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AbstractA methodology for the design optimization of rail vehicles with passive and active suspen-sions is presented. The methodology has the following features: (1) multibody dynamics isused for modelling and simulating complex realistic vehicle systems; (2) multidisciplinaryoptimization (MDO) methods are introduced to make coupled vehicle models and addi-tional control systems a synergistic whole; (3) with genetic algorithms (GAs) and othere�ective search algorithms, the mechanical and control design variables can be optimizedsimultaneously; (4) with the scalarization technique, a vector optimization problem is con-verted into a scalar optimization problem. The proposed methodology is applied to severaldesign optimization problems. First, a rail vehicle is optimized with respect to lateral sta-bility. Second, the rail vehicle is designed so that ride quality is the sole design criterion.Third, the design variables are searched in the feasible design space so as to make the railvehicle have optimal curving performance. Then, the rail vehicle is optimally designedfor obtaining trade-o� solutions among con
icting requirements from lateral stability, ridequality, and curving performance. Finally, the methodology is used to optimize the com-bined mechanical and control systems for vehicles with active suspensions. Of the resultsobtained, several of them contribute to the �elds of rail vehicle dynamics and design,mechatronic systems, and numerical optimization.For automatically identifying the \critical speed" (above which a rail vehicle's responsebecomes unstable), a new approach combining sequential quadratic programming (SQP)with the Dynamic Mode Tracking (DMT) technique is proposed and developed. The newapproach is compared with that using SQP alone. It is found that without DMT, severalmore SQP runs are often needed to �nd the critical speed because the relationship betweenmode damping and speed deviate from their actual shapes. In the process of optimizing thelateral stability of a rail vehicle model, the existence of sharply-discontinuous \cli�s" in theplots of critical speed versus suspension sti�ness is identi�ed and originally interpreted. Inrecognition of the cli� phenomenon, the de�nition of critical speed is generalized to makeit a more practical measure of lateral stability. In the design optimization of a rail vehiclewith respect to the lateral stability, vertical ride quality, and curving performance, theresulting Edgeworth-Pareto (EP) optimal sets clearly demonstrated the trade-o� relationbetween lateral stability and curving performance. Moreover, the resulting EP-optimalv



sets visualize a well-known fact that a relatively weak coupling exists between the verticaland lateral motions of a rail vehicle.To identify e�ective algorithms for rail vehicle suspension design, the GA, SQP, andSimplex algorithms are compared in the processes of optimizing lateral stability and ridequality. Results show that the reliability of the SQP and Simplex for �nding the globaloptimum decreases with an increase in number of design variables. However, despite non-smooth objective function surfaces with many local optimal points, the GA can reliably�nd global optima. By means of GAs, important design variables can be identi�ed andthe relative signi�cance of design variable sets, e.g. inertial, geometric, and suspension(sti�ness and damping) parameter sets, can be decided. When ride quality analysis isperformed in the frequency domain based on a linear vehicle model, if SQP is used witha multibody dynamics program, e.g. A'GEM, the numerical di�erentiation technique forcomputing gradients can be used e�ciently as a link between the multibody program andSQP.As an application of the proposed methodology, an integrated design approach tomechatronic vehicle systems is used to resolve the con
icting requirements for ride comfort,suspension working spaces, and dynamic wheel loads in the optimization of quarter-vehiclemodels and half-vehicle models with active suspensions. Both deterministic and randomtrack excitations and both rigid and 
exible car body cases are considered. The approachis implemented in a GA-A'GEM-MATLAB simulation environment in such a way that thelinear mechanical vehicle models are generated in the multibody program of A'GEM, thecontrollers and �lters are modelled in MATLAB, and the coupled mechanical and controlsubsystems are optimized simultaneously using the GA. The numerical simulation resultsare reported and discussed.
vi
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Chapter 1Introduction1.1 Motivation1.1.1 Multiple Model and Design Criteria Optimization ProblemBecause of con
icting requirements for lateral stability, ride comfort, curving performance,track loading, and the economics of manufacturing, designing a rail vehicle is a challengingtask to untangle the web of the interactions among these contradictions and to resolvethem. Of all contradictory design goals of rail vehicles, two of them, i.e. lateral stabilityand curving performance, may be the most fundamental and important, which have beenbothering rail vehicle designers and researchers since the beginning of the history of railvehicle dynamics till today [41, 125, 141, 142]. These two contradictory design goals can bede�ned as follows respectively : (1) rail vehicles should be designed to travel comfortably athigh speeds on straight or \tangent" track; (2) rail vehicles should be designed to traversecurved track without excessive noise or wear that arises from misalignment of the wheelsetswith the track [8].To improve compatibility between dynamic stability and curving performance, design-ers and researchers have used equivalent interaxle shear and bending sti�ness relationshipsto determine optimal suspension characteristics [13, 75, 127]; other researchers have turnedto local search numerical optimization algorithms combined with Routh-Hurwitz criteria[29, 32]. Neither approach is well-suited to the multidisciplinary optimization of the com-1



Introduction 2plex nonlinear dynamic models now available from multibody dynamics programs such asADAMS [113] or A'GEM [136], especially when more then a few design parameters andmultiple local optima are being considered.Although multibody dynamics programs such as ADAMS or A'GEM are e�ective toolsfor modelling and simulating rail vehicles, from a design point of view, the drawback of theseprograms is that they only provide analyses of systems whose design variables have beenspeci�ed. Design optimization, parametric studies, and sensitivity analyses are di�cultto perform [87]. Instead, design engineers must decide by trial and error how to changedesign variable values and repeat the analysis until performance measures satisfy designspeci�cations [97]. This \manual" process is tedious and time-consuming for complexsystems with nonlinear performance measures [10].To �nd e�ective trade-o� solutions for complicated con
icting design criteria, an ef-fective method is to use various mathematical models, each of which concentrates on aspeci�c aspect of interest, and synthesize the design results based on di�erent objective-oriented vehicle models. Therefore, if the vertical ride quality, lateral stability, and curvingperformance of a rail vehicle should be optimized simultaneously, it is natural that the cor-responding ride quality model, lateral stability model, and curving performance modelshould be included in the optimization problem.Based on the above considerations, if the lateral stability, vertical ride quality, and curv-ing performance of a rail vehicle should be optimized simultaneously, if the processes of theselection of appropriate design variables should be automated, and if e�ective modellingand simulation tools of multibody dynamics software are introduced, one is confronted withthe following challenges: which optimization method or methods and which optimizationalgorithm or algorithms are suitable for the multiple model and design criteria optimiza-tion problem? how can we make the various numerical algorithms, multibody dynamicsprograms, multiple models, and other relevant systems or analysis disciplines a synergisticwhole so that the rail vehicle can be optimized e�ectively?1.1.2 Lateral Stability Optimization ProblemWith the consideration of dimensionality (i.e. the number of design criteria) of the aboveoptimization problem and the complexity and expense of the underlying analysis, it seems



Introduction 3reasonable for us to decompose the above multiple model and design criteria optimizationproblem into smaller and more manageable subsystems. Accordingly, we are confrontedwith, at least, three independent problems: lateral stability optimization, vertical ridequality optimization, and curving performance optimization.Consider �rst the lateral stability optimization problem. Two approaches have beenapplied to the problem. First, conventional local search algorithms combined with theRouth-Hurwitz criteria were once used to optimize rail vehicles for maximizing the criticalspeed (above which a rail vehicle's response becomes unstable) [29, 32]. Recently, Baumaland McPhee [11] replaced the conventional local search algorithms and the Routh-Hurwitzcriteria with a genetic algorithm (GA) and a nonlinear programming routine, i.e. sequentialquadratic programming (SQP), respectively, and used the resulting approach for optimizinga 7 degree of freedom (DOF) rail vehicle model. With the two approaches to the lateralstability optimization, one faces the following problems. Is it necessary to replace the morecomputation e�cient local search algorithms with the less e�cient global search algorithm?Is the SQP valid for identifying the critical speed of rail vehicles when the required systemparameters are o�ered? Moreover, could multibody dynamics programs such as A'GEMbe integrated with the existing algorithms or analysis disciplines for optimizing the lateralstability of rail vehicles e�ectively?1.1.3 Vertical Ride Quality Optimization ProblemIn ground vehicle design, in order to determine optimal suspension characteristics and rideproperties in particular, a number of optimization algorithms, both local search and globalsearch algorithms, have been used and investigated. However, to date, very few resultson identifying e�ective optimization algorithms for vehicle ride quality analysis have beenpublished. No literature concentrates its analysis on the following issues: the necessity ofglobal search algorithms for vertical ride quality analysis; preferable options of certain kindof search algorithms (e.g. gradient-guided) to others (e.g. direct search) for di�erent vehicledynamic models, e.g. symbolic analysis model or numerical model; and the suitability ofnumerical di�erentiation for gradient evaluation for linearized vehicle models with the ridequality analysis performed in the frequency domain.



Introduction 41.1.4 Curving Performance Optimization ProblemFor the curving performance optimization problem, conventional practice has been a trialand error method by which designers change design variable values and re-perform theanalysis until a set of performance measures becomes acceptable [74, 97]. Therefore, pro-cesses that automate the selection of appropriate design variable values can be used todevelop invaluable tools for rail vehicle designers.It seems that no literature reported the application of numerical approaches to thecurving performance optimization. There are several factors that hinder the application ofnumerical optimization to the curving performance problem. First, the dynamic curvingbehavior of rail vehicles has not been as extensively studied as that of the lateral stabil-ity behavior [13]. This phenomenon of insu�cient research in curving performance canbe interpreted by the fact that large deviations in numerical results of curving behav-ior simulations arose between software packages, e.g. VAMPIRE, GENSYS, SIMPACK,ADAMS/Rail-MEDYNA, and NUCARS, participated in the Manchester benchmark exer-cise in 1997 [77]. Notice that the above software packages are commonly used by designersand researchers for predicting dynamic behavior of rail vehicles. The benchmark resultsshowed that for a speci�ed vehicle and track case, which is used for predicting the vehiclebehavior in a speci�ed constant radius and superelevation part of track, between the above�ve packages, the highest deviation in steady-state Lateral/Vertical (L/V) force ratio atthe outer wheel on the �rst wheelset reaches as high as 6:7%, and the highest deviationof the peak value of the L/V ratio reaches as high as 10:3% [77]. Second, it is di�cult toformulate a simple performance index to re
ect the complicated dynamic behavior of railvehicles on curves, especially when the wheelset excursion has exceeded the 
ange clear-ance [13]. Third, if conventional gradient-guided search algorithms are applied to curvingperformance optimization problem, the sensitivity analysis could be di�cult to perform,especially when nonlinear dynamic curving models are used.With the above considerations, even if a reliable multibody dynamics program is avail-able for modelling a rail vehicle and simulating the corresponding curving behavior, oneis still confronted with the problems of �nding a suitable optimization algorithm or al-gorithms and selecting an e�ective objective function that re
ects the realistic curvingperformance measures.



Introduction 51.1.5 Combined Mechanical and Control System Design Prob-lemConventionally, a common practice has been a sequential approach, so that a passive me-chanical vehicle system is designed �rst and the active elements of the vehicle suspensionsare added subsequently. The resultant design may behave less optimally overall due to notconsidering simultaneously the mechanical parameters and control parameters as designvariables. Since there are inherent couplings among the passive vehicle system, active sus-pension controller, and sensors, it is expected that an integrated control and mechanicaldesign process may coordinate the di�erent or con
icting requirements from the mechanicalsystem and control system so as to achieve an optimal behavior of the overall vehicle.It is shown [126] that in the design of a glider, a simultaneous optimization of aero-dynamics, structures, and control is more e�cient than the corresponding sequential ap-proach. The inadequacy of the sequential approach to the simultaneous optimization moti-vates the application of multidisciplinary optimization (MDO) to the simultaneous designof a structure and a control system to achieve active 
utter suppression.With the above example, it seems natural to expect that multidisciplinary optimizationmay o�er a promising approach to the simultaneous design of active elements and passivecomponents in the design optimization of vehicles with active suspensions.1.2 Research ObjectivesThe primary goal of the research is to develop a methodology for the design optimizationof rail vehicles with passive and active suspensions. The framework of the methodologyconsists of the following main components: application of multidisciplinary optimizationto the simultaneous manipulation of design variables for several systems or analysis disci-plines between which there are strong interactions; introduction of multibody dynamics fore�ective modelling and simulation of rail vehicles under di�erent operating conditions; useof genetic algorithms for reliable global optimal solutions; development of an approach forautomatically identifying the critical speed of rail vehicles; and selection of strategies forestablishing e�ective objective functions for facilitating the complex optimization problem.



Introduction 6The following steps are taken to develop the proposed methodology:1. Optimizing a rail vehicle with respect to lateral stability;2. Optimizing rail vehicles with respect to vertical ride quality;3. Optimizing a rail vehicle with respect to curving performance;4. Optimizing a rail vehicle with respect to lateral stability, curving performanceand vertical ride quality, simultaneously;5. Simultaneously optimizing mechanical system and control system of mecha-tronic ground vehicles with respect to ride comfort, dynamic wheel loads, andsuspension working spaces.In the process of developing the proposed methodology, several results are obtained. Ofthese results, listed below are those that contribute to the �elds of rail vehicle dynamicsand design, mechatronic systems, and numerical optimization:� The existence of sharply-discontinuous \cli�s" in the plots of critical speed versussuspension sti�ness is identi�ed and originally interpreted using modal analysis tech-niques. This sharp discontinuity in the critical speed occurs when the mode (eigenvec-tor) determining the critical speed switches. In recognition of the cli� phenomenon,the de�nition of critical speed is generalized to make it a more practical measure oflateral stability.� An e�ective approach combining SQP and a dynamic mode tracking (DMT) tech-nique [7] is developed for identifying the critical speed automatically. Since the gov-erning equations for rail vehicles are similar to those in rotor dynamics, wind turbinedynamics, aeronautics, and road vehicle dynamics, the approach can also be appliedto these problems for identifying the corresponding stability criterion automatically.� When SQP is combined with a numerical multibody dynamics software for optimiz-ing vehicle suspensions using linear vehicle models for ride quality analysis in thefrequency domain, it is found that numerical di�erentiation techniques can be usedfor evaluating gradient reliably.



Introduction 7� It is discovered that with the co-existence of passive and active components in vehiclesuspensions and the design variables determined by using the optimization methodproposed in the research, the corresponding actuator forces can actively resist trackdisturbances much longer than the actuator forces in active suspensions that haveno passive elements and for which the design variables are determined by using thelinear quadratic Gaussian (LQG) method.� Compared with inertial and suspension parameters sets, geometric parameters havethe most signi�cant e�ect on lateral stability, curving performance, and vertical ridequality.� A clear picture of the trade-o� relationship between the lateral stability and curvingperformance of a rail vehicle is o�ered. Moreover, the trade-o� relationship betweenthe vertical ride quality and lateral stability, and between the vertical ride qualityand curving performance of the vehicle con�rm a well-known fact that a relativelyweak coupling exists between the vertical and lateral motions of a rail vehicle.� Compared with a vehicle with passive suspensions and the vehicle with active sus-pensions based on the LQG, the optimized vehicle system based on the approachproposed has the best overall performance in all three aspects including ride com-fort, suspension working spaces, and wheel dynamic loads. However, traditionalactive suspensions often achieve better performance that is a compromise amongthese three aspects and they can rarely improve the vehicle performance in all thethree aspects simultaneously.1.3 Thesis OrganizationThe thesis is composed of nine chapters. In Chapter 2, a brief literature review is of-fered on the issues: vehicle system modelling, optimization methods and algorithms forvehicle suspension design, and design optimization of rail vehicles with passive and activesuspensions.Chapter 3 describes both the All-in-One (A-i-O) and Individual Discipline Feasible(IDF) approaches for MDO problems. Then, the essential concepts of multicriteria opti-



Introduction 8mization are outlined. Finally, three typical optimization algorithms, i.e. GA, SQP, andSimplex, which are extensively used and investigated in the research, are brie
y reviewed.In Chapter 4, several steps are taken to demonstrate an optimization approach inte-grating multibody dynamics, a GA or Simplex, SQP, and DMT for optimizing the lateralstability of a rail vehicle. First, a hand-derived solution to a 17 DOF linear rail vehiclemodel is compared to the results from an A'GEM simulation. Second, the algorithm ofSQP is compared with a combined algorithm including the SQP and DMT when the twoalgorithms are used for identifying the critical speed of the rail vehicle in two di�erentcases. The critical speed is optimized using the GA and Simplex algorithms, and theGA is compared against the Simplex algorithm. In the process, the existence of sharply-discontinuous \cli�s" in the plots of critical speed versus suspension sti�nesses is identi�ed.In recognition of the cli� phenomenon, the de�nition of critical speed is generalized to makeit a more practical measure of lateral stability. Finally, the integrated approach is used toidentify the relative signi�cance of di�erent design parameter sets, i.e. geometric, inertialproperty, and suspension parameters, on the critical speed of the rail vehicle.In Chapter 5, to identify e�ective optimization algorithms for vehicle suspension design,the GA, SQP, and Simplex are compared by means of the vertical ride quality analysis fora 2 DOF quarter-vehicle model and a 20 DOF rail vehicle model. To further illustrate thee�ectiveness of using the GA for optimizing vehicle suspensions, results are reported foranalyzing the relative signi�cance of di�erent design variable sets on vertical ride qualityusing the 20 DOF rail vehicle model and optimizing a rail vehicle with active elementsusing a 36 DOF model with car body 
exibility. In addition, numerical di�erentiation isvalidated as an e�ective link between the multibody dynamics package of A'GEM and SQPfor evaluating gradients.Chapter 6 presents the feasibility and e�cacy of applying numerical optimization ap-proaches to a rail vehicle design with curving performance considered. The numericalresults of the optimization based on a 21 DOF dynamic curving model are o�ered anddiscussed. Once again, the proposed optimization approach is applied to investigate therelative signi�cance of di�erent design parameters or di�erent parameter sets on curvingperformance.Chapter 7 demonstrates the e�ectiveness of a hybrid MDO approach combining the A-



Introduction 9i-O and IDF methods for handling the con
icting requirements from the lateral stability,curving performance, and vertical ride quality in the design of a rail vehicle with passiveand active suspensions. This hybrid MDO method integrates a GA, SQP, DMT, andmultibody dynamics modelling and simulation programs from A'GEM so that the threecomplex dynamic rail vehicle models, i.e. the 17 DOF lateral stability model discussedin Chapter 4, the 36 DOF vertical ride quality model employed in Chapter 5, and the 21DOF nonlinear dynamic curving model described in Chapter 6, are accommodated in asynergistic system. Within the system, the GA coordinates the above mentioned con
ictingrequirements in system level and the suspension, geometric, inertial, and control parametersfor the rail vehicle described by the three models are optimized simultaneously. Out of afamily of Edgeworth-Pareto optimal solutions obtained from the optimization, the designercan make his �nal decision on an acceptable design.Chapter 8 illustrates the e�ectiveness of the A-i-O method for resolving the con
ictingrequirements for ride comfort, suspension work spaces, and dynamic wheel loads in theoptimization of quarter-vehicle models and half-vehicle models with active suspensions.Both deterministic and random track excitations and both rigid and 
exible carbody (forthe half-vehicle models) cases are considered. The optimization problem is implementedin a GA-A'GEM-MATLAB simulation environment in such a way that the linear me-chanical vehicle models are generated in A'GEM, the controllers and Kalman �lters aremodelled in MATLAB, and the coupled mechanical and control subsystems are optimizedsimultaneously using the GA. Numerical results are o�ered.Finally, Chapter 9 is dedicated to conclusions drawn from the research and recommen-dations for future research.



Chapter 2Literature Review2.1 IntroductionAn integrated design optimization approach for engineering systems generally involves twoparts [17, 19, 42]: modelling and optimization. The �rst part, modelling, can be furtherdivided into three subparts: modelling, parameterization, and criterion de�nition. Tooptimize an engineering system such as a rail vehicle, one should �rst transform the systemto a mathematical model. To establish the mathematical model, the �nite element methodand the multibody dynamics method are commonly used. In applications to vehicle systemdesign optimization, the �nite element method is often used for structural optimization,e.g. automotive crashworthiness. The method of multibody dynamics is a well-acceptedand widely used method for analyzing the dynamic behavior of vehicle systems in theprocess of suspension design [114, 115]. With a suitable mathematical model, one is thenconfronted with the de�nition of design criteria and design parameters of the model. Sinceengineering requirements and designers' wishes are sometimes hard to be formulated asmathematical functions, the design criteria are often di�cult to be de�ned. In general, thedesign of a dynamic system with respect to several speci�cations leads to a multicriteriaoptimization problem [17]. Parameters of the model are often classi�ed either as designvariables, whose values can be chosen within given bounds, or as system constants whosevalues are �xed during optimization. Constraints have to be considered for the modelling,design criteria and parameterization chosen. Optimization constraints can be formulated10



Literature Review 11in the design variable space or in the design criteria space, depending on what is consideredto be more convenient. Since the generation of reliable mathematical models is vital todesign optimization problems [42, 95], the state-of-the-art related to modelling techniquesand principles for model selection, especially for rail vehicle suspension design, will befurther addressed in the chapter.After the above preparation, one faces the tasks of formulating the optimization prob-lem and selecting appropriate optimization algorithms. Notice that in this thesis, theterm \optimization method" refers to the method of optimization problem formulation.Traditionally, applications to dynamic system design are often restricted to single designcriterion optimization problems. These optimization problems can be classi�ed either as aconstrained optimization problem or as an unconstrained problem. Generally a single de-sign criterion optimization problem can be posed in a standard form [56]. With a suitablesearch algorithm, the solution to the problem can be found. In the case of a multicrite-ria optimization problem, based on concepts such as scalarization or hierarchization, it ispossible to transform the multicriteria optimization problem to a single (or a sequence of)scalar, nonlinear programming problem [42]. For a complicated optimization problem inwhich strong interaction between systems or disciplines arises, multidisciplinary optimiza-tion proved to be e�ective for coordinating the design considerations at the system andsubsystem levels [123]. Obviously, it is vital to select an appropriate optimization methodespecially for complex multicriteria design optimization problems. Moreover, there arenumerous algorithms available and even the choice of an e�cient optimization algorithmis a nontrivial problem [20]. Therefore, a survey of the applications of typical optimizationmethods and algorithms to the design of vehicle suspensions is o�ered in this chapter.In the past 2-3 decades, design optimization approaches, an important tool for the syn-thesis of complex mechanical systems [42], have been widely applied to the design of vehiclesuspensions, especially for road vehicles. The state-of-the-art techniques (e.g. multibodydynamics programs) and search algorithms (e.g. genetic algorithms) have been introducedinto the design process. In recent years, design philosophies for a mechatronic system havebeen developed to a stage where the actuators, the controllers, the sensors, as well as themechanical structure design of the mechatronic system are considered simultaneously [123].These design philosophies may be helpful to the design of vehicle suspensions. Hence, a



Literature Review 12review of the mainstream developments in the study on the design optimization of railvehicles with passive and active suspensions is presented in this chapter.2.2 Vehicle System Modelling2.2.1 Multibody Dynamics Modelling TechniquesConventionally, in the case of creating dynamic models for rail vehicles, after the routinefor including the wheel/rail forces in the equations of motion has been developed andcomputers were available to solve large numbers of simultaneous equations, the task wasto derive the multi-degree of freedom equations and transform them into computer codesmanually [4]. To establish complex vehicle models, this manual process has proven tobe a very tedious, di�cult, time-consuming, and error-prone task [8, 86]. Moreover, itwas illustrated that these hand-derived models, especially when embedded in computerprograms, can hardly be changed [117]. When a model was found not to contain anessential feature of a new task, e.g. introducing active elements into a suspension, it wasnecessary to create a new model. In the early 1970's, the foundations of ADAMS andDADS, today's most used multibody dynamics codes, were laid by the work of Orlandea[108]. In the early 1980's, Anderson applied multibody dynamics approach to dynamicmodelling of rail vehicles [4]. With the introduction of multibody dynamics approachto various �elds including rail vehicle dynamics in the 1980's and 1990's, this approachhas been employed by researchers with signi�cant favor for the purpose of improving theirmathematical models of both road and rail vehicles. By means of a multibody formulation,the equations of motion for a complex system of rigid and 
exible bodies connected bykinematic and dynamic components may be generated automatically. Many successfulcommercial programs, e.g. ADAMS, SIMPACK, and VAMPIRE, were applied to thedynamic analysis of several rail vehicle benchmark problems and gained varying levels ofsuccess [77]. Since these computer packages have been validated against the results frommany experiments and benchmarks, a precise simulation of the dynamic response of avehicle can be obtained as long as an accurate set of vehicle characteristics are o�ered tothese programs.



Literature Review 13With these multibody dynamics programs, analysts can develop very complex vehiclemodels with consideration of nonlinear suspension components, wheel/rail forces and ge-ometry for assessing various aspects of rail vehicle dynamic behavior. For example, themultibody dynamics software A'GEM developed by Anderson [6] contains a set of mod-ules. To list a few, these modules provide the following functions: generating equations ofmotions for linear dynamic systems with constraints (A'GEM module); simulating nonlin-ear curving behavior of arbitrary rail vehicles (RACES module); performing linear lateralstability analysis for rail vehicles (STABLE module); conducting dynamic mode trackingfor rail vehicle models (MTRACK module); and calculating the ride quality for arbitraryrail vehicles (RLRIDE module).However, from a design point of view, the drawback of multibody dynamic programsis that they only provide analyses of vehicle systems whose design variables have beenspeci�ed [10]. Design optimization, parametric studies and sensitivity analyses are di�cult,if not impossible to perform [87]. Integrating multibody dynamics programs with numericaloptimization methods and algorithms will automate and facilitate the design optimizationof rail vehicles.2.2.2 Vehicle System ModelsThe complexity of the mathematical models chosen to represent a vehicle is closely relatedto the speci�c problem which has to be resolved with the model. In many cases, simplelinear models or models with a few DOF are adequate for obtaining the desired informa-tion. Examples are the \quarter-vehicle model" for studying the vertical (bounce) modeor the \half-vehicle model" for studying the bounce and pitch modes in many suspensiondesign problems [44]. In other cases, rail vehicle researchers resorted to using only singlebogie (see Figure 4.1 and x 4.2 for the de�nition of bogie) or half-body models and ac-cepted the inaccuracy in exchange for gains in e�ciency [8]. Langlois et al [91] found thatmost controllers were based on quarter-vehicle models because of the extra mathematicalcomplexity resulting from the use of half- or full-vehicle models. Applied to a full-vehiclemodel, such controllers may behave less than optimally because no provision for roll orpitch motions can be made in the quarter-vehicle. Because of this reason, in recent years,researchers have developed their controllers based on full-vehicle models [26, 34, 45, 50, 90].



Literature Review 14The increasing demands on the accuracy of mechanical models of vehicles result in morecomplex multibody systems. The history of research in rail vehicle curving performancere
ects these demands. To evaluate curving performance of rail vehicles, in the 1960's,Newland and Boocock [22, 105] developed a linear steady-state curving model. To calcu-late the steady-state solution in a constant radius curve and with a single wheel/rail contactpoint, in the 1970's, Elkins and Gostling [46] used the so-called quasi-static model whichincludes nonlinearities of the wheel/rail geometry and forces. To study the complete curv-ing behavior from the tangent track, through the transition spiral, and into the constantradius curve, in the 1980's, Fortin [53] developed dynamic curving models that take non-linear wheel/rail forces and geometry, suspension nonlinearities, and two wheel/rail pointcontact into account. Today the multibody dynamics program A'GEM can be easily usedto automatically develop 21 DOF and 37 DOF dynamic curving models to assess the curv-ing behavior for a conventional rail vehicle and a forced-steering rail vehicle, respectively[136].An all-inclusive dynamic model of a rail vehicle would be large and complex [40]. Sincesize and complexity are factors that tend to reduce physical insight and increase the devel-opment and usage costs of computer programs, less general models are usually preferable.In fact the best model is not the most complex one, but the most appropriate one. Vehicledynamic applications also show that analysis of di�erent aspects of a vehicle system has tobe based on di�erent models [18]. According to the operating conditions, type of terrain,and wheel/rail pro�les, di�erent objective-oriented models are developed and used. Thesespecialized models may be classi�ed as follows:1. Vertical/Lateral Dynamic Models. These models are designed to study the dynamicresponse of a vehicle to track irregularities.2. Curving Performance Models. These models are used to calculate the dynamic orquasi-static forces of a vehicle negotiating curves.3. Lateral Stability Models. These models are applied to the prediction of the criticalspeed, wheel/rail forces, and suspension and car body forces and displacements.Hedrick et al [74] used a 12 DOF vertical dynamic model, a 15 DOF lateral dynamicmodel, a 15 DOF lateral stability model, and a 15 DOF steady-state curving performance



Literature Review 15model to evaluate the performance of a conventional rail vehicle. All these objective-oriented models were developed manually. Supported by the multibody dynamics packageA'GEM, MacNaughton [97] employed a 17 DOF lateral stability model, a 20 DOF verticalride quality model, and a 21 DOF nonlinear dynamic curving performance model to conducta design modi�cation for an urban transit rail vehicle. The above applications illustratethat specialized vehicle models, instead of an all-inclusive dynamic model are commonlyused in designing rail vehicle or evaluating rail vehicle performance.2.2.3 Track ModelsIn most cases, the tracks are modelled as rigid, smooth, and straight for a lateral stabilityanalysis. In other cases, for example when the curving behavior of rail vehicles is evalu-ated and studied, the curving of rail vehicles requires the track geometry such as curvesand grades. Parameters to describe these pro�les are analytic functions specifying thecurvature, cross level, gauge etc [86].From the ride quality analysis point of view, track unevenness represents the mainexcitation function to both the passenger and the vehicle structure. Thus, track descrip-tions have to include irregularities, consisting of either deterministic functions or stochasticfunctions. Many track pro�les have been measured, some being recorded on magnetic tape(particularly test tracks) while most have been Fourier analyzed and characterized by theirfrequency domain properties [83, 119]. It is important to try to predict vehicle dynamic re-sponse using a realistic track irregularity model; unfortunately, a completely realistic trackmodel is di�cult to develop. The track models are usually expressed in terms of powerspectral density (PSD) function of track pro�le elevation or \slope". All of the track rough-ness models have been developed under substantial assumptions, which typically idealizethe track pro�le as a stochastic process and exclude all the singular events. Generally,track irregularities result in displacement inputs to vehicle models. When vehicles havemultiple axles, these track irregularities disturb the vehicles in a correlated fashion: thesame input occurs at the following axle with a time delay as a function of vehicle speedand wheelbase. These correlations cause signi�cant deviations from cases in which bothdeterministic and random inputs are assumed to be uncorrelated [34]. In the cases wherethe unsprung masses of vehicles are modelled with damping, not only the irregularities at



Literature Review 16a displacement level but also at a velocity level must be considered.The contact forces between wheel and rail play a dominant role for the computer sim-ulation of rail vehicle running behavior such as lateral stability and curving [86]. Thecontact problem can be divided into a purely geometrical problem, i.e. the rolling of awheel on a rail, and the kinetic problem of the modelling of the contact forces, i.e. thecreep force laws.To represent wheel/rail contact geometry, it is assumed that wheels and rails are rigidbodies and the velocities in the common points of contact can be determined from purelygeometrical relationships taking into account the speci�ed contact pro�les. As a result,nonlinear constraint functions arise which algebraically describe the dependence within thevehicle coordinates such as lateral displacements, roll and yaw angles etc. Law, Cooper-rider, Heller and other have done extensive work in this area and have published reportsand software which permits the detailed wheel/rail contact geometry representation thatis required for the accurate calculation of wheel/rail forces [53].To calculate the creep forces arising at wheel/rail contact points, wheels and rails areconsidered to be elastic halfspaces and the contact patch is assumed to be an ellipse.The modelling and computation of the creep forces due to these assumptions have beendeveloped by Kalker [78] resulting in a number of software algorithms and simplications.Kalker's accurate and practical models of creep forces are used almost exclusively in modernsimulations of rail vehicle dynamics [8].2.3 Optimization Methods and Algorithms Used inVehicle Suspension Designs2.3.1 Optimization MethodsIn general, the design optimization of aircraft and road vehicles as well as rail vehicles,is multidisciplinary. For example, the simultaneous design of a structure and a controlsystem for the purpose of active 
utter suppression for an aircraft is a typical applicationof multidisciplinary optimization [123]. In the case concerned, there are interactions amongthe wing structure, the control system, and aerodynamics. These interactions make the



Literature Review 17structure, the control system, and aerodynamics a synergistic whole that is greater thanthe sum of the three. Taking advantage of that synergy is the mark of a good design [85].In fact, Multidisciplinary Optimization is presently of increasing interest in engineering.MDO received recognition in the aeronautical sciences, �rst for the structural optimizationand later for the aerodynamic design [123]. Currently, we can �nd the application of MDOto automotive vehicle design for safety and NVH (noise, vibration and harshness) reduction[85, 124, 145, 146]. MDO is also used for ground vehicle suspension design [66, 67].The current literature shows that most MDO problems of vehicle systems for safety,NVH, and ride comfort are multidimensional (more than a few design variables) and mul-ticriteria (more than a few design criteria) [66, 67, 85, 124]. In these applications, therelevant design criteria are optimized simultaneously. In these cases, it is unlikely that thesame values of design variables will result in the best optimal values for all the design cri-teria. Hence, some trade{o� between the design criteria is needed to ensure a satisfactorydesign. In fact, the solution of a MDO problem is a compromise between disciplines. More-over, by means of using multicriteria optimization techniques, we can integrate di�erentdisciplines into the united computational process.Most MDO approaches are based on the response surface technique and on the originalapproximation concept [123]. Due to the framework, for a given application of MDO to thedesign of vehicle suspension systems, the selection of design space search algorithms is vital.Many algorithms for design space search have been developed, and they di�er according tothe type of criteria (linear/nonlinear), constraints (unconstrained/bounds/equality/inequality),their approximation type and their demand for information (criteria/ gradients/Hessians)[42].MDO MethodsOne of the primary challenges in MDO is organizational complexity [123]. A successfulvehicle system design requires harmonization of a number of criteria and constraints. Such adesign problem can be modeled as a constrained optimization in the design variable space.However, for such optimization, due to its dimensionality, complexity, and expense foranalysis, a decomposition approach is recommended so as to enable concurrent executionof smaller and more manageable tasks [85]. To preserve the couplings that naturally



Literature Review 18occur among the subsystems of the whole problem, such optimization by various types ofdecomposition must include a degree of coordination at the system and subsystem levels.MDO o�ers e�ective methods for performing the above optimization so as to resolve thetrade-o� relations among the various design criteria at the system and subsystem levels.Several MDO methods exist, including All-in-One (A-i-O) method [85], Individual Dis-cipline Feasible (IDF) method [33], Collaborative Optimization(CO) method [23], Bi-LevelIntegrated System Synthesis (BLISS) method [84], and Concurrent SubSpace Optimization(CSSO) method [111], to name a few. Among most of these MDO methods, the sharedcharacter is that the system concerned is decomposed into subsystems so that the corre-sponding subtasks are performed independently in their own modules; then in a systemlevel, the coordination of the di�erent design considerations gives rise to a two-level opti-mization. One of the most important advantages of this decomposition is the concurrentexecution of the subtasks, which is well suited for parallel computations.Another primary challenge in MDO is computational expense. The computational chal-lenge may simply re
ect increased dimensionality, with analysis and design variables thataccumulate from all disciplines. E�ective methods for improving calculation e�ciency are,for example, to use parallel computations and approximation concepts [123]. A discussionon this topic is beyond the scope of this thesis.Multicriteria Optimization MethodsConventionally, when optimization methods are used in vehicle system design, the applica-tions are often restricted to single criterion optimization [17]. Designs derived from the op-timization method are not fully satisfying for practical applications, because they consideronly a single aspect out of a couple of con
icting system requirements and speci�cations.In most cases, such `optimal' designs are even inferior to those derived by common sense.Thus, several con
icting design speci�cations and goals have to be taken into account inpractical applications. The multicriteria optimization methods seem to o�er a promisingway to handle the design problems with con
icting speci�cations and requirements and�nd optimal designs [18].Using multicriteria optimization methods, we can minimize several criteria simultane-ously, and de�ne optimal compromise solutions when con
icting criteria co-exist in the



Literature Review 19design problems. Generally, such optimal designs are a family of designs that are notcomparable to each other. With the consideration of design intuition and additional infor-mation, a �nal solution can then be determined.A well-known technique used for multicriteria optimization is to reduce a multiple designcriteria or vector optimization problem to a single design criterion or scalar optimizationproblem [18, 42]. This topic will be further discussed in the next chapter.2.3.2 Optimization AlgorithmsOptimization algorithms can be classi�ed into three main types [42, 49, 112]: \hill-climbing",enumerative, and stochastic.\Hill-climbing" algorithms may further divide into two subclasses: direct search (e.g.Simplex) and indirect search (e.g. SQP). Direct search algorithms are typically based onfunction comparison techniques. Most such procedures are heuristic in nature and deriva-tive evaluations are not needed. Generally these tend to be slow. The indirect searchalgorithms solve a non-linear set of equations resulting from setting the derivative of theobjective function equal to zero and �nding the local optima. They are well-known to ex-ploit all local information in an e�cient way, provided that certain conditions are ful�lledand, in particular, that the function to be minimized is well-conditioned in the neigh-borhood of the unique optimum. These algorithms require a lot of local information tobe known, e.g. the gradient and the Hessian matrix. If the basic requirements are notsatis�ed, the reliability of the methods is greatly jeopardized. Most often, for indirectsearch algorithms, the restrictive requirements of continuity and di�erentiability should besatis�ed.Enumerative algorithms are straightforward search algorithms. They evaluate objective�tness in the feasible search space of design variables one point by one point. The lack ofe�ciency of these algorithms prohibits them from a wide range of applications.Recently, stochastic algorithms (e.g. GAs, Evolutionary Algorithms (EAs) and Simu-lated Annealing (SA) Algorithms) have achieved popularity mainly for these properties:performing global optimizations, requiring no or very low accuracy gradient information,using probability rules to guide their searches, and being suitable for solving complex real-world problems. Stochastic algorithms achieve the above merits at the expense of requiring



Literature Review 20more function evaluations compared with conventional optimization algorithms.In ground vehicle design, a number of optimization algorithms have been used to de-termine optimal suspension characteristics. A modi�ed Simplex was used to optimize thecharacteristics of the elasto-damping elements for a simple 4 DOF model of a passenger car[37]. The constrained optimization algorithm of M. J. Box (Complex) has been applied tomaximize the critical speed for a rail vehicle (based on a 15 DOF model) subject to con-straints on lateral ride quality and suspension working spaces [32]. A modi�ed version ofthe Hook-Jeeves method was employed for seeking the optimization of the characteristicsof the elasto-damping elements of automobiles from the aspect not only of ride proper-ties, but also of handling [38]. A SQP has been chosen for the purpose of optimizing atractor/semi-trailer suspension [14]. In recent years, GAs [12, 36, 49, 66], SA [42], and EAs[93] lengthen the list of optimization algorithms for ground vehicle suspension design.Among the above mentioned algorithms, Simplex, Complex, and Hook-Jeeves are directsearch algorithms and Complex is essentially based on Simplex. These algorithms, togetherwith SQP, belong to the family of local search algorithms unlike the global search algorithmssuch as GAs, EAs, and SA. It is well-known that the local search algorithms converge tothe nearest optimum, since they depend upon the starting values of the design variables.Finding the global optimum is a great problem of these optimization algorithms, and itis solved by using a larger number of combinations of the initial values of the designvariables [38]. Furthermore, when the local search algorithms, e.g., SQP, are used forsolving multicriteria optimization problems, they usually �nd only a single point of thewhole set of trade-o� solutions of the multicriteria design problem. However, for the globalsearch algorithms such as SA, in addition to their high reliability for �nding the globaloptimal point in the design variable space, they can be used to present, a much clearerpicture of the trade{o� solution set and a better feeling for sensitive or insensitive designvariables [42].



Literature Review 212.4 Design Optimization of Rail Vehicles with Passiveand Active Suspensions2.4.1 Optimization of the Lateral StabilityIt has been demonstrated that a system subject to non-conservative forces may becomeunstable under certain conditions. For rail vehicles with conical steel wheels running onstraight steel rails, the non-conservative forces arise due to creepage at the contact pointbetween the wheel and rail. In rail vehicle dynamics, based on linear stability analysis,one of the important stability criteria is a forward speed known as \critical speed" abovewhich a rail vehicle becomes unstable [139, 140]. This unstable behavior, also known as\hunting", exhibits increasing frequency and decreasing damping with increasing speed[7]. The linear stability analysis has become state-of-the-art [82] and it provides very use-ful design information that has not previously been available [8]. At present, the linearstability analysis is applied in industry for newly designed vehicles and the method is inte-grated in computer programs for multibody systems such as A'GEM, ADAMS, MEDYNA,NUCARS, SIMPACK, VAMPIRE, and VOCO [82].Development of a rail vehicle that can operate in the 160 to 480 [km/hr] speed regimemust avoid the serious problem of hunting [32]. An e�ective way to do this is to usenumerical optimization to determine a set of suspension parameters that maximize thecritical speed [11, 29, 32, 66, 69, 72].Interestingly, the physical basis of wheel/rail and tyre/road rolling contact mechanicsare to a great extent the same [82]. This similarity is re
ected in the existence of asymmetricmatrices in the governing equations of both rail vehicles and road vehicles. Correspondingto the hunting phenomena for rail vehicle wheelsets, there exist the shimmy phenomenafor road vehicle steering systems. Moreover, similar asymmetric matrices are found inrotor dynamics, in wind turbine dynamics, and in aeronautics. Therefore, the numericaloptimization approaches to maximizing the critical speed for rail vehicles are expected tobe applicable to these �elds.Cooperider, Hedrick and Cox [29, 32] have optimized the critical speed of a 3 DOFrail vehicle model using an unconstrained optimization method called the Hooke-Jeeves



Literature Review 22algorithm. They also used a constrained optimization method called the M. J. Box orComplex algorithm to optimize the critical speed of a 15 DOF model. In both cases, theyemployed a two-loop algorithm. In the interior loop, the critical speed is obtained froma stability analysis of the equations of motion for a given set of suspension and wheelparameters. The Hessenberg algorithm is used to �nd the system characteristic equation,to which the Routh-Hurwitz criteria is applied to determine stability for a given speed.This process is repeated for di�erent speeds until the critical speed is found. In the outerloop, the Hooke-Jeeves or Complex algorithm is used to �nd the design variables thatmaximize the critical speed.In fact, as early as in 1928, Carter [82, 140] used the Routh stability criteria to investi-gate the stability problem of various con�gurations of locomotives, identifying the criticalspeeds that separate regions of stable and unstable motions. In 1957, Matsudaira alsoused the Routh-Hurwitz criteria to determine the critical speed of a two-axle vehicle. Ob-viously the Routh-Hurwitz criteria is important in the linear stability analysis. However,the value of the Routh-Hurwitz criteria is diminished if the characteristic equation can besolved using a root-�nding routine on the computer [88]. Numerical experiments showedthat for a given set of suspension and wheel parameters and a known value of vehicleforward speed, the eigenvalues of the rail vehicle system matrix in state space form canbe calculated with ease using Householder's transformation method and the QR algorithm[11, 66, 69]. Thus, for the problem of optimization of the lateral stability of rail vehicles,when the system design variables and vehicle speed are given, the Hessenberg algorithmand the Routh-Hurwitz criteria used by Cooperider, Hedrick and Cox [29, 32] may not bean e�cient method for identifying the critical speed automatically.Both the above mentioned Hooke-Jeeves and Complex algorithms can be classi�ed aslocal search algorithms because they use only local information to �nd a better solution.When they converge to a stationary point, there is no guarantee that this is in fact theglobal optimum.Baumal and McPhee have reported that a combination of a genetic algorithm (GA)and sequential quadratic programming (SQP) is well-suited to the design optimization ofa simple rail vehicle model [11]. Essentially, the GA and SQP are the counterparts ofthe M. J. Box/Hooke-Jeeves algorithm and the Routh-Hurwitz criteria in the optimization



Literature Review 23methods described in [32, 29]. Eleven design variables, including suspension sti�ness anddamping, geometric parameters, and inertial property parameters, are optimized [11]. It isshown that this combined approach can �nd the global optimum with a high reliability. Thesimple 7 DOF model o�ers a good qualitative understanding of rail vehicle performancetrends, but it is not su�cient for quantitative design use.The combined approach has been extended by introducing multibody dynamics pro-grams and is validated using a 17 DOF rail vehicle model [68, 69].2.4.2 Optimization of Vertical Ride QualityAlthough a number of optimization algorithms have been used to determine optimal sus-pension characteristics, with particular emphasis on improving ride quality, just a fewresearchers tackled the task of identifying e�ective optimization algorithms for vehicle ridequality analysis. Li et al. [93] compared the simulation results based on evolutionaryalgorithms (EAs) with those based on GAs using a simple 2 DOF quarter-vehicle modelfor ride quality analysis. Baumal et al. [12] applied GAs to the design optimizationof a vehicle suspension system, emphasizing on optimizing ride quality using a 5 DOFhalf-vehicle model; they also compared the results based on GAs with those based on agradient-guided algorithm. Eberhard et al. [42] addressed some advantages of stochas-tic optimization algorithms such as SAs over gradient-guided algorithms such as SQP inmulticriteria optimization of a 11 DOF vehicle model for ride quality improvement.Bestle [15] proposed an approach combining multibody dynamics and a nonlinear pro-gramming optimization algorithm for the design optimization of automotive systems. Heclearly addressed that the missing link between multibody dynamics codes (for analyzingthe dynamic behavior) and optimization codes is the sensitivity analysis of objective andconstraint functions with respect to parameter perturbance. In principal, the sensitivityanalysis can be performed using three di�erent methods: numerical di�erentiation, thedirect di�erentiation method, and the adjoint variable method. Bestle investigated advan-tages and drawbacks of these methods and obtained a helpful result. The result illustratedthat the adjoint variable method is more reliable and e�cient than the often used numericaldi�erentiation for gradient evaluation when the vehicle ride quality analysis is performedin the time domain and the vehicle model is nonlinear.



Literature Review 242.4.3 Optimization of Curving PerformanceRail vehicles should possess satisfactory dynamic behavior in curves so as to ensure safety,minimize wear and noise, and provide adequate comfort for the passengers. To understandthe behavior of rail vehicles in curves, the early studies by Newland [105] and Boocock[22] developed linear steady-state curving analysis. To predict curving performance morerealistically, nonlinear wheel/rail forces and geometry were introduced into steady-statecurving analysis [31, 46]. To study the complete curving behavior from a tangent track,through a transition spiral, and into a constant radius curve, and to include all suspensionnonlinearities, a dynamic curving model was used [53]. Currently, multibody dynamicsmodelling software, e.g. A'GEM and VAMPIRE [51], are available for evaluating curvingperformance of rail vehicles. To provide validation of software packages on simulation ofrail vehicle dynamics including curving behavior, a benchmark exercise was carried out inManchester in 1997 [77].Although current computational power and multibody dynamics modelling software onrail vehicle dynamics makes it possible to perform the extensive synthesis of complex railvehicle dynamic systems, few researchers have used numerical methods to optimize railvehicle systems with respect to curving performance.Hedrick et al. [74] evaluated and optimized a conventional rail vehicle on mainlineintercity curves using a steady state curving model with 15 DOF. This curving model wasmainly based on the Newland/Boocock approach to linear, creep guidance curving [22, 105]where the performance was measured in terms of the curve radius and speed for whichthe wheelsets did not \
ange" (the wheelset excursions did not exceed a speci�ed 
angeclearance) or \slip" (the resultant creep force on each wheel did not exceed a friction forcelimit). This steady-state curving model was cast in linear algebraic equations in matrixformat. With given design variables and required system parameters, these equations weresolved by the Gaussian elimination method. If a design variable or a set of design variablesare allowed to vary within a speci�ed range, these linear algebraic equations are solvedrepeatedly to obtain the relevant curving performance curves or surfaces. By comparingthe resultant curves or surfaces with the relevant wheel slip and 
ange contact boundarycurves or surfaces, one may evaluate a speci�ed design or select an appropriate designvariable or variables as an optimal design.



Literature Review 25MacNaughton [97] performed a design modi�cation for an urban transit rail vehicleusing a nonlinear dynamic model with 21 DOF for curving performance analysis. Inthe model, the nonlinear creep forces and the nonlinear wheel/rail geometry with twopoints of contact were taken into account. In predicting the curving performance of thevehicle, the RACES program of A'GEM was used. The ratios of lateral to vertical (L/V)contact forces and the angle of attack (the angle between the axle of a wheelset and thecorresponding radius of curve) were selected as design criteria for curving performancedesign. With the assistance of necessary dynamic analysis and the consideration of thedesign speci�cations on lateral stability, ride quality, and vertical dynamics, the RACESroutine was run repeatedly until the selected design variables made the resultant curvingperformance satisfy the design criteria.Both the above design approaches used by Hedrick and MacNaughton share commoncharacteristics: the number of design variables is small and the designer must decide bytrial and error how to change variable values and re-perform the analysis until a set ofperformance measures becomes acceptable.2.4.4 Optimization of Lateral Stability, Ride Quality, and Curv-ing PerformanceTo investigate lateral stability/curving performance compatibility for rail vehicles, Wickens[141] proposed a generalized set of sti�nesses, i.e. interaxle shear and bending sti�nesses,that encompass both conventional and radial bogies. These elastic characteristics of bogieshave been used to select appropriate design variable values for improving the compatibilityof lateral stability/curving performance [13, 75, 122, 127]. However, this elastic charac-terization is valid only under the assumptions: (1) the bogie is freely pivoted to a carbody [122]; (2) the bogie model for dynamic stability and curve negotiation is linearized[141]; (3) the dynamic e�ects due to bogie frame inertia and primary suspension dampingare neglected [13]. Cox, Hedrick, and Cooperrider [29, 32] have turned to local searchnumerical optimization algorithms combined with Routh-Hurwitz criteria for optimizingrail vehicles with respect to lateral stability and ride quality in lateral direction using a3 DOF and a 15 DOF rail vehicle model, respectively. Neither approach is well-suited to



Literature Review 26the design optimization of the complex nonlinear models now available from multibodydynamics programs such as ADAMS or A'GEM, especially when more than a few designparameters and the existence of many local optimal points are being considered.Bestle and Eberhard proposed the \multidisciplinary multimodel design concept" forthe design optimization of road vehicles with respect to ride comfort and ride safety [18].Di�erent aspects of design criteria were based on di�erent models. This multimodel designproblem was implemented using multicriteria design methods.To optimize a rail vehicle with respect to lateral stability, vertical ride quality, andcurving performance, He and McPhee have proposed a combined approach using geneticalgorithms and multibody dynamics [66]. Lateral stability, curving performance, and ridequality were assessed using realistic multibody models from A'GEM, and combined in amulticriteria objective function. By combining a GA with A'GEM, the suspension sti�nessand damping, geometric, inertial, and control parameters for the rail vehicle with activesuspensions were optimized simultaneously. This research has been extended and will bepresented in Chapter 7 of this thesis.2.4.5 Combined Mechanical and Control System DesignVehicle suspensions with active components potentially have signi�cant advantages overpassive suspensions [58, 71, 101, 102, 120, 144]. Thus, in the past 2-3 decades, variouscontrol strategies, e.g. Linear Optimal Control [143], \Skyhook Damper" [79], PreviewControl [91], H1 Control [103], and Fuzzy-Logic Control [147], have been applied to thedesign of vehicle active suspensions. In these control strategies, active elements of vehiclesuspensions are designed independently of the passive components [15, 19]. Applied to avehicle model, such controllers may behave less optimally overall due to not considering themechanical parameters, e.g. inertial and geometric parameters, as design variables in thecontrol design process. Bestle et al. [15, 19] recommended that an integrated modeling andcontrol design be performed to improve the performance of suspension systems and thatparameters of both active and passive elements be adjusted adequately to attain optimalbehavior of the overall vehicle.In a robot design, Pil et al. [109] proposed a recursive experimental optimizationmethod for simultaneously optimizing both the mechanical structure and controller of the



Literature Review 27mechatronic system. In the design optimization, the mechanical structure might be modi-�ed recursively and quickly with structure reinforcement and rapid prototyping techniques.The feedback control gains were adjusted with the mechanical structure modi�cation andthis procedure was iterated until the optimized design criteria were reached.The above methods applied to vehicle active suspension design, airplane design, androbot design share a common character: the corresponding mechanical system and controlsystem are combined as a synergistic whole and the design optimization is conducted withthe coordination between the mechanical system and control system. It is reasonable toexpect that a combined mechanical and control design process may help to achieve anoptimal behavior of an overall vehicle.In recent years, several researchers have tackled the task by taking passive parametersand active parameters as design variables simultaneously when designing ground vehicleswith active suspensions [12, 15, 66, 116].However, all these researchers have introduced the \skyhook" control strategy [66] intotheir design optimizations. Since the 1970's, the linear quadratic Gaussian (LQG) optimalcontrol algorithm [129] has been widely used by researchers for controller design in groundvehicles with active suspensions. This optimal control algorithm was also modi�ed for op-timizing a 4 DOF passive vehicle suspension system [94]. It was shown that LQG providesa compact analytical solution with relatively low design and computational time and thestability of the system designed is guaranteed. Moreover, the result of an optimizationprocess is a controller that considers and feeds back all system states with constant gainswhile any classical structure may not be ensured to be optimal [129]. Although the passivespring sti�ness and damping coe�cients have been optimized with the control parametersusing LQG algorithm [129], it seems that the vehicle inertial and geometric parametersand control parameters have not been considered as design variables simultaneously inthe optimization process using LQG. Moreover, one di�culty in using LQG is how to de-termine the weighting factors of the performance index. Traditionally, a `trial and error'method is used for choosing the weighting factors or the combinations of factors [129]. Tosome extent, the optimal design of controllers depends on the experience of designers. Forcomplex design systems and for multicriteria design optimization problems in particular,the choice of the weighting factors is a nontrivial problem [101].



Literature Review 28When the LQG algorithm is used for vehicle active suspension design, it is often assumedthat perfect measurement of all state variables is available. In practice, not all the statevariables are available but only a limited number of the states. Even in the latter case, thecorresponding measurements are noisy and thus the performance of the control systemswould su�er. In the cases where only limited states are assumed measurable, Kalman �lterscan be used to estimate required states.Numerical results have showed that an integrated approach using genetic algorithms,multibody dynamics, LQG control strategy, and Kalman estimator is an e�ective approachto the design optimization of combined mechanical and control system for vehicles withactive suspensions [67].2.5 SummaryThis chapter reviews the state-of-the-art related to modelling techniques, mathematicalmodels, optimization methods, and optimization algorithms applied to the design opti-mization of rail vehicles. A survey of the applications of numerical optimization approachesto the design of rail vehicles with passive and active suspensions is presented.Multibody dynamics programs are e�ective tools for modelling vehicle dynamic systems.The combination of multibody dynamics with appropriate optimization methods and al-gorithms may automate and facilitate the design process of rail vehicles. The increasingdemands on the accuracy of mechanical models of vehicles result in complex multibody sys-tems. It would be an impossible task to construct a single mathematical model that couldbe universally addressed to all aspects of vehicle dynamic behavior. However, the com-plicated dynamic behavior can be studied by using various mathematical models, each ofwhich concentrates on a speci�c area of interest. For a design optimization problem thatinvolves coupled analysis disciplines, multidisciplinary optimization is a suitable option.Genetic algorithms are e�ective search algorithms for multiple design variable optimiza-tion problems that have many local optima.It is evident that there is a lack of systematic study on the feasibility and e�cacy ofoptimization algorithms and formulation methods used in the design of rail vehicles withpassive and active suspensions. Combined mechanical and control design process may help



Literature Review 29to achieve an optimal behavior of an overall vehicle.



Chapter 3Design Optimization Methods andOptimization Algorithms3.1 IntroductionRoughly speaking, two cases were studied in the research and they will be discussed in thethesis: 1) a rail vehicle is optimized with respect to lateral stability, curving performance,and ride quality in vertical direction [66]; 2) to improve a ground vehicle ride quality withsuspension working spaces and wheel dynamic loads being taken into consideration, thevehicle mechanical system, controller, and estimator are optimized simultaneously [67].In both cases, MDO methods will be applied to the corresponding design optimizationproblems.First of all, we are confronted with the problem of choosing the appropriate MDO meth-ods mentioned in Chapter 2 for each case. In the �rst case, the lateral stability model, thecurving performance model, and the vertical ride quality model represent three individualanalysis disciplines which could be analysed individually during the optimization. In theprocess, the optimizer at system level can be used to drive the three individual disciplinesto multidisciplinary feasibility and optimality by controlling the coupling design variables.The Individual Discipline Feasible Method is suitable for solving problems in which thecoupling design variables are manipulated by the optimizer at system level. Thus, the IDFmethod is the appropriate option for the �rst case.30



Design Optimization Methods and Optimization Algorithms 31In the second case, for mechatronic vehicles with active suspensions, the vehicle me-chanical system, active suspension controller, and Kalman �lter co-exist in a synergisticsystem and each of them represents an analysis discipline. In the optimization, it is ex-pected that a vector of design variables be o�ered to the coupled system of three analysisdisciplines, each discipline feasibility should be achieved, and at the same time the inputto one should correspond to the output of the other via interdisciplinary mappings. Via a�xed-point iteration with that value of design variable vector, the Multidisciplinary Feasi-bility (MDF) is expected to obtain, and the relevant output variables of the coupled systemshould be fed to the optimizer at the system level for evaluating the objective function andconstraint functions. The inherent features of the All{in{One method match the aboverequirements so well that the A{i{O method is adopted for the second case.For both cases, to optimize the con
icting design criteria simultaneously, the scalariza-tion strategy commonly used in multicriteria optimization [17] is utilized in the correspond-ing MDO problem. At the system level, the weighted criteria method is used to constructthe required objective function. It is expected that the introduction of the scalarizationstrategy or the weighted criteria method should facilitate the implementations of the IDFand A{i{O methods for the �rst case and the second case, respectively.In the two cases, for these complicated design optimization problems with multidimen-sional, multicriteria, and multidisciplinary features, the selection of proper design spacesearch algorithms or optimization algorithms is another important issue. Indirect searchalgorithms or gradient-guided search algorithms, e.g. SQP, often have the advantage ofrapid convergence towards a local minimum. However, the convergence rates strongly de-pend on properties like di�erentiability or convexity. Moreover, even if these conditions aresatis�ed, the e�ciency of these algorithms is degraded by the computational cost of gradi-ents. Hence, the direct search algorithms or pattern search algorithms are also frequentlyapplied to MDO problems [39, 132]. GAs o�er another alternative to gradient{guidedsearch algorithms [62]. Due to the long computation time, GAs cannot completely replaceconventional gradient{guided search algorithms. Therefore, to identify e�ective optimiza-tion algorithms for vehicle suspension design, in the thesis, three typical algorithms, SQP,Simplex, and GA, are compared by means of ground vehicle ride quality analysis and railvehicle lateral stability analysis.



Design Optimization Methods and Optimization Algorithms 32In this chapter, both A{i{O and IDF approaches for MDO problems are introduced.Then, the essential concepts about multicriteria optimization are outlined. Finally, threetypical optimization algorithms, SQP, Simplex, and GAs, are brie
y reviewed.3.2 Design Optimization Methods3.2.1 Multidisciplinary Optimization MethodsAll-in-One MethodThe All-in-One method (or Multidisciplinary Feasibility (MDF) [33] method) is commonlyused for approaching the solution of MDO problems. When this method is used, theoptimization problem can be formulated as the following general format:8>>>><>>>>: minimize F(Xd;U(Xd))with respect to Xdsubject to ( g(Xd;U(Xd)) � 0Cl � Xd � Cu (3.1)where ( U(Xd) = A(Xd;G(Xd;U(Xd)))Y = G(Xd;U(Xd)) (3.2)and Cu and Cl are the upper and lower bounds on the design variable vector Xd, U(Xd)is the system output variable vector, A(Xd;G(Xd;U(Xd))) is the analysis mapping fromthe inputs Xd and Y of an analysis discipline to the outputs U, G(Xd;U(Xd)) is themapping to the inputs required for an analysis discipline from the output of another analysisdiscipline, and F(Xd;U(Xd)) and g(Xd;U(Xd)) are the objective function vector andconstrained function vector, respectively.Figure 3.1 shows an example using the A-i-O method for an aeroelastic optimizationproblem [33]. The system consists of an optimizer that controls speci�ed objective F (drag,structural weight, etc.) and constraints g, two analysis disciplines including aerodynam-ics (discipline 1) with analysis solver A1 and structures (discipline 2) with analysis solver
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Design Optimization Methods and Optimization Algorithms 34For this two analysis discipline case, the optimization problem can be rewritten as:8>>>><>>>>: minimize F(Xd;U1(Xd);U2(Xd))with respect to Xdsubject to ( g(Xd;U1(Xd);U2(Xd)) � 0Cl � Xd � Cu (3.3)where 8>>><>>>: U1(Xd) = A1(Xd;G12(Xd;U2(Xd)))U2(Xd) = A2(Xd;G21(Xd;U1(Xd)))Y12 = G12(Xd;U2(Xd))Y21 = G21(Xd;U1(Xd)) (3.4)Notice that if a gradient-guided method is to be used to solve the above problem, thena complete multidisciplinary analysis (MDA) is necessary not just at every iteration, butat every point where the derivatives are to be evaluated. Thus, it is very expensive toattain multidisciplinary compatibility in realistic applications.Individual Discipline Feasible MethodOne way to avoid a complete MDA every time an objective function, constraint, or sen-sitivity evaluation is needed is to use the IDF method. The essence of IDF is that thisapproach maintains individual discipline feasibility, while allowing the optimizer to drivethe individual disciplines to multidisciplinary feasibility and optimality by controlling theinterdisciplinary coupling variables. In the case of IDF approach, some speci�c analysisvariables representing communication, or coupling, between analysis disciplines via inter-disciplinary mappings are \promoted" to become optimization variables. These optimiza-tion variables are indistinguishable from design variables from the point of view of a singleanalysis discipline solver. The general IDF formulation can be as follows:8>>>>>><>>>>>>: minimize F(Xd;U(X))with respect to X = (Xd;XY)subject to 8><>: g(Xd;U(X)) � 0Caux 4= XY �G(Xd;U(X)) = 0Cl � X � Cu (3.5)



Design Optimization Methods and Optimization Algorithms 35where U(X) = A(X) (3.6)and Cu and Cl are the upper and lower bounds on the design variable vector X which con-sists of the original design variable vector Xd and \promoted" design variable vector XY.Since the vector Y is \promoted" as design variable vector, here XY is introduced to re-place the input variable vectorY for an analysis discipline. F(Xd;U(X)) and g(Xd;U(X))are objective and constraints, respectively. U(X) is the system output variable vector andA(X) is the analysis mapping from the inputs Xd and XY. G represents interdisciplinarymapping and the condition Caux 4= XY �G(Xd;U(X)) = 0 converts the interdisciplinarymappings into auxiliary optimization constraints. Notice that in the thesis the symbol `4='means `de�ned as'.It should be noted that an evaluation of U(X) = A(X) involves executing all thesingle discipline analysis codes simultaneously with available multidisciplinary data X.Therefore, these very expensive computations can be done independently and concurrentlyand communication costs are likely to be negligible. It is evident that the IDF method iswell-suited for applications with the use of parallel computer system.Figure 3.2 shows an application of the IDF method to a system consisting of an opti-mizer that controls objective F and constraints g, C12 and C21, discipline 1 with analysissolver A1, and discipline 2 with analysis solver A2. For a certain iteration, the �xed designvariable vectors Xd, XY12 , and XY21 are provided by the optimizer to the analysis disci-plines A1 and A2. With the o�ered design variable vectors, each analysis is performedto obtain system output vectors U1(X) and U2(X) and interdisciplinary mapping vectorsG12(Xd;U1(X)) and G21(Xd;U2(X)), respectively. The objective F(Xd;U1(X);U2(X))and constraints g(Xd;U1(X);U2(X)), C12, and C21 can be evaluated, given the systemoutput vectors U1(X) and U2(X) and interdisciplinary mapping vectors G12(Xd;U1(X))



Design Optimization Methods and Optimization Algorithms 36
X

A

A
12

X

G
GU U

X

21

1

)Yd(

( 1 Y )d(

X

U

G

G

,X

,U

2)=A

)=A

U

,U

X

X

,XXX

X

,X

X

XX

XX

(

d

Discipline 2
2

Discipline 1
21 )(1d(

1

Optimizer

)

12

))(

12

2

d Y21

Y

2

2

Y21Y

d

12

d(12

21

1

Figure 3.2: Individual discipline feasible (IDF) methodand G21(Xd;U2(X)). For this case, the optimization problem is formulated as:8>>>>>>>>><>>>>>>>>>: minimize F(Xd;U1(X);U2(X))with respect to X = (Xd;XY12 ;XY21)subject to 8>>>><>>>>: g(Xd;U1(X);U2(X)) � 0C12 4= XY12 �G12(Xd;U2(X)) = 0C21 4= XY21 �G21(Xd;U1(X)) = 0Cl � Xd � Cu (3.7)where ( U1(X) = A1(Xd;XY12)U2(X) = A2(Xd;XY21) (3.8)For the above A-i-O and IDF methods, with moderate or no modi�cation, they all havethe advantage of using existing single discipline analysis codes. Compared with the A-i-Omethod, the IDF method avoids the expensive procedure for achieving full multidisciplinaryfeasibility at each optimization iteration. Moreover, when using the IDF method, one mayeasily replace one analysis code with another, or add new disciplines, and one can easily



Design Optimization Methods and Optimization Algorithms 37implement parallel and distributed computation. On the other hand, the IDF methodrequires the explicit imposition in the optimization of the nonlinear constraints resultingfrom the interdisciplinary maps. If gradient-guided optimization algorithms are used, thecalculation of additional sensitivities corresponding to the coupling variables between dis-ciplines may be very expensive. Provided the coupling variables and constraints are small,the overall IDF optimization will be signi�cantly more e�cient than A-i-O optimization.3.2.2 Multicriteria Optimization ConceptsTo implement multicriteria optimization methods, the relevant criteria should be sortedbased on their purpose. The introduction of some criteria may lead to excluding infea-sible designs. This kind of criteria can be treated as equality constraints or inequalityconstraints. Criteria, whose values are relevant to the behavior or performance indices ofthe dynamic systems concerned, are often selected as objective functions. Finally, severalkey objective functions are left and a vector or multicriteria optimization problem can bedescribed as: 8>>>><>>>>: minimize F(Xd)with respect to Xdsubject to ( g(Xd) = 0h(Xd) � 0 (3.9)where Xd, F, g, and h are design variable vector, objective function vector, equality con-straint vector, and inequality constraint vector, respectively. Frequently, a design variablevector with which all criteria reach their minimal values simultaneously is not feasible.Although a unique optimal solution can not be de�ned generally, non-optimal designscan be eliminated. For example, for every design variable vector Xd that satis�es theconstraints shown in (3.9), if F(Xd) > F(�Xd) and �Xd is a feasible design variable vector,the design variable vector Xd is not optimal. Design variable vectors ~Xd that satisfy theconstraints described in (3.9) are called Edgeworth{Pareto{optimal (EP{optimal), if thereis no feasible design variable vector Xd where Fi(Xd) � Fi(~Xd); 8i_F(Xd) 6= F(~Xd), [18].Usually, EP-optimal solutions are not unique and design points with di�erent images (e.g.curves or surfaces) are not comparable, all of them have to be considered as optimal. The



Design Optimization Methods and Optimization Algorithms 38designer has to choose a special EP{optimal solution based on additional information onthe design problem.A whole picture of EP{optimal solutions of multicriteria optimization problems re-quires many objective function evaluations. For dynamic system design, objective functionevaluations involve a time{consuming numerical integration of di�erential equations ofmotion. In high-dimensional problems, the EP{optimal solution cannot be visualized anymore. Even computing a representative part of the EP{optimal set is already too time{consuming for dynamic problems. Therefore, not all multicritia optimization strategies areappropriate for dynamic system design.The commonly used strategy for dynamic system design is to reduce the vector opti-mization problem to a scalar one that may be solved by existing optimization algorithms[42]. This strategy has proven to be very e�cient. This reduction is based on the principlesof scalarization, hierarchization or a combination of them.In the following subsections, the principles of scalarization and hierarchization arebrie
y introduced.ScalarizationAs shown in Figure 3.3, during the process of scalarization, the objective functions areformulated as a scalar utility function u(F(Xd)). During the optimization, instead of thevector of objective functions, the scalar utility function is minimized. In the design space,the utility function should have the property of monotonicity, i.e., for two di�erent scalarsF a and F b, if F a < F b, then u(F a) < u(F b).To implement the scalarization, generally, the utility function can be formulated eitherby the weighted criterion method or by the distance method. For the weighted criterionmethod, the utility function can be expressed as( u(F) =Pni=1 �iFi�i > 0 (3.10)where �i; i = 1; 2; :::; n; are weighting factors. In the case of the distance method, the
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Figure 3.3: Scalarization by introducing an utility functionutility function is written as ( u(F) = (Pni=1 jFi � �Fij%)1=%1 � % <1 (3.11)where �Fi; i = 1; 2; :::; n; are ideal or utopian design goal vectors.The weighted criterion method is widely applied, but the weighting coe�cients (�i) aredi�cult to choose and the optimization result depends on this choice in a highly nonlinearfashion. To facilitate the implementation of the weighted criterion method, it is recom-mended that each element of the objective function vector F be normalized to have a valueof one for the initial design variables [42]. This recommendation is based on the require-ment that all elements of the objective function vector should be optimized simultaneously.Obviously, the selection of the initial design variables and the corresponding values for eachelement of the objective function vector are vital for the normalization.



Design Optimization Methods and Optimization Algorithms 40Given the utopian goals �Fi, the distance method is a preferable option to the weightedcriterion method, since the tedious job of choosing the weighting coe�cients for the lattercan be avoided. Usually, the goals have some physical meaning. However, if the goals �Fiare not utopian solutions, EP{optimality can not be reached.HierarchizationIn the case of hierarchization, each objective function Fi(Xd) has to be assigned a levelof importance. The objective function with the highest priority is optimized �rst with-out taking into consideration the objective functions with lower priority. Based on theinformation obtained during the process of optimizing the objective function with higherpriority, constraints on the objective function can be formulated. Then the next importantobjection function can be optimized with respect to the additional constraints. In essence,the principle of hierarchization is to transform a vector optimization problem to a sequenceof scalar optimization problems.It was shown [42] that by means of conventional nonlinear programming algorithms suchas sequential quadratic programming, the solution of the reduced optimization problem willyield only a single point of the whole set of EP{optimal solutions of the original multicriteriadesign problem. Thus, it is hard to get a clear picture of the EP{optimal set. However,stochastic optimization algorithms, like a simulated annealing algorithm, presents a muchclearer picture of the EP{optimal set for multicriteria optimization problems [42].3.3 Optimization Algorithms3.3.1 Genetic Algorithms (GAs)It is well-known that the evolution of living beings is a process based on operating onchromosomes which are organic devices for encoding the structure of living beings. Naturalselection plays a role as a link between a chromosome and the performance of their decodedstructures. The operations of selection o�er more chance for chromosomes that encodesuccessful structures to reproduce than those that do not; the processes of mutation resultin the chromosome of o�springs to be di�erent from those of their parents; the operations of



Design Optimization Methods and Optimization Algorithms 41crossover may produce quite di�erent chromosome in o�springs by combining the materialfrom the chromosome of their two parents.GAs are developed to mimic some of the above processes observed in natural evolution.With an appropriate encoding mechanism, GAs manipulate strings of binary digits, i.e.1s and 0s, which correspond to chromosomes of living beings. By means of coding, thereexists a map between a design variable vector Xd and the corresponding binary string orchromosome: codingindividual design variable Xd () binary string �b = [1; 1; 0; :::; 0; 1]decodingThe following function de�nes the coding{decoding mechanism.Xd 4= ~g(�b) (3.12)The binary string �b contains all of the necessary information that the individual Xd implies,e.g., Xd may be a set of design variables representing inertial and geometric variables fora vehicle dynamic system. For an admissible individual �b, the �tness ~F can be de�ned asthe value of the objective function F . ~F (�b) 4= F (Xd) (3.13)The objective function value of the individual point Xd in the design variable space, ingeneral, will be maximized or minimized by GAs. The �tness value will be used to de-termine the probability for the individual to be acted on by genetic operators. Usually, apopulation of individual design variable sets evolves from generation to generation throughthe application of genetic operators. The total number of strings included in a populationis kept unchanged throughout generations. Simple GAs use three operators: selection,crossover, and mutation.Selection is a process in which individual strings are copied based on their �tness val-ues. Highly �t strings (good designs) have a higher number of o�spring in the succeedinggeneration. Crossover is a method of combing successful individuals by exchanging equiv-alent lengths of their chromosome. The two strings from the reproduced population are



Design Optimization Methods and Optimization Algorithms 42mated randomly, and a crossover site is selected at random. Mutation is a technique thatintroduces new information into the new population at the bit level. A set of bits areselected randomly within the entire population.After performing selection, crossover and mutation, GAs generate a new populationwith potentially more individuals of higher �tness value. With enough repetitions of thecycle, the population will converge on the chromosome/design with the highest �tness.GAs are well suited for unconstrained optimization problems [36]. However for con-strained optimization problems, we can use the penalty method that degrades the �tnessranking in relation to the degree of constraint violation. With the method, a standardconstrained optimization problem with following formminimize F (Xd) (3.14)subject to ( gi(Xd) � 0; i=1,2,...,mhi(Xd) = 0; i=1,2,...,p (3.15)can be transformed into an unconstrained optimization problem by associating a cost orpenalty with each constraint violation. Thus, for the constrained optimization problemdescribed in (3.14) and (3.15), we can write the �tness function as follows~F (�b) = F (Xd) + pXi=1 
ijhi(Xd)j�i + mXj=1 
p+j(gj(Xd) + jgj(xd)j)�p+j (3.16)where ~F (�b) is the �tness value associated to the binary string �b which corresponds to thedesign variable vector Xd, the constants 
i and �i(i = 1; 2; :::; p+m) determine the severityof the penalties for the p +m constraints.GAs o�er signi�cant advantages over traditional local search methods because of thefollowing characteristics [57]: a) GAs work on a population of design variables in paralleland not on a unique point, so that GAs have a higher reliability to �nd the global optima;b) GAs solve the problem of �nding good chromosomes (designs) by manipulating thematerial in the chromosome without any knowledge of the problem they are solving. Theonly information they require is an evaluation of each chromosome/design | they do notneed the gradients of the objective function and constraints; c) they are simple yet powerfulin their search for improvement and they are not limited by restrictive requirements about



Design Optimization Methods and Optimization Algorithms 43the search space, such as continuity or existence of derivatives; d) GAs guide their searchesusing probability rules; this enhances their global explorative properties.In the research, the GA is implemented using the MechaGen program [10]. The Mecha-Gen program is based on Goldberg's GA [57] and was written in C using pseudo-randomnumber generators linked from the NAG (Numerical Algorithms Group) Fortran library.However, to avoid premature termination of the algorithm, instead of using a weightedroulette wheel based on the �tness sum of the population for the reproduction stage, onebased on the ranking of the population according to �tness is used [138]. In addition,to improve the e�ciency of the GA, the binary strings and �tness values for each uniquedesign of the current generation are stored in a linear search look-up table. If a designstring in the next generation matches one in the table, then the �tness does not have tobe re-calculated. This saves signi�cant computing time, especially for expensive �tnessevaluations.3.3.2 SQP AlgorithmThe SQP algorithm is a nonlinear programming algorithm known as the projected La-grangian method. It is used for the purpose of minimizing a smooth nonlinear functionsubject to a set of constraints with upper and lower bounds. This general constrainedminimization problem can be transformed into the standard form o�ered in (3.14) and(3.15). The objective function and the constraint functions are assumed to be at leasttwice-continuously di�erentiableFor a local optimum X�d, the following �rst-order Kuhn{Tucker (KT) condition is anecessary quali�cation [21]:5F (X�d) + Xi2activeui5 gi(X�d) + pXi=1 vi5 hi(X�d) = 0 (3.17)where 5F (X�d), 5gi(X�d) and 5hi(X�d) are the gradients of the objective function, activeinequality constraints and equality constraints, respectively. The corresponding Lagrangemultipliers are ui � 0; i 2 active, and vi; i = 1; 2; :::; p. If the optimization problem isa convex programming problem in which F (Xd) is convex, the equality constraints arelinear, and the inequality constraints are concave, the �rst order KT condition is both



Design Optimization Methods and Optimization Algorithms 44the necessary and su�cient condition that guarantees the point X�d as the global optimalpoint.Each iteration step of SQP generally consists of three partial steps [56]:Step 1: Find the Lagrange multipliers and the direction to move from the current iterationby solving the quadratic programming (QP) subproblem.Generally a sequence of iterates Xkd that converge to X�d, i.e. a �rst-order KT point of(3.17), is generated. At a typical iteration, the new iterate Xk+1d can be expressed asXk+1d = Xkd + �s (3.18)where s is the search direction, and � is the step length. The search direction in (3.18) isthe solution of a quadratic programming subproblem of the formminmize 5F (Xkd)Ts+ 12sTH(Xkd)s (3.19)subject to ( hi(Xkd) +5hi(Xkd)T s = 0; i=1,2,...,pgi(Xkd) +5gi(Xkd)Ts � 0; i=1,2,...,m (3.20)where H(Xkd) is an approximation to the Hessian matrix of the Lagrangian which is ob-tained by solving KT conditions for the original problem at Xkd.Step 2: Determine the step-length � in (3.18) to be taken from the point Xkd in the di-rection obtained in step 1 such that there is \su�cient decrease" in a merit function. Amerit function measures the value or worth of the current design point Xkd by taking intoaccount the objective function F (Xd), KT conditions (3.17) and the Lagrange multipliers.Step 3: Update the approximate Hessian matrix of the Lagrangian using Newton's ap-proach or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach.Using Newton's method for nonlinear equations for solving KT conditions with theoriginal problem considered, we have the Hessian of the formH(Xkd) = 52F (Xkd) + mXi=1 ui52 gi(Xkd) + pXi=1 vi52 hi(Xkd) (3.21)The SQP algorithm has very strong, theoretical, local convergence properties. Thesequence of iterates converges quadratically to a local minimum that satis�es the KT andsu�cient optimality conditions when starting from a point su�ciently close to, or in theneighborhood of, that minimum.



Design Optimization Methods and Optimization Algorithms 45As mentioned in the previous chapter, the SQP algorithm is often applied to the designoptimization of ground vehicle suspensions. Of course, convergence rates strongly dependon properties such as convexity or di�erentiability. Since these properties can rarely beproven for complicated vehicle dynamic systems, there is, in general, no guarantee forconvergence. When the algorithm is used, some experience with speci�c vehicle modelsis required for the purpose of determining a desired behavior. Due to the fact that theSQP algorithm only takes local information into consideration, the algorithm often getstrapped at local optimal points. For complicated vehicle dynamic systems, often manylocal minima exist; thus, there is no guarantee for �nding global minima with SQP.In the research, the SQP algorithm is implemented using the E04UCF routine from theNAG (Numerical Algorithms Group) library. This routine is well-documented and o�ersseveral user-friendly provisions. It estimates the Hessian matrix of the objective functionusing a preceding estimation of the matrix and the gradient of the objective function. Theuser may o�er the �rst-order derivatives of the constraint functions and objective function,or they can be approximated by E04UCF using �nite di�erences. If the objective functionand constraint functions can be expressed explicitly in terms of design variables, thenmaximum reliability is achieved by providing as many partial derivatives as possible.3.3.3 Simplex AlgorithmThe Simplex algorithm minimizes a general function F (Xd) of n independent variablesXd = fXd1;Xd2; :::;XdngT . This algorithm utilizes a regular geometric �gure, called asimplex, consisting of n + 1 vertices. At each stage of the algorithm, a simplex of n + 1points is retained, together with the function values at these points. At each iteration, anew simplex will be generated by producing a new point to replace the \worst" point. Thevertex or the worst point of the simplex is re
ected in the centroid of the remaining verticesand the function value at this new point is compared with the remaining function values.Depending on the outcome of this test, the new point is accepted or rejected, a furtherexpansion move may be made, or a contraction may be carried out. When no furtherprogress can be made the sides of the simplex are reduced in length and the method isrepeated, in such a way that it adapts itself to the function landscape and �nally surroundsthe local optimum.



Design Optimization Methods and Optimization Algorithms 46If fi, for i = 1; 2; :::; n+1, are the individual function values at the vertices of a simplexand fm is the mean of these values, then the algorithm will terminate whenvuut 1n+ 1 n+1Xi=1 (fi � fm)2 < " (3.22)where " is the desired error tolerance. The algorithm may also terminate when a speci�ednumber of iterations has been exceeded.The Simplex algorithm based on function comparison is suitable for problems in whichF (Xd) is discontinuous [56]. Furthermore, it is robust and therefore very useful for func-tions that are subject to inaccuracies.Once the algorithm is used, the function F (Xd) is assumed to be unimodal, i.e. thereis an unique optimum in the feasible design variable space, otherwise the identi�cation ofthe global optimum is not guaranteed. To improve the reliability for �nding the globaloptimum, it is customary to consider several sets of starting points and restart the entireprocedure such that the searches are carried out until the simplex repeatedly collapses ontothe same solution.The Simplex algorithm, like the GAs described previously, is an unconstrained opti-mization algorithm. However, by means of introducing penalty factors in the objectivefunction, the algorithm can be applied to constrained optimization problems.During the research, the E04CCF routine from NAG library is the implementationof the Simplex algorithm. Before using the routine, the optimization problem should bescaled so that the values of the design variables are of order unity.3.4 SummaryThe IDF method is chosen for the design optimization of a rail vehicle with respect tolateral stability, curving performance, and ride quality and the A{i{O method is selectedfor improving vehicle ride quality with a vehicle mechanical system, active suspensioncontroller, and corresponding Kalman �lter being optimized simultaneously. Both IDFand A{i{O methods are brie
y introduced. The multicriteria optimization procedure andessential concepts such as EP{optimal solutions and the scalarization strategy are o�ered.



Design Optimization Methods and Optimization Algorithms 47Three typical optimization algorithms, SQP, Simplex, and GAs are described and theircharacteristics are highlighted.



Chapter 4Optimization of the Lateral Stability4.1 IntroductionThe objective of this chapter is to demonstrate how to combine the GA and SQP algorithmsas well as the dynamic mode tracking (DMT) technique [7] with advanced multibodydynamic simulation programs such as A'GEM. The e�ectiveness of this combined approachis investigated and validated using a 17 DOF rail vehicle model. Although other objectivecriteria such as ride quality or curving performance could be introduced into the designoptimization problem, only the critical speed is considered as the design objective in thechapter. The multidisciplinary and multicriteria optimization problem will be discussed indetail in Chapter 7.Several steps are taken to validate and show the e�ectiveness of this integrated ap-proach. First, a hand-derived solution to the 17 degree of freedom linear rail vehicle modelis compared to the results from an A'GEM simulation. Second, the calculation of the criti-cal speed is investigated by comparing a combined algorithm including the SQP and DMTwith the SQP algorithm alone when they are used for identifying the critical speed of the railvehicle for two speci�ed examples. In the process, the existence of sharply-discontinuous\cli�s" in the plots of critical speed versus suspension sti�nesses are identi�ed. These cli�s,which are due to switching of the least-damped mode in the system, greatly hinder the ap-plication of gradient-based optimization algorithms. The critical speed is optimized usinga genetic algorithm, and compared against the Simplex algorithm. In recognition of the48



Optimization of the Lateral Stability 49cli� phenomenon, the de�nition of critical speed is generalized to make it a more practicalmeasure of lateral stability. Finally, the integrated approach is used to identify the relativesigni�cance of di�erent design parameter sets, i.e. geometric (7 variables), inertial property(9 variables), and suspension (11 variables) parameters, on the critical speed of the railvehicle.4.2 Vehicle System ModelIn this study, the dynamic equations for a 17 DOF rail vehicle model are generated andlinearized, both by hand and by the A'GEM multibody simulation program. Using a setof nominal design variables, the solutions from the hand-derived model and the A'GEMmodel are compared.4.2.1 Model Description and Hand Derived EquationsThe 17 DOF model is shown in Figure 4.1, with the leading bogie, car body, and trailingbogie denoted as bodies 2, 4, and 6, respectively. The leading bogie, with the leadingand trailing wheelsets denoted as 1 and 3, and trailing bogie, with the leading and trailingwheelsets denoted as 5 and 7, are connected to the car body by secondary suspensions. Boththe leading and trailing bogies, in turn, are connected with their own leading and trailingwheelsets by primary suspensions. Each suspension component consists of a parallel springand damper, with sti�ness and damping coe�cients in the three coordinate directions.The vehicle is assumed to be traveling with a constant velocity V along a 
at tangentialsection of railway track. The x axis of a Cartesian reference frame is aligned parallel to thetrack, the z axis is vertically downward, and the y coordinate is used to measure the lateraldisplacements of the car body, bogies, and wheelsets from the centerline of the track. Thenominal geometry parameters, suspension sti�ness and damping coe�cients, and inertialproperty parameters are listed in Table A.2 in Appendix A.For the bogies and car body, the motions considered are lateral displacements yi, yawing i (about axis z), and rolling �i (about axis x), where i = 2; 4; 6. For the wheelsets, themotions considered are lateral displacement yi and yawing  i, where i = 1; 3; 5; 7. Theresulting vehicle model has 17 DOF. In deriving the equations of motion, each body's lateral
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Z ZFigure 4.1: Con�guration of a 17 DOF rail vehicle modeland yawing displacement from the equilibrium are assumed to be small. For simplicity,in the hand-derived model, the gravitational terms (the contributions of wheelset loads tothe lateral forces and yaw moments due to the yaw motions) and spin creep are neglected,and the creep forces are linearized. The longitudinal and lateral creep coe�cients f11 andf22 take the values o�ered in Table A.1 in Appendix A. Note that in the A'GEM vehiclemodel, the gravitational terms are included but both the lateral/spin creep coe�cient f23and spin creep coe�cient f33 are set to zero for comparison with the hand-derived model.Otherwise, f23 and f33 take the values provided in Table A.1 in Appendix A.The four creep coe�cients f11, f22, f23, and f33 are obtained using A'GEM's CREEProutine, which is based on Kalker's linear creep theory [78]. These four creep coe�cientsare calculated using the values shown in Table A.2 in Appendix A for the normal loadon a wheel (W ), the wheel rolling radius (r0), the wheel transverse radius (rw), the railtransverse radius (rr), and Poisson's ratio (�) and Young's modulus (E) for both wheeland rail materials.From Newton's laws of dynamics, the linearized equations of motion can be cast in



Optimization of the Lateral Stability 51matrix form as follows: M�r+C_r+Kr = 0 (4.1)where r = fy1;  1; y2;  2; �2; y3;  3; y4;  4; �4; y5;  5; y6;  6; �6; y7;  7gT , and M, C, and Kare mass, damping, and sti�ness matrices and these matrices are o�ered in Appendix A,respectively.Due to the unsymmetrical nature of the sti�ness matrix K, equation (4.1) can notbe transformed into an uncoupled set of di�erential equations by means of conventionalmethods of modal analysis, i.e. using only real modes. A solution can still be e�ectedthough, by using the complex modal transformation described in [100]. To do this, equation(4.1) is recast into the following state-space form:_q = Aq (4.2)where the relation of the generalized coordinates with the denoted bodies is listed in Table4.1 and the assembled generalized coordinates q and coe�cient matrix A are listed asfollows: q = fq1;q2;q3;q4;q5;q6;q7; _q1; _q2; _q3; _q4; _q5; _q6; _q7gT (4.3)A = " 0 I17�17�M�1K �M�1C # (4.4)where I17�17 is an identity matrix. After performing an eigenvalue analysis on matrix A,the solution to equations (4.2) is given by:q(t) = Re[�]tLTq(0) (4.5)in which q(0) contains the initial conditions speci�ed for the physical variables, e[�]t is adiagonal matrix with each entry having the form e�i�t; i = 1; 2; :::; 34, �i is the correspondingeigenvalue of the matrix A, and R and L contain the \right" and \left" eigenvectors of A[100].With solution (4.5), we can analyze the relationship between the critical speed and thesuspension parameters. For any �i, assuming its real part is Re(�i), if Re(�i) < 0, thecorresponding motion mode is stable.



Optimization of the Lateral Stability 52Table 4.1: Relationship between the generalized coordinates and the denoted bodiesBody Type Generalized Coordinates1 wheelset q1 = fy1;  1g2 bogie q2 = fy2;  2; �2g3 wheelset q3 = fy3;  3g4 car q4 = fy4;  4; �4g5 wheelset q5 = fy5;  5g6 bogie q6 = fy6;  6; �6g7 wheelset q7 = fy7;  7g4.2.2 Validation of A'GEM Using Hand-Derived ModelFor the purpose of investigating the integrated approach using GAs, SQP, DMT, andmultibody dynamics, the A'GEM multibody dynamics program is used for modelling andsimulating the rail vehicle response.Using in
uence coe�cients that relate the displacement of force-producing components(e.g. springs and dampers) to the DOF de�ned for the wheelsets, bogies, and car body,A'GEM automatically generates equations of motion that are linear in terms of geometricale�ects [6]. For the purpose of lateral stability analysis, A'GEM approximates the wheel/railforces, i.e. the lateral creep, longitudinal creep, and spin creep, and the gravitationalsti�ness as linear functions of the generalized coordinates and velocities. The programcan calculate the eigenvalues and perform modal analysis by means of tracking dynamicmodes of rail vehicles [7].Using the A'GEM program, we can obtain the eigenvalues for the 17 DOF rail vehiclemodel for the nominal design parameters. Table 4.2 lists the eigenvalues obtained fromA'GEM model and those from the hand-derived model.To compare the eigenvalues obtained from A'GEM with those from the hand-derivedmodel, the spin creep coe�cients in the A'GEM model are set to zero. The forward speedof the vehicle corresponding to the eigenvalues shown in Table 4.2 is 11:0[m=s]. As shownin the table, except for the 33rd and 34th eigenvalues, the results are in close agreement.



Optimization of the Lateral Stability 53Table 4.2: Eigenvalues for the 17 DOF rail vehicle modelA'GEM Model Hand Derived ModelRoot Real Imag F/Hz Damp% Real Imag F/Hz Damp%1 -2182.6 0.00 0.00 100.00 -2182.6 0.00 0.00 100.002 -2182.6 0.00 0.00 100.00 -2182.6 0.00 0.00 100.003 -2182.7 0.00 0.00 100.00 -2182.7 0.00 0.00 100.004 -2182.7 0.00 0.00 100.00 -2182.7 0.00 0.00 100.005 -1162.0 0.00 0.00 100.00 -1162.0 0.00 0.00 100.006 -1162.0 0.00 0.00 100.00 -1162.0 0.00 0.00 100.007 -1162.0 0.00 0.00 100.00 -1162.0 0.00 0.00 100.008 -1162.0 0.00 0.00 100.00 -1162.0 0.00 0.00 100.009,10 -16.761 �193:31 30.766 8.64 -16.761 �193:31 30.766 8.6411,12 -16.761 �193:31 30.766 8.64 -16.761 �193:31 30.766 8.6413,14 -18.369 �68:576 10.914 25.87 -18.039 �69:030 10.9865 25.2815,16 -18.119 �68:712 10.936 25.50 -18.119 �68:713 10.936 25.5017,18 -36.232 �46:049 7.329 61.83 -36.249 �45:713 7.276 62.1319,20 -36.250 �45:713 7.276 62.13 -36.912 �43:978 6.999 64.2921,22 -21.265 0.00 0.00 100.00 -21.281 0.00 0.00 100.0023,24 -10.973 0.00 0.00 100.00 -10.956 0.00 0.00 100.0025,26 -3.813 �5:343 0.850 58.09 -3.360 �5:261 0.837 53.8327,28 -4.006 �4:574 0.728 65.89 -4.006 �4:574 0.728 65.8829,30 -1.315 �5:109 0.813 24.92 -1.304 �5:103 0.812 24.7631,32 -1.410 �5:174 0.823 26.301 -1.385 �5:195 0.827 25.7633,34 -0.588 �3:684 0.586 15.77 -0.706 �3:903 0.621 17.81The small di�erence in the results may be due to the gravitational sti�nesses that areincluded by the A'GEM program.4.2.3 Dynamic Mode Tracking (DMT) TechniqueIn order to analyze the results of a linear stability analysis of a rail vehicle, in the A'GEMprogram the DMT technique is used to track the natural modes as the velocity changesand produce plots of frequency and damping of the modes versus vehicle speed[7, 136]. Forconvenience, this technique is outlined here.



Optimization of the Lateral Stability 54It is well-known that for a real symmetric matrix B, the eigenvalue problem can beexpressed as Bx = �x (4.6)where � is an unknown eigenvalue and x is the corresponding eigenvector. For this eigen-value problem, any two eigenvectors, e.g. xi and xj, have the following orthogonalityrelationships: ( xTi xj = 0 i 6= jxTi xj 6= 0 i = j (4.7)The problem concerned is, at a given speed, to identify a mode that is known at a pre-vious speed. Thus, based on the orthogonality relationships, for a symmetric system, whentwo speeds are close, we could determine whether two modes are the same by evaluatingand inspecting the size of the dot product obtained by the way as shown in equation (4.7).Unfortunately, the matrix A de�ned in equation (4.4) is unsymmetric due to the non-conservative forces between the wheels and rails. Hence, the above orthogonality relation-ships does not hold for matrix A.However, in the case where matrix A is real but not symmetric, a pair of relatedeigenvalue problems can arise as follows [100]:Ax = �x (4.8)ATx = �x (4.9)and (4.9) can be rewritten as yTA = �yT (4.10)where the vectors x and y are the so-called right and left eigenvectors of A, respectively.The equations j A � �I j and j AT � �I j should have the same solutions for � and� because the determinant of a matrix and the determinant of its transpose are equal.



Optimization of the Lateral Stability 55Hence the eigenvalues of A and AT are identical. For the eigenvectors x and y, they arebi-orthogonal: if �i, xi, yi and �j, xj, yj are solutions that satisfy (4.8) and (4.9), then( yTi xj = 0 i 6= jyTi xj 6= 0 i = j (4.11)The bi-orthogonal relationships of eigenvectors of the unsymmetric matrix A are usefulfor tracking the modes from speed to speed. A procedure for tracking the modes has beeno�ered by Anderson [7]4.3 Optimization Problem and Implementation4.3.1 Objective Function, Constraints and Design VariablesBased on equation (4.5), we can conclude that if the real part of each eigenvalue �i,i = 1; 2; :::; 34, is negative or zero, the response of the system in the time domain is stable.Otherwise, the response will be unstable. If one eigenvalue has zero real part and all othershave negative real parts, the vehicle is traveling at its critical speed.By analyzing matrix A (4.4) and equation (4.5), we may �nd the relationship betweenthe critical speed Vc and the system design variables. These variables may include the sus-pension sti�ness and damping, the inertia properties of the wheelsets, bogies, and carbody,the various geometric variables listed in Table A.2, in Appendix A, the creep coe�cientsf11, f22, f23, and f33, conicity �, and forward vehicle speed V . Considering that manyprevious researchers have investigated the e�ects of creep coe�cients and conicity on thecritical speed [30, 54, 63, 92, 107, 140], only the suspension sti�ness and damping coe�-cients, the inertial property parameters, and the geometric parameters are chosen here asdesign variables. The values of all other parameters are �xed. Thus, the objective functionand constraints may be expressed as( maximize Vc(�S;�I; �G; V )subject to Re(�i)(�S;�I; �G; V ) � 0; i=1,2,...,34 (4.12)where �S, �I and �G represent the suspension sti�ness and damping coe�cient vector, theinertia property parameter vector, and the geometric parameter vector, respectively.



Optimization of the Lateral Stability 564.3.2 Implementation of the Optimization ProblemA two-loop method is used for the optimization problem (4.12). The two-loop method,as shown in Figure 4.2, is implemented using the MechaGen program [10] (i.e. a GA) asthe outer loop algorithm, and the E04UCF routine alone (i.e. an SQP) from the NAG(Numerical Algorithms Group) library or the E04UCF routine combined with MTRACK(i.e. DMT) from A'GEM as the interior loop algorithm.
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Figure 4.2: The implementation of the GA combined with A'GEM, SQP, and DMTAs shown in Figure 4.2, for a given set of design variables �S, �I, and �G, the correspondingcritical speed is determined in the interior loop by the SQP or by the combination ofthe SQP and DMT and returned to the GA. Using the returned value as the requiredcost value, the GA in the outer loop produces the next generation of design variable setsusing reproduction, crossover and mutation. Then each speci�ed set of design variablesis forwarded to A'GEM for deriving the system matrix A and performing an eigenvalueanalysis. Then the SQP or the combination of the SQP and DMT is called one by one.This procedure is repeated until the maximized critical speed is found for a set of optimaldesign variables.For the purpose of comparing with the GA used in the integrated optimization algo-rithm, the Simplex routine E04CCF from NAG is used to replace the MechaGen routineas the outer loop algorithm.



Optimization of the Lateral Stability 574.3.3 Critical Speed Identi�cation and Algorithm Implementa-tionIn the above two-loop method shown in Figure 4.2, provided that in the interior loop, allthe system parameters are known except the vehicle speed, for the SQP algorithm, theobjective function and constraint functions contain only one independent design variable,i.e. the forward speed V . Since only oscillatory modes with frequency and damping ratiobelow speci�ed values are concerned and only these modes are tracked by DMT routine(based on MTRACK from A'GEM), the corresponding eigenvalues, say i = 1; 2; :::;m andm � 34, are taken into account instead of all 34 eigenvalues. With these considerations,when the DMT is introduced, the SQP solves the optimization problem:( minimize F (V ) = �Vc(V ) = �Vsubject to Re(�i)(V ) � 0; i=1,2,...,m (4.13)Notice that if the SQP algorithm alone is used for identifying the critical speed, in equation(4.13), m still takes the number of 34.For this case, the �rst-order KT condition at a local optimum V � and the gradient ofthe objective function with respect to the design variable V are of the forms:5F (V �) + Xi2activeui5Re(�i)(V �) = 0 (4.14)5F (V ) = �1 (4.15)For the active inequality constraints, the Lagrange multipliers are ui � 0.The numerical algorithm implementation (using the SQP and DMT) for the criticalspeed identi�cation is shown in Figure 4.3. The numerical algorithms used in the imple-mentation are written in Fortran. The vehicle system parameters are o�ered by an outerloop algorithm, e.g. a genetic algorithm. With the given system parameters, the A'GEMsoftware program is utilized to generate the system mass, sti�ness, and damping matrices,i.e. M, K0, and C0, respectively. Then the non-conservative forces or the creep forcesbetween the wheels and rails are added to the sti�ness and damping matrices to form theresulting sti�ness matrix K and damping matrix C accordingly. To improve the e�ciency
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Optimization of the Lateral Stability 59are o�ered, the SQP routine with the objective function and constraint functions de�nedin (4.13) will be used to identify the required critical speed. The SQP routine calls theDMT program repeatedly until it reaches the resulting speed Vopt which is assumed to bethe critical speed Vc.In the DMT routine, the system matrix A is �rst balanced and then reduced to anupper Hessenberg form using Householder method. The eigenvalues and eigenvectors ofthe Hessenberg matrix are calculated using the QR algorithm. The eigenvectors of theHessenberg matrix are back-transformed to give the eigenvectors of the original matrix A.Notice that the algorithm implementation using the SQP alone for identifying thecritical speed is almost the same as described above except that the DMT routine is notincluded. The di�erence between the results of the two will be o�ered in the followingsection.4.4 Results and Discussion4.4.1 Validation of SQP and DMT for Identifying the CriticalSpeedIn this section, to investigate the e�cacy of the algorithms for identifying the criticalspeed, the numerical results based on the SQP alone are compared with those based onthe algorithm combining the SQP and DMT under two di�erent circumstances.In the �rst case, the vehicle system parameters taking the nominal values listed in TableA.2 in Appendix A, we can �nd the 7 least damped motion modes plotted in the form ofmode damping versus the forward speed of the vehicle as shown in Figure 4.4. These modesare the Leading/Trailing Bogie Lateral (In Phase) motion, Leading/Trailing Bogie Lateral(Out Phase) motion, Leading O.B. (out board)/Trailing I.B. (in board) Wheelset Lateral(In Phase) motion, Leading O.B./Trailing I.B. Wheelset Lateral (Out Phase) motion, Car-body Lateral motion, Leading Bogie Yaw motion, and Trailing Bogie Yaw motion. Plottedin Figure 4.4, the zero damping line intersects the curves corresponding to the motionmodes 3 and 4 at points A and B, respectively. The points A and B are very close. Whenthe vehicle speed is higher than the speed of VA (corresponding to point A), the damping
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Point A Figure 4.4: Mode damping ratios versus speed (single unstable range case, k2y = 1:97 �105 [N=m])is negative and the vehicle is not stable. Over the speed span o�ered in Figure 4.4, thereis a single unstable range, i.e. V > VA. We call this case the single unstable range case.In the second case, the lateral spring (in the secondary suspension) sti�ness coe�cientk2y takes the value of 2:3E+6[N=m], with all other parameters taking their nominal values.Again, Figure 4.5 o�ers the 7 least damped motion modes, i.e. motion modes denoted by1 to 7. As shown in Figure 4.5, the zero damping line intersects the curves correspondingto the relevant motion modes at points A, B, C and D. The points C and D are very closeto one another. Over the speed span o�ered in Figure 4.5, there are two unstable ranges,i.e. VA < V < VB and V > VC . We call this case the double unstable range case.In both cases, the speci�ed frequency Freq and damping ratio Drat take the values of60Hz and 45%, respectively. Both Figure 4.4 and Figure 4.5 are obtained using the DMTtechnique.
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6: Carbody Lateral 7: Leading/Trailing Bogie Lateral (Out Phase, 1st Freq.) Figure 4.5: Mode damping ratios versus speed (double unstable range case, k2y = 2:3 �106 [N=m])Identi�cation of the Critical Speed for Single Unstable Range CaseBased on (4.13), (4.14), and (4.15), one can �nd that both points A and B in Figure 4.4are KT points and at point A the critical speed Vc of 76:469[m=s] is determined.O�ered in Table 4.3 are the calculation results for determining the critical speed usingthe algorithm combining the SQP and DMT when di�erent values are selected for theinitial speeds. The results based on the SQP alone are also illustrated in Table 4.3. Forboth of the cases, the Householder's transformation and the QR algorithm are used tosolve the eigenvalue problem.Table 4.3 shows that with the initial speed (V0) o�ered, the algorithm combining theSQP and DMT can �nd the critical speed without exception. However, the SQP alonesometimes gets trapped at certain points which are not even the KT points. For example,with the initial speed selected as 16:5[m=s], the resulting optimal speed Vopt is 50:273[m=s]



Optimization of the Lateral Stability 62Table 4.3: Numerical results for single unstable range caseSQP+DMT SQPV0 Vopt KT Critical Vopt KT CriticalRun No. [m=s] [m=s] Point? Speed? [m=s] Point? Speed?1 10.0 76.469 yes yes 76.469 yes yes2 14.0 76.469 yes yes 76.469 yes yes3 16.5 76.469 yes yes 50.273 no no4 17.0 76.469 yes yes 29.810 no no5 18.0 76.469 yes yes 76.469 yes yes6 22.0 76.469 yes yes 76.469 yes yes7 26.0 76.469 yes yes 51.265 no no8 29.0 76.469 yes yes 77.509 no no9 31.0 76.469 yes yes 32.251 no no10 31.5 76.469 yes yes 76.469 yes yes11 32.0 76.469 yes yes 32.821 no no12 32.5 76.469 yes yes 32.821 no no13 34.0 76.469 yes yes 76.469 yes yes14 48.0 76.469 yes yes 76.469 yes yes15 56.0 76.469 yes yes 76.469 yes yes16 68.0 76.469 yes yes 76.469 yes yes17 75.0 76.469 yes yes 76.469 yes yes18 80.0 76.469 yes yes 76.469 yes yes19 96.0 76.469 yes yes 76.469 yes yes20 106.0 76.469 yes yes 76.469 yes yesinstead of the critical speed of 76:469[m=s].To investigate why the SQP algorithm sometimes gets trapped at certain points whichare not even the KT points, we arbitrarily chose and plotted only 4 motion modes interms of mode damping versus the forward speed as shown in Figure 4.6. It should benoted that the 4 motion modes shown in Figure 4.6 are obtained using the Householder'stransformation and the QR algorithm. These motion modes correspond approximately tothe modes 1 to 4 from Figure 4.4.Compared with the corresponding motion modes shown in Figure 4.4, except for mode
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 Figure 4.6: Mode damping ratios versus speed4, the other motion modes shown in Figure 4.6 distort their actual motion modes andthese distorted modes become discontinuous over the corresponding speed ranges. Thesedistortions result from the motion mode rank exchanges because the Householder's trans-formation and QR algorithm ranks the eigenvalues in its own way instead of tracking theseeigenvalues once the speed increases.As mentioned previously, for the SQP algorithm, the objective function and constraintfunctions should be at least twice-continuously di�erentiable. Therefore, if a dominant mo-tion mode in terms of mode damping versus the forward speed distorts, the correspondingconstraint function becomes discontinuous and the matrix of constraints in the working setis ill-conditioned. During the numerical calculation, once the problem occurs, the E04UCFroutine often o�ers the error information:\Current point cannot be improved upon". Dur-ing the �nal line search a su�cient decrease in the merit function could not be attained andthe calculation gets trapped at a point that does not satisfy the �rst-order KT conditions.



Optimization of the Lateral Stability 64Close observations of the results o�ered in Table 4.3 disclose that even though theSQP alone sometimes gets trapped at certain points which are not corresponding to thecritical speed because of the distortions of the relevant motion modes, compared with theinitial speed of V0, the calculated resulting speed Vopt is always closer to the critical speed.Moreover, if the initial speed is selected higher than 34:0[m=s], the calculation alwaysconverges to the critical speed. Numerical experiments show that for the non-convergencecase, by adding an appropriate small speed increase to the resulting speed Vopt, multipleSQP runs can still �nd the required critical speed. All these phenomena are also found inthe double unstable range case. These phenomena will be discussed in more detail in thefollowing subsection.Identi�cation of the Critical Speed for Double Unstable Range CaseAccording to (4.13), (4.14), and (4.15), we �nd that points A, C, and D shown in Figure4.5 are KT points and at point A the critical speed Vc of 35:969[m=s] is determined. Thespeed corresponding to point C takes the value of 104:957[m=s]. The optimization problemcorresponding to Figure 4.5 is a nonconvex optimization problem and the points A, C, andD are local optimal points. The objective is to identify the KT point A. Listed in Table4.4 are the results of numerical experiments for determining the critical speed using thecombined algorithm (SQP+DMT) and the SQP algorithm alone, for di�erent values of theinitial speed.Examining the numerical results for the SQP alone, one sees that the calculated speedVopt may or may not converge to the KT point A when the initial speed V0 is less thanthe critical speed Vc(35:9690[m=s]). As mentioned in the single unstable range case, evenif the SQP does not converge to Vc, the calculated speed Vopt is closer to the critical speedthan V0. In this situation, the calculated speed Vopt does not satisfy the �rst-order KTcondition, and no improved point for the objective function could be found during the �nalline search. As an example, when the initial speed V0 is 16:6[m=s], the calculated speedVopt is 17:6899[m=s]; the corresponding values of the real part of each eigenvalue (theconstraint functions) are listed in Table 4.5. With the chosen nonlinear search tolerance(i.e. the constraint function value tolerance) of 5:43E�6, no constraint function value couldbe considered as 0:0. Among the 34 constraint function values, the value which is closest



Optimization of the Lateral Stability 65Table 4.4: Numerical results for double unstable range caseSQP+DMT SQPV0 Vopt KT Critical Vopt KT CriticalRun No. [m=s] [m=s] Point? Speed? [m=s] Point? Speed?1 1.0 104.975 yes no 2.036 no no2 2.0 104.957 yes no 2.143 no no3 3.0 104.957 yes no 3.075 no no4 4.0 104.957 yes no 35.969 yes yes5 6.0 104.957 yes no 35.969 yes yes6 7.0 104.957 yes no 32.733 no no7 9.0 35.969 yes yes 35.969 yes yes8 10.0 104.957 yes no 35.969 yes yes9 11.0 35.969 yes yes 32.055 no no10 13.0 35.969 yes yes 35.969 yes yes11 14.0 35.969 yes yes 31.928 no no12 15.0 35.969 yes yes 30.206 no no13 16.0 35.969 yes yes 35.969 yes yes14 16.6 35.969 yes yes 17.690 no no15 17.0 35.969 yes yes 33.738 no no16 18.0 35.969 yes yes 35.256 no no17 20.0 35.969 yes yes 31.897 no no18 22.0 35.969 yes yes 33.546 no no19 24.0 35.969 yes yes 35.942 no no20 25.0 35.969 yes yes 35.969 yes yes21 26.0 35.969 yes yes 33.488 no no22 27.0 35.969 yes yes 33.523 no no23 29.0 35.969 yes yes 35.942 no no24 29.5 35.969 yes yes 34.693 no no25 29.8 35.969 yes yes 35.969 yes yes26 30.0 35.969 yes yes 35.969 yes yes27 31.0 35.969 yes yes 35.969 yes yes28 32.0 35.969 yes yes 35.969 yes yes29 33.0 35.969 yes yes 35.969 yes yes30 34.0 35.969 yes yes 35.969 yes yes31 34.5 35.969 yes yes 35.969 yes yes



Optimization of the Lateral Stability 66SQP+DMT SQPV0 Vopt KT Critical Vopt KT CriticalRun No. [m=s] [m=s] Point? Speed? [m=s] Point? Speed?32 36.0 35.969 yes yes 35.969 yes yes33 37.0 35.969 yes yes 35.969 yes yes34 38.0 35.969 yes yes 35.969 yes yes35 39.0 35.969 yes yes 35.969 yes yes36 39.6 35.969 yes yes 35.969 yes yes37 39.8 35.969 yes yes 33.970 no no38 40.0 35.969 yes yes 33.360 no no39 41.0 35.969 yes yes 35.969 yes yes40 42.0 35.969 yes yes 35.068 no no41 44.0 35.969 yes yes 33.970 no no42 47.0 104.957 yes no 47.152 no no43 49.0 104.957 yes no 54.358 no no44 53.8 104.957 yes no 54.359 no no45 53.9 104.957 yes no 104.957 yes no46 54.0 104.957 yes no 104.957 yes no47 57.0 104.957 yes no 104.957 yes no48 80.0 104.957 yes no 104.957 yes noto 0:0 is �0:3702. Therefore, at the speed of 17:6899[m=s], no active constraint exists.The second term on the left-hand side of equation (4.14) disappears and this equation cannot hold, i.e. the resulting speed Vopt(17:6899[m=s]) does not satisfy the �rst-order KTcondition. Along with the eigenvalues at the speed of 17:6899[m=s], the eigenvalues at thecorresponding initial speed of 16:6[m=s] are also o�ered in Table 4.5. Results for initialspeeds of 16:0[m=s], 49:0[m=s], and 80:0[m=s], and their corresponding calculated speeds,are also provided for comparison purposes.If the initial speed is selected as 16:0[m=s], the corresponding resulting speed Vopt is35:9690[m=s]. As we can see from the Table 4.5, the upper bound of the constraint functionvalues at the speed of 35:9690[m=s] is �1:78E � 12, which is within the nonlinear searchtolerance mentioned above. Thus, the constraint corresponding to the upper bound valueis an active constraint. Then, equation (4.14) holds and the resulting speed 35:9690[m=s]



Optimization of the Lateral Stability 67Table 4.5: Real parts of eigenvalues at di�erent speeds (using the SQP alone)V0 Vopt V0 Vopt V0 Vopt V0 Vopt[m=s] [m=s] [m=s] [m=s] [m=s] [m=s] [m=s] [m=s]Root 16.6 17.6899 16.0 35.9690 49.0 54.3582 80.0 104.95661 -768.33 -1332.9 -1481.8 -582.93 -367.39 -259.59 -67.607 -62.4902 -1425.5 -1333.4 -1481.8 -590.36 -367.39 -259.59 -67.607 -62.4903 -768.33 -720.51 -797.41 -582.93 -304.98 -259.59 -67.607 -62.4904 -1426.0 -1332.9 -1482.2 -590.36 -304.98 -259.59 -67.607 -62.4905 -1425.5 -720.51 -797.41 -349.97 -304.98 -272.84 -159.94 -120.716 -1426.0 -1333.4 -1482.2 -349.97 -304.98 -272.84 -159.94 -120.717 -768.33 -720.51 -797.41 -349.97 -264.99 -272.84 -159.94 -120.718 -768.33 -720.51 -797.41 -349.97 -264.99 -272.84 -159.94 -120.719,10 -21.710 -22.684 -21.176 -39.496 -51.510 -56.059 -148.33 -96.5911,12 -21.710 -22.684 -21.176 -39.496 -51.510 -56.059 -148.34 -96.6013,14 -22.942 -23.330 -22.942 -27.683 -109.110 -115.67 -87.111 -30.43915,16 -22.932 -23.188 -22.792 -27.645 -30.665 -31.620 -87.096 -30.43217,18 -33.688 -33.670 -33.698 -75.340 -30.686 -31.654 -33.017 -79.47319,20 -33.327 -33.315 -33.334 -33.213 -55.982 -67.249 -32.987 -79.43621,22 -32.432 -34.651 -31.218 -33.461 -33.351 -33.472 -34.255 -34.04523,24 -16.408 -17.502 -15.813 -37.412 -33.550 -33.667 -34.000 -34.33525,26 -4.0320 -4.1744 -3.9600 -8.2144 -8.7474 -8.3301 -4.2690 -0.079927,28 -3.5105 -3.6570 -3.4366 -7.9581 -8.5814 -8.1987 -4.2030 -8.15E-929,30 -1.8211 -1.9145 -1.8354 -0.3014 -0.2524 -0.4179 -1.3174 -1.751631,32 -1.8684 -1.8644 -1.7892 -1.78E-12 0.14571 0.02398 -0.7428 -1.158433,34 -0.3691 -0.3702 -0.3685 -0.3761 -0.3773 -0.3775 -0.3784 -0.3787satis�es the �rst-order KT condition.As shown in Table 4.5, when the initial speed is chosen as 80:0[m=s], the calculatedspeed Vopt is 104:9566[m=s]. At this speed, the upper bound constraint function valuesis �8:15E � 9. Therefore, the speed of 104:9566[m=s] also satis�es the �rst-order KTcondition. In fact, this speed corresponds to the KT point C from Figure 4.5. When theinitial speed is selected within the speed range from 44:5 to 53:8[m=s], a solution fromthe SQP algorithm may be outside the feasible range. For instance, if the initial speed is



Optimization of the Lateral Stability 68selected as 49:0[m=s], one obtains a calculated speed Vopt of 54:3582[m=s] using the SQP.From Table 4.5, the upper bound of the constraint function values corresponding to thecalculated speed is 0:02398. Thus, the solution is not feasible.Figure 4.7 shows the relationship between the major iteration number and the resultingspeed Vopt when the initial speed is chosen as 16:0, 16:6, 49:0, and 80:0[m=s], respectively.
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Vo=16.0;Vopt=35.9690/[m/s]. Single SQP Loop.
Vo=16.6;Vopt=17.6900/[m/s]. Single SQP Loop.
Vo=49.0;Vopt=54.3582/[m/s]. Single SQP Loop.
Vo=80.0;Vopt=104.9566/[m/s].Single SQP Loop.
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Vo=36.9690;Vopt=35.9690/[m/s]. 4th SQP/Multi−SQP.

Multiple SQP Loops. Figure 4.7: Vopt versus major iteration number of SQPWhen the initial speed is selected in the neighborhood of the critical speed of 35:9690[m=s],the calculated speed can be guaranteed to converge to the critical speed. As shown in Table4.4, if the initial speed selected is within the range from 29:8 to 39:6[m=s], the calculatedspeed always converges to 35:9690[m=s]. This phenomenon can be explained by the factthat the SQP has very strong, theoretical, local convergence properties and within thisspeed range there are no distortions of the relevant motion modes.



Optimization of the Lateral Stability 69Therefore, to reliably identify the critical speed using the SQP alone, the initial speedV0 should be selected in the neighborhood of the critical speed Vc. Unfortunately, for thegeneral case, we do not know beforehand where the critical speed is located. However,based on the above analyses, we know that if the initial speed is chosen less than thecritical speed, there are two possibilities for the calculated speed Vopt. First, the calculatedspeed may converge to the critical speed. Second, the resulting speed is still a feasiblesolution, it should be closer to the critical speed than the corresponding initial speed, andthe resulting speed should be less than the critical speed. Thus, if we choose a small initialspeed, using the SQP we can obtain an improved resulting speed Vopt.By adding a small speed increase Vstep to the resulting speed Vopt, we can get an in-creased speed Vincre. If any of the constraints is violated at the increased speed, it shouldbe higher than the critical speed but still within the neighborhood of the critical speed. Ifthe increased speed is treated as a new initial speed and one more SQP run is carried out,the new calculated speed should converge to the critical speed.On the other hand, if the constraints are satis�ed, the increased speed should be afeasible solution and less than the critical speed. The value of the increased speed isassigned to the initial speed, and the previous procedure is repeated until we reach thecritical speed. The 
owchart of this multiple SQP loop algorithm is shown in Figure 4.8.As shown in Table 4.4, an initial speed of 1:0[m=s] results in a calculated speed of2:0364[m=s] using only one SQP run. However, using multiple SQP loops for the sameinitial speed, one can obtain the correct critical speed. The relationship between themajor iteration number of the multiple SQP loop algorithm and the resulting speed Voptwhen both the initial speed V0 and the speed increase Vstep are chosen as 1:0[m=s] is shownin Figure 4.7. To �nd the critical speed for the case just discussed, four SQP calls areneeded. Numerical experiments show that this multiple SQP inner-loop algorithm has ahigh reliability for identifying the critical speed of the 17-DOF rail vehicle.To clarify how this multiple SQP inner-loop algorithm works, the following example isfurther investigated. As illustrated in Figure 4.9, if the initial speed and the speed stepare chosen as 15:0[m=s] and 1:0[m=s] respectively, we can �nd the critical speed using twoSQP runs. For the �rst SQP run, the resulting optimal speed is 30:206[m=s]. For thesecond SQP run, the initial speed is 31:206[m=s].
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Figure 4.8: Flowchart of interior loop algorithm for identifying VcTo investigate the SQP's behavior shown in Figure 4.9, the 7 least damped motionmodes in terms of mode damping versus speed are o�ered in Figures 4.10 and 4.11 cor-responding to the initial speeds of 15:0[m=s] and 31:206[m=s], respectively. It should benoted that the 7 motion modes shown in Figure 4.10 may not be the same as those shownin Figure 4.11.With the initial speed selected as 15:0[m=s], the SQP algorithm searches the workingspace and reaches point Q as shown in Figure 4.10. Around point Q, the dominant motion
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Vo=15.0;Vopt=30.2056/[m/s]. 1st SQP Run.
Vo=31.2056; Vopt=35.969/[m/s]. 2nd SQP Run.Figure 4.9: Vopt versus major iteration number of SQP (V0 = 15:0 [m=s]; Vincre = 1:0 [m=s])mode is mode 7. Because this mode is not tracked at point Q and the correspondingmotion mode in terms of mode damping versus speed distorts, the dominant constraintfunction becomes discontinuous. So for the �rst SQP run as shown in Figure 4.9, duringthe �nal line search, point Q does not satisfy the �rst-order KT conditions o�ered byequation (4.14), and no improved point for the objective function described as (4.13) couldbe found. Thus at the end of the �rst SQP run, the calculation gets trapped at point Qcorresponding to the resulting speed of 30:206[m=s].With the resulting optimal speed of the �rst SQP run plus the speed step as the initialspeed for the second SQP run, the SQP algorithm searches the optimal point in the searchspace. As shown in Figure 4.11, the dominant motion modes should be mode 7, mode 5,and mode 6 respectively over the corresponding speed ranges before the critical speed isdetermined. During the �nal line search, point M is found and this point satis�es the �rst-order KT conditions o�ered by equation (4.14), and the calculation terminates at point Mwhich corresponds to the critical speed of 35:969[m=s].
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Optimization of the Lateral Stability 73Provided in Table 4.4 are also the numerical results for identifying the critical speedusing the algorithm combining the SQP with DMT when the initial speeds are selected asdi�erent values.Close observations of the numerical results shown in Table 4.4 reveal that with theinitial speeds selected, the resulting optimal speeds Vopt always converge to the KT pointA or the KT point C (see Figure 4.5) when the algorithm combining SQP with DMT isemployed. If the initial speeds are selected within the range from 11:0 to 44:0[m=s], theresulting optimal speeds converge to the critical speed Vc without exception. Once theinitial speeds are selected larger than 44:0[m=s] or less than 11[m=s], the correspondingresulting optimal speeds frequently converge to the KT point C.All these phenomena result from the local convergence properties of the SQP algorithm.To improve the reliability for identifying the critical speed using the combined algorithmincluding the SQP and DMT, there are two options: the calculation should start froma point su�ciently close to, or in the neighborhood of, the KT point A; with multipleinitial speeds selected within the speed span concerned, the critical speed is determined bycomparing the resulting optimal speeds corresponding to the initial speeds selected.Compared with the results based on the algorithm combining the SQP with DMT,for the case of using the SQP alone, the speed range for the initial speeds to ensure thecorresponding resulting optimal speeds converge to the critical speed is much narrower.For the latter case, as mentioned previously, this speed range is from 29:8 to 39:6[m=s]which is only 30% of that for the former case. For the latter case, if the initial speeds areselected less than 29:8[m=s] or higher than 39:6[m=s], the SQP algorithm frequently getstrapped at a certain point which is not even the KT point.4.4.2 Cli� Phenomenon and InterpretationFigures 4.12 and 4.13 show the relationship between the the critical speed and k1x (thelongitudinal sti�ness of the primary suspension) and that between the critical speed andk2y (the lateral sti�ness of the secondary suspension), with all other system parameterstaking nominal values. The two-dimensional plot 4.12 reveals that there are several localoptimal points and, when k1x take its nominal value, the corresponding critical speed(76:4688[m=s]) is very close to the global optimal value (76:4779[m=s]). In addition to



Optimization of the Lateral Stability 74several local optimal points, one can see in Figure 4.13 the existence of a steep \cli�" atwhich the critical speed changes dramatically with small changes in k2y. This cli� is alsoclearly shown in the corresponding three-dimensional plot in Figure 4.14. This phenomenonappeared previously in two-dimensional form in 1984 [107], but its signi�cance was notdiscussed.
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Local Optimal Point Figure 4.12: Critical speed versus sti�ness k1xThe cli�s in Figure 4.14 are due to the fact that the mode (eigenvector) corresponding tothe critical speed switches in a discontinuous fashion. This phenomenon can be interpretedclearly using Figure 4.15, in which the parameter k2y takes the value of 1:995E + 6[N=m]while all the other parameters take their nominal values. In Figure 4.15, the intersection(point A) of the zero damping line and the Leading O.B./Trailing I.B. Wheelset Lat-eral (Out Phase) motion mode damping curve determines the critical speed; its value is101:43[m=s]. However, when k2y increases from 1:995E +6[N=m] to 2:300E +6[N=m] (seeFigure 4.5), the Leading/Trailing Bogie Lateral (Out Phase) motion mode damping curvewill now intersect with the zero damping ratio line and the critical speed will plummetto 35:9690[m=s] accordingly. This cli� phenomenon might be interpreted as a bifurcation
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Local Optimal Points Figure 4.13: Critical speed versus sti�ness k2yin the solution, for which two values of the critical speed correspond to one value of theparameter k2y.4.4.3 Comparison of Simplex and GA for Critical Speed Opti-mizationWhen the Simplex or the GA is used as the outer loop algorithm shown in Figure 4.2, theoptimal values of the single design variables k1x and k2y (and the corresponding criticalspeeds) are listed in Tables 4.6 and 4.7, respectively.For these two cases involving a single design variable, both the Simplex and the GA canreliably �nd the global optimum even though the objective functions are discontinuous andhave a number of local optimal points (see Figures 4.12 and 4.13). However, the Simplexis more accurate and e�cient than the GA.Using terminology from the literature on GAs [112], the \explorative" property is theability to explore the whole function space and identify the subdomain in which the global



Optimization of the Lateral Stability 76Table 4.6: Results of optimization (k1x : 104 � 109=[N=m])Nominal Values Simplex Algorithmk1x Vc Initial k1x Optimized k1x Maximized Vc[N=m] [m=s] [N=m] [N=m] [m=s]3:162377E + 4 3:039786E + 7 76.4779423:150000E + 7 76.468754 1:258925E + 8 3:039834E + 7 76.4779423:981070E + 3 3:039940E + 7 76.477942Nominal Values Genetic Algorithmk1x Vc Run No. Optimized k1x Maximized Vc[N=m] [m=s] [N=m] [m=s]3:150000E + 7 76.468754 1 3.038547E+7 76.4779403:150000E + 7 76.468754 2 3.039855E+7 76.477942Table 4.7: Results of optimization (k2y : 104 � 108=[N=m])Nominal Values Simplex Algorithmk2y Vc Initial k2y Optimized k2y Maximized Vc[N=m] [m=s] [N=m] [N=m] [m=s]6:309573E + 4 2:041588E + 6 101.9769421:970000E + 5 76.468754 1:584893E + 7 2:041541E + 6 101.9763942:511886E + 6 2:041588E + 6 101.976464Nominal Values Genetic Algorithmk2y Vc Run No. Optimized k2y Maximized Vc[N=m] [m=s] [N=m] [m=s]1:970000E + 5 76.468754 1 2:035138E + 6 101.9015141:970000E + 5 76.468754 2 2:041567E + 6 101.976692
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Figure 4.14: Critical speed versus sti�nessesoptimum is located, while the ability to exploit all the local information for re�ning progres-sively and e�ciently the solution is called the \exploitative" property. From the literature,the Simplex (a local search method) should have better exploitative properties than thoseof the GA. As shown in Tables 4.6 and 4.7, the results agree with this expectation. How-ever, when the genetic algorithm parameters are chosen properly, the results obtained arevery close to those from the Simplex. As an example, when the population size and themutation ratio are selected as 80 and 0:015 (in Run 2) instead of 40 and 0:01 (in Run 1),respectively, the result of the second run is closer to those from the Simplex than that ofthe �rst run, as shown in Table 4.6.As shown in Table 4.8, when both k1x and k2y are selected as design variables, theSimplex usually converges to the neighborhood of the global optimal point. However, itoccasionally gets trapped at local points. In contrast, the GA can �nd the global optimal



Optimization of the Lateral Stability 78
20 40 60 80 100 120 140 160 180 200

−30

−20

−10

0

10

20

30

40

Speed [m/s]

M
od

e 
D

am
pi

ng
 [%

]
Leading O.B./Trailing I.B. Wheelset Lateral (In Phase)
Leading O.B./Trailing I.B. Wheelset Lateral (Out Phase)
Carbody Roll
Leading/Trailing Bogie Frame Lateral (Out Phase)
Carbody Lateral

Point A: V
c
=101.43[m/s] Figure 4.15: Motion mode damping ratios versus speedpoint with high reliability. Moreover, as shown in Table 4.9, when k1x, k2y and k1y areall chosen as design variables, the Simplex often gets trapped at local points and onlyoccasionally �nds the global optimum. As the number of design variables increases, thenumber of local optimal points also increases. Therefore, the more the design variables,the more likely that the Simplex will converge to a local optimum instead of the globaloptimum. Again in contrast, the results show that the number of design variables has noe�ect on the GA's ability to �nd the global optimum.Based on the characteristics of Simplex and GAs mentioned above and analyzed in [112],it is expected that the GA should have better explorative properties than the Simplex.Obviously the results shown in Tables 4.8 and 4.9 are consistent with the expectation.In order to visualize the optimized results, a plot of motion mode damping ratios versusforward speed for the case of k1x = 1:53287E + 7[N=m], k2y = 2:94724E + 6[N=m] andk1y = 9:99999E + 8[N=m] (see Table 4.9) is o�ered in Figure 4.16. Based on Figure 4.16,



Optimization of the Lateral Stability 79Table 4.8: Results of optimization (k1x : 104 � 109; k2y : 104 � 108=[N=m])Initial Values Simplex Algorithmk1x k2y Optimized k1x Optimized k2y Maximized Vc[N=m] [N=m] [N=m] [N=m] [m=s]1.00000E+4 1.00000E+4 3.19665E+7 2.03307E+6 101.976203.16228E+4 6.30957E+4 2.18999E+7 2.24189E+6 100.316393.16228E+4 2.51189E+6 3.21269E+7 2.03017E+6 101.974973.16228E+4 1.58489E+7 3.08257E+7 2.05414E+6 101.970011.25893E+8 1.58489E+7 3.17328E+7 2.03680E+6 101.970981.25893E+8 1.00000E+4 3.14018E+7 2.04337E+6 101.976191.00000E+9 1.25893E+7 2.02207E+7 2.27847E+6 99.437021.00000E+9 1.00000E+8 3.14152E+7 2.04254E+6 101.969455.01187E+7 6.30958E+7 3.10679E+7 2.04913E+6 101.968207.94328E+6 1.99526E+6 4.57241E+7 7.12881E+7 38.137782.51189E+5 6.30957E+4 3.18438E+7 2.03530E+6 101.976811.25893E+4 3.16228E+6 3.16875E+7 2.03815E+6 101.97716Genetic AlgorithmRun No. Optimized k1x Optimized k2y Maximized Vc[N=m] [N=m] [m=s]1 3.41242E+7 1.98787E+6 101.832542 3.13561E+7 2.03927E+6 101.918283 3.43900E+7 1.98861E+6 101.883614 3.12991E+7 2.02834E+6 101.777985 3.04822E+7 2.04572E+6 101.790176 3.40126E+7 1.99469E+6 101.896637 3.46853E+7 1.98324E+6 101.86394we can deduce that the optimized point is located on an edge of the cli� that is the same asthat shown in Figure 4.14. The reason is that when the curve of the Leading O.B./Trailing



Optimization of the Lateral Stability 80I.B. Wheelset Lateral (Out Phase) motion mode damping ratio intersects with the zerodamping line, the curves of the Leading I.B./Trailing O.B. Wheelset Lateral (Out Phase)motion mode damping ratio and the Car Body Lateral motion mode damping ratio arealso very close to the zero damping ratio line. Once k2y increases slightly (e.g. 0:68%),the curve of the Leading I.B./Trailing O.B. Wheelset Lateral (Out Phase) motion modedamping ratio intersects with the zero damping line, and the critical speed will drop from115:56269[m=s] to 50:85899[m=s] discontinuously. From a design perspective, the criticalTable 4.9: Results of optimization (k1x : 104 � 109; k2y : 104 � 108; k1y : 104 � 109=[N=m])Initial Values Simplex Algorithm (Optimized)k1x k2y k1y k1x k2y k1y Vc[N=m] [N=m] [N=m] [N=m] [N=m] [N=m] [m=s]1.99526E+6 6.30957E+5 5.62341E+6 1.48184E+7 3.02786E+6 9.99996E+8 115.714183.16228E+8 1.00000E+5 1.99526E+6 9.99776E+8 1.71973E+6 2.28329E+6 102.852331.25893E+8 3.98107E+5 1.58489E+7 1.49328E+7 3.01170E+6 9.99999E+8 115.718241.25893E+4 3.16228E+7 3.98108E+8 1.49432E+7 3.01023E+6 9.99907E+8 115.718244.46684E+7 1.00000E+6 5.62341E+6 3.79171E+7 1.92954E+6 4.00342E+6 101.643958.91251E+4 6.30957E+6 1.25893E+8 1.46263E+7 2.99217E+6 4.85742E+7 113.552931.30794E+7 1.54437E+6 1.00000E+6 1.56402E+7 9.99728E+7 9.99999E+8 47.638457.74662E+7 4.66745E+5 2.51189E+5 1.48738E+7 3.01649E+6 4.53793E+8 115.588637.94328E+6 1.99526E+6 5.62341E+6 1.70687E+7 2.71486E+6 2.76539E+8 114.399301.25893E+4 3.16228E+7 1.00000E+5 1.53287E+7 2.94724E+6 9.99999E+8 115.562691.00000E+9 1.00000E+8 1.00000E+9 1.00000E+9 1.00000E+8 1.00000E+9 7.567093.08257E+7 2.05414E+6 3.96000E+6 1.48139E+7 2.90785E+6 2.42014E+7 111.51704Genetic Algorithm (Optimized)Run No. k1x k2y k1y Vc[N=m] [N=m] [N=m] [m=s]1 1.52864E+7 2.93182E+6 6.57839E+8 115.265212 1.43278E+7 3.08832E+6 7.26158E+8 115.465583 1.59885E+7 2.84442E+6 9.94991E+8 115.160064 1.52418E+7 2.95933E+6 2.54195E+8 115.379145 1.58708E+7 2.86164E+6 7.69511E+8 115.21562



Optimization of the Lateral Stability 81speed of 115:56269[m=s] is not a very useful indicator of lateral stability because a verysmall disturbance in k2y (e.g. manufacturing tolerances) will cause the critical speed todrop sharply. Because of this instability, we call the critical speed corresponding to theoptimized point located on the edges of a cli� a \pseudo-critical speed".For the purpose of �nding a \stable" critical speed in the presence of this cli� phe-nomenon, it is necessary to rede�ne the critical speed and adjust the optimization algo-rithms accordingly.
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V=115.56269 [m/s] V=50.85899 [m/s] Figure 4.16: Motion mode damping ratios versus speed (conventional de�nition)4.4.4 Rede�nition of Critical Speed and Adjustment of Algo-rithmsFor safety reasons, the critical speed should be well above the normal operating speed ofthe vehicle. Moreover, it is further required that all modes have \su�cient damping" overthe range of operating speeds [7]. Based on this requirement, the de�nition of the criticalspeed can be generalized as follows: when a motion mode reaches the zero damping ratio,
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V=88.43855[m/s] Figure 4.17: Motion mode damping ratios versus speed (generalized de�nition)the vehicle is traveling at the critical speed if all other motion modes have a prescribedamount of damping (e.g. 5 % damping ratio). We call the prescribed amount of dampingthe \cli� damping ratio".According to this generalized de�nition, the two-loop algorithm shown in Figure 4.2should be adjusted. First, the previous two-loop algorithm is used to �nd the designvariables that maximize the pseudo-critical speed with the cli� damping ratio. Then, forthe optimized system, the SQP algorithm or the algorithm combining the SQP and DMTis employed to determine the critical speed with zero damping ratio. Thus, within a certainamount of disturbance, the maximized critical speed will not change discontinuously.Based on the generalized de�nition, when the cli� phenomenon exists, the optimizeddesign variables and the corresponding critical speed are di�erent from those obtained usingthe previous two-loop algorithm. The two optimization methods are di�erent only in thatthe two-loop method optimizes the design variables for maximizing pseudo-critical speedwith zero damping ratio, whereas the adjusted method optimizes the design variables formaximizing the pseudo-critical speed with the cli� damping ratio. Therefore, both methods



Optimization of the Lateral Stability 83are the same in nature and the results obtained in the previous sections still hold.Applying this generalized de�nition to the case of three design variables, i.e. k1x, k2y,and k1y, Figure 4.17 shows example results from the adjusted optimization algorithm. Thecritical speed is now 99:82257[m=s]. For this case, the cli� damping ratio is selected as5:0%, and the pseudo-critical speed with the cli� damping ratio is 88:43855[m=s].4.4.5 Relative Signi�cance of Di�erent Design Parameter SetsIt is observed that di�erent design parameters impose di�erent e�ects on the critical speed.As discussed in the previous sections, it is clear that the GA is suitable for multiple designvariable optimization problems with multiple local minima. Therefore, the GA could beused to investigate the relative signi�cance of di�erent design parameter sets, i.e. geometric,inertial, and suspension parameters, on the critical speed.
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Optimization of the Lateral Stability 84allowing the suspension sti�ness and damping values to vary by 30 % leads to a 12.6 %increase in the critical speed. One can see that variations in the geometric variables (e.g.suspension locations) have much greater in
uence on the lateral stability than variations inthe suspension sti�ness and damping values. Compared with the geometric and suspensionparameter sets, the inertial parameter set has medium e�ect on the critical speed.4.5 SummaryAn integrated approach using multibody dynamics, genetic algorithms (GAs), the sequen-tial quadric programming (SQP) algorithm, and the Dynamic Mode Tracking (DMT)technique is an e�ective approach to optimizing the lateral stability of rail vehicles. Inthe outer loop of this two-loop algorithm, a GA is well-suited to �nding the global optimaeven though the objective function is discontinuous and has multiple local optima, espe-cially when there are more than a few design variables. In the interior loop, the criticalspeed can be determined using either a combination of the SQP and the DMT algorithmsor the SQP alone.Numerical experiments demonstrate that the algorithm combining the SQP with DMTis suitable for identifying the critical speed of rail vehicles. Over the speed span concerned,if there is only one unstable speed range, this algorithm can always �nd the critical speed;if there are multiple unstable speed ranges, i.e. there are multiple critical speeds, thealgorithm can still always �nd one of those critical speeds even though this critical speedis not the least critical speed. To improve the reliability of the algorithm for identifyingthe least critical speed, two options are recommended: the initial speed selected should beclose to, or in the neighborhood of, the least critical speed; with the concerned speed span,multiple initial speeds are chosen and the least critical speed is determined by comparedthe corresponding resulting optimal speeds.When used for identifying the critical speed, if the initial speed is selected less thanthe critical speed, the SQP algorithm alone may converge to the critical speed or �ndsa non-critical speed that corresponds to a search point that does not satisfy the �rst-order Kuhn-Tucker conditions. Even in the latter case, the resulting calculated speed isstill closer to the critical speed than the initial speed. As for the algorithm combining



Optimization of the Lateral Stability 85the SQP with DMT, when the initial speed is selected within the speed range located inthe neighborhood of the critical speed, the SQP alone can always �nd the critical speed.However, compared with the combined algorithm, for the SQP algorithm alone, this speedrange is much narrower. To improve the reliability of the SQP alone for identifying thecritical speed, a multiple SQP loop method is recommended.In the case when the SQP algorithm alone �nds a non-critical speed that correspondsto a search point that does not satisfy the �rst-order Kuhn-Tucker conditions, this failureis due to the fact that when the Householder's transformation and the QR algorithmare used for solving the eigenvalue problems, they rank the eigenvalues corresponding tothe motion modes of a rail vehicle in their own way. Thus at two di�erent speeds therank of an eigenvalue corresponding to a certain motion mode may switch with that ofanother eigenvalue corresponding to another motion mode. This rank exchange causes thedistortion of the mode in terms of motion mode damping versus speed or the discontinuityof the constraint functions for the SQP. During the �nal line search, if the SQP reachesthis discontinuous point, no improved point for the objective function can be found andthe calculation terminates. Moreover, the multiple SQP loop method recommended foridentifying the critical speed is well explained by this motion mode distortion.The multibody dynamics software A'GEM can be used to combine the outer loop algo-rithm, i.e. a GA, and the interior loop algorithm, i.e. the SQP alone or the combination ofthe SQP and the DMT, e�ectively by automatically generating and solving the equationsof motion for realistic vehicle models, given the design variables from the GA; the resultsfrom the eigenvalue analysis are in turn o�ered to the SQP or the combined algorithm usingthe SQP and the DMT. Using this integrated optimization algorithm, the geometric pa-rameters are found to have greater in
uence on lateral stability than inertial or suspensionparameters.With only one or two parameters selected as design variables, the Simplex algorithm canoften �nd the global optimum. However, the reliability of the Simplex algorithm decreaseswith increases in the number of design variables.The cli� phenomenon is observed and explained. This sharp discontinuity in the criticalspeed occurs when the mode (eigenvector) determining the critical speed switches. For thepurpose of de�ning a stable critical speed for practical design problems, a cli� damping ratio



Optimization of the Lateral Stability 86is introduced into the de�nition of critical speed. The integrated optimization approach iseasily modi�ed to accommodate this generalized measure of lateral stability.Since the governing equations similar to those of rail vehicles are found in rotor dy-namics, in wind turbine dynamics, in aeronautics, and in road vehicle dynamics [82], theintegrated approach using multibody dynamics, GAs, the SQP or the combination of theSQP and DMT can also be applied to these problems in searching the design variables foroptimizing the corresponding stability.



Chapter 5Optimization of Vertical Ride Quality5.1 IntroductionTo identify e�ective optimization algorithms for vehicle ride quality analysis, in this chap-ter, three typical algorithms, GAs, SQP, and Simplex, are compared. The design objectiveis to optimize the vertical ride quality for a 2 DOF quarter-vehicle and a 20 DOF railvehicle model. To further illustrate the e�ectiveness of using the GA for optimizing vehiclesuspensions, results are reported for analyzing the relative signi�cance of di�erent designvariable sets on vertical ride quality using the 20 model and a 36 DOF model. For the36 DOF rail vehicle model, the car body 
exibility is considered and active elements areintroduced in the secondary suspensions for improving vertical ride quality.These linear vehicle models are analyzed in the frequency domain, and for the 20 and 36models, the equations of motion are generated automatically by the A'GEM multibody dy-namics software. Numerical simulation results are o�ered to demonstrate the e�ectivenessof numerical di�erentiation as a link between A'GEM and SQP for sensitivity analysis.
87



Optimization of Vertical Ride Quality 885.2 Methodology for Optimizing Vertical Ride Qual-ityThe process of vehicle ride quality analysis can be schematically represented by Figure 5.1.For a vehicle vibration system, the excitations arise when the vehicle travels at a givenspeed over a road or track pro�le which can be treated as a stationary random process. Byway of wheels, suspensions, and unsprung masses, the excitations are transmitted to thesprung mass or human-body. Generally the accelerations of the sprung mass or human-body are considered as outputs due to the excitations. Based on the root mean square(R.M.S.) value of the acceleration over a given third-octave frequency band, the ISO 2631standard [1] is generally recommended to evaluate the vehicle's ride quality. Sometimessuspension working spaces and wheel dynamic loads are also considered as outputs, becausethey in
uence the ride quality and ride safety, respectively.
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Vehicle Speed.Figure 5.1: Schematic representation of a method for vehicle ride quality analysisDue to advances in computational power and theoretical methods, the focus of researchhas switched from pure analysis to extensive synthesis of the vibration system. Aftermodeling and simulating the system's behavior, the design variables can be determined toachieve optimal goals and system speci�cations. A combined approach using optimizationalgorithms and multibody dynamics is an e�ective tool for the synthesis of a complexvehicle suspension system [18, 42, 65, 66]. The combined approach used in our research isshown in Figure 5.2.As shown in Figure 5.2, in the research, for the purpose of modeling realistic complexmultibody vehicle models, the A'GEMmultibody dynamics software package is used. Withthe introduction of the multibody dynamics software, the governing equations of motion
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Figure 5.2: Schematic representation of the methodology for vehicle ride quality optimiza-tionof the speci�ed vehicle model can be generated automatically. After performing necessarytransformations or integrations, the required performance evaluations can be carried out.By altering parameter values in a search to minimize a �tness function, which re
ectsperformance characteristics, optimal design variables can be found. Thus, the numericaloptimization helps automate the design process. Based on the methodology shown in Fig-ure 5.2, di�erent optimization algorithms such as GAs, SQP, and Simplex can be evaluatedand compared.5.3 Linear System Response to Random ExcitationFor a stable linear multiple DOF system subjected to n stationary random excitations(displacements), i.e., w1(t); w2(t); :::; wm(t), the response power spectral density (PSD)corresponding to a DOF, i.e., xi(t), reads as follows [106]:Sxi(!) = mXr=1 mXs=1 H�ir(!)His(!)Swrws(!) (5.1)where His(!) stands for the complex frequency response function of output xi(t) withrespect to input ws(t), Swrws for the cross-spectral density between wr(t) and ws(t), andH� for the complex conjugate of H.



Optimization of Vertical Ride Quality 90In the research, the stationary random excitations fw1(t); w2(t); :::; wm(t)g are trackirregularities. The number of excitations matches that of vehicle wheels. The excitationsor inputs may be correlated, because between two of them there may be a time delay whichis generally a function of vehicle speed and geometry.The complex frequency response functionHis(!) could be determined from the followinglinear di�erential equations of motion:M�x+C _x+Kx = B(ws; _ws; �ws) (5.2)where M, C, and K are the inertia, damping, and sti�ness matrices respectively, x is thevector of position coordinates or DOF, and B(ws; _ws; �ws) is the forcing function vectorrelating to excitations, ws(t) (displacement), _ws (velocity), and �ws (acceleration).The Fourier Transform of (5.2) yields(K� !2M+ i!C)X(!) = �B(!)Ws(!) (5.3)where vector X(!) and scalar Ws(!) are Fourier Transforms of x and ws, respectively.Provided that (K� !2M + i!C) is nonsingular, equation (5.3) can be rewritten asX(!)=Ws(!) = Hs(!) = �B(!)=(K � !2M + i!C) (5.4)where Hs(!) is a vector whose components are the complex frequency response functionsrelating the input ws(t) to the outputs fx1(t); x2(t); :::; xn(t)g:Hs(!)T = fH1s(!); :::;Hns(!)g (5.5)When the model inputs correspond to ground vehicle track irregularities, in equation(5.2), the forcing function vector relating to input ws(t) takes the form asB(ws; _ws) and thecorresponding Fourier Transform in equations (5.3) and (5.4) can be expressed as [25, 48].�B(!) = N(krs + i!crs) (5.6)where krs and crs are sti�ness and damping coe�cients for suspension elements relatingvehicle wheel to track. The vector N can be further expressed asNT = fgs1; gs2; :::; gsng (5.7)



Optimization of Vertical Ride Quality 91where the coe�cients gsj (8j = 1; 2; :::; n) are determined by the vehicle model geometry.The R.M.S. value of xi is computed by integrating the spectral density, Sxi, over allpositive frequencies, i.e., �xi = �Z 10 Sxi(!) d!�1=2 (5.8)Alternatively, based on the ISO 2631 standard, the acceleration of the sprung mass orhuman-body can be formulated in the format of (5.8) over di�erent third-octave bands orthe total weighted R.M.S. acceleration values.For a given third-octave band, the upper frequency fu, the lower frequency fl, and thecenter frequency fc have the following relations:( fu=fl = 21=3fc = (fufl)1=2 (5.9)Based on equation (5.9), we can express fu and fl in terms of fc as fu = 1:12fc and fl =0:89fc, respectively. The width of the third-octave band, thus, is de�ned as 4f = fu � fl.With the aid of a one-third-octave-level analyzer, the R.M.S. acceleration value overthe range of one third-octave interval could be obtained by integrating the correspondingPSD of the acceleration felt by human body over the third-octave band:��xi = �Z 1:12fci0:89fci S�xi(f) df�1=2 (5.10)where, i = 1; 2; :::; n, fci, ��xi, and S�xi(f) are the center frequency, R.M.S. and PSD of theacceleration over the ith third-octave band.5.4 Vehicle System Models5.4.1 2 DOF Quarter-Vehicle ModelFigure 5.3 illustrates a quarter-vehicle model considered for optimal design. The system's2 DOF are represented by the independent generalized coordinates x1 and x2, which aremeasured from the static equilibrium position. The track pro�le irregularity is represented



Optimization of Vertical Ride Quality 92by displacement w. M1, M2, k1, k2, and c2 are unsprung mass, sprung mass, tire sti�ness,suspension sti�ness, and damping coe�cient, respectively. The corresponding nominaldesign variables are also o�ered in Figure 5.3.
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Figure 5.3: 2 DOF quarter-vehicle modelTo explicitly express the objective function and constraint functions in terms of designvariables, the governing equations of motion of the model are derived by hand and writtenin the format of equation (5.2). If � = M2=M1, !2 = (k2=M2)1=2, !1 = (k1=M1)1=2,� = c2=(2M2), � = c2=[2(M2k2)1=2], we have the frequency response function of �x2 withrespect to track excitation w asH�x2w(!) = �!2(i2�!21! + !21!22)=A (5.11)where A = f!4 � i2�(� + 1)!3 � [!21 + (� + 1)!22 ]!2 + i2�!21! + !21!22g. If the relativedisplacement of M2 with respect to M1 is h, and h = x2 � x1, the frequency responsefunction of h with respect to w is Hhw(!) = !21!2=A (5.12)If the dynamic wheel load with respect to the track is p = k1(x1�w) and the static vehicleload is G = (M1+M2)g, where g is the acceleration of gravity, we assume that p=G is the



Optimization of Vertical Ride Quality 93relative dynamic wheel load with respect to the track. Therefore, the frequency responseof p=G with respect to w isHp=Gw(!) = !21!2[!2=(� + 1)� !22 � i2�!]=(gA) (5.13)For the 2 DOF quarter-vehicle model, there is only one random track pro�le displace-ment excitation w. The PSD of the excitation [148] may be expressed asSw(n) = Sw(n0)(n=n0)�
 (5.14)where n is the spatial frequency, n = 2�=� [rad=m], � is wavelength [m], n0 is a referencespatial frequency, generally n0 = 1:0[rad=m], and 
 is a constant frequency index, generally
 = 2:0. When a vehicle travels at speed of V [m=s] on the track with spatial frequency n,the time angular frequency of track excitation ! is! = V n (5.15)In the time frequency domain, the PSD of the track excitation can be expressed in termsof the PSD in the spatial frequency domain [106] asSw(!) = (1=V )Sw(n) (5.16)If 
 = 2, R = n20Sw(n0); substituting equations (5.14) and (5.15) into equation (5.16) yieldsSw(!) = RV=!2 (5.17)Thus, for the 2 DOF model, for a dynamic response, e.g. x, the response PSD in theformat of equation (5.1) reduces toSxw(!) = jHxw(!)j2Sw(!) (5.18)Based on equation (5.8), the R.M.S. values of �x2, h, and p=G can be expressed as8><>: ��x = f�RV [!21�!2=� + (1 + �)!32=(4��)]g1=2�h = f�RV (1 + �)=(4��!2)g1=2�p=G = (�RV A1)1=2=g (5.19)where A1 = f!41=[4�!2�(1 + �)2] + (1 + �)!32=(4��) � !2!21=(2(�(1 + �)�) + �!2!21=�g.



Optimization of Vertical Ride Quality 945.4.2 20 and 36 DOF Rail Vehicle ModelsThe rail vehicle con�guration with car body 
exibility is shown in Figure 5.4, with theleading bogie, car, and trailing bogie denoted as bodies 2, 4 and 6 respectively. For the20 DOF model, the car body is treated as a rigid body, while for the 36 DOF model withthe car body 
exibility, the car body 4 is further divided as 4(1), 4(2), ..., 4(5). Theadjacent sections are connected by a group of bending, torsion and shear springs [76]. Theleading bogie, with the leading and trailing wheelsets denoted as 1 and 3, and trailingbogie, with the leading and trailing wheelsets denoted as 5 and 7, are connected to thecar by secondary suspensions. Both the leading and trailing bogies, in turn, are connectedwith their own leading and trailing wheelsets by primary suspensions. Each suspensioncomponent consists of a parallel spring and damper, with sti�ness and damping coe�cientsin the three coordinate directions. In the vertical direction, the secondary suspension isequipped with 2 active components per bogie.
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Figure 5.4: Rail vehicle con�guration for dynamic modelsFor the 20 and 36 DOF models, the corresponding nominal design variables, which areadopted from reference [136] and [53], are listed in Tables A.3 and A.2 in Appendix A,respectively.The degrees of freedom of the 36 DOF model are summarized in Table 5.1. Notice



Optimization of Vertical Ride Quality 95that for the 20 DOF model, the car body's DOF are lateral displacement (y4), verticaldisplacement (z4), roll motion (�4), and pitch motion (�4). The DOF of the bogies andwheelsets are the same as those of the 36 DOF model.Table 5.1: Vertical ride quality model components and DOF.Component Lateral (y) Vertical (z) Roll (�) Pitch (�)Body1 z1 �1Body2 y2 z2 �2 �2Body3 z3 �3Body4(1) y4(1) z4(1) �4(1) �4(1)Body4(2) y4(2) z4(2) �4(2) �4(2)Body4(3) y4(3) z4(3) �4(3) �4(3)Body4(4) y4(4) z4(4) �4(4) �4(4)Body4(5) y4(5) z4(5) �4(5) �4(5)Body5 z5 �5Body6 y6 z6 �6 �6Body7 z7 �7For these complex rail vehicle models, the governing equations of motion are generatedautomatically by A'GEM. The PSD of the random rail pro�le recommended by the FederalRailroad Administration of the U.S.A. is used as excitation. It is assumed that the wheelsfollow the rails at all times so that the motions of the wheels are prescribed. Accordingto the procedures described in previous sections, the frequency responses, i.e. passengerpoint accelerations and secondary suspension working spaces, of the model to random railpro�le inputs are also determined by A'GEM. Once the PSD is computed for these dynamicresponses, the ISO=(2631 � 1985) ride quality criterion can be evaluated by integratingthe PSD over third-octave bands [1] to obtain the R.M.S. acceleration in the frequencybands.Note that for the 36 DOF method the 
exible car body has been represented by a �ve-element discretization of a beam undergoing vertical bending, axial torsion, and lateral andvertical shear. In order to determine the values for vertical bending springs, the car body



Optimization of Vertical Ride Quality 96was �rst modeled as a free-free Bernoulli-Euler beam and the corresponding fourth-orderpartial di�erential equation describing the bending de
ection is obtained. Based on thefact that the mode shape function is independent of time, by means of variable separationmethod and necessary transformations, the partial di�erential equation can be reducedto two ordinary di�erential equations with the introduction of the beam eigenfrequencies.Because the lowest frequency of 
exible modes of a railway passenger vehicle is usuallythe body vertical bending modes with a frequency in the range 8 � 12[Hz] [43], the �rstbending mode frequency for the model is chosen as 8:0[Hz]. With the general solutionto the partial di�erential equation, based on the boundary conditions and the methodrecommended in [110], the nominal spring constant for each bending spring is computed.The nominal spring constant for each torsion and shear spring is taken from reference [40].Two active elements per bogie are introduced in the secondary suspension in the verticaldirection. The `skyhook' control strategy [80] is used. The active torque and force actingon the corresponding car body section can be expressed as follows:( Tx4(i) = �Ktr _�4(i)Fz4(i) = �Kfr _z4(i) (5.20)where i = 1; 5, and Ktr and Kfr are the rolling torque rate gain and vertical force rategain, respectively.5.5 Optimization Problem and Implementation5.5.1 Objective Function, Constraints and Design Variables2 DOF Quarter-Vehicle ModelFor simplicity, !1, !2, and � are selected as design variables. Once !1, !2, and � aredetermined, we can easily obtain the corresponding k1, k2, and c2.Ride comfort is chosen to be the objective function. If the dynamic wheel load weregreater than the static wheel load, the wheel would bounce out of the track and thevehicle would become unstable. Therefore, the relative dynamic wheel load is included asa constraint. If the suspension working space is not restricted, the unsprung mass may



Optimization of Vertical Ride Quality 97strike the sprung mass and the ride quality will become worse. Thus, this characteristicis also included as another constraint. The constrained minimization problem can betransformed into the following standard form:minimize ��x2(!1; !2; �) (5.21)subject to 8>>>>>><>>>>>>: �p=G(!1; !2; �) � b1�h(!1; !2; �) � b20:1 � � � 0:5b3 � !2 � 20:0b4 � !1 � 95:0 (5.22)In (5.22), if b1 = 0:3333, the probability for the wheel to bounce out of the road is 0:3%.Generally we select b1 as 0:4472; in such a case, the possibility for the wheel to bounce out ofthe track is 2:51%. If b2 = 0:3333hd, where hd is the limitation of suspension working space(maximum dynamic de
ection), the possibility for the unsprung mass to strike the sprungmass is less than 0:3%. In the case study, b2 is chosen as 0:016667[m] (i.e., hd = 0:05[m]).According to the limitation of wheels, b4 is chosen as 76:66667[rad=s]. Based on thedi�erent requirements, b3 takes values of 8:0, 8:35, 8:5, 9:0, 9:6, and 10:0 [rad=s].SQP is very suitable for the general constrained minimization problem expressed in thestandard form of equations (5.21) and (5.22). However, if a GA or Simplex is used forthe constrained minimization problem, the objective function and constraints expressed inequations (5.21) and (5.22) can not be used directly since GAs and Simplex are suited forunconstrained optimization problems. But we can use the penalty methods that degradethe �tness ranking in relation to the degree of constraint violation. With these methods,a constrained problem in optimization is transformed into an unconstrained optimizationproblem by associating a cost or penalty with all constraint violations. Therefore, thesolution to the problem is to �nd an appropriate �tness function to be maximized, whichdepends on the objective function and constraints, as follows:Fit = f � ���x2 � �max[0; (�p=G� b1)]� 
max[0; (�h � b2)] (5.23)where the constants f and � and penalty multipliers � and 
 are determined accordingto the ranges of the design variables !1, !2, and �. Notice that the last 3 constraints in



Optimization of Vertical Ride Quality 98equations (5.22) are not included in equation (5.23) because these constraints are satis�edby specifying the ranges of allowable values for design variables.20 and 36 DOF Rail Vehicle ModelThe design variables consist of suspension sti�ness and damping coe�cients ( �S), inertialproperty parameters (�I), geometric parameters ( �G), and active control parameters ( �A).The �tness function to be maximized is a combination of R.M.S. acceleration values atdi�erent points of the car body, and secondary suspension working spaces:Fit = f � � �Z !u!l S�z4(!) d!�1=2 � �max[0; (�Z !u!l Shk (!) d!�1=2 � hk)] (5.24)where f , � and � are constants, hk (k = 1; :::; 4) are limits on the secondary suspen-sion working spaces, !l and !u de�ne the frequency interval of interest, and S�z4(!) andShk (!) are the PSDs of the car body vertical acceleration and the working space of the kthsecondary suspension, respectively.5.5.2 Implementation of the Optimization ProblemAs shown in Figure 5.5, the optimization problem is implemented by using a GA (Mecha-Gen program [10]), an SQP (E04UCF) algorithm, and a Simplex (E04CCF) algorithm,respectively. For the 20 or 36 DOF rail vehicle optimization problem, the A'GEM softwareis included.SQP is based not only on function evaluations but also on gradient information of theobjective and constraint functions. For the 2 DOF quarter-vehicle model, since the objec-tive function and constraint functions are expressed explicitly in terms of design variables,reliable analytical gradient information is available during the optimization. However, forthe 20 and 36 DOF models, due to the use of A'GEM, the gradients can not be computedanalytically. For this case, three techniques are available for o�ering gradient informa-tion: numerical di�erentiation, the direct di�erentiation method, and the adjoint variablemethod. Very often the direct di�erentiation or adjoint variable method is implementedusing symbolic packages to derive the necessary matrices and equations to be includedin the derivative code [16]. However, symbolic packages can be very cumbersome to use,



Optimization of Vertical Ride Quality 99e.g. when di�erentiated, the various functional dependencies have to be identi�ed andcarefully de�ned [10]. Moreover, for complicated rail vehicle models, it is not practicalfor symbolic packages to handle programming constructs such as conditional statements,loops and subroutines that are common to numerical multibody vehicle models.Using �nite di�erences to compute gradients may yield poor results, which may causeslow convergence of the iterative optimization process or a total break down, due to rela-tively large errors in evaluating objective function and constraint functions by numericalintegrations [19]. However, when these functions are algebraic, the error of the gradient ofthe function is the �rst order of the variation of the variable. This error is the so-calledtruncation error. Thus, if the variation is selected small enough, the gradient could becomputed within machine precision. Moreover, the computer has a limited accuracy. Sub-tracting function values that are almost equal and dividing by a small number, i.e. thevariation, may lead to large errors in the approximation of the derivative due to numericaltruncation. However, these problems may be solved by choosing an appropriate di�erenceinterval and by linearly or even nonlinearly scaling the optimization problem.In our case study, as shown in equation (5.19), for the 2 DOF vehicle model, theobjective function and constraint functions are algebraic. For the 20 and 36 DOF railvehicle models, based on the features of R.M.S. value of dynamic frequency response asshown in Section 5:3, the objective functions and constraint function can be written in thefollowing general form:F (�S;�I; �G; �A) = P0(�S;�I; �G; �A) + nXi=1 Pi(�S;�I; �G; �A) �Z !u!l Si(!) d!�1=2 (5.25)where n is the total number of the vehicle system responses of interest and P0(�S;�I; �G; �A)and Pi(�S;�I; �G; �A) are algebraic functions of design variable vectors �S (suspension sti�nessand damping coe�cients), �I (inertial property parameters), �G (geometric parameters), and�A (active parameters). For a frequency interval of interest ([!l; !u]), given track conditionand vehicle speed, hR !u!l Si(!) d!i1=2 is constant. Therefore, F (�S;�I; �G; �A) is an algebraicfunction of design variables.In our case study, the derivatives of the objective and constraint functions for theSQP are computed using a numerical di�erentiation method. Since the GA or Simplex isonly based on function evaluations, the link between the numerical multibody dynamics
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Parameter Set  nFigure 5.5: The implementation of the GA combined with A'GEMsoftware A'GEM and the optimization algorithm (GA or Simplex) for computing gradientsis super
uous.Figure 5.5 shows the 
owchart for implementing the GA algorithm when the 20 or 36DOF rail vehicle model is optimized. First, a random population of designs is selectedby the GA; the corresponding sets of design variables are sent in parallel to the A'GEMroutines that automatically generate the equations of motion. These equations of motionare transformed by means of Fourier Transformations, the PSDs of dynamic frequencyresponses are integrated in the interval of interest, and then the performance indices aredirectly obtained. From these performance indices, the �tness function (5.24) is evaluatedfor each design in the population. At this point, if the convergence criteria are satis�ed,the calculation terminates; otherwise these �tness values are returned to the GA. Basedon the returned �tness values corresponding to the given sets of design variables, the GAproduces the next generation of design variable sets using reproduction, crossover andmutation operators. This procedure repeats until the optimized design variable set isfound.



Optimization of Vertical Ride Quality 1015.6 Results and Discussion5.6.1 Validation of Numerical Di�erentiation MethodFor the 20 or 36 DOF model optimization problems, how to use a numerical di�erentiationmethod for o�ering gradient information to the SQP is a nontrivial problem. The mainpoint of this problem is to select an appropriate di�erence interval of a speci�c designvariable. In fact, the �nite di�erence interval is chosen so as to minimize the followingcomputable bound on the error of gradient [56]( Errg =j � j hi=2 + �C(2=hi)hi = �(1+ j Xi j) (5.26)where for a function of f(X), X 2 Rn, given a variation of hi of a variable Xi, � is anestimate of f 00(#), Xi � # � Xi + hi, �C is a bound on the condition error, and � is adi�erence interval factor. Based on the formula, one would expect the value of � to have aconsiderable e�ect on the number of iterations and the �nal solution. Practical results didcon�rm this expectation.Figure 5.6 shows a simulation result from A'GEM, which o�ers the R.M.S. maximumweighted acceleration at the rear left corner of the car body of the 20 DOF model versusthe half bogie space (L1, see Figure 5.4). Obviously the two optimal points are locatedat the lower and upper bounds. Table 5.2 illustrates the e�ect of the di�erence intervalon the number of iterations and the �nal solution of the SQP. A number of numericalexperiments showed that when � lies between 1:0E � 3 and 1:0E � 5, the SQP performsquite satisfactorily.Practical experience showed that appropriately scaling the optimization problem canalso improve the performance of the optimization algorithm. This phenomenon may resultfrom the fact that some design variables may have a very small derivative with respect to theobjective function. For this reason, the optimization process may terminate prematurely.Linear or nonlinear transformations can be used to change the magnitude of a derivative.With the increase of the small derivatives, the SQP may terminate at optimal points. Forthe case of Figure 5.6 and Table 5.2, when � takes the value of 1:0E�1 and the initial valueof L1 is 5:2[m], Figure 5.7 shows that three di�erent linear scaling schemes have totally
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Figure 5.6: R.M.S. vertical acceleration versus half bogie spaceTable 5.2: The e�ect of di�erence interval on the optimization performance� = 1:0E � 1 � = 1:0E � 5IniyL1[m] OptzL1[m] Iter#� acc? [m=s2] OptL1[m] Iter# acc [m=s2]5.0000 4.5000 2 0.2865 4.5000 1 0.28655.1000 4.5000 2 0.2865 4.5000 1 0.28655.1500 4.5000 16 0.2865 4.5000 1 0.28655.2000 4.5000 31 0.2865 4.5000 1 0.28655.2500 4.5000 47 0.2865 4.5000 1 0.28655.3000 5.1523 50 0.3102 4.5000 1 0.28655.5000 5.7000 2 0.3093 5.7000 1 0.30935.6000 5.7000 2 0.3093 5.7000 1 0.3093y Initial value; z Optimal value; � Iteration number; ? acceleration.



Optimization of Vertical Ride Quality 103di�erent e�ects on the SQP's performance. Notice that in Figure 5.7, for the scalingschemes 1, 2, and 3, the scaling factors for the design variables L1 are chosen as 0:1, 0:5,and 1:0, respectively.
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Scheme 3 

Scheme 2 Scheme1 Figure 5.7: The e�ect of scaling schemes on the optimization performance5.6.2 Optimization of the 2 DOF Vehicle ModelTable 5.3 displays the results of the numerical optimization for vehicle speed of 40[m=s]and a track with the PSD constant Sw(n0) taking the value of 6:5� 106[m3]. The GA andSQP approaches are used. When using the SQP, an initial set of design variables withinthe corresponding boundary is guessed and o�ered. For the case study, the lower boundof !1 takes the value of 76:6667 [rad=s] and the lower bound of !2 takes the values of 8:0,9:0, and 10:0 [rad=s] respectively. The maximum number of generations of 2000 was setfor the GA. In Table 5.3, the CPU time used by an SGI Indigo 2 XZ workstation is alsoo�ered.Table 5.3 shows that with the appropriate selection of algorithm parameters, e.g. prob-ability of mutation and population size, within the same feasible range of design variables,



Optimization of Vertical Ride Quality 104Table 5.3: The result of design optimization of the 2 DOF model suspension system� !2 [rad/s] !1 [rad/s] ��x2 [m=s2] �p=G �h [m] t [s]SQP 0.13924 8.0000 76.6667 1.3217 0.4442 0.0146 0.87GA 0.13905 8.0000 76.6667 1.3216 0.4445 0.0146 48.07SQP 0.15664 9.0000 76.6667 1.4869 0.3971 0.0130 0.68GA 0.15625 9.0000 76.6667 1.4869 0.3975 0.0130 47.01SQP 0.17406 10.0000 76.6667 1.6521 0.3623 0.0117 0.80GA 0.17405 10.0000 76.6667 1.6521 0.3623 0.0117 48.16the result obtained from the GA is almost the same as that from the SQP. However, theGA is much more time consuming than the SQP. Table 5.3 also illustrates that the resultis the global optimum for the corresponding design variable range. In fact, within a certaindesign variable range, there is an unique minimum. This can be illustrated by Figure 5.8.With the continuity property of the objective and constraint functions and the availableanalytical gradients for these functions, numerical experiments show that the SQP cane�ciently and reliably �nd the optimum in the neighbourhood of the initial point. SQPis also called \exploitative" algorithm with the characteristics that the more intensivethe exploitation, the stronger the need of specialized information about the function tobe minimized. In contrast, the GA uses only the order relations between the points ofindividuals of the current population. Its search is performed partially randomly and mayinclude bad intermediate solutions that the SQP method would not have explored.5.6.3 Optimization of the 20 DOF Vehicle ModelIn order to further investigate the performance of SQP and compare the algorithm withthe GA and Simplex, a benchmark is carried out by means of optimizing the 20 DOF railvehicle model. Figure 5.9 shows the relationship between acceleration and half bogie space(all other parameters are �xed and take nominal values) for the 20 DOF model at the samepoint of the car body as for the case of Figure 5.6. Clearly, the curve shown in Figure5.6 is a smooth section of that shown in Figure 5.9. By inspection, there are at least two
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Figure 5.8: ��x2 versus !2 and � with !1 �xed at optimal valuelocal optimal points A and B on the curve. Based on the SQP's requirement that theobjective and constraint functions should be \at least twice-continuously di�erentiable", itis expected that the algorithm will not be reliable for �nding the desired solution. Table5.4 o�ers the result from the SQP along with those from the GA and Simplex.From Table 5.4, we notice that the SQP can reliably �nd the local optimal points A or Bwith only few function evaluations. Sometimes, when the initial points are selected on theright side of local optimal point A, the search may jump over the point and �nd the globalpoint B. To some extent, for this one design variable optimization problem, the Simplexbehaves like the SQP but with higher reliability for �nding the global point B. However,the GA can always �nd the global point at the expense of more function evaluations.Figure 5.10 shows the relationship between the mass of car body (again, all otherparameters are �xed and take nominal values) and the acceleration at the same point ofcar body of the 20 DOF model. The optimization results from the SQP, Simplex and GAare o�ered in Table 5.5. The same features of the performance of the three algorithms as
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Local optimal point A 

Local optimal point B Figure 5.9: R.M.S. vertical acceleration versus half bogie spacementioned in the previous case can be revealed by analyzing the optimization results.Corresponding to the one-dimensional simulation results shown in Figures 5.9 and 5.10,the two-dimensional simulation result is displayed in Figure 5.11 in which the car bodymass and half bogie space are optimized simultaneously. Compared with the objectivefunction surface shown in Figure 5.8, the objective function surface for the 20 DOF modelis much more complicated and there are more local optimal points. The optimizationresults from the SQP, Simplex and GA are given in Table 5.6.For the two design variable optimization problem, as shown in Table 5.6, from dif-ferent initial points, the SQP converges to di�erent points including the global optimalpoint. Moreover, compared with the previous one design variable optimization problem,the reliability of the algorithm to �nd the global optimum for the two design variable prob-lem becomes less. This is also the case for the Simplex. Further numerical experimentsshow that for the multibody rail vehicle model, the more the design variables, the less thereliability for the SQP and Simplex to �nd the global optimum. However, for the multi-ple design variable optimization problems, the GA is robust to �nd the global optimum



Optimization of Vertical Ride Quality 107Table 5.4: R.M.S. vertical acceleration versus half bogie spaceSQP SimplexInty L1[m] Optz L1[m] R.M.S. acc� [m=s2] Opt L1[m] R.M.S. acc [m=s2]3.2000 4.2312 0.2665 4.2312 0.26654.0000 4.2312 0.2665 4.2312 0.26654.5000 4.2312 0.2665 4.2312 0.26655.4000 5.8155 0.3078 4.2312 0.26655.5000 5.8155 0.3078 4.2312 0.26655.7000 5.8155 0.3078 5.8155 0.30785.7500 5.8155 0.3078 5.8155 0.30785.8500 5.8155 0.3078 5.8155 0.30785.9000 5.8155 0.3078 4.2312 0.26656.0000 5.8155 0.3078 4.2312 0.26656.5000 4.2312 0.2665 4.2312 0.26656.9000 4.2312 0.2665 4.2312 0.2665GANorm? L1[m] Lower� L1[m] Upper� L1[m] Opt L1[m] R.M.S. acc [m=s2]5.0000 3.0000 7.0000 4.2317 0.2665y Initial value; z Optimal value; � Acceleration; ? Nominal value;� Lower bound; � Upper bound.although it is time consuming.5.6.4 Using the GA for Optimizing Vehicle SuspensionsIn order to further show the e�ectiveness of using the GA for optimizing vehicle suspensions,the GA is used to analyze the relative signi�cance of di�erent design variable sets using the20 DOF rail vehicle model and to optimize a rail vehicle suspension with active elementsusing the 36 DOF model.Sensitivity Analysis for Design Variable SetsBy optimizing design variables for improving ride quality, the relative signi�cance of dif-ferent design variable sets, i.e. �S, �I and �G, is investigated. Plotted in Figure 5.12 is the



Optimization of Vertical Ride Quality 108
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

x 10
4

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

Mass of car body     Mc [kg]

R
.M

.S
. v

er
tic

al
 a

cc
el

er
at

io
n 

[m
/s

ec
2 ]

Local optimal point C 

Local optimal point D Figure 5.10: R.M.S. vertical acceleration versus mass of car bodyTable 5.5: R.M.S. vertical acceleration versus mass of car bodySQP SimplexInt Mc[kg] Opt Mc[kg] RMS A [m=s2] Opt Mc[kg] RMS A [m=s2]9000.0 11110.6 0.2983 11111.0 0.298312000.0 11110.6 0.2983 11111.0 0.298313000.0 11110.6 0.2983 11111.0 0.298314000.0 16000.0 0.3029 11111.0 0.298315350.0 16000.0 0.3029 11111.0 0.298315360.0 16000.0 0.3029 16000.0 0.302915500.0 16000.0 0.3029 16000.0 0.3029GANorm Mc[kg] Lower Mc[kg] Upper Mc[kg] Opt Mc[kg] RMS A [m=s2]14000.0 8000.0 16000.0 11112.4 0.2983



Optimization of Vertical Ride Quality 109percent decrease in the vertical acceleration at the rear left corner of car body versuschanges in the suspension, inertial, and geometric parameters, e.g. if the geometric param-eters are allowed to vary by 20:0%, the optimized design variables lead to a 23:2% decreasein the acceleration. One can see that among the three design variable sets, the geometricparameters have the most signi�cant e�ect on the ride quality and the inertial propertyparameters have the least e�ect. One may also notice that the e�ect of suspension param-eter set on the acceleration is very close to that of geometric parameter set. Consideringthe fact that for practical vehicle suspensions, varying suspension sti�ness and dampingcoe�cients is more convenient than varying geometric or inertial parameters, the resultsobtained explain why suspension sti�ness and damping coe�cient control and optimizationare often used to improve vertical ride quality of rail vehicles.
3 4 5 6 7

1

1.5

2

x 10
4

0.2

0.25

0.3

0.35

0.4

0.45

Half of bogie space [m]

Mass of carbody  Mc [kg]

R
.M

.S
. v

er
tic

al
  a

cc
el

ar
at

io
n 

[m
/s

ec
2 ]

Figure 5.11: R.M.S. vertical acceleration versus half bogie space and mass of carbody



Optimization of Vertical Ride Quality 110Table 5.6: R.M.S. vertical acceleration versus half of bogie space and mass of car bodyMethod Initial Values Optimal ValuesL1[m] Mc [kg] L1[m] Mc [kg] RMS acc [m=s2]SQP 3.2000 8100.0 4.3926 11562.8 0.2679Simplex 3.2000 8100.0 4.3660 11493.0 0.2679SQP 4.5000 8500.0 4.3186 12846.5 0.2688Simplex 4.5000 8500.0 4.0730 16000.0 0.2558SQP 4.8000 9800.0 4.3931 11564.0 0.2679Simplex 4.8000 9800.0 4.4170 11629.0 0.2679SQP 5.0000 15000.0 4.0727 16000.0 0.2558Simplex 5.0000 15000.0 4.4170 11629.0 0.2679SQP 5.5000 12000.0 4.1934 11076.5 0.2682Simplex 5.5000 12000.0 4.0730 16000.0 0.2558SQP 6.3000 14000.0 5.8181 14079.9 0.3075Simplex 6.3000 14000.0 4.4170 11629.0 0.2679SQP 6.9000 15000.0 4.0727 16000.0 0.2558Simplex 6.9000 15000.0 4.4170 11629.0 0.2679SQP 7.0000 15000.0 4.0727 16000.0 0.2558Simplex 7.0000 15000.0 4.0720 16000.0 0.2558GA L1[m] Bounds Mc/104[kg] Bounds Optimal Values3.0 � 7.0 0.8 � 1.6 4.0714 16000.0 0.2558Optimization of Vehicle SuspensionsFigure 5.13 gives the PSDs (vehicle speed is 22.22[m/s] and rail pro�le class is 5) of theaccelerations at the rear left corner of the car body based on the 20 DOF and 36 DOFmodels. For both of these models, the nominal design variables are o�ered in Table A.2 inAppendix A. It is shown that within the low frequency band (below 4 Hz), the PSDs forthe two models are very close. However, within the frequency band from 4 Hz to 10 Hz(which includes the �rst bending frequency), the ride quality is signi�cantly degraded bythe carbody 
exibility.Figure 5.14 illustrates the PSDs of the accelerations at the same point of the car body
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Figure 5.12: E�ects of design variable sets on vertical ride quality
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Optimization of Vertical Ride Quality 1135.7 SummaryThe GA is an e�ective optimization algorithm for ground vehicle ride quality analysis.When used with a numerical multibody dynamics package, e.g. A'GEM, the GA can beused to optimize vehicle suspensions including active control parameters by using complexrealistic multibody vehicle models, even when many design variables are being considered.For these optimization problems, the algorithm has a high reliability for �nding the globaloptimal point on objective function surfaces with many local optimal points. For thisalgorithm, sensitivity analysis for gradient information is super
uous, but the associatedcomputational burden is heavy. Parallel processing, for which the GA is ideally suited,could be used to reduce the burden.In contrast, in order to ensure the validation for SQP, even for local optimum searching,sensitivity analysis of the objective and constraint functions and scaling the optimizationproblems are necessary and important steps. When SQP works with a numerical multibodydynamics software for optimizing vehicle suspensions using linear vehicle models for ridequality analysis in frequency domain, since the objective function and constraint functionsare algebraic functions in terms of design variables, numerical di�erentiation techniques canbe used to o�er gradients to the SQP reliably. Choosing an appropriate di�erence intervalfor speci�c design variables and using suitable scaling schemes for the optimization problemare important for the numerical di�erentiation technique to link the multibody dynamicssoftware and SQP e�ciently.When both SQP and Simplex are used for optimizing vehicle suspensions using com-plicated multibody vehicle models, the reliability for these algorithms to �nd the globaloptimum decreases with the increase of the number of design variables. For a simple vehiclemodel, where the objective function and constraint functions can be explicitly expressedin terms of design variables and these functions are smooth, SQP outruns Simplex andGA. In both computation e�ciency and reliability for global search, Simplex is generallya compromise option between SQP and GA.



Chapter 6Optimization of CurvingPerformance6.1 IntroductionThe objective of this chapter is to demonstrate the feasibility and e�cacy of applyingnumerical optimization approaches to rail vehicle suspension design with curving perfor-mance considered. The design optimization is to search optimal design variables so thatthe noise or wear, arising from misalignment of the wheelsets with the track, is reducedto the minimum level when the rail vehicle traverses curved track. The RACES routinefor curving simulation from A'GEM is modi�ed and combined with the GA. Due to thefact that a large number of parameters a�ect the curving behavior [9], the optimizationproblem is a multiple design variable problem. To accurately predict the curving behavior,time integration and nonlinear dynamic curving models [53] are used.In the case of using a highly nonlinear dynamic curving model and time integration,the optimization problem may have lots of local optimal points. Furthermore, the gradientinformation for the objective function and constraint functions with respect to the designvariables are di�cult to obtain. Therefore, it is justi�ed to use GAs as the optimizationalgorithm.A conventional transit rail vehicle model with 21 DOF is optimized. In this chapter, thenumerical simulation results of the optimization are o�ered. The selected objective function114



Optimization of Curving Performance 115is justi�ed. Finally, the proposed optimization approach is applied to the investigation ofthe relative signi�cance of di�erent design parameters and di�erent design parameter setson curving performance.6.2 Vehicle System ModelFigure 6.1 shows a schematic diagram of a 21 DOF dynamic model used for evaluatingthe curving performance of a conventional transit rail vehicle. The vehicle con�gurationis the same as that shown in Figure 4.1. The nominal geometry parameters, suspensionsti�ness and damping coe�cients, and inertial property parameters are listed in Table A.2in Appendix A. Relevant vehicle and track parameters are listed in Figure 6.1.The programs RGEM and RACES from A'GEM are adopted to automatically generatethe governing equations and to numerically integrate the nonlinear dynamic equations.RACES is used to simulate the vehicle as it travels from a tangent track, through a spiralof constantly decreasing radius, to a constant radius curve [53].This model takes nonlinear wheel/rail geometry with two points of contact into account.In calculating creep forces, the following factors are considered:1. The e�ect of wheel load changes on creep coe�cients;2. Creep force saturation due to combined actions of longitudinal, lateral, and spincreepages;3. Nonlinear creep force relationships.Nonlinear suspension elements, i.e. lateral bump stops at each secondary suspension, areincluded to restrict the relative lateral motion between the car body and the bogie frames.The dynamic behavior of the model can be described by a set of simultaneous nonlinearordinary di�erential equations. These equations can be integrated numerically to obtainthe curving behavior. Along the speci�ed track, the following curving performance indicescan be obtained:� Flange contact forces Fflng: for the ith wheel, the 
ange contact force is Fflngi,i = 1; 2; :::; 8.
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Figure 6.1: Schematic diagram, showing the degrees of freedom of the curving model� Motions of vehicle components.� Angles of attack Aan: for the ith wheelset, the angle of attack is Aani, i = 1; 2; 3; 4.For a wheelset, the Aani is de�ned as the angle between the axle of the wheelset andthe corresponding radius of the curve.� The ratios of lateral to vertical (L=V ) contact forces Lv: for the ith wheel, the ratiois Lvi, i = 1; 2; :::; 8.� The work W done by the wheel/rail force: for the ith wheelset, the work is Wi,i = 1; 2; 3; 4.� The saturation ratios Sra of creep forces: for the ith wheel, the ratio is Srai, i =1; 2; :::; 8. For a wheel, the Srai is de�ned as the ratio of the creep force to the limitedfriction force.



Optimization of Curving Performance 1176.3 Optimization Problem and Implementation6.3.1 Performance Indices and Design VariablesIn the optimization of curving performance, the design variables consist of suspensionsti�ness and damping coe�cients (�S), inertial property parameters (�I), and geometricparameters (�G). The total number of design variables is 29. The design variables arelisted in Table A.2 in Appendix A. Note that the parameters k2x, c2x, a, and � listed inTable A.2 are not selected as design variables.As mentioned previously, since rail vehicles traveling on mainline intercity curves areoften thought to negotiate curves by creep guidance, the curving performance may bemeasured in terms of the curve radius and the speed for which the wheelsets do not 
angeor slip. However, for urban transit rail vehicles, they must negotiate a large number ofshort radius curves. When transit vehicles negotiate narrow curves, there will be signi�cantlevels of slippage between rail and wheel, often leading to complete saturation of wheel/railcreep forces so that frictional forces are guiding the vehicles [5]. Additionally, although
ange free curving is desirable, it is generally unachievable on tight curves. It was shownthat 
ange contact occurs on curves with radii as large as 800:0 [m] [9].It is di�cult to formulate a simple indicator for the complex curving behavior of railvehicles, especially when the wheelset excursion has exceeded the 
ange clearance. Sincethe L/V ratio (Lvi, i = 1; 2; :::; 8) may be viewed as a wheel climb derailment indicator andthe wheelset angle of attack (Aani, i = 1; 2; 3; 4) can be used as a measure of wheel/rail wearand noise [66], we choose the L/V ratio and the wheelset angle of attack as the componentsof a performance index to represent the curving behavior of rail vehicle. Therefore, theobjective function is:minimize F (�S;�I; �G) = �max(j Aani(�S;�I;�G)~Aani j) + �max(j Lvk(�S;�I;�G)~Lvk j) (6.1)where i = 1; 2; 3; 4, and k = 1; 2; :::; 8, � and � are constant weighting factors, and ~Aani and~Lvk are nominal values of the angle of attack and the L/V ratio.



Optimization of Curving Performance 1186.3.2 Implementation of the Optimization ProblemAs shown in Figure 6.2, the optimization is implemented by using the MechaGen program(a GA), and A'GEM software (RGEM and RACES programs for curving performanceanalysis).
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Figure 6.2: Schematic representation of the implementation of the optimization problemAs illustrated in Figure 6.2, each set of design variables of a population generated by theGA is forwarded side by side to the A'GEM programs for calculating the required perfor-mance indices of curve negotiation. With a given set of design variables, the correspondingA'GEM programs generate the required nonlinear di�erential equations of motion auto-matically. After performing numerical integrations in the time domain, the performanceindices can be obtained directly. To ensure reliable measures of curving behavior of therail vehicle concerned, after 18:0 [m] of the entry point along the constant radius curveuntil the end point of the curve, the average value of angle of attack per wheelset andthat of L/V ratio per wheel are measured. Based on equation (6.1), the correspondingperformance index is calculated. Note that the total number of �tness values is the sameas that of the individual design parameter sets in the population. At this point, if theconvergence criteria are satis�ed, the calculation terminates, otherwise these �tness valuesare returned to the GA. Based on the returned �tness values corresponding to the given



Optimization of Curving Performance 119sets of design variables, the GA produces the next generation of design variable sets usingreproduction, crossover and mutation. This procedure repeats until the optimized designvariable set is found.6.4 Results and Discussion6.4.1 Justi�cation for the Selected Objective FunctionIf both � and � in the objective function (6.1) take the value of 1:0, when the geometricparameters are selected as design variables and permitted to vary �10% from their nominalvalues, we obtained the selected optimal results shown in Figures 6.3 and 6.5. O�ered inFigure 6.3 is the relationship between the angle of attack and position on curve. Figure 6.5illustrates the dependence of the work done on each wheelset versus the position on curve.For the purpose of comparison, the counterparts for which the design variables take thenominal values are also shown in Figures 6.4 and 6.6. Resulting from the optimization, forthe axle that has the maximum angle of attack and for the axle on which the maximumwork is done, the average steady-state angle of attack and work decrease by 27:94% and20:84% (see Table 6.1), respectively. Table 6.1 also o�ers the results of L=V ratio, 
angecontact force, and the saturation ratio of creep forces for the axle or wheel which has themaximum value among the four axles or among the eight wheels respectively.Table 6.1: Results of curving performance for nominal and optimized casescases Aan [deg] Lv W [J=m] Fflng [N ] SraNominal 0:1308 0:2267 0:2114E + 05 0:1478E + 05 0.9665Optimal 0:0942 0:1795 0:1776E + 05 0:1236E + 05 0.9134Note that the results for wheelset lateral displacements are not listed in Table 6.1 be-cause 
ange contact occurs for both optimal and nominal cases. Thus, the maximum lateraldisplacements for both cases are the same, and approximately equal to the 
ange clearance,as shown in Figures 6.7 and 6.8 for the optimal case and nominal case, respectively.
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Figure 6.3: Angle of attack versus position on curve for optimal case
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Optimization of Curving Performance 123To investigate the trends of the optimized design variables, Table 6.2 o�ers the opti-mized geometric variables, which are permitted to vary by �20% from the nominal values,and the corresponding nominal values.Table 6.2: Optimized geometric variables (permitted to vary by �20% from their nominalvalues) y b [m] L1 [m] g [m] d [m] L3 [m] L2 [m] L4 [m]Nominal Values 1:0420 8:3200 0:5860 0:8130 0:0000 0:3050 0:8150Upper Bounds 1:2504 9:8760 0:7032 0:9756 0:0000 0:3660 0:9780Lower Bounds 0:8336 6:5840 0:4688 0:6504 0:0000 0:2440 0:6520Optimal Values 0:8336 7:4271 0:4688 0:6707 0:0000 0:2692 0:6558y See Figure 4.1 for the de�nition of the symbols in the table.Based on the results o�ered in Table 6.2, we notice that the half of wheelbase on bogie(b), vertical distance from car body center of mass to secondary suspension (L4), andvertical distance from bogie center of mass to secondary suspension (L2) take lower boundvalues or approach the lower bound. Moreover, the half of bogie spacing (L1) takes a lowervalue. The results obtained are consistent with the lateral dynamics design requirements:for improving curving performance of rail vehicles, we should choose a short wheelbase onthe bogie, a short distance between bogie centers, and a low center of vehicle mass [35].According to the above analysis, we can expect that the objective function in the formof (6.1) can well re
ect curving performance including work done on wheelset, 
ange force,saturation ratios of creep forces, angle of attack, and L/V ratios.6.4.2 Sensitivity Analysis for Design Variables and Design Vari-able SetsIn the research, we notice that di�erent design variables or di�erent design variable setsimpose di�erent e�ects on curving performance. By optimizing design variables for improv-ing curving performance, the relative signi�cance of di�erent design variables or di�erentdesign variable sets are investigated.



Optimization of Curving Performance 124Based on the method recommended by Eberhard et al. [42], but using the GA insteadof Simulated Annealing Algorithms, we can easily identify important design variables in thedesign optimization. Figure 6.9 shows the selected results where only geometric parametersare chosen as design variables for improving curving performance. The design variables arepermitted to vary by �50% from their nominal values. According to the dynamic analysis[35], it was found that in order to reduce misalignment of wheelset axles on curves, thehalf of bogie wheelbase (b) should be as small as possible. Numerical results show thatsecondary suspension lateral spacing (g) has a minor e�ect on curving performance. InFigure 6.9, it can be seen that most samples for points b are taken in the vicinity of theoptimal variable value (lower bound value), i.e. bOpt = 0:521[m]. This further agrees withthe above mentioned lateral dynamics design requirements. Variable g, however, illustratesa di�erent behavior. The sampling density around optimized g is only slightly higher thanin the other areas, but the overall distribution is somewhat uniform. The results show thatthe feasible values of g do not change the objective function value very much.
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 = 1.98*106 [N/m] Figure 6.12: Variable distribution to identify important variables (k1x; k1y)and secondary suspension sti�ness and damping coe�cients are chosen as design variablesfor improving curving performance. Again the design variables are allowed to change by�50% from their nominal values. As discussed above, in Figures 6.10, 6.11, and 6.12, mostsamples for points k1y, k1x are taken in the vicinity of the optimal variable values, i.e.the lower bound values of the feasible domains for k1y and k1x respectively. On the otherhand, the sample densities around optimized k2y and k1z, like the case of design variableg analyzed previously, are only a little bit higher than the other areas and the overalldistributions are uniform. Again the feasible values of k2y and k1z do not signi�cantlychange the objective function value. The results obtained demonstrate that in order toimprove curving performance, the longitudinal and lateral sti�ness coe�cients of primarysuspensions of the vehicle should take values as low as possible. This agrees well with theconclusions o�ered by Wickens [142].It is clear that by investigating the sampling distribution of each variable, one can judgethe global performance and sensitivity over its feasible domain. This global performanceand sensitivity over a design variable's feasible domain is, however, di�cult to judge by



Optimization of Curving Performance 127using its gradient information in a local sense. Thus, with the assistance of GAs, we canvisualize the nonlinear functional relation between design criteria and design variables andpredict the topology of the criteria space from the space of feasible design variables.
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uence than variations in the suspension variable set or in the inertialproperty variable set. Moreover, the e�ects of the variations of the latter two variable setsare very close when the percent variation from nominal design variables is less than 30%.



Optimization of Curving Performance 128Thus, for the purpose of improving curving performance, varying geometric parametersmay be an e�ective approach.6.5 SummaryThe chapter proposes a numerical optimization approach, that can automate the selectionof appropriate design variable values for rail vehicle design with respect to curving perfor-mance. In the proposed approach, a global optimization algorithm, a GA, is combined witha multibody dynamics modelling program, A'GEM, so that the generation of governingequations of motion for the complex realistic nonlinear dynamic rail vehicle models andthe search for optimal design variables can be carried out automatically. To facilitate theoptimization, we choose angle of attack on wheelsets and ratios of lateral to vertical forceson wheels as the only factors for the objective function.To demonstrate the feasibility and e�cacy of the proposed approach, this approach isapplied to the optimization of a conventional transit rail vehicle with respect to curvingperformance using a nonlinear dynamic curving model with 21 DOF. Numerical resultsshow that the GA is an e�ective algorithm for rail vehicle design for improving curvingperformance when working with A'GEM. The combination of angle of attack and L/Vratio well re
ects curving performance and is suitable as an objective function or a factorof �tness function. By means of the GA, we can also investigate the sampling distributionof each design variable, and judge the design variable's global performance and sensitivityover its whole feasible domain. Compared with inertial and suspension parameters sets,the geometric parameter set has the most signi�cant e�ect on curving performance.



Chapter 7Multidisciplinary Optimization ofStability, Ride Quality, and CurvingPerformance7.1 IntroductionThe objective of this chapter is to synthesize the techniques discussed in Chapters 4, 5,and 6, and to show how multidisciplinary optimization methods combining a genetic al-gorithm, sequential quadratic programming, dynamic mode tracking, and a multibodydynamics modelling package (A'GEM) can e�ectively handle the con
icting requirementsof rail vehicle design problems. Lateral stability, curving performance, and ride quality areassessed using realistic multibody models from A'GEM, and summarized in a multicrite-ria objective function. By coordinating the con
icting requirements from lateral stability,curving performance, and vertical ride quality at the system level, the suspension, geomet-ric, inertial, and control parameters for a rail vehicle with passive and active suspensionsare optimized simultaneously.The multidisciplinary optimization (MDO) method used in this chapter combines the17 DOF lateral stability model used in Chapter 4, the 36 DOF vertical ride quality modelused in Chapter 5, and the 21 DOF nonlinear dynamic curving performance model usedin Chapter 6 into a synergistic whole. For the lateral stability problem, the dynamic129



Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 130equations for the 17 DOF model of the rail vehicle are generated and linearized by A'GEM;the corresponding eigenvalue problem is solved. To evaluate curving performance, A'GEMis used to generate and numerically integrate the nonlinear dynamic equations for the 21DOF nonlinear model of the same rail vehicle. For the problem of vertical ride quality, thefrequency response of the 36 DOF model with car body 
exibility to stochastic inputs isdetermined by A'GEM.From the results of these three discipline analyses, a weighted objective function is con-structed for the three-criteria optimization problem. By solving the optimization problemfor a set of weighting factors, the GA provides a family of Edgeworth-Pareto (EP-) optimalsolutions [42].7.2 Vehicle System ModelsIt is important to note that the models for lateral stability, curving performance and verticalride quality all correspond to the same design con�guration; however, for the ride qualitymodel the car body 
exibility is considered. The rail vehicle's con�guration is shown inFigure 7.1. For the ride quality model with 36 DOF, as described in Chapter 5, the carbody is divided into 5 identical rigid bodies. The adjacent car body sections are connectedby a group of bending, torsion and shear springs. Each suspension component consistsof a parallel spring and damper, with the sti�ness and damping coe�cients in the threecoordinate directions. In the secondary suspension, both vertical and lateral directions areequipped with 2 active components per bogie, respectively. The nominal design variables,which are adopted from Reference [53], are listed in Table A.2 in Appendix A. Note thatnominal wheel radius of r0 (0:356[m]) and conicity � (0:1) as well as the half-distancebetween contact points a (0:756[m]) are �xed in the research.The lateral stability model with 17 DOF is the same as that described in Chapter 4except that 2 active elements, as shown in Figure 7.1, are introduced per bogie in thesecondary suspension in the lateral direction. A control strategy proposed by Celniker etal. [27] is adopted. The two active elements per bogie operate out-of-phase to produceresultant yaw torques on the leading or trailing bogie:Tzi = �Kfl _yi �Ktl _ i (7.1)
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Body 3Figure 7.1: Rail vehicle con�guration for dynamic modelswhere _yi and _ i (i = 2; 6) are de�ned in Chapter 4, and Kfl and Ktl are the lateral rategain and yaw rate gain, respectively.The 21 DOF curving model and 36 DOF vertical ride quality model with active elementsare exactly the same as those described in Chapters 6 and 5, respectively.7.3 Multidisciplinary Optimization and Implementa-tion7.3.1 Design Optimization ApproachFor the multidisciplinary optimization problem formulation, the optimization method usedin Chapter 4, i.e. optimization of the lateral stability, matches the de�nition of the All-in-One (A-i-O) method described in Chapter 3. Figure 7.2 shows the A-i-O formulationfor optimizing the lateral stability of the corresponding 17 DOF vehicle model. With theintroduction of active elements, the design variables will be Xd = f�S;�I; �G; �Ag, where �S,�I, �G, and �A are suspension parameters, inertial parameters, geometric parameters, andcontrol parameters, respectively. As shown in Figure 7.2, with a set of design variables



Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 132Xd, the three coupled analysis disciplines, i.e. Multibody Dynamics (A'GEM), DynamicMode Tracking (DMT), and Critical Speed Identi�cation (SQP), will cooperate to �nd thecorresponding critical speed Vc. During the kth iterative search for the critical speed, SQPsends the potential critical speed V ksqp to A'GEM, assembling the speed V ksqp with relevantmatrices already obtained. A'GEM may obtain the required system matrix Ak and o�erthe matrix to DMT, then DMT will perform mode tracking and return to SQP the requiredreal parts of corresponding eigenvalues Re(�i)(V ksqp), for all i = 1; 2; :::; n. This process willcontinue until the corresponding critical speed Vc and corresponding system matrix Ac aredetermined. At the end of the process, the resulting Vc, Ac, and Re(�i)(Vc); i = 1; 2; :::; n,are returned to the system optimizer, a GA, for further use.
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Figure 7.2: All-in-One (A-i-O) formulation for optimizing the lateral stabilitySimilarly, the optimization of curving performance discussed in Chapter 6 can also be re-garded as an application of the A-i-O method, because the program RACES (from A'GEM)consists of linear/nonlinear wheel/rail geometry models, linear/nonlinear wheel/rail creepforce models, and all these models together with the genetic algorithm and module R'GEM(from A'GEM) for automatic generation of the equations of motion make the system a syn-



Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 133ergistic whole. In this MDO method, once the required design variables are provided to theabove coupled models or analysis disciplines, a complete multidisciplinary analysis (MDA)is carried out via a �xed-point iteration with those values of the design variables to ob-tain the system (MDA) output variables that are later utilized for evaluating the objectivefunction value and the required constraints.As shown in Figure 7.3, three boxes represent three disciplines, i.e. the vertical ridequality, curving performance, and lateral stability. For the discipline of the lateral stability,the three subdisciplines or subsystems (multibody dynamics, dynamic mode tracking, andcritical speed identi�cation) and their coupling relations are also illustrated. With thesystems shown in Figure 7.3, the individual discipline feasible (IDF) method is used tosynthesize the three disciplines at the system level and the A-i-O method is applied, forexample, to the discipline of the lateral stability for making its three subdisciplines asynergistic whole. At the system level, a GA is used as the optimizer. Due to the fact thatthe formulation method used here is a combination of the IDF and the A-i-O methods, wecall it a hybrid MDOmethod. With the hybrid MDO method and the selected optimizationalgorithms, the optimal passive and active design variables are searched in the design spaceso that the rail vehicle's lateral stability, vertical ride quality, and curving performance canbe optimized simultaneously.As shown in Figure 7.3, for the three analysis disciplines of the lateral stability, curv-ing performance, and vertical ride quality, the corresponding analysis solvers are denotedas Vc, Cp, and Rq respectively. A comparison of Figure 7.3 with Figure 3.2 reveals thatin the case of Figure 7.3, the speci�c analysis variables (vector XY ) representing com-munication, or coupling, between analysis disciplines vanish. Furthermore, there are noexplicit interdisciplinary mappings (vector G) among the three disciplines. However, thethree disciplines, are coupled by means of the original design variable set Xd and theirimplicit interdisciplinary mappings are coordinated and manipulated by the optimizer atthe system or discipline level. If we treat the three disciplines as three black boxes, theoptimization method shown in Figure 7.3 is equivalent to the \Multi-Criteria Multi-ModelOptimization (MMO)" method proposed by Bestle and Eberhard [18]. Obviously, basedon the above analysis, the so called system-level MMO method is a speci�c case of the IDFmethod.
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Figure 7.3: Hybrid MDO method combining IDF and A-i-O for optimizing the lateralstability, curving performance, and vertical ride quality simultaneously7.4 Optimization Problem and Implementation7.4.1 Objective Function, Constraints and Design VariablesFor the combined rail vehicle model including the lateral stability model, dynamic curvingmodel, and vertical ride quality model, the design variables consist of suspension sti�nessand damping coe�cients (�S), inertial property parameters (�I), geometric parameters (�G),and active control parameters (�A). The total number of design variables reaches 33 in-cluding 29 vehicle system parameters and 4 active control parameters. The vehicle systemparameters are listed in Table A.2 in Appendix A. Note that the parameters k2x, c2x, a,and � listed in Table A.2 are not selected as design variables. The four control parameters



Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 135are Ktr, Kfr, Kfl, and Ktl (see equation set (5.20) and equation (7.1)).For the lateral stability discipline, based on equations (4.12) and (4.13), the objectivefunction and constraints may be expressed as( maximize Vc(�S;�I; �G; �A; V )subject to Re(�i)(�S;�I; �G; �A; V ) � 0; i=1,2,...,m (7.2)For the ride quality discipline, the function AR, to be minimized is a combination ofR.M.S. acceleration values at di�erent points of the car body and secondary suspensionworking spaces:AR = �Z !u!l S�z4(i)(!) d!�1=2 + �max[0; (�Z !u!l Shk (!) d!�1=2 � hk)] (7.3)where i = 1; 2; :::; 5, � is a weighting fact, and AR is a function of design variables �S, �I, �G,and �A. The other symbols are de�ned in Section 5.5 of Chapter 5.For the curve negotiation discipline, the function to be minimized is a combination ofangles of attack Aan, and L/V ratios Lv. Based on equation (6.1), the function can bedescribed as: minimize �max(j Aani(�S;�I;�G;�A)~Aani j) + �max(j Lvk(�S;�I;�G;�A)~Lvk j) (7.4)where i = 1; 2; 3; 4, k = 1; 2; :::; 8, ~Aani and ~Lvk are the angle of attack and L=V ratiowhen Aani(�S;�I; �G; �A) and Lvk(�S;�I; �G; �A) take nominal values, respectively, and � and �are weighting factors.Obviously, the design optimization of the combined dynamic model with respect tothe above three criteria, which are described in equations (7.2), (7.3), and (7.4), leadsto a multicriteria optimization problem. Based on the concept of scalarization discussedin Chapter 3, by introducing an appropriate utility function, we can obtain a weightedobjective function as follows:minimize �1f�max(j Aani~Aani j) + �max(j Lvk~Lvk j)g+ �2(AR~AR ) + �3( ~VcVc ) (7.5)where �1, �2, �3 are the weighting factors, i = 1; 2; 3; 4, k = 1; 2; :::; 8, and ~AR and ~Vc arethe nominal values of AR and Vc respectively.
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Figure 7.4: Schematic representation of the implementation of the optimization problem7.4.2 Implementation of the Optimization ProblemAs shown in Figure 7.4, the hybrid MDO method combining IDF and A-i-O discussedpreviously is implemented using:



Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 137� MechaGen program (a GA),� E04UCF routine (a SQP) from the NAG library,� Dynamic Mode Tracking (DMT) technique,� A'GEM `Stability' module (STABLE program for lateral stability analysis),� A'GEM `Ride' module (RLRIDE program for vertical ride quality analysis), and� A'GEM `Curve' module (RACES routine for curving performance analysis).As shown in Figure 7.4, each set of design parameters of a population generated by theGA is forwarded to the corresponding A'GEM module for calculating the required perfor-mance indices for curve negotiation, vertical ride quality, and lateral stability. With thegiven set of design variables, the corresponding programs of A'GEM generate the requiredequations of motion or system matrices automatically. For the cases of curve negotiationand vertical ride quality, after numerical integration in the time domain and necessarytransformation in the frequency domain, respectively, the performance indices can be ob-tained directly. For lateral stability, however, with the system matrix generated in the formof equation (4.4), the SQP and DMT are used to determine the critical speed. Then thecorresponding �tness value is obtained by converting the vector optimization problem intoa scalar optimization problem using the concept of scalarization by introducing an utilityfunction in the format of (7.5). Note that the scalarization is performed at the system levelso that the performance indices of the three disciplines (i.e. the lateral stability, curvingperformance, and vertical ride quality) are coordinated and manipulated at the systemor discipline level by the genetic algorithm. It should be noted that the total number of�tness values is the same as that of the individual design parameter sets in the popula-tion. At this point, if the convergence criteria are satis�ed, the calculation terminates,otherwise these �tness values are returned to the GA. Based on the returned �tness valuescorresponding to the given sets of design variables, the GA produces the next generationof design variable sets using reproduction, crossover and mutation. This procedure repeatsuntil the optimized design variable set is found.



Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 138Table 7.1: Optimized suspension variables (permitted to vary by �20% from their nominalvalues) y k1x [N=m] k1y [N=m] k1z [N=m] c1x [N=m=s] c1y [N=m=s]Nominal Values 3:1500 � 107 3:9600 � 106 2:1000 � 106 666:00 5220:00Upper Bounds 3:7800 � 107 4:7520 � 106 2:5200 � 106 799:20 6264:00Lower Bounds 2:5200 � 107 3:1680 � 106 1:6800 � 106 532:80 4176:00Cp Optimized 2:5200 � 107 3:1680 � 106 2:2964 � 106 654:80 4212:80Ls Optimized 3:7800 � 107 3:1802 � 106 2:5148 � 106 736:2 4218:90c1z [N=m=s] k2y [N=m] k2z [N=m] c2y [N=m=s] c2z [N=m=s]Nominal Values 9910:00 1:9700 � 105 6:8700 � 105 4:270 � 104 4:270 � 104Upper Bounds 11892:0 2:3640 � 105 8:2440 � 105 5:124 � 104 5:124 � 104Lower Bounds 7928:0 1:5760 � 105 5:4960 � 105 3:416 � 104 3:416 � 104Cp Optimized 8300:0 2:3410 � 105 5:5713 � 105 4:148 � 104 3:586 � 104Ls Optimized 10164:0 2:3440 � 105 7:7381 � 105 5:115 � 104 3:620 � 104y See Table A.2 in Appendix A for the de�nitions of the symbols in the table.7.5 Results and Discussion7.5.1 Con
icting Requirements on Design VariablesIn Chapters 4, 5, and 6, the corresponding vehicle models are optimized with respect tolateral stability, vertical ride quality, and curving performance, respectively. Since thedesign criteria for these optimization problems are di�erent, they impose di�erent or evencon
icting requirements on the speci�c design variable or variables. Table 7.1 o�ers selectednumerical results based on the optimization of lateral stability (Ls) and the optimizationof curving performance (Cp). Notice that the vehicle model used for optimization of thelateral stability and that used for optimization of curving performance share the identicalvehicle con�guration. For both optimization problems, 10 design variables (i.e. the relevantsti�ness and damping coe�cients for the secondary and primary suspensions) are permittedto vary by �20% from their nominal values.Table 7.1 shows the optimized design variables from both optimization problems and



Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 139the corresponding nominal and bound values for the design variables. Since primary sus-pension parameters have much more signi�cant e�ect on curving performance and lateralstability of rail vehicles than secondary suspension parameters [35, 139], the following anal-ysis places emphasis on the primary suspension parameters. As shown in Table 7.1, forthe curving performance optimization problem, among the optimized primary suspensionparameters, the longitudinal, lateral, and vertical damping coe�cients, c1x, c1y, and c1z,take the values lower than the corresponding nominal values, and the longitudinal andlateral spring sti�ness coe�cients, k1x and k1y, take the corresponding lower bound val-ues. However, for the lateral stability optimization problem, among the optimized primarysuspension parameters, except for the lateral spring sti�ness and damping coe�cients, k1yand c1y, the other parameters either take the values higher than the corresponding nominalvalues or take the corresponding upper bound values. Thus, the lateral stability and curv-ing performance have con
icting requirements on the primary suspension design variables.These optimization results are consistent with previous observations by Wickens[139] thatsuspensions that are soft in the lateral and longitudinal direction tend to hunt more readilyon tangent track and become unstable even at low speeds. However, such suspensions al-low the wheelsets to follow curved track with decreased wheel wear and 
ange forces. Theexception, i.e. the lateral spring sti�ness and damping coe�cients (k1y and c1y), to theobservation by Wickens may be interpreted by the fact that at values above certain values,the lateral stability becomes relatively insensitive to these parameters. This exception wasonce reported by Hedrick et al. [74].Besides the above con
icting requirements on suspension parameters, the lateral sta-bility and curving performance also have con
icting requirements on geometric, inertial, oreven active design variables. We will see in the following subsection that the hybrid MDOoptimization approach o�ers an e�ective way to resolve these con
icting requirements.7.5.2 Results of the Hybrid MDO Optimization ProblemThe combined vehicle model is optimized with respect to three criteria, lateral stability,curving performance, and vertical ride quality as shown in the objective function (7.5). Theconstants � and � are both set to 1:0. To facilitate the implementation of the optimizationproblem, max(j Aani~Aani j) + max(j Lvk~Lvk j) (i = 1; 2; 3; 4, and k = 1; 2; :::; 8), AR~AR , and ~VcVc are



Multidisciplinary Optimization of Stability, Ride Quality, and Curving Performance 140de�ned as curving performance index, lateral stability performance index, and vertical ridequality index, respectively. To obtain a whole picture of the EP-optimal set, three sets ofweighting factors (f�1; �2; �3g) are selected and the corresponding optimizations are carriedout. The three selected sets of weighting factors take the values of f1; 1; 1g, f1; 1; 2g, andf1; 1; 4g, respectively. A total of 29 parameters including geometric parameters, inertialproperty parameters, and suspension sti�ness and damping coe�cients are chosen as designvariables. These design variables are permitted to vary by �20% from their nominal values.Figures 7.5, 7.6 and 7.7 illustrate selected results from the hybrid MDO optimizationcombining IDF and A-i-O. The individual designs from the GA are represented by circles,which tend to cluster as the GA converges to the optimal design. Plotted in Figure 7.5is the vertical ride quality performance index versus lateral stability performance index.The clustered data corresponding to the EP-optimal set is almost horizontal, which showsthat the optimized vertical ride quality is mainly independent of lateral stability. Thisis also true, as shown in Figure 7.6, for the relationship between vertical ride qualityand curving performance. The observation about the relationship between vertical ridequality and lateral stability and that between vertical ride quality and curving performancedemonstrates the conclusion [54] that a relatively weak coupling exists between the verticaland lateral motions of a rail vehicle.However, Figure 7.7 shows a distinct trade-o� in the relationship between lateral sta-bility and curving performance. The EP-optimal set in the densely-clustered region showsthat lateral stability can only be improved at the expense of curving performance, andvice-versa. No one criterion is favored over another; instead, the designer obtains explicitinformation about the trade-o�s between lateral stability and curving performance. Byrunning several more optimizations with di�erent sets of weighting factors, one can get aneven clearer picture of the EP-optimal set. Although this is a computationally-expensiveprocess, the results are of obvious importance to rail vehicle designers.7.6 SummaryIn this chapter, a hybrid MDO optimization method, which is a combination of the individ-ual discipline feasible (IDF) method used at the discipline level and the All-i-One (A-i-O)


