithm it is guaranteed that the set of objective vectors
f(Ay) of A; is an antichain, because incomparable solutions are stored in A;. As
soon as an element of F* = M(F, <) has entered f(A;) it will stay there forever.
It remains to show that all elements of F* will be contained in f(A,) for some
random time 7 with P{r < oo} = 1.

Let P*(t) = M;(P;, <). Notice that M;(A; U Py, %) = My(A, U P*(t + 1), X).
Let a € A(tp) with f(a) ¢ F*. Since (F, =) is complete it is guaranteed that
there exists an element x € S such that f(z) < f(a). Since the Markov chain
is irreducible, it ensures that every element in S will be often visited infinitely.
This implies that the waiting time of the first occurrence, as well as between two
consecutive occurrences of x, is finite with probability one. Therefore, non-optimal

3This algorithm is introduced by Rudolph and Agapie in [RA00].

A.2 Convergence 161

solutions will be eliminated after a finite number of iterations with probability one.
Moreover, each element that is incomparable to all elements in A; will enter A ;.
If it is optimal it remains in A forever, otherwise it will be replaced in finite time
by an optimal solution. The appearance of an incomparable element ensures the
irreducibility of the Markov chain (F;)¢>o.
All optimal solutions will enter A in finite time with probability one and the non-
optimal solutions will be discarded. Since optimal solutions can not get lost one
gets d(f(Ay), F*) — 0 with probability one and due to boundedness of d(-, F*).

O
According to this proof we just need to check if the transition matrix is irreducible
in order to get convergence results.
Since the transition matrix is a product of several other transition matrices; describ-
ing, mutation, cross over, and selection (in generate function in Algorithm 17), it
is useful to find the irreducibility of the product of the matrices. It can be shown
that the cross-over and selection do not possess irreducible matrices. Therefore, the
mutation operator must establish irreducibility property. It can be shown that the
transition matrix of the mutation for a single point mutation is irreducible. For
more details refer to [RA00].

162 Convergence of MOEA

Bibliography

[AS02]

[AYL8Y]

[BBO*83]

[Biic96]

[BHO3]

[BMKO3]

[Bra01]

[Bus01]

E. Costa A. Simoes. Using gas to deal with dynamic environments: a
comparative study of several approaches based on promoting diversity. In

Proceedings of the Genetic and FEvolutionary Computation Conference,
GECCO’02, 2002.

Norman L. Allinger, Young H. Yuh, and Jenn Huei Lii. Molecular me-
chanics. the MM3 force field for hydrocarbons. 1. Journal of the Amer-
ican Chemical Society, 111(23):8551-66, 1989.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, and M. Karplus. Charmm: a program for macromolecular en-
ergy, minimization, and dynamics calculations. Journal of Computa-
tional Chemistry, 4(2):187-217, 1983.

T. Back. FEvolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, New York, 1996.

V. Barichard and J. Hao. A population and interval constraint propa-
gation algorithm. In Proceedings of Second International conference on
Evolutionary Multi-Criterion Optimization, pages 88-101, 2003.

D. Biiche, S. Miiller, and P. Koumoutsakos. Self-adaptation for multi-
objective evolutionary algorithms. In Proceedings of Second Interna-

tional conference on Ewvolutionary Multi-Criterion Optimization, pages
267-281, 2003.

J. Branke. FEvolutionary Optimization in Dynamic Environments.
Kluwer Academic Publishers, New York, 2001.

M. Busold. Quantenchemische Untersuchungen zur Oxidation
von Mehrfachbindungen und die Entwicklung einer automatisierten
Parametrisierung fiir Kraftfelder. PhD thesis, Technische Universitat
Miinchen, Garching, Germany, 2001.

164

BIBLIOGRAPHY

[CDGY9)

[CL02]

[CLR0]

[CVLO02|

[DAPMO0]

[Deb99]

[Deb01]

[DHY7]

[DI8Y]

[DJ98]

[DMMO03a]

D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimization. Mc
Graw Hill, 1999.

C. A. Coello Coello and M. S. Lechuga. Mopso: A proposal for multi-
ple objective particle swarm optimization. In IEEE Proceedings World
Congress on Computational Intelligence (CEC’02), pages 1051-1056,
2002.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-
rithms. The MIT Press - Mc Graw Hill, 1990.

C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolu-
tionary Algorithms for Solving Multi-objective Problems. Kluwer, New
York, 2002.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-IL. In Parallel Problem Solving from Nature VI (PPSN-VI), pages
849-858, 2000.

K. Deb. Multi-objective genetic algorithms: Problem difficulties and
construction of test problems. In Ewvolutionary Computation Journal
7(3), pages 205-230, 1999.

K. Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, 2001.

M. Dellnitz and A. Hohmann. A subdivision algorithm for the compu-
tation of unstable manifolds and global attractors. Numerische Mathe-
matik, pages 293-317, 1997.

S. Dasgupta and W. A. Goddard III. Hessian-biased force fields
from combining theory and experiment. Journal of Chemical Physics,
90:7207-15, 1989.

M. Dellnitz and O. Junge. An adaptive subdivision technique for the
approximation of attractors and invariant measures. Comput. Visual.
Sci., pages 63-68, 1998.

K. Deb, M. Mohan, and S. Mishra. A fast multi-objective evolutionary
algorithm for finding well-spread Pareto-optimal solutions. In KanGAL
Report No. 2003002, Indian Institute Of Technology, Kanpur, 2003.

BIBLIOGRAPHY 165

[DMMO03b] K. Deb, M. Mohan, and S. Mishra. Towards a quick computation of well-

[DOO0A]

[DSHO03]

[DTLZ02]

[EBDC55]

[Edg81]

[ETP03]

[FES02]

[FF93]

[Fie03]

spread Pareto-optimal solutions. In Proceedings of Second International
conference on FEvolutionary Multi-Criterion Optimization, pages 222—
236, 2003.

E. Dunn and G. Olague. Pareto optimal sensing strategies for an active

vision system. In IEEE Proceedings, World Congress on Computational
Intelligence (CEC’04), Portland, USA, June 2004. to appear.

M. Dellnitz, O. Schiitze, and T. Hestermeyer. Covering Pareto sets by
multilevel subdivision techniques. Optimization, Theory and Applica-
tions, 2003.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective
optimization test problems. In IEEE Proceedings, World Congress on
Computational Intelligence (CEC’02), pages 825-831, May 2002.

Jr Wilson E. B., J. C. Decius, and P. C Cross. Molecular Vibrations.
McGraw-Hill, 1955.

F. Y. Edgeworth. Mathematical Physics. C. Kegan Paul and Company,
London, 1881.

M. Ehrgott and D. Tenfelde-Podehl. Nadir values: Computation and use
in compromise programming. Furopean Journal of Operational Research,
1:119-139, 2003.

J.E. Fieldsend, R.M. Everson, and S. Singh. Using unconstrained elite
archives for multi-objective optimisation. In IEEE Transactions on Evo-
lutionary Computation, 2002.

C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization. In Proceedings
of the Fifth International Conference on Genetic Algorithms, pages 416—
423, 1993.

J. E. Fieldsend. Nowel Algorithms for Multi-Objective Search and their
application in Multi-Objective Evolutionary Neural Network Training.
PhD thesis, University of Exeter, 2003.

166

BIBLIOGRAPHY

[Fle03]

[FMA02]

[Fog95]

[FS02]

[FTS'98]

[Gol89]

[Hab83]

[HBH'98]

Mark Fleischer. The measure of Pareto optima: Application to multi-
objective metaheuristics. In Proceedings of Second International con-
ference on Evolutionary Multi-Criterion Optimization, pages 519-533,
2003.

A. Farhang-Mehr and S. Azarm. Diversity assessment of Pareto optimal
sets: An entropy approach. In IEEE Proceedings World Congress on
Computational Intelligence (CEC’02), May 2002.

D. B. Fogel. FEvolutionary Computation: toward a new philosophy of
machine intelligence. IEEE Press, New York, 1995.

J. E. Fieldsend and S. Singh. A multi-objective algorithm based upon
particle swarm optimisation, an efficient data structure and turbulence.
In The 2002 U.K. Workshop on Computational Intelligence, pages 34—
44, 2002.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochter-
ski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.
Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gon-
zalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople. Gaussian 98.
Gaussian, Inc., Pittsburgh PA, 1998.

David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1989.

W. Habenicht. Quad trees, a data structure for discrete vector optimiza-
tion problems. In Lecture Notes in Economic and Mathematical Systems,
volume 209, pages 136-145, Springer-Verlag, 1983.

J. Hunger, S. Beyreuther, G. Huttner, K. Allinger, U. Radelof, and
L. Zsolnai. How to derive force field parameters by genetic algorithms.

BIBLIOGRAPHY 167

[HE02]

[HES03]

[Hig02]

[HHO9]

[Hil01]

[HJ98]

[HNGO4]

[Hug03)]

[Jen99]

[JJK97]

modeling tripod-mo(co)3 compounds as an example. European Journal
of Inorganic Chemistry, pages 693-702, 1998.

X. Hu and R. Eberhart. Multiobjective optimization using dynamic
neighborhood particle swarm optimization. In IEEE Proceedings, World
Congress on Computational Intelligence (CEC’02), pages 1677-1681,
May 2002.

X. Hu, R. Eberhart, and Y. Shi. Particle swarm with extended memory
for multiobjective optimization. In IEEE Swarm Intelligence Sympo-
stum, pages 193-197, 2003.

O. Haggstrom. Finite Markov Chains and Algorithmic Applications.
Cambridge University Press, 2002.

J. Hunger and G. Huttner. Optimization and analysis of force field
parameters by combination of genetic algorithms and neural networks.
Journal of Computational Chemistry, 20:455-471, 1999.

C. Hillermeier. Nonlinear multiobjective optimization: A generalized
homotopy approach. International Series of Numerical Mathematics,
135, 2001.

M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approxima-
tions to the non-dominated set. In IMM-REP-1998-7, Technical report,
Institut of Mathematical Modeling, Technical University of Denmark,
1998.

J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched Pareto genetic
algorithm for multiobjective optimization. In 1st IEEE Conf on Evolu-
tionary Computation, volume 1, pages 82-87, 1994.

E. Hughes. Multiobjective binary search optimisation. In Proceedings of
Second International conference on Evolutionary Multi-Criterion Opti-
mization, pages 102-117, 2003.

F. Jensen. Introduction to computational chemistry. John Wiley & Sons,
1999.

A. Jiischke, J. Jahn, and A. Kirsch. A bicriterial optimization problem of
antenna design. Computational Optimization and Applications, 7:261—
276, 1997.

168

BIBLIOGRAPHY

[KC99)]

[KC02]

[KCO03]

[KCF03]

[KE95)

[KEO1]

[KTW02]

[Kur91]

[KYDO3]

[Li03]

[LRS98]

J. Knowles and D. Corne. The Pareto Archived Evolution Strategy: A
new baseline algorithm for Pareto multiobjective optimisation. In 1999
Congress on Evolutionary Computation, pages 98-105, Piscataway, NJ,
1999. IEEE Service Center.

J. Knowles and D. Corne. On metrics for comparing nondominated sets.
In IEEE Proceedings, World Congress on Computational Intelligence
(CEC’02), pages 711-716, May 2002.

J. Knowles and D. Corne. Properties of an adaptive archiving algorithm
for storing nondominated vectors. 7(2):100-116, 2003.

J. Knowles, D. W. Corne, and M. Fleischer. Bounded archiving using
the Lebesque measure. In IEEE Proceedings, World Congress on Com-
putational Intelligence (CEC’03), Canberra, Australia, December 2003.

J. Kennedy and R. C. Eberhart. Particle swarm optimization. In /EEE
International Conference on Neural Networks, pages 1942-1948, Perth,
Australia, 1995.

J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann,
2001.

K. Klamroth, J. Tind, and M. Wiecek. Unbiased approximation in mul-
ticriteria optimization. Mathematical Methods of Operations Research,
56:413-437, 2002.

F. Kursawe. A variant of evolution strategies for vector optimization.
In Parallel Problem Solving from Nature, PPSN I, pages 193-197, 1991.

V. Khare, X. Yao, and K. Deb. Performance scaling of multi-objective
evolutionary algorithms. In Proceedings of Second International con-
ference on Evolutionary Multi-Criterion Optimization, pages 376-390,
2003.

Xiaodong Li. A non-dominated sorting particle swarm optimizer for
multiobjective optimization. In Genetic and Evolutionary Computation
Conference (GECCO’03), pages 37-48, 2003.

M. Laumanns, G. Rudolph, and H. P. Schwefel. A spatial predator-
prey approach to multi-objective optimization: A preliminary study.
In Parallel Problem Solving From Nature - PPSN V, Berlin: Springer,
pages 241-249, 1998.

BIBLIOGRAPHY 169

[LTDZ02

[Mac03]

[MBB*98|

[MHK*+04]

[Mie99]

[Mor80]

[MT03a]

[MT03b]

[MT04a]

M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Archiving with guar-
anteed convergence and diversity in multi-objective optimization. In

Genetic and Evolutionary Computation Conference (GECCO’02), pages
439-447, 2002.

A. D. MacKerell. Empirical force fields: Overview and parameter opti-
mization. In 43th Sanibel Symposium, 2003.

A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D.
Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-
McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Mich-
nick, T. Ngo, D. T. Nguyen, B. Prodhom, IIT Reiher W. E., B. Roux,
M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe,
J. Wiorkiewicz-Kuczera, D. Yin, and M Karplus. All-atom empirical po-

tential for molecular modeling and dynamics studies of proteins. Journal
of Physical Chemistry B, 102(18):3586-3616, 1998.

S. Mostaghim, M. Hoffmann, P. Konig, T. Frauenheim, and J. Teich.
Molecular force field parameterization using multi-objective evolutionary
algorithms. In IEEE Proceedings, World Congress on Computational

Intelligence (CEC’04), Portland, USA, June 2004.

K. M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Aca-
demic Publishers, 1999.

J. N. Morse. Reducing the size of the non-dominated set: pruning by
clustering. Computers and Operaton Research, 7(1-2):55-66, 1980.

S. Mostaghim and J. Teich. The role of e-dominance in multi-objective
particle swarm optimization. In IEEE Proceedings, World Congress on
Computational Intelligence (CEC’03), pages 1764-1771, Canberra, Aus-
tralia, December 2003.

S. Mostaghim and J. Teich. Strategies for finding good local guides in
multi-objective particle swarm optimization. In IEEE Swarm Intelli-
gence Symposium, pages 26-33, Indianapolis, USA, 2003.

S. Mostaghim and J. Teich. Covering pareto-optimal fronts by sub-
swarms in multi-objective particle swarm optimization. In IEEE Pro-
ceedings, World Congress on Computational Intelligence (CEC’04),
Portland, USA, June 2004.

170

BIBLIOGRAPHY

[MT04b]

[MTTO02]

[NDO3]

[0JS03]

[Par06]

[PCO3]

[PF03]

[PFPBT79)

[PV02a]

[PV02b]

S. Mostaghim and J. Teich. Quad-trees: A data structure for stor-
ing Pareto-sets in multi-objective evolutionary algorithms with elitism.
In Fvolutionary Multiobjective Optimization: Theoretical Advances and
Applications, 2004. to appear.

S. Mostaghim, J. Teich, and A. Tyagi. Comparison of data structures
for storing Pareto-sets in MOEAs. In IEEFE Proceedings World Congress
on Computational Intelligence (CEC’02), pages 843-849, May 2002.

P. K. S. Nain and K. Deb. A computationally effective multi-objective
search and optimization technique using coarse-to-fine grain modeling.
In IEEE Proceedings, World Congress on Computational Intelligence
(CEC’01), pages 1281-1289, 2003.

T. Okabe, Y. Jin, and B. Sendhoff. A critical survey of performance
indices for multi-objective optimisation. In IEEE Proceedings, World
Congress on Computational Intelligence (CEC’03), pages 878-885, Can-
berra, Australia, December 2003.

V. Pareto. Manuale di Economica Politica, Translated into English by
A. S. Schwier as Manual of Political Economy, Edited by A. S. Schwier
and A. N. Page, A. M. Kelley, New York, 1971. Societa Editrice Libaria,
Milan, 1906.

J. W. Ponder and D. A. Case. Force fields for protein simulations.
Advances in protein chemistry, 66:27-85, 2003.

R. C. Purshouse and P. J. Fleming. Evolutionary multi-objective optimi-
sation: An exploratory analysis. In IEEE Proceedings, World Congress
on Computational Intelligence (CEC’01), pages 2066—2073, 2003.

P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs. Systematic ab ini-
tio gradient calculation of molecular geometries, force constants, and
dipole moment derivatives. Journal of the American Chemical Society,
101(10):2550-2560, 1979.

K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global
optimization problems through particle swarm optimization. Natural
Computing, 1(2-3):235-306, 2002.

K. E. Parsopoulos and M. N. C. Vrahatis. Particle swarm optimization
method in multiobjective problems. In Proceedings on the 2002 ACM
Symposium on Applied Computing (SAC’02), pages 603-607, 2002.

BIBLIOGRAPHY 171

[PY00]

[RA00]

[Reb98]

[Rud94]

[Rud9g]

[SBRO1]

[Sch85]

[Sch95]

[Sch03]

[Sch04]

[SD4]

C. H. Papadimitriou and M. Yannakakis. On the approximability of
trade-offs and optimal access of web sources (extended abstract). In
IEEE Symposium on Foundations of Computer Science, 2000.

G. Rudolph and A. Agapie. Convergence properties of some Multi-
Objective Evolutionary Algorithms. In Proc. of the 2000 Congress
on Evolutionary Computation, pages 1010-1016, Piscataway, NJ, USA,
2000. IEEE Service Center.

R. Rebentisch. Theoretische Methoden zur Interpretation wvon
Molekiilspektren. PhD thesis, Universitat zu Koln, Germany, 1998.

G. Rudolph. Convergence of non-elitist strategies. In Proceedings of the
First IEEE Conference on Evolutionary Computation, volume 1, pages
63-66, 1994.

G. Rudolph. On a Multi-Objective Evolutionary Algorithm and its con-
vergence to the Pareto set. In Proceedings of the 5th IEEE Conference
on Evolutionary Computation, pages 511-516, IEEE Press, 1998.

T. Strassner, M. Busold, and H. Radrich. FFGenerAtor 2.0 - an auto-
mated tool for the generation of MM3 force field parameters. Journal of
Molecular Modeling, 7(1):374-377, 2001.

J. D. Schaffer. Multiple objective optimization with vector evaluated
genetic algorithms. In Proceedings of an International Conference on
Genetic Algorithms and Thei Applications, pages 93-100, 1985.

Jason R. Schott. Fault Tolerant Design Using Single and Multicriteria
Genetic Algorithm Optimization. Master’s Thesis, Air Force Institute of
Technology, Ohio, USA, 1995.

O. Schiitze. A new data structure for nondominance problem in multi-
objective optimization. In Proceedings of Second International con-
ference on Evolutionary Multi-Criterion Optimization, pages 509-518,
2003.

O. Schiitze. Set Oriented methods for global optimization. PhD Thesis,
University of Paderborn, 2004. to appear.

N. Srinivas and K. Deb. Multiobjective optimization using nondomi-
nated sorting in genetic algorithms. In Evolutionary Computation, pages
221-248, 1994.

172

BIBLIOGRAPHY

[SE98]

[SKWO1]

[SMDT03]

[Spe9s|

[SS96a|

[SS96b)

[SSW02]

[Tei01]

[TLKO1]

[Vel99]

[VLOO]

Y. Shi and R. C. Eberhart. Parameter selection in particle swarm opti-
mization. Evolutionary Programming, pages 591-600, 1998.

B. Schandl, K. Klamroth, and M. M. Wiecek. Norm-based approx-
imation in bicriteria programming. Computational Optimization and
Applications, Kluwer Academic Publishers, 1(20):23-42, 2001.

O. Schiitze, S. Mostaghim, M. Dellnitz, and J. Teich. Covering Pareto
sets by multilevel evolutionary subdivision techniques. In Proceedings of
Second International Conference on Evolutionary Multi-Criterion Opti-
mization, pages 118-132, 2003.

W. M. Spears. Fuvolutionary Algorithms: The Role of Mutation and
Recombination. Springer-Verlag, 1998.

M. Sun and R. E. Steuer. Interquad: An interactive quad tree based
procedure for solving the discrete multiple criteria problem. FEuropean
Journal of Operational Research, 89:462—472, 1996.

M. Sun and R.E. Steuer. Quad trees and linear list for identifying
nondominated criterion vectors. INFORMS Journal on Computing,
8(4):367-375, 1996.

S. Schéffler, R. Schultz, and K. Weinzierl. A stochastic method for the
solution of unconstrained vector optimization problems. Optimization,
Theory and Application, 2002.

J. Teich. Pareto-front exploration with uncertain objectives. Lecture
Notes in Computer Science (LNCS), 1993:314-328, March 2001.

K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary algorithms for
multi-objective optimization: Performance assesment and comparisons.

In IEEE Proceedings, World Congress on Computational Intelligence
(CEC’01), 2001.

D. A. Veldhuizen. Multiobjective Evolutionary Algorithms: Classifica-
tion, Analyses and New Innovations. PhD Thesis, Air Force Institute of
Technology, Ohio, USA, 1999.

D. A. Van Veldhuizen and G. B. Lamont. On measuring multiobjective
evolutionary algorithm performance. In Proc. CEC’00, the Congress on
Evolutionary Computation, 2000.

BIBLIOGRAPHY 173

[WKO1]

[WZ99]

[Zad63]

[ZDT00]

[Zit99)

[ZLT02]

[ZT99]

[ZTL*02]

[Zyd03]

J. Wang and P. A. Kollman. Automatic parameterization of force field
by systematic search and genetic algorithms. Journal of Computational
Chemistry, 22(12):1219-1228, 2001.

A. H. Wright and Y. Zhao. Markov chain models of genetic algorithms.
In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon,
Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceed-
ings of the Genetic and FEvolutionary Computation Conference, pages
734-741. Morgan Kaufmann, 1999.

L. Zadeh. Optimality and non-scaler-valued performance criteria. IEEE
Transaction on Automatic Control, 8, 1963.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolu-
tionary algorithms: Empirical results. Journal of Evolutionary Compu-
tation, 8(2):173-195, 2000.

E. Zitzler. Ewvolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. Shaker Verlag, Germany, TIK-Schriftenreihe
Nr. 30, Diss ETH No. 13398, Swiss Federal Institute of Technology
(ETH) Zurich, 1999.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength
Pareto evolutionary algorithm. In Fvolutionary Methods for Design, Op-
timisation and Control with Applications to Industrial Problems, pages
95-100, Barcelona, Spain, 2002.

E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach. IEEE Trans.
on Evolutionary Computation, 3(4):257-271, 1999.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert
da Fonseca. Performance assessment of multiobjective optimizers: An
analysis and review. In TIK Report Nr. 139, Computer Engineering
and Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, 2002.

J. B. Zydallis. Fzxplicit Building Block Multiobjective Genetic Algorithms:
Theory, Analysis, and Development. PhD Thesis, Air Force Institute of
Technology, Ohio, USA, 2003.

174 BIBLIOGRAPHY

List of Figures

1.1
1.2

1.3

2.1

2.2
2.3
24

2.5

2.6
2.7

3.1
3.2

3.3

3.4
3.5
3.6
3.7

(a) 2-objective optimization problem (b) Objective space
Objective space (a) an example of domination (b) P is a set of solu-

tions and P’ is the non-dominated set
(a) Weakly non-dominated set (b) Locally Pareto-optimal set

Raw fitness values for a minimization problem with two objectives
fi(z) and fo(z) using SPEA2o Lo
A typical structure of an elitist MOEA
S metric (a) Set Ay (b) Set A
Computing the hyper-volume of a two-objective non-dominated set
proposed by Dunn and Olague [DO04].(a) Set A; (b) Set Ay
Computing the hyper-volume of a two-objective non-dominated set
using Fleischer’s Algorithm. In the first step, region A is lopped off.
The regions B, C, and D are lopped off in the next steps, respectively.
ul and u2 are the upperbounds of each of the objectives.
Entropy approach [FMAO02]
Sparsity measure. The solutions are projected on the hyper-plane
with coordinate axis of (; and ¢, [DMMO03a]

Example of (a) dominated and (b) non-dominated trees
Dominated tree (a) inserting a new solution a needs to create the

composite point &', Deletion is illustrated in (b)
Example of a tree-structure for storing non-dominated solutions. Node
(55 5) dominates the root (10 10 10) and node (12 15 18) is dominated

by theroot.
Insertion in a Quad-tree (Example 3)
Inserting the new solution vector (12 15 5) (Example 4)
Insertion in a Quad-tree (Example 5)
Average CPU-time for different 2-objective test functions for different

populationsizes |P|o Lo

176 LIST OF FIGURES

3.8 Average CPU-time of m-objective test functions for different popula-

tlon sizes Lo 54
3.9 Archive sizes of the 4-objective test function according to different

population sizes Lo 56
3.10 Average CPU-time of m-objective test functions GSPm, m = 3, 4, 5,

6 according to different archive size bounds |A| and fixed population

size [P|=20000 57
3.11 Regions of applicability of linear list, Quad-tree, and dominated tree

as archive data structures within MOEA relative to archive size |A|,

population size | P|, and number of objectives m 59
3.12 An example of inner approximation technique in the objective space [KTW02].

The linear approximation is achieved through several iterations. . . . 61

4.1 An example of the subdivision technique (2-dimensional parameter space) 65
4.2 Parameter space (a) 10 initial individuals (b) 10 individuals after 10

generations. The Pareto-optimal set is illustrated with a solid line. . . 66
4.3 Result of applying HMOEA to test function TEST2 (parameter space) 67
4.4 Working principle of Static Recovering [SMDTO03]. The solid line

illustrates the Pareto-optimal set P in the Parameter space. (a) Just

one box is found. (b) The size of the box is extended to a larger box.

In the extended box, HMOEA is run. (c¢) The result of the HMOEA

inside the extended box is a set of four boxes. 68
4.5 Result of applying Static Recovering on the result shown in Figure 4.3 69
4.6 Application of Dynamic Recovering in a simple example. The solid

line illustrates the Pareto-optimal set in parameter space. (a) initial

box collection; there is one box far from the Pareto-optimal set, (b)

one step after Dynamic Recovering, (c) last step in recovering. The

box collection covers the Pareto-optimalset 70
4.7 Results of (left) MOEA method and (right) HMOEA using Static

Recovering Lo 71
4.8 Results of (left) MOEA method and (right) HMOEA using Static

Recovering techniqueo o000 72

4.9 Comparison of selected areas of Pareto-fronts from (left) Figures 4.7
and (right) 4.8. 73
4.10 Each of the solutions E, F, and G are indifferent to each of the Pareto-
optimal solutions (A, B, C and D), but do not lie on the Pareto-
optimal front.o L 74

LIST OF FIGURES 177

5.1

5.2
9.3

5.4
9.5

5.6
5.7
5.8
9.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

Choosing the best local guide among the archive members for each
particle in the population by Fieldsend and Singh‘s method [FS02].
(m: archive member, o: particle of the current population and x:
composite points)o 81
Examples of the Sigma method 82
Finding the best local guide for each particle of the population using
the Sigma method. (m: archive member, o: particle of the current
population) o 83
A possible structure of a MOPSO 86
The influence of the initial archive (a) There is no initial archive. The
particles must select one of the non-dominated solutions as the local
best guide (b) The particles select one of the members of the initial
archive (o: particle of the current population, ®: non-dominated

solution of the current population, m: member of the initial archive) . 88
2-objective Sigma Diversity Metric. Black points are the solutions of

a 2-objective test function and the lines are reference lines 89
Reference lines in 3-objective space (k=4) 91

Different diversities (spreads) of solutions, but with the same D values 93
Properties of the median of the Sigma values in (a) 2- and (b) 3-
objective spaceso 94
An example of different non-dominated sets with different diversity
of solutions. (a) Solutions are well-distributed: D = 100% and & = 0.
(b),(c) Solutions are not well-distributed: D # 100%. Median Sigma

value, 7, indicates the spread of solutions. 95
Results of the (a) Sigma, (b) Dtree, (¢) Random, and (d) SPEA2
methods applied on the test function ZDT1 in Table 2.1 97
Results of the (a) Sigma, (b) Dtree, (c) Random, and (d) SPEA2
methods applied on the test function ZDT3 in Table 2.1 98
Results of the (a) Sigma, (b) Dtree, (c) Random, and (d) SPEA2
methods applied on the test function ZDT4 in Table 2.1 99
Results of the (a) Sigma, (b) Dtree, (c) Random, and (d) SPEA2
methods applied on the test function ZDT6 in Table 2.1 100
Results of the (a) Sigma, (b) Dtree, (c) Random, and (d) SPEA2
methods applied on the test function GSP3 in Table 2.1 102
Results of the (a) Sigma, (b) Dtree, (c) Random, and (d) SPEA2
methods applied on the test function DLZT in Table 2.1 103
Results of the (a) Sigma, (b) Dtree, (c) Random, and (d) SPEA2

methods applied on the test function CP3 in Table 2.1 104

178 LIST OF FIGURES
5.18 Covering the Pareto-front using initial archive members. The initial
archive members guide subswarms of solutions around themselves to
cover the Pareto-front. (o: Particles of the initial population of the
covering MOPSO, m: Result of the initial MOPSO) 111
5.19 Solutions of the ZDT1 test function (a) with clustering (a = 50),
(b) covered front 112
5.20 Solutions of the ZDT3 test function (a) with clustering (a = 50),
(b) covered front Lo 113
5.21 Solutions of the ZDT6 test function (a) with clustering (a = 50), (b) cov-
ered fronto oo 113
5.22 Solutions of the ZDT4 test function (a) with clustering, obtaining the
converged front needs several runs, (b) covered front 114
6.1 Domination and e-domination in the objective space 118
6.2 An example of e-dominance 00000 119
6.3 Clustering method [Zit99] L. 120
6.4 A typical structure of e MOPSO 121
6.5 edominancein MO oo oL 122
6.6 Comparison of computational time (CPU-time) of the CMOPSO and
eMOPSO methods in milliseconds 126
6.7 (a),(b) Results of ZDT1 (e = 0.025, |A| = 48); (c),(d) Results of
ZDT3 (e = 0.0075, |A| =52) oo 127
6.8 GSP3 test function (e = 0.02). (a),(b) objective space, and (c),(d)
0 — ¢ axis of the spherical coordinate 129
6.9 DLZT test function (¢ = 0.01). (a),(b) objective space, and (c),(d)
0 — ¢ axis of the spherical coordinate 130
7.1 Radiation characteristics of the points on the approximated front . . 134
7.2 Antenna design problem, results of MOPSO (a) archive size: 50
(b) covered approximated Pareto-optimal front| 135
7.3 Antenna design problem (a) Result of MOEA (b) Comparison of
MOEA and MOPSO in the selected space 135
7.4 Comparison of HMOEA, MOEA and MOPSO for the selected part
of the objective space of the antenna design problem 136
7.5 Relevant intramolecular geometry measures used in molecular force
fields: a) bond lengths b) bond angles c¢) dihedral angles. 139
7.6 General structure of non-branched, primary, aliphatic alcohols. The

index k indicates how often the unit contained within the brackets is
repeated. L. L 143

LIST OF FIGURES 179

7.7

7.8

7.9

7.10

7.11

The non-dominated front in objective space obtained for the best
three runs of (a) MOEA, p,,=0.01, (b) MOEA, p,,,=0.1, (c) MOPSO
after 3000 generations. (d) the result of MOPSO after 10000 generations144
C metric comparison of the non-dominated set of generations ¢t and

t—At (A=A, B=A_a;, At=500) 146
The non-dominated set obtained using MOPSO after (a) 6500 and
(b) 10000 generationso e e 147
Reference vibrational spectra and vibrational spectra obtained with

parameter set D%, The dotted lines connect corresponding modes. . 149
Comparison of the rotational profile around the C-C[-]O-H bond in
ethanol. The rotational angles and energies are relative to the con-
formational minimum at 0 ° (staggered conformation). 151

180 LIST OF FIGURES

List of Tables

2.1 Test Functions.,

3.1 Average CPU-times in seconds for different population sizes of the
six 2-objective test functions ZDT1 to ZDT6 (from top to bottom)
(T,;/L is the ratio of Quad-tree;’s CPU-time to the CPU-time when
using linear lists) L

3.2 Number of deletions and reinsertions in the Quad-tree archive for the
m-objective test functions GSPm (T is the CPU-time in seconds). . .

5.1 k is the number of regions separated by reference lines on the plane
generated by only two of the coordinate axes, number of ref. is the
number of reference lines, and d is the radius of the neighborhood
defined around each reference line.

5.2 Diversity measures of the 2-objective test functions, S: Sigma, Dt:
Dtree, R: Random, and SP: SPEA2 method (D: Diversity metric in
percent, & : median Sigma value) Lo

5.3 Convergence comparison of the 2-objective test functions, S: Sigma,
Dt: Dtree, R: Random, and SP: SPEA2 method (C: C metric)

5.4 Diversity measures of the 3-objective test functions, S: Sigma, Dt:
Dtree, R: Random, and SP: SPEA2 method (D: Diversity metric in
percent, & : median Sigma value)

5.5 Convergence comparison of the 3-objective test functions, S: Sigma,
Dt: Dtree, R: Random, and SP: SPEA2 method (C: C metric)

5.6 Diversity measures on the 4-objective test function GSP4 (D: Diver-
sity metric in percent, & : median Sigma value)

5.7 Different populationsizes.

5.8 Different archivesizes

5.9 Different turbulence factors; tf denotes the turbulence factor

5.10 Different inertia weights; w denotes the inertia weight

182

LIST OF TABLES

5.11 Computational time of initial (Tj,;;) and covering (Tepper) runs of

6.1
6.2

6.3

7.1

7.2

7.3

MOPSQO, in seconds. D,,;, and D,,,, are the minimum and maximum
distances between the non-dominated solutions of the approximated
Pareto-front

A: eMOPSO, B: CMOPSO (times in milliseconds)
Median Sigma values applied on the results of the 2-objective test
function (A: eMOPSO, B: CMOPSO)

Median Sigma values applied on the results of the 3-objective test
function (4: eMOPSO, B: CMOPSO)

Objective values for the parameter sets picked from run 1 after 6500
and 10000 generations. The line max. denotes the maximum value
of the respective objective within the non-dominated set.
Characteristical geometry parameters for minimum geometries for pa-
rameter sets A-D. Distances d are in A, anglesain®.
Vibrational frequency deviations (in terms of wavenumbers cm™!) for
parameter sets A-D

147

Index

Symbols covering, 68
C metric, 30 covering MOPSO, 109
K-Successor, 40 craziness, 85
S metric, 28 Cross-over, 16
e-approximate Pareto-front, 118
e-domination, 118 D
k-Set, 40 data structure
k-Son, 40 — MOEA, 50

decision vector, 2
A dominance, 3
antenna design problem, 70, 133 dominated tree, 36
antichain, 155 — deletion, 39
aperiodic, 156 — insertion, 38
approximation, 60 domination-free, 41
ARI1, 18 dynamic neighborhood strategy, 78
archiving in MOPSO, 87 dynamic recovering, 69
B E
best local guide, 77 elitism, 18, 78
bisection, 64 elitist MOEA, 18
box, 64 Entropy approach, 31

error ratio, 27
C) Ethanol, 143
chain, 155 Evolutionary Algorithm, 13
CHARMM, 138
clustering, 119 F
composite point, 37, 80 fitness evaluation, 14, 20
computational chemistry, 136 Fleichers’s algorithm, 29
computational time, 58 force field, 138

confirmation, 137
G

gap, 68
generational distance, 27

control parameter, 77
controllable exploration, 63
convergence, 23

184

INDEX

global best particle, 76
grid, 80

H

HMOEA, 63
hybrid MOEA, 63
hyper-volume, 28
hypercube, 80

I

inertia weight, 77
internal coordinates, 141
irreducibility, 156

L

Lebesgue Archiving HillClimber (LAHC),

120
LebMeasure algorithm, 29
linear list, 36
locally Pareto-optimal set, 5

M

Markov chain, 23, 156

median sigma value, 92

Methanol, 143

minimal element, 155

molecular force fields, 138

multi-objective Evolutionary Algorithm,
17

multi-objective optimization problem,
2

Multi-objective Particle Swarm Opti-
mization (MOPSO), 77

mutation, 17

N
Nadir point, 60
non-dominated set, 3

non-dominated tree, 36
NSGA2, 19

(0]
objective space, 2

P

PAES, 19

parameter, 2

parameter setting of MOPSO, 105

— archive size, 106

— inertia weight, 108

— number of generations, 109

— population size, 105

— turbulence factor, 107

parameterization, 137

Pareto, 4

Pareto-optimal front, 4

Pareto-optimal set, 4

Pareto-optimal solution, 4

partially ordered set, 155

particle, 75

particle interaction, 77

Particle Swarm Optimization (PSO),
76

performance metric, 25

population, 14

Q

Quad-tree, 40
— delete, 46

— reconsider, 49
— reinsert, 48

— replace, 48

R

raw fitness value, 20
recombination, 16
reference line, 89
reference point, 89
reproduction of

— energetics, 142

INDEX 185

— molecular geometries, 140
— molecular vibrations, 141
roulette-wheel selection, 80

S

selection, 15, 64

— Roulette-wheel, 15

— tournament, 15
selection pressure, 16
short MOEA, 66

Sigma diversity metric, 88
Sigma method, 81
Sparsity measure, 32
SPEA2, 20

static recovering, 68
stopping criteria, 145
strength, 20

subdivision technique, 64
subswarm, 110
successorship, 40

T

take over time, 16

test function, 24
totally ordered set, 155
transition matrix, 156
truncation, 21, 119
turbulence factor, 85

\%
velocity, 76
vibrational spectra, 148

\\%
weakly non-dominated set, 3

