
Chapter 4

Fitness Landscapes

1 As we have seen from Chapter 2, there has been a lot of interest in evolving

controllers for both physically simulated creatures as well as for real physical robots.

However, a range of different ANN architectures are used for controller evolution

and in the majority of the work conducted, the choice of the architecture used is

made arbitrarily.

There have been some preliminary experiments that compared the perfor-

mance of evolved feed-forward versus dynamically recurrent ANNs for controlling

Khepera robots in a simulated space-constrained box-pushing experiment (Spronck,

Sprinkhuizen-Kuyper, and Postma 2001). It was found that feed-forward archi-

tectures were sufficient for successfully completing the task although the recurrent

architecture provided much more stability for the controller’s behavior, particularly

in maneuvering out of problematic positions. However, no fitness landscape analysis

was provided for the underlying fitness landscape of the controller’s search space.

As such, the literature remains largely inconclusive as to which ANN ar-

chitecture provides the most efficient and effective space for searching the range of

possible controllers through evolutionary methods. This represents the motivation

for this chapter where we compare the search space for four different types of ANN

architecture for controller evolution through an analysis of the fitness landscape as-

1Some of the material presented in this chapter have been previously published in Teo and

Abbass (2003).
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sociated with each type of architecture. We intend to ascertain whether additional

recurrent and input-output connections to a standard feed-forward ANN architec-

ture yields any benefit in terms of providing a fitness landscape which is easier to

search for locomotion controllers. The results from this chapter will provide a basis

for selecting the appropriate ANN architecture to be used for controller evolution

in later chapters of this thesis.

4.1 Introduction

The idea of fitness landscapes was first proposed by Wright (1932) and has

since proven to be an invaluable tool for analyzing evolutionary theories (Kauffman

1993; Adami 1998). It serves as a powerful tool for visualizing the evolutionary pro-

cess through its imagery of mountainous peaks, hills, valleys, ridges and plateaus

that are encountered through the exploration and exploitation of genotype space.

Evolution can thus be viewed as movements within a multi-dimensional search space.

Although initially introduced by Wright as a non-mathematical tool for visualiz-

ing biological selection and variation, fitness landscapes have since become highly

amenable to mathematical analysis. A discussion of the various metrics that have

been proposed for mathematically characterizing fitness landscapes is given in Sec-

tion 4.3.

In an evolutionary computation context, a fitness landscape comprises of

three main elements: (1) the set of genotypes, (2) the fitness function that evaluates

the genotypes, and (3) the genetic operators that define the neighborhood relation-

ships between the set of genotypes (Vassilev, Fogarty, and Miller 2000). The fitness

landscape is thus normally a high-dimensional space with n + m dimensions, where

n is the genotype length and the extra m dimensions representing the fitness values

associated with the genotype when evaluated using the m fitness functions. In tradi-

tional evolutionary computation, m is usually 1 since the evolutionary optimization

process is conducted on one objective function only. In this case, a genotype with

length two can be visualized as a 3D landscape where genetic operations carried out
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on the set of genotypes will produce small movements on the landscape during the

evolutionary search process. On the other hand, in an evolutionary multi-objective

search process, m would be ≥ 2 since the solution is being optimized along two or

more objective functions.

4.2 Search Space Difficulty

The performance of an EA is thus tied intimately to the structure of its

fitness landscape. In attempting to identify the difficulties presented by a particular

landscape, the evolutionary search is typically characterized in terms of the degree

of epistasis and modality (Smith, Husbands, Layzell, and O’Shea 2002). Epistasis

refers to the situation where the fitness of a genotype is dependent on multiple

gene interactions. Modality refers to the situation where the search space has large

numbers of optima. Both high epistasis and modality will lead to a rugged fitness

landscape (Vassilev, Fogarty, and Miller 2000). Such rugged search spaces can be

visualized as a landscape with many hill-tops that are separated by deep valleys. In

other words, there is no steady or smooth progression of fitness values from one point

to another neighboring point and thus increases the difficulty for the evolutionary

search to move to higher areas of fitness during the optimization process. Therefore,

highly epistatic and multi-modal problems will lead to a rugged landscape that is

more difficult to search compared to a smoother landscape with low epistasis and

modality.

4.3 Analyzing Fitness Landscapes

A number of fitness landscape analysis techniques have been proposed for

measuring the degree of ruggedness of the underlying search space. These math-

ematical treatments of the fitness landscape comprise of two main streams: (1)

statistical measures, and (2) information measures.
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4.3.1 Statistical Measures

Weinberger (1990) used the autocorrelation function to measure the rugged-

ness of the landscape. A sequence of fitness values is generated using a random walk

through the search space. The autocorrelation ρ between sets of fitness points sep-

arated by a distance of Γ is then approximated by

ρ(Γ) ≈ E(ftft+s)− E(ft)E(ft+s)

V (ft)
(4.1)

where E(ft) represents the expectation and V (ft) the variance of the sequence of N

fitness values {ft}N
t=1. A high correlation indicates a smooth landscape since neigh-

boring points have highly similar fitness values. On the other hand, a low correlation

indicates a rugged landscape since neighboring points have highly dissimilar fitness

values.

Weinberger also proposed another correlation measure called the correla-

tion length to define landscape ruggedness. It is simply the distance beyond which

the sets of fitness points become uncorrelated. The correlation length τ between

sets of fitness points separated by a distance of Γ is calculated as

τ(Γ) = − 1

ln(ρ(1))
(4.2)

where ρ(1) is the autocorrelation of neighboring points. The magnitude of this length

indicates the smoothness of the landscape. A longer correlation length would thus

indicate a very smooth fitness landscape whereas a shorter length would indicate

a more rugged landscape. A number of other correlational metrics have also been

proposed for characterizing fitness landscapes (Manderick, de Weger, and Spiessens

1991; Lipsitch 1991; Hordijk 1996; Vassilev, Fogarty, and Miller 2000).

4.3.2 Information Measures

Apart from statistical analysis, a distinctly different methodology based

on classical information theory (Shannon 1948) known as information content has

been proposed for characterizing fitness landscapes (Vassilev, Fogarty, and Miller

2000). It also approximates the ruggedness of the underlying search space through
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analysis of a sequence of fitness values {ft}N
t=1 obtained through a random walk of

N steps over the landscape but instead measures the entropy or amount of fitness

change encountered during the walk. Four measures were proposed by Vassilev in

conjunction with this information analysis of fitness landscapes (Vassilev, Fogarty,

and Miller 2000):

1. Information Content (H(ε)): indicates the ruggedness of landscape path

2. Partial Information Content (M(ε)): indicates the modality of landscape path

3. Information Stability (ε?): indicates the magnitude of landscape path’s optima

4. Density-Basin Information (h(ε)): characterizes the landscape structure arou-

nd optima

The information content characterizes the amount of ruggedness with re-

spect to the flat areas of the landscape. The degree of flatness depends on a sensi-

tivity parameter ε which is explained in the following paragraph. The information

content is given by

H(ε) = −
∑

p6=q

P[pq] log6 P[pq] (4.3)

where H(ε) represents the entropy of the system. The probabilities P[pq] represent the

frequencies of possible sub-blocks pq of elements from the string S(ε) = s1s2s3...sN

where si ∈ {1̄, 0, 1}. The string S(ε) is enumerated using the following function

si = Ψft(i, ε) (4.4)

where

Ψft(i, ε) =





1̄ if fi − fi−1 < −ε

0 if |fi − fi−1| ≤ ε

1 if fi − fi−1 > ε

(4.5)

for a particular value of the parameter ε. This parameter ε controls the sensitiv-

ity for measuring the entropy and is a real-valued number chosen from the range

[0, L] where L represents the maximum fitness difference of the sequence {ft}N
t=1.
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The information analysis will be most sensitive when ε is 0 producing the maximal

string of 1’s and 1̄’s when enumerating S(ε) and hence provides the most detailed

description of the landscape. Conversely, the analysis will be least sensitive when ε

is L producing a string of 0’s when enumerating S(ε) and hence provides the least

detailed description of the landscape. In effect, ε acts as an accuracy setting for

the information analysis and provides an idea of the landscape profile according to

varying degrees of detail.

The partial information content is obtained by filtering out non-essential

parts of S(ε) to obtain an indication of the modality encountered during the walk.

It is given by

M(ε) =
µ

n
(4.6)

where µ is the length of the derived string S ′(ε) and n is the length of the original

string S(ε). µ is calculated using a recursive function ΦS(1, 0, 0) defined as

ΦS(i, j, k) =





k if i > n

ΦS(i + 1, i, k + 1) if j = 0 and si 6= 0

ΦS(i + 1, i, k + 1) if j > 0, si 6= 0 and si 6= sj

ΦS(i + 1, j, k) otherwise

(4.7)

where k will return the value of µ upon completion of the evaluation. When M(ε)

is 0, this is an indication that no slopes were present in the path. However when

M(ε) is 1, this indicates that the path is maximally multi-modal. Furthermore, the

expected number of optima can be calculated from the partial information content

as bnM(ε)
2
c.
The information stability (ε?) is defined to be the smallest value of ε cor-

responding to H(ε) = 0. A high information stability indicates that the largest

possible difference between two neighboring points is similarly high. Thus, it pro-

vides an idea of the magnitude of the landscape path’s optima encountered during

the walk.

In order to characterize the landscape structure around optima, it was also

suggested that the density-basin information (h(ε)) be calculated (Vassilev, Fogarty,
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and Miller 2000). This measure gives an indication of the flat and smooth areas of

the landscape and gives an indication of the density as well isolation of peaks in the

landscape. The formula for calculating this measure is given by

h(ε) = −
∑

p∈{1̄,0,1}
P[pp] log3 P[pp] (4.8)

where pp represent sub-blocks 00,11 and 1̄1̄. A high number of peaks existing within

a small area of the landscape would thus give a high value for (h(ε)). On the other

hand, an isolated optimum would give a low value for (h(ε)). As such, this provides

an idea of the size and nature of the basins of attractions of optima. Landscapes with

high density-basin information should thus be easier for an evolutionary search pro-

cess to become “attracted” to a fitter solution space and the converse for landscapes

with lower density-basin information.

In summary, higher values of information content, partial information con-

tent and information stability suggest higher degrees of epistasis and modality, which

leads to a more rugged landscape that is harder to search. At the same time,

the density-basin information should further assist in determining the search space

difficulty by characterizing the landscape around optima. Therefore, using these

information-theoretic measures to compare between different artificial evolutionary

systems should provide useful characterizations of the search difficulty associated

with the different fitness landscapes.

4.4 Experimental Setup

Three series of experiments were performed to provide an insight into the

search space difficulty associated with each type of ANN architecture. The fitness

of each genotype in these experiments was evaluated according to the f1 objective

function only, which is the locomotion distance achieved by the controller as defined

in Section 3.4.1.

In the first series of experiments, random sampling of solutions was con-

ducted for all four architectures. Since random search is used, each genotype is
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generated independently from all other genotypes. Furthermore, the variable num-

ber of hidden units for each network specified by the genotype is initialized randomly

ranging between 0 to 15 hidden units according to a uniform distribution. From prior

experiments, it was found that the best controllers only required between 2–4 hid-

den units (Teo and Abbass 2002a; Teo and Abbass 2002b; Teo and Abbass 2002c).

As such, we have chosen to set the upper bound for this parameter at 15 hidden

units. In each run, a total of 30,000 genotypes were sampled. This is equivalent

to an evolutionary run with a population size of 30 over 1000 generations, which

is the intended setup for later experiments involving artificial evolution of ANNs,

to ensure that a fair comparison of the search space can be made. Sampling of the

search space using random search is replicated for 10 different seeds giving 10 inde-

pendent runs with a total of 300,000 fitness evaluations (although a single run that

directly generates the required 300,000 fitness evaluations would be equivalent, the

setup using 10 runs initialized from 10 seeds is used to maintain consistency across

all experimental setups).

In the second series of experiments, trial solutions were obtained using a

hill-climbing algorithm for all four ANN architectures. New genotypes were gener-

ated from the currently accepted genotype using a mutation of 0.1. The mutation

operator changes both the values of the connection weights and number of active

hidden units in the network. A move from the best solution found so far to a trial

solution is accepted only if the trial solution has a higher fitness than the best so-

lution found so far. Otherwise, another trial solution is generated. The fitness for

all solutions generated during the hill-climb were recorded and analyzed. Each run

was again allowed to sample a maximum of 30,000 genotypes over 10 independent

runs as in the random search experiments. In order to reduce the amount of bias on

the number of hidden units present in each ANN during initialization of the geno-

type, each of the 10 independent runs was started using networks initialized with

increasing probabilities of having more hidden units ranging from 0 to 15 hidden

units. This guarantees that the genotype space is sampled uniformly in terms of the

variable hidden layer.
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For the last series of experiments, a random walk was performed using all

four ANN architectures. The fitness value obtained for every genotype at each step

of the walk was recorded. A new point in the search space was generated through

a 0.1 mutation of the previous genotype reached during the walk. Again to ensure

fair comparisons, each walk was allowed a maximum of 30,000 steps and 10 separate

walks were carried out staring from different points in the search space. Also, as

with the hill-climbing experiments, each of the 10 independent runs were started

using networks initialized with increasing probabilities of having more hidden units

to ensure that the genotype space is sampled uniformly in terms of the variable

hidden layer.

The information content analysis was carried out only for the search spaces

sampled using random walk. This is due to the neighborhood definition of this

landscape measure, which is only meaningful when all subsequent fitness points of

genotypes sampled in the search space are related through a walk obtained using the

genetic operators (see Section 4.1). Furthermore, from the definition of the auto-

correlation function, to conduct such an analysis requires sampling of fitness points

that are separated by a distance of Γ. However, an autocorrelation analysis was not

possible in our particular problem as the algorithm used in our random walk cannot

guarantee that fitness points of step length > 1 are unique points in the landscape.

This was due to the fact that the mutation operator used to generate subsequent

neighborhood points is non-directional in the sense that later mutations may return

a particular walk to a previously encountered landscape point. A directional ap-

proach would also not provide an accurate picture of the actual fitness step lengths

because of two problems: (1) network symmetry, and (2) hidden unit activation.

Firstly, mutations arising from distinctly different trajectories can lead to identical

ANNs by virtue of architectural symmetries that can arise in the network. Secondly,

the flipping of a single bit in the genotype which turns a particular hidden unit on

or off will cause an entire set of connection weights to either become active or inac-

tive in the ANN and hence, the mutation of a single hidden unit can cause a very

large change in the phenotype. These are known problems in measuring diversity
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when evolving neural networks (Yao 1999). As such, an autocorrelation analysis

conducted in this case will not be reliable since we cannot guarantee that fitness

points after s steps are actually at a distance Γ = s away from each other. Hence,

we focus our fitness landscape analysis of neighborhood points sampled by random

walk using only the informational measures.

This initial investigation of the underlying fitness landscapes should provide

some indication on which of the four proposed types of ANN architecture would allow

for better controller evolution. Although there are limitations associated with fitness

landscape analysis methods, which we discuss in Section 4.6, the results from this

initial investigation will at least provide some basis for deciding which type of ANN

architecture is to be used for the remainder of the artificial evolution experiments.

4.5 Results and Discussion

The results from the experiments described above are presented in three

sections. The first section provides a characterization of the search space using

random sampling, followed by hill-climbing and finally using random walk. For each

sampling technique, a 3D graph was first plotted to show the frequency distribution

of sampled genotypes in terms of their solution fitness as well as the number of hidden

units present in the ANN. As the objective is a continuous function, genotypes

were grouped into 5000 discrete intervals to calculate the frequency distribution.

These 3D frequency graphs were rotated along the X-Y axis in order to provide a

clearer depiction of the distribution characteristics as it was found that the default

orientation in the original plots often resulted in some features becoming obscured

by large peaks in the distribution. This convention is adopted throughout the thesis

whenever such graphs are depicted. Additional 2D smoothed contour graphs were

plotted to provide a clearer depiction of the relationship between number of hidden

units present in the ANN and quality of solutions. A smoothed probability density

function was also plotted for each architecture by grouping solutions according to

their fitness irrespective of the number of hidden units present in the ANN. Also,
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the best solution found by each of these algorithms over the 10 independent runs

was plotted over time. This will give an indication of how the search proceeded over

time. Finally, a comparison of the best overall solution found using the different

algorithms is discussed along with the average and standard deviation of the best

solutions found.

4.5.1 Random Search

Figure 4.1: Frequency distribution of solutions using random search for ANN archi-

tecture 1. NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom left),

4. NNType3 (bottom right). X-axis: Fitness, Y-axis: No. of hidden units, Z-axis:

Frequency.

Figure 4.1 is a frequency histogram of the distribution of solutions in terms
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of their fitness and number of hidden units. From these graphs, it is apparent that

the number of hidden units does not affect the quality of the solutions sampled at

random. An analysis conducted on the mean fitness across ANNs with different

numbers of hidden units showed that there was no correlation between the number

of units present in the hidden layer and the locomotion capability of the ANN.

What this means is that from random sampling, controller size in terms of number

of hidden units does not appear to affect the locomotion capability of the creature.

This may be due to the fact that solutions with good locomotion abilities may

be extremely rare and isolated in the search space, which makes this problem of

automatic generation of artificial creature controllers a particularly hard problem.

2D contour graphs of frequency distribution of solutions obtained from

random search in terms of fitness and number of hidden units present in the ANN

are given in Figure 4.2. No obvious concentration of solutions can be seen from these

graphs, which confirms the earlier observation that the number of hidden units does

not appear to affect the solutions found by random search. However, it is interesting

to note that the final contour line extends further by more than 1 unit distance in

NNType1 (Figure 4.2.2) and NNType3 (Figure 4.2.4) compared to NNType0 (Figure

4.2.1) and NNType2 (Figure 4.2.3). This suggests that it was slightly easier to reach

fitter regions of the controller’s objective space using the NNType1 and NNType3

architectures compared to using the NNType0 and NNType2 architectures.

Figure 4.3 shows the probability density function of solutions obtained

using random search for all four types of ANN architecture. It is clear from these

graphs that a random search of the genotype space yields a very high percentage

of low fitness solutions. For all four types of ANN, the most commonly sampled

genotype only yields a fitness of around 1. This is a clear indication that a uniform

sampling of the genotype space yields a highly skewed distribution of solutions in

the objective space. The NNType1 (Figure 4.3.2) and NNType3 (Figure 4.3.4)

architectures appear to provide slightly more solutions with higher fitness although

the difference is not very obvious. This can be seen from the small shift to the

right of the probability curve for these networks. Also, the probability of generating
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Figure 4.2: Contour graphs of frequency distribution of solutions obtained using

random search for ANN architecture 1. NNType0 (top left), 2. NNType1 (top

right), 3. NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Fitness,

Y-axis: No. of hidden units.

controllers begins to approach 0 for NNType0 (Figure 4.3.1) and NNType2 (Figure

4.3.3) beyond a fitness 6 whereas for NNType1 and NNType3, this only occurs at

a fitness of beyond 8. This observation gives a weak indication that ANNs with

direct connections from input to output (NNType1 & NNType3) may be easier to

search whereas recurrent connections only (NNType2) do not provide any significant

advantage over a standard feed-forward architecture (NNType0).

The best solution obtained over the 30,000 iterations of random search for

10 independent runs is depicted in Figure 4.4. The final best solutions clustered
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Figure 4.3: Density (solid) and cumulative (dashed) probability distribution of so-

lutions obtained using random search for ANN architecture 1. NNType0 (top left),

2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom right).

X-axis: Fitness, Y-axis: Probability.

between a fitness of 6 to 9 for NNType0 (Figure 4.4.1) and NNType2 (Figure 4.4.3)

whereas for NNType1, the final best solutions clustered between 9 and 11 (Figure

4.4.2). There was a larger spread of best final solutions in NNType3 ranging between

9 and 13 (Figure 4.4.4). The NNType3 architecture also had more runs in which

significant fitness improvements still occurred in the latter parts of the random

search compared to the other three architectures where in most runs, the major

improvements in fitness occurred before the 10,000th iteration resulting in large

plateau areas in the end regions of these graphs.
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Figure 4.4: Best fitness for solutions obtained over time for 10 runs using random

search for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right), 3.

NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Iterations, Y-axis:

Fitness.

NNType Overall Best Average Best Fitness t-statistic No. of
Fitness ± Standard Deviation (against Hidden

NNType0) Units
0 8.8637 7.5406 ± 0.6733 - 10.0 ± 2.3
1 11.3962 10.0931 ± 0.7348 8.60 7.4 ± 4.0
2 9.1804 7.3609 ± 0.7490 (0.47) 10.9 ± 2.5
3 13.0225 10.2878 ± 1.2747 5.58 9.2 ± 4.2

Table 4.1: Comparison of best solutions found using random search over 10 inde-

pendent runs.
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Table 4.1 shows the overall best f1 fitness obtained from 10 independent

runs of random search along with the average best fitness and standard devia-

tions for all four ANN architecture types. The overall best fitness was obtained

using NNType3 followed by NNType1. The next best overall fitness was given

by NNType2 and the worst was NNType0. In terms of the average best fitness,

NNType3 had the highest value, followed by NNType1, NNType0 and NNType2

respectively. The differences between means of NNType1 and NNType3 against

NNType0 were statistically significant at both α = 0.05 and α = 0.01. This in-

dicates that in terms of the best controllers found, additional input-output con-

nections in NNType1 architectures were able to yield better controllers on average

when searched randomly as was the case with NNType3, which had both additional

input-output as well as recurrent connections. However, recurrent-only architecture

in NNType2 did not show any significant advantages over the standard feed-forward

architecture in NNType0.

In terms of the number of hidden units used in the best controllers, the

solutions found by random search used an average of between 7.4 and 10.9 hidden

units. Surprisingly, the best solutions found using the NNType1 and NNType3 ar-

chitecture types, which had higher locomotion fitness than NNType0 and NNType2,

required on average less number of hidden units compared to these latter two archi-

tectures. However, the standard deviations were also much higher in NNType1 and

NNType3 suggesting that the apparent inverse relationship between controller size

and locomotion distance could have been due to chance encounters with small-sized

networks with better locomotion capabilities.

4.5.2 Hill-Climbing

Figure 4.5 plots the frequency distribution of solutions in terms of fitness

and number of hidden units. In this case, the number of hidden units does affect the

controller’s locomotion capabilities as evidenced by the non-uniform distribution of

solutions across the objective space. The hill-climbing algorithm appeared to favor

genotypes that had between 4 and 10 units in the variable hidden layer as evidenced
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Figure 4.5: Frequency distribution of solutions using hill-climbing for ANN archi-

tecture 1. NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom left),

4. NNType3 (bottom right). X-axis: Fitness, Y-axis: No. of hidden units, Z-axis:

Frequency.

by the significantly higher frequencies of samples appearing in this region of the

objective space.

Accompanying 2D contour graphs of frequency distribution of solutions in

terms of fitness and number of hidden units present in the ANN are given in Figure

4.6. The peaks illustrated in these contour graphs provide a clearer picture of where

the concentration of sampled genotypes occurred. For NNType0 and NNType1,

the most commonly sampled genotypes had hidden layers of 8 units peaking at a

fitness of just under 4 (Figure 4.6.1) and 5 (Figure 4.6.2) respectively. NNType2
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Figure 4.6: Contour graphs of frequency distribution of solutions obtained using

hill-climbing for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right),

3. NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Fitness, Y-axis:

No. of hidden units.

had multiple but lower peaks at 4,6,7 and 8 hidden units with fitness ranging from

just under 1 to just over 6 (Figure 4.6.3). Finally, the highest concentration of

genotypes encountered during hill-climbing in NNType3 had hidden layers of 7 units

and fitness of approximately 3.5 (Figure 4.6.4). A slightly lower but still very high

peak could also be seen in NNType3 with 5 hidden units and a fitness of around 5.

These observations suggest that for all four ANN architectures, hill-climbing is very

susceptible to becoming stuck in local optima that are apparently very difficult to

break out of.
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Figure 4.7: Density (solid) and cumulative (dashed) probability distribution of so-

lutions obtained using hill-climbing for ANN architecture 1. NNType0 (top left),

2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom right).

X-axis: Fitness, Y-axis: Probability.

Figure 4.7 shows the probability density function of solutions obtained

using hill-climbing for all four types of ANN architecture. The genotypes that were

sampled using hill-climbing yielded a set of solutions with much higher fitness than

those obtained using random sampling. The architecture that generated the lowest

fitness was NNType0 (Figure 4.7.1). Here, the probability of generating a controller

approached 0 beyond a fitness of 7. This is expected since the NNType0 architecture

has the least number of available connections between layers. Surprisingly, the

next best architecture was NNType3 (Figure 4.7.4) which had the most number of
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available connections between layers. The probability of generating a controller in

this case approached 0 beyond a fitness of only 10. For NNType1 (Figure 4.7.2) and

NNType2 (Figure 4.7.3), the probability only approached 0 beyond a much higher

fitness of 14. This may be due to a chance encounter with a much fitter solution

which caused the sampling process to cluster around a local optimum with a higher

fitness, thereby biasing the distribution of solutions towards this area of the objective

space (the presence of outliers in NNType1 and NNType2 is discussed again later

in this section). It should be noticed though that the majority of the solutions were

still sampled around the low quality areas of the search space yielding controllers

with locomotion distances of between 0 and 6. This is again an indication that the

landscape might be quite rugged and thus very easy for a hill-climbing algorithm to

become stuck in a local optimum.

The best solution obtained over the 30,000 iterations of hill-climbing for 10

independent runs is depicted in Figure 4.8. The final solutions appeared to cluster

between a fitness of 4 to 6 and is most apparent in NNType0 (Figure 4.8.1). The

best solutions obtained with NNType1 (Figure 4.8.2) and NNType2 (Figure 4.8.3)

had a larger spread of fitness values compared NNType3 (Figure 4.8.4). What is

noticeably clear is that most of the improvement in the quality of solutions occurred

within an extremely short window at the start of the search process and subsequent

improvements were minimal except only in a single run each with NNType1 and

NNType2 causing large plateau areas in the graphs. This supports the earlier hy-

pothesis that the landscape may be quite rugged and that a hill-climbing algorithm

may get stuck very easily in a local optimum and find it difficult to obtain fitter

solutions that will enable it to move away from the local optimum.

Table 4.2 shows the overall best f1 fitness obtained from 10 independent

runs of hill-climbing along with the average best fitness and standard deviations

for all four ANN architecture types. The overall best fitness was obtained using

NNType1 although the overall best fitness from NNType2 was only less by 0.47.

This was followed by NNType3 and the worst was NNType0. This is consistent

with the mean of the best fitness which also indicates that NNType1 and NNType2
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Figure 4.8: Best fitness for solutions obtained over time for 10 runs using hill-

climbing for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right), 3.

NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Iterations, Y-axis:

Fitness.

NNType Overall Best Average Best Fitness t-statistic No. of
Fitness ± Standard Deviation (against Hidden

NNType0) Units
0 7.1333 5.5969 ± 0.9714 - 7.0 ± 2.3
1 14.9792 8.4652 ± 2.6246 3.41 7.4 ± 2.0
2 14.5086 7.6568 ± 2.9365 2.06 6.4 ± 2.5
3 10.0832 6.9057 ± 1.5719 2.18 6.8 ± 2.2

Table 4.2: Comparison of best solutions found using hill-climbing over 10 indepen-

dent runs.
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were the easiest architectures to search using hill-climbing in generating efficient

controllers for the creature. Correspondingly, the worst architecture was NNType0

which had the least possible number of connections allowable between layers of the

network. However, it should be noted that the standard deviations for NNType1 and

NNType2 were higher than NNType3 or NNType0 and may indicate the presence of

outliers that were chanced upon during the search. A t-test showed that the only sig-

nificant difference was between NNType0 and NNType1. NNType2 and NNType3

did not show any significant differences in terms of their average best solution com-

pared to NNType0 at both α = 0.05 and α = 0.01. This is an indication that in

terms of the best solutions found using a hill-climbing algorithm, only additional

input-output connections (NNType1) were advantageous in yielding higher quality

locomotion controllers and that neither additional recurrent-only (NNType2) nor

additional recurrent plus input-output connections (NNType3) provided any signif-

icant advantages over the standard feed-forward architecture (NNType0).

There was very little difference in the number of hidden units used by the

best controllers found using hill-climbing. On average, the best solutions found using

NNType2 required the least number of hidden units at 6.4 while NNType1 required

the most at 7.4. The standard deviation among the best controllers was also very

similar across the different architectures ranging between 2.0 and 2.5 hidden units.

4.5.3 Random Walk

The frequency distribution of solutions obtained from a random walk of the

fitness landscape is presented in Figure 4.9. All four architectures yielded a fairly

similar but again highly skewed distribution over the objective space. The majority

of genotypes sampled by a random walk again clustered around the very low quality

areas of the search space and around ANNs with hidden layers of between 3 and

12 units. As such, a very high percentage of low fitness solutions again appeared

to dominate the random walk. As with hill-climbing, there are indications that the

size of the hidden layer affects the locomotion capabilities of the controller. This is

more evident from the contour graphs that follow.
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Figure 4.9: Frequency distribution of solutions using random walk for ANN archi-

tecture 1. NNType0 (top left), 2. NNType1 (top right), 3. NNType2 (bottom left),

4. NNType3 (bottom right). X-axis: Fitness, Y-axis: No. of hidden units, Z-axis:

Frequency.

The effect of hidden units on the fitness of genotypes is very apparent

in these accompanying 2D contour graphs depicted in Figure 4.10. Solutions with

fitness above 4 had between 6 and 9 hidden units. It is also clear from the peaks

on these graphs that the most frequently encountered genotype had between 7 and

8 hidden units. This may indicate that there is a large basin of attraction in this

region of the search space. However, the fitness of solutions in this area is very

low indeed (∼ 1). Similar to the observations noted in the random search contour

graphs, it was slightly easier to reach fitter regions of the controller’s objective
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Figure 4.10: Contour graphs of frequency distribution of solutions obtained using

random walk for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right),

3. NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Fitness, Y-axis:

No. of hidden units.

space when random walks were performed on the fitness landscape of ANNs with

architecture NNType1 (Figure 4.10.2) and NNType3 (Figure 4.10.4) compared to

NNType0 (Figure 4.10.1) and NNType2 (Figure 4.10.3). However, this effect is

not very significant and thus only gives a weak indication that ANNs with direct

connections from input to output (NNType1 & NNType3) may be easier to search

than those with recurrent connections only (NNType2) or a standard feed-forward

architecture (NNType0).

The probability density function of solutions obtained using random walk
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Figure 4.11: Density (solid) and cumulative (dashed) probability distribution of

solutions obtained using random walk for ANN architecture 1. NNType0 (top left),

2. NNType1 (top right), 3. NNType2 (bottom left), 4. NNType3 (bottom right).

X-axis: Fitness, Y-axis: Probability.

is illustrated in Figure 4.11 for all four ANN architectures. The shape of the curves

was very similar to the ones obtained with random search. These graphs show that

a random walk of the genotype space yields a very high percentage of low fitness

solutions centered around a fitness of only 1. This supports the earlier observation

from random search that the distribution of solutions in the objective space is highly

non-uniform. As with random search, random walk had a slightly better probability

of encountering fitter genotypes with NNType1 and NNType3 architectures com-

pared to the NNType0 and NNType2 architectures (as evidenced by the slightly



CHAPTER 4. FITNESS LANDSCAPES 79

larger areas under the curves in Figures 4.11.2 & 4.11.4 compared to the curves in

Figures 4.11.1 & 4.11.3) as the probabilities approached 0.
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Figure 4.12: Best fitness for solutions obtained over time for 10 runs using random

walk for ANN architecture 1. NNType0 (top left), 2. NNType1 (top right), 3.

NNType2 (bottom left), 4. NNType3 (bottom right). X-axis: Iterations, Y-axis:

Fitness.

The best solution obtained over the 30,000 iterations of random walk for

the 10 independent runs is depicted in Figure 4.12. Compared to hill-climbing, the

best solutions obtained for all four ANN architectures were less clustered within

a specific range of fitness and had a fair spread of solutions between 7 and 12.

Again this supports the earlier observations that the fitness landscape may be quite

rugged and thus in a random walk, which does not have the constraint of having
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to search within a neighborhood area of the best solution found so far, may have a

better chance of finding a better solution by virtue of its random trajectory through

different objective sub-spaces. Additionally, the progression of the best solution over

time is more gradual in random walk compared to hill-climbing and the periods

where the best fitness does not improve is also much shorter as evidenced by less

occurrences of long plateau regions.

NNType Overall Best Average Best Fitness t-statistic No. of
Fitness ± Standard Deviation (against Hidden

NNType0) Units
0 11.6325 9.7725 ± 1.2009 - 7.4 ± 2.1
1 11.8494 10.4776 ± 0.9616 1.66 7.4 ± 2.2
2 12.2220 9.5602 ± 1.3372 (0.43) 8.2 ± 2.0
3 13.0900 10.0333 ± 1.2535 0.42 7.0 ± 1.4

Table 4.3: Comparison of best solutions found using random walk over 10 indepen-

dent runs.

Table 4.3 shows the overall best f1 fitness obtained from the 10 independent

runs of random walk along with the average best fitness and standard deviations

for all four ANN architecture types. A slightly different picture is given by random

walk compared to hill-climbing in terms of the ease of searching for good controllers

across the four ANN architectures. The results obtained were less differentiating

for the overall best fitness and especially with the average of the best fitness. Here,

although the overall best fitness was highest for NNType3 followed by NNType2,

then by NNType1 and finally NNType0, the averages had NNType1 with the highest

best fitness followed by NNType3, then by NNType0 and the worst was NNType2.

Taking into consideration the standard deviations, the means of these best solutions

were not very different from each other. As such, there are no strong indications

as to what effect allowing recurrency and direct input-output connections have on

the ease of searching for good quality controllers. It is also interesting to note

that a comparison of the average best fitness obtained with random walk was much

higher than those obtained with hill-climbing. This lends further confirmation to

the fact that hill-climbing is highly inefficient in searching this landscape and that

even a random walk is better in chancing upon a fitter solution. A t-test at both
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α = 0.05 and α = 0.01 showed no significant differences for the four different ANN

architectures in terms of the best solutions obtained over 10 independent runs.

As with hill-climbing, there was little variation in terms of the size of the

hidden layer among the best controllers found using random walk. However in this

case, NNType3 required on average the least number of hidden units, NNType0 and

NNType1 had similar requirements while NNType2 required the highest number

of hidden units. Also, on average across all architecture types, random walk used

approximately 1 hidden unit more than the best controllers found using hill-climbing

and approximately 2 hidden units less than random search.

4.5.3.1 Information Content Analysis

NNType ε H(ε) M(ε) Exp. No. h(ε)
of Optima

0 0 0.4067 ± 0.0009 0.6226 ± 0.0050 9339 ± 75 0.5727 ± 0.0030
1 0.6733 ± 0.0269 0.2406 ± 0.0219 3608 ± 328 0.3993 ± 0.0293
2 0.3442 ± 0.0522 0.0771 ± 0.0186 1156 ± 279 0.1588 ± 0.0310
5 0.0233 ± 0.0135 0.0023 ± 0.0015 34 ± 22 0.0059 ± 0.0039
9 0.0002 ± 0.0004 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0001
12 0.0000 ± 0.0000 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0000

1 0 0.4066 ± 0.0005 0.6302 ± 0.0042 9452 ± 64 0.5681 ± 0.0026
1 0.6951 ± 0.0358 0.2581 ± 0.0275 3870 ± 413 0.4266 ± 0.0309
2 0.3837 ± 0.0539 0.0914 ± 0.0226 1371 ± 339 0.1856 ± 0.0354
5 0.0338 ± 0.0170 0.0031 ± 0.0019 47 ± 29 0.0091 ± 0.0054
9 0.0003 ± 0.0004 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0001
12 0.0000 ± 0.0000 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0000

2 0 0.4069 ± 0.0007 0.6241 ± 0.0042 9361 ± 63 0.5718 ± 0.0025
1 0.6703 ± 0.0220 0.2379 ± 0.0169 3568 ± 254 0.3924 ± 0.0236
2 0.3327 ± 0.0418 0.0720 ± 0.0144 1079 ± 215 0.1514 ± 0.0248
5 0.0186 ± 0.0079 0.0017 ± 0.0008 26 ± 12 0.0045 ± 0.0020
9 0.0003 ± 0.0004 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0001
12 0.0000 ± 0.0000 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0000

3 0 0.4067 ± 0.0005 0.6303 ± 0.0037 9454 ± 55 0.5680 ± 0.0023
1 0.6976 ± 0.0365 0.2608 ± 0.0281 3912 ± 421 0.4267 ± 0.0306
2 0.3817 ± 0.0548 0.0911 ± 0.0218 1366 ± 327 0.1845 ± 0.0366
5 0.0330 ± 0.0189 0.0032 ± 0.0020 48 ± 30 0.0090 ± 0.0060
9 0.0002 ± 0.0004 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0001
12 0.0000 ± 0.0000 0.0000 ± 0.0000 0 ± 0 0.0000 ± 0.0000

Table 4.4: Information content analysis using random walk for the 4 ANN architec-

ture types.
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The information characteristics associated with the search spaces of the

four different types of controller architectures are presented in Table 4.4. This anal-

ysis does not indicate any discernable differences between the four different fitness

landscapes in terms of information content. All architectures have a similarly high

information stability (H(ε) = 0) of approximately 12 indicating that the differences

in fitness between neighboring solutions is very high. H(0) is also quite large and

therefore this indicates that the diversity of shapes on the landscape is also relatively

high. M(0) is also large indicating that a high degree of modality was encountered

during the walk, which is also evident from the large number of expected optima

on the landscape. Surprisingly, h(0) is significantly large, indicating that there are

diverse flat and smooth landscape sections. As such, the information content anal-

ysis points to the fact that there is a mixture of both rugged as well as smooth

areas in the fitness landscapes for all four architectures, the characteristics of which

were both encountered a significant proportion of the time during the random walk.

This is an indication that depending on which sub-spaces were being explored, the

characteristics of the landscape may differ very substantially from highly rugged to

very smooth. As such, the ability for search algorithms to find increasingly better

solutions may be highly dependent on the initialization and trajectory of the search

on the fitness landscape.

4.6 Limitations and Future Work

The idea of neutral plateaus within search spaces, where large numbers

of genotypes have similar phenotype fitness values, has recently been of particular

interest (Huynen 1996; Barnett 1998; Smith, Philippides, Husbands, and O’Shea

2002). It was suggested that problems with high degrees of neutrality, whether an

inherent feature of the original problem or artificially introduced through genotype

redundancy, tend to produce landscapes that are easier for EAs to escape local

optima and find better solutions (Shackleton, Shipman, and Ebner 2000; Vassilev

and Miller 2000). However, both autocorrelation and information content measures
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are unable to provide any information regarding the presence of such neutral ar-

eas within search spaces (Barnett 1998; Smith, Philippides, Husbands, and O’Shea

2002). A new methodology for elucidating neutrality was proposed by Smith, Hus-

bands, Layzell, and O’Shea (2002). However, these methods measure for evolvability

rather than providing direct characterizations of the actual fitness landscapes. Fur-

thermore, there is also evidence that neutrality does not necessarily improve the

evolutionary search process (Smith, Husbands, and O’Shea 2001a) and hence, the

general significance of neutrality within search spaces remains somewhat inconclu-

sive.

In order for both autocorrelation and information content measures to

work, an important assumption needs to be made — that the fitness landscapes

being analyzed are statistically isotropic (Weinberger 1990; Vassilev, Fogarty, and

Miller 2000). Importantly, it was highlighted by Smith, Husbands, and O’Shea

(2001b) that the search space for an evolutionary robotics task environment dis-

played strong indications of anisotropy. Therefore, the results obtained from land-

scape analysis methods that make the explicit assumption of isotropy needs to be

treated with some caution. Another important observation made by Smith, Hus-

bands, and O’Shea (2001b) is that results obtained from using sparse sampling

methods such as random sampling and random walk may provide a highly inaccu-

rate picture of the actual fitness landscape when the distribution of solutions in the

search space is non-normal and highly skewed, as was the case in the experiments

carried out in this study. This problem of heterogeneity is present in many hard

problems and may lead to inaccurate characterizations of landscapes when using

techniques that assume homogenous distribution of solutions. Another landscape

feature that may also affect the efficacy of the evolutionary search process is the

degree of deceptiveness of the problem and again is not a characteristic that can be

ascertained with current landscape measures (Smith, Husbands, and O’Shea 2001b).

From our experiments, we have also noted five additional limitations asso-

ciated with these existing landscape analysis methods. Where relevant, we provide

some pointers on open research questions and possible future work that will further
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extend the usability and generalization power of these techniques.

1. The problems being analyzed are generally problems that exist in high-dimen-

sional space whereas the landscape analysis methods such as the autocorrela-

tion and information content measures only provide some statistical charac-

terization of the actual search space. As such, these methods only capture a

limited amount of information along a particular dimension. A methodology

that is able to capture more information from the high-dimensional search

spaces would thus be desirable in order to give a more comprehensive and

accurate appraisal of the actual fitness landscape.

2. Obtaining the landscape points through a random walk results in evaluating

the search space in one particular direction. This implies a bias in the way

in which the landscape is being characterized. In order to reduce this bias,

multiple walks need to be carried out. However, generating multiple random

walks is extremely time-consuming and the time spent on characterizing the

fitness landscape may actually take longer than that needed to simply proceed

with the actual optimization process of finding a solution. More research effort

is required towards designing a computationally more efficient technique for

obtaining fitness values in fitness landscape analyses.

3. The operators involved in generating landscape points function only in the

genotype space. As such, these landscape measures do not provide any infor-

mation whatsoever concerning the genotype-to-phenotype mapping. Again, it

would be highly desirable to have a technique that is able to give some insights

into how different genotype-phenotype mappings affect the fitness landscapes.

4. Current landscape analysis methods only work with a single fitness function. If

the problem is multi-objective, then none of the existing measures are able to

generalize to higher dimensional objective spaces. For example, the parameter

ε from the information content analysis can only be used to perform analysis

on one objective function at a time. Furthermore, it does not show the degree

of correlation between the objective functions. With the resurgent interest
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in multi-objective optimization approaches for solving real-world problems, an

analysis technique able to characterize such multi-functioned landscapes would

be of great value to both researchers and industry practitioners alike.

5. The last and perhaps most serious drawback to current landscape analysis

techniques is their inability to capture the true landscape of evolving popu-

lations in EAs. Current methods rely on generating a single genotype and

tracing its single path through the fitness landscape. It must be remembered

that in EAs, an entire population is moving through the fitness landscape,

not just a single individual. Considerations need to be given to the coverage

of the search space achieved by the evolving population as the optimization

progresses. Additionally, concurrent evolutionary paths somehow need to be

tracked in order to provide a more accurate picture of how the actual forma-

tions present on the EA landscapes affect the transition of populations from

one generation to the next.

4.7 Chapter Summary

An analysis on the fitness landscape for four different types of ANN archi-

tecture yielded the following results:

• The advantages or disadvantages of having recurrent connections and/or di-

rect input-output connections in the ANN for controlling the artificial creature

remain unclear. In terms of average best solutions found, random search per-

formed better using NNType1 and NNType3, hill-climbing performed better

using only NNType1 whereas random walk showed no performance differences

whatsoever between the four types of architectures. Furthermore, hill-climbing

performed worse than both random search and random walk in three out of

the four architectures and worse than random walk in the remaining case. As

such, whether the search space difficulty is lowered by adding recurrent and/or

input-output connections to a standard feed-forward ANN architecture cannot

be concluded with certainty.
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• The fitness landscape of all four ANN architectures is highly similar. The

landscape analysis conducted using informational measures did not show any

discernable differences between the four search spaces.

• The fitness landscape of these evolutionary search spaces has both rugged and

smooth sections depending on the sub-spaces being explored. Additionally,

the variety of rugged shapes on the landscape is high indicating that epistatic

interactions between genes in the genotype are high. A correspondingly high

degree of modality in the fitness landscape was also noted.

• The solution space is highly heterogeneous — a uniform sampling of the geno-

type space yielded a highly skewed distribution of solutions in the objective

space.

• There are serious deficiencies associated with current landscape analysis me-

thodologies, especially for analyzing non-homogenous and anisotropic search

spaces, such as in artificial creature evolution. Additional limitations were also

noted for characterizing evolutionary search spaces using such techniques.

It remains unclear as to whether the NNType0, NNType1, NNType2 or

NNType3 architecture provides a more amenable search space. As such, experimen-

tation on all four architectures will be required in searching for fit artificial creature

controllers. In the next chapter, we will present our evolutionary optimization algo-

rithm using a Pareto multi-objective methodology for evolving controllers based on

these four ANN architectures.


