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Abstract

A methodology for the design optimization of rail vehicles with passive and active suspen-
sions is presented. The methodology has the following features: (1) multibody dynamics is
used for modelling and simulating complex realistic vehicle systems; (2) multidisciplinary
optimization (MDO) methods are introduced to make coupled vehicle models and addi-
tional control systems a synergistic whole; (3) with genetic algorithms (GAs) and other
effective search algorithms, the mechanical and control design variables can be optimized
simultaneously; (4) with the scalarization technique, a vector optimization problem is con-
verted into a scalar optimization problem. The proposed methodology is applied to several
design optimization problems. First, a rail vehicle is optimized with respect to lateral sta-
bility. Second, the rail vehicle is designed so that ride quality is the sole design criterion.
Third, the design variables are searched in the feasible design space so as to make the rail
vehicle have optimal curving performance. Then, the rail vehicle is optimally designed
for obtaining trade-off solutions among conflicting requirements from lateral stability, ride
quality, and curving performance. Finally, the methodology is used to optimize the com-
bined mechanical and control systems for vehicles with active suspensions. Of the results
obtained, several of them contribute to the fields of rail vehicle dynamics and design,
mechatronic systems, and numerical optimization.

For automatically identifying the “critical speed” (above which a rail vehicle’s response
becomes unstable), a new approach combining sequential quadratic programming (SQP)
with the Dynamic Mode Tracking (DMT) technique is proposed and developed. The new
approach is compared with that using SQP alone. It is found that without DMT, several
more SQP runs are often needed to find the critical speed because the relationship between
mode damping and speed deviate from their actual shapes. In the process of optimizing the
lateral stability of a rail vehicle model, the existence of sharply-discontinuous “cliffs” in the
plots of critical speed versus suspension stiffness is identified and originally interpreted. In
recognition of the cliff phenomenon, the definition of critical speed is generalized to make
it a more practical measure of lateral stability. In the design optimization of a rail vehicle
with respect to the lateral stability, vertical ride quality, and curving performance, the
resulting Edgeworth-Pareto (EP) optimal sets clearly demonstrated the trade-off relation

between lateral stability and curving performance. Moreover, the resulting EP-optimal



sets visualize a well-known fact that a relatively weak coupling exists between the vertical
and lateral motions of a rail vehicle.

To identify effective algorithms for rail vehicle suspension design, the GA, SQP, and
Simplex algorithms are compared in the processes of optimizing lateral stability and ride
quality. Results show that the reliability of the SQP and Simplex for finding the global
optimum decreases with an increase in number of design variables. However, despite non-
smooth objective function surfaces with many local optimal points, the GA can reliably
find global optima. By means of GAs, important design variables can be identified and
the relative significance of design variable sets, e.g. inertial, geometric, and suspension
(stiffness and damping) parameter sets, can be decided. When ride quality analysis is
performed in the frequency domain based on a linear vehicle model, if SQP is used with
a multibody dynamics program, e.g. A’GEM, the numerical differentiation technique for
computing gradients can be used efficiently as a link between the multibody program and
SQP.

As an application of the proposed methodology, an integrated design approach to
mechatronic vehicle systems is used to resolve the conflicting requirements for ride comfort,
suspension working spaces, and dynamic wheel loads in the optimization of quarter-vehicle
models and half-vehicle models with active suspensions. Both deterministic and random
track excitations and both rigid and flexible car body cases are considered. The approach
1s implemented in a GA-A’GEM-MATLAB simulation environment in such a way that the
linear mechanical vehicle models are generated in the multibody program of A’GEM, the
controllers and filters are modelled in MATLAB, and the coupled mechanical and control
subsystems are optimized simultaneously using the GA. The numerical simulation results

are reported and discussed.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Multiple Model and Design Criteria Optimization Problem

Because of conflicting requirements for lateral stability, ride comfort, curving performance,
track loading, and the economics of manufacturing, designing a rail vehicle is a challenging
task to untangle the web of the interactions among these contradictions and to resolve
them. Of all contradictory design goals of rail vehicles, two of them, i.e. lateral stability
and curving performance, may be the most fundamental and important, which have been
bothering rail vehicle designers and researchers since the beginning of the history of rail
vehicle dynamics till today [41, 125, 141, 142]. These two contradictory design goals can be
defined as follows respectively : (1) rail vehicles should be designed to travel comfortably at
high speeds on straight or “tangent” track; (2) rail vehicles should be designed to traverse
curved track without excessive noise or wear that arises from misalignment of the wheelsets
with the track [8].

To improve compatibility between dynamic stability and curving performance, design-
ers and researchers have used equivalent interaxle shear and bending stiffness relationships
to determine optimal suspension characteristics [13, 75, 127]; other researchers have turned
to local search numerical optimization algorithms combined with Routh-Hurwitz criteria

[29, 32]. Neither approach is well-suited to the multidisciplinary optimization of the com-



Introduction 2

plex nonlinear dynamic models now available from multibody dynamics programs such as
ADAMS [113] or A’GEM [136], especially when more then a few design parameters and
multiple local optima are being considered.

Although multibody dynamics programs such as ADAMS or A’GEM are effective tools
for modelling and simulating rail vehicles, from a design point of view, the drawback of these
programs is that they only provide analyses of systems whose design variables have been
specified. Design optimization, parametric studies, and sensitivity analyses are difficult
to perform [87]. Instead, design engineers must decide by trial and error how to change
design variable values and repeat the analysis until performance measures satisfy design
specifications [97]. This “manual” process is tedious and time-consuming for complex
systems with nonlinear performance measures [10].

To find effective trade-off solutions for complicated conflicting design criteria, an ef-
fective method is to use various mathematical models, each of which concentrates on a
specific aspect of interest, and synthesize the design results based on different objective-
oriented vehicle models. Therefore, if the vertical ride quality, lateral stability, and curving
performance of a rail vehicle should be optimized simultaneously, it is natural that the cor-
responding ride quality model, lateral stability model, and curving performance model
should be included in the optimization problem.

Based on the above considerations, if the lateral stability, vertical ride quality, and curv-
ing performance of a rail vehicle should be optimized simultaneously, if the processes of the
selection of appropriate design variables should be automated, and if effective modelling
and simulation tools of multibody dynamics software are introduced, one is confronted with
the following challenges: which optimization method or methods and which optimization
algorithm or algorithms are suitable for the multiple model and design criteria optimiza-
tion problem? how can we make the various numerical algorithms, multibody dynamics
programs, multiple models, and other relevant systems or analysis disciplines a synergistic

whole so that the rail vehicle can be optimized effectively?

1.1.2 Lateral Stability Optimization Problem

With the consideration of dimensionality (i.e. the number of design criteria) of the above

optimization problem and the complexity and expense of the underlying analysis, it seems
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reasonable for us to decompose the above multiple model and design criteria optimization
problem into smaller and more manageable subsystems. Accordingly, we are confronted
with, at least, three independent problems: lateral stability optimization, vertical ride
quality optimization, and curving performance optimization.

Consider first the lateral stability optimization problem. Two approaches have been
applied to the problem. First, conventional local search algorithms combined with the
Routh-Hurwitz criteria were once used to optimize rail vehicles for maximizing the critical
speed (above which a rail vehicle’s response becomes unstable) [29, 32]. Recently, Baumal
and McPhee [11] replaced the conventional local search algorithms and the Routh-Hurwitz
criteria with a genetic algorithm (GA) and a nonlinear programming routine, i.e. sequential
quadratic programming (SQP), respectively, and used the resulting approach for optimizing
a 7 degree of freedom (DOF) rail vehicle model. With the two approaches to the lateral
stability optimization, one faces the following problems. Is it necessary to replace the more
computation efficient local search algorithms with the less efficient global search algorithm?
Is the SQP valid for identifying the critical speed of rail vehicles when the required system
parameters are offered? Moreover, could multibody dynamics programs such as A’GEM
be integrated with the existing algorithms or analysis disciplines for optimizing the lateral

stability of rail vehicles effectively?

1.1.3 Vertical Ride Quality Optimization Problem

In ground vehicle design, in order to determine optimal suspension characteristics and ride
properties in particular, a number of optimization algorithms, both local search and global
search algorithms, have been used and investigated. However, to date, very few results
on identifying effective optimization algorithms for vehicle ride quality analysis have been
published. No literature concentrates its analysis on the following issues: the necessity of
global search algorithms for vertical ride quality analysis; preferable options of certain kind
of search algorithms (e.g. gradient-guided) to others (e.g. direct search) for different vehicle
dynamic models, e.g. symbolic analysis model or numerical model; and the suitability of
numerical differentiation for gradient evaluation for linearized vehicle models with the ride

quality analysis performed in the frequency domain.
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1.1.4 Curving Performance Optimization Problem

For the curving performance optimization problem, conventional practice has been a trial
and error method by which designers change design variable values and re-perform the
analysis until a set of performance measures becomes acceptable [74, 97]. Therefore, pro-
cesses that automate the selection of appropriate design variable values can be used to
develop invaluable tools for rail vehicle designers.

It seems that no literature reported the application of numerical approaches to the
curving performance optimization. There are several factors that hinder the application of
numerical optimization to the curving performance problem. First, the dynamic curving
behavior of rail vehicles has not been as extensively studied as that of the lateral stabil-
ity behavior [13]. This phenomenon of insufficient research in curving performance can
be interpreted by the fact that large deviations in numerical results of curving behav-
ior simulations arose between software packages, e.g. VAMPIRE, GENSYS, SIMPACK,
ADAMS/Rail-MEDYNA, and NUCARS, participated in the Manchester benchmark exer-
cise in 1997 [77]. Notice that the above software packages are commonly used by designers
and researchers for predicting dynamic behavior of rail vehicles. The benchmark results
showed that for a specified vehicle and track case, which is used for predicting the vehicle
behavior in a specified constant radius and superelevation part of track, between the above
five packages, the highest deviation in steady-state Lateral/Vertical (L/V) force ratio at
the outer wheel on the first wheelset reaches as high as 6.7%, and the highest deviation
of the peak value of the L/V ratio reaches as high as 10.3% [77]. Second, it is difficult to
formulate a simple performance index to reflect the complicated dynamic behavior of rail
vehicles on curves, especially when the wheelset excursion has exceeded the flange clear-
ance [13]. Third, if conventional gradient-guided search algorithms are applied to curving
performance optimization problem, the sensitivity analysis could be difficult to perform,
especially when nonlinear dynamic curving models are used.

With the above considerations, even if a reliable multibody dynamics program is avail-
able for modelling a rail vehicle and simulating the corresponding curving behavior, one
1s still confronted with the problems of finding a suitable optimization algorithm or al-
gorithms and selecting an effective objective function that reflects the realistic curving

performance measures.
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1.1.5 Combined Mechanical and Control System Design Prob-

lem

Conventionally, a common practice has been a sequential approach, so that a passive me-
chanical vehicle system is designed first and the active elements of the vehicle suspensions
are added subsequently. The resultant design may behave less optimally overall due to not
considering simultaneously the mechanical parameters and control parameters as design
variables. Since there are inherent couplings among the passive vehicle system, active sus-
pension controller, and sensors, it is expected that an integrated control and mechanical
design process may coordinate the different or conflicting requirements from the mechanical
system and control system so as to achieve an optimal behavior of the overall vehicle.

It is shown [126] that in the design of a glider, a simultaneous optimization of aero-
dynamics, structures, and control is more efficient than the corresponding sequential ap-
proach. The inadequacy of the sequential approach to the simultaneous optimization moti-
vates the application of multidisciplinary optimization (MDO) to the simultaneous design
of a structure and a control system to achieve active flutter suppression.

With the above example, it seems natural to expect that multidisciplinary optimization
may offer a promising approach to the simultaneous design of active elements and passive

components in the design optimization of vehicles with active suspensions.

1.2 Research Objectives

The primary goal of the research is to develop a methodology for the design optimization
of rail vehicles with passive and active suspensions. The framework of the methodology
consists of the following main components: application of multidisciplinary optimization
to the simultaneous manipulation of design variables for several systems or analysis disci-
plines between which there are strong interactions; introduction of multibody dynamics for
effective modelling and simulation of rail vehicles under different operating conditions; use
of genetic algorithms for reliable global optimal solutions; development of an approach for
automatically identifying the critical speed of rail vehicles; and selection of strategies for

establishing effective objective functions for facilitating the complex optimization problem.



Introduction 6

The following steps are taken to develop the proposed methodology:

1. Optimizing a rail vehicle with respect to lateral stability;
Optimizing rail vehicles with respect to vertical ride quality;

Optimizing a rail vehicle with respect to curving performance:;

-

Optimizing a rail vehicle with respect to lateral stability, curving performance

and vertical ride quality, simultaneously;

5. Simultaneously optimizing mechanical system and control system of mecha-
tronic ground vehicles with respect to ride comfort, dynamic wheel loads, and

suspension working spaces.

In the process of developing the proposed methodology, several results are obtained. Of
these results, listed below are those that contribute to the fields of rail vehicle dynamics

and design, mechatronic systems, and numerical optimization:

e The existence of sharply-discontinuous “cliffs” in the plots of critical speed versus
suspension stiffness is identified and originally interpreted using modal analysis tech-
niques. This sharp discontinuity in the critical speed occurs when the mode (eigenvec-
tor) determining the critical speed switches. In recognition of the cliff phenomenon,
the definition of critical speed is generalized to make it a more practical measure of

lateral stability.

e An effective approach combining SQP and a dynamic mode tracking (DMT) tech-
nique [7] is developed for identifying the critical speed automatically. Since the gov-
erning equations for rail vehicles are similar to those in rotor dynamics, wind turbine
dynamics, aeronautics, and road vehicle dynamics, the approach can also be applied

to these problems for identifying the corresponding stability criterion automatically.

o When SQP is combined with a numerical multibody dynamics software for optimiz-
ing vehicle suspensions using linear vehicle models for ride quality analysis in the
frequency domain, it is found that numerical differentiation techniques can be used

for evaluating gradient reliably.
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o It is discovered that with the co-existence of passive and active components in vehicle
suspensions and the design variables determined by using the optimization method
proposed in the research, the corresponding actuator forces can actively resist track
disturbances much longer than the actuator forces in active suspensions that have
no passive elements and for which the design variables are determined by using the
linear quadratic Gaussian (LQG) method.

o Compared with inertial and suspension parameters sets, geometric parameters have
the most significant effect on lateral stability, curving performance, and vertical ride

quality.

o A clear picture of the trade-off relationship between the lateral stability and curving
performance of a rail vehicle is offered. Moreover, the trade-off relationship between
the vertical ride quality and lateral stability, and between the vertical ride quality
and curving performance of the vehicle confirm a well-known fact that a relatively

weak coupling exists between the vertical and lateral motions of a rail vehicle.

e Compared with a vehicle with passive suspensions and the vehicle with active sus-
pensions based on the LQG, the optimized vehicle system based on the approach
proposed has the best overall performance in all three aspects including ride com-
fort, suspension working spaces, and wheel dynamic loads. However, traditional
active suspensions often achieve better performance that is a compromise among
these three aspects and they can rarely improve the vehicle performance in all the

three aspects simultaneously.

1.3 Thesis Organization

The thesis 1s composed of nine chapters. In Chapter 2, a brief literature review is of-
fered on the issues: vehicle system modelling, optimization methods and algorithms for
vehicle suspension design, and design optimization of rail vehicles with passive and active
suspensions.

Chapter 3 describes both the All-in-One (A-i-O) and Individual Discipline Feasible
(IDF) approaches for MDO problems. Then, the essential concepts of multicriteria opti-
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mization are outlined. Finally, three typical optimization algorithms, i.e. GA, SQP, and
Simplex, which are extensively used and investigated in the research, are briefly reviewed.

In Chapter 4, several steps are taken to demonstrate an optimization approach inte-
grating multibody dynamics, a GA or Simplex, SQP, and DMT for optimizing the lateral
stability of a rail vehicle. First, a hand-derived solution to a 17 DOF linear rail vehicle
model is compared to the results from an A’GEM simulation. Second, the algorithm of
SQP is compared with a combined algorithm including the SQP and DMT when the two
algorithms are used for identifying the critical speed of the rail vehicle in two different
cases. The critical speed i1s optimized using the GA and Simplex algorithms, and the
GA 1s compared against the Simplex algorithm. In the process, the existence of sharply-
discontinuous “cliffs” in the plots of critical speed versus suspension stiffnesses is identified.
In recognition of the clhiff phenomenon, the definition of critical speed is generalized to make
it a more practical measure of lateral stability. Finally, the integrated approach is used to
identify the relative significance of different design parameter sets, i.e. geometric, inertial
property, and suspension parameters, on the critical speed of the rail vehicle.

In Chapter 5, to identify effective optimization algorithms for vehicle suspension design,
the GA, SQP, and Simplex are compared by means of the vertical ride quality analysis for
a 2 DOF quarter-vehicle model and a 20 DOF rail vehicle model. To further illustrate the
effectiveness of using the GA for optimizing vehicle suspensions, results are reported for
analyzing the relative significance of different design variable sets on vertical ride quality
using the 20 DOF rail vehicle model and optimizing a rail vehicle with active elements
using a 36 DOF model with car body flexibility. In addition, numerical differentiation is
validated as an effective link between the multibody dynamics package of A’GEM and SQP
for evaluating gradients.

Chapter 6 presents the feasibility and efficacy of applying numerical optimization ap-
proaches to a rail vehicle design with curving performance considered. The numerical
results of the optimization based on a 21 DOF dynamic curving model are offered and
discussed. Once again, the proposed optimization approach is applied to investigate the
relative significance of different design parameters or different parameter sets on curving
performance.

Chapter 7 demonstrates the effectiveness of a hybrid MDO approach combining the A-
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1-O and IDF methods for handling the conflicting requirements from the lateral stability,
curving performance, and vertical ride quality in the design of a rail vehicle with passive
and active suspensions. This hybrid MDO method integrates a GA, SQP, DMT, and
multibody dynamics modelling and simulation programs from A’GEM so that the three
complex dynamic rail vehicle models, i.e. the 17 DOF lateral stability model discussed
in Chapter 4, the 36 DOF vertical ride quality model employed in Chapter 5, and the 21
DOF nonlinear dynamic curving model described in Chapter 6, are accommodated in a
synergistic system. Within the system, the GA coordinates the above mentioned conflicting
requirements in system level and the suspension, geometric, inertial, and control parameters
for the rail vehicle described by the three models are optimized simultaneously. Out of a
family of Edgeworth-Pareto optimal solutions obtained from the optimization, the designer
can make his final decision on an acceptable design.

Chapter 8 illustrates the effectiveness of the A-i-O method for resolving the conflicting
requirements for ride comfort, suspension work spaces, and dynamic wheel loads in the
optimization of quarter-vehicle models and half-vehicle models with active suspensions.
Both deterministic and random track excitations and both rigid and flexible carbody (for
the half-vehicle models) cases are considered. The optimization problem is implemented
in a GA-A’GEM-MATLAB simulation environment in such a way that the linear me-
chanical vehicle models are generated in A’GEM, the controllers and Kalman filters are
modelled in MATLAB, and the coupled mechanical and control subsystems are optimized
simultaneously using the GA. Numerical results are offered.

Finally, Chapter 9 is dedicated to conclusions drawn from the research and recommen-

dations for future research.



Chapter 2

Literature Review

2.1 Introduction

An integrated design optimization approach for engineering systems generally involves two
parts [17, 19, 42]: modelling and optimization. The first part, modelling, can be further
divided into three subparts: modelling, parameterization, and criterion definition. To
optimize an engineering system such as a rail vehicle, one should first transform the system
to a mathematical model. To establish the mathematical model, the finite element method
and the multibody dynamics method are commonly used. In applications to vehicle system
design optimization, the finite element method is often used for structural optimization,
e.g. automotive crashworthiness. The method of multibody dynamics is a well-accepted
and widely used method for analyzing the dynamic behavior of vehicle systems in the
process of suspension design [114, 115]. With a suitable mathematical model, one is then
confronted with the definition of design criteria and design parameters of the model. Since
engineering requirements and designers’ wishes are sometimes hard to be formulated as
mathematical functions, the design criteria are often difficult to be defined. In general, the
design of a dynamic system with respect to several specifications leads to a multicriteria
optimization problem [17]. Parameters of the model are often classified either as design
variables, whose values can be chosen within given bounds, or as system constants whose
values are fixed during optimization. Constraints have to be considered for the modelling,

design criteria and parameterization chosen. Optimization constraints can be formulated

10
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in the design variable space or in the design criteria space, depending on what is considered
to be more convenient. Since the generation of reliable mathematical models is vital to
design optimization problems [42, 95], the state-of-the-art related to modelling techniques
and principles for model selection, especially for rail vehicle suspension design, will be
further addressed in the chapter.

After the above preparation, one faces the tasks of formulating the optimization prob-
lem and selecting appropriate optimization algorithms. Notice that in this thesis, the
term “optimization method” refers to the method of optimization problem formulation.
Traditionally, applications to dynamic system design are often restricted to single design
criterion optimization problems. These optimization problems can be classified either as a
constrained optimization problem or as an unconstrained problem. Generally a single de-
sign criterion optimization problem can be posed in a standard form [56]. With a suitable
search algorithm, the solution to the problem can be found. In the case of a multicrite-
ria optimization problem, based on concepts such as scalarization or hierarchization, it is
possible to transform the multicriteria optimization problem to a single (or a sequence of)
scalar, nonlinear programming problem [42]. For a complicated optimization problem in
which strong interaction between systems or disciplines arises, multidisciplinary optimiza-
tion proved to be effective for coordinating the design considerations at the system and
subsystem levels [123]. Obviously, it is vital to select an appropriate optimization method
especially for complex multicriteria design optimization problems. Moreover, there are
numerous algorithms available and even the choice of an efficient optimization algorithm
is a nontrivial problem [20]. Therefore, a survey of the applications of typical optimization
methods and algorithms to the design of vehicle suspensions is offered in this chapter.

In the past 2-3 decades, design optimization approaches, an important tool for the syn-
thesis of complex mechanical systems [42], have been widely applied to the design of vehicle
suspensions, especially for road vehicles. The state-of-the-art techniques (e.g. multibody
dynamics programs) and search algorithms (e.g. genetic algorithms) have been introduced
into the design process. In recent years, design philosophies for a mechatronic system have
been developed to a stage where the actuators, the controllers, the sensors, as well as the
mechanical structure design of the mechatronic system are considered simultaneously [123].

These design philosophies may be helpful to the design of vehicle suspensions. Hence, a
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review of the mainstream developments in the study on the design optimization of rail

vehicles with passive and active suspensions is presented in this chapter.

2.2 Vehicle System Modelling

2.2.1 Multibody Dynamics Modelling Techniques

Conventionally, in the case of creating dynamic models for rail vehicles, after the routine
for including the wheel/rail forces in the equations of motion has been developed and
computers were available to solve large numbers of simultaneous equations, the task was
to derive the multi-degree of freedom equations and transform them into computer codes
manually [4]. To establish complex vehicle models, this manual process has proven to
be a very tedious, difficult, time-consuming, and error-prone task [8, 86]. Moreover, it
was illustrated that these hand-derived models, especially when embedded in computer
programs, can hardly be changed [117]. When a model was found not to contain an
essential feature of a new task, e.g. introducing active elements into a suspension, it was
necessary to create a new model. In the early 1970’s, the foundations of ADAMS and
DADS, today’s most used multibody dynamics codes, were laid by the work of Orlandea
[108]. In the early 1980’s, Anderson applied multibody dynamics approach to dynamic
modelling of rail vehicles [4]. With the introduction of multibody dynamics approach
to various fields including rail vehicle dynamics in the 1980’s and 1990’s, this approach
has been employed by researchers with significant favor for the purpose of improving their
mathematical models of both road and rail vehicles. By means of a multibody formulation,
the equations of motion for a complex system of rigid and flexible bodies connected by
kinematic and dynamic components may be generated automatically. Many successful
commercial programs, e.g. ADAMS, SIMPACK, and VAMPIRE, were applied to the
dynamic analysis of several rail vehicle benchmark problems and gained varying levels of
success [77]. Since these computer packages have been validated against the results from
many experiments and benchmarks, a precise simulation of the dynamic response of a
vehicle can be obtained as long as an accurate set of vehicle characteristics are offered to

these programs.
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With these multibody dynamics programs, analysts can develop very complex vehicle
models with consideration of nonlinear suspension components, wheel/rail forces and ge-
ometry for assessing various aspects of rail vehicle dynamic behavior. For example, the
multibody dynamics software A’GEM developed by Anderson [6] contains a set of mod-
ules. To list a few, these modules provide the following functions: generating equations of
motions for linear dynamic systems with constraints (A’GEM module); simulating nonlin-
ear curving behavior of arbitrary rail vehicles (RACES module); performing linear lateral
stability analysis for rail vehicles (STABLE module); conducting dynamic mode tracking
for rail vehicle models (MTRACK module); and calculating the ride quality for arbitrary
rail vehicles (RLRIDE module).

However, from a design point of view, the drawback of multibody dynamic programs
i1s that they only provide analyses of vehicle systems whose design variables have been
specified [10]. Design optimization, parametric studies and sensitivity analyses are difficult,
if not impossible to perform [87]. Integrating multibody dynamics programs with numerical
optimization methods and algorithms will automate and facilitate the design optimization

of rail vehicles.

2.2.2 Vehicle System Models

The complexity of the mathematical models chosen to represent a vehicle is closely related
to the specific problem which has to be resolved with the model. In many cases, simple
linear models or models with a few DOF are adequate for obtaining the desired informa-
tion. Examples are the “quarter-vehicle model” for studying the vertical (bounce) mode
or the “half-vehicle model” for studying the bounce and pitch modes in many suspension
design problems [44]. In other cases, rail vehicle researchers resorted to using only single
bogie (see Figure 4.1 and § 4.2 for the definition of bogie) or half-body models and ac-
cepted the inaccuracy in exchange for gains in efliciency [8]. Langlois et al [91] found that
most controllers were based on quarter-vehicle models because of the extra mathematical
complexity resulting from the use of half- or full-vehicle models. Applied to a full-vehicle
model, such controllers may behave less than optimally because no provision for roll or
pitch motions can be made in the quarter-vehicle. Because of this reason, in recent years,
researchers have developed their controllers based on full-vehicle models [26, 34, 45, 50, 90].
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The increasing demands on the accuracy of mechanical models of vehicles result in more
complex multibody systems. The history of research in rail vehicle curving performance
reflects these demands. To evaluate curving performance of rail vehicles, in the 1960’s,
Newland and Boocock [22, 105] developed a linear steady-state curving model. To calcu-
late the steady-state solution in a constant radius curve and with a single wheel/rail contact
point, in the 1970’s, Elkins and Gostling [46] used the so-called quasi-static model which
includes nonlinearities of the wheel/rail geometry and forces. To study the complete curv-
ing behavior from the tangent track, through the transition spiral, and into the constant
radius curve, in the 1980’s, Fortin [53] developed dynamic curving models that take non-
linear wheel/rail forces and geometry, suspension nonlinearities, and two wheel/rail point
contact into account. Today the multibody dynamics program A’GEM can be easily used
to automatically develop 21 DOF and 37 DOF dynamic curving models to assess the curv-
ing behavior for a conventional rail vehicle and a forced-steering rail vehicle, respectively
[136].

An all-inclusive dynamic model of a rail vehicle would be large and complex [40]. Since
size and complexity are factors that tend to reduce physical insight and increase the devel-
opment and usage costs of computer programs, less general models are usually preferable.
In fact the best model is not the most complex one, but the most appropriate one. Vehicle
dynamic applications also show that analysis of different aspects of a vehicle system has to
be based on different models [18]. According to the operating conditions, type of terrain,
and wheel/rail profiles, different objective-oriented models are developed and used. These

specialized models may be classified as follows:

1. Vertical/Lateral Dynamic Models. These models are designed to study the dynamic

response of a vehicle to track irregularities.

2. Curving Performance Models. These models are used to calculate the dynamic or

quasi-static forces of a vehicle negotiating curves.

3. Lateral Stability Models. These models are applied to the prediction of the critical

speed, wheel/rail forces, and suspension and car body forces and displacements.

Hedrick et al [74] used a 12 DOF vertical dynamic model, a 15 DOF lateral dynamic
model, a 15 DOF lateral stability model, and a 15 DOF steady-state curving performance
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model to evaluate the performance of a conventional rail vehicle. All these objective-
oriented models were developed manually. Supported by the multibody dynamics package
A’GEM, MacNaughton [97] employed a 17 DOF lateral stability model, a 20 DOF vertical
ride quality model, and a 21 DOF nonlinear dynamic curving performance model to conduct
a design modification for an urban transit rail vehicle. The above applications illustrate
that specialized vehicle models, instead of an all-inclusive dynamic model are commonly

used in designing rail vehicle or evaluating rail vehicle performance.

2.2.3 Track Models

In most cases, the tracks are modelled as rigid, smooth, and straight for a lateral stability
analysis. In other cases, for example when the curving behavior of rail vehicles is evalu-
ated and studied, the curving of rail vehicles requires the track geometry such as curves
and grades. Parameters to describe these profiles are analytic functions specifying the
curvature, cross level, gauge etc [86].

From the ride quality analysis point of view, track unevenness represents the main
excitation function to both the passenger and the vehicle structure. Thus, track descrip-
tions have to include irregularities, consisting of either deterministic functions or stochastic
functions. Many track profiles have been measured, some being recorded on magnetic tape
(particularly test tracks) while most have been Fourier analyzed and characterized by their
frequency domain properties [83, 119]. It is important to try to predict vehicle dynamic re-
sponse using a realistic track irregularity model; unfortunately, a completely realistic track
model is difficult to develop. The track models are usually expressed in terms of power
spectral density (PSD) function of track profile elevation or “slope”. All of the track rough-
ness models have been developed under substantial assumptions, which typically idealize
the track profile as a stochastic process and exclude all the singular events. Generally,
track irregularities result in displacement inputs to vehicle models. When vehicles have
multiple axles, these track irregularities disturb the vehicles in a correlated fashion: the
same input occurs at the following axle with a time delay as a function of vehicle speed
and wheelbase. These correlations cause significant deviations from cases in which both
deterministic and random inputs are assumed to be uncorrelated [34]. In the cases where

the unsprung masses of vehicles are modelled with damping, not only the irregularities at
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a displacement level but also at a velocity level must be considered.

The contact forces between wheel and rail play a dominant role for the computer sim-
ulation of rail vehicle running behavior such as lateral stability and curving [86]. The
contact problem can be divided into a purely geometrical problem, i.e. the rolling of a
wheel on a rail, and the kinetic problem of the modelling of the contact forces, i.e. the
creep force laws.

To represent wheel/rail contact geometry, it is assumed that wheels and rails are rigid
bodies and the velocities in the common points of contact can be determined from purely
geometrical relationships taking into account the specified contact profiles. As a result,
nonlinear constraint functions arise which algebraically describe the dependence within the
vehicle coordinates such as lateral displacements, roll and yaw angles etc. Law, Cooper-
rider, Heller and other have done extensive work in this area and have published reports
and software which permits the detailed wheel/rail contact geometry representation that
is required for the accurate calculation of wheel/rail forces [53].

To calculate the creep forces arising at wheel/rail contact points, wheels and rails are
considered to be elastic halfspaces and the contact patch is assumed to be an ellipse.
The modelling and computation of the creep forces due to these assumptions have been
developed by Kalker [78] resulting in a number of software algorithms and simplications.
Kalker’s accurate and practical models of creep forces are used almost exclusively in modern

simulations of rail vehicle dynamics [8].

2.3 Optimization Methods and Algorithms Used in

Vehicle Suspension Designs

2.3.1 Optimization Methods

In general, the design optimization of aircraft and road vehicles as well as rail vehicles,
1s multidisciplinary. For example, the simultaneous design of a structure and a control
system for the purpose of active flutter suppression for an aircraft is a typical application
of multidisciplinary optimization [123]. In the case concerned, there are interactions among

the wing structure, the control system, and aerodynamics. These interactions make the
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structure, the control system, and aerodynamics a synergistic whole that is greater than
the sum of the three. Taking advantage of that synergy is the mark of a good design [85].
In fact, Multidisciplinary Optimization is presently of increasing interest in engineering.
MDO received recognition in the aeronautical sciences, first for the structural optimization
and later for the aerodynamic design [123]. Currently, we can find the application of MDO
to automotive vehicle design for safety and NVH (noise, vibration and harshness) reduction
[85, 124, 145, 146]. MDO is also used for ground vehicle suspension design [66, 67].

The current literature shows that most MDO problems of vehicle systems for safety,
NVH, and ride comfort are multidimensional (more than a few design variables) and mul-
ticriteria (more than a few design criteria) [66, 67, 85, 124]. In these applications, the
relevant design criteria are optimized simultaneously. In these cases, it is unlikely that the
same values of design variables will result in the best optimal values for all the design cri-
teria. Hence, some trade—off between the design criteria is needed to ensure a satisfactory
design. In fact, the solution of a MDO problem is a compromise between disciplines. More-
over, by means of using multicriteria optimization techniques, we can integrate different
disciplines into the united computational process.

Most MDO approaches are based on the response surface technique and on the original
approximation concept [123]. Due to the framework, for a given application of MDO to the
design of vehicle suspension systems, the selection of design space search algorithms is vital.
Many algorithms for design space search have been developed, and they differ according to
the type of criteria (linear/nonlinear), constraints (unconstrained /bounds/equality /inequality),
their approximation type and their demand for information (criteria/ gradients/Hessians)

[42].

MDO Methods

One of the primary challenges in MDO is organizational complexity [123]. A successful
vehicle system design requires harmonization of a number of criteria and constraints. Such a
design problem can be modeled as a constrained optimization in the design variable space.
However, for such optimization, due to its dimensionality, complexity, and expense for
analysis, a decomposition approach is recommended so as to enable concurrent execution

of smaller and more manageable tasks [85]. To preserve the couplings that naturally
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occur among the subsystems of the whole problem, such optimization by various types of
decomposition must include a degree of coordination at the system and subsystem levels.
MDO offers effective methods for performing the above optimization so as to resolve the
trade-off relations among the various design criteria at the system and subsystem levels.

Several MDO methods exist, including All-in-One (A-i-O) method [85], Individual Dis-
cipline Feasible (IDF) method [33], Collaborative Optimization(CO) method [23], Bi-Level
Integrated System Synthesis (BLISS) method [84], and Concurrent SubSpace Optimization
(CSSO) method [111], to name a few. Among most of these MDO methods, the shared
character is that the system concerned is decomposed into subsystems so that the corre-
sponding subtasks are performed independently in their own modules; then in a system
level, the coordination of the different design considerations gives rise to a two-level opti-
mization. One of the most important advantages of this decomposition is the concurrent
execution of the subtasks, which is well suited for parallel computations.

Another primary challenge in MDO is computational expense. The computational chal-
lenge may simply reflect increased dimensionality, with analysis and design variables that
accumulate from all disciplines. Effective methods for improving calculation efficiency are,
for example, to use parallel computations and approximation concepts [123]. A discussion

on this topic is beyond the scope of this thesis.

Multicriteria Optimization Methods

Conventionally, when optimization methods are used in vehicle system design, the applica-
tions are often restricted to single criterion optimization [17]. Designs derived from the op-
timization method are not fully satisfying for practical applications, because they consider
only a single aspect out of a couple of conflicting system requirements and specifications.
In most cases, such ‘optimal’ designs are even inferior to those derived by common sense.
Thus, several conflicting design specifications and goals have to be taken into account in
practical applications. The multicriteria optimization methods seem to offer a promising
way to handle the design problems with conflicting specifications and requirements and
find optimal designs [18].

Using multicriteria optimization methods, we can minimize several criteria simultane-

ously, and define optimal compromise solutions when conflicting criteria co-exist in the
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design problems. Generally, such optimal designs are a family of designs that are not
comparable to each other. With the consideration of design intuition and additional infor-
mation, a final solution can then be determined.

A well-known technique used for multicriteria optimization is to reduce a multiple design
criteria or vector optimization problem to a single design criterion or scalar optimization

problem [18, 42]. This topic will be further discussed in the next chapter.

2.3.2 Optimization Algorithms

Optimization algorithms can be classified into three main types [42, 49, 112]: “hill-climbing”,
enumerative, and stochastic.

“Hill-climbing” algorithms may further divide into two subclasses: direct search (e.g.
Simplex) and indirect search (e.g. SQP). Direct search algorithms are typically based on
function comparison techniques. Most such procedures are heuristic in nature and deriva-
tive evaluations are not needed. Generally these tend to be slow. The indirect search
algorithms solve a non-linear set of equations resulting from setting the derivative of the
objective function equal to zero and finding the local optima. They are well-known to ex-
ploit all local information in an efficient way, provided that certain conditions are fulfilled
and, in particular, that the function to be minimized i1s well-conditioned in the neigh-
borhood of the unique optimum. These algorithms require a lot of local information to
be known, e.g. the gradient and the Hessian matrix. If the basic requirements are not
satisfied, the reliability of the methods is greatly jeopardized. Most often, for indirect
search algorithms, the restrictive requirements of continuity and differentiability should be
satisfied.

Enumerative algorithms are straightforward search algorithms. They evaluate objective
fitness in the feasible search space of design variables one point by one point. The lack of
efficiency of these algorithms prohibits them from a wide range of applications.

Recently, stochastic algorithms (e.g. GAs, Evolutionary Algorithms (EAs) and Simu-
lated Annealing (SA) Algorithms) have achieved popularity mainly for these properties:
performing global optimizations, requiring no or very low accuracy gradient information,
using probability rules to guide their searches, and being suitable for solving complex real-

world problems. Stochastic algorithms achieve the above merits at the expense of requiring
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more function evaluations compared with conventional optimization algorithms.

In ground vehicle design, a number of optimization algorithms have been used to de-
termine optimal suspension characteristics. A modified Simplex was used to optimize the
characteristics of the elasto-damping elements for a simple 4 DOF model of a passenger car
[37]. The constrained optimization algorithm of M. J. Box (Complex) has been applied to
maximize the critical speed for a rail vehicle (based on a 15 DOF model) subject to con-
straints on lateral ride quality and suspension working spaces [32]. A modified version of
the Hook-Jeeves method was employed for seeking the optimization of the characteristics
of the elasto-damping elements of automobiles from the aspect not only of ride proper-
ties, but also of handling [38]. A SQP has been chosen for the purpose of optimizing a
tractor /semi-trailer suspension [14]. In recent years, GAs [12, 36, 49, 66], SA [42], and EAs
[93] lengthen the list of optimization algorithms for ground vehicle suspension design.

Among the above mentioned algorithms, Simplex, Complex, and Hook-Jeeves are direct
search algorithms and Complex is essentially based on Simplex. These algorithms, together
with SQP, belong to the family of local search algorithms unlike the global search algorithms
such as GAs, EAs, and SA. It is well-known that the local search algorithms converge to
the nearest optimum, since they depend upon the starting values of the design variables.
Finding the global optimum is a great problem of these optimization algorithms, and it
i1s solved by using a larger number of combinations of the initial values of the design
variables [38]. Furthermore, when the local search algorithms, e.g., SQP, are used for
solving multicriteria optimization problems, they usually find only a single point of the
whole set of trade-off solutions of the multicriteria design problem. However, for the global
search algorithms such as SA, in addition to their high reliability for finding the global
optimal point in the design variable space, they can be used to present, a much clearer
picture of the trade—off solution set and a better feeling for sensitive or insensitive design
variables [42].
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2.4 Design Optimization of Rail Vehicles with Passive

and Active Suspensions

2.4.1 Optimization of the Lateral Stability

It has been demonstrated that a system subject to non-conservative forces may become
unstable under certain conditions. For rail vehicles with conical steel wheels running on
straight steel rails, the non-conservative forces arise due to creepage at the contact point
between the wheel and rail. In rail vehicle dynamics, based on linear stability analysis,
one of the important stability criteria is a forward speed known as “critical speed” above
which a rail vehicle becomes unstable [139, 140]. This unstable behavior, also known as
“hunting”, exhibits increasing frequency and decreasing damping with increasing speed
[7]. The linear stability analysis has become state-of-the-art [82] and it provides very use-
ful design information that has not previously been available [8]. At present, the linear
stability analysis is applied in industry for newly designed vehicles and the method is inte-
grated in computer programs for multibody systems such as A’GEM, ADAMS, MEDYNA,
NUCARS, SIMPACK, VAMPIRE, and VOCO [82].

Development of a rail vehicle that can operate in the 160 to 480 [km/hr] speed regime
must avoid the serious problem of hunting [32]. An effective way to do this is to use
numerical optimization to determine a set of suspension parameters that maximize the
critical speed [11, 29, 32, 66, 69, 72].

Interestingly, the physical basis of wheel/rail and tyre/road rolling contact mechanics
are to a great extent the same [82]. This similarity is reflected in the existence of asymmetric
matrices in the governing equations of both rail vehicles and road vehicles. Corresponding
to the hunting phenomena for rail vehicle wheelsets, there exist the shimmy phenomena
for road vehicle steering systems. Moreover, similar asymmetric matrices are found in
rotor dynamics, in wind turbine dynamics, and in aeronautics. Therefore, the numerical
optimization approaches to maximizing the critical speed for rail vehicles are expected to
be applicable to these fields.

Cooperider, Hedrick and Cox [29, 32] have optimized the critical speed of a 3 DOF

rail vehicle model using an unconstrained optimization method called the Hooke-Jeeves
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algorithm. They also used a constrained optimization method called the M. J. Box or
Complex algorithm to optimize the critical speed of a 15 DOF model. In both cases, they
employed a two-loop algorithm. In the interior loop, the critical speed is obtained from
a stability analysis of the equations of motion for a given set of suspension and wheel
parameters. The Hessenberg algorithm is used to find the system characteristic equation,
to which the Routh-Hurwitz criteria is applied to determine stability for a given speed.
This process is repeated for different speeds until the critical speed is found. In the outer
loop, the Hooke-Jeeves or Complex algorithm is used to find the design variables that
maximize the critical speed.

In fact, as early as in 1928, Carter [82, 140] used the Routh stability criteria to investi-
gate the stability problem of various configurations of locomotives, identifying the critical
speeds that separate regions of stable and unstable motions. In 1957, Matsudaira also
used the Routh-Hurwitz criteria to determine the critical speed of a two-axle vehicle. Ob-
viously the Routh-Hurwitz criteria is important in the linear stability analysis. However,
the value of the Routh-Hurwitz criteria is diminished if the characteristic equation can be
solved using a root-finding routine on the computer [88]. Numerical experiments showed
that for a given set of suspension and wheel parameters and a known value of vehicle
forward speed, the eigenvalues of the rail vehicle system matrix in state space form can
be calculated with ease using Householder’s transformation method and the QR algorithm
[11, 66, 69]. Thus, for the problem of optimization of the lateral stability of rail vehicles,
when the system design variables and vehicle speed are given, the Hessenberg algorithm
and the Routh-Hurwitz criteria used by Cooperider, Hedrick and Cox [29, 32] may not be
an efficient method for identifying the critical speed automatically.

Both the above mentioned Hooke-Jeeves and Complex algorithms can be classified as
local search algorithms because they use only local information to find a better solution.
When they converge to a stationary point, there is no guarantee that this is in fact the
global optimum.

Baumal and McPhee have reported that a combination of a genetic algorithm (GA)
and sequential quadratic programming (SQP) is well-suited to the design optimization of
a simple rail vehicle model [11]. Essentially, the GA and SQP are the counterparts of
the M. J. Box/Hooke-Jeeves algorithm and the Routh-Hurwitz criteria in the optimization
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methods described in [32, 29]. Eleven design variables, including suspension stiffness and
damping, geometric parameters, and inertial property parameters, are optimized [11]. It is
shown that this combined approach can find the global optimum with a high reliability. The
simple 7 DOF model offers a good qualitative understanding of rail vehicle performance
trends, but it is not sufficient for quantitative design use.

The combined approach has been extended by introducing multibody dynamics pro-
grams and is validated using a 17 DOF rail vehicle model [68, 69].

2.4.2 Optimization of Vertical Ride Quality

Although a number of optimization algorithms have been used to determine optimal sus-
pension characteristics, with particular emphasis on improving ride quality, just a few
researchers tackled the task of identifying effective optimization algorithms for vehicle ride
quality analysis. Li et al. [93] compared the simulation results based on evolutionary
algorithms (EAs) with those based on GAs using a simple 2 DOF quarter-vehicle model
for ride quality analysis. Baumal et al. [12] applied GAs to the design optimization
of a vehicle suspension system, emphasizing on optimizing ride quality using a 5 DOF
half-vehicle model; they also compared the results based on GAs with those based on a
gradient-guided algorithm. Eberhard et al. [42] addressed some advantages of stochas-
tic optimization algorithms such as SAs over gradient-guided algorithms such as SQP in
multicriteria optimization of a 11 DOF vehicle model for ride quality improvement.
Bestle [15] proposed an approach combining multibody dynamics and a nonlinear pro-
gramming optimization algorithm for the design optimization of automotive systems. He
clearly addressed that the missing link between multibody dynamics codes (for analyzing
the dynamic behavior) and optimization codes is the sensitivity analysis of objective and
constraint functions with respect to parameter perturbance. In principal, the sensitivity
analysis can be performed using three different methods: numerical differentiation, the
direct differentiation method, and the adjoint variable method. Bestle investigated advan-
tages and drawbacks of these methods and obtained a helpful result. The result illustrated
that the adjoint variable method is more reliable and efficient than the often used numerical
differentiation for gradient evaluation when the vehicle ride quality analysis is performed

in the time domain and the vehicle model is nonlinear.
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2.4.3 Optimization of Curving Performance

Rail vehicles should possess satisfactory dynamic behavior in curves so as to ensure safety,
minimize wear and noise, and provide adequate comfort for the passengers. To understand
the behavior of rail vehicles in curves, the early studies by Newland [105] and Boocock
[22] developed linear steady-state curving analysis. To predict curving performance more
realistically, nonlinear wheel/rail forces and geometry were introduced into steady-state
curving analysis [31, 46]. To study the complete curving behavior from a tangent track,
through a transition spiral, and into a constant radius curve, and to include all suspension
nonlinearities, a dynamic curving model was used [53]. Currently, multibody dynamics
modelling software, e.g. A’GEM and VAMPIRE [51], are available for evaluating curving
performance of rail vehicles. To provide validation of software packages on simulation of
rail vehicle dynamics including curving behavior, a benchmark exercise was carried out in
Manchester in 1997 [77].

Although current computational power and multibody dynamics modelling software on
rail vehicle dynamics makes it possible to perform the extensive synthesis of complex rail
vehicle dynamic systems, few researchers have used numerical methods to optimize rail
vehicle systems with respect to curving performance.

Hedrick et al. [74] evaluated and optimized a conventional rail vehicle on mainline
intercity curves using a steady state curving model with 15 DOF. This curving model was
mainly based on the Newland /Boocock approach to linear, creep guidance curving [22, 105]
where the performance was measured in terms of the curve radius and speed for which
the wheelsets did not “flange” (the wheelset excursions did not exceed a specified flange
clearance) or “slip” (the resultant creep force on each wheel did not exceed a friction force
limit). This steady-state curving model was cast in linear algebraic equations in matrix
format. With given design variables and required system parameters, these equations were
solved by the Gaussian elimination method. If a design variable or a set of design variables
are allowed to vary within a specified range, these linear algebraic equations are solved
repeatedly to obtain the relevant curving performance curves or surfaces. By comparing
the resultant curves or surfaces with the relevant wheel slip and flange contact boundary
curves or surfaces, one may evaluate a specified design or select an appropriate design

variable or variables as an optimal design.
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MacNaughton [97] performed a design modification for an urban transit rail vehicle
using a nonlinear dynamic model with 21 DOF for curving performance analysis. In
the model, the nonlinear creep forces and the nonlinear wheel/rail geometry with two
points of contact were taken into account. In predicting the curving performance of the
vehicle, the RACES program of A’GEM was used. The ratios of lateral to vertical (L/V)
contact forces and the angle of attack (the angle between the axle of a wheelset and the
corresponding radius of curve) were selected as design criteria for curving performance
design. With the assistance of necessary dynamic analysis and the consideration of the
design specifications on lateral stability, ride quality, and vertical dynamics, the RACES
routine was run repeatedly until the selected design variables made the resultant curving
performance satisfy the design criteria.

Both the above design approaches used by Hedrick and MacNaughton share common
characteristics: the number of design variables is small and the designer must decide by
trial and error how to change variable values and re-perform the analysis until a set of

performance measures becomes acceptable.

2.4.4 Optimization of Lateral Stability, Ride Quality, and Curv-

ing Performance

To investigate lateral stability /curving performance compatibility for rail vehicles, Wickens
[141] proposed a generalized set of stiffnesses, i.e. interaxle shear and bending stiffnesses,
that encompass both conventional and radial bogies. These elastic characteristics of bogies
have been used to select appropriate design variable values for improving the compatibility
of lateral stability /curving performance [13, 75, 122, 127]. However, this elastic charac-
terization is valid only under the assumptions: (1) the bogie is freely pivoted to a car
body [122]; (2) the bogie model for dynamic stability and curve negotiation is linearized
[141]; (3) the dynamic effects due to bogie frame inertia and primary suspension damping
are neglected [13]. Cox, Hedrick, and Cooperrider [29, 32] have turned to local search
numerical optimization algorithms combined with Routh-Hurwitz criteria for optimizing
rail vehicles with respect to lateral stability and ride quality in lateral direction using a

3 DOF and a 15 DOF rail vehicle model, respectively. Neither approach is well-suited to
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the design optimization of the complex nonlinear models now available from multibody
dynamics programs such as ADAMS or A’GEM, especially when more than a few design
parameters and the existence of many local optimal points are being considered.

Bestle and Eberhard proposed the “multidisciplinary multimodel design concept” for
the design optimization of road vehicles with respect to ride comfort and ride safety [18].
Different aspects of design criteria were based on different models. This multimodel design
problem was implemented using multicriteria design methods.

To optimize a rail vehicle with respect to lateral stability, vertical ride quality, and
curving performance, He and McPhee have proposed a combined approach using genetic
algorithms and multibody dynamics [66]. Lateral stability, curving performance, and ride
quality were assessed using realistic multibody models from A’GEM, and combined in a
multicriteria objective function. By combining a GA with A’GEM, the suspension stiffness
and damping, geometric, inertial, and control parameters for the rail vehicle with active
suspensions were optimized simultaneously. This research has been extended and will be

presented in Chapter 7 of this thesis.

2.4.5 Combined Mechanical and Control System Design

Vehicle suspensions with active components potentially have significant advantages over
passive suspensions [58, 71, 101, 102, 120, 144]. Thus, in the past 2-3 decades, various
control strategies, e.g. Linear Optimal Control [143], “Skyhook Damper” [79], Preview
Control [91], H, Control [103], and Fuzzy-Logic Control [147], have been applied to the
design of vehicle active suspensions. In these control strategies, active elements of vehicle
suspensions are designed independently of the passive components [15, 19]. Applied to a
vehicle model, such controllers may behave less optimally overall due to not considering the
mechanical parameters, e.g. inertial and geometric parameters, as design variables in the
control design process. Bestle et al. [15, 19] recommended that an integrated modeling and
control design be performed to improve the performance of suspension systems and that
parameters of both active and passive elements be adjusted adequately to attain optimal
behavior of the overall vehicle.

In a robot design, Pil et al. [109] proposed a recursive experimental optimization

method for simultaneously optimizing both the mechanical structure and controller of the
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mechatronic system. In the design optimization, the mechanical structure might be modi-
fied recursively and quickly with structure reinforcement and rapid prototyping techniques.
The feedback control gains were adjusted with the mechanical structure modification and
this procedure was iterated until the optimized design criteria were reached.

The above methods applied to vehicle active suspension design, airplane design, and
robot design share a common character: the corresponding mechanical system and control
system are combined as a synergistic whole and the design optimization is conducted with
the coordination between the mechanical system and control system. It is reasonable to
expect that a combined mechanical and control design process may help to achieve an
optimal behavior of an overall vehicle.

In recent years, several researchers have tackled the task by taking passive parameters
and active parameters as design variables simultaneously when designing ground vehicles
with active suspensions [12, 15, 66, 116].

However, all these researchers have introduced the “skyhook” control strategy [66] into
their design optimizations. Since the 1970’s, the linear quadratic Gaussian (LQG) optimal
control algorithm [129] has been widely used by researchers for controller design in ground
vehicles with active suspensions. This optimal control algorithm was also modified for op-
timizing a 4 DOF passive vehicle suspension system [94]. It was shown that LQG provides
a compact analytical solution with relatively low design and computational time and the
stability of the system designed is guaranteed. Moreover, the result of an optimization
process 1s a controller that considers and feeds back all system states with constant gains
while any classical structure may not be ensured to be optimal [129]. Although the passive
spring stiffness and damping coefficients have been optimized with the control parameters
using LQG algorithm [129], it seems that the vehicle inertial and geometric parameters
and control parameters have not been considered as design variables simultaneously in
the optimization process using LQG. Moreover, one difficulty in using LQG is how to de-
termine the weighting factors of the performance index. Traditionally, a ‘trial and error’
method is used for choosing the weighting factors or the combinations of factors [129]. To
some extent, the optimal design of controllers depends on the experience of designers. For
complex design systems and for multicriteria design optimization problems in particular,

the choice of the weighting factors is a nontrivial problem [101].
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When the LQG algorithm is used for vehicle active suspension design, it 1s often assumed
that perfect measurement of all state variables is available. In practice, not all the state
variables are available but only a limited number of the states. Even in the latter case, the
corresponding measurements are noisy and thus the performance of the control systems
would suffer. In the cases where only limited states are assumed measurable, Kalman filters
can be used to estimate required states.

Numerical results have showed that an integrated approach using genetic algorithms,
multibody dynamics, LQG control strategy, and Kalman estimator is an effective approach
to the design optimization of combined mechanical and control system for vehicles with

active suspensions [67].

2.5 Summary

This chapter reviews the state-of-the-art related to modelling techniques, mathematical
models, optimization methods, and optimization algorithms applied to the design opti-
mization of rail vehicles. A survey of the applications of numerical optimization approaches
to the design of rail vehicles with passive and active suspensions is presented.

Multibody dynamics programs are effective tools for modelling vehicle dynamic systems.
The combination of multibody dynamics with appropriate optimization methods and al-
gorithms may automate and facilitate the design process of rail vehicles. The increasing
demands on the accuracy of mechanical models of vehicles result in complex multibody sys-
tems. It would be an impossible task to construct a single mathematical model that could
be universally addressed to all aspects of vehicle dynamic behavior. However, the com-
plicated dynamic behavior can be studied by using various mathematical models, each of
which concentrates on a specific area of interest. For a design optimization problem that
involves coupled analysis disciplines, multidisciplinary optimization is a suitable option.
Genetic algorithms are effective search algorithms for multiple design variable optimiza-
tion problems that have many local optima.

It is evident that there is a lack of systematic study on the feasibility and efficacy of
optimization algorithms and formulation methods used in the design of rail vehicles with

passive and active suspensions. Combined mechanical and control design process may help
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to achieve an optimal behavior of an overall vehicle.
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Chapter 3

Design Optimization Methods and
Optimization Algorithms

3.1 Introduction

Roughly speaking, two cases were studied in the research and they will be discussed in the
thesis: 1) a rail vehicle is optimized with respect to lateral stability, curving performance,
and ride quality in vertical direction [66]; 2) to improve a ground vehicle ride quality with
suspension working spaces and wheel dynamic loads being taken into consideration, the
vehicle mechanical system, controller, and estimator are optimized simultaneously [67].
In both cases, MDO methods will be applied to the corresponding design optimization
problems.

First of all, we are confronted with the problem of choosing the appropriate MDO meth-
ods mentioned in Chapter 2 for each case. In the first case, the lateral stability model, the
curving performance model, and the vertical ride quality model represent three individual
analysis disciplines which could be analysed individually during the optimization. In the
process, the optimizer at system level can be used to drive the three individual disciplines
to multidisciplinary feasibility and optimality by controlling the coupling design variables.
The Individual Discipline Feasible Method is suitable for solving problems in which the
coupling design variables are manipulated by the optimizer at system level. Thus, the IDF

method is the appropriate option for the first case.
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In the second case, for mechatronic vehicles with active suspensions, the vehicle me-
chanical system, active suspension controller, and Kalman filter co-exist in a synergistic
system and each of them represents an analysis discipline. In the optimization, it is ex-
pected that a vector of design variables be offered to the coupled system of three analysis
disciplines, each discipline feasibility should be achieved, and at the same time the input
to one should correspond to the output of the other via interdisciplinary mappings. Via a
fixed-point iteration with that value of design variable vector, the Multidisciplinary Feasi-
bility (MDF) is expected to obtain, and the relevant output variables of the coupled system
should be fed to the optimizer at the system level for evaluating the objective function and
constraint functions. The inherent features of the All-in-One method match the above
requirements so well that the A—1—O method is adopted for the second case.

For both cases, to optimize the conflicting design criteria simultaneously, the scalariza-
tion strategy commonly used in multicriteria optimization [17] is utilized in the correspond-
ing MDO problem. At the system level, the weighted criteria method is used to construct
the required objective function. It is expected that the introduction of the scalarization
strategy or the weighted criteria method should facilitate the implementations of the IDF
and A—i—-O methods for the first case and the second case, respectively.

In the two cases, for these complicated design optimization problems with multidimen-
sional, multicriteria, and multidisciplinary features, the selection of proper design space
search algorithms or optimization algorithms is another important issue. Indirect search
algorithms or gradient-guided search algorithms, e.g. SQP, often have the advantage of
rapid convergence towards a local minimum. However, the convergence rates strongly de-
pend on properties like differentiability or convexity. Moreover, even if these conditions are
satisfied, the efficiency of these algorithms is degraded by the computational cost of gradi-
ents. Hence, the direct search algorithms or pattern search algorithms are also frequently
applied to MDO problems [39, 132]. GAs offer another alternative to gradient-guided
search algorithms [62]. Due to the long computation time, GAs cannot completely replace
conventional gradient—guided search algorithms. Therefore, to identify effective optimiza-
tion algorithms for vehicle suspension design, in the thesis, three typical algorithms, SQP,
Simplex, and GA, are compared by means of ground vehicle ride quality analysis and rail

vehicle lateral stability analysis.
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In this chapter, both A—i—-O and IDF approaches for MDO problems are introduced.
Then, the essential concepts about multicriteria optimization are outlined. Finally, three

typical optimization algorithms, SQP, Simplex, and GAs, are briefly reviewed.

3.2 Design Optimization Methods

3.2.1 Multidisciplinary Optimization Methods
All-in-One Method

The All-in-One method (or Multidisciplinary Feasibility (MDF') [33] method) is commonly
used for approaching the solution of MDO problems. When this method is used, the

optimization problem can be formulated as the following general format:

minimize F(X4,U(X,))
with respect to Xy o (3.1)
subject to 8(Xa, U(Xa)) <

C <X;<C,

where

(3.2)

U(Xy) = A(Xy, G(X4, U(Xy)))
Y = G(X4, U(Xy))

and C, and C; are the upper and lower bounds on the design variable vector X4, U(Xy)
is the system output variable vector, A(Xy, G(X4, U(Xy))) is the analysis mapping from
the inputs Xy and Y of an analysis discipline to the outputs U, G(X4, U(Xy)) is the
mapping to the inputs required for an analysis discipline from the output of another analysis
discipline, and F(X4, U(Xy)) and g(Xg, U(Xy)) are the objective function vector and
constrained function vector, respectively.

Figure 3.1 shows an example using the A-i1-O method for an aeroelastic optimization
problem [33]. The system consists of an optimizer that controls specified objective F (drag,
structural weight, etc.) and constraints g, two analysis disciplines including aerodynam-

ics (discipline 1) with analysis solver A; and structures (discipline 2) with analysis solver
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Xd Uz
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Figure 3.1: All-in-One (A-i-O) method

A,. For a certain iteration, the fixed design variable vector Xy (aerodynamic and struc-
tural design variables) is provided by the optimizer to the coupled analysis disciplines,
then a complete acrodynamic analysis and structural analysis is performed with that value
of X4 to obtain system output variable vectors U;(Xy) (the pressures on the wing sur-
face) and U,(Xy) (the deflections of the wing). The output variable vectors U;(X,)
and U,(Xy) are used for evaluating the objective F(X4, U;(Xy), U2(Xy)) and constraints
g(X4,Ui(X4), Us(Xy)). In Figure 3.1, the interdisciplinary mapping Go; means that given
the pressures on the aerodynamic grid, the loads on the structures grid (Y2;) can be calcu-
lated. Similarly, the interdisciplinary mapping Gy, indicates that provided the deflections
of the wing, the wing shape (Y;2) can be obtained. We say that we have single discipline
feasibility for acrodynamics when the solver A; has been executed successfully and solved
for the pressures, given an input shape. Similarly, we have single discipline feasibility
for structures when the structures code A, has successfully solved the structural analysis
equations to produce deflections, given some input forces. Here, “feasibility” for a single

discipline means that the equations the discipline code is intended to solve are satisfied.
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For this two analysis discipline case, the optimization problem can be rewritten as:

minimize F(X4, U1(X4), Ux(Xy))
with respect to Xy (3.3)
: 8(X4, Ui(Xy), Us(Xy)) <0 '
subject to
C <X; <Gy,

where
Ui(Xy) = A1(Xy, G12(X4, Us(X4)))
U,(Xy) = As(Xy, Ga1(Xy, Ui (Xy)))
Y, = G12(Xd7 U2(Xd)

) (3.4)
Yo = Gai(Xy, Ui (Xy))

Notice that if a gradient-guided method is to be used to solve the above problem, then
a complete multidisciplinary analysis (MDA) is necessary not just at every iteration, but
at every point where the derivatives are to be evaluated. Thus, it is very expensive to

attain multidisciplinary compatibility in realistic applications.

Individual Discipline Feasible Method

One way to avoid a complete MDA every time an objective function, constraint, or sen-
sitivity evaluation is needed is to use the IDF method. The essence of IDF is that this
approach maintains individual discipline feasibility, while allowing the optimizer to drive
the individual disciplines to multidisciplinary feasibility and optimality by controlling the
interdisciplinary coupling variables. In the case of IDF approach, some specific analysis
variables representing communication, or coupling, between analysis disciplines via inter-
disciplinary mappings are “promoted” to become optimization variables. These optimiza-
tion variables are indistinguishable from design variables from the point of view of a single

analysis discipline solver. The general IDF formulation can be as follows:

MInimize F(X4, U(X))
with respect to X = (X4, Xy)

g(X.. U(X)) <0 (3:5)
subject to Cous = Xy — G(X4,U(X))=0

C <X<ZC,
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where
U(X) = A(X) (3.6)

and C, and C; are the upper and lower bounds on the design variable vector X which con-
sists of the original design variable vector X; and “promoted” design variable vector Xy.
Since the vector Y is “promoted” as design variable vector, here Xy is introduced to re-
place the input variable vector Y for an analysis discipline. F(Xy, U(X)) and g(X,4, U(X))
are objective and constraints, respectively. U(X) is the system output variable vector and
A(X) is the analysis mapping from the inputs X, and Xy. G represents interdisciplinary
mapping and the condition C,,, 2 Xy — G(X4, U(X)) = 0 converts the interdisciplinary
mappings into auxiliary optimization constraints. Notice that in the thesis the symbol =,
means ‘defined as’.

It should be noted that an evaluation of U(X) = A(X) involves executing all the
single discipline analysis codes simultaneously with available multidisciplinary data X.
Therefore, these very expensive computations can be done independently and concurrently
and communication costs are likely to be negligible. It is evident that the IDF method is
well-suited for applications with the use of parallel computer system.

Figure 3.2 shows an application of the IDF method to a system consisting of an opti-
mizer that controls objective F and constraints g, C;s and Cs;, discipline 1 with analysis
solver A, and discipline 2 with analysis solver A,. For a certain iteration, the fixed design
variable vectors X4, Xy,,, and Xy,, are provided by the optimizer to the analysis disci-
plines A; and A,. With the offered design variable vectors, each analysis is performed
to obtain system output vectors U;(X) and U,(X) and interdisciplinary mapping vectors
G12(X4, Ui (X)) and Gai(Xg, Us(X)), respectively. The objective F(X,4, U;(X), Us(X))
and constraints g(Xg, U1(X), Us(X)), Ciz, and Co; can be evaluated, given the system
output vectors U;(X) and U,(X) and interdisciplinary mapping vectors Gi2(Xy, U1(X))
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Figure 3.2: Individual discipline feasible (IDF) method

and Ga1(Xg4, Us(X)). For this case, the optimization problem is formulated as:

MInimize

with respect to X =

subject to

where

U, (X)
U,(X)

F(Xq4, Ui(X), Uy(X

)
(Xd7 XY12 ) XY21 )
2

g(Xm 1(X), Ux(X)) <0
Ci2 2 Xy, — G12(X4, Us(X))
Ca1 £ Xy, — Gu1(X4, Uy(X))
C <X;<C,

0
0

= A, (Xd7 XY12)
= A2(Xd7 XY21 )
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(3.8)

For the above A-i-O and IDF methods, with moderate or no modification, they all have

the advantage of using existing single discipline analysis codes. Compared with the A-1-O

method, the IDF method avoids the expensive procedure for achieving full multidisciplinary

feasibility at each optimization iteration. Moreover, when using the IDF method, one may

easily replace one analysis code with another, or add new disciplines, and one can easily
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implement parallel and distributed computation. On the other hand, the IDF method
requires the explicit imposition in the optimization of the nonlinear constraints resulting
from the interdisciplinary maps. If gradient-guided optimization algorithms are used, the
calculation of additional sensitivities corresponding to the coupling variables between dis-
ciplines may be very expensive. Provided the coupling variables and constraints are small,

the overall IDF optimization will be significantly more efficient than A-1-O optimization.

3.2.2 Multicriteria Optimization Concepts

To implement multicriteria optimization methods, the relevant criteria should be sorted
based on their purpose. The introduction of some criteria may lead to excluding infea-
sible designs. This kind of criteria can be treated as equality constraints or inequality
constraints. Criteria, whose values are relevant to the behavior or performance indices of
the dynamic systems concerned, are often selected as objective functions. Finally, several
key objective functions are left and a vector or multicriteria optimization problem can be

described as:

minimize F(X,)
with respect to Xy

{ g(X4) = 0 (3.9)

subject to
h(X,;) <0

where X4, F, g. and h are design variable vector, objective function vector, equality con-
straint vector, and inequality constraint vector, respectively. Frequently, a design variable

vector with which all criteria reach their minimal values simultanecously is not feasible.
Although a unique optimal solution can not be defined generally, non-optimal designs
can be eliminated. For example, for every design variable vector Xy that satisfies the
constraints shown in (3.9), if F(Xy) > F(Xy) and X, is a feasible design variable vector,
the design variable vector X, is not optimal. Design variable vectors X, that satisfy the
constraints described in (3.9) are called Edgeworth-Pareto—optimal (EP-optimal), if there
is no feasible design variable vector Xy where F;(X ) < Fi(Xd), VivF(Xy) # F(f(d), [18].
Usually, EP-optimal solutions are not unique and design points with different images (e.g.

curves or surfaces) are not comparable, all of them have to be considered as optimal. The
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designer has to choose a special EP—optimal solution based on additional information on
the design problem.

A whole picture of EP-optimal solutions of multicriteria optimization problems re-
quires many objective function evaluations. For dynamic system design, objective function
evaluations involve a time—consuming numerical integration of differential equations of
motion. In high-dimensional problems, the EP—optimal solution cannot be visualized any
more. Even computing a representative part of the EP—optimal set is already too time-
consuming for dynamic problems. Therefore, not all multicritia optimization strategies are
appropriate for dynamic system design.

The commonly used strategy for dynamic system design is to reduce the vector opti-
mization problem to a scalar one that may be solved by existing optimization algorithms
[42]. This strategy has proven to be very efficient. This reduction is based on the principles
of scalarization, hierarchization or a combination of them.

In the following subsections, the principles of scalarization and hierarchization are

briefly introduced.

Scalarization

As shown in Figure 3.3, during the process of scalarization, the objective functions are
formulated as a scalar utility function u(F(Xy)). During the optimization, instead of the
vector of objective functions, the scalar utility function is minimized. In the design space,
the utility function should have the property of monotonicity, i.e., for two different scalars
F® and F® if F* < F®, then u(F%) < u(FP®).

To implement the scalarization, generally, the utility function can be formulated either
by the weighted criterion method or by the distance method. For the weighted criterion

method, the utility function can be expressed as

{ w(F) =i, pifl (3.10)

pi >0

where p;, © = 1,2,....n, are weighting factors. In the case of the distance method, the
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Figure 3.3: Scalarization by introducing an utility function

utility function is written as

{ w(F) = (X5, |F; — Fi|)Y/e

(3.11)
1<p< o0

where F;, i = 1,2,....n, are ideal or utopian design goal vectors.

The weighted criterion method is widely applied, but the weighting coefficients (p;) are
difficult to choose and the optimization result depends on this choice in a highly nonlinear
fashion. To facilitate the implementation of the weighted criterion method, it is recom-
mended that each element of the objective function vector F be normalized to have a value
of one for the initial design variables [42]. This recommendation is based on the require-
ment that all elements of the objective function vector should be optimized simultaneously.
Obviously, the selection of the initial design variables and the corresponding values for each

element of the objective function vector are vital for the normalization.
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Given the utopian goals Fj, the distance method is a preferable option to the weighted
criterion method, since the tedious job of choosing the weighting coefficients for the latter
can be avoided. Usually, the goals have some physical meaning. However, if the goals F;

are not utopian solutions, EP—optimality can not be reached.

Hierarchization

In the case of hierarchization, each objective function F;(X;) has to be assigned a level
of importance. The objective function with the highest priority is optimized first with-
out taking into consideration the objective functions with lower priority. Based on the
information obtained during the process of optimizing the objective function with higher
priority, constraints on the objective function can be formulated. Then the next important
objection function can be optimized with respect to the additional constraints. In essence,
the principle of hierarchization is to transform a vector optimization problem to a sequence
of scalar optimization problems.

It was shown [42] that by means of conventional nonlinear programming algorithms such
as sequential quadratic programming, the solution of the reduced optimization problem will
yield only a single point of the whole set of EP—optimal solutions of the original multicriteria
design problem. Thus, it is hard to get a clear picture of the EP—optimal set. However,
stochastic optimization algorithms, like a simulated annealing algorithm, presents a much

clearer picture of the EP-optimal set for multicriteria optimization problems [42].

3.3 Optimization Algorithms

3.3.1 Genetic Algorithms (GAs)

It 1s well-known that the evolution of living beings is a process based on operating on
chromosomes which are organic devices for encoding the structure of living beings. Natural
selection plays a role as a link between a chromosome and the performance of their decoded
structures. The operations of selection offer more chance for chromosomes that encode
successful structures to reproduce than those that do not; the processes of mutation result

in the chromosome of offsprings to be different from those of their parents; the operations of
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crossover may produce quite different chromosome in offsprings by combining the material
from the chromosome of their two parents.

GAs are developed to mimic some of the above processes observed in natural evolution.
With an appropriate encoding mechanism, GAs manipulate strings of binary digits, i.e.
1s and 0s, which correspond to chromosomes of living beings. By means of coding, there
exists a map between a design variable vector X; and the corresponding binary string or

chromosome:

coding
individual design variable Xy <= binary string b= [1,1,0,...,0,1]
decoding

The following function defines the coding—decoding mechanism.
X4 £ §(b) (3.12)

The binary string b contains all of the necessary information that the individual X, implies,
e.g., Xy may be a set of design variables representing inertial and geometric variables for
a vehicle dynamic system. For an admissible individual b, the fitness £ can be defined as

the value of the objective function F'.
F(Xq) (3.13)

The objective function value of the individual point Xy in the design variable space, in
general, will be maximized or minimized by GAs. The fitness value will be used to de-
termine the probability for the individual to be acted on by genetic operators. Usually, a
population of individual design variable sets evolves from generation to generation through
the application of genetic operators. The total number of strings included in a population
1s kept unchanged throughout generations. Simple GAs use three operators: selection,
crossover, and mutation.

Selection is a process in which individual strings are copied based on their fitness val-
ues. Highly fit strings (good designs) have a higher number of offspring in the succeeding
generation. Crossover is a method of combing successful individuals by exchanging equiv-

alent lengths of their chromosome. The two strings from the reproduced population are
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mated randomly, and a crossover site is selected at random. Mutation is a technique that
introduces new information into the new population at the bit level. A set of bits are
selected randomly within the entire population.

After performing selection, crossover and mutation, GAs generate a new population
with potentially more individuals of higher fitness value. With enough repetitions of the
cycle, the population will converge on the chromosome/design with the highest fitness.

GAs are well suited for unconstrained optimization problems [36]. However for con-
strained optimization problems, we can use the penalty method that degrades the fitness
ranking in relation to the degree of constraint violation. With the method, a standard

constrained optimization problem with following form

minimize F(Xq) (3.14)

3(Xyg) <0, i=1,2,...,
subject to {g( 4) < ' o

3.15
hl(Xd) == 0, i:1,2,...,p ( )

can be transformed into an unconstrained optimization problem by associating a cost or
penalty with each constraint violation. Thus, for the constrained optimization problem

described in (3.14) and (3.15), we can write the fitness function as follows

F(b) = F(Xa) + Y %lha(Xa)[" + ) vpri(95(Xa) + g5 (xa) )7 (3.16)

=1 7=1

where F(é) is the fitness value associated to the binary string b which corresponds to the
design variable vector X4, the constants v; and 7;(¢ = 1,2, ..., p+m) determine the severity
of the penalties for the p + m constraints.

GAs offer significant advantages over traditional local search methods because of the
following characteristics [57]: a) GAs work on a population of design variables in parallel
and not on a unique point, so that GAs have a higher reliability to find the global optima;
b) GAs solve the problem of finding good chromosomes (designs) by manipulating the
material in the chromosome without any knowledge of the problem they are solving. The
only information they require is an evaluation of each chromosome/design — they do not
need the gradients of the objective function and constraints; ¢) they are simple yet powerful

in their search for improvement and they are not limited by restrictive requirements about
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the search space, such as continuity or existence of derivatives; d) GAs guide their searches
using probability rules; this enhances their global explorative properties.

In the research, the GA is implemented using the MechaGen program [10]. The Mecha-
Gen program is based on Goldberg’s GA [57] and was written in C using pseudo-random
number generators linked from the NAG (Numerical Algorithms Group) Fortran library.
However, to avoid premature termination of the algorithm, instead of using a weighted
roulette wheel based on the fitness sum of the population for the reproduction stage, one
based on the ranking of the population according to fitness is used [138]. In addition,
to improve the efficiency of the GA, the binary strings and fitness values for each unique
design of the current generation are stored in a linear search look-up table. If a design
string in the next generation matches one in the table, then the fitness does not have to
be re-calculated. This saves significant computing time, especially for expensive fitness

evaluations.

3.3.2 SQP Algorithm

The SQP algorithm is a nonlinear programming algorithm known as the projected La-
grangian method. It is used for the purpose of minimizing a smooth nonlinear function
subject to a set of constraints with upper and lower bounds. This general constrained
minimization problem can be transformed into the standard form offered in (3.14) and
(3.15). The objective function and the constraint functions are assumed to be at least
twice-continuously differentiable

For a local optimum X, the following first-order Kuhn-Tucker (KT) condition is a

necessary qualification [21]:

P

VEXD+ Y, w v g(Xy) + ) v hi(X) =0 (3.17)

i€active i=1
where 7 F(X3), 7gi(X}) and s7h;(X}) are the gradients of the objective function, active
inequality constraints and equality constraints, respectively. The corresponding Lagrange
multipliers are u; > 0, ¢ € active, and v;, + = 1,2,....p. If the optimization problem is
a convex programming problem in which F(Xy) is convex, the equality constraints are

linear, and the inequality constraints are concave, the first order KT condition is both
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the necessary and sufficient condition that guarantees the point X; as the global optimal
point.

Each iteration step of SQP generally consists of three partial steps [56]:
Step 1: Find the Lagrange multipliers and the direction to move from the current iteration
by solving the quadratic programming (QP) subproblem.

Generally a sequence of iterates X% that converge to X7, i.e. a first-order KT point of

(3.17), is generated. At a typical iteration, the new iterate XSH can be expressed as
XErt = Xk 4 s (3.18)

where s is the search direction, and « is the step length. The search direction in (3.18) is

the solution of a quadratic programming subproblem of the form

minmize VE(XH)Ts + 3sTH(XE)s (3.19)
Ba(XE) + Thi(XE)Ts = 0, i=1.2,..p

3.20

subject to {
where H(X!) is an approximation to the Hessian matrix of the Lagrangian which is ob-
tained by solving KT conditions for the original problem at XX.
Step 2: Determine the step-length « in (3.18) to be taken from the point X% in the di-
rection obtained in step 1 such that there is “sufficient decrease” in a merit function. A
merit function measures the value or worth of the current design point X% by taking into
account the objective function F(Xy), KT conditions (3.17) and the Lagrange multipliers.
Step 3: Update the approximate Hessian matrix of the Lagrangian using Newton’s ap-
proach or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach.
Using Newton’s method for nonlinear equations for solving KT conditions with the

original problem considered, we have the Hessian of the form

m p
H(X3) = VP F(XE) + ) wi v’ gi(X5) + ) 0 v° hi(X5) (3.21)
The SQP algorithm has very strong, theoretical, local convergence properties. The
sequence of iterates converges quadratically to a local minimum that satisfies the KT and
sufficient optimality conditions when starting from a point sufficiently close to, or in the

neighborhood of, that minimum.
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As mentioned in the previous chapter, the SQP algorithm is often applied to the design
optimization of ground vehicle suspensions. Of course, convergence rates strongly depend
on properties such as convexity or differentiability. Since these properties can rarely be
proven for complicated vehicle dynamic systems, there is, in general, no guarantee for
convergence. When the algorithm is used, some experience with specific vehicle models
1s required for the purpose of determining a desired behavior. Due to the fact that the
SQP algorithm only takes local information into consideration, the algorithm often gets
trapped at local optimal points. For complicated vehicle dynamic systems, often many
local minima exist; thus, there is no guarantee for finding global minima with SQP.

In the research, the SQP algorithm is implemented using the EO4UCF routine from the
NAG (Numerical Algorithms Group) library. This routine is well-documented and offers
several user-friendly provisions. It estimates the Hessian matrix of the objective function
using a preceding estimation of the matrix and the gradient of the objective function. The
user may offer the first-order derivatives of the constraint functions and objective function,
or they can be approximated by E04UCF using finite differences. If the objective function
and constraint functions can be expressed explicitly in terms of design variables, then

maximum reliability is achieved by providing as many partial derivatives as possible.

3.3.3 Simplex Algorithm

The Simplex algorithm minimizes a general function F(X4) of n independent variables
Xy = {Xdl,Xd2,...,an}T. This algorithm utilizes a regular geometric figure, called a
simplex, consisting of n + 1 vertices. At each stage of the algorithm, a simplex of n + 1
points is retained, together with the function values at these points. At each iteration, a
new simplex will be generated by producing a new point to replace the “worst” point. The
vertex or the worst point of the simplex is reflected in the centroid of the remaining vertices
and the function value at this new point is compared with the remaining function values.
Depending on the outcome of this test, the new point is accepted or rejected, a further
expansion move may be made, or a contraction may be carried out. When no further
progress can be made the sides of the simplex are reduced in length and the method is
repeated, in such a way that it adapts itself to the function landscape and finally surrounds

the local optimum.
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If f;, fori =1,2,...,n+1, are the individual function values at the vertices of a simplex

and f,, 1s the mean of these values, then the algorithm will terminate when

n+1

Y (fi—fm)?<e (3.22)

=1

1
n+1

where € 1s the desired error tolerance. The algorithm may also terminate when a specified
number of iterations has been exceeded.

The Simplex algorithm based on function comparison is suitable for problems in which
F(Xy) is discontinuous [56]. Furthermore, it is robust and therefore very useful for func-
tions that are subject to inaccuracies.

Once the algorithm is used, the function F(Xd) is assumed to be unimodal, i.e. there
i1s an unique optimum in the feasible design variable space, otherwise the identification of
the global optimum is not guaranteed. To improve the reliability for finding the global
optimum, it is customary to consider several sets of starting points and restart the entire
procedure such that the searches are carried out until the simplex repeatedly collapses onto
the same solution.

The Simplex algorithm, like the GAs described previously, is an unconstrained opti-
mization algorithm. However, by means of introducing penalty factors in the objective
function, the algorithm can be applied to constrained optimization problems.

During the research, the E04CCF routine from NAG library is the implementation
of the Simplex algorithm. Before using the routine, the optimization problem should be

scaled so that the values of the design variables are of order unity.

3.4 Summary

The IDF method is chosen for the design optimization of a rail vehicle with respect to
lateral stability, curving performance, and ride quality and the A-1—O method is selected
for improving vehicle ride quality with a vehicle mechanical system, active suspension
controller, and corresponding Kalman filter being optimized simultaneously. Both IDF
and A—1—O methods are briefly introduced. The multicriteria optimization procedure and

essential concepts such as EP—optimal solutions and the scalarization strategy are offered.
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Three typical optimization algorithms, SQP, Simplex, and GAs are described and their
characteristics are highlighted.



Chapter 4

Optimization of the Lateral Stability

4.1 Introduction

The objective of this chapter is to demonstrate how to combine the GA and SQP algorithms
as well as the dynamic mode tracking (DMT) technique [7] with advanced multibody
dynamic simulation programs such as A’GEM. The effectiveness of this combined approach
1s investigated and validated using a 17 DOF rail vehicle model. Although other objective
criteria such as ride quality or curving performance could be introduced into the design
optimization problem, only the critical speed is considered as the design objective in the
chapter. The multidisciplinary and multicriteria optimization problem will be discussed in
detail in Chapter 7.

Several steps are taken to validate and show the effectiveness of this integrated ap-
proach. First, a hand-derived solution to the 17 degree of freedom linear rail vehicle model
1s compared to the results from an A’GEM simulation. Second, the calculation of the criti-
cal speed is investigated by comparing a combined algorithm including the SQP and DMT
with the SQP algorithm alone when they are used for identifying the critical speed of the rail
vehicle for two specified examples. In the process, the existence of sharply-discontinuous
“cliffs” in the plots of critical speed versus suspension stiffnesses are identified. These cliffs,
which are due to switching of the least-damped mode in the system, greatly hinder the ap-
plication of gradient-based optimization algorithms. The critical speed is optimized using

a genetic algorithm, and compared against the Simplex algorithm. In recognition of the

48
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cliff phenomenon, the definition of critical speed is generalized to make it a more practical
measure of lateral stability. Finally, the integrated approach is used to identify the relative
significance of different design parameter sets, i.e. geometric (7 variables), inertial property
(9 variables), and suspension (11 variables) parameters, on the critical speed of the rail

vehicle.

4.2 Vehicle System Model

In this study, the dynamic equations for a 17 DOF rail vehicle model are generated and
linearized, both by hand and by the A’GEM multibody simulation program. Using a set
of nominal design variables, the solutions from the hand-derived model and the A’GEM

model are compared.

4.2.1 Model Description and Hand Derived Equations

The 17 DOF model is shown in Figure 4.1, with the leading bogie, car body, and trailing
bogie denoted as bodies 2, 4, and 6, respectively. The leading bogie, with the leading
and trailing wheelsets denoted as 1 and 3, and trailing bogie, with the leading and trailing
wheelsets denoted as 5 and 7, are connected to the car body by secondary suspensions. Both
the leading and trailing bogies, in turn, are connected with their own leading and trailing
wheelsets by primary suspensions. Each suspension component consists of a parallel spring
and damper, with stiffness and damping coefficients in the three coordinate directions.

The vehicle 1s assumed to be traveling with a constant velocity V along a flat tangential
section of raillway track. The x axis of a Cartesian reference frame is aligned parallel to the
track, the z axis is vertically downward, and the y coordinate is used to measure the lateral
displacements of the car body, bogies, and wheelsets from the centerline of the track. The
nominal geometry parameters, suspension stiffness and damping coefficients, and inertial
property parameters are listed in Table A.2 in Appendix A.

For the bogies and car body, the motions considered are lateral displacements y;, yawing
¢; (about axis z), and rolling ¢; (about axis x), where ¢ = 2,4,6. For the wheelsets, the
motions considered are lateral displacement y; and yawing ;, where ¢ = 1,3.5,7. The

resulting vehicle model has 17 DOF. In deriving the equations of motion, each body’s lateral
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Figure 4.1: Configuration of a 17 DOF rail vehicle model

and yawing displacement from the equilibrium are assumed to be small. For simplicity,
in the hand-derived model, the gravitational terms (the contributions of wheelset loads to
the lateral forces and yaw moments due to the yaw motions) and spin creep are neglected,
and the creep forces are linearized. The longitudinal and lateral creep coefficients f1; and
f22 take the values offered in Table A.1 in Appendix A. Note that in the A’GEM vehicle
model, the gravitational terms are included but both the lateral/spin creep coefficient fa3
and spin creep coefficient fs3 are set to zero for comparison with the hand-derived model.
Otherwise, fo5 and fs3 take the values provided in Table A.1 in Appendix A.

The four creep coefficients f11, faa, fas3, and fs3 are obtained using A’GEM’s CREEP
routine, which is based on Kalker’s linear creep theory [78]. These four creep coeflicients
are calculated using the values shown in Table A.2 in Appendix A for the normal load
on a wheel (W), the wheel rolling radius (), the wheel transverse radius (r,,), the rail
transverse radius (r,), and Poisson’s ratio (¢) and Young’s modulus (E) for both wheel
and rail materials.

From Newton’s laws of dynamics, the linearized equations of motion can be cast in
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matrix form as follows:
Mr+Cr+Kr=0 (4.1)

where r = {y17¢17y27¢27¢27y37¢37’y47¢47¢47y57¢57y67¢67¢67y77¢7}T7 and M7 C7 and K

are mass, damping, and stiffness matrices and these matrices are offered in Appendix A,
respectively.

Due to the unsymmetrical nature of the stiffness matrix K, equation (4.1) can not
be transformed into an uncoupled set of differential equations by means of conventional
methods of modal analysis, i1.e. using only real modes. A solution can still be effected
though, by using the complex modal transformation described in [100]. To do this, equation

(4.1) is recast into the following state-space form:

q=Aq (4.2)

where the relation of the generalized coordinates with the denoted bodies is listed in Table
4.1 and the assembled generalized coordinates q and coefficient matrix A are listed as

follows:

q= {q17 92,493, 94, 95, 9Qs, 97, (.117 (.127 (.137 (.147 (.157 (.167 (.17}T (43)

0 Lizxi7

A=
~-M'K -M™'C

(4.4)
where 117417 is an identity matrix. After performing an eigenvalue analysis on matrix A,

the solution to equations (4.2) is given by:
q(t) = Rel“"L7q(0) (4.5)

in which q(0) contains the initial conditions specified for the physical variables, el is a
diagonal matrix with each entry having the form e*i* 7 = 1,2, ..., 34, u; is the corresponding
eigenvalue of the matrix A, and R and L contain the “right” and “left” eigenvectors of A
[100].

With solution (4.5), we can analyze the relationship between the critical speed and the
suspension parameters. For any p;, assuming its real part is Re(y;), if Re(u;) < 0, the

corresponding motion mode is stable.
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Table 4.1: Relationship between the generalized coordinates and the denoted bodies

Body | Type Generalized Coordinates
1 wheelset | q = {y1, Y1}

bogie Az = {2, %2, P2}

wheelset | qs = {ys, Y3}

car Qs = {Ya, P, Pa}

wheelset | qs = {ys, Y5}

bogie ds = {Ys, s, b6 }

wheelset | qr = {yr, ¥r}

- O T = W N

4.2.2 Validation of A’GEM Using Hand-Derived Model

For the purpose of investigating the integrated approach using GAs, SQP, DMT, and
multibody dynamics, the A’GEM multibody dynamics program is used for modelling and
simulating the rail vehicle response.

Using influence coefficients that relate the displacement of force-producing components
(e.g. springs and dampers) to the DOF defined for the wheelsets, bogies, and car body,
A’GEM automatically generates equations of motion that are linear in terms of geometrical
effects [6]. For the purpose of lateral stability analysis, A’GEM approximates the wheel /rail
forces, 1.e. the lateral creep, longitudinal creep, and spin creep, and the gravitational
stiffness as linear functions of the generalized coordinates and velocities. The program
can calculate the eigenvalues and perform modal analysis by means of tracking dynamic
modes of rail vehicles [7].

Using the A’GEM program, we can obtain the eigenvalues for the 17 DOF rail vehicle
model for the nominal design parameters. Table 4.2 lists the eigenvalues obtained from
A’GEM model and those from the hand-derived model.

To compare the eigenvalues obtained from A’GEM with those from the hand-derived
model, the spin creep coefficients in the A’GEM model are set to zero. The forward speed
of the vehicle corresponding to the eigenvalues shown in Table 4.2 is 11.0[m/s]. As shown

in the table, except for the 33" and 34" eigenvalues, the results are in close agreement.
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Table 4.2: Eigenvalues for the 17 DOF rail vehicle model

A’GEM Model Hand Derived Model
Root | Real Imag F/Hz  Damp% | Real Imag F/Hz Damp%
1 -2182.6 0.00 0.00 100.00 | -2182.6 0.00 0.00 100.00
2 -2182.6 0.00 0.00 100.00 | -2182.6 0.00 0.00 100.00
3 -2182.7  0.00 0.00 100.00 | -2182.7 0.00 0.00 100.00
4 -2182.7  0.00 0.00 100.00 | -2182.7 0.00 0.00 100.00
5 -1162.0  0.00 0.00 100.00 | -1162.0 0.00 0.00 100.00
6 -1162.0  0.00 0.00 100.00 | -1162.0 0.00 0.00 100.00
7 -1162.0  0.00 0.00 100.00 | -1162.0 0.00 0.00 100.00
8 -1162.0  0.00 0.00 100.00 | -1162.0 0.00 0.00 100.00
9,10 | -16.761 £193.31 30.766 8.64 -16.761 +193.31 30.766  8.64
11,12 | -16.761 +193.31 30.766 8.64 -16.761 +193.31 30.766  8.64
13,14 | -18.369 +68.576 10.914 25.87 -18.039 £69.030 10.9865 25.28
15,16 | -18.119 +68.712 10.936 25.50 -18.119  +68.713 10.936  25.50
17,18 | -36.232 +46.049 7.329  61.83 -36.249  +45.713  7.276 62.13
19,20 | -36.250 +45.713 7.276  62.13 -36.912  +43.978 6.999 64.29
21,22 | -21.265 0.00 0.00 100.00 | -21.281 0.00 0.00 100.00
23,24 | -10.973 0.00 0.00 100.00 | -10.956 0.00 0.00 100.00
25,26 | -3.813  £5.343  0.850  58.09 -3.360  £5.261  0.837 53.83
27,28 | -4.006  +4.574  0.728  65.89 -4.006  +4.574  0.728 65.88
29,30 | -1.315  £5.109  0.813  24.92 -1.304  £5.103  0.812 24.76
31,32 | -1.410  45.174  0.823  26.301 | -1.385  +5.195  0.827 25.76
33,34 | -0.588  +3.684 0.586  15.77 -0.706  £3.903  0.621 17.81
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The small difference in the results may be due to the gravitational stiffnesses that are

included by the A’GEM program.

4.2.3 Dynamic Mode Tracking (DMT) Technique

In order to analyze the results of a linear stability analysis of a rail vehicle, in the A’GEM

program the DMT technique is used to track the natural modes as the velocity changes

and produce plots of frequency and damping of the modes versus vehicle speed|[7, 136]. For

convenience, this technique is outlined here.
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It is well-known that for a real symmetric matrix B, the eigenvalue problem can be

expressed as
Bx = Ax (4.6)

where A i1s an unknown eigenvalue and x is the corresponding eigenvector. For this eigen-
value problem, any two eigenvectors, e.g. x; and x;, have the following orthogonality

relationships:

{ xix; =0 i#] (47

X[x; 70 i=j

The problem concerned is, at a given speed, to identify a mode that is known at a pre-
vious speed. Thus, based on the orthogonality relationships, for a symmetric system, when
two speeds are close, we could determine whether two modes are the same by evaluating
and inspecting the size of the dot product obtained by the way as shown in equation (4.7).

Unfortunately, the matrix A defined in equation (4.4) is unsymmetric due to the non-
conservative forces between the wheels and rails. Hence, the above orthogonality relation-
ships does not hold for matrix A.

However, in the case where matrix A is real but not symmetric, a pair of related

eigenvalue problems can arise as follows [100]:

Ax = Ix (4.8)
ATx = px (4.9)

and (4.9) can be rewritten as
y'A =gy’ (4.10)

where the vectors x and y are the so-called right and left eigenvectors of A, respectively.
The equations | A — AI | and | AT — BI | should have the same solutions for A and

(3 because the determinant of a matrix and the determinant of its transpose are equal.
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Hence the eigenvalues of A and AT are identical. For the eigenvectors x and y, they are

bi-orthogonal: if A;, x;, y; and A;, x;, y; are solutions that satisfy (4.8) and (4.9), then

Vi % Z,#J, (4.11)
yix; #0 i=7

The bi-orthogonal relationships of eigenvectors of the unsymmetric matrix A are useful

for tracking the modes from speed to speed. A procedure for tracking the modes has been

offered by Anderson [7]

4.3 Optimization Problem and Implementation

4.3.1 Objective Function, Constraints and Design Variables

Based on equation (4.5), we can conclude that if the real part of each eigenvalue u;,
¢t =1,2,...,34, is negative or zero, the response of the system in the time domain is stable.
Otherwise, the response will be unstable. If one eigenvalue has zero real part and all others
have negative real parts, the vehicle is traveling at its critical speed.

By analyzing matrix A (4.4) and equation (4.5), we may find the relationship between
the critical speed V, and the system design variables. These variables may include the sus-
pension stiffness and damping, the inertia properties of the wheelsets, bogies, and carbody,
the various geometric variables listed in Table A.2, in Appendix A, the creep coefficients
fi1, fa2, fo3, and f33, conicity A, and forward vehicle speed V. Considering that many
previous researchers have investigated the effects of creep coefficients and conicity on the
critical speed [30, 54, 63, 92, 107, 140], only the suspension stiffness and damping coeffi-
cients, the inertial property parameters, and the geometric parameters are chosen here as
design variables. The values of all other parameters are fixed. Thus, the objective function

and constraints may be expressed as

(4.12)

mazimize V,(S,I,G,V)
subject to Re(u;)(S,I,G,V) <0, i=1,2,...,34

where S, T and G represent the suspension stiffness and damping coefficient vector, the

inertia property parameter vector, and the geometric parameter vector, respectively.
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4.3.2 Implementation of the Optimization Problem

A two-loop method is used for the optimization problem (4.12). The two-loop method,
as shown in Figure 4.2, is implemented using the MechaGen program [10] (i.e. a GA) as
the outer loop algorithm, and the E04UCF routine alone (i.e. an SQP) from the NAG
(Numerical Algorithms Group) library or the EQ4UCF routine combined with MTRACK
(i.e. DMT) from A’GEM as the interior loop algorithm.

Inner Loop

L ».| Parameter Set 1 >(A‘GEM ( >,>
—> Parameter Set 2 | >=( A’GEM }>

Begin GA O

o v
L s.| Parameter Set n—p.,>< A'GEM ( >,>
A P
L .| Parameter Set n >>(A’GEM ( >,>

Outer Loop

Convergence
Criteria 2

A

Figure 4.2: The implementation of the GA combined with A’GEM, SQP, and DMT

As shown in Figure 4.2, for a given set of design variables S, I, and G, the corresponding
critical speed is determined in the interior loop by the SQP or by the combination of
the SQP and DMT and returned to the GA. Using the returned value as the required
cost value, the GA in the outer loop produces the next generation of design variable sets
using reproduction, crossover and mutation. Then each specified set of design variables
1s forwarded to A’GEM for deriving the system matrix A and performing an eigenvalue
analysis. Then the SQP or the combination of the SQP and DMT is called one by one.
This procedure is repeated until the maximized critical speed is found for a set of optimal
design variables.

For the purpose of comparing with the GA used in the integrated optimization algo-
rithm, the Simplex routine EO4CCF from NAG is used to replace the MechaGen routine

as the outer loop algorithm.
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4.3.3 Critical Speed Identification and Algorithm Implementa-
tion

In the above two-loop method shown in Figure 4.2, provided that in the interior loop, all
the system parameters are known except the vehicle speed, for the SQP algorithm, the
objective function and constraint functions contain only one independent design variable,
1.e. the forward speed V. Since only oscillatory modes with frequency and damping ratio
below specified values are concerned and only these modes are tracked by DMT routine
(based on MTRACK from A’GEM), the corresponding eigenvalues, say ¢ = 1,2, ...,m and
m < 34, are taken into account instead of all 34 eigenvalues. With these considerations,
when the DMT is introduced, the SQP solves the optimization problem:

{ minimize F(V)=-V/(V)=-V (4.13)

subject to Re(p;)(V) <0, i=1,2,....m

Notice that if the SQP algorithm alone is used for identifying the critical speed, in equation
(4.13), m still takes the number of 34.
For this case, the first-order KT condition at a local optimum V* and the gradient of

the objective function with respect to the design variable V are of the forms:

TE(V) + | Z u; 57 Re(pi)(V*) = 0 (4.14)
vF(V)=-1 (4.15)

For the active inequality constraints, the Lagrange multipliers are w; > 0.

The numerical algorithm implementation (using the SQP and DMT) for the critical
speed identification i1s shown in Figure 4.3. The numerical algorithms used in the imple-
mentation are written in Fortran. The vehicle system parameters are offered by an outer
loop algorithm, e.g. a genetic algorithm. With the given system parameters, the A’GEM
software program is utilized to generate the system mass, stiffness, and damping matrices,
i.e. M, Ky, and Cy, respectively. Then the non-conservative forces or the creep forces
between the wheels and rails are added to the stiffness and damping matrices to form the

resulting stiffness matrix K and damping matrix C accordingly. To improve the efficiency
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Figure 4.3: The implementation of the SQP combined with DMT

of the calculation, the matrices M, K, and C are stored in a common block for later use.
Once the initial vehicle forward speed V; is given, the routine DMT assembles matrices M,
K, C to form the system matrix A defined in (4.4). With the given initial speed V; and
the specified frequency Freq and damping ratio Drat, the DMT routine can determine the
number of dynamic modes, i.e. m, of which the DMT routine will track. When the initial

speed V5 and the number of nonlinear constraints, i.e. the number of dynamic modes m,
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are offered, the SQP routine with the objective function and constraint functions defined
in (4.13) will be used to identify the required critical speed. The SQP routine calls the
DMT program repeatedly until it reaches the resulting speed V,,+ which is assumed to be
the critical speed V..

In the DMT routine, the system matrix A is first balanced and then reduced to an
upper Hessenberg form using Householder method. The eigenvalues and eigenvectors of
the Hessenberg matrix are calculated using the QR algorithm. The eigenvectors of the
Hessenberg matrix are back-transformed to give the eigenvectors of the original matrix A.

Notice that the algorithm implementation using the SQP alone for identifying the
critical speed is almost the same as described above except that the DMT routine is not
included. The difference between the results of the two will be offered in the following

section.

4.4 Results and Discussion

4.4.1 Validation of SQP and DMT for Identifying the Critical
Speed

In this section, to investigate the efficacy of the algorithms for identifying the critical
speed, the numerical results based on the SQP alone are compared with those based on
the algorithm combining the SQP and DMT under two different circumstances.

In the first case, the vehicle system parameters taking the nominal values listed in Table
A.2 in Appendix A, we can find the 7 least damped motion modes plotted in the form of
mode damping versus the forward speed of the vehicle as shown in Figure 4.4. These modes
are the Leading/Trailing Bogie Lateral (In Phase) motion, Leading/Trailing Bogie Lateral
(Out Phase) motion, Leading O.B. (out board)/Trailing I.B. (in board) Wheelset Lateral
(In Phase) motion, Leading O.B./Trailing I.B. Wheelset Lateral (Out Phase) motion, Car-
body Lateral motion, Leading Bogie Yaw motion, and Trailing Bogie Yaw motion. Plotted
in Figure 4.4, the zero damping line intersects the curves corresponding to the motion
modes 3 and 4 at points A and B, respectively. The points A and B are very close. When
the vehicle speed is higher than the speed of V (corresponding to point A), the damping
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Figure 4.4: Mode damping ratios versus speed (single unstable range case, ks, = 1.97 -

10° [N/m])

1s negative and the vehicle is not stable. Over the speed span offered in Figure 4.4, there
1s a single unstable range, i.e. V > V. We call this case the single unstable range case.

In the second case, the lateral spring (in the secondary suspension) stiffness coefficient
ks, takes the value of 2.3E+6[N/m|, with all other parameters taking their nominal values.
Again, Figure 4.5 offers the 7 least damped motion modes, i.e. motion modes denoted by
1 to 7. As shown in Figure 4.5, the zero damping line intersects the curves corresponding
to the relevant motion modes at points A, B, C' and D. The points C and D are very close
to one another. Over the speed span offered in Figure 4.5, there are two unstable ranges,
re. Vi <V < Vg and V > V. We call this case the double unstable range case.

In both cases, the specified frequency Freq and damping ratio Drat take the values of

60H z and 45%, respectively. Both Figure 4.4 and Figure 4.5 are obtained using the DMT
technique.



Optimization of the Lateral Stability 61

40

T T T T T
1: Leading O.B./Trailing I.B. Wheelset Lateral (In Phase)
2: Leading O.B./Trailing I.B. Wheelset Lateral (Out Phase)

3: Leading/Trailing Bogie Lateral (Out Phase, 2nd Freq.)

w
o

N
o

/
L

Mode Damping Ratio [%6]
|_\
o

]

Point A Point B
=10 Point C .
4: Leading/Trailing Bogie Lateral (In Phase, 2nd Freq)
5: Carbody Roll
20 6: (Farbody Latgral 7‘: Leading/Tr‘aiIing Bogie‘ Lateral (Ou‘t Phase, 1st‘ Freq.) ‘ ‘

20 40 60 80 100 120 140 160 180 200
Speed [M/s]

Figure 4.5: Mode damping ratios versus speed (double unstable range case, ks, = 2.3 -

10° [N/ml])

Identification of the Critical Speed for Single Unstable Range Case

Based on (4.13), (4.14), and (4.15), one can find that both points A and B in Figure 4.4
are KT points and at point A the critical speed V, of 76.469[m/s] is determined.

Offered in Table 4.3 are the calculation results for determining the critical speed using
the algorithm combining the SQP and DMT when different values are selected for the
initial speeds. The results based on the SQP alone are also illustrated in Table 4.3. For
both of the cases, the Householder’s transformation and the QR algorithm are used to
solve the eigenvalue problem.

Table 4.3 shows that with the initial speed (Vj) offered, the algorithm combining the
SQP and DMT can find the critical speed without exception. However, the SQP alone
sometimes gets trapped at certain points which are not even the KT points. For example,
with the initial speed selected as 16.5[m/s], the resulting optimal speed V,; is 50.273[m /5]
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Table 4.3: Numerical results for single unstable range case

SQP+DMT SQFP
Vo Vopt KT Critical | Vopy KT Critical
Run No. | [m/s] | [m/s]  Point? Speed? | [m/s] Point? Speed?
1 10.0 | 76.469 yes yes 76.469 yes yes
2 14.0 | 76.469 yes yes 76.469 yes yes
3 16.5 | 76.469 yes yes 50.273 no no
4 17.0 | 76.469 yes yes 29.810 no no
5 18.0 | 76.469 yes yes 76.469 yes yes
6 22.0 | 76.469 wyes yes 76.469 yes yes
7 26.0 | 76.469 wyes yes 51.265 no no
8 29.0 | 76.469 wyes yes 77.509 no no
9 31.0 | 76.469 wyes yes 32.251 no no
10 31.5 | 76.469 wyes yes 76.469 yes yes
11 32.0 | 76.469 wyes yes 32.821 no no
12 32.5 | 76.469 wyes yes 32.821 no no
13 34.0 | 76.469 wyes yes 76.469 yes yes
14 48.0 | 76.469 wyes yes 76.469 yes yes
15 56.0 | 76.469 wyes yes 76.469 yes yes
16 68.0 | 76.469 wyes yes 76.469 yes yes
17 75.0 | 76.469 wyes yes 76.469 yes yes
18 80.0 | 76.469 wyes yes 76.469 yes yes
19 96.0 | 76.469 wyes yes 76.469 yes yes
20 106.0 | 76.469 wyes yes 76.469 yes yes

instead of the critical speed of 76.469[m/s].

To investigate why the SQP algorithm sometimes gets trapped at certain points which
are not even the KT points, we arbitrarily chose and plotted only 4 motion modes in
terms of mode damping versus the forward speed as shown in Figure 4.6. It should be
noted that the 4 motion modes shown in Figure 4.6 are obtained using the Householder’s
transformation and the QR algorithm. These motion modes correspond approximately to
the modes 1 to 4 from Figure 4.4.

Compared with the corresponding motion modes shown in Figure 4.4, except for mode
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Figure 4.6: Mode damping ratios versus speed

4, the other motion modes shown in Figure 4.6 distort their actual motion modes and
these distorted modes become discontinuous over the corresponding speed ranges. These
distortions result from the motion mode rank exchanges because the Householder’s trans-
formation and QR algorithm ranks the eigenvalues in its own way instead of tracking these
eigenvalues once the speed increases.

As mentioned previously, for the SQP algorithm, the objective function and constraint
functions should be at least twice-continuously differentiable. Therefore, if a dominant mo-
tion mode in terms of mode damping versus the forward speed distorts, the corresponding
constraint function becomes discontinuous and the matrix of constraints in the working set
1s ill-conditioned. During the numerical calculation, once the problem occurs, the EO4UCF
routine often offers the error information: “Current point cannot be improved upon”. Dur-
ing the final line search a sufficient decrease in the merit function could not be attained and

the calculation gets trapped at a point that does not satisfy the first-order KT conditions.
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Close observations of the results offered in Table 4.3 disclose that even though the
SQP alone sometimes gets trapped at certain points which are not corresponding to the
critical speed because of the distortions of the relevant motion modes, compared with the
initial speed of V4, the calculated resulting speed V,,; is always closer to the critical speed.
Moreover, if the initial speed is selected higher than 34.0[m/s], the calculation always
converges to the critical speed. Numerical experiments show that for the non-convergence
case, by adding an appropriate small speed increase to the resulting speed V,,:, multiple
SQP runs can still find the required critical speed. All these phenomena are also found in
the double unstable range case. These phenomena will be discussed in more detail in the

following subsection.

Identification of the Critical Speed for Double Unstable Range Case

According to (4.13), (4.14), and (4.15), we find that points A, C', and D shown in Figure
4.5 are KT points and at point A the critical speed V. of 35.969[m/s] is determined. The
speed corresponding to point C takes the value of 104.957[m/s]. The optimization problem
corresponding to Figure 4.5 is a nonconvex optimization problem and the points A, C', and
D are local optimal points. The objective is to identify the KT point A. Listed in Table
4.4 are the results of numerical experiments for determining the critical speed using the
combined algorithm (SQP+DMT) and the SQP algorithm alone, for different values of the
initial speed.

Examining the numerical results for the SQP alone, one sees that the calculated speed
Vopt may or may not converge to the KT point A when the initial speed 1} 1s less than
the critical speed V,(35.9690[m/s]). As mentioned in the single unstable range case, even
if the SQP does not converge to V., the calculated speed V,, is closer to the critical speed
than V5. In this situation, the calculated speed V,,; does not satisfy the first-order KT
condition, and no improved point for the objective function could be found during the final
line search. As an example, when the initial speed Vj is 16.6[m/s], the calculated speed
Vopt 18 17.6899[m/s]; the corresponding values of the real part of each eigenvalue (the
constraint functions) are listed in Table 4.5. With the chosen nonlinear search tolerance
(i.e. the constraint function value tolerance) of 5.43E —6, no constraint function value could

be considered as 0.0. Among the 34 constraint function values, the value which is closest
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Table 4.4: Numerical results for double

unstable range case

SQP+DMT SQFP
Vo Vopt KT Critical | Vopy KT Critical
Run No. | [m/s] | [m/s] Point? Speed? | [m/s] Point? Speed?
1 1.0 104.975 yes no 2.036 no no
2 2.0 104.957 yes no 2.143 no no
3 3.0 104.957 yes no 3.075 no no
4 4.0 104.957 yes no 35.969 yes yes
5 6.0 104.957 yes no 35.969 yes yes
6 7.0 104.957 yes no 32.733 no no
7 9.0 35.969  yes yes 35.969 yes yes
8 10.0 | 104.957 wyes no 35.969 yes yes
9 11.0 | 35.969  yes yes 32.055 no no
10 13.0 | 35.969  yes yes 35.969 yes yes
11 14.0 | 35.969  yes yes 31.928 no no
12 15.0 | 35.969  yes yes 30.206 no no
13 16.0 | 35.969  yes yes 35.969 yes yes
14 16.6 | 35.969  yes yes 17.690 no no
15 17.0 | 35.969  yes yes 33.738 no no
16 18.0 | 35.969  yes yes 35.256 no no
17 20.0 | 35.969  yes yes 31.897 no no
18 22.0 | 35.969  yes yes 33.546 no no
19 24.0 | 35.969  yes yes 35.942 no no
20 25.0 | 35.969  yes yes 35.969 yes yes
21 26.0 | 35.969  yes yes 33.488 no no
22 27.0 | 35.969  yes yes 33.523 no no
23 29.0 | 35.969  yes yes 35.942 no no
24 29.5 | 35.969  yes yes 34.693 no no
25 29.8 | 35.969  yes yes 35.969 yes yes
26 30.0 | 35.969  yes yes 35.969 yes yes
27 31.0 | 35.969  yes yes 35.969 yes yes
28 32.0 | 35.969  yes yes 35.969 yes yes
29 33.0 | 35.969  yes yes 35.969 yes yes
30 34.0 | 35.969  yes yes 35.969 yes yes
31 34.5 | 35.969  yes yes 35.969 yes yes

65
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SQP+DMT SQFP
Vo Vopt KT Critical | Vopy KT Critical
Run No. | [m/s] | [m/s] Point?  Speed? | [m/s] Point?  Speed?
32 36.0 | 35.969  yes yes 35.969  wes yes
33 37.0 | 35.969  yes yes 35.969  wes yes
34 38.0 | 35.969  yes yes 35.969  wes yes
35 39.0 | 35.969  yes yes 35.969  wes yes
36 39.6 | 35.969  yes yes 35.969  wes yes
37 39.8 | 35.969 yes yes 33.970 no no
38 40.0 | 35.969  yes yes 33.360  no no
39 41.0 | 35.969  yes yes 35.969  wes yes
40 42.0 | 35.969  yes yes 35.068 no no
41 44.0 | 35.969 yes yes 33.970 no no
42 47.0 | 104.957 yes no 47.152 no no
43 49.0 | 104.957 wyes no 54.358 no no
44 53.8 | 104.957 wyes no 54.359 no no
45 53.9 | 104.957 wyes no 104.957  yes no
46 54.0 | 104.957 wyes no 104.957  yes no
47 57.0 | 104.957 wyes no 104.957  yes no
48 80.0 | 104.957 wyes no 104.957  yes no

to 0.0 is —0.3702. Therefore, at the speed of 17.6899[m/s], no active constraint exists.
The second term on the left-hand side of equation (4.14) disappears and this equation can
not hold, i.e. the resulting speed V,,:(17.6899[m/s]) does not satisfy the first-order KT
condition. Along with the eigenvalues at the speed of 17.6899[m/s], the eigenvalues at the
corresponding initial speed of 16.6[m/s| are also offered in Table 4.5. Results for initial
speeds of 16.0[m/s], 49.0[m/s], and 80.0[m/s], and their corresponding calculated speeds,
are also provided for comparison purposes.

If the initial speed is selected as 16.0[m/s], the corresponding resulting speed V,,; is
35.9690[m/s]|. As we can see from the Table 4.5, the upper bound of the constraint function
values at the speed of 35.9690[m/s] is —1.78 E — 12, which is within the nonlinear search
tolerance mentioned above. Thus, the constraint corresponding to the upper bound value

is an active constraint. Then, equation (4.14) holds and the resulting speed 35.9690[m /]
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Table 4.5: Real parts of eigenvalues at different speeds (using the SQP alone)

Vo Vopt Vo Vopt Vo Vopt Vo Vopt

mfsl  mfsl || il fms | Bmfd il | Bmfsd e
Root | 16.6 17.6899 || 16.0 35.9690 49.0 54.3582 || 80.0 104.9566
1 -768.33 -1332.9 || -1481.8 -582.93 -367.39 -259.59 || -67.607 -62.490
2 -1425.5 -1333.4 || -1481.8 -590.36 -367.39 -259.59 || -67.607 -62.490
3 -768.33 -720.51 || -797.41 -582.93 -304.98 -259.59 || -67.607 -62.490
4 -1426.0 -1332.9 || -1482.2 -590.36 -304.98 -259.59 || -67.607 -62.490
5 -1425.5 -720.51 || -797.41 -349.97 -304.98 -272.84 || -159.94 -120.71
6 -1426.0 -1333.4 || -1482.2 -349.97 -304.98 -272.84 || -159.94 -120.71
7 -768.33 -720.51 || -797.41 -349.97 -264.99 -272.84 || -159.94 -120.71
8 -768.33 -720.51 || -797.41 -349.97 -264.99 -272.84 || -159.94 -120.71
9,10 -21.710 -22.684 || -21.176 -39.496 -51.510 -56.059 || -148.33 -96.59
11,12 | -21.710 -22.684 || -21.176 -39.496 -51.510 -56.059 || -148.34 -96.60
13,14 | -22.942 -23.330 || -22.942 -27.683 -109.110 -115.67 || -87.111 -30.439
15,16 | -22.932 -23.188 || -22.792 -27.645 -30.665 -31.620 || -87.096 -30.432
17,18 | -33.688 -33.670 || -33.698 -75.340 -30.686 -31.654 || -33.017 -79.473
19,20 | -33.327 -33.315 || -33.334 -33.213 -55.982 -67.249 || -32.987 -79.436
21,22 | -32.432 -34.651 || -31.218 -33.461 -33.351 -33.472 || -34.255 -34.045
23,24 | -16.408 -17.502 || -15.813 -37.412 -33.550 -33.667 || -34.000 -34.335
25,26 | -4.0320 -4.1744 || -3.9600 -8.2144 -8.7474 -8.3301 || -4.2690 -0.0799
27,28 | -3.5105 -3.6570 || -3.4366 -7.9581 -8.5814 -8.1987 || -4.2030 -8.15E-9
29,30 | -1.8211 -1.9145 || -1.8354 -0.3014 -0.2524 -0.4179 || -1.3174 -1.7516
31,32 | -1.8684 -1.8644 || -1.7892 -1.78E-12 || 0.14571  0.02398 | -0.7428 -1.1584
33,34 | -0.3691 -0.3702 || -0.3685 -0.3761 -0.3773 -0.3775 || -0.3784 -0.3787

satisfies the first-order KT condition.
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As shown in Table 4.5, when the initial speed is chosen as 80.0[m/s], the calculated
speed V,,; is 104.9566[m/s]. At this speed, the upper bound constraint function values
is —8.15FE — 9. Therefore, the speed of 104.9566[m/s] also satisfies the first-order KT
condition. In fact, this speed corresponds to the KT point C from Figure 4.5. When the

initial speed is selected within the speed range from 44.5 to 53.8[m/s], a solution from

the SQP algorithm may be outside the feasible range. For instance, if the initial speed is
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selected as 49.0[m/s], one obtains a calculated speed V,,; of 54.3582[m/s] using the SQP.
From Table 4.5, the upper bound of the constraint function values corresponding to the
calculated speed is 0.02398. Thus, the solution is not feasible.

Figure 4.7 shows the relationship between the major iteration number and the resulting

speed V,,; when the initial speed is chosen as 16.0, 16.6, 49.0, and 80.0[m/s], respectively.
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Figure 4.7: V,,; versus major iteration number of SQP

When the initial speed is selected in the neighborhood of the critical speed of 35.9690[m /],
the calculated speed can be guaranteed to converge to the critical speed. As shown in Table
4.4, if the initial speed selected is within the range from 29.8 to 39.6[m/s], the calculated
speed always converges to 35.9690[m/s]. This phenomenon can be explained by the fact
that the SQP has very strong, theoretical, local convergence properties and within this

speed range there are no distortions of the relevant motion modes.
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Therefore, to reliably identify the critical speed using the SQP alone, the initial speed
Vo should be selected in the neighborhood of the critical speed V.. Unfortunately, for the
general case, we do not know beforehand where the critical speed is located. However,
based on the above analyses, we know that if the initial speed is chosen less than the
critical speed, there are two possibilities for the calculated speed V,,;. First, the calculated
speed may converge to the critical speed. Second, the resulting speed is still a feasible
solution, it should be closer to the critical speed than the corresponding initial speed, and
the resulting speed should be less than the critical speed. Thus, if we choose a small initial
speed, using the SQP we can obtain an improved resulting speed V.

By adding a small speed increase Vi, to the resulting speed V,,:, we can get an in-
creased speed Viyere. If any of the constraints is violated at the increased speed, it should
be higher than the critical speed but still within the neighborhood of the critical speed. If
the increased speed is treated as a new initial speed and one more SQP run is carried out,
the new calculated speed should converge to the critical speed.

On the other hand, if the constraints are satisfied, the increased speed should be a
feasible solution and less than the critical speed. The value of the increased speed is
assigned to the initial speed, and the previous procedure is repeated until we reach the
critical speed. The flowchart of this multiple SQP loop algorithm is shown in Figure 4.8.

As shown in Table 4.4, an initial speed of 1.0[m/s| results in a calculated speed of
2.0364[m/s] using only one SQP run. However, using multiple SQP loops for the same
initial speed, one can obtain the correct critical speed. The relationship between the
major iteration number of the multiple SQP loop algorithm and the resulting speed V,,
when both the initial speed Vi and the speed increase Vi, are chosen as 1.0[m/s] is shown
in Figure 4.7. To find the critical speed for the case just discussed, four SQP calls are
needed. Numerical experiments show that this multiple SQP inner-loop algorithm has a
high reliability for identifying the critical speed of the 17-DOF rail vehicle.

To clarify how this multiple SQP inner-loop algorithm works, the following example is
further investigated. As illustrated in Figure 4.9, if the initial speed and the speed step
are chosen as 15.0{m/s] and 1.0[m/s] respectively, we can find the critical speed using two
SQP runs. For the first SQP run, the resulting optimal speed is 30.206[m/s]. For the
second SQP run, the initial speed is 31.206[m/s].
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Figure 4.8: Flowchart of interior loop algorithm for identifying V,

To investigate the SQP’s behavior shown in Figure 4.9, the 7 least damped motion
modes in terms of mode damping versus speed are offered in Figures 4.10 and 4.11 cor-
responding to the initial speeds of 15.0[m/s] and 31.206[m/s|, respectively. It should be
noted that the 7 motion modes shown in Figure 4.10 may not be the same as those shown
in Figure 4.11.

With the initial speed selected as 15.0[m/s], the SQP algorithm searches the working

space and reaches point () as shown in Figure 4.10. Around point (), the dominant motion
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Figure 4.9: V,,; versus major iteration number of SQP (V5 = 15.0 [m/s], Vipere = 1.0 [m/s])

mode is mode 7. Because this mode is not tracked at point () and the corresponding
motion mode in terms of mode damping versus speed distorts, the dominant constraint
function becomes discontinuous. So for the first SQP run as shown in Figure 4.9, during
the final line search, point () does not satisfy the first-order KT conditions offered by
equation (4.14), and no improved point for the objective function described as (4.13) could
be found. Thus at the end of the first SQP run, the calculation gets trapped at point ()
corresponding to the resulting speed of 30.206[m/s].

With the resulting optimal speed of the first SQP run plus the speed step as the initial
speed for the second SQP run, the SQP algorithm searches the optimal point in the search
space. As shown in Figure 4.11, the dominant motion modes should be mode 7, mode 5,
and mode 6 respectively over the corresponding speed ranges before the critical speed is
determined. During the final line search, point M is found and this point satisfies the first-
order KT conditions offered by equation (4.14), and the calculation terminates at point M
which corresponds to the critical speed of 35.969[m/s].
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Figure 4.10: Mode damping ratios versus speed (V5 = 15.0 [m/s])
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Provided in Table 4.4 are also the numerical results for identifying the critical speed
using the algorithm combining the SQP with DMT when the initial speeds are selected as
different values.

Close observations of the numerical results shown in Table 4.4 reveal that with the
initial speeds selected, the resulting optimal speeds V,,; always converge to the KT point
A or the KT point C (see Figure 4.5) when the algorithm combining SQP with DMT is
employed. If the initial speeds are selected within the range from 11.0 to 44.0[m/s], the
resulting optimal speeds converge to the critical speed V., without exception. Once the
initial speeds are selected larger than 44.0[m/s] or less than 11[m/s], the corresponding
resulting optimal speeds frequently converge to the KT point C.

All these phenomena result from the local convergence properties of the SQP algorithm.
To improve the reliability for identifying the critical speed using the combined algorithm
including the SQP and DMT, there are two options: the calculation should start from
a point sufficiently close to, or in the neighborhood of, the KT point A; with multiple
initial speeds selected within the speed span concerned, the critical speed is determined by
comparing the resulting optimal speeds corresponding to the initial speeds selected.

Compared with the results based on the algorithm combining the SQP with DMT,
for the case of using the SQP alone, the speed range for the initial speeds to ensure the
corresponding resulting optimal speeds converge to the critical speed is much narrower.
For the latter case, as mentioned previously, this speed range is from 29.8 to 39.6[m/s]
which is only 30% of that for the former case. For the latter case, if the initial speeds are
selected less than 29.8[m/s] or higher than 39.6[m/s], the SQP algorithm frequently gets

trapped at a certain point which is not even the KT point.

4.4.2 CIliff Phenomenon and Interpretation

Figures 4.12 and 4.13 show the relationship between the the critical speed and ki, (the
longitudinal stiffness of the primary suspension) and that between the critical speed and
ks, (the lateral stiffness of the secondary suspension), with all other system parameters
taking nominal values. The two-dimensional plot 4.12 reveals that there are several local

optimal points and, when k;, take its nominal value, the corresponding critical speed

(76.4688[m/s]) is very close to the global optimal value (76.4779[m/s]). In addition to
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several local optimal points, one can see in Figure 4.13 the existence of a steep “cliff” at
which the critical speed changes dramatically with small changes in k,,,. This cliff is also
clearly shown in the corresponding three-dimensional plot in Figure 4.14. This phenomenon
appeared previously in two-dimensional form in 1984 [107], but its significance was not

discussed.
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Figure 4.12: Critical speed versus stiffness ki,

The cliffs in Figure 4.14 are due to the fact that the mode (eigenvector) corresponding to
the critical speed switches in a discontinuous fashion. This phenomenon can be interpreted
clearly using Figure 4.15, in which the parameter ks, takes the value of 1.995E + 6] N/m]
while all the other parameters take their nominal values. In Figure 4.15, the intersection
(point A) of the zero damping line and the Leading O.B./Trailing I.B. Wheelset Lat-
eral (Out Phase) motion mode damping curve determines the critical speed; its value is
101.43[m/s]. However, when ks, increases from 1.995E + 6[N/m/| to 2.300E + 6| N/m] (see
Figure 4.5), the Leading/Trailing Bogie Lateral (Out Phase) motion mode damping curve
will now intersect with the zero damping ratio line and the critical speed will plummet

to 35.9690[m /s] accordingly. This cliff phenomenon might be interpreted as a bifurcation
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Figure 4.13: Critical speed versus stiffness ks,

in the solution, for which two values of the critical speed correspond to one value of the

parameter k.

4.4.3 Comparison of Simplex and GA for Critical Speed Opti-

mization

When the Simplex or the GA is used as the outer loop algorithm shown in Figure 4.2, the
optimal values of the single design variables ki, and ks, (and the corresponding critical
speeds) are listed in Tables 4.6 and 4.7, respectively.

For these two cases involving a single design variable, both the Simplex and the GA can
reliably find the global optimum even though the objective functions are discontinuous and
have a number of local optimal points (see Figures 4.12 and 4.13). However, the Simplex
1s more accurate and efficient than the GA.

Using terminology from the literature on GAs [112], the “explorative” property is the
ability to explore the whole function space and identify the subdomain in which the global
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Table 4.6: Results of optimization (ki : 10* ~ 10°/[N/m])

Nominal Values

Simplex Algorithm

kis V. Initial %, Optimized ky, Maximized V,
[N/m) /5] [N/m) [N/m) /9]
3.162377TE +4 3.039786FE + 7 76.477942
3.150000F 4+ 7 76.468754 | 1.258925F + 8 3.039834F + 7 76.477942
3.981070F + 3 3.039940F + 7 76.477942

Nominal Values

Genetic Algorithm

kis V. Run No. Optimized ky, Maximized V,
[N/m) /5] [N/m) /5]
3.150000F + 7 76.468754 1 3.03854TE+T7 76.477940
3.150000F + 7 76.468754 2 3.039855E+T7 76.477942

Table 4.7: Results of optimization (kg : 10* ~ 108/[N/m])

Nominal Values

Simplex Algorithm

ko, V. Initial ks, Optimized ks, Maximized V.
[N/m) /5] [N/m) [N/m) /5]
6.309573F +4 2.041588FE 4+ 6  101.976942
1.970000E +5 76.468754 | 1.584893F + 7 2.041541FE +6  101.976394
2.511886F + 6 2.041588F +6  101.976464

Nominal Values

Genetic Algorithm

ko, V. Run No. Optimized ks, Maximized V.
[N/m) /5] [N/m) /5]
1.970000F +5 76.468754 1 2.035138F + 6 101.901514
1.970000F +5 76.468754 2 2.041567FE + 6 101.976692

76



Optimization of the Lateral Stability 7

120
_100
e
s
S 80
2 A
S | \\\
£ I\
E 60 T\
o 1 1\
@ 40
E
>" 20
0

Log10(k, ) (k, JIN/m]) 4

10 Log10 (kzy/[N/m])

Figure 4.14: Critical speed versus stiffnesses

optimum is located, while the ability to exploit all the local information for refining progres-
sively and efficiently the solution is called the “exploitative” property. From the literature,
the Simplex (a local search method) should have better exploitative properties than those
of the GA. As shown in Tables 4.6 and 4.7, the results agree with this expectation. How-
ever, when the genetic algorithm parameters are chosen properly, the results obtained are
very close to those from the Simplex. As an example, when the population size and the
mutation ratio are selected as 80 and 0.015 (in Run 2) instead of 40 and 0.01 (in Run 1),
respectively, the result of the second run is closer to those from the Simplex than that of
the first run, as shown in Table 4.6.

As shown in Table 4.8, when both ki, and ks, are selected as design variables, the
Simplex usually converges to the neighborhood of the global optimal point. However, it

occasionally gets trapped at local points. In contrast, the GA can find the global optimal
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Figure 4.15: Motion mode damping ratios versus speed

point with high reliability. Moreover, as shown in Table 4.9, when Ky, ks, and ki, are
all chosen as design variables, the Simplex often gets trapped at local points and only
occasionally finds the global optimum. As the number of design variables increases, the
number of local optimal points also increases. Therefore, the more the design variables,
the more likely that the Simplex will converge to a local optimum instead of the global
optimum. Again in contrast, the results show that the number of design variables has no
effect on the GA’s ability to find the global optimum.

Based on the characteristics of Simplex and GAs mentioned above and analyzed in [112],
it 1s expected that the GA should have better explorative properties than the Simplex.
Obviously the results shown in Tables 4.8 and 4.9 are consistent with the expectation.

In order to visualize the optimized results, a plot of motion mode damping ratios versus
forward speed for the case of ki, = 1.53287E + T[N/m)], key = 2.94724F + 6|N/m] and
k1, = 9.99999F + 8[N/m] (see Table 4.9) is offered in Figure 4.16. Based on Figure 4.16,



Optimization of the Lateral Stability

Table 4.8: Results of optimization (ki : 10* ~ 10%; ks, : 10* ~ 103 /[N/m])

Initial Values Sitmplex Algorithm
kis ko, Optimized ki, Optimized Ky, Maximized V.
Nfm)N/m] [N/m) [N/m) /5]
1.00000E+4 1.00000E+4 | 3.19665E+7 2.03307E+6 101.97620
3.16228E+4 6.30957TE+4 | 2.18999E+T7 2.24189E+6 100.31639
3.16228E+4 2.51189E+6 | 3.21269E+7 2.03017E+6 101.97497
3.16228E+4 1.58489E+7 | 3.08257TE+7 2.05414E+6 101.97001
1.25893E+8 1.58489E+7 | 3.17328E+7 2.03680E+6 101.97098
1.25893E+8 1.00000E+4 | 3.14018E+7 2.04337E+6 101.97619
1.00000E+9 1.25893E+7 | 2.02207E+7 2.27847TE+6 99.43702
1.00000E+9 1.00000E+8 | 3.14152E+7 2.04254E+6 101.96945
5.01187E+7 6.30958E+7 | 3.10679E+7 2.04913E+6 101.96820
7.94328E+6 1.99526E+6 | 4.57241E+47 7.12881E+7 38.13778
2.51189E+5 6.30957TE+4 | 3.18438E+7 2.03530E+6 101.97681
1.25893E+4 3.16228E+6 | 3.16875E+7 2.03815E+6 101.97716
Genetic Algorithm
Run No. Optimized ki, Optimized Ky, Maximized V.
[N/m) [N/m) /5]
1 3.41242E+7 1.98787E+6 101.83254
2 3.13561E+7 2.03927E+6 101.91828
3 3.43900E+7 1.98861E+6 101.88361
4 3.12991E+7 2.02834E+6 101.77798
5 3.04822E+7 2.04572E+6 101.79017
6 3.40126E+7 1.99469E+6 101.89663
7 3.46853E+7 1.98324E+6 101.86394
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we can deduce that the optimized point is located on an edge of the cliff that is the same as
that shown in Figure 4.14. The reason is that when the curve of the Leading O.B./Trailing
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I.B. Wheelset Lateral (Out Phase) motion mode damping ratio intersects with the zero
damping line, the curves of the Leading I.B./Trailing O.B. Wheelset Lateral (Out Phase)
motion mode damping ratio and the Car Body Lateral motion mode damping ratio are
also very close to the zero damping ratio line. Once ks, increases slightly (e.g. 0.68%),
the curve of the Leading I.B./Trailing O.B. Wheelset Lateral (Out Phase) motion mode
damping ratio intersects with the zero damping line, and the critical speed will drop from
115.56269[m/s] to 50.85899[m/s| discontinuously. From a design perspective, the critical

Table 4.9: Results of optimization (ki : 10* ~ 10%; ks, : 10* ~ 10%; ky,, : 10* ~ 10°/[N/m])

Initial Values Simplex Algorithm (Optimized)

klx
[N/m]

kg
[V/m]

kg
[V/m]

klx
[N/m]

kg
[V/m]

kg
[V/m]

Ve
[m/s]

1.99526E+6

6.30957E4-5

5.62341E4-6

1.48184E+7

3.02786E4-6

9.99996E4-8

115.71418

3.16228E+4-8

1.00000E+5

1.99526E+6

9.99776E4-8

1.71973E4-6

2.28329E+-6

102.85233

1.25893E4-8

3.98107E4-5

1.58489E+7

1.49328E+7

3.01170E4-6

9.99999E4-8

115.71824

1.25893E+4

3.16228E+7

3.98108E4-8

1.49432E+7

3.01023E+-6

9.99907E4-8

115.71824

4.46684E+7

1.00000E+-6

5.62341E4-6

3.7917T1E47

1.92954E4-6

4.00342E+6

101.64395

8.91251E+4

6.30957E4-6

1.25893E4-8

1.46263E+7

2.99217E+6

4.85742E+7

113.55293

1.30794E+7

1.54437E4-6

1.00000E+-6

1.56402E+7

9.99728E4-7

9.99999E4-8

47.63845

7.74662E4-7

4.66745E+5

2.51189E45

1.48738E+7

3.01649E+-6

4.53793E+8

115.58863

7.94328E+-6

1.99526E+6

5.62341E4-6

1.70687E+7

2.71486E4-6

2.76539E4-8

114.39930

1.25893E+4

3.16228E+7

1.00000E+5

1.53287E+7

2.94724E4-6

9.99999E4-8

115.56269

1.00000E49

1.00000E+-8

1.00000E49

1.00000E49

1.00000E+-8

1.00000E49

7.56709

3.08257E47

2.05414E+-6

3.96000E4-6

1.48139E+7

2.90785E4-6

2.42014E+7

111.51704

Genetic Algorithm (Optimized)

Run No.

klx
[N/m]

kay
[N/m]

k1y
[N/m]

Ve
[m/s]

1.52864E+7

2.93182E4-6

6.57839E4-8

115.26521

1.43278E+7

3.08832E4-6

7.26158E4-8

115.46558

1.59885E+7

2.84442E4-6

9.94991E4-8

115.16006

1.52418E+7

2.95933E4-6

2.54195E4-8

115.37914

Dy P | oo | =~

1.58708E+7

2.86164E4-6

7.69511E48

115.21562
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speed of 115.56269[m/s]| is not a very useful indicator of lateral stability because a very
small disturbance in ks, (e.g. manufacturing tolerances) will cause the critical speed to
drop sharply. Because of this instability, we call the critical speed corresponding to the
optimized point located on the edges of a cliff a “pseudo-critical speed”.

For the purpose of finding a “stable” critical speed in the presence of this cliff phe-
nomenon, it is necessary to redefine the critical speed and adjust the optimization algo-

rithms accordingly.
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Figure 4.16: Motion mode damping ratios versus speed (conventional definition)

4.4.4 Redefinition of Critical Speed and Adjustment of Algo-

rithms

For safety reasons, the critical speed should be well above the normal operating speed of
the vehicle. Moreover, it 1s further required that all modes have “sufficient damping” over
the range of operating speeds [7]. Based on this requirement, the definition of the critical

speed can be generalized as follows: when a motion mode reaches the zero damping ratio,
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Figure 4.17: Motion mode damping ratios versus speed (generalized definition)

the vehicle is traveling at the critical speed if all other motion modes have a prescribed
amount of damping (e.g. 5 % damping ratio). We call the prescribed amount of damping
the “cliff damping ratio”.

According to this generalized definition, the two-loop algorithm shown in Figure 4.2
should be adjusted. First, the previous two-loop algorithm is used to find the design
variables that maximize the pseudo-critical speed with the cliff damping ratio. Then, for
the optimized system, the SQP algorithm or the algorithm combining the SQP and DMT
1s employed to determine the critical speed with zero damping ratio. Thus, within a certain
amount of disturbance, the maximized critical speed will not change discontinuously.

Based on the generalized definition, when the chiff phenomenon exists, the optimized
design variables and the corresponding critical speed are different from those obtained using
the previous two-loop algorithm. The two optimization methods are different only in that
the two-loop method optimizes the design variables for maximizing pseudo-critical speed
with zero damping ratio, whereas the adjusted method optimizes the design variables for

maximizing the pseudo-critical speed with the cliff damping ratio. Therefore, both methods
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are the same in nature and the results obtained in the previous sections still hold.

Applying this generalized definition to the case of three design variables, i.e. ki, ks,
and ki, Figure 4.17 shows example results from the adjusted optimization algorithm. The
critical speed is now 99.82257[m/s]. For this case, the cliff damping ratio is selected as
5.0%, and the pseudo-critical speed with the cliff damping ratio is 88.43855[m/s].

4.4.5 Relative Significance of Different Design Parameter Sets

It 1s observed that different design parameters impose different effects on the critical speed.
As discussed in the previous sections, it is clear that the GA is suitable for multiple design
variable optimization problems with multiple local minima. Therefore, the GA could be
used to investigate the relative significance of different design parameter sets, 1.e. geometric,

inertial, and suspension parameters, on the critical speed.
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Figure 4.18: Effects of design variable sets on critical speed

Plotted in Figure 4.18 is the percent increase in the critical speed versus percent vari-

ations (from their nominal values) of suspension, inertial, and geometric parameters, e.g.
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allowing the suspension stiffness and damping values to vary by 30 % leads to a 12.6 %
increase in the critical speed. One can see that variations in the geometric variables (e.g.
suspension locations) have much greater influence on the lateral stability than variations in
the suspension stiffness and damping values. Compared with the geometric and suspension

parameter sets, the inertial parameter set has medium effect on the critical speed.

4.5 Summary

An integrated approach using multibody dynamics, genetic algorithms (GAs), the sequen-
tial quadric programming (SQP) algorithm, and the Dynamic Mode Tracking (DMT)
technique is an effective approach to optimizing the lateral stability of rail vehicles. In
the outer loop of this two-loop algorithm, a GA is well-suited to finding the global optima
even though the objective function is discontinuous and has multiple local optima, espe-
cially when there are more than a few design variables. In the interior loop, the critical
speed can be determined using either a combination of the SQP and the DMT algorithms
or the SQP alone.

Numerical experiments demonstrate that the algorithm combining the SQP with DMT
1s suitable for identifying the critical speed of rail vehicles. Over the speed span concerned,
if there is only one unstable speed range, this algorithm can always find the critical speed;
if there are multiple unstable speed ranges, i.e. there are multiple critical speeds, the
algorithm can still always find one of those critical speeds even though this critical speed
1s not the least critical speed. To improve the reliability of the algorithm for identifying
the least critical speed, two options are recommended: the initial speed selected should be
close to, or in the neighborhood of, the least critical speed; with the concerned speed span,
multiple initial speeds are chosen and the least critical speed is determined by compared
the corresponding resulting optimal speeds.

When used for identifying the critical speed, if the initial speed is selected less than
the critical speed, the SQP algorithm alone may converge to the critical speed or finds
a non-critical speed that corresponds to a search point that does not satisfy the first-
order Kuhn-Tucker conditions. Even in the latter case, the resulting calculated speed is

still closer to the critical speed than the initial speed. As for the algorithm combining
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the SQP with DMT, when the initial speed is selected within the speed range located in
the neighborhood of the critical speed, the SQP alone can always find the critical speed.
However, compared with the combined algorithm, for the SQP algorithm alone, this speed
range is much narrower. To improve the reliability of the SQP alone for identifying the
critical speed, a multiple SQP loop method is recommended.

In the case when the SQP algorithm alone finds a non-critical speed that corresponds
to a search point that does not satisfy the first-order Kuhn-Tucker conditions, this failure
18 due to the fact that when the Householder’s transformation and the QR algorithm
are used for solving the eigenvalue problems, they rank the eigenvalues corresponding to
the motion modes of a rail vehicle in their own way. Thus at two different speeds the
rank of an eigenvalue corresponding to a certain motion mode may switch with that of
another eigenvalue corresponding to another motion mode. This rank exchange causes the
distortion of the mode in terms of motion mode damping versus speed or the discontinuity
of the constraint functions for the SQP. During the final line search, if the SQP reaches
this discontinuous point, no improved point for the objective function can be found and
the calculation terminates. Moreover, the multiple SQP loop method recommended for
identifying the critical speed is well explained by this motion mode distortion.

The multibody dynamics software A’GEM can be used to combine the outer loop algo-
rithm, i.e. a GA, and the interior loop algorithm, 1.e. the SQP alone or the combination of
the SQP and the DMT, effectively by automatically generating and solving the equations
of motion for realistic vehicle models, given the design variables from the GA; the results
from the eigenvalue analysis are in turn offered to the SQP or the combined algorithm using
the SQP and the DMT. Using this integrated optimization algorithm, the geometric pa-
rameters are found to have greater influence on lateral stability than inertial or suspension
parameters.

With only one or two parameters selected as design variables, the Simplex algorithm can
often find the global optimum. However, the reliability of the Simplex algorithm decreases
with increases in the number of design variables.

The cliff phenomenon is observed and explained. This sharp discontinuity in the critical
speed occurs when the mode (eigenvector) determining the critical speed switches. For the

purpose of defining a stable critical speed for practical design problems, a cliff damping ratio
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1s introduced into the definition of critical speed. The integrated optimization approach is
easily modified to accommodate this generalized measure of lateral stability.

Since the governing equations similar to those of rail vehicles are found in rotor dy-
namics, in wind turbine dynamics, in aeronautics, and in road vehicle dynamics [82], the
integrated approach using multibody dynamics, GAs, the SQP or the combination of the
SQP and DMT can also be applied to these problems in searching the design variables for

optimizing the corresponding stability.



Chapter 5

Optimization of Vertical Ride Quality

5.1 Introduction

To identify effective optimization algorithms for vehicle ride quality analysis, in this chap-
ter, three typical algorithms, GAs, SQP, and Simplex, are compared. The design objective
1s to optimize the vertical ride quality for a 2 DOF quarter-vehicle and a 20 DOF rail
vehicle model. To further illustrate the effectiveness of using the GA for optimizing vehicle
suspensions, results are reported for analyzing the relative significance of different design
variable sets on vertical ride quality using the 20 model and a 36 DOF model. For the
36 DOF rail vehicle model, the car body flexibility is considered and active elements are
introduced in the secondary suspensions for improving vertical ride quality.

These linear vehicle models are analyzed in the frequency domain, and for the 20 and 36
models, the equations of motion are generated automatically by the A’GEM multibody dy-
namics software. Numerical simulation results are offered to demonstrate the effectiveness

of numerical differentiation as a link between A’GEM and SQP for sensitivity analysis.

87
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5.2 Methodology for Optimizing Vertical Ride Qual-
ity

The process of vehicle ride quality analysis can be schematically represented by Figure 5.1.
For a vehicle vibration system, the excitations arise when the vehicle travels at a given
speed over a road or track profile which can be treated as a stationary random process. By
way of wheels, suspensions, and unsprung masses, the excitations are transmitted to the
sprung mass or human-body. Generally the accelerations of the sprung mass or human-
body are considered as outputs due to the excitations. Based on the root mean square
(R.M.S.) value of the acceleration over a given third-octave frequency band, the ISO 2631
standard [1] is generally recommended to evaluate the vehicle’s ride quality. Sometimes
suspension working spaces and wheel dynamic loads are also considered as outputs, because

they influence the ride quality and ride safety, respectively.

Inputs:
Track Irregularity;
Vehicle Speed.

Vehicle Vibration System;

Springs, Dampers, Inertial

~| Properties, Geometric Paramete

Active Elements, ...

>

Outputs:

Sprung Mass Accelerations;

Wheel Dynamic Loads;

Suspension Working Space;

Evaluation Criteri
(e.0.150 2631).

RMS Values of Qutputs.

Figure 5.1: Schematic representation of a method for vehicle ride quality analysis

Due to advances in computational power and theoretical methods, the focus of research
has switched from pure analysis to extensive synthesis of the vibration system. After
modeling and simulating the system’s behavior, the design variables can be determined to
achieve optimal goals and system specifications. A combined approach using optimization
algorithms and multibody dynamics is an effective tool for the synthesis of a complex
vehicle suspension system [18, 42, 65, 66]. The combined approach used in our research is
shown in Figure 5.2.

As shown in Figure 5.2, in the research, for the purpose of modeling realistic complex
multibody vehicle models, the A’GEM multibody dynamics software package is used. With

the introduction of the multibody dynamics software, the governing equations of motion
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Figure 5.2: Schematic representation of the methodology for vehicle ride quality optimiza-

tion

of the specified vehicle model can be generated automatically. After performing necessary
transformations or integrations, the required performance evaluations can be carried out.
By altering parameter values in a search to minimize a fitness function, which reflects
performance characteristics, optimal design variables can be found. Thus, the numerical
optimization helps automate the design process. Based on the methodology shown in Fig-
ure 5.2, different optimization algorithms such as GAs, SQP, and Simplex can be evaluated

and compared.

5.3 Linear System Response to Random Excitation

For a stable linear multiple DOF system subjected to n stationary random excitations
(displacements), i.e., wq(t), wa(t),..., wn(t), the response power spectral density (PSD)
corresponding to a DOF, i.e., #;(t), reads as follows [106]:

Sei(@) =) D Hiy(w) Hia () S () (5.1)

r=1 s=1
where H;,(w) stands for the complex frequency response function of output z;(¢) with
respect to input wy(t), Sy,w, for the cross-spectral density between w,(t) and w,(t), and

H* for the complex conjugate of H.
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In the research, the stationary random excitations {w;(t),wa(t), ..., w,(t)} are track
irregularities. The number of excitations matches that of vehicle wheels. The excitations
or inputs may be correlated, because between two of them there may be a time delay which
1s generally a function of vehicle speed and geometry.

The complex frequency response function H;,(w) could be determined from the following

linear differential equations of motion:
Mx 4 Cx + Kx = B(w,, W, w,) (5.2)

where M, C, and K are the inertia, damping, and stiffness matrices respectively, x is the
vector of position coordinates or DOF, and B(ws, w,, w;) is the forcing function vector

relating to excitations, w,(t) (displacement), w, (velocity), and w, (acceleration).

The Fourier Transform of (5.2) yields
(K — WM + iwC)X(w) = B(w)Ws(w) (5.3)

where vector X(w) and scalar Wy(w) are Fourier Transforms of x and w,, respectively.

Provided that (K — w*M + iwC) is nonsingular, equation (5.3) can be rewritten as
X(w)/W,(w) = Hy(w) = B(w)/(K — w’M + iwC) (5.4)

where H,(w) is a vector whose components are the complex frequency response functions
relating the input w,(¢) to the outputs {x1(¢), z2(t), ..., z.(¢)}:

H,(w)T = {Hi,(w), ..., Hos(w)} (5.5)

When the model inputs correspond to ground vehicle track irregularities, in equation
(5.2), the forcing function vector relating to input w,(t) takes the form as B(w,, w,) and the

corresponding Fourier Transform in equations (5.3) and (5.4) can be expressed as [25, 48].
B(w) = N(ky, + iwe,,) (5.6)

where k,, and c¢,, are stiffness and damping coefficients for suspension elements relating

vehicle wheel to track. The vector N can be further expressed as

NT = {93179327 '-'7gsn} (57)
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where the coefficients g,; (V5 = 1,2,...,n) are determined by the vehicle model geometry.
The R.M.S. value of z; 1s computed by integrating the spectral density, S,;, over all

positive frequencies, i.e.,

ou = [ /0 U8, (@) dw] v (5.8)

Alternatively, based on the ISO 2631 standard, the acceleration of the sprung mass or
human-body can be formulated in the format of (5.8) over different third-octave bands or
the total weighted R.M.S. acceleration values.

For a given third-octave band, the upper frequency f,, the lower frequency f;, and the

center frequency f. have the following relations:

{ ful fi = 242

fc = (fol)1/2 (5‘9)

Based on equation (5.9), we can express f, and f; in terms of f. as f, = 1.12f, and f; =
0.89f., respectively. The width of the third-octave band, thus, is defined as A f = f, — fi.

With the aid of a one-third-octave-level analyzer, the R.M.S. acceleration value over
the range of one third-octave interval could be obtained by integrating the corresponding
PSD of the acceleration felt by human body over the third-octave band:

1.12f.; 1/2
o3, = { / S:.(f) df] (5.10)

89 fc;

where, ¢ = 1,2, ...,n, fu, 0z, and S;,(f) are the center frequency, R.M.S. and PSD of the

acceleration over the 7" third-octave band.

5.4 Vehicle System Models

5.4.1 2 DOF Quarter-Vehicle Model

Figure 5.3 illustrates a quarter-vehicle model considered for optimal design. The system’s
2 DOF are represented by the independent generalized coordinates z; and x5, which are

measured from the static equilibrium position. The track profile irregularity is represented
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by displacement w. M, M, ki, ks, and ¢, are unsprung mass, sprung mass, tire stiffness,
suspension stiffness, and damping coefficient, respectively. The corresponding nominal

design variables are also offered in Figure 5.3.

" o
? ESN
.

k,

M, =104.00 [kg]; M, =637.00 [kg];

k ,=699300.00 [N/m]; Kk ,=100600.00 [N/m];

/ ¢, =3200 [N/m/s].

Xl The Nominal Design Variables:
w

7T

Figure 5.3: 2 DOF quarter-vehicle model

To explicitly express the objective function and constraint functions in terms of design
variables, the governing equations of motion of the model are derived by hand and written
in the format of equation (5.2). If p = My/M;, wy = (k2/M2)1/2, wp = (kl/M1)1/2,
a = ¢3/(2M,), € = ¢5/[2(Maks) /?], we have the frequency response function of &, with

respect to track excitation w as
Hipo(w) = —w? (1200w + wiwl) /A (5.11)

where A = {w* — 2a(p + 1)w® — [w? + (p + )w2]w? + 2aw?w + wiw?}. If the relative
displacement of M, with respect to M; is h, and h = x3 — @1, the frequency response

function of h with respect to w is
Hpp(w) = winw? /A (5.12)

If the dynamic wheel load with respect to the track is p = k; (2, — w) and the static vehicle
load is G = (M 4+ Ms)g, where g is the acceleration of gravity, we assume that p/G is the
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relative dynamic wheel load with respect to the track. Therefore, the frequency response

of p/G with respect to w is
Hy6u(w) = wijw’[w?/(p + 1) — wy — i20w]/(gA) (5.13)

For the 2 DOF quarter-vehicle model, there is only one random track profile displace-

ment excitation w. The PSD of the excitation [148] may be expressed as
Sw(n) = Sw(no)(n/ng)™" (5.14)

where n is the spatial frequency, n = 27 /¢ [rad/m], ¢ is wavelength [m], ng is a reference
spatial frequency, generally ng = 1.0[rad/m], and ~ is a constant frequency index, generally
v = 2.0. When a vehicle travels at speed of V[m/s] on the track with spatial frequency n,

the time angular frequency of track excitation w is
w=Vn (5.15)

In the time frequency domain, the PSD of the track excitation can be expressed in terms

of the PSD in the spatial frequency domain [106] as
Su(@) = (1/V)Su(n) (5.16)
If y = 2, R = n3S,(ng); substituting equations (5.14) and (5.15) into equation (5.16) yields
Sw(w) = RV/w? (5.17)

Thus, for the 2 DOF model, for a dynamic response, e.g. @, the response PSD in the

format of equation (5.1) reduces to
Sow(w) = [How(w)[*Su(w) (5.18)
Based on equation (5.8), the R.M.S. values of s, h, and p/G can be expressed as

o3 = {nRV[wiws /p + (1 + p)ws /(4p8)]}/?
on = {mRV (1 + p)/(4péwn) }7? (5.19)
opc = (TRVA1)Y?/g

where A; = {wi/[4€wop(1 + p)*] + (1 + p)w3/(4pf) — wawi /(2(p(1 + p)€) + fwawi/p}.
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5.4.2 20 and 36 DOF Rail Vehicle Models

The rail vehicle configuration with car body flexibility is shown in Figure 5.4, with the
leading bogie, car, and trailing bogie denoted as bodies 2, 4 and 6 respectively. For the
20 DOF model, the car body is treated as a rigid body, while for the 36 DOF model with
the car body flexibility, the car body 4 is further divided as 4(1), 4(2), ..., 4(5). The
adjacent sections are connected by a group of bending, torsion and shear springs [76]. The
leading bogie, with the leading and trailing wheelsets denoted as 1 and 3, and trailing
bogie, with the leading and trailing wheelsets denoted as 5 and 7, are connected to the
car by secondary suspensions. Both the leading and trailing bogies, in turn, are connected
with their own leading and trailing wheelsets by primary suspensions. Each suspension
component consists of a parallel spring and damper, with stiffness and damping coefficients
in the three coordinate directions. In the vertical direction, the secondary suspension is

equipped with 2 active components per bogie.

Body4(5) '  Body4(4) '  Bodyd(3) '  Body4(2) |  Body4(l)

e o B W -

T o] [Pl e
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Figure 5.4: Rail vehicle configuration for dynamic models

For the 20 and 36 DOF models, the corresponding nominal design variables, which are
adopted from reference [136] and [53], are listed in Tables A.3 and A.2 in Appendix A,
respectively.

The degrees of freedom of the 36 DOF model are summarized in Table 5.1. Notice
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that for the 20 DOF model, the car body’s DOF are lateral displacement (y4), vertical
displacement (z4), roll motion (¢4), and pitch motion (64). The DOF of the bogies and
wheelsets are the same as those of the 36 DOF model.

Table 5.1: Vertical ride quality model components and DOF.

Component | Lateral (y) | Vertical (z) | Roll (¢) | Pitch (9)
Body1 z1 d1
Body2 Yo %2 o 6,
Body3 Z3 3
Body4(1) Ya(1) Z4(1) §754(1) 94(1)
Body4(2) Ya(2) Z4(2) §754(2) 94(2)
Body4(3) Ya(3) Z4(3) §754(3) 94(3)
Body4(4) Ya(4) Z4(4) §754(4) 94(4)
Body4(5) Ya(s) Z4(5) §754(5) 94(5)
Bodyb 25 s
Body6 Ye Zg P B¢
BodyT7 27 b7

For these complex rail vehicle models, the governing equations of motion are generated
automatically by A’GEM. The PSD of the random rail profile recommended by the Federal
Railroad Administration of the U.S.A. is used as excitation. It is assumed that the wheels
follow the rails at all times so that the motions of the wheels are prescribed. According
to the procedures described in previous sections, the frequency responses, i.e. passenger
point accelerations and secondary suspension working spaces, of the model to random rail
profile inputs are also determined by A’GEM. Once the PSD is computed for these dynamic
responses, the 1.50/(2631 — 1985) ride quality criterion can be evaluated by integrating
the PSD over third-octave bands [1] to obtain the R.M.S. acceleration in the frequency
bands.

Note that for the 36 DOF method the flexible car body has been represented by a five-
element discretization of a beam undergoing vertical bending, axial torsion, and lateral and

vertical shear. In order to determine the values for vertical bending springs, the car body
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was first modeled as a free-free Bernoulli-Euler beam and the corresponding fourth-order
partial differential equation describing the bending deflection is obtained. Based on the
fact that the mode shape function is independent of time, by means of variable separation
method and necessary transformations, the partial differential equation can be reduced
to two ordinary differential equations with the introduction of the beam eigenfrequencies.
Because the lowest frequency of flexible modes of a railway passenger vehicle is usually
the body vertical bending modes with a frequency in the range 8 — 12[H z] [43], the first
bending mode frequency for the model is chosen as 8.0[Hz|. With the general solution
to the partial differential equation, based on the boundary conditions and the method
recommended in [110], the nominal spring constant for each bending spring is computed.
The nominal spring constant for each torsion and shear spring is taken from reference [40].

Two active elements per bogie are introduced in the secondary suspension in the vertical
direction. The ‘skyhook’ control strategy [80] is used. The active torque and force acting

on the corresponding car body section can be expressed as follows:

Tm 7 :_Kr‘ 7
{ 4(0) tr Pa(i) (5.20)

Foaiy)y = — K240

where ¢ = 1,5, and K, and Kjy, are the rolling torque rate gain and vertical force rate

gain, respectively.

5.5 Optimization Problem and Implementation

5.5.1 Objective Function, Constraints and Design Variables
2 DOF Quarter-Vehicle Model

For simplicity, w;, ws, and ¢ are selected as design variables. Once w;, wy, and ¢ are
determined, we can easily obtain the corresponding ki, ks, and c,.

Ride comfort is chosen to be the objective function. If the dynamic wheel load were
greater than the static wheel load, the wheel would bounce out of the track and the
vehicle would become unstable. Therefore, the relative dynamic wheel load is included as

a constraint. If the suspension working space is not restricted, the unsprung mass may
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strike the sprung mass and the ride quality will become worse. Thus, this characteristic
is also included as another constraint. The constrained minimization problem can be

transformed into the following standard form:

minimize O, (W1, wa, ) (5.21)

op/c(wr,ws, &) < by

Uh(w17w27€) < bz

subject to 0.1 <¢E<0.5 (5.22)
bs < w, <20.0

by <w; <95.0

In (5.22), if b; = 0.3333, the probability for the wheel to bounce out of the road is 0.3%.
Generally we select by as 0.4472; in such a case, the possibility for the wheel to bounce out of
the track is 2.51%. If by = 0.3333hy, where hy is the limitation of suspension working space
(maximum dynamic deflection), the possibility for the unsprung mass to strike the sprung
mass is less than 0.3%. In the case study, by is chosen as 0.016667[m] (i.e., hg = 0.05[m]).
According to the limitation of wheels, by is chosen as 76.66667[rad/s]. Based on the
different requirements, b3 takes values of 8.0, 8.35, 8.5, 9.0, 9.6, and 10.0 [rad/s].

SQP is very suitable for the general constrained minimization problem expressed in the
standard form of equations (5.21) and (5.22). However, if a GA or Simplex is used for
the constrained minimization problem, the objective function and constraints expressed in
equations (5.21) and (5.22) can not be used directly since GAs and Simplex are suited for
unconstrained optimization problems. But we can use the penalty methods that degrade
the fitness ranking in relation to the degree of constraint violation. With these methods,
a constrained problem in optimization is transformed into an unconstrained optimization
problem by associating a cost or penalty with all constraint violations. Therefore, the
solution to the problem is to find an appropriate fitness function to be maximized, which

depends on the objective function and constraints, as follows:
Fit = f —nos, — Pmaz(0, (0,6 — b1)] — ymaz|0, (on — bs)] (5.23)

where the constants f and 1 and penalty multipliers g and v are determined according

to the ranges of the design variables w;, ws, and ¢. Notice that the last 3 constraints in
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equations (5.22) are not included in equation (5.23) because these constraints are satisfied

by specifying the ranges of allowable values for design variables.

20 and 36 DOF Rail Vehicle Model

The design variables consist of suspension stiffness and damping coefficients (.5), inertial
property parameters (I), geometric parameters (G), and active control parameters (A).
The fitness function to be maximized is a combination of R.M.S. acceleration values at

different points of the car body, and secondary suspension working spaces:

Pit=f—¢ { /w " S (@) dw] " ymaz|0, ( { /w " S () dw] " he)] (5.24)

1 1

where f, ( and v are constants, hy (k = 1,...,4) are limits on the secondary suspen-
sion working spaces, w; and w, define the frequency interval of interest, and S, (w) and
Sh, (w) are the PSDs of the car body vertical acceleration and the working space of the k"

secondary suspension, respectively.

5.5.2 Implementation of the Optimization Problem

As shown in Figure 5.5, the optimization problem is implemented by using a GA (Mecha-
Gen program [10]), an SQP (E04UCF) algorithm, and a Simplex (E04CCF) algorithm,
respectively. For the 20 or 36 DOF rail vehicle optimization problem, the A’GEM software
1s included.

SQP is based not only on function evaluations but also on gradient information of the
objective and constraint functions. For the 2 DOF quarter-vehicle model, since the objec-
tive function and constraint functions are expressed explicitly in terms of design variables,
reliable analytical gradient information is available during the optimization. However, for
the 20 and 36 DOF models, due to the use of A’GEM, the gradients can not be computed
analytically. For this case, three techniques are available for offering gradient informa-
tion: numerical differentiation, the direct differentiation method, and the adjoint variable
method. Very often the direct differentiation or adjoint variable method is implemented
using symbolic packages to derive the necessary matrices and equations to be included

in the derivative code [16]. However, symbolic packages can be very cumbersome to use,
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e.g. when differentiated, the various functional dependencies have to be identified and
carefully defined [10]. Moreover, for complicated rail vehicle models, it is not practical
for symbolic packages to handle programming constructs such as conditional statements,
loops and subroutines that are common to numerical multibody vehicle models.

Using finite differences to compute gradients may yield poor results, which may cause
slow convergence of the iterative optimization process or a total break down, due to rela-
tively large errors in evaluating objective function and constraint functions by numerical
integrations [19]. However, when these functions are algebraic, the error of the gradient of
the function is the first order of the variation of the variable. This error is the so-called
truncation error. Thus, if the variation is selected small enough, the gradient could be
computed within machine precision. Moreover, the computer has a limited accuracy. Sub-
tracting function values that are almost equal and dividing by a small number, i.e. the
variation, may lead to large errors in the approximation of the derivative due to numerical
truncation. However, these problems may be solved by choosing an appropriate difference
interval and by linearly or even nonlinearly scaling the optimization problem.

In our case study, as shown in equation (5.19), for the 2 DOF vehicle model, the
objective function and constraint functions are algebraic. For the 20 and 36 DOF rail
vehicle models, based on the features of R.M.S. value of dynamic frequency response as
shown in Section 5.3, the objective functions and constraint function can be written in the
following general form:

Wy

n 1/2
F(E.1.GA) =R(E.1GA)+Y PGELGEA) { / $i(w) dw] (5.25)
=1 w

:
where n is the total number of the vehicle system responses of interest and Py(S,I, G, A)
and P;(S,I,G, A) are algebraic functions of design variable vectors S (suspension stiffness
and damping coefficients), I (inertial property parameters), G (geometric parameters), and
A (active parameters). For a frequency interval of interest ([w;,w,]), given track condition
and vehicle speed, [f:;" Si(w) dw] e is constant. Therefore, F(S,I, G, A) is an algebraic
function of design variables.

In our case study, the derivatives of the objective and constraint functions for the

SQP are computed using a numerical differentiation method. Since the GA or Simplex is

only based on function evaluations, the link between the numerical multibody dynamics
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Figure 5.5: The implementation of the GA combined with A’GEM

software A’GEM and the optimization algorithm (GA or Simplex) for computing gradients
is superfluous.

Figure 5.5 shows the flowchart for implementing the GA algorithm when the 20 or 36
DOF rail vehicle model is optimized. First, a random population of designs is selected
by the GA; the corresponding sets of design variables are sent in parallel to the A’GEM
routines that automatically generate the equations of motion. These equations of motion
are transformed by means of Fourier Transformations, the PSDs of dynamic frequency
responses are integrated in the interval of interest, and then the performance indices are
directly obtained. From these performance indices, the fitness function (5.24) is evaluated
for each design in the population. At this point, if the convergence criteria are satisfied,
the calculation terminates; otherwise these fitness values are returned to the GA. Based
on the returned fitness values corresponding to the given sets of design variables, the GA
produces the next generation of design variable sets using reproduction, crossover and
mutation operators. This procedure repeats until the optimized design variable set is

found.
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5.6 Results and Discussion

5.6.1 Validation of Numerical Differentiation Method

For the 20 or 36 DOF model optimization problems, how to use a numerical differentiation
method for offering gradient information to the SQP is a nontrivial problem. The main
point of this problem is to select an appropriate difference interval of a specific design
variable. In fact, the finite difference interval is chosen so as to minimize the following

computable bound on the error of gradient [56]

{ Erry =| ® | h;i/2 + C(2/h;) (5.26)

hi =014 | Xi |)

where for a function of f(X), X € R", given a variation of h; of a variable X;, ® is an
estimate of (), X; <9 < X; + h;, C is a bound on the condition error, and § is a
difference interval factor. Based on the formula, one would expect the value of § to have a
considerable effect on the number of iterations and the final solution. Practical results did
confirm this expectation.

Figure 5.6 shows a simulation result from A’GEM, which offers the R.M.S. maximum
weighted acceleration at the rear left corner of the car body of the 20 DOF model versus
the half bogie space (L1, see Figure 5.4). Obviously the two optimal points are located
at the lower and upper bounds. Table 5.2 illustrates the effect of the difference interval
on the number of iterations and the final solution of the SQP. A number of numerical
experiments showed that when § lies between 1.0E — 3 and 1.0E — 5, the SQP performs
quite satisfactorily.

Practical experience showed that appropriately scaling the optimization problem can
also improve the performance of the optimization algorithm. This phenomenon may result
from the fact that some design variables may have a very small derivative with respect to the
objective function. For this reason, the optimization process may terminate prematurely.

Linear or nonlinear transformations can be used to change the magnitude of a derivative.
With the increase of the small derivatives, the SQP may terminate at optimal points. For
the case of Figure 5.6 and Table 5.2, when § takes the value of 1.0E —1 and the initial value
of L1 is 5.2[m], Figure 5.7 shows that three different linear scaling schemes have totally
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Table 5.2: The effect of difference interval on the optimization performance

d=10F-1 0=10F-5
InitL1[m] | OptiL1l[m] Tter#* acc* [m/s?] | OptLl[m] Tter# acc [m/s?]
5.0000 4.5000 2 0.2865 4.5000 1 0.2865
5.1000 4.5000 2 0.2865 4.5000 1 0.2865
5.1500 4.5000 16 0.2865 4.5000 1 0.2865
5.2000 4.5000 31 0.2865 4.5000 1 0.2865
5.2500 4.5000 47 0.2865 4.5000 1 0.2865
5.3000 5.1523 50 0.3102 4.5000 1 0.2865
5.5000 5.7000 0.3093 5.7000 1 0.3093
5.6000 5.7000 0.3093 5.7000 1 0.3093

1 Initial value; I Optimal value; *

Iteration number; * acceleration.
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different effects on the SQP’s performance. Notice that in Figure 5.7, for the scaling

schemes 1, 2, and 3, the scaling factors for the design variables L; are chosen as 0.1, 0.5,

and 1.0, respectively.
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0.295

R.M.S. vertical acceleration [m/sz]

0.29

0.285

5 10 15 20 25 30 35
Iteration number

Figure 5.7: The effect of scaling schemes on the optimization performance

5.6.2 Optimization of the 2 DOF Vehicle Model

Table 5.3 displays the results of the numerical optimization for vehicle speed of 40[m/s]
and a track with the PSD constant S, (no) taking the value of 6.5 x 10°[m?]. The GA and
SQP approaches are used. When using the SQP. an initial set of design variables within
the corresponding boundary is guessed and offered. For the case study, the lower bound
of w; takes the value of 76.6667 [rad/s] and the lower bound of wsy takes the values of 8.0,
9.0, and 10.0 [rad/s] respectively. The maximum number of generations of 2000 was set
for the GA. In Table 5.3, the CPU time used by an SGI Indigo 2 X7 workstation is also
offered.

Table 5.3 shows that with the appropriate selection of algorithm parameters, e.g. prob-

ability of mutation and population size, within the same feasible range of design variables,
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Table 5.3: The result of design optimization of the 2 DOF model suspension system

¢ wy [rad/s] | wy [rad/s] | o4, [m/s®] | opc | on [m] | t[s]
SQP | 0.13924 8.0000 76.6667 1.3217 0.4442 | 0.0146 | 0.87
GA | 0.13905 8.0000 76.6667 1.3216 0.4445 | 0.0146 | 48.07
SQP | 0.15664 9.0000 76.6667 1.4869 0.3971 | 0.0130 | 0.68
GA | 0.15625 9.0000 76.6667 1.4869 0.3975 | 0.0130 | 47.01
SQP | 0.17406 | 10.0000 76.6667 1.6521 0.3623 | 0.0117 | 0.80
GA | 0.17405 | 10.0000 76.6667 1.6521 0.3623 | 0.0117 | 48.16

the result obtained from the GA is almost the same as that from the SQP. However, the
GA is much more time consuming than the SQP. Table 5.3 also illustrates that the result
1s the global optimum for the corresponding design variable range. In fact, within a certain
design variable range, there is an unique minimum. This can be illustrated by Figure 5.8.
With the continuity property of the objective and constraint functions and the available
analytical gradients for these functions, numerical experiments show that the SQP can
efficiently and reliably find the optimum in the neighbourhood of the initial point. SQP
1s also called “exploitative” algorithm with the characteristics that the more intensive
the exploitation, the stronger the need of specialized information about the function to
be minimized. In contrast, the GA uses only the order relations between the points of
individuals of the current population. Its search is performed partially randomly and may

include bad intermediate solutions that the SQP method would not have explored.

5.6.3 Optimization of the 20 DOF Vehicle Model

In order to further investigate the performance of SQP and compare the algorithm with
the GA and Simplex, a benchmark is carried out by means of optimizing the 20 DOF rail
vehicle model. Figure 5.9 shows the relationship between acceleration and half bogie space
(all other parameters are fixed and take nominal values) for the 20 DOF model at the same
point of the car body as for the case of Figure 5.6. Clearly, the curve shown in Figure

5.6 is a smooth section of that shown in Figure 5.9. By inspection, there are at least two
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local optimal points A and B on the curve. Based on the SQP’s requirement that the
objective and constraint functions should be “at least twice-continuously differentiable”, it
1s expected that the algorithm will not be reliable for finding the desired solution. Table
5.4 offers the result from the SQP along with those from the GA and Simplex.

From Table 5.4, we notice that the SQP can reliably find the local optimal points A or B
with only few function evaluations. Sometimes, when the initial points are selected on the
right side of local optimal point A, the search may jump over the point and find the global
point B. To some extent, for this one design variable optimization problem, the Simplex
behaves like the SQP but with higher reliability for finding the global point B. However,
the GA can always find the global point at the expense of more function evaluations.

Figure 5.10 shows the relationship between the mass of car body (again, all other
parameters are fixed and take nominal values) and the acceleration at the same point of
car body of the 20 DOF model. The optimization results from the SQP, Simplex and GA

are offered in Table 5.5. The same features of the performance of the three algorithms as
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Figure 5.9: R.M.S. vertical acceleration versus half bogie space

mentioned in the previous case can be revealed by analyzing the optimization results.

Corresponding to the one-dimensional simulation results shown in Figures 5.9 and 5.10,
the two-dimensional simulation result is displayed in Figure 5.11 in which the car body
mass and half bogie space are optimized simultaneously. Compared with the objective
function surface shown in Figure 5.8, the objective function surface for the 20 DOF model
is much more complicated and there are more local optimal points. The optimization
results from the SQP, Simplex and GA are given in Table 5.6.

For the two design variable optimization problem, as shown in Table 5.6, from dif-
ferent initial points, the SQP converges to different points including the global optimal
point. Moreover, compared with the previous one design variable optimization problem,
the reliability of the algorithm to find the global optimum for the two design variable prob-
lem becomes less. This is also the case for the Simplex. Further numerical experiments
show that for the multibody rail vehicle model, the more the design variables, the less the
reliability for the SQP and Simplex to find the global optimum. However, for the multi-
ple design variable optimization problems, the GA is robust to find the global optimum



Optimization of Vertical Ride Quality

Table 5.4: R.M.S. vertical acceleration versus half bogie space

SQFP Simplex

Int} L1[m) Opti L1[m] | R.M.S. acc* [m/s?] | Opt L1[m] | R.M.S. acc [m/s?]
3.2000 4.2312 0.2665 4.2312 0.2665
4.0000 4.2312 0.2665 4.2312 0.2665
4.5000 4.2312 0.2665 4.2312 0.2665
5.4000 5.8155 0.3078 4.2312 0.2665
5.5000 5.8155 0.3078 4.2312 0.2665
5.7000 5.8155 0.3078 5.8155 0.3078
5.7500 5.8155 0.3078 5.8155 0.3078
5.8500 5.8155 0.3078 5.8155 0.3078
5.9000 5.8155 0.3078 4.2312 0.2665
6.0000 5.8155 0.3078 4.2312 0.2665
6.5000 4.2312 0.2665 4.2312 0.2665
6.9000 4.2312 0.2665 4.2312 0.2665

GA

Norm* L1[m] | Lower® L1[m)] Upper* L1[m] Opt L1[m] | R.M.S. acc [m/s?]

5.0000 3.0000 7.0000 4.2317 0.2665

1 Initial value; § Optimal value; * Acceleration; * Nominal value;

° Lower bound; * Upper bound.

although it is time consuming.

5.6.4 Using the GA for Optimizing Vehicle Suspensions

107

In order to further show the effectiveness of using the GA for optimizing vehicle suspensions,

the GA is used to analyze the relative significance of different design variable sets using the

20 DOF rail vehicle model and to optimize a rail vehicle suspension with active elements

using the 36 DOF model.

Sensitivity Analysis for Design Variable Sets

By optimizing design variables for improving ride quality, the relative significance of dif-

ferent design variable sets, i.e. S, I and G, is investigated. Plotted in Figure 5.12 is the



Optimization of Vertical Ride Quality 108

0.37

0.36[

0.35 .

0.34F .

0.33f : .

0.32 . : a
Local optimal point C

R.M.S. vertical acceleration [m/secz]

0.31+
0.3
0.29k- Local optimal point D i
028 1 1 1 1 1 1 1
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Mass of car body Mc [kg] x 10*
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Table 5.5: R.M.S. vertical acceleration versus mass of car body

SQFP Simplex

Int Mclkg] Opt Mclkg] | RMS A [m/s?] | Opt Mc[kg] | RMS A [m/s?]
9000.0 11110.6 0.2983 11111.0 0.2983
12000.0 11110.6 0.2983 11111.0 0.2983
13000.0 11110.6 0.2983 11111.0 0.2983
14000.0 16000.0 0.3029 11111.0 0.2983
15350.0 16000.0 0.3029 11111.0 0.2983
15360.0 16000.0 0.3029 16000.0 0.3029
15500.0 16000.0 0.3029 16000.0 0.3029

GA

Norm Mckg] | Lower Mc[kg] | Upper Mclkg] | Opt Mc[kg] | RMS A [m/s%]

14000.0 8000.0 16000.0 11112.4 0.2983
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percent decrease in the vertical acceleration at the rear left corner of car body versus
changes in the suspension, inertial, and geometric parameters, e.g. if the geometric param-
eters are allowed to vary by 20.0%, the optimized design variables lead to a 23.2% decrease
in the acceleration. One can see that among the three design variable sets, the geometric
parameters have the most significant effect on the ride quality and the inertial property
parameters have the least effect. One may also notice that the effect of suspension param-
eter set on the acceleration is very close to that of geometric parameter set. Considering
the fact that for practical vehicle suspensions, varying suspension stiffness and damping
coefficients i1s more convenient than varying geometric or inertial parameters, the results
obtained explain why suspension stiffness and damping coefficient control and optimization

are often used to improve vertical ride quality of rail vehicles.
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Figure 5.11: R.M.S. vertical acceleration versus half bogie space and mass of carbody
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Table 5.6: R.M.S. vertical acceleration versus half of bogie space and mass of car body

Method Initial Values Optimal Values
L1[m] | Mc [kg] L1[m] | Mc [kg] | RMS acc [m/s?]

SQP 3.2000 8100.0 4.3926 | 11562.8 0.2679
Simplex 3.2000 8100.0 4.3660 | 11493.0 0.2679
SQP 4.5000 8500.0 4.3186 | 12846.5 0.2688
Simplex 4.5000 8500.0 4.0730 | 16000.0 0.2558
SQP 4.8000 9800.0 4.3931 | 11564.0 0.2679
Simplex 4.8000 9800.0 4.4170 | 11629.0 0.2679
SQP 5.0000 15000.0 4.0727 | 16000.0 0.2558
Simplex 5.0000 15000.0 4.4170 | 11629.0 0.2679
SQP 5.5000 12000.0 4.1934 | 11076.5 0.2682
Simplex 5.5000 12000.0 4.0730 | 16000.0 0.2558
SQP 6.3000 14000.0 5.8181 | 14079.9 0.3075
Simplex 6.3000 14000.0 4.4170 | 11629.0 0.2679
SQP 6.9000 15000.0 4.0727 | 16000.0 0.2558
Simplex 6.9000 15000.0 4.4170 | 11629.0 0.2679
SQP 7.0000 15000.0 4.0727 | 16000.0 0.2558
Simplex 7.0000 15000.0 4.0720 | 16000.0 0.2558

GA L1[m] Bounds | Mc/10*[kg] Bounds Optimal Values
3.0~ 7.0 0.8~ 1.6 4.0714 | 16000.0 0.2558

Optimization of Vehicle Suspensions

Figure 5.13 gives the PSDs (vehicle speed is 22.22[m/s] and rail profile class is 5) of the
accelerations at the rear left corner of the car body based on the 20 DOF and 36 DOF
models. For both of these models, the nominal design variables are offered in Table A.2 in
Appendix A. It is shown that within the low frequency band (below 4 Hz), the PSDs for
the two models are very close. However, within the frequency band from 4 Hz to 10 Hz
(which includes the first bending frequency), the ride quality is significantly degraded by
the carbody flexibility.

Figure 5.14 illustrates the PSDs of the accelerations at the same point of the car body
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Figure 5.14: Power spectrum of acceleration of the 36 DOF vehicle model for nominal,

passive optimized, and passive and active optimized cases

based on the 36 DOF model for three cases: the design variables take nominal values,
the passive design variables are optimized (the 29 variables may vary by 20% from the
nominal values), and the 31 passive and active design variables are optimized simultane-
ously. Results show that the ride quality (R.M.S. maximum weighted third-octave band
acceleration) in the second and third case is improved by 38.5% and 59.4%, respectively,
over the nominal case.

Numerical experiments show that it is difficult for the SQP and Simplex to handle
vehicle suspension optimization problems with such a large number of design variables.
Moreover, even using a number of combinations of the initial values of the design variables,
1t 1s still hard for these local search methods to find the global optimum that the GA can
find with high reliability.
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5.7 Summary

The GA is an effective optimization algorithm for ground vehicle ride quality analysis.
When used with a numerical multibody dynamics package, e.g. A’GEM, the GA can be
used to optimize vehicle suspensions including active control parameters by using complex
realistic multibody vehicle models, even when many design variables are being considered.
For these optimization problems, the algorithm has a high reliability for finding the global
optimal point on objective function surfaces with many local optimal points. For this
algorithm, sensitivity analysis for gradient information is superfluous, but the associated
computational burden is heavy. Parallel processing, for which the GA is ideally suited,
could be used to reduce the burden.

In contrast, in order to ensure the validation for SQP, even for local optimum searching,
sensitivity analysis of the objective and constraint functions and scaling the optimization
problems are necessary and important steps. When SQP works with a numerical multibody
dynamics software for optimizing vehicle suspensions using linear vehicle models for ride
quality analysis in frequency domain, since the objective function and constraint functions
are algebraic functions in terms of design variables, numerical differentiation techniques can
be used to offer gradients to the SQP reliably. Choosing an appropriate difference interval
for specific design variables and using suitable scaling schemes for the optimization problem
are important for the numerical differentiation technique to link the multibody dynamics
software and SQP efficiently.

When both SQP and Simplex are used for optimizing vehicle suspensions using com-
plicated multibody vehicle models, the reliability for these algorithms to find the global
optimum decreases with the increase of the number of design variables. For a simple vehicle
model, where the objective function and constraint functions can be explicitly expressed
in terms of design variables and these functions are smooth, SQP outruns Simplex and
GA. In both computation efficiency and reliability for global search, Simplex is generally

a compromise option between SQP and GA.



Chapter 6

Optimization of Curving

Performance

6.1 Introduction

The objective of this chapter is to demonstrate the feasibility and efficacy of applying
numerical optimization approaches to rail vehicle suspension design with curving perfor-
mance considered. The design optimization is to search optimal design variables so that
the noise or wear, arising from misalignment of the wheelsets with the track, is reduced
to the minimum level when the rail vehicle traverses curved track. The RACES routine
for curving simulation from A’GEM is modified and combined with the GA. Due to the
fact that a large number of parameters affect the curving behavior [9], the optimization
problem is a multiple design variable problem. To accurately predict the curving behavior,
time integration and nonlinear dynamic curving models [53] are used.

In the case of using a highly nonlinear dynamic curving model and time integration,
the optimization problem may have lots of local optimal points. Furthermore, the gradient
information for the objective function and constraint functions with respect to the design
variables are difficult to obtain. Therefore, it is justified to use GAs as the optimization
algorithm.

A conventional transit rail vehicle model with 21 DOF is optimized. In this chapter, the

numerical simulation results of the optimization are offered. The selected objective function
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1s justified. Finally, the proposed optimization approach is applied to the investigation of
the relative significance of different design parameters and different design parameter sets

on curving performance.

6.2 Vehicle System Model

Figure 6.1 shows a schematic diagram of a 21 DOF dynamic model used for evaluating
the curving performance of a conventional transit rail vehicle. The vehicle configuration
is the same as that shown in Figure 4.1. The nominal geometry parameters, suspension
stiffness and damping coefficients, and inertial property parameters are listed in Table A.2
in Appendix A. Relevant vehicle and track parameters are listed in Figure 6.1.

The programs RGEM and RACES from A’GEM are adopted to automatically generate
the governing equations and to numerically integrate the nonlinear dynamic equations.
RACES is used to simulate the vehicle as it travels from a tangent track, through a spiral
of constantly decreasing radius, to a constant radius curve [53].

This model takes nonlinear wheel /rail geometry with two points of contact into account.

In calculating creep forces, the following factors are considered:
1. The effect of wheel load changes on creep coefficients;

2. Creep force saturation due to combined actions of longitudinal, lateral, and spin

creepages;
3. Nonlinear creep force relationships.

Nonlinear suspension elements, i.e. lateral bump stops at each secondary suspension, are
included to restrict the relative lateral motion between the car body and the bogie frames.

The dynamic behavior of the model can be described by a set of simultaneous nonlinear
ordinary differential equations. These equations can be integrated numerically to obtain
the curving behavior. Along the specified track, the following curving performance indices

can be obtained:

e Flange contact forces Fy,,: for the i*" wheel, the flange contact force is F' Flngis
1=1,2,...,8.
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Vehicle and Track Parameters Length of clothoid spiral: 67 [m]; 2) Non-linear elements in secondary

1) Wheel/Rail data Wheel/rail Coefficient of friction: 0.3; suspensions

Flange and guide rail clearances: 0.012 [m]; Flange coefficient of friction: 0.2; Breakpoint deflection: 0.05 [m];

Superelevation: 0.07 [rad]; Flange contact rolling radius: 0.3687 [m]; Initial stiffness coefficient: 0.0 [N/m];

Rail transverse radius: 0.356 [m]; Final stiffness coefficient: 1.2E+8 [N/m)].

Curve radius: 580 [m];

Method for creep forces: Simplified theory
of rolling contact (FASTSIM).

Track Centreline -
V=20 [m/s]

Figure 6.1: Schematic diagram, showing the degrees of freedom of the curving model

e Motions of vehicle components.

o Angles of attack Ag,: for the " wheelset, the angle of attack is Agni, 7 = 1,2, 3, 4.
For a wheelset, the A,,,; is defined as the angle between the axle of the wheelset and

the corresponding radius of the curve.

e The ratios of lateral to vertical (L/V) contact forces L,: for the 5" wheel, the ratio
is Loii=1,2,....8.

o The work W done by the wheel/rail force: for the i** wheelset, the work is W;,
1 =1,2,3.4.

e The saturation ratios S,, of creep forces: for the " wheel, the ratio is S,q, ¢ =
1,2,....8. For a wheel, the S,,; is defined as the ratio of the creep force to the limited

friction force.
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6.3 Optimization Problem and Implementation

6.3.1 Performance Indices and Design Variables

In the optimization of curving performance, the design variables consist of suspension
stiffness and damping coefficients (S), inertial property parameters (I), and geometric
parameters (G). The total number of design variables is 29. The design variables are
listed in Table A.2 in Appendix A. Note that the parameters ko,, oz, a, and A listed in
Table A.2 are not selected as design variables.

As mentioned previously, since rail vehicles traveling on mainline intercity curves are
often thought to negotiate curves by creep guidance, the curving performance may be
measured in terms of the curve radius and the speed for which the wheelsets do not flange
or slip. However, for urban transit rail vehicles, they must negotiate a large number of
short radius curves. When transit vehicles negotiate narrow curves, there will be significant
levels of slippage between rail and wheel, often leading to complete saturation of wheel/rail
creep forces so that frictional forces are guiding the vehicles [5]. Additionally, although
flange free curving is desirable, it is generally unachievable on tight curves. It was shown
that flange contact occurs on curves with radii as large as 800.0 [m] [9].

It 1s difficult to formulate a simple indicator for the complex curving behavior of rail
vehicles, especially when the wheelset excursion has exceeded the flange clearance. Since
the L/V ratio (L., ¢ = 1,2, ...,8) may be viewed as a wheel climb derailment indicator and
the wheelset angle of attack (Auni, ¢ = 1,2, 3,4) can be used as a measure of wheel/rail wear
and noise [66], we choose the L/V ratio and the wheelset angle of attack as the components
of a performance index to represent the curving behavior of rail vehicle. Therefore, the
objective function is:

minimize F(S,1,G) = tmaz(| 2518 ) 4 pngq(| LxBLIG) ) (6.1)

ani vk

wheret =1,2,3.4, and k= 1,2, ..., 8, ¢ and 5 are constant weighting factors, and Ag; and

L, are nominal values of the angle of attack and the L/V ratio.
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6.3.2 Implementation of the Optimization Problem

As shown in Figure 6.2, the optimization is implemented by using the MechaGen program
(a GA), and A’GEM software (RGEM and RACES programs for curving performance

analysis).

Aani Lvk
-=( Parameter Set 1}={A'GEM ‘{E maX“Tam”*ﬂ maX[‘ﬁv ITX(
Aani Lvk
Aani k
=( Parameter Set 2 =~{A'GEM ‘{E max|| =" [ maxfl:—v |]}dfh
Aani Lvk
O

@)

where i=1,2,3,4 and k=1,2, ..., 8.

O @)
| ».| Parameter Set n—p_,> ({ AGEM % }( g max[lgi 153 maxf#l k [I{n-1
Aani Lvk
A [ ] : i} i
| .| Parameter Set n A'GEM ‘{ g max[|g“ 1 maX{'I:*V k I
Aani Lvk

<
<<

Figure 6.2: Schematic representation of the implementation of the optimization problem

As illustrated in Figure 6.2, each set of design variables of a population generated by the
GA is forwarded side by side to the A’GEM programs for calculating the required perfor-
mance indices of curve negotiation. With a given set of design variables, the corresponding
A’GEM programs generate the required nonlinear differential equations of motion auto-
matically. After performing numerical integrations in the time domain, the performance
indices can be obtained directly. To ensure reliable measures of curving behavior of the
rail vehicle concerned, after 18.0 [m] of the entry point along the constant radius curve
until the end point of the curve, the average value of angle of attack per wheelset and
that of L/V ratio per wheel are measured. Based on equation (6.1), the corresponding
performance index is calculated. Note that the total number of fitness values is the same
as that of the individual design parameter sets in the population. At this point, if the
convergence criteria are satisfied, the calculation terminates, otherwise these fitness values

are returned to the GA. Based on the returned fitness values corresponding to the given
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sets of design variables, the GA produces the next generation of design variable sets using
reproduction, crossover and mutation. This procedure repeats until the optimized design

variable set is found.

6.4 Results and Discussion

6.4.1 Justification for the Selected Objective Function

If both ¢ and » in the objective function (6.1) take the value of 1.0, when the geometric
parameters are selected as design variables and permitted to vary +10% from their nominal
values, we obtained the selected optimal results shown in Figures 6.3 and 6.5. Offered in
Figure 6.3 is the relationship between the angle of attack and position on curve. Figure 6.5
illustrates the dependence of the work done on each wheelset versus the position on curve.
For the purpose of comparison, the counterparts for which the design variables take the
nominal values are also shown in Figures 6.4 and 6.6. Resulting from the optimization, for
the axle that has the maximum angle of attack and for the axle on which the maximum
work is done, the average steady-state angle of attack and work decrease by 27.94% and
20.84% (see Table 6.1), respectively. Table 6.1 also offers the results of L/V ratio, flange
contact force, and the saturation ratio of creep forces for the axle or wheel which has the

maximum value among the four axles or among the eight wheels respectively.

Table 6.1: Results of curving performance for nominal and optimized cases
cases Aun [deg] L, W [J/m] Fiing [N] Sra
Nominal | 0.1308 | 0.2267 | 0.2114EF + 05 | 0.1478E + 05 | 0.9665
Optimal | 0.0942 | 0.1795 | 0.1776E + 05 | 0.1236E + 05 | 0.9134

Note that the results for wheelset lateral displacements are not listed in Table 6.1 be-
cause flange contact occurs for both optimal and nominal cases. Thus, the maximum lateral
displacements for both cases are the same, and approximately equal to the flange clearance,

as shown in Figures 6.7 and 6.8 for the optimal case and nominal case, respectively.
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Angle of Attack versus Distance (geometric variables optimi zed, + 10%)
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Figure 6.3: Angle of attack versus position on curve for optimal case

Angle of Attack versus Distance (nominal case)
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Figure 6.4: Angle of attack versus position on curve for nominal case



Optimization of Curving Performance 121

104 Work versus position (geometric variables optimized, + 10%).
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Figure 6.5: Work done on wheelset versus position on curve for optimal case
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Figure 6.6: Work done on wheelset versus position on curve for nominal case
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To investigate the trends of the optimized design variables, Table 6.2 offers the opti-
mized geometric variables, which are permitted to vary by +20% from the nominal values,

and the corresponding nominal values.

Table 6.2: Optimized geometric variables (permitted to vary by +£20% from their nominal

values) }

bm] [ Lym] | g[m] | dm] | Ls [m] | Lz [m] | Ly [m)
Nominal Values | 1.0420 | 8.3200 | 0.5860 | 0.8130 | 0.0000 | 0.3050 | 0.8150
Upper Bounds | 1.2504 | 9.8760 | 0.7032 | 0.9756 | 0.0000 | 0.3660 | 0.9780
Lower Bounds | 0.8336 | 6.5840 | 0.4688 | 0.6504 | 0.0000 | 0.2440 | 0.6520
Optimal Values | 0.8336 | 7.4271 | 0.4688 | 0.6707 | 0.0000 | 0.2692 | 0.6558

1 See Figure 4.1 for the definition of the symbols in the table.

Based on the results offered in Table 6.2, we notice that the half of wheelbase on bogie
(b), vertical distance from car body center of mass to secondary suspension (L4), and
vertical distance from bogie center of mass to secondary suspension (L) take lower bound
values or approach the lower bound. Moreover, the half of bogie spacing (L) takes a lower
value. The results obtained are consistent with the lateral dynamics design requirements:
for improving curving performance of rail vehicles, we should choose a short wheelbase on
the bogie, a short distance between bogie centers, and a low center of vehicle mass [35].

According to the above analysis, we can expect that the objective function in the form
of (6.1) can well reflect curving performance including work done on wheelset, flange force,

saturation ratios of creep forces, angle of attack, and L/V ratios.

6.4.2 Sensitivity Analysis for Design Variables and Design Vari-
able Sets

In the research, we notice that different design variables or different design variable sets
impose different effects on curving performance. By optimizing design variables for improv-
ing curving performance, the relative significance of different design variables or different

design variable sets are investigated.
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Based on the method recommended by Eberhard et al. [42], but using the GA instead
of Simulated Annealing Algorithms, we can easily identify important design variables in the
design optimization. Figure 6.9 shows the selected results where only geometric parameters
are chosen as design variables for improving curving performance. The design variables are
permitted to vary by £50% from their nominal values. According to the dynamic analysis
[35], it was found that in order to reduce misalignment of wheelset axles on curves, the
half of bogie wheelbase (b) should be as small as possible. Numerical results show that
secondary suspension lateral spacing (g) has a minor effect on curving performance. In
Figure 6.9, it can be seen that most samples for points b are taken in the vicinity of the
optimal variable value (lower bound value), i.e. bo, = 0.521[m]. This further agrees with
the above mentioned lateral dynamics design requirements. Variable g, however, illustrates
a different behavior. The sampling density around optimized g is only slightly higher than
in the other areas, but the overall distribution is somewhat uniform. The results show that

the feasible values of g do not change the objective function value very much.
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Figure 6.9: Variable distribution to identify important variables (b, g)

Figures 6.10, 6.11, and 6.12 show the selected numerical results where only primary
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and secondary suspension stiffness and damping coefficients are chosen as design variables
for improving curving performance. Again the design variables are allowed to change by
+50% from their nominal values. As discussed above, in Figures 6.10, 6.11, and 6.12, most
samples for points ki, ki, are taken in the vicinity of the optimal variable values, 1.e.
the lower bound values of the feasible domains for k;, and kq, respectively. On the other
hand, the sample densities around optimized ks, and ki, like the case of design variable
g analyzed previously, are only a little bit higher than the other areas and the overall
distributions are uniform. Again the feasible values of ks, and k;, do not significantly
change the objective function value. The results obtained demonstrate that in order to
improve curving performance, the longitudinal and lateral stiffness coefficients of primary
suspensions of the vehicle should take values as low as possible. This agrees well with the
conclusions offered by Wickens [142].

It i1s clear that by investigating the sampling distribution of each variable, one can judge
the global performance and sensitivity over its feasible domain. This global performance

and sensitivity over a design variable’s feasible domain is, however, difficult to judge by
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using its gradient information in a local sense. Thus, with the assistance of GAs, we can
visualize the nonlinear functional relation between design criteria and design variables and

predict the topology of the criteria space from the space of feasible design variables.
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Figure 6.13: Effects of design variable sets on curving performance

Not only different design variables but also different design variable sets impose different
effects on curving performance. Figure 6.13 illustrate the effects of different design variable
sets, i.e. geometric parameters, suspension parameters (stiffness and damping coefficients),
and inertial property parameters, on curving performance. As shown in Figure 6.13, if
the geometric parameters, suspension parameters, and inertial property parameters are
permitted to vary by £30% during the optimization, these three optimized design variable
sets will lead to 53.56%, 10.69%, and 8.75% decrease of the objective function described in
equation (6.1), respectively. One may see that, as in the case of lateral stability, for curving
performance, the variations in the geometric variable set (e.g. suspension locations) have
a much greater influence than variations in the suspension variable set or in the inertial
property variable set. Moreover, the effects of the variations of the latter two variable sets

are very close when the percent variation from nominal design variables is less than 30%.
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Thus, for the purpose of improving curving performance, varying geometric parameters

may be an effective approach.

6.5 Summary

The chapter proposes a numerical optimization approach, that can automate the selection
of appropriate design variable values for rail vehicle design with respect to curving perfor-
mance. In the proposed approach, a global optimization algorithm, a GA, is combined with
a multibody dynamics modelling program, A’GEM, so that the generation of governing
equations of motion for the complex realistic nonlinear dynamic rail vehicle models and
the search for optimal design variables can be carried out automatically. To facilitate the
optimization, we choose angle of attack on wheelsets and ratios of lateral to vertical forces
on wheels as the only factors for the objective function.

To demonstrate the feasibility and efficacy of the proposed approach, this approach is
applied to the optimization of a conventional transit rail vehicle with respect to curving
performance using a nonlinear dynamic curving model with 21 DOF. Numerical results
show that the GA is an effective algorithm for rail vehicle design for improving curving
performance when working with A’GEM. The combination of angle of attack and L/V
ratio well reflects curving performance and is suitable as an objective function or a factor
of fitness function. By means of the GA, we can also investigate the sampling distribution
of each design variable, and judge the design variable’s global performance and sensitivity
over its whole feasible domain. Compared with inertial and suspension parameters sets,

the geometric parameter set has the most significant effect on curving performance.



Chapter 7

Multidisciplinary Optimization of
Stability, Ride Quality, and Curving

Performance

7.1 Introduction

The objective of this chapter is to synthesize the techniques discussed in Chapters 4, 5,
and 6, and to show how multidisciplinary optimization methods combining a genetic al-
gorithm, sequential quadratic programming, dynamic mode tracking, and a multibody
dynamics modelling package (A’GEM) can effectively handle the conflicting requirements
of rail vehicle design problems. Lateral stability, curving performance, and ride quality are
assessed using realistic multibody models from A’GEM, and summarized in a multicrite-
ria objective function. By coordinating the conflicting requirements from lateral stability,
curving performance, and vertical ride quality at the system level, the suspension, geomet-
ric, inertial, and control parameters for a rail vehicle with passive and active suspensions
are optimized simultaneously.

The multidisciplinary optimization (MDO) method used in this chapter combines the
17 DOF lateral stability model used in Chapter 4, the 36 DOF vertical ride quality model
used in Chapter 5, and the 21 DOF nonlinear dynamic curving performance model used

in Chapter 6 into a synergistic whole. For the lateral stability problem, the dynamic
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equations for the 17 DOF model of the rail vehicle are generated and linearized by A’GEM:;
the corresponding eigenvalue problem is solved. To evaluate curving performance, A’GEM
1s used to generate and numerically integrate the nonlinear dynamic equations for the 21
DOF nonlinear model of the same rail vehicle. For the problem of vertical ride quality, the
frequency response of the 36 DOF model with car body flexibility to stochastic inputs is
determined by A’GEM.

From the results of these three discipline analyses, a weighted objective function is con-
structed for the three-criteria optimization problem. By solving the optimization problem
for a set of weighting factors, the GA provides a family of Edgeworth-Pareto (EP-) optimal
solutions [42].

7.2 Vehicle System Models

It is important to note that the models for lateral stability, curving performance and vertical
ride quality all correspond to the same design configuration; however, for the ride quality
model the car body flexibility is considered. The rail vehicle’s configuration is shown in
Figure 7.1. For the ride quality model with 36 DOF, as described in Chapter 5, the car
body is divided into 5 identical rigid bodies. The adjacent car body sections are connected
by a group of bending, torsion and shear springs. Each suspension component consists
of a parallel spring and damper, with the stiffness and damping coefficients in the three
coordinate directions. In the secondary suspension, both vertical and lateral directions are
equipped with 2 active components per bogie, respectively. The nominal design variables,
which are adopted from Reference [53], are listed in Table A.2 in Appendix A. Note that
nominal wheel radius of rq (0.356[m]) and conicity A (0.1) as well as the half-distance
between contact points a (0.756[m]) are fixed in the research.

The lateral stability model with 17 DOF is the same as that described in Chapter 4
except that 2 active elements, as shown in Figure 7.1, are introduced per bogie in the
secondary suspension in the lateral direction. A control strategy proposed by Celniker et
al. [27] is adopted. The two active elements per bogie operate out-of-phase to produce

resultant yaw torques on the leading or trailing bogie:

T, =—Kny, — Kyt (7.1)
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Figure 7.1: Rail vehicle configuration for dynamic models

where y; and 1#1 (1 = 2,6) are defined in Chapter 4, and Ky and Ky are the lateral rate
gain and yaw rate gain, respectively.
The 21 DOF curving model and 36 DOF vertical ride quality model with active elements

are exactly the same as those described in Chapters 6 and 5, respectively.

7.3 Multidisciplinary Optimization and Implementa-

tion

7.3.1 Design Optimization Approach

For the multidisciplinary optimization problem formulation, the optimization method used
in Chapter 4, i.e. optimization of the lateral stability, matches the definition of the All-
in-One (A-i-O) method described in Chapter 3. Figure 7.2 shows the A-i-O formulation
for optimizing the lateral stability of the corresponding 17 DOF vehicle model. With the
introduction of active elements, the design variables will be X4 = {S,I, G, A}, where S,
T, (_Z'r, and A are suspension parameters, inertial parameters, geometric parameters, and

control parameters, respectively. As shown in Figure 7.2, with a set of design variables
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X4, the three coupled analysis disciplines, i.e. Multibody Dynamics (A’GEM), Dynamic
Mode Tracking (DMT), and Critical Speed Identification (SQP), will cooperate to find the
corresponding critical speed V,. During the k** iterative search for the critical speed, SQP
sends the potential critical speed V;’;p to A’GEM, assembling the speed V;’;p with relevant
matrices already obtained. A’GEM may obtain the required system matrix A* and offer
the matrix to DMT, then DMT will perform mode tracking and return to SQP the required
real parts of corresponding eigenvalues Re(ui)(VZ;p), for all ¢ = 1,2, ...,n. This process will
continue until the corresponding critical speed V, and corresponding system matrix A, are
determined. At the end of the process, the resulting V., A., and Re(y;)(V.),7 =1,2,...,n,

are returned to the system optimizer, a GA, for further use.

Optimizer
(Genetic Algorithm

Ret;) ( Vag)

i=1,2,..., n

Discipline 1: Discipline 2: . Discipline 3:

. k . Re(,) (V. .
Multibody A > Dynamic Mod ?u')( Sqﬁ Critical Speed
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(A'GEM) (DMT) (SQP)

A

Veap

Figure 7.2: All-in-One (A-i-O) formulation for optimizing the lateral stability

Similarly, the optimization of curving performance discussed in Chapter 6 can also be re-
garded as an application of the A-i-O method, because the program RACES (from A’GEM)
consists of linear/nonlinear wheel/rail geometry models, linear /nonlinear wheel/rail creep
force models, and all these models together with the genetic algorithm and module R’GEM

(from A’GEM) for automatic generation of the equations of motion make the system a syn-
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ergistic whole. In this MDO method, once the required design variables are provided to the
above coupled models or analysis disciplines, a complete multidisciplinary analysis (MDA)
1s carried out via a fixed-point iteration with those values of the design variables to ob-
tain the system (MDA) output variables that are later utilized for evaluating the objective
function value and the required constraints.

As shown in Figure 7.3, three boxes represent three disciplines, i.e. the vertical ride
quality, curving performance, and lateral stability. For the discipline of the lateral stability,
the three subdisciplines or subsystems (multibody dynamics, dynamic mode tracking, and
critical speed identification) and their coupling relations are also illustrated. With the
systems shown in Figure 7.3, the individual discipline feasible (IDF) method is used to
synthesize the three disciplines at the system level and the A-i-O method is applied, for
example, to the discipline of the lateral stability for making its three subdisciplines a
synergistic whole. At the system level, a GA is used as the optimizer. Due to the fact that
the formulation method used here is a combination of the IDF and the A-1-O methods, we
call it a hybrid MDO method. With the hybrid MDO method and the selected optimization
algorithms, the optimal passive and active design variables are searched in the design space
so that the rail vehicle’s lateral stability, vertical ride quality, and curving performance can
be optimized simultaneously.

As shown in Figure 7.3, for the three analysis disciplines of the lateral stability, curv-
ing performance, and vertical ride quality, the corresponding analysis solvers are denoted
as V., C,, and R, respectively. A comparison of Figure 7.3 with Figure 3.2 reveals that
in the case of Figure 7.3, the specific analysis variables (vector Xy) representing com-
munication, or coupling, between analysis disciplines vanish. Furthermore, there are no
explicit interdisciplinary mappings (vector G) among the three disciplines. However, the
three disciplines, are coupled by means of the original design variable set X; and their
implicit interdisciplinary mappings are coordinated and manipulated by the optimizer at
the system or discipline level. If we treat the three disciplines as three black boxes, the
optimization method shown in Figure 7.3 is equivalent to the “Multi-Criteria Multi-Model
Optimization (MMO)” method proposed by Bestle and Eberhard [18]. Obviously, based
on the above analysis, the so called system-level MMO method is a specific case of the IDF
method.
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Figure 7.3: Hybrid MDO method combining IDF and A-i-O for optimizing the lateral

stability, curving performance, and vertical ride quality simultaneously
7.4 Optimization Problem and Implementation

7.4.1 Objective Function, Constraints and Design Variables

For the combined rail vehicle model including the lateral stability model, dynamic curving
model, and vertical ride quality model, the design variables consist of suspension stiffness
and damping coefficients (S), inertial property parameters (I), geometric parameters (G),
and active control parameters (A). The total number of design variables reaches 33 in-
cluding 29 vehicle system parameters and 4 active control parameters. The vehicle system
parameters are listed in Table A.2 in Appendix A. Note that the parameters ks, cop, a,

and A listed in Table A.2 are not selected as design variables. The four control parameters
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are Ky, Ky, Kp1, and Ky (see equation set (5.20) and equation (7.1)).
For the lateral stability discipline, based on equations (4.12) and (4.13), the objective

function and constraints may be expressed as

(7.2)

mazimize Vo(S,I,G,A,V)
subject to Re(u;)(S,I,G,A,V) <0, i=1,2,...m

For the ride quality discipline, the function Ag, to be minimized is a combination of
R.M.S. acceleration values at different points of the car body and secondary suspension

working spaces:

Ap = [ /w 5 (@) dw] L vmaz]0, ( [ /w “ 8 () dw] o he)] (7.3)

1 1

where i = 1,2, ....5, v is a weighting fact, and Ap is a function of design variables S, I, G,
and A. The other symbols are defined in Section 5.5 of Chapter 5.

For the curve negotiation discipline, the function to be minimized is a combination of
angles of attack A,,, and L/V ratios L,. Based on equation (6.1), the function can be
described as:

minimize Emax(| @ |) + nma(| L(51GA) ) (7.4)
where i = 1,2,3,4, k = 1,2,...,8, Ay and L, are the angle of attack and L/V ratio
when A,,:(S,I,G,A) and L,.(S,I, G, A) take nominal values, respectively, and ¢ and g
are weighting factors.

Obviously, the design optimization of the combined dynamic model with respect to
the above three criteria, which are described in equations (7.2), (7.3), and (7.4), leads
to a multicriteria optimization problem. Based on the concept of scalarization discussed
in Chapter 3, by introducing an appropriate utility function, we can obtain a weighted

objective function as follows:

)+ nmaa(| 25 )} + va(42) + va( ) (7.5)

minimize vi{lmaz(| %
ant

where vy, v5, v3 are the weighting factors, : = 1,2,3,4, k = 1,2, ....8, and Ap and V, are

the nominal values of Ar and V, respectively.
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Figure 7.4: Schematic representation of the implementation of the optimization problem

7.4.2 Implementation of the Optimization Problem

As shown in Figure 7.4, the hybrid MDO method combining IDF and A-i-O discussed

previously is implemented using:
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e MechaGen program (a GA),

E04UCF routine (a SQP) from the NAG library,

Dynamic Mode Tracking (DMT) technique,

A’GEM ‘Stability’ module (STABLE program for lateral stability analysis),

A’GEM ‘Ride’ module (RLRIDE program for vertical ride quality analysis), and

A’GEM ‘Curve’ module (RACES routine for curving performance analysis).

As shown in Figure 7.4, each set of design parameters of a population generated by the
GA 1s forwarded to the corresponding A’GEM module for calculating the required perfor-
mance indices for curve negotiation, vertical ride quality, and lateral stability. With the
given set of design variables, the corresponding programs of A’GEM generate the required
equations of motion or system matrices automatically. For the cases of curve negotiation
and vertical ride quality, after numerical integration in the time domain and necessary
transformation in the frequency domain, respectively, the performance indices can be ob-
tained directly. For lateral stability, however, with the system matrix generated in the form
of equation (4.4), the SQP and DMT are used to determine the critical speed. Then the
corresponding fitness value is obtained by converting the vector optimization problem into
a scalar optimization problem using the concept of scalarization by introducing an utility
function in the format of (7.5). Note that the scalarization is performed at the system level
so that the performance indices of the three disciplines (i.e. the lateral stability, curving
performance, and vertical ride quality) are coordinated and manipulated at the system
or discipline level by the genetic algorithm. It should be noted that the total number of
fitness values is the same as that of the individual design parameter sets in the popula-
tion. At this point, if the convergence criteria are satisfied, the calculation terminates,
otherwise these fitness values are returned to the GA. Based on the returned fitness values
corresponding to the given sets of design variables, the GA produces the next generation
of design variable sets using reproduction, crossover and mutation. This procedure repeats

until the optimized design variable set is found.
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Table 7.1: Optimized suspension variables (permitted to vary by +£20% from their nominal

values) }
k1o [N/m] | kiy [N/m] | k. [N/m] | c1o [N/m/s] | c1y [N/m/s]
Nominal Values | 3.1500 - 107 | 3.9600 - 10° | 2.1000 - 10° 666.00 5220.00
Upper Bounds | 3.7800 - 107 | 4.7520 - 10° | 2.5200 - 10° 799.20 6264.00
Lower Bounds | 2.5200 - 107 | 3.1680 - 10° | 1.6800 - 106 532.80 4176.00
Cp Optimized | 2.5200 - 107 | 3.1680 - 10° | 2.2964 - 10° 654.80 4212.80
Ls Optimized | 3.7800 107 | 3.1802-10° | 2.5148 - 10° 736.2 4218.90

¢z [N/m/s] | kay [N/m] | koo [N/m] | cay [N/m/[s] | c2z [N/m/s]

Nominal Values 9910.00 1.9700 - 10° | 6.8700 - 10° | 4.270 - 10* 4.270 - 104
Upper Bounds 11892.0 2.3640 - 10° | 8.2440 - 10° | 5.124 -10* 5.124 - 10*
Lower Bounds 7928.0 1.5760 - 10° | 5.4960 - 10° | 3.416 - 10* 3.416 - 10*
Cp Optimized 8300.0 2.3410 - 10° | 5.5713 - 10° | 4.148 - 10* 3.586 - 104
Ls Optimized 10164.0 2.3440 - 10° | 7.7381 -10° | 5.115-10* 3.620 - 104

1 See Table A.2 in Appendix A for the definitions of the symbols in the table.

7.5 Results and Discussion

7.5.1 Conflicting Requirements on Design Variables

In Chapters 4, 5, and 6, the corresponding vehicle models are optimized with respect to
lateral stability, vertical ride quality, and curving performance, respectively. Since the
design criteria for these optimization problems are different, they impose different or even
conflicting requirements on the specific design variable or variables. Table 7.1 offers selected
numerical results based on the optimization of lateral stability (L,) and the optimization
of curving performance (C,). Notice that the vehicle model used for optimization of the
lateral stability and that used for optimization of curving performance share the identical
vehicle configuration. For both optimization problems, 10 design variables (i.e. the relevant
stiffness and damping coefficients for the secondary and primary suspensions) are permitted
to vary by £20% from their nominal values.

Table 7.1 shows the optimized design variables from both optimization problems and
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the corresponding nominal and bound values for the design variables. Since primary sus-
pension parameters have much more significant effect on curving performance and lateral
stability of rail vehicles than secondary suspension parameters [35, 139], the following anal-
ysis places emphasis on the primary suspension parameters. As shown in Table 7.1, for
the curving performance optimization problem, among the optimized primary suspension
parameters, the longitudinal, lateral, and vertical damping coefficients, ¢, ¢1y, and ¢y,
take the values lower than the corresponding nominal values, and the longitudinal and
lateral spring stiffness coefficients, k;, and ki, take the corresponding lower bound val-
ues. However, for the lateral stability optimization problem, among the optimized primary
suspension parameters, except for the lateral spring stiffness and damping coefficients, ki,
and ¢y, the other parameters either take the values higher than the corresponding nominal
values or take the corresponding upper bound values. Thus, the lateral stability and curv-
ing performance have conflicting requirements on the primary suspension design variables.
These optimization results are consistent with previous observations by Wickens[139] that
suspensions that are soft in the lateral and longitudinal direction tend to hunt more readily
on tangent track and become unstable even at low speeds. However, such suspensions al-
low the wheelsets to follow curved track with decreased wheel wear and flange forces. The
exception, i.e. the lateral spring stiffness and damping coeflicients (ki, and cyy), to the
observation by Wickens may be interpreted by the fact that at values above certain values,
the lateral stability becomes relatively insensitive to these parameters. This exception was
once reported by Hedrick et al. [74].

Besides the above conflicting requirements on suspension parameters, the lateral sta-
bility and curving performance also have conflicting requirements on geometric, inertial, or
even active design variables. We will see in the following subsection that the hybrid MDO

optimization approach offers an effective way to resolve these conflicting requirements.

7.5.2 Results of the Hybrid MDO Optimization Problem

The combined vehicle model is optimized with respect to three criteria, lateral stability,
curving performance, and vertical ride quality as shown in the objective function (7.5). The

constants ¢ and n are both set to 1.0. To facilitate the implementation of the optimization

Aani Lv M _ A Vc
e ) + max(| i,,z ) (1 =1,2,3,4, and k = 1,2,...,8), ﬁ, and £ are

problem, max(|
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defined as curving performance index, lateral stability performance index, and vertical ride
quality index, respectively. To obtain a whole picture of the EP-optimal set, three sets of
weighting factors ({1, v, v3}) are selected and the corresponding optimizations are carried
out. The three selected sets of weighting factors take the values of {1,1,1}, {1, 1,2}, and
{1,1,4}, respectively. A total of 29 parameters including geometric parameters, inertial
property parameters, and suspension stiffness and damping coefficients are chosen as design
variables. These design variables are permitted to vary by +20% from their nominal values.

Figures 7.5, 7.6 and 7.7 illustrate selected results from the hybrid MDO optimization
combining IDF and A-1-O. The individual designs from the GA are represented by circles,
which tend to cluster as the GA converges to the optimal design. Plotted in Figure 7.5
is the vertical ride quality performance index versus lateral stability performance index.
The clustered data corresponding to the EP-optimal set is almost horizontal, which shows
that the optimized vertical ride quality is mainly independent of lateral stability. This
i1s also true, as shown in Figure 7.6, for the relationship between vertical ride quality
and curving performance. The observation about the relationship between vertical ride
quality and lateral stability and that between vertical ride quality and curving performance
demonstrates the conclusion [54] that a relatively weak coupling exists between the vertical
and lateral motions of a rail vehicle.

However, Figure 7.7 shows a distinct trade-off in the relationship between lateral sta-
bility and curving performance. The EP-optimal set in the densely-clustered region shows
that lateral stability can only be improved at the expense of curving performance, and
vice-versa. No one criterion is favored over another; instead, the designer obtains explicit
information about the trade-offs between lateral stability and curving performance. By
running several more optimizations with different sets of weighting factors, one can get an
even clearer picture of the EP-optimal set. Although this is a computationally-expensive

process, the results are of obvious importance to rail vehicle designers.

7.6 Summary

In this chapter, a hybrid MDO optimization method, which is a combination of the individ-
ual discipline feasible (IDF) method used at the discipline level and the All-i-One (A-i-O)



