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Abstract


In recent years, optimization algorithms have received increasing attention by the
research community as well as the industry. In the area of evolutionary compu-
tation (EC), inspiration for optimization algorithms originates in Darwin’s ideas
of evolution and survival of the fittest. Such algorithms simulate an evolutionary
process where the goal is to evolve solutions by means of crossover, mutation, and
selection based on their quality (fitness) with respect to the optimization problem
at hand. Evolutionary algorithms (EAs) are highly relevant for industrial applica-
tions, because they are capable of handling problems with non-linear constraints,
multiple objectives, and dynamic components – properties that frequently appear
in real-world problems.


This thesis presents research in three fundamental areas of EC; fitness function
design, methods for parameter control, and techniques for multimodal optimiza-
tion. In addition to general investigations in these areas, I introduce a number
of algorithms and demonstrate their potential on real-world problems in system
identification and control. Furthermore, I investigate dynamic optimization prob-
lems in the context of the three fundamental areas as well as control, which is a
field where real-world dynamic problems appear.


Regarding fitness function design, smoothness of the fitness landscape is of pri-
mary concern, because a too rugged landscape may disrupt the search and lead to
premature convergence at local optima. Rugged fitness landscapes typically arise
from imprecisions in the fitness calculation or low relatedness between neighboring
solutions in the search space. The imprecision problem was investigated on the
Runge-Kutta-Fehlberg numerical integrator in the context of non-linear differential
equations. Regarding the relatedness problem for the search space of arithmetic
functions, Thiemo Krink and I suggested the smooth operator genetic program-
ming algorithm. This approach improves the smoothness of fitness function by
allowing a gradual change between traditional operators such as multiplication
and division.


In the area of parameter control, I investigated the so-called self-adaptation
technique on dynamic problems. In self-adaptation, the genome of the individual
contains the parameters that are used to modify the individual. Self-adaptation
was developed for static problems; however, the parameter control approach re-
quires a significant number of generations before superior parameters are evolved.
In my study, I experimented with two artificial dynamic problems and showed
that the technique fails on even rather simple time-varying problems. In a dif-
ferent study on static problems, Thiemo Krink and I suggested the terrain-based
patchwork model, which is a fundamentally new approach to parameter control
based on agents moving in a spatial grid world.


For multimodal optimization problems, algorithms are typically designed with
two objectives in mind. First, the algorithm shall find the global optimum and
avoid stagnation at local optima. Additionally, the algorithm shall preferably find
several candidate solutions, and thereby allow a final human decision among the
found solutions. For this objective, I created the multinational EA that employs







a self-organizing population structure grouping the individuals into a number of
subpopulations located in different parts of the search space. In a related study,
I investigated the robustness of the widely used sharing technique. Surprisingly, I
found that this algorithm is extremely sensitive to the range of fitness values. In
a third investigation, I introduced the diversity-guided EA, which uses a popula-
tion diversity measure to guide the search. The potential of this algorithm was
demonstrated on parameter identification of two induction motor models, which
are used in the pumps produced by the Danish pump manufacturer Grundfos.


The field of dynamic optimization has received significant attention since 1990.
However, most research performed in an EC-context has focused on artificial dy-
namic problems. In a fundamental study, Thiemo Krink, Mikkel T. Jensen, Zbig-
niew Michalewicz, and I investigated artificial dynamic problems and found no
clear connection (if any) to real-world dynamic problems. In conclusion, a large
part of this research field’s foundation, i.e., the test problems, is highly question-
able. In continuation of this, Thiemo Krink, Bogdan Filipič, and I investigated
online control problems, which have the special property that the search changes
the problem. In this context, we examined how to utilize the available computa-
tion time in the best way between updates of the control signals. For an EA, the
available time can be a trade-off between population size and number of genera-
tions. From our experiments, we concluded that the best approach was to have a
small population and many generations, which essentially turns the problem into a
series of related static problems. To our surprise, the control problem could easily
be solved when optimized like this. To further examine this, we compared the
EA with a particle swarm and a local search approach, which we developed for
dynamic optimization in general. The three algorithms had matching performance
when properly tuned. An interesting result from this investigation was that dif-
ferent step-sizes in the local search algorithm induced different control strategies,
i.e., the search strategy lead to the emergence of alternative paths of the moving
optima in the dynamic landscape. This observation is captured in the novel con-
cept of optima in time, which we introduced as a temporal version of the usual
optima the in search space.
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also in dept to René Thomsen, Lars Bach, Mikkel T. Jensen, and Peter Rickers
for valuable discussions and their time spent on commenting my papers.


Rasmus K. Ursem
Aarhus, 1st April 2003











Table of contents


1 Introduction 1
1.1 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Why evolutionary algorithms? . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives, contributions, and limitations . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7


2 Basics of evolutionary algorithms 9
2.1 Basic terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Encoding, mutation, and crossover . . . . . . . . . . . . . . . . . . 12


2.2.1 Numeric search domains . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Function search domains . . . . . . . . . . . . . . . . . . . . 18


2.3 Population initialization . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Selection operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 21


2.4.1 Tournament selection . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Proportional selection . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Ranking selection . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Steady-state selection . . . . . . . . . . . . . . . . . . . . . . 24
2.4.5 Manual selection . . . . . . . . . . . . . . . . . . . . . . . . 24


2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25


3 Aspects of fitness function design 27
3.1 Theoretical aspects of fitness function design . . . . . . . . . . . . . 27


3.1.1 Plateaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Ridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.4 Local optima . . . . . . . . . . . . . . . . . . . . . . . . . . 32


3.2 Practical aspects of fitness function design . . . . . . . . . . . . . . 33
3.2.1 System-based fitness functions . . . . . . . . . . . . . . . . . 33
3.2.2 Simulation-based fitness functions . . . . . . . . . . . . . . . 35
3.2.3 Computationally demanding fitness functions . . . . . . . . 36


3.3 Special properties of real-world problems . . . . . . . . . . . . . . . 38
3.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Multiple objectives . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Dynamic components . . . . . . . . . . . . . . . . . . . . . . 44


3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47


v







vi Table of contents


4 Methods for parameter control 49
4.1 Manual tuning of constants . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Manual tuning of functions . . . . . . . . . . . . . . . . . . . . . . . 52


4.2.1 Mutation rate in bit-flip mutation . . . . . . . . . . . . . . . 52
4.2.2 Variance in Gaussian mutation . . . . . . . . . . . . . . . . 54


4.3 Measure-based control . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Preprogrammed rules . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Evolved and adaptive rules . . . . . . . . . . . . . . . . . . . 57


4.4 Self-adaptive control . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Gaussian mutation in evolution strategies . . . . . . . . . . . 58
4.4.2 Self-adaptation on dynamic problems . . . . . . . . . . . . . 59


4.5 Population-structure-based control . . . . . . . . . . . . . . . . . . 60
4.5.1 Subpopulation-based control . . . . . . . . . . . . . . . . . . 61
4.5.2 Spatial control . . . . . . . . . . . . . . . . . . . . . . . . . 62


4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64


5 Techniques for multimodal optimization 65
5.1 Replacement schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 67


5.1.1 Crowding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 Deterministic and probabilistic crowding . . . . . . . . . . . 67


5.2 Spatial population topologies . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Cellular EA . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Patchwork model . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 Religion-based EA . . . . . . . . . . . . . . . . . . . . . . . 72


5.3 Selection-based approaches . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Diversity Control-Oriented EA . . . . . . . . . . . . . . . . . 74


5.4 Search space division . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.1 Forking EA . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.2 Shifting Balance EA . . . . . . . . . . . . . . . . . . . . . . 78
5.4.3 Multinational EA . . . . . . . . . . . . . . . . . . . . . . . . 79


5.5 Mass extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.1 Random immigrants EA . . . . . . . . . . . . . . . . . . . . 81
5.5.2 Extinction EP . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.3 SOC extinction EA . . . . . . . . . . . . . . . . . . . . . . . 83


5.6 Restart and phase-based techniques . . . . . . . . . . . . . . . . . . 83
5.6.1 CHC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.2 Diversity-Guided EA . . . . . . . . . . . . . . . . . . . . . . 84


5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.8 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86


6 EA approaches to system identification and control 89
6.1 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . 89


6.1.1 Fitness function design . . . . . . . . . . . . . . . . . . . . . 91
6.1.2 Multiobjective and constraint system identification . . . . . 92
6.1.3 Dynamic system identification . . . . . . . . . . . . . . . . . 93







Table of contents vii


6.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93


6.2.1 Fitness function design . . . . . . . . . . . . . . . . . . . . . 97


6.2.2 Constrained control . . . . . . . . . . . . . . . . . . . . . . . 98


6.2.3 Multiobjective controller design . . . . . . . . . . . . . . . . 99


6.2.4 Adaptive control . . . . . . . . . . . . . . . . . . . . . . . . 99


6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99


6.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100


7 Case study: Parameter identification of induction motors 101


7.1 Induction motor models . . . . . . . . . . . . . . . . . . . . . . . . 102


7.1.1 Model of the 1.1 kW motor without saturation . . . . . . . . 103


7.1.2 Model of the 5.5 kW motor with saturation . . . . . . . . . 105


7.1.3 Performance criterion . . . . . . . . . . . . . . . . . . . . . . 107


7.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107


7.2.1 Local search algorithms . . . . . . . . . . . . . . . . . . . . 108


7.2.2 Evolution strategies . . . . . . . . . . . . . . . . . . . . . . . 108


7.2.3 Generational evolutionary algorithms . . . . . . . . . . . . . 110


7.2.4 Particle swarm optimization algorithms . . . . . . . . . . . . 111


7.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 112


7.3.1 Identification of the 1.1 kW motor . . . . . . . . . . . . . . 113


7.3.2 Identification of the 5.5 kW motor . . . . . . . . . . . . . . 116


7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119


7.5 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119


8 Case study: Direct control of a crop-producing greenhouse 121


8.1 Direct control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123


8.2 Greenhouse model . . . . . . . . . . . . . . . . . . . . . . . . . . . 126


8.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129


8.3.1 Evolutionary algorithm . . . . . . . . . . . . . . . . . . . . . 129


8.3.2 Particle swarm optimization algorithm . . . . . . . . . . . . 129


8.3.3 Directed ascent local search . . . . . . . . . . . . . . . . . . 130


8.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 131


8.4.1 Prediction horizon . . . . . . . . . . . . . . . . . . . . . . . 131


8.4.2 Population size versus generations . . . . . . . . . . . . . . . 132


8.4.3 Step-sizes in local search . . . . . . . . . . . . . . . . . . . . 133


8.4.4 Comparison of algorithms . . . . . . . . . . . . . . . . . . . 135


8.4.5 Analysis of control signals . . . . . . . . . . . . . . . . . . . 135


8.4.6 Multi-valued control . . . . . . . . . . . . . . . . . . . . . . 139


8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142


8.6 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144


9 Summary and conclusions 147


10 Future research 151







viii Table of contents


Bibliography 153


Index 164


Appendix 166


A List of publications 167


B Simple benchmark problems 169


C Crop-producing greenhouse 173
C.1 State equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173


C.1.1 Indoor steam density xsteam . . . . . . . . . . . . . . . . . . 174
C.1.2 Indoor air temperature xatemp . . . . . . . . . . . . . . . . . 176
C.1.3 Indoor CO2 concentration xCO2 . . . . . . . . . . . . . . . . 177
C.1.4 Accumulated biomass xbiom . . . . . . . . . . . . . . . . . . 178
C.1.5 Accumulated profit xprofit . . . . . . . . . . . . . . . . . . . 179
C.1.6 Condensation on greenhouse hull xcond . . . . . . . . . . . . 179


C.2 Implementation specific details . . . . . . . . . . . . . . . . . . . . . 179
C.3 Physical constants, auxiliary variables, and functions . . . . . . . . 180
C.4 Translation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 181















Chapter 1


Introduction


In recent years, optimization algorithms have received increasing attention by the
research community as well as the industry. Scientifically, the field of optimization
algorithms is a highly relevant research area, because these algorithms can find
approximate solutions to NP-hard problems and solutions to problems where no
analytic method exists, e.g. for solving non-linear differential equations. Opti-
mization algorithms have a very broad range of application, since many problems
in science and industry can be formulated as an optimization task where the ob-
jective is to minimize or maximize a given objective function f . In other words,
to find a solution s in the search space S of possible solutions such that f(s) is
minimized (or maximized). A simple example, though easily solved analytically,
is the following.


Example 1.1:


Minimize
f(x1, x2) = x2


1 + x2
2 where x1, x2 ∈ [−2, 2]


Here is S the subset of R2 determined by the bounds −2 ≤ xi ≤ 2, i = 1, 2.
♦


From an industrial point of view, optimization algorithms are of major eco-
nomic importance, because they can be used to improve or automate several pro-
cesses in the company. For example, such algorithms can often be used to improve
the quality of products, to lower the production cost, or increase efficiency in
logistics and scheduling-related problems. In this context, even a few percent im-
provement of existing solutions may give the company a significant competitive
advantage. Hence, optimization techniques can be an important key to success
when considering the slim margin between expenses and revenues of today’s com-
panies. In contrast to the algorithmic approach, the manual search of a solution
with a slight improvement is often tedious, if not impossible, because manual op-
timization requires a great deal of insight and patience. Furthermore, manual
optimization often limits the scope of the search process to what the human ex-
pert is trained to consider as a good solution. Conversely, optimization algorithms
automate the search and are not biased in scope regarding the solutions.


The wide range of real-world optimization problems and the importance of
finding good approximative solutions have lead to a great variety of optimization


1







2 Chapter 1. Introduction


techniques (for a comprehensive survey, see [100]). In this context, the so-called
evolutionary algorithms (EAs) are a particularly promising approach, because this
technique has shown good and robust performance on a broad range of real-world
problems, e.g., [74; 104; 133; 52; 29; 113; 105; 78].


1.1 Evolutionary Algorithms


In short, evolutionary algorithms are iterative and stochastic optimization tech-
niques inspired by concepts from Darwinian evolution theory. An EA simulates an
evolutionary process on a population of individuals with the purpose of evolving
the best possible approximate solution to the optimization problem at hand. In
the simulation cycle, three operations are typically in play; recombination, muta-
tion, and selection. Recombination and mutation create new candidate solutions,
whereas selection weeds out the candidates with low fitness, which is evaluated by
the objective function1. Figure 1.1 illustrates the initialization and the iterative
cycle in EAs. Chapter 2 gives an elaborate introduction to EAs.


69
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Figure 1.1: Initialization and the iterative cycle in evolutionary algorithms.


Historically, EAs were first suggested in the 1940’ties [51]. However, the found-
ing fathers of modern EAs are considered to be Lawrence Fogel (Evolutionary Pro-
gramming [53]), Ingo Rechenberg and Hans-Paul Schwefel (Evolution Strategies
[113]), and by John Holland (Genetic Algorithms [68]). Several years later, Evo-
lutionary Algorithms (EAs) and Evolutionary Computation (EC) were introduced
as unifying terms for the forest of optimization techniques inspired by biological
evolution. For a comprehensive overview, see [10].


1In EAs, the objective function is often referred to as the fitness function.
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1.2 Why evolutionary algorithms?


In general, most real-world optimization problems have several challenging proper-
ties. Nearly all problems have a significant number of local optima, and the search
space can be so huge that the exact global optimum cannot be found in reasonable
time. Additionally, the problems may have multiple conflicting objectives that
should be considered simultaneously (e.g., cost versus quality). Moreover, there
may be a number of non-linear constraints to be fulfilled by the final solution.
Furthermore, the problem may have dynamic components altering the location of
the optimum during the optimization process. For some problems, variants of the
local search approach have proven to be very efficient, e.g., Lin-Kernighan’s algo-
rithm for the Traveling Salesman Problem2. However, deterministic local search
algorithms, such as steepest decent, do not allow a decrease in the solution’s qual-
ity during the search. For this reason, these algorithms often stagnate at a local
optimum, which makes local search less desireable for many real-world problems.
Valuable alternatives are stochastic search methods such as simulated annealing,
tabu search, and evolutionary algorithms. Among these techniques, EAs seem to
be a particularly promising approach for several reasons. EAs are very general
regarding the problem types they can be applied to (continuous, mixed-integer,
combinatoric, etc.). Furthermore, these algorithms can easily be combined with
existing techniques such as local search and other exact methods. In addition, it
is often straightforward to incorporate domain knowledge in the evolutionary op-
erators and in the seeding of the population. Moreover, EAs can handle problems
with any combination of the above mentioned challenges in real-world problems
(local optima, multiple objectives, constraints, and dynamic components). In this
connection, the main advantage lies in the EA’s population-based approach. For
local optima, the genetic diversity of the population allows the algorithm to explore
several areas of the search space simultaneously. This is of course no guarantee
against premature convergence to a local optimum, but the population improves
the EAs robustness on such problems. In multiobjective problems, EAs provide
a set of trade-off solutions to the problem’s conflicting objectives in a single run,
whereas traditional approaches typically only produce one solution per run. Re-
garding constraint problems, EAs typically allow a mix of feasible and infeasible
solutions in the population. This improves the algorithms capabilities of exploring
the boundary between feasible and infeasible search space, and the capabilities
for “crossing” infeasible regions. Finally, the population gives EAs an advantage
on dynamic problems, because the population is likely to contain a good solution
after the problem changes.


Naturally, EAs do also have some disadvantages. Unfortunately, they are rather
computationally demanding, since many candidate solutions have to be evaluated
in the optimization process. However, there has been a recent increase in interest
in dealing with this problem and some techniques have been suggested (see section
3.2.3). Furthermore, EAs should not be applied blindfoldedly to any problem. As
mentioned, many simpler and faster techniques exist and they should typically be


2Although one could argue that this is a problem is perhaps a bit “academic”, it still represents
many real-world problems, in particular scheduling and other permutation problems.
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tried first. In this context, EAs offer the possibility to further improve solutions
found by simpler techniques, which can be done by incorporating them in the start
population (see section 2.3). In addition, EAs typically have a few more algorith-
mic parameters to tune compared with simpler techniques. These parameters are
unfortunately problem dependent, but this is also the case for simpler techniques
though fewer parameters need to be tuned. Consequently, a substantial amount of
research has been carried out on methods for dealing with this issue (see chapter
4).


1.3 Objectives, contributions, and limitations


The primary objectives in this thesis are to investigate three fundamental chal-
lenges in evolutionary computation, to suggest algorithms dealing with these chal-
lenges, and to demonstrate the potential of the proposed algorithms on real-world
problems in system identification and control. The three fundamental challenges
are: Fitness function design, methods for parameter control, and techniques for
multimodal optimization problems3. Furthermore, dynamic optimization problems
were studied in the context of the three fundamental challenges as well as control.


Fitness function design is of major importance for EAs and other optimization
algorithms, because the fitness function essentially determines how hard the pro-
blem is to optimize. There are several sub-aspects of fitness function design. The
smoothness of the function is one of primary concern, because a too rugged fit-
ness landscape may distrupt the search and trap the algorithm in a local optimum.
Rugged fitness landscapes typically arise from imprecision in the fitness calculation
or from the structure of the search space, i.e., that neighboring solutions are too
unrelated. Regarding imprecise fitness calculations, I experienced this problem
in connection with Runge-Kutta-Fehlberg approximation of non-linear differen-
tial equations for the greenhouse problem, which I investigated in collaboration
with Thiemo Krink and Bogdan Filipič [88; 141; 143]. The imprecision problem
with the Runge-Kutta-Fehlberg approach is discussed in section 3.2.2. For the
search space structure, Thiemo Krink and I studied the neighborhood problem on
arithemetic expression trees4 [144]. To reduce the ruggedness of the landscape,
we suggested the smooth operator genetic programming, which was tested on a
simple black box structural identification problem. The proposed technique not
limited to black box identification, but can be applied in other areas where the
objective is to discover arithmetic expressions, e.g., fitness function approximation
of computationally demanding problems (section 3.2.3).


As mentioned in section 1.2, parameter control in EAs has been studied ex-
tensively and several methods have been suggested to deal with this issue. One
approach is to evolve the parameters along with the solution to the problem, and
thereby let the algorithm self-adapt to the problem. Self-adaptation has been
studied on static problems; however, this self-adaptive control approach requires a
significant number of generations before superior parameters are evolved. Hence,


3Problems with many local optima.
4EAs with expression tree encodings are generally referred to as genetic programming.
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it may not be adequate for dynamic problems, because they may change too fast.
To study this further, I experimented with two artificial benchmark problems and
showed that the self-adaptive approach fails on even rather simple time-varying
problems [138]. This study is described in section 4.4.2. Regarding real-world
application of self-adaptation, I included two self-adaptive evolution strategies in
a comparison of techniques a parameter identification study on two induction mo-
tors (see chapter 7). This study was performed in collaboration with chief engineer
Prof. Pierré Vastrup, Grundfos A/S. A journal paper is currently in submission
[147]. In a different study, Thiemo Krink and I investigated a spatial agent-based
approach to parameter control. Spatial grid models have been suggested as an ap-
proach to improve the performance of EAs on multimodal problems (section 5.2).
For parameter control, we examined a variant of the patchwork model where the
individual’s position corresponds a parameter setting for that particular individual
[87]. This terrain-based patchwork model (TBPM) allowed the algorithm to self-
organize the population around the best parameters and thereby achieve better
performance, because more individuals exploited good parameters and no evalua-
tions were wasted on bad parameters. Spatial parameter interpretation was sug-
gested by Gordon et al. [59]. Our contribution was to use spatially self-organizing
agents, which is fundamentally different from the study by Gordon et al. and other
control techniques. The novel TBPM is described in section 4.5.2.


Multimodal optimization is a third fundamental branch of research in EC. The
field is related to the area of fitness function design, because the modality of the
landscape is defined by the fitness function. For real-world problems, it is usually
impossible to design the fitness function without local optima. Instead, multimodal
optimization techniques are developed to handle such problems. In an EC-context,
multimodal optimization is performed with two goals in mind. The algorithm shall
find the global optimum while avoiding stagnation at local optima. Additionally,
the algorithm shall preferably find several optima. The purpose of the latter goal
is to allow a final decision by a human expert among the found solutions. For
this goal, I suggested the multinational EA [137]. In this algorithm, the basic idea
is to determine the location of valleys by calculating the fitness in sample points
of the fitness landscape. The information about valleys is then used to divide
the population into a number of self-organized subpopulations and thereby focus
the search on several promising local optima. The multinational EA is described
in section 5.4.3. In the initial study, the multinational EA was compared with
the well-known sharing technique, which gave some rather strange results. In
a follow up study, I investigated the behavior of sharing on simple variants of
the two problems used in Goldberg and Richardson’s original paper [58]. To my
surprise, I found that the sharing algorithm was extremely sensitive to the range
of fitness values [139]. This discovery was particularly surprising, because more
than 100 papers and theses utilizing sharing have been published. The sharing
approach is described in section 5.3.1, which also contains my criticism of the
technique. As a continuation of these two studies, I investigated the role of genetic
diversity in multimodal optimization. As mentioned in section 1.2, maintaining
genetic diversity gives the algorithm an advantage in escaping local optima. In
most studies, genetic diversity is achieved indirectly by various techniques, e.g.,
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having slower genetic diffusion in the population. In contrast, I suggested the
diversity-guided EA (DGEA), which use a diversity measure to directly control the
population diversity [140]. In a more general context, my experiments indicated
that both high and low diversity is important in multimodal optimization, which is
somewhat controversy to the general belief that the maintaining of high diversity
is the key to success in multimodal optimization. The algorithm is described
in section 5.6.2. In collaboration with Pierré Vadstrup, I applied the DGEA to
parameter identification of two induction motors [147]. For more information on
this study, see chapter 7.


In my research, investigations on dynamic optimization problems have been a
red line through much of the work. As mentioned earlier, some real-world prob-
lems have dynamic components and thus a time-varying fitness landscape. For
this reason, EAs for dynamic problems have been investigated since the beginning
of the nineties. Regarding my work on this topic, I carried out an initial investiga-
tion showing the potential of multimodal optimization algorithms, in this case the
multinational EA, on artificial dynamic problems [138]. Theoretically speaking,
the fitness of the currently located optimum may decline and thereby no longer be
the global optimum. Hence a multimodal approach can continuously track local
optima and thereby have a potential optimum located before it becomes the global
optimum. This study was based on artificial dynamic problems, which I realized
were too simplistic to allow conclusions about real-world problems. For this rea-
son, Thiemo Krink, Mikkel T. Jensen, Zbigniew Michalewicz, and I conducted an
investigation on the relationship between the widely used artificial dynamic prob-
lems and real-world dynamic problems [146]5. As suspected, we found that the
used artificial benchmark problems had no clear connection (if any) to real-world
dynamic problems. Conclusively, a considerable part of this research area’s foun-
dation, i.e., the benchmark problems, is highly questionable (see section 3.3.3).
As a continuation of this study, Thiemo Krink, Bogdan Filipič, and I started to
investigate online control problems, which is a subgroup of dynamic problems that
capture many interesting issues. Online control problems have the special prop-
erty that the search changes the problem, since there is an interaction between
the controller (the EA) and the controlled system. The primary limitation in
online control is the available computation time between updates of the control
signals. In an EA-context, the available time can be a trade-off between popula-
tion size and number of generations, which we investigated on a simple greenhouse
simulator [88]. However, the results were rather inconclusive and a more realis-
tic and complex simulator was developed [145] (appendix C). The initial study
was repeated and extended with an investigation of look-ahead times [141] (first
published as a conference paper [142]). From the experiments in this study, we
concluded that available time was best invested by having a small population size
and many generations between problem updates. Hence, the problem was essen-
tially turned into a series of related static problems. To our surprise, the problem
was extremely easy to solve once it was treated as a series of static problems. This
was further examined in a follow up investigation that compared the EA with a
particle swarm optimization and a local search approach, which we specifically


5Published rather late because of a long review process.
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developed for dynamic problems [143]. The three algorithms had nearly matching
performance when properly tuned. An interesting result from this investigation
was that different step-sizes in the local search algorithm induced different control
strategies, i.e., the search strategy lead to the emergence of alternative optima in
the dynamic fitness landscape. This observation is captured in the novel concept
of optima in time, which we introduced as a temporal version of the usual optima
in the search space [143]. In addition to the published investigations, I examined
four multi-valued control approaches, which encode a control value per time-step
instead of one value for the entire prediction horizon. Surprisingly, the simple
approach with constant control signals turned out to be the best. The greenhouse
study is described in chapter 8, which also contains the description of the novel
particle swarm and local search algorithms.


Regarding the limitations of my Ph.D. project, there are a number of additional
issues I would have liked to investigate. In this thesis, I studied three fundamental
issues in EC: fitness function design, methods for parameter control, and tech-
niques for multimodal optimization problems. I would also have liked to study
techniques for handling problems with correlated parameters, i.e., problems where
several search parameters co-vary and have to be changed simultaneously to im-
prove the fitness (see section 3.1.3 for further information). Evolution strategies
and particle swarm optimization algorithms are two techniques for this purpose.
Although I experimented with these techniques in connection with the induction
motor study, I would have liked to perform a broad investigation in this area. In
system identification and control, a wide selection of approaches exist. Naturally,
I would have liked to investigate more of these techniques; however, this was not
possible in the given time frame.


1.4 Thesis outline


The thesis is written in book-style as a combination of survey chapters and case
studies. The survey chapters describe the investigated fundamental research areas
in EC, and put my research in perspective to other approaches and investigations.
The case study chapters are included to demonstrate the potential of the algorithms
on realistic problems.


In short, the thesis is structured as follows: Chapter 2 introduces the basics
of evolutionary algorithms. This includes an overview of the encodings and their
associated operators, the aspects of initialization, and the most commonly used
selection operators. In chapter 3, the aspects of fitness function design is exten-
sively discussed. The chapter contains a survey of theoretical aspects, practical
aspects, and an introduction to the three special properties of real world problems
(constraints, multiple objectives and dynamic components). Chapter 4 focuses on
the issues related to parameter control in EAs. In this chapter, I describe a new
taxonomy for parameter control approaches and give a survey of the techniques
in this area of EC. The use of EAs in multimodal optimization is described in
chapter 5. Here, I present an overview of the main algorithmic ideas and my own
work on this subject. Chapter 6 gives an introduction to system identification and
control, and a short survey of various techniques in these fields. This is followed
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by the case studies on parameter identification of induction motors and on direct
control of a crop-producing greenhouse, which is the investigation on a realistic
dynamic optimization problem. Finally, chapter 9 concludes the thesis and chapter
10 contains my plans for future research.







Chapter 2


Basics of evolutionary algorithms


Evolutionary algorithms (EAs) are iterative optimization techniques inspired by
concepts from Darwinian evolution theory. However, the evolutionary process in
EAs is extremely simplified compared with the process in nature. Although many
terms used in connection with EAs have been adopted from biology, only a few
modern approaches have implemented biological concepts in a realistic manner.
Conceptually, an EA maintains a population of individuals that are selected and
created in an iterative process. An individual consist of a genome, a fitness , and
possibly a number of auxiliary variables such as age and sex. The genome consist of
a number of genes that altogether encode a solution to the optimization problem.
The encoding is the internal representation of the problem, i.e., the datastructure
holding the genes. The fitness represents the quality of the solution encoded in
the individual’s genome, and it is usually calculated by a so-called fitness function.
The surface obtained by the fitness landscape is the search space in relation to the
fitness function.


Regarding the implementation of EAs, there is a great variety in population
structures and evolutionary operators. However, all EAs have an initialization
phase followed by an iteration phase that evolves the initial population to a (hope-
fully) better set of solutions to the problem. Figure 2.1 illustrates the pseudocode
of a simple EA.


EA Main
t = 0
initialize population P (0)
evaluate population P (0)
while(!(termination condition)) {
t = t + 1
select population P ′(t) from P (t− 1)
create population P (t) from P ′(t)
evaluate population P (t)


}


Figure 2.1: A simple evolutionary algorithm.


In EAs, the population is usually initialized with randomly created individuals


9
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that are evaluated with respect to the fitness function. After initialization, the iter-
ation phase loops until some termination criterion is met. This may be a maximal
number of generations, a maximal number of fitness evaluations, or that a desired
fitness is reached. The loop consist of four parts. First, the generation counter
t is increased. Next, selection is applied to form the population at generation t


from the population at generation t-1. Naturally, individuals with better fitness
are more likely to be represented in the new population. After selection, a new
population is typically created by recombination1 and mutation of the solutions
in the selected population P ′(t). The recombination operator creates one or two
new solutions by mixing (crossing over) the genomes of two or more parents. The
mutation operator alters the genome of one individual to create a new individual.
A typical approach is to add a bit of stochastic noise to the existing solution.
Finally, the new population is evaluated and the process is repeated.


During the run, the fitness of the best individual (hopefully) improves over
time and typically tends to stagnate towards the end of the run (see figure 2.2).
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Figure 2.2: Gradual fitness improvement during the run.


Ideally, the stagnation of the process coincides with the successful discovery of
the global optimum. However, stagnation also occurs on local optima, which is
usually an unwanted result and one of the key problems in EAs and other iterative
search algorithms. Typically, the performance stagnation is caused by genetic
convergence of the individuals in one part of the search space, i.e., the genes of all
individuals have become very similar. At this point, mutation is the only way to
explore other areas of the search space, which corresponds to random steps away
from the current location in the search space.


2.1 Basic terminology


The terminology of evolutionary computation (EC) is, to a large extent, borrowed
from biology, but many terms have a different meaning in an EC-context. Un-
fortunately, there is no agreement on a large part of the basic terminology used
in connection with EC. In general, researchers agree on the meaning of selection,
mutation, and recombination, which is as described above. However, the terms


1Recombination is frequently called crossover.
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related to the problem, the objective, and the representation are very vaguely de-
fined and call for more concise and unifying descriptions. A system identification
problem is used for illustrative purposes. The introduced terms are displayed in
figure 2.3 for the example.
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Figure 2.3: Terms related to the problem, the objective, and the representation.


The given problem is often described in an abstract way (top of figure 2.3).
A system identification problem may be described as “find a mathematical model
describing the measured data”. First, the abstract problem description needs to
be formalized. This can be done in a number of ways. In the system identification
example, an engineer (a domain expert) may derive an n-dimensional parameter-
ized model of the process that generated the data (the formalization used in figure
2.3). A completely different approach may be to use an artificial neural network
to approximate the true system.


Assuming that the problem should be solved using a parameterized model, the
objective is to find the values of the n model parameters that generate a behavior
matching the measured data in the best possible way. Hence, the search domain
is numeric and in this case Rn. The actual search space S is usually defined by an
interval for each of the n variables, i.e., S ⊆ Rn. The search space is called the
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phenotype search space2 when there is a difference between the encoding’s domain
and the search domain (see later).


The next step is then to define the objective function, or fitness function. In
the system identification example, the objective function could be the sum of
squared error between the simulated and the measured data. Note that there may
be several meaningful functions for a given problem. To this end, a number of
important issues arise when designing fitness functions. They are discussed in
chapter 3. The objective function defines the objective space, which is the set
of possible fitness values. In the case of a single objective, the objective space
is usually a subset of R. For multiobjective problems, the objective space is a
subset of Rm where m is the number of objectives. See section 3.3.2 for further
information on multiobjective optimization.


Settling on a problem formalization and a phenotype search space narrows the
number of meaningful representations. A representation consist of an encoding
datastructure and a decoding function. The encoding is used to store the actual
solution in. The encoding defines the genotype search space3 and also the size
of this search space, i.e., the number of possible solutions. The decoding scheme
is a mapping from the genotype search space to the phenotype search space. It
may be the simple identity mapping4 if the search space is a natural subset of the
search domain (e.g., an interval in R). In all other cases, a decoding scheme must
be implemented. In the system identification example, the most straightforward
approach is to use vectors, which may be represented as arrays of doubles. Another
possible approach is to use binary strings of length L. Here, the decoding scheme
must map solutions from the search space of L-bit binary strings to Rn. Finally, the
choice of encoding determines the set of possible evolutionary operators. Encodings
and evolutionary operators are closely connected because the operators access the
datastructure of the encoding directly. However, it should be mentioned that a
great variety exist for each encoding, and that several new operators are introduced
every year. For a comprehensive survey of the most commonly used operators, see
[10]. The next sections describe the encodings and operators relevant for system
identification and control problems. Furthermore, the remaining components of
evolutionary algorithms are introduced.


2.2 Encoding, mutation, and crossover


The optimal type of parameter encoding in the genome of the individual depends
on the definition of the problem. In principle, any problem parameters can be
encoded by a binary representation. However, it is often convenient to use a high-
level problem representation and implement specialized mutation and recombina-


2The term “phenotype” (alone) denotes the individual’s solution in the search space and its
corresponding fitness as well as other traits such as age and gender.


3The term “genotype” is often used in connection with the representation. However, there is
no consensus regarding what genotype exactly denotes. Some researchers use genotype for the
encoding; other researchers use it for both the encoding and the decoding scheme.


4The phenotype and the genotype search spaces are usually just called “search space” when
the identity mapping is used.
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tion operators for the particular encoding. The wide variety of EA-applications
have created a great variety of encodings and operators. The most frequently used
are encodings for numeric domains, permutation domains, matrix domains, and
function domains. It is beyond the scope of this thesis to describe all of them in
detail. Here, I will focus on the numeric and function domains, which are the two
primary domains relevant for system identification and control.


2.2.1 Numeric search domains


Numeric domains cover problems where the objective is to find a numerical vector.
The majority of EA-applications originate in this domain and therefore a signifi-
cant amount of work has been devoted to investigate and develop encodings and
operators for this domain. The two main encodings are the binary string encoding
and the real-valued vector encoding.


An important issue in the representation of numerical problems is the precision
of the encoding. A discrete encoding of a continuous interval can never be accurate,
since any finite set of numbers leaves gaps in a continuous interval. The precision of
the representation can be improved by increasing the number of bits in the binary
representation. However, this improvement in precision also increases the size of
the search space, which grows exponentially with the number of bits. For instance,
the size of a search space in a 16-bit problem representation is 216 = 65, 536. To
double the precision, the genomes have to consist of 17 bits, which doubles the
size of the search space. The same consideration applies to real value encoded
problems. In high-level programming languages, the binary encoding is hidden
from the programmer and the precision, and thus the size of the search space, is
given by the internal representation of the used floating point data type.


Binary strings


Binary encoding is the traditional way to represent parameters in EAs. The data
structure used for binary encoding is a bit-vector with fixed length L, which cor-
responds to 2L different solutions in the search space. Apart from numerical prob-
lems, binary encoding is often used in permutation and combinatorial problems,
such as the 0-1 knapsack problem. To use binary encoding with numeric domains,
one has to specify a decoding function that maps the binary representation of
a gene to a floating-point number. The decoding function converts the binary
number to a decimal number, and then it is mapped to the real variable’s search
interval. Suppose a gene x is encoded by L bits, then the corresponding floating-
point value xvalue is calculated according to equation 2.1.


xvalue = xmin +
xmax − xmin


2L − 1


(
L−1∑
i=0


x[i] · 2L−1−i


)
(2.1)


where xvalue is the floating-point value, xmin and xmax are the minimal and maximal
values of x, and x[i] is the i’th bit in the binary encoding. If x is encoded by 8 bits,
xmin = −2, and xmax = 2, then the binary number 01100111 = 103 is translated
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as follows:


xvalue = −2 +
2−−2


255
103 ≈ −0.3843 (2.2)


The simple two-dimensional test problem introduced in example 1.1 can, for
instance, be encoded using 16 bits with 8 bits for x1 and x2 (see figure 2.4).


11010010︸ ︷︷ ︸
x1


00111001︸ ︷︷ ︸
x2


Figure 2.4: The genome of a two parameter function with 8-bit encoding per
parameter.


Another way to map a binary encoding to a numeric domain is called Gray
decoding . The advantage of Gray decoding is that similar parameter values in
the floating point representation correspond to adjacent numbers in the binary
representation. For instance, the binary number 00011111 =31 is not adjacent to
00100000 =32 in the traditional binary encoding, although 31 and 32 are adjacent
integers. If 32 is a better solution than 31 then the EA has to change six bits in
the representation to change the value from 31 to 32. The Gray decoding function
solves this problem such that neighboring integers are represented by binary num-
bers that differ in only one bit. Figure 2.5 shows a Gray decoding algorithm with
O(L) time complexity. However, in both binary decoding techniques there is the
problem that a small change of the binary genome can lead to very large jumps in
the floating point search space, such as in 00000001 = 1 and 10000001 = 129.


function Gray Decode(bit-string x) : integer
ones = 0
intvalue = 0
for (i = 0; i<|x|; i++) {


if (x[i]==1)
ones++


intvalue =intvalue + (ones mod 2)*2|x|−1−i


}
return intvalue


Figure 2.5: Pseudocode for Gray decoding in linear time.


Bit-flip mutation


Bit-flip mutation is the most widely used mutation operator for binary encoded
problems. The operator procedure consists of an iteration over all genes, where
the bit in a gene g[i] is flipped if a uniform random number u of U(0, 1) is smaller
than a certain probability threshold pm. The main drawback of this operator is the
time complexity, which is O(L) for bit-strings of length L. However, the distance
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between two changed bits follows the geometric distribution, i.e., if pm is the
probability of changing a bit then T ∼ ge(pm) is a stochastic variable describing
the distance between changed bits. The number of bits t to skip can be calculated
from the following function.


t = 1 +


⌊
ln(u)


ln(1− pm)


⌋
, (2.3)


where u is uniformly distributed according to U(0, 1). If the position t′ of the next
bit-flip is not in the current genome then the first bit flipped in the next mutated
genome should be the (t′ − L)’th bit. Empirical studies have suggested values
for pm ∈ [0.001, 0.01] (e.g. [35] and [62]). Bremermann [23], and later Bäck [8],
showed that the value pm = 1/L is optimal for simple sphere problems. For this
reason, 1/L is usually used as a lower bound on pm.


N-point and uniform crossover


A widely used crossover operator for binary (and also real encoding) is the n-point
crossover operator, which recombines the genes of two or more parents in order to
create two offspring genomes.


In one-point crossover, the parent genomes of size n are cut and reassembled at
a random position p of the genome. The first offspring genome receives its genes
between gene[1] and gene[p-1] from parent 1 and its remaining genes gene[p] to
gene[n] from parent 2. The second offspring genome is assembled with the mirror-
image of the first offspring genome, i.e., gene[1] to gene[p-1] are from parent 2 and
gene[p] to gene[n] are from parent 1 (see figure 2.6).


Parent 1 11000011 00111001


Parent 2 01110110 11011100


Parent 1 11000 011 00111001


Parent 2 01110 110 11011100


Offspring 1 11000 110 11011100


Offspring 2 01110 011 00111001


Figure 2.6: One-point crossover operator.


The difference between n-point and one-point crossover is the use of n crossover
points instead of one. At each crossover point, the source of gene[i] alternates
between the two parents. Usually n is a value between 1 and 4. Another frequently
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used crossover operator is the uniform crossover. In uniform crossover the offspring
is generated by picking each gene[i] randomly from one of the parent’s gene[i]’s.


Real-valued vectors


Another popular way to encode numerical domains is to represent the genes directly
by (pseudo-)real numbers. Here, the search space is a subset of the objective
domain. Thus, no decoding is necessary. The direct representation of the real
values allows the design of mutation and crossover operators that are based on
arithmetic operations and stochastic distributions.


Gaussian and uniform mutation


Most mutation operators for real valued vectors alter the solutions by adding a
randomly generated vector M = (m1,m2, . . . , mn) to the solution vector x, i.e.,


x’ = x + M (2.4)


It is important that the mi in M are generated from a distribution with zero as
mean value, otherwise the solutions will drift due to the mutation. The common
choice for the generation of M is the Gaussian distribution N(0, α) (figure 2.7).
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Figure 2.7: The Gaussian distribution for N(0, 1).


A rather uncommon mutation is based on the uniform distribution U(−α, α),
where M is a value between −α and α with equal probability. A special case of the
uniform mutation is x’ = M with M ∈ U(geneRangemin, geneRangemax), which
can be useful for the encoding of an enumerable parameter other than binary.


The performance of the mutation operator strongly depends on the parameter
α. If α is set too high the algorithm has difficulties in fine-tuning the solutions,
while if set too low the population might end up in a local optimum. Several tech-
niques have been suggested to control α, such as self-adaptation in Evolutionary
Strategies [113].


A very simple but effective solution is to define α as a function of the genera-
tion number. A well-supported hypothesis is that, in general, the population will
converge towards a local or global optimum. To improve the chances of locating
the global optimum the algorithm should start with a broad search strategy that
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gradually narrows as the population converges, i.e., α should be calculated from a
decreasing function5. Two decreasing functions are displayed in figure 2.8.
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Figure 2.8: Decreasing functions for calculation of α.


Arithmetic crossover


Arithmetic crossover is an operator for real encoded genomes in which an offspring
genome is generated by the weighted mean of each gene in the two parent genomes.


x’ = wx1 + (1− w)x2, (2.5)


where w is the weight and x1 and x2 are the genomes of the parents. If w = 0.5
then arithmetic crossover calculates the offspring genome as the arithmetic mean
of the two parents. The weight w is often generated according to the uniform
distribution U(0, 1), which will place the offspring genome numerically between
the parent genomes (figure 2.9(b)). A variant of arithmetic crossover generates a
specific weight wi for each gene xi in the genome vector x’ = (x′1, x


′
2, . . . , x


′
n).


x′i = wix1i + (1− wi)x2i (2.6)


In this variant, the offspring is placed at a random location inside the hypercube
spanned by the two parents, see figure 2.9(c). A third variant of the arithmetic
crossover generates the offspring of k > 2 parents. The offspring is created by
combining the parents according to a number of weights, which define the amount
of contribution from each of the parents. The offspring is created according to
equation 2.7.


x’ =
k∑


j=1


wjxj, where wj ∈ [0, 1],
k∑


j=1


wj = 1 (2.7)


In this setup the offspring is created in the convex hull defined by the k parents
(figure 2.9(d)).


5This idea is often referred to as annealing.
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(d) Arithmetic crossover with 3 parents
and one weight per parent.


Figure 2.9: Crossover for real valued vectors on a two-dimensional problem. The
outer box illustrates the two dimensional search space.


2.2.2 Function search domains


In problems with function domains, the objective is to evolve a mathematical
expression. EAs evolving expressions are usually called Genetic Programming
(GP) in the literature. In GP, the evolved expressions act as problem solvers
rather than particular problem solutions. This idea is closely related to the much
older idea of Evolutionary Programming [53], which is an approach for evolving
automata that can learn symbolic patterns.


The key data structure in GP is the parse tree representation. A parse tree
consists of terminals and non-terminals. The terminals are the leaves of the tree,
while the non-terminals are the nodes. The terminals may be constants and vari-
ables related to the problem. The non-terminals are operators such as +, /, and
if-then-else constructions. The difference between terminals and non-terminals
is that the non-terminals have subtrees under them. For instance, the + oper-
ator has a left and a right subtree. Non-terminals can have different numbers
of subtrees. For instance, the unary minus has one subtree, plus has two, while
the if-then-else construction has three subtrees (condition, then part, and else
part). A tree is evaluated by recursively traversing the tree. Naturally, a non-
terminal cannot be evaluated unless its subtrees have been evaluated.


The choice of terminals and non-terminals is of course dependent on the kind
of parse trees that shall be evolved. They must be carefully selected to allow just
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the kind of expressions that are needed to represent the problem solution. A too
limited set may lead to functions with rather poor performance. On the contrary,
a large set of operators could make the search difficult because the search space
grows with the available operators. Another approach to limit the search space
is to introduce a maximal depth of the evolved trees. Additionally, the choice of
operators and terminals might introduce some technical problems. For instance,
the return type of the subtrees of the if-then-else operator are both boolean
and the type of the expression in the then and else branch. The evolutionary
operators have to ensure that the tree only contains syntactically legal expressions.
Another kind of problem are illegal arithmetic expressions such as division by zero
and square-root of negative numbers. This problem is usually handled by letting
the operator return a fixed value when it would otherwise have rendered an illegal
value. For instance, the division operator may simply return 1 when a division by
zero occurs.


Grow, shrink, switch, and cycle mutation


Mutation operators for function encodings either alter the structure of the parse
tree or the internal value of nodes and leaves. Angeline defines four forms of
mutation called grow, shrink, switch, and cycle [4] The grow operator replaces a
random leaf with a new randomly generated subtree. The shrink operator selects
a random node and replaces it with a random leaf. The switch operator exchanges
two subtrees of a random node (provided that the selected node has two subtrees).
Finally, the cycle operator replaces a node’s operator by another operator with the
same number of subtrees. Figure 2.10 illustrates an example of the four operators.
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Figure 2.10: Grow, shrink, switch, and cycle mutation for function encodings.
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Subtree crossover


Crossover in parse trees is surprisingly simple. The most widely used crossover
operator is the subtree crossover. The operator selects two nodes with the same
return type in the parents. Two children are created by swapping the subtrees
starting at the selected nodes (figure 2.11).
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Figure 2.11: Subtree crossover.


2.3 Population initialization


The initialization of the population specifies the starting points of the search. The
initial population can be created in a number of ways (see figure 2.12). The most
common setup is the random initialization where the chromosomes are randomly
assigned, preferably using a uniform distribution. The goal is to create a pop-
ulation with a good coverage of the search space, and thereby have a gene pool
with good potential for breeding better solutions. Alternatively, genomes can be
evenly scattered over the whole search space according to a regular grid-layout.
However, deterministically determined search space positions can be suboptimal
starting points. In particular, a random setup can take advantage of a completely
new selection of starting points when runs are repeated. A third approach is to
incorporate expert knowledge into the initialization. In some cases, it is possible
to assign the initial search space positions based on specific knowledge about the
objective function. Domain experts usually have an idea of what a reasonably good
solution is. Furthermore, the current best known solution may easily be incorpo-
rated in the search by just inserting the solution as one of the starting individuals.
The remaining individuals could then be randomly scattered or arranged in a grid
near the best known solution. A problem with such an initialization is that the
search may be too focused on the area around the special solution. A randomly
initialized population may allow the EA to discover fundamentally different solu-
tions in comparison with what a human would have proposed. Several examples
can be found in the literature, e.g., Rechenberg’s early and famous tube-bending
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study [113]. Finally, including solutions created by other search techniques seem
to be an extremely promising approach, although rarely used. To this end, Thom-
sen et al. recently investigated the potential of this approach for multiple sequence
alignment in bioinformatics [129]. Their approach improved the initially generated
solution by 10% and reduced the running time of the EA from several hours to a
few minutes.
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(a) Random initialization.
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(d) Knowledge-based grid initialization.


Figure 2.12: Examples of initialization methods. The boxes denote two-
dimensional search spaces. The circle in (c) and (d) represents the current best
known solution.


In summary, the choice of initialization methods depends on the study one
is performing. Random initialization is used in most general investigations on
EAs, because the global optimum is usually known for test functions used in this
context. For real-world applications, a rule of thumb is to incorporate as much
expert knowledge as possible in initialization as well as operator design.


2.4 Selection operators


Selection is an essential process in EAs that removes individuals with a low fitness
and drives the population towards better solutions. In this section, I will describe
the four most common selection operators and manual selection, which is used
when a formal description of the fitness is impossible. The selection operator
essentially defines how the algorithm updates the population from one iteration
to the next. In general, selection either replaces the entire population or only a
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fraction of it. The former approach is used in generational EAs whereas the latter
is employed in steady-state EAs . There are a few major differences between the
two approaches. First, the selection procedure is stochastic in generational EAs,
but deterministic in steady-state EAs. Hence, generational EAs may accidently
not select the currently best solution. However, it is generally considered a good
idea to ensure the survival of the best individual. This scheme is referred to as
elitism or k-elitism if k individuals are saved as the elite. Second, individuals are
cloned in generational EAs whereas steady-state EAs select a deterministic subset
of the candidate solutions. Steady-state selection is mainly used by the Evolution
Strategies [113].


An important aspect of selection is the selection pressure, which governs the
individual’s survival rate. It is important to balance the selection pressure. A too
high pressure usually leads to convergence to a small area of the search space and
thus possibly premature stagnation on a suboptimal solution. A too low pressure
will result in a very slow convergence.


2.4.1 Tournament selection


Tournament selection creates the next generation by holding a tournament for each
slot in the population of the next generation. In each tournament, the process picks
k random individuals, compares their fitnesses, and copies the individual with the
best fitness to the slot. The tournament size k is usually set to two individuals
and rarely above five, since this would impose a too strong selection pressure and
lead to premature convergence. Figure 2.13 shows the pseudocode for tournament
selection with a tournament size of two. The “source” population is usually fixed
during the selection of the next generation, which allows good individuals to be
copied multiple times.


tournament selection(P (t))
for (j = 0; j<|P (t)|; j++) {


Pick two random individuals I1 and I2 in P (t).
Compare the fitness of I1 and I2.
Insert a copy of the fitter individual in P (t + 1) at position j.


}


Figure 2.13: Tournament selection with a tournament size of two.


Tournament selection is easy to implement, produces good results within short
time, requires very little computing time, and is controlled by only a few parame-
ters. For these reasons, tournament selection is probably the most commonly used
selection operator nowadays.


The selection pressure in tournament selection can be increased by letting more
individuals compete. A tournament size of two will, on average, ensure that the
best individual is copied twice to the next generation. Increasing the tournament
size to three will also increase the better individuals’ winning chances, because
all individuals on average take part in three tournaments instead of two. On
the other hand, the selection pressure can be lowered by introducing stochastic
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winners in tournaments with two individuals. Hence, the fittest individual wins
with probability p > 0.5. Typical values are p = 0.75 or p = 0.8. Setting p = 0.5
is equivalent to random selection.


2.4.2 Proportional selection


Proportional selection assigns the probability of an individual’s survival according
to the fitness of the individual. The probability is calculated by dividing the fitness
of the individual by the fitness sum of the whole population, i.e., an individual’s
chance of survival depends on its relative fitness to the other individuals.


psurvival(I) =
fitness(I)∑popsize


j=1 fitness(Ij)
, i.e.,


popsize∑
j=1


psurvival(Ij) = 1 (2.8)


Each individual is assigned to a “slot” of the interval [0, 1] according to the
individual’s psurvival. An individual is selected if a random number of the interval
[0, 1] is within its slot. This selection method is often illustrated as a biased roulette
wheel6, where the interval slots correspond to the slots of a roulette wheel and the
“winners” are copied to the next generation.


The drawback of proportional selection is that the selection pressure depends
on the relative fitness of the individuals instead of a parameter such as tournament
size. In proportional selection, a few very good individuals can quickly take over
the entire population, because they dominate a large part of the roulette wheel
and is therefore frequently copied when the next generation is formed. For this
reason, proportional selection is not as popular as it used to be.


2.4.3 Ranking selection


Ranking selection is a variant of proportional selection that deals with the un-
controlled selection pressure. In ranking selection, the selective superiority of an
individual is determined by a fixed probability psurvival according to its fitness rank.
The ranking is obtained by sorting the individuals according to their fitness. Each
individual is then assigned a probability psurvival, which is determined by the used
ranking scheme (see table 2.1 for an example). The selection is performed using
the roulette wheel approach.


Rank psurvival Rank psurvival Rank psurvival Rank psurvival


1 0.100 6 0.075 11 0.045 16 0.020
2 0.095 7 0.070 12 0.040 17 0.015
3 0.090 8 0.065 13 0.035 18 0.010
4 0.085 9 0.060 14 0.030 19 0.005
5 0.080 10 0.055 15 0.025 20 0.000


Table 2.1: Example of ranking scheme for population size of 20 individuals.


6Proportional selection is sometimes called roulette wheel selection.
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The difficult part of applying ranking selection is to determine a good probabil-
ity psurvival for each rank. A scheme that is too generous towards low-fit solutions
might slow down the convergence, while a scheme favoring the best individuals
might lead to a premature loss of genetic diversity.


2.4.4 Steady-state selection


Evolutionary algorithms that are based on steady-state selection, also known as
steady-state EAs, update only a small fraction of the population in every iteration.
The evolutionary operators create λ potential solutions from the parent population
with size µ. Afterwards, the (µ + λ) individuals are sorted and λ individuals with
the lowest fitness are discarded7. Common values are µ = 100 and λ = 15. This
approach is fundamentally different from tournament, proportional, and ranking
selection. In steady-state selection the populations are overlapping and all the
surviving individuals are deterministically selected, which is only the case for the
elite individuals in the other three selection techniques.


2.4.5 Manual selection


In some applications, the quality of a solution is based on a subjective evaluation
of issues that are hard or impossible to capture mathematically; for instance, the
beauty of a design. Instead, the selection process can be handled by a human
operator. The algorithm displays the current solutions and asks the operator to
select a subset of the presented solution. The selected solutions are then used
to create a new population and the process is repeated. Examples of manual
selection include evolution of robot controllers [96], mixing of food-colors [66], and
more experimental applications in evolutionary art [42].


2.5 Summary


In this chapter, I have outlined the components of evolutionary algorithms and
given a few guidelines of how to combine them. It is rather difficult to give general
advises on what to choose. This is partly because of the so-called “no free lunch”
theorem stating that no search algorithm is better on all problems [153]. However,
the theorem is mainly of theoretical value because “all problems” literally means all
problems including those that map a search point to an arbitrary value. Obviously,
random search is as good as any advanced EA on this type of problem. In practice,
problems are not that noisy and the no free lunch theorem is therefore primarily
of theoretical interest. Unfortunately, practical experimentation has shown that
the performance of encoding and operators is problem dependent. Hence, some
experience with the techniques is an advantage when handling real problems. In
this context, a catalog of guidelines would be incredible valuable. The first step
in designing such a catalog would be to define a system for categorizing problems
based on the problem definition and the local topology of the fitness landscape.
It is clearly not sufficient to base such a guideline on general properties such as


7µ and λ are commonly used in the literature on steady-state EAs.
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number of peaks. The performance ranking of encodings and operators is not
consistent for even very similar problems. Fortunately, most combinations give a
reasonably performance and there are a few heuristics regarding implementation
and values of parameters. Consequently, researchers tend to stick to their favorite
encoding and operators.


2.6 Future work


Regarding new research on encodings, the main objective domains are well inves-
tigated. For these domains, the focus is primarily on developing novel alteration
operators. In less explored domains, some work is being performed on developing
novel encodings and operators.


Somewhat surprising, the population initialization has not received much atten-
tion so far. One explanation may be that most EA investigations are performed on
artificial benchmark problems where the global optimum is known in advance and
any application of “domain knowledge” would be considered cheating. However,
even in this scenario some important issues need to be investigated. For instance,
the initial population may be generated randomly, but currently the initial sample
of individuals is usually equal to the population size. To my knowledge, no one
has attempted to generate, e.g., ten times the population size and then choose
the most promising candidates for the initial population. Fortunately, the entire
field seems to focus more and more on real-world applications. Therefore, the
initialization phase may receive increasing attention in the future.


In a wider context, a significant amount of work should be done on compar-
ing various implementations of EAs. For instance, tournament selection can be
implemented in at least two ways. One approach is to iteratively fill the array
of the next generation by filling position j with the best of two randomly chosen
individuals from the previous generation. Another approach is to let the individual
at position j be one of the contesters.
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Chapter 3


Aspects of fitness function design


The fitness function essentially determines how difficult the problem is to search.
For real-world problems, the fitness function is often defined in collaboration with
an expert from the application domain. From an EC point-of-view, there are a
number of important theoretical and practical issues to consider when defining the
fitness function. Additionally, constraint, multiobjective, and dynamic problems
are introduced as the three main fitness aspects of real-world problems requiring
specialized techniques. These issues are covered in this chapter and put in context
of system identification and control problems.


3.1 Theoretical aspects of fitness function design


In most numerical problems, the fitness function is explicitly given by a mathe-
matical equation. However, many real world problems are usually not well-defined
and their representation is up to the designer of the EA. The primary criterion
is that the fitness function properly ranks the individuals so the most desirable
solution is assigned to the best fitness (maximization or minimization). Otherwise,
selection will choose the wrong individuals when forming the next generation.


In addition to the ranking criterion, a number of important properties of fit-
ness functions exist. These are not strict requirements, but issues that should be
considered when designing the fitness function, because the search performance de-
pends on the topology of the fitness landscape. First, the fitness landscape should
not contain plateaus. Selection fails on plateaus, because all individuals have the
same fitness in such a scenario. Consequently, the EA essentially degrades to ran-
dom search when the landscape mainly consists of plateaus. Second, the fitness
landscape should be somewhat smooth, i.e., adjacent solutions in the search space
should have similar fitness values. Searching a very irregular landscape corre-
sponds to finding a needle in a haystack, and no algorithm can do this any better
than random search. Third, ridges in the search space may pose an additional
challenge to the algorithm, because a ridge in the fitness landscape corresponds
to correlation between the parameters in the search space. In the vicinity of a
ridge, any movement in the search space that is not in the direction of the ridge
orientation will lead to a fitness reduction. Fourth, local optima may attract the
population of the algorithm and lead to a premature convergence of the search.
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Plateaus can usually be handled by transforming the fitness function to a more
gradual design, whereas problems with smoothness may be solved by using a dif-
ferent encoding. The last two issues, ridges and local optima, are difficult to find
a fitness design solution to. Instead, they are tackled by various extensions of the
basic algorithm.


3.1.1 Plateaus


Plateaus can often be avoided by transforming the original objective function into
one with a more gradual fitness landscape. The following example illustrates a
transformation of a fitness function. Let us assume that we want to evolve a
controller for a golf-putting robot. A simple fitness function could be defined
such that the fitness of a genome is 1 if the robot puts the ball into the hole and
0 otherwise. In this setup, a robot controller that slightly misses the hole will
receive the same fitness as a robot that shoots the ball in the opposite direction.
Hence, the EA is practically performing a random search, if no robot in the initial
population can hit the hole. The corresponding landscape would consist largely
of plateaus and a tall narrow peak that represents the successful robot behavior.
Instead of a simple success-or-failure evaluation, the fitness should incorporate the
concept of a “near miss” by a measure of the closest distance between the ball and
the hole; for example:


f(I) = 1−min dist(ball, hole)


This fitness function assigns 1 to the individuals that are able to hit the hole and
slightly smaller values to near misses. The two fitness functions are displayed in
figure 3.1.
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(a) Success-or-failure fitness function.


0


1


Direction
Direction towards hole


Fitness


(b) Distance-to-hole fitness function.


Figure 3.1: Two fitness functions for the golf-putting robot.


Plateaus are unfortunately unavoidable for some problems. In function do-
mains, the used non-terminals may introduce occasional plateaus. In particular,
the if-construction can cause rather large plateaus when the boolean expression
returns a constant value.


if (<B-exp>) then return <A-exp1> else return <A-exp2> (3.1)


For instance, if <B-exp> is false then the return value of the if-sentence in equation
3.1 is completely independent of the arithmetic expression <A-exp1>. Hence, any
change in <A-exp1> will not affect the fitness of the individual.
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3.1.2 Smoothness


Achieving landscape smoothness is somewhat the opposite problem of avoiding
plateaus. On plateaus, EAs have difficulties because the landscape does not contain
any information for directing the search. An extremely rugged landscape has more
or less the same problem, because solutions in the vicinity of a solution may have
an arbitrary fitness value. Hence, the algorithm is essentially searching for a needle
in a haystack. Figure 3.2 illustrates a rugged fitness landscape.
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Figure 3.2: A rugged fitness landscape for the search space x ∈ [0, 2].


Smoothness of the fitness landscape is primarily related to the encoding, al-
though ruggedness may also appear because of imprecision in the fitness calcula-
tions (see section 3.2.2). In theory, numerical problems are normally rather smooth
because the variables are often continuous and a small change in the value will not
result in a large change in the fitness. In contrast, defining a proper neighborhood
in the function search domain1 of genetic programming is far from easy. Until now,
most genetic programming studies (if not all) define the neighborhood of an expres-
sion as the set of expressions reachable with a “minimal change” of the expression;
for instance, exchanging a binary operator (+) with another binary operator (∗).
Although this is the smallest possible change, apart from modifying a constant, it
can have quite a drastic effect on the expression. For example, mutating 500 + x
into 500∗x is a minimal change that could vastly alter the genome’s fitness. Hence,
neighboring solutions in the search space may receive completely different fitness
values although their edit-distance in the search space is minimal. To deal with
this problem, smoother operators have been suggested for genetic programming.
The idea in smooth operator genetic programming is to combine several “ordi-
nary” operators (the non-terminals) into one and allow a gradual change from one
operator to another. In boolean function domains, Poli et al. suggested smooth
operators for boolean parity problems [107; 108]. Their study is based on the idea
of reducing ruggedness by introducing a smoother representation of boolean op-
erators. For this purpose, they replace the standard operators AND, OR, and NAND


by a sub-symbolic representation where the output of a node is represented as a


1The search space of expression trees, see section 2.2.2.
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truth-table. In their study, 1000 represents an AND while 1110 corresponds to OR.
An in-between operator can for example be 1100. Combining this encoding with
traditional bit-flip mutation and a specialized crossover operator allows the GP to
interpolate between operators and thus search a smoother fitness landscape.


For arithmetic function domains, Thiemo Krink and I introduced the two
smooth operators diviplication and subdition [144]. Diviplication combines di-
vision and multiplication, whereas subdition integrates subtraction and addition.
Diviplication (DP ) and subdition (SD) are defined as follows:


xDP [a, b] y ≡ sgn(x) ∗ sgn(y) ∗ |x|a ∗ |y|b (3.2)


xSD[a, b] y ≡ a ∗ x + b ∗ y (3.3)


where sgn(x) is the sign of x and |x| is the absolute value of x. The slightly long
definition of diviplication with sgn(·) and | · | is merely to avoid problems with
undefined values of the power function such as (−1)0.5 =


√−1. A more intuitive
(but troublesome) definition of diviplication is:


xDP [a, b] y ≡ xa ∗ yb (3.4)


Defining diviplication according to equation (3.2) or (3.4) does not eliminate the
ordinary operators division and multiplication – they are inherent in diviplication
and can be obtained by setting a and b to 1 or -1.


a = 1 b = 1 : xDP y ≡ x ∗ y
a = 1 b = −1 : xDP y ≡ x/y
a = −1 b = 1 : xDP y ≡ y/x


As mentioned, the goal in introducing the smooth operators is to allow a grad-
ual change from one operator to another. For instance, a diviplication node with
a = 1 and b changing gradually from 1 to -1 corresponds to a smooth change from
x ∗ y to x/y. Some intermediate expressions are:


a = 1 b = 1 : xDP y ≡ x ∗ y
a = 1 b = 0.5 : xDP y ≡ x ∗ √y
a = 1 b = 0 : xDP y ≡ x
a = 1 b = −0.5 : xDP y ≡ x/


√
y


a = 1 b = −1 : xDP y ≡ x/y


Figure 3.3 illustrates the gradual transition from multiplication to division.
As seen on the center graph for “x”, the output of diviplication is not exactly x
because the sign of y affects the output. However, this is only a problem if y is
close to zero and both positive and negative. A way solving this is to define an
interpolating diviplication (IDP) as a linear interpolation between multiplication
and division.


xIDP [a] y ≡ a(x ∗ y) + (1− a)(x/y) (3.5)


The sign problems are not present in the subdition operator. Here, the ordinary
addition operator can be changed gradually into subtraction.







3.1. Theoretical aspects of fitness function design 31


"x*y" "x*sqrt(y)" "x" "x/y""x/sqrt(y)"


a=1, b=0


−2 −1 0 1 2 −2
−1


0
1


2
−10
−5


0
5


10


x DP y


x
y


a=1, b=0.5


−2 −1 0 1 2 −2
−1


0
1


2
−10
−5


0
5


10


x DP y


x
y


a=1, b=1


−2 −1 0 1 2 −2
−1


0
1


2
−10
−5


0
5


10


x DP y


x
y


a=1, b=−0.5


−2 −1 0 1 2 −2
−1


0
1


2
−10
−5


0
5


10


x DP y


x
y


a=1, b=−1


−2 −1 0 1 2 −2
−1


0
1


2
−10
−5


0
5


10


x DP y


x
y


Figure 3.3: Gradual change from multiplication to division in diviplication.


An important aspect of SOGP is setting the range and the step-size for a and
b. The order of diviplication and subdition can be controlled by the range. For
instance, setting it to [-2:2] allows diviplication expressions such as x2 ∗ y. The
discreteness of the operator can be controlled by the step-size. For example, a
step-size of 0.5 and a range of [-1:1] limits the possibilities to expressions hav-
ing exponent a and b in {−1,−0.5, 0, 0.5, 1.0}. Hence, only expressions based on
x,
√


x, 1, 1/
√


x, 1/x and y,
√


y, 1, 1/
√


y, 1/y are possible.
SOGP with diviplication and subdition was compared with traditional GP on


a simple black box system identification problem [144]. The two approaches had
similar performance with a slight advantage to SOGP. Furthermore, SOGP seemed
to be more robust when the found models were evaluated on the test data.


3.1.3 Ridges


Ridges in the fitness landscape are generally hard to avoid because it requires a
rewrite of the fitness function that removes the correlation among the problem
parameters. Instead, problems with correlated parameters are usually handled
by various extensions of the basic algorithms. The algorithmic challenge in han-
dling ridges is to change multiple problem parameters simultaneously and thereby
avoid reduction in fitness. In other words, to search in the direction of the ridge
orientation. A simple ridge is illustrated in figure 3.4.
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Figure 3.4: A simple problem with a ridge. f(x, y) = 20 cos(y + x)− y2 − x2.


In this example, a solution located near the axis x = −y going through (0,0) is
uni-dimension-optimal , i.e., optimal if only one parameter, x or y, is changed.
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Hence, the EA has to change both parameters to achieve an increase in fitness.
This is illustrated in the right graph of figure 3.4. The dashed lines are contour
lines as shown on the left graph. The dotted lines with arrows illustrate changes in
only one parameter whereas the solid line with the arrow is the direction towards
increasing fitness values.


Handling ridges through specialized alteration operators has been investigated
for at least 25 years. In 1977, Schwefel extended his work with Rechenberg on
the Evolution Strategies (ESs) and suggested the self-adaptive ES with correlated
mutations [122]. The idea in self-adaptation is to encode algorithmic parameters
in the genome and use these parameters to modify the individual. The hypothesis
is that good solutions carry good parameters; hence, evolution discovers good
parameters while solving the problem. Particularly for ridges, the self-adaptive ES
with correlated mutations encodes a set of rotation angles that allow the algorithm
to generate new solutions with correlated parameter values. The main drawback of
encoding rotation angles is the rather large number necessary for high-dimensional
problems. For instance, a 100-dimensional problem requires 4950 angles to allow
rotation between all dimensions [12]. This makes the approach rather unsuitable
for these problems, because the adaptation of the angles takes additional time. For
problems with rather few parameters, a self-adaptive ES is often a good choice.
This is further discussed in chapter 7 where two self-adaptive ESs are compared
with respect to system identification of two induction motors. In addition to
handling ridges, self-adaptation seems to be a promising approach for controlling
the parameters of the algorithm. This topic is covered in section 4.4.


A recent and vastly simpler approach is the so-called Differential Evolution
(DE) suggested by Storn and Price [127]. DE algorithms create new individuals
by adding the vector difference between two randomly chosen individuals to a
third individual. The main difference between DE and ESs is that DE utilizes the
information from the population whereas self-adaptive ESs encode the information
in each separate individual.


3.1.4 Local optima


Local optima are practically impossible to avoid in real-world applications, and
redesigning the fitness function to remove local optima is extremely difficult in
most cases. For this reason, a significant amount of work has been dedicated
to develop methods for handling problems with many local optima2. Figure 3.5
illustrates a simple example of a function with two local optima and one global
optimum.


Local optima are particularly problematic for some methods such as deter-
ministic local search techniques, because these algorithms only use one current
solution to create new candidate solutions. Furthermore, new solutions are usu-
ally generated as immediate neighbors of the current solution. Consequently, these
algorithms have a tendency to stagnate on a local optimum because escaping such
optima may require a significant amount of backtracking, or “downhill movement”,


2Such problems are called multimodal in the literature, whereas problems with only one global
optimum are named unimodal or convex problems.
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Figure 3.5: A simple multimodal problem. f(x, y) = cos(2x + sin(y)) + cos(y) −
0.1(x2 + y2).


before new fitness improvements occur. Naturally, other optimization algorithms
incorporate various techniques for handling multimodal problems. A widely used
technique is the so-called Simulated Annealing (SA). For an overview of SA and
other related techniques, see [100].


Evolutionary algorithms are particularly well-suited for handling multimodal
problems. First, EAs maintain several solutions simultaneously, which provide a
significantly better foundation for escaping local optima. Second, solutions are
not necessarily created as neighbors of existing solutions. Over the years, several
hundred algorithms have been suggested. Chapter 5 contains an overview of the
most widely used techniques as well as some recent approaches.


3.2 Practical aspects of fitness function design


In addition to the theoretical aspects, a number of practical aspects should be
considered when designing fitness functions for real-world problems. First, it may
be possible to use the real system to evaluate candidate solutions. The primary
advantage of this approach is that the candidate solutions are evaluated on the
physical system instead of a model. Hence, the usual mismatch between the model
and the true system is avoided in this setup. However, this approach is often impos-
sible because of physical or safety reasons. For instance, it may be too expensive,
too dangerous, or too time-consuming to evaluate a solution using a real system.
Instead, the optimization algorithm uses a simulation-based fitness function. A
fundamental problem in both cases is that it can be very time-consuming to eval-
uate a solution. For example, complex simulations of fluid flows may be necessary
to obtain a precise fitness value. Fortunately, techniques exist for handling such
problems.


3.2.1 System-based fitness functions


In system-based fitness functions the physical system serves as a test bed for
evaluating candidate solutions of the problem. The main motivation for using a
system-based fitness function is that it eliminates the problem of transferring a
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simulated solution to the real system. Naturally, system-based fitness evaluation
is not always possible. First, it may be too dangerous to use a real system for
evaluation. For instance, evolving a controller for a nuclear power plant is not a
feasible approach. Second, system-based evaluation may be too expensive. For
example, testing a large number of settings for a production plant may be very
costly. Third, the evaluation may take several hours to perform, which often makes
this approach impractical. Fourth, the evaluation may affect the system state in
an irreversible way and thereby unfairly bias the evaluation and thus selection.


One of the first implementations of system-based fitness functions was per-
formed by Rechenberg and Schwefel in the early seventies [113]. Among other
things, they worked on design of bending a tube 90◦, with the purpose of minimiz-
ing the pressure loss. In their experiment, they placed six adjusters along a rubber
tube that was fixed at both ends of the 90◦ turn (figure 3.6(a)). Rechenberg and
Schwefel used a simple (1+1) Evolution Strategy and produced a rather surprising
results. Figure 3.6(b) shows the symmetric engineering solution and the asymmet-
ric solution found by the algorithm. Interestingly, the evolved solution resembles
the one appearing in nature when, e.g., a river makes a 90◦ unhindered turn.


Flow in


Flow out


Adju
ste


rs


Rubber tube


(a) Experimental setup with tube ad-
justers.


Flow in


Flow out


Engineering solution


Evolved solution


(b) Engineering solution (symmetric) and
evolved solution (asymmetric).


Figure 3.6: Tube design of 90◦ turn using a system-based fitness function.


Naturally, system-based fitness functions are not always straightforward to im-
plement and use. First, the system usually needs to settle between experiments
to ensure a fair evaluation. Furthermore, the system is often influenced by the
immediate environment. For example, many systems change behavior depending
on the temperature. Hence, the evolved solution may only work for certain tem-
peratures. An example is the recent investigations on evolvable hardware where
the evolved physical circuits are often sensitive to even small changes in the room
temperature. Finally, the evaluation may be noisy because of small differences in
the start conditions of the experiment, imprecise sensors, and other factors. A
simple approach to tackle this problem is to resample the fitness. However, that
requires additional experimentation, which increases the fitness calculation accord-
ingly. Another technique is to inherit fitness values from the parents. For instance,
storing the fitness obtained in the last ten generations and let the offspring inherit
the nine most recent fitness values during crossover. The offspring’s fitness then
consists of its own fitness plus the average of the nine inherited fitness values. Yet
another approach is to apply a Kalman filter to lower the noise from sensors [128].
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3.2.2 Simulation-based fitness functions


Simulation is necessary when real-system evaluation is impossible. There are sev-
eral important issues when basing fitness evaluation on a simulation of the real
system. A fundamental problem is that a simulator can never be 100% accurate.
Hence, a solution found in simulation may not render the same performance when
transferred to the real system. This is particularly a problem when using sim-
ulators to design robot controllers. One problem in this context is the lack of
fuzziness and randomness in the simulation. For instance, real sensors are usually
never completely noise-free. One solution to this problem may be to introduce
some noise in the simulated sensor input and thereby hope that the evolved con-
troller will be more robust. Another problem in robot simulation is the unmodeled
physical components of the robot and the environment. For example, the robot’s
wheels may have some friction that is hard to capture. In addition to friction, it
may be very difficult to model every single component of the physical world such
as sand on the floor and changing light conditions.


Another fundamental problem in simulation is that it sometimes relies on inac-
cessible data; for instance, weather data from the future. In this case, the simulator
must be able to predict the missing data. The precision of the prediction may have
a substantial impact on the performance of the evolved solution. Hence, both a
system simulator and an predictor must be developed to cope with such problems.


Simulating system identification and control problems


System identification and control problems can be modeled by the interactions
between the controller, the system, and the surrounding environment (see figure
3.7). Here, the vector x(t) represents the internal state of the system at time t,
v(t) is the environment state, u(t) is the control signal from the controller, and
y(t) is the output from the system. The environment state v(t) and the output
y(t) from the system serve as feedback input to determine the control signal for the
next time-step. In system identification, the objective is to find a system model
of the controlled system, whereas in controller design problems the focus is on the
decision maker (see figure 3.7).
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Figure 3.7: Model for controller, system, and environment.


The change in system state is often modeled by a number of difference equations
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of the form:


xi(t + h) = xi(t) + ∆xi(u,x,v, t, h) (3.6)


where xi is the i-th system variable in x, ∆xi(·) is the update function for xi, t
is the time, h is the length of a time-step, and u, x, and v are the control signal,
the system state, and the environment state of the previous time-step (sometimes
several steps in the past). Real systems are often described by a system of non-
linear differential equations. In these cases, an approximation method, such as
Runge-Kutta [1], is used as the update function ∆xi(·).


The Runge-Kutta approximation method is probably one of the most frequently
used techniques for handling non-linear differential equations. The traditional
Runge-Kutta approach has an error bounded by O(h4), i.e., dividing the step-size
h by 2 gives a factor 16 in precision improvement. In practice, a Runge-Kutta-
Fehlberg approach with adaptive step-size is often used [46] (for implementation
details, see [109]). The basic idea is to use an estimate of the error to control
the step-size. The method adjusts the step-size to ensure that the error is less
than a predefined threshold. Hence, a large step-size is used when the function is
rather flat and small steps are used when the function is rugged. Consequently,
the algorithm saves a significant amount of computation time. An important
problem arises when the adaptive step-size technique is used in connection with
optimization algorithms. The adaptive approach can accidently introduce “phan-
tom peaks” in the fitness landscape, i.e., peaks that appear because of the adaptive
step-size control. As a consequence, the algorithm may stagnate on a local opti-
mum that is an artifact of the approximation method. Figure 3.8 illustrates two
fitness landscapes from the greenhouse control problem investigated in chapter 8
(see appendix C for a detailed description of the simulator). The only difference
between the two plots is that one uses a constant step-size whereas the other uses
an adaptively controlled step-size.
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(b) Adaptive step-size.


Figure 3.8: Phantom peaks introduced by adaptive step-size control in the Runge-
Kutta-Fehlberg approximation of non-linear differential equations.


3.2.3 Computationally demanding fitness functions


Another main challenge when applying EAs to real-world problems is the computa-
tion time required to evaluate a candidate solution. EAs can be rather demanding
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with respect to number of evaluations. It is not unusual that the algorithm needs
50-100,000 evaluations to reach a reasonably good solution. Assuming that one
evaluation takes 10 seconds, a run with 100,000 evaluations will then take about
278 hours to perform. Now, 10 seconds is rather fast in relation to some real-world
problems. For instance, industrial design problems are often investigated with
simulators for fluid flow dynamics (Computational Fluid Dynamics, or CFD). In
such problems, one simulation may take several hours to perform. Hence, certain
techniques are necessary when applying EAs (and other optimization algorithms)
to computationally demanding problems. In general, three approaches exist. First,
the EA can be parallelized in a number of ways. Second, the algorithm can store
solutions in a relational database for later reuse. Third, expensive fitness functions
can be approximated and thereby reduce the number of real evaluations.


Regarding parallel EAs, three basic architectures exist; the master-slave model,
the island model, and the diffusion model (see figure 3.9). The master-slave ap-
proach is the most widely used in practice. In this approach, one machine runs
the main algorithm and the rest acts as evaluation servers. In the island approach,
each machine holds a local population. Migrations between the islands then occur
at fixed intervals. Island models should be used when an individual is too large to
fit an entire population on a single machine. Finally, the diffusion model is used
when the parallel computer consists of many small interconnected units (hypercube
architecture). Here, each unit holds one individual and the interaction range is
then the unit’s immediate neighbors. Somewhat surprising, a considerable number
of papers have been published on the subject particularly on migration schemes
in the island model, e.g., [27; 91]. Nevertheless, the rather pragmatic master-slave
model exploits the available parallel computer best in most cases. This is mainly
because EAs require a reasonably large population of at least 50-100 individuals.
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(a) Master-slave model.
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Figure 3.9: Parallel architectures for EAs.


Another simple idea is to store all evaluated solutions along with their fitness
values in a database for later reuse of the fitness calculation. Naturally, this may
cause some problems if the solution requires a significant amount of memory to
store. However, this simple approach can save a substantial amount of computation
time. Another idea in this connection is to implement a random search algorithm
and run this when nodes are idle. This ensures that the computing facility is
almost fully exploited. The randomly generated solution may then be incorporated
in either the initial population or during the execution of the EA.
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In addition to using parallel computers and relational databases, computation
time may be saved by simply reducing the number of fitness evaluations. The most
straightforward approach is of course to use a smaller population size. However,
this usually deteriorates the performance of the algorithm. A better approach
may be to approximate the fitness function by a so-called metamodel, which is a
model of the fitness landscape. Combining EAs with metamodels have received
increasing attention during the last five years. So far, rather few investigations
have been reported in the EC-literature although metamodels have been studied
for several years in other disciplines. In an EC-context, El-Beltagy et al. investi-
gated a a statistical approximation technique known as Kriging [43]. They showed
good approximation on a number of simple benchmark problems and used the
technique to optimize the design of a beam structure. Giannakoglou et al. used
radial basis function (RBF ) neural networks for airfoil optimization [57]. They
compared three approaches in their study; a simple EA without approximation, a
RBF approach, and a RBF approach with adaptive importance factors for each of
the optimization parameters. The last technique was superior on all four airfoil
problems. In a similar study, Emmerich et al. tested the Kriging approach on one
of the airfoil design problems investigated by Giannakoglou et al. [44]. The two
techniques have their advantages and disadvantages. The RBF approach is rela-
tively easy to implement but does not guarantee the true value when a training
pattern is evaluated. Naturally, this can be done by simply checking if the solu-
tion exist in the database of evaluated points. Kriging guarantees exact values in
the training patterns, but the technique requires substantial effort to implement.
Furthermore, Kriging requires that a simple minimization problem is solved before
each evaluation. Fortunately, this can be done rather quickly with a local search
technique. These two techniques are those mainly applied in connection with EAs.
Many other model building methods can be used to approximate fitness functions;
for instance, feedforward neural networks or regression models.


3.3 Special properties of real-world problems


A large number of real-world problems have additional issues to consider when
designing the fitness function. First, there may be constraints limiting the set
of feasible solutions. For instance, certain requirements with respect to safety
may have to be fulfilled. Second, multiple conflicting objectives must often be
optimized simultaneously. The task in these problems is to find a set of reasonable
trade-offs between the conflicting objectives. Third, the problem may change over
time. Consequently, the algorithm has to be able to adapt to a dynamic fitness
landscape. Naturally, real-world problems can have any combination of these
special properties.


3.3.1 Constraints


In constraint problems, the found solutions must fulfill a number of requirements.
These requirements, or constraints, are usually formulated as a set of inequalities
that must hold for the final solutions. Generally speaking, a constraint problem
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on the search space S may be formulated as follows:


Definition 3.1: Constraint problem


Optimize
f(s), s ∈ S


subject to p ≥ 0 inequalities and q − p ≥ 0 equalities


gj(s) ≤ 0 j = 1, 2, . . . , p


hj(s) = 0 j = p + 1, p + 2, . . . , q


4


Solutions fulfilling the constraints are feasible solutions , and those violating the
constraints are infeasible solutions . Hence, the constraints partition the search
space S into two disjoint subsets; the feasible region F and the infeasible region U
(see figure 3.10(a) for a simple example). In general, the search space may consist
of any number of disconnected feasible regions (figure 3.10(b)).
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Figure 3.10: Feasible regions in the search space of constraint problems.


Constraints are often considered to be either hard or soft . Hard constraints
must be fulfilled by the solution whereas soft constraints may be slightly violated.
For example, assume that we are planning the air traffic over Europe on a given
day. The safety margins for air traffic are then hard constraints that must be
fulfilled by the solution. A soft constraint in this example could be that planes
leave no later than 15 minutes after their designated time of departure, i.e., leaving
20 minutes late is acceptable but should preferably be avoided. A measure of the
constraint violation is often useful when handling both hard and soft constraints.
A straightforward measure of constraint j’s violation is:


fj(s) =


{
max (0, gj(s)) 1 ≤ j ≤ p


|hj(s)| p + 1 ≤ j ≤ q
(3.7)
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The sum of all constraint violations is zero for feasible solutions and positive when
at least one constraint is violated. An obvious application of the constraint viola-
tion is to use it to guide the search towards feasible areas of the search space.


Regarding EC-research on constraint problems, a substantial amount of work
has been published; in particular on algorithms for numerical constraint optimiza-
tion. The most widely used technique is probably the penalty approach. In this
method, the constraint violation is used to calculate a penalty, which is added to
the fitness for minimization problems and subtracted for maximization problems.
Hence, infeasible solutions receive a fitness penalty for violating the constraints.
Michalewicz and Fogel provide an extensive survey of penalty approaches and
other methods for constraint handling [100, Chapter 9]. In system identification
and control problems, constraints play an important role. For system identifica-
tion, the constraints may express some relationship among the variables that must
be fulfilled. With respect to control problems, constraints typically express a sys-
tem behavior that is considered to be feasible, e.g., that certain safety regulations
are fulfilled. This is further discussed in chapter 6.


3.3.2 Multiple objectives


In some problems, the task is to optimize with respect to multiple objectives in-
stead of just one. A typical example is car engine design, where the task may be
to maximize the performance while minimizing the fuel consumption. Multiob-
jective optimization problems usually involves a number of conflicting objectives
that have to be handled simultaneously. The goal for the algorithm is to find a
set of tradeoffs between the objectives and thereby allow a final human decision
among the solutions. The objectives does not necessarily have to be conflicting
but they are in most problems. In some cases, it may be unclear from the be-
ginning whether or not objectives are in conflict with each other. Multiobjective
optimization problems may be defined as follows:


Definition 3.2: Multiobjective optimization problem


Find a set of solutions optimizing


F (s) = [f1(s), f2(s), . . . , fm(s)]


where fi(s) is either a maximization or a minimization problem3.


4


Hence, the objective space is now m-dimensional instead of one-dimensional. For
a n-dimensional numerical problem, the fitness mapping is as follows:


Single objective: F (s) : Rn 7→ R


Multiple objectives: F (s) : Rn 7→ Rm


3Multiobjective optimization problems are often defined with an additional set of constraints.
However, constraint handling techniques are usually investigated independently of methods for
multiobjective optimization.
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For single objective optimization problems, the mapping defines a clear ordering
of the individuals that is used in selection. This is a bit more complicated for mul-
tiobjective problems because the objective space is m-dimensional. As mentioned
earlier, the fitness function should be designed, so that nearby solutions in the
search space are smoothly mapped to similar values in the one-dimensional objec-
tive space. Figure 3.11 illustrates three cases. The first case (white circles) shows
the ideal situation where neighboring solutions are mapped to the same vicinity in
the objective space. Case two illustrates a scenario where solutions from different
areas of the search space are mapped to nearby points in the objective space. Fi-
nally, case three is the situation that should preferably be avoided. Here, adjacent
solutions are mapped to different areas of the objective space. It should be noted
that these three cases do exist for single-objective optimization as well. Case one is
like the smooth distance-to-hole fitness (figure 3.1(b)), case two is the multimodal
problem (figure 3.5), and case three resembles the rugged fitness function (figure
3.2).


m−dimensional objective space−dimensional search spacen


case 1


case 3


case 2


F


Figure 3.11: Multiobjective mapping from search space to objective space.


As mentioned, selection for multiobjective problems is a bit more complicated
than the single-objective case, because the conflicting objectives do not define
a clear ordering of all points in the objective space. A partial ordering exists
through the concepts of dominance and non-dominance. Formally, dominance
and non-dominance are defined as:


Definition 3.3: Dominance


A solution s is dominated by a solution s′ if s is “equal or worse” on all
objectives and “strictly worse” on at least one objective.


s ≺ s′ ←→ s is dominated by s′


4


Definition 3.4: Non-dominance


A solution s is not dominated in the set P if ∀s′ ∈ P : s 6= s′ ⇒ s ⊀ s′, i.e., if no
other solution in P is dominating it.


4
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The set of all non-dominated solutions in the search space (i.e., P = S) is denoted
the Pareto front and may in principle be of infinite size. The goal in multiobjective
optimization is to find a set of solutions as close to the true Pareto front as pos-
sible, and preferably a set with a good coverage of the true front. Figure 3.12(a)
illustrates an example of dominance and non-dominance. The figure shows the
solutions dominating a solution s, the solutions dominated by s, and the solutions
neither dominating s or dominated by s.
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Figure 3.12: Dominance, non-dominance, and Pareto fronts in multiobjective op-
timization of two minimization objectives.


The Pareto front illustrated in figure 3.12(b) is an example of the simple convex
type. In practice, Pareto fronts can be somewhat more subtle and create prob-
lems for simple multiobjective optimization algorithms. Figure 3.13 displays three
different examples of Pareto fronts.
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Figure 3.13: Examples of Pareto fronts for minimization.


A simple approach to multiobjective optimization is to turn the multiobjective
problem into a single-objective problem by a weighting scheme. The algorithm
is then executed several times to obtain a number of points on the Pareto front.
Using a weighting scheme corresponds to placing a line in the objective space and
search for a solution on the front where the line is a tangent to the front. Figure
3.14(a) illustrates two weighting schemes, the corresponding lines and the points
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found on the front. The main disadvantage is that the approach fails on non-convex
Pareto fronts. For example, the algorithm is unable to locate solution C on the
front in figure 3.14(b), because A and B are more attractive in the optimization
direction.
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Figure 3.14: Multiobjective optimization with a weighting scheme.


Another simple approach is to turn all but one objective into constraints and
then use a constraint technique to solve the problem. The idea is basically to define
a feasible fitness range for the m − 1 objectives that are handled as constraints.
The tradeoffs are then found by running the algorithm with different fitness ranges.
This technique works for some of the more challenging Pareto fronts as well. How-
ever, the method requires extensive knowledge of the fitness ranges to get an even
spread of the solutions on the Pareto front. Furthermore, it uses a significant
number of runs to get a reasonable approximation of the front, which may not
be a feasible approach if some of the objectives are computationally expensive.
The idea of turning multiple objectives into constraints is also possible the other
way around. The constraint violation (equation 3.7) may simply be treated as an
additional minimization objective. This may indeed be relevant for problems with
many soft constraints, because the set of solutions returned by the multiobjective
optimization algorithm should give a good coverage of the Pareto front, which
corresponds to a lot of tradeoffs between the soft constraints.


Multiobjective optimization in the EC-field have received increasing attention
over the past ten years. A substantial number of algorithms and different tech-
niques have been suggested, e.g., the Pareto Envelope-based Selection Algorithm
PESA-II [33], the Elitist Non-dominated Sorting Genetic Algorithm NSGA-II [37],
and the Strength Pareto Evolutionary Algorithm SPEA2 [156]. The main idea in
most evolutionary multiobjective optimization approaches is to diversify the pop-
ulation by incorporating dominance and non-dominance ranking into the selection
scheme. For an overview, see [36].


Multiobjective optimization techniques are relevant for system identification
and control in various contexts. In system identification, the primary goal of find-
ing a system model can be seen as the task of minimizing the error while maximiz-
ing the robustness of the model. Regarding control problems, multiple objectives
also exist in a general context. The objective in many control applications is to
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minimize the response time and the overshoot of the controller. This is further
discussed in chapter 6.


3.3.3 Dynamic components


Problems with dynamic components have the special property that the fitness
function is not constant during the optimization. Hence, the algorithm must be
able to both find and track the moving optimum. Dynamic problems are present
in very diverse fields of application. For instance, in nurse scheduling the problem
might change because employees get sick, medical equipment may break down,
or the patient may not show up for an appointment. This requires rescheduling
when new information is available. For system identification and control, time-
varying problems arise for a number of reasons. On a short time-horizon, a change
in temperature or humidity may affect the system, because many materials are
sensitive to such changes. On a long time-horizon, effects such as wear out of
ball bearings may result in a slow change in behavior. Furthermore, the control
problem itself can be seen as a special kind of dynamic problem (see chapter 8).
It is generally difficult to give a unifying definition of dynamic problems. The
following definition is very general, but it covers all dynamic problems – even
those that are only occasionally dynamic.


Definition 3.5: Dynamic problem


Optimize
f(s, t), s ∈ S, t ∈ [t0, tmax]


where t is the time when f is calculated, t0 is the start time of the optimization,
and tmax is the end time (possibly ∞). The optimization is performed under the
assumption that


∃? t, t′ : t 6= t′ =⇒ f(s, t) 6= f(s, t′)


The notation ∃? means “may exist”.


4


Note that the fitness in definition 3.5 is not a function of the time, which is typically
the case for artificial benchmark problems. Furthermore, dynamic problems do not
necessarily change over time. For instance, the nurse scheduling problem is static
if no unforeseen events occur.


Dynamic problems have been investigated in the EC-community since about
1990. Most of this have been focused on developing various techniques for handling
dynamic problems (for a survey see [20] or [21]). In this context, many of the
studies have been carried out using rather “academic” time-varying problems. An
example is the so-called moving peak problem.


Example 3.1: Moving peak problem


Maximize


f(x, t) =
n∑


i=1


(xi − oi(t))
2 x ∈ S, S ⊂ Rn







3.3. Special properties of real-world problems 45


where x = [x1, x2, . . . , xn], oi(t) is the i’th entry in the current location of the mov-
ing parabola-shaped optimum o(t). The peak moves at given intervals according
to some function. For instance, linearly along a vector with a new position every
50 generations.


♦


In 1999, several authors suggested new test-case generators (TCGs) for gen-
eralizing the moving peak problem ([19], [101], [134], and [63]). These TCGs are
based on deterministic or stochastic updating of peak characteristics such as posi-
tion, height, and width. Although the introduction of these TCGs was important,
no research had been conducted to thoroughly evaluate how well they reflect char-
acteristic dynamics of real-world problems. To investigate this, Thiemo Krink,
Mikkel T. Jensen, Zbigniew Michalewicz, and I examined the relevance of the
TCGs and found that they have limited relation to dynamic real-world problems
[146]. The study focused on numerical dynamic problems, because these problems
have the same search domain (Rn) as the moving peak problems.


Generally speaking, many dynamic problems can be viewed as either observa-
tion or control problems. The main difference between these two types of classes
is the feedback from the controller to the system (see figure 3.15).


System


Environment


Observer


Measurement


(a) Observation problem. The environ-
ment influences the system; the observer
does not affect the system.


Controller


Measurement System control


System


Environment


(b) Control problem. The environment affects
the system. The controller and the system in-
teract; the controller affects the system.


Figure 3.15: Observation and control problems.


The objective in observation problems is either to predict the values of certain
variables (dynamic system identification, see section 6.1.3) or to process sam-
pled data (signal processing). The difference between these two subclasses is that
dynamic system identification use observations from the past to predict the fu-
ture, whereas signal processing focuses on continuously extracting information
from recorded data (i.e., no prediction). Examples for dynamic system identifica-
tion are weather forecasting, stock value prediction, and server failure prediction.
Signal processing deals with tasks such as speech recognition and adaptive noise
filtering.


In control problems, a controller has to operate a system and, in many cases,
meet a certain output goal. The input for this process is provided by sensors that
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measure the state of the system and its environment. In other words, there is a
feedback loop in which the controller affects the system variables that it uses as
its own input in immediate future. If the EA is running while the system is being
controlled it actually has the interesting consequence that the search itself changes
the fitness landscape. This is further discussed in section 8.1.


A fundamental difference between the artificial moving peak problems and
real-world problems is the focus on what generates the dynamics. In moving peak
problems, the focus is on the fitness landscape and how this should be changed
to make the test-problem challenging. In contrast, dynamics in real-world prob-
lems stem from the interactions among the system components. Hence, a shift of
focus is necessary to get to the core of what makes dynamic problems challeng-
ing. A number of important questions arise when dynamic real-world problems
are considered.


1. Do we know when the fitness changes?


2. How fast must we react to a change?


3. Does the search influence the future state of the problem?


Naturally, the answers to these questions depend on the problem at hand, but
a few general issues should be considered. Question one circles the problem of
resampling and detecting fitness changes. This is particularly important if the
fitness calculation is expensive, because a change will require a complete reevalu-
ation of the entire population. It may not be possible to decide exactly at what
stage the fitness changes, but in most cases this can be detected somehow. For
instance, a significant change in temperature may trigger a reevaluation. In other
problems, the need for reevaluation is straightforward. For example, rescheduling
of the nurses is obviously necessary if an employee gets sick. Question two deals
with the problem of evaluation time. Obviously, an algorithm using five hours to
find a solution that is required in only one hour is of little value. The reaction time
is particularly important for control problems. For instance, an airplane controller
must react in a few hundred milliseconds or less. Question three focus particularly
on control problems. Here, the important issue is that control decisions influence
the state of the problem and thus future fitness evaluations. In principle, this is
relevant for any kind of problem where decisions are based on the found solution.
In the nurse scheduling problem, the implemented schedule has some consequences
for who is available in the case of a rescheduling event (see [71] for further informa-
tion on scheduling, rescheduling, and robust scheduling with EAs). Question three
has some very interesting consequences in a theoretical EA-context. In short, a
search that influences future states of the problem may lead to multiple optima in
time, because the decisions may drive the system state in different directions [143].
See chapter 8 for further information on the theoretical implications for control
problems.
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3.4 Summary


Defining the fitness function is by no means an easy task. As described, there is
a significant number of issues to consider and pitfalls to avoid. Experience with
studies on real-world problems reveal that a surprisingly large part of the time
spent on a project is invested in defining the optimization problem. In this context,
insight into both theoretical and practical issues play a key role in the success
of the approach. Furthermore, special properties such as constraints, multiple
objectives, and dynamic components pose additional challenges to the designers
of the algorithm. To this end, a wide selection of evolutionary techniques exist.
Consequently, some experience with the topic is usually an advantage to fully
exploit the potential of evolutionary computation for such problems.


3.5 Future research


There are certainly many open issues regarding fitness function design. For plateaus,
a significant amount of work has focused on examining the theoretical aspects of
plateaus (neutral networks). However, only a few investigations have been pub-
lished on techniques for searching problems with neutral networks. Regarding
smoothness, the smooth operator genetic programming should be further inves-
tigated and tested on more problems. In connection with ridges, only a few
algorithms exist although most real-world problems have correlated parameters.
A possible explanation might be that a set of mainly uncorrelated benchmark
problems are used to test novel algorithms. Regarding local optima, a significant
amount of work has been done (see chapter 5). This is indeed a well-investigated
area, but radical new ideas are still investigated and they often lead to simpler
but more powerful algorithms. An open issue in a more theoretical context is the
difficulty of defining what a hard multimodal problem is. Some metrics, perhaps
from statistics, may help shed some light on these issues. In general, very few (if
any) rules-of-thumb exist regarding how to approach a new multimodal problem.


Moving on to practical design issues, the problem of noise in connection with
system-based fitness evaluation calls for further investigation. Again much re-
search is performed using rather artificial noisy problems. In connection with the
simulation-based fitness evaluation, further studies of the problems with inaccu-
racy in the adaptive Runge-Kutta-Fehlberg approach is needed. In this context, a
survey in the computing field of numerical analysis may give some insight. Focus-
ing on the problems of time-consuming evaluations, a significant amount of work
can be done. This research area is rather new in an EC-context, but is becoming
increasingly important as EC is moving into new fields of applications. Of partic-
ular interest is the area of industrial design, because such problems often involve
computationally expensive fluid simulations. At EVALife, fitness approximation is
currently being investigated by MSc student Kim Pedersen, who is also studying
the application of smooth operator GP in this context.


Continuing with special properties, constraint problems received much atten-
tion in the nineties. Although the interest in the community has dropped recently,
many issues are still rather uninvestigated. For instance, the role of subpopu-
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lation structures in constraint optimization. It may be an idea to have several
subpopulations focusing on different parts of the feasible search space. Multiob-
jective optimization has more or less taken over the role of being the hot research
topic. Nevertheless, many topics have not yet been studied. One direction that, to
my knowledge, has received limited attention is to incorporate subpopulation ap-
proaches and other multimodal optimization techniques. I would expect this to be
an advantage, since each of the fitness functions are typically multimodal. Finally,
dynamic optimization has received considerable attention since 1990. Our study
on the test-case generators for moving peak problems revealed the absent rela-
tionship between the used benchmark problems and real-world dynamic problems.
Hence, the fundamental problem in most research on algorithms for dynamic prob-
lems until now is the missing experimentation on realistic problems. Undoubtably,
many of the algorithms will work significantly better than simple techniques, but
this is an open issue at the present stage.







Chapter 4


Methods for parameter control


The first observation when working with EAs is their sensitivity to the algorithmic
parameters. For instance, the probability of mutation pm can have quite an im-
pact on the performance of the algorithm. Unfortunately, every part of an EA has
parameters. Hence, there are parameters for the population, the representation,
and the evolutionary operators. Parameter setting in EAs is usually a two-stage
process; i) choosing the approach and ii) setting the parameters for the chosen ap-
proach. For instance, the population structure can be a single population, several
subpopulations, or perhaps a two-dimensional grid structure with one individual
per cell. The chosen population structure then has a number of parameters to
decide upon. For example, the population size has to be set if a simple population
structure is used.


Research in parameter control mainly focuses on the parameters for the evo-
lutionary operators (mutation, crossover, and selection), and in this research the
primary interest has been in techniques for setting the parameters. A fundamen-
tal problem in determining the parameters is that the best parameters depend on
the problem. Hence, one set of parameters may yield good performance for some
problems but less good performance on other problems. Furthermore, the optimal
parameters are not constant during the run of the algorithm. For instance, a large
mutation variance in Gaussian mutation may be advantageous in the beginning
of the run, but it may hinder finetuning of the solutions in the population at the
end of the run. From a theoretical point of view, the problem of determining pa-
rameters is implicit in Wolpert and Macready’s so-called “No free lunch” theorem
for search [153]. The theorem states that no search algorithm is superior on all
problems. Consequently, no set of parameters is superior on all problems. Fortu-
nately, the practical implications are rather limited, although it seems to be a very
discouraging theorem. The statement all problems literally means all problems,
including those with completely arbitrary relationship between solution and fitness
value (static but random). Naturally, random search can search such problems as
well as any other search algorithm.


The sensitivity of EAs to parameter values has lead to a wide variety of pa-
rameter control approaches. This makes it difficult to suggest a good taxonomy.
Eiben et al. suggest a taxonomy based on when (before or during the run) the
parameters are determined [41]. However, parameters are seldomly determined
without performing a few test runs, which makes the criterion when inadequate
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for distinguishing between techniques. In my view, the key issue is whether or
not the control method adapts to the search process. In non-adaptive control, the
parameters are controlled without considering how the search progresses (e.g., if
it stagnates). Conversely, adaptive control utilizes information from the search
to tune the parameters while the search is performed. The criterion of adapta-
tion suggests a further grouping of approaches into five sub-categories; two for
non-adaptive control and three for adaptive control. Figure 4.1 illustrates the full
taxonomy.


FunctionsConstants Self−adaptive Population−structure−basedMeasure−based


Parameter control


Adaptive controlNon−adaptive control


Figure 4.1: Taxonomy for parameter control methods.


In non-adaptive control, the parameter values may either be constant or cal-
culated by a simple parameterized function of the generation counter. A common
example is the annealing variance in Gaussian mutation. The main disadvantages
of non-adaptive control techniques are that they require a significant amount of
manual tuning and that the values are problem dependent. Adaptive control
methods use information from the search process to alter the parameter values.
A simple approach in this group is to control parameters by functions triggered
by measurements on the population; for instance, increase the mutation rate if no
improvement has been reported over the last k generations. Another idea used in
so-called self-adaptive techniques is to encode the parameters in the individual’s
chromosome. Hence, this approach uses evolution for both searching the problem
and setting the parameters. A third idea is to use the population structure and
spatial position of individuals to determine their parameters.


Although adaptive control techniques are better, manual tuning is impossible
to avoid completely, because nearly all components of the algorithms have param-
eters. Hence, all algorithms have at least a few parameters that need to be set
to reasonable values. In addition, most advanced parameter control techniques
also have parameters. Hence, the focus is shifted one layer up from tuning the
actual parameters to tuning the parameter control methods. An obvious question
to ask is then why even consider advanced techniques? The superior performance
of parameter-varying algorithms is the primary motivation. Furthermore, tuning
the control method is often easier than tuning the actual parameters, because the
control technique is usually more robust with respect to parameter sensitivity.
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4.1 Manual tuning of constants


The simplest possible parameter control approach is to keep values constant. For-
tunately, fixing a large part of the EA-parameters will not decrease the performance
of the algorithm significantly. The parameters commonly fixed are probability of
crossover (pc), probability of mutation (pm), population size, and parameters re-
lated to selection, e.g., the tournament size.


Finding parameters usually requires a significant amount of experimentation
for several reasons. First, it is necessary to repeat runs to get an impression of
the performance obtained from a set of parameters, because EAs are stochastic
algorithms. Second, parameters may be correlated and can therefore not be tuned
independent of each other. This leads to a combinatorial explosion regarding the
number of settings to try. For instance, trying five probabilities of mutation with
five probabilities of crossover requires 25k runs to find the best combination (k
is the number of repetitions). From an abstract point of view, manual tuning of
parameters corresponds to searching “the universe of evolutionary algorithms”.


EP


LCS


GA


p
m values


ES


Universe of evolutionary algorithms


GP


Figure 4.2: Searching the universe of evolutionary algorithms.


On the basis of countless experiments, a number of simple heuristics has been
formed. Regarding binary encoding, a good starting point for bit-flip mutation
is to use pm = 1/L, where L is the string length. A mutation rate of pm = 1/L
is commonly used as a lower bound, because 1/L corresponds to flipping one bit
per genome on average. Furthermore, pm = 1/L has been proven optimal for
the sphere problem [23], [8]. Over the years several constants for pm have been
suggested. De Jong found pm = 0.001 to be appropriate on a number of simple
benchmark problems [35], Grefenstette suggested pm = 0.01 [62], and Schaffer
et al. recommend a range of pm ∈ [0.005, 0.01] [120]. For real-value encoding,
the probability of mutation is usually pm ∈ [0.6, 0.9] and probability of crossover
pc ∈ [0.7, 1.0]. In tournament selection, a tournament size of two often gives the
best results. Setting it much higher imposes a too strong selection pressure with
premature convergence as the overall result. The population size should typically
be set to more than 50 individuals unless the evaluation is very time-consuming.
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4.2 Manual tuning of functions


The search performed by an EA can be seen as a process shifting from highly
explorative in the beginning of the run to fine-tuning towards the end. With this
in mind, it is intuitively obvious that constant values for all parameters may lead
to rather poor performance. For instance, a large variance in Gaussian mutation
is usually advantageous in the explorative phase while small values are necessary
to perform the fine-tuning at the end of the run. The straightforward approach is
to replace each constant parameter px by a simple function px(t) of the generation
number t.


4.2.1 Mutation rate in bit-flip mutation


Varying the mutation rate pm for bit-flip mutation has been investigated on sev-
eral occasions. In a pioneering study, Fogarty investigated two ideas for controlling
the mutation rate in bit-flip mutation [49]. In this study, Fogarty investigated a
real-world problem where the objective was to determine seven control settings
for an industrial burner. The problem was represented as a bit string of L = 70
bits encoding the seven parameters with ten bits each. One idea was to control
the mutation rate pm(t) by an exponential decreasing function of the generation
number t. Fogarty experimentally determined the following formula for how to set
the mutation rate (see figure 4.3(a)).


pm(t) =
1


240
+


0.11375


2t
(4.1)


Additionally, Fogarty experimented with varying the mutation rate over bits in
the chromosome. The idea is to have high mutation rates on the least significant
bits and low mutation rates for the most significant bits. This approach gives
better local search while allowing large mutation steps. In this particular setup,
the formula for pm(i) was experimentally found to be:


pm(i) =
0.3528


2i−1
(4.2)


where i is the bit number and i = 1, 2, . . . , 10 with i = 1 being the least significant
bit. The mutation rates for Fogarty’s seven-dimensional real-world problem are
illustrated in figure 4.3(b). Fogarty also experimented with a combination of the
two ideas. In this case the mutation rates was controlled by:


pm(t, i) =
28


1905 · 2i−1
+


0.4026


2t+i−1
(4.3)


Unfortunately, these formulas are not present in the original paper, but they are
described in the Handbook of Evolutionary Computation [10, Part E1.2]. In his
study, Fogarty compared these three schemes with a scheme using constant mu-
tation rate of pm = 0.01. Not surprisingly, the varying mutation rate approaches
turned out to be the best, and the combination of varying across both generations
and bit number was the best of all the four techniques.
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Figure 4.3: Varying mutation rate for generation pm(t), bit number pm(i), and
combination of generation and bit number pm(t, i).


Following Fogarty’s idea, Hesser and Männer theoretically derived an exponen-
tial function for the counting-ones problem [67]. They suggest a mutation rate of
the following form.


pm(t) =


√
α


β
· exp


(−γt
2


)


λ
√


L
(4.4)


where α, β, γ are constants, λ is the population size, and L is the string length.
In a comparative study, Bäck and Schütz investigated a linear decreasing function
from 0.5 to 1/L in generation T [11]. After generation T , the mutation rate remains
constant at pm(t) = 1/L. Hence,


pm(t) =


{(
2 + L−2


T
· t)−1


0 ≤ t ≤ T
1
L


T < t
(4.5)


Janikow and Michalewicz revisited Fogarty’s idea of varying mutation rate over
both bit number and generation. However, Janikow and Michalewicz perform the
mutation slightly different from traditional bit-flip mutation. They suggest the
nonuniform mutation operator for binary encoding [70]. The operator mutates
the k’th binary encoded parameter xk according to:


x′k = flip(xk,∇(t, Lk)) (4.6)


∇(t, Lk) =


{
b∆(t, Lk)c if a random bit is 0


d∆(t, Lk)e if a random bit is 1
(4.7)


∆(t, Lk) = Lk ·
(
1− r(1− t


T
)b
)


(4.8)


where r ∼ U(0, 1), b is a slope parameter, T is the maximal number of generations,
and Lk is the number of bits in xk. The function ∆(t, Lk) determines the bit
number to flip; however, this is a real value and has to be rounded by ∇(t, Lk).
The function flip(xk, i) flips bit i of parameter xk. This binary variant of the
nonuniform mutation operator was derived from the version used for real encoding.
Janikov and Michalewicz compared the two variants and several other approaches
on an artificial control problem. For the nonuniform mutation operator, the real
valued version outperformed the binary variant.
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4.2.2 Variance in Gaussian mutation


Proper control of the variance in Gaussian mutation is a key issue in successful
application of real-encoded EAs. In this context, setting the mutation variance
according to a monotonic decreasing function depending on generation number
is the standard approach. As outlined in section 2.2.1, Gaussian mutation of a
real-encoded variable xi is usually performed according to:


x′i = xi + N(0, σi(t)) (4.9)


The traditional approach sets the mutation variance using either a linear or an
exponentially decreasing function such as σi(t) = 1/


√
1 + t (see figure 2.8 and


figure 4.4(a)). However, recent research revealed that significant improvement
can be achieved by controlling the mutation variance by other techniques than
a strictly decreasing function. Krink et al. used a so-called sandpile model1 to
generate power-law distributed numbers for controlling the variance in Gaussian
mutation [86]. In the power-law distribution, the magnitude of an event has an
inverse exponential relationship with its frequency. Hence, many small events
occur and large events are rare. A real-world example is the relationship between
size and frequency of earthquakes. The SOC mutation operator2, suggested by
Krink et al., scales the power-law distributed numbed according to the interval
length of each parameter and use them as variance in Gaussian mutation. A
fundamental difference between this approach and the annealing approach is that
each individual is mutated using its own variance. Hence, the individuals are
mutated using different power-law distributed variances. As a result, the algorithm
explores the local neighborhood of a solution intensively while placing a few points
far from it. For more information on SOC mutation, see [130], [131], and [140]. In
a recent study, Brønsted and From investigated ten approaches to variance control
[24]. The ten approaches were grouped in three categories with 3-4 functions in
each. The categories are: deterministic annealing methods (the classic approach),
deterministic non-monotonic methods, and stochastic methods (see figure 4.4 for
examples). Brønsted and From concluded that the SOC approach gave the best
results, although some tuning of the parameters was required. They also found
the traditional deterministic 1/


√
1 + t annealing approach to be nearly as good.


4.3 Measure-based control


In measure based control, the algorithm updates the parameter values using mea-
surements of various features of the search process. Hence, the control approach
constantly adapts the parameter values to the search and the status of the popula-
tion. The control functions are usually just simple if-then rules based on measures
on the population. A simple approach may be to count the number of generations
without fitness improvement and then increase the mutation variance temporarily


1Bak suggests the sandpile model as a simple approach to study many complex phenomena
found in nature [14]. The sandpile model is an example of how self-organized criticality (SOC)
can be generated by very simple means.


2Named after Bak’s work on self-organized criticality.
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Figure 4.4: Three approaches to variance control in Gaussian mutation.


if stagnation occurs for more than a given number of generations. Figure 4.5 il-
lustrates a simple example using a stagnation counter to trigger a hypermutation
event, in which all individuals are mutated with large variance.


Stagnation triggered hypermutation
if(fit(sbest(t− 1)) == fit(sbest(t))) stagcount++ else stagcount=0
if(stagcount>stagmax) {


Mutate all individuals with large variance.
stagcount=0


}


Figure 4.5: Example of measure based control. sbest(t) is the best individual at gen-
eration t, stagmax is the maximal number of generations before a hypermutation
event occurs.


Naturally, measures can be defined in several ways; however, two main types
exist. Measures either record features over a number of generations (generational
measures) or calculate a value on the basis of the current population (instantaneous
measures). Most generational measures either record the fitness improvement or
the success rate of operators. Typical examples are:


• Stagnation counting. The number of generations with no improvement in
fitness.


• Fitness velocity. The rate of fitness improvement over an number of genera-
tions.


• Success rate of an operator. The ratio between number of better individuals
and total individuals produced by a given operator.


Instantaneous measures often express the degree of population diversity. Most
diversity measures calculate the value using the genes in the population, because
it is rather easy to define a measure on a numeric encoding such as real-valued
vectors. However, it can be quite difficult to define a proper measure for more
complex encodings such as parse trees. Instead, the diversity can be calculated
using the fitness values of the individuals. In this, the underlying hypothesis is
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that similar fitness values correspond to some degree of genetic similarity, which
is of course not generally true but acceptable in practice. The main advantage of
this approach is the time it takes to calculate the diversity. In summary, the main
ideas in instantaneous measures are:


• Genetic diversity. A similarity measure of the individuals’ genomes. For
instance, the average Hamming distance between the bitstring genome of
each individual and the genomes of all other individuals in the population.


• Fitness diversity. A similarity measure of the individuals’ fitnesses. For
example, the statistical variance of the fitnesses.


• Fitness ratios. A ratio between best fitness and average fitness or worst
fitness and average fitness.


Regarding genetic diversity, problems with numeric search domains allow sev-
eral interesting approaches. The most commonly used are:


• All-to-all diversity. The average distance between each individual’s point in
Rn and all other points in the population.


• All-to-midpoint diversity. The average distance between each individual’s
point and a population midpoint. The midpoint is calculated as the popu-
lation’s average point in Rn.


• All-to-best diversity. The average distance between each individual’s point
and the point of the best individual.


• Nearest-neighbor diversity. The average distance between each individual’s
point and the point of the nearest neighbor.


Typically, measure-based techniques employ a combination of both genera-
tional and instantaneous measures. The main differences between approaches are
in how the rules are obtained and the number of controlled parameters. Rules are
either programmed explicitly, evolved with an EA, or found by another learning
approach.


4.3.1 Preprogrammed rules


Preprogrammed control rules express a heuristic discovered through extensive ex-
perimentation. The heuristic is usually discovered by scrutinizing the experimental
data and forming a hypothesis from the relationship between performance of the
algorithm and how the parameters were changed. One of the first preprogrammed
control rules was Rechenberg’s 1/5-rule for Gaussian mutation in (1+1)-Evolution
Strategies [113]. The rule states that the ratio of successful mutations to all muta-
tions should be 1/5 measured over a number of generations. The mutation variance
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should increase if the ratio is above 1/5, decrease if it is below, and remain constant
if it is 1/5. The variance is updated every N generations according to:


if (t mod N = 0)


σ(t) =







σ(t− n)/c ps > 1/5


σ(t− n) · c ps > 1/5


σ(t− n) ps = 1/5


else


σ(t) = σ(t− 1)


where 0.817 ≤ c ≤ 1.0 [9]. The lower bound c = 0.817 was theoretically derived by
Schewfel for the Sphere problem [122]. Setting c > 1.0 will reverse the effect of the
control rule and be in conflict with the underlying hypothesis that a non-optimal
solution can always be improved by using a sufficiently small step-size.


4.3.2 Evolved and adaptive rules


The rule discovery process can be automated by various machine learning tech-
niques. In a pioneering study, Lee and Takagi evolved fuzzy control rules [92]. The
fuzzy system used the two ratios (average fitness)/(best fitness) and (average fit-
ness)/(worst fitness) in combination with the fitness velocity to control the change
in population size, crossover rate, and mutation rate. Lee and Takagi evolved the
fuzzy rules using simple artificial benchmark problems. To test the robustness of
their approach, the fuzzy rules were then used to set the parameters of an EA
evolving a controller for a pole-balancing problem. The fuzzy parameter control
approach showed better so-called online performance but similar offline perfor-
mance in comparison with a simple EA (for details, see [92]). The experiment
indicates that the learned fuzzy rules may be generally applicable. In contrast,
the approach requires a significant investment in programming, because a fuzzy
inference engine needs to be implemented before the technique can be used in
practice.


In a recent study, Kee et al. used a combination of one generational measure and
two instantaneous measures to set three parameters of the algorithm [79]. In this
study, the measures are called the state vector and the controlled parameters are
the control vector. The state vector consist of the fitness velocity (generational),
the fitness variance (instantaneous), and the population diversity (instantaneous),
which is measured by Hamming distance. The control vector sets the probability
of mutation pm, the probability of crossover pc, and the so-called power fitness
scaling factor α. Their approach is somewhat simpler compared with the fuzzy
control approach suggested by Lee and Takagi, because it does not require the
implementation of a fuzzy inference engine. Kee et al. use a simple rule system to
map the current state vector to a control vector. They partition the state values
into three ranges, low, medium, and high, which gives a system with 33 = 27 rules.
The control values are set to either a low, a medium, or a high value. Hence, each
rule maps a state three-tuple to a corresponding control three-tuple. For instance,
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(low, high, high) may be mapped to (medium, low, low). The rule learning is
carried out while the EA is optimizing the problem.


4.4 Self-adaptive control


The idea in self-adaptive control is to encode algorithmic parameters in the genome.
In this setup, the genome consists of a solution s to the problem and an additional
set of control parameters p. Most self-adaptive algorithms first apply the algo-
rithmic parameters p on themselves to obtain the new parameters p′. The new
parameters p′ are then used to create the solution s′ from s. The underlying
hypothesis in this scheme is that good solutions carry good parameters; hence,
evolution discovers good parameters while solving the problem.


Some of the earliest studies on self-adaptation were performed by Reed et al.
[115] and Bagley [13]. The idea was later refined by Schwefel in the context of
numerical optimization with evolution strategies (ES) [122]. Self-adaptation has
now become a fixed ingredient in ES and real-valued evolutionary programming.


4.4.1 Gaussian mutation in evolution strategies


Controlling the variance of the Gaussian mutation operator has been the primary
objective with self-adaptive techniques. In 1977, Schwefel suggested three ap-
proaches to self-adaptation for numerical optimization with ES [122]. Gaussian
mutation is the main operator for creating new individuals in ES. In this context,
ES use self-adaptation extensively to control the mutation operator’s variances.
Simple ES only encode one variance σ, which is used to mutate all problem vari-
ables. Hence, the chromosome consist of a pair (x, σ). The mutation of an
individual is then performed in two steps:


σ′ = σ exp (τ0N(0, 1)) (4.10)


x′i = xi + σ′Ni(0, 1) (4.11)


where τ0 controls the adaptation rate. In this formula, the normal distribution
Ni(0, 1) is sampled for each xi. Figure 4.6(a) illustrates the level curves with equal
probability in mutation with one σ. A slightly more advanced approach encodes
one variance σi for each variable xi (figure 4.6(b)). In this case, the mutation
formula is:


σ′i = σi exp (τ ′N(0, 1) + τNi(0, 1)) (4.12)


x′i = xi + σ′N(0, 1) (4.13)


where τ ′ determines the overall adaptation rate and τ control the adaptation rate
for the variable dependent sampling Ni(0, 1). A third variant aims at handling
correlation between problem variables. In this approach, the chromosome encodes
both variances σi and an additional set of rotation angles αij, which express the
correlation between variable xi and xj. In this operator, the mutation is performed
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in three steps according to:


σ′i = σi exp (τ ′N(0, 1) + τNi(0, 1)) (4.14)


α′ij = αij + βNij(0, 1) (4.15)


x′ = x + N(0,C(σ′, α′)) (4.16)


where τ ′ and τ are as before, β controls the adaptation rate of the rotation angles
(β = 0.0873 ≈ 5◦ is recommended [12, Section 6.4]), and N(0,C(σ′, α′)) denotes
the correlation mutation vector. Figure 4.6(c) displays the case with two problem
variables, two variances, and one rotation angle for the correlation between the
problem variables. For further information on the self-adaptive mutation operator
in ES, see [12, Section 6.4].
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Figure 4.6: Variants of self-adaptive mutation operator for evolution strategies.
The boxes denote the search space. Ellipses are level-curves with equal mutation
probability density.


4.4.2 Self-adaptation on dynamic problems


A disadvantage of self-adaptation is the long period it takes for the algorithm to
discover the superior parameters. In EA-terms, the selection pressure for good
parameters is too low to quickly adapt the parameters to the problem, because
suboptimal parameters will yield acceptable solutions. In addition, the optimal pa-
rameters may change as the search progresses. Hence, the parameters controlled
by a self-adaptive EA will often reflect the state of the search process as it was
several generations earlier. To examine this effect, I performed two simple exper-
iments3 on self-adapting the mutation variance σ [138]. In the study, two simple
moving peak problems were implemented using a test-case generator for artificial
dynamic problems. The first problem consists of two peaks moving in circles while
they slowly exchange position (figure 4.7(a)). The peaks in this problem move
with a constant velocity. Hence, the self-adaptive EA may be able to discover the


3The experiments were carried out using my Multinational EA [137]. For further information
on the algorithm, see section 5.4.3.
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optimal mutation variance. In the second problem, the peaks move with varying
velocity (figure 4.7(b)). This makes it impossible for the self-adaptive EA to dis-
cover the optimal mutation variance, because the encoded variance will not reflect
the current speed of the peaks. Figure 4.7(c) and 4.7(d) illustrate the average dis-
tance to the global optimum for the two problems. For the first problem (constant
velocity), the self-adaptive EA discovers a good variance, although it takes about
5000 generations before it shows on the graph. On the second problem (variable
velocity), the self-adaptive EA fails in obtaining a variance yielding a better per-
formance than the non-adaptive EA. This is most likely because the varying peak
velocities make the adaptation impossible.


(a) Circular moving peaks problem. (b) Sinusoidal moving peaks problem.
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Figure 4.7: Self-adaptation on dynamic problems.


4.5 Population-structure-based control


The most recent idea in parameter control is to use the population structure to set
the parameters of the algorithm. In this, two main approaches exist. One idea is to
divide the entire population into a number of disjoint subpopulations and use the
success of each subpopulation to control the parameters of other subpopulations.
Another idea is to use a spatial population structure and map the position of each
individual to a corresponding set of parameter values. For comparison, figure 4.8
illustrates a standard population, a scheme with subpopulations, and a spatial
population structure.
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(a) Single population.


Subpopulation 3 Subpopulation 4


Subpopulation 2Subpopulation 1


(b) Subpopulations. (c) Spatial grid population.


Figure 4.8: Typical population structures in EAs.


4.5.1 Subpopulation-based control


In a study from 1996, Lis suggested to use a subpopulation-based approach to
control the probability of mutation pm in a binary encoded GA [94]. In this
algorithm, each subpopulation has its own level of mutation probability. The
subpopulations are assigned to consecutive levels from a predefined scheme of
mutation probabilities (see table 4.1).


Level 0 1 2 3 4 5
pm 0.0001 0.0002 0.0005 0.001 0.002 0.005


Level 6 7 8 9 10 11
pm 0.01 0.02 0.05 0.1 0.2 0.5


Table 4.1: Mutation probability levels.


The algorithm was originally designed for a parallel computer, but can easily
be executed on a single-processor architecture. In the parallel version, a main
processor is responsible for the coordination and the distribution of subpopula-
tions to the other processors. The main processor first creates a random initial
population, which is then copied and distributed to each processor along with the
processor’s mutation level. The processors then optimize their populations for a
given number of generations and send the best individual to the main processor.
The best individual in all subpopulations is found and its corresponding mutation
level is checked. The mutation level of all processors is increased by one if the
best individual’s level is the highest among the currently used levels, decreased
by one if the best individual’s level is the lowest used level, and unchanged if the
best individual is found by one of the processors having an inbetween mutation
level. Hence, the algorithm constantly adapts the window of mutation probabili-
ties towards the most successful probability. After adjusting the levels, the main
processor creates a new population and the process is repeated for a predefined
number of times (epochs). Lis experimented with a scheme having 12 levels and
four subpopulations. Several starting configurations for the mutation levels were
tested to see if there was a trend in how the levels evolved over time. To exam-
ine this, the level of the population producing the best individual was recorded
and plotted as it developed over the epochs. Interestingly, the development of the
mutation level had similar behavior as the traditional annealing of mutation rates.
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4.5.2 Spatial control


The main idea in spatial control is to represent a large part of the parameter space
by a spatial population structure and interpret the location of the individual as
a set of parameters. A recent idea in this context is the so-called Terrain-Based
Genetic Algorithm (TBGA) introduced by Gordon et al. [59]. The TBGA uses
a spatial population structure (figure 4.8(c)) where each cell hold and individual
with a binary encoded genome. In TBGAs, the two-dimensional grid position of an
individual is interpreted as its offspring’s mutation rate and number of crossover
points. Thus, the individuals of a TBGA population apply the entire variety
of different parameter combinations at each time step. The advantage of this
approach is that parameters can be exploited that are optimal for the type of
optimization task and the current state of the optimization process. However,
since the individuals in the cellular EA are fixed at their grid positions, only a few
of them are able to take advantage of this set-up simultaneously. One way to tackle
this problem is to use a multi-agent system where agents can move between grid
cells and more than one agent can be at the same grid location. In this context,
Thiemo Krink and I investigated a Terrain-Based Patchwork Model (TBPM) and
compared the performance of this agent based approach with the TBGA [87]. The
patchwork model was introduced by Krink et al. as a general agent framework with
a spatial grid world [84]. In the Patchwork model, individuals are considered as
autonomous mobile agents that choose their actions based on ”desires”, which are
modeled by so-called motivation networks. At each step, the motivation network
calculates the desire for performing each action (move, mate, etc.) based on sensors
sensing the state of the local environment and the agent’s internal state. For more
information on the patchwork model, see section 5.2.2, [84], and [87]. Figure 4.9
illustrates an example of how the agent’s spatial location is interpretated in the
TBGA and the TBPM. For the TBPM, figure 4.9(b) shows an example of flocking
near the parameters (3, 0.2) and (3, 0.8).


1 2 3 12348 84


0.02


0.2


0.1


0.02


Number of crossover points


M
ut


at
io


n 
ra


te


0.4


0.8


0.8


0.4


0.2


0.1


(a) The TBGA.
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(b) The TBPM.


Figure 4.9: The population structure of the Terrain-Based Genetic Algorithm
(TBGA) and the Terrain-Based Patchwork Model (TBPM).
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In the comparison, Krink and Ursem used a 20× 20 grid world with connected
borders to form a torus-shaped world. For the TBPM, the motivation network was
simplified and set up to make an agent move toward the neighboring agent with
the highest fitness. Interestingly, the agents quickly flocked around the parameters
leading to better performance. Figure 4.10 illustrates a typical run with 200 agents.
The algorithm was initialized with a maximum of one agent per patch, i.e., the
start position of the agents covered many different parameter settings. After a
couple of generations the agents formed small clusters, which then merged to
larger clusters and finally into one single cluster. Between generation 10 and 25,
the four small clusters merged to two larger clusters (figure 4.10(a) and 4.10(c)).
Figure 4.10(c) shows the situation where the center cluster began to merge with the
cluster located in the corners4, which was completed in generation 60. Regarding
optimization performance, the TBPM outperformed the TBGA on two of five test
problems and had matching performance on the remaining three.


(a) Generation 10. (b) Generation 25. (c) Generation 40. (d) Generation 60.


Figure 4.10: Example of flocking behavior in the Terrain-based Patchwork model.
The grid was connected at the borders to form a torus-shaped world.


4.6 Summary


Setting parameters is indeed the Achilles heal of evolutionary computation and
a significant amount of work has been carried out to deal with this problem.
Fortunately, EAs offer great flexibility and they partially contain the solution to
their own problem, because the algorithms can easily be extended to adapt to
the problem. In this connection, there are a number of interesting directions.
From a scientific point of view, the measure-based approaches are of particular
relevance, because they express comprehensible rules for how to control param-
eters. However, such rules may not be generally applicable since they can be
problem dependent. In contrast, approaches encoding parameters in the genome
are more general, because the parameters are determined with respect to the pro-
blem at hand. Unfortunately, these algorithms have a rather long adaptation
horizon, which makes them inadequate for time-varying problems and problems
where only few evaluations are possible. One solutions to this problem may be to
use a population-structure-based approach, because such methods appear to have
rather quick convergence time with respect to the parameters.


4The world was defined as a torus so even though it looks like as if the population is scattered
over four corner clusters it is in fact a single cluster.
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4.7 Future research


Regarding future work on setting algorithmic parameters, the main challenge lies
in the analysis of control techniques. So far, a significant number of methods have
been suggested. These methods appear to improve performance and are therefore
of great value to the field. However, an indepth understanding of the underlying
mechanism is, in my view, still missing. In this context, it should be mentioned that
some theoretical work has been performed, but this has mainly been focused on
rather idealized problems, and the relevance of these results to realistic problems
is yet to be determined. One approach to generalizing parameter control rules
may be to apply datamining techniques to traces of the optimization process. For
instance, logging measures as those described in section 4.3 along with parameters
may be used to learn easily comprehensible control rules such as Rechenberg’s 1/5
rule for mutation in evolution strategies.







Chapter 5


Techniques for multimodal
optimization


The main optimization challenge in many real-world problems is caused by the
topology of the fitness landscape, in particular, its ruggedness in terms of local
optima. Evolutionary algorithms (and all other iterative optimization algorithms)
must be able to avoid and escape local optima to find the optimal or near-optimal
solutions for such multimodal problems. EAs for multimodal problems have been
investigated since the early days of evolutionary computation, and numerous al-
gorithms and extensions have been suggested to improve their performance on
such problems. The main objective in research on multimodal optimization has
been to deal with the problem of premature convergence, i.e., stagnation in a local
optimum. Moreover, the algorithms have been developed with two alternative ob-
jectives in mind. One goal has been to improve the techniques to search for a global
optimum; for instance, by keeping track of local optima and use this information
to guide the search towards unexplored areas of the search space. Another goal
has been to develop algorithms capable of locating multiple good solutions. This
is an advantage when the solutions need to be assessed by a human expert before
one of them can be used in reality. For example, additional criteria may have to
be considered by the human expert before the final solution is put in use. For this
purpose, alternative and different solutions are necessary to give the expert the
best set of candidate solutions for the final decision. An immediate approach in
this context is to re-run a simple EA a number of times and then hope that the
population converges to different peaks in every run. However, this is rarely the
case in practice, because local optima with a fitness slightly lower than the fitness
of the global optimum may be difficult to discover because the global optimum is
more attractive. An algorithm that keeps track of multiple optima simultaneously
can use this information to spread out the search and thereby discover different
optima in one run.


The central concept in most research on EAs for multimodal optimization has
been to maintain the genetic diversity of the algorithm’s population. Genetic di-
versity is important because a diverse population allows the algorithm to better
exploit the crossover operator when creating new solutions. Crossover on individ-
uals from a fully converged population has no effect, because recombining identical
individuals will not generate any new solutions. In such a scenario, the algorithm
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is fully dependent on the mutation operator to escape the local optimum and fur-
ther explore the search space. Experience shows that this is extremely difficult
in practice, because selection favors the solutions trapped in the local optimum.
Hence, full convergence should be avoided by maintaining a sufficient high diver-
sity. A näıve conclusion in this context is that an algorithm would perform well
by keeping the highest possible degree of diversity. However, a too high diversity
makes the crossover operator less efficient for fine-tuning the solutions, which is
important at the end of the run. Recombining very different solutions will often
not produce a well-fit solution, because the parents are probably approaching dif-
ferent peaks. Hence, the offspring is likely to be placed somewhere between the
two peaks. Conclusively, the optimal level of diversity is somewhere between fully
converged and highly diverse. In this context, diversity measures have mainly been
used to analyze algorithms and reason about their diversity maintaining capabil-
ities. Recently, diversity measures have been used to control algorithms, which
lead to significant improvements in performance.


Over the years, several hundred algorithms have been suggested. Most of these
algorithms combine ideas from a rather small set of approaches. In general, al-
gorithms either avoid convergence or attempt to repair a converged population.
The majority of algorithms use the avoid strategy, which can be further refined
into strategies attempting to slow down the genetic convergence and strategies
trying to prevent overlap of solutions in the search space. This grouping suggests
a taxonomy for multimodal optimization techniques (see figure 5.1).


Mass extinction Restart and


Avoid strategies Repair strategies


Multimodal optimization


Spatial population Search spaceReplacement


Slow down
genetic convergence


Prevent overlap
of solutions phase−based


divisiontopologiesschemes
Selection−based


approaches


Figure 5.1: Taxonomy for multimodal optimization techniques.


In avoid strategies, the main idea is to prevent premature convergence to a
local optimum. The algorithms attempting to slow down genetic convergence aim
at maintaining the population’s diversity for a longer period and thereby avoid
stagnation in a local optimum. Algorithms in this category either use a replace-
ment scheme for updating the population or try to reduce the spread of genes by
introducing a spatial population topology. The strategies trying to prevent over-
lap of solutions either maintain diversity through selection and alterations of the
fitness function, or by actively dividing the search space into subspaces. In re-
pair strategies, algorithms either maintain diversity by mass extinction techniques
or by introducing new genetic material when population convergence is detected.
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The following sections describe these ideas and gives a survey of the more known
algorithms in each category.


5.1 Replacement schemes


Evolutionary algorithms using replacement schemes differ from ordinary EAs by
not having a classic selection round. Traditional EAs do not make a distinction
between new and old individuals. In a replacement scheme, each newly created
individual is checked to see if it should replace another individual in the popula-
tion. Hence, the replacement scheme acts as a kind of selection mechanism that
examines each individuals and decides if it should survive. The challenging part
in replacement schemes is to choose the best suited individual to replace.


5.1.1 Crowding


Crowding was introduced by De Jong in 1975, and it was one of the first attempts
to deal with multimodal optimization problems [35]. De Jong’s crowding algorithm
creates a certain number G of offspring in every generation. For each offspring o
the algorithm selects a small subset C of the population and finds the most similar
individual s in C. The offspring o replaces s in the population if o is better than
s. De Jong used binary encoding and the Hamming distance to determine the
similarity of two genomes. The size of the subset is called the crowding factor CF ,
while the parameter G is called the generation gap. De Jong reported good results
with CF = 2 and CF = 3.


The drawback of crowding is the risk of replacement errors. The new individual
might accidently replace a good solution from another peak, if the small subset
of individuals used in the comparison does not contain a solution from a peak in
vicinity of the new individual.


5.1.2 Deterministic and probabilistic crowding


Mahfoud examined De Jong’s crowding and suggested the deterministic crowding
algorithm [97]. Deterministic crowding was developed with three objectives in
mind. First, to eliminate the need for the crowding factor CF and the generation
gap G, which are highly problem dependent parameters. Second, to minimize the
number of replacement errors, otherwise, as Mahfoud surmised, the performance of
the algorithm would be more sensitive to probabilistic artifacts. Third, to increase
selection pressure between individuals that approach the same peak, but favor
convergence to multiple peaks.


The idea in deterministic crowding is to calculate the similarity between the
genomes of the parents and the offspring. An offspring replaces the most similar
parent if it has a better fitness than the parent. This lowers the replacement
errors when the population has settled on multiple peaks, because the offspring
will be more similar to its parents than to other individuals in the population. The
pseudocode for deterministic crowding is listed in figure 5.2.
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Deterministic Crowding
Initialize and evaluate population P (0)
while (not <termination condition>) {


Permute the population array P (t)
for (i=0; i<|P |/2; i++) {
j=i + |P |/2
Create two offspring o1 and o2 from P (t)[i] and P (t)[j]
if(d(o1, P (t)[i])+d(o2, P (t)[j])<d(o2, P (t)[i])+d(o1, P (t)[j])) {


if(Fit(o1) > Fit(P (t)[i])) then P (t)[i] = o1


if(Fit(o2) > Fit(P (t)[j])) then P (t)[j] = o2


}
else {


if(Fit(o2) > Fit(P (t)[i])) then P (t)[i] = o2


if(Fit(o1) > Fit(P (t)[j])) then P (t)[j] = o1


}
}
Mutate P


Evaluate P


}


Figure 5.2: Pseudocode for deterministic crowding. The population size |P | must
be an even number, d is a distance measure, and P (t)[i] is the i’th individual of
the population P at generation t.


Mahfoud reported good results on two very simple one-dimensional functions
introduced by Goldberg and Richardson [58] (see section 5.3.1). Deterministic
crowding was able to maintain individuals near all five peaks on both test problems.


A variant of deterministic crowding was introduced by Mengshoel and Goldberg
[98]. The idea in probabilistic crowding is to use a stochastic replacement rule
instead of the deterministic rule shown in figure 5.2. The probability of replacing
the parent is calculated from the fitness of the offspring and the parent (equation
5.1).


p(Ioffspring, Iparent) =
Fit(Ioffspring)


Fit(Ioffspring) + Fit(Iparent)
(5.1)


The main disadvantage of probabilistic crowding is its sensitivity to the values
of the fitness function. Hence, the selection pressure depends on the problem,
which is generally not desirable because it makes the algorithm highly problem
dependent.


5.2 Spatial population topologies


Spatial population topologies were originally introduced to exploit the power of
parallel computers with the hypercube architecture (see section 3.2.3). The phys-
ical design of such computers introduced the idea of local crossover and selection
operations. In contrast, crossover and selection in simple evolutionary algorithms
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induce a global interaction range between individuals. For instance, the partic-
ipants in tournament selection are picked randomly from the entire population.
This population structure allows a high genetic flow throughout the population,
because any individual can interact with any other individual. In this scenario, a
good, but suboptimal, solution can quickly take over the entire population, since
it is competing with all other solutions in the population and not just a small sub-
set of them. A spatial structure with local interactions improves the algorithm’s
ability to avoid premature convergence, because of the slower diffusion of genetic
material. Consequently, spatial models are now in use on single CPU machines.


5.2.1 Cellular EA


The population structure of the cellular EA (also known as the diffusion model) is
closely related to the two-dimensional lattice used in cellular automata algorithms
[10, C6.4] (see figure 5.3(a)). In the cellular EA, each cell holds an individual that
can only interact with its immediate neighbors, which is usually either four or
eight individuals (see figure 5.3(b)). The borders of the grid are usually connected
to form a torus shaped world. Limiting the interaction range of an individual to
its immediate neighbors makes it impossible for a solution to quickly take over the
entire population, simply because it takes several generations to diffuse1 the genes
throughout the grid.


(a) Population structure of a
10× 10 cellular EA.


(b) Neighborhoods with four or
eight individuals.


Figure 5.3: Population structure and interaction range of the Cellular EA. Each
circle represents an individual.


The effect of interaction range and neighborhood shape was investigated by
Sarma and De Jong in two theoretical studies from 1996 and 1997 [118; 119].
They compared the take-over time2 of four selection operators in combination
with various neighborhood size and shapes in a two-dimensional cellular EA. The
selection operators were proportional, linear ranking, tournament, and a so-called


1The Cellular EA is sometimes called the diffusion model.
2The take-over time is the number of generations it takes for the best individual to dominate


the entire population when no mutation or recombination is employed.
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random walk approach [119]. The shapes were cross, boxes, and diamonds. As
expected, the ratio between the entire grid and the neighborhood size is the main
factor influencing the take-over time. The neighborhood shape had no effect.


In an interesting study, Bach and Kjær-Larsen investigated the effect of dimen-
sionality in the cellular EA [7]. They experimented with the individuals’ neighbor-
hood by varying the dimensionality of the world between one and six dimensions.
The objective was to determine whether it would be beneficial to implement more
complex models, or if a simple one-dimensional world would be sufficient. Bach
and Kjær-Larsen concluded that the main parameter influencing the performance
was the interaction range, i.e., the size of the neighborhood. Somewhat surprising,
the one-dimensional model gave similar performance as higher dimensional models
with the same interaction range. Hence, the traditional two-dimensional cellular
EA may just as well be implemented with a one-dimensional world, which is sim-
pler to implement. In the one-dimensional model, Bach and Kjær-Larsen found an
interesting and clear correlation between performance and interaction range. In
short, a small interaction range gives a better solution, but at a slower convergence
speed. A large interaction range yields fast convergence, but often stagnation on a
local optimum. This indicates that the interaction range can be used as a control
parameter to balance the quality of the solution versus the convergence speed.
Needless to say, such a parameter is important for real world problems where the
evaluation is often time consuming.


5.2.2 Patchwork model


The Patchwork model was introduced by Krink et al. and is a hybrid evolutionary
algorithm implementing ideas from the cellular EA, multi-agent systems, island
models and traditional evolutionary algorithms [84]. The patchwork model was
originally introduced as a general approach to modeling biological systems, but
it has also been used for optimization [84; 87]. A patchwork model consists of
a grid world and a number of interacting agents. In each time step, an agent’s
behavior is determined by its motivation network, which executes an action, such
as moving, mating, or eating. The decision process is based on the input from
a number of sensors and their “interpretation” by the motivation network. The
sensors detect various properties such as best fitness, population density, and own
fitness. Two kinds of sensors exist; i) external sensors returning a value based on
the state of the patch it is scanning, and ii) internal sensors reflecting the state of
the agent. Each sensor has an output value between 0 and 1. For each possible
action the motivation network has a set of functions that map the sensor values
to a motivation value for performing the corresponding action. For instance, a
setting with two actions and four sensors implies that the motivation network will
have eight mapping functions (see figure 5.5 for an example). These functions
are encoded in the agent’s genome so it can evolve behavior patterns like “follow
agents with good fitness, but avoid overcrowded and empty patches”. Each sensor
is represented by six values, a weight and five points defining the mapping function.
See figure 5.4 for an example. The sensor values are combined to a motivation value
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Mi as follows:


Mi =


#sensors∑
j=1


wij ·mapij(sj) (5.2)


where wij is a weight between 0 and 1 for sensor j in action i, mapij is the mapping
function and sj is the sensor value. Figure 5.4 illustrates an example of an agent’s
mapping functions for moving when the model supports sensors for best fitness
and patch population density. In this case, the agent will be motivated to move
to patches with density near 0.5 and high fitness.
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Figure 5.4: Example with sensor mapping functions.


The action of an agent is determined by calculating the motivation for each
available action on each of the patches in the agent’s neighborhood. If the agent
can choose between two actions, e.g., moving and mating, and the neighborhood
range is 2 the motivation will be calculated for 50 action-patch pairs. A range of 2
implies 25 neighborhood patches (5×5), whereas a range equal to 3 corresponds to
49 patches (7×7). The motivation network is illustrated in figure 5.5. The action
selector is responsible for selecting the agent’s next action based on the motivation
values. A straightforward idea is to select the action with the highest motivation.
In case that multiple action-patch pairs evaluate to the same high motivation, a
random action-patch is selected and the action with the corresponding patch is
performed.


Move.
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Patch density


Own fitness


Best fitness
Available actions


Sensors


Mate


Move


Mapping functions


Action selector


Chosen action


Figure 5.5: Example of a motivation network.


The patchwork model has shown good results on a number of traditional bench-
mark problems [84; 87].
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5.2.3 Religion-based EA


The religion-based EA (RBEA) is inspired by the concepts of religion and how they
attract believers. The algorithm was introduced by Thomsen et al. [132]. It ex-
tends the ideas of the cellular EA and the patchwork model by adding the concept
of religions (subpopulations) and a conversion scheme for attracting new believers
to a religion. The RBEA uses a grid world where each cell may be empty or in-
habited by a single agent. Like in the patchwork model, the population consists
of mobile agents, but RBEA-agents have three fixed actions that are performed in
turn. First, each agent tries to do a random walk to an empty cell from its neigh-
borhood. After moving, the agent scans its neighborhood and tries to convert
agents belonging to other religions. Conversion is probabilistic and only possible
if the current agent has a better fitness than the agent it tries to convert. Finally,
the agent attempts to reproduce with a nearby agent from its own religion. Hence,
mating is restricted to agents belonging to the same religion, which corresponds
to having a number of spatially distributed subpopulations. For details regarding
conversion and mating, see [132].


The RBEA was compared with a standard EA and a cellular EA on six nu-
merical benchmark problems. The algorithm outperformed the standard EA on
all six problems and the cellular EA on five of six problems.


5.3 Selection-based approaches


High diversity can also be achieved by refining the selection procedure. This can be
done by modifying the raw fitness of an individual or by specifically changing the
selection operator. In both cases, the objective is to prevent premature convergence
by selectively favoring individuals that increase the genetic diversity.


5.3.1 Sharing


Sharing use the idea of modifying the raw fitness to increase the selection pres-
sure on very similar individuals and thereby favor individuals raising the genetic
diversity. Goldberg and Richardson introduced the technique with the goal of lo-
cating multiple peaks simultaneously [58]. The central concept in sharing EAs is
to decrease the fitness value of individuals that are close in the search space, i.e.,
penalize individuals for clustering. Individuals close in the search space “share”
the resources (the fitness), whereas individuals in sparsely populated regions of
the search space have fitness equal to the raw fitness. The purpose of this is to
prevent individuals from converging to a single peak, which is accomplished by
dividing the raw fitness by the so-called sharing factor sh. The “shared” fitness is
often calculated according to the following formula:


Fit′(Ii) =
Fit(Ii)∑µ


j=1 sh(d(Ii, Ij))
(5.3)


where Fit′(Ii) is the shared fitness, Fit(Ii) is the raw fitness, µ is the population
size, sh(·) is the sharing function, and d(Ii, Ij) is a distance measure between
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individual Ii and Ij. Goldberg and Richardson suggested the following sharing
function, which later became widely used.


sh(d) =


{
1− (d/σshare)


α d < σshare


0 Otherwise
(5.4)


The parameters σshare and α specify the shape of the sharing function. A common
value for α is 1, whereas the choice of σshare is more problem dependent.


Goldberg and Richardson tested two simple functions in their paper from 1987
[58]. The functions are one-dimensional maximization problems and are defined
according to equation 5.5 and 5.6 (x ∈ [0, 1]).


F1(x) = sin6 (5.1πx + 0.5) (5.5)


F2(x) = sin6 (5.1πx + 0.5) · e(−4 ln(2)
(x−0.1)2


0.82
) (5.6)


The algorithm was capable of finding all five peaks on both problems.


A problem with sharing


In a recent study, I investigated the robustness of the sharing technique [139]. For
sharing, one property of F1(x) and also F2(x) is worth noticing: The fitness of
the minima is zero. Consequently, no matter how many individuals are near the
maxima they will always have a fitness value greater than zero, because the raw
fitness is divided by the sharing factor (equation 5.3). Hence, these individuals will
always have an advantage in selection when they are compared with individuals at
the minima (fitness of zero). However, if a constant is added to the F1(x) function,
i.e.,


F3(x) = F1(x) + C (5.7)


then the properties of selection change substantially. For instance, assume that
C = 10 in equation (5.7), i.e. F ′


3(x) = F1(x) + 10. The topology of the function
F ′


3(x) is then exactly the same as for F1(x), except that 10 is added to the function.
Now, imagine the situation where two individuals are close to each other and near
one of the maxima. In this case the shared fitness of each of these two individuals
is


Fit′(I) ≈ 11


1 + 1
= 5.5 (5.8)


where the denominator is 2 because the two individuals are close to each other
(sh(·) = 2). In this scenario, the two individuals near the maximum will actually
receive a lower fitness than a single individual near a minimum (see figure 5.6).
Hence, the sharing scheme changes the fitness ranking between individuals in such
a way that individuals with high fitness with respect to the raw fitness function
can easily be deleted during selection. Notice that this problem is independent of
the constant added to the function; it only depends on the relative fitness between
good and bad solutions. A similar problem arises if good solutions have a fitness
of 1.0 while bad solutions have a fitness of, e.g., 0.75.


Figure 5.7 shows two graphs from the experiments I performed [139]. The
bars indicate the percentage of the population in the corresponding range of the
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Figure 5.6: F ′
3(x) = F1(x) + 10


one-dimensional search space. The graphs clearly show that sharing is extremely
sensitive to the fitness range. In fact, the population displayed in figure 5.7(b)
roughly corresponds to a population after random initialization.
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(a) Sharing on F1(x) (equation 5.5).
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Figure 5.7: Some results from the experiments with proportional selection. The
x-axis is the search space, and the y-axis is the percentage of individuals in the
corresponding part of the search space.


5.3.2 Diversity Control-Oriented EA


Shimodaira recently suggested the diversity control-oriented EA (DCEA), which
use the cross-generational probabilistic survival selection (CPSS) [125]. Unlike
traditional selection mechanisms, CPSS bases the selection on both fitness and
a measure of diversity between each individual and the currently best individual
(Shimodaira used binary encoding and the Hamming distance). Hence, the al-
gorithm directly incorporate a diversity measure to ensure a sufficient degree of
diversity. The main loop of the DCEA works as follows. First, the individuals
of the current generation are paired off and each pair creates one offspring by
crossover and mutation, i.e., |P |/2 individuals are created (|P | is the population
size). The |P |/2 new individuals are then merged with the parent population and
the entire population is sorted on fitness. After sorting, the algorithm removes
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duplicate individuals and copy the best individual to the next generation. The
remaining individuals are then selected with the CPSS operator as follows: The
sorted population is traversed from the most fit to the least fit individual. Each
candidate individual Ii is stochastically selected using the probability of survival
ps.


ps =


(
(1− c) · HD(Ii, Ibest)


L
+ c


)α


(5.9)


where HD(Ii, Ibest) is the Hamming distance between the candidate individual Ii


and the population’s best individual Ibest, L is the length of the binary string, and
c and α are shape coefficients for controlling the selection pressure. This selection
approach does not guarantee that sufficiently many individuals are selected to fill
the new population, because each individual is stochastically selected. In case too
few individuals are selected, the operator inserts randomly generated individuals
in the remaining slots of the new population. Figure 5.8 illustrates the pseudocode
of the diversity control-oriented EA.


Diversity control-oriented EA
Initialize and evaluate population P (0)
while (not <termination condition>) {


t = t + 1
Randomly pair all individuals
Create |P |/2 individuals by mutation and crossover
Merge new individuals with P (t− 1) and sort on fitness
Eliminate duplicate individuals
Select next population with CPSS
Fill population P (t) with random individuals if too few were selected


}


Figure 5.8: Pseudocode for the diversity control-oriented EA.


The CPSS operator has a number of interesting properties in comparison with
traditional selection operators. First, a variable number of individuals are selected
in each generation, because the individuals are considered one by one and each
individual survives with a certain probability. Second, the operator incorporates
both fitness and similarity with the best individual in the selection procedure. The
operator favors highly fit individuals that differ significantly from the current best
solution.


Shimodaira reported good results on two numerical benchmark problems and
three TSP problems [125]. However, from these experiments it seems that the
main drawback of the approach is the algorithms sensitivity to the shape param-
eters controlling the probability of survival in CPSS. Figure 5.9 illustrates a few
examples of the probability of survival for some values of c and α.
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Figure 5.9: Examples of probability of survival ps for different values of the shape
coefficients c and α.


5.4 Search space division


The idea in search space division algorithms is to maintain multiple subpopula-
tions with a minimum overlap in the search space. The goal is to reduce the
problem’s modality by transforming the problem into a number of easier problems
that are searched simultaneously by the subpopulations. In the ideal case, the
subpopulations cover different areas of the search space where each subpopulation
corresponds to a potential peak in the fitness landscape. A perfect division will
allow the algorithm to better exploit the crossover operator, because the parents
are approaching the same peak and this will increase the chances of producing a
fitter offspring as discussed in the beginning of the chapter.


5.4.1 Forking EA


The forking EA was suggested by Tsutsui and Fujimoto and is one of the first
search space division algorithms [135]. The algorithm is developed to search for
a single global optimum by keeping track of potential local optima. The popu-
lation structure consists of a parent population and a variable number of child
populations. The algorithm creates a child population when a certain level of
similarity is detected in the parent population. The similarity is either calculated
from the the binary strings used for the encoding (genotypic forking, [135]) or from
a phenotypic similarity measure such as Eucledian distance between individuals
(phenotypic forking, [136]). The parent and the child populations are not allowed
to overlap.


The division of the search space in genotypic forking is based on the so-called
temporal and salient schemata, which detect the convergence of bit positions in
the binary encoding. The schemata are strings consisting of the letters “0”, “1”,
and “*”. The temporal schema reflects the state of the population in the cur-
rent iteration, while the salient schema is calculated from the last KH temporal
schemata. The temporal schema contains a 0 or 1 if more than a predetermined
percentage KTS of the individuals have the same value in a gene, otherwise * is
inserted. The salient schema is calculated as the temporal schema, but all the
KH temporal schemata have to contain the same value of a gene. Figure 5.10
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illustrates a calculation of a temporal schema for a population of 10 individuals.
Figure 5.11 illustrates an calculation of a salient schema over 5 generations.


P (t) =


1 1 1 1 0 0 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 1 0 1 0 0 0 1 1 1
1 1 0 1 1 0 1 0 1 1 0 0 1 0 1
1 0 0 1 0 1 1 0 1 1 1 0 1 1 1
1 0 1 1 0 1 1 1 1 1 0 0 1 1 1
1 0 1 1 0 0 1 0 0 0 1 0 1 1 1
1 1 1 1 0 0 0 0 1 0 1 0 1 1 0
1 0 1 1 0 1 0 0 1 0 0 0 1 1 0
1 0 1 0 0 0 0 0 1 0 0 0 1 1 1
1 0 1 1 0 1 0 0 1 0 0 0 0 1 1


TSt = 1 * * 1 0 * * 0 1 * * 0 1 1 *


Figure 5.10: The temporal schema TSt for a population of 10 individuals with 15
bit encoding, KTS = 85%.


TSt−4 = 1 * * 1 0 * * 0 1 * 1 0 1 1 *
TSt−3 = 1 * 1 1 0 * * 0 1 * 1 0 1 1 *
TSt−2 = 1 0 * 1 0 * 1 0 1 * * 0 1 1 *
TSt−1 = 1 * 0 1 0 * 1 0 1 * * 0 0 1 *
TSt = 1 * * 0 0 * 1 0 1 * * 0 1 1 *


SSt = 1 * * * 0 * * 0 1 * * 0 * 1 *


Figure 5.11: The salient schema SSt on 15 bit encoding, KH = 5.


The salient schema is used to extract a child population from the parent pop-
ulation. The subspace searched by the child population is determined by the
salient schema leading to the fork. The child population is allowed to alter the
bit positions where the salient schema has a ’*’, i.e., the remaining bits are fixed
to the values in the salient schema. In the following generations, individuals in
the parent population matching any of the current salient schemata are deleted,
which ensures that the parent population is not searching the same subspaces as
the child populations. The algorithm limits the number of child populations by
either merging salient schemata or overwriting the oldest schema when a new one
is needed.


The basic principle of search space division in phenotypic forking is similar
to the one used in genotypic forking. The only difference is the procedure for
creating the child populations. In phenotypic forking, the child population is a
N -dimensional hypercube that is “cut out” of the search space. As in genotypic
forking the child population is restricted to this subspace, while the individuals in
the parent population search the remaining space. The hypercube determining the
boundaries of the child population is defined by a center point x = (x1, x2, ..., xN)
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and a range vector s = (s1, s2, ..., sN), where si > 0. The hypercube is then
defined as x ± s. The center point is the genome of the currently best individual
in the parent population at the time of the forking, s is usually calculated from
the intervals that define the search space (see figure 5.12).


(a) The parent population searches the
gray area.


s


s2


1


Best individual


x


(b) The search area of the child popu-
lation defined by the center point and
range vector s.


Figure 5.12: Parent and child population in the phenotypic forking EA.


A child population is created if two conditions are fulfilled. i) The best indi-
vidual in the parent population has not improved for KH generations and ii) the
number of individuals inside the new hypercube is higher than a certain percentage
of the size of the parent population. In the following generations, the individuals
in the parent population ending up inside the hypercube are replaced with ran-
domly generated individuals such that they are not within any of the hypercubes
searched by the child populations.


The forking EA produced good results on four non-trivial test problems includ-
ing the frequency modulation sound parameter identification problem (see [135] for
details).


5.4.2 Shifting Balance EA


The shifting balance EA (SBEA) was developed by Oppacher and Wineberg with
the purpose of locating the global optimum [103]. The population structure in the
SBEA is similar to the one used in the forking EA. The SBEA manages a core
population and a number of colony populations. The core population searches for
the global optimum, while the colony populations explore areas of the search space
that are not covered by the core population.


The best individuals of the colony populations are transferred to the core pop-
ulation at fixed intervals, e.g., every fifth generation. The core population contains
the currently best solution while the colonies search for new potential peaks. The
role of the core and colony populations is thus the opposite of the setup in the
forking EA, where the parent population searches for new peaks and the child
populations specialize on already discovered peaks. The core and colony popula-
tions are kept apart by enforcing a special kind of selection that drives the colony
away from the core if they start to overlap. The idea is to select a percentage of
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the individuals in the colony based on their distance to the core population and
then select the remaining individuals by traditional fitness-based selection. The
percentage of individuals that are selected according to their distance is deter-
mined by the degree of overlap between the core and the colony. The larger the
overlap the higher is the percentage of individuals that are selected based on their
distance. The overlap factor is calculated from the Hamming distance between
individuals from the two populations. The calculations are based on the all-to-all
diversity measure for binary strings.


Diversity(P ) =
1


L · |P | · (|P | − 1)


|P |∑
i=1


|P |∑
j=1


HD(Ii, Ij) (5.10)


where P is the population, L is the length of the binary string used in the en-
coding, |P | is the population size, and Ii is the genome of the i’th individual. A
similar function can be used to calculate the distance between an individual and
a population.


Distance(I, P ) =
1


L · |P |
|P |∑
i=1


HD(I, Ii) (5.11)


The following function was used to estimate the degree of containment of the
colony population A in the core population B.


Containment(A,B) =
1


|Pc|
|Pc|∑
i=1


WithinDistance(ai, B) (5.12)


=
1


|Pc| · |P |
|Pc|∑
i=1


|P |∑
j=1


δ(ai, bj) (5.13)


where


δ(ai, bj) =


{
1 if Distance(ai, B) < Distance(bj, B)


0 otherwise


where |Pc| is population size of the colony and |P | is the size of the core population.
The function WithinDistance(ai, B) counts the number of individuals in the B-
population that are closer to B than ai. The Containment function returns a value
between zero and one indicating the percentage of individuals from A contained
in B. If the colony population A is completely contained in the core population
B, then the algorithm selects all individuals in population A according to their
distance to population B, which should drive the colony away from the core.


Oppacher and Wineberg tested the SBEA on a static and a simple dynamic
problem. The SBEA outcompeted the standard EA on both problems.


5.4.3 Multinational EA


To locate multiple solutions simultaneously, I suggested the multinational EA
(MEA) [137]. The algorithm combines several ideas including self-organization,
adaptation to the problem, search space division, and subpopulation mechanisms.
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The main idea in the MEA is to automatically divide the population into nations
(a kind of subpopulation), each corresponding to a potential peak in the fitness
landscape. A situation with six nations is illustrated in figure 5.13(a). A nation
consists of a population, a government, and a policy. The government is a subset
of the individuals in the population, and it is elected so that its members are the
best representatives, e.g., the fittest individuals, of the potential peak the nation
is approaching. From these “politicians” the policy is calculated, which is a single
point representing the peak the nation is approaching. These concepts are pictured
in figure 5.13(b).


(a) Example with six nations.


Rules for this nation


Government


The calculated policy


Population
Migration
Merging nations
Selection
Election
....


Nation


(b) Concepts of the nation.


Figure 5.13: Population structure in the multinational EA.


The grouping of individuals is done with the hill-valley detection procedure
that, given two points in the search space, calculates the fitness of a number of
random sample points on the line between the points. A valley is detected if the
fitness in a sample point is lower than the fitness of both end points. An example
of hill-valley detection for a one-dimensional problem is illustrated in figure 5.14.


Fitness calculated in sample points


Old nation


Policy of old nation


Migrating individual
New nation


Figure 5.14: Detection of valleys with hill-valley detection in connection with
migration.


The hill-valley detection is used in three parts of the MEA; i) migration of
individuals between existing nations, ii) creation of new nations in unexplored ar-
eas, and iii) merging of nations when the algorithm detects that they approach
the same peak. Migration and creation of new nations are performed as follows.
In every generation, the algorithm compares each individual with the policy of
its nation. The individual migrates if a valley is detected, because it is no longer
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approaching the same peak as all the other individuals in that nation. The des-
tination is found by comparing the individual to the policy of each of the other
nations. This particular individual might have discovered a whole new potential
peak if no suitable nation is found. In this case, the individual founds a new nation.
As a precaution, the new nation is supported with a number of individuals taken
among the lowest fit individuals from the other nations if very few individuals
have migrated to this new nation when the migration is over. This ensures that
the new nation has sufficiently many individuals to have a fruitful evolutionary
process. These individuals are converted to the new nation by overwriting their
genome with the position of the policy with some noise added to diversify them
a bit. To counterbalance this splitting of nations a merging scheme for nations is
enforced. Two nations are merged if a valley is not detected between their policies,
because this indicates that the nations are approaching the same peak.


The multinational EA has been applied to a number of static problems [137].
The algorithm was capable of successfully locating a number of peaks in each
problem. Furthermore, it has been applied to artificial dynamic problems [138].
In this study, the main idea is to track multiple peaks in the changing landscape
and thereby have suboptimal peaks located before they may rise to become the
global optimum.


5.5 Mass extinction


In mass extinction models, the diversity is maintained by forcefully replacing a part
of the population. Mass extinction models differ in how the individuals are selected
for extinction, how many individuals go extinct, and how the new individuals are
generated.


5.5.1 Random immigrants EA


The random immigrants EA was suggested by Grefenstette in 1992, and is probably
one of the first EAs using mass extinction [61]. The algorithm uses a very simple
extinction scheme. In each generation, a proportion of the population is replaced
by randomly created individuals. The replacement rate is fixed and usually set to
a value between 5 and 10 percent of the population size.


The random immigrants EA was suggested as an algorithm for handling time-
varying problems. In this context, Cobb and Grefenstette investigated the al-
gorithm on three simple dynamic benchmark problems and a static problem (all
two-dimensional problems) [32]. Random immigrants outperformed a standard EA
on the dynamic problems, but not on the static problem. Cobb and Grefenstette
concluded that this was probably because of the disruptive effect of constantly
reintroducing random individuals.


5.5.2 Extinction EP


Greenwood et al. investigated the palaeontologic literature on natural mass extinc-
tion and used this as an inspiration for a mass extinction model for evolutionary
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programming [60]. Their algorithm operates with two types of extinction events;
a mass extinction event and a background extinction event. In each generation,
a stress factor η(t) is generated according to η(t) ∼ U(0, 0.96). The upper bound
of 0.96 may seem to be a rather odd number, but it is motivated by the most
devastating event in Earth history where 96% of all marine animals went extinct.
To determine the individuals subject to extinction, the algorithm scales the fit-
ness of all individuals to the interval to [α, 1] as follows (assuming a minimization
problem):


Fit′(Ii) = α + (1− α) · Fit(Ii)− Fit(Imax)


Fit(Imin)− Fit(Imax)
(5.14)


where α is a control parameter, Fit(Imax) is the fitness of the worst individual,
and Fit(Imin) is the fitness of the best individual. The individuals to kill are those
with a scaled fitness below the stress factor, i.e., Fit′(Ii) < η(t). The vacant slots
in the population are filled with mutated variants of the surviving individuals. The
algorithm executes the background extinction if no individual had a scaled fitness
below the stress factor. The background extinction mutates the worst individual
and five randomly chosen individuals. The pseudocode for the Extinction EP is
displayed in figure 5.15.


Extinction EP
Initialize and evaluate population P(0)
t=0
while (not <termination condition>) {


t = t + 1
Generate stress factor η(t) ∼ U(0, 0.96)
Find best fitness Fit(Imin) and worst fitness Fit(Imax)
killcount=0
for (each individual Ii in P (t)) {


Calculate Fit′(Ii) according to equation 5.14
if (Fit′(Ii) < η(t)) {


Remove Ii from population P (t)
killcount++


}
}
if(killcount>0)


Insert killcount individuals in P (t)
else


Perform background extinction event
}


Figure 5.15: Pseudocode for the Extinction EP.


Although this model seems interesting, Greenwood et al. unfortunately only
reported results on a rather simple two-dimensional numerical problem [60]. Hence,
the performance on a broader selection of problems have not been examined yet.
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5.5.3 SOC extinction EA


The idea of self-organized criticality (SOC, [14]) has been used by Krink et al.
to control the extinction rate in an EA [86]. The approach is motivated by the
fact that mass extinction in nature follows the power law distribution [111; 14].
The SOC extinction EA use a so-called sandpile model [14] to generate power-law
distributed numbers that determine the percentage of the population to kill in each
generation. The empty slots in the population are then filled with mutated copies
of existing individuals. The pseudocode for the extinction procedure is shown in
figure 5.16.


SOC extinction
kill percent = PLDistribution[t]
if (kill percent≥1) {
extinction rate = kill percent*|P |
Remove extinction rate randomly chosen individuals
Create extinction rate from surviving individuals by mutation
and insert in empty slots


}
else {


Apply tournament selection
}


Figure 5.16: Pseudocode for the extinction procedure in the SOC extinction EA.
PLDistribition is an array with power-law distributed numbers, t is the generation
number, and |P | is the population size.


Krink et al. compared the SOC extinction EA with a standard EA on six static
benchmark problems [86]. The algorithm outperformed the standard EA on all
six benchmark problems. In a followup study, Krink and Thomsen combined the
idea of SOC and mass extinction with spatially distributed population structures
[85]. A related investigation on spatial mass extinction, but without SOC, was
performed by Kirley and Green [82].


5.6 Restart and phase-based techniques


The idea in restart and phase-based EAs is to somehow detect convergence and
then diversify the population whenever this occurs in the optimization process. In
these algorithms, the optimization is performed in a number of consecutive phases
where the best individual survives from one phase to the next.


5.6.1 CHC algorithm


The CHC algorithm suggested by Eshelman combines several ideas in one model
[45]. The algorithm uses binary encoding and a number of techniques to both slow
down convergence and repair a converged population. The genetic convergence
is slowed by the way recombination is performed. First, the CHC algorithm uses
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a special uniform crossover operator that creates two offspring by exchanging ex-
actly half the non-matching bits in the two parents. This produces two individuals
with the maximal Hamming distance between parent and offspring. Second, the
algorithm employs a so-called incest prevention scheme to limit the number of off-
spring produced by similar individuals. In incest prevention, only parents with a
Hamming distance above a certain difference threshold are allowed to reproduce.
The difference threshold is initially set to L/4, where L is the length of the binary
genome. The threshold is decreased when no offspring are created because of too
similar parents. In addition to these two techniques for slowing convergence, CHC
use a restart strategy when it detects that the population has converged. The
restart occurs when the difference threshold has dropped to zero and no new off-
spring has been accepted for a number of generations. In this case, the population
is reinitialized with copies of the best individual where a large part of the genome
is mutated. Eshelman suggests to flip 35% of the bits [45]. An interesting aspect
of CHC is that it use selection and recombination during the optimization process
and only mutation when the population is restarted.


The CHC algorithm was compared with a traditional GA on ten numerical
benchmark problems, four so-called deceptive functions, and a 532-city traveling
salesman problem (see [45] for details). The CHC algorithm was the best algorithm
on nearly all test problems.


5.6.2 Diversity-Guided EA


To improve the control over the population diversity, I introduced the diversity-
guided EA (DGEA) [140]. The idea behind the DGEA is simple. Unlike most
other EAs the DGEA uses a diversity measure to alternate between exploring and
exploiting behavior. To use a measure for this purpose it has to be robust with
respect to the population size, the dimensionality of the problem, and the search
range of each of the variables. An immediate measure for N -dimensional numerical
problems is the “distance-to-midpoint” measure, which is defined as:


diversity(P ) =
1


|D| · |P | ·
|P |∑
i=1


√√√√
N∑


j=1


(sij − sj)
2 (5.15)


where |D| is the length of the diagonal3 in the search space S ⊆ RN , P is the
population, |P | is the population size, N is the dimensionality of the problem, sij


is the j’th value of the i’th individual, and sj is the j’th value of the midpoint s.
The pseudocode for the DGEA is listed in figure 5.17.


The DGEA applies diversity-decreasing operators (selection and recombina-
tion) as long as the diversity is above a certain threshold dlow. When the diversity
drops below dlow the DGEA switches to diversity-increasing operators (mutation)
until a diversity of dhigh is reached. Hence, phases with exploration and phases
with exploitation will occur (see figure 5.18 for an illustration of the process). The-
oretically, the DGEA should be able to escape local optima because the operators
enforce higher diversity regardless of fitness.


3Assuming that each search variable xk is in a finite range, i.e., xkmin ≤ xk ≤ xkmax.







5.6. Restart and phase-based techniques 85


DGEA main
t = 0
Initialize population P (0)
Evaluate population P (0)
mode = ”Exploit”
while(!(termination condition)) {


t = t+1
if(diversity(P (t))< dlow)


mode = ”Explore”
elseif(diversity(P (t))> dhigh)


mode = ”Exploit”


if(mode == ”Exploit”)
Select next generation P (t) from P (t− 1)
Recombine P (t)


else
Mutate P (t)


Evaluate population P (t)
}


Figure 5.17: Pseudocode for the DGEA.
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Figure 5.18: Phases in the DGEA. The boxes denote the search space, the dotted
circles indicate the diversity and position of the population. The mode is shown
as the vertical text between the pictures, i.e. exploitation lowers the diversity in
frame 1 and transforms it into frame 2.


An important issue is to apply a mutation operator that rather quickly increases
the distance-to-midpoint measure. Otherwise, the algorithm will stay in “explore”-
mode for a long time. A straightforward idea for a measure-increasing mutation
operator is to use the midpoint of the population to calculate the direction of each
individual’s mutation. The individual is then mutated with the Gaussian mutation
operator, but now with a mean directed away from the midpoint (see figure 5.19).
The purpose of this mutation operator is to force the individuals away from the
population center.
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Search space


Midpoint


Figure 5.19: Directed mutation in the DGEA.


The DGEA have been tested on 20, 50, and 100 dimensional variants of four
standard benchmark problems [140]. In the initial investigation, I logged the diver-
sity when fitness improvements occurred. Interestingly, the majority of improve-
ments occurred at very low diversity. In a later study, I applied the DGEA to
system identification of two induction motor models [147]. For more information
on this study, see chapter 7.


5.7 Summary


Multimodal optimization is most likely the most extensively investigated issue
in evolutionary computation, and hundreds of algorithms have been suggested
over the years. In this chapter, I have tried to group the main ideas behind
these algorithms and give examples from each category. In my view, the most
interesting approaches are the search space division techniques and the methods
based on diversity. Search space division techniques are particularly interesting
because they adapt to the problem through the use of self-organizing population
structures. In this, the algorithms utilize the location of found optima enforce
diversity by preventing an overlap of the subpopulations. Diversity-based methods
seem promising, because diversity is believed to play a key role in the success on
multimodal problems. In these algorithms, diversity measures are directly used to
guide the search and prevent premature convergence.


5.8 Future research


The wide selection of algorithms for multimodal optimization should give a good
starting point for application to tough real-world problems. Somewhat surpris-
ing, few of these algorithms are actually used in practical applications although
they show superior performance when compared with simple text book algorithms.
One explanation for this mismatch between research on multimodal techniques and
practical application may be that many of these algorithms are rather complex to
implement and additional parameters need to be tuned. Hence, there is a great
need for making these algorithms available and easily approachable for researchers
without a background in EC-research. In this context, at least two issues should
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be taken into account by EA-researchers. First, they should invest more time in
demonstrating their techniques on realistic problems. Applying a novel algorithm
to artificial benchmark problems as those in appendix B is not very convincing to
researchers working on real-world problems. Second, algorithms should be devel-
oped with a minimalistic approach in mind. In practical applications, most time
is spent on defining the problem and implementing the fitness function. In many
cases, only little time is available for the implementation of the optimization al-
gorithm. Unfortunately, many algorithms in multimodal optimization are simply
too complex to implement and simpler, but less efficient, algorithms are therefore
used instead.


Regarding population diversity, an underlying hypothesis in many studies on
multimodal optimization is that maintaining a high level of population diversity
is a prerequisite for escaping local optima. This may be true, but my recent work
on the Diversity-Guided EA shows the importance of also having an occasional
low diversity. Surprisingly, most improvements in fitness occurred at quite low
diversity. Hence, both low and high diversity seem to be necessary to escape local
optima and exploit crossover. Interestingly, little is actually known about the ex-
act role of diversity in optimization. The common notion is that the population
diversity should be kept at “an appropriate level”; however, what this level is is
rather unclear, because the algorithm’s diversity maintaining capabilities are sel-
domly thoroughly analyzed. Hence, a great deal of insight could be achieved by
thoroughly investigating the algorithm’s diversity behavior during the optimiza-
tion.
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Chapter 6


EA approaches to system
identification and control


6.1 System identification


System identification is an important part of the scientific fundament of most
natural sciences. In short, system identification is about building mathematical
models for describing an observed system, which may be anything from planetary
movements in Astronomy to algae growth in Biology. In control engineering, sys-
tem identification1 is employed to determine a model of the system (plant) subject
to control. In this context, system models describe the behavior of the plant over
time as it is exposed to control and influence from external factors. System identi-
fication consists of two subtasks; i) structural identification of the equations in the
model M , and ii) parameter identification of the model’s parameters θ̂. A system
identification problem can be formulated as an optimization task where the objec-
tive is to find a model and a set of parameters that minimize the prediction error
between system output y(t), i.e., the measured data, and model output ŷ(t, θ̂) at
each time-step t (figure 6.1).


M(0)
^Model


Σ


u(t) y(t)
System


y(t, 0)^ Model output


Prediction error


System outputInput


^


Figure 6.1: Components of system identification.


The data is a vector of system outputs measured at fixed intervals in time,


1System identification is the control engineering term for this basic scientific task, but many
alternative names exist such as equation discovery, time-series prediction, and inverse problems.
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and the data is therefore referred to as time-series data. The sum of squared error
(SSE) is a commonly used measure of the prediction error.


SSE(ŷ, θ̂) =
T∑


t=1


(y(t)− ŷ(t, θ̂))2 (6.1)


Naturally, system identification is a huge research area in control engineer-
ing. Thus, providing a complete survey is beyond the scope of this thesis (for an
overview of linear identification theory and some non-linear techniques, see [95]).
In short, the engineering approach is highly analytical and based on mathematical
derivation of a system model. At the present stage, the system identification theory
is well-developed for linear systems, but many systems are non-linear and limited
theory has been developed to identify such systems analytically. For non-linear
system, evolutionary computation seems to be a very promising approach, because
EAs can easily be combined with a number of other techniques from control engi-
neering, machine learning, artificial intelligence. Non-linear system identification
techniques can generally be grouped into white box and black box approaches.
Table 6.1 gives an overview of EA-relevant approaches.


Parameter identification Structural identification


White box Numeric optimization EA
(Parameters in engineering models)


Unit-typed genetic programming
(Equations with correct SI units)


Black box Neural networks
(Weights of the network)


Non-linear regression models
(Weights of the terms)


Fuzzy logic predictors
(Membership functions)


Untyped genetic programming
(Equations regardless of SI units)


Table 6.1: Grouping of techniques for non-linear system identification. Text in
parentheses denote the part evolved by the EA.


In white box models, the system is typically described by a set of non-linear
differential equations expressing the physics behind the system. In white box pa-
rameter identification, the model is derived manually by an engineer. The EA’s
task is then to determine the model parameters that minimize the prediction er-
ror (for examples, see [123; 65]). White box structural identification may also
be automated by unit-typed genetic programming, in which differential equations
with correct SI units are evolved, e.g., [6]. In contrast, black box models are not
concerned with the physical soundness of the model, but just to match the system
output in the best possible way. Black box models usually predict the next system
output ŷ(t, θ̂) as a function of previously recorded system inputs and outputs, i.e.,
ŷ(t, θ̂) = f(ϕ(t− 1)) where ϕ(t− 1) = [u(t− 1), ..., u(t− n), y(t− 1), ..., y(t− n)].
The vector ϕ(t− 1) is called a regression vector and the elements of ϕ(t− 1) are
called regressors . Black box approaches include neural networks, regression mod-
els, fuzzy logic predictors, and untyped genetic programming. Neural networks
and regression models are parameter identification problems, in which the task is
to identify the weights in the network or the terms of the regression model, which
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is typically a polynomial of the regressors2. In black box structural identification,
fuzzy logic predictors express human readable rules describing the system. The
EA’s task is to select and design the membership functions for the fuzzy predictor.
Another approach is to use untyped genetic programming, which can be seen as
a generalization of the regression model technique. For instance, polynomials can
be expressed in genetic programming by only using plus and multiplication in the
nodes of the expression trees and regressors and constants as the leaves [116].


After deriving the model and its parameters, it should be tested to make sure it
properly predicts the system behavior. This is usually done by a manual verifica-
tion. For instance, by performing a whiteness test to see if the residuals are white
noise (see [95, pp. 511]). The residuals are the difference between the measured
data and the prediction.


ε(t) = y(t)− ŷ(t, θ̂) (6.2)


Obviously, the model cannot be further improved when the residuals are white
noise.


6.1.1 Fitness function design


The sum of squared error (equation 6.1) is one of the most widely used prediction
error measure. There are a number of related error measures such as the mean
squared error (MSE) and the root mean squared error (RMS). In summary, these
measures are defined as follows:


SSE(ŷ, θ̂) =
T∑


t=1


(y(t)− ŷ(t, θ̂))2 (6.3)


MSE(ŷ, θ̂) =
1


T


T∑
t=1


(y(t)− ŷ(t, θ̂))2 (6.4)


RMS(ŷ, θ̂) =


√√√√ 1


T


T∑
t=1


(y(t)− ŷ(t, θ̂))2 (6.5)


These error measures often appear in the prediction literature, because they usu-
ally have smooth surfaces with respect to the model parameters θ̂. From an EA
perspective, these measures give the same ranking of individuals, since the relative
relationship between two solutions are the same regardless of the error measure,
i.e., if individual A is better than individual B with respect to SSE, then A will
also be better than B if evaluated using the other measures. However, measures
based on squared error are not entirely fair regarding the influence of each error
term in the sum. In fact, absolute prediction errors below 1 are underestimated
whereas absolute prediction errors above 1 are overestimated. For instance:


|y(t)− ŷ(t, θ̂)| = 0.5 =⇒ ((y(t)− ŷ(t, θ̂))2 = 0.25


|y(t)− ŷ(t, θ̂)| = 2.0 =⇒ ((y(t)− ŷ(t, θ̂))2 = 4.0


2Neural networks and regression models can be considered as structural identification when
the network layout or model complexity is evolved.
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Hence, choosing a squared error measure implies the preference of many small
deviations over few large deviations, which may not be desirable. Squared error
measures are probably so popular because they can be used in connection with
gradient methods such as back-propagation training of neural networks. However,
EAs do not require that the fitness function has a derivative. Consequently, more
advanced and perhaps more fair measures can be used in combination with EAs.
An obvious choice is to use the sum of absolute errors (SAE).


SAE(ŷ, θ̂) =
T∑


t=1


|y(t)− ŷ(t, θ̂)| (6.6)


The maximal error (ME) is another measure that is occasionally used.


ME(ŷ, θ̂) = max
t
|y(t)− ŷ(t, θ̂)| (6.7)


However, this may result in a fitness landscape with many plateaus, because only
one measuring point is used as the fitness. Hence, a few outliers in the measured
data may easily disrupt the search, since the EA will first focus on minimizing the
prediction error in these few points.


Adaptive fitness functions


The flexibility of EAs regarding the fitness function have been exploited by Eg-
germont and van Hemert who suggested an adaptive fitness approach [40]. Their
method is called “stepwise adaptation of weights” (SAW). Although the approach
was tested on non-time-series data, it is straightforward to adapt the method to
time-series data. The idea in SAW is to have a weight w on each of the error
terms, i.e.


SAW (ŷ, θ̂) =
T∑


t=1


w(t) · |y(t)− ŷ(t, θ̂)| (6.8)


The weights are then increased at fixed intervals in the optimization, which is
to put more focus on the largest deviating terms in the sum of prediction errors.
Eggermont and van Hemert suggest two methods; classic SAW and precision SAW.
In classic SAW, the weights where |y(t)− ŷ(t, θ̂)| > 0 are increased by ∆w(t) = 1.
In precision SAW, the error at time t is used to increase the corresponding weight,
i.e., ∆w(t) = |y(t)− ŷ(t, θ̂)|. For time-series data, I will expect precision SAW to
be the best, because few terms will have an error of zero. However, this is yet to
be investigated for system identification problems. Finally, it should be mentioned
that this approach turns the identification into a dynamic optimization problem,
because the fitness function is altered at fixed intervals.


6.1.2 Multiobjective and constraint system identification


System identification problems can also be considered as multiobjective optimiza-
tion problems with constraints. As mentioned, the main objective is to produce
a model that matches the measured data in the best possible way. However, the
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model complexity should also be minimized when black box methods are used.
This means minimizing the tree size in genetic programming, reducing the number
of terms in regression models, and limiting the number of rules in fuzzy predictors.
A third objective is to evolve a valid model. This is particularly important for
black box methods, because it is not possible to check that the model is physically
sound. In summary, the three main objectives in system identification are:


• Model performance: The accuracy of the model with respect to the mea-
sured data. This is typically expressed by minimizing one of the error mea-
sures used in single-objective system identification (section 6.1.1).


• Model complexity: The size and complexity of the model. The model’s
complexity should be as small as possible. For example, concise GP ex-
pressions are preferred over complex expressions, since this makes the model
more understandable and give a better generalization ability3.


• Model validity: The validity of the model can be expressed by various
measures. A common test is to see if the residuals are white noise, in which
case the model is valid (see [116] for techniques).


According to Rodŕıguez-Vásquez, the model validity measures should prefer-
ably be treated as constraints to ensure that valid models are evolved [116]. So
far, multiple objectives and constraints in system identification have received very
limited attention. The PhD thesis of Rodŕıguez-Vásquez is probably the most
comprehensive work until now [116]. To my knowledge, only a few other papers
have been published [126; 54].


6.1.3 Dynamic system identification


A fundamental problem in many system models is that they often cannot incor-
porate all aspects of the system they describe. One solution to this problem is to
adjust the model while it is in use, e.g., whenever the error between the model
and the system exceeds a threshold. This is particularly important in control ap-
plications where simple, but fast, models are used. Dynamic system identification
in combination with control is further discussed in section 6.2.4. For other sys-
tem identification problems, such as time-series prediction, dynamic optimization
is typically performed to update the model when new data is available [75; 154].
This is usually done with a sliding window approach that considers data until a
certain point in the past.


6.2 Control


Control problems are present in many industrial areas ranging from electro-mecha-
nical systems to bio-chemical processes. The design process of a controller resem-
bles the process for system identification problems. Controller design consist of two


3This objective is sometimes referred as Occam’s razor.
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subtasks; i) structural design of the controller and the equations, and ii) determi-
nation of the controller’s parameters. Traditionally, control can be seen as the task
of operating the system to match a certain reference signal wr(t), i.e., minimize
the error between the system output y(t) and the desired reference signal wr(t).
An electro-mechanical example is the moving of a harddisk’s read-write head to a
new position. Figure 6.2 illustrates a simple view of the components in reference
signal control problem. In other control problems, the task is operate the system
to maximize or minimize some measure of the system. For instance, maximize the
production or minimize the cost associated with the system. To some degree, such
control problems can be considered as a reference signal problem where wr(t) is
set to ±∞. However, fitness functions from reference signal control problems are
typically not used, because they are based on deviation from the reference signal
and that the system settles at some point. Instead, a function of the output is
used as a performance criterion. This approach is used in the greenhouse control
problem studied in chapter 8.


r


Controller System
u(t)w (t) y(t)


Figure 6.2: Components of reference signal control problems.


For reference signal control, the objective is to design a controller that can
quickly and safely operate the system whenever a new reference signal is set. In
this connection, the objective is typically to minimize the maximal overshoot and
the settling time of the system. The system is settled when the deviation from the
reference signal is less than a predetermined error threshold ε. Figure 6.3 shows
the maximal overshoot, the settling time, and the error threshold for a typical
system behavior in reference signal control.
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Figure 6.3: Terminology and typical behavior for reference signal control. A new
reference signal is introduced at time t.


An important aspect influencing the controller’s performance is whether the
system is time-invariant (static) or time-varying (dynamic). Time-invariant sys-
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tems are often handled by an offline training procedure prior to the actual control.
The controller is typically designed on the basis of simulation during a fixed con-
trol period. In contrast, time-varying systems require online techniques, since the
behavior of the system changes over time. From an optimization point-of-view,
this creates a dynamic optimization problem.


As with system identification, a considerable amount of research has been con-
ducted to develop controller techniques and parameter estimation methods for such
controllers. As with system identification, the theory is well-developed for linear
systems, but limited for non-linear systems (for traditional engineering techniques,
see [90]). Evolutionary computation techniques have great potential for non-linear
systems, because such problems typically have multimodal fitness landscapes. Fur-
thermore, control problems are often multiobjective, there may be constraints on
both control signals and system behavior, and the system may vary over time.
Fortunately, EAs are easily combined with traditional engineering techniques and
more AI-based approaches such as neural networks and fuzzy control. In contrast,
rather few “pure” EA applications have been reported (see below). In general, EAs
can be applied in three ways; for evolving the controller signals, for tuning of con-
troller parameters, and for designing the structure of the controller. Table 6.2
offers an overview of EA-related control techniques. Most techniques can be used
in both offline training and online tuning, but so far nearly all EA-research has
been conducted as offline training. A checkmark in parenthesis (


√
) means that


the control technique can be used, but no study has yet been reported (to my
knowledge).


Evolutionary task Control technique Online Offline


Control signals Generalized predictive control
√ ÷


Direct control
√ ÷


Controller
parameters


Engineering controllers
(PID, LQG, GPC, ...)


√ √


Neural network control
(Weights of the network)


(
√


)
√


Boxes control
(Ranges in boxes)


(
√


)
√


Decision tree control
(Parameters in decisions)


(
√


)
√


Controller
structure


Fuzzy control
(Membership functions)


√ √


GP-block control
(Block layout)


(
√


)
√


Table 6.2: Grouping of techniques for control of non-linear systems. Text in paren-
theses below techniques denote the part evolved by the EA.


In evolution of controller signals, two main methods exist; generalized predic-
tive control and direct control. Both are online techniques and they rely on an
accurate model, which is used to predict the system behavior of the tested control
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signal. Generalized predictive control (GPC) is an engineering approach that is
based on linearization around the current control point, which allows the appli-
cation of analytic methods for determining the control signal. However, GPC is
sometimes applied to systems with constraints, which rules out the possibility of
analytic determination of the control signal. Direct control is a pure EA approach
in which the control signals are evaluated on an arbitrarily complex model. Gener-
alized predictive control is an example of model predictive control, which covers a
broad selection of online controllers for reference signal control [26]. Direct control
has primarily been used for maximization or minimization control problems, but
it can also be applied to reference signal control. These techniques are further dis-
cussed in chapter 8. A number of examples of direct control and model predictive
control have been reported; for instance, [151; 150; 102].


Tuning of controller parameters probably represents the largest segment of real-
world applications of EAs in control. Studies in this category use an EA to search
for real-valued vectors representing the controller’s parameters, i.e., the control
approach is a hybrid between an EA and some other technique. Many traditional
engineering controllers, such as Proportional-Integral-Derivative (PID) controllers,
work reasonable well on non-linear systems; however, the determination of param-
eters may require the optimization of a multimodal function. Furthermore, the
parameters may need to be re-tuned during the control, which may be done online
with an EA evolving new parameters while the system is being controlled. EA-
tuned PID controllers have been investigated in several offline studies, e.g., [69;
89], as well as a few online control, e.g., [2; 64]. Regarding neural network control,
EAs are becoming increasingly popular as the training method, because EAs have
shown to be more robust than traditional training methods like back-propagation.
Several applications have been reported; for example, [73; 38]. Engineering con-
trollers and neural network controller typically produce continuous control signals.
However, some problems require on-off or bang-bang control, in which the control
signals are discrete (e.g., switching a motor on or off). The so-called boxes ap-
proach partitions each of the decision variables4 (system output, error, etc.) into
a predefined number intervals, which creates a number of boxes in the space of
decision variables. The EA’s task is then to determine the interval boundaries and
the applied control value in each box (see [148] for an example). This approach is
similar to a decision tree control method. In such controllers, the decision tree con-
tains a number of parameters to be tuned. In this context, Filipič et al. performed
an interesting study combining machine learning techniques with EAs [48].


Regarding evolution of controller structures, a significant amount of work has
been done on combinations of EAs and fuzzy logic controllers. The EAs task in
this is to design the membership functions and the rule-base. EA-fuzzy hybrids
have been applied in both offline control, e.g., [157; 77], and in online control, e.g.,
[76; 93]. For genetic programming, a number of studies have been reported where
GP has been used to evolve so-called block-structure controllers [25; 83]. Block-
structure controllers consist of a network of modules each representing a certain
feature such as time-delay, integrators, and linear relationships. The controller is
“wired” in a diagram that resembles electronic circuits.


4The variables on which the control is based.
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6.2.1 Fitness function design


The fitness functions in control applications are significantly more diverse com-
pared with those used for system identification. For reference signal control, an
obvious choice is to minimize the error between the system output and the refer-
ence signal and the system output. Typically, this is done with variants of squared
error measures. In offline training, the fitness of individual I can be defined as.


Fit(I) =
T∑


t=1


(y(t)− wr(t))
2 (6.9)


As mentioned in the previous section, the settling time and maximal overshoot
plays an important role in many systems. For example, the settling time is crucial
for fast access on a harddisk, because the desired track cannot be read or written
before the head has settled over it. In such systems, the fitness can be expressed
as a minimization problem.


Fit(I) = min s where |y(t′)− wr(t
′)| < ε ∀t′ > t + s (6.10)


where t is the time when a new reference signal is set, s is the settling time, and ε is
the error threshold (see figure 6.3). The maximal overshoot is another important
aspect in many systems. For harddisk access, maximal overshoot should be as
small as possible, because a too large overshoot may cause the head to crash into
the boundary of its allowed range and thereby damage the mechanics. A fitness
based on maximal overshoot may be defined as a minimization problem.


Fit(I) = max |y(i)− wr(i)| i ∈ [tb..t + s] (6.11)


Hence, the maximal deviation between the system output y and the reference
wr after the breakpoint time tb when a new signal is set. Typically, minimizing
settling time and overshoot are conflicting objectives. A simple solution is to make
a weighted sum of the two fitnesses (see section 3.3.2). However, this approach
may not be the best, and more advanced multiobjective optimization techniques
are used instead; for instance, the so-called Fast Elitist Non-Dominated Sorting
Genetic Algorithm NSGA-II [37].


The fitness in online control is typically based on recently recorded data or the
controller’s predicted performance in the immediate future. GPC and other model
predictive controllers base the evaluation on the difference between the reference
signal. Furthermore, the change in control signal ∆u(t) is sometimes minimized
as well, because the objective is to settle on the new reference signal. The fitness
of an individual I at time t is then often defined as:


Fit(I) =
PH∑
j=1


αj(y(t + j)− wr(t + j))2 +
PH∑
j=1


βj(∆u(t + j))2 (6.12)


where PH is the prediction horizon (see section 8.1) and αj and βj are weighting
schemes. It should be noted that a great variety exists in this fitness definition.
Some functions only use a part of the prediction horizon, some exclude the control
signal, and other use different measures of the error between system output and
reference signal, e.g., sum of absolute errors.
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6.2.2 Constrained control


Many real-world control problems have a number of constraints that must be ful-
filled during the control period. Constraints pose an additional challenge to the
design process, because traditional analytical methods cannot handle constraints.
For this reason, constraint optimization is relevant for both linear and non-linear
systems. Furthermore, many engineering controllers are not capable of handling
constraints. The most promising direction seems to be model predictive controllers,
since they allow constraints to be incorporated in the objective function. Cama-
cho and Bordons provide an extensive overview of constraint types in control [26].
Generally speaking, two types of constraints exist; constraints on the control sig-
nal u(t), and constraints on the system behavior y(t). In controller design with
EAs, signal constraints are typically avoided by a special encoding whereas sys-
tem behavior constraints are handled by constraint techniques. Typical control
constraints include:


• Signal range: The control signal must be within certain bounds at all times
u(t) ∈ [umin, umax]. Example: A valve cannot be more than fully open or
completely closed.


• Signal change: The control signal cannot change more than a certain step
|∆u(t)| < ∆umax. Example: A valve may have to be slowly opened not to
damage the system.


• Overshoot: The overshoot cannot exceed a certain value when a new ref-
erence signal is set. Example: The read-write head of a harddisk must avoid
collision with the boundary of the head’s allowed range of positions.


• Settling time: The settling time cannot exceed a certain value when a
new reference signal is set. Example: Systems that may be damaged if a
controller settles too slowly.


• Rise time: The controller must rapidly bring the system state above a
minimal percentage of the difference between the old and the new set point
regardless of overshoot. Example: A safety system should bring the system
away from the critical state as fast as possible.


• Band: The state of the system must follow a trajectory within a certain
band. Example: Heating processes in the food industry often have to be
gradual not do damage the food.


• Monotonic behavior: The change in the system output y(t) must be mono-
tonic when a new reference signal is imposed, i.e., no oscillations may occur.
Example: The harddisk’s read-write head may not allow any overshoot at
all.


Constraints on the system behavior are often difficult to handle by traditional
engineering optimizers. Therefore, constraint handling EAs play an increasingly
important role in control. For linear constraints, variants of gradient search can
typically be used to find a solution (see [26]). For non-linear constraints, a wide
range of evolutionary approaches exist (see [100]).
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6.2.3 Multiobjective controller design


The system behavior constraints described in the previous section are sometimes
considered as multiple objectives. As described in section 3.3.2, constraints can
easily be converted into multiple objectives. Controller design with multiobjective
optimization techniques is often a better approach than constraint approaches,
because the multiple objectives can be in conflict. For instance, minimizing the
settling time and maximal overshoot are two conflicting objectives. Multiobjective
optimization techniques are typically applied in offline design, since a human has
to decide among the found solutions. Hence, an online multiobjective approach
would need to have an automatic decision mechanism for choosing the controller
to operate the real system. A number of offline applications have been reported
on multiobjective controller design, e.g., [55; 18]. To my knowledge, no online
applications have been reported.


6.2.4 Adaptive control


For time-varying systems, it may be necessary to adjust the controller while it
is operating the system. The primary reason for this online adjustment is that
the model or the controller does not express all properties of the system. For
example, the efficiency of car brakes typically depends on the temperature of the
brakes, humidity, and road surface, which may be impossible to model accurately
[93]. Furthermore, there may be long-term effects such as wear out of the brakes,
which would also be hard to take into account, since the wear out depends on
the driving style. The controller may be able to eliminate or reduce the change
in braking performance by constantly adjusting the controller’s parameters or the
model on which the control is based. So far, a rather low number of studies have
been reported on adaptive control with EAs. A few examples have been published
[2; 93; 64].


6.3 Summary


The fields of system identification and control are indeed very diverse and covers a
broad range of problems in engineering. In this context, EAs play an increasingly
important role, because these algorithms provide the means to push the limits of
performance. So far, most studies have investigated single-objective static prob-
lems without constraints. Nevertheless, many real-world control problems may be
better handled by multiobjective or constraint techniques. For online controllers,
these issues are typically handled by constraint optimization techniques. In offline
controller design, a multiobjective approach is often used because the objectives
or constraints are in conflict. Naturally, a simulation based approach does not
guarantee that the controller does not violate the constraints during the opera-
tion. Hence, the simulation during the design should ensure that the controller
has been tested in extreme situations.
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6.4 Future research


Regarding future research, relatively limited work has been performed on time-
varying problems. Most, if not all, dynamic system identification and online control
studies have been done with simple EAs not designed for dynamic optimization.
For such applications, it would be interesting to study some of the many techniques
tested on artificial dynamic problems (see [20] for a survey). Of these techniques, I
would expect that memory based approaches for dynamic optimization would have
an advantage over simpler techniques, because many of the system identification
and control problems exhibit some kind of periodic behavior. Hence, a previously
stored solution may turn out to be valuable when a similar situation arise.







Chapter 7


Case study: Parameter
identification of induction motors


A fundamental part of system control is the identification of the system being
controlled. In control engineering, considerable effort has been devoted to develop
methods for identification of system models and their parameters. Currently, a
wide range of analytical techniques exists for linear systems. An overview of the
methods used in the control area for system identification can be found in Ljung’s
book [95]. For non-linear systems, limited progress has been made with analytical
approaches. Instead, some success have been achieved with various traditional op-
timization methods. However, a fundamental problem of traditional optimization
techniques, like least squares and local search, is their dependence on unrealistic
assumptions such as unimodal1 performance landscapes and differentiability of the
performance function. Consequently, non-linear problems are often oversimplified
to fulfill such assumptions. Evolutionary algorithms (EAs) and other stochastic
search techniques seem to be a promising alternative to traditional techniques.
First, EAs do not rely on any assumptions such as differentiability, continuity,
or unimodality. Second, they are capable of handling problems with non-linear
constraints, multiple objectives, and time-varying components. Third, they have
shown superior performance in numerous real-world applications.


In collaboration with chief engineer Pierré Vadstrup, I investigated two induc-
tion motors used in the pumps produced by danish pump manufacturer Grundfos
A/S. The work presented in this chapter is in submission to the journal “Applied
Soft Computing” [147]. For several decades, induction motors have been inves-
tigated, and they are extensively described in the engineering literature. In this
context, a number of non-linear models of induction motors incorporating mag-
netic saturation effects have been suggested, e.g., [149]. In spite of the considerable
theoretical foundation of induction motors, few studies have used EAs and other
stochastic search techniques to identify the model parameters. However, some in-
vestigations have been presented relying on models not accounting for non-linear
effects. These methods are primarily used for control purposes and they recursively
estimate the parameters by use of various methods – mainly Extended Kalman Fil-
ters. See [110], [155], and [5] for further information on these methods. Regarding


1Also referred to as convex problems, i.e., problems with a single optimum.
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EA-investigations, Alonge et al. recently studied a 1.0 kW motor and showed that
the evolutionary algorithm GENESIS was better than least squares fitting [3].
Alonge et al. determined stator resistance (Rs), stator inductance (Ls), leakage
inductance (Le), motor load (τr), and moment of inertia (Jm) using a state space
model with scaled rotor flux. In a study from 1994, Haque et al. used a simple
evolutionary algorithm to determine stator resistance (Rs), rotor resistance (Rr),
and combination of stator and rotor reactance (Xlr) from motor data provided
by the motor’s manufacturer [65]. Other more distantly related work includes an
investigation on determining the loads of the motor [72].


The main objective in this study is to evaluate a number of stochastic search
algorithms with respect to parameter identification of two induction motors. The
first motor is a 1.1 kW motor and is modeled without taking saturation into ac-
count. The second motor is a 5.5 kW motor, in which the saturation is modeled
by a function of two parameters. In this problem, these two extra parameters are
also determined by the search algorithms. In addition to showing the usefulness
of stochastic search techniques in parameter identification, we aim at underlining
the importance of carefully selecting the algorithm when approaching such practi-
cal problems. Surprisingly, in most practical applications, the focus is entirely on
the problem and minimal time is invested in selecting the algorithm. This is in
clear contrast to the numerous investigations on artificial numerical optimization
problems showing that almost any extension of the basic algorithms will lead to a
significant performance improvement. However, an important criterion for choos-
ing a more advanced algorithm is the extra effort necessary to implement it, which
should be weighted against the actual performance improvement. The advanced
algorithms used in our comparison have been selected with this in mind, i.e., the
extensions in these algorithms are small but have lead to improved performance
for artificial and real-world problems.


7.1 Induction motor models


In this section, the fundament for calculating the performance criterion will be
established. The basic idea in system identification is to compare the time de-
pendent response of the system and a parameterized model by a norm or some
performance criterion giving a measure of how well the model response fits the
system response.


Normally, the dynamic response of the system is given by the solution to a
vector differential equation of the form:


ẋ = f (θ, x, u)


y = g (θ, x)


with the initial condition x (0) = xo. In this system, u is the input signal vector,
x is the state vector, y is the measurable output vector and θ is the parameter
vector. Normally, the system is affected by noise in both states and measurement,
which may be real noise or noise caused by unmodeled dynamics. The parameter
vector θ is unknown for real systems. Hence, the objective in system identification
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is to determine this vector as accurately as possible. To do this, a model of the
system is introduced with the same structure as the real system. The model is
described by:


ˆ̇x = f
(
θ̂, x̂, u


)


ŷ = g
(
θ̂, x̂


)


with assumed known initial condition x̂ (0) = xo. From the system an output
signal y for a given input signal u can be measured, and for a given guess of the
parameter θ̂ the output response ŷ of the model can be calculated, supported by
the same input signal as the real system. The system response and the model
response can then be compared by a performance criterion, which in the simple
case can be quadratic.


I
(
θ̂
)


=


∫ T


0


(y − ŷ)T ·W · (y − ŷ) · dt


where W is a positive definite weight matrix. The criterion is a function of θ̂ and
will obtain its minimum vale zero when θ̂ = θ. The system identification problem
can now be formulated as an optimization problem, namely


arg min
θ̂


I
(
θ̂
)


Obviously, the fitness landscape of this problem type may have many local optima
and a highly complex topology.


In the next two subsections, the differential equations for the induction motor
will be derived together with an application specific performance criterion.


7.1.1 Model of the 1.1 kW motor without saturation


The dynamics of the 1.1 kW induction motor can be described by a set of differ-
ential equations, derived from fundamental laws of physics. Here, only the final
equations and not the assumptions will be discussed. A comprehensive derivation
of the model was performed by Vas [149]. The motor is supplied by three voltages
supported from mains2 or from an electronic unit that can convert the mains volt-
ages to user specified voltages u1, u2, and u3. In order to simplify the notation, we
introduce complex voltages and currents. The transformation of the voltages from
a three phase system to a complex system is:


us = usd + j · usq


=
2


3
· (u1 + a · u2 + a∗ · u3) in which a = ej 2π


3


The real and imaginary voltages are then:


usd =
1


3
· (2 · u1 − u2 − u3)


usq =
1√
3
· (u2 − u3)


2The national power grid.
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The inverse transformation from the complex notation to the three phase system
is for the currents given by the following set of equations.


i1 = isd


i2 = −1


2
· isd + j ·


√
3


2
· isq


i3 = −1


2
· isd − j ·


√
3


2
· isq


(7.1)


where isd and isq are the complex currents.
From now on we treat the motor as a two phase motor and derive the differential


equations in complex notation. The motor consists of a stator where the voltages
are applied to two sets of windings perpendicular to each other. In a similar
manner, the rotor is composed by two windings, but they can be revolved with
respect to the stator. The voltages in the rotor are induced by the movement of
the rotor with respect to the stator, the voltage equations for the stator and the
rotor are given by the following equations, respectively.


ψ̇s = −Rs · is + us


ψ̇r − j · ωr · ψr = −Rr · ir
(7.2)


The left hand sides are the induced voltages and the right hand sides are the
supplied voltages reduced by the resistive voltage drop of the windings. The rotor
windings do not have any external supply at all, only the stator windings are
supplied. ψs and ψr are the fluxes through the stator and the rotor windings. In
the induced rotor voltage equation, ωr is the speed of the rotor that enters the
induced voltage together with the normal induction part due to the flux changes
with respect to time. This extra speed dependent term evolves because the rotor
terms are calculated in a stator frame of reference. To eliminate the currents in
the voltage equations, the flux linkage between the stator and rotor and visa versa
have to be calculated. The resulting linkages are given by the following set of
equations.


ψs = Lsl · is + Lm · (is + ir) = Lsl · is + ψm


ψr = Lrl · ir + Lm · (is + ir) = Lrl · ir + ψm


(7.3)


The first expression shows how the flux through the stator windings is composed
of the current in the stator itself and by the currents in the rotor windings. The
term ψm expresses the main flux shared by the stator and the rotor and the rest
expresses the leakage flux in the stator and the rotor. The currents in these expres-
sions can be isolated and applied in the differential equations in expression (7.2).
Consequently, the differential equations can be solved by applying the voltage us,
if the speed ωr of the motor is known. However, the speed is not an input, but is
governed by the following equation of motion for the rotor.


ω̇r =
1


J
· (M −ML) (7.4)


in this expression M is the developed torque of the motor and ML is the torque load
and friction. Furthermore, J is the moment of inertia of the rotor and the load.
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The developed torque of the motor can be calculated from the electro-mechanical
states by the expression:


M =
3


2
· Im (ψ∗s · is) (7.5)


In our experiments, we assume that the load torque ML is zero, which eliminates
the load torque as an additional input. The model can be described by a set
of explicit differential equations if in the above expressions the parameters are
constant. In summary, we have:


ẋ = f (θ, x, u)


y = g (θ, x)


where for the actual system the input, state and input are given by the following
vectors.


u = [u1, u2, u3]
T


x = [ψsd, ψsq, ψrd, ψrq, ωr]
T


y = [i1, i2, i3, ωr]
T


and the parameter vector given by:


θ = [Rs, Rr,Lsl, Lrl, Lm, J ]T


This is a dynamic model of the induction motor without magnetization saturation.


7.1.2 Model of the 5.5 kW motor with saturation


Unfortunately, the real world is more complex, because not all the parameters
are constant. In real motors, the iron in the motor saturates, which means that
the main flux ψm is a function of the scalar magnetization current im = |is + ir|.
To account for saturation, some rewriting of the above equations is necessary. In
equation (7.3), the currents can be calculated as a function of the stator, the rotor,
and the main flux.


is =
1


Lsl


· (ψs − ψm)


ir =
1


Lrl


· (ψr − ψm)
(7.6)


These currents can be inserted into the voltage equations (7.2), and thereby elim-
inate the currents.


ψ̇s = −Rs


Lsl


· (ψs − ψm) + us


ψ̇r = −Rr


Lrl


· (ψr − ψm) + j · ωr · ψr


(7.7)
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However, this set of differential equations does not express the main flux ψm by the
states ψs and ψr. The main flux ψm can be expressed by ψs and ψr by inserting
equation (7.6) into either of following expressions.


ψs = Lsl · is + Lm · (is + ir)


ψr = Lrl · ir + Lm · (is + ir)
(7.8)


Isolating ψm, gives the explicit expression of the main flux:


ψm =


(
1


Lsl


· ψs +
1


Lrl


· ψr


)


(
1


Lm (im)
+


1


Lsl


+
1


Lrl


) (7.9)


In this expression, the inductance Lm is a function of the magnetization current
im, which can be calculated from the actual motor currents.


im =


√
(isd + ird)


2 + (isq + irq)
2 (7.10)


The varying inductance is determined by the magnetization current according to
equation (7.11), which has shown to be a good approximation in practice. Lmo is
the inductance when the iron in the motor is not saturated and imo is the current
at which saturation begins. Finally, α is a factor giving the decaying curve shape
of Lm at high currents.


Lm =







Lmo im ≤ imo


Lmo ·
(


1 + α · Lmo · im ·
(


1


imo


− 1


im


)2
)−1


im > imo


(7.11)


The differential equation governing the dynamic behavior of the motor is given by
equation (7.7), in which ψm is given in an implicit manner given by the expressions
(7.9), (7.10), (7.6), and (7.11). The value of ψm cannot be explicitly calculated
for given values of ψs and ψr, but has to be approximated iteratively by a fixpoint
calculation. The steps are first to assume a certain value for Lm and insert this
into (7.9) to calculate ψm. Then calculate (7.6) to determine is and ir. Next,
calculate the scalar magnetization current im. Finally, a new value of Lm can be
calculated from the lower branch of equation (7.11). The exact value of ψm has
been reached if this value is equal to the value at the beginning of the iteration
cycle.


In summary, the differential equations consist of (7.7) together with (7.4), and
the currents for the output vector is given by (7.6). By comparison with the model
without saturation, the input vector and the output vector are the same, but the
structure of the differential equation is different. Thus, the parameter vector is
now given by:


θ = [Rs, Rr, Lsl, Lrl, Lmo, imo, α, J ]T


Hence, two extra parameters have been introduced compared with the model of
the 1.1 kW motor.
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7.1.3 Performance criterion


The next step is to determine the performance criterion for the induction motor
system. The result of the solution of the differential equations is the states x =
[ψsd, ψsq, ψrd, ψrq, ωr]


T . From these states, the stator current can be calculated
using equation (7.3). This complex stator current can now be converted to three
phase currents comparable with real life currents. The performance criterion then
becomes.


I
(
θ̂
)


=


∫ T


0


(
(i1 − ı̂1)


2 + (i2 − ı̂2)
2 + (i3 − ı̂3)


2
)
dt


Notice that the criterion does not include the squared deviation in the rotor’s
motion (ωr − ω̂r)


2. This is excluded because motion measurements on the real
motor contain more noise than the measurements of the currents.


In our experiments, the non-linear differential equations are approximated us-
ing the Fourth-order Runge-Kutta method [1]. One second of the motor’s startup-
phase was simulated using a step-size of 0.1 millisecond, i.e., 10000 steps. Hence,
we used the sum-of-squared-errors as the performance criterion (fitness).


I ′
(
θ̂
)


=
10000∑
t=1


(
(i1(t)− ı̂1(t))


2 + (i2(t)− ı̂2(t))
2 + (i3(t)− ı̂3(t))


2
)


7.2 Algorithms


In this study, we compare eight algorithms taken from four main groups of stochas-
tic search algorithms. The comparison includes a simple algorithm and an ad-
vanced algorithm from each group. Selecting the algorithms to include in a com-
parison is difficult, especially when considering the rather large number of new
algorithms suggested every year. To ensure a broad comparison, we have chosen
algorithms from the following four groups:


1. Local search algorithms.


2. Evolution strategies.


3. Generational evolutionary algorithms.


4. Particle swarm optimization algorithms.


These groups represent a wide selection of stochastic algorithms currently used
for numerical optimization problems. The local search algorithms are included
to allow comparison with traditional single-solution optimization techniques. The
comparison includes steepest decent local search and simulated annealing from
this group. The second group of algorithms is the evolution strategies, which
represents one of the two main design approaches to evolutionary optimization.
From this group, we selected the (µ+λ)-evolution strategy and the (µ+λ)-evolution
strategy with self-adaptation of rotation angles. The latter was chosen because
it is able to automatically discover dependencies between problem variables and
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self-adapt to exploit this knowledge. The third group “generational evolutionary
algorithms” represents the other main evolutionary approach. The comparison
includes the simple evolutionary algorithm and the recently introduced diversity-
guided evolutionary algorithm from this group. Finally, the recently suggested
approach known as particle swarm optimization is covered by the fourth group.
From this group, we included the standard particle swarm optimization algorithm
and the diversity-guided particle swarm optimization algorithm. The following
sections describe these algorithms in greater detail.


7.2.1 Local search algorithms


The basic idea in local search algorithms is to iteratively improve a single solution
by looking in its neighborhood and choose the most promising adjacent solution
as a new candidate. A local search algorithm usually starts with a randomly
generated solution and iterates until no improvement occurs or until some ter-
mination criterion is met, e.g., the maximal number of evaluations is reached or
the solution is sufficiently good. The advantage of local search algorithms is their
simplicity. The drawback is their difficulties with multimodal performance land-
scapes, because they have difficulties escaping local optima (deterministic local
search cannot escape).


The steepest descent local search algorithm (SDLS) is probably one of the most
frequently used local search algorithms. To apply this algorithm, the continuous
search space of n-dimensional numerical problems needs to be discretized. This
is done by setting a step-size δi for each problem variable xi. The neighborhood
Nx of a solution x = (x1, x2, . . . , xn) is then usually defined as the set of solutions
reachable from x by adding or subtracting one δi from x, i.e., Nx = {(x1 ±
δ1, x2, . . . , xn), (x1, x2 ± δ2, . . . , xn), . . . , (x1, x2, . . . , xn ± δn)}. The neighborhood
size is equal to 2n using this definition.


Simulated annealing (SA) is a variant of local search where the convergence cri-
terion is relaxed to allow the algorithm to escape local optima. In SA, inferior solu-
tions are accepted with a probability depending on the so-called temperature and
the difference between the current solution and the new candidate solution. The
probability of accepting inferior solutions decreases as the algorithm progresses.
Simulated annealing is inspired by a process in thermodynamics. A perfect crystal
can be grown by heating the material to a molten state and carefully lowering the
temperature to prevent irregularities. The simulated annealing equivalent of the
cooling procedure is the gradual decrease of the temperature and thus the prob-
ability of accepting inferior solutions. In the experiments, we used the algorithm
defined by Michalewicz and Fogel [100, p. 120] with linearly decreasing temper-
ature from Tmax to Tmin. For more information on SA and other local search
techniques, see [100] and [34].


The parameters for the algorithms are listed in table 7.1.


7.2.2 Evolution strategies


Evolution strategies (ES) were introduced by Rechenberg and Schwefel in 1964-
65 [112; 121]. The first version of the algorithm was a so-called (1+1)-ES, in
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Algorithm Parameter Description Value
SDLS No parameters except step-sizes (see section 7.3)
SA MAX-TRIES Max tries between change of temperature 10


Tmax Start temperature 20
Tmin End temperature 10


Table 7.1: Parameters for steepest descent local search and simulated annealing.


which one parent created one offspring by mutation. The offspring replaced the
parent if it had a better fitness. In later studies, ES have been extended with a
population of µ parents creating λ offspring using both mutation and recombina-
tion. The main difference between ES and the generational EAs is the selection
procedure. Evolution strategies use deterministic selection whereas selection in
generational EAs is probabilistic. Currently, two main selection strategies exist
in ES; the (µ + λ)-ES and the (µ, λ)-ES. In (µ + λ)-ES, the µ parents create λ
offspring. The next population is then formed by deterministically selecting the µ
best individuals among the available µ + λ individuals. The number of offspring
λ is usually less than the total population size, which gives an algorithm with
overlapping populations. For this reason, (µ + λ)-ES is sometimes referred to as
a Steady-state EA. A typical setting is µ = 100 and λ = 15, which will replace a
maximum of 15 individuals in each iteration. The other strategy, (µ, λ)-ES, also
generates λ individuals from the µ parents. However, in (µ, λ)-ES the parent pop-
ulation is not included in the source population in the selection procedure. The
population in (µ, λ)-ES is therefore non-overlapping. Hence, λ must be larger than
µ, because individuals are not cloned in ES3. The Gaussian mutation operator is
the main component for creating new solutions in ES. In this context, most ES
algorithms use self-adaptation to adjust the search process to the problem. The
idea in self-adaptation is to encode algorithmic parameters in the genome and use
these parameters to modify the individual. The hypothesis is that good solutions
carry good parameters; hence, evolution discovers good parameters while solving
the problem. Simple self-adaptation only encodes one variance σ for all problem
variables (see Figure 7.1(a)). A more advanced self-adaptation scheme encodes one
variance σi for each variable (Figure 7.1(b)). A third variant supports correlation
between problem variables by encoding both variances σi and an additional set of
rotation angles αij (Figure 7.1(c)). See [12, Section 6.4], for additional information
on the self-adaptive mutation operator.


The comparison includes the simple self-adaptive (µ+λ)-ES with one encoded
variance σ and the complex version using self-adaptation of both variances σi


and rotation angles αij. For comparison, all four evolutionary algorithms (the
two evolution strategies and the two generational EAs) used the same crossover
operator. The crossover operator had one weight for each variable, and all weights
except one were randomly assigned to either 0 or 1. The remaining weight was set
to a random value from the interval [0, 1].


3A ratio of λ/µ ≈ 7 is recommended in [12, Section 6.4].
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(a) Self-adaptation of one
variance σ.
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(b) Self-adaptation of all vari-
ances σi.
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α12


(c) Self-adaptation of vari-
ances σi and rotation angles
αij .


Figure 7.1: Variants of self-adaptive mutation operator for evolution strategies.
The boxes denote the search space. Ellipses are level-curves with equal mutation
probability density.


The parameters for the two algorithms are listed in table 7.2.


Algorithm Parameter Description Value
ES1 + ES2 µ Parent population size 100


λ Offspring population size 15
pc Prob. for crossover 0.5
σ0 Initial σ value 1.0
τ0 τ value for z0 [12, Eq. 6.18] 2.0
τ τ value for zi [12, Eq. 6.18] 2.0
β β value for zi [12, Eq. 6.19] 0.0873
εσ Min σ value 1.0E-5


Table 7.2: Parameters for the two variants of the evolutionary strategy. The
algorithms used the same values.


7.2.3 Generational evolutionary algorithms


The generational evolutionary algorithms (EAs) differ from evolution strategies on
three aspects. First, the populations in the iterations are considered as a number
of consecutive generations, i.e., the population at time 1 breeds the population at
time 2. Hence, the populations are non-overlapping. Second, selection is stochastic
rather than deterministic. Third, individuals are cloned in the selection process.
Consequently, multiple copies of the better fit individuals are present in the pop-
ulation after selection. One of the first generational EAs was Hollands genetic
algorithm [68], which used binary strings as encoding.


In this study, we included a simple evolutionary algorithm (SEA)4 in the com-


4The term “standard evolutionary algorithm” is sometimes used in EA-literature. However,
to the authors belief there is no such thing as a standard EA, because of the wide variety in
available encodings and operators.
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parison. The SEA encoded solutions as real-valued vectors and used Gaussian
mutation with zero mean and annealing variance σ2 = 1/


√
t + 1 (t is the gener-


ation number). The mutation operator scaled the randomly generated numbers
by 10% of the length of the search intervals to make the operator independent of
the variables’ ranges. Recombination was performed as described in the previous
section. The next generation was selected using binary tournament selection. An
elitist strategy keeping one individual was enforced to ensure that the best known
solution survived to the next generation.


In addition to the SEA, we included the recently introduced diversity-guided
evolutionary algorithm (DGEA) [140]. The DGEA is explained in full details in
section 5.6.2. However, the DGEA was introduced with constant values for the
lower and upper diversity thresholds dlow and dhigh. Preliminary experimentation
performed in this study showed that a simple linearly decreasing value significantly
improved the performance of the algorithm. To this end, dlowmax and dlowmin was
used to calculate dlow (likewise for dhigh). Furthermore, forcing a switch to explo-
ration if the fitness stagnated proved useful. This forced exploration is controlled
by dstaglow and dstagmax. Generations with no fitness improvement are counted
when the diversity is below dstaglow. An exploration phase is enforced if this counter
reaches dstagmax. A fitness improvement resets the internal counter.


The parameters for the SEA and the DGEA are displayed in table 7.3.


Algorithm Parameter Description Value
SEA ps Population size 100


pm Prob. for mutation 0.75
pc Prob. for crossover 0.9


DGEA ps Population size 100
pm Prob. for mutation 0.75
pc Prob. for crossover 0.9
λ Mutation parameter 1.0
dscale Scale factor 0.02
dlowmax Start value for dlow 1.0E-5
dlowmin End value for dlow 5.0E-12
dhighmax Start value for dhigh 0.1
dhighmin End value for dhigh 0.01
dstaglow Diversity for stagnation counting 0.0005
dstagmax Max no. of stagnated generations 20


Table 7.3: Parameters for the simple evolutionary algorithm and the diversity-
guided evolutionary algorithm.


7.2.4 Particle swarm optimization algorithms


Particle swarm optimization algorithms (PSOs) are partly inspired by the behavior
of large animal swarms such as schooling fish or flocking birds. The main idea is
to interpret each particle as a solution to the optimization problem and let these
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particles explore the search space. A good analogy is to imagine a swarm of
moskitos being attracted to a lamp. The particles are the moskitos and the lamp
is the best known optimum, which changes as better optima are discovered during
the optimization procedure. Particle swarm optimization is a rather new technique
that was introduced by Kennedy and Eberhart in 1995 [80].


In the standard particle swarm optimization algorithm (STDPSO), each par-
ticle i has a position (xi) in the search space, a velocity vector (vi), the position
(pi) and fitness of the best point encountered by the particle, and index (g) of the
best particle in the swarm. The particle’s position represents the current solution
to the numerical problem. The particle’s next position (x′i) is determined by the
velocity vector:


x′i = xi + vi (7.12)


The velocity vector is updated according to the current velocity, the particle’s own
best position, and the overall best position in the swarm:


v′i = χ(wvi +−→ϕ1i(pi − xi) +−→ϕ2i(pg − xi)) (7.13)


where χ is the constriction coefficient [31], w is the inertia weight [124], and pg


is the position of the best particle in the swarm. The vectors −→ϕ1i and −→ϕ2i are
randomly generated for each particle with entries uniformly distributed between 0
and ϕ1max or ϕ2max, respectively.


The diversity-guided particle swarm optimization algorithm (DGPSO) was in-
troduced by Vesterstrøm and Riget [152]. It implements the same basic idea as the
diversity-guided evolutionary algorithm. Like the DGEA, the DGPSO alternates
between phases of exploitation and phases of exploration. Switching between the
two phases is controlled by the same diversity measure as used in the DGEA (equa-
tion 5.15). The algorithm switches to exploration when the diversity drops below
dlow and to exploitation when the diversity reaches dhigh. Diversity is increased by
using a different velocity update rule with negative sign on the attraction to the
particle’s own best position and best position of the entire swarm.


v′i = χ(wvi −−→ϕ1i(pi − xi)−−→ϕ2i(pg − xi)) (7.14)


Hence, equation 7.13 is used in exploitation and equation 7.14 in exploration.
The thresholds for switching dlow and dhigh were linearly decreased in the same
way as with the DGEA, and stagnation counting was used to avoid long periods
of stagnation.


The parameters for the two particle swarm optimization algorithms are shown
in table 7.4.


7.3 Experiments and results


The main purpose of the experimentation was to compare the algorithms described
in section 7.2 with respect to parameter identification of the two induction motors.
Each algorithm was tested 20 times on the two motor identification problems.
The algorithmic parameters listed in table 7.1-7.4 were found by manual trail-and-
error tuning. The experiments are carried out using a simulated reference signal,







7.3. Experiments and results 113


Algorithm Parameter Description Value
STDPSO ps Population size 20


ϕ1max Upper bound for ϕ1i 2.0
ϕ2max Upper bound for ϕ2i 2.0
χ Constriction coefficient 1.0
wmax Start value for inertial weight w 0.7
wmin End value for inertial weight w 0.3
vmax Maximal velocity in each dimension 0.15


DGPSO ps Population size 20
ϕ1max Upper bound for ϕ1i 2.0
ϕ2max Upper bound for ϕ2i 2.0
χ Constriction coefficient 0.65
wmax Start value for inertial weight w 0.7
wmin End value for inertial weight w 0.3
vmax Maximal velocity in each dimension 0.15
dlowmax Start value for dlow 1.0E-5
dlowmin End value for dlow 5.0E-12
dhighmax Start value for dhigh 0.1
dhighmin End value for dhigh 0.01
dstaglow Diversity for stagnation counting 0.0005
dstagmax Max no. of stagnated generations 20


Table 7.4: Parameters for the standard particle swarm optimization algorithm and
the diversity-guided particle swarm optimization algorithm.


which is generated by the real motor’s parameters, which have been experimentally
determined by Grundfos (see below). The advantage of this setup is that the exact
optimum is known, which allows us to compare the algorithms based on how close
the found solutions are to the true optimum. Parameter estimation at Grundfos
is considered satisfactory if the percentwise deviation is less than 5% from the
true value, which is about the best precision obtainable on the real motor using
traditional system identification techniques. In practice, this is done by conducting
a series of experiments and calculating the motor’s parameters directly. However,
there is a 5-10% error in these parameters, because of the experimental setup.
Hence, conducting an investigation on a simulated signal will allow us to evaluate
the evolutionary method and decide if time and money should be invested in
obtaining real data and performing the identification of the physical motors.


7.3.1 Identification of the 1.1 kW motor


Each algorithm was given 200000 evaluations of the fitness (equation 7.12) to find
the parameters of the 1.1 kW motor. The two parameters Lsl and Lrl are linearly
dependent and were therefore combined into one parameter. The 5-dimensional
search space was discretized to make the search space similar for all algorithms,
because the two local search algorithms require discrete search spaces. However,
preliminary experiments showed that the PSOs had somewhat lower performance
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when using the discrete search space. To overcome this problem, the particles
positions were kept as continuous variables and rounded just before calculating
the fitness. Table 7.5 lists the reference values, the search intervals, and the step-
sizes for the five parameters of the 1.1 kW motor.


Rs Rr Lsl + Lrl Lm J
Ref. value 9.203 6.61 0.09718 1.6816 0.00077
Min 6 6 0.029 1.5 0.0001
Max 10 10 0.500 2.0 0.0100
Step 0.0001 0.0001 0.00001 0.0001 0.00001


Table 7.5: Intervals and step-sizes for the five parameters of the 1.1 kW motor.


The optimization results are shown in table 7.6. The table displays the number
of runs where the exact optimum was found and the average, best, and worst fit-
ness. As seen in the table, the local search techniques have quite poor performance
indicating that the problem is highly multimodal and therefore quite difficult for
local search algorithms. However, the relaxed termination criterion implemented
in simulated annealing clearly improves the performance. Nevertheless, neither of
the two algorithms managed to find the true optimum in any of the 20 test runs. In
contrast, the two evolution strategy algorithms had very impressive performance.
Even the simple algorithm found the true optimum in 16 out of 20 runs. The
advanced evolution strategy with adaptation of rotation angles had even better
performance. It consistently found a solution close to the true optimum (worst
performance 1.20E-4), and in 17 of 20 runs this was the exact optimum. Regarding
the generational EAs, the simple EA had somewhat intermediate performance. It
discovered the true optimum in six runs, but was quite far from it in many cases.
Interestingly, the simple EA (SEA) is considerably worse than the simple ES.
However, further experimentation is necessary to determine whether it is the dif-
ferent selection mechanism, the self-adaptive mutation operator, or a combination
of both that leads to the improved performance. Interestingly, the diversity-guided
EA had the best performance of all eight algorithms. The algorithm discovered
the true optimum in all 20 runs. To further test the algorithm, an additional 80
runs were performed to see if this was consistent. The true optimum was found
in 99 out of the 100 runs. Conclusively, the simple extension implemented in this
algorithm significantly improved the performance. Finally, the particle swarm op-
timization algorithms also showed good performance. The standard PSO found
the true optimum as many times as the simple ES, but the algorithm is clearly not
as robust. This is evident from the large average fitness, the standard error, and
the worst fitness. The diversity-guided PSO had somewhat better performance
compared with the standard PSO’s. It has a lower average fitness and find the
global optimum in 18 of 20 runs. Again, the standard error and the worst fitness
indicate that the algorithm is not as robust as the evolutionary approaches.


To further analyze the performance, we calculated the average percentwise
deviation from the true value of each variable. Table 7.7 lists the deviations for the
eight algorithms. As shown in the table, the four evolutionary algorithms all had
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Algorithm # Exact Avg. fitness ± std. err. Best fitness Worst fitness
SDLS 0 141620.61 ± 24761.12 45777.88 365286.46
SA 0 34795.91 ± 2069.26 13416.14 54441.81
ES1 16 3.91 ± 2.13 0.00 26.06
ES2 17 1.80E-5 ± 9.82E-6 0.00 1.20E-4
SEA 6 134.70 ± 48.82 0.00 933.96
DGEA 20 0.00 ± 0.00 0.00 0.00
STDPSO 16 226.69 ± 133.87 0.00 2344.47
DGPSO 18 90.60 ± 63.65 0.00 1081.88


Table 7.6: Results for parameter identification of the 1.1 kW motor. Average of
20 runs. The column denoted “# Exact” displays the number of runs where the
algorithm discovered the exact optimum.


satisfying performance with respect to this criterion. In fact, the two evolution
strategies and the diversity-guided EA managed to obtain an error of less than
0.2% on all parameters. The two PSOs had good performance, though somewhat
worse than the evolutionary algorithms. In summary, the error percentage on the
solutions obtained by the evolutionary algorithms are very encouraging because
they are considerably lower than the 5% success criterion defined by Grundfos.


Algorithm Rs Rr Lsl + Lrl Lm J
SDLS 14.49% 23.55% 116.46% 7.56% 83.44%
SA 8.52% 22.57% 166.74% 6.83% 50.06%
ES1 0.13% 0.08% 0.06% 0.11% 0.19%
ES2 0.0002% 0.0002% 0.00% 0.00% 0.00%
SEA 1.29% 0.91% 0.45% 1.01% 2.01%
DGEA 0.00% 0.00% 0.00% 0.00% 0.00%
STDPSO 1.16% 1.39% 0.64% 0.93% 0.97%
DGPSO 0.71% 1.07% 0.13% 0.26% 0.39%


Table 7.7: Average percentwise deviation for the parameters of the 1.1 kW motor.


The convergence speed is an important aspect of optimization because the
fitness evaluation is usually the time-consuming part of real-world optimization.
Figure 7.2 displays the number of evaluations versus the average fitness for the
best performing algorithms. The graph is constructed from the runs where the
algorithms found the exact optimum. For example, the graph for the simple EA is
the average of the six runs where this algorithm found the true optimum. This ap-
proach is chosen to get a better picture of the convergence speed. The graph shows
that the standard PSO clearly had the fastest convergence speed. On average, the
true optimum was discovered in less than 10000 evaluations. The DGPSO had
similar performance in the beginning of the runs, but a few runs with stagnation
gave a somewhat slower average convergence. The evolution strategies converged
faster than the generational EAs in the beginning of the optimization run, but
were passed by the DGEA at approximately 60000 evaluations.
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Figure 7.2: Number of evaluations versus average fitness (1.1 kW motor).


In summary, the experiments on the 1.1 kW motor show that considerable
improvement in performance can be achieved by even rather simple extensions
of the standard algorithms. This is the case for all four groups of algorithms.
However, the very poor performance of the two local search algorithms underlines
the advantage of using a population-based technique.


7.3.2 Identification of the 5.5 kW motor


In preliminary runs, the identification of the 5.5 kW motor with saturation turned
out to be considerably more challenging than the simpler 1.1 kW motor. Therefore,
each algorithm was given 300000 evaluations. In this problem, the two parameters
Lsl and Lrl are independent and cannot be combined. Hence, eight parameters
were identified. The 8-dimensional search space was again discretized. Table 7.8
displays the reference values, the search intervals, and the step-sizes for the eight
parameters of the 5.5 kW motor. Furthermore, preliminary experiments on the
DGEA and the DGPSO revealed that setting the parameter dlowmax (table 7.3 and
7.4) to 1.0E − 3 gave better results.


Rs Rr Lsl Lrl Lmo imo α J
Ref. value 3.914 2.71 0.0358 0.0586 1.09 1.096 0.55 0.0084
Min 3.52 1.35 0.03 0.05 0.5 0.5 0.2 0.008
Max 4.30 4.06 0.10 0.10 2.0 2.0 1.0 0.009
Step 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001


Table 7.8: Intervals and step-sizes for the eight parameters of the 5.5 kW motor.


The optimization results are listed in table 7.9. As mentioned, the problem is
significantly more challenging than the 1.1 kW motor’s. None of the algorithms
found the exact optimum in any run. Regarding the local search algorithms, both
SDLS and SA had very poor performance except for one run where SA reached
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a fitness of about 35. Focusing on the evolution strategies, a surprising result
emerged. Apparently, the simple ES outcompeted the advanced ES with respect
to the average fitness. This is unexpected because the parameters modeling the
saturation (Lmo, imo, and α) appeared to be highly correlated and the advanced ES
is particularly designed to handle problems with correlated parameters. A possible
explanation is that the correlation is difficult to discover from the fitness landscape.
The simple self-adaptation scheme quickly found a mutation variance σ giving
reasonable results, but the many variances and rotation angles in the advanced
ES may have been too hard to find using the available number of evaluations.
Despite of the higher average, the advanced ES actually managed to discover one
solution close to the true optimum, which was not the case for the simple ES
(best fitness near 5.66). For the generational EAs, the table shows a rather poor
performance of the simple EA. The best solution was quite far from the optimum
and it only obtained a fitness of about 257.80. Conversely, the diversity-guided
EA had by far the best average. The best solution does not quite match the
best solution of the advanced ES, but the average fitness and the fitness of the
worst solution suggest that the DGEA is more robust. Finally, the particle swarm
optimization algorithms had reasonable performance. The standard PSO roughly
matches the simple evolution strategy with respect to best found solution. The
average performance of both PSOs resemble the performance of the advanced ES.
Interestingly, the diversity-guided PSO found the best solution of all algorithms.
Again, the standard error and worst fitness indicate that the PSO algorithms may
not be as robust as the evolutionary algorithms.


Algorithm Avg. fitness ± std. err. Best fitness Worst fitness
SDLS 11342573.02 ± 4908664.64 80315.85 75377366.52
SA 447887.98 ± 199274.89 35.43 2867275.03
ES1 82.03 ± 13.37 5.66 183.78
ES2 191.88 ± 56.31 0.0256 1064.69
SEA 4224.58 ± 964.28 257.80 16316.52
DGEA 12.34 ± 3.39 0.1215 66.20
STDPSO 182.97 ± 88.02 6.53 1441.64
DGPSO 163.25 ± 39.73 0.0018 629.45


Table 7.9: Results for parameter identification of the 5.5 kW motor. Average of
20 runs.


Regarding precision of the found solutions, table 7.10 lists the percentwise
deviation for the eight parameters. As seen in the table, none of the algorithms
matched the 5% performance criterion on all parameters. The diversity-guided
EA achieved less than 5% on six out of eight parameters and only slightly worse
on the remaining two. Second best is the simple ES, which obtained less than 5%
deviation on four parameters and about 5.5% on two parameters. The two PSOs
obtained similar results also having four parameters with an error of less than
5% and two slightly above 5%. As with the 1.1 kW motor, the two local search
techniques had rather poor performance.
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Algorithm Rs Rr Lsl Lrl Lmo imo α J
SDLS 2.8% 20.3% 51.5% 19.3% 21.5% 21.1% 38.4% 5.8%
SA 2.9% 15.0% 77.4% 19.5% 20.3% 12.0% 33.4% 3.7%
ES1 0.3% 0.3% 10.0% 5.4% 2.6% 5.5% 13.2% 1.2%
ES2 0.1% 0.2% 17.8% 7.8% 5.9% 11.5% 26.8% 0.2%
SEA 0.7% 4.3% 32.1% 27.9% 6.5% 16.4% 42.7% 2.4%
DGEA 0.0% 0.1% 5.2% 2.4% 1.5% 3.1% 6.9% 0.0%
STDPSO 0.3% 0.3% 11.1% 6.3% 2.7% 5.8% 14.7% 1.1%
DGPSO 0.6% 0.4% 7.5% 5.9% 2.8% 5.7% 12.8% 2.1%


Table 7.10: Average percentwise deviation for the parameters of the 5.5 kW motor.


The convergence speed of the six population-based algorithms is illustrated in
Figure 7.3. The graph shows the average fitness versus number of evaluations
for all 20 runs. Again, the simple PSO converged rapidly, but in this case it was
passed by the DGEA at about 25000 evaluations and by the simple ES near 150000
evaluations. Interestingly, the advanced ES converged faster than the simple ES.
Finally, the DGPSO showed a convergence pattern similar to the one for the 1.1
kW motor.
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Figure 7.3: Number of evaluations versus average fitness for the best performing
algorithms (5.5 kW motor).


To sum up, the experimentation on the 5.5 kW motor confirms the results on
the 1.1 kW motor. First, simple extensions to the algorithms can have tremen-
dous impact on the performance. This is the case for all four groups of algorithms,
although it should be mentioned that the advanced ES had a lower average per-
formance compared with the simple ES’s. Despite of this, the advanced ES found
better solutions than the simple ES. Second, the local search algorithms had very
poor performance in comparison with the performance of the population-based
approaches.
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7.4 Summary


In this study, we have compared eight stochastic optimization algorithms with re-
spect to parameter identification of two induction motors. The eight algorithms
represent four main groups of stochastic optimization algorithms used today (local
search, evolution strategies, generational EAs, and particle swarm optimization al-
gorithms). From each group, we included a simple and an advanced algorithm.
Comparing the algorithms, the diversity-guided EA clearly had the best perfor-
mance. This algorithm showed the best average performance in both problems,
and, for the 1.1 kW motor identification problem, it managed to locate the true
optimum in 99 of 100 test runs. The local search techniques had the worst per-
formance of all eight algorithms. This shows that both problems are highly multi-
modal and therefore difficult to handle with these techniques. The two evolution
strategies also showed good performance on both problems. Interestingly, the sim-
ple ES had quite good average performance on both problems, and it found the
true optimum for the 1.1 kW motor in 16 of 20 cases. The advanced ES showed
robust performance on the 1.1 kW motor, and, with respect to the 5.5 kW motor,
several runs found solutions that were better than those found by the simple ES.
Regarding the PSOs, the standard PSO had very impressive convergence speed.
On the 1.1 kW motor, the algorithm converged to a near-optimal solution in less
than 10000 evaluations. Hence, a standard PSO may be a first choice for com-
putationally intensive problems. Finally, the diversity-guided PSO had somewhat
slower convergence, but the algorithm found good solutions to both problems. For
the 1.1 kW motor, the true optimum was discovered in 18 of 20 runs, and for the
5.5 kW motor, the algorithm discovered the best solution of all eight algorithms.


In a wider context, the results show that stochastic optimization is indeed a
feasible and promising approach to parameter identification of non-linear dynamic
systems. Not surprisingly, the six population-based techniques clearly outcom-
peted the two local search techniques. Furthermore, the advanced algorithms had
significantly better performance than the simple algorithms. Consequently, imple-
menting the small extensions to the simple algorithms is indeed worth the effort. In
contrast, most researchers working with practical applications only use the simplest
text book variants of, e.g., evolutionary algorithms when approaching a real-world
problem. In our view, this is due to three main factors. First, some experience
with stochastic optimization is usually required to fully benefit from these tech-
niques. Second, considerable time is often spent on implementing the performance
criterion (e.g., a simulator) leaving limited time for the algorithm. Third, most
novel algorithms are tested on rather simple and highly artificial benchmark prob-
lems that have little in common with real-world problems. This makes it difficult
to find an algorithm that has shown good performance on a similar problem.


7.5 Future research


Regarding future work, a number of interesting issues can be investigated using the
induction motors. A thorough examination of the results from the 5.5 kW motor
revealed that the parameters in this problem are highly correlated. Somewhat
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surprising, the advanced ES did not appear to have a significant advantage on
this problem, although this algorithm is specifically designed to handle problems
with a high degree of parameter correlation. Hence, one research direction may
be to investigate techniques for correlated problems such as differential evolution
[127]. Additionally, the motor may be used to test novel techniques on a real-world
problem.


Another important next step is to apply the best algorithms to parameter
identification using real data obtained from the two motors. The impressive re-
sults obtained in this study certainly underline the strength of EAs on real-world
problems, but additional tests should be carried out using real data.


Furthermore, the motors could be used to investigate different performance
criteria. Typically, the sum-of-squared-errors measure is used in system identifi-
cation. However, it might be the case that better prediction can be achieved with
other performance criteria. Such criteria will probably not be in conflict with the
traditional sum-of-squared-errors measure. Hence, it may be an advantage to have
several performance criteria in play at the same time. For instance, one could use
a subpopulation approach and have each subpopulation optimizing with respect
to different performance criteria.


Besides parameter identification, the induction motors may be used for struc-
tural identification, which is about discovering both a model and its parameters.
In this context, it would be quite interesting to investigate the prediction capa-
bilities of genetic programming and compare with traditional techniques such as
regression models.







Chapter 8


Case study: Direct control of a
crop-producing greenhouse


In the evolutionary computation community, optimization of dynamic problems
has been investigated over the past 15 years and numerous algorithms, operators,
and extensions have been suggested to cope with such problems (for a survey,
see [20]). However, most of this research has been, and still is, carried out on
rather synthetic dynamic problems such as the moving peaks problem (example
3.1, section 3.3.3). To evaluate the soundness of the extensive amount of research
carried out on dynamic optimization, Thiemo Krink, Mikkel T. Jensen, Zbigniew
Michalewicz, and I scrutinized these artificial benchmark problems and found them
to have little in common with realistic dynamic problems, especially with control
problems [146] (see section 3.3.3). As a consequence, Thiemo Krink, Bogdan Fil-
ipič, and I initiated a study based on control of a crop-producing greenhouse. The
main objective in this project is to examine basic issues in dynamic optimization
by investigating algorithms on a realistic problem. The results presented in this
chapter are described in three articles [88], [141]1 and [143].


From an optimization point-of-view, control problems appear to be particu-
larly challenging type of dynamic problems, because of the feedback interactions
between the controller and the controlled system. Furthermore, such systems may
be affected by external factors; for example, some systems are relatively sensitive
to changes in outdoor temperature and air humidity. This dynamic behavior poses
an extra challenge to the optimization algorithm, which must be able to both find
and track the optimum as the problem changes over time. Evolutionary algorithms
(EAs) and particle swarm optimization (PSO) algorithms seem particularly well-
suited for this task, because these algorithms keep a population of solutions instead
of just one. Hence, the population will most likely contain a good solution after
the problem has changed.


EAs are well-known algorithms and have successfully been applied to a wide
range of problems. In contrast, PSO algorithms are rather new, and may require
a brief introduction (for an overview of PSO, see [81]). PSO algorithms are partly
based on the ideas of flocking behavior of large animal groups. The algorithms
maintain a swarm of particles, where each particle represents a candidate solution


1First published as a conference paper [142].
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to the given problem. Hence, the swarm in the PSO corresponds to the population
in the EA and the particle to the individual. The main difference between EAs
and PSO is the way new solutions are generated. EAs create new individuals
by adding random noise (mutation) to an existing individual or by crossing over
the chromosomes of two or more individuals (recombination). Conversely, each
particle in a PSO algorithm “lives” and moves in the search space. The particle’s
position is updated using a velocity vector that is recalculated in every iteration.
The new velocity vector is calculated using the current velocity vector, the best
position encountered by the particle, and the position of the best particle in the
swarm (see section 8.3.2 for details). Hence, PSO uses an explicit memory of
previous best positions for each particle. The algorithm was originally developed
for static optimization problems. For dynamic problems, certain modifications are
necessary to ensure that the memory of the swarm is consistent with the true state
of the problem. In this context, artificial dynamic problems have been used in a
few investigations mainly focusing on how to update the memory [28; 39], and
extensions of the update rule [17].


Regarding real-world control problems, EAs have successfully been applied to
several design and tuning problems, e.g., [69; 47]. In contrast to studies on these
offline controller problems, few investigations have been reported on using stochas-
tic optimization techniques to directly control the system “online” by determining
the control signal while the system is running. In online control, the simulator is
repeatedly used to find the best control signals during the control period. Natu-
rally, this approach heavily depends on the computational demand and accuracy
of the simulator as well as the rate at which control signals must be provided.
Hence, the approach is only feasible for rather slowly changing problems where
the signal calculation may take several seconds or even minutes. An example is
greenhouse control where the settings for heating, ventilation, CO2 injection, and
watering are updated every 15 minutes.


A straightforward approach to online control is to encode the control signals as
a vector with one value for each control variable. This direct control strategy has
been investigated in a few EA papers. Fogarty et al. compared the performance of
a simple genetic algorithm to a PID controller with respect to control of a sugar
beet press [50]. Vavak et al. combined a genetic algorithm with a variable range
local search and used it to control the combustion in a multiple burner boiler
[151]. Regarding PSO, only one investigation has been reported. Fukuyama et al.
investigated a reactive power and voltage control problem with a standard PSO
and compared it with the so-called reactive tabu search algorithm [56]. However,
it should be noted that the control signal was only determined for one control
point and not as a continuous series, which would be necessary to control a real
system. Banga et al. investigated an EA-based control technique that encoded
multi-valued strategies with M future points per control variable instead of one
[15; 16]. The actual control signal at time t was then calculated by interpolating
between the control points encoded in the genome. The technique was applied to
a number of control problems in bio-chemistry.


The main contributions from this case study are i) knowledge of important
issues in direct control, ii) a new PSO technique for dynamic problems, iii) a new
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local search technique, directed ascent local search (DALS), and iv) an improved
understanding of the key issues in dynamic optimization. Our results are based
on experimentation with direct control using a simple EA and the novel PSO and
DALS algorithms.


8.1 Direct control


A control problem can be modeled by the interactions among the system being
controlled, the surrounding environment, and the controller (see figure 8.1). Here,
the vector x(t) represents the internal state of the system at time t, v(t) is the
environment state, u(t) is the control signal from the controller, and y(t) is the
output from the system. The environment state v(t) and the output y(t) from
the system serve as feedback input to determine the control signal for the next
time-step.


x(  )State:      


y(  )


State:       v(  )


u(  )
SystemController


Environment


t


t


t


t


Figure 8.1: A model of the interactions among the controlled system, its environ-
ment, and the controller.


The change in system state is often modeled by a number of difference equations
of the form:


xi(t + h) = xi(t) + ∆xi(u,x,v, t, h) (8.1)


where xi is the i-th system variable in x, ∆xi(·) is the update function for xi, t
is the time, h is the length of a time-step, and u, x, and v are the control signal,
the system state, and the environment state of the previous time-step (sometimes
several steps in the past). Real systems are often described by a system of non-
linear differential equations. In these cases, an approximation method, such as
Runge-Kutta, is used as the update function ∆xi(·).


The online control strategy used here is called “direct control” [50]2. In direct
control, each solution encodes the control signal as a vector of real-valued numbers.
The best control signal for the current operating point is found by an optimization
algorithm that evaluates candidate signals by simulating the real system for a
number of time-steps into the future, which is called the prediction horizon (PH ).
The best signal from this optimization is then used to control the real system for a
few time-steps, which is the control horizon (CH ). The control horizon is typically
set to one, i.e., CH = 1. Hence, a zero-order hold strategy is used [90]. For the


2In [50], the technique is called “direct optimal control”; however, “optimal” is a bit mislead-
ing, since optimality is not guaranteed.
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determination of the control signal, only a limited amount of computation time
(CT ) is available, because the signal controlling the real system must be updated
at certain time intervals. An important factor in this is the prediction horizon
(PH ), which is the number of time-steps simulated when evaluating a solution.
The challenge in direct control is essentially to tune the optimization algorithm to
exploit the available time in the best possible way. For EAs and PSO, this includes
balancing the population size (ps) versus the number of generations (gen). The
relationship between these factors is given by:


CT = ps · gen · PH (8.2)


The product ps · gen is equal to the number of evaluations performed by the algo-
rithm when the control signal for the next time-step is determined. For example,
200 evaluations can be assigned as either ps = 200, gen = 1 or ps = 25, gen = 8.
The population size in directed ascent local search (DALS) is of course fixed to
ps = 1, which implies that gen = 200. Thus, the only parameter to tune in DALS is
essentially the neighborhood range. The pseudocode for the general direct control
algorithm is listed in figure 8.2.


Direct control
Initialize population of size ps


while(control period not over) {
Reset best control setting


while (used time < CT ) {
Generate new solutions
Evaluate each solution for PH time-steps
Store best control setting


}
Let best setting control for CH time-steps


}


Figure 8.2: Pseudocode for the general direct control algorithm.


Figure 8.3 illustrates an abstract scenario where four control settings are eval-
uated with a prediction horizon of three time-steps. In each step, the best setting
controls the system to the next time-step, i.e., CH = 1.


From a theoretical optimization perspective, direct control has the interesting
property that the search itself changes the fitness landscape, which is because
of the interactions between the controller and the system being controlled. In
direct control, certain control signals may drive the system state in one direction
whereas other signals may result in completely different system states. Hence,
the consecutive fitness landscapes searched by the algorithms may be similar at
time t but diverge as a result of the control signals. This introduces the possible
occurrence of optima in time in addition to the usual optima in space. This concept
is exemplified and further discussed in section 8.4.5.


The fundamental idea in direct control shares many properties with the engi-
neering approach known as model predictive control (MPC), which covers a broad
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Figure 8.3: Example of state space exploration at simulation time t = 0, t = 1, and
t = 2. Thin lines represent control settings exploration of the current time-step,
thin dotted lines are previous explored control strategies, and thick lines are actual
control as it was performed by the selected control setting.


selection of predictive control algorithms; for an overview, see [26]. All MPC algo-
rithms explicitly use a predictor (a model) to calculate a future control sequence
by minimizing an objective function. The various algorithms differ in the model
structure and design of the objective function. Most MPC algorithms use a linear
model and a quadratic objective function, since this allows the controller to find
an analytic solution. However, many problems do not have linear characteristics.
Non-linear systems are problematic since the objective function will typically no
longer be unimodal, which rules out the use of analytic techniques. One approach
is to linearize the system around the current control point. Here, the predictor is
a linear combination of previous system inputs and outputs, and this linear com-
bination is recalculated at each time-step. This approach is used in the popular
generalized predictive control (GPC) method [30]. Linearization works well for
many systems, but the linearization around the current operating point may not
be sufficiently accurate on instable systems and on longer prediction horizons. In
contrast, direct control is based on optimization of an arbitrarily complex model,
which may lead to a multimodal optimization problem. Hence, direct control re-
lies on the optimization algorithm’s ability to handle problems with local optima.
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Fortunately, EAs are rather good at this and, as discussed later, control problems
may not have that many local optima.


8.2 Greenhouse model


The greenhouse producing crops (tomatoes) is modeled according to the outline
in section 8.1. In our experiments, we used a simulator based on a description
by Pohlheim and Heißner [106]. This section gives a brief overview of the rather
complex simulator. A complete specification is available in appendix C and as a
technical report [145]. It should be noted that our implementation differs from
the original version [106] in a few minor points. In our version, the wind speed
is added in the equations describing air exchange with the environment, which is
done to model a non-hermetically closed greenhouse. Figure 8.4 shows the system,
environment, and control variables describing the greenhouse model, and table 8.1
gives their names and units.


Wind speed, CO   concentration


Environment (weather):
Sunlight intensity, Air temperature,
Ground temperature, Relative humidity,


2


Environment (prices):


Price of crops (tomatoes)
2Price of heating, Price of CO  ,


Control:


CO   concentration, Biomass,
Profit, Condensation


Steam density, Air temperature, 
System:


Heating, Ventilation, CO   injection, Water injection2


2


Figure 8.4: Variables in the model of a crop-producing greenhouse.


The greenhouse is controlled by heating uheat, ventilation uvent, injection of
CO2 uCO2, and injection of water uwater. The ranges of these variables are: uheat ∈
[0, 150], uvent ∈ [0, 100], uCO2 ∈ [0, 10], and uwater ∈ [0, 100]. The greenhouse state
is updated according to six non-linear differential equations (one for each system
variable, see appendix C for details) that are approximated with the fourth-order
Runge-Kutta method. The length of a time-step h is 15 minutes and the initial
state was xsteam = 20, xatemp = 20, xCO2 = 340, xbiom = 0, xprofit = 0, and
xcond = 0.


The change in profit ẋprofit is equal to the income from the produced crops
minus the expenses for heating and CO2 (equation C.6 in appendix C).


ẋprofit = ẋbiom ·DWF · vPtom · 10−3 − (8.3)


uCO2 · vPCO2 · 10−3


3600
− uheat · vPheat


3600


where DWF is the dry weight factor of the crop (the system variable xbiom models
the dry weight of the crop).
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Description Variable


S
y
st


em


Indoor steam density [g/m3] xsteam


Indoor air temperature [◦C] xatemp


Indoor CO2 concentration [ppm] xCO2


Accumulated biomass [g/m2] xbiom


Cumulative profit [DKK/m2] xprofit


Condensation on glass [g/m2] xcond
E


n
v
ir


on
m


en
t


Outdoor sunlight intensity [W/m2] vsun


Outdoor air temperature [◦C] vatemp


Outdoor ground temperature [◦C] vgtemp


Relative humidity [% r.H.] vRH


Wind speed [m/s] vwind


Outdoor CO2 concentration [ppm] vCO2


Price of heating [DKK/(W·h)] vPheat


Price of CO2 [DKK/kg] vPCO2


Price of crops (tomatoes) [DKK/kg] vPtom


C
on


tr
ol


Heating [W/m2] uheat


Ventilation [m3/(m2 · h)] uvent


CO2 injection [g/(m2 · h)] uCO2


Water injection [g/(m2 · h)] uwater


Table 8.1: System, environment, and control variables of the simulated greenhouse.
DKK denotes the currency “Danish Kroner”.


The fitness of a solution u = [uheat, uvent, uCO2, uwater] at time-step ts (t = ts·h)
is calculated as the profit achieved minus a penalty p. The penalty was introduced
to avoid crop damage and to “guide” the indoor air temperature towards the
optimal range for growth3.


Fit(u, ts) =
ts+PH∑
j=ts


∆xprofit(j)− p(j) (8.4)


∆xprofit(j) ≈
∫ j·h+h


j·h
ẋprofit dt


p(j) =







10 · (16− xatemp(j)) xatemp(j) < 16


10 · (xatemp(j)− 35) xatemp(j) > 35


0 otherwise


where ≈ is the Runge-Kutta approximation.


3Introducing an optimal range of growth turns the problem into a constraint problem. In this
study, we use a simple penalty approach although other techniques may yield a better perfor-
mance. However, the main focus in this study is on dynamic optimization and not constraint
optimization.
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Real weather data recorded in 2000 at the Aarslev measuring station on the
Danish island Fyn was used for the environment variables sunlight intensity vsun,
outdoor air temperature vatemp, outdoor ground temperature vgtemp, relative hu-
midity vRH , and wind speed vwind. The remaining environment variables were
kept constant at vCO2 = 340, vPheat = 0.0002, vPCO2 = 4.0, and vPtom = 12.0.
The weather records were provided by the Danish Meteorological Institute; see
appendix C for further information. In this study, we simulated the greenhouse
operation in the first week of May 2000. The weather data are illustrated in fig-
ure 8.5. As stated earlier, direct control determines a solution’s performance by
simulating a number of time-steps into the future. In practice, this includes simu-
lating the weather, or rather, predicting the weather within the prediction horizon.
Weather prediction is generally difficult, but a simple scheme is to assume that the
weather does not change during the prediction horizon (few hours). This approach
was used in our study.
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Figure 8.5: Weather data for the first week of May 2000 as used in the numerical
experiments. Note that CO2 concentration was assumed constant at 340 ppm.
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8.3 Algorithms


8.3.1 Evolutionary algorithm


The EA used in this study encoded the control signals as real-valued vectors.
New solutions were created using Gaussian mutation and a variant of arithmetic
crossover where each variable has its own weight. All weights except one were
randomly assigned 0 or 1, and the remaining weight was set to a random value
from the interval [0, 1]. Binary tournament selection was applied to select the
next generation. The algorithm used the following parameters: probability of
crossover pc = 0.9, probability of mutation pm = 0.5, and variance σ = 0.01, which
was scaled by the length of each control variable’s interval. Each solution was
evaluated by simulating PH time-steps using the control setting encoded in the
genome.


8.3.2 Particle swarm optimization algorithm


In particle swarm optimization, each particle i has a position (xi) in the search
space and a velocity vector (vi). Furthermore, each particle stores the best position
(pi) encountered and its fitness, and the index (g) of the best particle in the swarm.
The next position (x′i) of the particle is determined by the current position and
the velocity vector:


x′i = xi + vi (8.5)


The velocity vector is updated according to a weighted sum of the current velocity,
the particle’s own best position, and the overall best position in the swarm:


v′i = χ(wvi +−→ϕ1i(pi − xi) +−→ϕ2i(pg − xi)) (8.6)


where χ is the constriction coefficient [31], w is the inertia weight [124], and pg


is the position of the best particle in the swarm. The vectors −→ϕ1i and −→ϕ2i are
randomly generated for each particle with values uniformly distributed between 0
and 1 (resampled for each dimension).


The application of PSO algorithms to dynamic problems is not as straight-
forward as with EAs, because the particles’ memories need to be updated since
the fitness of a solution may change. Modified versions of PSO for dynamic opti-
mization have been investigated using artificial benchmark problems. Carlisle and
Dozier replaced the particles own best position (pi) by its current position, either
at fixed intervals or when a change was detected [28]. Eberhart and Shi reevaluated
the memory and used a random value between 0.5 and 1.0 as the inertia weight w
every time a particle was moved [39]. Blackwell and Bentley extended the update
rule for the velocity vector (equation 8.6) to introduce a repulsion effect between
particles and thereby maintain diversity in the swarm [17].


In this study, we reevaluate each particle’s own best position before each opti-
mization period of the problem (inner loop in figure 8.2). However, the greenhouse
control problem appeared to be particularly challenging to the PSO because the
night-phase is nearly static whereas the day-phase is highly dynamic. This was
problematic for the PSO because the speed of the particles at the end of the night-
phase was close to zero. Hence, it was difficult for the converged swarm to spread
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out and track the optimum during the dynamic day-phase. To overcome this pro-
blem, we randomly initialized the velocity vectors for 80% of the particles before
each optimization period (the 80% reinitialization was determined in preliminary
experiments).


8.3.3 Directed ascent local search


The directed ascent local search (DALS) was specifically designed to efficiently
track the optimum in a changing fitness landscape. In DALS, the direction to the
previous solution determines the traversal order of the current solution’s neighbor-
hood. The first solution encountered with a better fitness becomes the new current
solution. Thus, only a limited part of the immediate neighborhood is evaluated,
in fact, only one solution per iteration as long as improvements occur. Figure 8.6
illustrates a situation where the current solution was obtained by a move to the
right in a two-dimensional search space. The first solution examined is then the
one to the right of the current one (indicated by 1 in the figure). The remaining
neighboring solutions are examined in increasing order as shown in the figure.


Discrete neighborhood of a solution


x


y


357


1


246


���
�currentprevious


Figure 8.6: An example of the traversal order in directed ascent local search for a
2-dimensional problem.


For higher dimensions, the algorithm evaluates neighboring solutions in a slightly
complex manner. The traversal algorithm is listed in figure 8.7. Here, k is the di-
mension of the last move, dk is the direction of the move (±1), sk (or sj) is the
step-size for dimension k (or j), X is the current solution, and N is the dimen-
sionality of the problem (in figure 8.6, k = 1 and d1 = 1). The operator ⊕ denotes
vector addition. The traversal algorithm stops when a better solution is found;
for clarification, this is omitted in figure 8.7. The algorithm traverses the neigh-
borhood as follows: First, the solution in the current direction is evaluated. Then
the algorithm enters a nested loop. In the outer loop, it iterates along the dimen-
sion of the last move k starting at the solution in the current direction and going
backwards. The inner loop examines the solutions adjacent and orthogonal to the
move-dimension. For the simple example in figure 8.6, the algorithm traverses the
neighborhood as follows: First, solution 1 in the current direction is evaluated.
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Then the algorithm enters the outer loop with i = 1. In the inner loop, solutions
2 and 3 are checked. Now, i = 0 and solutions 4 and 5 are examined in the inner
loop. Finally, with i = −1 solutions 6 and 7 are tested.


DALS traversal
check X ⊕ [0, . . . , dk · sk, 0, . . . , 0]
for(i=1; −1 ≤ i; i−−) {


for(j=1; j≤ N ; j++) {
if(j!= k) {


check X ⊕ [0, . . . , +sj, 0, . . . , i · dk · sk, 0, . . . , 0]
check X ⊕ [0, . . . ,−sj, 0, . . . , i · dk · sk, 0, . . . , 0]


}
}


}


Figure 8.7: Pseudocode for the DALS traversal algorithm.


8.4 Experiments and results


The objective of the experiments was to study dynamic optimization by inves-
tigating aspects of direct control of a realistic control problem – in this case a
crop-producing greenhouse. The main issue in EA and PSO-based direct control
is to balance the three factors of equation 8.2. In our first study, we focused on
the EA [141]. In this, the effect of varying the prediction horizon was investi-
gated. Additionally, we examined the balance between population size (ps) and
generations (gen) and tested several trade-off settings for the EA. In our second
study, we extended the experiments on trade-offs to include an additional extreme
setting for the EA [143]. A similar set of experiments were performed on the novel
PSO algorithm. For the DALS algorithm, we investigated a number of step-sizes
for the control variables. In all tests, we repeated each experiment 30 times and
calculated the average profit per time-step.


8.4.1 Prediction horizon


In our first study, we investigated the effect of varying the prediction horizon. We
tested six horizons having 1, 2, 3, 4, 8, and 20 time-steps. Figure 8.8 shows the
cumulative profit from the 1, 2, 4, and 20 horizons4 using the trade-off with popu-
lation size ps = 10 and generations gen = 20, which was chosen because the other
experiments in our first study showed that this was the best setting. A prediction
horizon of 20 time-steps is the best, though only marginally better than a horizon
of 8 steps. The profit achieved in the remaining four horizon cases decreases ac-
cording to the look-ahead. Hence, a prediction horizon of at least 8 steps yields
high profit, a horizon of 4 steps leads to a slightly lower profit, and only a few
steps give rather low profit. The explanation for the significant difference between


4To keep the graph readable, 3 and 8 are not shown.







132 Chapter 8. Case study: Direct control of a crop-producing greenhouse


the worst performing setting (PH = 1) and the best setting (PH = 20) is found
by examining the control signals. Figure 8.9 displays ventilation (uvent) and CO2


injection (uCO2) for PH = 1 and PH = 20. The graph on ventilation shows that
two general control strategies exist. The first strategy is used when PH = 1. Here,
the EA sets ventilation high at daytime. This will require large investment in
heating during night, but exploits the free CO2 in the environment. The second
strategy appears when PH = 20. In this strategy, ventilation is low, which saves
some heating, but makes CO2 injection necessary. The additional profit achieved
by the 20-step controller is mainly related to the achieved temperature and in-
door CO2 level (equation C.4 in appendix C), which can be seen by thoroughly
examining the control signals and greenhouse states of both settings. Naturally,
the two different control strategies emerge as a result of the prediction horizon,
but here the CO2 level plays an important role too. The second strategy appears
because the long look-ahead allows the controller to discover the long-term effect
of growth, i.e., that the photosynthesis can transform more CO2 than achievable
by ventilation alone. Hence, additional growth is possible by injecting additional
CO2. The short look-ahead of the first strategy does not allow the controller to
discover the long-term effects. Thus, ventilation is used because it will provide
free CO2 from the environment.
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Figure 8.8: Profit per m2 for different prediction horizons with 10 individuals and
20 generations. Average of 30 runs.


8.4.2 Population size versus generations


In the experiments on balancing the population size versus generations, we fixed
the computation time to CT = 800 units5. Our investigation on the prediction
horizon revealed that four time-steps (PH = 4), which is one hour, is sufficient to


5We use an abstract measure because in a real-world scenario the computation time is de-
pendent on the available hardware of the specific greenhouse controller. A computation time of
CT = 800 was chosen to allow a sufficient number of factorizations according to equation 8.2.
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Figure 8.9: Example of ventilation and CO2 injection for different prediction hori-
zons (10 individuals, 20 generations).


obtain good performance6. Using equation 8.2, the number of evaluations (ps ·gen)
is equal to 800


4
= 200.


In the experiments with the EA, we extended the previously investigated trade-
offs [142] to include a setting with 1 individual optimizing for 200 generations.
This extreme setting basically turns the algorithm into a simple (1+1)-Evolution
Strategy without adaptation of the mutation variance (for reading on Evolution
Strategies, see [114]). The tested trade-offs (ps,gen) were (200,1), (100,2), (50,4),
(25,8), (10,20), and (1,200). Figure 8.10 illustrates the cumulative profit obtained
by the tested settings. The graphs clearly show that the available computation time
is best invested by having a low population size with many generations. In fact,
the extreme setting (1, 200) slightly outperformed our previous best setting (10,
20), which was used in the experiments on the prediction horizon. Interestingly,
the use of many generations essentially transforms the dynamic control problem
into a series of related static problems.


Regarding the experiments with the PSO, we performed a set of experiments
similar to those carried out with the EA. The extreme setting with 1 particle
and 200 generations was not tested because the interaction between particles is a
fundamental part of the PSO. Instead, we included the setting (5,40). Figure 8.11
displays the results for the tested trade-offs. Apparently, the PSO seems to be
much less sensitive to the number of generations. The performance of the trade-
offs is almost equivalent when the algorithm has at least four generations to find
the control signal. The very poor performance of the (200,1)-setting was because
the velocity vector was randomly set before each static period of the problem.
In this scenario, the PSO does not have time to find a signal yielding reasonable
results.


8.4.3 Step-sizes in local search


In the experiments with the DALS, we focused on comparing a number of step-
sizes for the control variables. The step-size defines the neighborhood and thus


6Four steps were used in the experiments, because it halves the execution time compared with
eight steps.
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Figure 8.10: Cumulative profits for EA trade-offs between population size and
number of generations. The results are averaged over 30 runs.
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Figure 8.11: Cumulative profits for PSO trade-offs between population size and
number of generations. The results are averaged over 30 runs.


how “far” the algorithm can explore the fitness landscape using 200 evaluations.
The trade-off in this algorithm is between exploration distance and fine-tuning
capabilities. A large step-size will allow the algorithm to obtain a solution far
from the current one. On the other hand, a large step-size limits the fine-tuning
capabilities. Each step-size setting consists of four values, one per control variable.
The six tested step-sizes are listed in the legend of figure 8.12, in which the order
of the control variables is (uheat, uvent, uCO2, uwater). For instance, the step-size
setting (10.0, 10.0, 1.0, 10.0) sets the step-size of uheat, uvent, and uwater to 10.0
while uCO2 is changed in steps of 1.0. The figure clearly shows that a large step-size
is favorable. Hence, rapidly changing the value of a variable is significantly more
important than fine-tuning it.
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Figure 8.12: Cumulative profits for DALS trade-offs on step-size. The results are
averaged over 30 runs.


8.4.4 Comparison of algorithms


For comparison, figure 8.13 shows the results obtained with the best setting for each
of the three algorithms. The graph denoted ’RS, #Ev=200’ illustrates the perfor-
mance of a random search algorithm that, at each time-step, picks the best of 200
randomly generated solutions. This algorithm was included to give a lower bound
of the performance. Unexpectedly, the three algorithms had nearly matching per-
formance when properly tuned. A thorough examination of the data revealed that
the EA was slightly better than the DALS, which was marginally better than the
PSO. Somewhat surprisingly, the random search had actually a quite good per-
formance. This and the experiments on tuning the three algorithms suggest that
the problem is in fact rather easy once it is treated as a series of related static
problems.


8.4.5 Analysis of control signals


The reasons for the significant differences between the various settings for each
algorithm can be found by analyzing the control signals over time.


For the EA, figure 8.14 shows the signals uheat and uCO2 for the best (1, 200)
and the worst setting (200, 1). The difference in performance is closely related to
these variables, because profit is easily lost by sub-optimal control of heating and
CO2 injection. At night the temperature drops, which requires heating to prevent
that the crops are damaged. At daytime the sunlight permits growth, which can
be augmented by injecting additional CO2. The best control strategy (figure 8.14,
left graph) properly adjusted the control to follow the day and night phases. The
worst strategy that we found failed to turn off the heating at daytime, and valuable
CO2 was wasted during the night because the absence of sunlight makes growth
impossible. Despite of a large population size and thus supposedly good coverage of
the search space, this strategy was simply not able to follow the landscape. This is







136 Chapter 8. Case study: Direct control of a crop-producing greenhouse


0


2


4


6


8


10


12


14


16


18


0 20 40 60 80 100 120 140 160


C
um


ul
at


iv
e 


pr
of


it 
[D


K
K


/m
2]


Time [hours]


EA,     ps=001, gen=200
PSO,   ps=005, gen=40
DALS, Stepsize (5.0,5.0,0.5,5.0)
RS, #Ev=200


Figure 8.13: Cumulative profits for best algorithm settings. ’RS, #Ev=200’ de-
notes random search with 200 evaluations at each time-step.


evident from the right graph in figure 8.14, where uheat and uvent appear noisy and
are not changing as quickly as in the best strategy. Conclusively, a large population
size is not an advantage versus having many generations between updates. The
best and worst performing PSO setting lead to similar results regarding the control
signals, and are thus not shown.
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(b) Worst EA control.


Figure 8.14: Control values for heating and CO2 injection for best EA control (left
graph) and worst EA control (right graph).


To further examine the control strategies, we plotted the partial fitness land-
scapes at each time-step. Note that the fitness (equation 8.4) is plotted on these
graphs, and not the cumulative profit. The landscapes were obtained by fixing
two of the four control variables to the values encoded in the population’s best
solution and then plotting the fitness for combinations of the remaining two vari-
ables. Figure 8.15 illustrates two example landscapes for uheat versus uCO2 and
uvent versus uCO2. The landscapes were very simple in all cases, which confirm our
earlier results on rudimentary versions of the simulator [146; 88].
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Figure 8.15: An example of partial fitness landscapes at time t = 7.75. The
landscapes are obtained by fixing the remaining two control parameters to the
current best values.


Regarding the DALS, a surprising result appeared when analyzing the control
signals. Unexpectedly, two very different control strategies emerged. Figure 8.16
displays ventilation (uvent) and CO2 injection (uCO2) for the best and the worst
step-sizes. The worst performing strategy (small step-size) ventilated a lot but
refrained from injecting expensive CO2. The advantage of ventilating is that CO2 is
obtained for free from the environment. Conversely, high ventilation requires some
heating at night, which is expensive. The best performing strategy (large step-
size) was more or less the opposite. In this case, the algorithm kept ventilation at
a minimum and injected much CO2. The artificially augmented CO2-level allowed
a particularly high growth rate and thus increased profit despite of the expenses
for CO2. In addition to the increased growth, this strategy saved heating, which
further improved the profit.
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(a) Best DALS control.
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Figure 8.16: Control values for ventilation and CO2 injection for best DALS control
(left graph) and worst DALS control (right graph).


Interestingly, the two strategies correspond to the two strategies found in our
first study with an EA where the two strategies appear for two different predic-
tion horizons (section 8.4.1). Changing the prediction horizon essentially alters
the fitness definition and thus the landscapes searched by the algorithm. In the
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experiments on DALS, the two strategies emerged because of the algorithm and
not as a result of the fitness definition. This is particularly interesting because it
shows that the influence of the search procedure may actually lead to a completely
different control strategy. A careful examination of the fitness landscapes (figure
8.17) revealed that the worst performing strategy induced a local optimum near
uvent = 40 and uCO2 = 0 at time t = 8.75 (figure 8.17, third row, left graph), which
was absent for the best performing strategy at this time (figure 8.17, third row,
right graph).
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Figure 8.17: Partial landscapes of uvent vs. uCO2 for DALS when the worst (left)
and best (right) strategies diverge. The black dots denote the control signal found
by the algorithm.
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To further investigate this, we sampled the landscape in a four-dimensional
grid and found all local optima in this grid. From time t = 8.0 to t = 17.5
(daylight) two competing control strategies existed when the worst performing
strategy controlled the greenhouse. This was also the case for the best performing
strategy, but in the much shorter time-span from t = 10.25 to t = 12.75. Hence,
multiple optima existed in time from t = 8.0 to t = 10.25 and again from t = 12.75
to t = 17.5. In the period from t = 10.25 to t = 12.75, the two control strategies
had two overlapping optima, although with different fitness.


8.4.6 Multi-valued control


The experiments reported in the previous sections were performed using a constant
control signal throughout the prediction horizon. Although this is a perfectly valid
approach, it may be possible to further improve the performance by encoding a
control setting for each step in the prediction horizon. Hence, the control variables
are now multi-valued in the sense that each control variable is encoded with one
setting per time-step, i.e.,


u = [uheat[0], uvent[0], uCO2[0], uwater[0], . . . , (8.7)


uheat[PH− 1], uvent[PH− 1], uCO2[PH− 1], uwater[PH− 1]]


An alternative representation encodes the first control setting and a number of
deltas, which are added to the first signal during the prediction horizon. In this
case, the multi-valued control vector is:


u = [uheat[0], uvent[0], uCO2[0], uwater[0], (8.8)


∆uheat[1], ∆uvent[1], ∆uCO2[1], ∆uwater[1], . . . ,


∆uheat[PH− 1], ∆uvent[PH− 1], ∆uCO2[PH− 1], ∆uwater[PH− 1]]


The two approaches are illustrated for uheat in figure 8.18.
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(b) Multi-valued delta encoding.


Figure 8.18: Absolute and delta encoding for multi-valued control of heating
uheat ∈ [0 : 150]. Prediction horizon of four steps (PH = 4), control horizon
of one step (CH = 1).
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Naturally, a multi-valued encoding complicates the optimization problem, be-
cause the dimensionality of the search space is now 4PH instead of 4. For example,
a prediction horizon of four steps gives a 16-dimensional search problem. Switch-
ing from constant to multi-valued control variables raises a number of interesting
questions.


1. Does the multi-valued control variables increase performance or is the pro-
blem too complex because of the larger dimensionality?


2. Which encoding is the best? Absolute or delta?


3. Is the trade-off with minimal population size and maximal number of gener-
ations still the best for multi-valued encodings?


Furthermore, multi-valued control introduces a number of possibilities regard-
ing variants of the encoding. To further explore the aspects of multi-valued control
signals, the following encoding variants were tested on the EA (the EA was the
best of the three algorithms tested in section 8.4.4).


• Constant: The encoding used in the previous sections, i.e., constant control
signal throughout the prediction horizon.


• Absolute encoding: One signal per time-step (equation 8.7, figure 8.18(a)).


• Absolute encoding + shift: One signal per time-step (equation 8.7, fig-
ure 8.18(a)) with the signals shifted to the left after they are imposed on
the system. For a prediction horizon of four steps, the left shift for uheat


corresponds to the assignments uheat[0] ← uheat[1], uheat[1] ← uheat[2], and
uheat[2] ← uheat[3]. The signals are shifted one step to the left, because the
control horizon is CH = 1.


• Delta encoding: First signal and one delta for each following time-step
(equation 8.8, figure 8.18(b)). In delta encoding, the search ranges for the
deltas must also be defined. In the experiments, these ranges were ∆uheat ∈
[−10, 10], ∆uvent ∈ [−10, 10], uCO2 ∈ [−1, 1], and uwater ∈ [−10, 10]. The
imposed control signal was clipped to be in the range of the control variables
in case the added deltas gave a value outside of the control range. As men-
tioned in section 8.2, the control ranges were: uheat ∈ [0, 150], uvent ∈ [0, 100],
uCO2 ∈ [0, 10], and uwater ∈ [0, 100].


• Delta encoding + reset: First signal and one delta for each following
time-step (equation 8.8, figure 8.18(b)) with the deltas reset to zero before
each optimization period (inner loop of in figure 8.2). This approach allows
the algorithm to easily reverse the control curve created by the deltas. For
example, from an increase (positive deltas) to a decrease in heating (negative
deltas).


As mentioned in section 8.4.2, a prediction horizon of four steps (PH = 4) gave
a good performance, which was nearly as good as eight steps (PH = 8). In multi-
valued control, a doubling in prediction horizon also doubles the length of the
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genome, which makes the optimization problem more challenging. Hence, it may
not be an advantage to double the prediction horizon if only limited computation
time is available. Furthermore, the experiments on constant signals showed that
the best approach was to have a population size of one individual and a maximal
number of generations. For multi-valued control, the problem could be so difficult
that a larger population size may give a better performance. To examine these
issues, the following trade-offs (ps, gen, PH) were tested: (1,200,4), (10,20,4),
(1,100,8), and (10,10,8), i.e., the total computation time was 800 units per control
step. The results are displayed in table 8.2.


(ps, gen,PH) Encoding Dim. Avg. profit ± SE


(1,200,4) Constant 4 16.3415 ±0.0003


Absolute 16 16.2406 ±0.0113


Absolute + shift 16 15.4131 ±0.0588


Delta 16 16.4409 ±0.0023


Delta + reset 16 16.3539 ±0.0006


(10,20,4) Constant 4 16.2400 ±0.0036


Absolute 16 15.6551 ±0.0192


Absolute + shift 16 14.1407 ±0.0782


Delta 16 16.3546 ±0.0034


Delta + reset 16 16.3002 ±0.0018


(1,100,8) Constant 4 16.4954 ±0.0008


Absolute 32 14.3333 ±0.0313


Absolute + shift 32 14.1688 ±0.0636


Delta 32 16.3771 ±0.0062


Delta + reset 32 16.4907 ±0.0010


(10,10,8) Constant 4 15.3401 ±0.0212


Absolute 32 13.2569 ±0.0554


Absolute + shift 32 12.6223 ±0.0656


Delta 32 15.9792 ±0.0130


Delta + reset 32 16.0241 ±0.0078


Table 8.2: Average profit per m2 and standard error (SE) for the five approaches
on the four trade-offs. The column denoted “Dim.” shows the number of encoded
variables (problem dimensionality). Average of 30 runs.


In general, the two variants of absolute encoding were clearly the worst for
all trade-offs. Hence, the problem’s increased complexity actually lead to a lower
performance compared with the simple approach of having a constant control
signal throughout the prediction horizon. This was particularly evident for the
long prediction horizon. In this case, the algorithm’s performance was signifi-
cantly lower compared with the constant control signal approach. Surprisingly,
the absolute + shift encoding had an even lower performance in all cases. This
is unexpected because it should intuitively be better to shift the control signals,
since this gives a better starting point for the optimization in the next time-
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step. A careful examination of the evolved control signals revealed that the al-
gorithm, in nearly all control steps, started with adding a significant amount
of CO2, which was then reduced in the following steps of the prediction hori-
zon. The shifting of control signals actually counteracts this strategy because
the shifting operation constantly overwrites the first control signal. For example,
a CO2-injection vector at time t, uCO2(t)[0..3] = [4.05, 1.87, 1.54, 0.67] becomes
uCO2(t + 1)[0..3] = [1.87, 1.54, 0.67, 0.67] after a shift. Hence, the high value of
4.05 is overwritten and has to be rediscovered by the algorithm in every control
step.


In contrast to the absolute encodings, the two variants of delta encoding had
good performance on all trade-offs. For the (1,200,4)-trade-off, the delta encod-
ing (without reset) slightly improved the performance of the constant approach,
whereas the delta + reset encoding had a matching performance. In the (10,20,4)-
trade-off, both delta encodings had a better performance than the constant con-
trol approach. The somewhat lower performance of the delta + reset approach
is because resetting distrupts strategies like the decreasing CO2 injection example
described above. For the longer prediction horizon of eight steps, the complex-
ity of the problem clearly affected the results. For the (1,100,8)-trade-off, the
constant control approach was in fact the best, but closely followed by the delta
+ reset approach. However, it should be noted that resetting the deltas gives a
starting point of the search that corresponds to a constant control approach (first
signal and deltas of zero). Interestingly, the delta approaches in the last trade-off
(10,10,8) had significantly higher performance compared with the constant control
approach. Hence, having multiple solutions with delta encoding is actually an
advantage in this particular setup, although both variants had lower performance
compared with the constant control approach in the (1,100,8)-trade-off.


Surprisingly, the best of all techniques was in fact the constant control approach
with the (1,100,8)-trade-off. Besides the increased problem complexity, the reason
for this is most likely that the controller used a very simple weather prediction
model, i.e., the weather was assumed to be constant during the prediction horizon.
Hence, equipping the controller with a better weather prediction technique may
be necessary to improve the performance of multi-valued control in this particular
case. Using more accurate weather prediction, the constant control approach would
have to find a setting that performs well on average in the prediction horizon,
whereas the multi-valued approach will be able to adapt the settings according to
the changing weather.


8.5 Summary


In this study, we have investigated a number of issues regarding direct control.
The main objective was to study dynamic optimization by experimenting with
a realistic dynamic problem – control of a crop-producing greenhouse. First, we
experimented with the prediction horizon using a simple EA. In the greenhouse
problem, it turned out to be an advantage to have a rather long prediction horizon,
because it allowed the algorithm to discover the long term effects of the control.
Apparently, different control strategies emerge for different prediction horizons.
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A short horizon lead to a strategy with high ventilation and low CO2 injection,
whereas a long horizon resulted in the opposite strategy, which turned out to be
the most profitable of the two.


To get a better understanding of the greenhouse control problem, we expanded
our experimentation to include a PSO algorithm and a local search technique.
However, the standard PSO and simple local search require some extensions to
make them capable of handling dynamic problems. Hence, we suggest an exten-
sion to the basic particle swarm optimization technique (PSO) and introduce the
directed ascent local search (DALS). For all three algorithms, we investigated a
number of settings of the primary parameters. Regarding the EA and the PSO,
we tested various trade-offs between population size and number of generations.
These experiments clearly showed that a setting with a low population size and
many generations was better than the opposite setting. This confirms the Banga et
al.’s results with the multi-valued control technique [15; 16]. Interestingly, a long
static period (20-50 generations) between problem updates has been the preferred
setting in most studies on artificial dynamic problems. Moreover, this observation
confirms the results from preliminary experiments performed by Ursem in an ear-
lier investigation on a set of artificial moving peak problems [138]. Hence, making
the problem as static as possible appears to be an important key to success in
dynamic optimization.


For the DALS algorithm, we compared the performance obtained with different
step-sizes. Here, a large step-size proved to be the best. Somewhat surprising, the
comparison of the best settings for each algorithm showed that they have nearly
equivalent performance. This suggests that the problem is rather easy once it is
treated as a series of related static problems, which is in fact rather surprising
when considering the complexity of the simulator. However, speculating about
direct control in general quickly gives a plausible explanation. In direct control, the
fitness landscape expresses the quality of all possible control settings at the current
operation point. Hence, a highly multimodal landscape is very unlikely because
each local optimum corresponds to a distinct control strategy where neighboring
strategies are suboptimal. Therefore, the EAs (and PSOs) major advantage on
multimodal problems may not be that relevant for direct control, because rather
few strategies exist.


To find the reason for the differences in performance, we analyzed the control
signals found by the algorithms. For the EA and the PSO, this analysis showed
that the worst performing setting was unable to properly track the global opti-
mum. The two algorithms did not turn heating off during the day and valuable
CO2 was lost during the night. The analysis of the control signals for the DALS
revealed an unexpected result. Here, two step-sizes lead to two very different con-
trol strategies. The worst performing strategy kept high ventilation during day
and injected no CO2, which was obtained for free from the environment. The best
strategy was more or less the opposite. In this case, the algorithm operated with
minimal ventilation and a high level of injected CO2. This allowed a particularly
high growth rate, which increased the profit despite the expenses to CO2. The
two strategies are similar to those reported in the first investigation on prediction
horizons; however, for DALS, they emerge because of the algorithm, whereas two
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different prediction horizons were the reason in the previous investigation. Inter-
estingly, the first strategy induced a local optimum that did not exist at the same
time when the second strategy controlled the greenhouse. Hence, a local optimum
in time appeared as a consequence of the search. In a wider context, optima in time
may appear in any dynamic problem where the search algorithm somehow influ-
ences the future state of the problem, e.g., scheduling problems where rescheduling
occurs.


Regarding multi-valued control, the additionally encoded control values allowed
a more fine-grained control, but at the expense of an increased problem complexity.
Surprisingly, the multi-valued control strategies did not outperform the much sim-
pler constant control approach on the trade-off with the best performance (ps = 1,
gen = 100, PH = 8). However, the multi-valued delta encoding did outperform
the constant control approach on the four-step prediction horizon, which indicates
that better performance can be achieved with multi-valued control. Besides the
increased problem complexity, a likely explanation for the lower performance of
the multi-valued control approaches is that the weather prediction (assuming no
change) in the controller was too simple to fully exploit the potential of multi-
valued control.


8.6 Future research


In a theoretical EA and PSO perspective, population diversity maintenance is im-
portant to find multiple optima in space. However, the concept of diversity is
not directly transferable to algorithms dealing with optima in time. Maintaining
spatial diversity does not necessarily guarantee that competing control strategies
are found. Hence, it may be worth investigating algorithms that are able to lo-
cate multiple optima in time and thereby maintain alternative control strategies
simultaneously. Tracking multiple spatial optima concurrently has recently been
investigated in relation to artificial dynamic problems [138; 117; 22]. The main
idea in these studies is to use a self-organized population structure with a variable
number of subpopulations and to let each subpopulation track different optima.
Thus, sub-optimal peaks are located and tracked before they may become the
global optimum. These investigations show that having multiple populations al-
lows the algorithms to track several optima concurrently. Yet, these are spatial
optima and not temporal optima. Tracking temporal optima poses different chal-
lenges because they arise as a consequence of the search. To this end, algorithms
capable of predicting the outcome of current control actions may have an advan-
tage, because a currently sub-optimal control signal could generate better optima
at a later stage. A straightforward way of predicting is just to simulate more time-
steps. In this connection, one immediate idea may be to have multiple populations
that evaluate solutions based on different prediction horizons. The signal applied
to the system is then the one that gives the overall best performance on the long
run.


For multi-valued control, several issues call for further attention. The com-
plexity of the search problem should be reduced, since this appeared to be the
main disadvantage of the approach. A straightforward idea would be to encode
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a start and a end value for each control variable, and then interpolate the con-
trol signal between these two values, i.e., the approach suggested by Banga et al.
[15; 16]. Of the two encoding schemes, the delta encoding seems to be the most
promising direction for future application. However, there are several open issues
in this approach. First, the ranges of the deltas restricts the maximal change in a
control variable, which may yield suboptimal control on some problems. Second,
the experiments did not clearly indicate if it was an advantage to reset the deltas.
Thus, it may be an idea to investigate inbetween reset strategies; for instance, mul-
tiplying each delta by a forgetting factor r. A complete reset then corresponds to
r = 0.0 and no reset is r = 1.0. Finally, it would be very important to investigate
aspects of improved weather prediction in connection with the control.
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Chapter 9


Summary and conclusions


In this thesis, I have presented my research on evolutionary computation (EC). The
focus in my work has been on three fundamental challenges in EC, on suggesting
algorithms for dealing with these challenges, and on demonstrating the potential
of the proposed algorithms on real-world problems in system identification and
control. The outcome is a number of novel algorithms, improved knowledge of
performance of existing techniques, and increased insight into the field of dynamic
optimization. The results have been published in leading journals and conference
proceedings.


Regarding basic research in EC, I concentrated on fitness function design, pa-
rameter control, and multimodal optimization, which are three of the main chal-
lenges in EC.


For fitness function design, the smoothness of the fitness landscape is of pri-
mary concern. Rugged landscapes typically arise from either imprecise fitness
calculations or from the structure of the search space, i.e., that adjacent solu-
tions in the search space have very different fitness values. In connection with the
greenhouse simulator, I experienced the problem of imprecision in the fitness cal-
culation when basing it on the Runge-Kutta-Fehlberg approximation of non-linear
differential equations. The adaptive step-size for the numerical integration in this
approach was the main reason for the imprecision, because different solutions in
the search space required different adaptation schemes. Consequently, phantom
peaks arised in the fitness landscape. Regarding the structure of the search space,
Thiemo Krink and I suggested the smooth operator genetic programming (SOGP)
for arithmetic expressions [144]. The SOGP approach was applied to black box
structural identification. The approach had a slightly better performance than
ordinary GP, but the found solutions were more robust on the test data. Our
SOGP was tested on a simple identification problem, but is a general approach for
arithmetic expression. Currently, the technique is being tested as a fitness function
approximation approach.


In parameter control, Thiemo Krink and I suggested the terrain-based patch-
work model as a self-organizing population approach to setting parameters [87].
This algorithm introduced a flocking behavior around the best parameter setting,
which improved performance on some of the test problems, because more individ-
uals exploited the best setting. In another study, I investigated the potential of
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self-adaptation (genetically encoded parameters) on artificial dynamic problems
and found that this approach fails on even rather simple dynamic problems [138].
Self-adaptation requires many generations to find superior parameters. In conclu-
sion, the algorithm will always be behind if the dynamic problem changes too fast
and in an irregular fashion.


For multimodal optimization, I suggested the multinational EA, which is de-
signed to find several distinct optima and thereby provide alternative solutions to
a human expert [137]. The algorithm employs a self-organizing population struc-
ture that automatically divides the search space into a number of sub areas. The
algorithm was compared with the sharing technique, which is another very pop-
ular method for finding multiple optima. In connection with the experiments on
the multinational EA, I discovered that sharing showed a rather peculiar behav-
ior on some problems. For this reason, I investigated sharing and found it to be
very sensitive to the problem it is applied to [139]. In fact, the algorithm failed
on even simple variants of the test problems used in the original study by Gold-
berg and Richardson [58]. This discovery is quite surprising when considering the
numerous papers and theses published on variants of this technique (more than
100). In addition to these two studies, I suggested the diversity-guided EA [140].
The diversity-guided EA (DGEA) differs from most other multimodal optimization
techniques, because it uses a population diversity measure to alternate between
phases of exploration and phases of exploitation (fine-tuning). An unexpected re-
sult from this study is that most fitness improvements occur at surprisingly low
diversity. In contrast, maintaining high diversity has long been considered the key
to success in multimodal optimization. This study underlines the importance of
both high and low diversity. To further test the technique, I compared it with
seven other stochastic optimization algorithms on two induction motor identifi-
cation problems [147]. This study was performed in collaboration with Pierré
Vadstrup, Grundfos A/S [147]. The DGEA showed outstanding performance on
both problems.


Regarding optimization of dynamic problems and direct control, a number of
interesting results appeared. Optimization of dynamic problems has been investi-
gated over a period of approximately 15 years. However, most of this research has
been, and still is, carried out on rather artificial dynamic test problems such as the
moving peaks. In an initial study, I demonstrated the usefulness of multimodal
optimization techniques on such problems [138]. However, investigating artificial
problems made me increasingly sceptical regarding the usefulness of these prob-
lems in research. To further examine this, and thus the foundation of a major part
of EA-research in dynamic optimization, Thiemo Krink, Mikkel T. Jensen, Zbig-
niew Michalewicz, and I initiated a basic study on test-case generators for artificial
dynamic problems [146]. As expected, we concluded that such synthetic problems
have little in common with realistic dynamic problems, in particular with control
problems. Consequently, Thiemo Krink, Bogdan Filipič, and I started a study on
dynamic problems based on direct control of a crop-producing greenhouse. The
main issue in direct control (and dynamic optimization in general) is the amount
of computation time (CT ) available for the optimization, which essentially deter-
mines the maximal number of evaluations before the problem changes. In EAs,
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the computation time can be balanced between population size (ps) and number
of generations (gen) between updates, i.e., CT = ps · gen. In direct control of the
greenhouse, we found that the best control was achieved with a minimal popula-
tion size (1 individual) and a maximal number of generations between updates.
This was quite surprising, because it essentially turns the problem into a series of
related static problems that we optimized using an EA similar to a (1+1)-evolution
strategy. Conclusively, each static instance of the problem had an extremely simple
fitness landscape. To further examine this, we introduced a novel particle swarm
optimization algorithm and a specialized local search for dynamic problems and
compared these algorithms with the simple EA [143]. The three algorithms showed
similar performance. Interestingly, different step-sizes in the local search algorithm
lead to two different control strategies, i.e., alternative paths of the optima in the
dynamic fitness landscape. This observation is captured in the novel concept of
optima in time, which is temporal variant of the well-known optima in search
space [143]. In short, optima in time may emerge in dynamic problems where the
search influence future states of the problem. As found in our study, this is the
case for direct control problems. Another example is scheduling problems where
rescheduling is required during the optimization. Finally, I compared the simple
constant control approach with four variants of multi-valued control. Surprisingly,
the simple approach turned out to be the best, which is most likely caused by
the increased complexity of the search problem and that the simplistic weather
predictor assumed constant weather conditions during the prediction horizon.


As mentioned, the greenhouse study was initiated to investigate dynamic op-
timization. Traditionally, research on dynamic optimization has been performed
because real-world problems may have constraints, multiple objectives, and dy-
namic components. The relevance of performing research on the first two is be-
yond doubt, but what about dynamic optimization? In my view, our investigation
on artificial dynamic problems has sort of “pulled the carpet” from under a large
part of the dynamic optimization research, because nearly all publications in this
field are based on synthetic benchmarks like the moving peaks problem. As men-
tioned earlier, the main issue in real-world dynamic optimization problems is the
available computation time (CT ). Now, EAs are rather demanding with respect to
computation time. Hence, a small CT of only few hundred milliseconds makes EA-
optimization impossible because the algorithm may not be able to evaluate enough
individuals to keep up with the fast changing problem. On the other hand, a large
CT will give the algorithm sufficient time to solve the problem, but during this
time the problem is static. Hence, are special techniques for dynamic problems
really that necessary? It is my expectation that most real-world dynamic problems
can be handled by techniques for static problems, perhaps with the small extension
that the best individual survives between problem instances. In addition, some
performance improvement on periodic dynamic problems may be possible by using
memory based techniques. However, this is unclear at the present stage.
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Chapter 10


Future research


Regarding future work, several interesting topics call for further attention. For
dealing with the smoothness problem in genetic programming, Thiemo Krink and
I suggested the smooth operator genetic programming (SOGP). In collaboration
with MSc student Kim Pedersen, I am now working on extending the technique and
applying it to the problem of dealing with expensive fitness evaluations (section
3.2.3). In this connection, we will test the interpolating diviplication operator
described in section 3.1.2 and possibly also a number of other smooth operators.


In parameter control, Thiemo Krink and I investigated the terrain-based patch-
work model, which uses the population structure for controlling the algorithm’s
parameters. A related idea I have is to use so-called cooperative co-evolution for
parameter control. The idea is basically to have one population of problem solu-
tions and one population of parameter settings. The individuals in the population
of problem solutions will then be mutated and recombined using the settings en-
coded in an individual from the parameter population. The fitness of a parameter
individual is assigned according to how good solutions it produces.


For multimodal optimization, my diversity-guided EA gave very encouraging
results on both artificial problems and on the two induction motor problems. For
this reason, it would be interesting to further develop the algorithm. However,
the algorithm should be kept as simple as possible, because this is important
for practical application. The main focus should probably be on simplifying the
decision process for switching the mode. The version used in the induction motor
study had six parameters, which is perhaps too much. In a more theoretical
context, the diversity-guided EA could be used to investigate the importance of
diversity in multimodal optimization. As stated in chapter 5, diversity is believed
to play a key role in multimodal optimization. However, exactly what role is rather
unclear at the present stage.


In system identification, I intend to investigate several issues. The study on pa-
rameter identification of the induction motors underlined the importance of being
able to handle problems with correlated parameters, although the used algorithms
gave very good results. Interestingly, few algorithms are designed for this pur-
pose. Hence, an investigation on techniques for correlated parameters would be of
great value. Regarding structural identification, the smooth operator genetic pro-
gramming (SOGP) appears to be a promising direction, although our first study
only included one application of SOGP. An elaborate investigation of structural
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identification should include ordinary GP, SOGP, and other approaches such as
neural networks and regression models. A broad comparison will hopefully give
some insight into the performance of the genetic programming approaches and the
potential of EAs in training and tuning of other techniques.


For control problems, I focused on the direct control method. Surprisingly, this
study indicate that problems handled by direct control are rather simple from an
optimization perspective. It would be very interesting to examine other control
problems to see if this observation holds for a broader range of problems. In offline
control, EAs in combination with other techniques, e.g., PID, fuzzy, and neural net
controllers, have been investigated in a number of studies. However, many of these
studies are based on rather simple text book EAs. Hence, a broad comparison
of EA techniques would be in place. Furthermore, it would be interesting to
investigate genetic programming as a “pure” EC approach to control.


Another relevant area is industrial design, because this is highly related to
system identification and control. As a post.doc., I plan to initiate a study on
multiobjective optimization of pump motor design. The project is a continuation
of my collaboration with Pierré Vadstrup, Grundfos A/S. The practical goal in this
project is to find a set of trade-off designs that are optimal with respect to two
conflicting objectives; production cost and pump performance. The scientific goal
is to investigate multiobjective optimization algorithms and suggest extensions of
these based on my previous research. Hence, to perform basic research with focus
on a real-world problem.
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Appendix B


Simple benchmark problems


These benchmark problems are often used in studies on evolutionary computation.
For additional problems, see appendix B in [99].


1. De Jong function F1 (minimization):


3∑
i=1


x2
i


where −5.12 ≤ xi ≤ 5.12.


2. De Jong function F2 (minimization):


100(x2
1 − x2)


2 + (1− x1)
2


where −2.048 ≤ xi ≤ 2.048.


3. De Jong function F3 (minimization):


5∑
i=1


integer(xi)


where −5.12 ≤ xi ≤ 5.12 and integer(xi) is the integer part of xi.


4. De Jong function F4 (minimization):


30∑
i=1


ix4
i + N(0, 1)


where −1.28 ≤ xi ≤ 1.28 and N(0, 1) is the normal distribution.
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5. De Jong function F5 (minimization):


1


1/K +
∑25


j=1 1/fj(x1, x2)


where −65.536 ≤ xi ≤ 65.536, K = 500, fj(x1, x2) = j +
∑2


i=1(xi − aij)
6,


and


[aij] =


[
-32 -16 0 16 32 -32 -16 . . . 0 16 32
-32 -32 -32 -32 -32 -16 -16 . . . 32 32 32


]


6. Goldberg function F1 (maximization):


sin 6(5πx)


where 0 ≤ x ≤ 1.


7. Goldberg function F2 (maximization):


sin 6(5πx) · exp


(
−2 ln (2)


(
x− 0.1


0.8


)2
)


where 0 ≤ x ≤ 1.


8. Ackley function F1 (minimization):


20 + e− 20 exp



−0.2


√√√√ 1


n


n∑
i=1


x2
i



− exp


(
1


n


n∑
i=1


cos(2π · xi)


)


where −30 ≤ xi ≤ 30.


9. Griewank function F1 (minimization):


1


4000


n∑
i=1


(xi − 100)2 −
n∏


i=1


cos


(
xi − 100√


i


)
+ 1


where −600 ≤ xi ≤ 600.


10. Rastrigin function F1 (minimization):


n∑
i=1


(x2
i − 10 cos (2πxi) + 10)


where −5.12 ≤ xi ≤ 5.12.







171


11. Rosenbrock function F1 (minimization):


n−1∑
i=1


(100(xi+1 − x2
i )


2 + (xi − 1)2)


where −100 ≤ xi ≤ 100.


12. Schaffer function F6 (minimization):


0.5 +
sin2


(√
x2


1 + x2
2


)
− 0.5


(1.0 + 0.001(x2
1 + x2


2))
2


where −100 ≤ xi ≤ 100.
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Appendix C


Crop-producing greenhouse


This appendix describes a simulator for a crop-producing greenhouse. The sim-
ulator is implemented in Java and is, to a large extent, based on the greenhouse
simulator described in [106]. The original description and MatLab code are on-
line at www.pohlheim.com. The simulator described here differs on a few minor
aspects:


• The description is in English. The original description is in German.


• The naming of state variables follows the control engineering terminology
and the terminology presented in [146].


• The greenhouse is made more realistic by including the wind speed in the
equations related to air-exchange with the surroundings. The original simu-
lator was, to some degree, modeling a hermetically closed greenhouse.


• The approximation of the non-linear differential equations is protected to
prevent unrealistic values in the variables such as realtive humidity above
100%, negative steam pressures, and temperatures below 0 Kelvin.


The interaction between the controller, the greenhouse, and the immediate
surroundings of the greenhouse is illustrated in Figure C.1. Table C.1 provides an
overview of the variables associated with the controller (u), the greenhouse state
(x), and the environment state (v). The simulator models the profit per m2 over
time. The profit is equal to the income from the production minus the expenses
to heating and CO2 (see section C.1.5).


C.1 State equations


The greenhouse state (x) is modeled by six non-linear differential equations de-
scribing the change over time. The solution to the equations can be approximated
by a fourth-order Runge-Kutta formula. The control variables are measured in
hours, which is converted to seconds in the equations because the differential equa-
tions have to be approximated using a rather short step size to avoid instability.
Preliminary tests showed that a step size of one minute is appropriate. The fol-
lowing sections describe each of the equations in detail. Real weather data is used
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y(t)
Controller


u(t)


State: x(t)


Environment


State: v(t)


Greenhouse


Figure C.1: The interaction between the controller, the greenhouse, and the green-
house environment.


Description Variable


G
re


en
h
ou


se


Indoor steam density [g/m3] xsteam


Indoor air temperature [◦C] xatemp


Indoor CO2 concentration [ppm] xCO2


Accumulated biomass [g/m2] xbiom


Cumulative profit [DKK/m2] xprofit


Condensation on glass [g/m2] xcond


E
n
v
ir


on
m


en
t


Outdoor sunlight intensity [W/m2] vsun


Outdoor air temperature [◦C] vatemp


Outdoor ground temperature [◦C] vgtemp


Relative humidity [% r.H.] vRH


Wind speed [m/s] vwind


Outdoor CO2 concentration [ppm] vCO2


Price of heating [DKK/(W·h)] vPheat


Price of CO2 [DKK/kg] vPCO2


Price of crops (tomatoes) [DKK/kg] vPtom


C
on


tr
ol


Heating [W/m2] uheat


Ventilation [m3/(m2 · h)] uvent


CO2 injection [g/(m2 · h)] uCO2


Water injection [g/(m2 · h)] uwater


Table C.1: System, environment, and control variables of the simulated green-
house. DKK denotes the currency “Danish Kroner”.


to model the environment (v). Weather data can usually be obtained from your
national meteorologic institute at a reasonable price.


C.1.1 Indoor steam density xsteam


The indoor steam density is influenced by four factors:


1. Transpiration of the plants (Trans).
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2. Water injection (WaterInj).


3. Exchange with environment through ventilation (EnvExc).


4. Condensation and evaporation on the greenhouse hull (CondEvap).


The change in the indoor steam density [g/(m3 · s)] is modeled by the following
equation. Please refer to section C.3 for definition of constants, auxiliary variables,
and functions.


ẋsteam =
1


GH · 3600
· (Trans + WaterInj−EnvExc−CondEvap) (C.1)


The auxiliary variables Trans, WaterInj, EnvExc, and CondEvap are calcu-
lated as follows.


Trans = 100 · LeafSize[month] · PM2 · LeafTrans[month] ·TrGrow


TrGrow = (1− b0 · (xCO2 − 600)) · TrCur


TrStd
TrCur = (b1 + b2 · xsun + b3 · (xsun)2 + b4 · fRH(xsteam, xatempA)) ·


fSD(xsteam, xatempA)


TrStd = (b1 + b2 · 300 + b3 · 3002 + b4 · 60) · 10


WaterInj = CW · uwater · (fSSP (xatempA)− fSP (xsteam, xatempA))


EnvExc = (uvent + VM0 + VM1 · vwind) · (xsteam − vsteam)


CondEvap =







Cond if Cond > 0 (Condensation)


Cond if Cond < 0 and xcond > 0 (Evaporation)


0 if Cond < 0 and xcond = 0 (xcond = 0 =⇒ no evap.)


(C.2)


Cond = Trpo ·GR · fSP (xsteam, xatempA)− fSSP (xhtempA)


0.5 · RWS · (xatempA + xhtempA)


Trpo =
1.33 · 3600 · |xatemp − xhtemp|0.33


DA · HCA


xhtemp =







−2.71 + 0.00811 · vsun


+ 0.795 · xatemp + 0.289 · vatemp
if 5 ≤ month ≤ 9


1
3
xatemp + 2


3
· vatemp Otherwise


(C.3)


where b0 = 5.4 · 10−4, b1 = −2.219 · 10−4, b2 = 5.213 · 10−6, b3 = −6.623 · 10−9,
and b4 = 8.5 · 10−6. The transpiration of the plants (Trans) is influenced by the
leaf size (LeafSize[·]), the number of plants per m2 (PM2), the transpiration of
the leaves (LeafTrans[·]), and the current growth conditions (TrGrow). The
growth conditions are modeled as the ratio between the transpiration at the current
state (TrCur) and the transpiration under standard conditions (TrStd), which
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is at 25◦C, xsun = 300 W/m2, xCO2=600 ppm, and fSD(·)=10 hPa. The actual
transpiration of the plants is influenced by the CO2-level, the sunlight intensity,
and the relative humidity. The steam density is also influenced by the water
injected (WaterInj) by the controller (uwater), which, of course, increases the
steam density, but is limited by the saturation steam pressure (fSSP (·)) and the
actual steam pressure (fSP (·)). Furthermore, the steam density is affected by the
exchange with the environment (EnvExc), which is determined by the controlled
ventilation (uvent), the minimal air exchange (VM0), and the wind speed (vwind).
Finally, condensation and evaporation (CondEvap) on the greenhouse hull (the
glass) influence the steam density. The amount of water on the hull is represented
by the state variable xcond, which is limited between 0 and 25 g/m2 (CHM in
Table C.3). The change in water is modeled by one variable (CondEvap), which
is negative when evaporation occurs and positive when condensation occurs. The
calculation of the greenhouse hull temperature (xhtemp) depends on the month
of the simulation. The sunlight intensity (vsun) influences the hull temperature
during the summer period (May-September).


Important note:
The simulator must ensure that fSP (xsteam, xatempA) ≤ fSSP (xatempA). Otherwise,
the greenhouse might reach an infeasible state (infinite temperature, negative pres-
sures, temperatures below 0 K, humidity above 100%, etc.). This can easily be pre-
vented by introducing two variables, SSP and SP, in the calculation of the deriva-
tives, assigning the function values, and checking whether SP≤ SSP. If SP>SSP
then set SP equal to SSP, i.e., SP is limited by SSP.


C.1.2 Indoor air temperature xatemp


The indoor temperature is influenced by the following components:


1. Heat capacity of the air and the plants (HCap).


2. Heating through the heating system (uheat).


3. Heating from the sun (HSun).


4. Heat exchange with the environment through ventilation (HExVent).


5. Heat exchange through the ground (HExGround).


6. Heat exchange through the greenhouse hull (HExHull).


7. Heat change due to condensation on the greenhouse hull (HCondEvap).


8. Heat change due to change in indoor humidity (HHum).


The change in the indoor temperature is modeled as follows.


ẋatemp =
1


HCap
· (uheat + HSun−HExVent−HExGround−


HExHull−HCondEvap−HHum)
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where


HCap = LeafSize[month] · LSW · HCW +


GH · HCA ·DA + GH · HCS · xsteam


HSun = TS · xsun


HExVent =
1


3600
(uvent + VM0 + VM1 · vwind) · (xenergy − venergy)


xenergy = HCA ·DA · xatemp + xsteam · (EEW0 + HCS · xatemp)


venergy = HCA ·DA · vatemp + vsteam · (EEW0 + HCS · vatemp)


HExGround = HG · (xatempA − vgtempA)


HExHull = GR · (HW0 + HW1 · vwind) · (xatempA − vatempA)


HCondEvap =
1


3600
· EEW ·CondEvap (CondEvap from Eq. C.2)


HHum = GH · (EEW0 + HCS · xatemp) · ẋsteam


The heat capacity of the air and the plants (HCap) is determined by the heat
capacity of the plants, the air, and the current amount of steam in the air. The
heating from the sun (HSun) is calculated as the indoor sunlight intensity (xsun)
scaled by the thermic effect factor (TS). The heat exchange due to ventilation
(HExVent) is influenced by the controlled ventilation (uvent), the minimal air
exchange (VM0), and the wind speed (vwind). The difference between the energy
contents of the indoor air (xenergy) and the outdoor air (venergy) also influence this
exchange. The exchange at the ground (HExGround) depends on the difference
between the indoor air and the temperature of the ground. The exchange through
the hull (HExHull) is determined by the difference between indoor and outdoor
temperature and the wind speed (vwind). Furthermore, the condensation or evap-
oration on the hull (HCondEvap) affects the indoor temperature. Finally, the
change in humidity (HHum) affects the indoor temperature.


C.1.3 Indoor CO2 concentration xCO2


The CO2 concentration in the greenhouse is influenced by three factors:


1. Artificially injected CO2 (uCO2).


2. CO2 consumption by the plants through photo-synthesis and transpiration
(CPhoto).


3. Exchange with the environment through ventilation (CExVent).
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The change in indoor CO2 concentration is modeled by the following equation.


ẋCO2 =
uCO2 −CPhoto−CExVent


10−6 ·DC ·GH · 3600


where


CPhoto = 100 · LeafSize[month] · PM2 ·
LeafCO2Ex[month] ·CPhGrow


CPhGrow =


{
CPhCur ·CPhDec if CPhCur > 0


CPhCur otherwise


CPhCur = c1 · (1− exp(−c2 · 0.5 · xsun)) · (1− exp(−c3 · xCO2)) · (C.4)


(xatemp + c4 · (xatemp)
2)− c5 · (xatemp + c6 · (xatemp)


2)


CPhDec =







exp (−c7 · (d1 −
fSD(xsteam, xatempA))2)


if fSD(xsteam, xatempA) < d1


1 if d1 ≤ fSD(xsteam, xatempA) ≤ d2


exp (−c8 · (d2 −
fSD(xsteam, xatempA))2)


if d2 < fSD(xsteam, xatempA)


CExVent = (uvent + VM0 + VM1 · vwind) ·DC · 10−6 · (xCO2 − vCO2)


with c1 = 0.1381, c2 = 8.687 · 10−3, c3 = 3.697 · 10−3, c4 = −1.9083 · 10−2,


c5 = 2.073 · 10−3, c6 = 8.7525 · 10−2, c7 = 0.0001, c8 = 0.001, d1 = 5, and d2 = 10.
The change in CO2 concentration caused by photo-synthesis (CPhoto) is de-


termined by the leaf size, the number of plants per m2, the CO2 exchange at the
current month, and the growth conditions (GPhGrow). The growth depends on
the indoor sunlight intensity (xsun), the current CO2 concentration (xCO2), and the
current indoor temperature (xatemp). The growth is scaled by a factor (CPhDec)
when the steam pressure is not in the optimal range between d1 and d2 (too dry
or too moist). Note that negative growth occurs at night (xsun=0) or at extreme
temperatures. Negative growth is the situation where the plant’s respiration is
larger than its photosynthesis. The CO2 balance is also influenced by the air ex-
change with the environment (CExVent), which is determined by the controlled
ventilation (uvent), the minimal air exchange (VM0), and the wind speed (vwind).
The environment CO2-level (vCO2) can be kept constant at vCO2 = 340 ppm.


C.1.4 Accumulated biomass xbiom


The change in biomass depends on the photo-synthesis of the plants (CPhoto).
It is modeled by the following equation.


ẋbiom = CPhoto · 30


44 · 3600
(C.5)


Note that xbiom models the dry weight of the crop, here tomatoes. Naturally,
the biomass represented by xbiom must be positive, which is achieved by a simple
constraint xbiom ≥ 0 in the simluator.
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C.1.5 Accumulated profit xprofit


The change in profit is modeled as the income minus the expenses.


ẋprofit = ẋbiom ·DWF · vPtom · 10−3 − (C.6)


uCO2 · vPCO2 · 10−3


3600
− uheat · vPheat


3600


In our implementation, the prices are kept constant to vPtom = 12 DKK/kg,
vPCO2 = 4 DKK/kg, and vPheat = 0.0002 DKK/(W·h).


C.1.6 Condensation on greenhouse hull xcond


The change in the condensation amount on the greenhouse hull is modeled by the
following equation.


ẋcond =
CondEvap


3600
(C.7)


Note that the condensation amount on the hull is limited between 0 and 25 g/m2


(CHM in Table C.3). The simulator must implement this constraint.


C.2 Implementation specific details


The simulator is implemented in Java 1.3 and is integrated with EVALife’s EA-
library (available at www.evalife.dk). The code is approximately 1200 lines long
including the Runge-Kutta approximation. The simulator is available upon request
(ursem@daimi.au.dk) except for the weather data, which is copyrighted by the
Danish Meteorologic Institute, DMI (www.dmi.dk). For comparative studies we
recommend to purchase the data for the measuring station Aarslev, Denmark, 2000
from DMI, which is available to researchers for about 900 DKK (110$). Please
contact Rasmus K. Ursem (ursem@daimi.au.dk) if you decide to purchase this
weather data, since the data contains a few gaps and it would be important to use
the exact same data in a comparative study.
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C.3 Physical constants, auxiliary variables, and


functions


Description Variable Unit Value


Gas constant for steam RWS [J/(g·K)] 0.46152


Heat capacity for air HCA [J/(g·K)] 1.006


Heat capacity for steam HCS [J/(g·K)] 1.8631


Heat capacity for water HCW [J/(g·K)] 4.1868


Evaporation energy for water 20◦C EEW [J/g] 2453


Evaporation energy for water 0◦C EEW0 [J/g] 2501


Density of air at 20◦C and 760 Torr DA [g/m3] 1204


Density of CO2 at 20◦C and 760 Torr DC [g/m3] 1840


Table C.2: Physical constants.


Description Variable Unit Value


Plants per m2 PM2 1


Transmission degree for glass TG 0.71


Thermic degree for sunlight TS 0.6


Coefficient for water injection CW [1/Pa] 0.0005


Greenhouse height GH [m] 3


Ratio glass surface/ground surface GR 1.64


Heat exchange coeff. at no wind HW0 [W/(m2 ·K)] 3


Heat exchange gradient at nonzero wind HW1 [(W/(m2 ·K))/(m/s)] 0.2


Heat exchange coeff. at ground HG [W/(m2 ·K)] 3


Maximal condensation on greenhouse hull CHM [g/m2] 25


Minimal air exchange at no wind VM0 [m3/(m2 · h)] 2


Minimal air exchange gradient VM1 [(m3/(m2 · h))/(m/s)] 2


Leaf size to water equivalent factor LSW [g/m2] 1000


Dry weight factor for crop (tomatoes) DWF 10


Table C.3: Greenhouse constants.


The following equations are used multiple times in the differential equations
describing the greenhouse state.


Saturation steam pressure over water [Pa]


Saturation steam pressure in Pa over water at temperature T in Kelvin.


fSSP (T ) = exp (a1/T + a2 + a3 · T + a4 · T 2 + a5 · log T ) (C.8)


where T is the temperature in Kelvin, a1 = −6094.4642, a2 = 21.1249952, a3 =
−0.02724555, a4 = 0.0000168534, and a5 = 2.4575506.







C.4. Translation details 181


Description Variable Unit Function


Absolute temp. for xatemp xatempA [K] xatemp + 273.15


Absolute temp. for xhtemp (Eq. C.3) xhtempA [K] xhtemp + 273.15


Absolute temp. for vatemp vatempA [K] vatemp + 273.15


Absolute temp. for vgtemp vgtempA [K] vgtemp + 273.15


Indoor sunlight intensity xsun [W/m2] TG·vsun


Outdoor steam density vsteam [g/m3]
vRH · fSSP (vatempA)


100 · vatempA · RWS


Table C.4: Auxiliary variables.


Month 1 2 3 4 5–10 11 12


LeafSize[·] 0.5 0.5 0.8 1.5 2.0 1.0 0.5


LeafTrans[·] 0.015 0.015 0.015 0.015 0.015 0.015 0.015


LeafCO2Ex[·] 1.0 1.0 1.0 1.0 1.0 1.0 1.0


Table C.5: Plant growth variables.


Steam pressure [Pa]


fSP (S, T ) = S · T · RWS (C.9)


where S is the steam density (e.g., xsteam), T is the temperature in Kelvin, and
RWS is the gas constant (see Table C.2).


Saturation deficit [hPa]


fSD(S, T ) =
fSSP (T )− fSP (S, T )


100
(C.10)


where S is the steam density (e.g., xsteam) and T is the temperature in Kelvin.


Relative humidity [% r.H.]


fRH(S, T ) = 100 · fSP (S, T )


fSSP (T )
(C.11)


where S is the steam density (e.g., xsteam) and T is the temperature in Kelvin.


C.4 Translation details


The greenhouse simulator described in this report is, as mentioned, translated
from the German description found in [106]. This appendix summarizes the trans-
lation of the variables and their units. The section is mainly intended for readers
who want to verify the translation and seek additional information in the origi-
nal description. Please, note that there might be minor differences between this
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description and the original description. These differences may be due to a rewrit-
ing of the equations for clarification, to remove typos, and to describe extensions
suggested in the presented simulator.


English German Unit
uheat Q [W/m2]
uvent LR [m3/(m2 · h)]
uCO2 W [g/(m2 · h)]
uwater RM [g/(m2 · h)]
xsteam DDI [g/m3]
ẋsteam DDDI [g/(m3·s)]
xatemp TEMI [◦C]
ẋatemp DTEMI [◦C/s]
xCO2 CI [ppm]
ẋCO2 DCI [ppm/s]
xbiom BIOM [g/m2]
xprofit GEWI [DKK/m2]
xcond KS [g/m2]
xhtemp TEMG [◦C]
xsun I [W/m2]


English German Unit
vsun IGLOB [W/m2]
vatemp TEMA [◦C]
vgtemp TEMB [◦C]
vRH FA [% r.H.]
vwind U [m/s]
vCO2 CA [ppm]
vPheat PR3 [DKK/(W·h)]
vPCO2 PR2 [DKK/kg]
vPtom PR1 [DKK/kg]
vsteam DDA [g/m3]
xatempA TAI [K]
xhtempA TAG [K]
vatempA - [K]
vgtempA - [K]


Table C.6: Translation details for control, state, and environment variables. Fur-
thermore, the auxiliary variables calculated from other variables are listed.


English German Unit
RWS RWS [J/(g·K)]
HCA CPL [J/(g·K)]
HCS CPD [J/(g·K)]
HCW CPW [J/(g·K)]
EEW VDW [J/g]
EEW0 VDW0 [J/g]
DA DL [g/m3]
DC DC [g/m3]
LeafSize A
LeafCO2Ex P0 [g/(dm2 · h)]
LeafTrans V0 [g/(dm2 · h)]
DWF -


English German Unit
PM2 n
TG BQ
TS KI
CW KR [1/Pa]
GH GH [m]
GR GF
HW0 KW0 [W/(m2 ·K)]
HW1 KW1 [(W/(m2 ·K))/(m/s)]
HG KB [W/(m2 ·K)]
CHM KSM [g/m2]
VM0 - [m3/(m2 · h)]
VM1 - [(m3/(m2 · h))/(m/s)]
LSW KP [g/m2]


Table C.7: Translation details for physical constants, plant constants, and green-
house constants.
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English German Unit
fSSP (xatempA) PSI [Pa]
fSSP (xhtempA) PSG [Pa]
fSSP (vatempA) PSA [Pa]
fSP (xsteam, xatempA) PDI [Pa]
fSD(xsteam, xatempA) SDI [hPa]
fRH(xsteam, xatempA) FI [%.r.H.]


English German Unit
c7 EE1


c8 EE2


d1 SDIG1


d2 SDIG2


Table C.8: Translation details for auxiliary variables and functions.


English German Unit
Trans trans [g/(m2 · h)]
TrGrow VREL
TrCur VRELC
TrStd VSTAN
WaterInj lube [g/(m2 · h)]
EnvExc wadawe [g/(m2 · h)]
CondEvap kondverd [g/(m2 · h)]
Cond konden [g/(m2 · h)]
Trpo trpoko [m/h]
HCap CG+ (seite 6) [J/(K·m2)]
HSun qglob [W/m2]
HExVent qluwe [W/m2]
xenergy HI [J/m2]
venergy HA [J/m2]
HExGround qboden [W/m2]
HExHull qduga [W/m2]
HCondEvap qkonden [W/m2]
HHum GH+ (seite 6) [W/m2]


Table C.9: Translation details for auxiliary variables for ẋsteam and ẋatemp.


English German Unit
CPhoto gawe [g/(m2 · h)]
CPhGrow FREL (in german simulator code)
CPhCur FICT
CPhDec FSD
CExVent kodiwe [g/(m2 · h)]


Table C.10: Translation details for auxiliary variables for ẋCO2.






