

PSFGA: A Parallel Genetic Algorithm for Multiobjective Optimization

Francisco de Toro
University of Huelva (Spain)

ftoro@uhu.es

Julio Ortega; Javier Fernández, Antonio Díaz
University of Granada (Spain)

{julio,javier,afdiaz}@atc.ugr.es

Abstract
This paper presents the Parallel Single Front Genetic

Algorithm (PSFGA), a parallel Pareto-based algorithm
for multiobjective optimization problems based on an
evolutionary procedure. In this procedure, a population
of solutions is sorted with respect to the values of the
objective functions and partitioned into subpopulations
which are distributed among the processors. Each
processor applies a sequential multiobjective genetic
algorithm that we have devised (called Single Front
Genetic Algorithm, SFGA) to its subpopulation.
Experimental results are provided comparing PSFGA
with previously proposed multiobjective evolutionary
algorithms.

1. Introduction

Most real-world engineering optimization problems are
multiobjective in nature, since they normally have several
(usually conflicting) objectives that must be satisfied at
the same time. These problems are known as MOP
(Multiobjective Optimization Problems) [Coello98] in
contrast with SOP (Single-objective optimization
problems). The notion of optimum has to be re-defined in
this context and instead of aiming to find a single
solution, a procedure for solving MOP should determine
a set of good compromises or trade-off solutions,
generally known as Pareto optimal solutions from which
the decision maker will select one. These solutions are
optimal in the wider sense that no other solution in the
search space is superior when all objectives are
considered. Pareto optimal solutions form the Pareto
frontier in a k-dimensional objective space, where k is
the number of the objectives in the optimization problem.

Evolutionary Algorithms (EAs) have the potential to
finding multiple Pareto optimal solutions in a single run
and have been widely used in this area [Ishibuchi96]
[Cunha97] [Valenzuela97] [Fonseca98b] [Parks98]. A
good Multiobjective Optimization Evolutionary
Algorithm (MOEA) should achieve the following goals:

1. The distance between the set of solutions found by
the MOEA and the Pareto frontier should be minimized.

2. The solutions found by the MOEA should present a
distribution that provides a good description of the Pareto
frontier.

3. The spread of the solutions obtained should be
maximized (for each objective a wide range of values
should be covered by the set of solutions found).

Parallel computing has been widely applied to EAs
[Cantu97]. In the case of MOEAs, parallelism has been
successfully applied to reduce the time needed to evaluate
the objective functions in sequential EAs, but little
insight has been gained into the performance of a parallel
MOEA where the population is distributed among the
processors. In that sense, the work of some authors i.e.
[Quagliarella00] shows that sometimes there are no
advantages with respect to the single population model.
One of the reasons for this is that Pareto-dominance
comparisons should be made considering the whole
population , thus reducing the efficiency of the parallel
procedure.

In this paper, Section 2 introduces the MOPs, while
Section 3 and Section 4 present some ideass about the
application of evolutionary techniques, and their
corresponding parallel strategies previously proposed for
MOPs. Section 5 presents the EAs proposed in this paper
to solve MOPs, namely: the multiobjective evolutionary
algorithms SFGA and PSFGA. Finally, experimental
results and concluding remarks are summarized in
Sections 6 and 7 respectively.

2. Statement of the problem
A multiobjective optimization problem (MOP) can be

defined [Coello98] as one of finding a vector of decision
variables which satisfies a set of constraints and
optimizes a vector function whose elements represent the
objectives. These functions form a mathematical
description of performance criteria, and are usually in
conflict with each other.
The problem can be formally stated as finding the vector
x* = [x1

*,x2
*, ... , xn

*] which satisfies the m inequality
constraints

gi (x) ≥ 0 i=1,2,...,m (1)

the p equality constraints

hi (x) = 0 i=1,2,...,p (2)

and optimizes the vector function

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

f(x) = [f1 (x), f2 (x), ..., fk (x)]T (3)
where x = [x1, x2, ..., xn]

T is a vector of decision
variables.
The constraints given by (1) and (2) define the feasible
region Φ: any point x in Φ is a feasible solution.

The vector function f (x) is one that maps the set Φ in
the set χ of all possible values of the objective functions.
The k components of the vector f (x) represent the non-
commensurable criteria to be considered. The constraints
gi (x) and hi (x) represent the restriction imposed on the
decision variables. The vector x* will be reserved to
denote the optimal solutions (normally there will be more
than one).
The meaning of optimum is not well defined in this
context, since in these problems it is difficult to have an
x* where all the components of fi (x) have a minimum in
Φ. Thus, a point x*∈Φ is defined as Pareto Optimal
if ki ..1:, =∀Φ∈∀x :

)4()()())()((xxxx **
iiii fforff <=

The inequality equation in (4) must be fulfilled by at least
one component i.

This means that x* is Pareto optimal if there exists no
feasible vector x which would decrease one criterion
without causing a simultaneous increase in at least one of
the others. The notion of Pareto optimum almost always
gives, not a single solution, but rather a set of solutions
called non-inferior or non-dominated solutions (Figure1).
This set of non-dominated solutions is known as the
Pareto front. As, in general, it is not easy to find an
analytical expression for the Pareto front, the usual
procedure is to determine a set of Pareto optimal points
that provide a good approximate description of the
Pareto front .

.

F2

F1Pareto line

Nondominated solutions

Dominated solutions

Figure 1. Two-objective space

3. Evolutionary multiobjective optimization
An evolutionary algorithm (EA) is a stochastic

optimization algorithm that simulates the process of
natural evolution [Bäck97]. Thus, an EA operates on a

set of candidate solutions, which are subsequently
modified by simplified implementations of the two basic
principles of evolution: selection and variation. Selection
represents the competition for resources among living
beings. Some are better than others and more likely to
survive and transmit their genetic information. A
stochastic selection process simulates natural selection.
Each solution is given a chance to reproduce a certain
number of times, dependent on their quality, which is
assessed by assigning a fitness value to each individual.
The other principle, variation, imitates the natural
capability of creating new living beings by means of
recombination and mutation (see Figure 2).
Recombination and mutation are typically the variation
operators.

In a SOP (Figure2), Task2 obtains a scalar value
(fitness) for each individual (candidate solution) by
evaluating a single function. In MOPs (Figure2) Task2
has two subtasks: Task2a obtains a vector of scalar values
(vector fitness) for each individual by evaluating the set
of objective functions: the dimension of vector fitness is
equal to the size of the set of objective functions. Task2b
converts the vector fitness for each individual into an
scalar value (fitness) using some specific technique
(different for each MOEA). Task2b usually incorporates
a niching technique.

Task1: Initiate population

Repeat t=1,2,...

Task2: Evaluate solutions in the population:

a) for each individual obtain a scalar fitness

Task3: Perform competitive selection in population

Task4: Apply variation operators to the population

Until convergence criterion is satisfied

Task 1: Initiate population

Repeat t=1,2...

Task 2: Evaluate solutions in the population:

 a) for each individual obtain a vector fitness

 b) for each individual convert vector fitness into a scalar fitness

Task3: Perform competitive selection in the population

Task4: Apply variation operators to the population

Until convergence criterion is satisfied

Figure2. Pseudo-code of an EA for single-objective
optimization (top) and multiobjective optimization (bottom).

Evolutionary algorithms seem to be especially suited
to multiobjective optimization because they are able to
capture multiple Pareto-optimal solutions in a single run,
and may exploit similarities of solutions by
recombination. Indeed, some research suggests that

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

multiobjective optimization might be an area where EAs
perform better than other search strategies. The
considerable amount of research related to MOEAs
currently reported in the literature1 is evidence of present
interest in this subject.

In MOPs, it is necessary to find not one but several
solutions, in order to determine the entire Pareto front.
Nevertheless, due to stochastic errors associated with the
evolutionary operators, EAs can converge to a single
solution [Goldberg89]. There exist literature several
methods, called niching techniques [Sareni98], to
preserve diversity in the population, in order to converge
to different solutions. These techniques can also be
applied to MOP.

Pareto-based fitness assignment in a genetic
algorithm (GA) was first proposed by Goldberg
[Goldberg89]. The basic idea is to find a set of Pareto
non-dominated individuals in the population. These
individuals are then assigned the highest rank and
eliminated from further competition. Then, another set of
Pareto non-dominated individuals are determined from
the remaining population and are assigned the next
highest rank. This process continues until the whole
population is suitably ranked. Goldberg also suggested
the use of a niching technique to keep the GA from
converging to a single point on the front.

The Non-dominated Sorting Genetic Algorithm
(NSGA) [Srinivas93] uses several layers of ranked
individuals. Before selection is performed, the population
is ranked on the basis of non-domination: all non-
dominated individuals are classified into one category
(with a dummy fitness value, which is proportional to the
population size, to provide an equal reproductive
potential for these individuals). To maintain the diversity
of the population, those so classified are shared with their
dummy fitness values. Then this group of classified
individuals is ignored and another layer of non-
dominated individuals is considered. The process
continues until all individuals in the population have
been classified. Then a stochastic remainder
proportionate selection is used, followed by the usual
cross and mutation operators.

Fonseca and Fleming [Fonseca93] have proposed an
algorithm called Multiple Objective Genetic Algorithm
(MOGA) where the rank of each individual is obtained
from the number of individuals in the current population
that dominate it. Thus, if at generation t, an individual xi

is dominated by pi (t) individuals, its current rank can be
given by:

Rank (xi, t)=1+pi (t)

1
 C.Coello maintains a repository on MOEAs at:
http://ww.lania.mx/~ccoello/EMOO/

All non-dominated individuals are assigned rank 1, while
dominated ones are penalized according to the population
density of the corresponding region of the trade-off
surface. In this way, the fitness assignment is performed
by the following steps:
1. - Sort population according to the rank of the
individuals.
2. - Assign fitness to individuals by interpolating from
the best (rank 1) to the worst (rank n<=N), according to a
function (not necessarily linear)
3. - Average the fitness of individuals with the same
rank, so that all of them will be sampled at the same rate.
Sharing on the objective function values is carried out to
distribute population over the Pareto-optimal region.

In their Niched Pareto Genetic Algorithm (NPGA),
Horn and Nafpliotis [Horn93] proposed a tournament
selection scheme based on Pareto dominance. Instead of
limiting the comparison to two individuals, a number of
other individuals (usually about 10) in the population are
used to help determine dominance. Whether the
competitors are dominated or non-dominated, the result
is decided through fitness sharing.

In [Zitzler99], it was clearly shown that elitism helps
to achieve better convergence in MOEAs. Zitzler and
Thiele [Zitzler98] suggested an elitist multi-criterion EA
with the concept of non-domination in their Strength
Pareto Evolutionary Algorithm (SPEA). They suggested
maintaining an external population at every generation
storing all non-dominated solutions discovered so far
beginning from the initial population. This external
population participates in genetic operations. At each
generation, a combined population with the external and
the current population is first constructed. All non-
dominated solutions in the combined population are
assigned a fitness based on the number of solutions they
dominate, and dominated solutions are assigned fitness
worse than the worst fitness of any non-dominated
solution. This fitness assignment assures that the search
is directed towards the non-dominated solutions. A
deterministic clustering technique is also used to
maintain diversity among non-dominated solutions.
Although the implementation suggested is O (mN3), with
appropriate book-keeping the complexity of SPEA can be
reduced to O (mN2). An improved version of SPEA
known as SPEA2 [Zitzler01] has recently been proposed.
This incorporates additionally fine-grained fitness
assignment strategy, a density estimation technique, and
an enhanced archive truncation method.

Knowles and Corne [Corne00] suggested a simple
MOEA using an evolutionary strategy (ES). In their
Pareto-Archived ES (PAES), a parent and a child are
compared. If the child dominates the parent, the child is
accepted as the next parent and the iteration continues.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

On the other hand, if the parent dominates the child, the
child is discarded and a new mutated solution (a new
child) is found. However, if the child and the parent do
not dominate each other, the choice between the child
and the parent considers the second objective of
maintaining diversity among obtained solutions. To
achieve this diversity, an archive of non-dominated
solutions is created. The child is compared with the
archive to determine whether it dominates any member
of the archive. If so, the child is accepted as the new
parent and the dominated solution is eliminated from the
archive. If the child does not dominate any member of
the archive, both parent and child are examinated for
their proximity to the solutions of the archive. If the child
resides in an uncrowded region in the parameter space
among the members of the archive, it is accepted as a
parent and a copy is added to the archive. Knowles and
Corne later, suggested a multiparent PAES with similar
principles to the above. The authors have calculated the
worst case complexity of PAES for N evaluations as
O(amN) where a is the archive length. Since the archive
size is usually chosen proportional to the population size
N, the overall complexity of the algorithm is O(mN2).

Finally, Deb [Deb00] has also proposed an improved
parameter-less version of NSGA, called NSGA-II.

4.Parallel genetic multiobjective optimization
Parallel Genetic Algorithms (PGAs) are naturally prone
to parallelism since the genetic operations on the
individuals of the population can be easily undertaken in
parallel (not so easy for the selection method, since it
usually uses the full population). A survey of parallelism
strategies applied to GAs is provided in [Cantu97].
Figure 3 shows different models of PGAs, in order to
present the terms we use bellow.

Figure 3. Different models of PGA: (a) global parallelization,
(b) coarse grain, and (c) fine grain.

In global parallelization (Figure 3.a), explicit
parallelization of the genetic operators and/or evaluations
of individuals are performed. The algorithm proceeds in
the same way as a sequential GA, but in a faster manner.
However, only for problems with a time-consuming
function evaluation do they represent a viable choice;
otherwise the communication overhead is higher than the
benefits of their parallel execution. The rest of the PGA
models fit into two classes, depending on their
computation/communication ratio, called coarse (Figure
3.b), or fine-grain (Figure 3.c) parallel GAs. Coarse
grain PGAs are also known as distributed (dGA) or
island GAs, and fine grain PGAs are known as cellular
(cGA), diffusion, or massively-parallel GAs. A dGA has
a bigger subpopulation size than a cGA but fewer of
subpopulations and less coupled.

Although much work is reported about PGA models
(and implementations on different parallel architectures),
involving SOPs, PGA models could also be applied for
MOPs, where global parallelization (Figure 3.a) is the
most used strategy. In [Mäkinen97] a modified NSGA,
with tournament selection instead of roulette wheel
selection [Srinivas93], is implemented by using a global
parallelization scheme based on the master-slave
prototype (Figure 3). The algorithm is applied to the
multiobjective optimization of two-dimensional airfoil
designs and it is executed in an IBM SP2.

In [Rogers00] a PGA using global parallelization
is applied to optimal actuator selection, which means
finding the minimum number of actuators and their
localization to provide uncoupled pitch, roll and yaw
control for a simplified wing model. The algorithm
allocates three processors (working processors) to
evaluate the three objective functions. One processor is
devoted, as a master processor, to sending data (an array
containing the actuator locations), and to receiving data
(pitch, roll, and yaw moments) to and from the working
processors. Recombination, mutation and selection are
performed in the master processor.

In [Stanley95] a real-valued MOEA called GAIN
(Genetic Algorithm running on the INternet) is applied to
design cache memories. The algorithm is executed on a
Network of Computers (NOW), with 80 to 120
workstations. GAIN uses a generation process that
performs the selection and applies the recombination and
mutation operators; several evaluation processes
simultaneously evaluate the different objective functions
of the problem. In [Jones98] a global paralleled MOEA
is applied to aerodynamic and acoustic optimization of
airfoils. A master process dynamically balances the work
to be done by the other processors, whose sole purpose is
to evaluate fitnesses. In [Obayashi00], a parallel
implementation of MOGA [Fonseca93] is used to

Slaves
...

Master

Master

c)

a)
b)

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

optimize the design of supersonic wing shapes. This
problem presents 66 design variables and 3 objective
functions. Fitnesses are evaluated on 32 processing
elements of an NEC SX-4 computer. [Meunier00] also
uses a parallel version of MOGA (implemented in a
NOW with 24 workstations) for Radio Network
Optimization.

Parallelization should be used not only for obtaining
a speedup to the sequential version of the genetic
algorithm by reducing evaluation execution time.
Parallelization strategies may also help to maintain
diversity in the population [DeToro01] working as a
niching technique to obtain a well-distributed non-
dominated set of solutions. This is a very important issue
in MOP, which has also been addressed in some works
by using a structured population (cGA model) [Rowe96]
[Murata00].

5. Parallel Single Front Genetic Algorithm
The MOEA presented in this paper is based on a

genetic algorithm (see Figure 4), called Single Front
Genetic Algorithm (SFGA), that implements an elitist
procedure in which:
- Only the non-dominated (and well-diversified)
individuals in the current population are copied to the
mating pool for recombination purposes, and
- All non-dominated individuals in the current
population are copied to the next population.

P a ram e te r s:

N (popu la tion size)
T (m ax im um nu m ber o f gen era tion s)
Pm (m uta tion ra te)
Pc (cros sove r p roba bil ity)

O u tp ut : A (non-dom in ated se t)

S te p 1 : I n itializa tion : P t=P 0 (in itia l popu lat ion)

S te p 2 : F itne ss as sig n m e nt: D eterm ine the ob je ct ive

ve cto r f (x) for e ach ind iv idual in P t. D eterm ine A ,

(the non-d om ina te d se t in P t).

S te p 3 : S e lec tion : If S (A) = N ap ply a fil t er fun ction to A

producing A ’ (a w ell d iversi fie d se t of n on-

dom ina ted ind iv iduals in P t). Se t P ’ = A ’

S te p 4 : R e com b in a tion : C hose tw o in d ividu als i, j in P ’

(w ith rep la ce m en t). R e com b in e i a nd j w ith

proba b ili ty Pc (by us ing a on e-po in t c ross over

fun ct ion) prod ucin g in d ivid ual k. M uta te k w ith

m u ta t ion ra te Pm p rod ucin g k’ . S et P ’ = P ’ U {k’ }.

R e pe at S tep 4 un til s ize of P ’ is e qua l to N .

S te p 5 : T e rm in ation : Se t t= t+ 1 an d P t+1 = P ’ . If t> T then

A is th e non-dom ina te d s et of P t+ 1 e ls e go to S tep

2 .

 Figure 4.: Description of SFGA

The rest of the individuals required to complete the
population are obtained by recombination and mutation
of the aforementioned non-dominated individuals.

The preservation of diversity in the population is
ensured by means of a filtering function, which prevents
the crowding of individuals by removing individuals
according to a given grid in the objective space. The
filtering function uses the distance evaluated in the
objective space. On the other hand, the sharing function
used in NSGA is based on distance in the decision space.

In this way, PSFGA (“Parallel Single Front Genetic
Algorithm”) is an elitist Pareto-based algorithm for
multiobjective optimization based on a structured-
population dGA model [DeToro01]. In PSFGA, the
population is sorted with respect to the values of the
objective function and divided into subpopulations. In
each subpopulation, the SFGA is executed, and after
some generations, all individuals are gathered, sorted and
compared according to the Pareto dominance criteria.
After that, the individuals are again divided among the
different processors.

PSFGA presents a two-level mechanism to maintain
diversity in the population: at high-level PSFGA presents
a structured-population cGA model; while at low-level,
the filtering function implemented in SFGA is used. Both
mechanisms are applied in the objective space.

Moreover, PSFGA is based on a master-slave
prototype. In the Master process, an initial random
population of size N is created, and then individuals are
sorted according to the values of the objective functions
(fi). Then, a set of N/m are selected according to the
value of the considered objective function fi, in order to
define m subpopulations (Figure 5). Each subpopulation
is assigned to a given working process that runs a
number of generations of SFGA on its allocated
subpopulation. Periodically, the population is gathered in
the master process, sorted again according to a different
objective function, and comparisons according to global
Pareto dominance are performed.

L oc a l d om in a te d in d iv idua ls

F2

F1Pare to l ine

L oc a l n on d o m in a ted in d iv idua ls

Figure 5. Five subpopulations in PSFGA, for a two-objective
problem.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

6. Experimental Results

To evaluate PSFGA and compare it with other
proposed algorithms we have used the benchmark
functions used by Zitzler [Zitzler99]. These functions are
selected by taking into account a wide range of features
that may cause difficulties for an MOEA [Deb99] such as
convexity (function ZT1), non-convexity (ZT2),
discreteness (ZT3), multimodality (ZT4), and non-
uniformity (ZT6). The deceptive function ZT5 is not used
because in SFGA the individuals in the population are
coded as real numbers.

For performance comparison, we used the
hypervolume metric [Zitzler99] for minimization
problems. For comparison of two non-dominated solution
sets, Ai and Aj, the following measures are computed:
S(Ai) is the volume of the space that is non-dominated by
the set Ai. D(Ai,Aj) is the volume of the space that is non-
dominated by the first solution set Ai but dominated by
the second set Aj. The smaller S(Ai) and D(Ai,Aj) related
to S(Aj) and D(Aj,Ai) respectively, the better Ai related to
Aj. In all experiments Pm=0.01, Pc=1 and population
size is 100 as in [Zitzler99]. The filter parameter, ft, is
set to 0.01.

The SFGA and PSFGA procedures are compared with
NSGA, which is the procedure that provides the best
results [Zitzler99]. The selection mechanism used in
NSGA is binary tournament selection with continuous
updating sharing, with sharing radius set to 0.4889. The
distances in sharing function are calculated on decision
space.

Table 2 shows the speedup of SFGA with respect to
NSGA (TCRatio), and the size of the set of non-
dominated solutions of SFGA with respect to NSGA
(SRatio). Table 3 compares SFGA and NSGA by using
the previously described hypervolume metric. In addition,
graphical representations of the final non-dominated sets
for both NSGA (diamonds) and SFGA (crosses) are
provided in Figures 6-8 for ZT1, ZT3, and ZT6 (as
examples).

Table 2: Performance of SFGA related to NSGA

Function Generation TCRatio SRatio

ZT1 750 1.22 3.7
ZT2 500 2.20 2.6
ZT3 500 1.83 1.0
ZT4 1000 1.31 2.0
ZT6 750 1.70 1.4

Table 3: Performance by Zitzler’s metric
Function S(sfga) S(nsga) D(sf,ns) D(ns,sf)

ZT1 0.371978 0.405349 0.008159 0.041528
ZT2 0.770345 0.796941 0.014282 0.040878
ZT3 0.009983 0.014344 0.031004 0.035364
ZT4 1.679213 1.828798 0.084241 0.233825
ZT6 2.807990 3.518460 0.000000 0.710470

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1
0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

N S G A
2 5 0

S F G A
7 5 0

Figure 6. Solutions for ZT1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9
-0 . 8

-0 . 6

-0 . 4

-0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

N S G A
2 5 0

S F G A
5 0 0

Figure 7. Solutions for ZT3

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1
2 .9

3

3 .1

3 .2

3 .3

3 .4

3 .5

3 .6

3 .7

3 .8

3 .9

N S G A
2 5 0

S F G A
7 5 0

Figure 8. Solutions for ZT6

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Evidently, SFGA outperforms NSGA. Bellow, we
provide the results of PSFGA compared with those of
SFGA. The total number generations of performed by
PSFGA are:

MaxGen := genpar + (Comm-1)*(genpar+genser)

Thus, genpar iterations are performed in each
subpopulation, while genser iterations are performed in
the panmictic subpopulation; The parameter comm
control the frequency of master-slave communications.
The proposed PSFGA has been implemented using a
cluster of 8 PCs connected by Fast Ethernet.

Results are available for the parallel configurations
shown in Table 4 (in all cases comm=63):

Table 4: Parallel configurations
Configuration Gen_ser Gen_par

A 8 8
B 10 6
C 6 10
D 13 3
E 3 13

The speedups in Figure 9 have been obtained for 2,4,6
and 8 processors and different parallel configurations.
Executions by using 4 (s4) and 6 processors (s6) are
shown in table 5. As4 stands for configuration A executed
on 4 subpopulations. Each row in Table 5 shows some of
the results for the corresponding benchmark function, i.e.
the values of the metric S for SFGA (1000 iterations),
and different configurations of PSFGA (1000 iterations).
As can be seen, the parallel algorithm is able to speed up
the optimization procedure, although in most cases, it
produces a reduction in the quality of the solutions found.
Figure 10 shows some results corresponding to the
solutions for ZT4 obtained by NSGA, SFGA and two
configuration of PSFGA.

1 2 3 4 5 6 7 8
1

1 . 5

2

2 . 5

3

3 . 5

a
b
c

d
e

 Figure 9. Speedup of PSFGA

Table 5. Performance Comparison for PSFGA by S metric

Func SFGA As4 As6 Bs4 Bs6

ZT1 0.3612 0.3806 0.3941 0.3820 0.3856

ZT2 0.7268 0.7462 0.7912 0.7801 0.7640

ZT3 0.0059 0.0034 0.0035 0.0031 0.0043

ZT4 1.6792 1.5470 1.7941 1.0972 1.5586

ZT6 2.9659 3.2051 3.0743 2.9872 3.1957

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
1

1 . 2

1 . 4

1 . 6

1 . 8

2

2 . 2

2 . 4

2 . 6

2 . 8

3

s fg a
p s fg a

a s 4
p s fg a

a s 6
n s g a

Figure 10. Solutions for ZT4

7. Concluding remarks
This paper presents the Parallel Single Front Genetic

Algorithm (PSFGA). PSFGA is a parallel implementation
(using a dGA model) of the Single Front Genetic
Algorithm (SFGA), a new elitist MOEA with a fitness
assignment based just on the first front of non-dominated
individuals of the population, in contrast with the use of
multiple fronts used in other algorithms. The
performance of PSFGA has been analyzed in comparison
with SFGA and the previously proposed NSGA. The
experimental results show that SFGA clearly outperforms
NSGA for the whole benchmark set. The aggressive
convergence pressure that SFGA implements based on a
super-elitist selection policy allows a fast convergence
without premature convergence effects. PSFGA reduces
the time execution of SFGA. Moreover, a better
convergence is sometimes observed in PSFGA for some
functions of the benchmark set.

Acknowledgements. This paper has been supported by the
Spanish Ministerio de Ciencia y Tecnología under grant
TIC2000-1348.

8. References
[Bäck97] Bäck, T.; Hammel, U.; Schwefel, H.-P.:
"Evolutionary Computation: comments on the history
and current state". IEEE Trans. on Evolutionary
Computation, Vol.1, No.1, pp.3-17. Abril, 1997.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

[Cantú97] E.Cantú-Paz, “ A Survey of Parallel Genetic
Algorithms” , Technical Report. Illlinois Genetic
Algorithms Laboratory, 1997.
[Coello98] Carlos A. Coello Coello. An Updated Survey
of GA-Based Multiobjective Optimization Techniques,
Technical Report Lania-RD-98-08, Laboratorio
Nacional de Informática Avanzada (LANIA), 1998.
[Corne00] Corne, D.W., Knowles, J.D., and Oates, M.J.
(2000). The Pareto envelope-based selection algorithm
for multiobjective optimization. Proceedings of the
Parallel Problem Solving from Nature VI Conference, pp.
839-848.
[Deb99]Kalyanmoy Deb. Multi-Objective Genetic
Algorithms: Problem Difficulties and Construction of
Test Problems, Evolutionary Computation, 7(3):205-230,
Fall 1999.
[DeToro01] F.deToro, A.F.Díaz, C.Gil, J.Ortega.
AGEMM: Optimización MultiModal Paralela usando
Algoritmos Genéticos. XII Jornadas de Paralelismo,
Valencia 2001.
[Fonseca93] Carlos M. Fonseca and Peter J. Fleming.
Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization, In
Stephanie Forrest, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms, pages
416-423, San Mateo, California, 1993. University of
Illinois at Urbana-Champaign, Morgan Kauffman
Publishers.
[Fonseca98] Fonseca, C.M. and P.J. Fleming.
Multiobjective optimization and multiple constraint
handling with evolutionary algorithms-part i: A unified
formulation. IEEE Transactions on Systems, Man, and
Cybernetics 28(1), 38-47.
[Goldberg89] D.E. Goldberg, “Genetic Algorithms in
Search, Optimization and Machine Learning”, New
York: Addison Wesley, 1989.
[Jones98] B.R Jones ;W.A Crossley; A.S.Lyrintzis.
Aerodynamic and Aeroacoustic optimization of airfoils
via a parallel genetic algorithm. American Institute of
Aeronautics and Astronautics. (AIAA-98-4811) .Pardue
University, 1998
[Mäkinen97] Mäkinen, R.A.E., et al. “ Parallel Genetic
Solution for Multiobjective MDO.” Parallel
Computational Fluid Dynamics: Algorithms and Results
Using Advanced Computers, edited by P. Schiano, et al.,
352-359, Elsevier Science, 1997.
[Meunier00] Herve Meunier, El-Ghazali Talbi, and
Philippe Reininger. A Multiobjective Genetic Algorithm
for Radio Network Optimization, In 2000 Congress on
Evolutionary Computation, volume 1, pages 317-324,
Piscataway, New Jersey, July 2000. IEEE Service Center

[[Murata00] Murata, T. And Gen, M.: “ Cellular genetic
local search for multi-objective optimization” . Proc. Of
the Genetic and Evolutionary Computation Conference
2000 (2000) 307-314.
[Obayashi98] Obayashi, S., S. Takahashi, and Y.
Takeguchi, ” Niching and elitist models for mogas” In A.
E. Eiben, T. Bäck, M. Schoenauer, and
H.P.Schwefer(editors), 5th International Conference on
Parallel Problem Solving from Nature (PPSN-V), Berlin,
Germany, pp.260-269.Springer.
[Obayashi00] Shigeru Obayashi, Daisuke Sasaki,
Yukihiro Takeguchi, and Naoki Hirose. “ Multiobjetive
Evolutionary Computation for Supersonic Wing-Shape
Optimization” . IEEE Transactions on Evolutionary
Computation. Vol 4. No. 2. July 2000.
[Quagliarella00]D.Quagliarella, A. Vicini. “Sub-
population policies for a parallel multiobjective genetic
algorithm with applications to wing design”. C.I.R.A.,
Centro Italiano Ricerche Aerospaziali, Via Maiorise-
81043 Capua (Italy).
[Srinivas93] N.Srinivas and Kalyanmoy Deb,
“Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms” . Evolutionary
Computation, Vol. 2, No. 3, pages 221-248
[Stanley95] Stanley. “ A parallel genetic algorithm for
multiobjective microprocessor design”. In L.J.
Eshelman, editor, 6th Int. Conf. On Genetic Algorithms,
pages 597-604. Morgan-Kaufmann, 1995.
[Zitzler98] Zitzler, E.; Thiele, L. (1998). An
evolutionary algorithm for multiobjective optimization:
The strength Pareto approach, Technical Report No. 43
(May 1998), Zürich: Computer Engineering and
Networks Laboratory, Switzerland.
[Zitzler99] Eckart Zitzler, Kalyanmoy Deb, and Lothar
Thiele. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results, Technical Report 70,
Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, CH-8092 Zurich, Switzerland,
December 1999.
[Zitzler01] Eckart Zitzler, M. Laumannas; L.Thiele.
SPEA2: Improving the Strength Pareto Evolutionary
Algorithm, TIK – Report 103, May 2001.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

		Index:

		CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE

		ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE

		cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE

		index:

		INDEX:

		ind:

		Intentional blank: This page is intentionally blank

