Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 143

lateral stability and curving performance, while vertical ride quality is independent of both
of these criteria. To get a full picture of the EP-optimal set, several sets of weighting factors
and corresponding optimizations are needed. The associated computational burden can
be significantly reduced using parallel processing, for which the hybrid MDO method is
ideally suited.



Chapter 8

Multidisciplinary Optimization of
Combined Mechanical and Control

Systems

8.1 Introduction

The purpose of this chapter is to show an extension to the research reported earlier in our
paper [67] using the A-i-O multidisciplinary optimization method combining the A’GEM
multibody dynamics package, the GA, LQG, and Kalman filter algorithms. To verify the
efficacy of the integrated approach, it is used to resolve the conflicting requirements for
ride comfort, suspension working spaces, and dynamic wheel loads in the optimization of
quarter-vehicle models and half-vehicle models with active suspensions. Both deterministic
and random track excitations are considered for both rigid and flexible vehicle body (for
the half-vehicle models only) cases.

The integrated approach is implemented in a GA-A’GEM-MATLAB simulation envi-
ronment in such a way that the linear mechanical vehicle models are generated in A’GEM,
the controllers and Kalman filters are modelled in MATLAB, then the coupled mechanical
and control subsystems are optimized simultaneously using the GA.

In the following sections, first, the vehicle and track models are described; second,

the LQG and Kalman Filter algorithms are recalled briefly; third, the A-i-O method and
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its implementation are outlined; finally, the numerical simulation results for the linear
quarter-vehicle models and half-vehicle models are reported and discussed. For simplicity,
in the following sections, we use the term ‘A-1-O method’ instead of the term ‘integrated
approach’ to represent the A-i-O method combining the A’GEM package, the GA, LQG,

and Kalman filter algorithms.

8.2 Vehicle and Track Models

8.2.1 Track Models

In vertical ride quality analyses for ground vehicles, the track profiles (excitations) are often
modelled as displacement spectral density functions with the characteristics of filtered white

noise or integrated white noise [61], as discussed below.

Integrated White Noise Track Excitation

The power spectral density (PSD) of an integrated white noise track displacement excita-

tion can be taken from the approximate formula [129, 131]
Sw(w) = a;V/w? (8.1)

where w is a temporal angular frequency, a; 1s a track roughness constant, and V is the
vehicle velocity.

For a linear vehicle system, given that y,(¢) is the output for the random excitation
and y,(t) is the corresponding output for a unit step input, the mean-square value of y,(t)

is related to the integrated-squared value of y,(t) as follows:

Bl () = aV / 2y (3.2)

where E[-] denotes the expectation or average. Equation (8.2) is useful for computing the
mean-square value of any output due to an integrated white noise input, since it is much
simpler to generate a unit step function than a continuous random signal for the input.
Moreover, based on equation (8.2), if a vehicle system is optimized for a unit step input, it
will also be optimal for the corresponding integrated white noise track excitation as offered

by equation (8.1) [129, 131].
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Filtered White Noise Track Excitation

The PSD of a filtered white noise track displacement excitation can be formulated as

159, 60, 73]
Sw(w) = (0¢/T)a:V/(w? + alV?) (8.3)

where oy is the variance of track irregularities. The process vector w with the PSD (8.3)

can be generated from the pure white noise precess vector ¢ using a shaping filter of the

form
w=F,w+ D,¢ (8.4)
where
T
W = |:’w1 Wy ... Wp
T
£= [51 £ . fn] (8.5)
Fw = _a'tVIan
Dw = Inxn
and Iy, is identity matrix of dimension n X n, &1, ¢&s, ..., &, are zero mean white noise
processes, and wy, ws, ..., w, are the corresponding track inputs with the PSD described by

equation (8.3).

For simplicity, we assume that there are only 2 inputs, i.e. w; and ws, and the track
inputs to a vehicle traveling at a constant speed, V', and separated by a fixed length, [, are
related by

{ wy(t) = wy(t + D) (8.6)

D=1V

Accordingly we have the relation between ¢; and ¢ as follows:

&i(t) =&(t+ D) (8.7)
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T
Therefore, the Gaussian white noise process vector £(t), i.e. [ &(t) &(t) ] , has the
covariance matrix taking the form as
It —7) dt—7+ D)
d(t—7—D) It —7)

EE(t)ET(1)] = Qo !
QO = 20va;V

(8.8)

where §(-) stands for the Dirac d function. If the correlation between &; and ¢, is neglected,

the covariance matrix can be rewritten as

{ E[¢(t)ET(1)] = Qo(t — 7) (8.9)
Q = 20:a:VIaxo |

8.2.2 Quarter-Vehicle (2 DOF) Model

The linear 2 DOF vehicle model to be optimized with passive and active suspension com-
ponents is shown in Figure 8.1. In the model, the sprung mass and unsprung mass are
represented by rigid bodies of masses ms, and m; that are permitted to move in the vertical
direction. The motions of masses ms and m; are described by the independent general-
ized coordinates x5 and x;, respectively. These coordinates are measured from the static
equilibrium position. The coordinate w denotes track displacement irregularities in the
vertical direction. In the secondary suspension, the passive spring and damping elements
are modelled as a linear spring and a linear damper with stiffness and damping coefficients
of ks and cs, respectively. In the primary suspension, the spring and damping elements are
modelled as a linear spring and linear damper with the stiffness and damping coefficients
of k; and ¢;, respectively. The actuator force, u, is the control variable that acts indepen-
dently of the forces in the passive elements. It is assumed that the wheel follows the track
exactly at all times.

The 2 DOF vehicle model shown in Figure 8.1 is optimized in two different cases: the
deterministic track excitation case, i.e. a unit step input corresponding to the integrated
white noise track excitation, and the random track excitation case, i.e. the filtered white
noise track excitation. To compare the simulation results from the research with published
results, for the deterministic track excitation case, the nominal parameter values denoted

as parameter set 1 shown in Figure 8.1 are based on those used by Thompson [129].
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X 5 Parameter Set 1:
Sprung mass m - mlzgggg Hzg%:
m, =288.9 [kg];
k, =155900 [N/m]
¢, =0.0 [N/m/s];

Cz L tu k,=19960 [N/m];
K, \:ﬂ Aetuator c.=1861 [N/m/s].

Parameter Set 2:

Ty u m, =100 [kg];
X1 m ,=500 [kg];
Unsprung mass p!J k; =200000 [N/m]
¢, =0.0 [N/m/s];

k,=5000 [N/m];
€,=1000 [N/m/s].

Random Track
Characteristics :
a,=0.45 [1/m];
0:t=9.0E-6 [1/nT ]

Figure 8.1: 2 DOF quarter-vehicle models

For the filtered white noise track excitation case, the nominal parameter values denoted
as parameter set 2 together with the random track characteristics parameters shown in
Figure 8.1 are based on those used by Hac [59]. Note that the primary suspension damping
coefficient, ¢;, takes the value of zero in both cases.

For the two track excitation cases, the governing equations of motion of the vehicle

model are described separately in the following subsections.

Deterministic Track Excitation Case

The state variable vector x is assumed to take the following form:

T
X:|:£B1—’w Ty — W Zi?l ZBQ] (810)
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Thus, the governing equations of motion of the 2 DOF model can be written in state space

form as

x = Ax + Bu + D
{x X+ Bu+ Dw (8.11)

y =Cx

where u is the actuator force vector of dimension 1 x 1, w is the track velocity excitation
vector of dimension 1 x 1, y is the output vector of dimension 2 x 1, A, B, C, and D are
the system matrix, control matrix, output matrix, and disturbance matrix, respectively,

which are as follows:

0 0 1 0
0 0 0 1
A= _ kitks ko _c1ter c2
S P
r T
B=|00 —- mi] (8.12)
[ 1
c_ 00 0
010 0
r T
D=[-1 -1 = 0]

Random Track Excitation Case
Assume that the state variable vector x is as follows:
T
X = [ 1 &9 Zi?l £i32 ] (813)
Then the governing equations of the 2 DOF vehicle model can be written as
x=Ax+Bu+D;w+D,w (8.14)

where w, w, and u are the track displacement excitation vector, track velocity excitation

vector, and actuator force vector. All these vectors have dimension of 1 x 1. The matrices
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A and B are the same as those offered in equation set (8.12). The matrices D; and D,

take the forms

(8.15)
T
D;=[00 2 0]
If the augmented state vector x, takes the form
T
Xa = [ xT wT ] (8.16)

then based on equations (8.4), (8.13), (8.16), and (8.14), we have the augmented state

space equations

.a - Aa a Ba Da
{ X ¥a+ Bou + Daf (8.17)
Yo = Caxa
where the matrices A,, B,, and D, are given as
A D D.F,
A, = 1+ Do
01><4 Fw
(8.18)

T
Ba: [ BT lel]

T
D, = [ DID DI |

where both F,, and D,, are of dimension 1 x 1 and can be calculated based on equation
set (8.5).

It 1s assumed that either all the state variables are available or just the sprung mass
and unsprung mass velocities are available. Therefore, the output matrix C, takes the

form of Isy5 or

00100
C, = (8.19)
00010

correspondingly.
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x(L, 1) } |

Figure 8.2: Half-vehicle models

8.2.3 Half-Vehicle Models

In the analytical design of active vehicle suspensions, researchers usually use lumped vehicle
models [96, 130, 131]. This approach is justified for compact vehicles like cars. However,
for vehicles with a long wheelbase like rail vehicles and truck-trailers, because of the large
deflections of the vehicle body, researchers often introduce an elastic element into the
vehicle model [47, 52, 60]. Thus, in the thesis, the half-vehicle models both with and
without vehicle body flexibility are taken into account.

Shown in Figure 8.2 are the half-vehicle models with the rigid vehicle body represented
by solid lines and the flexible vehicle body represented by curved dashed lines, respectively.
The vehicle is considered to have a longitudinal central plane of symmetry, so that M is

half the body mass and I. is half the pitch moment of inertia about the center of gravity
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of the vehicle body. For the rigid vehicle body, the motions considered are the body heave
(z5) and pitch () (measured from the static equilibrium position of the center of the
vehicle body). In addition to the rigid vehicle body modes, for the flexible vehicle body
case, the body structure is described by its first 3 bending modes. The natural frequencies
and approximating functions of mode shapes are based on those used by Hac [60]. Thus,
the flexible vehicle body is approximately modeled as a beam of stiffness EI, body cross
section area A, and mass density p. The front and rear unsprung masses are represented
by rigid bodies of masses m; and ms; they have a vertical DOF represented by z; and 3.
The actuator forces u; and us are assumed to be applied between the unsprung masses
and the vehicle body, at point A and B respectively. In the secondary suspensions, ki,
ko, c1, and ¢y represent stiffness and damping ratios of passive front and rear elements; in
the primary suspensions, ks, k4, c3, and ¢4 denote stiffness and damping ratios of passive
front and rear elements. In motion, the front and rear primary suspensions are submitted
respectively to the track displacement excitations w; and ws,.

The nominal vehicle system parameters are listed in Tables B.1 and B.2 in Appendix B
for both the half-vehicle models with rigid vehicle body and with the flexible vehicle body,
respectively.

In the following subsections, the governing equations of motion for the half-vehicle
model with rigid vehicle body are provided, then those for the half-vehicle model with

flexible vehicle body are shown.

Rigid Vehicle Body Case

The dynamic equations of motion for the controlled vehicle model can be written in the
same form as equation set (8.11). However, the state variable vector x, actuator force

vector u, and track velocity excitation vector w are as follows
T
X:|:£B1—’w1 Lo — W1 T3 — We T4 — Wo Zi?l £i32 £i33 $4]
T
u= [ul - ] (8.20)
) T
W = [ ’lbl ’lb2 ]
The system matrix A, control matrix B, disturbance matrix D, and output matrix C are

provided in Appendix B.
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Flexible Vehicle Body Case

Once the vehicle body flexibility is comsidered, in addition to the rigid body motions
described in the last subsection, the bending modes are included. As shown in Figure 8.2,
the flexible deformation of the vehicle body beam can be described by #(L,t), where L
represents the distance along the beam and ¢ stands for the time [52, 60, 99]. At a certain

natural frequency w;, the deformation can be expressed as
z;(L,t) = Z;(L)®;(t) (8.21)

where ®;(t) is a function of ¢ alone and Z;(L) is an eigenfunction, which describes the mode
shape of the beam at the frequency w;. Because the beam’s mass is distributed, the elastic
body has an infinite number of vibration modes; its dynamic response may be calculated as
the sum of principal mode contributions. Since the system is linear, the total deformation

of the vehicle body beam is the superposition of the principal modes, that is,
B(L,t) =) Z(L)®i(t) (8.22)
=1

Based on equation (8.22) and the partial differential equations of the vehicle body beam,

using the orthogonal properties of principal modes, we can obtain the following equation
M;®;i(t) + 97:0i(t) + 1 ®i(t) = faZi(b) + FBZ:(bs) (8.23)

where ¢ is a damping coefficient, M; and ~; are the modal mass and modal stiffness coef-

ficient, which can be further described as

{ M; = [ pAZA(L)dL

8.24
i (8.24)

where pA is mass per unit length, and w; is the i** mode frequency of the vehicle body
beam. In equation (8.23), fa and fp are suspension forces applied at points A and B,

respectively. They can be formulated as

(8.25)

fB = —ko(®s — 23) — ca(&4 — 3) + us

{ fa=—ki(xe— @) — c1(d2 — 1) + ug
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where x5 and x4 are the total displacements including the contributions from both rigid
and flexible vehicle body modes. The displacement of the vehicle body at a point, which

is measured from the left end to a distance L, can be formulated as

p(L,t) = a5+ (L — as — ba)p + > Zi(L)®i(t) (8.26)
i=1

In the following description, the first three bending modes of the flexible vehicle beam

are considered, but more can be incorporated into the model by adding more DOF to the

flexibility equations. Combining the rigid body motions and the flexible beam motions,

the model corresponding to the vehicle body will consider the two rigid body modes (pitch

and heave modes) and the first three bending modes. These five mode shapes are shown
in Figure 8.3.

By assembling the rigid half-vehicle model with the flexible vehicle body beam model,

1.5
—=— 1st flexible mode;
—e— 2nd flexible mode;
—— 3rd flexible mode;
— rigid pitch mode;
1% — —1 — — rigid heave mode. |- ———'——— —— —————— —— — —— — —
0.5r
o
-
X
)
N
O [
-0.5F
-1 | | | | |
0 2 4 6 8 10 12

Figure 8.3: The lowest spatial modes of the vehicle body beam, including the two rigid
body modes and the three flexible body modes
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we obtain the system state equation in matrix form as shown in equation (8.14), where
the state variable vector x, actuator force vector u, track displacement excitation vector

w, and track velocity excitation vector w are described as follows

. . . T

X = |:£B2—£B1 Lg — I3 ii?5 SO L1 Zi?l L3 ii?3 q)l q)l @2 @2 @3 @3]
T
11:|:’U,1 UQ]

T
W:[wl w2]

W= [ Wy i ]T
(8.27)

and matrices A, B, D, and D, of dimensions 14 x 14, 14 x 2, 14 x 2, and 14 x 2, respectively,
are offered in Appendix B.

Similar to the quarter-vehicle case, if the augmented state vector x, i1s as follows
T
Xa = [ xT wT ] (8.28)

then we can also obtain the augmented state space equations in matrix form as shown in
equation set (8.17). The matrices A,, B,, and D, are defined as

[ A D,+D,F,
A, — 1+ Do
| 02)(14 Fw

Ba — [ BT 02)<2 ]T (8‘29)

r T
D,= | DID! DI ]

where both F,, and D,, are of dimension 2 x 2 and they can be obtained from equation set
(8.5).

Since the velocities of the front and rear unsprung masses and two points (the left end
and right end) or three points (the left end, right end, and middle point) on the vehicle
body are assumed to be measured, the output matrix C, has the dimension of 4 x 16 or

5 x 16 accordingly. The corresponding output matrix is shown in Appendix B.
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8.3 LQG and Kalman Filter Algorithms

In this section, the LQG control algorithm [24, 47, 59, 61, 73, 101, 129] is introduced, then
the Kalman filter algorithm [24, 47, 60, 61, 101] is recalled. In this thesis, the “separation
principle” [101] is adopted in the development of the LQG controller and Kalman estimator.
First, the optimal controller is designed as if full state feedback is available. Second, the

optimal estimator is designed to provide the full state estimation.

8.3.1 LQG Control Strategy

The LQG control strategy can be described as an optimization problem: minimize the

following objective function or performance index

i3] e

subject to
X, = A;x+B,u+ D¢ (8.31)

where x, is the state variable vector including system states and input states, u is the
actuator force vector, and ¢ is the disturbance vector assumed to be white noise processes.
As described previously in the chapter, these white noise processes have zero mean and the
covariance matrix, for two input cases, is determined by equation sets (8.8) or (8.9). G, N,
and H are weighting matrices. A,, B,, and D, are the system, control, and disturbance
matrices, respectively. For the linear time invariant system, A,, B,, D,, G, N, and H are
all constant matrices with proper dimensions.

It is assumed that all uncontrollable modes are stable. Thus, the solution of the opti-

mization problem is the control force vector with the following form:
u=-Kx, (8.32)

where K is the control gain matrix which is determined by

07

=0 (8.33)
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From equation (8.33), the gain matrix K can be obtained as
K = H (N + BTS) (8.34)
where the symmetric and positive-definite matrix S is a solution of the Riccati equation:
SA,+ATS+G - (SB,+ N)H *(SB, + N)T =0 (8.35)
The covariance matrix X of the state variable vector x is obtained from:
X = E[xx"] (8.36)

where the covariance matrix X is a function of the autocorrelation of vector £. For example,

if there are only 2 track inputs, X is determined by the Lyapunov equation
(A, -B,K)X+X(A, -B,K)"+Q,=0 (8.37)

where the matrix Q; is determined by whether there is a time delay between the two inputs

or not. The matrix Q; can be calculated by

Q, = { D,QDT without time delay (8.38)

D.QDT + Qy(D,..DL,OT(D) + O(D)D,;DZL,) with time delay

where the matrix Q, the constant (o, and the time delay D are given by equation sets (8.9),
(8.8), and (8.6), respectively, and ©(D) is the system transition matrix that is defined as

O(D) £ exp(A, - D) (8.39)
D,; and D,, are the two columns of D,, i.e.,
D, = [ D.. D. ] (8.40)
Finally, we have the resulting performance index as
Jopt = trace(SQy) (8.41)

It should be noted that if the state vector x, includes input states, the system considered
is not completely controllable. This is because, as shown in equation (8.16), the track input
vector w can not be changed by applying a control force. In this case, the Riccati equation
(8.35) and the Lyapunov equation (8.37) can be solved numerically after dividing the
corresponding unknown matrix S and state covariance matrix X into four submatrices,
respectively. This method has been offered in detail by Hac [59].
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8.3.2 Kalman Filter Algorithm

This approach assumes that the measurements are corrupted by noise and the measurement
equation can be formulated by modifying the output equation from equation set (8.17) as

follows:
Vo = CoXy +v (8.42)

where, as mentioned previously, y, is the output vector, C, is the output matrix or the
state-to-measurement transformation matrix, and x, is the state variable vector including
system states and input states. v is assumed to be Gaussian white noise process vector

with zero mean and covariance matrix R described by

Ev(t) =0
{ Elv(t)v(r)] =R4(t —7) (8.43)

where R is a positive definite matrix with proper dimension.
Thus, the optimal estimator can be formulated as

%o = A%, + Bou + L(y, — C.%,) (8.44)

where X, i1s the optimal estimate vector of the state variable vector x,, u is the actuator
force vector, A, and B, are augmented system and control matrices offered previously,

and L is the Kalman filter gain matrix that is determined by
L =PCIR™ (8.45)

where P is the filter error (e = %, — X,) covariance matrix which can be found from the

following steady-state matrix Riccati equation
AP +PAT 1 Q, - PCIR!C,P=0 (8.46)

Notice that for the quarter-vehicle and half-vehicle models described previously, the
systems (A,, C,) are observable. Thus, unlike the cases for solving equations (8.35) and
(8.37), the Riccati equation denoted by (8.46) can be solved directly without dividing
the unknown matrix P and relevant matrices into four submatrices and then solving the

corresponding equations.
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8.3.3 Combination of LQG Controller with Kalman Estimator

Provided that the track excitations and mechanical vehicle system parameters, e.g., iner-
tial property parameters, geometric parameters, and passive suspension parameters, are
determined, with the LQG controller and Kalman estimator designed previously based on
the separation principle, we can obtain the optimal control structure as shown in Figure

8.4 using cascade arrangement.

§
\5 Vehicle Dynamic System

| Da v!
| . X N
| + a + |
1 + 1
: Aa™ :
I B Kalman Estimator
X 2, A
u LQG |_"a[ + a,
Controller [~ Is|= X L T
| Aa |

Figure 8.4: Configuration of the cascade arrangement of vehicle dynamic system, Kalman

estimator, and LGQ) controller

With the assembled control system, the performance index of the optimally controlled

system is given by
Jopt = trace(SQy) + trace(KTHKP) (8.47)

The performance index, given by equation (8.47), consists of two parts. The first part
denoted by Jg results from the random track excitation while the second part denoted
by J, is due to the measurement errors. The presence of measurement error increases the

performance index since trace(KTHKP) is, in general, positive.
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8.4 Multidisciplinary Optimization and Implementa-
tion
8.4.1 Design Optimization Approach

As shown in Figure 8.5, the All-in-One (A-i-O) multidiscipline optimization (MDO) method

is applied to the vehicle system to optimize the mechanical system, controller, and estimator

simultaneously.
Optimizer
(Genetic Algorithm)
Xb Ly
S Kp
A A A
Xp ! S, Xp ! Kp Xp ! Lp
. . Ya . Xa
Vehicle Dynamic > Estimator - Controller
, \ (Kalman Filter (LQG Control
System (A'GEM) s | Algorithm) — =<—, Algorithm)
X P X
u
Sp

Figure 8.5: Schematic representation of the design optimization approach

The system shown in Figure 8.5 is composed of an optimizer, i.e. a genetic algorithm,
which manipulates the relevant objective function and constraints, and three disciplines, i.e.
the vehicle dynamic system with A’GEM software, the optimal estimator with Kalman filter
algorithm, and the optimal controller with LQG control algorithm. The A-1-O approach to
this optimization problem is a two-level optimization method. The optimization problem is
solved for each discipline as well as for the system as a whole. The system is nonhierarchical
because each discipline is coupled to every other discipline, and no discipline is viewed as
being “above” the others.

After a generation evolution of the GA, an individual design variable set Xp is provided
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by the GA to the coupled analysis disciplines. The design variable set Xp may include
the passive design variables for the vehicle system, e.g. inertial property parameters,
geometric parameters, and passive suspension parameters, and control parameters such
as the weighting factors required in equation (8.30). With this set of design variables, a
complete system multidisciplinary analysis (MDA) is performed to obtain vehicle dynamic
system output variable vector y,, optimal estimate vector X,, and actuator force vector
u, which are used for evaluating the corresponding objective functions and constraints. In
addition to these coupled variables among the three disciplines, the resulting vehicle system
parameters S, e.g., the system matrix A, generated by A’GEM software, are offered to the
Kalman filter algorithm and the LQG control algorithm from the vehicle dynamic system
for evaluating the above coupled variables. The vehicle system parameters S, together
with the resulting Kalman estimator parameters K, and the resulting LQG controller
parameters L, are returned to the optimizer for the evaluation of the system objective

function and constraints.

8.4.2 Implementation of the Optimization Problem

As shown in Figure 8.6, the A-1-O method is implemented using a two-level optimization
approach. At the system or discipline level, the GA is used as the required optimizer
to optimize the combined mechanical and control systems, a synergistic whole. At the
subsystem or subdiscipline level, the LQG and Kalman filter algorithms are utilized to
optimize the controller and estimator, respectively.

For a given vehicle system with a given set of design parameters Xp, A’GEM is used to
automatically generate the vehicle system matrix A, such as shown in equation set (8.12),
for rigid body vehicle model. The control matrix B, the track excitation matrix D, and
flexible modes for the flexible vehicle model case should be assembled with the matrix A
for generating the required equations of motion in state space form as discussed in previous
sections.

As illustrated in Figure 8.6, first, a population of n sets of design variables, Xp;, + =
1,2, ...,n, are randomly selected in the search space by the GA; the corresponding sets of
design variables are sent in parallel to the A’GEM routines which automatically generate

equations of motions in a state space form accordingly. With the required vehicle dynamic
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system matrices and weighting factors, the LQG algorithm and the Kalman filter algorithm
in MATLAB construct and optimize the corresponding controller and estimator resulting
in the control gain matrix K;, covariance matrix X; of the state variables, filter error
covariance matrix P;, and performance index J;. Then these performance indices, i.e.
{Ja), J(2)s s J(n) }» are used as the fitness values. At this point, if the convergence criteria
are satisfied, the calculation terminates, otherwise these fitness values are returned to the
GA. Based on the returned fitness values corresponding to the given sets of design variables,
the GA produces the next generation of design variable sets using genetic operators, such as
reproduction, crossover, and mutation. This procedure repeats until the optimized variable

set 1s found.

: (LG )
GEN ET|C 3 Parameter Set ; Vehicle Dynamic]| \;31
; ! Xb1 L Sstem 1 iman Fiter ).

! 3 i LQG :
| ! , 1| Algorithm !
/;y{ Parameter Set ;[ Vehicle Dynamﬂ " !

XDb2 ! System 2 33 Kalman Filter |
! N Algorithm |

o : ¥ 1
| o .~ A'GEM | MATLAB
; ; (LG ).

! ! . ~ Algorithm !
\{ Parameter Set :[ Vehicle Dynaml(j ' |
! Xbn-1 ] /(__ System n-1 l'( Kalman Filter );
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Figure 8.6: Schematic representation of the computer implementation for the A-i-O ap-

proach
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8.5 Control Power Consumption

In addition to performance measures, two other important aspects that can be used to
evaluate active suspensions are the amount of control power and actuator force required.
The average power delivered to a hydraulic or other type of actuator can be estimated by
considering the forces and motions across that actuator. It is recommended [45, 120] that

the approximated average power is
Py = 1,V (8.48)

where w,, 1s the peak force produced by the actuator and V,, is the rectified average piston
velocity. Suppose the force u, and velocity V,, are individually Gaussian, which are linear
combinations of the components of the state vector x. Thus, the force and velocity can be
obtained by

Vo = +/2E[(V)?]/m

Therefore, the average power can be determined by

Puy = 3+/2E[(u)?] - E[(V )]/ (8.50)

8.6 Numerical Optimization for 2 DOF Models

In this section, the optimization results for the 2 DOF quarter-vehicle models are presented
and discussed. The simulations are carried out for two different cases, i.e. deterministic
track inputs and stochastic track inputs. The A-i-O method is used to resolve the conflict-
ing requirements for ride comfort, suspension working spaces, and dynamic wheel loads for

ground vehicles based on the quarter-vehicle models.

8.6.1 Deterministic Track Input Case
Vehicle System Optimization

The vehicle model is illustrated in Figure 8.1. It is assumed that the track input w is a

unit step. For this vehicle model, the state variable vector x, governing equations, and
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dynamic matrices have already been given as described by equation (8.10), equation set
(8.11), and equation set (8.12), respectively.
Thus, the optimization problem can be stated as: minimize the following objective

function:
J = /OOO[Pl(u + prass)2 + P2:i§ + ps(z1 — w)2 + palzs — $1)2]dt (8.51)
subject to
x = Ax + Bu + Dw (8.52)

where v 1s a constant, p1, ps, ps, and py are weighting factors that impose penalties upon
the magnitude and durations of the secondary suspension force including actuator force w
and passive suspension force fq4 , the ride comfort 25, the wheel deflection z; — w, and
the suspension working space x5 — @1, respectively. The initial state variables 1(0), z2(0),
#1(0), and #2(0) take the values of zero. The track displacement disturbance w is a unit
step input.

For simplicity, the symbols Ji, J2, J3 and Jy are introduced into equation (8.51). The
definitions of these symbols are offered in Table 8.1.

Table 8.1: Expressions represented by symbols J;, Js, J5 and Jy.

Jl J2 J3 ‘]4
fooo(u + U fpass ) 2dt fooo 2dt fooo(wl — w)?dt fooo(:nf,; — x1)%dt

As will be discussed later, to greatly facilitate the optimization and the control law
synthesis [2, 24, 28], each term of the right side of equation (8.51) is normalized with the
corresponding norm. In the case concerned, the norm of each term is the inverse of the

corresponding weighting factor. The weighting factors are assumed to be:
pi =1/J7% (8.53)

where: = 1,2, 3,4, and Jiref is the " term of the objective function (in the form of equation
(8.51)) of a reference quarter-vehicle model with passive or active suspensions. Note that
the definition of Jiref (1 =1,2,3,4) is the same as its counterpart (J;) shown in Table 8.1.
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To find the solution to the optimization problem, equation (8.51) should be rewritten
in the standard form as shown in equation (8.30). The resulting weighting matrices G, H,
and N are listed in Appendix B. Note that in the deterministic track input case, the track
input is not treated as an independent state variable as in the case of random track input.

The problem is actually an optimal tracking problem with the addition of a track dis-
turbance w. Then the tracking problem is reduced to an equivalent regulator problem.
Moreover, for the deterministic track input case, the Kalman filter algorithm is not in-
troduced. Therefore, the implementation the A-i-O method shown in Figures 8.5 and 8.6
should be modified accordingly.

Results and Discussion

In this subsection, the simulation results from the A-i-O method are discussed and com-
pared with those provided by Thompson [129]. As will be seen, the optimized vehicle
model based on the A-1-O method has better performance than the corresponding model
with passive suspension and that based on the LQG algorithm (used by Thompson) in all
four aspects: ride comfort, suspension working space, dynamic wheel load, and actuator
force. Note that the simulation results reported by Thompson [129] have been accurately
repeated in this research.

When the quarter-vehicle model with active suspension offered by Thompson [129] is
selected as a reference vehicle model, the weighting factors py, p2, ps, and p4 are calculated
to take the values of 0, 6.493-107*%, 74.709, and 13.206, respectively. By including my, m.a,
k1, ko, and ¢ as additional design variables, the control gain matrix K obtained using the
A-i-O method and that offered by Thompson using the LQG are listed in Table 8.3. These
additional passive design variables are permitted to vary by 20% from the nominal values.
The optimized passive design variables based on the A-1-O, together with their nominal
values (listed in Figure 8.1 as parameter set 1), are provided in Table 8.2.

The resulting unit step responses based on the A-i-O, the LQG (used by Thompson),
and the corresponding passive suspension system are shown in Figures 8.7, 8.8, 8.9, and
8.10. Figure 8.7 illustrates the relationship between the sprung mass acceleration and
time, Figure 8.8 the secondary suspension forces and time, Figure 8.9 the sprung mass

displacement and time, and Figure 8.10 the unsprung mass displacement and time.
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Table 8.2: Optimized values for my, ms, ki, ko, and c,.

my [kg] | ms [kg] | ku [N/m] | ks [N/m] | s [N/m/s]

NVt 28.58 | 288.9 | 1.5590 -10° | 1.9960 - 10* | 1.8610 - 103
A-i-OF (£20%) | 22.864 | 346.68 | 1.2472-10° | 2.2836 - 10* | 1.6698 - 10°
A--O1* (£20%) | 22.864 | 346.68 | 1.2472-10% | 2.0388 - 10* | 1.8821 - 10°

1 Nominal values; i Optimized values based on A-1-O method with p; = 0;
* Optimized values based on A-i-O method with p; = 7.7793 - 10~°.

Table 8.3: Feedback control gain matrix for optimal suspensions.

K1, Ky Kis Kia

LQGYT | —57240.0 | 35355.0 | —1385.7 | 4827.0
A-i-Of | —48683.0 | 26607.0 240.0 4682.0
A-1-O1* | —15045.0 | 11265.0 886.0 2873.0

1 Thompson’s results with passive design variables taking nominal values;
i Obtained using the A-i-O method with p; = 0;
* Obtained using the A-i-O method with p; = 7.7793 - 10~°.

It should be noticed that for the LQG case, ks = 0, ¢ = 0, and other passive vehicle
system parameters take their nominal values.

Investigation of Figures 8.7, 8.8, 8.9, and 8.10 shows that, compared with the active
suspension based on the LQG, the one based on the A-i-O method is better controlled both
in sprung mass acceleration and in unsprung mass displacement with less overshoot, the
peak actuator force is much less, the peak total secondary suspension force or total sprung
mass force is less, and the sprung mass displacement is almost the same. Compared with
the passive suspension, the performance improvement based on the A-1-O method is greater
than that based on the LQG. Both active suspensions are much better controlled than the
passive suspension in sprung mass displacement with lower peak sprung mass forces. The
numerical results are listed in Table 8.4. Results demonstrate that the optimized system
based on the A-1-O outruns its counterpart based on LQG in the mean-square values of
all aspects, 1.e. suspension working space x5 — #1, dynamic wheel load or #; — w, sprung

mass acceleration &,, actuator force u, and total sprung mass force w + fq4,. Based on the
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quadratic performance indices shown in Table 8.4, the active suspensions based on both
the LQG and A-1-O are superior to the passive suspension.

To further investigate the actuator forces based on the A-1-O and LQG, part of Figure
8.8 1s plotted in Figure 8.11. A close observation of Figure 8.11 reveals that, at a point when
the track unit input imposes on the unsprung mass, the corresponding active suspension
force actively resists the disturbance immediately, but the corresponding passive suspension
force just follows the disturbance. The resistance to the track disturbance contributes to
the performance improvement of the corresponding suspension. Compared with the case of
LQG, in the case of A-i-O, the active force resistance to the track disturbance lasts longer
and the active force and the corresponding passive force are almost out of phase. This
outphase between the active and passive forces in the case of A-1-O makes the corresponding
total force smaller than the active force based on the LQG and leads to the performance
improvement over the active suspension based on the LQG algorithm. In the case of LQG,
although the active force resists the track disturbance, this resistance lasts a very short
period of time. Then the active force follows the trends of the passive suspension force
based on the A-i-O. Thus, the actuator force based on the A-i-O and that based on the
LQG are also almost out of phase. This outphase of the actuator force between the two
cases can be explained by the opposite sign of K 3 in the control gain matrices for the two
cases as shown in Table 8.3

Notice that the optimized vehicle system based on the A-i-O achieves the above superior
performance though the sprung mass is 20% larger than the mass used in the corresponding

vehicle model with the active suspension based on the LQG and the passive suspension.

To examine the effect of the weighting factor or components of objective function shown
in equation (8.51) on the performance of the vehicle system, the weighting factor p; takes
the value of 7.779 - 107° instead of 0.0, the constant v is set to the value of 1.0, and the
other weighting factors take the values as those in the case of A-1-O. To distinguish this
case from the previous cases, this case is denoted as A-i-O1. In the case of A-1-O1, the
passive vehicle system design variables my, ms, ki, ks, and ¢, are also permitted to vary
by 20% from the nominal values. We can obtain the optimized passive design variables
for this case as listed in the Table 8.2 using the A-i-O method. It can be found that the
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Table 8.4: Comparison of the response characteristics for passive and active suspensions.

LQG | Passive A-i-O A-i-O1
ms displacement overshoot % 8.5 45.3 10.4 8.5
m, displacement overshoot % 28.0 18.0 11.9 25.9
Peak total m, force [N] 7.3-10* | 8.2-10* | 7.12-10* | 5.75-10*
Peak actuator force [N] 7.3-10* 0.0 —2.50 - 10* | —4.35 - 10*
Peak m, acceleration [m/s?] 252.5 283.3 205.4 165.8
J3 (wa — m1)2dt 0.076 0.085 0.073 0.089
J7 102y — w)?dt 0.134 0.144 0.129 0.141
I @3dt 1540.1 | 2145.2 1016.9 721.8
[ putdt 0.103 0.0 0.021 0.041
I3 p(w + fpass)?dt 0.103 0.143 0.098 0.069

tp=28.0-10"10[129].
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obtained passive system design variables are the same as those obtained in the A-i-O case
except for the minor difference of the variables ks and c¢s. As a matter of fact, during
the numerical experiments using the A-i-O method, the GA does not converge at certain
values for the design variables ks and ¢, over a narrow value range for both ks and ¢, where
the performance index J reaches its minimum value. This can be interpreted that, within
certain value ranges of k, and cs, since the introduction of the actuator, the vehicle system
performance is not sensitive to the passive suspension design variables ks and c,.

In the case of A-i-O1, the obtained control gain matrix K and the numerical simulation
results are also offered in Tables 8.3 and 8.4, respectively. By including the total secondary
suspension force as an additional performance index term, from the optimization point
of view, we lay more emphasis on reducing the total sprung mass force and sprung mass
acceleration. Simulation results match this expectation. As shown in Table 8.4, compared
with the case of A-i-O, the active suspension denoted as A-i-O1 is much better controlled
in total sprung mass force, sprung mass acceleration, and sprung mass displacement over-
shoot. However, the vehicle performance in suspension working space, dynamic wheel load,
and actuator force suffers.

The objective function, as provided by equation (8.51), penalizes, quadratically, large
deviations of the state and control vectors from their desired set point values. Numerical
experiments show that the selection of the weighting factors for the objective function
1s important and greatly affects the implementation of the A-i-O method. With each
penalized variable normalized by the mean-square value of the corresponding variable of a
reference vehicle model (see equation (8.53)), each term of the objective function can be
guaranteed to be at the same order of digital value during the optimization and the GA can
effectively coordinate the design criteria of ride comfort, suspension working space, wheel
dynamic load, and actuator force. From the designer’s point of view, this is a meaningful
form of objective function because it requires that only an appropriate reference vehicle

model be selected.
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8.6.2 Random Track Input Case
Vehicle System Optimization

The vehicle model for this case is also presented in Figure 8.1. The track input w is the
filtered white noise process described previously. In this case, the state variable vector
X4, governing equations, and system dynamic matrices are provided by equation (8.16),
equation set (8.17), and equation set (8.18), respectively.

The vehicle model was optimized with respect to ride comfort, suspension working
space, and dynamic wheel load. Hence the performance index J has the following simple

format
J = p1J1+ p2Js + psJs + pads (8.54)

where p1, p2, ps, and py are weighting factors, J;, Jo, Js and Jy are defined in Table 8.5.
The products p;J1, p2Js, psJs, and psJy mean the measures of actuator force, ride comfort,

wheel dynamic load, and suspension working space, respectively.

Table 8.5: The definition of the symbols Ji, J,, J3 and Jy.

Jl Jz J3 J4
Elw’] | E[E] | Bl(x1 — w)*] | E[(zy — 1)’]

The performance index formulation (8.54) should be expressed in the standard format
as shown in equation (8.30) for the purpose of finding the solution to the optimization
problem. With the performance index (8.54) and governing equation set (8.17), based on
the methods described in Section 8.3, the solution to the optimization problem can be

obtained.

Results and Discussion

In this subsection, the simulation results from the A-i-O method are discussed and com-
pared with those reported by Hac [59]. As will be seen, the optimal vehicle model derived
from the A-1-O method has better performance than the corresponding model based on

the LQG algorithm (used by Hac) in the mean-square values of actuator force, vertical
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sprung mass acceleration, suspension working space, and dynamics wheel load. Note that
the simulation results reported by Hac [59] have been accurately repeated in this research.

The vehicle system parameters are listed in Figure 8.1 as parameter set 2 together with
the random track characteristics. When the vehicle is moving at the speed V = 30 [m/s]
and the weighting factors p, = 1.0, ps = 10° and py = 10*, Hac [59] offered the simulation
results as shown in Figure 8.12 in dashed lines. Figure 8.12 illustrates the dependence of

the performance index (J) and its parts (J1, Jo, Js, Ju) upon the weighting factor p;.
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Figure 8.12: Performance index J and its parts Ji, Js, J3, and Jy versus p;

The A-1-O method is also used to optimize the vehicle model with passive and active
suspensions. The same values used by Hac [59] are assigned to the weighting factors p,,
ps, and pg, respectively. However, the vehicle system parameters, i.e. my, ms, ki, ks and
¢y are introduced as additional design variables and these variables are permitted to vary
by 10% from the nominal values. Numerical experiments show that the optimized values
(denoted as A-i-O) for these design variables are independent of weighting factor p;. The
optimal values for these variables are listed in Table 8.6.

In Figure 8.12, the solid curves indicate the relationships J, Jy, Js, Js, Jy versus p;



Multidisciplinary Optimization of Combined Mechanical and Control Systems 174

obtained using the A-i-O method. Compared with the optimal suspension based on the
LQG, the counterpart based on the A-1-O improves the performance index J and its parts
J1, Jo, Js, and Jy over a wide range of weighting factor p;. A close observation shows
that, when p; < 1, the latter can achieve much better ride comfort, better track holding
capability, and almost the same suspension work space with less actuator force. When
p1 > 10, both suspensions behave like passive suspensions because the actuator force is
very small and the latter is superior to the former in ride comfort, suspension work space,

and track holding capability.

Table 8.6: Optimized values for my, ms, ki, ko, and c,.

my [kg) | ma [kg] | by [N/m] | ks [N/m] | cs [N/m/s)
NVi 100.0 500.0 2.0-10° 5.0-10° 1.0-10°

A-1-Of (:I:l()%) 90.0 550.0 1.8 -10° 5.5-10° 1.1-10%

Pass* (:I:l()%) 90.0 450.0 1.8 -10° 4.5-10° 1.1-10°

1 Nominal values; i Optimized values based on A-1-O method;

* Optimized values for the passive vehicle suspension system using the GA.

To investigate whether a sequential optimization process (SOP), i.e. optimizing the
passive vehicle suspension system first, then designing a controller for the system based
on the optimized passive vehicle system parameters using the LQG algorithm, can achieve
the same results as the A-1-O method does, the GA is used to optimize the passive vehicle
suspension system first, then the LQG is applied to the design of the optimal controller for
the optimized vehicle system. In these simulations, the weighting factors p,, ps, and p4 are
the same as those used with the A-i-O method. The optimized passive vehicle parameters
(denoted as Pass) are also listed in Table 8.6.

Figures 8.13 and 8.14 show the corresponding R.M.S. (root mean square) trade-off
solutions of vertical sprung mass acceleration versus suspension working space and R.M.S.
trade-off solutions of vertical sprung mass acceleration versus wheel dynamic load for the
optimal suspension systems based on the A-i-O (denoted as A-i-O), the LQG (based on
nominal passive vehicle parameter, denoted as LQG), and the SOP. It is clear that the
suspension based on the A-i-O method has the best overall performance among the three

optimal suspensions. From Figure 8.13, we can see that, within a certain acceleration
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sion working space

range, the suspension based on the SOP method requires the largest suspension working
space among the three suspensions.

In the simulations, the availability of a limited number of the state variables is con-
sidered. As mentioned previously, it is assumed that the absolute vertical velocities of
both the sprung mass and unsprung mass (wheel) are available. The simulation results are
offered here. In the simulations the measurement noises are set to 5% of the R.M.S. value
of vertical wheel velocity. The simulation results are shown in Figure 8.15 which illustrates
the dependence of performance indices and measurement errors upon the weighting factor
p1. For these simulations, ps, ps, ps, and V still take the values offered previously. In the
LQG case (denoted as Jrgg), the vehicle system parameters take their nominal values,
while in cases of the A-i-O without the Kalman filter (denoted as J4;) and the A-i-O with
the Kalman filter (denoted as Jy»), the vehicle system parameters are treated as design
variables and are permitted to vary by 10% from their nominal values.

As expected, by comparing the results from J4; and Ja,, we can see that the perfor-



Multidisciplinary Optimization of Combined Mechanical and Control Systems 176

R.M.S. wheel dynamic load (N)

420

4001

3801

360

3401

3201

3001

280r

2601

2401

—— Nom+LQG;
—— A-i-0O;
—— SOP.

Il
0.2
R.M.S. vertical sprung mass acceleration (m/sz)

0.25 0.3

0.35

Figure 8.14: R.M.S. trade-off solutions of vertical sprung mass acceleration

wheel load

a

r

/10°, J/10°
IN

A2

LQG

5 5
JLGQ/10 , JA1/10 J
[ N w

A—i—O without Kalman filter (full state feedback);
A-i—O with Kalman filter;
—— Measure Errors;
LQG (full state feedback).

-2 0

log10(p,)

versus dynamic

Figure 8.15: Performance indices and measurement error Jr versus weighting factor p;



Multidisciplinary Optimization of Combined Mechanical and Control Systems 177

mance of the active suspension based on J4, suffers from the measurement corruption. As
mentioned previously, when p; > 10, the active suspensions behave like passive suspen-
sions. This point can be further demonstrated by the fact that the measurement error J.
becomes very small and the performance indices from J4; and Jus are very close when
p1 > 10°. By comparing the results based on Jpgg and Jas, we can observe that even
though the suspension system based on Ju» suffers from the measurement errors, its per-

formance 1s still better than that of the suspension system based on Jrg¢.

8.7 Numerical Optimization for Half-Vehicle Models

In this section, the optimization results for the half-vehicle models with rigid vehicle body
and flexible vehicle body are provided and analyzed. For the rigid body vehicle model,
the numerical optimization is carried out with the track inputs selected as unit step inputs
corresponding to the integrated white noise track input case. For the flexible body vehicle
model, the numerical optimization is performed under the condition that the track inputs
are the filtered white noise processes. For both vehicle models, it is assumed that the track
disturbance inputs at the front unsprung mass and at the rear unsprung mass are identical
except that the latter is delayed by the time interval D (see equation set (8.6)) with respect
to the former. Once again the numerical results based on the A-i-O method are compared

with those based on the LQG algorithm and the corresponding passive suspensions.

8.7.1 Deterministic Track Input Case
Vehicle System Optimization

For the vehicle model as shown in Figure 8.2, the state variable vector x, actuator force
vector u, and track excitation vector w are descirbed by equation set (8.20), the governing
equations are given by equation set (8.11), and the corresponding system, control, output,
and disturbance matrices A, B, C, and D are provided in Appendix B, respectively.

Hence, the vehicle system optimization problem can be described as: minimize the
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following objective function,

6

J=> pili (8.55)

=1

subject to

« — Ax + Bu + Dv
{X X+ Bu+Dw (8.56)

y =Cx

where p; to pg are the weighting factors, J; to Jg are defined in Table 8.7, and p;.J; to peJg
imply the measurements of the accelerations of the vehicle body at points A and B (see
Figure 8.2), the dynamic loads of unsprung masses m; and ms, front and rear secondary

suspension working spaces, respectively. Due to the fact that, for the quarter-vehicle model

Table 8.7: Expressions represented by symbols J; to Je.

Jl Jz J3 J4 J5 JG
fooo ibgdt fooo $‘21dt fooo (iBl — wl)zdt fooo ($3 — wg)zdt fooo (2132 — iBl)zdt fooo ($4 — $3)2dt

case discussed previously, the introduction of the secondary suspension force term into the
objection function (8.51) does not improve the overall performance of the vehicle system,
the secondary suspension force term is not included in the objective function (8.55). The
governing equations of the vehicle system show that #, and #, are dependent on the front
and rear secondary suspension force, respectively. Hence, constraining the accelerations at
points A and B of the vehicle body also constrains the actuator forces u; and us and front
and rear passive secondary suspension forces.

As discussed previously, each term on the right hand side of objective function (8.55) is
also normalized with the corresponding norm or the corresponding inverse of the weighting
factor. Once again, these weighting factors can be obtained based on the corresponding
objective function terms of J; to Jg calculated from the dynamic responses of a selected
reference half-vehicle model with passive or active suspensions.

Once more, to find the solution to the optimization problem, equation (8.55) should
also be formulated in the standard matrix form as shown in equation (8.30). The resulting

weighting matrices G, H and N are provided in Appendix B.
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Results and Discussion

In this subsection, the simulation results from the A-i-O method are discussed and com-
pared with those reported by Thompson [131]. As will be seen, the optimized vehicle model
based on the A-i-O method has better performance than the corresponding model with
passive suspension and that based on the LQG algorithm (used by Thompson) in all the
four aspects, ride comfort, suspension working spaces, dynamic wheel loads, and actuator
forces. Note that the simulation results reported by Thompson [131] have been accurately
repeated in this research.

Based on the half-vehicle model with active suspension designed by Thompson [131],
the weighting factors pi, p2, ps, pa, ps, and pe are assigned the values of 5.4190 - 107,
2.2261-1074, 78.8781, 50.7307, 13.7052, and 14.6588, respectively. Using the A-i-O method,
we can find the control gain matrix K listed in Table 8.8 together with that based on
Thompson’s method (LQG algorithm). In the A-i-O case, the additional design variables
are selected as my, mo, M, I, a, b, k1, c1, ks, c2, k3, and ky. The design variables k;, ¢,
ko, and ¢, are permitted to vary by 50% from their nominal values and the rest to vary by
10% from the nominal values. The corresponding optimal values for these design variables

are provided in Table 8.9.

Table 8.8: Feedback control gain matrix for optimal suspensions.

Ky K> K3 K4 K5 K¢ K7 Kis
A-1-O | —51636.0 | 30492.0 —315.0 352.0 61.0 4506.0 —8.0 38.0
LQG | —58092.0 | 35355.0 1392.0 —=75.0 | —1379.0 | 4620.0 —18.0 215.0

Ky Ks» Ks3 K4 Ky s Kse K7 Kss
Ai-O | —1111.0 381.0 —61896.0 | 48182.0 —12.0 52.0 553.0 3239.0
LQG 1058.0 75.0 —68826.0 | 35355.0 —8.0 233.0 | —1774.0 | 4047.0

In the A-i-O, LQG, and passive suspension cases, the resulting vehicle dynamic re-
sponses in time domain for the unsprung mass displacements of both m; and m,, and the
working spaces of both front and rear secondary suspensions are illustrated in Figures 8.16,
8.17, 8.18, and 8.19, respectively. Once again, in both the LQG and passive suspension
cases, the parameters listed in Table 8.9 take the nominal values. Figures 8.16 and 8.17

show that, among the three cases, the active suspension based on the A-i-O method is
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best controlled with the smallest overshoot in both m; and m, displacements but the one
based on the LQG has the largest overshoot. Observation of Figures 8.18 and 8.19 reveals
that, compared with the active suspension based on the LQG, the one based on the A-1-O
behaves better with less overshoot in both front and rear secondary suspension working
spaces. Although the passive suspension has less front and rear secondary suspension work-
ing space overshoot than the active suspensions, the oscillation is damped out much slower

than those in the active suspensions.

Table 8.9: Optimized values for passive vehicle system design variables.

my [kg] my [kg] M [kg]) | I [kg-m?] | a1 [m] ag [m]
NVi 28.58 04.43 005.1 651.0 1.0978 1.4676
A-i-0O 25.72 48.99 995.5 715.9 0.9880 1.3215

ki [N/m] | e1 [N/m/s]| | ky [N/m] | ca [N/m/s] | ks [N/m] | ks [N/m]
NV 19960.0 2014.0 22590.0 2082.0 155900.0 | 155900.0
A-1-O | 19777.2 1540.1 12365.2 2316.6 140802.9 | 170755.4

1 Nominal values.

Notice that the negative front and rear secondary suspension working spaces mean that
these suspensions are in the strokes of compression. In the above analysis, it is assumed
there are no limitations for the suspension working spaces. Practically, the suspension
working spaces can not take such large values because of the existence of bump stops in
both the front and rear secondary suspensions.

Figures 8.20, 8.21, and 8.22 demonstrate the relationships of vertical accelerations of
the vehicle body at points A and B versus time and the pitch angular acceleration of
the vehicle body versus time. Based on Figures 8.20 and 8.21, we find that, among the
three cases, the active suspension based on the A-i-O is best controlled with the smallest
overshoots in accelerations of the vehicle body at both points A and B and the passive
suspension behaves the worst with the largest overshoots. A close observation of Figure
8.20 discloses that at the time the unit step input imposes on the unsprung mass ms, this
track disturbance affects the acceleration of the vehicle body at point A for all of the three

cases. The disturbance is reflected by the arising of the second peak around the time on the
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corresponding acceleration curve for each case. In both the LQG and passive suspension
cases, the time delay between the front and rear inputs is about 0.086[s]. In the A-i-O
case, the time delay is about 0.077[s]. Compared with the acceleration of the vehicle body
at point A, the track input at ms, has a much more significant effect on the acceleration
at point B. This difference can be found by the comparison of the second peak on each
acceleration curve in Figure 8.20 with the corresponding first peak in Figure 8.21 for all
of the three cases. Moreover, as we can see from Figure 8.21, in the case of LQG, the
acceleration of the vehicle body at point B trembles immediately after the unit step input
imposes on the unsprung mass ms. In the aspect of the angular acceleration of the vehicle
body, as shown in Figure 8.22, the active suspension based on the A-i-O method outruns

that based on the LQG algorithm and the passive suspension with less magnitude.
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Figure 8.16: Unsprung mass m; displacement versus time

Figures 8.23 and 8.24 illustrate the relationship between the corresponding secondary
suspension force and time for both the front and rear secondary suspensions. For the
purpose of visibility, parts of Figures 8.23 and 8.24 are repeated in Figures 8.25 and 8.26,
respectively. A close comparison of the Figure 8.25 with Figure 8.11 demonstrates that
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the corresponding curves in the two figures are very similar. This similarity is due to the
fact that the relevant vehicle system parameters for the previous quarter-vehicle model
are the same as those in the front part of the half-vehicle model, e.g. the unsprung mass
and the primary suspension spring stiffness coefficient. This similarity also verifies the
correctness of the calculation for the half-vehicle model. Moreover, this similarity implies
that the secondary suspension force analysis for the previous quarter-vehicle model with
deterministic track input also holds for the front secondary suspension force analysis for
the half-vehicle model with deterministic track inputs. A detailed comparison of Figures
8.23 with 8.24 also reveals that, after the point where the unit step input imposes on the
unsprung mass ms, the trend of each curve in Figure 8.24 is very similar to that of its
counterpart in Figure 8.23. Therefore, the previous force analysis for the quarter-vehicle

model is also true for the rear secondary suspension of the half-vehicle model.
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Figure 8.23: Front secondary suspension forces versus time

To quantitatively analyze the vehicle performance based on the A-i-O, LQG, and passive
suspension, the numerical results are provided in Table 8.10. The numerical results reveal

that the active suspension based on the A-1-O method exhibits superior performance than
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its counterpart based on the LQG algorithm and the passive suspension in the mean-square
values of front and rear actuator forces, front and rear unsprung mass deflections, front and
rear secondary suspension working spaces, accelerations of the vehicle body at points A
and B, and pitch angular acceleration of the vehicle body. In short, the active suspension

based on the A-i1-O method has the best overall performance among the three cases.

8.7.2 Random Track Input Case
Vehicle System Optimization

The vehicle model with flexible vehicle body is illustrated in Figure 8.2. The system
governing equations are described in equation set (8.17), the state variable vector x, in
equation (8.28), actuator force vector u, track excitation vectors w, w, and ¢ in equation
sets (8.27) and (8.5). The relevant system dynamic matrices are determined in equation
set (8.29) and the detailed information is listed in Appendix B.

The vehicle system optimization, therefore, can be stated as: minimize the objective
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Table 8.10: Comparison of the response characteristics for passive and active suspensions.

LQG Passive A-i-O
m; displacement overshoot [%] 28.80 17.05 16.57
my displacement overshoot [%] 37.26 32.79 30.34
Peak front suspension working space [m] | —1.1632 —0.9484 —1.0572
Peak rear suspension working space [m] —1.1683 —0.9715 —1.0558
Peak acceleration at point A [m/s?] 277.2731 321.7271 240.1095
Peak acceleration at point B [m/s?] 356.5036 377.8960 326.8214
Peak pitch acceleration [rad/s?| —152.4799 | —166.4148 | —141.5128
Peak front actuator force [N] 7.2464 - 10* 0.0 —2.1161 - 10*
Peak rear actuator force [N] 6.7411 - 10* 0.0 —2.2465 - 10*
Peak passive front suspension force [N] 0.0 8.4080 - 10* | 7.9535 - 10*
Peak passive rear suspension force [N] 0.0 7.1121-10* | 9.0198 - 10*
Peak total front suspension force [N] 7.2464 - 10* | 8.4080 - 10* | 7.5759 - 10*
Peak total rear suspension force [N] 6.7411 -10* | 7.1121-10* | 7.7115-10*
[ (21 — wy)?dt 0.0134 0.0144 0.0129
[ (5 — w2)?dt 0.0197 0.0221 0.0176
[ (2 — )2dt 0.0730 0.0728 0.0679
fooo(w4 — x3)%dt 0.0682 0.0695 0.0534
fooo r2dt 1.8454 -10% | 2.6789 - 10® | 1.3900 - 10®
fooo zadt 4.4921 -10° | 5.7069 - 10®> | 3.8483 -10°
fooo P dt 1.0937 -10% | 1.4312-10% | 1.0132-10°
J uidt 1.2595 - 10° 0.0 1.9019 - 107
[ uzdt 1.6164-10° | 0.0 2.2853 - 107
[ f2 dt 0.0 1.8376 - 10° | 1.3538 - 10°
[ 12t 1 0.0 |2.0584-10% | 2.4395-10°
[ (g + Frpase)?dt 1.2595 - 10° | 1.8376 - 10° | 1.3867 - 10°
(s + Fopase)?dlt 1.6164 - 10° | 2.0584 - 10°% | 1.9992 - 108

1 fipass means passive front secondary suspension force;

1 fapass means passive rear secondary suspension force.
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function:

4
J=> pili (8.57)
=1

subject to

{ ka = Aaxa + Bau + Da€ (8 58)

Ya = Caxa

where p; to py are weighting factors, J; to Jy are defined in Table 8.11. J, stands for
mean-square acceleration at three or two body points denoted by L, Lo, and L3 or by L
and Ly, which correspond to the left end, right end, and middle point of the vehicle body
or the left end and right end of the vehicle body, respectively. Due to the fact that the
pitch mode and the first three bending modes of the elastic vehicle body are taken into
account, the consideration of the acceleration at just one point is not justified. J;, Js, and
J4 are mean-square values of actuator forces, primary and secondary suspension deflections,
respectively. To utilize the weighting constants used in the previous quarter-vehicle model
with random track input and compare the results from the research with those offered
by Hac [60], factors of 1/2 and 1/3 are introduced for the definitions described in Table

8.11. The vehicle system, therefore, is optimized with respect to ride quality, unsprung

Table 8.11: Expressions represented by symbols J; to Jy.

Jl J2
E[uf 4 u3]/2 E{)0[#s + (Li — a2 — ba) + Yooy 9;(1)Z;(L:)]%}/3
J3 J4
E{[z1 — w(t — D)]* 4 [z3 —w(t)]*}/2 { E[(z2 — 1) 4 (24 — 23)°]/2

Jw(t— D) =wy; w(t) = ws.

mass dynamic loads, and secondary suspension working spaces while the expenditure of
actuator forces is limited.
As mentioned previously, to find the solution to the optimization problem, equation

(8.57) should be rewritten in the standard matrix format as shown in equation (8.30).
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Validation of the Simulation Results

In the research, using the LQG algorithm, the vehicle model (half-vehicle model with flex-
ible vehicle body), and the system parameters provided by Hac [60], numerical simulations
were performed. Unfortunately, the simulation results reported by Hac could not be re-
peated. Expressed in terms of state and control variables and expanded in Maple [70]
symbolic form, the objective function for the flexible vehicle model in equation (8.57) cov-
ers 372 pages (A4 paper). The complex and lengthy objective function seems to be the
reason why Hac’s numerical results do not agree with those from the research. Thus, the
validation of the simulation results from the research becomes necessary.

To validate the simulation results from the research, the numerical results based on a
modified half-vehicle model are verified by those based on a simple quarter-vehicle model.
As mentioned previously, based on the LQG algorithm, the quarter-vehicle model, and the
system parameters used by Hac [59], Hac’s results were accurately repeated in the research.

To facilitate the validation, the vehicle body is assumed to be a rigid body and the
geometric parameter (by) and the pitch moment of inertia (I.) of the vehicle body are set
to 0.0[m] and 1.6 - 10°[kg - m?] instead of the nominal values of 2.0[m] and 1.2 - 10°[kg -
m?] respectively so that the front and rear suspensions of the modified vehicle model are
inertially de-coupled. The rest of the vehicle system parameters take their nominal values.
Furthermore, it is assumed that, during the simulation, the time delay between the track
input imposed on the front unsprung mass and that on the rear unsprung mass should
be neglected. Thus, using the lumped mass method, we obtain the modified half-vehicle
model which is equivalent to two independent identical quarter-vehicle models. For the
equivalent quarter-vehicle models, the sprung mass takes the value of 5000.0[kg]| and the
rest system parameters take the values of those of the modified half-vehicle model.

The objective function for the modified half-vehicle model is the same as that described
in equation (8.57) except that the terms relevant to the bending modes of the flexible
vehicle body are set to zeros and J, is defined as E[22 4 #3]/2. The objective function of
the corresponding quarter-vehicle model is the same as that described in equation (8.54).

Assume the velocity of both the modified half-vehicle model and the corresponding
quarter-vehicle model V' = 20.0[m/s]| and the coefficients in formula (8.3) describing track
irregularities a; = 0.45[m™'] and o, = 3.0 - 107*[m?]. For both the modified half-vehicle
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model and the equivalent quarter-vehicle model, with the weighting factors p, = 1, ps =
10°, and ps = 10*, based on the LQG algorithm, we can obtain the results illustrated in
Table 8.12.

Table 8.12: Comparison of the simulation results for the modified half-vehicle model and

the equivalent quarter-vehicle model.

Equivalent Quarter—Vehicle Model
P1 J/10° Ji [N?] J2/10% [mm?/s%] | J3/10 [mm?] | J4/10% [mm?]
106 | 22.67194237 | 6.11420577- 107 4.44329323 14.1729511 4.05569743
102 | 22.66585547 60.60964055 4.44333608 14.1701350 4.04632342
10° | 22.23322899 | 3.25419349-10° 4.49419024 13.9139521 3.49966726
1072 | 20.16447360 | 2.03248582- 107 6.11463790 11.4086591 2.43792797
107* | 19.93633651 | 2.62068886- 107 6.44708294 11.0998273 2.38680554
Modified Half-Vehicle Model

P1 J/10° Ji [N?] J2/10% [mm?/s%] | J3/10 [mm?] | J4/10% [mm?]
106 | 22.67194237 | 6.11420576-10~7 4.44329323 14.1729511 4.05569743
102 | 22.66585547 60.60964053 4.44333608 14.1701350 4.04632342
10° | 22.23322899 | 3.25419349-10° 4.49419024 13.9139521 3.49966726
1072 | 20.16447360 | 2.03248583- 107 6.11463791 11.4086591 2.43792797
10~* | 19.93633651 | 2.62068886- 107 6.44708294 11.0998273 2.38680554

The comparison of the simulation results shown in Table 8.12 demonstrates that the
simulation results for the modified half-vehicle model accurately matches those for the
equivalent quarter-vehicle model. Therefore, at least the rigid body half-vehicle model and
the corresponding objective function are validated. This validated rigid body half-vehicle
model and objective function can be used to serve as a reference to check the simulation
results of the corresponding half-vehicle model with the flexible vehicle body.

To check the simulation results of the half-vehicle model with the flexible vehicle body
with those based on the validated rigid body half-vehicle model, assume that for both
vehicle models, the vehicle system parameters are set to their nominal values as listed
in Table B.2 in Appendix B; the objective function takes the form described in equation
(8.57); the random track characteristic parameters, vehicle speed, and the weighting factors

P2, ps, ps4 take the values offered previously in the subsection; the time delay between the
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Table 8.13: Comparison of the simulation results for the rigid half-vehicle model and the
flexible half-vehicle model.

Flexible Half-Vehicle Model
P1 J/10° Ji [N?] J2/10% [mm?/s%] | J3/10 [mm?] | J4/10% [mm?]
106 | 27.0252 | 5.3235- 10" 8.8036 14.3577 3.8638
102 | 27.0199 52.7369 8.8018 14.3570 3.8558
10° | 26.6553 | 2.6311-10° 8.7125 14.2882 3.3915
1072 | 25.4346 | 7.9631-10° 9.2387 13.4871 2.6290
10~% | 25.3494 | 9.2990-10° 9.3393 13.4105 2.5987
Rigid Half- Vehicle Model
P1 J/10° Ji [N?] J2/10% [mm?/s%] | J3/10 [mm?] | J4/10% [mm?]
10 | 26.3059 | 5.5123-10~7 8.1317 14.2957 3.8785
102 | 26.3004 54.6229 8.1298 14.2947 3.8704
10° | 25.9181 | 2.8002-10° 8.0441 14.1904 3.4036
1072 | 24.4349 | 1.2310-107 8.7743 12.9029 2.6347
107* | 24.2985 | 1.5485- 107 8.9541 12.7367 2.6062
Rigid Half-Vehicle Model with Time Delay

p1 J/10° J1 [N J2/108 [mm?2 /5] | J3/10 [mm?] | J4/10% [mm?]
106 | 26.2340 | 5.3767- 10" 8.3051 14.2878 3.7129
102 | 26.2277 53.2799 8.3031 14.2865 3.7055
10° | 25.7958 | 2.7273-10° 8.2043 14.1648 3.2763
1072 | 24.2993 | 1.2204- 107 8.8644 12.8224 2.6261
10~* | 24.1704 | 1.5376- 107 9.0365 12.6568 2.6036

random track input imposed on the front unsprung mass and that on the rear unsprung
mass is neglected. Based on the LQG algorithm, we can obtain the simulation results
offered in Table 8.13.

The comparison of the results offered in Table 8.13 shows that the simulation results
based on the flexible vehicle model are consistent with those based on the rigid vehicle
model. The average performance index J of the flexible vehicle model is about 3.4% higher
than that of the rigid vehicle model. This difference results from the fact that the first
three bending modes of the flexible vehicle body degrade the overall performance of the

flexible vehicle model. This overall performance degradation of the flexible vehicle model
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also reflects on the higher partial performance indices of the acceleration and unsprung
mass displacement of the model than those of the rigid vehicle model.

To investigate the effect of the time delay on the performance of the vehicle models,
the simulation results with time delay for the rigid half-vehicle model are also provided in
Table 8.13. The simulation results show that, with the time delay considered, the overall
performance improves and demonstrates that “the time delay available between the front
and rear inputs appears to provide, in principle, an excellent opportunity to improve the
rear axle actuator control” [61]. However, under the given simulation conditions, the degree
of performance improvement is not high. However, numerical experiments show that if the
weighting factors p; = 1078, p, = 1.0, ps = 10*, and p; = 10®, the performance index J
with time delay is 6.222% lower than that without time delay.

It should be mentioned that with the time delay considered, by using the LQG algo-
rithm, we should calculate the required transition matrix. In the case of the rigid half-
vehicle model, the calculation of the transition matrix in Matlab does not converge until
the 60" term of the series is reached. However, in the case of the flexible half-vehicle
model, the calculation of the corresponding transition matrix does not converge even when
the 80" term of the series is reached. When the calculation is carried out until the 100"
term of the series, the result overflows.

Therefore, it seems that it is not practical to calculate the transition matrix for com-
plicated vehicle dynamic models when the time delay is considered. To circumvent the
calculation of transition matrix, the Pade approximation method is recommended [61],
but additional state variables should be introduced. In the next subsection, the numerical
simulations for the half-vehicle model with flexible vehicle body are restricted to the case

where the time delay is not taken into account.

Results and Discussion

In this subsection, for the half-vehicle model with flexible vehicle body and without the
time delay between front input and rear input, the numerical simulation results based on
the A-i-O method are compared with those based on the LQG algorithm. As will be seen,
the optimized vehicle system derived from the A-1-O method is superior to that based on

the LQG algorithm in the aspects of ride comfort, suspension working spaces, and dynamic
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wheel loads with almost the same power consumption.

In the A-i-O method case, the vehicle system parameters EI, pA, c3, and ¢4 take their
nominal values, M, mq, ms, L., k3, ks, a1 (a1 = a2), and by (by = [ — b;) are permitted
to vary by 10% from their nominal values, ki, k2, ci, and ¢, are allowed to change by
50% from their nominal values, the standard deviations of the sensors’ random errors are
taken as 0.06[m/s]. Note that the nominal system parameters are listed in Table B.2
in Appendix B. The vehicle speed and the random track characteristic parameters are
assigned the values offered in the last subsection. The weighting factors are: p; = 1078,
p2 = 1, p3 = 10°%, and p, = 10*. By using the A-i-O method, we can obtain the optimal
design variables for the half-vehicle model with a flexible vehicle body as listed in Table
8.14. For the purpose of comparison, the corresponding nominal values for these design
variables are also provided in the table. The obtained optimal feedback control gain matrix
based on the A-1-O together with that based on the LQG are also offered in Table 8.15.
Note that in the LQG case, the simulation condition is the same as that of the A-i-O case

except that the vehicle system parameters take their nominal values.

Table 8.14: Optimized values for vehicle system design variables.

my [kg] my [kg] M [kg] | L [kg-m’] | a1 [m] by [m]
NV 1.0-103 1.0-103 1.0-10* 1.2-10° 4.0 2.0
A-1-0O 900.0 900.0 1.1-10* 1.32-10° 3.60 1.92
ki [N/m] | ¢; [N/m/s] | ks [N/m] | co [N/m/s] | ks [N/m] | ks [N/m)]
NV 2.0 -10° 2.0 -10* 2.0 -10° 2.0 -10* 2.0-10° | 2.0-10°
A-i-O | 1.258 - 10° | 2.035-10* | 2.134-10° | 2.767-10* | 1.8-10° | 1.8-10°

1 Nominal values.

As mentioned in the quarter-vehicle model case (random track input), the optimized
values of the design variables shown in Table 8.14 are almost independent of the weighting
factor p; by using the A-1-O method. Figure 8.27 shows the dependence of the performance
index (J) and its parts (J1, J2, J3, J4) upon the weighting factor p;; Figure 8.28 illustrates
the trade-off solutions of weighted R.M.S. vertical body acceleration and weighted R.M.S.
wheel dynamic load; Figure 8.29 offers the the trade-oft solutions of weighted R.M.S.
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Table 8.15: Feedback control gain matrix for optimal suspensions.
K1.1/10° | K12/10° | K13/10* | K1.4/10° | K15/10° | K16/10* | Ky1,7/10°
A-i-O 9.6089 —5.6295 6.6631 9.4087 —7.9097 —4.8001 6.7035
LQG 4.5908 1.1374 10.3630 2.7474 —2.0241 —2.4724 1.3482
K178/104 K179/107 K1710/105 K1711/108 K1712/107 K1713/108 K1714/107
A-i-O 3.2283 —1.0010 —0.9183 5.6463 1.0728 —1.9243 —0.3944
LQG | —0.9422 | —1.6119 —1.5065 1.8915 0.3613 —5.8641 —1.1726
K271/105 K272/105 K273/105 K274/105 K275/105 K276/104 K'277/105
A-i-O | —-5.6309 8.7313 0.5922 —9.1449 6.7078 3.2284 —7.9004
LQG 1.1373 4.5908 1.0363 —2.7474 1.3482 —0.9422 —2.0241
K278/104 K279/107 K2710/105 K2711/108 K2712/107 K2713/108 K2714/107
A-i-O | —4.0671 | —1.0019 —0.9506 —5.6463 —1.0724 —1.9240 —0.3936
LQG | —2.4724 | —1.6119 —1.5065 —1.8915 —0.3613 —5.8641 —1.1726

Note that the

weighted R.M.S. vertical body acceleration, wheel dynamic load, and suspension working

vertical body acceleration and weighted R.M.S. suspension working space.

space are based on the performance terms Js, J3, and Jy4, respectively.

Investigation of Figures 8.27, 8.28, and 8.29 demonstrates that as in the case of the
quarter-vehicle model, the overall performance of the active suspensions based on the A-1-O
method is superior to that based on the LQG. The active suspensions based on the A-1-O
method achieves the overall performance improvement at the expense of using larger control
forces than those based on the LQG. However, under the above simulation conditions, the
total average control power consumption for the A-i-O based active suspensions is just
1.4% higher than that (3.1896[kw]) required for the LQG based active suspensions. The
reason for this phenomenon is that although the actuators for the A-i-O based suspensions
use larger control forces, the relative motions between the sprung mass and the unsprung
masses are better controlled than those of the LQG based suspensions. Thus, the rectified
average piston velocities of the actuators for the the A-1-O based suspensions are lower than
those of the actuators for the LQG based suspensions and the amounts of total average
control power consumption for both cases are almost the same. Figure 8.30 provides the
relationship between vehicle speed and control power consumption.

Based on equation (8.46), the filtering error covariance matrix P depends on the sensor
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accuracy due to R in equation set (8.43) and the sensor arrangement due to C, in equation
(8.42). According to equation (8.47), as mentioned previously, the performance index J,
contains two parts. The first part, Jg, arises because of the random track excitations; the
second part, J,, results from inexact state estimation due to the existence of the matrix P.
J, vanishes when P vanishes. Thus, the two factors, the sensor accuracy and the sensor
arrangement, influence J, J,, and P. Figure 8.31 shows the effect of sensor errors on J, J.
and P of both the A-1-O based active suspensions and the LQG based active suspensions.
Note that the results in Figure 8.31 are based on the sensor arrangement with five sensors
measuring the vertical velocities of the front and rear unsprung masses and the vertical

velocities at the three vehicle body points, i.e., the left end, the right end, and the middle

point.
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Figure 8.31: Effect of R.M.S. sensor errors on performance indices J, J,, and trace(P)

It is obvious that in both the A-i-O and the LQG cases, as sensor errors increase, J,
J, and trace(P) increase. Over the sensor error range offered, the J and trace(P) based
on the A-i1-O method are smaller than those based on the LQG algorithm, respectively.

However, over the lower sensor error value range, the J, based on the LQG algorithm is
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smaller than that based on the A-i-O method. The reason for the phenomenon is that J.
depends not only on the filtering error covariance matrix P but also on the control feedback
gain matrix K and weighting matrix H (see equation (8.47)).

To investigate the influence of sensor arrangement on the state estimation, in this
research different sensor arrangements are used. For all the sensor arrangements, two
sensors are used to measure the vertical velocities of the front and rear unsprung masses.
Numerical experiments show that among all possible combinations of locations for two
sensors for measuring the vehicle body vertical velocities, the optimal plan with minimal
J; 1s the one that the two sensors are located at the right end and the left end of the vehicle
body respectively. With the third sensor introduced, the best location i1s the middle of the
vehicle body. This sensor arrangement is consistent with what Hac [60] found:“the body
motion consists mainly of vibration connected with the lowest mode and to minimize
measurement errors the sensors should be located at extreme points of the functions of
these mode shapes”. Figure 8.32 offers the relationship between J, and weighting factor
p1 1n the A-i-O case when 4 and 5 sensors are used with the above optimal arrangements.
With the additional sensor located at the middle of the vehicle body, the value of J, is
lower than that for the 4 sensor arrangement over the lower p; value range within which
the active suspensions take effect.

To examine the behavior of the A-i-O based active suspensions (optimized without
Kalman filter at 20.0[m/s]) at other speeds, the performance indices of acceleration, wheel
dynamic deflection, and suspension working space based on the A-i-O are compared with
those based on the LQG. Figure 8.33 illustrates the dependence of these performance
indices on vehicle speed. Results shown in Figure 8.33 together with those offered in Figure
8.30 demonstrate that the optimized vehicle system based on the A-i-O method is better
controlled than that based on the LGQ) algorithm in vertical acceleration, wheel dynamic
load, and suspension working space with almost the same control power consumption over
the lower speed range and with less control power consumption within the higher speed
range. It should be noted that the optimized vehicle system based on the A-i-O method
achieves the above improvements even though its vehicle body mass (M) is 10% larger

than its nominal value.
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8.8 Summary

This chapter has demonstrated the feasibility and efficacy of applying the A-i-O multi-
disciplinary optimization method integrating GAs, multibody dynamics, the LQG control
strategy, and the Kalman filter algorithm to the design optimization of ground vehicles
with active suspensions. The A-1-O method is implemented in a sophisticated simulation
environment in such a way that the linear mechanical vehicle model is designed in the
A’GEM program, the optimal controller and Kalman estimator are constructed in MAT-
LAB, then the combined system including the mechanical vehicle model, optimal controller,
and Kalman estimator is optimized simultaneously by using genetic algorithms.

The A-1-O method is used to resolve the conflicting requirements for ride comfort,
suspension working spaces, and dynamic wheel loads in the optimization of quarter-vehicle
models and half-vehicle models (with or without vehicle body flexibility) with passive and
active suspensions. In the simulations, both random and deterministic track inputs and
both perfect measurement of full state variables and limited state variables with Kalman

filter cases are considered. The time domain analysis and a systematic covariance analysis
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are carried out.

Numerical results show that the optimized vehicle system based on the A-i-O method
has better overall performance than that derived using the LQG algorithm not only in ride
comfort and suspension working spaces, but also in wheel dynamic loads with almost the
same control power consumption over lower speed range and less control power consumption
within higher speed range. However, compared with passive suspensions, traditional active
vehicle suspension systems often achieve better performance which is a compromise among
ride comfort, suspension working space, and wheel dynamic load. These traditional active
vehicle suspension systems can rarely improve the vehicle performance in all of these three
aspects simultaneously [60]. Furthermore, the numerical results obtained in this research
demonstrate that the sequential optimization method, i1.e. optimizing the passive vehicle
system parameters first then designing controllers for the vehicle active suspensions based
on these optimized passive system parameters using the LQG algorithm, can not achieve the

results obtained by the A-1-O method. Based on an appropriately selected reference vehicle
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dynamic model, by means of normalizing each term of the required objective function,
the design optimization using the A-i-O method is greatly facilitated. The simulation
results based on the simple quarter-vehicle model can be used not only to analyze the
vehicle dynamic behavior qualitatively but also to validate the simulation results based
on complex vehicle models. With the co-existence of passive and active components in
vehicle suspensions and the design variables determined by using the A-1-O method, the
corresponding actuator forces can actively resist track disturbances much longer than the
actuator forces based on the case where the corresponding suspensions have no passive
elements and the design variables are determined by using the LQG algorithm. Although
a vehicle system is optimized at a specified vehicle speed based on the A-i-O method, the
resulting overall vehicle performance is still superior to that based on the LQG algorithm.

The above A-1-O method can be applied to the design optimization of complex ground
vehicle models with active suspensions. As a continuation of this research, the application
of the A-1-O method to the design optimization of a 9 DOF three-dimension rail vehicle
model with additional first bending mode and first torsional mode with active suspensions

is under way.



Chapter 9

Conclusions

9.1 Introduction

As discussed and identified in Chapter 1, the ultimate objective of the research is to
develop a novel methodology for the design optimization of rail vehicles with passive and
active suspensions. This goal has been successfully achieved. The feasibility and efficacy
of the methodology has been demonstrated by the optimization of the lateral stability,
vertical ride quality, curving performance, compatibility of lateral stability and curving
performance, and combined mechanical and control system of vehicles with passive and
active suspensions. This design methodology and the numerous conclusions drawn from
the above numerical experimental practices are believed to be significant contributions to
the design optimization of rail vehicles, rail vehicle dynamics, mechatronic systems, and
numerical optimization.

In this chapter, the achievements of the research are addressed and the related areas

for future research are proposed.

9.2 Proposed Design Optimization Methodology

The methodology for the design optimization of rail vehicles with passive and active suspen-

sions was proposed and developed in the research program. The essence of this methodology

203
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is that:

e The effective dynamic system modelling technique (multibody dynamics) is utilized
for the generation of complex realistic objective-oriented models (e.g. lateral stability

models, curving performance models, etc.).

e By means of multidisciplinary optimization methods, these coupled objective-oriented

models and/or additional control systems are integrated as a synergistic whole.

e With the scalarization technique, a vector optimization problem is converted into a

scalar optimization problem.

o With a genetic algorithm used at system level and the appropriately selected search
algorithms used at subsystem level, the passive and/or active design variables are

optimized simultaneously.

Numerical experiments demonstrated the feasibility and efficacy of the proposed design
optimization methodology for resolving conflicting design requirements. This methodology

1s suitable for complex design optimization problems where:

1. There is interaction between different systems or analysis disciplines.
2. There are multiple design criteria.
3. There are multiple local optima.

4. No matter whether the scalar objective function is continuous or discontinuous, there

1s no need for sensitivity analysis for the system solver or the GA.

5. There are multiple design variables.

The Limitation of the application of the methodology is that the associated computa-
tional burden is heavy. However, parallel processing, for which the methodology is ideally
suited, could be used for reducing the computer time required for the optimization.

Although the methodology was originally intended for the design optimization of rail
vehicles with passive and active suspensions, this general design methodology is also ap-
plicable to the design of other complex dynamic systems, e.g. automobile systems, robots,

and other mechatronic systems, with little modification.
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9.3 Optimization Methods and Algorithms

The proposed hybrid method, i.e. the combination of the All-in-One and Individual Dis-
cipline Feasible methods, extends the spectrum of existing multidisciplinary optimization
formulation methods. The hybrid method is especially suitable for the design problem
where, in addition to the interaction between systems or analysis disciplines, there is also
strong interaction between subsystems or subdisciplines within a system or discipline. This
hybrid method illustrated its effectiveness in resolving the conflicting requirements from the
lateral stability, vertical ride quality, and curving performance in the design optimization
of a rail vehicle with passive and active suspension.

Based on the results from the comparative study of optimization algorithms used in rail
vehicle suspension design, the GA is an effective optimization algorithm when numerical
multibody dynamics programs, such as A’GEM, are introduced into the design optimiza-
tion. In addition to its high reliability for finding the global optimum, the other advantage
of using GAs 1s that the algorithms can be directly combined with the included multi-
body dynamics program, without the need for additional sensitivity analyses. In contrast,
for traditional gradient-guided algorithms, such as SQP, whether or not the multibody
dynamics program can be successfully included into the design optimization depends on
finding an effective link between the algorithm and the multibody dynamics program for
sensitivity analyses. An efficient and reliable procedure for computing gradients is vital to
these algorithms. Numerical experiments showed that in order to ensure the effectiveness
of SQP, even for local optimum searching, sensitivity analysis and scaling the optimiza-
tion problems concerned are necessary and important steps. When the SQP works with
a numerical multibody dynamics program, if the dynamic system model is a linear model
and the objective and constraint functions are algebraic functions in terms of design vari-
ables, the numerical differentiation technique can be used to offer reliable gradients for
SQP. Choosing an appropriate difference interval for specific design variables and using
suitable scaling schemes for the optimization problem are important for the numerical
differentiation technique.

When both SQP and Simplex are used for optimizing complicated numerical multibody
models, the corresponding problems are usually highly nonlinear problems with multiple

local optima. With the increase of the number of design variables, the reliability of these
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algorithms to find the global optimum decreases. For a simple analytical model, where the
objective function and constraint functions can be explicitly expressed in terms of design
variables and these functions are smooth, SQP outperforms Simplex and GA. In both

computation efficiency and reliability for global search, Simplex is generally a compromise

option between SQP and GA.

9.4 Rail Vehicle Dynamics

The approach (using the SQP algorithm) proposed by Baumal, McPhee and Calamai
[12] for automatically identifying the critical speed of rail vehicles was investigated by
optimizing the lateral stability of a rail vehicle model with 17 DOF. The author developed
a novel approach by extending the existing SQP approach to include the dynamic mode
tracking (DMT) technique proposed by Anderson [7]. This novel approach is more reliable
than the SQP approach for identifying the critical speed. This new method converts a
stability problem into a dynamic mode tracking and a nonlinear programming problem by
using SQP and DMT instead of the Routh-Hurwitz criteria for this purpose for almost
a century. Since the governing equations similar to those of rail vehicles are found in
rotor dynamics, wind turbine dynamics, acronautics, and road vehicle dynamics [82], the
integrated approach using multibody dynamics, SQP and DMT can also be applied to
these problems in identifying the corresponding stability limit automatically.

The existence of sharply-discontinuous “cliffs” in the plots of critical speed versus sus-
pension stiffness was identified and originally interpreted using a modal analysis technique.
This sharp discontinuity in the critical speed occurs when the least-damped mode (eigen-
vector) determining the critical speed switches. In recognition of the cliff phenomenon, the
definition of critical speed is generalized in this thesis to make it a more practical measure
of lateral stability.

In the design optimization of a rail vehicle with respect to the lateral stability, curving
performance, and vertical ride quality, the resulting EP-optimal sets clearly demonstrated
that the vertical ride quality is almost independent of both lateral stability and curving
performance. This interesting numerical result coincides with the statement [54]: “It

has been observed that a relatively weak coupling exists between the vertical and lateral
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motions of a vehicle ...”.

9.5 Rail Vehicle Design

Numerical results illustrated that compared with inertial and suspension (stiffness and
damping) parameter sets, the geometric parameter set has the most significant effect on
lateral stability, curving performance, and vertical quality. By means of the GA, the sam-
pling distribution of each design variable can be investigated, important design variables
can be identified, and a design variable’s global performance and sensitivity over its whole
feasible domain can be judged. In the design of rail vehicle curving performance, the pa-
rameter study showed that the combination of angle of attack and L/V (lateral to vertical
contact forces) ratio is an effective curving performance design criterion. With the multi-
disciplinary, multicriteria, and multimodel design approach developed in the study, a clear
picture of the trade-off relationship between the conflicting design criteria of the lateral
stability and curving performance of a rail vehicle can be obtained. Numerical experiments
showed that this design approach can be used to automate the process of selecting design

variables for improving the compatibility of the fundamental conflicting design criteria.

9.6 Mechatronic Vehicle Suspensions

A novel design optimization approach using the A-i-O method to mechatronic vehicle
suspensions was proposed, developed, and tested by numerical experiments. This design
optimization approach is an application of the above design optimization methodology to
mechatronic vehicle suspensions. The A-i-O multidisciplinary optimization method makes
the dynamic vehicle model, the LQG controller, and the Kalman filter a synergistic whole.
The GA is utilized as an optimization solver at system level to coordinate the above coupled
analysis disciplines and find the optimized design variables including passive mechanical
and active control variables.

Numerical results showed that:

o A sequential optimization method, i.e. optimizing the passive mechanical system first

then, based on the optimized mechanical vehicle system, using the LQG to determine
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optimal controller, can not achieve the results obtained by the proposed approach.

e The optimized vehicle system based on the proposed approach has better overall
performance than that derived based on the LQG in all three aspects including ride

comfort, suspension working spaces, and wheel dynamic loads.

e With the co-existence of passive and active components in vehicle suspensions and
the design variables determined by using the proposed approach, the corresponding
actuator forces can actively resist track disturbance much longer than the actua-
tor forces based on the case where the corresponding suspensions have no passive

elements and the design variables are determined by using the LQG.

The proposed design optimization approach is applicable to the design optimization of

complex three-dimensional ground vehicle models with active suspensions.

9.7 Directions for Future Research

To improve the design optimization methodology (shown in the thesis) for dynamic multi-
body systems, extend the applications of the methodology, and make use of the results
obtained in the research as guidelines, several directions for future research are recom-

mended.

1. Implemention in Parallel Computational Environment. The current appli-
cations of the design optimization methodology and the corresponding results are
based on the numerical simulations performed on the SGI workstation in the Sys-
tems Modelling and Simulation Lab at the University of Waterloo. As discussed
previously in the framework of the methodology, a GA is applied as the optimizer at
the system level. With the parallelism property of GAs, the methodology is suitable
for applications using massively-parallel computers. If the current applications are
implemented in a massively-parallel computer system, the computation time could

easily be reduced approximately by a factor of the population size of the GA.

2. Application to the Design Optimization of Road Vehicles with an Inte-

grated Control System. Conventionally, for road vehicles, the anti-lock brake
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system (ABS) and anti-slip control (ASC+T, T means traction) system, four-wheel
steering (4WS) system, and active suspension system are controlled individually.
The three systems of ABS/ASC+T, 4WS, and active suspension are based on three
different directions of road vehicle dynamics, i.e. longitudinal, lateral, and vertical,
respectively. Today, road vehicle dynamics is developed to a stage where researchers
are trying to find an effective method to coordinate the three control systems and
derive an integrated control system [3, 44, 81, 89, 98, 121, 128]. The design opti-
mization methodology proposed in the thesis has already been successfully applied
to the design of rail vehicle suspensions using two lateral dynamic models (an sta-
bility model and a curving model) and a vertical dynamic model. Moreover, with
the methodology, the mechanical system and control system can be optimized simul-
taneously. The design optimization methodology is readily applicable to the design

optimization of road vehicles with an integrated control system.

3. Development of Algorithms for Automatically Identifying Stability Limit
Based on Nonlinear Analysis. Since the equations of motion of a rail vehicle are
nonlinear, it seems more realistic to analyze the lateral stability of the rail vehicle
using a nonlinear dynamic model than using a linear model. A few researchers have
reported their work in the areas of rail vehicle nonlinear stability in the past two
decades [55, 64, 104, 133, 134, 135]. To optimize the hunting stability automatically,
the algorithms for identifying the corresponding stability limit based on nonlinear
analysis are necessary. The algorithms developed in the study are based on the
linear stability analysis, but they could likely be modified to apply to the nonlinear

case.

4. Application to other Stability Problems. The numerical experiments shown in
the thesis has demonstrated the feasibility and efficacy of the algorithm using the
SQP and DMT for automatically identifying the critical speed of rail vehicles. Since
the governing equations (with an asymmetric stiffness matrix) similar to those of
rail vehicles are found in rotor dynamics, wind turbine dynamics, aeronautics, and
road vehicle dynamics [82], the algorithm can also be applied to these problems for

identifying the corresponding stability criterion automatically. Furthermore, when
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the algorithm is combined with a GA and a multibody dynamics software package,
e.g. ADAMS, the resulting combined approach can be applied to these problems in

searching the design variables for optimizing the corresponding stability.

5. Variable Geometry Active Suspensions for Rail Vehicles. The numerical
results obtained in the study demonstrated that, compared with inertial and sus-
pension (stiffness and damping) parameter sets, the geometric parameter set has the
most significant effect on the lateral stability, curving performance, and vertical ride
quality. For conventional rail vehicles, however, these geometric parameters are fixed
once the vehicle is designed and manufactured and they can not be changed with
the operating conditions. It seems natural to expect that by varying the relevant
geometric parameters with operating conditions, the rail vehicle may achieve better
performance. In recent years, Sharp and Watanabe [118, 137] have done pioneer
research on investigating variable geometry active suspension systems for passenger
cars and motorcycles. To control the leverage ratio between spring/damper unit and
wheel for a road vehicle, Watanabe and Sharp [137] derived a control system based
on a half-vehicle model. In developing the control system, both roll and jacking
responses of the car body were considered. Simulation results showed that variable
geometry suspensions have a capacity to give very good suspension performance with-
out too much additional weight and with very modest power consumption. Moreover
the control and mechanical implementation of the variable geometry active suspen-
sion system were reported to be practically feasible. These interesting results might
encourage and motivate researchers in rail vehicle dynamics to perform research on

this novel active suspension system for improving rail vehicle performance.



Appendix A

Rail Vehicle Dynamic System

Parameters and Matrices

A.1 Wheel/Rail Contact Data for the 17 DOF Model

Table A.1 below presents the wheel/rail contact data for the 17 DOF model used in Chapter
4.

Table A.1: Wheel/rail contact data for the 17 DOF model

Normal load on a wheel, W = 5.36 - 10*[N]; | Poisson’s ratio (for both wheel and rail materials),
Wheel rolling radius, ro = 0.356[m]; o =0.28;

Wheel transverse radius, 7, = 1.0 - 103°[m]; | Young’s modulus (for both wheel and rail materials),
Rail transverse radius, r, = 0.356[m]; E =2.0685- 1011 [N/m?].

Longitudinal creep coefficient, Lateral creep coefficient,

f11 = 8.6605 - 10[N; faa = 7.5848 - 10°[N];

Lateral/spin creep coefficient, Spin creep coefficient,

fa3 = 1.5334 - 104[N]; f33 = 61.560[N - m?].
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A.2 Nominal Design Variables for the 17, 20, 21, and
36 DOF Models

Table A.2 below offers the nominal design variables for the 17 DOF model (in Chapters 4
and 7), 20 DOF model (in Chapter 5), 21 DOF model (in Chapters 6 and 7), and 36 DOF
model (in Chapters 4 and 7).

Table A.2: Nominal design variables for the 17, 21, 20, and 36 DOF models [53].

(1) Inertial property parameters: Longitudinal damping, ¢2, = 0.0[N/m/s];
Wheelset mass, M, = 1190[kg]; Lateral stiffness, ks = 1.97 - 10°[N/ml;
Wheelset yaw inertia, I,,. = 408[kg - m?]; Lateral damping, c2y = 4.27 - 10*[N/m/s];
Wheelset spin inertia, I,,, = 200[kg - m?]; Vertical stiffness, ks, = 6.87 - 105[N/m)];
Bogie mass, My = 3072[kg]; Vertical damping, ¢z, = 4.27 - 10*[N/m/s].
Bogie yaw inertia, Iy, = 1622[kg - m?];

Bogie roll inertia, Iy, = 1144[kg - m?]; (4) Geometric Parameters:

Bogie pitch inertia, I, = 1622[kg - m?]; Half of contact point space, a = 0.756[m];
Carbody mass, M. = 3.282- 10%[kg]; Wheel conicity, A = 0.1;

Carbody yaw inertia, I, = 1.443- 10°[kg - m?]; | Half of bogie wheelbase, b = 1.042[m];
Carbody roll inertia, I., = 5.317 - 10*[kg - m?]; | Half of bogie space, L1 = 8.23[m);

Carbody pitch inertia, Half of primary suspension space,
I, = 1.443 - 10%[kg - m?). d = 0.586[m];

Half of secondary suspension space,
(2) Primary Suspension Parameters: g = 0.813[m];
Longitudinal stiffness, k1, = 3.15- 107[N/m]; Vertical distance from bogie center of mass
Longitudinal damping, ¢1, = 666[N/m/s]; to primary suspension, Ls = 0.0[m];
Lateral stiffness, k1, = 3.96 - 10°[N/m]; Vertical distance from bogie center of mass to
Lateral damping, ¢1, = 5220[N/m/s]; secondary suspension, Ls = 0.305[m];
Vertical stiffness, ki, = 2.10 - 10[N/m); Vertical distance from carbody center of mass
Vertical damping, ¢1, = 9910[N/m/s]. to the original point, Ly = 1.97[m];

Vertical distance from secondary suspension
(3) Secondary Suspension Parameters: to the carbody center of mass, Ly = 0.815[m];
Longitudinal stiffness, k2, = 0.0[N/m); Wheel nominal rolling radius, ro = 0.356[m].
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A.3 Nominal Design Variables for the 20 DOF Model

Table A.3 below presents the nominal design variables for the 20 DOF model used in
Chapter 4.

Table A.3: Nominal design variables for the 20 DOF model [136].

(1) Inertial property parameters:

Wheelset mass, M, = 1000[kg];

Wheelset yaw inertia, I,,. = 350[kg - m?];
Wheelset spin inertia, I,y = 200[kg - m?];
Bogie mass, M = 1200[kg];

Bogie yaw inertia, Iy, = 550[kg - m?];

Bogie roll inertia, Iy, = 450[kg - m?];

Bogie pitch inertia, I, = 500(kg - m?];
Carbody mass, M. = 1.4 - 10*[kg];

Carbody yaw inertia, I.. = 0.3 - 10%[kg - m?2];
Carbody roll inertia, I, = 2.2 - 10*[kg - m?];
Carbody pitch inertia,

I, = 0.25 - 10[kg - m?).

(2) Primary Suspension Parameters:
Longitudinal stiffness, k1, = 0.9 - 10°[N/m);
Longitudinal damping, ¢1, = 8500[N/m/s];
Lateral stiffness, k1, = 0.45 - 107[N/ml;
Lateral damping, ¢y, = 11000[N/m/s];
Vertical stiffness, k1, = 0.25- 10°[N/m)];
Vertical damping, ¢1, = 8000[N/m/s].

(3) Secondary Suspension Parameters:
Longitudinal stiffness, ko, = 0.15- 10°[N/m];

Longitudinal damping, ¢z, = 0.0[N/m/s];
Lateral stiffness, k2, = 0.55 - 10°[N/m];
Lateral damping, ¢z, = 1.5+ 10*[N/m/s];
Vertical stiffness, ks, = 0.55 - 10°[N/m];
Vertical damping, ¢z, = 4.0 - 10*[N/m/s].

(4) Geometric Parameters:

Half of contact point space, a = 0.756[m];
Wheel conicity, A = 0.1;

Half of bogie wheelbase, b = 1.0[m)];

Half of bogie space, Ly = 5.0[m];

Half of primary suspension space,

d = 0.55[m);
Half of secondary suspension space,
g = 0.6[m];

Vertical distance from bogie center of mass
to primary suspension, Lz = 0.0[m];

Vertical distance from bogie center of mass to
secondary suspension, L = 0.25[m];

Vertical distance from carbody center of mass
to the original point, Ly = 1.2[m)];

Vertical distance from secondary suspension
to the carbody center of mass, Ly = 0.85[m];
Wheel nominal rolling radius, ro = 0.356[m].
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A.4 The System Matrices for the 17 DOF Lateral Sta-
bility Model

Offered below are the mass matrix M;7417, damping matrix Ci7«17, and stiffness matrix

Ki7417 used in Chapter 4.

A.4.1 The Nonzero Elements of the Mass Matrix M7,17

Myy = My, Moy = Ly, Msz = My, May = Ipe, Mss = Iyw, Meg = My, Mz7 = Iy,
Mss = M., Moo = I.., Mio10 = lew, Mi111 = My, Miz12 = Luzy Misiz = My, Mig14 = I,
M15,15 — -[ba:7 M16,16 — Mum M17,17 — -[wz-

A.4.2 The Nonzero Elements of the Damping Matrix Ci7.17

01,1 = 2(01y + fzz/v), 01,3 = —201y, 01,4 = _2bcly7 02,2 = 2(d201m + a2f11/V), 02,4 =
—2d201m, 03,1 = —201y, 03,3 = 2(201y + Czy), 03,5 = —2L202y, 03,6 = —201y, 03,8 = _2C2y7
03,9 = —2L102y, 03,10 = 2L402y, 04,1 = _2bcly7 04,2 = —2d201m, 04,4 = 4d201m + 4b201y +
2920290, 04,6 = 2bcly7 04,7 = —2d201m, 04,9 = —2920290, 05,3 = —2L202y, 05,5 = 4d201z +
2g%co,+2L%cay, Cs s = 2Lacoy, Cs 9 = 2L1Lacay, Cs10 = —2(9cor+ LaLacay), Co3 = —2c1y,
Csa = 2bcyy, Cog = 2(c1y+ fa2/V), Cra = —2d%cyy, Crr = 2(d201m+a2f11/v), Css = —2c¢qy,
08,5 = 2L202y, 08,8 = 402y, 08,10 = —4L402y, 08,13 = —202y, 08,15 = 2L202y, 09,3 = —2L102y7
09,4 = —2920290, 09,5 = 2L1L202y, 09,9 = 4(92021' + L%c2y)7 09,13 = 2L102y, 09,14 - —29202907
09,15 = —2L1L202y, 010,3 = 2L402y, 010,5 = —2(9202z + L2L402y), 010,8 = —4L4C2y, 010,10 =
4(9202z + L42102y)7 Cho1s = 2L4csy, Cro15 = —2(9202z + LyLycay), Ci111 = 2(c1y + fo2/V),
011,13 = —201y, 011,14 = _2bcly7 012,12 = 2(d201m + a2f11/V), 012,14 = —2d201m, 013,8 =
—202y, 013,9 = 2L102y, 013,10 = 2L402y, 013,11 = —201y, 013,13 = 2(201y + C2y)7 013,15 =
—2L2C2y, 013,16 = —201y, 014,9 = —2920290, 014,11 = _2bcly7 014,12 = —2d201m, 014,14 =
4d201m+4b201y—|—29202m, Cla16 = 2beyy, Cran7 = —2d%cyy, Ciss = 2Lgcey, Ci59 = —2L1 Lacay,
Cis10 = —2(9202z + LyLycsy), Cis13 = —2L2cay, Ci515 = 4d%cy, + 2g%ca, + 2L§¢2y, Cie13 =
—201y, 016,14 = 2bcly7 016,16 = 2(Cly—|—f22/v)7 017,14 = —2d201m, 017,17 = 2(d201m‘|'a2f11/v)-
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A.4.3 The Nonzero Elements of the Stiffness Matrix Ki7,17

K11 = 2kyy, Kip = —2fy, Kig = —2kyy,, K14 = —2bkyy,, Ks1 = 2Xafi1/ro, Koy =
2P ki, Koy = —2d°k1y, K3y = —2kyy, K53 = 2(2k1y+ksy), kss = —2L2ksy, K5 = —2ky,,
Ksg = —2kyy, K39 = —2L1ksy, Ks10 = 2L4ksy,, Koy = —2bkyy, Kys = —2d%ky,, Kyq =
Ad? k1 + 40%k1y + 2% ko, Kag = 2bkyy, Ko7 = —2d%k1y, Kag = —2g°kas, K53 = —2Lsksy,
K5,5 = 4d2k1z + 292k2z + 2L§k2y7 K5,8 = 2L2k2y7 K5,9 = 2L1L2k2y7 K5,10 = —2(92k2z +
Ly Lyksy), Koz = —2k1y, Koa = 2bkyy, Koo = 2k1y, Ko7 = —2f22, K74 = —2d%k14, K76 =
2Xafi1/ro, Ko7 = 2d%k1e, Kss = —2kay, Ks5 = 2Lskay,, Kgg = 4kyy, Kg10 = —4Laksy,
Ksis = —2ksy, Ksis = 2Lsksy, Kos = —2L1ksy, Koy = —2¢°kss, Kos = 2L1Lsky,,
K9,9 = 4(92k2m + L%k2y)7 K9,13 = 2L1k2y7 K9,14 = —292k2m, K9,15 = _2L1L2k2y7 K10,3 =
2L4ksy, Kios = —2(9°k2. + Ly Laksy), K1og = —4Lskay, Ki010 = 4(9%ka. + Liksy), Ki01s =
2L4ksy, Kio1s = —2(g°ke. + LaLsksy), K111 = 2k, Ki11s = —2kyy, Ki114 = —2bky,,
Kio11 = 2Xafii/ro, Kisge = 2d%ky,, Kip14 = —2d%k1,, Kiss = —2ksy,, Kiso = 2L1kyy,
K30 = 2L4ksy, Kis11 = —2k1y, Kis1s = 2(2k1y + kay), Kis15 = —2L3ksy, Kis16 = —2kyy,
K9 = —2g% ko, Ki411 = —2bkyy, Kia12 = —2d%kyy, Kis14 = 4d?ky, + 4b2k1y + 2% ks,
Kis16 = 2bk1y, Kia17 = —2d°k1,, K158 = 2Lk, K159 = —2L1 Lok, K1510 = —2(g ks, +
Ly Lyksy), Ki513 = —2Loksy, Kis15 = 4d?ky, + 297 ks, + 2L§k2y7 Ki613 = —2k1y, Kig14a =
20k, Kig16 = 2k1y, Ki714 = —2d%k10, Ki716 = 2Xaf11/ro, Ki717 = 2d%ky,.



Appendix B

Vehicle Dynamic System Parameters

and Matrices

B.1

The vehicle system parameters for the half-vehicle models with rigid vehicle body and

Half-Vehicle Model System Parameters Used in

Chapter 8

flexible vehicle body are shown in the following tables.

Table B.1: Nominal vehicle system parameters for the half-vehicle model with rigid vehicle

body [131].

Inertial property Geometric Primary suspension | Secondary suspension

parameters: parameters: parameters: parameters:

M = 505.1[kg] I = 2.5654[m)] ks = 155.9[kN/m] k1 = 19.96[kN/m]

my = 28.58[kg] by = 2.5654[m] | ¢z = 0.0[N/m/s] c1 = 2014.0[kN/m/s]

ma = 54.43[kg] by = 0.0[m) ks = 155.9[kN/m] ko = 22.59[kN/m]

I. = 651.0[kg x m?] | a1 = 1.0978[m] | c4 = 0.0[N/m/s] ¢z = 2082.0[kN/m/s]
as = 1.4676[m)
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Table B.2: Nominal vehicle system parameters for the half-vehicle model with flexible
vehicle body [60].

B.2

Inertial property Geometric Primary suspension | Secondary suspension
parameters; parameters; | parameters: parameters:

M = 10*[kg] I =12.0[m] | ks =2000.0[kN/m] | k1 = 200.0[kN/m]
my = 103[kg] b1 =2.0[m] | ¢3 = 0.0[N/m/s] c1 = 20[kN/m/s]

ma = 103[kg] by = 2.0[m] | k4 =2000.0[kN/m] | ko = 200.0[kN/m]

I. = 1.2 x 10%[kg x m?] | a1 = 4.0[m] | ca = 0.0[N/m/s] ¢z = 20.0[kN/m/s]
ET = 108[N x m?] az = 4.0[m]

pA = 834.0[kg/m)]

Half-Vehicle Model Dynamic System Matrices Used
in Chapter 8

B.2.1 Rigid Vehicle Body Case

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
A=| NI . 0 —utm o oa 0 0 (B.1)
k1 My, —ki My —kaMyo ko Mo c1 My —ca My —caMjs ca Mo
I.M I.M I.M I.M I.M I.M I.M I.M
0 0 ka+kq ko 0 0 __catey c2
—k1 Mo k1 Mo k21\1;}222 —kTJ\Q/Im —c1 Mo c1 Mo 021\1/?222 —CTJ\Q/IM
B I.M I.M I.M I.M I.M I.M I.M I.M .
where M11 = CI,%M + -[m M12 = a1a2M — -[m M22 = Cl,gM + -[c-
T
B 0000 —1/my 1/M+a2/l, 0 1/M — ajas/1. (B.2)
o000 1/M —ayas/I, —1/my 1/M + a2/, '
1 1 0 0 0 0 0 !
D=| = o/ (B.3)
0 0 -1 =1 0 0 cifms O
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o O O =
o O = O
o = O O
= o o O
o O O O
o O O O

B.2.2 Flexible Vehicle Body Case

For convenience, it is assumed that the matrix A is divided into two sub-matrices A; and

A, as follows
A= [ A, A, ] (B.5)

where sub-matrices A; and A, can be further expressed as:

0 0 Az Ais 0 A 0
0 0 Ass Asy 0 0 0
Azr  Ase Asz Asy 0 Az 0
Agr Asp Asz Agy 0 Ay 0
0 0 0 0 0 As g 0
Ag 1 0 Ass  Asa Ass Asg 0
A, = 0 0 0 0 0 0 0 (B.6)
0 Ags Ags  Asa 0 0 Ag
0 0 0 0 0 0 0
A1 Az Aoz Awoe 0 Ae 0
0 0 0 0 0 0 0
A1 Arzz Az Aaa 0 Apg 0
0 0 0 0 0 0 0
Argr Arap Az Awa 0 A 0




Vehicle Dynamic System Parameters and Matrices 219
0 0 A1 10 0 Ai1s 0 A1 g
Asg 0 Az 10 0 Az s 0 Az g
Asg 0 As 10 0 Asz1g 0 Az 14
Ayg 0 Ag10 0 Ag1o 0 Agig
0 0 0 0 0 0 0
0 0 As 10 0 Ag 12 0 As 14
A, — Arg 0 0 0 0 0 0 (B.7)
Agsg 0 As 10 0 Ag 12 0 Ag 14
0 0 Ag 10 0 0 0 0
Aog Ao Ao 0 Ai10,12 0 A10,14
0 0 0 0 A1112 0 0
Apg 0 Ao Asn Aizae 0 A1s14
0 0 0 0 0 0 Ais14
| Ang 0 Ao 0 A1g12 Agis Arag |
where the elements of matrices A; and A, are given as: A;3 = 1, A14 = a1, A1 =

=1, A1 = Zi(b1), A112 = Za(b1), A11a = Zs(by), Ass = 1, Ay = —ag, Ass =
—1, Asi0 = Zi(bs), As1s = Zs(ba), Aspa = Zs(bs), Asy = —ki/M, Asy = —ky/M,
A3,3 = —(01 + 02)/M, A3,4 = —(Glcl - a2c2)/M, A3,6 = Cl/M7 A3,8 = 02/M, A3,10 =
—(c1Z1(b1) + c2Z1(by)) /M, Asz1s = —(c1Z2(b1) + c2Z2(bs))/M, As1a = —(c1Z3(b1) +
02Z3(bz))/M, A4,1 = —lel/fc, A4,2 = szz/fc, A4,3 = —(Glcl - a2c2)/Ic, A4,4 = _(a'%cl +
chz)/fc, A4,6 = Glcl/fc, A4,8 = —a2c2/Ic, A4,10 = —(Glclzl(bl) - a'2C2Z1(b2))/IC7 A4,12 =
—(Glclzz(bl) - a2c2Z2(b2))/Ic, A4,14 = —(G101Z3(bl) - G202Z3(bz))/—7c, A5,6 = 1, A6,1 =
kl/mh A6,3 = Cl/mh A6,4 = alcl/mh A6,5 = —k3/m1, A6,6 = —(01 + c3)/m1, A6,10 =
Clzl(bl)/mh A6,12 = 01Z2(b1)/m17 A6,14 = 01Z3(b1)/m17 A7,8 = 1, As,z = kz/m‘z, A8,3 =
Cz/mz, A8,4 = —Gzcz/mz, A8,7 = —k4/m2, As,s = —(Cz + c4)/m2, As,lo = c2Z1(b2)/m2,
A8,12 = c2Z2(b2)/m2, A8,14 = c2Z3(b2)/m2, A9,10 = 1, A10,1 = _klzl(bl)/Mh A10,2 =
_k2Z1(b2)/M17 A10,3 = _(Clzl(b1)+c2zl(b2))/M17 A10,4 = _(alclzl(bl)_a2C2Z1(b2))/M17
Alo,e = Clzl(bl)/Mh Alo,s = C2Z1(b2)/M17 A10,9 = —’Yl/Ml, A10,10 = —(19’)’1 + 01Z12(b1) +
02Z12(b2))/M1, Atg12 = —(c121(b1) Z(b1)+¢2Z1(b2) Z2(bs)) /My, Aro1a = —(c1Z1(b1) Z5(b1)+
c2Z1(ba) Zs(b2)) /My, A111s = 1, A1a1 = —k1Z5(b1) /M3, Ar2s = —kaZs(bs) /M3, Aras =
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—(Clzz(bl) + C2Z2(bz))/M2, A12,4 = —(Glclzz(bl) - Gzczzz(bz))/M‘z, A12,6 = 01Z2(b1)/M27
A12,8 = szz(bz)/M‘z, A12,10 = _(Clzl(bl)Z2(b1) + C2Z1(b2)Z2(b2))/M27 A12,11 = —’)’2/M2,
A1z12 = —(19’)’2+01Z§(51)—|—02Z§(52))/M2, A1 = —(€1Z2(b1) Z3(b1) + caZa(b2) Z5(b2)) | Mo,
Arzia =1, Ary1 = —k1Z3(b1)/Ms, A1y g = —ksZ3(by)/Ms, A14s = —(c1Z3(b1)+c2Z3(b2))/ Ms,
A14,4 = —(G101Z3(bl)—G202Z3(bz))/M3, A14,6 = 01Z3(b1)/M37 A14,8 = 02Z3(bz)/M3, A14,10 =
—(c1Z1(b1) Z3(b1) + c2Z1(bs) Z3(bs)) /M3, A1a12 = —(c1Z2(b1)Z3(b1) + c2Z5(bs) Z5(bs))/Ms,
Ajg1s = —v3/Ms, Arg1a = — (973 + c1 Z2(by) + c2Z2(b2))/ Ms.

Again it 1s assumed that the matrix B takes the following format
T
B=|B, B | (B.8)

where the matrices B; and B, are expressed as follows

B1:

00 I/M a/I. 0 —1/my 0
00 1/M —ay/l, 0 0 0
B 0 0 Zi(by)/My 0 Zy(by)/M;y O Zs(by)/Ms

(B.9)
2—!_1/m2 0 Zi(bs)/My 0 Zy(by)/M> 0O Z3(b2)/M3]

The disturbance matrices D; and D, are of the following forms

(00000 & 0 0 000000
D, = 3/m1 (B.10)
| 00000 0 0 ky/my 00 0 0 0 0
(0000 0 0 0 00 0O0O0O 0
D, — ¢s/m (B.11)
00000 0 0 cy/my 00 0 0 0 O
Once 4 velocities are measured, the output matrix C, takes the following form
0 0 0173 0174 0 0 0 0 01710 0 01712 0 01714 0 0
Ca _ 0 0 0273 0274 0 0 0 0 02710 0 02712 0 02714 0 0 (B]_2)
00 O 0 0 Cs6 0 o 0 0 0 0 0 00
00 O 0 0 0 0 Cse 0 0 O O O 0 00

where C13 =1, Ci14 = —(az + bs), Cr10 = Z1(0), Cr12 = Z5(0), C114 = Z5(0), Co5 =1,
02,4 =l—ay;— b27 02,10 = Zl(l)7 02,12 = Z2(l)7 02,14 = Z3(l)7 03,6 = 17 04,8 =1.
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However, if 5 velocities are measured, the output matrix C, is offered as follows

00 Cig Coa 0 0 0 0 0 Cro 0 Cras 0 Crag 0 0

000 Cos 0 0 0 0 0 0 Coo 0 Cozs 0 Cagg 0 0
Co=100 Cs5 Cs4 0 0 0 0 0 Cs10 0 Cs19 0 Cs14 0 0| (B.13)

00 0 0 0Ci 0O 0 0 0 0 0 0 0 00

(00 0 0 0 0 0GCsO0 0 0 0 0 0 00

where 01,3 = 17 01,4 = —(az + b2)7 01,10 = Z1(0)7 01,12 = Z2(0)7 01,14 = Z3(0)7 02,3 = 17
Coi0 = Zi(as + bs), Co12 = Zs(as + bsy), Co1a = Zz(az + by), C35 =1, C34 =1 — ay — b,,
03,10 — Zl(l)7 03,12 — Z2(l)7 03,14 — Z3(l)7 04,6 = ]-7 05,8 = 1.

B.3 Weighting Matrices G, H, and N for Equation
(8.51)

Gia Gip2 Gis Giga
G— G2y Ga2 Gas Gag (B.14)
Gsy, Gsp Gss Gsa

Gin Gap Gas Gag

where Gi 1 = p1v?ki + paki /mi + ps + pa, Gr2 = Gag = (—2p102k3 — 2p2k3 /m3 — 2p4) /2,
Gis = G31 = (2p1v2caks + 2pacoka/m3) /2, G1a = Ga1 = (—2p1vPcaks — 2pacaka/m3) /2,
G = paki/m3 + p1v*ks + pa, Gos = Gzz2 = (—2P1V202k2 — 2p2c2k2/m§)/2, Gara =
Gua = (2p1vicaks + 2pacaka/m3) /2, Gz = pack/mi + p1vici, Gza = Gas = (—2p1v7ck —
2pac3/m3) /2, Gaa = pacy/m3 + prvics.

H = po/m} + py (B.15)

NT — [ N171 N271 N371 N471 ] (B16)

Where N171 = (2pll/k2 —|— 2[)2]@2/7713)/2, N271 = (—2pll/k2 — 2[)2]@2/7713)/2, N371 = (2p11/62 —|—
2paca/m2) /2, Nyi = (—2p1ves — 2paca/m3) /2.
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B.4 Weighting Matrices G, H, and N for Equation
(8.54)

Gip Gip Giz Gig Gis
Gz1 Gap Gaz Gag Gags
G=| Gs1 Gsa2 Gss Gsa Gsgs (B.17)
Gar Gap Gaz Gaa Gus
Gsi Gsp Gsz Gsa Gss

where G5 = —ps3, Gas = 0, Gz5 = 0, G45 = 0, G55 = ps. The other elements of the

matrix are the same as the corresponding elements of the matrix shown in (B.14).

H = ps/m5 + p1 (B.18)

NT:[Nl,l Nz,l N3,1 N4,1 N5,1] (B-19)

where N5; = 0 and the other elements of the matrix are the same as the corresponding

elements of the matrix shown in (B.16).

B.5 Weighting Matrices G, H, and N for Equation
(8.55)

Gii Giz Giz Gia Gis Gig Gir Gig
Ga1 Gaz Gaz Gag Gas Gag Gor Gag
Gs1 Gsa Gssz Gsa Gzs Gse Gsr Gsg
G Gin Gap Gas Gaa Gas Gus Gag Gus (B.20)
Gs1 Gsz Gssz Gsa Gss Gseg Gsr Gsg
Ge1 Gea Ges Gea Ges Ges Ger Gegs
Grai Gra Grz Gra Grs Grg Grr Grg
Gs1 Gsa Gssz Gsa Gss Gseg Gsr Gsg
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where A, = 1/M + a*/1., B, = 1/M + ¥*/I., Ay = 1/M — ab/l., G11 = kip A2 +
ps + kfpzAg + p5; G2 = —kf(PlAi + ps + P2A§), Gis = kiks(p1AvAs + p2BrAr), G1a =
—kika(p1AvAs + p2ByAp), Gis = ciki(p1A2 + p2AL), Gig = —ciki(p1 A2 + p2A?), Gi7 =
cok1(p1AvAg + paBrAb), Gis = —caki(p1AvAs + p2BrAs), Gag = Gia, Gaa = p1kiAZ +
szng + ps, G2,3 = —kika(p1AvAs + p2BoAb), Gaa = kika(p1AvAs + p2BoAp), Gos =
_Clkl(PlAi + P2A§), Gaoe = Clkl(PlAi + P2A§), Gar = —cok1(p1ApAa + p2BrAs), Gag =
coki1(pr1AvAs + p2BLA), Gs1 = Gi3, Gs2 = Gasz, Gss = pa + pzkng + plkSAi + pe,
Gsa = —ki(plAi + pe + Png), Gs5 = crha(p1AcAy + p2ApBy), Gsg = —cika(p1AsAsy +
P2AbBb)7 G3,7 = Czkz(mAg + Png), G3,8 = —C2k2(P1A§ + Png), G4,1 = G1,4, G4,2 = G2,47
Gas = Gsa, Gaa = K3p2BE 4+ kip1A: 4 ps, Gas = —cika(prAads + p2ApBy), Gag =
crka(prAcA + p2AvBy), Gar = —caka(p1 A + paBE), Gag = coka(p1 A? + paBE), G(5,1) =
Gis, G(5,2) = G25, G(5,3) = G35, G(5,4) = Gu5, G(5,5) = 3(p1 42 + p24}), G(5,6) =
—2(p1A2 + p2A2), G(5,7) = crea(prApAa + p2BrAy), G(5,8) = —cica(prApAa + p2 By Ap)
G6,1 = G1,67 G6,2 = G2,67 G6,3 = G3,67 G6,4 = G4,67 G6,5 - G5,67 G6,6 = C%(PlAi + PzAg)
Gor = —ci1ca(p1AvAa + p2ByAp), Ges = cica(prAvAa + p2BoAs), Gr1 = Gi7, Gra = Gaz
Grs = Gsg, Gra = Guq, Grs = Gsq7, Grg = Ger, Grr = Cg(plAg + sz,?), Grs =
—c§(p1A§ + Png), Gs,l = G1,87 Gs,z = Gz,s, G8,3 = G3,87 G8,4 = G4,87 G8,5 = G5,87
Gse = Geg, Ggr = Grg.

Y
Y
Y

A? A? A A, By A
H— PLA, + p2 Ap P14 ; + p2 I; b (B.21)
p1AvAL + p2 BrAy p1 Ay + p2 B
NT — Nii Nai Nsi Nai Nsi Negi Nzio Nsa (B.22)
Nis Niss Nsas Nss Nsa Nga Nya Ngo

where Ni1 = ki(p1A2 4 p2 A7), Nip = ki(p1ApAa + paBpAp), Nax = —ki(p1AZ + p2 A7),
Nooy = —ki1(p1AvAs + p2BvAp), N3i1 = ka(p1AcAy + p2AvBy), N3 = kz(mAg + Png),
Ny1 = —ka(p1AcAp + p2AsBy), Nao = —ko(p1A? + paBE), Ns1 = c1(p1AZ 4 p2A?), N5 =
c1(p1ApAy + p2BrAy), No1 = _Cl(plAi + P2A§), N = —c1(p1ApvAa + p2BrAp), N7y =
c2(p1AcAy + p2AvBy), Nio = 02(P1A§ + Png), Ns1 = —ca(p1AcAs + p2ArBy), Ngo =
—ca(prA} + p2By).
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