
19

Chapter 2
Real-Coded Adaptive Range Genetic Algorithm

2.1. Introduction
Finding a global optimum in the continuous domain is challenging for Genetic Algorithms

(GAs). Traditional GAs use the binary representation that evenly discretizes a real design space.
Although such binary-coded GAs have been successfully applied to a wide range of design
optimization problems, they suffer from disadvantages, when applied to the real-world problems
involving a large number of real design variables. Since binary substrings representing each parameter
with the desired precision are concatenated to represent an individual, the resulting string encoding a
large number of design variables would wind up a huge string length. For example, for 100 variables
with a precision of six digits, the string length is about 2000. GAs would perform poorly for such
design problems. Previous applications have been kept away from this problem by sacrificing
precision or narrowing down the search regions prior to the optimization. However, such approaches
might exclude the region that actually has the global optimum.

Another drawback of the binary-coded GAs applied to parameter optimization problems in
continuous domains comes from discrepancy between the binary representation space and the actual
problem space. For example, two points close to each other in the representation space might be far in
the binary represented problem space. It is still an open question to construct an efficient crossover
operator that suits to such a modified problem space.

A simple solution to these problems is the use of the floating-point representation of
parameters. In these real-coded GAs, an individual is coded as a vector of real numbers corresponding
to the design variables. The real-coded GAs are robust, accurate, and efficient because the floating-
point representation is conceptually closest to the real design space, and moreover, the string length
reduces to the number of design variables. However, even the real-coded GAs would lead to
premature convergence when applied to aerodynamic shape designs with a large number of design
variables.

A more sophisticated approach is to dynamically alter the coarseness of the search space
referred to as dynamic coding. In [1], Krishnakumar et al. presented Stochastic Genetic Algorithms
(Stochastic GAs) to efficiently solve problems with a large number of real design parameters. The key
features of Stochastic GAs are:
1. Each binary number represents a region of the real space instead of a single point to maintaining

good precision with the small string length.
2. Those regions adapt during the optimization process according to the 1/5th success rule as

Evolutionary Strategies (ES) to improve efficiency and robustness.
The Stochastic GAs have been successfully applied to Integrated Flight Propulsion Controller designs
[1] and air combat tactics optimization [2]. As they explained, the Stochastic GAs bridge the gap
between ES and GAs to handle large design problems.

Adaptive Range Genetic Algorithms (ARGAs) are a new approach using dynamic coding
proposed by Arakawa and Hagiwara [3] for binary-coded GAs to treat continuous design space. The
essence of their idea is to adapt the population toward promising design regions during the
optimization process, which enables efficient and robust search in good precision while keeping the
string length small. Moreover, ARGAs eliminate prior definition of boundaries of the search regions
since ARGAs distribute design candidates according to the normal distributions of the design variables
in the present population. In [4], ARGAs have been applied to pressure vessel designs and
outperformed other optimization algorithms.

The objective of this chapter is to develop robust and efficient GAs applicable to aerodynamic
shape designs. To achieve this goal, the idea of the dynamic coding is incorporated with the used of
the floating-point representation. Since the ideas of the Stochastic GAs and the use of the floating-
point representation are incompatible, ARGAs for the floating-point representation are developed. The
real-coded ARGAs are expected to possess both advantages of the binary-coded ARGAs and the

20

floating-point representation to overcome the problems of having a large search space that requires
continuous sampling. First, to display advantages of the present approach, the proposed approach is
applied to a test function optimization problem. Then, an aerodynamic airfoil shape optimization is
demonstrated to ensure the feasibility of the proposed approach in aerodynamic design problems.

2.2. Adaptive Range Genetic Algorithms
2.2.1 ARGAs for Binary Representation

When conventional binary-coded GAs are applied to real-number optimization problems,
discrete values of real design variables pi are given by evenly discretizing prior-defined search regions
for each design variable [pi,min , pi,max] according to the length of the binary substring bi,l as

min,min,max, 12
)(isl

i
iii p

c
ppp +

−
−= (2.1)

where

)2(1

1
,

−

=
⋅= ∑ l

sl

l
lii bc (2.2)

In binary-coded ARGAs, decoding rules for the offspring are given by the following normal
distributions:

))(,(2))(,(22
iiiiiii pNpN σµσπσµ ⋅=′

)

2
)(

exp(2

2

i

iip
σ

µ−−=
 (2.3)

where the average µi and the standard deviation σi of each design variable are determined by the
population statistics. Those values are recomputed in every generation. Then, mapping from a binary
string into a real number is given so that the region between UBN′ and LBN′ in Fig. 2.1 is divided into
equal size regions according to the binary bit size as










≥
−

−′−′−′⋅−+

−≤
−

′−′+′⋅−−
=

−
−

−

−
−

1
1

1
2

1
1

2

2)
12

2
)(ln(2

12)
12

)(ln(2

sl
isl

sl
i

LBUBUBii

sl
isl

i
LBUBLBii

i

cfor
c

NNN

cfor
c

NNN
p

σµ

σµ
(2.4)

where UBN′ and LBN′ are additional system parameters defined in [0,1]. In the ARGAs, genes of
design candidates represent relative locations in the updated range of the design space. Therefore, the
offspring are supposed to represent likely a range of an optimal value of design variables.

21

(000)

(001)

(010) (101)

(100)

(110)

(111)

pipi(B=(000)) pi(B=(111))

(011)

LBN′

UBN′

Fig 2.1 Decoding for binary-coded ARGAs

Although the original ARGAs have been successfully applied to real parameter optimizations,
there is still room for improvements. The first one is how to select the system parameters UBN′ and

LBN′ on which robustness and efficiency of ARGAs largely depend. The second one is the use of
constant intervals even near the center of the normal distributions. Third one is that since genes
represent relative locations, the offsprings become constantly away from the centers of the normal
distributions when the distributions are updated. Therefore, the actual population statistics does not
coincide with the updated population statistics.

2.2.2 ARGAs for Floating-Point Representation
In real-coded GAs, real values of design variable are directly coded as a real string ri:

ii rp = (2.5)
where

max,min, iii prp ≤≤
Or, sometimes normalized values of the design variables are used as:

min,min,max,)(iiiii prppp +⋅−= (2.6)
where

10 ≤≤ ir
To employ the floating-point representation for ARGAs, the real-valued design variable pi is rewritten
here by a real number ri defined in [0,1] so that integral of the probability distribution of the normal
distribution from ∞− to pni is equal to ri as:

iiii pnp µσ +⋅= (2.7)

dzzNr ipn

i ∫∞−
=))(1,0((2.8)

where the average µi and the standard deviation σi of each design variable are calculated by the top
half of the present population. Schematic view of this coding is illustrated in Fig. 2.2. It should be
noted that the real-coded ARGAs resolve drawbacks of the original ARGAs; no need for
selecting UBN′ and LBN′ as well as arbitrary resolution near the average. To prevent inconsistency
between the actual and updated population statistics, the present ARGAs update µ and σ every N
generations and then the population is reinitialized. Flowchart of the resulting ARGA is shown in Fig.

22

2.3.
To improve robustness of the present ARGAs further, relaxation factors µω and σω are

introduced to update the average and standard deviation as

)(presentsamplingpresentnew µµωµµ µ −+= (2.9)

)(presentsamplingpresentnew σσωσσ σ −+= (2.10)

where ω lower than 1 contributes to improve robustness of the ARGAs. samplingµ and samplingσ are
determined by sampling the top half of the present population.

pnipni(ri)

ri

pnipni(ri)

ri

Fig. 2.2 Decoding for real-coded ARGAs

Initial population
Evaluation

Selection

Reproduction by
crossover+mutation

Optimum

Range
adaptation

Reproduction by
random distribution

Sampling for
range adaptation

Every N generations

Fig. 2.3 Flowchart of the present ARGA

23

2.3. Results
In this section, a real-coded ARGA is applied to two test problems: (1) a test function

optimization problem, (2) an aerodynamic airfoil shape optimization. In both calculations, the present
ARGA uses non-overlapping system coupled with elitist strategy where the best and the second best
individuals are copied into the next generation, parental selection by SUS coupled with ranking using
Michalewicz’s nonlinear function, one-point crossover, uniform mutation that takes place at a
probability of 0.1 and then adds a random disturbances to the design variable in the amount up to

10% of the domain. User-defined parameters of the real-coded ARGA, ωµ , ωσ and N, are set to 1,
0.5 and 4, respectively. These parameters are determined by a parametric study using a simple test
function not shown here. Unbiased initial population is generated by randomly spreading solutions
over the entire design space in consideration.
2.3.1 Test Function Minimization

Prior to attack the aerodynamic shape optimization, the real-coded ARGAs were applied to a
test function optimization problem. The test function in [5] is a dynamic control as

))(min(2
1

0

22
k

N

k
kN uxx ++ ∑

−

=
(2.11)

subject to

kkk uxx +=+ 1 , 1,...,1,0 −= Nk ,

where, kx is a state, and),...,(10 −= Nuuu
r

 is the control vector. The search domain is [-200,200] for

each ku . The initial state 0x and the size of the control vector are given by 100 and 45, respectively.
Here, 500 generations were allowed with a population size of 200. Five trials were run for each GA
changing seeds for random numbers to give different initial populations. Figure 2.4 compares the
optimization histories for both GAs. The bold line indicates the analytically obtained optimum value.
While all the trials using the conventional GA lead to premature convergence, the ARGA find the
global optimum at every trial.

10 5

10 6

0 100 200 300 400 500

FI
T

N
ES

S

GENERATION

optimum value

Conventional GA
ARGA

24

Fig. 2.4 Optimization histories for the test function optimization problem
2.3.2 Aerodynamic Airfoil Shape Optimization

To demonstrate performance of the real-coded ARGAs in comparison with the conventional
real-coded GAs, aerodynamic airfoil shape optimizations were carried out. The objective function was
the lift-to-drag ratio to be maximized where the free stream Mach number and the angle of attack were
set to 0.8 and 2 degrees, respectively. The airfoil thickness was constrained so that the maximum
thickness was greater than 12% of the chord length. The aerodynamic performance of each design was
evaluated by the Navier-Stokes solver described in section 4.4. PARSEC airfoil (see subsection
3.2.1.5) was used with the trailing-edge thickness and its ordinate (at X=1) frozen to 0.

Figure 2.5 compares optimization histories of three trials using the real-coded ARGA and the
conventional real-coded GA. Both of the population size and the number of generations were 100. The
present ARGA outperformed the conventional GA starting from all initial populations.

15

20

25

30

35

40

0 20 40 60 80 100

FI
T

N
ES

S
(T

O
 B

E
M

A
X

IM
IZ

ED
)

GENERATION

Conventional GA
ARGA

Fig. 2.5 Optimization histories for the aerodynamic airfoil shape optimization

Figure 2.6 compares the best airfoil shapes designed by the conventional GA and ARGA and
the corresponding pressure coefficient distributions. The surface pressure distribution of the design
optimized by ARGA is almost identical to that of NASA supercritical airfoils. This indicates the
feasibility of the present ARGA in aerodynamic designs.

25

-0.12

-0.08

-0.04

0

0.04

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

conventional GA
ARGA

conventional GA
ARGA

Z/
C

-C
p

X/C
Fig. 2.6 Designed airfoil shape and the corresponding pressure distribution

2.4. Summary
To develop robust and efficient EAs applicable to aerodynamic shape designs, the real-coded

ARGAs have been developed by incorporating the idea of the binary-coded ARGAs with the use of
the floating-point representation. The resulting real-coded ARGAs are expected to possess both
advantages of the binary-coded ARGAs and the use of the floating-point representation to overcome
the problems of having a large search space that requires continuous sampling. First, the efficiency
and the robustness of the proposed approach have been demonstrated by using a typical test function.
Then the proposed approach has been applied to an aerodynamic airfoil shape optimization problem.
The results confirm that the real-coded ARGAs consistently find better solutions than the conventional
real-coded GAs do. The design result is considered to be the global optimal and thus ensures the
feasibility of the real-coded ARGAs in aerodynamic designs.

26

References
[1] Krishnakumar, K., Swaminathan, R., Garg, S. and Narayanaswamy, S., “Solving Large Parameter
Optimization Problems Using Genetic Algorithms,” Proceedings of the Guidance, Navigation, and
Control Conference, Baltimore, MD, 1995.
[2] Mulgund, S., Harper, K., Krishnakumar, K. and Zacharias. G., “Air Combat Tactics Optimization
Using Stochastic Genetic Algorithms,” Proceedings of 1998 IEEE International Conference on
Systems, Man, and Cybernetics, San Diego, CA, Oct. 1998, pp.3136-3141.
[3] Arakawa, M. and Hagiwara, I., “Development of Adaptive Real Range (ARRange) Genetic
Algorithms,” JSME International Journal , Series C, Vol. 41, No. 4, 1998, pp.969-977.
[4] Arakawa, M. and Hagiwara, H., “Nonlinear Integer, Discrete and Continuous Optimization Using
Adaptive Range Genetic Algorithms,” in CD-ROM Proceedings of the 34th Design Automation
Conference, Anaheim, California, Jun.1997.
[5] Janikow, C. Z. and Michalewicz, Z., “An Experimental Comparison of Binary and Floating Point
Representations in Genetic Algorithms,” Proceedings of the Fourth International Conference on
Genetic Algorithms , Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1991, pp.31-36.

