
Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 143lateral stability and curving performance, while vertical ride quality is independent of bothof these criteria. To get a full picture of the EP-optimal set, several sets of weighting factorsand corresponding optimizations are needed. The associated computational burden canbe signi�cantly reduced using parallel processing, for which the hybrid MDO method isideally suited.



Chapter 8Multidisciplinary Optimization ofCombined Mechanical and ControlSystems8.1 IntroductionThe purpose of this chapter is to show an extension to the research reported earlier in ourpaper [67] using the A-i-O multidisciplinary optimization method combining the A'GEMmultibody dynamics package, the GA, LQG, and Kalman �lter algorithms. To verify thee�cacy of the integrated approach, it is used to resolve the conicting requirements forride comfort, suspension working spaces, and dynamic wheel loads in the optimization ofquarter-vehicle models and half-vehicle models with active suspensions. Both deterministicand random track excitations are considered for both rigid and exible vehicle body (forthe half-vehicle models only) cases.The integrated approach is implemented in a GA-A'GEM-MATLAB simulation envi-ronment in such a way that the linear mechanical vehicle models are generated in A'GEM,the controllers and Kalman �lters are modelled in MATLAB, then the coupled mechanicaland control subsystems are optimized simultaneously using the GA.In the following sections, �rst, the vehicle and track models are described; second,the LQG and Kalman Filter algorithms are recalled briey; third, the A-i-O method and144



Multidisciplinary Optimization of Combined Mechanical and Control Systems 145its implementation are outlined; �nally, the numerical simulation results for the linearquarter-vehicle models and half-vehicle models are reported and discussed. For simplicity,in the following sections, we use the term `A-i-O method' instead of the term `integratedapproach' to represent the A-i-O method combining the A'GEM package, the GA, LQG,and Kalman �lter algorithms.8.2 Vehicle and Track Models8.2.1 Track ModelsIn vertical ride quality analyses for ground vehicles, the track pro�les (excitations) are oftenmodelled as displacement spectral density functions with the characteristics of �ltered whitenoise or integrated white noise [61], as discussed below.Integrated White Noise Track ExcitationThe power spectral density (PSD) of an integrated white noise track displacement excita-tion can be taken from the approximate formula [129, 131]Sw(!) = atV=!2 (8.1)where ! is a temporal angular frequency, at is a track roughness constant, and V is thevehicle velocity.For a linear vehicle system, given that yr(t) is the output for the random excitationand ys(t) is the corresponding output for a unit step input, the mean-square value of yr(t)is related to the integrated-squared value of ys(t) as follows:E[y2r(t)] = atV Z 10 y2s (t)dt (8.2)where E[�] denotes the expectation or average. Equation (8.2) is useful for computing themean-square value of any output due to an integrated white noise input, since it is muchsimpler to generate a unit step function than a continuous random signal for the input.Moreover, based on equation (8.2), if a vehicle system is optimized for a unit step input, itwill also be optimal for the corresponding integrated white noise track excitation as o�eredby equation (8.1) [129, 131].



Multidisciplinary Optimization of Combined Mechanical and Control Systems 146Filtered White Noise Track ExcitationThe PSD of a �ltered white noise track displacement excitation can be formulated as[59, 60, 73] Sw(!) = (�t=�)atV=(!2 + a2tV 2) (8.3)where �t is the variance of track irregularities. The process vector w with the PSD (8.3)can be generated from the pure white noise precess vector � using a shaping �lter of theform _w = Fww +Dw� (8.4)where 8>>>>><>>>>>: w = h w1 w2 ::: wn iT� = h �1 �2 ::: �n iTFw = �atV In�nDw = In�n (8.5)and In�n is identity matrix of dimension n � n, �1; �2; :::; �n are zero mean white noiseprocesses, and w1; w2; :::; wn are the corresponding track inputs with the PSD described byequation (8.3).For simplicity, we assume that there are only 2 inputs, i.e. w1 and w2, and the trackinputs to a vehicle traveling at a constant speed, V , and separated by a �xed length, l, arerelated by ( w1(t) = w2(t+D)D = l=V (8.6)Accordingly we have the relation between �1 and �2 as follows:�1(t) = �2(t+D) (8.7)



Multidisciplinary Optimization of Combined Mechanical and Control Systems 147Therefore, the Gaussian white noise process vector �(t), i.e. h �1(t) �2(t) iT , has thecovariance matrix taking the form as8><>: E[�(t)�T(� )] = Q0 " �(t� � ) �(t� � +D)�(t� � �D) �(t� � ) #Q0 = 2�tatV (8.8)where �(�) stands for the Dirac � function. If the correlation between �1 and �2 is neglected,the covariance matrix can be rewritten as( E[�(t)�T(� )] = Q�(t� � )Q = 2�tatV I2�2 (8.9)8.2.2 Quarter-Vehicle (2 DOF) ModelThe linear 2 DOF vehicle model to be optimized with passive and active suspension com-ponents is shown in Figure 8.1. In the model, the sprung mass and unsprung mass arerepresented by rigid bodies of masses m2 and m1 that are permitted to move in the verticaldirection. The motions of masses m2 and m1 are described by the independent general-ized coordinates x2 and x1, respectively. These coordinates are measured from the staticequilibrium position. The coordinate w denotes track displacement irregularities in thevertical direction. In the secondary suspension, the passive spring and damping elementsare modelled as a linear spring and a linear damper with sti�ness and damping coe�cientsof k2 and c2, respectively. In the primary suspension, the spring and damping elements aremodelled as a linear spring and linear damper with the sti�ness and damping coe�cientsof k1 and c1, respectively. The actuator force, u, is the control variable that acts indepen-dently of the forces in the passive elements. It is assumed that the wheel follows the trackexactly at all times.The 2 DOF vehicle model shown in Figure 8.1 is optimized in two di�erent cases: thedeterministic track excitation case, i.e. a unit step input corresponding to the integratedwhite noise track excitation, and the random track excitation case, i.e. the �ltered whitenoise track excitation. To compare the simulation results from the research with publishedresults, for the deterministic track excitation case, the nominal parameter values denotedas parameter set 1 shown in Figure 8.1 are based on those used by Thompson [129].
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Figure 8.1: 2 DOF quarter-vehicle modelsFor the �ltered white noise track excitation case, the nominal parameter values denotedas parameter set 2 together with the random track characteristics parameters shown inFigure 8.1 are based on those used by Hac [59]. Note that the primary suspension dampingcoe�cient, c1, takes the value of zero in both cases.For the two track excitation cases, the governing equations of motion of the vehiclemodel are described separately in the following subsections.Deterministic Track Excitation CaseThe state variable vector x is assumed to take the following form:x = h x1 � w x2 � w _x1 _x2 iT (8.10)



Multidisciplinary Optimization of Combined Mechanical and Control Systems 149Thus, the governing equations of motion of the 2 DOF model can be written in state spaceform as ( _x = Ax+Bu+D _wy = Cx (8.11)where u is the actuator force vector of dimension 1� 1, _w is the track velocity excitationvector of dimension 1� 1, y is the output vector of dimension 2� 1, A, B, C, and D arethe system matrix, control matrix, output matrix, and disturbance matrix, respectively,which are as follows: 8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
A = 26664 0 0 1 00 0 0 1�k1+k2m1 k2m1 � c1+c2m1 c2m1k2m2 � k2m2 c2m2 � c2m2 37775B = h 0 0 � 1m1 1m2 iTC = " 1 0 0 00 1 0 0 #D = h �1 �1 c1m1 0 iT (8.12)

Random Track Excitation CaseAssume that the state variable vector x is as follows:x = h x1 x2 _x1 _x2 iT (8.13)Then the governing equations of the 2 DOF vehicle model can be written as_x = Ax+Bu+D1w +D2 _w (8.14)where w, _w, and u are the track displacement excitation vector, track velocity excitationvector, and actuator force vector. All these vectors have dimension of 1� 1. The matrices



Multidisciplinary Optimization of Combined Mechanical and Control Systems 150A and B are the same as those o�ered in equation set (8.12). The matrices D1 and D2take the forms 8>>><>>>: D1 = h 0 0 k1m1 0 iTD2 = h 0 0 c1m1 0 iT (8.15)If the augmented state vector xa takes the formxa = h xT wT iT (8.16)then based on equations (8.4), (8.13), (8.16), and (8.14), we have the augmented statespace equations ( _xa = Aaxa +Bau+Da�ya = Caxa (8.17)where the matrices Aa, Ba, and Da are given as8>>>>>>>>>><>>>>>>>>>>: Aa = " A D1 +D2Fw01�4 Fw #Ba = h BT 01�1 iTDa = h DTwDT2 DTw iT (8.18)where both Fw and Dw are of dimension 1 � 1 and can be calculated based on equationset (8.5).It is assumed that either all the state variables are available or just the sprung massand unsprung mass velocities are available. Therefore, the output matrix Ca takes theform of I5�5 or Ca = " 0 0 1 0 00 0 0 1 0 # (8.19)correspondingly.
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Figure 8.2: Half-vehicle models8.2.3 Half-Vehicle ModelsIn the analytical design of active vehicle suspensions, researchers usually use lumped vehiclemodels [96, 130, 131]. This approach is justi�ed for compact vehicles like cars. However,for vehicles with a long wheelbase like rail vehicles and truck-trailers, because of the largedeections of the vehicle body, researchers often introduce an elastic element into thevehicle model [47, 52, 60]. Thus, in the thesis, the half-vehicle models both with andwithout vehicle body exibility are taken into account.Shown in Figure 8.2 are the half-vehicle models with the rigid vehicle body representedby solid lines and the exible vehicle body represented by curved dashed lines, respectively.The vehicle is considered to have a longitudinal central plane of symmetry, so that M ishalf the body mass and Ic is half the pitch moment of inertia about the center of gravity



Multidisciplinary Optimization of Combined Mechanical and Control Systems 152of the vehicle body. For the rigid vehicle body, the motions considered are the body heave(x5) and pitch (') (measured from the static equilibrium position of the center of thevehicle body). In addition to the rigid vehicle body modes, for the exible vehicle bodycase, the body structure is described by its �rst 3 bending modes. The natural frequenciesand approximating functions of mode shapes are based on those used by Hac [60]. Thus,the exible vehicle body is approximately modeled as a beam of sti�ness EI, body crosssection area A, and mass density �. The front and rear unsprung masses are representedby rigid bodies of masses m1 and m2; they have a vertical DOF represented by x1 and x3.The actuator forces u1 and u2 are assumed to be applied between the unsprung massesand the vehicle body, at point A and B respectively. In the secondary suspensions, k1,k2, c1, and c2 represent sti�ness and damping ratios of passive front and rear elements; inthe primary suspensions, k3, k4, c3, and c4 denote sti�ness and damping ratios of passivefront and rear elements. In motion, the front and rear primary suspensions are submittedrespectively to the track displacement excitations w1 and w2.The nominal vehicle system parameters are listed in Tables B.1 and B.2 in Appendix Bfor both the half-vehicle models with rigid vehicle body and with the exible vehicle body,respectively.In the following subsections, the governing equations of motion for the half-vehiclemodel with rigid vehicle body are provided, then those for the half-vehicle model withexible vehicle body are shown.Rigid Vehicle Body CaseThe dynamic equations of motion for the controlled vehicle model can be written in thesame form as equation set (8.11). However, the state variable vector x, actuator forcevector u, and track velocity excitation vector _w are as follows8>>>><>>>>: x = h x1 � w1 x2 � w1 x3 � w2 x4 �w2 _x1 _x2 _x3 _x4 iTu = h u1 u2 iT_w = h _w1 _w2 iT (8.20)The system matrix A, control matrix B, disturbance matrix D, and output matrix C areprovided in Appendix B.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 153Flexible Vehicle Body CaseOnce the vehicle body exibility is considered, in addition to the rigid body motionsdescribed in the last subsection, the bending modes are included. As shown in Figure 8.2,the exible deformation of the vehicle body beam can be described by �x(L; t), where Lrepresents the distance along the beam and t stands for the time [52, 60, 99]. At a certainnatural frequency !i, the deformation can be expressed as�xi(L; t) = Zi(L)�i(t) (8.21)where �i(t) is a function of t alone and Zi(L) is an eigenfunction, which describes the modeshape of the beam at the frequency !i. Because the beam's mass is distributed, the elasticbody has an in�nite number of vibration modes; its dynamic response may be calculated asthe sum of principal mode contributions. Since the system is linear, the total deformationof the vehicle body beam is the superposition of the principal modes, that is,�x(L; t) = 1Xi=1 Zi(L)�i(t) (8.22)Based on equation (8.22) and the partial di�erential equations of the vehicle body beam,using the orthogonal properties of principal modes, we can obtain the following equationMi ��i(t) + #i _�i(t) + i�i(t) = fAZi(b1) + fBZi(b2) (8.23)where # is a damping coe�cient, Mi and i are the modal mass and modal sti�ness coef-�cient, which can be further described as( Mi = R l0 �AZ2i (L)dLi =Mi!2i (8.24)where �A is mass per unit length, and !i is the ith mode frequency of the vehicle bodybeam. In equation (8.23), fA and fB are suspension forces applied at points A and B,respectively. They can be formulated as( fA = �k1(x2 � x1)� c1( _x2 � _x1) + u1fB = �k2(x4 � x3)� c2( _x4 � _x3) + u2 (8.25)



Multidisciplinary Optimization of Combined Mechanical and Control Systems 154where x2 and x4 are the total displacements including the contributions from both rigidand exible vehicle body modes. The displacement of the vehicle body at a point, whichis measured from the left end to a distance L, can be formulated asx(L; t) = x5 + (L� a2 � b2)'+ 1Xi=1 Zi(L)�i(t) (8.26)In the following description, the �rst three bending modes of the exible vehicle beamare considered, but more can be incorporated into the model by adding more DOF to theexibility equations. Combining the rigid body motions and the exible beam motions,the model corresponding to the vehicle body will consider the two rigid body modes (pitchand heave modes) and the �rst three bending modes. These �ve mode shapes are shownin Figure 8.3.By assembling the rigid half-vehicle model with the exible vehicle body beam model,
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Multidisciplinary Optimization of Combined Mechanical and Control Systems 155we obtain the system state equation in matrix form as shown in equation (8.14), wherethe state variable vector x, actuator force vector u, track displacement excitation vectorw, and track velocity excitation vector _w are described as follows8>>>>>>><>>>>>>>: x = h x2 � x1 x4 � x3 _x5 _' x1 _x1 x3 _x3 �1 _�1 �2 _�2 �3 _�3 iTu = h u1 u2 iTw = h w1 w2 iT_w = h _w1 _w2 iT (8.27)and matricesA, B,D1, and D2 of dimensions 14�14, 14�2, 14�2, and 14�2, respectively,are o�ered in Appendix B.Similar to the quarter-vehicle case, if the augmented state vector xa is as followsxa = h xT wT iT (8.28)then we can also obtain the augmented state space equations in matrix form as shown inequation set (8.17). The matrices Aa, Ba, and Da are de�ned as8>>>>>>>>>><>>>>>>>>>>: Aa = " A D1 +D2Fw02�14 Fw #Ba = h BT 02�2 iTDa = h DTwDT2 DTw iT (8.29)where both Fw and Dw are of dimension 2� 2 and they can be obtained from equation set(8.5).Since the velocities of the front and rear unsprung masses and two points (the left endand right end) or three points (the left end, right end, and middle point) on the vehiclebody are assumed to be measured, the output matrix Ca has the dimension of 4 � 16 or5 � 16 accordingly. The corresponding output matrix is shown in Appendix B.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 1568.3 LQG and Kalman Filter AlgorithmsIn this section, the LQG control algorithm [24, 47, 59, 61, 73, 101, 129] is introduced, thenthe Kalman �lter algorithm [24, 47, 60, 61, 101] is recalled. In this thesis, the \separationprinciple" [101] is adopted in the development of the LQG controller and Kalman estimator.First, the optimal controller is designed as if full state feedback is available. Second, theoptimal estimator is designed to provide the full state estimation.8.3.1 LQG Control StrategyThe LQG control strategy can be described as an optimization problem: minimize thefollowing objective function or performance indexJ = limT!1 1T EfZ T0 " xau #T " G NNT H #" xau # dtg (8.30)subject to _xa = Aax+Bau+Da� (8.31)where xa is the state variable vector including system states and input states, u is theactuator force vector, and � is the disturbance vector assumed to be white noise processes.As described previously in the chapter, these white noise processes have zero mean and thecovariance matrix, for two input cases, is determined by equation sets (8.8) or (8.9). G, N,and H are weighting matrices. Aa, Ba, and Da are the system, control, and disturbancematrices, respectively. For the linear time invariant system, Aa, Ba, Da, G, N, and H areall constant matrices with proper dimensions.It is assumed that all uncontrollable modes are stable. Thus, the solution of the opti-mization problem is the control force vector with the following form:u = �Kxa (8.32)where K is the control gain matrix which is determined by@J@K = 0 (8.33)



Multidisciplinary Optimization of Combined Mechanical and Control Systems 157From equation (8.33), the gain matrix K can be obtained asK = H�1(NT +BTaS) (8.34)where the symmetric and positive-de�nite matrix S is a solution of the Riccati equation:SAa +ATaS+G� (SBa +N)H�1(SBa +N)T = 0 (8.35)The covariance matrix X of the state variable vector x is obtained from:X = E[xxT ] (8.36)where the covariance matrixX is a function of the autocorrelation of vector �. For example,if there are only 2 track inputs, X is determined by the Lyapunov equation(Aa �BaK)X+X(Aa �BaK)T +Q1 = 0 (8.37)where the matrix Q1 is determined by whether there is a time delay between the two inputsor not. The matrix Q1 can be calculated byQ1 = ( DaQDTa without time delayDaQDTa +Q0(Da2DTa1�T (D) + �(D)Da1DTa2) with time delay (8.38)where the matrixQ, the constant Q0, and the time delayD are given by equation sets (8.9),(8.8), and (8.6), respectively, and �(D) is the system transition matrix that is de�ned as�(D) 4= exp(Aa �D) (8.39)Da1 and Da2 are the two columns of Da, i.e.,Da = h Da1 Da2 i (8.40)Finally, we have the resulting performance index asJopt = trace(SQ1) (8.41)It should be noted that if the state vector xa includes input states, the system consideredis not completely controllable. This is because, as shown in equation (8.16), the track inputvector w can not be changed by applying a control force. In this case, the Riccati equation(8.35) and the Lyapunov equation (8.37) can be solved numerically after dividing thecorresponding unknown matrix S and state covariance matrix X into four submatrices,respectively. This method has been o�ered in detail by Hac [59].



Multidisciplinary Optimization of Combined Mechanical and Control Systems 1588.3.2 Kalman Filter AlgorithmThis approach assumes that the measurements are corrupted by noise and the measurementequation can be formulated by modifying the output equation from equation set (8.17) asfollows: ya = Caxa + � (8.42)where, as mentioned previously, ya is the output vector, Ca is the output matrix or thestate-to-measurement transformation matrix, and xa is the state variable vector includingsystem states and input states. � is assumed to be Gaussian white noise process vectorwith zero mean and covariance matrix R described by( E[�(t)] = 0E[�(t)�(� )] =R�(t� � ) (8.43)where R is a positive de�nite matrix with proper dimension.Thus, the optimal estimator can be formulated as_̂xa = Aax̂a +Bau+ L(ya �Cax̂a) (8.44)where x̂a is the optimal estimate vector of the state variable vector xa, u is the actuatorforce vector, Aa and Ba are augmented system and control matrices o�ered previously,and L is the Kalman �lter gain matrix that is determined byL = PCTaR�1 (8.45)where P is the �lter error (e = x̂a � xa) covariance matrix which can be found from thefollowing steady-state matrix Riccati equationAaP+PATa +Q1 �PCTaR�1CaP = 0 (8.46)Notice that for the quarter-vehicle and half-vehicle models described previously, thesystems (Aa;Ca) are observable. Thus, unlike the cases for solving equations (8.35) and(8.37), the Riccati equation denoted by (8.46) can be solved directly without dividingthe unknown matrix P and relevant matrices into four submatrices and then solving thecorresponding equations.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 1598.3.3 Combination of LQG Controller with Kalman EstimatorProvided that the track excitations and mechanical vehicle system parameters, e.g., iner-tial property parameters, geometric parameters, and passive suspension parameters, aredetermined, with the LQG controller and Kalman estimator designed previously based onthe separation principle, we can obtain the optimal control structure as shown in Figure8.4 using cascade arrangement.
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Multidisciplinary Optimization of Combined Mechanical and Control Systems 1608.4 Multidisciplinary Optimization and Implementa-tion8.4.1 Design Optimization ApproachAs shown in Figure 8.5, the All-in-One (A-i-O) multidiscipline optimization (MDO) methodis applied to the vehicle system to optimize the mechanical system, controller, and estimatorsimultaneously.
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Multidisciplinary Optimization of Combined Mechanical and Control Systems 161by the GA to the coupled analysis disciplines. The design variable set XD may includethe passive design variables for the vehicle system, e.g. inertial property parameters,geometric parameters, and passive suspension parameters, and control parameters suchas the weighting factors required in equation (8.30). With this set of design variables, acomplete system multidisciplinary analysis (MDA) is performed to obtain vehicle dynamicsystem output variable vector ya, optimal estimate vector x̂a, and actuator force vectoru, which are used for evaluating the corresponding objective functions and constraints. Inaddition to these coupled variables among the three disciplines, the resulting vehicle systemparameters Sp, e.g., the system matrixAa generated by A'GEM software, are o�ered to theKalman �lter algorithm and the LQG control algorithm from the vehicle dynamic systemfor evaluating the above coupled variables. The vehicle system parameters Sp togetherwith the resulting Kalman estimator parameters Kp and the resulting LQG controllerparameters Lp are returned to the optimizer for the evaluation of the system objectivefunction and constraints.8.4.2 Implementation of the Optimization ProblemAs shown in Figure 8.6, the A-i-O method is implemented using a two-level optimizationapproach. At the system or discipline level, the GA is used as the required optimizerto optimize the combined mechanical and control systems, a synergistic whole. At thesubsystem or subdiscipline level, the LQG and Kalman �lter algorithms are utilized tooptimize the controller and estimator, respectively.For a given vehicle system with a given set of design parameters XD, A'GEM is used toautomatically generate the vehicle system matrix A, such as shown in equation set (8.12),for rigid body vehicle model. The control matrix B, the track excitation matrix D, andexible modes for the exible vehicle model case should be assembled with the matrix Afor generating the required equations of motion in state space form as discussed in previoussections.As illustrated in Figure 8.6, �rst, a population of n sets of design variables, XDi; i =1; 2; :::; n, are randomly selected in the search space by the GA; the corresponding sets ofdesign variables are sent in parallel to the A'GEM routines which automatically generateequations of motions in a state space form accordingly. With the required vehicle dynamic



Multidisciplinary Optimization of Combined Mechanical and Control Systems 162system matrices and weighting factors, the LQG algorithm and the Kalman �lter algorithmin MATLAB construct and optimize the corresponding controller and estimator resultingin the control gain matrix Ki, covariance matrix Xi of the state variables, �lter errorcovariance matrix Pi, and performance index J(i). Then these performance indices, i.e.fJ(1); J(2); :::; J(n)g, are used as the �tness values. At this point, if the convergence criteriaare satis�ed, the calculation terminates, otherwise these �tness values are returned to theGA. Based on the returned �tness values corresponding to the given sets of design variables,the GA produces the next generation of design variable sets using genetic operators, such asreproduction, crossover, and mutation. This procedure repeats until the optimized variableset is found.
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Multidisciplinary Optimization of Combined Mechanical and Control Systems 1638.5 Control Power ConsumptionIn addition to performance measures, two other important aspects that can be used toevaluate active suspensions are the amount of control power and actuator force required.The average power delivered to a hydraulic or other type of actuator can be estimated byconsidering the forces and motions across that actuator. It is recommended [45, 120] thatthe approximated average power is Pav = upVav (8.48)where up is the peak force produced by the actuator and Vav is the recti�ed average pistonvelocity. Suppose the force up and velocity Vav are individually Gaussian, which are linearcombinations of the components of the state vector x. Thus, the force and velocity can beobtained by ( up = 3pE[(u)2]Vav =p2E[(V )2]=� (8.49)Therefore, the average power can be determined byPav = 3p2E[(u)2] �E[(V )2]=� (8.50)8.6 Numerical Optimization for 2 DOF ModelsIn this section, the optimization results for the 2 DOF quarter-vehicle models are presentedand discussed. The simulations are carried out for two di�erent cases, i.e. deterministictrack inputs and stochastic track inputs. The A-i-O method is used to resolve the conict-ing requirements for ride comfort, suspension working spaces, and dynamic wheel loads forground vehicles based on the quarter-vehicle models.8.6.1 Deterministic Track Input CaseVehicle System OptimizationThe vehicle model is illustrated in Figure 8.1. It is assumed that the track input w is aunit step. For this vehicle model, the state variable vector x, governing equations, and



Multidisciplinary Optimization of Combined Mechanical and Control Systems 164dynamic matrices have already been given as described by equation (8.10), equation set(8.11), and equation set (8.12), respectively.Thus, the optimization problem can be stated as: minimize the following objectivefunction: J = Z 10 [�1(u+ �fpass)2 + �2�x22 + �3(x1 � w)2 + �4(x2 � x1)2]dt (8.51)subject to _x = Ax+Bu+D _w (8.52)where � is a constant, �1, �2, �3, and �4 are weighting factors that impose penalties uponthe magnitude and durations of the secondary suspension force including actuator force uand passive suspension force fpass , the ride comfort �x2, the wheel deection x1 � w, andthe suspension working space x2�x1, respectively. The initial state variables x1(0), x2(0),_x1(0), and _x2(0) take the values of zero. The track displacement disturbance w is a unitstep input.For simplicity, the symbols J1, J2, J3 and J4 are introduced into equation (8.51). Thede�nitions of these symbols are o�ered in Table 8.1.Table 8.1: Expressions represented by symbols J1, J2, J3 and J4.J1 J2 J3 J4R10 (u+ �fpass)2dt R10 �x22dt R10 (x1 � w)2dt R10 (x2 � x1)2dtAs will be discussed later, to greatly facilitate the optimization and the control lawsynthesis [2, 24, 28], each term of the right side of equation (8.51) is normalized with thecorresponding norm. In the case concerned, the norm of each term is the inverse of thecorresponding weighting factor. The weighting factors are assumed to be:�i = 1=J refi (8.53)where i = 1; 2; 3; 4, and J refi is the ith term of the objective function (in the form of equation(8.51)) of a reference quarter-vehicle model with passive or active suspensions. Note thatthe de�nition of J refi (i = 1; 2; 3; 4) is the same as its counterpart (Ji) shown in Table 8.1.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 165To �nd the solution to the optimization problem, equation (8.51) should be rewrittenin the standard form as shown in equation (8.30). The resulting weighting matrices G, H,and N are listed in Appendix B. Note that in the deterministic track input case, the trackinput is not treated as an independent state variable as in the case of random track input.The problem is actually an optimal tracking problem with the addition of a track dis-turbance _w. Then the tracking problem is reduced to an equivalent regulator problem.Moreover, for the deterministic track input case, the Kalman �lter algorithm is not in-troduced. Therefore, the implementation the A-i-O method shown in Figures 8.5 and 8.6should be modi�ed accordingly.Results and DiscussionIn this subsection, the simulation results from the A-i-O method are discussed and com-pared with those provided by Thompson [129]. As will be seen, the optimized vehiclemodel based on the A-i-O method has better performance than the corresponding modelwith passive suspension and that based on the LQG algorithm (used by Thompson) in allfour aspects: ride comfort, suspension working space, dynamic wheel load, and actuatorforce. Note that the simulation results reported by Thompson [129] have been accuratelyrepeated in this research.When the quarter-vehicle model with active suspension o�ered by Thompson [129] isselected as a reference vehicle model, the weighting factors �1, �2, �3, and �4 are calculatedto take the values of 0, 6:493 � 10�4, 74:709, and 13:206, respectively. By including m1, m2,k1, k2, and c2 as additional design variables, the control gain matrix K obtained using theA-i-O method and that o�ered by Thompson using the LQG are listed in Table 8.3. Theseadditional passive design variables are permitted to vary by 20% from the nominal values.The optimized passive design variables based on the A-i-O, together with their nominalvalues (listed in Figure 8.1 as parameter set 1), are provided in Table 8.2.The resulting unit step responses based on the A-i-O, the LQG (used by Thompson),and the corresponding passive suspension system are shown in Figures 8.7, 8.8, 8.9, and8.10. Figure 8.7 illustrates the relationship between the sprung mass acceleration andtime, Figure 8.8 the secondary suspension forces and time, Figure 8.9 the sprung massdisplacement and time, and Figure 8.10 the unsprung mass displacement and time.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 166Table 8.2: Optimized values for m1, m2, k1, k2, and c2.m1 [kg] m2 [kg] k1 [N=m] k2 [N=m] c2 [N=m=s]NVy 28:58 288:9 1:5590 � 105 1:9960 � 104 1:8610 � 103A-i-Oz (�20%) 22:864 346:68 1:2472 � 105 2:2836 � 104 1:6698 � 103A-i-O1? (�20%) 22:864 346:68 1:2472 � 105 2:0388 � 104 1:8821 � 103y Nominal values; z Optimized values based on A-i-O method with �1 = 0;? Optimized values based on A-i-O method with �1 = 7:7793 � 10�9.Table 8.3: Feedback control gain matrix for optimal suspensions.K1;1 K1;2 K1;3 K1;4LQGy �57240:0 35355:0 �1385:7 4827:0A-i-Oz �48683:0 26607:0 240:0 4682:0A-i-O1? �15045:0 11265:0 886:0 2873:0y Thompson's results with passive design variables taking nominal values;z Obtained using the A-i-O method with �1 = 0;? Obtained using the A-i-O method with �1 = 7:7793 � 10�9.It should be noticed that for the LQG case, k2 = 0, c2 = 0, and other passive vehiclesystem parameters take their nominal values.Investigation of Figures 8.7, 8.8, 8.9, and 8.10 shows that, compared with the activesuspension based on the LQG, the one based on the A-i-O method is better controlled bothin sprung mass acceleration and in unsprung mass displacement with less overshoot, thepeak actuator force is much less, the peak total secondary suspension force or total sprungmass force is less, and the sprung mass displacement is almost the same. Compared withthe passive suspension, the performance improvement based on the A-i-O method is greaterthan that based on the LQG. Both active suspensions are much better controlled than thepassive suspension in sprung mass displacement with lower peak sprung mass forces. Thenumerical results are listed in Table 8.4. Results demonstrate that the optimized systembased on the A-i-O outruns its counterpart based on LQG in the mean-square values ofall aspects, i.e. suspension working space x2 � x1, dynamic wheel load or x1 � w, sprungmass acceleration �x2, actuator force u, and total sprung mass force u+ fpass. Based on the



Multidisciplinary Optimization of Combined Mechanical and Control Systems 167quadratic performance indices shown in Table 8.4, the active suspensions based on boththe LQG and A-i-O are superior to the passive suspension.To further investigate the actuator forces based on the A-i-O and LQG, part of Figure8.8 is plotted in Figure 8.11. A close observation of Figure 8.11 reveals that, at a point whenthe track unit input imposes on the unsprung mass, the corresponding active suspensionforce actively resists the disturbance immediately, but the corresponding passive suspensionforce just follows the disturbance. The resistance to the track disturbance contributes tothe performance improvement of the corresponding suspension. Compared with the case ofLQG, in the case of A-i-O, the active force resistance to the track disturbance lasts longerand the active force and the corresponding passive force are almost out of phase. Thisoutphase between the active and passive forces in the case of A-i-O makes the correspondingtotal force smaller than the active force based on the LQG and leads to the performanceimprovement over the active suspension based on the LQG algorithm. In the case of LQG,although the active force resists the track disturbance, this resistance lasts a very shortperiod of time. Then the active force follows the trends of the passive suspension forcebased on the A-i-O. Thus, the actuator force based on the A-i-O and that based on theLQG are also almost out of phase. This outphase of the actuator force between the twocases can be explained by the opposite sign of K1;3 in the control gain matrices for the twocases as shown in Table 8.3Notice that the optimized vehicle system based on the A-i-O achieves the above superiorperformance though the sprung mass is 20% larger than the mass used in the correspondingvehicle model with the active suspension based on the LQG and the passive suspension.To examine the e�ect of the weighting factor or components of objective function shownin equation (8.51) on the performance of the vehicle system, the weighting factor �1 takesthe value of 7:779 � 10�9 instead of 0:0, the constant � is set to the value of 1:0, and theother weighting factors take the values as those in the case of A-i-O. To distinguish thiscase from the previous cases, this case is denoted as A-i-O1. In the case of A-i-O1, thepassive vehicle system design variables m1, m2, k1, k2, and c2 are also permitted to varyby 20% from the nominal values. We can obtain the optimized passive design variablesfor this case as listed in the Table 8.2 using the A-i-O method. It can be found that the
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Figure 8.9: Sprung mass displacement versus time
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LQG (Thompson) Figure 8.11: Secondary suspension forces versus timeTable 8.4: Comparison of the response characteristics for passive and active suspensions.LQG Passive A-i-O A-i-O1m2 displacement overshoot % 8:5 45:3 10:4 8:5m1 displacement overshoot % 28:0 18:0 11:9 25:9Peak total m2 force [N ] 7:3 � 104 8:2 � 104 7:12 � 104 5:75 � 104Peak actuator force [N ] 7:3 � 104 0:0 �2:50 � 104 �4:35 � 104Peak m2 acceleration [m=s2] 252:5 283:3 205:4 165:8R10 (x2 � x1)2dt 0:076 0:085 0:073 0:089R10 10(x1 � w)2dt 0:134 0:144 0:129 0:141R10 �x22dt 1540:1 2145:2 1016:9 721:8R10 �u2dt y 0:103 0:0 0:021 0:041R10 �(u+ fpass)2dt 0:103 0:143 0:098 0:069y � = 8:0 � 10�10 [129].



Multidisciplinary Optimization of Combined Mechanical and Control Systems 171obtained passive system design variables are the same as those obtained in the A-i-O caseexcept for the minor di�erence of the variables k2 and c2. As a matter of fact, duringthe numerical experiments using the A-i-O method, the GA does not converge at certainvalues for the design variables k2 and c2 over a narrow value range for both k2 and c2 wherethe performance index J reaches its minimum value. This can be interpreted that, withincertain value ranges of k2 and c2, since the introduction of the actuator, the vehicle systemperformance is not sensitive to the passive suspension design variables k2 and c2.In the case of A-i-O1, the obtained control gain matrix K and the numerical simulationresults are also o�ered in Tables 8.3 and 8.4, respectively. By including the total secondarysuspension force as an additional performance index term, from the optimization pointof view, we lay more emphasis on reducing the total sprung mass force and sprung massacceleration. Simulation results match this expectation. As shown in Table 8.4, comparedwith the case of A-i-O, the active suspension denoted as A-i-O1 is much better controlledin total sprung mass force, sprung mass acceleration, and sprung mass displacement over-shoot. However, the vehicle performance in suspension working space, dynamic wheel load,and actuator force su�ers.The objective function, as provided by equation (8.51), penalizes, quadratically, largedeviations of the state and control vectors from their desired set point values. Numericalexperiments show that the selection of the weighting factors for the objective functionis important and greatly a�ects the implementation of the A-i-O method. With eachpenalized variable normalized by the mean-square value of the corresponding variable of areference vehicle model (see equation (8.53)), each term of the objective function can beguaranteed to be at the same order of digital value during the optimization and the GA cane�ectively coordinate the design criteria of ride comfort, suspension working space, wheeldynamic load, and actuator force. From the designer's point of view, this is a meaningfulform of objective function because it requires that only an appropriate reference vehiclemodel be selected.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 1728.6.2 Random Track Input CaseVehicle System OptimizationThe vehicle model for this case is also presented in Figure 8.1. The track input w is the�ltered white noise process described previously. In this case, the state variable vectorxa, governing equations, and system dynamic matrices are provided by equation (8.16),equation set (8.17), and equation set (8.18), respectively.The vehicle model was optimized with respect to ride comfort, suspension workingspace, and dynamic wheel load. Hence the performance index J has the following simpleformat J = �1J1 + �2J2 + �3J3 + �4J4 (8.54)where �1, �2, �3, and �4 are weighting factors, J1, J2, J3 and J4 are de�ned in Table 8.5.The products �1J1, �2J2, �3J3, and �4J4 mean the measures of actuator force, ride comfort,wheel dynamic load, and suspension working space, respectively.Table 8.5: The de�nition of the symbols J1, J2, J3 and J4.J1 J2 J3 J4E[u2] E[�x22] E[(x1 � w)2] E[(x2 � x1)2]The performance index formulation (8.54) should be expressed in the standard formatas shown in equation (8.30) for the purpose of �nding the solution to the optimizationproblem. With the performance index (8.54) and governing equation set (8.17), based onthe methods described in Section 8:3, the solution to the optimization problem can beobtained.Results and DiscussionIn this subsection, the simulation results from the A-i-O method are discussed and com-pared with those reported by Hac [59]. As will be seen, the optimal vehicle model derivedfrom the A-i-O method has better performance than the corresponding model based onthe LQG algorithm (used by Hac) in the mean-square values of actuator force, vertical



Multidisciplinary Optimization of Combined Mechanical and Control Systems 173sprung mass acceleration, suspension working space, and dynamics wheel load. Note thatthe simulation results reported by Hac [59] have been accurately repeated in this research.The vehicle system parameters are listed in Figure 8.1 as parameter set 2 together withthe random track characteristics. When the vehicle is moving at the speed V = 30 [m=s]and the weighting factors �2 = 1:0, �3 = 105 and �4 = 104, Hac [59] o�ered the simulationresults as shown in Figure 8.12 in dashed lines. Figure 8.12 illustrates the dependence ofthe performance index (J) and its parts (J1; J2; J3; J4) upon the weighting factor �1.
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Figure 8.12: Performance index J and its parts J1, J2, J3, and J4 versus �1The A-i-O method is also used to optimize the vehicle model with passive and activesuspensions. The same values used by Hac [59] are assigned to the weighting factors �2,�3, and �4, respectively. However, the vehicle system parameters, i.e. m1, m2, k1, k2 andc2 are introduced as additional design variables and these variables are permitted to varyby 10% from the nominal values. Numerical experiments show that the optimized values(denoted as A-i-O) for these design variables are independent of weighting factor �1. Theoptimal values for these variables are listed in Table 8.6.In Figure 8.12, the solid curves indicate the relationships J , J1, J2, J3, J4 versus �1



Multidisciplinary Optimization of Combined Mechanical and Control Systems 174obtained using the A-i-O method. Compared with the optimal suspension based on theLQG, the counterpart based on the A-i-O improves the performance index J and its partsJ1, J2, J3, and J4 over a wide range of weighting factor �1. A close observation showsthat, when �1 < 1, the latter can achieve much better ride comfort, better track holdingcapability, and almost the same suspension work space with less actuator force. When�1 > 103, both suspensions behave like passive suspensions because the actuator force isvery small and the latter is superior to the former in ride comfort, suspension work space,and track holding capability.Table 8.6: Optimized values for m1, m2, k1, k2, and c2.m1 [kg] m2 [kg] k1 [N=m] k2 [N=m] c2 [N=m=s]NVy 100:0 500:0 2:0 � 105 5:0 � 103 1:0 � 103A-i-Oz (�10%) 90:0 550:0 1:8 � 105 5:5 � 103 1:1 � 103Pass? (�10%) 90:0 450:0 1:8 � 105 4:5 � 103 1:1 � 103y Nominal values; z Optimized values based on A-i-O method;? Optimized values for the passive vehicle suspension system using the GA.To investigate whether a sequential optimization process (SOP), i.e. optimizing thepassive vehicle suspension system �rst, then designing a controller for the system basedon the optimized passive vehicle system parameters using the LQG algorithm, can achievethe same results as the A-i-O method does, the GA is used to optimize the passive vehiclesuspension system �rst, then the LQG is applied to the design of the optimal controller forthe optimized vehicle system. In these simulations, the weighting factors �2, �3, and �4 arethe same as those used with the A-i-O method. The optimized passive vehicle parameters(denoted as Pass) are also listed in Table 8.6.Figures 8.13 and 8.14 show the corresponding R.M.S. (root mean square) trade-o�solutions of vertical sprung mass acceleration versus suspension working space and R.M.S.trade-o� solutions of vertical sprung mass acceleration versus wheel dynamic load for theoptimal suspension systems based on the A-i-O (denoted as A-i-O), the LQG (based onnominal passive vehicle parameter, denoted as LQG), and the SOP. It is clear that thesuspension based on the A-i-O method has the best overall performance among the threeoptimal suspensions. From Figure 8.13, we can see that, within a certain acceleration
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Figure 8.13: R.M.S. trade-o� solutions of vertical sprung mass acceleration versus suspen-sion working spacerange, the suspension based on the SOP method requires the largest suspension workingspace among the three suspensions.In the simulations, the availability of a limited number of the state variables is con-sidered. As mentioned previously, it is assumed that the absolute vertical velocities ofboth the sprung mass and unsprung mass (wheel) are available. The simulation results areo�ered here. In the simulations the measurement noises are set to 5% of the R.M.S. valueof vertical wheel velocity. The simulation results are shown in Figure 8.15 which illustratesthe dependence of performance indices and measurement errors upon the weighting factor�1. For these simulations, �2, �3, �4, and V still take the values o�ered previously. In theLQG case (denoted as JLQG), the vehicle system parameters take their nominal values,while in cases of the A-i-O without the Kalman �lter (denoted as JA1) and the A-i-O withthe Kalman �lter (denoted as JA2), the vehicle system parameters are treated as designvariables and are permitted to vary by 10% from their nominal values.As expected, by comparing the results from JA1 and JA2, we can see that the perfor-
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Figure 8.14: R.M.S. trade-o� solutions of vertical sprung mass acceleration versus dynamicwheel load
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Multidisciplinary Optimization of Combined Mechanical and Control Systems 177mance of the active suspension based on JA2 su�ers from the measurement corruption. Asmentioned previously, when �1 > 103, the active suspensions behave like passive suspen-sions. This point can be further demonstrated by the fact that the measurement error Jrbecomes very small and the performance indices from JA1 and JA2 are very close when�1 > 103. By comparing the results based on JLQG and JA2, we can observe that eventhough the suspension system based on JA2 su�ers from the measurement errors, its per-formance is still better than that of the suspension system based on JLQG.8.7 Numerical Optimization for Half-Vehicle ModelsIn this section, the optimization results for the half-vehicle models with rigid vehicle bodyand exible vehicle body are provided and analyzed. For the rigid body vehicle model,the numerical optimization is carried out with the track inputs selected as unit step inputscorresponding to the integrated white noise track input case. For the exible body vehiclemodel, the numerical optimization is performed under the condition that the track inputsare the �ltered white noise processes. For both vehicle models, it is assumed that the trackdisturbance inputs at the front unsprung mass and at the rear unsprung mass are identicalexcept that the latter is delayed by the time interval D (see equation set (8.6)) with respectto the former. Once again the numerical results based on the A-i-O method are comparedwith those based on the LQG algorithm and the corresponding passive suspensions.8.7.1 Deterministic Track Input CaseVehicle System OptimizationFor the vehicle model as shown in Figure 8.2, the state variable vector x, actuator forcevector u, and track excitation vector _w are descirbed by equation set (8.20), the governingequations are given by equation set (8.11), and the corresponding system, control, output,and disturbance matrices A, B, C, and D are provided in Appendix B, respectively.Hence, the vehicle system optimization problem can be described as: minimize the



Multidisciplinary Optimization of Combined Mechanical and Control Systems 178following objective function, J = 6Xi=1 �iJi (8.55)subject to ( _x = Ax+Bu+D _wy = Cx (8.56)where �1 to �6 are the weighting factors, J1 to J6 are de�ned in Table 8.7, and �1J1 to �6J6imply the measurements of the accelerations of the vehicle body at points A and B (seeFigure 8.2), the dynamic loads of unsprung masses m1 and m2, front and rear secondarysuspension working spaces, respectively. Due to the fact that, for the quarter-vehicle modelTable 8.7: Expressions represented by symbols J1 to J6.J1 J2 J3 J4 J5 J6R10 �x22dt R10 �x24dt R10 (x1 � w1)2dt R10 (x3 � w2)2dt R10 (x2 � x1)2dt R10 (x4 � x3)2dtcase discussed previously, the introduction of the secondary suspension force term into theobjection function (8.51) does not improve the overall performance of the vehicle system,the secondary suspension force term is not included in the objective function (8.55). Thegoverning equations of the vehicle system show that �x2 and �x4 are dependent on the frontand rear secondary suspension force, respectively. Hence, constraining the accelerations atpoints A and B of the vehicle body also constrains the actuator forces u1 and u2 and frontand rear passive secondary suspension forces.As discussed previously, each term on the right hand side of objective function (8.55) isalso normalized with the corresponding norm or the corresponding inverse of the weightingfactor. Once again, these weighting factors can be obtained based on the correspondingobjective function terms of J1 to J6 calculated from the dynamic responses of a selectedreference half-vehicle model with passive or active suspensions.Once more, to �nd the solution to the optimization problem, equation (8.55) shouldalso be formulated in the standard matrix form as shown in equation (8.30). The resultingweighting matrices G, H and N are provided in Appendix B.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 179Results and DiscussionIn this subsection, the simulation results from the A-i-O method are discussed and com-pared with those reported by Thompson [131]. As will be seen, the optimized vehicle modelbased on the A-i-O method has better performance than the corresponding model withpassive suspension and that based on the LQG algorithm (used by Thompson) in all thefour aspects, ride comfort, suspension working spaces, dynamic wheel loads, and actuatorforces. Note that the simulation results reported by Thompson [131] have been accuratelyrepeated in this research.Based on the half-vehicle model with active suspension designed by Thompson [131],the weighting factors �1, �2, �3, �4, �5, and �6 are assigned the values of 5:4190 � 10�4,2:2261�10�4, 78:8781, 50:7307, 13:7052, and 14:6588, respectively. Using the A-i-O method,we can �nd the control gain matrix K listed in Table 8.8 together with that based onThompson's method (LQG algorithm). In the A-i-O case, the additional design variablesare selected as m1, m2, M , Ic, a, b, k1, c1, k2, c2, k3, and k4. The design variables k1, c1,k2, and c2 are permitted to vary by 50% from their nominal values and the rest to vary by10% from the nominal values. The corresponding optimal values for these design variablesare provided in Table 8.9.Table 8.8: Feedback control gain matrix for optimal suspensions.K1;1 K1;2 K1;3 K1;4 K1;5 K1;6 K1;7 K1;8A-i-O �51636:0 30492:0 �315:0 352:0 61:0 4506:0 �8:0 38:0LQG �58092:0 35355:0 1392:0 �75:0 �1379:0 4620:0 �18:0 215:0K2;1 K2;2 K2;3 K2;4 K2;5 K2;6 K2;7 K2;8A-i-O �1111:0 381:0 �61896:0 48182:0 �12:0 52:0 553:0 3239:0LQG 1058:0 75:0 �68826:0 35355:0 �8:0 233:0 �1774:0 4047:0In the A-i-O, LQG, and passive suspension cases, the resulting vehicle dynamic re-sponses in time domain for the unsprung mass displacements of both m1 and m2, and theworking spaces of both front and rear secondary suspensions are illustrated in Figures 8.16,8.17, 8.18, and 8.19, respectively. Once again, in both the LQG and passive suspensioncases, the parameters listed in Table 8.9 take the nominal values. Figures 8.16 and 8.17show that, among the three cases, the active suspension based on the A-i-O method is



Multidisciplinary Optimization of Combined Mechanical and Control Systems 180best controlled with the smallest overshoot in both m1 and m2 displacements but the onebased on the LQG has the largest overshoot. Observation of Figures 8.18 and 8.19 revealsthat, compared with the active suspension based on the LQG, the one based on the A-i-Obehaves better with less overshoot in both front and rear secondary suspension workingspaces. Although the passive suspension has less front and rear secondary suspension work-ing space overshoot than the active suspensions, the oscillation is damped out much slowerthan those in the active suspensions.Table 8.9: Optimized values for passive vehicle system design variables.m1 [kg] m2 [kg] M [kg] Ic [kg �m2] a1 [m] a2 [m]NVy 28:58 54:43 505:1 651:0 1:0978 1:4676A-i-O 25:72 48:99 555:5 715:9 0:9880 1:3215k1 [N=m] c1 [N=m=s] k2 [N=m] c2 [N=m=s] k3 [N=m] k4 [N=m]NV 19960:0 2014:0 22590:0 2082:0 155900:0 155900:0A-i-O 19777:2 1540:1 12365:2 2316:6 140802:9 170755:4y Nominal values.Notice that the negative front and rear secondary suspension working spaces mean thatthese suspensions are in the strokes of compression. In the above analysis, it is assumedthere are no limitations for the suspension working spaces. Practically, the suspensionworking spaces can not take such large values because of the existence of bump stops inboth the front and rear secondary suspensions.Figures 8.20, 8.21, and 8.22 demonstrate the relationships of vertical accelerations ofthe vehicle body at points A and B versus time and the pitch angular acceleration ofthe vehicle body versus time. Based on Figures 8.20 and 8.21, we �nd that, among thethree cases, the active suspension based on the A-i-O is best controlled with the smallestovershoots in accelerations of the vehicle body at both points A and B and the passivesuspension behaves the worst with the largest overshoots. A close observation of Figure8.20 discloses that at the time the unit step input imposes on the unsprung mass m2, thistrack disturbance a�ects the acceleration of the vehicle body at point A for all of the threecases. The disturbance is reected by the arising of the second peak around the time on the



Multidisciplinary Optimization of Combined Mechanical and Control Systems 181corresponding acceleration curve for each case. In both the LQG and passive suspensioncases, the time delay between the front and rear inputs is about 0:086[s]. In the A-i-Ocase, the time delay is about 0:077[s]. Compared with the acceleration of the vehicle bodyat point A, the track input at m2 has a much more signi�cant e�ect on the accelerationat point B. This di�erence can be found by the comparison of the second peak on eachacceleration curve in Figure 8.20 with the corresponding �rst peak in Figure 8.21 for allof the three cases. Moreover, as we can see from Figure 8.21, in the case of LQG, theacceleration of the vehicle body at point B trembles immediately after the unit step inputimposes on the unsprung mass m2. In the aspect of the angular acceleration of the vehiclebody, as shown in Figure 8.22, the active suspension based on the A-i-O method outrunsthat based on the LQG algorithm and the passive suspension with less magnitude.
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Figure 8.16: Unsprung mass m1 displacement versus timeFigures 8.23 and 8.24 illustrate the relationship between the corresponding secondarysuspension force and time for both the front and rear secondary suspensions. For thepurpose of visibility, parts of Figures 8.23 and 8.24 are repeated in Figures 8.25 and 8.26,respectively. A close comparison of the Figure 8.25 with Figure 8.11 demonstrates that
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Figure 8.17: Unsprung mass m2 displacement versus time
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Multidisciplinary Optimization of Combined Mechanical and Control Systems 185the corresponding curves in the two �gures are very similar. This similarity is due to thefact that the relevant vehicle system parameters for the previous quarter-vehicle modelare the same as those in the front part of the half-vehicle model, e.g. the unsprung massand the primary suspension spring sti�ness coe�cient. This similarity also veri�es thecorrectness of the calculation for the half-vehicle model. Moreover, this similarity impliesthat the secondary suspension force analysis for the previous quarter-vehicle model withdeterministic track input also holds for the front secondary suspension force analysis forthe half-vehicle model with deterministic track inputs. A detailed comparison of Figures8.23 with 8.24 also reveals that, after the point where the unit step input imposes on theunsprung mass m2, the trend of each curve in Figure 8.24 is very similar to that of itscounterpart in Figure 8.23. Therefore, the previous force analysis for the quarter-vehiclemodel is also true for the rear secondary suspension of the half-vehicle model.
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Figure 8.24: Rear secondary suspension forces versus time
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Figure 8.25: Front secondary suspension forces versus time
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Figure 8.26: Rear secondary suspension forces versus timeits counterpart based on the LQG algorithm and the passive suspension in the mean-squarevalues of front and rear actuator forces, front and rear unsprung mass deections, front andrear secondary suspension working spaces, accelerations of the vehicle body at points Aand B, and pitch angular acceleration of the vehicle body. In short, the active suspensionbased on the A-i-O method has the best overall performance among the three cases.8.7.2 Random Track Input CaseVehicle System OptimizationThe vehicle model with exible vehicle body is illustrated in Figure 8.2. The systemgoverning equations are described in equation set (8.17), the state variable vector xa inequation (8.28), actuator force vector u, track excitation vectors w, _w, and � in equationsets (8.27) and (8.5). The relevant system dynamic matrices are determined in equationset (8.29) and the detailed information is listed in Appendix B.The vehicle system optimization, therefore, can be stated as: minimize the objective



Multidisciplinary Optimization of Combined Mechanical and Control Systems 188Table 8.10: Comparison of the response characteristics for passive and active suspensions.LQG Passive A-i-Om1 displacement overshoot [%] 28:80 17:05 16:57m2 displacement overshoot [%] 37:26 32:79 30:34Peak front suspension working space [m] �1:1632 �0:9484 �1:0572Peak rear suspension working space [m] �1:1683 �0:9715 �1:0558Peak acceleration at point A [m=s2] 277:2731 321:7271 240:1095Peak acceleration at point B [m=s2] 356:5036 377:8960 326:8214Peak pitch acceleration [rad=s2] �152:4799 �166:4148 �141:5128Peak front actuator force [N ] 7:2464 � 104 0:0 �2:1161 � 104Peak rear actuator force [N ] 6:7411 � 104 0:0 �2:2465 � 104Peak passive front suspension force [N ] 0:0 8:4080 � 104 7:9535 � 104Peak passive rear suspension force [N ] 0:0 7:1121 � 104 9:0198 � 104Peak total front suspension force [N ] 7:2464 � 104 8:4080 � 104 7:5759 � 104Peak total rear suspension force [N ] 6:7411 � 104 7:1121 � 104 7:7115 � 104R10 (x1 � w1)2dt 0:0134 0:0144 0:0129R10 (x3 � w2)2dt 0:0197 0:0221 0:0176R10 (x2 � x1)2dt 0:0730 0:0728 0:0679R10 (x4 � x3)2dt 0:0682 0:0695 0:0534R10 �x22dt 1:8454 � 103 2:6789 � 103 1:3900 � 103R10 �x24dt 4:4921 � 103 5:7069 � 103 3:8483 � 103R10 �'2dt 1:0937 � 103 1:4312 � 103 1:0132 � 103R10 u21dt 1:2595 � 108 0:0 1:9019 � 107R10 u22dt 1:6164 � 108 0:0 2:2853 � 107R10 f21passdt y 0:0 1:8376 � 108 1:3538 � 108R10 f22passdt z 0:0 2:0584 � 108 2:4395 � 108R10 (u1 + f1pass)2dt 1:2595 � 108 1:8376 � 108 1:3867 � 108R10 (u2 + f2pass)2dt 1:6164 � 108 2:0584 � 108 1:9992 � 108y f1pass means passive front secondary suspension force;z f2pass means passive rear secondary suspension force.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 189function: J = 4Xi=1 �iJi (8.57)subject to ( _xa = Aaxa +Bau+Da�ya = Caxa (8.58)where �1 to �4 are weighting factors, J1 to J4 are de�ned in Table 8.11. J2 stands formean-square acceleration at three or two body points denoted by L1, L2, and L3 or by L1and L2, which correspond to the left end, right end, and middle point of the vehicle bodyor the left end and right end of the vehicle body, respectively. Due to the fact that thepitch mode and the �rst three bending modes of the elastic vehicle body are taken intoaccount, the consideration of the acceleration at just one point is not justi�ed. J1, J3, andJ4 are mean-square values of actuator forces, primary and secondary suspension deections,respectively. To utilize the weighting constants used in the previous quarter-vehicle modelwith random track input and compare the results from the research with those o�eredby Hac [60], factors of 1=2 and 1=3 are introduced for the de�nitions described in Table8.11. The vehicle system, therefore, is optimized with respect to ride quality, unsprungTable 8.11: Expressions represented by symbols J1 to J4.J1 J2E[u21 + u22]=2 EfP3or2i=1 [�x5 + (Li � a2 � b2) �'+P3j=1 ��j(t)Zj (Li)]2g=3J3 J4Ef[x1 � w(t�D)]2 + [x3 �w(t)]2g=2 y E[(x2 � x1)2 + (x4 � x3)2]=2y w(t�D) = w1; w(t) = w2.mass dynamic loads, and secondary suspension working spaces while the expenditure ofactuator forces is limited.As mentioned previously, to �nd the solution to the optimization problem, equation(8.57) should be rewritten in the standard matrix format as shown in equation (8.30).



Multidisciplinary Optimization of Combined Mechanical and Control Systems 190Validation of the Simulation ResultsIn the research, using the LQG algorithm, the vehicle model (half-vehicle model with ex-ible vehicle body), and the system parameters provided by Hac [60], numerical simulationswere performed. Unfortunately, the simulation results reported by Hac could not be re-peated. Expressed in terms of state and control variables and expanded in Maple [70]symbolic form, the objective function for the exible vehicle model in equation (8.57) cov-ers 372 pages (A4 paper). The complex and lengthy objective function seems to be thereason why Hac's numerical results do not agree with those from the research. Thus, thevalidation of the simulation results from the research becomes necessary.To validate the simulation results from the research, the numerical results based on amodi�ed half-vehicle model are veri�ed by those based on a simple quarter-vehicle model.As mentioned previously, based on the LQG algorithm, the quarter-vehicle model, and thesystem parameters used by Hac [59], Hac's results were accurately repeated in the research.To facilitate the validation, the vehicle body is assumed to be a rigid body and thegeometric parameter (b2) and the pitch moment of inertia (Ic) of the vehicle body are setto 0:0[m] and 1:6 � 105[kg � m2] instead of the nominal values of 2:0[m] and 1:2 � 105[kg �m2] respectively so that the front and rear suspensions of the modi�ed vehicle model areinertially de-coupled. The rest of the vehicle system parameters take their nominal values.Furthermore, it is assumed that, during the simulation, the time delay between the trackinput imposed on the front unsprung mass and that on the rear unsprung mass shouldbe neglected. Thus, using the lumped mass method, we obtain the modi�ed half-vehiclemodel which is equivalent to two independent identical quarter-vehicle models. For theequivalent quarter-vehicle models, the sprung mass takes the value of 5000:0[kg] and therest system parameters take the values of those of the modi�ed half-vehicle model.The objective function for the modi�ed half-vehicle model is the same as that describedin equation (8.57) except that the terms relevant to the bending modes of the exiblevehicle body are set to zeros and J2 is de�ned as E[�x22 + �x24]=2. The objective function ofthe corresponding quarter-vehicle model is the same as that described in equation (8.54).Assume the velocity of both the modi�ed half-vehicle model and the correspondingquarter-vehicle model V = 20:0[m=s] and the coe�cients in formula (8.3) describing trackirregularities at = 0:45[m�1] and �t = 3:0 � 10�4[m2]. For both the modi�ed half-vehicle



Multidisciplinary Optimization of Combined Mechanical and Control Systems 191model and the equivalent quarter-vehicle model, with the weighting factors �2 = 1, �3 =105, and �4 = 104, based on the LQG algorithm, we can obtain the results illustrated inTable 8.12.Table 8.12: Comparison of the simulation results for the modi�ed half-vehicle model andthe equivalent quarter-vehicle model.Equivalent Quarter{Vehicle Model�1 J=106 J1 [N2] J2=106 [mm2=s4] J3=10 [mm2] J4=102 [mm2]106 22:67194237 6:11420577 � 10�7 4:44329323 14:1729511 4:05569743102 22:66585547 60:60964055 4:44333608 14:1701350 4:04632342100 22:23322899 3:25419349 � 105 4:49419024 13:9139521 3:4996672610�2 20:16447360 2:03248582 � 107 6:11463790 11:4086591 2:4379279710�4 19:93633651 2:62068886 � 107 6:44708294 11:0998273 2:38680554Modi�ed Half-Vehicle Model�1 J=106 J1 [N2] J2=106 [mm2=s4] J3=10 [mm2] J4=102 [mm2]106 22:67194237 6:11420576 � 10�7 4:44329323 14:1729511 4:05569743102 22:66585547 60:60964053 4:44333608 14:1701350 4:04632342100 22:23322899 3:25419349 � 105 4:49419024 13:9139521 3:4996672610�2 20:16447360 2:03248583 � 107 6:11463791 11:4086591 2:4379279710�4 19:93633651 2:62068886 � 107 6:44708294 11:0998273 2:38680554The comparison of the simulation results shown in Table 8.12 demonstrates that thesimulation results for the modi�ed half-vehicle model accurately matches those for theequivalent quarter-vehicle model. Therefore, at least the rigid body half-vehicle model andthe corresponding objective function are validated. This validated rigid body half-vehiclemodel and objective function can be used to serve as a reference to check the simulationresults of the corresponding half-vehicle model with the exible vehicle body.To check the simulation results of the half-vehicle model with the exible vehicle bodywith those based on the validated rigid body half-vehicle model, assume that for bothvehicle models, the vehicle system parameters are set to their nominal values as listedin Table B.2 in Appendix B; the objective function takes the form described in equation(8.57); the random track characteristic parameters, vehicle speed, and the weighting factors�2, �3, �4 take the values o�ered previously in the subsection; the time delay between the



Multidisciplinary Optimization of Combined Mechanical and Control Systems 192Table 8.13: Comparison of the simulation results for the rigid half-vehicle model and theexible half-vehicle model. Flexible Half-Vehicle Model�1 J=106 J1 [N2] J2=106 [mm2=s4] J3=10 [mm2] J4=102 [mm2]106 27:0252 5:3235 � 10�7 8:8036 14:3577 3:8638102 27:0199 52:7369 8:8018 14:3570 3:8558100 26:6553 2:6311 � 105 8:7125 14:2882 3:391510�2 25:4346 7:9631 � 106 9:2387 13:4871 2:629010�4 25:3494 9:2990 � 106 9:3393 13:4105 2:5987Rigid Half-Vehicle Model�1 J=106 J1 [N2] J2=106 [mm2=s4] J3=10 [mm2] J4=102 [mm2]106 26:3059 5:5123 � 10�7 8:1317 14:2957 3:8785102 26:3004 54:6229 8:1298 14:2947 3:8704100 25:9181 2:8002 � 105 8:0441 14:1904 3:403610�2 24:4349 1:2310 � 107 8:7743 12:9029 2:634710�4 24:2985 1:5485 � 107 8:9541 12:7367 2:6062Rigid Half-Vehicle Model with Time Delay�1 J=106 J1 [N2] J2=106 [mm2=s4] J3=10 [mm2] J4=102 [mm2]106 26:2340 5:3767 � 10�7 8:3051 14:2878 3:7129102 26:2277 53:2799 8:3031 14:2865 3:7055100 25:7958 2:7273 � 105 8:2043 14:1648 3:276310�2 24:2993 1:2204 � 107 8:8644 12:8224 2:626110�4 24:1704 1:5376 � 107 9:0365 12:6568 2:6036random track input imposed on the front unsprung mass and that on the rear unsprungmass is neglected. Based on the LQG algorithm, we can obtain the simulation resultso�ered in Table 8.13.The comparison of the results o�ered in Table 8.13 shows that the simulation resultsbased on the exible vehicle model are consistent with those based on the rigid vehiclemodel. The average performance index J of the exible vehicle model is about 3:4% higherthan that of the rigid vehicle model. This di�erence results from the fact that the �rstthree bending modes of the exible vehicle body degrade the overall performance of theexible vehicle model. This overall performance degradation of the exible vehicle model



Multidisciplinary Optimization of Combined Mechanical and Control Systems 193also reects on the higher partial performance indices of the acceleration and unsprungmass displacement of the model than those of the rigid vehicle model.To investigate the e�ect of the time delay on the performance of the vehicle models,the simulation results with time delay for the rigid half-vehicle model are also provided inTable 8.13. The simulation results show that, with the time delay considered, the overallperformance improves and demonstrates that \the time delay available between the frontand rear inputs appears to provide, in principle, an excellent opportunity to improve therear axle actuator control" [61]. However, under the given simulation conditions, the degreeof performance improvement is not high. However, numerical experiments show that if theweighting factors �1 = 10�8, �2 = 1:0, �3 = 104, and �1 = 103, the performance index Jwith time delay is 6:222% lower than that without time delay.It should be mentioned that with the time delay considered, by using the LQG algo-rithm, we should calculate the required transition matrix. In the case of the rigid half-vehicle model, the calculation of the transition matrix in Matlab does not converge untilthe 60th term of the series is reached. However, in the case of the exible half-vehiclemodel, the calculation of the corresponding transition matrix does not converge even whenthe 80th term of the series is reached. When the calculation is carried out until the 100thterm of the series, the result overows.Therefore, it seems that it is not practical to calculate the transition matrix for com-plicated vehicle dynamic models when the time delay is considered. To circumvent thecalculation of transition matrix, the Pade approximation method is recommended [61],but additional state variables should be introduced. In the next subsection, the numericalsimulations for the half-vehicle model with exible vehicle body are restricted to the casewhere the time delay is not taken into account.Results and DiscussionIn this subsection, for the half-vehicle model with exible vehicle body and without thetime delay between front input and rear input, the numerical simulation results based onthe A-i-O method are compared with those based on the LQG algorithm. As will be seen,the optimized vehicle system derived from the A-i-O method is superior to that based onthe LQG algorithm in the aspects of ride comfort, suspension working spaces, and dynamic



Multidisciplinary Optimization of Combined Mechanical and Control Systems 194wheel loads with almost the same power consumption.In the A-i-O method case, the vehicle system parameters EI, �A, c3, and c4 take theirnominal values, M , m1, m2, Ic, k3, k4, a1 (a1 = a2), and b2 (b2 = l � b1) are permittedto vary by 10% from their nominal values, k1, k2, c1, and c2 are allowed to change by50% from their nominal values, the standard deviations of the sensors' random errors aretaken as 0:06[m=s]. Note that the nominal system parameters are listed in Table B.2in Appendix B. The vehicle speed and the random track characteristic parameters areassigned the values o�ered in the last subsection. The weighting factors are: �1 = 10�8,�2 = 1, �3 = 105, and �4 = 104. By using the A-i-O method, we can obtain the optimaldesign variables for the half-vehicle model with a exible vehicle body as listed in Table8.14. For the purpose of comparison, the corresponding nominal values for these designvariables are also provided in the table. The obtained optimal feedback control gain matrixbased on the A-i-O together with that based on the LQG are also o�ered in Table 8.15.Note that in the LQG case, the simulation condition is the same as that of the A-i-O caseexcept that the vehicle system parameters take their nominal values.Table 8.14: Optimized values for vehicle system design variables.m1 [kg] m2 [kg] M [kg] Ic [kg �m2] a1 [m] b2 [m]NVy 1:0 � 103 1:0 � 103 1:0 � 104 1:2 � 105 4:0 2:0A-i-O 900:0 900:0 1:1 � 104 1:32 � 105 3:60 1:92k1 [N=m] c1 [N=m=s] k2 [N=m] c2 [N=m=s] k3 [N=m] k4 [N=m]NV 2:0 � 105 2:0 � 104 2:0 � 105 2:0 � 104 2:0 � 106 2:0 � 106A-i-O 1:258 � 105 2:035 � 104 2:134 � 105 2:767 � 104 1:8 � 106 1:8 � 106y Nominal values.As mentioned in the quarter-vehicle model case (random track input), the optimizedvalues of the design variables shown in Table 8.14 are almost independent of the weightingfactor �1 by using the A-i-O method. Figure 8.27 shows the dependence of the performanceindex (J) and its parts (J1; J2; J3; J4) upon the weighting factor �1; Figure 8.28 illustratesthe trade-o� solutions of weighted R.M.S. vertical body acceleration and weighted R.M.S.wheel dynamic load; Figure 8.29 o�ers the the trade-o� solutions of weighted R.M.S.



Multidisciplinary Optimization of Combined Mechanical and Control Systems 195Table 8.15: Feedback control gain matrix for optimal suspensions.K1;1=105 K1;2=105 K1;3=104 K1;4=105 K1;5=105 K1;6=104 K1;7=105A-i-O 9:6089 �5:6295 6:6631 9:4087 �7:9097 �4:8001 6:7035LQG 4:5908 1:1374 10:3630 2:7474 �2:0241 �2:4724 1:3482K1;8=104 K1;9=107 K1;10=105 K1;11=108 K1;12=107 K1;13=108 K1;14=107A-i-O 3:2283 �1:0010 �0:9183 5:6463 1:0728 �1:9243 �0:3944LQG �0:9422 �1:6119 �1:5065 1:8915 0:3613 �5:8641 �1:1726K2;1=105 K2;2=105 K2;3=105 K2;4=105 K2;5=105 K2;6=104 K2;7=105A-i-O �5:6309 8:7313 0:5922 �9:1449 6:7078 3:2284 �7:9004LQG 1:1373 4:5908 1:0363 �2:7474 1:3482 �0:9422 �2:0241K2;8=104 K2;9=107 K2;10=105 K2;11=108 K2;12=107 K2;13=108 K2;14=107A-i-O �4:0671 �1:0019 �0:9506 �5:6463 �1:0724 �1:9240 �0:3936LQG �2:4724 �1:6119 �1:5065 �1:8915 �0:3613 �5:8641 �1:1726vertical body acceleration and weighted R.M.S. suspension working space. Note that theweighted R.M.S. vertical body acceleration, wheel dynamic load, and suspension workingspace are based on the performance terms J2, J3, and J4, respectively.Investigation of Figures 8.27, 8.28, and 8.29 demonstrates that as in the case of thequarter-vehicle model, the overall performance of the active suspensions based on the A-i-Omethod is superior to that based on the LQG. The active suspensions based on the A-i-Omethod achieves the overall performance improvement at the expense of using larger controlforces than those based on the LQG. However, under the above simulation conditions, thetotal average control power consumption for the A-i-O based active suspensions is just1:4% higher than that (3:1896[kw]) required for the LQG based active suspensions. Thereason for this phenomenon is that although the actuators for the A-i-O based suspensionsuse larger control forces, the relative motions between the sprung mass and the unsprungmasses are better controlled than those of the LQG based suspensions. Thus, the recti�edaverage piston velocities of the actuators for the the A-i-O based suspensions are lower thanthose of the actuators for the LQG based suspensions and the amounts of total averagecontrol power consumption for both cases are almost the same. Figure 8.30 provides therelationship between vehicle speed and control power consumption.Based on equation (8.46), the �ltering error covariance matrix P depends on the sensor
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Figure 8.27: Performance index J and its parts J1, J2, J3, and J4 versus �1
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Figure 8.29: R.M.S. trade-o� solutions of vertical body acceleration versus suspensionworking space
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Multidisciplinary Optimization of Combined Mechanical and Control Systems 198accuracy due to R in equation set (8.43) and the sensor arrangement due to Ca in equation(8.42). According to equation (8.47), as mentioned previously, the performance index Joptcontains two parts. The �rst part, JQ, arises because of the random track excitations; thesecond part, Jr, results from inexact state estimation due to the existence of the matrix P.Jr vanishes when P vanishes. Thus, the two factors, the sensor accuracy and the sensorarrangement, inuence J , Jr, and P. Figure 8.31 shows the e�ect of sensor errors on J , Jrand P of both the A-i-O based active suspensions and the LQG based active suspensions.Note that the results in Figure 8.31 are based on the sensor arrangement with �ve sensorsmeasuring the vertical velocities of the front and rear unsprung masses and the verticalvelocities at the three vehicle body points, i.e., the left end, the right end, and the middlepoint.
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Figure 8.31: E�ect of R.M.S. sensor errors on performance indices J , Jr, and trace(P)It is obvious that in both the A-i-O and the LQG cases, as sensor errors increase, J ,Jr and trace(P) increase. Over the sensor error range o�ered, the J and trace(P) basedon the A-i-O method are smaller than those based on the LQG algorithm, respectively.However, over the lower sensor error value range, the Jr based on the LQG algorithm is



Multidisciplinary Optimization of Combined Mechanical and Control Systems 199smaller than that based on the A-i-O method. The reason for the phenomenon is that Jrdepends not only on the �ltering error covariance matrix P but also on the control feedbackgain matrix K and weighting matrix H (see equation (8.47)).To investigate the inuence of sensor arrangement on the state estimation, in thisresearch di�erent sensor arrangements are used. For all the sensor arrangements, twosensors are used to measure the vertical velocities of the front and rear unsprung masses.Numerical experiments show that among all possible combinations of locations for twosensors for measuring the vehicle body vertical velocities, the optimal plan with minimalJr is the one that the two sensors are located at the right end and the left end of the vehiclebody respectively. With the third sensor introduced, the best location is the middle of thevehicle body. This sensor arrangement is consistent with what Hac [60] found:\the bodymotion consists mainly of vibration connected with the lowest mode and to minimizemeasurement errors the sensors should be located at extreme points of the functions ofthese mode shapes". Figure 8.32 o�ers the relationship between Jr and weighting factor�1 in the A-i-O case when 4 and 5 sensors are used with the above optimal arrangements.With the additional sensor located at the middle of the vehicle body, the value of Jr islower than that for the 4 sensor arrangement over the lower �1 value range within whichthe active suspensions take e�ect.To examine the behavior of the A-i-O based active suspensions (optimized withoutKalman �lter at 20:0[m=s]) at other speeds, the performance indices of acceleration, wheeldynamic deection, and suspension working space based on the A-i-O are compared withthose based on the LQG. Figure 8.33 illustrates the dependence of these performanceindices on vehicle speed. Results shown in Figure 8.33 together with those o�ered in Figure8.30 demonstrate that the optimized vehicle system based on the A-i-O method is bettercontrolled than that based on the LGQ algorithm in vertical acceleration, wheel dynamicload, and suspension working space with almost the same control power consumption overthe lower speed range and with less control power consumption within the higher speedrange. It should be noted that the optimized vehicle system based on the A-i-O methodachieves the above improvements even though its vehicle body mass (M) is 10% largerthan its nominal value.
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Figure 8.32: E�ect of sensor arrangement on Jr8.8 SummaryThis chapter has demonstrated the feasibility and e�cacy of applying the A-i-O multi-disciplinary optimization method integrating GAs, multibody dynamics, the LQG controlstrategy, and the Kalman �lter algorithm to the design optimization of ground vehicleswith active suspensions. The A-i-O method is implemented in a sophisticated simulationenvironment in such a way that the linear mechanical vehicle model is designed in theA'GEM program, the optimal controller and Kalman estimator are constructed in MAT-LAB, then the combined system including the mechanical vehicle model, optimal controller,and Kalman estimator is optimized simultaneously by using genetic algorithms.The A-i-O method is used to resolve the conicting requirements for ride comfort,suspension working spaces, and dynamic wheel loads in the optimization of quarter-vehiclemodels and half-vehicle models (with or without vehicle body exibility) with passive andactive suspensions. In the simulations, both random and deterministic track inputs andboth perfect measurement of full state variables and limited state variables with Kalman�lter cases are considered. The time domain analysis and a systematic covariance analysis
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Figure 8.33: Performance indices of acceleration, wheel dynamic deection, and suspensionworking space as a function of vehicle velocityare carried out.Numerical results show that the optimized vehicle system based on the A-i-O methodhas better overall performance than that derived using the LQG algorithm not only in ridecomfort and suspension working spaces, but also in wheel dynamic loads with almost thesame control power consumption over lower speed range and less control power consumptionwithin higher speed range. However, compared with passive suspensions, traditional activevehicle suspension systems often achieve better performance which is a compromise amongride comfort, suspension working space, and wheel dynamic load. These traditional activevehicle suspension systems can rarely improve the vehicle performance in all of these threeaspects simultaneously [60]. Furthermore, the numerical results obtained in this researchdemonstrate that the sequential optimization method, i.e. optimizing the passive vehiclesystem parameters �rst then designing controllers for the vehicle active suspensions basedon these optimized passive system parameters using the LQG algorithm, can not achieve theresults obtained by the A-i-O method. Based on an appropriately selected reference vehicle



Multidisciplinary Optimization of Combined Mechanical and Control Systems 202dynamic model, by means of normalizing each term of the required objective function,the design optimization using the A-i-O method is greatly facilitated. The simulationresults based on the simple quarter-vehicle model can be used not only to analyze thevehicle dynamic behavior qualitatively but also to validate the simulation results basedon complex vehicle models. With the co-existence of passive and active components invehicle suspensions and the design variables determined by using the A-i-O method, thecorresponding actuator forces can actively resist track disturbances much longer than theactuator forces based on the case where the corresponding suspensions have no passiveelements and the design variables are determined by using the LQG algorithm. Althougha vehicle system is optimized at a speci�ed vehicle speed based on the A-i-O method, theresulting overall vehicle performance is still superior to that based on the LQG algorithm.The above A-i-O method can be applied to the design optimization of complex groundvehicle models with active suspensions. As a continuation of this research, the applicationof the A-i-O method to the design optimization of a 9 DOF three-dimension rail vehiclemodel with additional �rst bending mode and �rst torsional mode with active suspensionsis under way.



Chapter 9Conclusions9.1 IntroductionAs discussed and identi�ed in Chapter 1, the ultimate objective of the research is todevelop a novel methodology for the design optimization of rail vehicles with passive andactive suspensions. This goal has been successfully achieved. The feasibility and e�cacyof the methodology has been demonstrated by the optimization of the lateral stability,vertical ride quality, curving performance, compatibility of lateral stability and curvingperformance, and combined mechanical and control system of vehicles with passive andactive suspensions. This design methodology and the numerous conclusions drawn fromthe above numerical experimental practices are believed to be signi�cant contributions tothe design optimization of rail vehicles, rail vehicle dynamics, mechatronic systems, andnumerical optimization.In this chapter, the achievements of the research are addressed and the related areasfor future research are proposed.9.2 Proposed Design Optimization MethodologyThe methodology for the design optimization of rail vehicles with passive and active suspen-sions was proposed and developed in the research program. The essence of this methodology203



Conclusions 204is that:� The e�ective dynamic system modelling technique (multibody dynamics) is utilizedfor the generation of complex realistic objective-oriented models (e.g. lateral stabilitymodels, curving performance models, etc.).� By means of multidisciplinary optimization methods, these coupled objective-orientedmodels and/or additional control systems are integrated as a synergistic whole.� With the scalarization technique, a vector optimization problem is converted into ascalar optimization problem.� With a genetic algorithm used at system level and the appropriately selected searchalgorithms used at subsystem level, the passive and/or active design variables areoptimized simultaneously.Numerical experiments demonstrated the feasibility and e�cacy of the proposed designoptimization methodology for resolving conicting design requirements. This methodologyis suitable for complex design optimization problems where:1. There is interaction between di�erent systems or analysis disciplines.2. There are multiple design criteria.3. There are multiple local optima.4. No matter whether the scalar objective function is continuous or discontinuous, thereis no need for sensitivity analysis for the system solver or the GA.5. There are multiple design variables.The limitation of the application of the methodology is that the associated computa-tional burden is heavy. However, parallel processing, for which the methodology is ideallysuited, could be used for reducing the computer time required for the optimization.Although the methodology was originally intended for the design optimization of railvehicles with passive and active suspensions, this general design methodology is also ap-plicable to the design of other complex dynamic systems, e.g. automobile systems, robots,and other mechatronic systems, with little modi�cation.



Conclusions 2059.3 Optimization Methods and AlgorithmsThe proposed hybrid method, i.e. the combination of the All-in-One and Individual Dis-cipline Feasible methods, extends the spectrum of existing multidisciplinary optimizationformulation methods. The hybrid method is especially suitable for the design problemwhere, in addition to the interaction between systems or analysis disciplines, there is alsostrong interaction between subsystems or subdisciplines within a system or discipline. Thishybrid method illustrated its e�ectiveness in resolving the conicting requirements from thelateral stability, vertical ride quality, and curving performance in the design optimizationof a rail vehicle with passive and active suspension.Based on the results from the comparative study of optimization algorithms used in railvehicle suspension design, the GA is an e�ective optimization algorithm when numericalmultibody dynamics programs, such as A'GEM, are introduced into the design optimiza-tion. In addition to its high reliability for �nding the global optimum, the other advantageof using GAs is that the algorithms can be directly combined with the included multi-body dynamics program, without the need for additional sensitivity analyses. In contrast,for traditional gradient-guided algorithms, such as SQP, whether or not the multibodydynamics program can be successfully included into the design optimization depends on�nding an e�ective link between the algorithm and the multibody dynamics program forsensitivity analyses. An e�cient and reliable procedure for computing gradients is vital tothese algorithms. Numerical experiments showed that in order to ensure the e�ectivenessof SQP, even for local optimum searching, sensitivity analysis and scaling the optimiza-tion problems concerned are necessary and important steps. When the SQP works witha numerical multibody dynamics program, if the dynamic system model is a linear modeland the objective and constraint functions are algebraic functions in terms of design vari-ables, the numerical di�erentiation technique can be used to o�er reliable gradients forSQP. Choosing an appropriate di�erence interval for speci�c design variables and usingsuitable scaling schemes for the optimization problem are important for the numericaldi�erentiation technique.When both SQP and Simplex are used for optimizing complicated numerical multibodymodels, the corresponding problems are usually highly nonlinear problems with multiplelocal optima. With the increase of the number of design variables, the reliability of these



Conclusions 206algorithms to �nd the global optimum decreases. For a simple analytical model, where theobjective function and constraint functions can be explicitly expressed in terms of designvariables and these functions are smooth, SQP outperforms Simplex and GA. In bothcomputation e�ciency and reliability for global search, Simplex is generally a compromiseoption between SQP and GA.9.4 Rail Vehicle DynamicsThe approach (using the SQP algorithm) proposed by Baumal, McPhee and Calamai[12] for automatically identifying the critical speed of rail vehicles was investigated byoptimizing the lateral stability of a rail vehicle model with 17 DOF. The author developeda novel approach by extending the existing SQP approach to include the dynamic modetracking (DMT) technique proposed by Anderson [7]. This novel approach is more reliablethan the SQP approach for identifying the critical speed. This new method converts astability problem into a dynamic mode tracking and a nonlinear programming problem byusing SQP and DMT instead of the Routh-Hurwitz criteria for this purpose for almosta century. Since the governing equations similar to those of rail vehicles are found inrotor dynamics, wind turbine dynamics, aeronautics, and road vehicle dynamics [82], theintegrated approach using multibody dynamics, SQP and DMT can also be applied tothese problems in identifying the corresponding stability limit automatically.The existence of sharply-discontinuous \cli�s" in the plots of critical speed versus sus-pension sti�ness was identi�ed and originally interpreted using a modal analysis technique.This sharp discontinuity in the critical speed occurs when the least-damped mode (eigen-vector) determining the critical speed switches. In recognition of the cli� phenomenon, thede�nition of critical speed is generalized in this thesis to make it a more practical measureof lateral stability.In the design optimization of a rail vehicle with respect to the lateral stability, curvingperformance, and vertical ride quality, the resulting EP-optimal sets clearly demonstratedthat the vertical ride quality is almost independent of both lateral stability and curvingperformance. This interesting numerical result coincides with the statement [54]: \Ithas been observed that a relatively weak coupling exists between the vertical and lateral



Conclusions 207motions of a vehicle ...".9.5 Rail Vehicle DesignNumerical results illustrated that compared with inertial and suspension (sti�ness anddamping) parameter sets, the geometric parameter set has the most signi�cant e�ect onlateral stability, curving performance, and vertical quality. By means of the GA, the sam-pling distribution of each design variable can be investigated, important design variablescan be identi�ed, and a design variable's global performance and sensitivity over its wholefeasible domain can be judged. In the design of rail vehicle curving performance, the pa-rameter study showed that the combination of angle of attack and L/V (lateral to verticalcontact forces) ratio is an e�ective curving performance design criterion. With the multi-disciplinary, multicriteria, and multimodel design approach developed in the study, a clearpicture of the trade-o� relationship between the conicting design criteria of the lateralstability and curving performance of a rail vehicle can be obtained. Numerical experimentsshowed that this design approach can be used to automate the process of selecting designvariables for improving the compatibility of the fundamental conicting design criteria.9.6 Mechatronic Vehicle SuspensionsA novel design optimization approach using the A-i-O method to mechatronic vehiclesuspensions was proposed, developed, and tested by numerical experiments. This designoptimization approach is an application of the above design optimization methodology tomechatronic vehicle suspensions. The A-i-O multidisciplinary optimization method makesthe dynamic vehicle model, the LQG controller, and the Kalman �lter a synergistic whole.The GA is utilized as an optimization solver at system level to coordinate the above coupledanalysis disciplines and �nd the optimized design variables including passive mechanicaland active control variables.Numerical results showed that:� A sequential optimization method, i.e. optimizing the passive mechanical system �rstthen, based on the optimized mechanical vehicle system, using the LQG to determine



Conclusions 208optimal controller, can not achieve the results obtained by the proposed approach.� The optimized vehicle system based on the proposed approach has better overallperformance than that derived based on the LQG in all three aspects including ridecomfort, suspension working spaces, and wheel dynamic loads.� With the co-existence of passive and active components in vehicle suspensions andthe design variables determined by using the proposed approach, the correspondingactuator forces can actively resist track disturbance much longer than the actua-tor forces based on the case where the corresponding suspensions have no passiveelements and the design variables are determined by using the LQG.The proposed design optimization approach is applicable to the design optimization ofcomplex three-dimensional ground vehicle models with active suspensions.9.7 Directions for Future ResearchTo improve the design optimization methodology (shown in the thesis) for dynamic multi-body systems, extend the applications of the methodology, and make use of the resultsobtained in the research as guidelines, several directions for future research are recom-mended.1. Implemention in Parallel Computational Environment. The current appli-cations of the design optimization methodology and the corresponding results arebased on the numerical simulations performed on the SGI workstation in the Sys-tems Modelling and Simulation Lab at the University of Waterloo. As discussedpreviously in the framework of the methodology, a GA is applied as the optimizer atthe system level. With the parallelism property of GAs, the methodology is suitablefor applications using massively-parallel computers. If the current applications areimplemented in a massively-parallel computer system, the computation time couldeasily be reduced approximately by a factor of the population size of the GA.2. Application to the Design Optimization of Road Vehicles with an Inte-grated Control System. Conventionally, for road vehicles, the anti-lock brake



Conclusions 209system (ABS) and anti-slip control (ASC+T, T means traction) system, four-wheelsteering (4WS) system, and active suspension system are controlled individually.The three systems of ABS/ASC+T, 4WS, and active suspension are based on threedi�erent directions of road vehicle dynamics, i.e. longitudinal, lateral, and vertical,respectively. Today, road vehicle dynamics is developed to a stage where researchersare trying to �nd an e�ective method to coordinate the three control systems andderive an integrated control system [3, 44, 81, 89, 98, 121, 128]. The design opti-mization methodology proposed in the thesis has already been successfully appliedto the design of rail vehicle suspensions using two lateral dynamic models (an sta-bility model and a curving model) and a vertical dynamic model. Moreover, withthe methodology, the mechanical system and control system can be optimized simul-taneously. The design optimization methodology is readily applicable to the designoptimization of road vehicles with an integrated control system.3. Development of Algorithms for Automatically Identifying Stability LimitBased on Nonlinear Analysis. Since the equations of motion of a rail vehicle arenonlinear, it seems more realistic to analyze the lateral stability of the rail vehicleusing a nonlinear dynamic model than using a linear model. A few researchers havereported their work in the areas of rail vehicle nonlinear stability in the past twodecades [55, 64, 104, 133, 134, 135]. To optimize the hunting stability automatically,the algorithms for identifying the corresponding stability limit based on nonlinearanalysis are necessary. The algorithms developed in the study are based on thelinear stability analysis, but they could likely be modi�ed to apply to the nonlinearcase.4. Application to other Stability Problems. The numerical experiments shown inthe thesis has demonstrated the feasibility and e�cacy of the algorithm using theSQP and DMT for automatically identifying the critical speed of rail vehicles. Sincethe governing equations (with an asymmetric sti�ness matrix) similar to those ofrail vehicles are found in rotor dynamics, wind turbine dynamics, aeronautics, androad vehicle dynamics [82], the algorithm can also be applied to these problems foridentifying the corresponding stability criterion automatically. Furthermore, when



Conclusions 210the algorithm is combined with a GA and a multibody dynamics software package,e.g. ADAMS, the resulting combined approach can be applied to these problems insearching the design variables for optimizing the corresponding stability.5. Variable Geometry Active Suspensions for Rail Vehicles. The numericalresults obtained in the study demonstrated that, compared with inertial and sus-pension (sti�ness and damping) parameter sets, the geometric parameter set has themost signi�cant e�ect on the lateral stability, curving performance, and vertical ridequality. For conventional rail vehicles, however, these geometric parameters are �xedonce the vehicle is designed and manufactured and they can not be changed withthe operating conditions. It seems natural to expect that by varying the relevantgeometric parameters with operating conditions, the rail vehicle may achieve betterperformance. In recent years, Sharp and Watanabe [118, 137] have done pioneerresearch on investigating variable geometry active suspension systems for passengercars and motorcycles. To control the leverage ratio between spring/damper unit andwheel for a road vehicle, Watanabe and Sharp [137] derived a control system basedon a half-vehicle model. In developing the control system, both roll and jackingresponses of the car body were considered. Simulation results showed that variablegeometry suspensions have a capacity to give very good suspension performance with-out too much additional weight and with very modest power consumption. Moreoverthe control and mechanical implementation of the variable geometry active suspen-sion system were reported to be practically feasible. These interesting results mightencourage and motivate researchers in rail vehicle dynamics to perform research onthis novel active suspension system for improving rail vehicle performance.



Appendix ARail Vehicle Dynamic SystemParameters and MatricesA.1 Wheel/Rail Contact Data for the 17 DOF ModelTable A.1 below presents the wheel/rail contact data for the 17 DOFmodel used in Chapter4. Table A.1: Wheel/rail contact data for the 17 DOF modelNormal load on a wheel, W = 5:36 � 104[N ]; Poisson's ratio (for both wheel and rail materials),Wheel rolling radius, r0 = 0:356[m]; � = 0:28;Wheel transverse radius, rw = 1:0 � 1030[m]; Young's modulus (for both wheel and rail materials),Rail transverse radius, rr = 0:356[m]; E = 2:0685 � 1011[N=m2].Longitudinal creep coe�cient, Lateral creep coe�cient,f11 = 8:6605 � 106[N ]; f22 = 7:5848 � 106[N ];Lateral/spin creep coe�cient, Spin creep coe�cient,f23 = 1:5334 � 104[N ]; f33 = 61:560[N �m2].211



Rail Vehicle Dynamic System Parameters and Matrices 212A.2 Nominal Design Variables for the 17, 20, 21, and36 DOF ModelsTable A.2 below o�ers the nominal design variables for the 17 DOF model (in Chapters 4and 7), 20 DOF model (in Chapter 5), 21 DOF model (in Chapters 6 and 7), and 36 DOFmodel (in Chapters 4 and 7).Table A.2: Nominal design variables for the 17, 21, 20, and 36 DOF models [53].(1) Inertial property parameters: Longitudinal damping, c2x = 0:0[N=m=s];Wheelset mass, Mw = 1190[kg]; Lateral sti�ness, k2y = 1:97 � 105[N=m];Wheelset yaw inertia, Iwz = 408[kg �m2]; Lateral damping, c2y = 4:27 � 104[N=m=s];Wheelset spin inertia, Iwy = 200[kg �m2]; Vertical sti�ness, k2z = 6:87 � 105[N=m];Bogie mass, Mb = 3072[kg]; Vertical damping, c2z = 4:27 � 104[N=m=s].Bogie yaw inertia, Ibz = 1622[kg �m2];Bogie roll inertia, Ibx = 1144[kg �m2]; (4) Geometric Parameters:Bogie pitch inertia, Iby = 1622[kg �m2]; Half of contact point space, a = 0:756[m];Carbody mass, Mc = 3:282 � 104[kg]; Wheel conicity, � = 0:1;Carbody yaw inertia, Icz = 1:443 � 106[kg �m2]; Half of bogie wheelbase, b = 1:042[m];Carbody roll inertia, Icx = 5:317 � 104[kg �m2]; Half of bogie space, L1 = 8:23[m];Carbody pitch inertia, Half of primary suspension space,Icy = 1:443 � 106[kg �m2]. d = 0:586[m];Half of secondary suspension space,(2) Primary Suspension Parameters: g = 0:813[m];Longitudinal sti�ness, k1x = 3:15 � 107[N=m]; Vertical distance from bogie center of massLongitudinal damping, c1x = 666[N=m=s]; to primary suspension, L3 = 0:0[m];Lateral sti�ness, k1y = 3:96 � 106[N=m]; Vertical distance from bogie center of mass toLateral damping, c1y = 5220[N=m=s]; secondary suspension, L2 = 0:305[m];Vertical sti�ness, k1z = 2:10 � 106[N=m]; Vertical distance from carbody center of massVertical damping, c1z = 9910[N=m=s]. to the original point, L5 = 1:97[m];Vertical distance from secondary suspension(3) Secondary Suspension Parameters: to the carbody center of mass, L4 = 0:815[m];Longitudinal sti�ness, k2x = 0:0[N=m]; Wheel nominal rolling radius, r0 = 0:356[m].



Rail Vehicle Dynamic System Parameters and Matrices 213A.3 Nominal Design Variables for the 20 DOF ModelTable A.3 below presents the nominal design variables for the 20 DOF model used inChapter 4. Table A.3: Nominal design variables for the 20 DOF model [136].(1) Inertial property parameters: Longitudinal damping, c2x = 0:0[N=m=s];Wheelset mass, Mw = 1000[kg]; Lateral sti�ness, k2y = 0:55 � 106[N=m];Wheelset yaw inertia, Iwz = 350[kg �m2]; Lateral damping, c2y = 1:5 � 104[N=m=s];Wheelset spin inertia, Iwy = 200[kg �m2]; Vertical sti�ness, k2z = 0:55 � 106[N=m];Bogie mass, Mb = 1200[kg]; Vertical damping, c2z = 4:0 � 104[N=m=s].Bogie yaw inertia, Ibz = 550[kg �m2];Bogie roll inertia, Ibx = 450[kg �m2]; (4) Geometric Parameters:Bogie pitch inertia, Iby = 500[kg �m2]; Half of contact point space, a = 0:756[m];Carbody mass, Mc = 1:4 � 104[kg]; Wheel conicity, � = 0:1;Carbody yaw inertia, Icz = 0:3 � 106[kg �m2]; Half of bogie wheelbase, b = 1:0[m];Carbody roll inertia, Icx = 2:2 � 104[kg �m2]; Half of bogie space, L1 = 5:0[m];Carbody pitch inertia, Half of primary suspension space,Icy = 0:25 � 106[kg �m2]. d = 0:55[m];Half of secondary suspension space,(2) Primary Suspension Parameters: g = 0:6[m];Longitudinal sti�ness, k1x = 0:9 � 106[N=m]; Vertical distance from bogie center of massLongitudinal damping, c1x = 8500[N=m=s]; to primary suspension, L3 = 0:0[m];Lateral sti�ness, k1y = 0:45 � 107[N=m]; Vertical distance from bogie center of mass toLateral damping, c1y = 11000[N=m=s]; secondary suspension, L2 = 0:25[m];Vertical sti�ness, k1z = 0:25 � 107[N=m]; Vertical distance from carbody center of massVertical damping, c1z = 8000[N=m=s]. to the original point, L5 = 1:2[m];Vertical distance from secondary suspension(3) Secondary Suspension Parameters: to the carbody center of mass, L4 = 0:85[m];Longitudinal sti�ness, k2x = 0:15 � 106[N=m]; Wheel nominal rolling radius, r0 = 0:356[m].



Rail Vehicle Dynamic System Parameters and Matrices 214A.4 The SystemMatrices for the 17 DOF Lateral Sta-bility ModelO�ered below are the mass matrix M17�17, damping matrix C17�17, and sti�ness matrixK17�17 used in Chapter 4.A.4.1 The Nonzero Elements of the Mass Matrix M17�17M1;1 = Mw, M2;2 = Iwz, M3;3 = Mb, M4;4 = Ibz, M5;5 = Ibx, M6;6 = Mw, M7;7 = Iwz,M8;8 =Mc,M9;9 = Icz,M10;10 = Icx,M11;11 =Mw,M12;12 = Iwz,M13;13 = Mb,M14;14 = Ibz,M15;15 = Ibx, M16;16 =Mw, M17;17 = Iwz.A.4.2 The Nonzero Elements of the Damping Matrix C17�17C1;1 = 2(c1y + f22=V ), C1;3 = �2c1y, C1;4 = �2bc1y, C2;2 = 2(d2c1x + a2f11=V ), C2;4 =�2d2c1x, C3;1 = �2c1y, C3;3 = 2(2c1y + c2y), C3;5 = �2L2c2y, C3;6 = �2c1y, C3;8 = �2c2y,C3;9 = �2L1c2y, C3;10 = 2L4c2y, C4;1 = �2bc1y, C4;2 = �2d2c1x, C4;4 = 4d2c1x + 4b2c1y +2g2c2x, C4;6 = 2bc1y, C4;7 = �2d2c1x, C4;9 = �2g2c2x, C5;3 = �2L2c2y, C5;5 = 4d2c1z +2g2c2z+2L22c2y, C5;8 = 2L2c2y, C5;9 = 2L1L2c2y, C5;10 = �2(g2c2z+L2L4c2y), C6;3 = �2c1y,C6;4 = 2bc1y, C6;6 = 2(c1y+f22=V ), C7;4 = �2d2c1x, C7;7 = 2(d2c1x+a2f11=V ), C8;3 = �2c2y,C8;5 = 2L2c2y, C8;8 = 4c2y, C8;10 = �4L4c2y, C8;13 = �2c2y, C8;15 = 2L2c2y, C9;3 = �2L1c2y,C9;4 = �2g2c2x, C9;5 = 2L1L2c2y, C9;9 = 4(g2c2x + L21c2y), C9;13 = 2L1c2y, C9;14 = �2g2c2x,C9;15 = �2L1L2c2y, C10;3 = 2L4c2y, C10;5 = �2(g2c2z +L2L4c2y), C10;8 = �4L4c2y, C10;10 =4(g2c2z + L24c2y), C10;13 = 2L4c2y, C10;15 = �2(g2c2z + L2L4c2y), C11;11 = 2(c1y + f22=V ),C11;13 = �2c1y, C11;14 = �2bc1y, C12;12 = 2(d2c1x + a2f11=V ), C12;14 = �2d2c1x, C13;8 =�2c2y, C13;9 = 2L1c2y, C13;10 = 2L4c2y, C13;11 = �2c1y, C13;13 = 2(2c1y + c2y), C13;15 =�2L2c2y, C13;16 = �2c1y, C14;9 = �2g2c2x, C14;11 = �2bc1y, C14;12 = �2d2c1x, C14;14 =4d2c1x+4b2c1y+2g2c2x, C14;16 = 2bc1y, C14;17 = �2d2c1x, C15;8 = 2L2c2y, C15;9 = �2L1L2c2y,C15;10 = �2(g2c2z + L2L4c2y), C15;13 = �2L2c2y, C15;15 = 4d2c1z + 2g2c2z +2L22c2y, C16;13 =�2c1y, C16;14 = 2bc1y, C16;16 = 2(c1y+f22=V ), C17;14 = �2d2c1x, C17;17 = 2(d2c1x+a2f11=V ).



Rail Vehicle Dynamic System Parameters and Matrices 215A.4.3 The Nonzero Elements of the Sti�ness Matrix K17�17K1;1 = 2k1y , K1;2 = �2f22, K1;3 = �2k1y, K1;4 = �2bk1y, K2;1 = 2�af11=r0, K2;2 =2(d2k1x,K2;4 = �2d2k1x,K3;1 = �2k1y,K3;3 = 2(2k1y+k2y), k3;5 = �2L2k2y,K3;6 = �2k1y,K3;8 = �2k2y, K3;9 = �2L1k2y, K3;10 = 2L4k2y, K4;1 = �2bk1y, K4;2 = �2d2k1x, K4;4 =4d2k1x + 4b2k1y + 2g2k2x, K4;6 = 2bk1y, K4;7 = �2d2k1x, K4;9 = �2g2k2x, K5;3 = �2L2k2y,K5;5 = 4d2k1z + 2g2k2z + 2L22k2y, K5;8 = 2L2k2y, K5;9 = 2L1L2k2y, K5;10 = �2(g2k2z +L2L4k2y), K6;3 = �2k1y, K6;4 = 2bk1y, K6;6 = 2k1y, K6;7 = �2f22, K7;4 = �2d2k1x, K7;6 =2�af11=r0, K7;7 = 2d2k1x, K8;3 = �2k2y, K8;5 = 2L2k2y, K8;8 = 4k2y, K8;10 = �4L4k2y,K8;13 = �2k2y, K8;15 = 2L2k2y, K9;3 = �2L1k2y, K9;4 = �2g2k2x, K9;5 = 2L1L2k2y,K9;9 = 4(g2k2x + L21k2y), K9;13 = 2L1k2y, K9;14 = �2g2k2x, K9;15 = �2L1L2k2y, K10;3 =2L4k2y, K10;5 = �2(g2k2z+L2L4k2y), K10;8 = �4L4k2y, K10;10 = 4(g2k2z+L24k2y), K10;13 =2L4k2y, K10;15 = �2(g2k2z + L2L4k2y), K11;11 = 2k1y, K11;13 = �2k1y, K11;14 = �2bk1y,K12;11 = 2�af11=r0, K12;12 = 2d2k1x, K12;14 = �2d2k1x, K13;8 = �2k2y, K13;9 = 2L1k2y,K13;10 = 2L4k2y, K13;11 = �2k1y, K13;13 = 2(2k1y+k2y), K13;15 = �2L2k2y, K13;16 = �2k1y,K14;9 = �2g2k2x, K14;11 = �2bk1y, K14;12 = �2d2k1x, K14;14 = 4d2k1x + 4b2k1y + 2g2k2x,K14;16 = 2bk1y, K14;17 = �2d2k1x, K15;8 = 2L2k2y, K15;9 = �2L1L2k2y, K15;10 = �2(g2k2z+L2L4k2y), K15;13 = �2L2k2y, K15;15 = 4d2k1z + 2g2k2z + 2L22k2y, K16;13 = �2k1y, K16;14 =2bk1y, K16;16 = 2k1y, K17;14 = �2d2k1x, K17;16 = 2�af11=r0, K17;17 = 2d2k1x.



Appendix BVehicle Dynamic System Parametersand MatricesB.1 Half-Vehicle Model System Parameters Used inChapter 8The vehicle system parameters for the half-vehicle models with rigid vehicle body andexible vehicle body are shown in the following tables.Table B.1: Nominal vehicle system parameters for the half-vehicle model with rigid vehiclebody [131].Inertial property Geometric Primary suspension Secondary suspensionparameters: parameters: parameters: parameters:M = 505:1[kg] l = 2:5654[m] k3 = 155:9[kN=m] k1 = 19:96[kN=m]m1 = 28:58[kg] b1 = 2:5654[m] c3 = 0:0[N=m=s] c1 = 2014:0[kN=m=s]m2 = 54:43[kg] b2 = 0:0[m] k4 = 155:9[kN=m] k2 = 22:59[kN=m]Ic = 651:0[kg�m2] a1 = 1:0978[m] c4 = 0:0[N=m=s] c2 = 2082:0[kN=m=s]a2 = 1:4676[m] 216



Vehicle Dynamic System Parameters and Matrices 217Table B.2: Nominal vehicle system parameters for the half-vehicle model with exiblevehicle body [60].Inertial property Geometric Primary suspension Secondary suspensionparameters; parameters; parameters: parameters:M = 104[kg] l = 12:0[m] k3 = 2000:0[kN=m] k1 = 200:0[kN=m]m1 = 103[kg] b1 = 2:0[m] c3 = 0:0[N=m=s] c1 = 20[kN=m=s]m2 = 103[kg] b2 = 2:0[m] k4 = 2000:0[kN=m] k2 = 200:0[kN=m]Ic = 1:2� 105[kg �m2] a1 = 4:0[m] c4 = 0:0[N=m=s] c2 = 20:0[kN=m=s]EI = 108[N �m2] a2 = 4:0[m]�A = 834:0[kg=m]B.2 Half-VehicleModel Dynamic SystemMatrices Usedin Chapter 8B.2.1 Rigid Vehicle Body CaseA = 266666666666664 0 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1�k1+k3m1 k1m1 0 0 � c1+c3m1 c1m1 0 0k1M11IcM �k1M11IcM �k2M12IcM k2M12IcM c1M11IcM �c1M11IcM �c2M12IcM c2M12IcM0 0 �k2+k4m2 k2m2 0 0 � c2+c4m2 c2m2�k1M12IcM k1M12IcM k2M22IcM �k2M22IcM �c1M12IcM c1M12IcM c2M22IcM �c2M22IcM
377777777777775 (B.1)where M11 = a21M + Ic, M12 = a1a2M � Ic, M22 = a22M + Ic.B = " 0 0 0 0 �1=m1 1=M + a21=Ic 0 1=M � a1a2=Ic0 0 0 0 0 1=M � a1a2=Ic �1=m2 1=M + a22=Ic #T (B.2)D = " �1 �1 0 0 c3=m1 0 0 00 0 �1 �1 0 0 c4=m2 0 #T (B.3)



Vehicle Dynamic System Parameters and Matrices 218C = 26664 1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 0 37775 (B.4)B.2.2 Flexible Vehicle Body CaseFor convenience, it is assumed that the matrix A is divided into two sub-matrices A1 andA2 as follows A = h A1 A2 i (B.5)where sub-matrices A1 and A2 can be further expressed as:
A1 =

266666666666666666666666666664
0 0 A1;3 A1;4 0 A1;6 00 0 A2;3 A2;4 0 0 0A3;1 A3;2 A3;3 A3;4 0 A3;6 0A4;1 A4;2 A4;3 A4;4 0 A4;6 00 0 0 0 0 A5;6 0A6;1 0 A6;3 A6;4 A6;5 A6;6 00 0 0 0 0 0 00 A8;2 A8;3 A8;4 0 0 A8;70 0 0 0 0 0 0A10;1 A10;2 A10;3 A10;4 0 A10;6 00 0 0 0 0 0 0A12;1 A12;2 A12;3 A12;4 0 A12;6 00 0 0 0 0 0 0A14;1 A14;2 A14;3 A14;4 0 A14;6 0

377777777777777777777777777775 (B.6)
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A2 =

266666666666666666666666666664
0 0 A1;10 0 A1;12 0 A1;14A2;8 0 A2;10 0 A2;12 0 A2;14A3;8 0 A3;10 0 A3;12 0 A3;14A4;8 0 A4;10 0 A4;12 0 A4;140 0 0 0 0 0 00 0 A6;10 0 A6;12 0 A6;14A7;8 0 0 0 0 0 0A8;8 0 A8;10 0 A8;12 0 A8;140 0 A9;10 0 0 0 0A10;8 A10;9 A10;10 0 A10;12 0 A10;140 0 0 0 A11;12 0 0A12;8 0 A12;10 A12;11 A12;12 0 A12;140 0 0 0 0 0 A13;14A14;8 0 A14;10 0 A14;12 A14;13 A14;14

377777777777777777777777777775 (B.7)
where the elements of matrices A1 and A2 are given as: A1;3 = 1; A1;4 = a1; A1;6 =�1; A1;10 = Z1(b1); A1;12 = Z2(b1), A1;14 = Z3(b1); A2;3 = 1; A2;4 = �a2; A2;8 =�1; A2;10 = Z1(b2), A2;12 = Z2(b2); A2;14 = Z3(b2); A3;1 = �k1=M; A3;2 = �k2=M ,A3;3 = �(c1 + c2)=M; A3;4 = �(a1c1 � a2c2)=M; A3;6 = c1=M , A3;8 = c2=M; A3;10 =�(c1Z1(b1) + c2Z1(b2))=M , A3;12 = �(c1Z2(b1) + c2Z2(b2))=M , A3;14 = �(c1Z3(b1) +c2Z3(b2))=M; A4;1 = �a1k1=Ic, A4;2 = a2k2=Ic; A4;3 = �(a1c1 � a2c2)=Ic, A4;4 = �(a21c1 +a22c2)=Ic, A4;6 = a1c1=Ic; A4;8 = �a2c2=Ic, A4;10 = �(a1c1Z1(b1) � a2c2Z1(b2))=Ic, A4;12 =�(a1c1Z2(b1) � a2c2Z2(b2))=Ic, A4;14 = �(a1c1Z3(b1) � a2c2Z3(b2))=Ic, A5;6 = 1; A6;1 =k1=m1; A6;3 = c1=m1, A6;4 = a1c1=m1; A6;5 = �k3=m1, A6;6 = �(c1 + c3)=m1; A6;10 =c1Z1(b1)=m1, A6;12 = c1Z2(b1)=m1; A6;14 = c1Z3(b1)=m1; A7;8 = 1; A8;2 = k2=m2; A8;3 =c2=m2; A8;4 = �a2c2=m2, A8;7 = �k4=m2; A8;8 = �(c2 + c4)=m2; A8;10 = c2Z1(b2)=m2,A8;12 = c2Z2(b2)=m2, A8;14 = c2Z3(b2)=m2; A9;10 = 1, A10;1 = �k1Z1(b1)=M1, A10;2 =�k2Z1(b2)=M1, A10;3 = �(c1Z1(b1)+c2Z1(b2))=M1, A10;4 = �(a1c1Z1(b1)�a2c2Z1(b2))=M1,A10;6 = c1Z1(b1)=M1, A10;8 = c2Z1(b2)=M1, A10;9 = �1=M1, A10;10 = �(#1 + c1Z21 (b1) +c2Z21 (b2))=M1,A10;12 = �(c1Z1(b1)Z2(b1)+c2Z1(b2)Z2(b2))=M1,A10;14 = �(c1Z1(b1)Z3(b1)+c2Z1(b2)Z3(b2))=M1, A11;12 = 1, A12;1 = �k1Z2(b1)=M2, A12;2 = �k2Z2(b2)=M2, A12;3 =



Vehicle Dynamic System Parameters and Matrices 220�(c1Z2(b1) + c2Z2(b2))=M2, A12;4 = �(a1c1Z2(b1) � a2c2Z2(b2))=M2, A12;6 = c1Z2(b1)=M2,A12;8 = c2Z2(b2)=M2, A12;10 = �(c1Z1(b1)Z2(b1) + c2Z1(b2)Z2(b2))=M2, A12;11 = �2=M2,A12;12 = �(#2+c1Z22(b1)+c2Z22 (b2))=M2, A12;14 = �(c1Z2(b1)Z3(b1)+c2Z2(b2)Z3(b2))=M2,A13;14 = 1, A14;1 = �k1Z3(b1)=M3,A14;2 = �k2Z3(b2)=M3, A14;3 = �(c1Z3(b1)+c2Z3(b2))=M3,A14;4 = �(a1c1Z3(b1)�a2c2Z3(b2))=M3, A14;6 = c1Z3(b1)=M3, A14;8 = c2Z3(b2)=M3, A14;10 =�(c1Z1(b1)Z3(b1) + c2Z1(b2)Z3(b2))=M3, A14;12 = �(c1Z2(b1)Z3(b1) + c2Z2(b2)Z3(b2))=M3,A14;13 = �3=M3, A14;14 = �(#3 + c1Z23 (b1) + c2Z23 (b2))=M3.Again it is assumed that the matrix B takes the following formatB = h B1 B2 iT (B.8)where the matrices B1 and B2 are expressed as follows8>>>><>>>>: B1 = " 0 0 1=M a1=Ic 0 �1=m1 00 0 1=M �a2=Ic 0 0 0 #B2 = " 0 0 Z1(b1)=M1 0 Z2(b1)=M2 0 Z3(b1)=M3�1=m2 0 Z1(b2)=M1 0 Z2(b2)=M2 0 Z3(b2)=M3 # (B.9)The disturbance matrices D1 and D2 are of the following formsD1 = " 0 0 0 0 0 k3=m1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 k4=m2 0 0 0 0 0 0 # (B.10)D2 = " 0 0 0 0 0 c3=m1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 c4=m2 0 0 0 0 0 0 # (B.11)Once 4 velocities are measured, the output matrix Ca takes the following formCa = 26664 0 0 C1;3 C1;4 0 0 0 0 0 C1;10 0 C1;12 0 C1;14 0 00 0 C2;3 C2;4 0 0 0 0 0 C2;10 0 C2;12 0 C2;14 0 00 0 0 0 0 C3;6 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 C4;8 0 0 0 0 0 0 0 0 37775 (B.12)where C1;3 = 1, C1;4 = �(a2 + b2), C1;10 = Z1(0), C1;12 = Z2(0), C1;14 = Z3(0), C2;3 = 1,C2;4 = l � a2 � b2, C2;10 = Z1(l), C2;12 = Z2(l), C2;14 = Z3(l), C3;6 = 1, C4;8 = 1.



Vehicle Dynamic System Parameters and Matrices 221However, if 5 velocities are measured, the output matrix Ca is o�ered as followsCa = 26666664 0 0 C1;3 C1;4 0 0 0 0 0 C1;10 0 C1;12 0 C1;14 0 00 0 C2;3 0 0 0 0 0 0 C2;10 0 C2;12 0 C2;14 0 00 0 C3;3 C3;4 0 0 0 0 0 C3;10 0 C3;12 0 C3;14 0 00 0 0 0 0 C4;6 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 C5;8 0 0 0 0 0 0 0 0 37777775 (B.13)where C1;3 = 1, C1;4 = �(a2 + b2), C1;10 = Z1(0), C1;12 = Z2(0), C1;14 = Z3(0), C2;3 = 1,C2;10 = Z1(a2 + b2), C2;12 = Z2(a2 + b2), C2;14 = Z3(a2 + b2), C3;3 = 1, C3;4 = l � a2 � b2,C3;10 = Z1(l), C3;12 = Z2(l), C3;14 = Z3(l), C4;6 = 1, C5;8 = 1.B.3 Weighting Matrices G, H, and N for Equation(8.51) G = 26664 G1;1 G1;2 G1;3 G1;4G2;1 G2;2 G2;3 G2;4G3;1 G3;2 G3;3 G3;4G4;1 G4;2 G4;3 G4;4 37775 (B.14)where G1;1 = �1�2k22 + �2k22=m22 + �3 + �4, G1;2 = G2;1 = (�2�1�2k22 � 2�2k22=m22 � 2�4)=2,G1;3 = G3;1 = (2�1�2c2k2 + 2�2c2k2=m22)=2, G1;4 = G4;1 = (�2�1�2c2k2 � 2�2c2k2=m22)=2,G2;2 = �2k22=m22 + �1�2k22 + �4, G2;3 = G3;2 = (�2�1�2c2k2 � 2�2c2k2=m22)=2, G2;4 =G4;2 = (2�1�2c2k2 + 2�2c2k2=m22)=2, G3;3 = �2c22=m22 + �1�2c22, G3;4 = G4;3 = (�2�1�2c22 �2�2c22=m22)=2, G4;4 = �2c22=m22 + �1�2c22.H = �2=m22 + �1 (B.15)NT = h N1;1 N2;1 N3;1 N4;1 i (B.16)where N1;1 = (2�1�k2 + 2�2k2=m22)=2, N2;1 = (�2�1�k2 � 2�2k2=m22)=2, N3;1 = (2�1�c2 +2�2c2=m22)=2, N4;1 = (�2�1�c2 � 2�2c2=m22)=2.



Vehicle Dynamic System Parameters and Matrices 222B.4 Weighting Matrices G, H, and N for Equation(8.54) G = 26666664 G1;1 G1;2 G1;3 G1;4 G1;5G2;1 G2;2 G2;3 G2;4 G2;5G3;1 G3;2 G3;3 G3;4 G3;5G4;1 G4;2 G4;3 G4;4 G4;5G5;1 G5;2 G5;3 G5;4 G5;5 37777775 (B.17)where G1;5 = ��3, G2;5 = 0, G3;5 = 0, G4;5 = 0, G5;5 = �3. The other elements of thematrix are the same as the corresponding elements of the matrix shown in (B.14).H = �2=m22 + �1 (B.18)NT = h N1;1 N2;1 N3;1 N4;1 N5;1 i (B.19)where N5;1 = 0 and the other elements of the matrix are the same as the correspondingelements of the matrix shown in (B.16).B.5 Weighting Matrices G, H, and N for Equation(8.55)G = 266666666666664 G1;1 G1;2 G1;3 G1;4 G1;5 G1;6 G1;7 G1;8G2;1 G2;2 G2;3 G2;4 G2;5 G2;6 G2;7 G2;8G3;1 G3;2 G3;3 G3;4 G3;5 G3;6 G3;7 G3;8G4;1 G4;2 G4;3 G4;4 G4;5 G4;6 G4;7 G4;8G5;1 G5;2 G5;3 G5;4 G5;5 G5;6 G5;7 G5;8G6;1 G6;2 G6;3 G6;4 G6;5 G6;6 G6;7 G6;8G7;1 G7;2 G7;3 G7;4 G7;5 G7;6 G7;7 G7;8G8;1 G8;2 G8;3 G8;4 G8;5 G8;6 G8;7 G8;8
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