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Abstract: Owing to the large number of free
control parameters for modern nonlinear robust
controllers, it is almost impossible to heuristically
tune these paramecters. The multiobjective fuzzy
genetic algorithm optimisation is shown to
provide an effective, efficient and intuitive
framework for selecting these parameters. The
control structure and specifications are assumed
to be given. Using the concept of fuzzy sets and
convex fuzzy decision making, a multiobjective
fuzzy optimisation problem is formulated and
solved using a genetic algorithm. The relative
importance of the objective functions is assessed
by using a new membership weighting strategy.
The technique is applied to the selection of free
control parameters for an input-output linearising
controller with sliding mode control, in a
remotely-operated underwater vehicle depth
control system.

1 Introduction

The number of nonlinear control techniques has greatly
increased in the last decade. The theory of feedback
linearisation has provided the necessary tools for syn-
thesis of nonlinear systems and solution of the MIMO
decoupling problem. However, current industrial prac-
tice does not generally include the use of modern non-
linear robust controllers. This may be attributed to
several factors, one of which is the lack of a systematic
and intuitive approach in selecting the large number of
free control parameters to obtain an optimal controller.

In general, the design of a control system for a non-
linear multivariable system with many degrees of free-
dom involves a number of constraints and competing
objectives. To obtain an optimal solution (i.e. a trade-
off between the stated objectives) a formal mathemati-
cal method for decision-making is required. Multiob-
jective optimisation techniques [1-3] have been
proposed as a possible solution, These provide a plat-
form for incorporating the relative importance of each
objective, a fundamental requirement when dealing
with competing objectives. The only difficulty with this

© IEE, 1997
IEE Proceedings online no. 19971031
Paper first received 28th March and in revised form 8th October 1996

The authors are with Cranfield University, Royal Military College of
Science, School of Engineering and Applied Science, Shrivenham,
Swindon, Wiltshire SN6 8LA, UK

IEE Proc.-Control Theory Appl., Vol. 144, No. 2, March 1997

technique is the lack of a unique optimal solution,
although the concept of a Pareto-optimum solution is
introduced. This establishes a trade-off pattern such
that no improvement may be made in one objective
without adversely affecting another.

However, the emphasis on mathematical rigour con-
flicts with the imprecision that arises in the description
of constraints, objective functions and the evaluation of
the relative importance of objectives. In a typical con-
trol system design the constraints are usually mixed,
with equality, inequality and fuzzy constraints such as
settling time and thruster limit.

In order to generate flexible and robust solutions for
multiobjective optimisation, the concept of fuzzy sets
must be employed to represent the vast amount of
vagueness that exists in both the objective and con-
straint functions. The concept of multiobjective fuzzy
optimisation has been used extensively in strutural
optimisation literature [4-7].

A new framework is presented for selecting free con-
trol parameters of an input-output linearising control-
ler with sliding mode control (SMC) for the depth
control system of a remotely operated underwater vehi-
cle (ROV). This uses the concept of multiobjective
fuzzy genetic algorithm (GA) optimisation and a new
membership weighting strategy.

The study was inspired by contract work on the
Autosub [Note 1] project for an ROV to be used for
mine countermeasure operations and remote minehunt-
ing missions. In this role, the ROV has a sidescan
sonar for mine hunting and clearance purposes. The
operational requirements dictate precise control of
depth and pitch in water depths of between 20m and
300m, to ensure a constant sonar footprint over an
undulating seabed. Changes in depth should involve
minimal pitching motion to avoid gaps in the sonar
coverage. For a detailed description of the vehicle the
reader is referred to [8].

Due to the highly nonlinear nature of the vehicle, it is
natural for nonlinear control techniques such as input—
output linearisation with SMC to be proposed as a pos-
sible solution to the depth control system. The concept
of input-output linearisation guarantees the required
decoupling between heave (depth) and pitch, while SMC
provides performance and stability robustness to model-
ling errors. The simulation results for the above control
structure are reported in [9]. The major problem
encountered in this work was the lack of a systematic
approach for selecting the free control parameters to
ensure that the actuators did not saturate.

Note 1. Vehicle data from NERC Autosub, data source DRA Haslar.
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2 ROV model

The equations of motion supplied by the DRA [Note 2]
for the pitch plane of the ROV are

Ei = Fz + Gu (1)
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where p2 = Pp/2, p3 = Pp/2, p4 = Fp/2, p5 = Pp/2,
I, = 1.05 is the thruster moment arm in the pitch plane,
w = heave speed, g = pitch rate, z = depth (heave), § =
pitch, §, = port hydroplane deflection, ; = starboard
hydroplane deflection, Ty, = stern thruster and Tj,,
= bow thruster. These equations are defined in body
coordinates (x, v, z) and the ROV hydrodynamic data
and notations may be found in [8].

The following control specifications are given with
respect to a 10m step change in depth:

Peak overshoot 0,<03m
Rise time 17<t. <258
Settling Time 25 <t, < 45s
Maximum pitch angle Orae < 7.5°
Hydroplane limit Onap < 25°

Thruster limit Tvow = Tstern < 120N

where 7, is the time required for the depth (heave) to
rise from 10% to 90% of its final value, and ¢, is the
time required for the depth to rise to £2% of the final
value (10m).

The initial specifications omitted the maximum
allowable pitch angle for a 10m step change in depth.
This is an important requirement since the initial pitch
angle has a direct effect on the settling time. The maxi-
mum allowable pitch angle will also depend on the type
of sidescanner employed if a constant footprint is to be
ensured. Since no details of the sonar sidescanners are
available, the maximum allowable pitch angle is set to
7.5°.

3 Robust controller design for ROV

Eqn. 1 can be transformed to
#(t) = fla(t)) + g(x(t))u(t) ()

y(t) = h(z(t)) (4)
where fix(¢)) and g(x(¥)) are defined in [10], fix(¥)) =
E7F, g(x(n) = E7'G, u(t) = [u,, )%, and y(t) = [z, I".
The control objective is to make the output y track a
desired trajectory y,; The detailed derivation of the
control law can be found in [10, 11].

Performing input-output feedback linearisation on
eqns. 3 and 4 and assuming a (vector) relative degree

Note 2. Defence Research Agency, Sea Systems Sector, Winfrith.
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[71, ..., 7] vields the following input-output mapping

v (1)

(r2) uz(t
N T R ) Rl B
yr(;jm) U/m(t)

It then follows that the state feedback control law of
the form

u(t) = A™Hz(t)[-B(2(t) + v(t)] (6)
where v(1) = (D), ..., V(DT € R™ yields the linear
system

) =uilt) i=1,...,m (7)

The control law of eqn. 6 was formulated with the
assumption that an accurate description of the system
is available. However, in practice an accurate model is
not readily available, so the presence of uncertainties
will cause loss of I/O decoupling, steady-state tracking
errors and a deterioration in transient responses. To
increase the robustness of the control to parameter
uncertainty, sliding mode control can be employed.

Ife; =z-z;and e, = 0 - 6, a sliding surface can be
specified as

. v S1—Za| _ k(2 24) — 24
s-Y "[52-9d} “‘[k@(e-9d>—-ed] (8)
where

_ 81| _|&1— ke
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The overall expression for the control law u is:
[u},] _ 41 [—Bl — k11 (2 — Za) + 24 — msat (%)}
Ug —By — ko1 (0 — 8a) + 64 — mpsat (22)
(10)
The desired reference trajectory is generated using a
command generator of the form
Ya = ~qiYai — Ci¥di + QT (11)
where i = 1, 2; ¢;, ¢; > 0 and r; is an external input.

4 Multiobjective fuzzy optimisation

In this Section, the multiobjective fuzzy optimisation

problem is stated and fuzzy convex decision-making

principles are outlined. The general multiobjective

fuzzy optimisation problem can be stated as follows:
Find X which

Minimizes f(X)
such that g; €5
~ g

wherg X)) = [L(X), fr(X), ..., [i(X)] is a vector objective

function and g{X) are constraints, with the tilde sym-
bol indicating that the constraints contain fuzzy infor-
mation.

The first stage is to fuzzify the objective functions
and the fuzzy constraints. The membership function for
the fuzzy objective function is

if fi(X) > free

0
pp(X) = { SELRHEE0 i frin < fi(X) < S
1 if fi(z) < frr
(12)
where py(X): R* — [0, 1] and ug(X) is a mapping from
the real number set R” to the closed interval [0, 1],
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which is a measure of the degree of satisfaction for any
X € R” in the ith fuzzy objective function. f7* and
S represent the minimum and maximum values for
the objective function, respectively and are defined as

" =mini fi(X*) and  f7 = max, fi(X*)  (13)

where X" is the solution for each of the objective func-
tions in the crisp domain.

The fuzzy constraints membership function is defined
as

0 ifgj(X)>bj+dj
pg; (X) = 1‘@%) if b; < g;(X) <b; +d;
1 if g;(X) < by

(14)

where u (X): R* — [0, 1] and p,(X) is the mapping
from the real number set R” to the closed interval [0,
1], which is an indication of the degree of satisfaction
for any X € R” in the jth fuzzy constraint. y, (X)) =1
represents complete satisfaction, Ug(X) = 01s not satis-
fied and values between 0 and 1 represent the degree of
satisfaction of the jth constraint. The allowable toler-
ances for each fuzzy constraint are given by d,.

4.1 Fuzzy decision-making

The objective functions and constraints have been
defined as fuzzy subsets in the space of alternatives
using linear membership functions uy(X) and ug/(X)
respectively. The optimal decision 1s made by selecting
the best alternative from the fuzzy decision space D
characterised by the membership function yp. In other
words, find the optimum X* which maximises u;. This
can be expressed mathematically as

up(X*) = maxpp(X) (15)

where up € [0, 1].

The fuzzy decision can be made by employing one of
the three generalised fuzzy decisions: intersection deci-
sion, convex decision and product decision. Convex
decision-making principles are used in the present
study.

The convex decision [12] uses the concept of arithme-
tic mean and provides a framework to incorporate the
relative importance of all the objectives and con-
straints. This can be expressed mathematically as fol-
lows

D = af(X)+ Bg(X) (16)
where a and § are weighting factors, which satisfy
a+8=1 a>0 g>0 (17)

For any fuzzy optimum set points, the weights ¢; and
B; are given so that a linear weighted sum can be
obtained. Thus the membership function for the convex
decision can be expressed as follows

k ™m
= Zai:u‘fi +Zlgj:ugj (18)
i=1 7=1
where a; and B; satisfy

k m
ZOM + Zﬁj =1
1=1 G=1

>0 i=1,2,... .k
B;i>0 j=12..m (19)

pp(X)
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From eqn. 19 the original multiobjective fuzzy opti-
misation problem can be transformed into the follow-
ing single-objective nonfuzzy optimisation problem:

max 1p (X)

k m
= Z 79152 (X)+ Z Bj/lgj (X) (20)

gz(X)SbJ—’_dJ ]:17277m (21)

This problem can be solved using any standard optimi-
sation technique.

4.2 Membership weighting strategy

In this Section, a new membership weighting strategy is
outlined for a convex-decision multiobjective fuzzy
optimisation problem. The membership weighting fac-
tor is formulated as follows:

Wy, :1_l’l’fi(X) and Wy, :1_ugJ(X)
a; = —;ﬂf,- and ,BJ —_ _::g- (22)
Zi:l Wi, =1 1

such that

k m
St $a =t
=1 j=1

>0 i=1,2,...,k
3,20 j=1,2,....m (23)

This strategy addresses the problem in which the
designer is not certain how to quantify the relative
importance of each objective. It can be easily extended
to cases where a particular objective or subset of objec-
tives are more important, although the designer has no
means of quantifying their relative importance. Using
convex decision, the multiobjective fuzzy optimisation
problem for selecting the free control parameters &y, k5,
11, and 1, for eqn. 10 can be formulated in the follow-
ing manner.

From the above specifications, rise time and settling
time are defined as fuzzy objectives and peak over-
shoot, hydroplane, and thruster limits as constraints.
Note that all the constraints are nonfuzzy. The mem-
bership functions corresponding to the fuzzy objective
functions are defined as

0 ifts > 45
%:{1_% if 25 < ¢, <45 (24)
1 ift, <25
and
0 if t, > 25 .
Mtr:{l_% if 17 < ¢, < 25 (25)
1 if t, <17

The convex decision for multiobjective fuzzy optimisa-
tion of eqn. 20 will be used, since there are no fuzzy
constraints (B; = 0). To obtain the highest degree of
membership to the fuzzy convex decision set, the multi-
objective fuzzy optimisation is formulated as; find k;,
ky, my, and 1,

which maximize
subject to

WD = 0y, + Qalie,
0O, <€0.3cm

efmax S 7'50

Shap < 25°

Toow £ 120N
Tstern S 120N

where ¢; are defined in eqns. 22 and 23.
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Genetic algorithms (GAs) will be used as the pre-
ferred optimisation technique to solve this problem.
The choice of GAs is based on the fact that they have
been shown to produce optimum solutions for parame-
terised nonlinear controllers in multimodal search
spaces. Because GAs evaluate several points simultane-
ously they also have the potential to accomplish highly
adaptable parallel processors, since each point is evalu-
ated iteration by iteration. This is an important
requirement in multiobjective optimisation problems.
There 18 no need to assume that the search space is dif-
ferentiable or continuous and GAs only require a
knowledge of the quality of the solution produced by
each point thus making them very flexible. The inter-
ested reader may find a brief introduction to GAs in
[13-15].

initial population
0010 ...
[offspringg]-—————-{reinsert offspring}—» 1110 ...
0001 ...
T 0101 ...
crossover 0011 ...

and
tati Ei
mutation Tocod

mating pool

k)

compute multiobjective
fitness fuzzy nonlinear simulotionl
value optimisation -

Fig.1 Flow chart of the design procedure for multiobjective fuzzy GA
optimisation

5 Multiobjective fuzzy GA optimisation

Fig. 1 shows a flow chart of the design procedure for
the multiobjective fuzzy GA optimisation technique. A
brief description of each step is given below:

Step I: Initial population.

The basic execution cycle starts by randomly generat-
ing a population P(0) of N individuals (strings), each of
length [ It is worth noting that each individual repre-
sents a possible solution to the problem. These are then
decoded into the decision variable space over the inter-

val, e.g. {0, 500}, and are used in the nonlinear simula-
tion.

Step 2: Evaluation of multiobjective fuzzy optimisation
function.

The results of the simulation are passed to the multiob-
jective fuzzy optimisation to evaluate the degree of sat-
isfaction (degree of membership, up) and to check
whether any of the constraints have been exceeded. The
number of constraints exceeded and the degree of satis-
faction values for each individual are passed to the fit-
ness function.

Step 3: Fitness
Fitness is a metric used to assess the performance of
individual members of a population relative to the rest
of the population. The fitness of each individual in this
example is calculated using the relation

Fitness; = up, — 0.2Cyup, (26)
where Cy is the number of constraints exceeded and
up, 1 the ith individual degree of satisfaction. The fit-
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ness values are then ranked using a linear ranking algo-

- rithm giving the fittest individual a fitness value of 2

and the least fit individual a fitness value of 0.
Step 4. Reproduction

Reproduction is the process whereby a mating pool is
generated. Although the initial population P(0) can be
generated randomly, the next generation is chosen from
the previous generation members using a probabilistic
selection process. This ensures that individuals with
large fitness values have a greater probability of con--
tributing offsprings to the new population. The concept
of generation gap is employed in this work.

The generation gap, G represents the percentage of
the population to be replaced during each generation.
For each new generation, N * ¢ individuals of the pop-
ulation P(#) are selected to be replaced in P(¢ + 1) gen-
eration; e.g. G = 1.0 implies that the whole population
must be replaced for each generation. Using the func-
tion Select in [15], N * G individuals are copied into a
mating pool for possible use in the reproduction of the
next generation.

Step 5: Crossover

Crossover utilises probabilistic decisions to exchange
systematic information between two randomly selected
individuals from the mating pool, to produce new indi-
viduals. The process involves the uniform random
selection of a crossover point between the two individu-
als, followed by the exchange of all characters either to
the right or left of this point. Two new individuals are
generated after crossover. In this example, the single
point crossover routine in [15] is used to perform cross-
over with probability, P(x) = 0.7.

Step 6: Mutation

Mutation generates new individuals by simply modify-
ing one or more of the gene values (or bit values in the
case of a binary representation) of an individual off-
spring after crossover. Mutation therefore provides a
framework to ensure that a critical piece of information
can always be reinstated or removed from a popula-
tion. In this example, the default value and mutation
function in [15] is employed.

Step 7. Reinsert offspring

Since a generation gap is used, the number of offspring
is less than the size of the initial population. The off-
spring population is then inserted into the initial popu-
lation to generate a new population.

Finally, steps 1 to 7 are repeated until P(maxgen) =
maximum number of generations (maxgen).

6 Simulation

Previous studies [9, 10, 16] have shown that the control
specification for the ROV can only be met at the
expense of thruster saturation. The multiobjective fuzzy
GA optimisation will be applied to the ROV problem
in an effort to eliminate the actuator saturation, while
meeting the control specification.

Using the Genetic Algorithm Toolbox for use with
MATLAB™ [15] the following GA parameters were set
as maxgen = 1000, N = 20, I = 32, and G = 0.9. Binary
chromosome structure and Gray scale coding was
employed to represent each individual. For this study,
g; = 0.9, ¢; = 5 and r = [10, 0]. The initial population is
shown in Fig. 2 with corresponding fuzzy objective and
fitness values for the respective individuals in this pop-
ulation. The fittest individual is marked with a circle.
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The ROV responses are shown in Figs. 3 and 4 for the
fittest individual. It is quite clear that the responses are
not satisfactory, and so a new population is generated
using the reproduction mechanism. This process is
repeated several times.
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After 50 generations, the optimal control parameters
are k) = 288.81, k, = 13.76, n; = 5.0, and 1, = 38.0.
Figs. 4, 5 and 6 depicts the results of the ROV
responses for multiobjective fuzzy GA optimisation
and the results reported in [9]. The highest achievable
degree of satisfaction (degree of membership) for the
given constraints and objectives is 0.71, i.e. the best
compromise solution due to the competing objectives.
- This corresponds to settling time ¢, = 31.62s, rise time
t, = 20.30s, O, = 0.23cm, 6,, = 7.14°, maximum
thrust demanded T, = 104.60N and 7},, = 104.04N
and maximum hydroplane action demanded &, =
5.88°. From Fig. 4 it is quite clear that thruster satura-
tion was eliminated by employing more hydroplane
action and consequently a larger pitch angle. The plot
of the convergence of the fitness values is shown in
Fig. 5.

The optimisation scheme was simulated in a
SIMULINK/MATLAB environment using a 486 PC.
The control system consisted of the nonlinear ROV
model and control structure expressed in a
SIMULINK block diagram. The execution time for
each generation was 10min, i.e. 30s for each individual.
It took eight and half hours to obtain the optimal con-
troller. Future work will concentrate on reducing the
execution time by employing workstations and parailel
computers.

7 Conclusion

Multiobjective fuzzy GA optimisation has been shown
via simulation to provide an intuitive process for select-
ing free control parameters for nonlinear controllers
with competing and fuzzy specifications. The technique
allows for the relative importance of each objective by
employing a new membership weighting strategy.

The multiobjective fuzzy GA optimisation was suc-
cessfully applied to an ROV depth control problem to
eliminate actuator saturation, while maintaining per-
formance. Future work will consider application of the
proposed technique to the full six degree of freedom
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ROV and development of a metric objective function
for performance robustness analysis.
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