
Chapter 6

Verifying the Self-Adaptive Pareto

EMO

In this chapter, we employ more conventional methods of evolutionary opti-

mization for the generation of artificial creature controllers and then compare these

results against the self-adaptive Pareto approach of the SPANN EMO algorithm.

Three evolutionary optimization algorithms are used here, namely a hand-tuned

EMO algorithm, a weighted sum EMO algorithm and a single-objective evolutionary

optimization algorithm. The objectives of these comparisons are firstly to elucidate

the effectiveness of using these conventional algorithms for generating high qual-

ity locomotion controllers and secondly whether the advantages of the self-adaptive

Pareto approach are truly beneficial against these more common methods of evolu-

tionary optimization. A test of redundancy present in the ANN controllers evolved

using SPANN is also conducted and compared against the ANN controllers evolved

using the conventional EAs mentioned above. Finally, a comparison of SPANN is

made against NSGA-II, a well-known and state-of-the-art Pareto EMO algorithm.
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6.1 A Hand-Tuned EMO Algorithm

6.1.1 Experimental Setup

In this set of experiments, we used an EMO algorithm with user-defined

crossover and mutation rates rather than self-adapting parameters in the SPANN

algorithm (similar to the MPANN algorithm (Abbass 2001) but without back-

propagation). Apart from the non-self-adapting crossover and mutation rates, the

hand-tuned EMO algorithm is otherwise similar to the SPANN algorithm in all other

respects. The NNType3 architecture was used since it provided the best overall re-

sults among the different controller architectures (see Section 5.6). Three different

crossover rates (c) and mutation rates (m) were used: 10%, 50% and 90% for both

rates giving a total of 9 different combinations. As with SPANN, the fitness of

each genotype in these experiments was evaluated according to both the f1 and f2

objective functions, which measures the locomotion distance achieved and number

of hidden units used by the controller respectively as defined in Section 3.4.1. All

other evolutionary and simulation parameters remain the same: 1000 generations,

30 individuals, maximum of 15 hidden units, 500 timesteps and 10 repeated runs.

In characterizing the fitness landscapes, the individual genotypes were grouped into

6250 discrete intervals over the increased locomotion distance dimension of 25 used

in this chapter, in order to maintain the same frequency distribution’s interval length

as those previously used in Chapters 4 and 5.

6.1.2 Results and Discussion

In this section, we discuss the solutions produced using the hand-tuned

EMO algorithm in terms of the different crossover and mutation rates used dur-

ing evolution. The best Pareto solutions for locomotion distance obtained from

conducting the evolutionary optimization process using user defined rates for the

genetic operators are presented in Table 6.1. The highest overall best locomotion

distance of 19.5 was achieved using a crossover rate of 10% and a mutation rate of

50% while the lowest overall best locomotion distance of 14.9 was obtained using
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Crossover Mutation Overall Best Average Best No. of
Rate Rate Locomotion Locomotion Distance Hidden

Distance ± Standard Deviation Units
10% 10% 17.1071 13.5192 ± 2.7845 3.2 ± 1.8
10% 50% 19.5051 14.1158 ± 2.6535 6.6 ± 2.1
10% 90% 14.9493 13.2843 ± 1.8225 8.1 ± 2.7
50% 10% 16.2272 14.1268 ± 2.1286 3.0 ± 2.4
50% 50% 18.5638 15.3819 ± 2.3195 6.5 ± 1.7
50% 90% 16.3347 13.1881 ± 1.4715 7.7 ± 2.5
90% 10% 18.5980 14.1511 ± 2.4721 3.4 ± 1.8
90% 50% 15.8766 13.1978 ± 1.6447 6.1 ± 1.4
90% 90% 15.9395 12.1653 ± 2.3799 6.8 ± 2.9

Table 6.1: Comparison of best locomotion distance for Pareto solutions found over

10 independent runs using the hand-tuned EMO algorithm with different crossover

and mutation rates.

a crossover rate of 10% and a mutation rate of 90%. The best result in terms of

average best locomotion distance achieved was obtained using a crossover rate of

50% and mutation rate of 50% while the worst overall result was obtained using a

crossover rate of 90% and mutation rate of 90%. This suggests that a low to medium

crossover coupled with a medium mutation rate provided better results when self-

adaptation was not used in the EMO algorithm and conversely, a high mutation

rate seemed to provide lower quality results for locomotion distance. In terms of

optimizing the hidden layer, the crossover rate did not seem to affect the results

while a low mutation rate of 10% consistently gave the smallest hidden layer for the

evolved controllers of around 3.2 hidden units compared to higher mutation rates of

50% and 90%.

The evolution of the Pareto solution for best locomotion distance using the

hand-tuned EMO algorithm for 10 runs over 1000 generations is shown in Figure

6.1 for four of the nine different combinations of crossover and mutation rates. In

general, the characteristics of these convergence graphs were similar to that obtained

using SPANN (Figure 5.3.4) in that the progression of fitter solutions being discov-

ered was relatively smooth over time. The top two graphs (Figures 6.1.1 & 6.1.2) are

representative of these runs. However, there were also combinations of crossover and
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Figure 6.1: Best locomotion distance of Pareto solutions obtained over 1000 genera-

tions for 10 runs using the hand-tuned EMO algorithm with 1. c=10% m=50% (top

left), 2. c=50% m=50% (top right), 3. c=10% m=90% (bottom left), 4. c=50%

m=90% (bottom right). X-axis: Generation, Y-axis: Locomotion distance. Addi-

tional graphs can be found in the accompanying CD-ROM.

mutation rates where the improvement of the solutions was much less smooth caus-

ing large plateau regions. This phenomenon can be seen in the bottom two graphs

(Figures 6.1.3 & 6.1.4), which are highly reminiscent of the graph obtained using

hill-climbing (Figure 4.8.4), suggesting that the algorithm may have become stuck

in a local optimum for some of the runs. This is likely to be due to the limitation of

not being able to change the mutation and crossover rates during the evolutionary

optimization process, which may be beneficial in escaping from deep local optima.
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As such, these results suggest that self-adaptation, such as that present in SPANN,

may be a desirable feature not merely for reducing the computational runs required

to test out hand-tuned crossover and mutation rates but also for avoiding premature

convergence to less optimal solutions.
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Figure 6.2: Mean locomotion distance of population over 1000 generations using

the eighth seed for the hand-tuned EMO algorithm with 1. c=10% m=10% (left),

2. c=90% m=90% (right). X-axis: Generation, Y-Axis: Locomotion distance.

Additional graphs can be found in the accompanying CD-ROM.

Figure 6.2 depicts the mean locomotion distance and Figure 6.3 depicts

the standard deviation for locomotion distance of the population as it evolved over

1000 generations. The graphs depicted are representative of the trends observed in

a large majority of the runs. The average population fitness in terms of locomotion

distance remained constant within a fixed range after the initial large jump early

during evolution as shown in Figures 6.2.1 and 6.2.2. The two most common trends

in the standard deviation of the population were remaining fairly constant within

a certain range as shown in Figure 6.3.1 and increasing slightly over time as shown

in Figure 6.3.2. Lower crossover and mutation rates seemed to produce a higher

population average (Figure 6.2.1) compared to higher crossover and mutation rates

(Figure 6.2.2). On the other hand, higher crossover and mutation rates appeared to

produce less changes to the standard deviation of the population over time (Figure
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Figure 6.3: Standard deviation for locomotion distance of population over 1000 gen-

erations using the eighth seed for the hand-tuned EMO algorithm with 1. c=10%

m=10% (left), 2. c=90% m=90% (right). X-axis: Generation, Y-Axis: Standard

deviation of locomotion distance. Additional graphs can be found in the accompa-

nying CD-ROM.

6.3.2) compared to lower crossover and mutation rates (Figure 6.3.1). These last

two observations suggest that higher crossover and mutation rates were less efficient

at finding fitter solutions because the large changes being applied to the genotype at

every generation did not allow evolution a chance to discover and maintain a good

set of basic genes. Consequently, the solutions being sampled using high crossover

and mutation rates were similarly low in fitness resulting in the lower population

means and smaller changes in the standard deviations over time.

6.1.3 Search Space Characterization

The distribution of genotypes generated using the hand-tuned EMO algo-

rithm is plotted in Figure 6.4 in terms of locomotion distance and number of hidden

units used in the ANN. Although the distribution of solutions across both objective

spaces were more uniform compared to that obtained using random search (Fig-

ure 4.1.4), hill-climbing (Figure 4.5.4) and random walk (Figure 4.9.4), they were

much less uniform and more clustered compared to the distribution obtained using
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Figure 6.4: Frequency distribution of solutions obtained using the hand-tuned EMO

algorithm with 1. c=10% m=10% (top left), 2. c=10% m=50% (top right), 3.

c=50% m=50% (bottom left), 4. c=50% m=90% (bottom right). X-axis: Locomo-

tion distance, Y-axis: No. of hidden units, Z-axis: Frequency. Additional graphs

can be found in the accompanying CD-ROM.

SPANN (Figure 5.6.4). From the general features observed in these graphs, the

distributions most similar to SPANN were those generated using a crossover rate of

10% and mutation rate of 50% (Figure 6.4.2) as well as a crossover rate of 50% and

mutation rate of 50% (Figure 6.4.3). The main difference between the hand-tuned

EMO algorithm and SPANN is that the solutions in the hand-tuned EMO were

mainly clustered around the lower fitness regions of the search space, a large major-

ity of which yielded only between 0 and 10 units of locomotion distance compared
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to SPANN where a more even distribution could be seen to extend to fitness regions

of 15 units of locomotion distance.
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Figure 6.5: Contour graphs of frequency distribution of solutions obtained using the

hand-tuned EMO algorithm with 1. c=10% m=10% (top left), 2. c=10% m=50%

(top right), 3. c=50% m=50% (bottom left), 4. c=50% m=90% (bottom right).

X-axis: Locomotion distance, Y-axis: No. of hidden units. Additional graphs can

be found in the accompanying CD-ROM.

The contour graphs in Figure 6.5 illustrate the distribution of solutions

across the two objectives of minimizing the hidden layer and maximizing locomotion

distance. A number of interesting features emerged in these contour graphs. Firstly,

the mutation rate significantly affected the range of genotypes generated in terms

of the number of hidden units used in the controller. The controllers evolved using
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the lowest mutation rate of 10% centered around a usage of between 2 and 3 hidden

units (Figure 6.5.1). When the mutation rate was increased to 50%, the solutions

now centered around a higher usage of between 7 and 8 hidden units (Figures 6.5.2

& 6.5.3), and furthermore, in the highest setting of the mutation rate at 90%, the

solutions clustered around controllers that used between 10 and 12 hidden units

(Figure 6.5.4). The contour features most similar to SPANN (Figure 5.8.4) again

could be seen when the crossover rate was set at 10% and mutation rate at 50%

(Figure 6.5.2) as well as at a crossover rate of 50% and mutation rate of 50% (Figure

6.5.3), although in both these cases the spread of solutions over the objective spaces

were less uniformly distributed. Interestingly, the movement of solutions to larger

hidden layer sizes produced lower locomotion capabilities. The underlying fitness

landscape may have become more rugged as the size of hidden layer increased and

as previously postulated, the non-self-adapting crossover and mutation rates may

have represented a severe limitation in allowing the algorithm to move through

these landscapes, subsequently causing the optimization process to become trapped

around sub-optimal regions of the search space.

The probability density function of solutions obtained using the hand-tuned

EMO algorithm is illustrated in Figure 6.6. The probability density curves show that

a low crossover rate of 10% and low mutation rate of 10% provided the best dis-

tribution of solutions across the locomotion objective space (Figure 6.6.1). The cu-

mulative curve shows that the probability of encountering fitter solutions decreased

noticeably as the mutation rate was increased to 50% (Figures 6.6.2 & 6.6.3) and

especially 90% (Figure 6.6.4), where the probability of encountering a solution de-

creased to 0 beyond a fitness of only around 11.

The search space characterization of the hand-tuned EMO algorithm show-

ed significantly different characteristics compared to SPANN, especially when very

high and very low combinations of crossover and mutation rates were used. As

previously discussed, the correct choice of these two rates by the user is paramount

in obtaining reasonably good results when using this form of the EMO algorithm.

This analysis also showed that the use of self-adaptive crossover and mutation rates
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Figure 6.6: Density (solid) and cumulative (dashed) probability distribution of so-

lutions obtained using the hand-tuned EMO algorithm with 1. c=10% m=10% (top

left), 2. c=10% m=50% (top right), 3. c=50% m=50% (bottom left), 4. c=50%

m=90% (bottom right). X-axis: Locomotion distance, Y-axis: Probability. Addi-

tional graphs can be found in the accompanying CD-ROM.

in SPANN allowed the evolutionary search to sample a much larger area of the

objective space compared to the non-self-adaptive EMO algorithm and as such was

able to perform more effectively in finding good locomotion controllers.
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6.2 A Weighted Sum EMO Algorithm

6.2.1 Experimental Setup

For this second set of experiments, we used a single objective that com-

bined the two objectives f1 and f2 using a weighted sum rather than a true Pareto

approach as found in the SPANN algorithm, which distinctly separates the two ob-

jectives when assigning fitness values to individuals in the population. As in the

comparison between the hand-tuned versus self-adaptive EMO algorithms in the

previous section, the NNType3 architecture was used in this set of experiments for

the same reason that it provided the best overall result among the different archi-

tectures as reported in Section 5.6. The weighting of the individual objectives was

done in a relative manner using a parameter denoted by γ. In order to combine the

two objectives f1, which is the maximization of the locomotion distance, and f2,

which is the minimization of the number of hidden units used in the ANN, into a

single weighted sum fitness function, these objectives needed to be unified in terms

of their direction of optimization. Firstly, the locomotion distance objective f1 was

re-defined to be a minimization problem

f ′1 = 100.0− f1 (6.1)

which yielded the minimization of the overall weighted sum function as follows:

γ × f ′1 + (1− γ)× f2 (6.2)

However, we chose to convert the overall weighted sum optimization problem into

one of maximization to maintain consistency when presenting the solutions in terms

of locomotion distance achieved by the best evolved controllers. Hence the final

weighted sum objective function is given by

f(overall) = 100.0− [(γ × f ′1) + ((1− γ)× f2)] (6.3)

where f(overall) represents the weighted fitness and γ is the relative weight pa-

rameter. The unification of the two objectives f1 and f2 could have been similarly
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achieved by converting f2 into a maximization problem. 10 different values were

used for γ ranging from 10% to 100% in increments of 10%. No setup for γ = 0%

was used since in this case, no optimization would be performed on f1, which means

that in such an evolutionary run, there will be no pressure for the controller to

develop any locomotion ability whatsoever. On the other hand, γ = 100% would

result in an evolutionary run with no pressure towards minimizing the number of

hidden units since no optimization would be performed on f2. All this means is that

the hidden layer in the controller is completely free to use any number of hidden

units for optimizing the locomotion behavior, therefore this setup is retained in the

experiments.

An approach similar to the (µ + λ) evolutionary strategy is used where

the 15 best individuals of the population are carried over to the next generation

without any modification to the genotype at all. This is to allow a setup similar

to SPANN, where the upper bound on the number of Pareto solutions is simply

1 + 15, the maximum number of hidden units allowed. The crossover and muta-

tion operators function as in SPANN and the rates for these genetic operators are

also self-adaptive. The only real difference between SPANN and the weighted sum

method is the objective function and therefore, the selection mechanism. For all

other parameters, they remain the same as in all other experiments: 1000 genera-

tions, 30 individuals, maximum of 15 hidden units, 500 timesteps and 10 repeated

runs. As in the hand-tuned EMO algorithm search space characterization, the in-

dividual genotypes generated were grouped into 6250 discrete intervals to cater for

the increased locomotion distance dimension.

6.2.2 Results and Discussion

The results obtained from using the weighted sum method for conducting

the EMO process are given in Table 6.2. In the analysis of this set of results, we

first present the solution fitness in terms of the actual weighted sum value that is

used for the selection process. Then, we decompose the weighted sum fitness into

the two separate objectives of locomotion distance and number of hidden units, and
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γ Weighted Sum Overall Best Locomotion No. of
Value ± Locomotion Distance ± Hidden

Standard Deviation Distance Standard Deviation Units
10% 90.9857 ± 0.1428 12.3513 9.8571 ± 1.4277 0.0 ± 0.0
20% 82.0122 ± 0.4539 14.5964 10.4613 ± 2.6883 0.1 ± 0.3
30% 72.4592 ± 0.3774 9.8821 8.4306 ± 1.3288 0.1 ± 0.3
40% 63.4604 ± 0.6815 12.3985 9.4011 ± 2.1017 0.5 ± 0.8
50% 55.2962 ± 1.4375 15.8411 11.3924 ± 3.0330 0.8 ± 0.9
60% 46.6677 ± 1.9308 16.4046 12.1794 ± 2.9865 1.6 ± 1.0
70% 38.6314 ± 1.2593 17.9004 13.7448 ± 2.4376 3.3 ± 1.9
80% 30.4217 ± 1.6079 17.7011 14.0521 ± 2.3034 4.1 ± 1.5
90% 23.0408 ± 1.8146 18.1530 15.1119 ± 1.9977 5.6 ± 1.9
100% 15.2829 ± 3.6578 21.8228 15.2829 ± 3.6578 8.1 ± 1.5

Table 6.2: Best solutions obtained over 10 independent runs using the weighted sum

EMO algorithm with different weights for the two objectives. γ = relative weight

parameter.

present the analysis from these distinct points of view. Firstly, it is apparent that

the correct combination of weights played a critical role in obtaining good results

from the evolutionary optimization runs when both locomotion distance and hidden

layer size are to be considered simultaneously in a single weighted objective. Setting

γ to between 60% and 90% seemed to provide a good trade-off between achieving a

reasonably good locomotion capability and relatively small hidden layer size. Setting

γ = 100%, which places all the optimization pressure on the locomotion component,

yielded the highest overall and average best locomotion distance. However, this

correspondingly resulted in the highest average of hidden units used in the evolved

ANNs since there was no pressure to minimize the hidden layer at all. On the

other hand, the lowest average of hidden units used was obtained when γ was set

to 10%, although the average best locomotion distance achieved was much lower

at only around 9.9 by virtue of the very large weighting assigned to the hidden

unit component and correspondingly small weighting assigned to the locomotion

component. Although it was expected that the average best locomotion distance

obtained would increase monotonically as γ increased, this was not the case in the

runs where the parameter was set to 30% and 40%. This was likely due to the fact

that controllers with very small hidden layer sizes dominated the elite solutions and
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subsequently caused the optimization process to become stuck in a local optima

centered around these small-sized controllers with limited locomotion capabilities.

Further analysis of this phenomenon is given in the following paragraph as well as

in Section 6.2.3.
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Figure 6.7: Best solutions obtained over 1000 generations for 10 runs using the

weighted sum EMO algorithm with 1. γ = 20% (top left), 2. γ = 40% (top right),

3. γ = 70% (bottom left), 4. γ = 100% (bottom right). X-axis: Generation, Y-

axis: Weighted sum value. Additional graphs can be found in the accompanying

CD-ROM.

The evolution of the best solution using the weighted sum EMO algorithm

for 10 runs over 1000 generations is shown in Figure 6.7 for four of the ten different

combinations of weights assigned to the respective objectives. These graphs depict
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the progression of the best solutions in terms of the actual weighted fitness value as

evaluated using the weighted sum objective. The fixed weighting of the objectives

appeared to have a significant impact on the improvement of the best solutions over

time. When γ was set to low values as depicted in the top two graphs, the solutions

were only able to improve over a highly constrained weighted value (Figures 6.7.1

& 6.7.2). This again was likely due to controllers using small numbers of hidden

units being assigned high fitness values and hence dominating the elite solutions.

As the value of γ was increased, the solutions were able to improve over a larger

range of weighted values, although this also increased the variations between the

best solutions found, as shown by the bottom two graphs (Figures 6.7.3 & 6.7.4).

In the following paragraphs, we discuss the convergence of the solutions from the

viewpoint of the separate component objectives.

The convergence of the best solution using the weighted sum EMO al-

gorithm for 10 runs over 1000 generations is shown in Figure 6.8 in terms of the

locomotion distance for the same four combinations of weights as in Figure 6.7. In

the majority of the runs, most of the improvement achieved in terms of locomotion

distance occurred very early during evolution, generally around the 100–120th gen-

eration. Also, the effect of rewarding controllers with smaller hidden layers can be

seen clearly in Figure 6.8.3 where solutions with lower locomotion fitness but using

less hidden units were accepted as the current best solution, causing this particular

graph to have periods of apparently lower fitness during the convergence process.

This in fact occurred because the weighted sum value of certain controllers that

achieved greater locomotion distances were actually lower than controllers with less

locomotion capabilities, as a result of using more hidden units in the hidden layer

of the ANN compared to the less effective locomotion controllers. The progression

of the use of hidden nodes over the evolutionary optimization process can be seen

in the graphs that follow.

The convergence of the best solution using the weighted sum EMO al-

gorithm for 10 runs over 1000 generations is shown in Figure 6.9 in terms of the

number of hidden units used in the controller for the same four combinations of
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Figure 6.8: Locomotion distance of best solutions obtained over 1000 generations

for 10 runs using the weighted sum EMO algorithm with 1. γ = 20% (top left),

2. γ = 40% (top right), 3. γ = 70% (bottom left), 4. γ = 100% (bottom right).

X-axis: Generation, Y-axis: Locomotion distance. Additional graphs can be found

in the accompanying CD-ROM.

weights as in the previous paragraphs. The effect of assigning the larger proportion

of the weighted fitness to minimizing the hidden layer size can be seen clearly in

the top two figures (Figures 6.9.1 & 6.9.2). The best solutions in these cases were

highly constrained during the majority of the evolutionary process, using only 2 or

less hidden nodes in the ANN controller. This consequently limited the ability of

the solutions to improve on the locomotion distances achieved as a direct result of

being able to only use controllers with very small numbers of hidden nodes. As γ is
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Figure 6.9: Hidden layer size of best solutions obtained over 1000 generations for

10 runs using the weighted sum EMO algorithm with 1. γ = 20% (top left), 2.

γ = 40% (top right), 3. γ = 70% (bottom left), 4. γ = 100% (bottom right). X-

axis: Generation, Y-axis: Number of hidden units. Additional graphs can be found

in the accompanying CD-ROM.

increased to give more weight to the locomotion component, the constraint on the

size of the hidden layer is lessened, thereby increasing the algorithm’s likelihood of

improving on the quality of the locomotion behavior by having more opportunities

to experiment with ANN controllers with larger hidden layer sizes.

The mean locomotion distance and standard deviation for locomotion dis-

tance of the population as it evolved over 1000 generations using the weighted sum

EMO algorithm are illustrated in Figures 6.10 and 6.11 respectively. Higher values
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Figure 6.10: Mean locomotion distance of population over 1000 generations using

the second seed for the weighted sum EMO algorithm with 1. γ = 20% (left), 2.

γ = 90% (right). X-axis: Generation, Y-Axis: Locomotion distance. Additional

graphs can be found in the accompanying CD-ROM.
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Figure 6.11: Standard deviation for locomotion distance of population over 1000

generations using the second seed for the weighted sum EMO algorithm with 1.

γ = 20% (left), 2. γ = 90% (right). X-axis: Generation, Y-Axis: Standard deviation

of locomotion distance. Additional graphs can be found in the accompanying CD-

ROM.

of γ generally resulted in higher population means, which is expected as more weight

is placed on optimizing the locomotion distance over minimizing the hidden layer.
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A large majority of the population means reached a fairly constant range after the

initial increase in fitness and either remained fixed within a small range or increased

slightly in fitness as shown by Figure 6.10.2, which are similar to the trends ob-

served in the hand-tuned EMO algorithm. Another interesting trend that emerged

was that of the population mean increasing in a step-wise manner as depicted in

Figure 6.10.1 but this only occurred in less than 10% of the runs. This phenomenon

was most probably caused by the elite solutions becoming dominated by particular

classes of solutions that changed their usage of the number of hidden units in the

ANN controller and at the same time achieved distinctly better locomotion capabil-

ities, resulting in short periods of constant fitness followed by significant jumps in

fitness. The use of strong elitism in the weighted sum EMO algorithm also produced

another common feature in almost all of the runs in that the population mean did

not show any significant decrease in fitness over the evolutionary optimization pro-

cess. This can be explained by the fact that the 15 best individuals representing the

elite solutions carried forward from the previous generation will buffer any signifi-

cant drop in the mean fitness of newly created individuals in the current generation.

This observation is supported by the large movements of the standard deviation over

time shown in Figure 6.11.2, which is representative of a large majority of the runs.

These movements are noticeably larger than the standard deviations observed using

the hand-tuned EMO algorithm where only the non-dominated solutions rather than

elite solutions were retained. This strong elitism causes two distinct populations to

emerge, one in the carried over individuals and another in the newly generated indi-

viduals. Consequently, when a number of new individuals are either good solutions

similar to the elite solutions or bad solutions far removed from the elite solutions,

the standard deviation will correspondingly change very significantly with strong

elitism.

6.2.3 Search Space Characterization

The distribution of genotypes generated using the weighted sum EMO

algorithm is plotted in Figure 6.12 in terms of locomotion distance and number of
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Figure 6.12: Frequency distribution of solutions obtained using the weighted sum

EMO algorithm with 1. γ = 10% (top left), 2. γ = 30% (top right), 3. γ = 60%

(bottom left), 4. γ = 80% (bottom right). X-axis: Locomotion distance, Y-axis:

No. of hidden units, Z-axis: Frequency. Additional graphs can be found in the

accompanying CD-ROM.

hidden units used in the ANN. Note that the frequency axis has been expanded from

140 in prior graphs to 10000 to cater for the higher concentrations of genotypes found

within a specific range of objective values. Firstly, the distribution of genotypes

across the objective spaces were dramatically different compared to SPANN and

the hand-tuned EMO algorithm in that the generated genotypes were found to

cluster very closely around highly specific values of locomotion distance and number

of hidden units. The very significant change to the characteristics of the search
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space is likely due to the use of a weighted sum approach coupled with an elitist

approach. It is clear from the figures that genetic diversity in terms of the number of

hidden units is not equivalent to that achieved with the Pareto approach. Allowing

individuals to survive based solely on the weighted sum objective resulted in what

can be seen in the figures, where hidden layers with certain numbers of hidden units

dominated the evolutionary process. On the other hand, the carrying over of only

non-dominated solutions in SPANN and the hand-tuned EMO algorithm leaves more

room for variation since each parent is at least entirely different from the other in

terms of the size of the hidden layer. Hence, the newly generated individuals can

be expected to have greater diversity and consequently sample a larger proportion

of the search space.

The contour graphs in Figure 6.13 illustrate the distribution of solutions

across the two objectives of minimizing the hidden layer and maximizing locomotion

distance. Two trends emerged when using the weighted sum approach in terms of

the concentration of solutions across the respective objective spaces. The first trend

is that of extremely high concentrations of solutions within very specific areas of the

objective space, as evidenced by Figure 6.13.4. This phenomenon occurred when γ

was set to 40%, 50%, 70% and 80%. The second group of genotypes had less highly

concentrated distributions compared to the first group and had wider sampling

of the search space as shown by Figures 6.13.1, 6.13.2 and 6.13.3, although this

was still much less compared to the hand-tuned EMO algorithm and especially to

SPANN. This supports the earlier observations that the respective weights assigned

to the different objectives can significantly affect the behavior of the evolutionary

optimization algorithm. As shown by this analysis, some combination of weights

will cause the generated solutions to sample only a very limited area of the search

space.

The probability density function of solutions obtained using the weighted

sum EMO algorithm is illustrated in Figure 6.14. The probability of encountering

different classes of solutions in terms locomotion capability varied considerably as

different combinations of weights were used to evaluate the generated genotypes. As
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Figure 6.13: Contour graphs of frequency distribution of solutions obtained using the

weighted sum EMO algorithm with 1. γ = 10% (top left), 2. γ = 30% (top right), 3.

γ = 60% (bottom left), 4. γ = 80% (bottom right). X-axis: Locomotion distance,

Y-axis: No. of hidden units. Additional graphs can be found in the accompanying

CD-ROM.

expected, as more weight was placed on the locomotion component by increasing γ,

the probability density curve could be seen to shift more to the right. However, as

pointed out in earlier sections, certain combinations did not perform according to

this expectation. Figure 6.14.2 shows that the probability of encountering solutions

dropped to 0 as early as 9 units of locomotion distance. This rather poor perfor-

mance is only slightly better than that achieved using random search (Figure 4.3.4),

hill-climbing (Figure 4.7.4) and random walk (Figure 4.11.4) where the probability
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Figure 6.14: Density (solid) and cumulative (dashed) probability distribution of

solutions obtained using the weighted sum EMO algorithm with 1. γ = 10% (top

left), 2. γ = 30% (top right), 3. γ = 60% (bottom left), 4. γ = 80% (bottom right).

X-axis: Locomotion distance, Y-axis: Probability. Additional graphs can be found

in the accompanying CD-ROM.

dropped to 0 between 7 to 8 units of locomotion distance.

In summary, the search space characteristics of the EMO algorithm using

a weighted sum approach pointed to the fact that although reasonably good sam-

pling of the search space can be achieved with some weight combinations of the

respective objectives, dramatically sparse sampling can similarly occur. Moreover,

the sampling of the search space for the better combinations of weights were still sig-

nificantly less uniformly distributed compared to SPANN and even the hand-tuned
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EMO algorithm to a lesser extent.

6.3 A Single-Objective EA

6.3.1 Experimental Setup

In the last set of experiments, we used a conventional EA which opti-

mizes only one objective as opposed to optimization of multiple objectives in EMO

algorithms such as SPANN. The only objective being optimized in the following evo-

lutionary runs is the locomotion distance achieved by the creature’s ANN controller

while the size of the hidden layer is kept fixed. Hence, only the f1 fitness function is

used to evaluate the genotypes. Apart from the change of optimizing two objectives

to one, the single-objective algorithm is otherwise similar to the SPANN algorithm

in all other respects. The crossover and mutation rates are self-adaptive and are

identical to their counterparts in SPANN except that crossover and mutation now

excludes any changes to the number of hidden units used in the ANN controller

since this component is fixed in the single-objective EA. As in previous compar-

isons, the NNType3 architecture was used in this set of experiments and all other

parameters remained the same: 1000 generations, 30 individuals, 500 timesteps and

10 repeated runs. As in the weighted sum EMO algorithm discussed in Section 6.2,

the (µ+λ) strategy is used in this single-objective EA where the 15 best individuals

of the population are carried over to the next generation without any modification

to the genotype at all. Sixteen separate sets of evolutionary runs were conducted

corresponding to each one of the different number of nodes used in the hidden layer

ranging from 0 to 15, which is the range allowed in the multi-objective runs. As

with prior algorithms used in this chapter, the individual genotypes generated were

grouped into 6250 discrete intervals for search space characterization.

6.3.2 Results and Discussion

The results obtained from using the single-objective EA for conducting the

EMO process are given in Table 6.3. The highest overall best f1 fitness of 22.4 was
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No. of Overall Best Worst of the Average Best Fitness
Hidden Units Fitness Best Fitness ± Standard Deviation

0 20.3725 11.6791 15.7516 ± 2.9721
1 19.3005 12.2596 15.1441 ± 2.0260
2 19.8772 9.9934 16.3236 ± 2.7242
3 19.2861 9.5247 15.1532 ± 3.1696
4 20.6868 12.9391 15.2088 ± 2.2106
5 19.9139 11.2756 15.1562 ± 2.8741
6 19.6655 12.7716 16.0317 ± 2.0719
7 17.8093 13.4571 15.8033 ± 1.6159
8 21.6668 12.1226 17.4358 ± 3.2508
9 20.4605 12.1012 15.7375 ± 2.6430
10 19.4172 13.5765 16.1514 ± 2.1318
11 21.6224 9.3723 15.0614 ± 3.5612
12 22.3296 11.6783 15.4287 ± 3.0020
13 17.6432 12.1548 15.0359 ± 1.8909
14 22.4069 10.9295 16.6273 ± 2.8095
15 19.7747 12.5919 15.6150 ± 2.4605

Table 6.3: Best solutions obtained over 10 independent runs using the single-

objective EA with different hidden layer sizes.

obtained using a hidden layer of 14 nodes while the lowest overall best fitness of 17.6

was obtained using a hidden layer of 13 nodes. In terms of average best locomotion

distance achieved, the setup in which the ANN controller’s hidden layer was fixed

to use 8 nodes provided the best result while the worst result was obtained when

the hidden layer was fixed at 11 nodes. In general, the variations between the best

solutions achieved were high when using the single-objective EA. Only 2 out of the

16 different hidden layer setups had standard deviations of less than 2, 10 setups had

standard deviations of between 2 and 3 while the remaining 4 setups had standard

deviations of more than 3 units distance. The setup which used 11 hidden units also

had the highest standard deviation where the difference between the best and worst

solutions obtained was 12.2, which is a variation of more than 56% of the overall

best fitness achieved using this hidden layer setup. These observations suggest that

optimizing the artificial creature’s controllers using the single-objective EA is quite

unstable and the quality of solutions obtained can vary greatly between different

runs.
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Figure 6.15: Best fitness for solutions obtained over 1000 generations for 10 runs

using the single-objective EA with 1. 2 hidden units (top left), 2. 7 hidden units

(top right), 3. 10 hidden units (bottom left), 4. 14 hidden units (bottom right).

X-axis: Generation, Y-axis: Locomotion distance. Additional graphs can be found

in the accompanying CD-ROM.

The evolution of the best solution using the single-objective EA for 10

runs over 1000 generations is shown in Figure 6.15 for four of the sixteen different

hidden layer setups. Across all the different sizes of hidden layer used in the ANN

controller, the majority of the improvement achieved in the best solutions occurred

very early during evolution, as in the weighted sum method. This phenomenon could

be seen to occur as early as the 50–80th generation in some of these runs. This can

be explained by the fact that all the optimization effort is being focused solely on
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a single objective and thus the single-objective EA should show a faster rate of

improvement and subsequently be able to converge earlier compared to algorithms

with distinct multiple objectives. However, the cost of this type of fast convergence is

as discussed earlier in the previous paragraph, that the standard deviations between

the best evolved solutions can be quite large. Figure 6.15.4 depicts this phenomenon

clearly and is representative of the different hidden layer sizes used in the other runs

for this single-objective EA. This shows that although very good solutions can be

obtained in terms of locomotion distance, correspondingly poor solutions can also

be expected.
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Figure 6.16: Mean fitness of population over 1000 generations using the fourth seed

for the single-objective EA algorithm with 1. 4 hidden units (left), 2. 12 hidden

units (right). X-axis: Generation, Y-Axis: Locomotion distance. Additional graphs

can be found in the accompanying CD-ROM.

The mean locomotion distance and standard deviation for locomotion dis-

tance of the population as it evolved over 1000 generations using the single-objective

EA is illustrated in Figures 6.16 and 6.17 respectively. The movement of the pop-

ulation means and standard deviations were very similar to the trends observed in

the weighted sum EMO algorithm. The mean could be seen to increase and then

either remain fixed or increase slightly over time (Figures 6.16.1 & 6.16.2). The

mean also did not show any significant decrease in fitness throughout evolution.



CHAPTER 6. VERIFYING THE SELF-ADAPTIVE PARETO EMO 154

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Generation

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 lo

co
m

ot
io

n 
di

st
an

ce

SO−EA 4 Hidden Units Run 4

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Generation

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 lo

co
m

ot
io

n 
di

st
an

ce

SO−EA 12 Hidden Units Run 4

Figure 6.17: Standard deviation for fitness of population over 1000 generations using

the fourth seed for the single-objective EA algorithm with 1. 4 hidden units (left),

2. 12 hidden units (right). X-axis: Generation, Y-Axis: Standard deviation of

locomotion distance. Additional graphs can be found in the accompanying CD-

ROM.

Likewise, the standard deviation movements (Figures 6.17.1 & 6.17.2) were again

noticeably larger than those observed using the hand-tuned EMO algorithm. The

highly similar trends observed in this single-objective EA and the weighted sum

EMO algorithm strongly suggest that the use of strong elitism in both these algo-

rithms is the likely cause of these phenomena. The effect of different sizes of hidden

layers used in the controller did not appear to create any consistently different trends

in the behavior of the population mean over time. However, the standard deviation

of the population appeared to have varied within a lower range of deviation for the

controllers that used less hidden units compared to those that used more hidden

units. This observation suggests that although the population means were on aver-

age quite similar across different sizes of hidden layer used, the discrepancy between

the best solutions and the newly generated solutions were larger in controllers that

used more hidden units. Therefore, the analysis of the populations’ average fitness

and standard deviations points to the fact that the fitness landscapes may be more

rugged for larger hidden layer sizes since newly produced offspring are further away
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from the elite parents compared to controllers with smaller hidden layer sizes.

6.3.3 Search Space Characterization

Figure 6.18: Frequency distribution of solutions obtained using the single-objective

EA with 1. 1 hidden unit (top left), 2. 3 hidden units (top right), 3. 8 hidden units

(bottom left), 4. 14 hidden units (bottom right). X-axis: Locomotion distance,

Y-axis: No. of hidden units, Z-axis: Frequency. Additional graphs can be found in

the accompanying CD-ROM.

The distribution of genotypes generated using the single-objective EA is

plotted in Figure 6.18 in terms of locomotion distance and number of hidden units

used in the ANN. Note that the frequency axis was again expanded to 10000 as in

the analysis of the weighted sum approach (Section 6.2.3) to cater for the higher con-
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centrations of solutions. The characteristics of the genotype distribution in the ob-

jectives spaces were expectedly very different from all prior algorithms since the size

of the hidden layer was forcibly maintained within each evolutionary optimization

setup by virtue of the single-objective methodology. Two different trends emerged

from these runs. The distribution of solutions was more highly clustered when

smaller hidden layer sizes were used, especially in setups that used between 0 and

4 hidden units. The distribution of genotypes depicted in Figures 6.18.1 and 6.18.2

are representative of this first trend. As the size of the hidden layer was increased,

the generated genotypes were less closely concentrated, large peaks in the frequency

were less commonly seen, and the magnitude of areas with high concentrations was

also lower. The distribution of genotypes depicted in Figures 6.18.3 and 6.18.4 are

representative of this second trend. Frequency distribution graphs at higher resolu-

tions are shown below for the latter two hidden layer sizes.

Figure 6.19: Frequency distribution of solutions obtained using the single-objective

EA at higher resolutions for 1. 8 hidden units with frequency axis re-scaled to

1000 (left), 2. 14 hidden units with frequency axis re-scaled to 140 (right). X-axis:

Locomotion distance, Y-axis: No. of hidden units, Z-axis: Frequency. Additional

graphs can be found in the accompanying CD-ROM.

The distribution of controllers generated using 8 and 14 hidden units are

illustrated in Figure 6.19 at increased resolutions to show the finer characteristics
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of these fitness landscapes. Figure 6.19.1 is re-scaled to a frequency of 1000 and

Figure 6.19.2 is re-scaled to a frequency of 140. Some clustering of genotypes can

still be observed in controllers that used 8 hidden units. However, in controllers that

used 14 hidden units, the distribution of genotypes was more uniformly distributed

across the objective space. This phenomenon can be further explained by analyzing

the associated contour graphs of these distributions.
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Figure 6.20: Contour graphs of frequency distribution of solutions obtained using

the single-objective EA with 1. 1 hidden unit (top left), 2. 3 hidden units (top

right), 3. 8 hidden units (bottom left), 4. 14 hidden units (bottom right). X-axis:

Locomotion distance, Y-axis: No. of hidden units. Additional graphs can be found

in the accompanying CD-ROM.

The contour graphs in Figure 6.20 illustrate the distribution of solutions
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across the two objectives of minimizing hidden layer size and maximizing locomotion

distance. The two trends that emerged in the 3D graphs discussed in the previous

paragraph can be seen again clearly in these contour graphs. With a smaller num-

ber of hidden units, the solutions were distributed within a much smaller range of

locomotion values, where most controllers achieved locomotion distances of between

6 and 14 units (Figures 6.20.1 & 6.20.2). Using a larger number of hidden units, the

genotypes generated were able to sample larger areas of the objective space, where

a significant proportion of the controllers were able to achieve locomotion distances

that ranged between 1 and 17 units (Figures 6.20.3 & 6.20.4). This suggests that

as the size of the hidden layer increases, the artificial creature is able to generate a

wider range of locomotion capabilities in terms of the overall distance moved as a

result of being able to sample the much larger search space offered by the increased

network sizes.

The probability density function of solutions obtained using the single-

objective EA is illustrated in Figure 6.21. Again, these graphs show that the smaller

hidden layer sizes produced lower quality controllers in terms of locomotion distance

compared to larger hidden layer sizes. Four hidden layer sizes of 8, 11, 12 and 14

were able to sample controllers up to 19 units of distance in the class of larger-sized

networks before the probability dropped to 0. The graphs depicted in Figures 6.21.3

and 6.21.4 are indicative of the probability density functions obtained using these

setups with larger hidden layer sizes. In comparison, for seven out of the eight

hidden layer sizes that used 7 nodes or less, the probability of obtaining controllers

dropped to 0 only around distances of between 15 and 17 units, as shown by the

cumulative curves. The graphs depicted in Figures 6.21.1 and 6.21.2 are indicative

of the probability density functions obtained using these setups with smaller hidden

layer sizes.

In general, the search space characteristics were indicative of the fact that

genotypes generated using smaller-sized hidden layers produced locomotion capabil-

ities that were more constrained in terms of the range of distances achieved by the

creature compared to genotypes that used larger-sized hidden layers. In the latter
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Figure 6.21: Density (solid) and cumulative (dashed) probability distribution of

solutions obtained using the single-objective EA with 1. 1 hidden unit (top left), 2. 3

hidden units (top right), 3. 8 hidden units (bottom left), 4. 14 hidden units (bottom

right). X-axis: Locomotion distance, Y-axis: Probability. Additional graphs can be

found in the accompanying CD-ROM.

group of controllers, a significantly larger proportion of the newly generated geno-

types were sampled from higher fitness sub-spaces. However, since there were no

observable trends in terms of the best controllers found (see Table 6.3), these results

strongly suggest that the underlying fitness landscape becomes increasingly rugged

as the hidden layer size increases and coupled with the much larger search spaces,

much more optimization effort may be required to find increasingly fitter solutions

in these larger networks. This is an expected outcome given that the VC-dimension
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increases with an increase in the number of hidden units (as explained earlier in

Section 1.3) — therefore, more optimization effort is required.

6.4 Comparing SPANN Against Conventional Ev-

olutionary Optimization Approaches

In this section, we compare the results obtained using the three EAs pre-

sented in this chapter against the results obtained using the SPANN algorithm. In

the first section, SPANN is compared against the hand-tuned method, followed by a

comparison against the weighted sum method in the second section, and then against

the single-objective method in the third section. In the next two sections, firstly an

overall discussion of the global Pareto solutions using SPANN as well as all other

algorithms employed thus far is given in terms of the trade-off between the quality

of the locomotion controller generated against the computational cost involved in

obtaining these controllers, which is followed by an investigation into the amount

of redundancy that is present in the overall best controllers evolved for locomotion

distance using SPANN against the hand-tuned, weighted sum and single-objective

methodologies. Finally, SPANN is compared to a well-known, state-of-the-art Pareto

EMO algorithm called the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

(Deb, Agrawal, Pratab, and Meyarivan 2000).

6.4.1 SPANN Against a Hand-Tuned EMO Algorithm

The advantage of using the self-adaptive Pareto approach against hand-

tuning of crossover and mutation rates of the EMO algorithm is that it reduces

the number of repeated experiments required to find the “right” combination of

these parameters in order to generate the best possible solutions. Furthermore,

it is unclear what effects fixing the crossover and mutation rates throughout the

evolutionary optimization process will have on the quality of the eventual solutions

obtained. In the results below, we compare the best solutions obtained from using 9

different combinations of crossover and mutation rates using the hand-tuned version
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of the EMO algorithm against the best solutions obtained using the self-adaptive

SPANN EMO algorithm.

Algorithm Average Best t-statistic No. of
Locomotion Distance (against Hidden
± Standard Deviation SPANN) Units

SPANN 13.9626 ± 1.7033 - 4.9 ± 2.6
HT-EMO c=10% m=10% 13.5192 ± 2.7845 (0.48) 3.2 ± 1.8
HT-EMO c=10% m=50% 14.1158 ± 2.6535 0.16 6.6 ± 2.1
HT-EMO c=10% m=90% 13.2843 ± 1.8225 (0.94) 8.1 ± 2.7
HT-EMO c=50% m=10% 14.1268 ± 2.1286 0.16 3.0 ± 2.4
HT-EMO c=50% m=50% 15.3819 ± 2.3195 1.39 6.5 ± 1.7
HT-EMO c=50% m=90% 13.1881 ± 1.4715 (1.03) 7.7 ± 2.5
HT-EMO c=90% m=10% 14.1511 ± 2.4721 0.20 3.4 ± 1.8
HT-EMO c=90% m=50% 13.1978 ± 1.6447 (1.42) 6.1 ± 1.4
HT-EMO c=90% m=90% 12.1653 ± 2.3799 (1.61) 6.8 ± 2.9

Table 6.4: Comparison of best locomotion distance for Pareto solutions obtained

over 10 independent runs using the SPANN and hand-tuned EMO (HT-EMO) al-

gorithms. c = crossover rate, m = mutation rate.

As shown in Table 6.4, the use of hand-tuned crossover and mutation rates

did not provide any significant advantage over the SPANN algorithm in terms of

the average best locomotion distance achieved by the evolved controllers. A t-test

showed no significant differences at the α = 0.05 and α = 0.01 significance levels.

Four combinations of the hand-tuned EMO algorithm gave marginally better results

over the 10 runs in terms of the average best solution obtained while five other

combinations performed worse than the SPANN algorithm. In terms of the number

of hidden units used, three combinations in the hand-tuned EMO algorithm used an

average of 1.7 nodes less than SPANN while six other combinations used an average

of 7.0 nodes more than the SPANN algorithm. As such, the self-adaptive SPANN

algorithm is beneficial compared to a hand-tuned EMO algorithm in that it reduces

the computational runs required while still being able to maintain the same quality

of solutions generated.
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6.4.2 SPANN Against a Weighted Sum EMO Algorithm

A weighted sum approach combines the two objectives into a single objec-

tive by taking a weighted sum of the objectives. There are four main advantages of

using the Pareto approach over a weighted sum method:

• The weighted sum method would only be able to generate a single Pareto

solution in a single run compared to an entire set of Pareto solutions in a single

run using the Pareto approach. Multiple runs will be required to generate a

Pareto-front when using the weighted sum method.

• The determination of the weights is arbitrary in a weighted sum method. Some

form of hand-tuning these weights will need to be carried out in order to obtain

good results and as such, extra runs will again be required compared to the

Pareto approach.

• The different objectives combined in a weighted sum method are assumed to be

somehow commensurable, that is the objectives can be measured in the same

units. In the case where they are not, as in this case of combining locomotion

distance and number of hidden units, the use of the correct relative weights

will be necessary to overcome this problem. Again, the Pareto approach does

not require any such assumption to hold true since it treats each objective

independently from the other.

• The weighted sum method assumes that the Pareto-front of the multi-objective

optimization problem is of a convex nature. If the Pareto-front of the multi-

objective optimization problem is actually non-convex, then the Pareto solu-

tions generated by the weighted sum method will result in a discontinuous

Pareto-front since the single-objective hyperplane will not be able to sample

the non-convex regions of the Pareto-front. As such, in order to use a weighted

sum method, the experimenter will first need to ascertain whether the particu-

lar problem is convex or otherwise, and no such information is usually available

until the actual experiments are carried out and the Pareto-front plotted. Con-

versely, knowledge of such properties about the multi-objective optimization
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problem is not required since the solutions generated using a Pareto approach

is not constrained or limited to a specific Pareto-front of the multi-objective

optimization problem.

Algorithm Average Best t-statistic No. of
Locomotion Distance (against Hidden
± Standard Deviation SPANN) Units

SPANN 13.9626 ± 1.7033 - 4.9 ± 2.6
WS-EMO γ=10% 9.8571 ± 1.4277 (5.97) 0.0 ± 0.0
WS-EMO γ=20% 10.4613 ± 2.6883 (3.19) 0.1 ± 0.3
WS-EMO γ=30% 8.4306 ± 1.3288 (7.96) 0.1 ± 0.3
WS-EMO γ=40% 9.4011 ± 2.1017 (4.46) 0.5 ± 0.8
WS-EMO γ=50% 11.3924 ± 3.0330 (2.15) 0.8 ± 0.9
WS-EMO γ=60% 12.1794 ± 2.9865 (1.86) 1.6 ± 1.0
WS-EMO γ=70% 13.7448 ± 2.4376 (0.33) 3.3 ± 1.9
WS-EMO γ=80% 14.0521 ± 2.3034 0.09 4.1 ± 1.5
WS-EMO γ=90% 15.1119 ± 1.9977 1.76 5.6 ± 1.9
WS-EMO γ=100% 15.2829 ± 3.6578 1.04 8.1 ± 1.5

Table 6.5: Comparison of best locomotion distance for Pareto/best solutions ob-

tained over 10 independent runs using the SPANN and weighted sum EMO (WS-

EMO) algorithms. γ = relative weight parameter.

In Table 6.5, we compare the weighted sum EMO against the Pareto

SPANN algorithm. Results comparable to those obtained using the SPANN al-

gorithm are achieved only with γ = 70%. Although slightly higher locomotion

distances were achieved using higher values of γ, which places more emphasis on the

locomotion component of the weighted objective function, in all cases the standard

deviation of the solutions were higher for the average best fitness for locomotion

distance. Also, the case where γ = 100%, which does not put any pressure whatso-

ever towards optimizing the size of the hidden layer, results in a very high average of

hidden units used in the evolved controllers. This suggests that a significant amount

of redundancy may be present in these networks, given that a t-test showed none

of these weighted sum solutions were significantly better than those obtained with

SPANN at both the α = 0.05 and α = 0.01 significance levels. Conversely, three

of the weight combinations resulted in solutions significantly worse than SPANN at
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the α = 0.01 significance level (γ = 10%, 30%, 40%) and one weight combination

worse than SPANN at the α = 0.05 significance level (γ = 20%). Therefore, ob-

taining good solutions when using a weighted sum method critically depends on the

choice of weights used on the respective objective functions and to find this right

combination of weights would require multiple evolutionary runs to be conducted.

Hence, the Pareto approach adopted in our SPANN algorithm is preferable from a

computational cost point of view over a weighted sum method since it is able to

proceed with the evolutionary optimization process without any tuning of weights

and is still able to produce highly competitive results.

6.4.3 SPANN Against a Single-Objective EA

In a single-objective EA, the number of objectives that can be optimized

in any one run is restricted to one. If there is more than one factor that may affect

the quality of the solutions that are obtained from the evolutionary optimization

process, then the single-objective EA will need to be re-run multiple times to test

the effects of these other factors. For example, to test the effect of the size of the

number of hidden units used on the evolution of artificial creature controllers, a

separate set of runs will need to be carried out for each hidden layer size (see the

experiments reported in Bongard and Pfeifer (2002) for such a case). As such, the

obvious advantage an EMO algorithm has over a single-objective EA is its ability

to optimize multiple objectives simultaneously, thereby significantly reducing the

number of computational runs required to investigate other factors that may be

crucial to the effectiveness of the evolutionary process.

In Table 6.6, we compare the single-objective EA against the multi-objecti-

ve SPANN algorithm. In all the single-objective runs, higher locomotion distances

were achieved by the evolved controllers in terms of the mean of the best solutions

compared to SPANN. This is expected since all the evolutionary optimization pres-

sure is focused only on the one objective of maximizing locomotion distance whereas

this pressure is halved in the EMO case, where it is being shared with the objective

of minimizing the hidden layer size. However, none of these results were significantly
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Algorithm No. of Average Best t-statistic
Hidden Locomotion Distance (against
Units ± Standard Deviation SPANN)

SPANN 4.9 ± 2.6 13.9626 ± 1.7033 -
SO-EA 0 15.7516 ± 2.9721 1.53
SO-EA 1 15.1441 ± 2.0260 1.33
SO-EA 2 16.3236 ± 2.7242 2.43
SO-EA 3 15.1532 ± 3.1696 1.05
SO-EA 4 15.2088 ± 2.2106 1.61
SO-EA 5 15.1562 ± 2.8741 1.32
SO-EA 6 16.0317 ± 2.0719 2.86
SO-EA 7 15.8033 ± 1.6159 2.07
SO-EA 8 17.4358 ± 3.2508 2.89
SO-EA 9 15.7375 ± 2.6430 1.53
SO-EA 10 16.1514 ± 2.1318 2.49
SO-EA 11 15.0614 ± 3.5612 0.86
SO-EA 12 15.4287 ± 3.0020 1.41
SO-EA 13 15.0359 ± 1.8909 1.19
SO-EA 14 16.6273 ± 2.8095 2.70
SO-EA 15 15.6150 ± 2.4605 2.58

Table 6.6: Comparison of best locomotion distance for Pareto/best solutions ob-

tained over 10 independent runs using the SPANN algorithm and single-objective

EA (SO-EA). Number of hidden units is fixed in the single-objective EA.

different at the α = 0.01 significance level compared to SPANN while only six out

of the sixteen different setups were significantly different at the α = 0.05 signifi-

cance level (number of hidden units = 2, 6, 8, 10, 14 & 15). However, it should be

noted that the standard deviations in 15 out of the 16 different setups in the single-

objective EA were higher than SPANN which suggests that even though the search

space is much larger in the EMO case, the SPANN algorithm is still more stable

in terms of its optimization results. It should also be remembered that 150 more

evolutionary runs (15 setups × 10 repeats) were required in the single-objective

case simply to investigate the effects of the hidden layer size on the evolution of

these controllers. This would be a serious limitation for such investigations if the

different number of setups required increases in magnitude (for example, consider

the case where 100 or 1000 hidden units are allowed) or if the additional factors to

be investigated are not discrete in nature (for example variations in the morpho-
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logical parameters of the artificial creature). Moreover, in obtaining these better

locomotion capabilities, there is a significant trade-off since the overall computa-

tional costs in terms of evaluating the ANN during evolution is much higher for the

single-objective EA compared to SPANN (see Section 6.4.4 below).

6.4.4 Trading-Off Pareto Optimality Against Computatio-

nal Cost
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Figure 6.22: Pareto-front of solutions obtained using all algorithms over all runs

conducted. X-axis: Locomotion distance, Y-axis: No. of hidden units.

Figure 6.22 plots the global Pareto-front for all the different algorithms

used in evolving ANN controllers for the artificial creature. Two distinct groups of

Pareto optimal solutions can be seen in this graph. One group is formed using the
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random search, hill-climbing and random walk algorithms where the solutions were

significantly worse than the other group of solutions formed by SPANN, the hand-

tuned EMO, weighted sum EMO and single-objective EA. In the latter group, the

best global Pareto-front was obtained using the single-objective EA when viewed in

terms of the locomotion capability achieved, followed by the weighted sum method,

the hand-tuned EMO and finally by SPANN. Although the Pareto-front of SPANN

was not as optimal as the other algorithms, the controller with the highest loco-

motion distance discovered by each algorithm had the smallest hidden layer size for

SPANN (4 nodes) compared to the hand-tuned EMO (9 nodes), weighted sum EMO

(7 nodes) and the single-objective EA (14 nodes).

Algorithm Best +/−% Total +/−%
Locomotion of SPANN Computational of SPANN

Distance Cost
SPANN 17.6994 - 909,520,500 -

Random Search 13.0225 −26.4% 1,122,402,000 +23.4%
Hill-Climbing 10.0832 −43.0% 1,047,833,000 +15.2%
Random Walk 13.0900 −26.0% 1,124,060,000 +23.5%

HT-EMO 19.5051 +15.9% 7,529,814,400 +727.9%
WS-EMO 21.8228 +23.3% 3,073,867,500 +238.0%
SO-EA 22.4069 +26.5% 1,441,441,000,000 +15748.4%

Table 6.7: Comparison of overall best locomotion controller obtained and corre-

sponding computational cost using SPANN against all other algorithms.

Table 6.7 compares the overall best solution found by the different algo-

rithms against the overall computation cost involved in discovering these solutions.

The computational cost is estimated using the total number of hidden unit activa-

tions registered during the search process for each algorithm. This is a reasonable

estimate since most of the computational time involved in conducting these exper-

iments is spent on the evaluation of different ANN controllers by way of physically

simulating the creature as guided by each newly generated controller within the Vor-

tex physics-based world (see Section 3.1.1). Therefore, the computational cost (C)

will differ between different algorithms as a function of the number of hidden unit

activations required to evaluate the fitness of each newly generated genotype (A),

the number of new genotypes generated per evolutionary run (G) and the number
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of evolutionary runs per algorithm (R), as described by the following equation:

C = A×G×R (6.4)

The best overall solution in terms of locomotion distance was obtained us-

ing the single-objective EA where the improvement over SPANN was 26.5%. How-

ever, the corresponding computational cost was a staggering 15,748% more than

SPANN. This was mainly due to the number of repeated runs required for each

different hidden layer size as well as the high usage of hidden units in the runs in-

volving larger hidden layer sizes, which cannot be changed within each evolutionary

run. Again, although better locomotion capabilities were obtained using the hand-

tuned EMO and weighted sum EMO, dramatically higher computational costs were

also associated with the use of the hand-tuned (727%) as well as the weighted sum

methods (238%) compared to SPANN. Again these increases can be attributed to

the need for repeated evolutionary runs required to test different weight assignments

and crossover/mutation rates respectively in these algorithms. However, the inclu-

sion of another objective in these two algorithms, which allowed for the minimization

of the hidden layer size, did reduce the computational cost significantly compared

to the single-objective EA. Although inferior results were obtained using the ran-

dom search, hill-climbing and random walk algorithms, the overall computational

costs were still higher than SPANN. This is due to the fact that these algorithms

were only optimizing the locomotion component as in the single-objective EA and

hence did not impose any pressure on minimizing the usage of hidden units during

optimization.

In summary, although better controllers were evolved for locomotion dis-

tance using the single-objective EA, the corresponding trade-off in terms of overall

computational cost was dramatically and unfavorably large. The trade-off between

obtaining better locomotion capabilities and computational cost was again signifi-

cantly and unfavorably large using the hand-tuned and weighted sum EMO algo-

rithms. Hence, the SPANN algorithm has been shown to provide reasonably good

results in terms of evolving locomotion controllers while at the same time providing

the lowest overall computational cost compared to all other algorithms investigated
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in this study.

6.4.5 Redundancy in Best Evolved Controllers

We now compare the amount of redundancy present in the overall best

evolved controllers in terms of the hidden units as well as weight synapses obtained

from SPANN against the hand-tuned, weighted sum and single-objective method-

ologies. For this set of experiments, we selected the overall best controller evolved

for locomotion distance obtained from SPANN, the hand-tuned EMO algorithm,

the weighted sum EMO algorithm and the single-objective EA as representative

ANN architectures optimized using these respective approaches. These controllers,

which are used in the lesioning experiments that test for redundancy in the ANN

architecture, are listed in Table 6.8.

Algorithm Locomotion Distance No. of Hidden Units
SPANN 17.6994 4

HT-EMO 19.5051 9
WS-EMO 21.8228 7
SO-EA 22.4069 14

Table 6.8: Overall best locomotion controllers evolved using the SPANN, hand-

tuned (HT-EMO), weighted sum (WS-EMO) and single-objective (SO-EA) algo-

rithms used in the lesioning experiments.

In our analysis, redundancy is considered to be present when a controller

can allow deletion of: (1) entire hidden units, or (2) individual weight synapses,

without loss of fitness of more than 1 unit of locomotion distance compared to the

intact controller originally evolved. The first comparison involved deletion of entire

nodes in the hidden layer and can be regarded as macro-lesioning of the controller.

This was done in a fashion similar to Migliono and Walker (2002) where all possible

combinations of hidden units used in the ANN controller were systematically deleted.

The lesioned controller is then re-evaluated and the new fitness achieved recorded.

For example, if the best evolved controller had 4 hidden units, then all possible

combinations of networks with 1 node lesioned are first evaluated, followed by all

combinations of networks with 2 nodes lesioned and so forth terminating when
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the next level of hidden unit removal causes the fitness evaluations of the lesioned

controllers to fall below the redundancy threshold. The second comparison involved

the deletion of individual weight synapses which can be regarded as micro-lesioning

of the controller. The test for weight synapse redundancy was carried out in a greedy

fashion due to the very large numbers of possible weight synapse combinations: first

find the least loss of locomotion capability with 1 weight synapse lesioned, then

proceed to find the next least loss of locomotion capability with another weight

synapse lesioned by keeping the weight synapse found in the preceding step lesioned,

and so forth terminating when the next level of weight synapse removal causes the

fitness evaluations of the lesioned controllers to fall below the redundancy threshold.

This second redundancy test is less drastic compared to the first test since the

deletion of a single hidden node would cause entire sets of weight synapses to be

also deleted in a single step. As such, the second redundancy test of lesioning only at

the weight synapse level allows for a finer investigation into the controller’s evolved

architecture.

6.4.5.1 Hidden Unit Redundancy

Algorithm Redundancy Best Worst Average Lesioned
Fitness Lesioned Lesioned Fitness ±

Threshold Fitness Fitness Standard Deviation
SPANN 16.6994 12.8242 8.6991 10.9156 ± 1.9204

HT-EMO 18.5051 18.6472 1.6899 10.8691 ± 7.0303
WS-EMO 20.8228 18.6352 8.5114 14.4979 ± 3.8776
SO-EA 21.4069 17.5729 2.1421 12.9751 ± 4.8180

Table 6.9: Comparison of locomotion distance of overall best controller evolved using

the SPANN, hand-tuned (HT-EMO), weighted sum (WS-EMO) and single-objective

(SO-EA) algorithms with 1 hidden node lesioned.

None of the overall best controllers evolved for locomotion distance using

SPANN, weighted sum and single-objective methodologies showed any redundancy

in terms of hidden units present in the ANN controller. All possible combinations of

controllers with a single hidden node removed from the optimized architecture using
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these algorithms resulted in locomotion fitness below the redundancy threshold as

shown in Table 6.9. However, the overall best controller evolved using the hand-

tuned EMO algorithm did have one redundant hidden unit (the eighth node) which

could be lesioned without causing the controller’s capabilities to fall below the fitness

threshold. This phenomenon together with the results from further levels of hidden

unit lesioning of the overall best controller evolved using the hand-tuned EMO

algorithm are discussed in the next paragraph. Surprisingly, the lesioning of a

single hidden unit appeared to also have the most detrimental effect on the best

controller evolved using the hand-tuned EMO algorithm in terms of the average loss

of locomotion fitness compared to all other algorithms. Furthermore, the lesioning

of a particular hidden node in the best controller evolved using the hand-tuned EMO

algorithm also produced the worst 1-node lesioned controller, which only achieved a

minuscule locomotion distance of just over 1.6 units. The removal of entire hidden

nodes from the optimized ANN controllers seemed to result in large scale loss of

locomotion capability suggesting that macro-lesioning of these evolved architectures

is too drastic due to removal of not only a single hidden node but an entire set of

weight synapses connecting to and originating from the lesioned hidden node. If the

redundancy test were to be concluded at this coarse level, then the results would

have indicated that no redundancy was present at all in the evolved controllers

obtained using SPANN, the weighted sum EMO algorithm and the single-objective

EA. However, a redundancy test at the finer weight synapse level, which is presented

in the next section, showed otherwise.

Algorithm Redundancy Best Worst Average Lesioned
Fitness Lesioned Lesioned Fitness ±

Threshold Fitness Fitness Standard Deviation
HT-EMO 18.5051 18.1569 1.3326 9.4544 ± 5.6139

Table 6.10: Locomotion distance of overall best controller evolved using the hand-

tuned EMO (HT-EMO) algorithm with 2 hidden nodes lesioned.

Before proceeding with the analysis at the weight synapse level, we first

discuss the results obtained from the lesioning of different combinations of 2 hidden

nodes from the overall best controller evolved using the hand-tuned EMO algorithm
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since lesioning of 1 hidden node did show redundancy in this particular controller.

None of the controllers which had 2 hidden nodes removed could produce locomotion

fitness above the redundancy threshold as shown in Table 6.10. Compared to the

overall best controller evolved using the self-adaptive SPANN algorithm, the hand-

tuned EMO algorithm evolved a controller with more redundancy at the hidden

unit level. Hence, the self-adaptive crossover and mutation rates appeared to have

benefited the Pareto evolutionary optimization process in that SPANN was able to

find a more compact network with less redundancy compared to the hand-tuned

algorithm, which had pre-determined and fixed crossover and mutation rates during

the optimization process.

6.4.5.2 Weight Synapse Redundancy
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Figure 6.23: Locomotion distance for overall best controller evolved using SPANN

with lesioning of 1. 1 weight synapse (left), 2. 2 weight synapses (right). The

index assigned to the lesioned weight synapse is labelled according to the order of

lesioning. X-axis: Synapse index, Y-axis: Locomotion distance.

Figure 6.23 illustrates the loss of locomotion fitness as weight synapses

were lesioned in the overall best controller evolved using SPANN. There was only

one particular weight synapse that could be lesioned without causing the controller’s

performance to fall below the fitness threshold (Figure 6.23.1). No other lesioning of
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a single synapse could produce a fitness above the redundancy threshold. Addition-

ally, no controller with 2 synapses lesioned could produce controllers that maintained

their performance above the fitness threshold (Figure 6.23.2). This meant that the

best evolved controller from SPANN only had a redundancy of one weight synapse

and furthermore this occurred only with a specific weight synapse, which was the

connection between the input from the joint sensor that measures the angle between

the torso and the upper back left limb (Sensor x1) and the first node in the hidden

layer of the ANN.

Figure 6.24 illustrates the loss of locomotion fitness as weight synapses were

lesioned in the overall best controller evolved using the hand-tuned EMO algorithm.

This controller exhibited a high level of weight synapse redundancy where up to 281

synapses could be removed without causing the controller to fall below the fitness

threshold. No controller with 282 synapses lesioned could produce controllers that

maintained their performance above the fitness threshold (Figure 6.24.4). In line

with results obtained from macro-lesioning at the hidden unit level, a much higher

level of weight synapse redundancy should be expected in this controller compared

to the overall best controllers evolved using the other algorithms. This is the case

since the analysis from the previous section showed that an entire hidden node

could be removed without causing the controller to fall below the fitness threshold,

which correspondingly means that the entire set of synapses connected to and orig-

inating from this particular hidden unit were redundant. Thus, at least 30 weight

synapses that are connected to this hidden unit can be removed without causing

the lesioned controller to fall below the fitness threshold. The number of different

weight synapses that could be removed varied considerably at different levels of le-

sioning. For example, Figure 6.24.2 showed that only approximately 25 different

synapses could be removed at the 100-synapse level without causing the controller’s

locomotion capabilities to fall below the redundancy threshold. On the other hand,

Figure 6.24.3 showed that approximately 75 different synapses could be removed

at the 200-synapse level without causing the lesioned controller to fall below the

fitness threshold. The fluctuations observed with regards to the number of different
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Figure 6.24: Locomotion distance for overall best controller evolved using the hand-

tuned EMO algorithm (HT-EMO) with lesioning of 1. 1 weight synapse (top left), 2.

100 weight synapses (top right), 3. 200 synapses (bottom left), 4. 282 synapses (bot-

tom right). The index assigned to the lesioned weight synapse is labelled according

to the order of lesioning. X-axis: Synapse index, Y-axis: Locomotion distance.

synapses that could be removed at various levels of weight synapse lesioning are

most probably due to the greedy nature in which the synapse lesioning takes place

combined with the complex dynamics that takes place within the evolved ANN. A

weight synapse lesioned presently will provide the best performance at the current

level but the effects of this lesioning may at certain stages become highly sensitive

to further lesioning and vice versa due to the combinatorial effects that occur be-

tween different weight synapses and hidden nodes in the network, which cannot be
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ascertained by this one-step lookahead algorithm.
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Figure 6.25: Locomotion distance for overall best controller evolved using the

weighted sum EMO algorithm (WS-EMO) with lesioning of 1. 1 weight synapse (top

left), 2. 2 weight synapses (top right), 3. 3 synapses (bottom left), 4. 4 synapses

(bottom right). The index assigned to the lesioned weight synapse is labelled accord-

ing to the order of lesioning. X-axis: Synapse index, Y-axis: Locomotion distance.

Figure 6.25 illustrates the loss of locomotion fitness as weight synapses

were lesioned in the overall best controller evolved using the weighted sum EMO

algorithm. Up to three synapses could be lesioned without causing the controller

to fall below the fitness threshold. No controller with 4 synapses lesioned could

produce controllers that maintained their performance above the fitness threshold

(Figure 6.25.4). In terms of the number of different weight synapses that could
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be removed and still produced controllers that performed above the threshold, 6

controllers were found when 1 synapse was lesioned (Figure 6.25.1), followed by

2 controllers when 2 synapses were lesioned (Figure 6.25.2) and finally by only

1 controller when 3 synapses were lesioned (Figure 6.25.3). Hence there was more

synaptic redundancy present in the overall best controller evolved using the weighted

sum method compared to SPANN.
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Figure 6.26: Locomotion distance for overall best controller evolved using the single-

objective EA (SO-EA) with lesioning of 1. 1 weight synapse (top left), 2. 2 weight

synapses (top right), 3. 3 synapses (bottom). The index assigned to the lesioned

weight synapse is labelled according to the order of lesioning. X-axis: Synapse index,

Y-axis: Locomotion distance.

Figure 6.26 illustrates the loss of locomotion fitness as weight synapses
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were lesioned in the overall best controller evolved using the single-objective EA.

Up to 2 synapses could be lesioned without causing the evolved controller to fall

below the fitness threshold. No controller with 3 synapses lesioned could produce

controllers that maintained their performance above the fitness threshold (Figure

6.26.3). Only a particular weight synapse could be removed when 1 synapse was

lesioned which produced a controller that performed above the threshold (Figure

6.26.1). Following this lesioning, only another specific weight synapse could be

removed at the 2-synapse lesioning level that resulted in a controller that performed

above the threshold (Figure 6.26.2). Thus, there was also more synaptic redundancy

present in the overall best controller evolved using the single-objective EA compared

to SPANN but less synaptic redundancy compared to the hand-tuned and weighted

sum method. A summary comparing the number of redundant weight synapses

present in the best evolved controller obtained from SPANN against those obtained

using the hand-tuned, weighted sum and single-objective algorithms is given in Table

6.11.

Algorithm No. of Redundant Synapses
SPANN 1

HT-EMO 281
WS-EMO 3
SO-EA 2

Table 6.11: Number of redundant synapses in the best evolved controllers from the

SPANN, hand-tuned (HT-EMO), weighted sum (WS-EMO) and single-objective

(SO-EA) algorithms.

6.4.6 SPANN Against NSGA-II

To conclude our verification of SPANN as a beneficial Pareto EMO al-

gorithm, we compare its results against one of the current state-of-the-art Pareto

EMO algorithms called NSGA-II (Deb, Agrawal, Pratab, and Meyarivan 2000). Our

objective here is simply to verify that the solutions obtained using SPANN are com-

parable to those obtained using a well-known and well-tested Pareto EMO algorithm
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and not to determine which Pareto EMO algorithm is better for evolving locomo-

tion controllers as this is beyond the scope of this thesis. The NSGA-II algorithm

was obtained from the authors’ web site (KanGAL 2003) and used as a benchmark

algorithm without any modification to the NSGA-II algorithm. The NNType3 archi-

tecture was again used in this set of experiments and all other parameters remained

the same: 1000 generations, 30 individuals, 500 timesteps and 10 repeated runs.

NSGA-II requires a number of other parameters to be set by the user including the

crossover and mutation rates which are non-self-adaptive. Recently, the authors of

NSGA-II conducted a comprehensive comparative study of NSGA-II against other

EMO algorithms, which were reported in Deb, Pratab, Agrawal, and Meyarivan

(2002). Hence, in the first setup, these user-defined parameters were set according

to those used in the above-mentioned comparative study as follows: crossover rate

90%, mutation rate for real-coded variables 0.1553% (representing the reciprocal of

the number of real-coded variables), and mutation rate for binary-coded variables

6.6667% (representing the reciprocal of the number of binary-coded variables), dis-

tribution index for crossover operator 20, distribution index for mutation operator

20, and single-point crossover.

Algorithm Overall Best Average Best t-statistic No. of
Locomotion Locomotion (against Hidden

Distance Distance ± SPANN) Units
Standard Deviation

SPANN 17.6994 13.9626 ± 1.7033 - 4.9 ± 2.6
NSGA-II Setup 1 15.5452 11.7421 ± 2.0497 (3.78) 0 ± 0
NSGA-II Setup 2 18.3941 16.2022 ± 1.5860 2.85 6.8 ± 2.3
NSGA-II Setup 3 20.4144 17.8635 ± 1.9744 4.54 8.4 ± 2.1
NSGA-II Setup 4 20.9806 16.2667 ± 2.1868 2.54 7.7 ± 1.7

Table 6.12: Comparison of best locomotion distance for Pareto solutions obtained

over 10 independent runs using the SPANN and NSGA-II algorithms. Setup 1:

c=90%, m(r)=0.1553%, m(b)=6.6667%. Setup 2: c=50%, m(r,b)=50%. Setup 3:

c=50%, m(r,b)=90%. Setup 4: c=90%, m(r,b)=50%. c = crossover rate, m(r)

= mutation rate for real-coded variables, m(b) = mutation rate for binary-coded

variables.
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Table 6.12 lists the best Pareto solutions for locomotion distance obtained

using the NSGA-II algorithm and compares them against those obtained using the

SPANN algorithm. The best solutions obtained using the first setup for NSGA-II

produced controllers that used no hidden units in all 10 runs. The overall best

locomotion distance achieved was lower than that obtained using SPANN. The very

small mutation rate used in this setup most probably caused the evolutionary search

to prematurely converge to local optima centered around controllers which did not

use any hidden units. A t-test showed that the results obtained using NSGA-II were

significantly worse than SPANN at the α = 0.01 significance level for this setup.

Also, the overall best controller from SPANN achieved over 2 units of distance more

than the overall best controller obtained from this setup of NSGA-II (representing

a decrease of 12.2% compared to the overall best locomotion distance achieved by

SPANN).

To overcome the inferior results obtained using the setup reported in (Deb,

Pratab, Agrawal, and Meyarivan 2002), a second experiment utilizing the best com-

bination of crossover and mutation rates obtained from the hand-tuned EMO was

conducted. This second setup used crossover and mutation rates of 50% with all

other parameters unchanged. Much better results were obtained in this second

setup, where the overall best controller in terms of locomotion achieved a higher

distance than that obtained using SPANN by just under 0.7 units (representing a

3.9% improvement over the best locomotion distance achieved by SPANN). A t-

test showed that the solutions obtained using NSGA-II with the second setup were

significantly better than those obtained using SPANN at the α = 0.05 significance

level.

Since these results suggest that a high mutation rate may improve the

performance of NSGA-II, we carried out a third experiment using a setup with

an even higher mutation rate of 90% while maintaining the crossover rate at 50%.

However, a t-test comparing the results from this third setup against the second

setup for NSGA-II showed no significant improvements. To test whether a higher

crossover rate would yield better results, a fourth experiment was conducted using
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a setup with crossover rate of 90% and maintaining the mutation rate at 50%.

Again, a t-test showed no significant improvements in the results obtained with the

fourth setup compared to the second setup of NSGA-II. The solutions obtained with

third and fourth setup for NSGA-II were significantly better than those obtained

with SPANN at the α = 0.01 and α = 0.05 levels respectively. The best solutions

obtained from the third setup of NSGA-II used an average of 8.4 hidden units, which

is almost double the number used by the best solutions obtained using SPANN, while

the fourth setup used an average of 7.7 hidden units.

The Pareto-frontiers obtained over the 10 runs of NSGA-II for the four

setups are depicted in Figure 6.27. The first setup only produced controllers that

did not make use of any hidden units in the ANN controller as can be seen in

Figure 6.27.1. All runs converged to solutions that did not require any hidden

layer transformation resulting in purely reactive controllers being generated. In

comparison, the second, third and fourth setups which used much higher mutation

rates all produced a much greater variety of controllers as shown by the Pareto-fronts

plotted in Figures 6.27.2, 6.27.3 and 6.27.4 respectively.

Figure 6.28 plots the global Pareto-front of SPANN and NSGA-II. It can

be seen that the Pareto-front generated through 10 runs of SPANN is comparable

though dominated by the Pareto-front generated through 40 runs of NSGA-II (10

runs each in Setup 1–4). The solution with 0 hidden units of the NSGA-II global

Pareto-front was contributed from the first setup of NSGA-II while the remaining

8 other solutions on the global Pareto-front were contributed from the other three

setups.

In summary, as with the hand-tuned EMO algorithm, there is a trade-

off between obtaining better locomotion controllers using NSGA-II at the cost of

incurring greater computational expense to find the optimal parameter settings. It

is clear that the performance of NSGA-II is also sensitive to the parameters used. As

future work, it would be interesting to implement a self-adaptive version of NSGA-II

for a direct comparison against the self-adaptive SPANN.
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Figure 6.27: Pareto-front of solutions obtained for 10 runs using the NSGA-II al-

gorithm for Setup 1 (top left), Setup 2 (top right), Setup 3 (bottom left), Setup 4

(bottom right). Setup 1: c=90%, m(r)=0.1553%, m(b)=6.6667%. Setup 2: c=50%,

m(r,b)=50%. Setup 3: c=50%, m(r,b)=90%. Setup 4: c=90%, m(r,b)=50%. c =

crossover rate, m(r) = mutation rate for real-coded variables, m(b) = mutation

rate for binary-coded variables. X-axis: Locomotion distance, Y-axis: No. of hidden

units.

6.5 Chapter Summary

The self-adaptive Pareto SPANN algorithm was compared against EMO

algorithms that utilized hand-tuning of crossover/mutation rates and weighted sum

approaches as well as a single-objective EA. It was found that SPANN discovered

reasonably good quality controllers but most importantly required significantly less
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Figure 6.28: Global Pareto-front of controllers obtained using the SPANN and

NSGA-II algorithms. X-axis: Locomotion distance, Y-axis: No. of hidden units.

overall computational costs. Although better solutions were found using the single-

objective EA, the weighted sum and hand-tuned EMO algorithms, the trade-off in

terms of computational costs was extremely high in comparison to SPANN. Fur-

thermore, there was more redundancy present in the best controllers evolved using

the hand-tuned, weighted sum and single-objective methodologies compared to the

self-adaptive Pareto approach. The performance of SPANN was also found to be

comparable to that of a current state-of-the-art benchmark Pareto EMO algorithm,

NSGA-II. Therefore, the self-adaptive Pareto SPANN algorithm has been shown to

be a highly beneficial EMO algorithm to use for evolving artificial creature con-

trollers compared to other more conventional evolutionary optimization algorithms.

In the next chapter, we will present a multi-objective view towards capturing and

characterizing the complexities of evolved controllers using the SPANN algorithm.


