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Abstract. We propose a new approach for multiobjective shape opti-
mization based on the estimation of probability distributions. The algo-
rithm improves search space exploration by capturing landscape infor-
mation into the probability distribution of the population. Correlation
among design variables is also used for the computation of probability
distributions. The algorithm uses finite element method to evaluate ob-
jective functions and constraints. We provide several design problems
and we show Pareto front examples. The design goals are: minimum
weight and minimum nodal displacement, without holes or unconnected
elements in the structure.

1 Introduction

Shape optimization has been widely tackled by evolutionary algorithms. Genetic
algorithms, (GAs), have been applied to shape optimization problems with some
success, providing feasible solutions with acceptable fitness value [1,3]. Nonethe-
less, GA based approaches present difficulties at finding solutions without holes
or unconnected segments. This behavior can be explained by population diversity
issues, which favor premature convergence and reduced search space exploration
[2,4].

In this paper, we present a multiobjective algorithm for shape optimiza-
tion (MASO), which is based on estimation distribution concepts. The approach
uses binary representation, and makes calls to an external finite element system
to evaluate the fitness of candidate structures (individuals). MASO is related
to univariate marginal distribution algorithms (UMDA) [6], and to Population
Based Incremental Learning (PBIL) [7]. Therefore, every g generations, MASO
estimates a (biased) probability distribution by sampling the current Pareto set.
The new random population is generated with the updated distribution.

We have improved the algorithm’s performance by using specific knowledge
derived from the problem domain. This information, combined with the current



Pareto set, provides better distribution estimations. Through experiments, we
have observed enhanced exploration around promising areas, and less number of
small holes and unconnected elements in the structure. Other approaches infer
this relationship through the use of Bayesian probabilities [8,9].

2 Problem Definition

The problem is to find the set of structures which fulfill design constraints
(stress), and optimizes: total structure weight and, node displacement in one
or more nodes (see Figure 1). Also, a minimum number of “objects or pieces” in
the structure is desired. Another desired characteristic for the resulting structure
is a minimum number of “small holes”.

Fig. 1. Problem definition, initial search space and the minimum weight structure

In our problem, the design constraints are given by a maximum permissible
Von Misses stress [10] (a standard criterion for mechanical design which repre-
sents the material resistance). The algorithm works on a delimited region (the
whole piece) as it shown in Figure 1. The structure on the left side is the whole
search region, that is, all structure’s elements are present. The delivered design,
shown on the right hand side, has minimum weight and minimum displacement
(therefore, a member of the Pareto front). The design is achieved by “remov-
ing elements” from the structure, which is previously represented in discrete
form for this purpose [11] (an “element” is one cell of the grid). Thus, binary
representation is ad hoc for this problem. A “0” value represents a hole in the
structure, while a “1” represents a given thickness value ¢. The discrete space
and a representation example are shown in Figure 2.



Fig. 2. Left: discrete search space; Right: representation of a structure configuration

3 Objective Functions and Constraints

As noted before, the design problem has two objective functions: the first objec-
tive is the minimization of the structure’s weight, including the total number of
“objects” needed to build the structure, and the number of “small holes”. The
second objective function accounts for displacement minimization at some nodes
(user defined). An object is a set of at least two elements with one common side;
likewise, a “small hole” is a non-present (0 value) element whose surrounded
neighbors are present. Figure 3(a) shows a structure with 4 objects, and Figure
3(b) is a configuration example with 3 small holes.
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Fig. 3. (a) 4-Object configuration, (b) 3-small hole configuration

The first objective function is expressed as follows:



Minimize:

F(2,0,,0) = [14+¢1 x (0O — 1) 4+ c204|W (x) (1)

Where: .
W(z) = wiz; (2)

i=0

In Equation 1, ¢; is the object penalization constant. This constant modifies
the function if the number of objects is greater than 1, otherwise it is 0. On the
other hand, the constant co penalizes holes whose size is exactly one element.
In all experiments reported in Section 6, we used ¢; = c2 = 10. Variable n is
the total number of elements (cells in the grid) in the structure; O,, is defined
by the number of objects; Op is the number of small holes. Equation 2 models
the structure weight, where w; represents each element weight, and z; is the bit
value at the i — th position (present, not-present).

The second objective function, Equation 3, minimizes the displacement at
some specific nodes.

Minimize:

G(6,0n,0p) = [1 + ¢1(On — 1) +020b]i|6j| 3)
=0

Where |§;| is the absolute value of the displacement at the j — th node. Fi-
nally, m is the number of nodes involved in the second objective function.

The design constraints, as we said before, represent the maximum Von Misses
stress of each element (a standard mechanical criterion to evaluate the material
resistance). Clearly, all elements must have a Von Misses stress value equal or
lower than the maximum permissible for the material. Thus, in Equation 4, the
sum of p(o) (first factor) represents the number of elements violating the Von
Misses stress constraint. The second factor, represents the summation of the Von
Misses stress of each element present in the structure.

H(z, p(0),7(0)) = (Z m(a)) <2xm<a)> (4)
i=0 =0

Where: 0 if ( 1> 0
1 OM —0;) 2
pi(a):{l if (UZ—@)<O (5)
And: 0 if ( 1> 0
if (o —o3) >
nilo) = { (0i — UM)M if (o —03) <0 ©

Where o/ is the maximum permissible Von Misses stress, and o; is the Von
Misses stress of each element.



4 TImplementation

The probability vectors can be initialized in three different ways: a) with random
numbers in the [0,1] interval, b) with all vector probability values equal to 0.5,
and c) according to the algorithm in Section 4.1. The last approach was used for
the experiments of this paper. The population is generated as described in Sec-
tion 4.2, which is a common procedure used by EDA’s with binary representation
[7]. The objective and constraint functions are evaluated with triangular finite
element standard routines [11]; the selection mechanism is Pareto dominance
taking the constraint as one more objective function. The main components of
MASQO are shown in Figure 4. In order to update the probability vectors, the
current Pareto set is sorted by weight (see Section 4.3).

When the probability vectors have lost their exploration capacity (the vari-
ance is smaller than a threshold value, see Section 4.5), a membrane filter is
applied to them in order to smooth the probability. The pseudo code of MASO
algorithm is shown in Figure 5.

Initialize Probability

Generate - - Current
Population i "~ Pareto Set
'
Evaluate 4—l
Fitness e
Probability

Fig. 4. Main loop of MASO depicting principal routines

4.1 Probability Initialization

In Figure 6 we show an initialization procedure for probability vectors. Basi-
cally, we compute the stress values for “all-1” individuals, then we set to 0 the
bits which represents the elements with low Von Misses stress value. A preset



Enter the next parameters:

p: Smoothing Parameter. The weight of the gradient penalization in the membrane
filter (see [5] and Equation 9)

MinVar: Minimum Variance criterion to apply the membrane filter.

LSP,LIP: Superior and Inferior Probability Limit.

NV: Number of Probability Vectors.

NIM: Number of Individuals Generated by Every Probability Vector.

A: parameter for the probability updating (learning rate,see subsection 4.3 ).
NG: Number of generations.

Probability Initialization ();
k<—-0

i<-0

while (i < NG ) {

Generate_Population ();

Evaluate_Objective_and _Constraints_Functions ();

Select Non-Dominated Individuals ();

Sort_Individualsbyweight();

Update_Probability Distributions ();

Compute_Variance ();

If (ComputedVariance < MinVar) {
Smooth_Probability _Distributions ();
Update_External File ();
k++; }

i++; } end

Fig. 5. Pseudo-code of Multiobjective Algorithm for Shape Optimization

threshold is used in this decision. P and O are structure configurations; O in
particular is the configuration with all bit values equal to 1, VonMissesStress;
is the stress in the ¢ — th element, InfProbLim and SupProbLim are probabil-
ity limits, and the function Solve_VonMisses(Con figuration), solves the FE
problem for a particular configuration.

4.2 Generation of the population

The population is generated by a set of k distribution probability vectors called
Vi . Every vector V; generates ¢ structure configurations called I;. Thus, every
bit from I; is generated by a Bernoulli experiment with a success probability p;.

4.3 Updating probability distributions

The non-dominated individuals are used to compute and update the probability
distributions. First, we find the non-dominated structures by treating the stress
constraint as an additional objective. Thus, dominance is computed with three



for i=1..NoElements O[i]=1 endfor
Solve_VonMisses(O);
Interval = (maxVonMisses-minVonMisses)/(NoElements)
threshold = maxVonMisses - Interval
Step 1:

For i=1..NoElements

if (VonMissesStress; < threshold) P[i]=10

Else Plij=1
endfor
if ( IsNotFeasible(P) ) {# True when is infeasible
threshold = threshold - Interval
go to: Step 1 }
Interval = (threshold - minVonMisses )/( NoVectors-1 );
For i= 0..NoVectors {

For k=0..NoElements {

if ( VonMissesStress; < threshold)
ProbabilityVectory,; = InfProbLim;
else
ProbabilityVectory,; = SupProbLim; }
threshold = threshold - Interval; }

Fig. 6. Pseudo-code for probability initialization

functions (two objectives plus the constraint). In this non-dominated temporal
set there are feasible and infeasible individuals; the infeasible ones are sorted
by total amount of constraint violation. All feasible individuals plus a small
percentage of the unfeasible ones (those with a small constraint value) are used
to update the probability distributions. For our experiments we used 10% of
the infeasible structures. Before updating the distributions, all structures are
sorted by one of the objectives; in our case we use the weight value to sort the
structures.

Thus, being C; the number of feasible non-dominated structures, and C,, the
number of non-feasible non-dominated structures, ¢ represents the percentage of
non-feasible structures that are taken to update the probability vectors.

Ct = Cf + Ccu (7)

For k probability vectors, the new probability vector will be:

For j =1..Number of Bits

(D)*Round(Ct/k)
VI =V + (1= ) > I?;/Round(C/ k) (8)
i=(l—1)*Round(C: /k)



Where V;(Hl) is the new probability vector for generation ¢ + 1, V}' is the
probability vector at generation ¢, A is a memory factor(learning rate, see [7])
that preserves the knowledge of the last distribution, I? are the binary arrays
(non-dominated individuals) that will be used to update the vector V. The
Round() function returns the nearest integer from the real result of C;/k. As we

can see, EEQ?;E 011;272(37{ 5()@ /iy I{ / Round(C¢/k) is nothing else than the mean of
a set of binary arrays. Note that the selection of non-dominated individuals is

performed over the current population and the current Pareto set.

4.4 Smoothing the probability distributions

Due to the implicit reinforcement of the non-dominated individuals, Equation 8
takes the probability vectors to values close to “0”, or to “1” . When this hap-
pens, the probability vectors have lost their exploration capacity. For MASO,
the probability distribution vectors are smoothed, so predominant peaks are
removed from the probability surface. Restarting the population with new prob-
ability distributions enhances exploration and local minima avoidance.

Probability distributions are smoothed by a membrane filter [5]. Equation 9
finds a smooth function f which preserves the shape of the original distribution
g, but will avoid the abrupt changes. The abrupt changes are penalized by the
gradient Vf.

U(f) = /([f(way) = 9@z, y)]* + pl|VF (2, y)|]*)dw (9)

Where f(z,y) is the function which minimize the functional U(f), g(z,y) is
the original probability distribution function, u is a parameter which regulates
how smooth f will be. In our experiments we used a p value in the interval
0.35—0.5. In this case, we approximate the gradient with the difference between
the central element and each neighbor (we have three neighbors for a triangular
mesh).

Figure 7 (a) shows a probability distribution (one vector V;* ) before applying
the membrane filter. Probabilities values are shown in gray scale color, where
values close to 1 are shown in black, and probabilities close to 0 in white. In
that figure we can observe that the probability distribution can generate a good
approximated solution but, if we do not modify the probabilities they are not
able of keeping search space exploration. In Figure 7 (b) we can observe how the
membrane filter has spread the probability distribution over the neighbors.

We identify the poor search capacity of a probability vector by a variance
measure. This measure is computed as explained in Section 4.5.
Once the smoothing process is finished, we must update the set of non-dominated
individuals stored in the external file, (named Known Pareto Set in Figure 4).
The new population is generated anew using the smoothed probability distribu-
tions; eventually the population will converge, the distributions smoothed again,



(a) (b)

Fig. 7. Relationship between a structure and its probability distribution: (a) before
applying the membrane filter, (b) after applying the membrane filter.

and another Current Pareto Set will be generated and used to update the exter-
nal file.

4.5 Variance computation

We measure the variance of those locations whose probability vector are in the
interval [0.0002,0.9998]. The membrane filter is applied to every probability
distribution if the computed variance is smaller than a threshold. Pseudo code
of variance computation algorithm is shown in Figure 8.

ComputedVariance=0
For 1=1.. NoVectors {
Variance=0
For=1..NoElementos {
if (ProbabilityVector; ; < InfProbLim && ProbabilityVector; ; > SupProb-
Lim)
Variance=Variance+1; }

if (Variance > ComputedVariance)

ComputedVariance =Variance }

Fig. 8. Pseudo-code of variance computation algorithm

5 Metrics

A MOEA convergence metric proposed by Deb and Jain is computed to measure
the convergence and behavior of the algorithm [12].



5.1 Convergence metric

A reference set P* is determined from the union of 30 Pareto sets (therefore,
Known Pareto set of each run). This metric takes a normalized value within
[0,1]; near 0 means better [12]. The convergence metric is computed as follows:

1. Identify the no dominated set F®) of P() (a population)

2. Form each point i in F(®), calculate the smallest normalized Euclidean dis-
tance to P* as in Equation 10, f*** and f;*®® are the maximum and the
minimum function values of k-th objective function in P*

d; rlrllji*7|1j:1 \/sumkle (M> (10)

flznaw _ flzmn

3. Calculate the convergence metric by averaging the normalized distance for
all points in F®);

|F|
_sum;_; d;

C(P(t)) - |F(t)| (11)

Deb and Jain proposed to normalize the convergence metric by the maximum
value (usually C(P©®)) : C(P®) = C(P®)/C(P©®)).To compute the conver-
gence metric we calculate the normalized distance for the vectors in F*, and if
|P*| > |F*| (we have more points in P* than F* ) we set |P*| — |F™*| distances
equal to 1.

6 Experiments

Two study cases are used to test our approach. In the first case we know the
true Pareto set, whilst in the other it is unknown.

6.1 Experiment 1 (description)

A simple structure with a punctual load is supported at the lower corners. The
dimensions and load magnitude are shown in Figure 9. We chose this problem
because the true Pareto set is easy to compute, therefore, comparisons are pos-
sible. Results are contrasted in Section 7.1.
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m

Poisson Modulus 0.2

N Thickness 0.1 m

Maximum permissible stress|250 x 10® m

Fig. 9. Simply supported beam problem with a punctual load

l-'zo()ea N
Young Modulus 2.1 x 10'1 Pa
Poisson Modulus 0.2
Thickness 0.1 m
a5 B A |Maximum permissible stress|250 x 10°% m

Fig. 10. Simply supported beam problem, discretized in 144 elements

6.2 Experiment 2 (description)

Experiment 2 has the same conditions as experiment 1, as shown in Figure 10.
But in this case the search space is discrete and consists of 144 elements. Since
the true Pareto set is unknown, comparisons are made against a reference Pareto
set obtained from 30 runs of our algorithm.

7 Results

7.1 Experiment 1. True front comparison

We compare results of 30 runs of our algorithm against the true Pareto front.
There are 13 vectors in the true Pareto set. The average number of individuals
found in the known Pareto set after 30 runs is 20.667, with an standard devi-
ation of 1.3218 The average number of individuals from known Pareto set that
belong to the true Pareto set is 12.6667 (out of 13), with a standard deviation
of 0.479463. The average number of dominated individuals by the true Pareto
set is 0.066667, with a standard deviation of 0.253708. In Figure 11, we can see
the true Pareto front and the non-dominated structures found in 30 runs (the
dominance is check after either independent run, so in the graph we can see some
dominated individuals but they are not from the same run). Note that all 30
runs found all the structures in the true Pareto set.
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Fig. 11. (a) Diamonds represent the true Pareto front; crosses are vectors found in 30
runs (30 fronts are plotted but they overlap with each other). (b) Structures found by
a typical run of MASO.

7.2 Experiment 1. Convergence metric

We compute the convergence metric for the problem described in Section 6.1.
Figure 12(a) shows the C(P®) value for the last generation in 30 independent
runs, the mean of 30 runs is 0.06783, with a standard deviation of 0.05586
(remember that smaller is better). On the right hand side, a convergence plot of
a typical run is shown.
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Fig. 12. (a) C(P™) in the last generation, (b) Convergence graph of a typical run of
Experiment 1

7.3 Experiment 2. Reference front

Figure 13 shows the reference front and all the non-dominated individuals found
in 30 runs. The crosses represent all the non-dominated individuals found in



30 runs. Although some of them are dominated by the reference Pareto front
(shown with diamonds), they were not dominated in their independent run.

Pareto front

]

By —— INNNNL \/ \/‘ \/‘[ \f‘m’
| 30 runs Fronts p% a\ {W\M/ ‘%/ \/"\/"\. .‘\" "
aVaVaVaW.\N

J" % 4?'“- f"n if"‘iw_p e e N, ,ir"q ra"
PRV N NN
LN LNA NI
alalalalalelalale)
2,000 3,000 4,000 \5,,\;)2?9'“ 6,000 7,000 8,000 %m&m“mmmm

(a) (b)

0.0002

Displacement

0.0001

Fig. 13. (a) Diamonds are the reference front and the crosses represent the fronts from
30 runs, (b) Structures found by a typical run of MASO

7.4 Experiment 2. Convergence metric

Figure 14(a) shows the C'(P®) value for the last generation. As we can observe,
the value is very close to 0 implying good convergence behavior. Figure 14(b)
shows the convergence behavior to the front for a typical run. A decreasing
distance is clear in the graph; at some points there are some peaks which mean
that the algorithm found some individuals that dominate more than one non-
dominated individual in the previous generation. The average convergence is
0.008312, with a standard deviation of 0.007347, for 30 independent runs.
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Fig. 14. (a) Graph of the convergence metric in 30 runs, (b) Convergence behavior



8 Conclusions

We proposed a new multiobjective optimization algorithm inspired by PBIL [7]
and UMDA [6] algorithms. Several issues must be considered when using EDA
algorithms, for example, the premature convergence of probability distributions.
We proposed smoothing the probability distributions in order to improve explo-
ration. The proposed method finds a set of structures that are optimal solution
of the multiobjective problem, avoiding non-desired characteristics such as small
holes and many objects. Even though we have suggested values for the different
parameters used in the method, the algorithm is very robust to different param-
eter values.

It is worth to note that individuals on the Pareto front are equally spaced and
spread all over. Also, note that the points that seem more spaced on the dis-
placement axis, are equally spaced on the weight axis (because the relationship
between weight and displacement is not linear).

The convergence metric makes evident the robustness of MASO. Even more,
most vectors, 97.5% from the true Pareto set, were found by each run of a total
of 30.
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