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ABSTRACT


Reconfiguration in a Wavelength-Routed Optical Network is a process of re-


arranging a virtual topology to meet traffic demands that change over a period of


time. This dissertation studies a series of reconfigurations corresponding to a series


of changes in traffic demand matrices. A change in a virtual topology is costly in terms


of traffic disruption. However, without response to this change, the virtual topology


would lose its optimality and might not serve the new traffic demand. Therefore,


the reconfiguration problem is a trade-off between a performance objective and a


cost objective. This research describes the reconfiguration problem from two per-


spectives. First, the reconfiguration problem is a multi-objective optimization such


that a single-objective optimization method could not be applied. Second, the recon-


figuration problem consists of a series of reconfigurations with corresponding traffic


demands, thus reconfigurations that consider only the current traffic demand can-


not guarantee the optimal average outcome. Therefore, sequential decision-making


is required to optimize the average outcome from a series of reconfigurations. Since


the reconfiguration objectives are conflicting there exists a Pareto front or a set of


non-dominated solutions in all objectives. A Multi-Objective Evolutionary Algorithm


(MOEA) is required to search the Pareto front and a decision-making process will


pick one solution in the Pareto front accordingly. The major contribution of this
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research is a complete reconfiguration model applicable to any kind of traffic. It is


a stochastic model consisting of two tasks: a reconfiguration process and a policy.


For each reconfiguration in a series, the reconfiguration process finds a Pareto front


and the policy picks a solution from the Pareto front to perform a reconfiguration


operation. Our research presents the problem formulation mathematically and the


design of the model is based on realistic SONET/SDH traffic streams. We use a


MOEA called Strength Pareto Evolutionary Algorithm (SPEA) in the reconfigura-


tion process and use a Markov Decision Process in the policy. A case study based


on simulation experiments is conducted to illustrate the application and efficiency of


the model. It shows that our model generates a higher average outcome than that of


reconfigurations considering only the current traffic demand.
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CHAPTER 1


INTRODUCTION


1.1 General Overview


Wavelength Division Multiplexing (WDM) is a promising approach for ex-


tremely high speed communication over an optical fiber. The WDM allows multiple


wavelengths carrying multiple traffic sessions to be transmitted over a single fiber. An


optical network over which traffic sessions are routed based on their wavelengths is


called a wavelength-routed optical network. Such a network consists of optical nodes


connected by fibers that form a physical topology. The optical node multiplexes


multiple wavelengths into a single fiber transmission and an optical cross-connect


(OXC) to switch optical channels called lightpaths. The optical node is an access


node if it contains an Optical Add/Drop Multiplexer (OADM) to add/drop traffic.


In some particular type of wavelength-routed optical network, it allows the lightpath


to operate on multiple wavelengths along the paths. Such a network provides flexi-


bility for a wavelength assignment but it requires costly wavelength converters at the


intermediate nodes.


There are two levels of topology in the optical network; a physical topology


level and a virtual topology (or logical topology) level. The physical topology is a set


of optical fibers linked to each other and the virtual topology is a set of lightpaths that


carry optical signals unidirectionally from source to destination nodes according to a


traffic demand matrix. Although a lightpath is a virtual view, it requires a routing


and wavelength assignment along the physical fiber links that it spans. The design of


virtual topology over an existing physical topology for a given traffic demand matrix
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is a major task. When the traffic demand matrix is changed, the topology may not


perform well as it did previously. Obviously, the optimal rearranging of a virtual


topology is required to reduce the traffic disruption (also the rearranging operation


cost) and increase the performance. The process of rearranging the virtual topology


to meet the new traffic requirement is called a reconfiguration process[20]. Unlike


the virtual topology design, the reconfiguration process is a trade-off between the


performance objective in virtual topology design and the cost objective in terms of


the number of changes in the virtual topology. Since the reconfiguration is not only


a one-time operation, it could be activated whenever the traffic demand is changed.


The consequent problem is how and when to perform the reconfiguration process.


There must be a policy to control the reconfiguration process to gain the optimal


outcome in a long term. The reconfiguration process and its policy are challenging


problems especially in large optical networks e.g., a WDM backbone network.


1.2 Our Work


There are two contexts in the studies of a reconfiguration in optical net-


work: the reconfiguration in broadcast WDM network and the reconfiguration in


wavelength-routed optical network. Our work is the design of reconfiguration model


for mesh wavelength-routed networks. The model includes two tasks: a reconfigu-


ration process and a reconfiguration policy. A wavelength-routed optical network is


typically a transport network or a backbone network, and a WAN rather than a LAN.


Thus we approach our model with realistic SONET/SDH traffic demands that change


regularly on a daily or weekly basis. The SONET/SDH based traffic is comprised of


multiple streams (e.g., OC-3, OC-12 and OC-48), the grooming at the edge is required


to route the traffic streams.
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We have stated that the reconfiguration problem consists of a reconfiguration


process and a reconfiguration policy. The reconfiguration process is the process to


redesign a virtual topology under a given physical topology, previous virtual topol-


ogy and a new traffic demand matrix such that the new virtual topology is not too


different from the previous one while it still serves the new demand efficiently. The


reconfiguration policy tells us how and when to perform the reconfiguration process


to gain the maximum average outcome in a series of reconfigurations. We propose a


complete reconfiguration model consisting of a reconfiguration process and a recon-


figuration policy.


1.2.1 Reconfiguration Process Approach


Since a reconfiguration is a problem of two competitive objectives, we propose


a reconfiguration process that optimizes both objectives by the concept of Pareto


optimality. Our reconfiguration process generates a set of non-dominated solutions


known as a Pareto front using a Multi-objective Evolutionary Algorithm (MOEA).


Then we pick the most preferred solution from this set according to a reconfiguration


policy.


1.2.2 Reconfiguration Policy Approach


We propose a Markov Decision Process (MDP) to make a decision for our


reconfiguration policy. The policy picks a solution from the Pareto front that returns


the highest average outcome for a long series of reconfigurations. We define the states,


actions, state transitions, reward/cost function and epoch for the reconfiguration


policy model.
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CHAPTER 2


BACKGROUND


2.1 Early Reconfiguration Process Approaches


Early research in a reconfiguration process has been studied in two differ-


ent contexts: a broadcast optical network and a wavelength-routed optical network.


They are slightly different in objectives and constraints by nature of the network


types. A broadcast network is mostly applied for LAN or MAN network in a passive


star topology while a wavelength-routed network is applied for a transport backbone


network in a mesh topology. Therefore a reconfiguration in a broadcast network


is performed more frequently in terms of packet-by-packet basis and requires faster


turning receivers (or transmitters) than those of a wavelength-routed network. There


are plenty of heuristic approaches in a reconfiguration problem of broadcast optical


networks.


Labourdette et al. [15] considers a reconfiguration as a transition diagram


that disrupts the traffic minimally through a sequence of branch exchange operations.


The problem of finding the shortest sequence is equivalent to the problem of finding


a decomposition of auxiliary graph algorithms. The shortest sequence provides the


minimum duration of reconfiguration phase. At each step, two links are disrupted


(exchanged) on the ring topology. A similar algorithm called the Dynamic Single-


Step Optimization (DSSO) is introduced by Narula-Tam and Modiano [16]. The


DSSO has been proposed for load balancing that tracks rapid changes in a traffic


pattern using branch exchange sequence. Ernest et al. [7] focuses on the cost-benefit


analysis to reduce a reconfiguration cost. Their Merge Split Reconfiguration (MSR)
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algorithm reduces the number of lightpaths that need to be reconfigured while keeping


the network congestion as low as possible. Baldine and Rouskas [3] and Alfouzan and


Jayasumana [2] consider a reconfiguration problem as a trade-off between the number


of receiver retunings and the degree of load balance. Baldine and Rouskas presented


a new algorithm that attempts to construct the new wavelength assignment in a way


that simultaneously achieve both objectives. Alfouzan and Jayasumana developed the


Most and Least Loaded Channel Balance (MLLCB) algorithm such that the demand


on most loaded channel is reduced by exchanging one node with the least loaded


channel.


In a wavelength-routed optical network reconfiguration, the existing research


attempts to maximize the performance and to minimize the number of changes in a


virtual topology. The performance in the wavelength-routed optical network can be


measured by various metrics including the average propagation delay of a lightpath,


the average hop-distance of traffic, the success traffic throughput, the maximum load


offered to any lightpath (congestion) and the utilization of traffic over the lightpaths.


Banerjee and Mukherjee [5] formulated the reconfiguration problem using lin-


ear programming. Their performance objective is to minimize the average packet hop


distance in the network. In the first step, they search for the optimal value of the


performance objective under a new demand and a new virtual topology. In the second


step, they minimize the number of changes in the virtual topology using the optimal


performance objective in the first step as a constraint. Ramamurthy and Ramakrish-


nan [18] extend the objective in [5] to minimize the average number of packet hops in


the network, minimize the total number of lightpaths, minimize the hops as well as


the number of physical links or the sum of these objectives. Since the reconfiguration
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problem is proved as an NP-hard problem [23], the linear programming approaches


do not scale well for a large network.


Sreenath et al. [20] proposed a two-phase heuristic for a reconfiguration prob-


lem such that the performance objective is to minimize the average weighted hop


count. The heuristic is designed to maintain the near-optimality of the virtual topol-


ogy, to provide a compromise between the trade-off objectives and to quickly find the


lightpaths to be reconfigured. Although the algorithm scales well for a large network,


the solution relies on the setup parameter i.e., the bound on the number of changes.


Zheng et al. [24] focus on the virtual private network such that the traffic


demand is in the term of wavelengths required and the performance objective is to


minimize the average propagation delay of the lightpaths. They proposed a Balanced


Alternate Routing Algorithm (BARA) based on a genetic algorithm to solve the


problem. They use the weighted combination of trade-off objectives when applies to


a (single objective) genetic algorithm.


Takagi et al. [23] focuses on the sequence of reconfiguration process in order


to minimize the disruption or maximize the network availability. They propose four


heuristic algorithms including Longest Lightpath First (LPF), Shortest Lightpath


First (SPF), Minimal Disrupted lightPath First (MDPF) and Tree Search (TS) algo-


rithms. The LPF and SPF result in a low performance. The TS and MDPF provide


good performance but both have computational complexity.


The other heuristic approach is introduced by Gencata and Mukherjee [10].


They consider an adaptation mechanism for reconfiguration. The proposed algorithm


redesigns the virtual topology according to an expected traffic pattern. It detects the


imbalances of the network by high and low watermark parameters on lightpath loads
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and reacting promptly (by adding or deleting lightpath one at a time) to balance the


loads.


2.2 Early Reconfiguration Policy Approaches


The reconfiguration process has an overhead cost that interrupts traffic and


rearranges the lightpaths. Therefore frequent reconfiguration is costly. However, in-


frequent reconfiguration will downgrade the performance. The policy guides us when


is the best time to perform a reconfiguration process and what level of reconfiguration


to be performed. There are few studies in the reconfiguration policy. Some of them


are described below.


Geary et al. [9] detects the best time to perform reconfiguration when the


overall average network utilization goes beyond the specified threshold or when a link


runs out of capacity. This method is known as a threshold approach which is difficult


to define the threshold value, and may not result in the optimal outcome. Baldine and


Rouskas[4] propose the reconfiguration policy on the broadcast optical network using


the Markov Decision Process (MDP) to obtain optimal outcome. They define the


reward and cost functions to calculate the optimal outcome. This is an approximate


model, the outcome depends on how close of the state transition probabilities and


the reward/cost functions are to the real network. Usually the model parameters are


obtained from the simulation or real network. However, they have shown that the


MDP model outperforms the threshold approach for a long term.
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CHAPTER 3


RECONFIGURATION PROBLEM


3.1 Problem Definition of The Reconfiguration Process


We assume that our reconfiguration problem is a centralized optimization prob-


lem which acquires a global view or status of the network. The reconfiguration is acti-


vated or triggered by the changes in a traffic demand, neither the failure of equipment


nor the changes in a physical topology.


The reconfiguration process is a multi-objective problem that consider not only


the network performance but also the number of changes in the virtual topology. The


problem formulation is different from the ordinary virtual topology design in that


it requires another objective (to minimize the changes in virtual topology) besides


the performance objective. Therefore, it requires both the new traffic demand and


the previous logical topology as inputs. We formulate the reconfiguration process


problem as a Linear Programming (LP) using the principle of multicommodity flow


of the set of lightpaths mapped to the physical layer and the set of traffic on the


designed virtual topology. In order to deal with two objectives in the LP, we have to


set one objective as a constraint while LP optimizes the other and then takes a turn.


Unlike the LP, our approach optimizes both objectives concurrently by the concept


of the Pareto Optimal. Our approach creates a set of non-dominated solutions in a


single run unlike the LP that provides one solution at a time.


We begin the formulation in the virtual topology design (including the groom-


ing) and then we show the dealing of two objectives in the LP for the reconfiguration


problem.
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3.1.1 Virtual Topology Design Problem Formulation


Given a physical topology and traffic demand matrices, we classify a virtual


topology design problem into three subproblems: a lightpath routing subproblem, a


traffic routing subproblem and a wavelength assignment subproblem. The lightpath


routing subproblem is the design of lightpaths routed on the physical topology. The


traffic routing subproblem is a routing of low-speed traffic on a virtual topology un-


der some limitations (e.g.,the available number of transceivers). This subproblem is


known as a traffic grooming subproblem since multiple low traffic streams are groomed


into a single lightpath. The wavelength assignment subproblem is an assignment of


limited number of wavelengths per fiber under a Distinct Color Assignment (DCA)


constraint and a wavelength continuity constraint. The DCA constraint states that


lightpaths on the same fiber link must be assigned with the distinct colors. The


wavelength continuity constraint states that a lightpath must occupy the same wave-


length along the links that it spans. The wavelength continuity constraint could be


relaxed by deploying the wavelength conversion that allows a lightpath to switch to


any wavelengths at the links that it spans.


We assume that all nodes are capable of grooming low-speed traffic to the


available capacity of a lightpath for as many traffics as needed and a transceiver is


freely tuned to any wavelengths. We do not allow the de-multiplexing of OC-x lower


than its capacity when routing through the network. However two or more OC-x


streams of the same source and destination may pick a different route. (The detail of


traffic grooming over WDM network is presented in [17].)


Although our problem formulation considers the SONET streams, it could be


applied to any type of traffic streams or a fraction of lightpath capacity.
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Given Parameters:


• N : Number of Optical nodes.


• W : Number of Wavelengths that can be multiplexed on a single fiber i.e., the


DWDM capacity.


• Ti: Number of transmitters at node i; Ti ≥ 1 ∀i


• Ri: Number of receivers at node i; Ri ≥ 1 ∀i


• K: Number of shortest paths or alternative routes.


• P : Physical topology matrix.


P = [Pmn; m, n = 1, 2, . . . , N ]N×N ,


where Pmn is the number of fibers between node m and node n. Note that:


Pmn = Pnm.


• Λ: N ×N traffic demand matrix


Λx = [Λx
sd; s, d = 1, 2, . . . , N ]N×N ,


where Λx
sd is the demand of low speed streams, OC-x, between node s and node


d; x ∈ {1, 3, 12}.


• Lmax The load of maximally-loaded lightpath in the network.
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Variables:


• σk
ij,mn,w: An indicator representing the existence of lightpath where


σk
ij,mn,w =







1, if there exists a lightpath from i to j


being routed through fiber link mn on


the kth path in K and using wavelength


w in W .


0, otherwise.


• Vij: The number of lightpaths from node i to node j in the virtual topology.


• λx
sd,ij: The number of OC-x streams from node s to node d being routed on the


lightpath ij.


• C: The capacity of a lightpath e.g., C = 48 for OC-48.


• Sx
sd: The number of OC-x streams requested from node s to node d that are


successfully routed. The traffic is blocked if Sx
sd < Λx


sd.


Constraints:


• Traffic (Multicommodity-flow equations for lightpath routing):


∑
m


∑


k


∑
w


σk
ij,mv,w =


∑
n


∑


k


∑
w


σk
ij,vn,wif v 6= i, j∀ij (3.1)


∑
n


∑


k


∑
w


σk
ij,in,w = Vij ∀ij (3.2)
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∑
m


∑


k


∑
w


σk
ij,mj,w = Vij ∀ij (3.3)


Equation (3.1) allows a lightpath to have any wavelength in each link along the


path. It implies that wavelength converters are available at all nodes. Other-


wise, if we need to reserve the wavelength continuity rule, Equations (3.1), (3.2)


and (3.3) will become Equations (3.4), (3.5) and (3.6) respectively.


∑
m


∑


k


σk
ij,mv,w =


∑
n


∑


k


σk
ij,vn,w if v 6= i, j ∀ij, w (3.4)


∑
n


∑


k


σk
ij,in,w = Vij ∀ij, w (3.5)


∑
m


∑


k


σk
ij,mj,w = Vij ∀ij, w (3.6)


• Wavelength Constraints:


∑
ij


∑


k


σk
ij,mn,w ≤ Pmn ∀mn,w (3.7)


Equation (3.7) ensures that distinct channels (lightpaths) on the same fiber link


cannot be assigned the same wavelength. Note that lightpaths ij using different


fibers between link mn are known to be on different paths in K.


• Resource Constraints:
∑


j


Vij ≤ Ti ∀i (3.8)


∑
i


Vij ≤ Rj ∀j (3.9)


Equation (3.8) ensures that the number of lightpaths originate from node s is
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not greater than the number of transmitters at that node. Likewise Equation


(3.9) ensures that the number of lightpaths terminated at node d is not greater


than the number of receivers at that node.


• Traffic (Multicommodity-flow equations for traffic routing):


∑
i


λx
sd,iv =


∑
j


λx
sd,vj if v 6= s, d ∀sd, x (3.10)


∑
j


λx
sd,sj = Sx


sd ∀sd, x (3.11)


∑
i


λx
sd,id = Sx


sd ∀sd, x (3.12)


Sx
sd ≤ Λx


sd ∀sd, x (3.13)


• Capacity Constraint


∑
x


∑


sd


(x× λx
sd,ij) ≤ Vij × C ∀ij (3.14)


Objectives: We list the possible performance objectives in the Optical net-


work design area as shown below:


• Minimize the Average Propagation Delay of the lightpath (APD):


The APD relies on the length of media which represent the cost and perfor-


mance of the network. In the high speed networks, the propagation delay is a


dominant delay while the queuing delay is neglected. The lengthy fiber causes


not only a considerable delay but also the impairments of noise accumulation,


fiber chromatic dispersion, polarization mode dispersion and fiber nonlineari-
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ties. Moreover, minimizing the APD could reduce the “cleaning up” cost at


intermediate nodes that work as 3R optical regenerators (Re-amplification, Re-


timing and Re-shaping).


Min
1∑


i,j Vij


∑
i,j


∑
m,n


(dmn


∑


k


∑
w


σk
ij,mn,w) (3.15)


Where dmn is the propagation delay weight factor on the fiber link from node


m to n. The value of dmn depends on the length of the fiber.


Note that if dmn = 1 ∀ m,n the APD becomes the average hop distance (or hop


count) of the lightpaths.


• Maximize the traffic throughput:


Max
∑


sd,x


(x× Sx
sd) (3.16)


• Minimize the Maximally-loaded lightpath:


The Lmax represents the maximal congestion on a link. The minimizing of Lmax


will distribute the load to the entire links.


Min Lmax (3.17)


Where Lmax = Max
∑


sd,x


(x× λx
sd,ij) ; ∀ ij


• Minimize the Average Hop-distance of Traffic (AHT):
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Min
1∑


sd,x Λx
sd


∑
ij


∑


sd,x


(x× λx
sd,ij) (3.18)


Note that the AHT is defined for the non-blocking traffic network since this


is SONET traffic that cannot be discarded. We consider the AHT because it


reflects the cost of grooming traffic. Low SONET streams are groomed at the


edge in the electrical domain before they are converted to a light form and


carried over a lightpath. The higher value in the AHT, the more cost and


delay in the network according to O-E-O conversion at the intermediate nodes.


Hence, the AHT must be minimized. The lower bound of AHT is one hop (i.e.,


no intermediate grooming).


• Maximize the Virtual Topology Utilization:


The virtual topology utilization is the use of lightpaths.


Max
1∑
ij Vij


∑
ij


∑


sd,x


(x× λx
sd,ij) (3.19)


• Minimize the Network Resources:


Network resources include the number of lightpaths or the number of trans-


mitters and receivers or the number of wavelengths. Since the optical switch


specification is usually fixed, these resources are set as constraints.


3.1.2 Dealing with Two Objectives in Reconfiguration Process


The Reconfiguration problem formulation is similar to the Optical Network


design formulation but in the reconfiguration part, we do not only maximize network


performance but also minimize the number of changes made in the reconfiguration
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Figure 1: The Two Steps of Optimization.


process. Since changes in virtual topology are costly in terms of traffic disruption and


overhead to make the changes e.g., re-tuning of wavelength. However, these objectives


are in conflict e.g., the lower AHT, the more changes required and vice versa. To deal


with two objectives, we must fix one objective while minimize another one and then


take turns to yield the best solution. Next we show an example of the reconfiguration


formulation with two objectives: minimize AHT and minimize numbers of changes


in the virtual topology. The process requires two steps: fix one objective and then


minimize another objective. The process can be run either way (a or b in Figure


1) or run iteratively until the optimal solution is met. This process generates only


one non-dominated solution on the Pareto front for each run. Moreover, the solution


depends on the initial point and we cannot predict the result position on the Pareto


front. Therefore it is difficult to form the Pareto-front. Note that we describe the


Pareto front and the non-dominated solutions in Chapter 4.


3.1.2.1 Fix AHT, Minimize Number of Changes


First we find AHT ′ of the new traffic demand regardless of the number of
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changes in the virtual topology. Next we replace the objective function in ILP with


the Minimize of the number of changes in lightpaths.


Min
∑
i,j


∑
m,n


∑


k


∑
w


|σ′kij,mn,w − σk
ij,mn,w| (3.20)


where σ
′k
ij,mn,w is an indicator presenting the existing of lightpath from i to j being


routed through fiber link mn on the kth path using wavelength w of the previous


solutions. The equation (3.20) is linear since the σ
′k
ij,mn,w are binary. We can rewrite


the absolute term in (3.20) as following.


|σ′kij,mn,w − σk
ij,mn,w| =







1− σk
ij,mn,w, if σ


′k
ij,mn,w = 1


σk
ij,mn,w, if σ


′k
ij,mn,w = 0


Next we add new constraint to the ILP.


1∑
sd,x Λx


sd


∑
ij


∑


sd,x


(x× λx
sd,ij) ≤ AHT ′ (3.21)


3.1.2.2 Fix Number of Change, Minimize AHT


Given NoC be the number of changes in lightpath. First we replace the


objective function in ILP with the Minimize of AHT.


Min
1∑


sd,x(x× Λx
sd)


∑
ij


∑


sd,x


(x× λx
sd,ij) (3.22)
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Next we add new constraint to the ILP.


∑
i,j


∑
m,n


∑


k


∑
w


|σ′kij,mn,w − σk
ij,mn,w| ≤ NoC (3.23)


3.2 Problem Definition in Reconfiguration Policy


We formulate the reconfiguration policy as a set of decisions in a Markov


Decision Process model or a Dynamic Programming model. The MDP model consists


of five elements:


1. A set of decision epochs which is a period of time that triggers the action.


2. A set of states which indicates the status of the network e.g., a performance


parameter and a current traffic demand.


3. A set of actions.


4. A set of state and actions dependent on immediate rewards and costs. The


reward is the benefit gained from doing the particular action while the cost is


incurred from that action.


5. A set of state transition probabilities which relies on the action and the arrival


traffic that changes the state.


This model is a discrete time model such that actions, rewards, costs and the state


transition probabilities depend only on the current state (Markov property). Let


Ri(H) be the reward function of H, the performance variable in round ith and Ci(η)


be the cost function of η, the number of changes in lightpaths in round ith of recon-


figuration. For each state transition with a performed action, we want to maximize
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the expected outcome O in every reconfiguration rounds where


O = lim
y→∞


1


y
E{


y∑
i=1


(Ri(H)− Ci(η))} (3.24)


The policy or set of decisions tell us what action we should select in each state to


maximize the expected outcome O.


3.3 Hypothesis


If the reconfiguration problem is a multi-objective problem in which the ob-


jectives are conflicting to each other, there exists a Pareto front corresponding to the


objectives and if we define the status of network as a state, a set of state transitions,


a set of reward/cost functions, and a set of actions in a Markov Decision Process, we


can find the optimal policy by assigning the action in each state. In the long term, the


expected outcome of the MDP policy is higher than that of the Immediate Highest


Outcome (IHO) policy which takes the action that generates the highest outcome at


each state transition.


Next Chapter we describe the detail of Pareto front in the multi-objective


optimization and explain why we need the Multi-Objective Evolutionary Algorithm


in the reconfiguration problem.
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CHAPTER 4


RECONFIGURATION PROCESS APPROACH


4.1 Multi-Objective Optimization


A Multi-objective Optimization (MO) or multicriteria/multiperformance/vector


optimization problem solves several competing objectives simultaneously. In the MO,


there is a set of optimal solutions that non-dominate each other within the set but


dominate other solutions outside of the set when considering all objectives. The set


of optimal solutions is known as a Pareto Optimal set. Most MO algorithms use


the concept of domination to search for the Pareto Optimal set. The definition of


domination is defined in Definition 4.1.1.


Definition 4.1.1 (Pareto Optimal Definition) Given “C” be the operator such that


fk(x) C fk(y) if a solution x = (x1, x2, . . . , xm) is a better solution than a solution


y = (y1, y2, . . . , ym) for the kth objective and m parameters (decision variables). The


“better” means “less than” in case of minimization or means “greater than” in case


of “maximization”.


If there are n objectives, a solution x is said to dominate a solution y if


∀i ∈ {1, 2, . . . , n} : fi(x) 7 fi(y) ∧


∃i ∈ {1, 2, . . . , n} : fi(x) C fi(y)


In words, a solution x is said to dominate a solution y (or x is non-dominated by y)


if 1 and 2 are true: 1) The solution x is no worse than y for all objectives and 2)


The solution x is strictly better than y in at least one objective.
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Figure 2: The Pareto Front and Feasible Solution Area, F , of Two Objective Func-
tions.


The plot of non-dominated solutions over the objective axes will form the


Pareto front. For instance, the Pareto front for the “minimization” on both objective


functions, f1(x) and f2(x) is shown in Figure 2 where the F area denotes the feasible


solutions area. Note that the Pareto front can be either convex or non-convex.


Usually there are more than one solution in the Pareto optimal, called non-


dominated solutions or non-inferior solutions and there are many methods to search


this set of solutions or Pareto optimal set. One of the traditional approaches is the


aggregation methods. It combines the objectives into a scalar function and applies


the single objective optimization methods like a simulated annealing, a stochastic


local search or a tabu search on it. Examples of combining objectives can be found


in weighting method [13], constraint method [13], goal programming [22] and min-


max method [14]. In the weighting method, one may define the utility function that


combines multiple objective functions together as shown in equation (4.1).


U =
n∑


i=1


Wi
fi(x)


f ∗i
(4.1)
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where Wi is a weighting factor for each objective function and f ∗i is the scaling pa-


rameters for the ith objective function.


Another form of utility function which eliminates the scaling problem with


upper bound and lower bound is shown in equation (4.2).


U =
n∑


i=1


Wi
fi(x)− f 0


i


fmax
i − f 0


i


(4.2)


where f 0
i and fmax


i are the lower bound and upper bound for the ith objective function


respectively.


Although the aggregation methods are simple and applicable to the single


objective methods, they cannot generate all members of the Pareto optimum set with


non-convex Pareto front. Also the weighting factor is quite subjective rather than


straightforward and difficult to define.


Other methods for multi-objective optimization are the Evolutionary Algo-


rithms called Multi-Objective Evolutionary Algorithm (MOEA) that simulates the


process of natural evolution using a class of stochastic optimization methods. These


methods are able to capture a Pareto-optimal set in a single run. Moreover, they


are less susceptible to the shape or continuity of the Pareto fronts (i.e., it can search


on a problem with non-convex Pareto front.) In the reconfiguration problem, the


sequence of changes effects the disruption and network availability as presented in


[23]. In our case, we consider the number of changes, not the sequence. The MOEA


will search the possible sequence of changes in the virtual topology that generate


the best performance. Next we show that a different sequence of changes effect the


performance.
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Theorem 4.1.1 A sequence of changes in virtual topology affects network perfor-


mance.


Proof We prove the theorem based on the AHT. Given the network with the physical


topology and the previous virtual topology as shown in Figure 3. Suppose LP1 and


LP2 are the lightpaths from source to destination using different wavelengths as shown


in the previous virtual topology in Figure 3. The lightpath LP1 and LP2 have one


unit of traffic with m hops and n hops between source and destination respectively


where m > n. In the final virtual topology, it is required to move both lightpaths to


the middle physical path which is one hop away between source and destination and


is available for both lightpaths.


If the LP1 is moved first (to the middle path), the NoC = 1 and AHT = (n+1)
Λ


where NoC denotes the numbers of changes and Λ denotes the total traffic. Next the


LP2 is moved, the NoC = 2 and AHT = (1+1)
Λ


.


If the LP2 is moved first (to the middle path), the NoC ′ = 1 and AHT ′ =


(m+1)
Λ


. Next the LP2 is moved, the NoC ′ = 2 and AHT ′ = (1+1)
Λ


.


Although both sequences end up with the same AHT , but at the first move,


the former sequence has better performance that the latter i.e.,AHT ′ < AHT


Theorem 4.1.1 shows that the sequence of changes effects the performance.


Therefore, the changes may increase or decrease the performance. We define the


sequence of changes into two types.


Definition 4.1.2 A sequence of necessary changes is a sequence of changes in virtual


topology that improves the performance. Otherwise it is a sequence of unnecessary


changes.
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Figure 3: The Previous and Final Virtual Topology.
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Theorem 4.1.2 If the AHT of network is not yet optimized, there exists a Pareto


front between “min AHT” objective and “max number of necessary changes” objective.


Proof Given a non-optimized optical network after the traffic has been changed.


There are three possible types of changes in a lightpath corresponding to the differ-


ence between two traffic demand matrices (previous vs new traffic demand matrices).


These three types are the addition of lightpath(s), the deletion of lightpath(s) and


the re-routing/coloring of lightpath(s). Let a sequence of necessary changes contains


i additions, j deletions and k re-routings/colorings. Therefore, NoC = i + j + k.


According to the constraints, the addition of lightpath requires the availability of


transceiver and color. Thus, i depends on j and k. At particular j + k changes, the


NoC depends on i. Since every addition of lightpath will create one hop away for a


new traffic demand and the AHT is decreased, the plot of the AHT and the NoC


forms the Pareto front.


The reconfiguration problem happens when the traffic demand is changed and


causes the performance to be non-optimized. Theorem 4.1.2 shows that there exists


Pareto front for the reconfiguration problem. Note that we simulate the network and


traffic demand to show the Pareto front in our experiment. After we created the


Pareto front, the policy will play its role to pick the best solution in the Pareto front.


The MOEA that creates the Pareto front takes advantage over an aggregation or an


LP method in term of “choices” of the policy has.


4.2 MOEA Overview


Different stochastic search techniques were introduced to solve many real-


world scientific and engineering multi-objective problems. In Germany, the technique
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Figure 4: The MOEA-Operation Diagram.


called evolution strategies (ES) was proposed, while in the United State the genetic


algorithms (GA) and the concept of evolutionary programming (EP) were introduced.


These techniques which transfer evolutionary principles or the Darwinian concept


of “Survival of the Fittest” into the search space of programming languages, are


summarized today under the names evolutionary algorithms (EA) or evolutionary


computation (EC). (The term EA is an algorithm used in the EC). The MOEA is the


EA that deals with multiple objectives based on the Pareto Optimal definition. Most


MOEAs are derived from the single-objective evolutionary algorithms like Genetic


Algorithm. Therefore the operations of MOEA consist of a population initialization,


an evaluation, a fitness assignment, a reproduction (selection), a crossover and a


mutation. Figure 4 shows the MOEA-operation diagram.


The population initialization generates a set of chromosomes or individuals
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randomly. The chromosome is an encoded solution to the problem which is usually


presented in binary or string format. Each chromosome consists of genes which take


on certain values (alleles). A size of population depends on the user. If the size is too


big, it will waste the time to evaluate the chromosomes. If it is too small, the optimal


solution may not be found. An evaluation operation measures how well (good fit-


ness) the chromosome to be survived in the next generation. An evaluation function


or a fitness function is based on objective functions of the problem. In the MOEA,


the fitness function is a combination of objective functions based on the strategies


corresponding to each particular MOEA technique. A reproduction or a selection


operation allows the good solutions with a high chance to be duplicated and the bad


solutions to be eliminated while maintaining the same population size for the next


generation. The common selection schemes are a tournament selection, a proportion-


ate selection and a ranking selection. The tournament operation copies solutions into


two sets and then matches up each pair randomly. The winner (better fitness of the


pair) is placed in the mating pool so the size of population is the same while a good


fitness solution has a chance to win both tournaments and has two copies in the new


population. In the proportionate selection, solutions are assigned the copies propor-


tional to their fitness values. The proportionate selection causes a scaling problem


or genetic drift problem such that a population tends to converge to a single “super”


solution. This problem can be avoided by the ranking selection operation. In this


operation, the chromosomes are sorted by their fitness from the worst (rank 1) to the


best (rank N, where N ≤ Population size). Each member has its rank used in place of


a fitness value. The proportionate selection is then applied with this rank value. The


next operation is the most important operation called the crossover operator. Like in
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biological systems, the crossover process yields recombination of alleles by exchanging


segments between pairs of chromosomes. Two chromosomes are picked randomly to


exchange the segments. If the segment is assigned in a single position of the chro-


mosome, it is called single-point crossover. Similarly, the n-point crossover, choose n


random crossover points. Another scheme called a uniform crossover exchanges bit-


by-bit of chromosomes rather than segments. The mutation operation flips the bit


in the chromosome to keep diversity in the population. The term crossover rate and


the mutation rate are a probability to perform a crossover operation and a mutation


operation respectively. For example, a typical crossover rate is 0.6, and a mutation


rate is 0.001 with the population size of 100. However, there is no specific rule to


define these rates.


There are several approaches in the MOEA including the population-based


non-Pareto approach like Vector Evaluated Genetic Algorithm (VEGA) [19], and


the Pareto-based approaches like the Multi-Objective Genetic Algorithm (MOGA)


[8] , the Non-dominated Sorting Genetic Algorithm (NSGA) [21], Strength Pareto


Evolutionary Algorithm (SPEA) [25] and Niched Pareto Genetic Algorithm (NPGA)


[11]. They intend to find widely spread non-dominated solutions using their unique


fitness assignment schemes for multiple objectives.


The VEGA is simply modified from EA by randomly dividing the mating pool


into an equal size of n parts (n objectives) to deal with multiple objectives. Each part


is assigned a fitness based on a different objective functions, i.e., part one population


are assigned by fitness of the first objective only, part two are assigned by a fitness


of the second objective and so on. The mutation and crossover are performed as


usual. Therefore VEGA is easy to implement and good for problems that satisfy the
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solutions near the individual best solution of each objective. The solutions are not


necessarily globally non-dominated.


The MOGA has its own fitness assignment scheme to deal with multiple objec-


tives. The rank of a certain chromosome corresponds to the number of individuals in


the current population by which it is dominated. The chromosomes in the same rank


are assigned by the average fitness among themselves. In order to maintain diversity


among non-dominated solutions, the MOGA uses niche count with sharing function


to distribute the population over non-dominated solution (the less-crowded region


will have a better scaled fitness). The niche count and sharing function technique


have difficulty in assigning the parameters and it may happen that a solution of lower


rank has a better scaled fitness (if there exist many crowded solutions with a better


rank).


In NSGA, the population is ranked using Pareto ranking i.e., non-dominated


chromosomes are classified into one category with a dummy fitness value that is pro-


portional to the population size. The fitness assignment process of NSGA allows


non-dominated front being emphasized systematically toward the Pareto-optimal re-


gion front-wise. The distance used in the sharing function is calculated with decision


variables (phenotype, not the genotype but can do either) so that it allows pheno-


typically diverse solutions. However, the sharing function requires fixing parameters


(there exist dynamic parameter approach) which affect the performance of the algo-


rithm. Besides the sharing function itself is complex by the size of members in each


front.


The NPGA uses a tournament selection scheme (different from single-objective


optimization) based on Pareto dominance. A higher number of chromosomes is in-
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volved in the competition (it defines the subpopulation with tdom size for comparison).


If the competitors tie, the result of the tournament is decided through fitness shar-


ing in the objective domain. There is no need for specifying any particular fitness


value to each solution. The selection operator prefers non-dominated solutions in a


stochastic manner. Since the domain-check is performed only within subpopulations


of solutions, the complexity does not depend on the number of objectives, but the


tdom (the subpopulation size). Therefore, NPGA is efficient for a problem with high


number of objectives. However, it requires two fixed parameters, a sharing function


parameter and tdom which affect the performance.


The SPEA is a Pareto-based approach like MOGA, NSGA and NPGA which


implement the Pareto-based fitness assignment strategy to determine the reproduc-


tion probability of each individual. It maintains the set of non-dominated solutions


in the separated population. Hence, there are two populations, the dominated pop-


ulation Pt of size N and the external non-dominated population P̄t with the limited


size of N̄ , where t denotes the tth generation. The SPEA maintains the external pop-


ulation of the Pareto optimal solutions to reserve the elites in every generation. It


assigns a scalar fitness called strength to the external population and assigns fitness


to (internal) population based on the domination and strength values. The size of


non-dominant solutions in Pareto front,N̄ , is controlled by a clustering algorithm such


that less crowded elites are kept for the next generation. The selection or reproduc-


tion is a binary tournament selection procedure with better fitness values. A crossover


operator and a mutation operator are applied to the mating pool as usual. Unlike for-


mer Pareto-based approaches that control the distribution of non-dominated solution


by a sharing function, the SPEA clustering ensures that a better spread is achieved
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among the obtained non-dominated solutions. This clustering requires no external


parameter excepting N̄ , the size of external population. If N̄ is too small, the effect


of elitism will be lost.


4.3 MOEA Approach


In this dissertation we study the reconfiguration process of a large mesh


wavelength-routed network. We have illustrated that the reconfiguration process


using the linear programming is not applicable. Hence, the Multi-Objective Evolu-


tionary Algorithm dealing with the Multi-Objectives optimization which can generate


all candidate solutions in a single run is the right algorithm for the reconfiguration


problem.


We design the MOEA for the reconfiguration process using the SPEA which


outperforms other MOEAs as stated in [25]. We summarize the SPEA fitness as-


signment sub-operations in Figure 5. The first block is to find non-dominated so-


lutions within Pt. Then the non-dominated solutions are copied into the external


non-dominated population P̄t. Thereafter, some of the copied solutions may dom-


inate the existing solutions in P̄t. The dominated solutions found in P̄t must be


deleted. This is to ensure that non-dominated solutions are kept in P̄t and carried


through the next generation (elitist property). In the next step, it maintains the size


of P̄t i.e., the number of solutions in P̄t must be less than or equal to N̄ . Otherwise,


the clustering algorithm is performed to reduce the size of P̄t to N̄ . The clustering


algorithm is based on the Euclidean distance. At the beginning, each solution itself


is a cluster. Thereafter, two clusters with the minimum cluster-distance are merged


into a bigger cluster. The merging is repeated until the number of clusters is reduced


to N̄ . Next the number of solutions in each cluster must be reduced to one. The
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Figure 5: The SPEA Fitness Assignment Diagram.
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algorithm keeps the solution which has the minimum average distance from other


solutions in the cluster and deletes the others in that cluster. After the size of P̄t is


reduced, the fitness called Strength is assigned to each solution in P̄t and Pt by the


equations shown in the final block of Figure 5. Note that we consider a two-objective


minimization problem, so a smaller fitness value represents a better solution. More


detail of the SPEA algorithm can be found in [25] and [6].


The reconfiguration objectives are incorporated in the SPEA fitness assign-


ment process to generate the Pareto front. For the reconfiguration process, the solu-


tion is a virtual topology with the objectives that minimizes the AHT in Equation


(3.18) and minimizes the number of changes of lightpaths in Equation (3.20). We


optimize these objective by the concept of Pareto Optimal i.e., our solutions are the


non-dominated solutions. A solution x is said to dominate a solution y if 1 and 2 are


true:


1. The solution x has equal or less AHT than that of y and has equal or lower


number of changes in lightpaths than that of y.


2. There exists one objective that the solution x is better (not just equal) than


that of y. Where the term “better” means less AHT or lower number of changes


in lightpaths.


4.3.1 Chromosome Encoding


The reconfiguration process is based on the design of virtual topology. There-


fore the chromosome or individual is the encoded virtual topology which is a solution.


We encode the solution by the string of N × (N − 1) elements, where N is the total


number of nodes in the optical network. The first element presents the lightpaths
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Figure 6: An Example of Chromosome Encoding.


from node 0 to node 1, the second element for node 0 to node 2, the third element for


node 0 to node 3 and so forth. Each element contains Ti unit of path indexes from


node i to node j where i 6= j and Ti is the number of transmitters at node i. Each


path index presents the physical route of a lightpath. If the path index kth = 0, there


is no lightpath on that transmitter. Otherwise, the lightpath is using the kth path.


The path index between node i and j is pre-calculated based on the K-shortest paths


over a physical topology or by the random alternative paths. The set of shortest paths


or alternative paths is calculated in advance regarding to the given physical topology.


Figure 6 shows the example of chromosome encoding where number of transmitters


equal 3. There is one lightpath from node 0 to 1 using the first transmitter with path


index=1.


4.3.2 Traffic Routing and Wavelength Assignment


After randomly generating the virtual topology solutions in a population, it is


possible that the number of required lightpaths is greater than the number of available


transmitters. We have to delete some lightpaths to satisfy this constraint. We take


the heuristic process by eliminating a lightpath which occupy the lowest traffic first,


and then repeat the process until the constraint is satisfied. The traffic in this process


is the sum of SONET OC-streams in traffic demand matrices required between source
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and destination nodes of the lightpath.


Next steps are the Traffic Routing and the Wavelength Assignment. The chro-


mosome is not encoded with a traffic route and an assigned wavelength. Otherwise,


a size of the chromosome is considerably large which makes a huge search space. We


route the traffic and assign wavelength based on our heuristics. The traffic is routed


over a virtual topology using a shortest path algorithm. The routing starts from the


highest streams first e.g., route OC-12 demands first, followed by OC-3 demands and


OC-1 demands. Bifurcate routing is allowed only in the same OC stream level (i.e.,


an OC-12 stream cannot be broken into four OC-3s and routed separately but two


OC-12 streams of the same source and destination may use the different routes.) We


route traffic streams as many as possible over a single hop of lightpath first. The


remaining traffic after that is routed over multiple hops of lightpaths. If all SONET


streams are routed over a single-hop, the AHT will equal to 1 which is the lower


bound.


We number the entire wavelengths (colors) and keep them in a stack one


for each fiber link. If the wavelength continuity is considered, we assign the lowest


available number (comparing to every stack that is on the lightpath span) to the


lightpath that has the maximum hop-count (physical hop) first and so on. Otherwise,


without wavelength continuity constraint, we assign the lowest color number found


in each link’s stack to the lightpath. We set a penalty function to the chromosome


if any of the lightpaths in the chromosome cannot assign a color or the traffic is


blocked. The penalty function will downgrade the fitness value of chromosome and


cause it to be eliminated in the next generation. The flowchart of fitness assignment is


presented in Appendix A. The result of the SPEA is the set of non-dominated solutions
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(non-blocking virtual topology) or the Pareto front that optimizes the objectives and


restricts to the constraints. Next step is a reconfiguration policy that picks one of the


solutions in the Pareto front.


4.3.3 Changes in Virtual Topology


There are four kinds of changes in lightpaths according to the problem formu-


lation:


1. Changing route,


2. Changing wavelength along the path,


3. Adding new lightpath and


4. Deleting lightpath.


If the “delete” operation is counted as a change, the reconfiguration process will try


not to delete the lightpaths since it must minimize the number of changes. There-


fore, the reconfiguration process will let the virtual topology keep expanding in each


round if it still complies with the constraints. This results in a low utilization of the


lightpaths. We get rid of this problem by not counting the “delete” operation.
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CHAPTER 5


RECONFIGURATION POLICY APPROACH


5.1 MDP Overview


A Markov Decision Process (MDP) is sometime known as a sequential stochas-


tic optimization, a discrete-time stochastic control and a stochastic dynamic program-


ming. It is a study of a sequential optimization of discrete time stochastic systems.


We refer to the word “Markov” since the MDP is based on a Markov Chain or a dis-


crete time, discrete state stochastic process that satisfies the Markov property. The


Markov property states that the conditional probability of any future state given an


arbitrary sequence of past states and the present state depends only on the present


state. The MDP is a Markov Chain excepting a transition matrix which depends on


a set of actions taken at each transition step. A different action generates a different


outcome. The goal is to find a decision or an action to be taken in each state, called a


policy, so as to maximize the expected outcome. The outcome consists of two parts,


the reward that gains from the action and the cost that incurs from the action. Notice


that the outcome could be negative value if the cost is greater than the reward and


it needs not be in the monetary unit. In many situation decision with the highest


immediate outcome may not be good in view of future events. In our case, we state


in the hypothesis that MPD policy generates the optimal expected outcome in the


reconfiguration problem.


The MDP is defined through the following five elements:


1. A set of decision epochs.


2. A set of states
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3. A set of actions.


4. A set of state and action dependent immediate rewards and costs.


5. A set of state and action dependent transition probabilities.


We study the discrete-time process which the epoch (or time) between transitions is


a constant. Without the action, suppose the MDP contains N states, oij and pij is


the outcome and transition probability when it makes a transition from state i to


state j, respectively. Let vi(n) be the expected total outcome earnings in the next n


transitions if the system is currently in state i. The vi(n) in the recursive form is:


vi(n) =
N∑


j=1


pij[oij + vj(n− 1)] i = 1, 2, . . . , N n = 1, 2, 3, . . . (5.1)


Equation (5.1) may be rewritten as:


vi(n) =
N∑


j=1


pijoij +
N∑


j=1


pijvj(n− 1) (5.2)


Let a quantity qi be the outcome to be expected in the next transition out of state i


or the expected immediate outcome of state i.


qi =
N∑


j=1


pijoij (5.3)


Equation (5.2) becomes the following form.


vi(n) = qi +
N∑


j=1


pijvj(n− 1) (5.4)
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Figure 7: A State Diagram and Alternative Actions.


Now we consider a set of actions. Each outcome and transition probability


has its specific values according to the action. Let ok
ij and pk


ij be the outcome and


transition probability when moving from state i to j using the action k. Figure 7


shows the diagram of states and alternative actions.


The quantity qk
i becomes the expected outcome from a single transition from


state i using action k.


qk
i =


N∑
j=1


pk
ijo


k
ij (5.5)


The vi(n) becomes the total expected outcome in the next n transition starting


from state i and making a move (selecting action) by following the optimal policy.


The optimal policy is action for each state that maximize total expected outcome.


We define the policy in a decision vector d.


vi(n + 1) = max
k


N∑
j=1


pk
ij[o


k
ij + vj(n)] n = 0, 1, 2, . . . (5.6)
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Equation (5.6) is rewritten with term qk
i below.


vi(n + 1) = max
k


[qk
i +


N∑
j=1


pk
ijvj(n)] (5.7)


Equation (5.7) is called the value-iteration equation. We can use this recursive equa-


tion with the initial vi(0) to find the optimal policy. This method is known as a


value-iteration method. It may take a long process before termination. The other


method called a policy-iteration method by Howard [12] can find the optimal policy


in a smaller number of iteration than the previous one. The policy-iteration consists


of two parts; the value-determination operation and the policy-improvement routine.


• The value-determination operation uses pij and qi for a given policy to solve


Equation (5.8) by setting vN = 0


g + vi = qi +
N∑


j=1


pijvij i = 1, 2, . . . , N (5.8)


where g is the gain (expected outcome per transition) of the system, g =
∑N


i=1 πiqi, where πi is the probability of being in State i.


• The policy-improvement routine finds the alternative action k′ that maximizes


qk
i +


∑N
j=1 pk


ijvi then set di = k′ in each State i


These two operations take turns and produce the gain g. The iteration cycle could


begin in either part. However it is convenient to start in the policy-improvement


routine by setting all vi = 0. Then let the policy-improvement select the policy. The


iteration will be terminated when g does not improve i.e., we found the optimal policy


in the decision vector d.
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5.2 MDP Approach


We model a policy or a set of decision by the Markov Decision Process model.


The MPD elements for the reconfiguration policy are the following.


1. A set of decision epochs:


Our MDP is a discrete-time Markov process. We assume that the time between


transitions is a constant. For example, the SONET/SDH demand matrices are


modified weekly so the decision is made in every week.


2. A set of states:


A state reflects the shape and position of Pareto front in the next transition.


Next we define the term used in our state.


Definition 5.2.1 (Virtual Topology Utilization) Given N be the number of op-


tical node, T be the maximum number of transmitters per node and C be a


capacity of lightpath. The virtual topology utilization Ψ is defined by the frac-


tion between the volume of traffic routed through the network and the upper


bound of virtual topology capacity of the network.


Ψ =


∑
sd,x(x× Sx


sd)


N × T × C
(5.9)


Since we consider the non-blocking network, Equation (5.9) becomes:


Ψ =


∑
sd,x(x× Λx


sd)


N × T × C
(5.10)


The terms N , T and C are constant or rarely upgraded unless the total network


capacity is full. Therefore Ψ relies on the volume of traffic demand. The Ψ
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reflects the Pareto front curve because the reconfiguration process in a high


demand volume (or high virtual utilization environment) requires more number


of changes than in a low demand volume. Since the Pareto front is the function


of NoC and AHT, we define state as a tuple (AHT, Ψ) for our model. Note


that using both Ψ and AHT increase the state space thus in the experiment


we retain the volume of traffic in each reconfiguration round so that the state


becomes the term AHT only.


3. A set of actions:


An action states how to perform the reconfiguration process or how to pick the


solution on the Pareto front. Performing different solutions (different positions)


on the Pareto front will transfer to different states or different Pareto front


curves since the solution with low AHT trends to generate the Pareto front


lower than those of high AHT.


We define the set of actions as the different positions of the Pareto front’s


curve as an example as shown in Figure 8. For each required position (action),


we select the solution that has a pseudo-weight factor closest to that position.


The pseudo-weight factor in Equation (5.11) is calculated for each solution on


the Pareto front’s curve. The fmax
i and fmin


i are the maximum value and the


minimum value of the objective function i respectively.


wi =
(


fmax
i −fi(x)


fmax
i −fmin


i
)


∑Obj
j (


fmax
j −fj(x)


fmax
j −fmin


j
)


(5.11)


where Obj is the number of objective functions (Obj = 2 in our case) and x


is the solution in the Pareto front. Figure 8 shows an example of five actions
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Figure 8: An Example of Pareto Front with Five Actions [a..e].


[a..e] with their expected pseudo-weight (wi, wj) where i belong to the number


of changes objective and j belongs to the AHT objective. The action a is the


solution at the position (0.0, 1.0). That solution does zero change and 100%


or highest AHT available on the curve. The action d is the solution at the


position (0.75, 0.25) which performs 20 changes in the reconfiguration process.


Note that there may not exist the solution at the marked position defined in


the action set but we take the solution which has the nearest pseudo-weight to


the marked position.


4. A set of state and action dependent immediate rewards or costs:


We define the outcome ok
ij be the outcome when moving from state i to j using


action k as shown below.


ok
ij = rk


ij − ck
ij (5.12)


where rk
ij and ck


ij is the immediate gaining reward and incurring cost respectively


when moving from state i to j using action k. We set the reward function and
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cost function as linear functions shown below.


Reward function:


rk
ij(H


k
ij) = βHk


ij + c (5.13)


where Hk
ij is the Average Hop-Distance of Traffic when moving from state i to


j using action k, β is a weight assigned to the reward and c is a constant.


Cost function:


ck
ij(η


k
ij) = αηk


ij + γ (5.14)


where ηk
ij denotes the average number of changes required in the reconfiguration


process from state i to j using action k, α is the weight assigned to the cost


and γ is a one-time charge when start the reconfiguration operations.


Note that reward and cost functions can be any functions that reflect perfor-


mance and cost such as delay, throughput, packet loss, load balance, manage-


ment cost, resource cost and etc.


5. A set of state transition probabilities:


A state transition probability P k
ij is the probability when transferring from state


i to j under action k. Notice that each action has its own transition probability.


We find the optimal outcome as stated in Equation (3.24) by using Howard’s


Policy-Iteration method [12].
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CHAPTER 6


EXPERIMENTATION DESIGN AND RESULTS


6.1 Design of Experimentation


We setup the experiment on the 6-node network and the 14-node NSFNET T1


backbone network to illustrate the Pareto front of the reconfiguration process. The


6-node network is shown in Figure 9 and the NSFNET is a mesh topology shown


in Figure 10. Each link in both network is a pair of an optical fiber, one for each


direction. We assume each node is working as both an access node and a routing


node. Therefore the node is capable of grooming at the edge and equipped with


a wavelength converter (i.e., no wavelength continuity constraint). The lightpath


capacity is OC-48 for the 6-node network and OC-192 for the 14-node NSFNET


network. The capacity of the DWDM is eight wavelength multiplexing, W = 8 thus


a single fiber can carry the traffic stream up to OC-1536 (or 1536 × OC-1; OC-


1 = 51.84Mbps) in the NSFNET network. The number of transceivers per node,


Tx = Rx = 6 so there are at most six lightpaths initiated or terminated at a node.


These transceivers are tunable to any wavelengths on the fiber links. There are


three types of traffic streams, OC-1, OC-3 and OC-12. In the grooming capability,


we assume that each node has unlimited multiplexing/demultiplexing and time-slot


interchange capabilities. The lower streams can be groomed as long as the groomed


traffic does not exceed the lightpath capacity. We generate the initial OC-1, OC-3


and OC-12 traffic streams by a uniform distributed random number between [0,8],


[0,4] and [0,1] respectively. Table B1-B3 in Appendix B show the traffic demand


matrices for the NSFNET network. The total traffic streams are OC-2976 (or 2976
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Figure 9: The 6-node Network.


Figure 10: The 14-node NSFNET Network.
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OC-1s).


We initialize a virtual topology for the first round of the reconfiguration by


assigning a blank topology as a previous virtual topology and performing the re-


configuration process as usual then picking up one solution in the Pareto front. The


transition of traffic in each round could be in any patterns but we simulate the change


of traffic by swapping the data randomly within each traffic matrix to preserve the


Ψ values. We expect to randomly swap all pairs of data or N(N−1)
2


pairs (i.e., we


swap 91 pairs of data in NSFNET). The results are the new traffic demand matrices


used in the next round of a reconfiguration process. We show the second round of


traffic matrices in Table B4-B6 in Appendix B. The total traffic streams remain as


OC-2976. We prepare thirty sets of traffic demand matrices for 29 rounds of recon-


figuration processes used in the policy experiment. The SPEA parameters are set as


follows: the probability of crossover = 0.6, the probability of mutation = 0.01, the


dominated population size = 50 and the external non-dominated population size =


50. We run the experiments to show the Pareto front with the experimental variable


including the number of generations, the number of shortest K and Ψ.


In the reconfiguration policy, we simplify the problem and reduce the state


space by considering only the traffic with the same Ψ. Therefore we can ignore Ψ


in the state tuple (AHT, Ψ). Now the state is defined by the AHT only. Since the


AHT is a continuous value (real number), we define a discrete state based on a range


of the AHT instead and use the median of the range to represent that state. The


more the intervals of the AHT, the higher the accuracy of the model. However it


increases the state space. The reward function, cost functions and the transition


probabilities are defined. We compare the efficiency of our policy with the Immediate
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Figure 11: The Pareto Front of the Reconfiguration with Different Number of Gener-
ations at K=3 for 6-node Network.


Highest Outcome (IHO) policy over thirty sets of traffic demand matrices (29 rounds


of reconfigurations).


6.2 Experimental Results


First we compare the results of reconfiguration process performed on the first


round of traffic change. We plot the Pareto fronts varied by the number of generations


of the SPEA for the 6-node network and the NSFNET network as illustrated in Figure


11 and Figure 12 respectively. The horizontal axis is the number of changes in the


virtual topology and the vertical axis is the AHT in hops.


The plots show that the more the number of generations, the better the results


(the curve is approaching the origin point). However, the result was not improved


much when the number of generations are over 600 generations in the 6-node network


and 1000 generations in the NSFNET network. There are more non-dominated solu-


tions in the NSFNET network than those of the 6-node network since the NSFNET
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Figure 12: The Pareto Front of the Reconfiguration with Different Number of Gener-
ations at K=2 for NSFNET Network.


network is larger and thus more choices of changes. Table 1 shows the detail of re-


configuration performed on 6-node network. The initial virtual topology consists of


28 lightpaths with AHT=1.0232 hops. After the reconfiguration process, the new


virtual topology contains 32 lightpaths with result in AHT=1.009 hops. The process


requires seven changes (including the add operations).


Next we plot the Pareto front varying by the values of K. The result in K = 2


is better than those of K = 1 since it provides more choices of paths. However, we


found that K = 2 generated better results than those of K = 3 and K = 4. We will


use K = 2 in the policy experiments. Since the search space grows along the value


of K. Therefore the optimal results of K = 3 and K = 4 are not yet found at 1000


generations.


Next we compare the Pareto front by the values of Ψ to show that the states


in a Markov process relies on the Ψ value. In Figure 14, the curve of Ψ = 0.355 has a
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Table 1: Virtual Topology Reconfiguration Detail on 6-node Network.
Initial Virtual Topology New Virtual Topology Reconfigure
Src, Dst Path Color Src, Dst Path Color


0, 1 0 1 4 0, 1 0 1 4 -
0, 2 0 1 2 2 2 0, 2 0 1 2 2 2 -
0, 3 0 1 3 3 2 0, 3 0 1 3 3 2 -
0, 4 0 1 2 4 0 0 0 0, 4 0 1 2 4 0 0 0 -
0, 5 0 1 2 5 1 1 0 0, 5 0 1 2 5 1 1 0 -
1, 0 1 0 2 1, 0 1 0 2 -
1, 2 1 2 5 1, 2 1 2 5 -
1, 3 1 0 3 1 0 1, 3 1 0 3 1 0 -
1, 4 1 2 4 3 2 1, 4 1 2 4 3 2 -
1, 5 1 3 4 5 0 0 0 1, 5 1 3 4 5 0 0 0 -
- - - 2, 0 2 1 0 4 3 add
- - - 2, 0 2 1 0 5 4 add


2, 1 2 1 3 2, 1 2 1 3 -
2, 3 2 4 3 3 2 2, 3 2 4 3 3 2 -
2, 4 2 5 4 1 1 2, 4 2 5 4 1 1 -
2, 5 2 4 5 4 1 2, 5 2 4 5 4 1 -
3, 0 3 0 1 3, 0 3 0 1 -
3, 1 3 1 2 3, 1 3 1 2 -
3, 2 3 1 2 1 4 3, 2 3 1 2 1 6 color
3, 4 3 4 2 3, 4 3 4 2 -
3, 5 3 4 5 1 2 3, 5 3 4 5 1 2 -
4, 0 4 3 0 3 0 4, 0 4 3 0 3 0 -
4, 1 4 2 1 1 2 4, 1 4 3 1 4 3 path&color
- - - 4, 2 4 3 1 2 0 0 4 add


4, 3 4 2 1 3 0 0 1 4, 3 4 2 1 3 0 0 1 -
4, 5 4 2 5 2 2 4, 5 4 2 5 2 2 -
5, 0 5 2 1 0 0 1 0 5, 0 5 2 1 0 0 1 0 -
5, 1 5 4 3 1 0 0 0 5, 1 5 4 2 1 0 1 2 path&color
- - - 5, 2 5 2 2 add


5, 2 5 4 2 2 3 5, 2 5 4 2 2 3 -
5, 3 5 2 4 3 1 1 1 5, 3 5 2 4 3 1 1 1 -
5, 4 5 4 3 5, 4 5 4 3 -
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Figure 13: The Pareto Front of the Reconfiguration with Different K Values at 1000
Generations.
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Figure 14: The Pareto Front of the Reconfiguration with Ψ = 0.355 and Ψ = 0.184.
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Figure 15: The Pareto Fronts of Action 1 and 5 Performed on Round 7’s Pareto Front.


higher range of the AHT than those of Ψ = 0.184 because the solutions of the former


curve do not have much room to grow and serve their high demands.


Next we show that an action with low AHT generates a Pareto front curve


closer to the origin than those of an action with high AHT. We plot Pareto front of


data in round 7 and perform reconfiguration process using Action 1 and Action 5 as


shown in Figure 15. It shows that the Pareto front of Action 5 is closer to the origin


than those of Action 1. With this property, we can estimate the state transition


probabilities and their rewards and costs to find the optimal outcome.


Next we calculate the optimal policy. As we stated previously, we simplify the


problem by fixing the Ψ at 0.184 in the traffic demand matrices (we swap the demand


pairs to alter the data). Therefore, the states of a Markov process are stated by the
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AHT only. We setup the set of states into six states with five actions. The states and


their range are


1. AHT=1.375 with range [1.35-1.40],


2. AHT=1.425 with range [1.41-1.45],


3. AHT=1.475 with range [1.46-1.50],


4. AHT=1.525 with range [1.51-1.55],


5. AHT=1.575 with range [1.56-1.60] and


6. AHT=1.625 with range [1.61-1.65].


The actions are:


1. Do a reconfigure process by the solution at position [0.0, 1.0],


2. Do a reconfigure process by the solution at position [0.25, 0.75],


3. Do a reconfigure process by the solution at position [0.5, 0.5],


4. Do a reconfigure process by the solution at position [0.75, 0.25] and


5. Do a reconfigure process by the solution at position [1.0, 0.0] of the Pareto front.


State diagram in Figure 16 shows only the state transitions originated from


state 1 to other states. A pk
ij denotes the state transition probability from state i to


state j using action k and an ok
ij denotes the outcome when transferring from state i


to state j using action k.
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Figure 16: State Diagram of Outgoing Transitions from State 1.


Given Rk and Ck be the reward matrix and cost matrix for the action k with


element rk
ij obtained by the reward function and ck


ij obtained by the cost function.


The outcome for the transition from state i to j using action k is


ok
ij = rk


ij − ck
ij


Since we want to show the performance of the policy, we balance the reward and


cost weighted in the experiment. We do simulation to find out the margin of the


H and η. Note that AHT is H and NoC(Number of Change) is η in our case. We


found that the H is in the range [1.35-1.65] and η is in the range [20-50]. We create


the linear function of outcome such that H = 1.65 when η = 20 and H = 1.35


when η = 50. Therefore, β = (50−20)
(1.35−1.65)


= −100, c = 185, α = 1 and γ = 0 with


regard to parameters in Equation (5.13) and (5.14). The outcome function becomes


ok
ij = −100Hk


ij + 185 − ηk
ij. For example, the o2


12 = −100(1.425) + 185 − 24 = 18.5


where H2
i2 = 1.425 and η2


12 = 24 when transferring from state 1 to 2 using action 2.


We apply the iterative cycle of Howard [12] to find the optimal decision.
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Table 2: Initial Data for Reconfiguration Policy.
i k pk


ij ok
ij qk


i
j=1 2 3 4 5 6 j=1 2 3 4 5 6


1 1 0.020 0.080 0.300 0.600 0.000 0.000 27.50 22.50 17.50 12.50 7.50 2.50 15.10
2 0.050 0.150 0.600 0.200 0.000 0.000 23.50 18.50 13.50 8.50 3.50 -1.50 13.75
3 0.800 0.200 0.000 0.000 0.000 0.000 19.50 14.50 9.50 4.50 -0.50 -5.50 18.50
4 0.900 0.100 0.000 0.000 0.000 0.000 15.50 10.50 5.50 0.50 -4.50 -9.50 15.00
5 1.000 0.000 0.000 0.000 0.000 0.000 11.50 6.50 1.50 -3.50 -8.50 -13.50 11.50


2 1 0.050 0.150 0.650 0.080 0.060 0.010 27.50 22.50 17.50 12.50 7.50 2.50 17.60
2 0.010 0.680 0.310 0.000 0.000 0.000 22.50 17.50 12.50 7.50 2.50 -2.50 16.00
3 0.200 0.800 0.000 0.000 0.000 0.000 17.50 12.50 7.50 2.50 -2.50 -7.50 13.50
4 0.700 0.300 0.000 0.000 0.000 0.000 12.50 7.50 2.50 -2.50 -7.50 -12.50 11.00
5 0.900 0.100 0.000 0.000 0.000 0.000 7.50 2.50 -2.50 -7.50 -12.50 -17.50 7.00


3 1 0.000 0.100 0.700 0.100 0.080 0.020 23.50 18.50 13.50 8.50 3.50 -1.50 12.40
2 0.050 0.900 0.050 0.000 0.000 0.000 17.50 12.50 7.50 2.50 -2.50 -7.50 12.50
3 0.350 0.550 0.080 0.020 0.000 0.000 12.50 7.50 2.50 -2.50 -7.50 -12.50 8.65
4 0.600 0.400 0.000 0.000 0.000 0.000 6.50 1.50 -3.50 -8.50 -13.50 -18.50 4.50
5 0.800 0.200 0.000 0.000 0.000 0.000 1.50 -3.50 -8.50 -13.50 -18.50 -23.50 0.50


4 1 0.000 0.050 0.100 0.500 0.200 0.150 22.50 17.50 12.50 7.50 2.50 -2.50 6.00
2 0.050 0.100 0.700 0.150 0.000 0.000 15.50 10.50 5.50 0.50 -4.50 -9.50 5.75
3 0.300 0.600 0.100 0.000 0.000 0.000 9.50 4.50 -0.50 -5.50 -10.50 -15.50 5.50
4 0.600 0.350 0.050 0.000 0.000 0.000 6.50 1.50 -3.50 -8.50 -13.50 -18.50 4.25
5 0.900 0.080 0.020 0.000 0.000 0.000 3.50 -1.50 -6.50 -11.50 -16.50 -21.50 2.90


5 1 0.000 0.000 0.000 0.020 0.180 0.800 22.50 17.50 12.50 7.50 2.50 -2.50 -1.40
2 0.000 0.000 0.100 0.700 0.200 0.000 14.50 9.50 4.50 -0.50 -5.50 -10.50 -1.00
3 0.050 0.100 0.700 0.150 0.000 0.000 7.50 2.50 -2.50 -7.50 -12.50 -17.50 -2.25
4 0.300 0.600 0.100 0.000 0.000 0.000 -0.50 -5.50 -10.50 -15.50 -20.50 -25.50 -4.50
5 0.600 0.300 0.100 0.000 0.000 0.000 -7.50 -12.50 -17.50 -22.50 -27.50 -32.50 -10.00


6 1 0.000 0.000 0.000 0.000 0.100 0.900 17.50 12.50 7.50 2.50 -2.50 -7.50 -7.00
2 0.000 0.000 0.000 0.100 0.500 0.400 9.50 4.50 -0.50 -5.50 -10.50 -15.50 -12.00
3 0.000 0.050 0.150 0.700 0.080 0.020 2.50 -2.50 -7.50 -12.50 -17.50 -22.50 -11.85
4 0.300 0.600 0.100 0.000 0.000 0.000 -5.50 -10.50 -15.50 -20.50 -25.50 -30.50 -9.50
5 0.600 0.300 0.100 0.000 0.000 0.000 -12.50 -17.50 -22.50 -27.50 -32.50 -37.50 -15.00


Howard’s method contains two operations, the value-determination operation and


the policy-improvement operation to solve as stated in previous Chapter. The com-


plete set of state transition probabilities, outcomes and qk
i are presented in Table 2.


These data could be obtained either from the actual network or simulations.


Table 2 shows that performing reconfiguration process with the lower action


number causes a higher chance to transfer up to a higher state while performing with


the higher action number, it causes a higher chance to transfer down to a lower state.


The lower states have more outcome than the upper state. Therefore, the MDP tries


to keep the policy in lower states to gain the optimum outcome.


We apply iterative cycle of Howard [12], beginning with the policy-improvement


routine by setting vi = 0; i = 1, . . . , 6 since we have six states. Then we select the


initial policy that maximizes expected immediate outcome i.e., select action k in each
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state i that has the maximum qk
i . From Table 2, the initial policy in the decision


vector d are


d =






3


1


2


1


2


1






The state transition probabilities matrix P and expected immediate rewards corre-


sponding to this policy are


P =






0.800 0.200 0.000 0.000 0.000 0.000


0.050 0.150 0.650 0.080 0.060 0.010


0.050 0.900 0.050 0.000 0.000 0.000


0.000 0.050 0.100 0.500 0.200 0.150


0.000 0.000 0.100 0.700 0.200 0.000


0.000 0.000 0.000 0.000 0.100 0.900






q =






18.50


17.60


12.50


6.00


−1.00


−7.00
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Now the iteration begins at the Value-Determination Operation.


g + v1 = 18.5 + 0.8v1 + 0.2v2 + 0.0v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.1)


g + v2 = 17.6 + 0.5v1 + 0.15v2 + 0.65v3 + 0.08v4 + 0.06v5 + 0.01v6 (6.2)


g + v3 = 12.5 + 0.5v1 + 0.9v2 + 0.05v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.3)


g + v4 = 6.0 + 0.0v1 + 0.05v2 + 0.1v3 + 0.5v4 + 0.2v5 + 0.15v6 (6.4)


g + v5 = −1.0 + 0.0v1 + 0.0v2 + 0.1v3 + 0.7v4 + 0.2v5 + 0.0v6 (6.5)


g + v6 = −7.0 + 0.0v1 + 0.0v2 + 0.0v3 + 0.0v4 + 0.1v5 + 0.9v6 (6.6)


Solving Equation (6.1),(6.2),(6.3),(6.4),(6.5) and (6.6) by setting v6 = 0, we obtain


g = 6.894 v1 = 313.6670 v2 = 255.640 v3 = 264.594


v4 = 132.272 v5 = 138.944 v6 = 0


Note that we can select to set any vi = 0. It will come out the same optimal policy.


Next we return the iteration to the Policy-Improvement Operations. We found


the new policy that maximize the reward by the calculation in Table 3.


Now the decision vector d has been changed corresponding the maximum test
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Table 3: The First Iteration for the Policy-Improvement.
State Action Test Quantity


i k qk
i +


∑N
j=1 pk


ijvi


1 1 200.57
2 252.99
3 320.56
4 322.86
5 325.17


2 1 262.53
2 275.00
3 280.75
4 307.26
5 314.86


3 1 247.52
2 271.49
3 282.85
4 294.96
5 302.56


4 1 139.17
2 252.05
3 279.44
4 295.15
5 310.94


5 1 26.26
2 145.84
3 244.05
4 269.44
5 281.35


6 1 6.89
2 70.70
3 144.33
4 264.44
5 276.35
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quantity of each state in Table 3.


d =






5


5


5


5


5


5






From the new vector d, the matrix P and the vector q become


P =






1.000 0.000 0.000 0.000 0.000 0.000


0.900 0.100 0.000 0.000 0.000 0.000


0.800 0.200 0.000 0.000 0.000 0.000


0.900 0.080 0.020 0.000 0.000 0.000


0.600 0.300 0.100 0.000 0.000 0.000


0.600 0.300 0.100 0.000 0.000 0.000






q =






11.50


7.00


0.50


2.90


−10.00


−15.00
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Next the iteration continues at the Value-Determination Operations.


g + v1 = 11.5 + 1.0v1 + 0.0v2 + 0.0v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.7)


g + v2 = 7.0 + 0.9v1 + 0.1v2 + 0.0v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.8)


g + v3 = 0.5 + 0.8v1 + 0.2v2 + 0.0v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.9)


g + v4 = 2.9 + 0.9v1 + 0.08v2 + 0.02v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.10)


g + v5 = −10.0 + 0.6v1 + 0.3v2 + 0.1v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.11)


g + v6 = −15.0 + 0.6v1 + 0.3v2 + 0.1v3 + 0.0v4 + 0.0v5 + 0.0v6 (6.12)


Again we solve Equation (6.7),(6.8),(6.9),(6.10),(6.11) and (6.12) by setting v6 = 0,


we obtain


g = 11.5 v1 = 29.20 v2 = 24.20 v3 = 17.20


v4 = 19.96 v5 = 5.00 v6 = 0


We found that the gain g is improved. We then return to the Policy-Improvement


operations. The iteration continues until the gain g is not improved. Eventually we


found the maximum gain g = 16.833 with the decision vector d below


d =






3


4


2


5


4


4
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Figure 17: The Outcome of Reconfiguration from Round 1 to Round 29.


Thus the expected optimal outcome is 16.833 under this policy and MDP model. The


policy in the vector d denotes that if the current state is 1 then perform action 3, if


the current state is 2 then perform action 4, if the state is 3 then perform action 2, if


the state is 4 then perform action 5 and if the state is 5 or 6 then perform action 4.


We compare our MDP policy with the Immediate Highest Outcome (IHO)


policy. The IHO selects the solution in the Pareto front that produces the immediate


highest outcome in the current state to perform the reconfiguration process. We ran


both policy on the same set of traffic series for 29 rounds and compare the outcomes


in each round as shown in Figure 17. Although the IHO selected the highest outcome


in every round, it does not generate an overall outcome better than those of the MDP.


Different selections lead to different states which have a different Pareto front and


outcome. We show the Pareto front of the first round in Figure 19. The IHO selects
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Figure 18: The Accumulative Outcome of Reconfiguration from Round 1 to Round
29.


AHT=1.438 and NoC=32 which generate outcome=9.183, while the MDP selects


action 4 where AHT=1.387 and NoC=40 which generate an outcome=6.324. The


IHO transfers to state 2 and the MDP transfers to state 1. The Pareto front of MDP


in the second round generates a better outcome than those of IHO. In the long term,


the MDP produces a greater outcome than those of IHO. We plot the accumulative


outcome in Figure 18. After 29 rounds, IHO produces outcome=425.787 and MDP


produces outcome=442.947.


All of the experiments performed in this dissertation were carried out using


800 MHz Intel based processor. The worst case experiment took less than 30 min-


utes which is considered acceptable for the reconfiguration process where the traffic


demand matrices are changed in a weekly basis. The computational complexity of
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Figure 19: The Pareto Front with Outcome for the First Round and the Second Round
of Reconfiguration using the IHO Policy and the MDP Policy.
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the SPEA is O(P2) where P is the population size. The routing and wavelength


assignment computational complexity is O(N2) where N is the number of nodes in


the network. Thus the overall complexity needed in each generation of the SPEA is


O((PN)2).
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CHAPTER 7


RECONFIGURATION APPROACH FOR DYNAMIC TRAFFIC


7.1 Overview


In this chapter we are interested in a wavelength-routed network under dy-


namic traffic demand such that the traffic pattern is not known in advance. Therefore


the MDP approach could not be applied to the reconfiguration policy. The reconfig-


uration must act immediately if the network performance falls below the acceptable


point. Therefore the performance is monitored regularly and the reconfiguration pro-


cess is initiated as needed. It appears that the virtual topology is self-adaptive or


self-reconfiguration, since it takes action before it reaches the critical point.


The self-reconfiguration has been proposed by Gencata and Mukherjee [10].


Their approach monitors the load of each link to make a decision whether or not to


perform a reconfiguration. At each observation period, a lightpath may be added if the


load is above the high watermark or deleted if the load is below the low watermark.


Otherwise the virtual topology needs not change. Self-tuning is attractive but it


brings a set of difficulties. The optimal solution is influenced by the parameters (e.g.,


the level of high/low watermark and the length of observation period). Also the


oscillation problem could happen if lightpath is alternately added and deleted in each


of decision period. Besides, drastic changes could happen in a short period of time


such as a coming of burst traffic or multiple equipment failures. In this case, the


self-reconfiguration of one change at a time could not handle that traffic or outage.


7.2 A Heuristic Approach


We propose the heuristic models using the advantage of MOEA to allow mul-
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Figure 20: Data Flow Diagram of the Reconfiguration Model.


tiple changes in the reconfiguration process in each observation period. The models


have a common Data-Flow Diagram (DFD) and Control-Flow Diagram (CFD) as


presented in Figure 20 and 21 respectively. The first process in the DFD generates


a Pareto front between AHT and NoC based on a given traffic demand, a Physical


topology and a specification of optical node/link (known as constraints).


Next process is to pick a solution from the Pareto front according to the given


policy. If the pattern of traffic is known in advance, the MDP policy could be applied.


Otherwise some policies must be applied.


Next process is to perform the reconfiguration operations (e.g., add, delete,


reroute, or switch the wavelength) according to the selected solution above. The


result is the new virtual topology for a new traffic demand.


In the CFD, the Perception of Network process monitors the network status


and the traffic demand then collects the data to the Reflective Control Process. If


there is a significant change in a traffic demand, the process will trigger the Reflective


Control Process. Then the Reflective Control Process picks the right policy and starts


the Reconfiguration Process (shown in DFD). The Reflective Control Process may


collect the data and analyze the pattern of traffic to make some adjustment on the


policy.


Notice that the policy could be an adaptive (dynamic) one regarding to the
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Figure 21: Control Flow Diagram of the Reconfiguration Model.


particular traffic pattern. The advantage of adaptive policy makes the model appli-


cable to various types of traffic.


7.3 A Heuristic Algorithm


The reconfiguration problem is a trade off between the performance and the


cost objectives. We still consider the performance in term of the Average Hop-distance


of Traffic (AHT) and the cost in term of a number of changes in the lightpaths. We


keep considering in the transport backbone network but in a short term and we


consider the SONET streams that changed within one day. Since it is a backbone


network, the traffic must be non-blocking. The traffic monitoring will be done hourly


to trigger the reconfiguration processes.


We propose a heuristic algorithm that keeps monitoring the AHT of the net-


work. Whenever the AHT value is above the upper-limit or when any traffic streams


are blocked, the reconfiguration will be activated. In our case, the upper-limit is the


maximum level of AHT that we allow in the network. If the traffic is blocked, it


implies that the current virtual topology is no longer serving the demand. Hence


reconfiguration is necessary. The reconfiguration starts with the searching for so-


lutions and forming the Pareto Front. We propose two heuristic policies to pick a


solution; the Pick-Min policy which picks a solution with the minimum NoC and the
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Pick-Max policy which picks a solution at NoC ≤ n where n is the maximum num-


ber of changes allowed. If there is no feasible solution (i.e., traffic is blocked), some


constraints must be relaxed likes extending the OXC ports, increasing the DWDM


capability or installing an extra fiber underground. We present the algorithm with a


Pick-Max policy picking a solution with NoC ≤ n in Figure 22.


In order to deal with a dynamic traffic, we introduce the upper-limit of AHT


and NoC. The upper-limit is a breakpoint such that the cost of starting reconfiguration


if AHT is below this point is worthless. In the other words, if the virtual topology is


able to serve the variation of dynamic traffic, the reconfiguration is unneeded.


Not only the AHT that we concern, we also consider the utilization of the


lightpath. A lightpath that serves less than LW% of its capacity (for the single-hop


traffic) will be deleted. Where LW% is a low-watermark of the virtual topology in


percentage. For the high-watermark, we set it at 100% to allow the maximum usage


of lightpath.


7.4 Performance Study


7.4.1 Simulation Environment


We conducted the experiment on the 14-node NSFNET network with a light-


path capacity of OC-192, W = 8, and number of transmitters = 6 for each node. The


transmitters are tunable to any wavelengths on the fiber links. There are three types


of traffic streams, OC-1, OC-3 and OC-12 and the grooming capabilities are available


at all nodes. We consider the dynamic traffic during one day period by imitating the


actual traffic pattern of Abilene Network [1]. We found that traffic is slightly changed


hourly. Therefore we alter data in the OC-1 traffic matrix only. According to the
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Figure 22: Heuristic Algorithm with the Pick-Max with NoC ≤ n.
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Figure 23: One-day Traffic for the Simulation.


Abilene’s traffic pattern, we generate a one-day OC-1 traffic as shown in Figure 23.


We decrease OC-1 traffic by randomly adding a value in the set of {-2, -1, 0, 1} to


traffic in each source-destination pair and adding a value in the set of {-1, 0, 1, 2}
for the increasing traffic.


The simulation was conducted on different heuristic policies that pick a solu-


tion from the Pareto front (i.e., pick a solution with the minimum NoC or pick the


one with NoC ≤ n where n is the maximum number of changes allowed.)


7.4.2 Experimental Results


We compare the different policies that pick a solution. They are: the Pick-


Min policy that picks a solution with the minimum NoC and the AHT below the


upper-limit, the Pick-Max policy with n = 10 at most, the Pick-Max policy with


n = 15 at most, and the Pick-Max policy with n = 20 at most. The chosen solution


must have the AHT less than the upper limit, otherwise a solution is unacceptable


70







1.3


1.35


1.4


1.45


1.5


1.55


1.6


1.65


1.7


1.75


1.8


6pm 8pm 10pm 12am 2am 4am 6am 8am 10am 12pm 2pm


A
H


T
 (


ho
ps


)


Time


Pick-Min
Pick-Max with n=10
Pick-Max with n=15
Pick-Max with n=20


Figure 24: The AHT Results of Pick-Min, Pick-Max with n=10, Pick-Max with n=15
and Pick-Max with n=20 Policies.


and the constraints must be attuned. First experiment, we compare the performance


objective (the AHT) at different policies as presented in Figure 24. We set the upper-


limit of AHT at 1.675 hops. (This AHT value is obtained from the AHT after the


6th state in the MDP.)


Figure 24 shows that the higher the number of changes, the better performance


(lower AHT). The average AHT of each of the Pick-Max with n=20, the Pick-Max


with n=15, the Pick-Max with n=10, and Pick-Min is 1.586 hops, 1.597 hops, 1.599


hops, and 1.663 hops respectively. We can see that the Pick-Max policy generates


better performance than that of the Pick-Min policy. There are not much different


among the Pick-Max policies except the first reconfiguration process (at 5pm). After


the first reconfiguration process, the virtual topology serves the next traffic demand


very well whereas a solution with NoC < 15 dominated the other solutions with


higher NoC.
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Figure 25: The Number of Changes for the Pick-Min, the Pick-Max with n=10, the
Pick-Max with n=15 and the Pick-Max with n=20 Policies.


Next we compare the values of NoC at different policies as presented in Figure


25. Although the Pick-Min chooses a solution with the minimum changes in the


lightpaths in each period but it takes totally 64 changes of 15 reconfiguration processes


in a day. Note that the reconfiguration process takes place only at the beginning of


the period which causes the traffic interruption. The Pick-Max with n=10 takes 59


changes in 7 reconfiguration processes, the Pick-Max with n=15 takes 56 changes


in 5 reconfiguration processes while the Pick-Max with n=20 takes 50 changes in


5 reconfiguration processes. We see that the Pick-Min is costly since it interrupts


the traffic most frequently. In this environment, the Pick-Max with n=20 is the best


choice since the first reconfiguration with 20 changes produces a virtual topology that


could serve traffic for a longer period.


Next we consider the utilization issue. We plot the number of lightpaths


required in each hour and the overall utilization in each hour as shown in Figure 26
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Figure 26: The Number of Lightpaths for Pick-Min, Pick-Max with n=10, Pick-Max
with n=15 and Pick-Max with n=20 Policies.


and Figure 27 respectively. The overall utilization is the fraction between total traffic


and the network capacity. The network capacity is the number of lightpaths multiplied


by a lightpath capacity. The results show that the Pick-Min consumes less number


of lightpaths than those of Pick-Max policies. Consequently, the Pick-Min results


in a superior overall utilization. The overall utilization of the Pick-Max with n=20,


the Pick-Max with n=15, the Pick-Max with n=10 and the Pick-Min policies are


24.56%, 25.16%, 25.77% and 29.05% respectively. It is a trade-off between the AHT


performance and the utilization. The Pick-Min performs reconfiguration processes


frequently thus the virtual topology is always in a good shape that fits the new


demand (the unused lightpaths are deleted). So the Pick-Min policy brings in a


higher utilization.


Notice that the utilization seems pretty low because the lightpaths come in a


big trunk (OC-192) while the base unit of traffic is in OC-1.
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Figure 27: The Utilization for Pick-min, Pick-max with n=10 and Pick-max with
n=15 Policies.
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CHAPTER 8


CONCLUSIONS


8.1 Conclusions


In this dissertation, we proposed a complete model of reconfiguration in


wavelength-routed optical network. Wavelength-routed optical networks are usually


in a mesh topology and serve as the backbone for wide area networks. Therefore we


conducted research on a mesh topology with realistic SONET/SDH traffic streams,


mostly deployed in a wide area network backbone. The grooming at the access node


is our key to route multiple low speed streams onto a huge lightpath capacity. We im-


plemented grooming as part of the reconfiguration. We found that the reconfiguration


problem is a multi-objective optimization since the reconfiguration objectives are the


network performance optimization and the cost minimization simultaneously. These


objectives are conflicting thus there are multiple solutions to satisfy the objectives.


We presented the set of objectives and selected the AHT as a performance objective


and considered the number of changes in lightpaths as a cost objective. Since the


AHT reflects the number of O-E-O conversions at intermediate nodes. The lower the


AHT, the higher the network performance. We optimize the objectives by the Pareto


optimal concept. The ILP and previous literature approaches are not able to generate


the set of satisfied solutions or the Pareto front since they consider one objective at


a time. We propose the Multi-objective Evolutionary Algorithm to create the set of


Pareto optimal solutions and the policy to pick one of the solutions for each round of


reconfiguration (when traffic demands are changed). The MOEA is one of stochas-


tic searches that work out from the random solutions. A solution is evaluated and
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promoted systematically if it fits well with the objectives. The fitness function, the


evolutionary operations e.g., selection, crossover and mutation are determined.


Our model of reconfiguration contains two tasks: a reconfiguration process


and a reconfiguration policy. We present the technique by applying the SPEA, one of


the MOEAs, in the reconfiguration process. The SPEA outperforms other MOEAs


and generates a perfect Pareto front that distributes solutions along the curve using


a clustering method. We need the perfect curve since our policy Actions rely on


it. The reconfiguration policy picks one of the solutions in the Pareto front that


generates the maximum expected outcome. We present the Markov Decision Process


and its elements that apply to our problem. The case study based on simulation of


the 14-node NSFNET network which is considered as a large network, illustrates the


Pareto front in the reconfiguration process. It shows that a reconfiguration problem


is a multiple conflict objectives and a Pareto front corresponding to the problem is


formed. We defined the MDP for a reconfiguration policy in the case study, compared


the efficiency of MDP with the IHO policy and found that we can find the optimal


policy which the expected outcome greater than that of the IHO policy. Therefore


the hypothesis is accepted. The result of the MDP policy is superior to that of the


IHO policy because the MDP optimizes the reconfigurations in the entire series not


just a particular one like the IHO. Since the MDP model is based on estimation or


probability, the accuracy of the model depends on how close the model is to the actual


network.


We also extend the study of the reconfiguration on the dynamic traffic using


a similar model. Since dynamic traffic is unpredictable, the pattern of traffic cannot


be defined by a stochastic model. We introduce the Pick-Min and Pick-Max policies
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to pick the solution in the Pareto front. The experiments of a one-day traffic show


the effective of the proposed heuristics. The model can make multiple changes or


zero change according to the new traffic, current virtual topology and the policy. In


the other words, the virtual topology is adaptable according to the traffic. In the


model, we leave the cost or weight cost between the AHT and NoC open. Hence, it


is applicable to any kind of traffic and cost function.


8.2 Future Work


Our model is not restricted to SONET/SDH streams. It could be applied


to other traffic like the fractional lightpath or packet-rate traffic. Other interesting


efforts are in the definition of the cost and reward functions in the policy. They need


not be linear and may be acquired from existing network parameters. Besides the


accuracy of the model could be improved by refining the states of the network. The


range of AHT in a state should be narrowed down and the Ψ should be included if


the volume of traffic is varied in each round.


The dynamic traffic reconfiguration model is affected by several parameters


like a Low-watermark and a monitoring period. It requires a deep study on these


parameters to satisfy the objectives. Another research effort is the policy that could


predict the dynamic traffic pattern since the recent record of traffic may predict the


incoming traffic. In addition, multiple policies (adaptable policy) may be applied to


the problem according to the current environment.
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APPENDIX A


FITNESS (SCORE) ASSIGNMENT CHART







This chart is the part of the SPEA fitness assignment. It reads the chromosome


to be decoded as a virtual topology. Traffic routing and color assignment are processed


and evaluated in term of the scores. Each chromosome has two scores corresponding


to the objectives.
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APPENDIX B


INPUT TRAFFIC DEMAND MATRICES FOR NSFNET







Table B1: The First Round of OC-1 Traffic Demand Matrix for NSFNET.






0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 5 1 0 5 5 7 7 8 8 6 1 0 1
1 3 0 2 1 1 6 0 4 0 0 2 6 8 2
2 6 4 0 7 8 7 3 1 3 5 2 8 6 5
3 3 8 2 0 7 3 5 7 6 7 2 7 7 8
4 4 8 8 5 0 0 4 7 6 8 2 5 4 2
5 8 0 4 3 3 0 0 1 4 0 1 5 2 1
6 3 2 2 5 7 2 0 7 8 1 4 8 3 3
7 2 2 4 0 3 7 1 0 0 4 1 3 0 5
8 6 5 4 4 0 5 1 8 0 0 6 2 4 8
9 4 7 8 4 7 6 5 7 0 0 6 2 5 8
10 0 0 5 3 3 4 8 0 0 3 0 3 8 0
11 1 6 7 4 5 3 5 1 2 4 5 0 6 5
12 7 6 7 0 7 5 8 7 5 8 5 3 0 0
13 2 8 8 4 5 6 2 3 4 3 3 0 4 0






Table B2: The First Round of OC-3 Traffic Demand Matrix for NSFNET.






0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 4 1 1 2 1 3 1 1 3 3 4 0 2
1 3 0 0 2 4 2 3 0 3 3 4 4 3 1
2 2 2 0 4 1 2 3 4 2 4 3 4 2 0
3 0 4 4 0 1 3 4 1 0 2 2 2 4 3
4 1 1 1 3 0 4 0 3 4 3 3 0 0 4
5 3 4 2 1 0 0 4 1 2 0 0 3 4 2
6 2 0 3 0 4 0 0 3 1 1 2 0 1 1
7 2 2 0 3 2 4 4 0 2 3 3 2 4 0
8 4 3 2 1 3 1 3 0 0 3 0 1 1 3
9 2 1 1 0 3 0 3 0 4 0 0 1 1 1
10 2 4 4 1 1 1 1 0 3 4 0 0 4 0
11 3 2 2 0 1 1 3 4 2 0 4 0 1 4
12 0 0 1 4 3 4 3 2 1 0 3 3 0 4
13 0 4 3 0 2 1 0 0 2 0 1 3 4 0
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Table B3: The First Round of OC-12 Traffic Demand Matrix for NSFNET.






0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 1 0 0 1 1 1 1 0 1 1 1 1 1
1 1 0 1 0 1 1 1 0 1 1 1 1 0 0
2 0 0 0 1 0 0 1 1 0 1 1 1 1 1
3 1 1 0 0 0 1 0 0 0 1 0 0 0 0
4 1 0 1 0 0 1 1 1 1 0 1 0 1 1
5 0 1 1 0 0 0 0 1 0 0 1 0 0 0
6 1 0 0 1 1 0 0 0 0 1 1 1 0 0
7 1 0 0 1 1 0 0 0 1 1 0 1 0 1
8 0 0 0 1 0 0 1 1 0 1 0 1 1 0
9 0 1 0 1 0 1 1 1 0 0 1 0 1 0
10 1 1 0 1 0 1 0 0 1 1 0 1 0 0
11 1 1 0 1 1 0 1 0 0 0 1 0 1 0
12 0 1 0 0 0 0 1 1 0 1 1 1 0 1
13 0 1 1 0 0 1 0 0 0 0 0 1 0 0






Table B4: The Second Round of OC-1 Traffic Demand Matrix for NSFNET.






0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 5 1 4 5 8 0 0 8 8 5 1 0 0
1 0 0 5 0 2 6 0 4 0 0 2 2 8 2
2 8 8 0 7 5 7 3 1 3 5 0 3 6 5
3 5 8 5 0 7 2 1 7 6 7 2 6 7 1
4 8 8 1 2 0 4 4 5 6 8 2 5 4 4
5 8 6 4 3 1 0 4 1 4 4 1 5 2 7
6 3 2 7 6 7 2 0 3 0 1 5 8 3 3
7 4 2 7 0 3 5 7 0 3 6 4 7 0 2
8 7 6 7 6 7 5 0 8 0 8 2 6 4 5
9 4 3 3 7 3 6 8 8 8 0 8 6 3 3
11 1 6 7 2 5 1 5 1 2 4 5 0 6 4
12 7 4 7 0 0 3 4 3 1 7 0 1 0 5
13 2 8 8 5 8 8 0 3 4 0 3 4 5 0
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Table B5: The Second Round of OC-3 Traffic Demand Matrix for NSFNET.






0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 2 0 1 0 3 1 1 3 2 3 3 3
1 3 0 4 2 0 1 0 2 3 1 4 4 4 3
2 2 2 0 2 4 2 1 3 2 4 3 4 0 0
3 2 3 4 0 3 3 1 1 0 1 3 2 1 2
4 1 3 3 3 0 4 1 1 2 4 2 0 3 4
5 4 4 3 4 0 0 4 1 3 1 4 3 2 4
6 2 3 0 1 4 3 0 0 0 1 0 1 1 2
7 4 2 0 1 4 4 2 0 2 3 3 3 4 2
8 4 0 2 1 1 1 2 1 0 3 3 1 1 3
9 0 1 3 4 3 3 3 4 4 0 0 1 0 1
10 2 0 2 4 4 0 1 0 1 3 0 1 2 0
11 0 0 0 1 2 1 4 0 4 0 4 0 1 4
12 0 0 4 4 0 4 0 2 1 3 3 3 0 0
13 0 2 2 4 2 1 0 4 0 3 0 3 1 0






Table B6: The Second Round of OC-12 Traffic Demand Matrix for NSFNET.






0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 1 0 1 1 1 0 0 1 1 0 0 1
1 1 0 1 1 1 1 1 1 0 1 1 1 1 0
2 1 1 0 1 0 1 1 1 0 1 1 1 0 1
3 1 1 0 0 1 0 0 0 0 0 0 0 0 0
4 1 1 0 0 0 1 1 1 0 1 0 1 1 1
5 1 1 0 0 1 0 0 0 0 0 0 0 0 0
6 1 0 1 1 1 1 0 0 0 0 1 0 0 0
7 1 0 0 1 0 0 0 0 1 1 1 1 0 1
8 1 1 0 1 0 0 1 1 0 0 1 1 1 1
9 0 0 1 0 0 0 0 1 0 0 1 0 1 0
10 1 0 0 1 1 0 0 1 1 1 0 1 0 0
11 1 0 0 1 1 0 1 0 1 0 1 0 1 0
12 0 0 0 0 0 1 1 0 0 1 1 1 0 1
13 0 1 1 0 0 1 1 0 1 0 1 0 0 0
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