

Genetic Algorithms: A Fundamental Component
of an Optimization Toolkit for Improved


Engineering Designs


Siu Tong1 and David J. Powell2


1 Engineous Software, Cary, North Carolina
tong@engineous.com


2 Elon University, Campus Box 2101, Elon, North Carolina 27244
dpowell2@elon.edu


Abstract. Optimization is being increasing applied to engineering de-
sign problems throughout the world. iSIGHT is a generic engineering
design environment that provides engineers with an optimization toolkit
of leading optimization algorithms and an optimization advisor to solve
their optimization needs. This paper focuses on the key role played by the
toolkit’s genetic algorithm in providing a robust, general purpose solution
to nonlinear continuous, mixed integer nonlinear and integer combinato-
rial problems. The robustness of the genetic algorithm is demonstrated
on successful application to 30 engineering benchmark problems and the
following three real world problems: a marine naval propeller, a heart
pacemaker and a jet engine turbine airfoil.


1 Introduction


This paper describes a generic engineering design environment, iSIGHT, used
by the Automotive, Aerospace, Industrial Manufacturing and Electronic indus-
tries in the United States, Japan, China, Korea and Europe [1]. Within these
industries, the designer’s knowledge of optimization varies from that of novice
to expert. To meet the needs and challenges of a wide variety of industries and
the wide disparity in designer’s optimization expertise, iSIGHT provides an Op-
timization Toolkit. This paper focuses on the role of the Genetic Algorithm in
iSIGHT’s Optimization Toolkit and its application to three design problems.


The paper starts with a description of the optimization problem in engineer-
ing and presents a generic problem formulation. Thirteen well known packages
that represent the major numerical and exploratory algorithms are benchmarked
against a suite of thirty engineering problems that represent nonlinear continu-
ous, mixed integer and integer combinatorial problems. The benchmark results
are analyzed to demonstrate the strengths and weaknesses of each package and
to demonstrate the critical role that genetic algorithms serve to the toolkit by
providing a single algorithm to solve any nonlinear, constrained continuous or
mixed integer problem. The benchmark conclusions are supported by describing
the successful application of genetic algorithms to three customer applications
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for the design of a marine naval propeller, a heart pacemaker and a jet engine
turbine airfoil. The paper concludes with lessons learned in the development and
application of iSIGHT.


2 The Optimization Problem


During the past twenty years, product design and analysis has been routinely
done with computer simulation programs developed either in house or by a
commercial vendor. The designer supplies the design parameters for the product
as input into one or more computer simulation programs, runs the program and
then analyzes the results. If the results do not meet the design goals then the
designer changes the design parameters and repeats the process. This process is
typically called the design, evaluate and redesign process. The challenge to the
designer is to find the best design in as short a time period as possible.


These design optimization problems are commonly found in manufacturing
industries and can be represented by the following mathematically formulation.


Objective function: Minimize y = f(X) where X = {x1, x2, ..., xn}
Subject to:


Inequality constraints: gkb(X) <= gk(X) <= gku(X)
where k = 0, 1, · · · , K


b is lower constraint boundary
u is upper constraint boundary


Equality constraints: gle(X) = hl(X)
where l = 0, 1, ..., L


e is the constraint boundary
Side constraints: xib <= xi <= xiu where xi is real or integer


or
xi is a member of a discrete set of values


This formulation supports the specification of unconstrained and constrained
problems with a single objective. (Note: Multiple objectives are automatically
converted into a single weighted objective.) The constrained problems can have
either or both inequality and equality constraints. The design parameters can
be combinations of type real, integer or discrete. Depending on the mixture, the
problem formulation can be considered a continuous nonlinear problem, a pure
integer combinatorial problem or a mixed integer nonlinear problem (MINLP).


Non-linear optimization technologies are a natural fit to aid the designer but
their successful application has been limited for many reasons to include:


1. The need to modify the simulation source code to interact with the opti-
mization algorithm. If the simulation code is from a third party vendor then
the source code may not be available.


2. Most simulation codes were not written with optimization in mind and would
require significant reprogramming [2].
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3. The difficulty in identifying which optimization algorithm(s) is appropriate
for the product. For example, the domain modeled by the simulation code
may be discontinuous, non convex, highly nonlinear, poorly scaled, have
limited precision in output values, have parameters with different orders of
magnitude, and have a mixture of discrete, integer and real parameter design
variables.


To overcome these limitations and still solve real world problems, the authors
decided to create a toolkit consisting of best-of-breed optimization algorithms
that would work together in a coordinated manner. Accordingly, the first step
was to identify the best algorithms for each class of industrial problems.


2.1 Optimization Algorithms


In order to identify the most suitable algorithms to be included in the opti-
mization toolkit, a number of analytical and real world problems were set up as
benchmarks. Each package was benchmarked to determine how often it achieved
the known optimum (i.e. robustness) and the number of function evaluations
needed to achieve an optimal result. Table 1 lists the packages, their underly-
ing algorithms, whether they are gradient based or non gradient based, whether
they support mixed integer, and their number of basic and advanced tuning pa-
rameters. A value of No for Mixed Integer indicates that the algorithm applies
only for continuous problems. A value of Yes followed by (BB) indicates that the
algorithm is based on a branch and bound algorithm and the underlying code
must be able to support both real and integer values for integer parameters. A
value of Yes not followed by (BB) for Mixed Integer indicates that the algorithm
can work directly with integer values. The Tuning Parameters for each algorithm
are set to default values recommended by either the implementer or expert users.
The Basic Tuning Parameters are those most likely to be tuned by a user. The
Advanced Tuning Parameters are those usually manipulated by only an expert
in optimization.


Table 1 lists both numerical optimization algorithms and exploratory genetic
algorithms used in this study. For certain algorithms (e.g., Genetic Algorithms
and Sequential Quadratic Programming), multiple packages are listed. The ra-
tionale for testing multiple packages for an algorithm is due to the importance
of the implementation on performance and robustness.


2.2 Benchmarks and Analysis


In 1977, Sandgren established a test set of single objective, nonlinear, continu-
ous engineering problems with different numbers of design variables, inequality
constraints and equality constraints [17]. Each problem had a given starting
point and a known solution. Twenty eight of his thirty problems and two mixed
integer nonlinear problems were used to benchmark the iSIGHT optimization
algorithms. The two MINLP problems are a coil compression spring, San 31
[18], and a cantilevered beam, Van 32 [22]. Table 2 lists the benchmark data
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Table 1. The optimization packages and their associated characteristics, technique
and tuning parameters.
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1. GENEsYs [7] Genetic Algorithm No Yes 2 11
2. Ga2k [8] Genetic Algorithm No Yes 3 7
3. NSGA-II [6] Genetic Algorithm No Yes 2 4
4. ASA [9] Simulated Annealing No Yes 8 7
5. Hooke [11] Hooke Jeeves No Yes 2 2
6. ADS-EP [10] Exterior Penalty Yes No 6 22
7. ADS-SLP [10] Sequential Linear Programming Yes No 6 25
8. Donlp [12] Sequential Quadratic Programming Yes No 3 6
9. NLPQL [13] Sequential QuadraticProgramming Yes No 4 3
10. MOST [14] Sequential Quadratic Programming Yes Yes (BB) 3 5
11. LSGRG [15] Generalized Reduced Gradient Yes No 3 5
12. ADS-MFD [10] Method of Feasible Directions Yes No 5 11
13. ADS-MMFD [10] Modified Method of Feasible Directions Yes No 5 25


for these thirty test cases. The relative error for the starting point, the opti-
mization algorithm that achieved the published optimum in the fewest function
evaluations, the relative error achieved by the ga2k genetic algorithm and the
percentage of relative error reduced by the genetic algorithm from the starting
point are shown. The calculation of relative error is shown in equation 1. The
penalty is the sum of constraint violations.


RelativeError =
|current objective − published optimum|


|published optimum| + penalty (1)


The key results revealed by the benchmarks are:


1. No single algorithm worked the best in all test cases. In fact, 7 different
algorithms proved to be the best for selective test cases.


2. If one had to pick a single algorithm to try for any optimization problem
then the genetic algorithm would be a very robust and sound choice. In the
benchmarks, the relative error of the optimum point found by ga2k averaged
a reduction in relative error from the starting relative error by over 85%. This
is a significant result. Keep in mind that the goal of the designer is to find the
best design that meets customer constraints within the design deadline. The
genetic algorithm found a feasible design on 29 of the thirty test cases. On
only Sandgren 27 did the genetic algorithm fail to achieve a better design.


3. Genetic algorithms require one to two orders of magnitude more function
evaluations than numerical algorithms.


4. Genetic algorithms are clearly superior to numerical optimization techniques
on mixed integer problems when the simulation program does not accept non
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Table 2. Benchmark results on test suite
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Sandgren 1 5 0 10 0 1.6192 YES NLPQL 32 0.03096 0.98
Sandgren 2 3 0 2 0 0.697 YES GRG 25 0.0003 0.99
Sandgren 3 5 0 6 0 0.0119 YES DONLP 32 0.00799 0.32
Sandgren 4 4 0 0 0 19192 YES ADS-EP 184 0.378 0.99
Sandgren 5 2 0 0 0 24.2 YES GRG 166 0.026 0.99
Sandgren 6 6 0 0 4 1961.4 NO DONLP 96 0.00528 0.99
Sandgren 7 2 0 1 0 53.554 NO NLPQL 36 0.00031 0.99
Sandgren 8 3 0 2 0 0.6755 NO NLPQL 21 0.00083 0.99
Sandgren 9 3 0 9 0 0.7892 YES GRG 1692 0.27248 0.65
Sandgren 10 2 0 0 0 1468.7 YES MMFD 32 5.7E-05 1.0
Sandgren 11 2 0 2 0 0.4236 YES MMFD 18 0.00419 0.99
Sandgren 12 4 0 0 0 0.024 YES NLPQL 61 0.00112 0.95
Sandgren 13 4 0 3 0 0.0456 YES GA2K 10000 0.0 1.0
Sandgren 14 15 0 5 0 73.192 YES DONLP 412 7.75308 0.89
Sandgren 15 16 0 0 8 18.212 NO NLPQL 141 7.80919 0.57
Sandgren 16 3 0 14 0 0.253 YES NLPQL 85 3.1E-05 0.99
Sandgren 17 12 0 3 0 2.4394 NO GRG 132 0.29052 0.88
Sandgren 18 7 0 14 0 0.7315 YES MOST 97 0.4954 0.32
Sandgren 19 8 0 4 0 0.6672 NO MOST 136 0.17183 0.74
Sandgren 20 8 0 6 0 1.1829 NO MOST 155 0.17048 0.85
Sandgren 21 13 0 13 0 4.0012 NO MOST 1196 1.02186 0.74
Sandgren 22 7 0 4 0 647.91 NO NLPQL 179 0.25652 0.99
Sandgren 24 4 0 5 0 5.6398 YES NLPQL 56 0.79119 0.85
Sandgren 25 6 0 4 0 36.954 YES NLPQL 180 0.71947 0.98
Sandgren 26 3 0 0 1 211.5 NO GRG 121 0.47662 0.99
Sandgren 27 48 0 0 2 1.1545 YES MOST 4708 1.1545 0.0
Sandgren 29 10 0 14 1 2.8149 YES MOST 442 1.32457 0.52
Sandgren 30 19 0 1 11 6809.3 NO NLPQL 132 5157.12 0.24
Sandgren 31 1 2 8 0 90.069 NO GA2K 10000 0.48947 0.99
Van 32 4 6 11 0 2.5544 NO GA2K 10000 0.11022 0.95


integer values for integer parameters (e.g., problems Sandgren 31 and Van
32).


5. Genetic algorithms are least effective on problems with equality constraints
(e.g. Sandgren problems 15, 27, 29 and 30).


This section describes the genetic algorithm in more detail as they are not
as well known and not as well tested in the engineering community. Three ge-
netic algorithm packages, GENEsYs, ga2k, and NSGA-II were benchmarked. All
packages supported the parallel evaluation of each design in the population.


GENEsYs’ default settings are for elitism, binary gray encoding, linear rank
based selection with a maximum fitness of 1.1 and a minimum fitness of .9, two
point crossover with a .6 crossover rate, standard mutation with a .01 mutation
rate and seeding. The first population is seeded with the initial design point,
20% small creep, 20% large creep, 20% boundaries and random selection. With
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small creep, large creep and boundary each design parameter has a 50 percent
chance of selection. If the parameter is selected with small creep, the parameter
will be randomly varied by 0-3%. If selected by large creep the parameter will be
varied by 0-10% and if selected with boundary, the parameter will be randomly
set to either the upper or lower bound. The rationale for the small and large
creep operators is to leverage the implicit knowledge provided in the initial user
supplied design point. The boundary seeding leverages the heuristic that many
design parameters are active at their boundaries at the optimal design point.


ga2k is a distributed genetic algorithm [16]. The package’s default settings
are for elitism, binary gray encoding, tournament based selection, 10 subpopu-
lations of size 10 with a migration rate of .5 at every 5th generation, two point
crossover with a 1.0 crossover rate, standard mutation with a .01 mutation rate
and no seeding. This algorithm significantly outperformed GENEsYs in the set
of benchmark test cases described in Section 2.2.


NSGA-II is a multiobjective genetic algorithm. The package’s default settings
are for elitism, real encoding, tournament selection, a population size of 100,
100 generations, SBX crossover at a rate of .9, real mutation crossover at a
rate of 1/(number of design variables), a crossover distribution index of 20 and
a mutation distribution index of 100. The NSGA-II algorithm was similar in
performance to ga2k. In the 30 benchmarked test cases, it was better in 14,
worse in 9 and equal in 7.


The benchmark tests are helpful but are not completely consistent with the
types of applications encountered in industry. They are lacking in the following
areas:


1. Their execution time is short compared to the times required of simulation
programs which take anywhere from 1 minute to a few hours to execute a sin-
gle evaluation. The simulation programs are typically thousands or hundreds
of thousands of lines of code.


2. The continuous benchmark codes are relatively smooth, well behaved land-
scapes. In practice, the simulation programs are not smooth, have many
discontinuities introduced by if statements, casts and parameter settings. In
addition, the programs frequently provide less precision in their output pa-
rameters then desired by finite difference algorithms. For example, results
may be provided to two digit decimal accuracy where numerical finite gra-
dient algorithms typically are looking at changes in the 4th or 5th decimal
digit.


3. The design parameters are typically not independent variables.


These differences make the results of the benchmark only a guideline rather
than an absolute measurement of the usefulness of each algorithm in real world
situations.


The iSIGHT design environment [1] was developed to provide an industrial
solution to this design optimization problem. It has a process integration toolkit
that allows simulation codes to be coupled into the environment without source
code or reprogramming. The iSIGHT optimization toolkit, which is discussed
in the next section, supplies a variety of algorithms which make different as-







Genetic Algorithms: A Fundamental Component of an Optimization Toolkit 2353


sumptions about the design space. An optimization advisor was developed to
recommend the appropriate algorithms to novice users.


3 Optimization Toolkit


The iSIGHT Optimization Toolkit provides a number of industry leading im-
plementations of optimization algorithms and a mechanism to provide an opti-
mization plan from an interdigitation of individual algorithms to solve complex
problems.


3.1 Strength and Weaknesses of Optimization Packages


More than a dozen packages from both public and private domains are provided
in the toolkit and in a few cases multiple implementations of each. There are
advantages and disadvantages to having this amount. The advantages are:


1. Each algorithm has one or more strengths that enables it to find a better
design than another algorithm for certain design space conditions. For ex-
ample, Exterior Penalty and Sequential Quadratic Programming work well
when started from an infeasible starting point, GRG works well with equality
constraints and Genetic Algorithm works well with non convex, multi-modal
or mixed integer problems.


2. Some algorithms are extremely efficient for certain design space conditions.
For example, gradient based techniques work well in smooth, unimodal, con-
vex design spaces with twenty or fewer design variables.


3. An optimization expert has access to an assortment of algorithms, packages
and tuning parameters to best match the characteristics of the algorithm to
the characteristics of the product design space.


4. Each package has proven itself on at least one user application and is
maintained for backward compatibility. However, certain packages such as
GENEsYs have not been routinely updated by the developer and have fallen
behind other packages such as ga2k in performance. If a designer selects one
of these packages (e.g., GENEsYs) then the designer is notified that the se-
lected package is not recommended and they should consider an alternative
package (e.g., ga2k).


The disadvantages are:


1. For a novice user, the choices are confusing and intimidating. In fact, the
choice of more than a dozen algorithms with close to 200 tuning parameters
could be a larger optimization problem then the problem the designer is
trying to solve. In this case, the problem of changing parameters has merely
been transferred from the product parameters to the optimization parame-
ters.


2. The diagnostic tools to determine how the package is performing are different
for each package. A user experienced in one package cannot easily leverage







2354 S. Tong and D.J. Powell


his experience to work with another package. As a result, designers will
oftentimes use a single package regardless of the characteristics of the design
space.


These disadvantages are overcome in two ways. First, iSIGHT has an opti-
mization advisor to automatically pick packages for the user. (The advisor will
be discussed in section 3.2). Second, the genetic algorithm is a general pur-
pose algorithm that will work in any design space. A key lesson learned is that
although the genetic algorithm cannot compete with numerical techniques in
terms of function evaluations for smooth optimization problems, it will always
find some improvement and with todays computing environment many of the
function evaluations can be done in parallel.


iSIGHT actively supports only a handful of the best performing algorithms
listed in Table 1 and deprecates the older or poorer performing packages. How-
ever, iSIGHT provides a set of application programming interfaces that allow the
designers to couple their own package. In addition, iSIGHT supports Interdigita-
tion which allows the user to create a hybrid technique from one or more existing
techniques [21]. Interdigitation can be as simple as a sequential execution of an
exploratory genetic algorithm followed by an exploitive numerical optimization
or can have complicated scripting with conditional branches and loops among
the optimization techniques.


3.2 Optimization Advisor


While the large number of algorithms with direct access to their tuning parame-
ters provides a powerful tool for the expert in optimization, it is overwhelming to
the majority of designers. In fact, less than a fraction of 1 percent of users using
optimization are Operations Research professionals [19]. To address the needs
of this vast majority of novice designers, iSIGHT provides an optimization ad-
visor that automatically selects the best two optimization algorithms based on
its analysis of the problem’s characteristics. Alternatively, the user can view a
priority listing of the recommended optimization packages. For example, on the
Van32 benchmark which has a low number of design variables, a low number
of design constraints, mixed types of parameters, small variable variance, no
equality constraints, a discontinuous design space, non linear simulation codes,
an initial infeasible design, low execution time, and no availability of simula-
tion code gradients, the optimization advisor recommended a combination of
a genetic algorithm, ga2k, followed by adaptive simulated annealing. For this
example, the priority ranking of applicable optimization techniques was: genetic
algorithm, adaptive simulated annealing, Hooke Jeeves, and MOST. The contin-
uous numerical optimization techniques are not applicable and are not listed by
the advisor for this mixed integer formulation. On the other hand, in a continu-
ous design space with real parameters and high execution time of the simulation
code, numerical optimization algorithms will have the highest priority.


During the past three years of iSIGHT application to a variety of real world
problems, the genetic algorithm has been the optimization advisor’s most fre-
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quently recommended technique. In many cases, it is not the highest recom-
mended technique but its frequent recommendation recognizes the robustness of
the technique.


4 Applications


This section demonstrates the robustness of the genetic algorithm in its success-
ful application to three different types of real world problem formulations. The
first application is a mixed integer design, the second is a pure integer combina-
torial problem and the last is a continuous parameter problem in a multimodal
design space.


4.1 Marine Propeller Design


Numerous competing design and performance parameters must be considered
in propeller design. A properly designed propeller must balance the competing
requirements characterized by cavitation, cost, efficiency, noise, strength, thrust,
and vibration. The design space contains many local optimal designs.


Several codes are required for the preliminary design. The designers used the
process integration toolkit to integrate six simulation codes whose function in
the preliminary design process can be described as follows:


– Compute the mean and harmonic wake velocity components
– Calculate propulsive efficiency, tip vortex and cavitation inception speed
– Determine structural stress and weight
– Find surface cavitation inception speeds
– Compute vibratory forces and moments


The mixed integer design variables for this problem include the propeller
diameter, speed (RPM), and several spline parameters that characterize the
chord distribution, thickness distribution, and loading distribution. The design
goal was to minimize the propeller weight, subject to limits on the minimum
propulsive efficiency, minimum cavitation inception speed, minimum tip vortex
speed and a maximum allowable stress.


Since the problem was mixed integer, the genetic algorithm was used with the
default tuning parameter settings. A manual design was used as the baseline for
comparison with the genetic algorithm solution. Figure 1 compares the chord
distributions and propeller thickness distributions of the baseline and genetic
algorithm optimized designs. The genetic algorithm design met all the design
constraints and propulsion goal of 0.68 while reducing the weight 181 lbs below
the baseline design weight. The net result was an improvement of 17% in the
weight.


4.2 Heart Pacemaker Antenna Design


This case study details the design of an implantable patch antenna for a human
heart pacemaker. Enabling two-way communication with pacemakers will make







2356 S. Tong and D.J. Powell


Fig. 1. Chord distribution of Baseline and genetic algorithm designs for marine pro-
peller


it possible to download information about the condition of the pacemaker and
the patients heart and upload improved instrument settings. Fitting pacemakers
with antennas is challenging, because either the wavelength is too short to pen-
etrate the body or the antenna is so large that it is impractical to implement.
Antennas are normally 5 or 6 inches long to be used at the required frequency,
long enough that they protrude into the body and risk infection or lung punc-
tures. Researchers at Utah State University solved this problem by developing a
two-inch-square 433 MHz patch antenna small enough to fit on a standard pace-
maker battery pack [20]. The designers set out to design a 50-ohm antenna with
the required performance characteristics that could fit onto the battery pack of
the device, which would make it virtually noninvasive


Electromagnetic finite difference time domain software called XFDTD from
Remcom Incorporated was used to evaluate the performance of specific designs.
The design team worked on the problem and quickly realized that the design
space was very sparsely populated with feasible designs that met all the strin-
gent requirements. This made the discovery of an acceptable (much less optimal)
patch antenna geometry a very difficult task. After 9 months of manual iteration
they finally developed two optimized designs that met the requirements of the
project - a u-shaped patch antenna and a spiral shaped antenna. But the de-
sign team recognized that the design would require numerous subsequent design
iterations to meet additional requirements that arose as the project evolved.


iSIGHT was linked with the XFDTD simulation package. The design pa-
rameters included the length of the antenna and the locations of the feed and
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Fig. 2. Comparison of best antenna designs found by iSIGHT and manual design


ground pins. Design constraints on the maximum antenna length, pin locations,
and impedance requirements were specified. The design objective was to mini-
mize the antenna length and meet the target frequency of 433 MHz subject to
the various design constraints. A genetic algorithm was used as this was a com-
pletely integer combinatorial problem. The genetic algorithm found a solution
that met all the requirements and was better than the best manual designs. Fig-
ure 2 shows a comparison of the iSIGHT and manual trial-and-error best designs.
The antenna length of the iSIGHT optimized design, shown on the left, was 128
mm compared with a length of 132 mm found by the 9 month trial-and-error
method.


4.3 Jet Engine Airfoil Turbine Design


Researchers at Brigham Young University (BYU) recently completed a complex,
multi-discipline design optimization of a cooled jet engine turbine airfoil. The
optimization required running multiple software codes to generate a parametric
solid model, and execute aerodynamic and structural analyses.


The parametric model was generated in Unigraphics (UG). This model was
used as the foundation for the design and subsequent optimization. The struc-
tural analysis was performed in ANSYS while the GAMBIT and FLUENT soft-
ware tools were used to compute the aerodynamic analysis.


The airfoil geometry was created from four sections, each section with seven
parameters, for a total of 28 design variables. The design parameters or variables
include the chord length, leading and trailing angles, leading and trailing radius,
leading and trailing wall thickness and trailing radius thickness. The objectives of
the optimization were to minimize the pressure loss and weight and to maximize
the safety factor based on the stress in the airfoil subject to stress constraints
and geometric limits.


The analysis for this problem was highly complex and required extremely long
computational times to solve. The genetic algorithm available in iSIGHT was
selected to complete the optimization study. The genetic algorithm was chosen
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for its abilities to search for a set of designs, explore the entire multi-modal design
space, and run in parallel. A population size of 50 was used and 100 generations
were run. The optimization was run automatically in parallel by iSIGHT on a
64 processor SGI and required approximately 20 hours to complete. 65 solutions
were selected from the 5000 designs generated to form the pareto set. This set
of 65 designs showed a decrease in the blade volume ranging from 2% to 19%,
an increase in the safety factor of 2% to 8%, and pressure loss decreases of 2%
to 38%.


5 Lessons Learned


The iSIGHT generic engineering design environment described in this paper has
had a genetic algorithm as part of its optimization toolkit since 1990. The genetic
algorithm has played a fundamental role in the robustness of the toolkit when
applied individually as shown in the three real world applications discussed in
this paper or when used with interdigitation to design an aircraft engine turbine
[23]. It is the robustness of the genetic algorithm and its ease of use that makes it
especially attractive to the majority of users who are not experts in optimization.
The concept of the algorithm is easy to understand and there are no limiting
design space assumptions of parameter independence or continuity to worry
about. The genetic algorithms key advantage is it applies to almost every type
of problem. This claim is supported by the genetic algorithm finding improved
designs on 29 of 30 benchmarked engineering problems. This high success rate
of 96% makes the genetic algorithm a reasonable choice when selecting an initial
algorithm for a design when the problem domain is not very well known. The
increased number of function evaluations required by the genetic algorithm is
mitigated by the use of parallel computing and makes the use of the genetic
algorithm feasible in real world problems.
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