
Chapter 3

The Virtual World

This chapter outlines the virtual world used for conducting the experiments

to be presented in this thesis. It is divided into five main sections. First, we briefly

discuss the physics engine used to simulate the creature and its environment. Next,

we explain in detail the setup of the creature’s morphology. Then we describe

the basic workings of an artificial neural network (ANN) that act as the creature’s

locomotion controller, as well as evolutionary methods of learning for ANNs. The

next section then explains the genotype used to represent the artificial creature’s

locomotion controller including an outline of the process which converts the genotype

into the operational ANN used to control the movement of the artificial creature.

Finally we discuss the choice of our common evolutionary, simulation parameters

and statistical test of significance used for the experiments conducted in this thesis.

3.1 Physics-Based Simulation

The accurate modelling of the simulation environment plays a crucial part

in producing artificial creatures that move and behave realistically in 3D (Taylor and

Massey 2001). A dynamic rather than kinematic approach is paramount in allowing

for effective artificial evolution to occur. Physical properties such as forces, torques,

inertia, friction, restitution and damping need to be incorporated into the artificial

evolutionary system. To this end, the Vortex physics engine (CM Labs 2002) was

39



CHAPTER 3. THE VIRTUAL WORLD 40

employed to generate the physically realistic artificial creature and its simulation

environment.

By virtue of conducting our artificial evolution within a physically accurate

virtual world, rich dynamical interactions are able to occur between the simulated

creature and its environment. This in turn enables complex walking behaviors to

emerge as the creature evolves the use of its sensors to control the actuators in

its limbs through dynamical interactions with the environment. Furthermore, the

accurate modelling of physical forces results in creature locomotion that is both

realistic and biologically interesting.

3.1.1 Vortex Physics Engine

The Vortex physics engine is a commercial-off-the-shelf simulation toolkit

developed by Critical Mass Laboratories (CM Labs 2002). It consists of a set of

libraries that comprise of C++ routines for robust rigid-body dynamics, collision

detection, contact creation, and collision response. Vortex is currently being used by

NASA’s Autonomy and Robotics Group to develop autonomous rovers for possible

deployment in future Mars exploration programs (CM Labs Press Release 2003).

The advantages of Vortex include allowing the simulation of natural behavior of

objects in the physical world and offering fast yet accurate computation of the

dynamical forces that act on the simulated objects. Using the supplied libraries,

real-time interactive 3D simulations can be created in which objects, particularly

jointed objects moving under constraints, exhibit natural movement under various

environmental conditions. However, as Vortex is a constraint-based simulation, it

naturally suffers from increasingly higher computational requirements as the number

of objects being simulated in the world increases. As such, the design of the artificial

creature and its world are kept relatively simple in order to maintain a reasonable

run time, especially when conducting the evolutionary experiments.



CHAPTER 3. THE VIRTUAL WORLD 41

3.2 Creature Morphology

The artificial creature is a basic quadruped with 4 short legs. Each leg con-

sists of an upper limb connected to a lower limb via a hinge (one degree of freedom)

joint and is in turn connected to the torso via another hinge joint. Therefore, there

are 8 degrees of freedom overall. The mass of the torso is 1g and each of the limbs is

0.5g. The torso has dimensions of 4× 2× 1cm and each of the limbs has dimensions

of 1×1×1cm. In terms of its morphological dimensions, the creature can be visual-

ized as some type of insect. A biological equivalent in terms of size and weight can

be found in beetles, where their body lengths range from 0.25mm to 16cm and body

mass from 0.4mg to 30g (Grzimek 1984). Research into evolving tiny creatures is

being given more attention lately, especially in the field of nanotechnology. A screen

dump of the actual creature within the simulation world is shown in Figure 3.1 and

a geometric representation of the creature is given in Figure 3.2.

Figure 3.1: A screen dump of the simulated quadruped in the simulation world.

The hinge joints are allowed to rotate between 0 to 1.57 radians. Each of the

hinge joints is actuated by a motor that generates a torque producing rotation of the

connected body parts about that hinge joint. The creature’s overall central nervous

system is illustrated in Figure 3.3 where the three letter abbreviations identify each

of the 8 different limbs. The first letter denotes (U)pper or (L)ower, the second

denotes to (F)ront or (B)ack, and the third denotes (R)ight or (L)eft.



CHAPTER 3. THE VIRTUAL WORLD 42

Figure 3.2: A geometric representation of the simulated quadruped.

LFL

UFL

UBL

LBL

LFR

LBR

UFR

UBR

x9 x11

x12x10

x7y5 y7x5

y1 y3x3x1

x2 x4y2 y4

x6y6 x8 y8

Figure 3.3: A diagrammatic representation of the simulated quadruped’s central

nervous system.

Correspondingly, the artificial creature has 12 sensors and 8 actuators. The

12 sensors consist of 8 joint angle sensors (x1, x2, x3, x4, x5, x6, x7, x8) corresponding



CHAPTER 3. THE VIRTUAL WORLD 43

to each of the hinge joints and 4 touch sensors (x9, x10, x11, x12) corresponding to

each of the 4 lower limbs of each leg. The joint angle sensors (x1–x8) return contin-

uous values in radians whereas the touch sensors (x9–x12) return discrete values, 0

if no contact with the ground and 1 if contact is made. The choice of inputs was

decided upon after a review of the literature where joint angle and touch sensors

were the most commonly used types of input to the controller (eg. Sims 1994a; Ko-

mosinski 2000; Paul and Bongard 2001; Bongard and Pfeifer 2002). The 8 actuators

(y1, y2, y3, y4, y5, y6, y7, y8) represent the motors that control each of the 8 articulated

joints of the creature. These motors are controlled via outputs generated from the

ANN controller which is then used to set the desired velocity of rotation of the con-

nected body parts about that joint. A summary of the sensors is given in Table 3.1

followed by the actuators in Table 3.2.

Sensor Number Detects Angle Between Value Returned
x1 Torso & upper back left limb [0, 1.57]
x2 Torso & upper front left limb [0, 1.57]
x3 Torso & upper back right limb [0, 1.57]
x4 Torso & upper front right limb [0, 1.57]
x5 Upper & lower back left limbs [0, 1.57]
x6 Upper & lower front left limbs [0, 1.57]
x7 Upper & lower back right limbs [0, 1.57]
x8 Upper & lower front right limbs [0, 1.57]

Sensor Number Detects Contact Between Value Returned
x9 Lower back left limb & ground {0, 1}
x10 Lower front left limb & ground {0, 1}
x11 Lower back right limb & ground {0, 1}
x12 Lower front right limb & ground {0, 1}

Table 3.1: Description of the simulated quadruped’s 12 sensors that provide inputs

to the ANN controller.

3.3 Creature Controller

3.3.1 Artificial Neural Networks

An ANN may be described as a directed graph: G(N,A, ψ), where N is

a set of nodes, A denotes the connections between the nodes, and ψ represents the



CHAPTER 3. THE VIRTUAL WORLD 44

Actuator Number Controls Joint Between Velocity Range
y1 Torso & upper back left limb [−5, +5]
y2 Torso & upper front left limb [−5, +5]
y3 Torso & upper back right limb [−5, +5]
y4 Torso & upper front right limb [−5, +5]
y5 Upper & lower back left limbs [−5, +5]
y6 Upper & lower front left limbs [−5, +5]
y7 Upper & lower back right limbs [−5, +5]
y8 Upper & lower front right limbs [−5, +5]

Table 3.2: Description of the simulated quadruped’s 8 actuators that receive outputs

from the ANN controller.

learning rule which enables the strengths of inter-neuron connections to be auto-

matically adjusted. A node receives its inputs from an external source or from other

nodes in the network. The node undertakes some processing on its inputs and sends

the result as its output. The processing function of a node is called the activation

function. The activation, a, is calculated as a weighted sum of the inputs to the

node in addition to a constant value called the bias.

The following notations will be used to describe a single hidden layer feed-

forward ANN:

• I and H are the number of input and hidden units respectively.

• Xp ∈ X = (xp
1, x

p
2, . . . , x

p
I), p = 1, . . . , P , is the pth pattern in the input feature

space X of dimension I, and P is the total number of patterns.

• Yp
o ∈ Yo is the corresponding scalar of pattern Xp in the output target space

Yo.

• wih and who, are the weights connecting input unit i, i = 1, . . . , I, to hidden

unit h, h = 1 . . . H, and hidden unit h to the output unit o.

• Θh(X
p) = σ(ah); ah =

∑I
i=0 wihx

p
i , h = 1, . . . , H, is the hth hidden unit’s

output corresponding to the input pattern Xp, where ah is the activation of

hidden unit h, and σ(.) is the activation function that is taken in this paper

to be the logistic function σ(z) = 1
1+e−Dz , with D the function’s sharpness or

steepness and is taken to be 1.



CHAPTER 3. THE VIRTUAL WORLD 45

• Ŷ p
o = σ(ao); ao =

∑H
h=0 whoΘh(X

p) is the network output and ao is the acti-

vation of output unit o corresponding to the input pattern Xp.

The following pseudocode describes the functioning of a single hidden layer

feed-forward ANN in operation.

1. Until termination conditions are satisfied, do

(a) for each input pattern, (Xp, Y p
o ), apply the following steps

i. Inject the input pattern Xp into the network.

ii. Calculate the output, Θh(X
p), for each hidden unit h.

iii. Calculate the output, Ŷo
p
, for each output unit o.

3.3.2 Evolutionary Artificial Neural Networks

Traditionally ANNs are trained using learning algorithms such as back-

propagation (BP) (Rumelhart, Hinton, and Williams 1986) to determine the con-

nection weights between nodes. However such methods are gradient-based tech-

niques which usually suffer from the inability to escape from local minima when

attempting to optimize the connection weights. To overcome this problem, evo-

lutionary approaches have been proposed as an alternative method for optimizing

the connection weights. ANNs evolved via this method is thus referred to as evo-

lutionary ANNs (EANNs). In the literature, research into EANNs usually involves

one of three approaches: (1) evolving the weights of the network (Fogel, Fogel, and

Porto 1990; Belew, McInerney, and Schraudolph 1992), (2) evolving the architecture

(Miller, Todd, and Hegde 1989; Kitano 1990), or (3) evolving both simultaneously

(Koza and Rice 1991; Angeline, Saunders, and Pollack 1994). For a thorough review

of EANNs, refer to the comprehensive survey conducted by Yao (1999).

Our objective is to evolve ANNs that can perform successfully as loco-

motion controllers for artificial creatures. Here we will attempt to optimize both

the connection weights and number of hidden nodes through evolutionary methods.

Other architectural aspects of the ANN such as types of connections between layers,



CHAPTER 3. THE VIRTUAL WORLD 46

types of transfer functions and number of input/output units have been kept fixed

and are not subjected to evolutionary optimization.

3.3.3 Controller Architectures

The choice of ANN architectures used for controller evolution is normally

made arbitrarily when evolving both simulated (Reeve 1999; Bongard and Paul

2001; Pasemann, Steinmetz, Hulse, and Lara 2001a; Paul and Bongard 2001; Reil

and Massey 2001; Bongard 2002a; Bongard and Pfeifer 2002; Reil and Husbands

2002) as well as physical artificial creatures (Husbands, Harvey, Jakobi, Thomp-

son, and Cliff 1997; Lund and Hallam 1997; Floreano and Urzelai 1998; Floreano

and Mondada 1998; Nolfi and Floreano 1999; Floreano and Urzelai 2000; Nolfi and

Floreano 2002; Nolfi 2002). Usually some form of recurrency is used in the ANN,

either partially (Bongard and Paul 2001; Pasemann, Steinmetz, Hulse, and Lara

2001a; Paul and Bongard 2001; Bongard and Pfeifer 2002; Bongard 2002a) or fully

(Floreano and Urzelai 1998; Floreano and Mondada 1998; Nolfi and Floreano 1999;

Reeve 1999; Floreano and Urzelai 2000; Reil and Massey 2001; Nolfi and Floreano

2002; Nolfi 2002; Reil and Husbands 2002). On the other hand, simple direct con-

nections between sensor inputs and motor outputs have also proven to be sufficient

for evolving robots controllers with simple behaviors that can accomplish the set

task (Lund and Hallam 1997; Pasemann, Steinmetz, Hulse, and Lara 2001a; Nolfi

2002). As such, it remains unclear from the body of literature what types of ANN

architecture should be used to evolve controllers for artificial creatures.

We will now introduce four different types of ANN architecture for con-

troller evolution where in the next chapter, we will attempt to provide some char-

acterization of the search space associated with each type of controller architecture.

The first type of ANN is a simple feed-forward ANN and is denoted NNType0 (Fig.

3.4.1). The second type of ANN is a feed-forward ANN augmented with direct con-

nections from input to output units and is denoted NNType1 (Fig. 3.4.2). The

third type of ANN is a feed-forward network with recurrency on the hidden units

(Elman-type ANN (Elman 1990)) and is denoted NNType2 (Fig. 3.4.3). The last



CHAPTER 3. THE VIRTUAL WORLD 47

Figure 3.4: Diagrammatic representation of 4 types of ANN architecture: 1.

NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom left), 4.

NNType3 (bottom right).

type of ANN is a feed-forward network augmented with both direct connections

from input to output units as well as recurrency on the hidden units and is denoted

NNType3 (Fig. 3.4.4).

Recurrent connections were included to allow the creature’s controller to

learn state-dependent dynamics of the system. Direct input-output connections

were also included in the controller’s architecture to allow for direct sensor-motor

mappings to evolve that do not require hidden layer transformations. For all four

ANN architectures, all units in the preceding layer are fully-connected to all units

in the following layer. A bias term is also incorporated into the calculations of the

activations of the hidden as well as output units.

All four ANN architectures have a variable hidden layer in terms of its

number of active hidden units. This is an integral feature of the ANNs that is essen-



CHAPTER 3. THE VIRTUAL WORLD 48

tial for the purposes of this investigation as explained in Section 1.2. Experiments

and analyses found later in this thesis will further clarify this point.

3.4 Genotype Representation

Our chromosome is a class that contains one matrix Ω and one vector ρ.

The matrix Ω is of dimension (I + H) × (H + O). Each element ωij ∈ Ω, is the

weight connecting unit i with unit j, where i = 0, . . . , (I − 1) is the input unit i,

i = I, . . . , (I + H − 1) is the hidden unit (i − I), j = 0, . . . , (H − 1) is the hidden

unit j, and j = H, . . . , (H + O − 1) is the output unit (j −H).

The vector ρ is of dimension H, where ρh ∈ ρ is a binary value used to

indicate if hidden unit h exists in the network or not. As such, it works as a switch

to turn a hidden unit on or off. The sum,
∑H

h=0 ρh, represents the actual number of

hidden units in a network, where H is the maximum number of hidden units. The

use of ρ allows a hidden node to evolve even if it is not active during certain periods

of the evolutionary optimization process.

The chromosome has two additional components when the crossover and

mutation rates are also subjected to evolutionary optimization and self-adapted in

the algorithms. These additional elements are the crossover rate δ and the mutation

rate η. The addition of these last two elements to the genotype representation allows

simultaneous training of the weights in the network and selecting a subset of hidden

units as well as allowing for the self-adaptation of crossover and mutation rates

during optimization.

A direct encoding method was chosen to represent these variables in the

genotype as an easy-to-implement and simple-to-understand encoding scheme. Other

more complex direct as well as indirect encoding schemes such as those involving

developmental mechanisms may prove to be useful and represents possible future

work extending from this investigation. A summary of the variables used in the

chromosome to represent the artificial creature’s genotype is listed in Table 3.3.

The mapping of the chromosome into the ANN is depicted in Figure 3.5.



CHAPTER 3. THE VIRTUAL WORLD 49

Variable Representing Value Type Value Range
Ω ANN Connection Weights Real ]−∞, +∞[
ρ Active Hidden Units Discrete {0, 1}
δ Crossover Rate ∗ Real [0, 1]
η Mutation Rate ∗ Real [0, 1]

Table 3.3: Description of the variables used in the chromosome to represent the

artificial creature’s genotype. ∗ denotes elements present only in algorithms that

use self-adaptation of crossover and mutation rates.

Figure 3.5: A diagram illustrating the mapping from a chromosome to an ANN

controller.

3.4.1 Fitness Functions

The fitness f1 of each locomotion controller represented in the genotype g

is defined to be simply

f1 = ⇑ d(g) (3.1)

where d refers to the horizontal Euclidean distance achieved by the creature as

controlled by the ANN at the end of the evaluation period of 500 timesteps. In other



CHAPTER 3. THE VIRTUAL WORLD 50

words, d measures the planar locomotion distance travelled by the artificial creature

over the designated period. In experiments involving multi-objective evolutionary

optimization of the locomotion controller, a second fitness f2 is defined to be

f2 = ⇓
H∑

h=0

ρh (3.2)

where the number of active hidden units in used in the ANN controller is counted

by summing the binary vector ρh, which is part of the genotype g. Therefore, the

first objective is to maximize the horizontal locomotion achieved by the artificial

creature and where a second objective is involved, to minimize the use of nodes

in the hidden layer of the ANN controller, which will in turn determine the VC-

dimension of the controller as explained in Section 1.3. Unless stated explicitly, the

fitness of a controller always refers to the first fitness function f1 which measures

the locomotion distance.

3.5 Evolutionary and Simulation Parameters

The relevant literature on artificial evolution of physically simulated crea-

tures was reviewed to ascertain suitable parameter values for use in the evolutionary

runs to be conducted in the experiments. Table 3.4 summarizes the parameters used

for these types of experiments.

Authors No. of Population No. of No. of
Generations Size Timesteps Repeats

Lipson and Pollack (2000) 300–600 200 12 N/A
Bongard and Paul (2000) 300 300 20000 10

Hornby and Pollack (2001a) 100–500 100 N/A 10
Taylor and Massey (2001) 50–100 ∼300 200–1000 N/A

Otsu, Ishiguro, Fujii,
Aoki, and Eggenberger (2001)

500 100 N/A 5

Komosinski and
Rotaru-Varga (2001)

120–800 200 50–500 10

Bongard (2002a) 50 200 500 10
This Thesis 1000 30 500 10

Table 3.4: A comparison of the evolutionary and simulation parameters used for

evolving artificial creatures in simulation.



CHAPTER 3. THE VIRTUAL WORLD 51

As can be seen, the parameters used in the literature varied significantly.

The evolutionary parameters used in this thesis were chosen after both reviewing

the literature and conducting a number of preliminary experiments. This was to

ensure that the evolutionary runs balanced both time requirements and quality of

solutions obtained. These values are given in the last line of Table 3.4. It may be

noticed that the number of generations we have chosen is above the normal range

used in the literature. This is to ensure that the evolutionary optimization has

been given enough time to converge to a reasonably optimal solution. Secondly,

the use of a small population size is also noted with our proposed multi-objective

evolutionary optimization algorithm. Small population sizes have been previously

shown to be advantageous when evolving ANNs using GAs (Foster, McCullagh, and

Whitford 1999). Furthermore, preliminary experiments have shown that a large

population size was not essential for evolving successful locomotion controllers (Teo

and Abbass 2002a; Teo and Abbass 2002b; Teo and Abbass 2002c). One reason is

that the objective of minimizing the number of hidden units which is discrete in

nature imposes an upper bound on the possible number of non-dominated solutions

that can exist in the population (see Section 5.1 for an explanation of non-dominance

and Pareto optimality). This upper bound is simply the maximum number of hidden

units allowed + 1 (see second paragraph of Section 4.4 for further explanations). A

population size of 30 is approximately double the bound on the number of non-

dominated solutions that can exist in any population using this approach (Abbass

2002a). Since our approach is an elitist Pareto approach, we only preserve the non-

dominated set in each population. Therefore, we do not need to introduce additional

methods for reducing the number of Pareto solutions when they exceed a certain

threshold as in the case of the PDE algorithm (Abbass, Sarker, and Newton 2001)

where a neighborhood function was used, and NSGA-II (Deb, Agrawal, Pratab, and

Meyarivan 2000) where a niching strategy was used.



CHAPTER 3. THE VIRTUAL WORLD 52

3.5.1 Statistical Testing

In order to test for the presence of significant statistical differences be-

tween two sets of results, the paired two-sample t-test (Runyon, Haber, Pittenger,

and Coleman 1996) is used throughout all experimental setups in this thesis. Since

the main objective of this work is to investigate the automatic generation of loco-

motion controllers, all tests of significance are always conducted in relation to the

f1 objective which evaluates locomotion fitness. The t-statistic is calculated using

the direct difference method (Runyon, Haber, Pittenger, and Coleman 1996) which

is given by the equation

t =
D̄

√√√√√√
∑

D2 −
(
∑

D)2

N
N(N − 1)

(3.3)

where D̄ = X̄1 − X̄2 and X̄1, X̄2 are the sample means of the two groups and

D is the difference between the corresponding pairs of random variables. The 10

different initial populations are fixed for all experiments by using the same set of

10 seeds corresponding to each of the 10 individual runs. N is the sample size of a

single group and the degree of freedom is approximated by taking N − 1. For all

statistical testing of results, a two-tailed test at both significance levels of α = 0.05

(95% confidence interval, t-value = 2.262) and α = 0.01 (99% confidence interval,

t-value = 3.250) are conducted. Bracketed t-values indicate that the sample mean of

the group being tested, X2, is lower compared to the sample mean group of results

tested against, X1.

In experiments involving comparisons between different ANN architecture

types, the tests for statistical significance are always made against the NNType0

architecture. As explained earlier in Section 3.3.3, the NNType0 architecture is

a simple feed-forward artificial neural network with connections only between the

input-hidden and hidden-output layers. It does not have any other additional direct

nor recurrent connections that are present in the other types of controller architec-

tures. Thus, the NNType0 controllers have the most minimal architectures among



CHAPTER 3. THE VIRTUAL WORLD 53

the different types of controller architectures assuming that the number of hidden

units is fixed. Hence, to test whether more complex types of ANN architectures

with additional connections provided significantly different locomotion capabilities,

t-tests are always carried out against the NNType0 architecture.

3.6 Chapter Summary

The design of our physically-based artificial evolutionary system for evolv-

ing the locomotion controllers of a virtually embodied creature was described. The

choice of parameters to be used in the experimental sections of this thesis were also

discussed and justified. In the next chapter, we will attempt to characterize the

fitness landscapes of four ANN architectures to investigate which type of network

will be most suitable for the artificial evolution of controllers.


