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Abstract 
 

The overall goal of this research was to increase, relative to targeting recommendations, the 
cost-effectiveness of pollution reduction measures within a watershed. The goal was met 
through development of an optimization procedure for best management practice (BMP) 
placement at the watershed level. The procedure combines an optimization component, 
written in the C++ language, with spatially variable nonpoint source (NPS) prediction and 
economic analysis components, written in the ArcView geographic information system 
scripting language. The procedure is modular in design, allowing modifications or 
enhancements to the components while maintaining the overall theory.  

The optimization component uses a genetic algorithm to optimize a lexicographic multi-
objective function of pollution reduction and cost increase. The procedure first maximizes 
pollution reduction to meet a specified goal, or maximum allowable load, and then minimizes 
cost increase. For the NPS component, a sediment delivery technique was developed and 
combined with the Universal Soil Loss Equation to predict average annual sediment yield at 
the watershed outlet. Although this evaluation considered only erosion, the NPS pollutant 
fitness score allows for evaluation of multiple pollutants, based on prioritization of each 
pollutant. The economic component considers farm-level public and private costs, accounting 
for crop productivity levels by soil and for enterprise budgets by field. The economic fitness 
score assigns higher fitness scores to scenarios in which costs decrease or are distributed 
more evenly across farms. Additionally, the economic score considers the amounts of 
cropland, hay, and pasture needed to meet feed and manure/poultry litter spreading 
requirements.  

Application to two watersheds demonstrated that the procedure optimized BMP placement, 
locating scenarios more cost-effective than a targeting strategy solution. The optimization 
procedure identified solutions with lower costs than the targeting strategy solution for the 
same level of pollution reduction. The benefit to cost ratio, including use of the procedure 
and implementation of resulting solutions, was demonstrated to be greater for the 
optimization procedure than for the targeting strategy. The optimization procedure identifies 
multiple near optimal solutions. Additionally, the procedure creates and evaluates scenarios 
in a repeated fashion without requiring human interaction. Thus, more scenarios can be 
evaluated than are feasible to evaluate manually. 
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Chapter 1: Research Problem 

1.1 Introduction 
Nonpoint source (NPS) pollution from agricultural lands is a significant contributor to water 
quality degradation. In the last few decades there has been increasing concern over water and 
soil-borne pollutants that influence human or aquatic health or that restrict human activities. 
Government regulations, such as the Clean Water Act, are placing growing emphasis on NPS 
pollution control. One method of control is through implementation of best management 
practices (BMPs); BMPs are structural, vegetative or cultural methods by which NPS 
pollution is eliminated or reduced sufficiently to meet water quality criteria (Novotny and 
Olem, 1994). 

The problem of locating BMPs throughout a watershed for cost-effective pollution control 
can be stated as a combinatorial optimization problem (Lawler, 1976; Grötschel, 1982). A 
combinatorial optimization problem optimizes a set of categorical variables (a watershed-
level BMP scenario) based on an objective function that assigns an ordered value (cost-
effectiveness of pollutant reduction) to that set. Two methods can be used to determine 
pollution reduction for each scenario: monitoring or modeling. However, modeling is 
frequently more beneficial in assessing long-term, watershed-level BMP effects. 

Field studies can be very useful in monitoring pollution reduction by BMPs for a particular 
site over time. Through monitoring, pollutant values before and after BMP implementation 
can be compared to determine if the cost and potential environmental disruption encountered 
in implementing, maintaining, and operating a BMP outweigh the long-term environmental 
impacts had that BMP not been installed. Monitoring is advantageous in its capability to 
reflect natural climatic variation and other variable environmental impacts, for example, 
those caused by wildlife or humans, over multiple seasons (short-term monitoring) or years 
(long-term monitoring).  

However, because weather patterns can vary greatly from year to year, it is difficult to 
estimate long-term effects of management practices through short-term (e.g., 1-3 year) field 
studies. In addition, BMP impact can lag several years. A review of the Rural Clean Water 
Program estimated a five to fourteen year response time for significant water quality 
improvement after BMP implementation (Maas et al., 1988), indicating that field studies for 
BMP evaluation should be long-term. A long-term field study, encompassing pre- and post-
BMP periods, is the most direct way to determine if a given BMP produced the desired 
results. However, when conclusions of such a field study are unfavorable, it is not possible to 
step back in time and try a different BMP. Thus, long-term field studies are not practical as 
an exploratory tool in selecting the most appropriate BMP for a particular site. 

Additionally, field study replications are difficult due to the inability to control all aspects 
except study variables. Passage of time prevents exact replication of the studies. Likewise, 
simultaneously paired fields or watersheds always contribute some variation. Due to 
variations in topography, soil, climate, and previous land use, BMP effectiveness may vary 
from site to site (Dillaha, 1990).  

Although mathematical models are less accurate than field studies in quantifying pollutant 
levels, models are useful in evaluating long-term relative changes in pollution levels due to 
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implemented BMPs or other management practice changes. A computer model can complete 
a long-term simulation in a matter of minutes, allowing long-term stability and usefulness of 
BMPs to be analyzed. Also, computer models allow more control over parameters, enabling 
the researcher to vary model components as necessary. This manipulation aids discovery and 
understanding of parameter relationships. Another valuable contribution of computer 
modeling is in the ability to evaluate multiple scenarios, including implausible and high risk 
ones, without risk to farmers, the economy, or the environment.  

Government agencies often promote soil conservation and water quality improvement 
through BMP implementation by recommending cost-share programs for agricultural fields 
meeting certain criteria (USDA-NRCS, 2002; VA-DCR, 2002). Through site visits, on-site 
measurements, and field-level modeling, government personnel determine if fields meet cost-
share criteria. Implementation of cost-share programs involves incorporation of BMPs such 
as vegetative filter strips, contour strip cropping, and waste storage facilities into current 
management practices. The decision to enroll a farm in one or more cost-share programs is 
generally based on whether a particular BMP or set of BMPs is predicted to improve water 
quality and control soil erosion (e.g., reduce NPS pollution leaving the field).  

Cost-share programs may result in reduction of NPS pollution from the field or farm. 
However, the impact that implementing a particular BMP would have on watershed-level 
pollution may not be considered. By recommending management practices on a first-come, 
first-served basis through use of cost-share criteria instead of looking at the entire watershed, 
management practices may be recommended such that their watershed-level effects duplicate 
or overlap each other. As a result, management practice costs for the watershed may be 
unnecessarily inflated. For example, with a conservation tillage cost-share program, all 
farmers growing suitable crops may be equally encouraged to participate regardless of 
differing NPS pollution impacts to the watershed from different fields. Additionally, farmer 
participation in the program may depend heavily on economic or regulatory factors. For 
example, Royer (1987) found costs significantly impacted the likelihood of farmers to 
implement reforestation practices. Implementation was more likely when cost-share was 
available. Hersch (1993) found that farmers adopted cost-share practices in order to comply 
with strict NPS reduction regulations. These regulations established a maximum allowable 
phosphorous loading to streams. Instead, by focusing money and efforts on implementing 
BMPs on farms contributing significant quantities of NPS pollution, higher levels of NPS 
pollution may be controlled for a similar cost. 

1.2 Problem description 
A goal in the design of pollution reduction programs is to achieve the greatest possible 
reduction for a given cost (Heatwole et al., 1987a). Braden et al. (1989) discussed the 
economic advantage of selectively applying BMPs to reduce NPS pollution. Targeting, a 
form of selective BMP application, implements stricter pollution control in critical areas, i.e., 
those areas most contributing to NPS pollution. Braden et al. (1989) stressed that NPS 
pollution control through targeting is likely to be cheaper and less disruptive overall than 
applying the same control measures across the watershed, e.g., through cost-share. 

The number of ways to allocate BMPs throughout a watershed is exponential with regard to 
the number of fields. For example, the search space for 50 fields and 4 non-mutually 
exclusive BMPs encompasses (24)50 possible placement scenarios. Evaluation of all possible 
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BMP scenarios becomes an intractable problem, one that is computationally difficult or 
impossible to solve for an exact solution in a finite amount of time.  

The intractability of the BMP placement problem has limited the number of procedures 
developed for locating cost-effective BMP scenarios based on each BMP’s location-specific 
contribution to pollution reduction instead of on satisfaction of rule-based targeting criteria. 
However, due to increases in computer speeds and decreases in computational costs, 
mathematical programming heuristics for solving intractable problems are becoming more 
widely used. Heuristics for large number problems have been tested in a variety of 
disciplines, including farm planning, molecular physics and chemistry, production and 
personnel scheduling, and factory design (Buick et al., 1992; Eglese, 1990; Swisher et al., 
2000). Given the search space and established criteria and relationships, these heuristics 
identify an optimal or near optimal solution set of one or more scenarios. Additionally, linear 
and nonlinear mathematical programming for problems in environmental policy and resource 
management have been used since the 1960s. Greenberg (1995) provided an extensive survey 
of the use of optimization for controlling land, air, and water quality. Cooper et al. (1996) 
extended this review with regard to both deterministic and stochastic modeling of air 
pollution.  

Previous research, reviewed in Chapter 2, has demonstrated the cost-effectiveness of 
targeting to control NPS pollution. However, the success of locating the optimal BMP 
scenario for a specific watershed depends on the ability to consider the complete range of 
possible scenarios within a watershed and to account for spatial variation and BMP 
interaction throughout the watershed. Individual applications of targeting do not consider all 
possible watershed scenarios and may not provide the most cost-effective solution. 
Additionally, a targeting strategy typically provides a single solution based on the targeting 
criteria used. Theoretically, a comprehensive approach would find the optimal or a set of near 
optimal solutions from among all possible scenarios and the relative benefits of the targeted 
plan could be evaluated compared to those solutions. Computer technology enables the use of 
optimization techniques to evaluate a large number of scenarios, using a high-level of spatial 
information. Previous nonlinear programming studies have minimized farmer cost increases 
based on pollution loading constraints and have used this work to demonstrate the tradeoff in 
pollution reduction and cost increase (Braden et al., 1989; Das and Haimes, 1979). An 
optimization heuristic has been shown beneficial in reducing pollution and farmer costs as 
compared to multiple random scenarios (Srivastava, 1999).  

Previous optimization related to BMP placement has combined cost and pollution reduction 
into a single objective function. As a result, a given pollution reduction level may not be met 
by all near optimal solutions. Due to the importance of pollution reduction in this research 
problem, it may be more desirable that pollutant reduction criteria are met to the highest 
degree possible in all optimal or near optimal solutions. This restriction may be possible by 
creating a multi-objective function such that scenario costs are considered and optimized 
only after pollutant reduction criteria have been met.  

1.3 Objectives 
The overall goal of this research was to increase, relative to targeting recommendations, the 
cost-effectiveness of BMPs within a watershed. Two specific objectives were necessary to 
realize this research goal: 
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1. To optimize BMP placement within an agricultural watershed based on cost and NPS 
pollution reduction for the watershed; and 

2. To determine the economic practicality of using the optimization procedure as 
compared to a targeting strategy. 

The research hypothesis was that a computerized optimization procedure can improve current 
management practice selection strategies by incorporating explicit spatial information more 
complex than that used in current targeting methods. By identifying multiple near optimal 
solutions, as opposed to the single solution provided by the targeting strategy, there might be 
an increased probability that one of the near optimal solutions will be agreeable to an 
increased number of farmers. Thus, there may be an increased probability of successfully 
implementing a more cost-effective solution. The economic practicality of the optimization 
procedure was assessed through a cost-benefit analysis.  

For this research a BMP was defined as a management practice or set of practices that results 
in reduced pollutant loading at the watershed outlet. Cost-effectiveness was defined, at the 
watershed level, as the ratio of average annual agricultural NPS pollution reduction to change 
in farm-level private and public costs as a result of adopting an alternate scenario in place of 
a baseline scenario. Private cost refers to the farmer’s long-term average annual cost as a 
result of adopting a management practice or set of practices for an agricultural field. Public 
costs considered within the optimization procedure include governmental expenditures 
incurred as a result of adopting a management practice or set of practices. In the cost-benefit 
analysis, the public operational costs of each method were considered in addition to public 
and private scenario implementation costs. 
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Chapter 2: Literature Review 

2.1 Introduction 
A review of the literature demonstrates that targeting has been shown to improve 
effectiveness of NPS control measures by focusing on critical areas. A number of researchers 
have addressed the problem of BMP cost-effectiveness using NPS and/or economic models 
in conjunction with algorithms, heuristics, or decision criteria. Near optimal placement of 
BMPs within a watershed can potentially be determined through heuristics that solve 
combinatorial optimization problems. Five such heuristics are described and compared in this 
chapter.  

2.2 Targeting to improve cost-effectiveness 
Because economic and management resources are often limited, researchers and government 
personnel have suggested that NPS pollution control targeting schemes are necessary to 
maximize pollution reduction and improve water quality (Dickinson et al., 1990). Dickinson 
et al. developed and tested a targeting scheme on two watersheds with different spatial 
characteristics: a lowland and an upland watershed. They then determined the percentage of 
sediment yield reduction for each watershed achieved by applying four methods for assigning 
BMPs. These methods included assigning BMPs randomly to all farms, randomly to targeted 
farms, on a ranked order to targeted farms, and based only on slope steepness. The results 
clearly showed an environmental benefit in assigning BMPs based on ranked, targeted farms. 
Dickinson et al. stated that fewer than 30% of NPS remedial measures recommended by 
agricultural extension personnel are typically implemented. By using targeting to locate 
BMPs where they will be most beneficial, more of the implemented BMPs may be located in 
critical areas. 

Case studies have shown that erosion and nitrogen (N) control plans reduce farmers’ net 
incomes (White and Partenheimer, 1980; Prato and Wu, 1991; Huang et al., 1997). However, 
Carpentier et al. (1998) demonstrated that incorporating spatial information into NPS control 
policies can reduce NPS control costs. They applied BMPs to all farms such that each farm 
met a uniform criterion of 40% N reduction. They then presented a targeting framework that 
used farm-level spatial information to meet the N reduction policy while minimizing cost to 
farmers and taxpayers. The targeting framework applied BMPs to each field such that an 
average farm-level N reduction of 40% was maintained while total costs were reduced by 
75% over the uniform policy costs. Based on a sensitivity analysis of various spatial 
attributes, Carpentier et al. (1998) concluded that consideration of spatial variability both 
within and across farms was necessary to accurately determine farm costs for reducing 
watershed-level N pollution.  

Various targeting strategies for NPS pollution reduction have been analyzed. Willis et al. 
(1994) studied the Everglades Agricultural Area south of Lake Okeechobee. By considering 
baseline phosphorus (P) levels, hydraulic and water budget models, and various field 
experiments, Willis et al. (1994) evaluated effectiveness of several categories of BMPs in 
reducing P loadings. Implementation, operation, and maintenance costs of BMPs were also 
calculated. Cost and load reduction factors were combined for each BMP to estimate 
individual cost-effectiveness values. Finally, BMPs were combined by successively adding to 
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the most cost-effective BMP the BMP with the next highest cost-effectiveness. This process 
was continued until the desired level of P load reduction was achieved. The resulting 
combination was termed the least-cost scenario for that reduction level. Three levels of P 
load reduction were considered: 25%, 35%, and 45%. The final choice of BMP scenario then 
depended only on the desired load reduction.  

Heatwole et al. (1987a) evaluated cost-effectiveness of 15 different BMP scenarios for two 
Florida watersheds draining into Lake Okeechobee. Two water quality models were used for 
this analysis. A version of the Chemicals, Runoff and Erosion from Agricultural 
Management Systems (CREAMS) model (Knisel, 1980), was modified into CREAMS-WT 
(Heatwole et al., 1987b) for the southern Florida region and used to estimate N and P at the 
field level. A basin scale model, BASIN (Heatwole et al., 1986), was then used to integrate 
loadings from the fields with loadings from forests, rangeland, and non-agricultural land use 
areas to develop watershed-level predictions. 

Cattle fencing, runoff detention basins, and dairy barn runoff impoundments were considered 
by Heatwole et al. (1987a) as BMPs. Spatial placement considerations of BMPs were made 
at the watershed level. For example, distance of pasture from streams and wetlands 
influenced the amount of fencing used for the pasture. Additional BMP placement 
considerations included land use, hydrologic soil group, and cattle density. 

Heatwole et al. (1987a) calculated N and P load reductions in terms of kilograms per dollar 
of BMP cost for each scenario for each of the two watersheds. They then combined the 
results for the two watersheds and provided a ranking of the eight most effective BMP 
scenarios. The researchers found that BMP cost-effectiveness decreased as the number of 
BMPs applied to a region increased.  

Das and Haimes (1979) presented a multi-objective technique for controlling point source 
and NPS pollution with respect to environmental quality and economic development. They 
demonstrated their technique on a river basin connecting three states and covering five 
government-planning regions. Allowable point source loads for all wastewater treatment 
facilities in the basin were determined by nonlinear optimization. The objective of the 
optimization program was to minimize expansion and operation costs over all treatment 
facilities. Nonpoint source values were lumped within each planning region. Pollution 
reduction quantities of each management practice for each soil erosion category considered 
were user inputs to the model. Das and Haimes (1979) developed a reduced gradient 
optimization algorithm which integrated optimization of point source, NPS, and economic 
objectives to arrive at a set of final solutions. Their method provided a listing of trade-off 
values, in cost of pollution control per unit of pollution reduction, for each of the considered 
pollutants and planning regions. This provided decision makers for each planning region with 
information about relative costs of pollution reduction methods. Using this trade-off 
information in combination with public preference and the amount of pollution reduction 
desired for the region, decision makers were in a position to choose the desired pollution 
reduction solution for their region. 

Braden et al. (1989) discussed a theoretical nonlinear model optimizing BMP selection on a 
watershed in terms of cost and pollution reduction. They described the SEDiment 
EConomics model (SEDEC) as an empirical analog to this model. The SEDEC model 
optimizes pollution reduction and cost by calculating farm profit, field erosion, and sediment 
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transport for numerous watershed scenarios. To improve results the SEDEC model analyzes 
fields by sections so that each field section falls within a single drainage area and contains a 
single slope and management practice. The Universal Soil Loss Equation (USLE) is used to 
calculate gross erosion at the field level.  

Four variations of SEDEC were tested, each having a different sediment transport 
component. Three used fixed sediment transport ratios. The fourth considered the cropping 
management (C), supporting practice (P), and slope (S) factors of the USLE for determining 
sediment loss from each field. Transport of this sediment depended on the management 
practices of downstream fields. The flow path from each field was based on a simple runoff 
surface in which flow travels from ridge to stream, perpendicular to the contours. Braden et 
al. cited four studies that concluded that the fourth transport model resulted in close 
approximations of actual sediment loads. For example, White (1988) found results to be 
within 10% of the measured loads for one watershed in Illinois. 

Braden et al. (1989) demonstrated the SEDEC model on a 431-ha site within an Illinois 
watershed with mild slopes used mainly for row crops. Several crop rotations and 
management practices were included in the simulation. Braden et al. (1989) reported the 
curves of pollution reduction versus marginal cost for the four variations. They found that the 
results were as expected based on the characteristics of the study.  

2.3 Optimization heuristics for intractable problems 
Existing optimization heuristics for solving intractable problems include gradient and non-
gradient based neighborhood searches as well as methods developed from studies of natural 
systems. Many problems are addressed by creating a customized technique that incorporates 
multiple variations on basic heuristics. Such customization often improves solution 
efficiency and effectiveness for a specific problem.  

For this research, the range of possible combinatorial optimization techniques was 
considered. Five basic heuristics were chosen and evaluated. The objective was to determine 
a basic heuristic well suited to this problem. This section briefly describes the heuristics that 
were considered, with a more detailed discussion of the genetic algorithm (GA), which was 
selected after comparing the five heuristics.  

2.3.1 Response surface methodology 

As a line search heuristic, the response surface methodology (RSM) (Ibrahim and Liong, 
1992; Jacobson and Schruben, 1989; Myers, 1971) generally uses regression to fit a first or 
second order polynomial to a part of the feasible region. The improving direction is then 
determined from the gradient of the polynomial. A line search is made along the improving 
direction until the polynomial no longer provides sufficient fit. The procedure is continued 
from each new point until the gradient of the fit polynomial is essentially zero. Response 
surface methodology is founded on statistical theory and is generally easy to implement but 
works best for problems with continuous input parameters.  

2.3.2 Shuffled complex evolution 

Duan et al. (1993) developed the shuffled complex evolution (SCE) method to address major 
characteristics of hydrologic model calibration problems. The SCE globally searches for the 
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optimum by combining basic GA evolutionary concepts with a population grouping strategy. 
At each generation the SCE divides the search space into subsections, or complexes. Nelder 
and Mead’s version of the simplex method (Bazaraa et al., 1990) is used within each 
subsection to generate offspring that drive the optimum in an improving direction. The SCE 
method then recombines the subsections by pooling all offspring into a single population, 
ranks the results, and starts over. Members of the population that rank higher than others in 
terms of fitness have a larger probability of contributing to the next generation than do those 
members with lower fitness scores. The SCE method continues in this manner until new 
searches do not improve on the optimum from the previous step.  

The SCE method combines benefits of the GA and neighborhood search algorithms. As a 
result, the SCE method searches both globally and locally. When used with continuous data 
for calibration problems, it was shown to be more efficient than use of a basic GA (Cooper et 
al., 1997). 

2.3.3 Simulated annealing 

The simulated annealing (SA) (Eglese, 1990; Swisher et al., 2000) heuristic mimics the 
annealing process used for crystalline solids. In this process the solid is heated to a high 
temperature and then cooled very slowly in an attempt to reach the lowest energy state 
possible. While at a high temperature, the crystalline structure of the solid is unstable and the 
solid is malleable. However, as the solid cools, the crystalline structure becomes fixed. By 
cooling the solid very slowly, the annealing process attempts to reach the lowest energy state 
possible and, thus, achieve the most structurally sound crystalline formation for the solid.  

In simulated annealing, the process begins at a high “temperature”, in order to allow the 
search to range widely over the response surface. As the “temperature” drops, the search 
range narrows until the SA heuristic is focused on a single region of the search space that 
appears to contain the optimum, i.e., the minimum of the objective function. The region is 
then explored to determine a near optimal solution for the problem. Throughout the annealing 
process the heuristic accepts a new value if it reduces the objective function. Additionally, 
the process will accept, with a controlled probability, an increased value. This alteration to a 
plain gradient method algorithm helps prevent the process from stopping prematurely at a 
local optimum. Coding for the SA heuristic is minimal. However, performance of the 
algorithm is strongly dependent on the algorithm parameters and the problem structure.  

2.3.4 Tabu search 

A memory-based heuristic, the tabu search (TS) (Bettinger et al., 1998; Glover et al., 1993; 
Swisher et al., 2000) draws from artificial intelligence concepts. Starting with a single 
scenario, the basic form of the heuristic uses gradient or neighborhood search techniques to 
evaluate and compare scenarios. The process narrows the search space by maintaining a 
dynamic tabu list of unsuccessful, or forbidden, scenarios. The tabu list helps prevent moves 
in non-improving directions so that successive scenarios become increasingly optimal. 
However, in creating an efficient TS heuristic for a particular problem type, the structure of 
the tabu list must be designed carefully to prevent premature elimination of potential 
solutions. Ideally, the memory process used by the search should not only remember recent 
moves (short-term memory) but also have some way of looking back into longer-term 
memory and determining which patterns are working and which are not. 
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2.3.5 Genetic algorithm 

A genetic algorithm (GA) (Goldberg, 1989; Chambers, 1995; Srivastava et al., 1999) is 
conceptually based on natural selection techniques seen in biological evolution. Basic GAs 
model individuals of a population as chromosomes, with genes on the chromosome defining 
relevant traits of the individual. Chromosomes that are judged to be the most fit are the most 
likely to survive into the next generation, and all chromosomes, regardless of fitness are 
subjected to random mutations. As a random search algorithm, GA does not require 
continuity in the input variables. At each generation the GA evaluates multiple solutions, 
often from different areas of the search space. This parallelism decreases susceptibility to 
becoming fixed at local minima (Buckles and Petry, 1992). 

Nearly all GAs include three basic components: a population of individuals, a function to 
score the fitness of an individual, and crossover and mutation strategies for creating each 
successive population (Mitchell, 1999). A flow chart of the basic GA process is shown in 
Figure 2.1. The GA begins by creating an initial population of individuals. The probability of 
an individual’s surviving to the next generation increases with increasing fitness. Individuals 
are introduced into the population in three ways: by direct reproduction with probability pr, 
by mutation with probability pm, or by crossover with probability pc. Mutation changes one or 
more genes within an individual without regard to past or current fitness. Mutation is a purely 
random mechanism used to avoid local fitness maxima. Crossover combines two existing 
individuals to create two new individuals, each having values from both of the parents. 
Crossover helps redirect the search into new areas of the search space. Whether or not the 
parent individuals survive to the next generation depends on their fitness levels and on the 
replacement scheme of the GA. Depending on the nature of the problem, a GA may be set to 
replace, at each generation, nearly all of the population, only one or two individuals, or an 
intermediate number of individuals. A GA ends upon reaching some termination criterion, 
which can be defined in a number of ways. For example, termination can be set to occur after 
a predetermined number of iterations of the optimization process. The termination criterion 
can also be defined as a minimal improvement in the maximum fitness score; that is, 
termination occurs either when the change in fitness score is below a predetermined tolerance 
or when the score increase has remained below a tolerance for a predetermined number of 
generations. 

2.3.6 Previous use of heuristics with NPS models 

These five optimization techniques have been used previously to calibrate NPS models. 
Calibration by an optimization technique requires observed data relating to the model input 
and output parameters. Additionally, model parameters to be calibrated must be identified. 
Then, by multiple runs through the NPS model, the optimization technique determines values 
for model parameters such that model output values for observed input values match, as 
nearly as possible, the related observed output values.  

For example, the RSM was used to calibrate the Soil and Water Management Model 
(SWMM) to better estimate peak flow rates for an urban watershed in Singapore (Ibrahim 
and Liong, 1992). Results from the calibrated model were found to compare well with 
measured results. The urban watershed in Singapore was later used to analyze the calibration 
of SWMM by a GA, again with good results (Liong et al., 1995). A GA was used to calibrate 
a water quality model for predicting dissolved oxygen in streams (Mulligan and Brown,  
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Figure 2.1: Flow chart of general GA (Koza, 1992) 
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1998). For comparison, a practitioner also calibrated the model using field measurements, 
empirical relationships, and engineering judgment to sequentially determine the model 
parameters. Parameter estimates produced by the GA calibration were comparable with the 
practitioner’s estimates along a 64-km river stretch. Sumner et al. (1997) used SA in 
combination with the Simplex algorithm to calibrate a conceptual rainfall-runoff model for 
25 watersheds in Australia and found that the computer-calibrated model fit the measured 
data more closely than did the user-calibrated model. 

Optimization techniques for intractable problems have not been widely used to assist in NPS 
pollution control. Bettinger et al. (1998) used the TS heuristic to help determine the optimal 
solution to a complex model for improving aquatic habitat conditions in a timber harvesting 
area.  

A GA was used to optimize the placement of BMPs within a watershed with the goal of 
minimizing pollutant loadings at the outlet while maximizing total net returns (Srivastava, 
1999; Srivastava et al., 1999). Srivastava et al. (1999) combined the Annual AGricultural 
NonPoint Source pollution model (AnnAGNPS) (Theurer et al., 2001) with a GA. They 
demonstrated their method on a 725-ha agricultural watershed, comparing conventional, 
conservation, and no- tillage on rotated crops. All other land uses (forest, pasture, and urban) 
were unchanged. Because of the problem representation used and a feature of the GA that 
required fitness scores to remain non-negative, the baseline scenario was chosen as the 
maximum possible pollution-loading scenario for the watershed. Net returns were based on a 
simple economic model using The Pennsylvania State University extension crop budget 
guidelines for farmers. 

The GA used by Srivastava et al. (1999) found the optimal scheme for either pollution 
reduction while holding net returns constant, or for net returns while holding pollutant 
loading constant. After about 3800 evaluations, the algorithm identified a solution better than 
those solutions resulting from 3000 random combinations of BMPs. When set to optimize 
pollution reduction, sediment was reduced 44% from the baseline. Additionally, the GA 
converged to an optimal fitness after about 100 generations. Thus, any solution scenario after 
the first 100 generations met or nearly met the optimization conditions.  

2.4 Summary 
Targeting focuses on critical areas within the watershed. As a result, targeting often reduces 
costs as compared to first-come, first-served approaches such as cost-share. A number of 
studies have developed targeting procedures to enable watershed-specific evaluation of NPS 
pollution control. Targeting methods incorporating both pollution prediction and economic 
models have been demonstrated. Additionally, spatial variability at the field and farm level 
has been shown to be an important aspect of effective targeting. 

Two reviewed studies developed nonlinear optimization techniques for improving NPS 
control cost-effectiveness by decreasing watershed costs while meeting pollutant loading 
criteria. These techniques estimated NPS pollution using lumped parameter methods. Field-
level private costs were determined, but within field variation of soil productivity was not 
considered, nor were public costs. 

Five optimization heuristics for solving combinatorial optimization problems, such as this 
one, were reviewed. These heuristics use different methods for formulating and solving the 
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BMP placement problem. Use of these heuristics in the area of NPS pollution control has 
focused primarily on calibration of NPS models. The genetic algorithm (GA) is the only 
mathematical heuristic cited in the literature as having been used for determining optimal 
scenarios with regard to cost-effective NPS pollution control (Srivastava et al., 1999). 

The research by Srivastava et al. (1999) provides a strong argument for the effectiveness of a 
GA in optimizing cost-effective BMP scenarios. Their work invites further exploration into 
use of optimization heuristics in solving BMP placement problems. In particular, Srivastava 
(1999) suggested a need to evaluate alternative GA formulations as well as to explore the use 
of other heuristics.  
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Chapter 3: Development of Optimization Procedure 

3.1 Introduction 
The solution set of the BMP placement problem can be characterized as a large number of 
variables, each with a small range of possible, categorical values. Solving the optimization 
problem relies on treating the agricultural fields, or management units, as individual 
variables, with the possible values of the management units being the identifiers for the 
available BMPs or sets of BMPs to be applied.  

Development of the optimization procedure involved first determining which optimization 
heuristic to use. The five heuristics described in Chapter 2 were compared based on a number 
of factors, leading to selection of the genetic algorithm (GA) as the heuristic to incorporate 
into the optimization procedure. The next step was to develop methods for predicting the 
NPS pollution from and economic impacts of each management scenario. These methods 
were then formulated into a multi-objective optimization function.  

The resulting optimization procedure is comprised of three components: a GA, an NPS 
component for evaluating pollutant loading, and an economic component for assessing public 
and private costs. Finally, the optimization procedure was implemented as a computer 
program and tested.  

Because of the computer time involved in running a detailed NPS model, using such a model 
to predict pollutant loadings within the optimization procedure may result in total runtimes of 
several days. Thus, efficient problem formulation that limits unnecessary evaluations of the 
objective function is desirable. In particular, the likelihood of the optimization procedure 
being used in the future may be improved by reducing runtime. Total runtime of the 
procedure may be reduced by development of a simplified NPS model that considers within-
field spatial variation and accounts for BMP placement effects. Additional opportunities to 
expand on existing work included incorporation of public costs and economic impacts of 
within-field soil productivity into the optimization procedure. 

3.2 Choosing an optimization heuristic 
The BMP placement problem was determined to be an intractable problem based on the large 
number of fields within even a small watershed, the exponential number of possible BMP 
combinations, and the computational complexity in quantitatively comparing watershed-level 
NPS loading relationships among watershed scenarios or resulting from individual BMPs 
placed within the watershed. Literature, particularly related to global optimization techniques 
(e.g., Swisher et al., 2000) and watershed-level NPS pollution control (e.g., Braden et al. 
1989, Srivastava et al., 1999), was examined to determine potential methods for solving this 
problem.  

Five heuristics for solving intractable problems were selected and considered in more detail 
in order to determine potential characterizations of the problem. As part of this consideration, 
several factors were compared among the heuristics, including performance for similar types 
of problems in previous studies, proof of convergence, and ease of formulation. Next, each 
heuristic’s continuity and differentiability requirements, convergence rate, and relative 
efficiency were considered, as were sensitivity of the heuristic to the problem formulation 
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and the number of points needed as a starting requirement. Table 3.1 summarizes the 
heuristics in terms of these factors, which are discussed in more detail in the following 
subsections. Factors greatly impacting procedure development are shown in bold.  

 

Table 3.1: Summary of heuristics in terms of each factor considered (high impact items in 
bold) 

 

Factor Heuristic 

 Response 
surface 

methodology 

Shuffled 
complex 
evolution 

Simulated 
annealing 

Tabu 
search 

Genetic 
algorithm 

Demonstrated 
performance on BMP 
placement problems 

No No No No Yes 

Proven convergence Yes Uncertain Yes Uncertain Yes 

Formulation ease Low Low High Low High 

Continuity or 
differentiability required 

Yes Yes No No No 

Convergence rate Uncertain Uncertain Uncertain Uncertain Uncertain 

Relative efficiency Uncertain High Low Uncertain Medium 

Sensitivity to formulation High High High High High 

Number of initial points 
required 

High High Low Low High 

 
 

As a result of the overall process of choosing an optimization heuristic, it was determined 
that the problem was most simply suited to characterization as a combinatorial optimization 
problem. Thus, the response surface methodology (RSM) and shuffled complex evolution 
(SCE) heuristics, which require continuity in the input variables, could now be eliminated 
from consideration. The remaining three heuristics were determined suitable for solving the 
BMP placement problem. However, this problem appears easier to formulate for use with 
simulated annealing (SA) and the GA than for the tabu search (TS)  

In addition to the above heuristics, the use of a classical method, such as integer 
programming or nonlinear optimization, was considered briefly. For example, Braden et al. 
(1989) used nonlinear optimization to address this problem. They evaluated management 
practices by small hydrologic units instead of by fields. The hydrologic units were then 
grouped into catchments within the watershed and their order along the catchment flow path 
identified. This data preparation can become particularly unwieldy for large or 
topographically complex watersheds. A NPS model could be incorporated into a classical 
optimization method to overcome this difficulty. However, it seemed that use of a classical 
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optimization technique would necessitate careful formulation with regard to the relationship 
between scenarios in order to implement an efficient optimization algorithm and prevent 
enumeration over all possible solutions. As compared to the simplicity of using a heuristic to 
solve this problem, efficient problem formulation using classical optimization techniques 
seemed less straightforward.  

3.2.1 Demonstrated performance on BMP placement problems 

The literature was reviewed for problems that specifically related the spatial distribution of 
agricultural characteristics within a watershed to NPS loadings from the watershed by using 
one of the five heuristics. Glover et al. (1995) listed a range of problems for which TS has 
provided high quality solutions. However, problems dealing with modeling of natural 
systems were not mentioned. Documented use of the SCE method has not extended beyond 
its development purpose of improving model calibration. Stone et al. (2002) used SA to 
assign fields and livestock attributes to farms based field characteristics, basic land use data, 
and watershed-level statistical information about farm types. Additionally, TS, SCE, SA, and 
RSM have been used to varying degrees in calibrating NPS models (Ibrahim and Liong, 
1992; Liong et al., 1995; Cooper et al., 1997). However, they were not found in the literature 
to have been used in determining optimal scenarios with regard to NPS pollution control.  

Genetic algorithms have been used to address biologically related questions such as 
biological arms races and symbiosis (Mitchell, 1999), but only one example was found in the 
literature dealing with the response of a watershed to NPS pollution reduction. As previously 
discussed, Srivastava et al. (1999) used a GA and AnnAGNPS to optimize BMP placement 
with regard to NPS loadings and to private costs. They found that the GA performed better 
than did scenarios consisting of random assignments of BMPs.  

3.2.2 Proven convergence 

Each heuristic was evaluated with regard to proven convergence to the optimum. The basic 
form of RSM is founded on statistical theory (Jacobson and Schruben, 1989; Myers, 1971), 
using least squares and experimental design to determine the response surface. For each 
surface suggested by the technique, gradients are used to determine the improving direction 
along the surface. This portion of the technique is similar to the steepest descent algorithm 
(Bazaraa et al., 1993), which under the appropriate conditions has been proven to converge at 
the optimum.  

The TS, SA, SCE, and GA are general search strategies for intractable problems and are not 
intended to enumerate over all possible solutions. Nor are they guaranteed to find the 
optimum, regardless of how long they run. Instead, they search in a controlled, but often 
probabilistic, fashion for the best solution achievable within a finite amount of time.  

However, for a connected search space, the SA has been proven to converge arbitrarily close 
to the optimum (Lundy and Mees, 1986). The GA has also been proven to converge, with 
high probability, to the optimum for a problem involving allocation of documents within a 
computer (Siegelmann and Frieder, 1991).  

By extension, the SCE, as a variation of the GA, can be expected to converge. However, 
since a documented convergence proof for SCE was not located, the SCE was ranked as 
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“uncertain”. Likewise, literature on the proven convergence of the TS was not found, 
resulting in a relative ranking of “uncertain”.  

3.2.3 Formulation ease 

Solving a problem using the RSM often involves sampling the search space through a 
factorial experimental design. The output (or response) of each point in the experimental 
design is calculated. Then the RSM is used to fit a response surface and determine an 
optimum. To use this method as an optimization procedure, one must relate a given response 
value with the associated input point. In this respect, the RSM is not well suited for a large 
number, combinatorial optimization problem. In this problem there are far more management 
units in a watershed than there are BMPs. The problem representation for this heuristic 
would necessitate analysis and manipulation of logistic regression equations with one 
dependent variable (pollutant loading at the outlet), hundreds of independent variables (each 
field being a separate variable), and few values for each independent variable (values 
consisting of a one-to-one mapping with each possible BMP set; that is, ten values for ten 
sets of BMPs). This configuration is beyond the capability of standard statistical software. 

Representing BMPs as categorical variables is not an issue for the other four heuristics. 
However, sets of BMPs cannot always be related to each other in terms of pollution reduction 
or cost. Thus, there is no easy way of assigning a neighborhood set for each BMP scenario, 
before calculating the objective function. Instead a NPS model must be used for each 
evaluation of the objective function. This would require customization of the SCE method, to 
replace the steepest descent algorithm used for evaluation of individuals within its population 
complexes. For the TA, SA, and GA techniques the problem could be formulated using a 
NPS model to calculate the objective function. However, the runtime for an NPS model is 
lengthy as compared to the other calculations within the optimization heuristics. Thus, 
efficient problem formulation that limits unnecessary evaluations of the objective function is 
desirable.  

For the TS, the need for an efficient problem formulation increases the importance of 
designing a dynamic, problem-specific tabu list. In particular, to minimize the number of 
evaluations of the NPS model, it is preferable that scenarios can be checked against the tabu 
list without requiring evaluation by the NPS model. However, the categorical nature of this 
problem increases the complexity in creating an adaptive list based on BMP patterns within 
scenarios. Thus, TS was ranked as “low” with regard to formulation ease.  

Both the SA and GA can be developed to use a NPS model in the objective function. 
Evaluation efficiencies for these heuristics are largely a function of optimization parameters, 
such as cooling rate and crossover rate. Effective values for these parameters are problem 
dependent, but can be determined through sensitivity analysis. Thus, the SA and GA were 
ranked as “high” in formulation ease as compared to the other methods.  

3.2.4 Continuity and differentiability 

The RSM requires continuous data (Myers, 1971), or a continuous representation of the data, 
in order to fit a surface to the optimization function using regression and directional search. 
Although it is possible to regress an equation in which some variables are ordinal, but not 
continuous, the remainder of the RSM requires that, based on this regression, the direction(s) 
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of improvement can be ascertained. Because the relationships between groups of BMPS and 
the resulting watershed response cannot be precisely determined, it is not clear which BMP 
in a scenario should be changed to improve the watershed response. 

The SCE does not require continuity or differentiability in its objective function (Duan et al., 
1993). However, use of the Nelder and Mead strategy within the SCE implies that the input 
variables are continuous (Bazaraa et al., 1990).  

Using either technique for this research problem would require a mapping between the BMP 
on each field (a categorical representation) and some measure of fitness or impact of that 
BMP on the field (a continuous, or at least ordinal, representation). Based on this mapping a 
gradient or path of improvement between BMPs could be determined. However, due to 
natural variation among and within field sites, it is extremely difficult to accurately measure 
interactions among BMPs or to determine an average pollutant reduction value for a 
particular BMP irrespective of its surroundings. 

The TS, SA, and GA do not require continuity or differentiability. They require only the 
capability of mapping each scenario to a fitness function. In this regard, these three heuristics 
are well suited to the BMP optimization research problem. 

3.2.5 Convergence rate 

Convergence rate can be defined (Bazaraa et al., 1993) as the ratio of the improvement of the 
objective function to the number of iterations, number of functional evaluations or amount of 
computational time. The number of objective function calculations required in each iteration 
of the optimization technique has a significant impact on the convergence rate. The RSM and 
SCE require repeated calculations of the objective function for neighboring points in order to 
determine the improving directions. The SCE algorithm requires the optimal function be 
calculated as many as three times for each new point (Duan et al., 1993). The TS, SA, and 
GA calculate the objective function only once for each new point. However, like the RSM 
and SCE techniques, the GA requires numerous points, or population members, to be created 
and analyzed at each iteration. The TS may require repeated searching through previous 
iterations to determine if a new solution is not tabu. The SA requires multiple evaluations at 
each level of cooling and multiple levels of cooling.  

Due to minimal previous literature on these heuristics for solving watershed response 
problems, neither the computation time nor number of iterations needed for convergence is 
clear. Also, it is not clear how the number of iterations or computational time needed for each 
iteration compares across the heuristics. Thus, this factor was determined to be “uncertain” 
for all heuristics (Table 3.1). 

3.2.6 Relative efficiency 

While convergence rate primarily considers the performance of individual heuristics, the 
relative efficiency factor was intended to compare heuristics. High relative efficiency refers 
to nearing an optimal solution in the least number of iterations or functional evaluations, as 
compared to other heuristics for the same problem. For example, while Lundy and Mees 
(1986) demonstrated a problem in which SA converges more quickly than a repeated descent 
algorithm, Eglese (1990) stated that for a problem with only a global optimum the descent 
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algorithm will converge more quickly. Additionally, Eglese (1990) reviewed a number of 
modifications to SA that have been used to decrease run time.  

Because of the lack of literature comparing techniques for problems directly involving the 
correlation of BMP location to watershed NPS loadings, it was difficult to determine which 
technique was likely to be most efficient for this problem. Thus, the literature search was 
expanded to look at performance of the five methods in other applications of managing 
agricultural resources. Several of these techniques have been compared in the area of NPS 
model calibration. Thyer et al. (1999) used calibration of a watershed runoff model for two 
watersheds to compare robustness and efficiency of the SA method used by Sumner et al. 
(1997) with the SCE method. Although results were heavily dependent on the watershed, the 
SCE method appeared to perform better. Cooper et al. (1997) found convergence under SA 
averaged 12 000 evaluations. In the same study, SCE and GA techniques averaged 6000 and 
9000 evaluations, respectively. Based on this study, these three heuristics were assigned 
relative rankings of “high”, “low”, and “medium”, respectively. Comparisons of RSM and of 
TS to the other heuristics were not found in the literature. Thus, the relative efficiencies of 
RSM and TS were ranked as “uncertain”. 

3.2.7 Sensitivity to problem formulation 

The accuracy and speed of the RSM in locating the optimum of the system modeled is 
dependent on how accurately the system is modeled by the response function. Choosing a 
well fitting function for a complex system can be very difficult without some prior 
knowledge of the characteristics of the system’s response surface. Jacobson and Schruben 
(1989) summarized a number of studies that modified the RSM in order to provide better 
fitting response functions. Additionally, Myers (1971) discussed a method for comparing 
efficiencies of two different response functions for a given problem being solved by RSM. 

Duan et al. (1993) showed two variations of the SCE to perform consistently on eight 
different problems in terms of efficiency and effectiveness. However, in a following study, 
the same authors (Duan et al., 1994) reported that the SCE method is sensitive, in both 
efficiency and effectiveness, to the choice of parameter values used in the algorithm. 

Unlike with the RSM, formulating the problem representation for the TS, SA, and GA 
heuristics requires knowledge of input characteristics of the system, not of the system’s 
response surface. Thus, a solid background understanding of the problem is helpful in 
formulating the representation.  

Values of optimization parameters used by the TS, SA, and GA may vary depending on 
problem formulation. Tabu search is sensitive to selection rules established, both for moves 
to avoid and moves to encourage, by the problem formulation (Reeves, 1993). Determining 
optimal cooling schedule parameters for the SA often requires much experimentation for 
each problem type (Reeves, 1993). Similarly, success of the GA is dependent on an 
appropriate problem representation (Mitchell, 1999). Optimal choices of selection and 
genetic operators to be used for the GA depend on the problem and its representation.  

Literature for all five heuristics indicates that their success is sensitive to problem 
formulation. Because of the lack of previous application of these heuristics to this type of 
problem, knowledge from previous formulations is available in only one case for the GA. 



Tamie L. Veith Chapter 3: Development of Optimization Procedure 19
 

 

Thus, the sensitivity to problem formulation factor (Table 3.1) was ranked as “high” for all 
heuristics. 

3.2.8 Number of initial points required 

Creators of the SCE (Duan et al., 1993) suggested that the number of points used to start the 
algorithm be equal to or greater than the dimension of the problem to satisfy the requirements 
of the Nelder and Mead search strategy. For the RSM also, the number of points needed to fit 
the polynomial at each step must be at least the dimension of the problem. The dimension of 
the current problem is one plus the number of management units in the watershed, which can 
number in the hundreds for small watersheds. The GA also requires multiple initial points to 
define the starting population. Thus these three heuristics were ranked as “high” with regard 
to the number of initial points needed. Because the TS and SA techniques each start with a 
single scenario, they were ranked as “low” with regard to the number of initial points needed. 

Both the RSM and the SCE require continuity. Thus, knowledgeable selection of the initial 
set of points such that they reflect the characteristics of the search space may be helpful in 
ensuring that the RSM and SCE techniques converge towards the optimum efficiently. 
However, the initial points for these as well as the other three heuristics may be determined 
randomly. 

3.2.9 Selected heuristic 

Based on a subjective comparison of the heuristics with regard to the above factors, the GA 
was chosen as the optimization heuristic for this problem and used in development of the 
optimization procedure. Theoretically, the GA is intended to find one or more near optimal 
solutions within a reasonable amount of time. With regard to this research, a near optimal 
solution suggests a watershed scenario that meets the cost-effectiveness criteria. This 
scenario may then be fine-tuned by policy makers to meet individualized farmer needs or 
used as a starting point for more detailed predictive modeling. 

Compared to the other heuristics, the SA and GA seemed more straightforward to formulate 
in a manner that could accommodate evaluation of different watersheds. Because the SA and 
GA do not require continuity or differentiability, they are well suited to this combinatorial 
optimization problem. Both the SA and GA have been proven to converge arbitrarily close to 
the optimum under certain assumptions. Additionally, unlike the TS, the SA and GA do not 
require problem-specific selection rules.  

Convergence rate and relative efficiency of the GA, in comparison with the other heuristics, 
were not clear. Performance of the GA in these two areas appeared to be no better or worse 
than that of the majority of the other heuristics and to, perhaps, be dependent on the specific 
problem and/or problem formulation. The GA, like the other heuristics, was seen to be 
sensitive to problem formulation. The previous work with the GA in placement of 
management practices (Srivastava et al., 1999) was available to provide some insight into a 
possible problem formulation.  

3.3 Development issues 
Development of the optimization procedure involved representing the relationships of the 
physical system (i.e., the agricultural watershed) as a mathematical model. To meet the 
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research goals for the physical system, the model had to provide a way to rank cost-
effectiveness ratios through fitness scores and a single objective function. Additionally, it 
was considered desirable that the optimization procedure prefer farms meeting feed and 
nutrient management area requirements and that it divide costs as evenly as possible across 
farms. 

The overall goal for the procedure was to determine the most cost-effective scenario where 
cost-effectiveness was defined as the ratio of pollution reduction to cost increase from a 
baseline scenario. The total watershed cost for each scenario, including the baseline scenario, 
is calculated relative to the profit-maximizing scenario as opportunity cost minus net return. 
Opportunity cost refers to the cost of not choosing the management practice with the highest 
net return. Thus, the cost increase from the baseline for a given scenario reflects decreased 
net return as a result of changing management practices. 

Under the cost-effectiveness goal, the procedure should find increasingly cost-effective 
solutions as it progresses from the baseline towards the optimal scenario. However, for the 
optimization procedure to accurately represent the physical system, optimizing this ratio as a 
single function raised two issues: one related to the variables of the objective function (i.e., 
defining fitness scores for the GA) and one involved with the relationship between these 
variables (i.e., defining the objective function). These issues are addressed in the following 
two subsections. 

After resolving these issues, the procedure was expanded to include consideration of farm 
area requirements and cost fairness to farmers in BMP allocation (Sections 3.3.3 and 3.3.4, 
respectively). The area requirement refers to the amount of land needed in cropland and 
hay/pasture for the farm to produce sufficient amounts of feed and to have sufficient land 
available for manure/litter spreading. The allocation amounts vary based on farm type. The 
consideration of cost fairness refers to the attempt to distribute costs evenly among multiple 
farmers in the watershed. In comparing two scenarios with nearly equivalent total cost for the 
watershed, the scenario for which that cost is divided most evenly among farmers is preferred 
by the procedure. 

3.3.1 Fitness scores 

The cost-effectiveness ratio, pollution reduction over cost increase, can be written as p/c 
where p and c are real numbers. Mathematically, however, (-p)/(-c) = p/c, where p and c are 
positive real numbers. In terms of this research problem this relationship implies, for 
example, that reducing 10 Mg/ha of sediment for a cost increase of $100 is equal in cost-
effectiveness to increasing sediment by 10 Mg/ha but decreasing costs by $100. In the first 
situation both terms are positive with regard to the cost-effectiveness definition whereas in 
the second situation both terms are negative. Thus, both ratios equal 0.10. Additionally, it is 
mathematically implied that both situations are more cost-effective than reducing 10 Mg/ha 
of sediment while decreasing costs by $10 (0.10 Mg/ha/$ vs. –0.10 Mg/ha/$).  

Consequently, formulating a single fitness score from this cost-effectiveness ratio poses a 
problem resolving the four potential numerical cases caused by the variables of the ratio. 
That is, either the numerator or denominator of the ratio may be mathematically positive or 
negative. For appropriate representation of the physical system by the model, it was crucial to 
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consider which of the four theoretical cases were allowable. This resulted in development of 
two fitness scores: one for pollution reduction and one for costs.  

In the interest of assigning BMPs to decrease NPS pollution from a baseline, pollution 
increase at the watershed outlet, as a result of altering a BMP assignment, was not an 
acceptable option; such a scenario would be no better than the baseline scenario in terms of 
pollution reduction. The modeling impact of this situation was to form a pollution fitness 
score that focused on positive pollution reduction. As a result, all scenarios that increased 
pollution as compared to the baseline were given a pollution fitness score of zero. Scenarios 
that reduced pollution were given a positive fitness score. 

In addition, meeting environmental goals often requires pollution reduction to meet a pre-
established maximum allowable level. Water quality standards, governmental regulations, or 
levels established by pollution control policies might set this level. Management practice 
changes that fail to reduce pollution sufficiently to meet criteria are not likely to be an 
acceptable allocation of time and expenses. Thus, the allowable level of reduction was 
incorporated into the pollution fitness score. Scenarios that met or exceeded the pollution 
reduction criteria were given the highest fitness score. Creating a pollution fitness score in 
this manner narrowed the possible configurations of the cost-effectiveness ratio by 
eliminating the possibility of the pollution reduction value being negative.  

While it was anticipated that costs would increase from the baseline as BMPs were added, a 
scenario meeting the pollution reduction criterion and decreasing cost would certainly be 
acceptable. Thus, in modeling the scenario cost, the economic fitness score had to allow for 
both increase and decrease in cost as compared to the baseline. Because all cost calculations 
include opportunity costs, a scenario cost remains positive even if it decreases below the 
baseline scenario. Thus, the cost score, as formulated, always remains positive. However, 
cost increase, expressed as change in cost relative to the baseline, may be positive or 
negative. 

The economic fitness score was developed further to account for the extent to which each 
farm meets any area requirements and to attempt to distribute costs among the farms as much 
as possible. The cost score has the added benefit of changing little for costs that are near the 
baseline but increasing rapidly as the cost decreases. 

Restricting the pollution reduction score to nonnegative values reduced numerical confusion 
in evaluating the cost-effectiveness ratio. Also, because the computer program used for the 
GA portion of the procedure does not permit negative objective function values, restricting 
the fitness scores simplified transfer of the objective function into program code. 

3.3.2 Objective function 

As mentioned in the preceding section, using the cost-effectiveness ratio as a single objective 
function for the GA does not clearly define the response surface to the research problem. By 
use of a ratio as the sole determination of fitness, a scenario resulting in 10 Mg/ha per dollar 
is equivalent to a scenario resulting in 200 Mg/ha per $20 and neither scenario is preferred 
over the other. However, as target reduction criteria are introduced, the scenario preference 
becomes dependent on which of the scenarios, if any, meet the reduction criteria. A 
straightforward, realistic solution to this problem was to split the single cost-effectiveness 
ratio objective function into a multi-objective problem. That is, cost-effectiveness was 
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separated into two objectives: a) meet or exceed the pollution reduction criterion and b) 
minimize cost increase.  

The difficulty of finding a quantitative solution to a multi-objective problem, such as this 
research problem, is increased when the objectives deal with different quantities (i.e., 
pollutant load and cost). One method of reconciling multiple objectives into a single set of 
objective functions is to use a lexicographic method (Coello, 2000; Rentmeesters et al., 1996; 
Roumasset, 1976). In this method, the objective functions are prioritized in some manner, 
such as by desirability or importance. Then, the problem is solved by maximizing each 
objective function in turn. 

The multi-objective optimization problem was solved by defining fitness scores that 
described the objective criteria of pollution reduction and minimal cost increase and by using 
a lexicographic ordering technique to optimize these fitness scores in sequence. Based on 
discussion in the previous section, modeling cost-effectiveness was done by first meeting the 
pollution reduction criteria and then minimizing the cost increase. Using this method, the 
optimization component finds improved solutions based on fitness scores, which follow, but 
are not identical to, the pollution loading and cost increase values. 

3.3.3 Area requirements 

Because the BMPs used in this study affect the crops and forages produced by farms in the 
watershed, it was important that the solutions not be chosen based on pollution reduction and 
cost alone. The solutions must also conform to reasonable farming practices. Therefore, the 
optimization problem was re-examined with regard to extent to which each farm 
configuration meets the land use requirements for feed and for manure/litter spreading. Three 
ways of incorporating the area requirements into the optimization problem were considered.  

The first involved a separate optimization program to determine a population of scenarios 
that all met the area requirements for all farms. This would be used as the search space for 
the BMP placement optimization technique. The main difficulty with this method is making 
certain that all possible scenarios meeting the area requirements are included in the search 
space of the GA and that no other scenarios are included. This method would not be 
applicable to watersheds in which the area requirements cannot be met by any scenario, 
because the search space would be empty.  

The second, very similar, way of incorporation involved enforcing the area requirements 
lexicographically, before the pollution reduction requirement. Thus, each scenario would first 
be assessed for meeting the area requirements. If the requirements were not met, an 
extremely low fitness score would be assigned. If the requirements were met, scenario 
evaluation would continue with assessment of the pollution reduction requirement. The main 
drawback with this method was that it evaluates area, pollution, and cost objectives 
separately, without acknowledging interactions among the variables in these three areas. That 
is, if management practices are assigned by considering only area requirements and not other 
factors, such as soil type and topography, the method may not locate the most cost-effective 
scenario. 

When allocating a farm’s production land among management practices, the area 
requirements impact farm economics with regard to sufficient feed production and nutrient 
management. However, the area requirement is not necessary for determining if a scenario 
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reduces pollution. Thus, a third method was developed that incorporated the area 
requirements into the economic component but not into the pollution reduction component. 
This method was used in the procedure. 

The area and economic considerations were combined through a fitness function that 
increases as the cost per farm for a suggested scenario decreases and the area requirements 
per farm are realized. When area requirements per farm are not met to the same extent as in 
the baseline scenario, the fitness score for that farm is reduced. The opportunity cost of the 
baseline scenario is used to scale the function to allow for different ranges of costs in each 
optimization run. The opportunity cost for the baseline scenario is calculated by summing, 
over all management units, the maximum possible net returns provided by the considered 
management practices. 

3.3.4 Cost fairness 

By using the lexicographic solution method, BMPs are first located throughout the watershed 
with respect to their pollution reduction capabilities. This may mean that certain farms are 
allocated numerous BMPs and incur large cost increases while other farms incur little or no 
increase in cost. It may be easier to work with only a few farmers to change their 
management practices, instead of convincing multiple farmers to change. However, if 
farmers are not willing to implement the selected BMPs, then the solution scenario is not 
beneficial. In order to improve the likelihood of watershed-wide acceptance and 
implementation of a solution scenario, it was considered more likely that farmers would be 
willing to absorb a little cost, particularly if multiple farmers were incurring the same cost, 
than to be one of a few to absorb the majority of the cost.  

Spurlock and Clifton (1982) demonstrated that a NPS pollution control strategy based on the 
marginal cost of pollution reduction is economically more equitable to farmers than a 
strategy based on meeting a per acre pollution reduction level. In the optimization procedure, 
a simple approach to cost fairness at the farm level is taken. Scenarios dividing total farm-
level implementation costs more evenly across farms are preferred. Cost distribution is not 
limited to farms meeting a certain level of pollution reduction. Specifically, a distance metric 
was included in the economic fitness function to introduce some measure of economic 
fairness in assigning BMPs throughout the watershed. For example, given two scenarios of 
equal total watershed cost and meeting area requirements equally, the economic fitness 
equation calculates a higher fitness score for the scenario in which the costs are divided more 
equally across the farms.  

3.4 Overview of optimization procedure 
The optimization procedure is comprised of three parts: an optimization component based on 
the GA heuristic, a NPS prediction component, and an economic analysis component (Figure 
3.1). At each generation of the optimization procedure, the optimization component forms a 
number of scenarios to consider for addition into the GA population. Then the values (i.e., 
the management practice identifiers) for each new scenario are extracted from the 
optimization component and sent to the NPS and economic components. Based on this input, 
pollutant load and cost for the watershed are calculated. These values are then sent back to  
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Figure 3.1: Structure of optimization procedure, showing fitness scores used in each component 
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where 
pi = score of pollutant i, 
pb = pollutant loading from baseline 
            scenario [Mg], 
pw = pollutant loading from working 
            scenario [Mg], and 
pt  = target pollutant loading [Mg]. 
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dw = public cost of working scenario 
for farm i [$], 
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ia = , 

aw = extent to which working 
scenario meets area 
requirements of farm i, 

ab = extent to which baseline 
scenario meets the area 
requirements of farm i, and 

i indexes all farms in the watershed. 



Tamie L. Veith Chapter 3: Development of Optimization Procedure 25
 

 

the optimization component where they are converted into fitness scores and evaluated. After 
the evaluation process determines which scenarios, both new and existing, to transfer to the 
next population, the entire process repeats. This continues until the procedure reaches the 
termination criterion. 

Figure 3.1 summarizes the fitness equations associated with each component. The economic 
component (Section 3.6) performs the calculations needed for the economic fitness score 
(Equation 3.6). The individual and total pollutant fitness scores (Equations 3.1 and 3.2) are 
described in Section 3.7. The optimization component combines the economic and pollutant 
scores, as discussed in Section 3.5, to create the total fitness score (Equation 3.7). 

3.5 Optimization component 
The main part of the optimization component is the GA heuristic. The GA for this research 
uses a steady state replacement scheme, in which a given percentage or a set number of the 
population is replaced each generation. A tournament selection scheme selects two members 
of the population probabilistically based on the ratio of each individual’s fitness to the sum of 
all the fitness values. Of these two individuals, the one with the higher fitness score is 
chosen. The selection process is repeated and the two chosen individuals are used to create 
two new individuals by reproduction, crossover, and mutation, based on the assigned 
probabilities of these operations. New members are created and added to the previous 
generation until the replacement percentage is met. Then the least fit members of the 
temporarily expanded population are removed from the generation, resulting in a constant 
population size with each successive generation.  

3.5.1 Problem representation 

In using a GA, the optimization problem lends itself to a straightforward representation. Each 
watershed scenario can be thought of as an array of numbers or a chromosome. Thus, a 
possible solution to the problem is represented as a chromosome and each land use area is 
represented as a gene on that chromosome. 

In nature the value of each gene along the chromosome is chosen from a set of possible 
values, or alleles, for that gene. In the watershed scenario representation, each member of the 
array acts as a placeholder for the member’s respective field or management unit; the value 
in that position represents the specific management practice on that field.  

The baseline scenario is the scenario to which each new scenario is compared. This is not 
required to be the scenario used for initializing the GA. However, meeting this requirement 
does simplify the process because the allele set for each gene is defined independently based 
on the value of that gene in the initializing genome. Using the baseline scenario to define the 
array of allele sets allows the GA to be initialized with a random population where each 
individual is subject to the constraints of the allele array. Thus, any land use area not in 
production is assigned a single allele, representing the baseline value, and maintains a fixed 
set of management practices. Land use areas in production are assigned a set of alleles, 
corresponding to the set of acceptable BMPs. Baseline management practices can come from 
the current land uses and management practices in the watershed, from the profit-maximizing 
scenario (most profitable management practice for each field), or from any other scenario of 
choice. 
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3.5.2 Pollution reduction score 

The pollution reduction score was developed to scale the pollutant loading of each scenario. 
Multiple pollutants can be considered in the optimization. The score for a single pollutant is 
calculated by Equation (3.1).  
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where 
pi = score of single pollutant i, 
pb = pollutant loading from baseline scenario [Mg], 
pw = pollutant loading from working scenario [Mg], and 
pt  = target pollutant loading [Mg]. 

Based on the goals of the optimization procedure, scenarios giving a pollutant loading less 
than the maximum allowable, or target, load are preferred. Scenarios with pollutant loads less 
than the target load but greater than the baseline load are also included in the optimization 
process. This is particularly important for case studies in which the target load is met by few 
or no scenarios. For pollutant loads between the baseline and target loads, the score increases 
linearly as pollutant load decreases (Figure 3.2). The fitness score of scenarios with pollutant 
loading larger than the baseline is set to zero, removing these scenarios from the optimization 
process. The baseline loading was chosen as an upper limit in order to prevent negative 
fitness scores, but retain flexibility in the use of the optimization procedure over a range of 
applications.  

 

Figure 3.2: Individual pollutant score function 
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In the case of multiple pollutants of interest, a unique pollutant-targeting criterion can be set 
for each pollutant and the individual pollutant scores weighted against each other in terms of 
importance. The weighting factors should be fractions adding up to one. The weighted 
pollutant scores are combined by Equation (3.2) to create a single total pollutant score, which 
ranges from zero to one.  
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where  
P = total pollutant fitness score, 
βi = weighting factor of pollutant i,  
pi = score of pollutant i, 

∑
i

iβ = 1, and 

i indexes all pollutants being considered. 

By incorporating targeting criteria as inputs, the optimization procedure maintains flexibility 
to numbers and types of pollutants, pollutant weightings, and targeting values. Although the 
NPS component currently considers only sediment, this process allows multiple pollutants to 
be considered simultaneously.  

3.5.3 Economic score 

The economic score was developed for this optimization procedure based on the 
development issues identified for this problem. It is structured to consider public and private 
costs as well as farm-level area requirements and cost fairness. The economic fitness function 
is given by Equation (3.3), using only the positive root of the right-hand side denominator.  
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where  
ε = economic fitness function, 
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n = the number of requirements for farm i, 
ao = area in working scenario contributing toward requirement for farm i [ha], 
ae = area required for farm i [ha], 
r indexes all area requirements for farm i, 
ab = extent to which baseline scenario meets area requirements of farm i as calculated 

by Equation (3.4) with ab = aw and ao = area in baseline scenario contributing 
toward requirement for farm i [ha], and 

i indexes all farms in the watershed. 

Scenario costs are used in the economic fitness function instead of using a cost increase 
quantity. This simplifies calculations by preventing the need to first calculate cost increase 
before solving the fitness function. The opportunity cost is then used in the numerator to 
scale the values of the economic fitness function relative to the watershed being evaluated.  

The Euclidean distance metric was used in the economic fitness function to help distribute 
the impact of cost increase among farms. Using this metric instead of simply adding costs 
across farms results in a more preferable score when several farms each incur a little cost 
than when a single farm incurs the equivalent cost. For example, consider a three-farm 
scenario with an opportunity cost of $500 and zero area requirements. If the costs for farm 1 
are $240 while the costs for farms 2 and 3 are $0, the value of the economic fitness function 
is 2.08. However, if the costs for each farm are $80, the economic fitness function value 
increases to 3.61. 

However, the effect of the Euclidean distance metric is somewhat moderated by the public 
cost. Since each farm incurs the public cost once for one or more BMPs adopted, less total 
public cost is incurred if the management practice changes are distributed over as few farms 
as possible. The result is, roughly, that the economic fitness function will tend to prefer 
change in a minimum number of farms while preferring cost increases to be distributed as 
equally as possible among those farms. These two issues, working at cross-purposes, are 
weighted against each other, in a general sense, by the magnitude of the public and private 
costs, respectively.  

A farm may or may not meet area requirements in the baseline or in working scenario, 
depending on the farm type and size and on the management of production land. For 
example, a dairy farm that requires all production land to be in corn to supply sufficient feed 
will no longer meet the area requirement if one of the fields is changed to hay in the working 
scenario. When the area requirement percentage met by a farm in the working scenario is less 
than that met by the baseline, ai is less than one and farm i’s contribution to the economic 
fitness function increases, resulting in a decrease in the economic fitness function. 
Conversely, when the area requirement percentage met by the working scenario is greater 
than that met by the baseline, ai is set to one. Thus, the corresponding farm is not penalized 
within the economic fitness function.  

In the event that aw = 0 or ab = 0 for a farm with nonzero area requirements, then that 
variable is set equal to 0.001. This imposes a penalty with regard to that farm, without 
allowing the denominator of the economic score to approach infinity.  

An addend of one is included in the denominator of Equation (3.3), preventing the equation 

from becoming undefined as the farm-level cost metric, ∑
i i

i

a

x 2

, goes to zero. Thus, the 
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equation is limited to a maximum value of Co. The function has a value of oC when the 

farm-level cost metric equals Co-1 and continues to rise as the cost metric decreases further, 
as shown in Figure 3.3. 

 

 
Figure 3.3: Economic fitness function 

 

Finally, the economic fitness score (Equation 3.5) is created by increasing the economic 
fitness function by one so that the pollutant and economic scores can be combined without 
overlap. The genetic algorithm uses this feature when sorting scenarios for the next 
generation. 

 

1

11
2

+

+=+=

∑
i i

i

o

a

x

C
E ε  (3.5) 

where  
E = economic fitness score. 

3.5.4 Objective function 

The pollutant and economic fitness scores are combined to create the objective function by 
which each scenario is evaluated (Equation 3.6). 

 




=
<

=
1for

1for

PE

PP
F  (3.6) 

where  
F = objective function (combined fitness score). 

Each scenario is first examined to see if its pollutant load meets all pollutant-targeting 
criteria. Fitness scores are continuous and range from zero to (1+ Co). All scenarios that meet 
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the pollutant-targeting criteria (i.e., having a total pollutant score of one) are ranked based on 
their economic scores. Thus, their fitness scores equal their economic scores (ranging from 
one to 1+ Co). All scenarios not meeting the pollutant-targeting criteria are ranked by their 
total pollutant scores so that their fitness scores equal their total pollutant scores (ranging 
from zero to one). Hence, for each population and for the GA as a whole the scenario that 
meets all pollutant-targeting criteria and farm area requirements for the least cost has the 
highest fitness score. 

3.6 Economic component 
The economic impact to the watershed for a given scenario consists of the sum of private 
costs, which reflect the farmers’ compliance costs due to changing management practices, 
and public transaction costs, incurred by the government in ensuring that water quality goals 
are being met (Carpentier et al., 1998). The economic fitness score considers these costs 
while taking into account the extent to which crop-management practices for each farm meet 
the requirement of the farm type.  

3.6.1 Private costs 

Private costs, incurred by each farmer as a result of applying a management practice, are first 
determined at the field level as opportunity cost minus net return. Opportunity cost refers to 
the cost of not choosing the management practice with the highest net return. The private cost 
for each farm is the sum of field costs for all fields in the farm (Equation 3.7).  

 ∑ ∑ ∑ 



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



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
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ijk

l
ijkliji aesyoc )(  (3.7) 

where   
ci = private cost for farm i [$], 
oij = opportunity cost for farm i and field j [$], 
yijkl = yield for farm i, field j, crop k, and soil l [qty/ha], 
sijk = selling price of crop k on farm i and field j [$/qty], 
eij = enterprise production cost for farm i and field j [$/ha], 
aij = field area for farm i and field j [ha], 
i indexes all farms, 
j indexes all fields per farm, 
k indexes all crops per field, and 
l indexes all soils per field.  

For calculation purposes in the program, the gross return for each crop in a rotation must be 
represented as an average annual amount. Thus, selling prices for each year are annualized 
over the rotation length for each crop before multiplying by crop yield. The annualized gross 
returns (selling price * yield) are summed over all crops in the rotation to determine the 
average annual gross return for the rotation. Discrete compounding factors (Degarmo et al., 
1997) are applied as necessary to bring all practices in the rotation to the present value and 
then to annualize that rotation’s production cost over a five-year period. Then average annual 
net return for the rotation is calculated as average annual gross return minus average annual 
production cost. For one-year rotations, the annualized gross return per crop yield is identical 
to the cash crop selling price. An example calculation for a rotation with two years of 
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conventional corn and three years of hay on a 1-ha field of a single soil type is shown in 
Table 3.2.  

The method used for calculating net return in the optimization procedure was compared to 
two alternative methods for calculating net return and found to give identical results 
(Appendix A). In one method, the net return for each year was determined before discounting 
all rotation years to a present value and annualizing. In the second method, both the gross 
return and production costs for each year were discounted to a present value, annualized, and 
summed. Then the annual net return was calculated as the difference between the total 
annualized gross return and production cost. 

3.6.2 Public costs 

Public costs are calculated for each farm for which a BMP has been added to one or more 
fields (Equation 3.8).  

 iii ecd +=  (3.8) 

where  
di = public costs of a given scenario for farm i [$], 
ci = contracting costs of a given scenario for farm i [$], and 
ei = enforcement costs of a given scenario for farm i [$]. 

Contracting costs are costs incurred by government agencies while forming agreements with 
those farmers who are required to change management practices. Enforcement costs include 
expenses incurred by the government agencies while ensuring contract agreements are met. 
Carpentier et al. (1998) discussed determination of these costs and provided estimated values. 
A farm without added BMPs has a public cost of zero. The total public costs for the 
watershed are the sum of all public costs calculated per farm. 

Two additional types of public costs were considered when developing the optimization 
program: cost-share and information. In cost-share programs, the farmer implements an 
appropriate BMP and is reimbursed, in part, by a government incentive. Considered at a farm 
level, the impact of cost-share programs cancels out. That is, the total costs per farm equal 
the private costs (from which the cost-share amount is subtracted) plus the public costs (to 
which the cost-share amount is added). In the economic fitness score (Equation 3.3) private 
and public costs are added by farm before their sum is squared. Thus, cost-share amounts 
correctly cancel out of the total costs per farm as calculated by the economic score. Hence, 
the optimization program does not explicitly consider cost-share programs. 

Information costs represent the costs involved in generating the optimal solution from the 
baseline scenario through development and use of the optimization procedure. Since, by this 
definition, information costs do not vary by run of the optimization scenario, they were not 
considered within the optimization procedure. Information costs of the procedure as 
compared to those of a targeting strategy are discussed in Section 4.7 with regard to research 
objective 2. 
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Table 3.2: Example net return calculation for a multi-year rotation on a 1-ha field of single 
soil type (mapping unit symbol 1B: Allegheny fine sandy loam) 

 
Production cost calculation 

Year Crop Production cost [$/ha] Bring to end-of-year 1 
   discount factor1 discount * production cost 

1 conventional-tillage 
corn silage 

744.33 -- 1 744.33 

2 conventional-tillage 
corn silage 

744.33 (P/F,9%,1) = 0.9174 682.85 

3 grass hay 
establishment and 

harvest 

527.86 (P/F,9%,2) = 0.8417 444.30 

4 grass hay 
maintenance 

359.14 (P/F,9%,3) = 0.7722 277.33 

5 grass hay 
maintenance 

359.14 (P/F,9%,4) = 0.7084 254.41 

End-of-year 1 total 2 403.23 

Production cost annualized over five years [$/ha]  

 End-of-year 1 * annualization factor ((A/F,9%,5) =0.1671) 401.58 
 
Gross return calculation 

Year Crop 

Selling 
price 

[$/tons] Bring to end-of-year 1 

Discounted selling 
price annualized over 

five years [$/tons] 

Yield 
[tons/ha] for 
a 1-ha area 

Annualized 
gross return 

[$] 
   discount factor1 discount 

* selling 
price 

discounted price * 
annualization factor2 
((A/F,9%,5) =0.1671)

 annualized 
selling price 

* yield 

1 conventional-
tillage corn 

silage 

26.10 -- 1 26.10 4.36 44.46 193.90 

2 conventional-
tillage corn 

silage 

26.10 (P/F,9%,1) = 0.9174 23.94 4.00 44.46 177.89 

3 grass hay 46.00 (P/F,9%,2) = 0.8417 38.72 6.47 9.26 59.91 
4 grass hay 46.00 (P/F,9%,3) = 0.7722 35.52 5.94 9.26 54.96 
5 grass hay 46.00 (P/F,9%,4) = 0.7084 32.59 5.45 9.26 50.42 

Annualized total for all crops in rotation [$]: 536.09 
 
Average annual net return = Annual gross return - Annual production cost = $536.09 - $401.58 = $135.51/ha 

 
1(P/F,9%,n) is the single payment, present worth factor for discounting a value n years in the future to a present value, using a 9% interest 
rate. (Degarmo et al., 1997; Table C.12) 
2(A/F,9%,n) is the uniform series, sinking fund factor for distributing a future value evenly over n years, using a 9% interest rate. (Degarmo 
et al., 1997; Table C.12) 
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3.7 NPS component 
In developing the NPS component for this research, existing watershed-level NPS models 
were considered. A continuous NPS model would best account for the long-term impacts of 
BMPs by including climatic and growing season effects on water and NPS pollutant 
movement within and out of the watershed. Additionally, because spatial location of BMPs is 
an important design component of this optimization problem, the ability of the NPS model to 
represent variation between fields was essential. Soils often vary within fields, impacting 
both erodibility and crop yields within the field. Thus, consideration of variation within 
fields, if possible, was desirable. Since the genetic algorithm must calculate NPS pollution 
loading for each scenario, the NPS model simulation is necessary for each member of each 
generation. Thus, runtime for the NPS model was an important consideration. 

Based on these factors, the applicability of commonly used, continuous NPS models to this 
research problem were reviewed. Four models, commonly used for NPS modeling, were 
eliminated from consideration because they are not distributed at a field level.  

• WEPP95 (USDA-ARS. West Lafayette, Indiana.  
http://spc3.ecn.purdue.edu/weppdoc/WEPPUserSummaryCover.html Accessed 01 
November 2001),  

• HSPF (USGS Hydrologic Analysis Software Support Program.  
 http://water.usgs.gov/software/hspf.html Accessed 01 November 2001),  

• SWRRB-WQ (US Environmental Protection Agency. Washington, D. C. 
http://www.epa.gov/OST/SWRRB_WINDOWS/. Accessed 01 November 2001),  

• SWAT2000 (USDA-ARS. Temple, Texas. 
http://www.brc.tamus.edu/swat/swatapp.html. Accessed 01 November 2001),  

WEPP95 has discretization units of hillslopes and channels and is intended for use in 
watersheds less than 260 ha. Additionally, WEPP95 is limited to 75 hillslopes and 75 channel 
sections. HSPF is a large-scale, lumped parameter model for watersheds up to 100 000 ha in 
size. However, it is limited to 200 total operations, including the number of discretization 
units. SWRRB-WQ and SWAT are lumped parameter models intended for watersheds of 
30 000 ha or larger and discretization units of subbasins.  

The following two models can both account for variation within fields and, thus, were 
considered in more detail. 

• AnnAGNPS Pollutant Loading Model (USDA-ARS. Oxford, Mississippi. 
http://www.sedlab.olemiss.edu/AGNPS.html Accessed 01 November 2001), and  

• ANSWERS-2000 (Bouraoui and Dillaha, 1996). 

AnnAGNPS and ANSWERS-2000 both allow for grid cells of less than one hectare, and can 
simulate watersheds up to 10 000 ha in size. However, because of the number of cells needed 
to adequately describe the spatial variation of a watershed, total runtimes for AnnAGNPS 
and, in particular, ANSWERS-2000 are extremely lengthy when multiple runs are needed. 
For example, a watershed divided into 6457 cells takes 45 minutes to complete a one-year 
simulation in ANSWERS-2000 when using a 1.2 GHz processor (R. W. Zeckoski, personal 
communication, Biological Systems Engineering Department, Virginia Tech, Blacksburg, 
Virginia, 17 January, 2002). A 7623 cell watershed takes about three hours to complete a 
five-year simulation in ANSWERS-2000 when using a 1.6 GHz processor. Additionally, 
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both programs use historical or simulated climatic data, as opposed to an average annual 
climatic data set. Thus, multiple simulation years (e.g., 20 years or more) are necessary to 
adequately estimate average annual pollutant loadings (Heatwole et al., 1990). 

A watershed of 143 cells takes 11 seconds to complete a one-year simulation in AnnAGNPS 
when using a 433 MHz processor (K. A. Flahive, personal communication, Virginia Tech, 
Blacksburg, Virginia, 10 January, 2002). Although 143 cells are much fewer than needed to 
adequately describe within field spatial variation for most watersheds, a GA requiring10 000 
five-year, AnnAGNPS simulations of this watershed would take about seven days of 
computer runtime, assuming a linear increase in computation time for multiple years. The 
GA used by Srivastava et al. (1999) involved 3825 four-year AnnAGNPS evaluations of a 
105-cell watershed. On a Pentium II 333 MHz computer, a single optimization run took a 
week of continuous run (P. Srivastava, personal communication, The Pennsylvania State 
University, University Park, Pennsylvania, 22 June, 2001). 

For this research, discretization such that each field was simulated with one or more 
discretization units was needed to compare the impacts of BMPs with regard to their location 
in the watershed. Additionally, within field variation was desired to fully utilize the spatial 
data available. Consideration of soil and slope variation within fields can increase accuracy 
of sediment loss and economic predictions. However, current NPS models with adequate 
levels of discretization require prohibitive amounts of computer runtime for the number of 
evaluations needed by an optimization heuristic. It was desired that the optimization program 
run within a time frame reasonable for watershed planners. Since runtime is dependent on 
computer speed, the speeds of computers available to most users were a factor of 
consideration. A reasonable time was considered to be less than one day for small watersheds 
with few (<10) management alternatives per field when using a 1.6 Ghz computer. This 
allows optimization time of larger watersheds and/or large sets of management alternatives to 
remain feasible, perhaps overnight or over a weekend. Also, it maintains a more feasible 
runtime if slower computers are used. 

To meet the within field discretization criterion, each watershed was discretized into cells 
smaller than most fields (0.09-ha cells). To meet the time criterion under this level of 
discretization, a NPS component was developed to determine cell-level gross erosion and 
route eroded sediment to the watershed outlet through downstream overland and channel 
cells. Use of a geographic information system (GIS) enabled the desired level of 
discretization and facilitated simultaneous cell-level calculations across the watershed. Also, 
it facilitated pollutant routing. 

3.7.1 Gross erosion 

The Universal Soil Loss Equation (USLE), shown in Equation (3.9) (Schwab et al., 1993), 
was used for the cell-level gross erosion model.  

A = RKSLCP (3.9) 

where   
A = average annual soil loss [Mg/ha], 

R = combined rainfall and runoff erosivity 




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⋅⋅

⋅
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K = soil erodibility 





⋅⋅
⋅⋅
mmMJha

hhaMg
, 

S = slope steepness factor, 
L = slope length factor, 
C = cover-management factor, and 
P = supporting practices factor. 

 

The S and L factors are calculated based on Equations (3.10) and (3.11), given by Schwab et 
al. (1993). 
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where  
Θ  = slope steepness in degrees. 
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where  
l = slope length [meters], and 

m = L-factor exponent = 
05.0)(sin269.0sin

sin
8.0 +Θ+Θ

Θ
  

 

The USLE is widely used and has been tested on over 10 000 plot-years of data (Foster, 
1982). Unlike AnnAGNPS and ANSWERS-2000, the USLE predicts only erosion. However, 
it as been shown to be “acceptably accurate in many cases” for long-term average annual 
erosion (Foster, 1982; p. 98). The computer runtime of the USLE model is negligible, as 
compared to AnnAGNPS or ANSWERS-2000 for two reasons. First, the USLE predicts only 
average annual values. Second, using a GIS, cell-level or field-level USLE predictions can be 
done simultaneously within the watershed instead of one cell or field at a time. Although this 
prediction method does not allow for considering effects of single storms or seasonal 
variation, the results do estimate long-term impacts of established management practices.  

A GIS-based model was developed to model gross erosion using the USLE. This provided 
the capability to model spatial variation systematically across a watershed. By using 
discretization units smaller than management units, spatial variability of soils and topography 
within management units is also considered. Required data for the gross erosion model 
include the USLE R and K factors, USGS 30-m digital elevation model (DEM), management 
unit boundaries, and land use and management practices for each unit. The K factor and land 
use data layers can be divided, or discretized, into cells to match the resolution of the DEM. 
Required data for the S and L factors include slope steepness, obtainable from a DEM, and 
characteristic field slope length, obtainable from a local resource conservationist or from 
field measurements. In cases where the impacts of specific fields have been predetermined to 
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be of particular interest, or in watersheds where field slope lengths vary greatly, the increased 
accuracy provided by field measurements may be desirable. In such cases, a similar degree of 
detail and accuracy may be needed for other data inputs to produce the desired accuracy. For 
planning purposes in comparing the watershed response to alternate scenarios, characteristic 
slope length was judged to be at a similar level of detail and accuracy as the other data layers. 
Additionally, the C and P factors must be defined for each crop-management practice to be 
considered. 

3.7.2 Sediment routing 

The main goal of the sediment routing component was to account for downstream effects on 
sediment delivery, such as variations in land use, flow length, and slope steepness. To 
account for interactions between neighboring BMPs, it was desired to consider spatial 
variation in sediment delivery at the smallest available level (i.e., the GIS cell). To this end, a 
method was needed to calculate the delivery ratio for each GIS cell. This cell-level delivery 
function could then be applied both to gross erosion generated within a cell and to sediment 
that flows into a cell. Next, the delivery from each cell needed to be routed along the flow 
path. Using this process of routed delivery, the amount of net sediment yield from each area 
of the watershed that reaches the outlet can be determined.  

Prediction of sediment routing and delivery is complicated by the stochasticity and number 
of factors involved in sediment transport and deposition processes (Novotny and Olem, 1994; 
Walling, 1983). One approach for sediment routing prediction involves the use of transport 
equations, which consider flow and sediment characteristics at a detailed level. A broader 
approach is to use delivery ratios, which compare sediment yield and sediment erosion over a 
given land area. 

Guy et al. (1992) and Julien and Simons (1985) reviewed a number of sediment transport 
equations developed for channel flow, such as the Du Boys, Yalin, Yang, and Schoklitsch 
equations, and evaluated their performance with regard to overland flow. Transport capacity 
is a function of slope, flow rate or depth, shear stress, and particle size. Because the delivery 
function for this research is to be used in conjunction with the USLE, which predicts average 
annual soil loss, information is not available at a sufficient level of complexity to justify use 
of detailed transport equations. Estimation of parameters within the transport equations 
without sufficient detail, or generalization of the equations to predict annual sediment 
delivery, would introduce error into the model instead of estimate sediment yield more 
accurately.  

Walling (1983) reported several delivery ratio equations, suggested by a number of 
researchers, for determining a single sediment delivery ratio for a given drainage area. Other 
researchers have used a ratio of measured soil loss to modeled gross erosion to determine a 
single delivery ratio for a watershed (Sheridan et al., 1982; Johnson et al., 1980). However, 
because the optimization technique of this research depends on BMP placement within the 
watershed, a single delivery ratio for the watershed is not adequate. Overland transport and 
deposition of sediment is a function of the BMPs within the flow path. Thus, a single 
watershed delivery ratio would not reflect varied BMP placements. Instead, the delivery of 
sediment from any given area of the watershed to the receiving stream is expected to vary 
based on BMP selection and placement within that flow path.  
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3.7.2.1 Cell-level delivery function 

Sediment delivery through each cell is modeled by a set of equations that distinguish between 
overland and channel flow. Sediment delivery through cells under overland flow is 
represented by Equation (3.12). Development of Equation (3.12) is discussed below, 
followed by presentation and discussion of the channel flow delivery equation (Equation 
3.15). 


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
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
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= 1,max
l

s
d α  (3.12) 

where  
d = sediment delivery ratio through an overland cell, 
α = land use coefficient [dimensionless], 
s = slope steepness across cell [m/m], and 
l = length of flow path across cell [m]. 

The slope steepness and length of flow path across each overland cell are determined by a 
GIS. The α-value was calculated for each management practice used in evaluation of the 
optimization procedure, as discussed below. 

Novotny and Olem (1994) listed land cover and slope as key factors in affecting delivery 
rates. Additionally, they stated the importance of factors specific to storm events, such as 
rainfall impact, infiltration, ponding, and overland flow energy. However, because this 
research uses average annual erosion, consideration of storm specific factors was not 
feasible. Instead, sediment delivery was related more generally to overland flow velocity. 
This was done by basing the overland sediment delivery function (Equation 3.12) on the SCS 
flow velocity equation (Equation 3.13) (Haan et al., 1994).  

 v = as1/2 (3.13) 

where  
v = velocity [m/s], 
s = slope [m/m], and 
a = land use coefficient.  

This equation is applicable to overland and shallow channel flow. Also it considers the 
effects of land use and slope.  

Watershed-level sediment delivery is a complex function of individual watershed 
characteristics. In particular, multiple studies, summarized by Walling (1983) have shown 
sediment yield at the watershed outlet to decrease as watershed area increases. Additionally, 
Walling (1983) summarized sediment delivery prediction equations developed for several 
regions of the United States. These equations proposed that sediment delivery ratios at the 
watershed level also decrease as watershed area increases. The prediction equations are 
functions of watershed area, relief, length, and slope. 

The research summarized by Walling (1983) indicates that both slope and flow length are 
significant factors in predicting sediment delivery. Additionally, the inverse relationship 
between sediment delivery and watershed area suggests an inverse relationship between 
sediment delivery and overland flow length. Thus, to create a cell-level delivery function, the 
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right side of Equation (3.13) was divided by the square root of the flow length on a per cell 
basis. Next, a new land use coefficient, α, appropriate for determining sediment delivery 
rates, was developed to replace the land use coefficient, a, from Equation (3.13), which is 
appropriate for determining velocity. The resulting equation (Equation 3.14) was used to 
calculate cell-level delivery ratios. 

 
l

s
ad =  (3.14) 

As an empirical coefficient, α can be determined using two approaches. One approach 
includes use of measured sediment yield or delivery data along with slope and length. 
Another approach is to predict sediment delivery using an NPS model. After collecting data 
with either method, Equation (3.14) can then be solved for α. 

Information available in the literature was insufficient to determine α values. Long-term or 
average annual yield data were found only for a few watersheds (Hrissanthou, 1990; Yitayew 
et al., 1999; USDA-ARS, 2002), several of which did not include published spatial land use 
data. One small watershed (Yitayew et al., 1999) was in a single land use of desert shrub. 
The watershed scenario in another study (Hrissanthou, 1990) consisted of only non-
agricultural practices: forest, meadow, rock, and urban area.  

Because use of measured data was not an option, the field-scale NPS model, RUSLE2 
(University of Tennessee and USDA-ARS. http://bioengr.ag.utk.edu/rusle2/ Accessed 04 
March 2002), was used to predict sediment delivery. In addition to being a field-scale model, 
RUSLE2 was chosen because it calculates and reports both sediment loss and gross erosion 
over different management practices along a hillslope. From this output sediment delivery 
ratios can be determined for varying management practices, slope steepnesses, and slope 
lengths. Additionally, RUSLE2 was designed to calculate average annual soil loss. This 
feature corresponded well with the NPS component, which also calculates on an average 
annual basis. 

In order to predict sediment delivery from a given management practice, a slope profile in 
RUSLE2 was divided into two sections (Figure 3.4). The upper section was placed in fallow 
on a five percent slope in order to produce erosion. The length of the upper section was 
chosen to ensure sufficient yield entered the lower section to allow for a positive yield 
leaving the profile after deposition occurred on the lower section. To predict sediment 
delivery rates appropriate to the study area, a regional climate station (Staunton, Virginia) 
was used for simulation, as was a characteristic soil (silt loam) in the upper section of the 
slope profile.  

In the lower section of the slope profile, varying slope steepnesses, slope lengths, and 
management practices were evaluated. The soil of the lower section was defined as non-
eroding so that no gross erosion was simulated for the lower section. Thus, erosion leaving 
the upper section underwent deposition in the lower section. The amount of deposition was a 
function of the management practice, slope steepness, and slope length of the lower section. 
This allowed the delivery ratio for the lower section to be estimated as the ratio of the net soil 
loss from the slope profile to the net soil loss from the upper section. These two values of net 
soil loss are provided as output by RUSLE2. 
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Figure 3.4: Slope profile used in RUSLE2 to estimate delivery ratios 

 

To determine α values, three lengths (30m, 60m, and 90m) were evaluated for the lower 
section. Additionally, for each length and for each crop management practice, the slope of 
the lower section was varied from two to ten percent. For alfalfa, which can be grown on 
steeper slopes, the slope of the lower section was varied from two to 15 percent. Delivery 
ratios were calculated using the soil loss predictions from RUSLE2 for each combination of 
slope, length, and management practice.  

As expected, delivery ratios increased for increasing slopes when the other two parameters 
were held constant. For longer slope lengths with constant slope and management practice, 
delivery ratios decreased. Also, for management practices with higher levels of land cover, 
delivery ratios were lower.  

Equation (3.14) was solved for α for each delivery ratio calculated. The value of α was found 
to vary as a function of length. Since it was expected that most USGS DEMs used with the 
NPS component would have a resolution of 30-m, α was developed for a 30-m flow length. 
Reassessment of appropriate α-values should be made for alternate cell sizes. This can be 
done by using the described RUSLE2 procedure with a lower profile segment of length equal 
to the desired cell width. The α values for the range of slopes considered at the 30-m length 
are shown in Table 3.3.  

 

Table 3.3: Values of α by management practice for low and high slopes, over a 30-m flow 
length 

 

Slope Conventional 
tillage corn 

silage 

Conventional 
tillage corn 
silage with 

winter grain 
cover 

Minimum-till 
corn silage 

Minimum-till 
corn silage 
with winter 
grain cover 

Alfalfa 

2% 10.9 5.3 4.0 2.3 2.3 

10% 8.4 7.0 5.7 3.9  

15% -- -- -- -- 4.2 
 

 

fallow varying 
management practice 

varying slope 

30m 
varying length 

non-eroding soil 

characteristic soil 

5% slope 
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The average α value was calculated over the low and high slopes and assigned to that crop-
management practice (Table 3.4). Because both alfalfa and grass hay in the study region are 
reestablished on a rotational basis and consist of plants that are less sod forming than pasture 
(personal communication, Natural Resource Technician, NRCS, Harrisonburg, Virginia, 04 
March 2002), alfalfa and grass hay were assigned the α value calculated for alfalfa. Because 
RUSLE2 is primarily for cropland use and is newly released, pasture, forest management, 
and farmstead scenarios were not available. Pasture in this area consists of sod forming 
grasses and is well maintained (personal communication, Natural Resource Technician, 
NRCS, Harrisonburg, Virginia, 04 March 2002). Thus, the pasture delivery ratio was 
assumed to be one-half the delivery ratio of alfalfa and the corresponding α value was 
calculated. Forest was judged to have a lower delivery ratio than pasture due to undergrowth 
and litter layer. Thus, the forest delivery ratio was assumed to be one-fourth the delivery ratio 
of alfalfa and the corresponding α value was calculated. The farmstead land use includes 
buildings and surrounding lawn, driveways, and parking areas. Based on the delivery ratios 
calculated for conventional-tillage corn silage and judging that farmstead land would be 
generally more impervious than cropland, delivery ratios of twice the conventional-tillage 
corn silage delivery ratios were used to solve for α. Using the described procedure with 
RUSLE2, additional land uses can be included as necessary. 
 

Table 3.4: Sediment delivery α-factors by land use for a 30-m flow length 
 

Description α 

Farmstead 19.2 

Conventional tillage corn silage 9.7 

Conventional tillage corn silage with winter grain cover 6.2 

Minimum-till corn silage 4.9 

Alfalfa / grass hay  3.3 

Minimum-till corn silage with winter grain cover 3.1 

Pasture 1.6 

Forest 1.1 
 

 

The relationships between independent and dependent variables in the sediment delivery 
equation are shown in Figure 3.5. Because of the square root relationship, the delivery factor 
for a given land use and flow length increases rapidly at first as slope steepness increases 
from zero percent. As the slope increases further, the rate of increase for the delivery 
function slows. This corresponds to the logic that once a critical slope steepness is reached 
for a given land use, the near maximum delivery level will be achieved. Similarly, for a given 
slope length, the delivery factor increases more quickly as the land use trapping efficiency 
decreases. 
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Figure 3.5: Delivery factor for varying slope steepnesses and αα values; slope length = 30m 

 

A much higher delivery is expected by channel than by overland flow. To model this 
distinction a separate sediment delivery equation was developed for two types of channels: 
shallow concentrated flow and stream flow through ephemeral and perennial streams. The 
distinctions are made in a GIS using a flow threshold for the number of upstream cells 
accumulating to create a channel cell.  

The use of DEMs and a flow accumulation threshold to represent the stream network is 
widely used in GIS applications (Garbrecht and Martz, 2000). One method is to first 
determine the ephemeral and perennial stream network from USGS 7.5 minute series 
topographic quadrangles. This network can then be compared to the GIS flow accumulation 
layer created from the DEM in order to determine an accumulation threshold. For example, 
in this study, a flow accumulation threshold of 200 cells best matched the topographic stream 
network for the evaluation watershed, Muddy Creek (described in Section 4.2). An accurate 
depiction of the stream network using this method depends on the DEM resolution and 
watershed characteristics. A different threshold may be appropriate for different watersheds.  

Overland sheet flow generally becomes shallow concentrated flow within 91m (300ft) (Akan, 
1993). To determine a flow accumulation threshold for shallow concentrated flow, overland 
flow length GIS layers for a variety of flow accumulation thresholds less than 200 cells were 
considered. A 60-cell threshold resulted in a median overland flow length of 100-150m, 
which approximates the 90m length by which flow typically becomes concentrated. Thus, an 
accumulation threshold of 60 cells was used to distinguish shallow concentrated flow 
channels. 

In small subwatersheds in a ridge and valley agroecosystem, it was estimated that little 
deposition would occur in main streams over the flow length of the watershed (T. A. Dillaha, 
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personal communication, Biological Systems Engineering Department, Virginia Tech, 
Blacksburg, Virginia, 8 March, 2002). The maximum flow lengths of the two evaluation 
subwatersheds, Mini-Muddy Creek and Lola Run, are approximately 4243m (140 cells) and 
6118m (205 cells), respectively. To facilitate a low level of deposition over these lengths, a 
cell-level delivery rate of 0.9998 was selected. Due to the multiplicative nature of the 
sediment routing function (Section 3.7.2), a 0.9998 delivery rate delivers 96% across a 
distance of 200 cells. This corresponds to a deposition of 4% of the sediment into the 
streams. 

It was estimated that channels of shallow concentrated flow should have a delivery rate 
greater than the highest overland flow delivery rate but less than that of the main stream 
network. Using the RUSLE2 method previously described, the overland flow delivery rate 
estimated for farmstead land use was 56% for a 2% slope and 96% for a 10% slope, over a 
single 30-m cell. The median overland flow distance to reach the shallow concentrated flow 
network (60-cell threshold) is about four cells. Thus, the maximum overland delivery rate of 
96% for a single cell results in a delivery rate of 85% over four cells. In contrast the main 
stream network delivers 99.98% per cell and about 96% over the watershed flow length.  

A single cell delivery rate of 0.98 for shallow concentrated flow was chosen for two reasons. 
First, this delivery rate is between the single cell delivery rates for overland and stream flow 
(0.96 and 0.9998 respectively). Second, the difference in median overland flow distances 
between the 60- and 200-cell thresholds suggests a median shallow concentrated flow 
distance of about 100m, or 3 cells, before reaching a larger stream. Thus, the shallow 
concentrated flow delivery rate of 0.98 per cell results in a 94% delivery rate over 3 cells. 
This results in slightly more channel deposition than realized in the larger stream network 
(6% versus 4%). 

Equation (3.15) describes the cell-level sediment delivery ratios developed for channel flow 
in the Muddy Creek watershed. 

for shallow concentrated flow  
(flow accumulated from ≥ 60 and < 200 30-m GIS cells)  (3.15) 

for flow through ephemeral and perennial streams 
  (flow accumulated from ≥ 200 30-m GIS cells) 

where  
d = sediment delivery through each channel cell. 

Channel distinction was added since the overland equation does not account for flow depth or 
concentration within cells and, consequently, the higher velocities that exist in channel flow. 
As a result, the entire cell containing a stream is assigned the relevant stream delivery value; 
overland sediment moving to the channel is not treated separately for cells containing 
streams. 

For different sized watersheds it may be desirable to adjust the cell sizes or to modify the 
channel definitions or delivery levels. For example, in large watersheds with long stream 
channels, the delivery factor of 0.9998 over 500 30-m channel cells results in a total delivery 
rate of 90% for that stream reach. The appropriateness of this overall delivery rate will 
depend on the size and flow characteristics of the stream.  
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3.7.2.2 Routing function 

Sediment from each cell is routed through downstream cells to the outlet by Equation (3.16). 

 ∏= jiii daAY  (3.16) 

where  
Yi = sediment loss of cell i reaching the outlet [Mg], 
Ai = gross erosion from cell i [Mg/ha], 
ai = area of cell i [ha], 
dj = sediment delivery ratio of cell j, and 
j indexes all flow path cells between cell i and the outlet. 

The routing process is illustrated for a single cell in Figure 3.6. The arrows show the flow 
path from cell 1, through cells 2 and 5 to the outlet (cell 9). Using Equation (3.16), the 
sediment delivery to the watershed outlet for cell 1 is calculated as: 

 9521111 ddddaAY =  (3.17) 

Summing the sediment loss reaching the outlet (i.e., the Yi’s) over all cells and dividing by 
the watershed area gives the sediment yield of the watershed in Mg/ha. This method is 
similar to that used by Kothyari and Jain (1997) for routing sediment in forested watersheds.  

 

Figure 3.6: Routing of a single cell to the watershed outlet 

 

The product of the delivery ratios can be rewritten into an additive exponential function 
(Equation 3.18). 

 
∑=∏ )ln( jd

j ed  (3.18) 

where  
dj = sediment delivery ratio of cell j, and 
j indexes all cells in the downstream flow path of a given cell for both the product and 
the natural logarithmic function. 

The summation in Equation (3.18) is very similar to a summation of travel distance along a 
path, which can be calculated by a function, FlowLength, within the ArcView GIS (Ver 3.2. 
Redlands, CA: Environmental Systems Research Institute). The FlowLength function 
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(Equation 3.19) determines the downstream flow path distance from a given cell to the outlet 
by weighting the length across each cell by an impedance value. 

 
jjiFlowLength ∑ ×= impedancetancetravel_dis  (3.19) 

where  
j indexes all cells in the downstream flow path of cell i. 

The FlowLength function closely approximates the summation of sediment delivery ratios 
(Equation 3.20). 

 ( )
j

j

l

d

jj tFlowLengthd
)ln(-

)ln( ×−≈∑  (3.20) 

where  
tj = travel distance of flow between cell j and the next cell in the flow path, 

( )
j

j

l

d )ln(-  = impedance value of cell j, 

lj = flow length assigned to cell j, and 
j indexes all cells in the downstream flow path of a given cell for both the summation 
and the FlowLength function. 

As a result, Equation (3.18) is closely approximated by Equation (3.21). 
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where  
j indexes all cells in the downstream flow path of a given cell for both the product and 
the FlowLength function. 

ArcView determines flow length of each cell as the length from the center of that cell to the 
center of the next cell. Correspondingly, the FlowLength function calculates weighted 
distances by multiplying travel distance from center to center of each grid cell with the 
average impedance from each pair of cells spanned. When the FlowLength function is used 
to calculate dimensionless weights, the travel distance and the flow length within the 
impedance factor do not always cancel out. For example, in square cells of Figure 3.6, the 
flow direction of cell 5 is diagonal while the flow direction of cell 9 is vertical. Thus, the 
flow length of cell 5 is a factor of 2  larger than the flow length of cell 9. Because the travel 
distance between these cells is equal to the flow length of cell 5 and the flow lengths 
assigned to each cell are unequal, the travel distance and flow length terms, as used in 
Equation (3.20), do not cancel completely. When flow direction is either parallel to the cell 
edge for both cells or diagonal for both cells, the function is equivalent to an arithmetic 
summation. However, for every two cells combining diagonal and non-diagonal flow, the 
sediment delivery weighting ( )ln( jd ) of one cell will by multiplied by 

1
2

±
. Because the 

multiplication term alternates depending on the flow directions of any two cells, it is 
estimated that the total error introduced over each flow path is small.  

With Equations (3.16) and (3.18), a slope of zero percent will result in ln(0) = ∞. ArcView, 
which performs the FlowLength function in Equation (3.19) ignores any term of infinity and 
any associated calculations. The main impact of ignoring such a term is identical to adding an 
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ln(1) = 0 term (or delivery function of 100%). This is the exact opposite of what should 
happen, since the problem is caused by delivery = 0% (i.e., a 0% slope). The other impact is 
that by ignoring the infinity cell, the FlowLength function also ignores half of the weighting 
of each adjacent cell.  

This problem was addressed by replacing all delivery functions of zero with a value of 0.001. 
This magnitude was chosen because scientific precision in the delivery function is limited to 
two decimal places. By doing the replacement in the delivery function instead of the slope 
layer, the problem is solved without requiring additional manipulation to the input data. 

With the modification, a previous delivery of zero becomes ln(0.001) = -6.908 in the 
summation of natural logarithmic terms. As a result, the FlowLength summation increases 
and the exponential of this summation decreases accordingly. With this modification, the 
FlowLength function calculates as expected and the delivery function weightings of all cells 
are considered as expected. 

3.8 Program implementation 
The optimization procedure was programmed using software that best addressed the needs of 
each component and maintained the modular design of the procedure. Code for correctly 
processing input data was included to reduce the complexity of input required. Starting with 
simple GIS data layers and tables of data, ArcView scripts were used to transform the data as 
necessary for input into the optimization procedure.  

3.8.1 Program structure 

The optimization procedure was programmed using the C++ language and the ArcView GIS. 
The optimization component was written as a dynamic link library (DLL) in C++, using the 
GALib genetic algorithm package (Ver 2.4.4. Matthew Wall, Massachusetts Institute of 
Technology, Cambridge, MA. http://lancet.mit.edu/ga/. Accessed 12 July 2001).  

The pollution loading and cost components were processed in ArcView. A GIS was needed 
to provide a spatial structure within which the gross erosion and sediment transport sections 
of the NPS component could function. The GIS facilitated spatial calculations in addition to 
enabling within-cell calculations to be made simultaneously for all cells. Additionally, 
ArcView scripts were written to transform entered data into the formats needed for the three 
components of the optimization procedure. The ArcView scripts and C++ code are given in 
Appendix B. 

The GIS is limited in its ability to interact with other programs, but is able to read a DLL 
provided that an ArcView script calls the DLL. Also, it is possible to call a script in ArcView 
from another program, provided that the calling program is being run through a script in 
ArcView. Hence for this optimization procedure, the main ArcView script calls the DLL that 
runs the GA (Figure 3.7). For each scenario evaluation, a function in the DLL calls a script in 
ArcView and passes the management practices for each field. The ArcView script determines 
the pollutant load at the outlet and the scenario cost. This information is then passed back to 
the DLL where the scenario fitness is assigned. When the DLL has met the termination 
criterion, control is returned to the main ArcView script. 
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Figure 3.7: Interaction between ArcView and DLL in implementation of the optimization procedure 

 

For the optimization component, each watershed scenario is represented as a chromosome or 
individual, a one-dimensional array with alleles, using the GA1DarrayAlleleGenome class 
from GALib. The size of the array is equal to the number of management units in the 
watershed. Each array element is associated with one management unit and consists of a 
single value identifying the crop-management practice on the management unit. Each array 
element is a member of an allele set, which is the set of all crop-management practices 
allowed on the element’s corresponding management unit. The allele set for each non-
changing management unit, such as forest, consists of a single number corresponding to that 
management unit. Each non-fixed management unit is assigned a set of alleles corresponding 
to the set of possible crop-management practices for that area. For example, for a 
management unit in conventional tillage corn silage, the set of possible crop-management 
practices might be conventional tillage corn silage, minimum-till corn silage, and 
conventional tillage corn silage with a winter cover crop. The GA keeps track of the allele 
sets for each entry in the array by defining a template. The template is created based on the 
initializing scenario using the CreateGenomeTemplate function. Thus, throughout the 
optimization, values of each array element are selected only from within the appropriate 
allele set.  

The BaselineInitializer uses the initializing scenario and the chromosome template to create 
the first individual. The PopInitializer function populates the initial generation of the GA 
with random values based on the chromosome template. ArcView limits the number of 
spatial analysis calculations possible in a single ArcView session (that is, without exiting and 
restarting ArcView). When the number of spatial analysis calculations needed during an 
optimization run requires multiple ArcView sessions, the GA must be stopped before the 
ArcView calculation limit is reached and the final population must be saved. In this situation, 
the ReadExistingPop function is used to continue the GA by establishing the final population 
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from the previous session as the initial population for the next session. The PopEvaluator 
function evaluates each population by calling the Objective function to evaluate each 
individual and then using the returned fitness scores to rank all individuals in the population. 
For each scenario to be evaluated, the Objective function sends the management practice 
identifiers, listed by field, to the NPS prediction and economic analysis components.  

3.8.2 Required input 

The optimization procedure requires GIS (Table 3.5) and tabular (Table 3.6) input in addition 
to the rainfall erosivity (USLE R-factor) of the watershed in SI units. Both vector and grid 
data layers are used by the GIS. Five text or database tables are used to supply additional data 
to the optimization procedure and to store input data. The structures of the database tables are 
described in this section. Data values are given in Section 4.2 for the two watersheds used in 
evaluating the optimization procedure.  

The Constraints.dbf table identifies area requirements at the farm level. The Pollut.dbf table 
stores the weighting factors of each pollutant as well as the baseline and target loads. The 
data preparation scripts calculate the baseline loading from the baseline scenario. This table 
is used in calculating the pollutant score during the optimization run. The Soilyld.txt table 
lists soil productivity for each unique crop and soil combination. This information may be 
obtained from a soil survey (USDA-NRCS, 2001) or, in Virginia, a nutrient management 
handbook. The Crops.txt table identifies the crops within each management practice and 
stores crop selling prices, annualized over the rotation for multi-year rotations. The selling 
price is the dollar amount that the farmer receives for the crop. A crop is listed more than 
once in the table if it occurs in more than one management practice. For example, winter 
wheat cover will occur twice if the following management practices are listed: 
conventionally tilled corn with winter wheat cover and minimum-till corn with winter wheat 
cover. For each management practice considered, yields are estimated based on the 
productivity ratings of the soils within the field. The Mp.txt table stores descriptors of each 
management practice. In particular, the management practice type attributes the area in the 
management practice to its respective area requirement. Three types are currently available: 
“f” for fixed, “c” for cropland, and “h” for hay or pasture. Additional types can be easily 
added into the computer code.  

The “f” management type category indicates that the management practice is fixed at the 
baseline management practice throughout the optimization; area in this category does not 
contribute towards meeting an area requirement. The “c” and “h” categories are used 
individually and in combination to assess their contribution towards meeting farm area 
requirements.  

The management practice types are also used to set the allele sets for each gene of the GA 
genome. Currently, each fixed practice has its own allele set so that the management practice 
does not change. Fields initialized in “c” or “h” type practices may change to any “c” or “h” 
type practice. This coding is easily modified to further control of the allowable crop-
management practices assigned to a management unit. 

Every management practice and permanent land use of the watershed must be listed in the 
MP.txt table so that the optimization procedure can consider costs properly. However, in the 
Crops.txt table, only those crops that provide a monetary return for a management practice  



Tamie L. Veith Chapter 3: Development of Optimization Procedure 48
 

 

Table 3.5: GIS input required for running the optimization procedure 
 

GIS input data 

Raster (grid) layers 

 DEM 

 Watershed 

 Soil erodibility (USLE K-factor) in English units 

 Characteristic slope length (for USLE L-factor) 

  

Vector (shapefile) layers 

 Watershed outlet 

 Land use by field (management unit) 

 Attribute table 

Farm number 

Field (management unit) number 

Farm type 

Management practice identifier 
for baseline scenario 

 Soils 

 Attribute table 

Soil number 

Mapping unit symbol 
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Table 3.6: Tabular input required for running the optimization procedure 
 

Database input tables 

Constraints.dbf Crops.txt Mp.txt Pollut.dbf Soilyld.txt 

Farm type Crop name Management 
practice 
identifier 

Pollutant 
identifier 

Mapping unit 
symbol 

Area requirements 
for cropland, hay, 
and both  
[ha] and/or [%] 

Unit selling 
price [$/qty] 

Management 
practice 
description 

Pollutant-
weighting 
factor 

Crop yield for 
each unique 
crop in 
Crops.txt 
[qty/ha] 

 Management 
practice 
identifier 

Management 
practice type 

Target 
pollutant 
loading 

 

  Cropping 
management 
(USLE C-
factor)  

Baseline 
loading 

 

  Supporting 
practice (USLE 
P-factor) 

  

  Sediment 
delivery 
coefficient α 

  

  Unit production 
cost [$/ha] 
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need to be listed. The optimization procedure first assesses a production cost to each 
management unit of the watershed based on the management practice. Secondly, it sorts 
through the crops and credits the private cost of the management unit with the selling prices 
of any crops associated with that management practice. Additionally, every unique crop 
listed in the Crops.txt table should be listed in the Soilyld.txt table. The optimization 
procedure matches these two tables to calculate the selling price of a crop in $/ha. 

3.8.3 Data preparation 

An ArcView script, Prepdat.ave (Appendix B.1), calculates flow direction and slope GIS 
raster layers from the DEM. These layers, along with the characteristic slope length layer, are 
used to calculate a flow-length-by-cell layer and the USLE S and L factors. The flow 
accumulation grid is also calculated and used along with the slope and flow-length-by-cell 
layers in the sediment delivery portion of the NPS component. The USLE R, S, L, and K 
factors are multiplied into a single GIS layer to be used in the gross erosion portion of the 
NPS component.  

An ArcView script, Prepdat1.ave (Appendix B.2), was written to combine and translate the 
tabular and shapefile data into the information used by the optimization procedure. This 
script first adds two columns, “areaC” and “areaH,” to the land use attribute table. These 
columns are used to sort the area of each field into the applicable area requirement category. 
The script adds a column called “PubFlag” to flag, during the optimization run, whether or 
not the management practice of each field in the working scenario changes with respect to 
the baseline scenario. Additionally, the script adds the management practice identifier 
(MPID) column for the working scenario. The MPID column will change with each scenario 
evaluated during the running of the optimization procedure.  

Next, Mp.txt is joined to the land use table by MPID and soilyld.txt is joined to the soils 
attribute table by mapping unit symbol. The values of the baseline management practice 
column are copied into the MPID column of the land use table and the join between the land 
use and Mp.txt tables is refreshed. This provides the C, P, and α factor values, which are used 
in calculating the pollution loading for the baseline scenario and for each working scenario.  

The land use and soils shapefiles are intersected into a SoilbyFLD.shp shapefile, which 
divides each agricultural field into soil types. The area of each soil type within each field is 
calculated. To calculate the selling price in dollars of each crop for each soil within each 
field, the unit selling price is taken from Crops.txt. The unit selling price is multiplied by the 
crop yield (initially from Soilyld.txt) and by the area.  

The selling prices and areas from SoilbyFLD.shp are summarized by field into a new table 
Fldarea.dbf. Columns for opportunity cost (“Oppcost”) and the respective MPID 
(“ProfmaxMP”) are added to Fldarea.dbf. Also, a column is added for the net return of each 
management practice (“Mpreti” where i is the MPID). The value of each net return column is 
calculated as total selling price minus the production cost. For calculating the total selling 
price of a management practice, the Crops.txt table is used to locate each crop in the 
management practice. The selling prices of these crops, given in Fldarea.dbf, are added 
together to determine the total selling price. The production cost is determined for each field 
by locating the management practice unit production cost from the Mp.txt and multiplying by 
the field area. The opportunity cost is the value of the maximum net return column. This 
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column differs for each field. The Fldarea.dbf table is joined to the land use attribute table by 
field identifier. The joined information is used for calculations in the economic component of 
the procedure. Also, a “PrivC” column is added to the land use attribute table to hold private 
cost calculations during the running of the optimization procedure. The areas from 
SoilbyFLD.shp are summarized by farm into a new table Farmarea.dbf. The farm type is 
copied to this table from SoilbyFLD.shp. At this point the Farmarea.dbf table must be added 
to the ArcView project.  

Next the Constraints.dbf table is joined to Farmarea.dbf by farm type. In the next ArcView 
Script, Prepdat2.ave (Appendix B.3), three columns for analyzing the area requirements are 
added: “cst_c,” “cst_h,” and “cst_b”. The value “cst_c” is the maximum of the cropland 
hectare requirement and of the cropland percentage requirement times farm area. The values 
of the remaining two columns are calculated similarly. Four columns for calculating the area 
weights, used in determining the economic score, are added to Farmarea.dbf. The first three 
columns hold, respectively, the area weights for cropland, hay or pasture, and both. The final 
column holds the combined area weight for the farm. Two columns for holding the private 
and public costs of the baseline scenario are added to Farmarea.dbf. The final step of the 
data preparation scripts runs the script for the economic component. The economic 
component creates a table, TempSum1.dbf, which holds the private and public costs of the 
working scenario by farm. 

After preparing the data and adding TempSum1.dbf to the ArcView project, the script 
Baseline.ave (Appendix B.4) can be run. The Baseline script runs the script for the economic 
component, setting the working scenario equal to the baseline scenario. The Baseline script 
joins TempSum1.dbf to Farmarea.dbf by farm id and updates the baseline public and private 
cost columns with the public and private costs from TempSum1.dbf. Also, the Baseline script 
runs the NPS component to calculate the baseline pollutant loading for each pollutant. The 
Pollut.dbf table is updated with this information. A warning is given if the baseline loading is 
less than or equal to the target loading for any pollutant. In this case, one may choose not to 
continue with the optimization run or may choose to change the target loading. For example, 
the target loading may be specified as a percentage of the baseline loading. This script can be 
rerun as necessary for changes in the baseline scenario. The data are now ready for the 
optimization procedure. 

3.9 Summary 
Five optimization heuristics for intractable problems were compared based on factors 
considered important in solving this research problem. This problem was characterized as a 
combinatorial optimization problem. The SA, TS, and GA were found appropriate to solve 
this problem. The GA was selected based on formulation ease and on previous use in the 
problem of reducing NPS loadings through BMP placement.  

Next, an optimization procedure was developed using the GA to optimize watershed 
scenarios. Scenarios were evaluated based on reduction in pollutant loading and cost increase 
from the baseline. Existing watershed-level NPS models were considered for calculating 
pollutant load reduction, but were found to be not sufficiently distributed or to be prohibitive 
in computer runtime. Thus, a NPS component was created that combined a GIS, the USLE, 
and a sediment routing technique to meet the needs of this problem. An economic component 
was created to consider public and private costs at the farm-level. Public costs included 
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contracting and enforcement costs and were applied to all farms varying from the baseline. 
Private costs considered field-level net returns based on soil productivity and crop rotation 
enterprise budgets. Pollution and economic fitness scores were developed and combined into 
an overall fitness score, used for evaluating each scenario. Finally, the optimization 
procedure was coded into a computer program for implementation.  

Because of the modular nature of the procedure, changes in the pollutant loading, cost 
components, or fitness scores can be made with minimal impact to the interaction among the 
components. Additional BMPs can be added, provided the NPS and economic components 
have information needed to quantify the impacts of each BMP on pollutant loading and cost, 
respectively. The optimization portion of the procedure is not inherently limited in its ability 
to evaluate management, vegetative, or structural BMPs. 

 



 

 53 

Chapter 4:  Evaluation of Optimization Procedure 

4.1 Introduction 
The components of the optimization procedure were tested to verify the computer coding. 
Specifically, the optimization component was tested to ensure that increasing fitness scores 
corresponded to minimizing pollution until the maximum allowable, or target, load was 
achieved and then minimizing cost increase while meeting the pollution target load. The 
economic portion of the procedure was examined to determine if, between scenarios of 
nearly equivalent cost, a higher fitness score was assigned to the scenario in which costs were 
divided more evenly across farms. Additionally, the impact of increasing area requirements 
was evaluated to determine if stricter area requirements resulted in a slower rate in fitness 
score increase across otherwise similar runs. A slower rate was expected due to the 
penalizing portion of the economic fitness function for not meeting area requirements to the 
same extent as the baseline. The NPS component was evaluated to determine the 
effectiveness of the sediment delivery function in modeling the impacts of BMP selection 
and placement.  

The optimization procedure, as a whole, was evaluated to determine if the procedure found a 
more cost-effective solution than a targeting strategy. Differences in land allocation for four 
solution scenarios of the optimization procedure were compared with each other, with the 
baseline scenario, and with the targeting strategy. Finally, a cost-benefit analysis was 
performed to compare the optimization procedure with the targeting strategy.  

4.2 Data used for evaluation 
The evaluation tests were based on data from the Muddy Creek watershed in Rockingham 
County, Virginia (Figure 4.1). Two subwatersheds within the Muddy Creek watershed were 
used to strengthen the conclusions suggested by evaluation of the procedure and its 
components for agricultural watersheds in ridge and valley agroecosystems and to 
demonstrate the transferability of the optimization procedure among watersheds. For 
identification purposes, the following names were assigned to these subwatersheds: “Mini-
Muddy Creek” and “Lola Run”.  

The “Mini-Muddy Creek” subwatershed is 686 ha and covers the upper reach of Muddy 
Creek, a perennial stream. Fifty-seven percent of the subwatershed is in agricultural 
production (65 management units distributed among 10 farms) with 40% of the subwatershed 
in forest and the remaining 3% in residential use. The second subwatershed, “Lola Run”, is a 
1014-ha watershed on an ephemeral stream that joins Muddy Creek downstream of the outlet 
point of Mini-Muddy Creek. The subwatershed consists of 125 management units in 
agricultural production (77% of the subwatershed), distributed among 18 farms, with 19% of 
the subwatershed in forest and 4% in residential use. The two adjacent subwatersheds are 
similar in land use and topography with Lola Run having a 2% lower average slope. 

For the examples discussed in this work, fields were considered the basic management unit. 
The Muddy Creek land use and field boundary data layer was obtained from the Virginia 
Department of Conservation and Recreation.  
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Figure 4.1: Location of Mini-Muddy Creek and Lola Run subwatersheds within the Muddy Creek 

watershed in Rockingham County, Virginia 
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The Muddy Creek land use layer was used in establishing the baseline scenario used in 
evaluating each subwatershed. These baseline scenarios placed all cropland in conventionally 
tilled corn silage. Forest/orchard, farmstead/residential, hay, and pasture were as identified in 
the land use layer. 

Farm types and boundaries were estimated using a GIS clustering technique (Heatwole, 
1999) and modified based on discussion with B. Patterson (personal communication, District 
Conservationist, NRCS, Harrisonburg, Virginia, 19 December 2000). Farm sizes were 
assigned based on farm area and capacity (J. W. Pease, personal communication, Agricultural 
and Applied Economics Department, Virginia Tech, Blacksburg, Virginia, 23 March 2000). 
Based on this information, the Mini-Muddy Creek subwatershed includes ten farms: seven 
beef, two dairy, and one poultry (Table 4.1). In contrast, the Lola Run subwatershed has 11 
dairies and seven beef farms.  

 

Table 4.1: Distribution of farm types used in defining the two study subwatersheds, based on 
characteristics of the Muddy Creek watershed 

 
Farm type Lola Run Mini-Muddy 

Dairy   
 small (60 cows) 4 -- 
 medium (100 cows) 5 1 
 medium with poultry 

    (100 cows, 2 houses) 
1 -- 

 large (150 cows) 1 1 
Beef   
 small (40 cows) 4 4 
 small with poultry  

    (40 cows, 3 houses) 
1 -- 

 medium (70 cows) -- 2 
 medium with poultry  

    (70 cows, 2 houses) 
1 -- 

 large (150 cows) 1 1 
Poultry   
 5 houses -- 1 

 
 

For the USLE, a single R value of 2800 MJ⋅mm/(ha⋅h⋅y) (Schwab et al., 1993; Figure 5.5) 
was used for both watersheds. The USLE erodibility K factor, taken from the SSURGO soil 
survey (USDA-NRCS, 2001) and converted to SI units, ranged from 0.0067 to 0.057 
Mg⋅ha⋅h/(ha⋅MJ⋅mm). The S and L factors were calculated as described in Section 3.7.1. The 
S factor was calculated from the cell-to-cell slope determined by the GIS based on the DEM. 
The L factor used the flow length of 45m, which is a characteristic length of nonconcentrated 
flow for fields in this region (B. Cubbage, personal communication, Natural Resource 
Technician, NRCS, Harrisonburg, Virginia, 04 March 2002).  
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The management practice values used in the various evaluations are shown in Table 4.2. The 
purpose of the management practice type was explained in Section 3.8.2. The value of the 
management practice type for each management practice was set based on the definition of 
each optimization run. For example, in a run in which corn silage was allowed to be replaced 
by other crops, the management type for corn silage was set as “c”. In the same run, if 
forested land was considered to remain in forest, the management type for forest was “f”.  

 

Table 4.2: Management practice values used to evaluate the optimization procedure 
 

Management 
practice 
identifier 

Management 
practice description1 

Management 
practice type2 

C-factor P-factor 
flag3 

α-factor Production 
cost ($/ha) 

0 farmstead f 0.01 1 19.2 0.00 
1 forest f 0.003 1 1.1 0.00 
2 CC c 0.49 1 9.7 744.33 
3 CC / WW c 0.43 1 6.2 1220.48 
4 MC c 0.32 1 4.9 845.48 
5 MC / WW c 0.28 1 3.1 1321.62 
6 CC (2 yrs) / 

H (3 yrs) 
c 0.12 1 5.9 401.58 

7 CC (1 yr) / 
MC (1 yr) / H (3 yrs) 

c 0.11 1 4.9 417.09 

8 alfalfa hay h 0.02 1 3.3 899.03 
9 grass hay h 0.01 1 3.3 436.87 

10 pasture h 0.006 1 1.6 64.95 
11 Contoured, CC c 0.49 2 9.7 756.68 
12 CC / WW, all 

contoured 
c 0.43 2 6.2 1232.83 

13 MC, contoured c 0.32 2 4.9 857.83 
14 MC / WW, all 

contoured 
c 0.28 2 3.1 1333.97 

15 CC (2 yrs) / H 
(3 yrs), all contoured 

c 0.12 2 5.9 410.33 

16 CC (1 yr) / MC 
(1 yr) / H (3 yrs), all 

contoured 

c 0.11 2 4.9 425.83 

 
1CC = conventional corn silage; WW = winter wheat; MC = minimum till corn silage; H = grass hay 
2f = fixed allele set, containing the single corresponding management practice; c = cropland allele set, 
containing all “c” and “h” practices; h = hay allele set, containing only “h” practices. These values can vary 
according to simulation conditions. 
31 = up and down tillage; 2 = contour tillage. Corresponding P-factors are assigned at runtime by slope based on 
Novotny and Olem (1994; Table 5.6). 
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The C-factors were obtained from USDA-NRCS (1988) and B. Cubbage (personal 
communication, Natural Resource Technician, NRCS, Harrisonburg, Virginia, 04 March 
2002). For the forage crops, a higher value for alfalfa and grass hay than pasture is used in 
this region for two reasons. First, soil loss is expected during establishment periods for alfalfa 
and grass hay. Second, the alfalfa and the legumes in these hays generally cover the soil less 
well than the sod forming grasses in the pastures. The pastures in this region are well 
managed and fertilized, resulting in a relatively low C-factor. The P-factor flag (1 = up and 
down tillage, 2 = contour tillage) is converted by the optimization procedure into the 
appropriate values (Novotny and Olem, 1994; Table 5.6) at runtime. The α-factors were 
taken from Table 3.4. For a rotation the time-weighted average of the individual α-factors 
was used.  

Production costs (Table 4.2) were determined in $/ac from the Virginia Farm Management 
Crop and Livestock Enterprise Budgets (VCE, 1999) and converted to $/ha. For contour 
tillage practices, a cost of $12.35/ha was added (VCE, 2001). Production costs included seed, 
fertilizer, machinery, and labor costs for the enterprise. Land ownership and tax costs were 
excluded, as were farm planning and management costs. These values do not change with 
respect to the management practice adopted. 

Private costs were calculated using enterprise production costs, historical selling prices, and 
soil productivity. Selling prices for each cash crop are shown in Table 4.3. Buying prices 
were taken from the Virginia Agricultural Statistics Service (VASS, 2001) and used to 
calculate selling prices by subtracting a combined cost for marketing and transportation (D. J. 
Bosch, personal communication, Agricultural and Applied Economics Department, Virginia 
Tech, Blacksburg, Virginia, 07 March 2002). The pasture rent was taken from the Virginia 
Cooperative Extension (VCE, 2001).  
 

Table 4.3: Crop prices for all management practices 
 

Crop1 Buying price2 Market and 
transportation costs3 

Selling price 

Alfalfa $111.00/ton $30/ton $81.00/ton 
Grass hay $76.00/ton $30/ton $46.00/ton 
Pasture $16.19/ha (rent) -- $16.19/ha (rent) 
Corn silage $29.10/ton $3/ton $26.10/ton 
Winter wheat grain $2.00/bu $0.40/bu $1.60/bu 

 
1Crop quantities given in English units. 
2(VASS, 2001); pasture rent from VCE (2001). 
3(D. J. Bosch, personal communication, Agricultural and Applied Economics Department, Virginia Tech, 
Blacksburg, Virginia, 07 March 2002). 
 

Soil productivity values are listed by mapping unit symbol (USDA-NRCS, 2001) in Table 
4.4. These values were taken as quantity per acre from the NutLite computer program, which 
is an interface to NutMan (V2, Virginia Tech Dept. of Entomology, ISIS Lab, Blacksburg, 
Virginia. http://www.isis.vt.edu/dss/nutman. Accessed 18 April 2002; Stone, 1995); the  
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Table 4.4: Soil productivity of Rockingham county soils 
 

Mapping unit 
symbol 

Alfalfa1 
[tons/ha] 

Conventional 
corn silage1 

[tons/ha] 

Minimum-tillage 
corn silage1 

[tons/ha] 

Winter wheat 
grain1  
[bu/ha] 

Grass hay1 
[tons/ha] 

1B 7.41 44.46 44.46 158.08 9.26 
22F 0.00 0.00 0.00 0.00 0.00 

24B2 0.00 37.05 37.05 118.56 8.03 
28A 0.00 0.00 0.00 0.00 0.00 
29B2 17.29 44.46 44.46 158.08 9.26 
29C2 16.25 44.46 44.46 158.08 9.26 
29D2 13.83 44.46 44.46 158.08 9.26 

2B 7.41 37.79 37.79 134.37 9.26 
30C3 12.97 44.46 44.46 158.08 9.26 
31C2 15.56 44.46 44.46 158.08 9.26 
31D2 13.83 44.46 44.46 158.08 9.26 
32C 13.83 44.46 44.46 158.08 9.26 
33B2 17.29 44.46 44.46 158.08 9.26 
33C2 16.25 41.79 41.79 148.60 9.26 
33D2 16.25 35.57 37.79 126.46 9.26 
33E2 16.25 35.57 37.79 126.46 9.26 
34C 16.25 41.79 41.79 148.60 9.26 
34E 16.25 41.79 41.79 148.60 9.26 
35B 17.29 44.46 44.46 158.08 9.26 
39B 0.00 33.35 33.35 83.98 5.25 
39C 0.00 33.35 33.35 83.98 5.25 
40B 0.00 31.49 31.49 83.98 5.25 
40C 0.00 31.49 31.49 83.98 5.25 
40D 0.00 29.64 31.49 83.98 5.25 
41D 0.00 29.64 31.49 83.98 5.25 
41E 0.00 29.64 31.49 83.98 5.25 
47B 0.00 37.05 37.05 98.80 5.25 
4A 0.00 0.00 0.00 0.00 0.00 
54A 0.00 24.70 24.70 59.28 0.00 
56C 17.29 44.46 44.46 158.08 9.26 
56D 17.29 44.46 44.46 158.08 9.26 
57E 0.00 34.83 37.05 83.98 5.25 

59C2 7.41 31.57 31.57 114.26 9.26 
5C2 0.00 21.00 21.00 83.98 5.25 
5D2 0.00 19.76 21.00 79.04 5.25 
60D 7.41 26.87 30.23 138.32 9.26 
63B 12.35 44.46 44.46 158.08 9.26 
68B 12.35 46.93 46.93 138.32 11.12 
74E2 0.00 19.76 22.23 83.98 5.25 
75E2 0.00 0.00 0.00 0.00 0.00 
75F2 0.00 0.00 0.00 0.00 0.00 
76A 0.00 51.87 51.87 158.08 5.25 
8B 0.00 27.29 27.29 100.78 8.03 

 
1All crop quantities given in English units. 



Tamie L. Veith Chapter 4: Evaluation of Optimization Procedure 59
 

 

Virginia Nutrient Management Handbook (VA-DCR, 1993); and J. C. Baker (personal 
communication, Crop and Soil Environmental Sciences Department, Virginia Tech, 
Blacksburg, Virginia, 14 March 2002). The values were converted into quantity per hectare.  

However, because both the selling prices and soil productivities are given in English units 
and are multiplied together by the optimization procedure to get price per area, the crop 
quantities in English units are used, eliminating unnecessary conversions. The soil types 
represented by mapping unit symbols 22F, 75E2, and 75F2 are steep, rocky soils not suited 
for agriculture and occur only within forested land in the headwaters of the study watersheds. 
The soil types represented by mapping unit symbols 4A and 28A are nonproductive 
fluvaquents occurring along stream networks. 

Public costs were taken from Carpentier et al. (1998) and annualized over a period matching 
the five-year rotation length of hay set by the enterprise budgets. All other management 
practices were either single year or five-year rotations. As a result, the contracting costs were 
calculated as $194.42 per year and enforcement costs as $153.40 per year for each farm that 
changed from the baseline scenario for one or more fields. If rotations of varying lengths are 
used, all costs should be brought to the present value and annualized over a common time 
frame, as necessary.  

For the evaluation runs that considered area requirements, a minimum number of hectares per 
farm were required in cropland, hay, or both depending on farm type (Table 4.5). These area 
requirements were based on suggestions by Stone et al. (2002) (Table 4.6). Farm size 
definitions for the Muddy Creek watershed were based on Stone et al. (2002). The dairy and 
beef requirements are for feed, whereas the poultry requirement is for litter spreading. The 
values shown in Table 4.5 were used as the high requirement situations in the evaluations. 
The medium requirement situations used one-half of the values shown in Table 4.5, while the 
zero requirement situations used a zero value for all entries in Table 4.5. 

Instead of applying the area requirements by farm, they could be applied at a regional level, 
such as county or subwatershed. For example, an area requirement might be that at least 40% 
of the baseline cropland remains in cropland at a subwatershed level. Appropriate changes 
could be made to the cost calculation so that costs are summed by the relevant region instead 
of by farm. 

Since a single pollutant (sediment) was considered for these evaluations, the input table for 
setting pollutant target loads consists of a single line (Table 4.7). The “Base” field was filled 
by the optimization procedure with the baseline load at runtime. The “Target” load, filled in 
at runtime, was set according to the target load for each run. 

For all optimization runs, the GA was initialized from random scenarios based on the allele 
sets for each gene. The runs were performed on Pentium IV, 1.6 GHz machines with 264 Mb 
RAM and 35 Gb of disk space available for virtual memory and swap space. Computational 
methods in the Spatial Analyst extension of ArcView limit processes to less than 215 grid 
calculations per session (Huber, 2000). As a result, the optimization procedure was run in 
several sessions when necessary, with the final population of each run becoming the initial 
population of each subsequent run.  
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Table 4.5: Area requirements used in evaluating the economic component of the optimization 
procedure 

 
Farm type Feed requirements Litter spreading requirements 

 
Cropland 

[ha] 
Hay and/or pasture 

[ha] 
Cropland, hay, and/or pasture 

[ha] 

Small dairy (60 cows) 30 2 0 

Medium dairy (100 cows) 50 2.8 0 

Large dairy (150 cows) 75 4 0 

Small dairy with poultry  
(60 cows, 2 houses) 

30 2 8 

Medium dairy with poultry 
(100 cows, 2 houses) 

50 2.8 8 

Large dairy with poultry  
(150 cows, 1 house) 

75 4 6 

Small beef (40 cows) 0 56 0 

Medium beef (70 cows) 0 98 0 

Large beef (150 cows) 0 210 0 

Small beef with poultry  
(40 cows, 3 houses) 

0 56 10 

Medium beef with poultry  
(70 cows, 2 houses) 

0 98 8 

Large beef with poultry 
(150 cows, 1 houses) 

0 210 6 

Poultry (5 houses) 0 0 14 
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Table 4.6: Suggested area requirements for meeting feed and litter spreading needs for 
Rockingham County, Virginia (Stone et al., 2002) 

 
Farm type Cropland Hay and/or 

pasture 
Cropland, hay, and/or pasture 

Dairies:    

 Small operation 
(60 cows) 

0.5 ha/cow 2 ha  

 Medium operation 
(100 cows) 

0.5 ha/cow 2.8 ha  

 Large operation 
(150 cows) 

0.5 ha/cow 4 ha  

Poultry:    

 First house   6 ha 

 Additional houses   2 ha/each 

Beef:  1.4 ha/head  
 

 

Table 4.7: Example base and target loadings for a single pollutant 
 

Pollutant identifier Weight Base Target 
1 1 3.45 0.64 

 

 

4.3 Evaluation of optimization component 
The initial conditions of population size and replacement percentage were varied to 
determine the impact of these factors and of computer runtime on increase in fitness score 
and degree of convergence. Mutation and crossover rates were varied to determine the most 
efficient values for a given population size and replacement percentage. Convergence rates 
were examined to confirm that the GA was functioning correctly. The termination criterion 
for evaluation of the optimization procedure was determined based on the convergence of the 
initial runs and on the variables of pollution reduction and cost being represented by the 
fitness scores. Also, the variables related to the fitness scores were evaluated to confirm that 
changes in the fitness scores corresponded with the expected changes in the pollution 
reduction and cost variables. 

4.3.1 Determining initial conditions 

Population size and reproduction parameters for GAs impact the efficiency of the GA. A 
large population size provides a more thorough coverage of the search space but can take 
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substantial computer time to evaluate each generation. Conversely, a small population size 
may sample less of the search space but allows for more generations to be evaluated in an 
equivalent amount of computer time.  

De Jong (1975) found a population size of 50-100, with a crossover rate of about 0.6 and a 
mutation rate of 0.001 per gene, worked best for a particular set of problems. Mitchell (1999) 
stated that, lacking other suggestions, De Jong’s parameter values were widely used until the 
late 1980’s. At that time two separate studies (Grefenstette, 1986; Schaffer et al., 1989) 
systematically determined that a population size of 20-30 with a crossover rate of 0.75-0.95 
and a mutation rate of 0.005-0.01 produced the best results for their test problem sets. 
Mulligan and Brown (1998) used population sizes of 25, 100, and 200, replacing all but the 
previous best individual at each generation. Additionally, they used a crossover rate of 0.6 
based on the work by De Jong (1975) and a mutation rate of 0.03 based on initial testing. 
Liong et al. (1995) used a crossover rate of 0.6 and a mutation rate of 0.001. Reported values 
for parameter sets used in other NPS calibration studies during the 1990s are incomplete. The 
GA application by Srivastava et al. (1999), which is most related to this dissertation, used a 
population size of 100 with 25% replacement. This combination showed convergence after 
150 generations (3825 individual evaluations).  

Initial selection of the most efficient combination of parameter values for a given problem is 
not straightforward. Mitchell (1999) cautioned that the ideal parameter values are likely to 
vary for different problem types and applications as a result of problem formulations and 
performance criteria.  

ArcView allows a limited number of calculations per session. Thus, the minimal number of 
total evaluations needed to solve the problem became a desired characteristic. If used for 
planning purposes, the procedure would more likely be used if it can be shown to solve the 
problem under minimal supervision.  

ArcView performs about nine spatial analysis operations for each GA individual evaluated. 
Thus, the limit of 215 operations per ArcView session is reached after evaluation of about 
3500 individuals. Accordingly, GA performance was evaluated over 3500 individual 
evaluations, corresponding to one session in ArcView. 

The research goal for this dissertation was to increase cost-effectiveness relative to targeting. 
In achieving this goal it was desired to minimize the number of individuals evaluated as 
much as possible to minimize the impact of the ArcView limitation and to maintain a 
reasonable total runtime. As a result low population sizes with high replacement levels were 
considered.  

A large population allows more of the response surface to be evaluated as compared with a 
smaller population. However, with a large population, there are a large number of evaluations 
per generation, corresponding with population size. Thus, the impact of the ArcView 
limitation and the increase in total computer runtime could be substantial as compared with a 
small population. Fewer evaluations per generation are made when using a smaller 
population. Thus, solutions that meet the pollutant-targeting criterion and reduce cost can 
potentially be located in fewer computer evaluations. Also, because more generations have 
been evaluated, more information is available regarding the state of convergence. 
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High replacement levels were considered to maintain breadth in sampling across the search 
space under low population sizes. In a GA with a high replacement level, the best few 
individuals are carried over from one population to the next and then selected from the final 
population. Using a high replacement level increases the number of evaluations per 
generation, but results in a broader sampling of the search space at each generation than 
when using a low replacement level.  

Alternatively, a high population size with a low replacement level may have also provided 
efficient results. This combination would potentially start the heuristic with a broader sample 
of the search space than would a low population using high replacement. However, due to the 
low level replacement levels, more unchanged individuals must be maintained and carried 
over to successive generations. Also, as a result of increased computations per generation for 
larger populations, an increased number of ArcView sessions is potentially needed before 
being able to determine convergence trends. This was considered a potential limitation in the 
future acceptance and use of the procedure. Thus, the combination of high population size 
with a low replacement was not evaluated in this research. 

There is a lack of previous research on the problem formulation used by the optimization 
procedure. As a result, parameter evaluation was needed to determine a combination of 
population size and replacement level that solved the problem efficiently based on the criteria 
of limited runtime while maintaining a set of alternate solutions. The impact of population 
size and replacement on the convergence of the GA was evaluated using five population sizes 
(100, 50, 25, 15, and 10) and three replacement levels (90%, 70%, and 50%). The Lola Run 
watershed was used in this analysis. Replacement levels were chosen to correspond with 
population sizes such that at least three individuals were carried over to the next generation, 
resulting in ten tested combinations (Table 4.8).  

 
Table 4.8: Tested combinations of population size and replacement level 

 
Population size Replacement level 

 90% 70% 50% 
100 X X  
50 X X  
25  X X 
15  X X 
10  X X 

 
 

Crossover and mutation rates of 0.9 and 0.05, respectively, were used to determine the 
population size and replacement level. Although a 0.05 mutation rate is higher than 
suggested by the literature, it was chosen to add increased diversity in the smaller 
populations. A crossover rate of 0.9 means that every two individuals selected from the 
preceding generation have a 0.9 probability of being combined through crossover. A 
mutation rate of 0.05 means that each gene in each individual has a 0.05 probability of being 
mutated. 
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Computer performance is often variable among computers depending on configurations. 
Thus, runtime was measured by the number of individual evaluations performed by each run. 
Each tested combination of population size and replacement level was run for several 
thousand individual evaluations, corresponding to a computer runtime of approximately four 
and a half hours on a Pentium IV, 1.6 GHz computer. The number of generations evaluated 
for each run varied as a function of population size, replacement level, and the total number 
of individual evaluations.  

Fitness scores for the runs with the larger populations showed the lowest rate of improvement 
with respect to number of evaluations (Figure 4.2). Two runs for some initial conditions, 
such as population size of 15 and replacement of 70%, are shown. Parameters for runs are 
identical for similar initial conditions. However, a different initial population is used because 
the GA uses random generation to create the initial population of individuals. 

Over an equivalent number of evaluations, the lower population sizes of 10 and 15 increased 
in fitness at a higher rate than the remaining combinations. The population size of 15 with 
70% replacement performed better than all other combinations after an initial period of about 
2000 individuals evaluated. The larger population size of 15 with 70% replacement has an 
advantage over the population size of 10. Because more individuals in the population size of 
15 are available in each generation for crossover and mutation, more of the search space will 
be sampled. Thus, the population size of 15 with 70% replacement was chosen for evaluating 
the optimization procedure against the targeting strategy. 

Although this combination of initial conditions is not necessarily ideal for all watersheds, the 
arguments for a low population size and high replacement level still hold. Some watersheds 
may require fewer or more generations, and thus an altered runtime.  

For the population size of 15 with 70% replacement, three crossover rates (0.85, 0.90, and 
0.95) were compared (Figure 4.3). Based on the overall performance, a 0.90 crossover rate 
was selected for the remainder of the evaluations. For this combination, mutation rates were 
varied from 0.005 to 0.07 (Figure 4.4). The 0.01 mutation rate, which shows the most 
consistent rate of increase and achieves the highest fitness score, was selected for evaluation 
of the optimization procedure.  

Population size, crossover rate, and mutation rate typically interact nonlinearly (Mitchell, 
1999). Thus, determining these parameters in a different order may effect the combination 
selected. Population size impacts the number of evaluations performed and, thus, the runtime. 
As a result, population size was determined first for this research. Crossover was determined 
next for two reasons. First, crossover is often considered the main method in a GA of 
introducing variation and exploring the search space (Mitchell, 1999). In contrast, mutation is 
viewed primarily as a method of preventing given genes within each individual from 
becoming permanently fixed. As such, crossover performs a more crucial role than mutation. 
Second, the work suggested by Grefenstette (1986) and Schaffer et al. (1989) suggested that 
0.90 was within a reasonable range for small populations. The mutation rate, considered the 
least important parameter in the overall efficiency of the GA, was determined last. 
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Figure 4.2: Convergence patterns over a similar runtime for varying initial conditions in Lola Run (for some initial conditions, multiple combinations 
are repeated with differing initial random populations) 
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 Figure 4.3: Comparison of crossover rates in Lola Run for population size 15 and 70% replacement  
with a 0.05 mutation rate 
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 Figure 4.4: Comparison of mutation rates in Lola Run for population size 15 and 70% replacement  
with a 0.90 crossover rate 
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4.3.2 Determining termination criterion 

Convergence rates shown in Figure 4.5 are based on a ratio of the best fitness score of the 
preceding 50th generation divided by the best fitness score of the current generation. The key 
feature of this graph is to confirm that the simulation has stabilized into a high level of 
convergence (95-100%).  

The intent of this research was not to locate the true optimum, but to identify a set of 
solutions that are more cost-effective than a given targeting strategy. Thus, the termination 
criterion of the optimization depended more heavily on achieving an acceptable cost-
effectiveness level in a reasonable runtime than on achieving a particular convergence level.  

To determine how long a simulation should run before termination, a graph of the highest 
scoring scenario of each generation versus pollution target load, pollution reduction from 
baseline, and watershed cost (Figure 4.6) was found to be more helpful than a convergence 
graph. This graph can be easily updated and evaluated throughout the simulation. Using 
information from this graph, the simulation can be run until the pollutant targeting criteria 
have been met and the cost curve has begun to level out. Then a decision must be made as to 
the trade-off between running the simulation longer and achieving a lower cost solution. If 
the cost curve falls below the amount budgeted for watershed improvement, then simulation 
might be stopped and final population of the simulation chosen as the set of near optimal 
solutions.  

By running the simulation longer than necessary to meet budget levels, perhaps 300-500 
more generations, scenarios that reduce pollution for equal or lower cost may be identified. 
For example, in the run shown in Figure 4.6, a cost budget of $70 000 was met by the 700th 
generation with a scenario reducing sediment yield by 9.5 Mg/ha. However, by generation 
975, the procedure identified a scenario with near equivalent cost but a sediment reduction of 
11Mg/ha.  

Upon termination, the best-found solution is reported. If replacement levels are such that 
only a single solution is carried over to successive generations or if the GA has converged to 
the optimum, then the last several generations of the GA before termination might require 
examination when alternative best-found solutions are desired. Otherwise a set of alternative 
best-found solutions is provided in the final generation of the GA. The preferred solution can 
then be chosen from among the alternative solutions based on favorable characteristics or 
trade-offs.  

Trends in convergence rate for the Lola Run simulation corresponded to trends in watershed 
cost decrease, as expected (Figure 4.7). The procedure was not attempting to further reduce 
sediment after meeting the target reduction level. Despite this, sediment reduction did tend to 
improve noticeably at a few points in Figure 4.7 and then remain at each new level. In this 
run, crossover and mutation processes created a combination of field assignments that 
resulted in a large increase in sediment reduction at generation 970. 
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Figure 4.5: Convergence rate ( (fitness score of generation (x-50)) / (fitness score of generation x) ) for population size 15 and 70% replacement in Lola 
Run 
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Figure 4.6: Best of generation watershed cost and pollutant reduction values for Lola Run (population size 15 and 70% replacement) 
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Figure 4.7: Generational comparison of watershed cost, convergence rate, and pollutant reduction values for Lola Run (population size 15 and 70% 
replacement) – y-scales are as in Figures 4.5 and 4.6
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4.3.3 Fitness score performance 

To evaluate the performance of the fitness scores with respect to the optimization variables, 
three hypotheses were formulated:  

1) Pollutant loading decreases as the pollutant fitness score increases.  

2) The farm-level cost measure (i.e., the square root of the sum of the square of each 
farmer’s cost) decreases as the economic fitness score increases. 

3) Total watershed cost (i.e., the sum over the watershed of each farmer’s cost) 
decreases as the economic fitness score increases. 

The hypotheses were evaluated for each watershed, without area requirements, for three 
optimization runs and one targeting strategy (Table 4.9). To facilitate comparisons, the 
maximum acceptable loading (i.e., target load) for all runs was set to the sediment loading 
achieved by the targeting strategy. 

Optimization Runs 1 and 2 were considered to compare the optimization procedure and 
targeting strategy with only cropped fields allowed to vary. Optimization Run 3 was 
considered to evaluate the effect of allowing all agricultural land to vary and to demonstrate 
the optimization procedure over a variety of management practices.  

The pollution fitness score (Equation 3.1) was developed to lead the optimization component 
to find solutions in which NPS component sediment yield predictions are below a maximum, 
or target, load. Thus, pollution fitness scores should increase as sediment yield decreases. 
Figures 4.8 to 4.13 confirm this relationship for the three different optimization runs, on each 
of the subwatersheds.  

In these figures the unbounded pollution fitness score is shown. That is, the pollution score 
shown was not limited to a maximum value of one after meeting the target load. However, in 
all cases, there were few scenarios that increased in pollution reduction beyond the target 
load and such increases were very minimal.  

The unbounded score is used for display and analysis only. The unbounded score allows 
analysis of pollution fitness after the target load has been met. The bounded version as given 
by Equation (3.1) was used in the optimization run. 

In the runs shown, conventionally tilled corn silage generally had the highest net return but 
also the highest erosion. To meet the target load, BMPs were applied to the corn silage fields. 
This caused costs to increase. Because the optimization procedure was minimizing costs, the 
sediment yield was generally as high as possible while meeting the target sediment reduction. 
For example, Figure 4.12 shows the optimization program found a solution at generation 246 
under Optimization Run 2 that slightly reduced sediment yield below the target load of 
0.17 Mg/ha. However, the scenario cost increased by several hundred dollars. Subsequent 
solutions reduced costs by allowing the sediment yield to increase to the target load. If a crop 
such as alfalfa, which reduces erosion and increases net return, had been available, then the 
optimal scenarios may have reduced sediment yield further beyond the target load criterion. 

Once the pollutant target load is met, the economic fitness score (Equation 3.5) drives the 
optimization process. As discussed in Section 3.5.3, the economic fitness score uses the  
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Table 4.9: BMP placement strategies used in evaluation of the optimization procedure for 
both subwatersheds 

 

BMP Placement Strategy Description 

Baseline Scenario All cropland was placed in conventionally tilled corn silage. 
Forest/orchard, farmstead/residential, hay, and pasture were as 
identified in the Muddy Creek land use layer. 

Targeting All fields in conventionally tilled corn silage in the baseline, with 
the majority of the field at greater than three percent slope, were 
converted to minimum-tillage corn silage with contour tillage and 
a winter wheat cover crop. 

All non-cropland remained as in the baseline. 

Optimization Run 1 Two management variations of corn silage were allowed on all 
cropland: 

• conventional tillage and 
• minimum-tillage with a minimum-tillage winter wheat 

cover crop, on the contour. 

All non-cropland remained as in the baseline.  

Optimization Run 2 Eight management variations of corn silage were allowed on all 
cropland: 

• conventional tillage, on the contour and not; 
• conventional tillage with a minimum-tillage winter wheat 

cover crop, on the contour and not; 
• minimum-tillage, on the contour and not; and 
• minimum-tillage with a minimum-tillage winter wheat 

cover crop, on the contour and not. 

All non-cropland remained as in the baseline. 

Optimization Run 3 Three basic management practices were allowed on all land 
identified in the baseline as cropland, hay, or pasture: 

• conventional tillage corn,  
• hay, and  
• pasture.  

Four BMPs for the corn silage crop were considered, both 
individually and in combination:  

• minimum tillage,  
• minimum-tillage wheat grain as a winter cover,  
• contour farming, and  
• conversion of the row crop to forage (pasture or grass hay).  

All non-agricultural land remained as in the baseline. 
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Figure 4.8: Comparison of cost and pollution variables with fitness scores for Lola Run under 
Optimization Run 1 
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Figure 4.9: Comparison of cost and pollution variables with fitness scores for Lola Run under 
Optimization Run 2 
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Figure 4.10: Comparison of cost and pollution variables with fitness scores for Lola Run under 
Optimization Run 3 
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Figure 4.11: Comparison of cost and pollution variables with fitness scores for Mini-Muddy Creek under 
Optimization Run 1 
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Figure 4.12: Comparison of cost and pollution variables with fitness scores for Mini-Muddy Creek under 
Optimization Run 2 
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Figure 4.13: Comparison of cost and pollution variables with fitness scores for Mini-Muddy Creek under 
Optimization Run 3 
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farm-level cost measure to formulate scenarios of decreasing cost while preferring scenarios 
in which costs are divided evenly among farms. The economic fitness score does increase as 
the farm-level cost measure decreases (Figures 4.8 to 4.13).  

The economic fitness score was intended to correspond with reduction of total watershed 
cost, which is a more direct measure of the economic system being modeled than the farm-
level cost measure is. All runs show the expected decrease in total watershed costs after the 
pollutant target load has been met.  

The effect of using farm-level summation, as opposed to watershed-level summation, in the 
optimization function is shown in Figure 4.8 at generation 230. The watershed cost increases. 
However, the division of this cost across the farms is such that the farm-level cost, and hence 
the economic fitness score, do not increase. In contrast, Figure 4.12 shows increase in both 
farm-level cost and watershed cost at generation 190. In this case, the large increase in total 
watershed cost outweighed the effect of how costs were divided among farms. 

4.4 Evaluation of economic component 
The economic component was evaluated to determine how well it modeled fairness with 
respect to division of cost increases among farms. Three levels of area requirements were 
evaluated to determine the impact of increased area requirements on otherwise similar 
optimization runs. The impact, on total watershed cost, of using a farm-level cost summation 
versus a watershed-level cost summation in the economic fitness function of the optimization 
procedure was examined. This involved comparing the results of two optimization runs, 
where one optimized using a farm level cost measure and the other used a watershed-level 
measure. 

4.4.1 Cost fairness 

The extent to which the fitness scores promoted fairness of cost across farms was examined 
using the following hypothesis: 

• Between two scenarios of near equivalent cost, the optimization procedure prefers the 
scenario for which costs are divided more evenly across the farms. 

The hypothesis of cost fairness was tested on the Lola Run watershed with no area 
requirements. The optimization run for this hypothesis employed a data set used in 
comparing the impact of initial conditions on optimization efficiency. The division of costs 
more evenly across farms was measured in terms of decreased deviation from the median 
using Equation (4.1). The median was used as opposed to the mean because it was not clear 
that farm costs follow a normal distribution and the median is unbiased to extreme values.  

 
n

XX
s i

i∑ −
=  (4.1) 

where  
  s  = median deviation of the scenario [$], 
 Xi  = costs for farm i [$], 
X  = median farm cost of the scenario [$], and 
 n  = number of farms in watershed. 
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Figure 4.14 shows results for the best of each generation throughout the optimization run. 
The fitness score remained constant or increased as the run progressed. In most cases the 
watershed cost decreased when the fitness score increased. In places of slight cost increase 
for the watershed, the higher scoring scenario often had a lower deviation from the median. 
For example, the scenario of lower watershed cost in generation 1203 was replaced in 
generation 1204 by a scenario of slightly higher watershed cost ($223 increase) but a $192 
decrease in median deviation. Similar responses of the procedure are seen at generation 755 
and 1602. In cases of substantial watershed cost increase, the fitness score generally 
decreased. This is because the change in watershed cost outweighed consideration of how 
that cost was distributed across the farms. Such cases are not seen in Figure 4.14 because it is 
a graph of the best scenario of each generation.  
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Figure 4.14: Comparison of watershed cost and median deviation for Lola Run as fitness score increased  

 

The best scenario of generation 1203 has a median cost of $3136 and a median deviation of 
$1661 whereas the best scenario of generation 1204 has a median cost of $3156 and a median 
deviation of $1469. Figure 4.15 demonstrates the shift of farm costs towards the median for 
generation 1204, as compared to generation 1203. In particular, the number of farms with 
costs above $4500 decreased from four to two as the run progressed from generation 1203 to 
1204. The same decrease was seen in the number of farms with costs less than or equal to 
$1500. 

These results support the hypothesis that, when watershed costs between scenarios are near 
equivalent, the economic fitness score prefers the scenario in which the costs are more evenly 
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divided across farms. This indicates that the economic fitness score responds as intended in 
terms of cost fairness. 
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Figure 4.15: Comparison of farm-level costs for the best of generation scenarios for generations 1203 and 
1204 of the run shown in Figure 4.14 (x-axis shows upper limit of each cost category) 

 

4.4.2 Area requirements 

The impact of area requirements on scenario fitness was evaluated by looking at the 
economic fitness score. The economic fitness score was formulated such that, in any given 
scenario, farms would be penalized for meeting the area requirements to a lesser extent than 
they did in the baseline scenario. Thus, the following hypothesis was tested: 

• Meeting area requirements to a lesser extent than they are met in the baseline scenario 
results in lower fitness scores across otherwise similar runs.  

A variety of crop and hay management practices were needed to fully evaluate the area 
requirement impact. Thus, Optimization Run 3 (Table 4.9), which included hay, pasture, and 
various management practices for corn silage, was run under no area requirements. The 
pollutant target load was set equal to the pollutant load of the targeting strategy to facilitate 
evaluation beyond addressing this hypothesis. The best-of-generation values from the 
optimization run were then used to test the area requirement hypothesis.  

For each best-of-generation scenario, the economic component of the optimization procedure 
was used to calculate the percentage of the medium and high-level area requirements met by 
each farm in the working scenario. Additionally, the extent to which the area requirements 
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were met in the best-of-generation scenario as compared to in the baseline scenario was 
calculated.  

Tables 4.10 and 4.11 show the extent to which each farm met the medium and high-level area 
requirements under the baseline scenario and under one best-of-generation scenario 
(generation 359). No farms met the high-level area requirements under the baseline scenario 
for either watershed (column abi). Three farms in Lola Run and four farms in Mini-Muddy 
Creek met the medium-level requirements under the baseline scenario.  

In order for a farm not to be penalized in the working scenario, the working scenario had to 
meet the area requirements at least as much as the baseline scenario did. For example, the 
baseline scenario for the first large beef farm listed in Table 4.10 met 20% of the high-level 
area requirement and 41% of the medium-level requirement. In order for this farm not to be 
penalized in the working scenario, the farm had to have 42 ha in hay and/or pasture under the 
high-level area requirement but 86.1 ha in hay and/or pasture under the medium-level area 
requirement. For all farms in each watershed, the high-level requirements were met to a 
lesser extent by the baseline than the medium-level requirements were met by the baseline. 
Thus, less acreage was required to meet the baseline percentage for the high-level condition 
as compared to the medium-level condition. 

Additionally, in all except two farms in Lola Run and one farm in Mini-Muddy Creek, the 
extent to which the working scenario met the baseline percentage under the high-level 
requirements (column ai) was larger or equal to the extent to which the working scenario met 
the baseline percentage under the medium-level requirements. As a result, it was expected 
that high-level requirements would produce equivalent or higher economic fitness scores as 
compared to medium-level requirements for each best-of-generation scenario. 

Economic fitness scores for both the medium and high-level requirements were calculated by 
applying the economic component to each best-of-generation scenario. For each scenario, the 
economic fitness score for the high-level requirements was larger than or equal to that for the 
medium-level requirements, as expected (Figures 4.16 and 4.17). The fitness scores for the 
zero-level area requirements were equal to the scores of the other two requirement levels for 
the first 20 generations of Mini-Muddy Creek. This is because the best-of-generation 
scenario for these generations was the baseline scenario. Otherwise, fitness scores for the 
zero-level area requirements were consistently larger than those of the other two requirement 
levels for both watersheds. This was expected because no penalties are imposed under zero-
level area requirements.  

To further examine the impact of area requirements on economic fitness scores and on total 
watershed cost, Optimization Run 3 was run for each watershed under medium and high-
level area requirements. These runs were compared with each other and with the zero-level 
run discussed previously. As expected, the zero-level run for Mini-Muddy Creek had the 
highest economic fitness score throughout the run, followed by the high-level run and then 
the medium-level run (Figure 4.18). Seventy percent of the farms in Mini-Muddy Creek are 
beef and have an area requirement of hay and/or pasture. In this watershed, the impact of area 
requirement on reducing fitness score despite decrease in watershed cost is seen from 
generation 125 to 175. The high-level watershed cost decreased below that of the zero-level. 
However, the high-level fitness score remained lower than the zero-level score. 
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Table 4.10: Proportion of area requirements met for a given Lola Run scenario, as compared 
to the baseline, when medium and high-level requirements are individually applied 

 
Farm type High-level requirement Medium-level requirement 

 abi
1 ai

2 abi
1 ai

2 

Large beef 0.20 1.00 0.41 1.00 

Large dairy 0.92 1.00 1.00 1.00 

Medium beef w/ poultry 0.72 1.00 0.93 1.00 

Medium dairy 0.67 0.92 0.84 0.87 

Medium dairy 0.68 1.00 0.85 1.00 

Medium dairy 0.80 0.91 1.00 0.96 

Medium dairy 0.73 1.00 0.97 1.00 

Medium dairy 0.80 0.86 1.00 0.87 

Medium dairy w/ poultry 0.73 0.98 0.95 0.80 

Small beef 0.02 1.00 0.04 1.00 

Small beef 0.09 1.00 0.19 1.00 

Small beef 0.00 1.00 0.00 1.00 

Small beef 0.13 0.81 0.25 0.81 

Small beef w/ poultry 0.50 1.00 0.50 1.00 

Small dairy 0.18 1.00 0.35 1.00 

Small dairy 0.31 1.00 0.50 1.00 

Small dairy 0.16 1.00 0.33 1.00 

Small dairy 0.81 1.00 1.00 1.00 
 

1abi = extent to which baseline scenario meets area requirements of farm i as calculated by Equation (3.4) with 
ab = aw and ao = area in baseline scenario contributing toward requirement for farm i [ha]. 
2 ( ){ }1,min 

iab
aw

ia =  where aw = extent to which working scenario meets area requirements of farm i, as 

calculated by Equation (3.4), and ab as above. 
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Table 4.11: Proportion of area requirements met for a given Mini-Muddy Creek scenario, as 
compared to the baseline, when medium and high-level requirements are individually applied  

 

Farm type High-level requirement Medium-level requirement 

 abi
1 ai

2 abi
1 ai

2 

Large beef 0.39 0.77 0.78 0.77 

Large dairy 0.70 0.79 0.90 0.67 

Medium beef 0.24 1.00 0.47 0.99 

Medium beef 0.37 1.00 0.74 1.00 

Medium dairy 0.76 0.74 1.00 0.62 

Poultry 0.67 1.00 1.00 1.00 

Small beef 0.69 0.72 1.00 0.99 

Small beef 0.30 1.00 0.59 1.00 

Small beef 0.29 1.00 0.57 1.00 

Small beef 0.50 0.52 1.00 0.52 

 
1abi = extent to which baseline scenario meets area requirements of farm i as calculated by Equation (3.4) with 
ab = aw and ao = area in baseline scenario contributing toward requirement for farm i [ha]. 
2 ( ){ }1,min 

iab
aw

ia =  where aw = extent to which working scenario meets area requirements of farm i, as 

calculated by Equation (3.4), and ab as above. 
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Figure 4.16: Economic fitness score comparison across three area requirement levels for Lola Run, where 
scores were determined by applying the economic component individually to each scenario in a set of 

best-of-generation scenarios 

 

0

1

2

3

4

5

1 51 101 151 201 251 301 351

Number of generations

E
co

n
o

m
ic

 f
it

n
es

s 
sc

o
re

Zero High Medium
 

Figure 4.17: Economic fitness score comparison across three area requirement levels for Mini-Muddy 
Creek, where scores were determined by applying the economic component individually to each scenario 

in a set of best-of-generation scenarios 
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Figure 4.18: Fitness score comparison for three optimization runs under different area requirement 
levels for Mini-Muddy Creek 

 

For Lola Run, the economic score for the zero-level run was consistently greater than or 
equal to that of the medium-level run (Figure 4.19). However, for the majority of the run, the 
high-level run scored higher than the zero-level run and had a lower watershed cost. From 
generation 90 to 135, when watershed costs for the zero-level and high-level runs were near 
equal, the high-level run had a lower fitness score than the zero-level run. This was due to the 
penalizing impact of the area-requirements on the fitness score. However, for the remainder 
of the run, the lower watershed cost for the high-level run resulted in the high-level fitness 
score being higher than that of the zero-level. Sixty percent of the farms in Lola Run are 
dairy, which have a cropland area requirement. The cropland used in this evaluation (corn 
silage) was more profitable than hay or pasture for most fields. Thus, as compared to the 
zero-level situation, the penalizing factor of not growing corn silage in the high-level run 
effectively increased the cost associated with switching to hay or pasture. The result was that 
the optimization moved towards an optimal solution in the high-level run more quickly than 
in the zero-level run for this watershed. In the high-level run a watershed cost of $146 638 
was reached by generation 359 (Figure 4.19). In the zero-level run this cost was not achieved 
until generation 406 (Figure 4.10). 

4.4.3 Farm-level versus watershed-level cost function 

The economic fitness function (Equation 3.5) uses a farm-level summation of costs in the 
denominator. That is, through use of the Euclidean distance metric, total farm costs are 
calculated and weighted before being combined together. This formulation enables  
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Figure 4.19: Fitness score comparison for three optimization runs under different area requirement 
levels for Lola Run 

 

consideration of cost fairness (Section 3.3.4). However, it results in a less direct function for 
optimizing total watershed cost than does using a watershed-level summation in which costs 
for each field are simply added over the watershed. Optimization of total watershed cost is a 
main goal of the economic component of the optimization procedure. Thus, the following 
hypothesis was evaluated to test the impact of the farm-level formulation on the optimization 
process: 

• The optimization procedure continues to locate solutions of decreasing total 
watershed cost when using an optimization function which sums costs by farm 
instead of by watershed. 

This hypothesis was tested by comparing two versions of Optimization Run 3 (Table 4.9) on 
each watershed. The first version used Equation (3.5) as the economic fitness function. The 
second version used Equation (4.2), which sums costs at the watershed level without making 
a farm-level distinction. 
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where  
ε = economic fitness function, 
Co = total opportunity cost for all farms in scenario [$], 
xi = cost of working scenario for farm i [$], 

( )iwwi dcx += , 

cw = private cost of working scenario for farm i [$], 
dw = public cost of working scenario for a farm i [$], 

( ){ }1,min 
iab

aw
ia = , 

aw = extent to which working scenario meets area requirements of farm i, 
ab = extent to which baseline scenario meets area requirements of farm i, and 
i indexes all farms in the watershed. 

In both versions, no area requirements were used. Thus, ai, equaled 1 throughout each 
optimization run. 

For Lola Run the total watershed cost curves by the two summation methods were shaped 
similarly (Figure 4.20). In comparison, the farm-level cost measure curve was shaped 
similarly, but had a reduced range of values. The total watershed cost, for both methods, was 
consistently approximately three times larger than the farm-level cost measure. Thus, the 
economic fitness function using total watershed cost in the denominator, instead of the farm-
level cost measure, was one-third as large as the other economic fitness function. However, 
for both summation methods, the fitness functions increased steadily while the total 
watershed cost decreased. Additionally, total watershed costs between the two methods were 
similar throughout the runs. Similar results were seen for Mini-Muddy Creek (Figure 4.21). 

For Mini-Muddy Creek, the solution for the farm-level optimization run resulted in a total 
watershed cost six percent less than that of the watershed-level optimization solution. In 
contrast, the solution for the farm-level optimization run for Lola Run resulted in a total 
watershed cost one percent greater than that of the watershed-level optimization solution. 
Total watershed cost differences between the two methods may be due to differences in 
watershed size and number of farms as well as in farm sizes, types, and productivities. 
Evaluation of multiple watersheds of varying characteristics may be instructive in 
determining characteristics most influencing cost differences between the two methods. 

In both methods, increases in fitness corresponded with decreases in total watershed cost. 
These results indicate that the use of a farm-level cost measure in the optimization procedure 
does not adversely affect the overall economic goal of optimizing watershed costs. For Mini-
Muddy Creek, the farm-level optimization version had a positive impact in reducing costs 
beyond solutions provided by the watershed-level version. Additionally, use of the farm-level 
measure has the benefit of incorporating a measure of fairness in cost increase. 

4.5 Evaluation of NPS component 
The NPS component was evaluated with regard to sediment yield simulation both by 
changing the BMP applied over the majority of a watershed and by moving the location of a 
single land use within the watershed. The impact of BMP selection on sediment yield 
estimated by the NPS component was evaluated by comparison against the detailed 
ANSWERS-2000 NPS model. The purposes of this comparison were twofold. The first goal  
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Figure 4.20: Comparison of the economic fitness function based on farm-level and watershed-level cost 
summations for Lola Run 
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Figure 4.21: Comparison of the economic fitness function based on farm-level and watershed-level cost 
summations for Mini-Muddy Creek 



Tamie L. Veith Chapter 4: Evaluation of Optimization Procedure 87
 

 

was to assess the magnitude of difference in prediction levels between the NPS component 
and a more detailed model. The second goal was to compare relative differences in scenario 
yields between NPS prediction tools. The effect of land use placement within a watershed on 
sediment yield was tested to confirm accurate trends in the routing portion of the NPS 
component. 

4.5.1 Impact of BMPs on sediment yield 

To compare the impacts of different BMPs on sediment yield at the watershed outlet, all 
fields in cropland and hay in the baseline scenario were placed in one of five management 
practices (conventionally tilled corn silage, conventionally tilled corn silage with winter 
wheat grain, minimum-tillage corn silage, minimum-tillage corn silage with winter wheat 
grain, and grass hay) for a total of five scenarios for each watershed. Forest, pasture, and 
farmstead were kept constant for all scenarios.  

The NPS component and ANSWERS-2000 were used to simulate sediment yield at the 
watershed outlet for each scenario and each watershed. Data used for the NPS component are 
discussed in Section 4.2. The ANSWERS-2000 input files (Appendix C) were created to 
reflect the same watershed characteristics as used for the NPS component. For all 
ANSWERS–2000 runs, a five-year set of weather data was simulated by the CLIGEN v5.017 
weather simulation program (Nicks et al., 1995) using historical data collected at Dale 
Enterprises, Virginia.  

The distributed, physically-based nature of ANSWERS-2000 makes it capable of simulating 
trends in sediment yield among different scenarios, as well as spatial variability within 
scenarios. Byne (2000) tested ANSWERS-2000 for a growing season in the Owl Run 
watershed (1153 ha) in Fauquier County, Virginia. Owl Run is a mixed land-use watershed 
with 66% agricultural, 26% forest, and 8% residential areas. Byne (2000) found that 
ANSWERS-2000 overpredicted total sediment yield at the watershed outlet for that growing 
season by nine percent.  

Sediment yield at the watershed outlet is shown in Table 4.12 for each management practice 
scenario. Additionally, the ratio of the yield resulting from that scenario to the yield from the 
conventionally tilled corn silage scenario was calculated (Table 4.12).  

For each scenario, results of ANSWERS-2000 were similar between the two watersheds, 
with slightly larger yields for Lola Run. The same trend was seen for the NPS component 
predictions. Yield differences are likely due to spatial variation of land use between 
watersheds, a smaller percentage of the watershed being covered by forest, and/or differences 
in watershed topography and flow patterns. The relative similarity in results across 
watersheds demonstrated consistency of the prediction tools across similar watersheds.  

For the corn scenarios, the sediment yield predicted by the NPS component was up to an 
order of magnitude larger than that predicted by ANSWERS-2000. Scaling the results to the 
sediment yield of conventionally tilled corn silage shows that the treatment differences were 
fairly consistent. For each watershed, the ratio for each management practice to corn silage, 
except hay, was about 30% less for the NPS component than ANSWERS-2000. The NPS 
component ratio for hay was 40% of the ANSWERS-2000 ratio for the Mini-Muddy Creek 
watershed and 20% for the Lola Run 
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Table 4.12: Comparison between the NPS component and ANSWERS-2000 predictions of 
average annual sediment yield at the watershed outlet for different scenarios 

 
 Conventionally 

tilled corn 
silage 

Conventionally 
tilled corn 
silage with 

winter wheat 
grain 

Minimum-
tillage corn 

silage 

Minimum -
tillage corn 
silage with 

winter wheat 
grain 

Grass 
hay 

 Simulated sediment yield 
 [Mg/ha] [Mg/ha] [Mg/ha] [Mg/ha] [Mg/ha] 
Mini-Muddy 
Creek 

     

 NPS 4.715 2.743 1.767 1.255 0.076 
 ANSWERS-

2000 
0.456 0.394 0.234 0.191 0.023 

Lola Run      
 NPS 6.307 3.545 2.252 1.567 0.078 
 ANSWERS-

2000 
0.723 0.609 0.497 0.307 0.042 

      

 Ratio to conventionally tilled corn silage 
 [-] [-] [-] [-] [-] 
Mini-Muddy 
Creek 

     

 NPS -- 0.58 0.37 0.27 0.02 
 ANSWERS-

2000 
-- 0.86 0.51 0.42 0.05 

Lola Run      
 NPS -- 0.56 0.36 0.25 0.01 
 ANSWERS-

2000 
-- 0.84 0.69 0.42 0.06 

 
 

watershed. However, all predictions showed a similar trend in sediment yield across the five 
scenarios. Sediment yield was greatest for conventionally tilled corn silage and decreased as 
surface cover increased and surface soil roughness decreased.  

The scenario ratios across watersheds, as predicted by the NPS component, were nearly 
equal. The ratios, as predicted by ANSWERS-2000, showed some variation for the minimum 
tillage corn silage scenario but were nearly equivalent for the other scenarios.  

Without validation of the NPS component and/or ANSWERS-2000, the accuracy of the 
models’ predictions of the response of the physical system cannot be determined. 
Comparison of these two prediction tools suggests that the NPS component may have 
overpredicted sediment yield, assuming that ANSWERS-2000 is the more accurate model. 
However, each model maintained constant ratios between scenarios across watersheds. The 
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conclusions of this section impact the representation of target loads in the NPS component. 
The desired target load should be expressed relative to the baseline load as calculated by the 
NPS component. This will ensure that a consistent frame of reference for NPS calculations is 
maintained within the optimization procedure. 

Although these results do not extend directly to watersheds in dissimilar agroecosystems, the 
models and theories used in both ANSWERS-2000 and NPS components are generally 
applicable. Thus, it is expected that, to the extent that the USLE is appropriate for a particular 
watershed (i.e., a watershed not dominated by gully or channel erosion), the NPS component 
would accurately reflect relationships in sediment yield among scenarios. 

4.5.2 Impact of land use placement on sediment yield 

The Mini-Muddy Creek watershed was used to test the sediment yield predictions of the NPS 
component with regard to land use or management practice placement within the watershed. 
It was expected that sediment yield at the watershed outlet would be increased when erodible 
land uses were located nearer to streams or to the watershed outlet. For this test a land use 
layer consisting of seven agricultural fields and two larger land use regions was created 
(Figure 4.22). Each agricultural field was created to be 3.6 ha in size. A constant USLE K- 
factor of 0.042 Mg⋅ha⋅h/(ha⋅MJ⋅mm) was assigned to eliminate variability in soil erodibility. 
Slopes in each field ranged from two to five percent. The C factor was set at 0.003 for forest, 
0.01 for grass hay, and 0.49 for conventionally tilled corn silage areas. For all regions, a P 
factor of one was used. The α value was set at 1.1 for forest, 3.3 for grass hay, and 9.7 for 
corn silage.  

Eight runs of the NPS component were performed. The upper region remained in forest for 
all test runs. For the reference run, the lower region of the watershed, including all seven 
agricultural fields, was placed in grass hay. For each of the seven test runs, a different 
agricultural field was placed in conventionally tilled corn silage. The remainder of the lower 
region was placed in grass hay.  

For each test run the NPS component was used to calculate sediment loading from the 
watershed. Table 4.13 reports the gross erosion in the watershed by summing the megagrams 
of gross erosion per cell over all cells in the watershed and dividing the total by the 
watershed area. The gross erosion within the corn field was determined by summing the 
megagrams of gross erosion per cell over only the cells in the field and then dividing by the 
field area. The sediment yield at the watershed outlet is an accumulation over the entire 
watershed of the percentage of gross erosion (in Mg) delivered from each cell to the outlet. 
This quantity is divided by the area of the watershed to obtain Mg/ha. The results show that 
placement did affect sediment yield.  

The differences in sediment yield did not vary consistently with the differences in gross 
erosion. For example, for field 1 sediment yield was one-half as much as gross erosion from 
the reference run. However, field 2 experienced a greater increase in sediment yield than 
field 1 but not in gross erosion. Test run 7 resulted in the least increase in gross erosion from 
the reference. The smallest increase in sediment yield was seen in test run 6 when field 6 was 
in corn. 
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Figure 4.22: Fields and flow networks used to test sediment routing due to BMP placement 

 
Table 4.13: Output from NPS model for placement test fields 

 
Test 
run 

Corn 
silage 
field 

Gross 
erosion in 
watershed 

(Mg/ha) 

Gross 
erosion 

within field 
(Mg/ha) 

Increase in 
watershed gross 

erosion compared 
with reference run 

(%) 

Sediment yield 
at watershed 

outlet 
(Mg/ha) 

Increase in 
sediment yield 
compared with 
reference run 

(%) 
Ref. None 1.400 N/A N/A 0.089 N/A 

1 1 1.549 28.962 11 0.094 6 
2 2 1.558 30.714 11 0.105 18 
3 3 1.565 31.971 12 0.098 10 
4 4 1.554 29.864 11 0.090 2 
5 5 1.572 33.287 12 0.103 16 
6 6 1.562 31.468 12 0.089 0 
7 7 1.529 24.954 9 0.089 0 
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The differences in gross erosion among test runs are explained by the slope steepness and 
flow length characteristics of the cells in each field. These two factors contributed to 
variations in the S and L factors of the USLE, while all other factors of the USLE were 
controlled as discussed at the beginning of this section. Flow patterns and slopes for each 
field are shown in Figure 4.22 and Table 4.14, respectively.  

 
Table 4.14: Distribution of slopes and flow directions for placement test fields 

 
Field Percent of diagonal 

flow cells 
Percent of cells in each slope category 

  2-3 % 3-4 % 4-5 % 
1 40 33 35 33 
2 55 20 43 38 
3 60 30 20 50 
4 35 33 48 20 
5 52 13 53 35 
6 30 23 45 33 
7 53 75 20 5 

 
 

Eighty-eight percent of field 5, which has the highest level of gross erosion, has slopes of at 
least three percent. Also, 52% of its cells have a diagonal flow direction and thus a longer 
flow path than non-diagonally flowing cells. Fields 2 and 3, also among the highest in gross 
erosion, are composed mainly of at least three percent slopes, and have a majority of 
diagonally flowing cells. In contrast, field 7, which contributed the least gross erosion, has 
75% slopes less than three percent and has a majority of non-diagonally flowing cells. 

The increases in sediment yield relative to the reference run were as expected based on the 
placement of the fields. Field 2 in corn yielded the greatest amount of sediment at the 
watershed outlet; 6 of the 40 cells in the field flowed directly into a stream. Also field 2 is 
nearest the outlet. Portions of fields 3 and 5 flow directly into streams as well, but in less 
concentrated flow patterns than field 2. Additionally, fields 3 and 5 are farther from the outlet 
than field 2.  

All outflow cells on the remaining fields (fields 1, 4, 6, and 7), except two cells of field 1, 
were buffered from streams by one or more cells of hay. Additionally, on these remaining 
fields, flow exiting the stream side of the field was distributed along the field edge instead of 
concentrating in one or two exit cells. 

Relative differences in sediment yield due to differences in field locations within the 
watershed followed expected trends. For example, field 1 was located just downstream of 
field 7. Both fields were bordered by the same stream and had one to two cell widths of hay 
buffer along most of the stream edge. As expected, watershed sediment yield for the 
downstream field was greater than for the upstream field (0.094 Mg/ha vs. 0.089 Mg/ha).  
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4.6 Evaluation of optimization procedure 
The optimization procedure, as a whole, was evaluated with respect to the first research 
objective of pollution reduction and cost decrease as well as the overall research goal of cost-
effectiveness. The cost-effectivenesses of three optimization runs were compared with a 
targeting strategy. Land allocation and spatial placement of BMPs within the watershed were 
compared for the optimization and targeting strategy solutions. Additionally, differences in 
land allocation for two alternate solutions of a single optimization run were considered. 

4.6.1 Cost-effectiveness 

With an optimization heuristic such as a GA, it is not possible to guarantee that the heuristic 
will find the global optimum. However, for this research the goal was not to locate the true 
optimum, but to demonstrate the ability of the optimization procedure to find more cost-
effective solutions than a targeting strategy. To assess performance of the optimization 
procedure with respect to the research goal, the following hypothesis was evaluated:  

• The optimization procedure locates one or more scenarios that are more cost-effective 
than the targeting strategy solution scenario. 

Three optimization runs and a targeting strategy, as described in Table 4.9, were applied to 
both evaluation watersheds (Lola Run and Mini-Muddy Creek). These four strategies were 
compared relative to the baseline scenario for each watershed.  

For the targeting strategy and Optimization Runs 1 and 2, the same fields were allowed to 
vary with respect to management practices. Additionally, the highest return management 
practice for each field was identical across these three BMP placement strategies. Thus, all 
three strategies had the same opportunity cost. In Optimization Run 3 additional fields were 
allowed to vary and additional management practice alternatives for each field were 
considered. As a result, the opportunity cost for Run 3 was different than that of the other 
strategies (Table 4.15).  

The targeting strategy was applied to both watersheds using the NPS and economic 
components of the optimization procedure. Sediment yield and watershed cost for the 
baseline scenario and the solution under the targeting strategy are shown in Table 4.15. 
Watershed cost for the baseline scenario used for the targeting strategy and Runs 1 and 2 was 
zero because conventionally tilled corn silage was the profit maximizing practice for all 
cropped fields. Sediment reduction and cost increase of the targeting strategy from the 
baseline were calculated. Sediment yield was reduced to 19% of the baseline for Lola Run 
and 26% of the baseline for Mini-Muddy Creek. 

Next, the maximum acceptable, or target, pollutant load for the optimization procedure was 
set equal to the pollutant loading resulting from the targeting strategy. Because the targeting 
strategy did not consider area requirements, no area requirements were imposed in the 
optimization runs. For all cases the optimization procedure was run for 720 generations. At 
this point all runs had met their respective target-loading criterion and the rate of total 
watershed cost decrease for each run had become minimal (Figures 4.8 to 4.13).  

The sediment yield of the best scoring individual of the final population was recorded and 
pollutant reduction from the baseline calculated. Total watershed cost was determined by 
summing public and private costs, which include opportunity costs, for each farm in the  
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Table 4.15: Comparison of three optimization procedure runs1 with the targeting strategy2 
 

   Opportunity 
cost  
[$] 

Sediment yield at  
watershed outlet 

[Mg/ha] 

Total watershed cost  
 

[$] 
    Baseline  

scenario 
Final  

solution 
Baseline 
scenario 

Final  
solution 

Lola      

 Targeting 108 184 3.45 0.64 0 134 892 
 Optimization     

  Run 1 108 184 3.45 0.64 0 117 426 

  Run 2 108 184 3.45 0.64 0 89 748 

  Run 3 247 107 3.45 0.64 138 923 132 284 

Mini-Muddy      

 Targeting 3515 0.65 0.17 0 29 434 

 Optimization     

  Run 1 3515 0.65 0.17 0 27 773 

  Run 2 3515 0.65 0.17 0 24 803 

  Run 3 120 811 0.65 0.17 117 296 101 687 

 
   Final sediment 

reduction from baseline 
 

[Mg/ha] 

Final increase in total cost 
(= decrease in net return) 

from baseline  
[$] 

Final cost-
effectiveness (x 10-5) 

 
[Mg/ha/$] 

Lola    

 Targeting 2.81 134 892 2.08 

 Optimization    

  Run 1 2.81 117 426 2.39 

  Run 2 2.81 89 748 3.13 

  Run 3 2.81 -6639 -42.3 

Mini-Muddy    
 Targeting 0.48 29 434 1.63 

 Optimization    

  Run 1 0.48 27 773 1.73 

  Run 2 0.48 24 803 1.94 

  Run 3 0.48 -15 609 -3.08 
 

1The optimization procedure uses the pollution reduction from the targeting strategy as the target pollutant load. 
Run 1: considers contoured, minimum tillage and a winter cover crop as a replacement for all areas in conventionally 

tilled corn silage. 
Run 2: considers all combinations of conventional and minimum tillage, a winter cover crop, and contouring as 

replacements for all areas in conventionally tilled corn silage. 
Run 3: includes hay and pasture to the combinations considered in Run 2 and allows replacement on all agricultural 

land. 
2The targeting strategy replaces conventional tillage with contoured, minimum tillage and a winter cover crop for all fields 
in corn silage for which a majority of the field has greater than 3% slope.  
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solution scenario. Cost increase was determined by subtracting the baseline watershed cost 
from that of the solution scenario. This difference reflects the decrease in net return realized 
by the solution scenario as compared to the baseline scenario. The sediment reduction and 
cost increase results are tabulated in Table 4.15.  

Cost-effectiveness, defined as pollution reduction divided by total watershed cost increase, 
was calculated for both the targeting strategy and optimization solutions (Table 4.15). Cost-
effectiveness reflects the Mg/ha of pollution not leaving the watershed per dollar spent on 
pollution control. In both watersheds, total watershed cost increased under the targeting 
strategy, resulting in a positive cost-effectiveness ratio. Cost-effectiveness improved from the 
targeting strategy as more management practices were allowed in the optimization runs.  

As discussed in Section 3.3, representing cost-effectiveness as a ratio does not define a clear 
response surface for this problem. Because the denominator of the ratio may be positive or 
negative, mathematical increase in the cost-effectiveness ratio does not necessarily 
correspond to increased pollution reduction per dollar spent. The correct relationship does 
hold as long as the sign of the denominator (and hence the ratio) remains constant. However, 
the cost-effectiveness ratio provides a quantitative measure of comparison across strategies 
when one factor of the ratio (pollution reduction or cost increase) is held constant.  

For example, in this evaluation, with the single pollutant of sediment being considered, 
positive cost-effectiveness represents the Mg/ha of sediment not leaving the watershed per 
dollar spent. Sediment reduction is being held constant across the strategies by requiring that 
a target pollutant load be met. The goal is then on decreasing costs as much as possible. In 
this case, a more positive cost-effectiveness score is preferred among scenarios in which 
costs increase from the baseline. However, among scenarios in which the costs decrease from 
the baseline (e.g., Optimization Run 3), a more negative score is preferred. Comparing a 
scenario in which costs increase from the baseline with one in which costs decrease, the latter 
scenario, with the negative ratio, is preferred. 

When choosing among scenarios of equivalent or nearly equivalent cost, the scenario with 
the higher sediment reduction level is preferred. When the cost is above the baseline, the 
cost-effectiveness ratio will be positive, whereas when the cost is below the baseline the ratio 
will be negative. In both cases increased sediment reduction corresponds to an increase in the 
absolute value of the ratio. Thus, in the first case, more positive ratios are preferred and, in 
the second case, more negative ratios are preferred. 

In terms of pollution reduction and cost decrease, the results from all optimization procedure 
runs are better than those of the targeting strategy (Table 4.15). These results indicate that the 
optimization procedure works as intended. Additionally, these results were seen on two 
similar watersheds, supporting the repeatability of the optimization procedure and the 
benefits of the procedure for watersheds in a ridge and valley agroecosytem. 

In all cases, after meeting the pollutant-targeting criterion, the optimization procedure 
decreased costs below targeting strategy costs. Thus, cost-effectiveness ratios show that the 
targeting strategy was less cost-effective than the optimization procedure. Optimization 
Run 3 was the most cost-effective of the three optimization runs, followed by Run 2 and then 
Run 1. The negative cost-effectiveness score for Run 3 was a result of reducing costs below 
the baseline. This cost reduction below the baseline occurred in both watersheds because 
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agricultural practices were allowed to change from the baseline. For example, fields in hay or 
pasture were converted to corn silage whenever this change decreased costs and still met the 
pollution targeting criterion. 

4.6.2 Land Allocation 

Land allocation for non-fixed management units varies among solutions from the 
optimization procedure as well as between solutions for the optimization procedure and 
targeting strategy. Fixed management units include farmstead and forested areas. The highest 
scoring scenarios of Optimization Run 1, Run 2, and Run 3, as well as an alternative solution 
from Run 3, were compared to each other and to the targeting strategy solution (Table 4.16) 
for Lola Run. Spatial depictions of land use allocation for the baseline scenario, targeting 
strategy, and four optimization solutions are shown in Figures 4.23 through 4.28, 
respectively. 

Of the 68 fields placed in conventionally tilled corn silage in the baseline scenario, only 10 
were placed in that practice in the targeting strategy. The remainder were assigned a BMP set 
of contour, minimum-tillage corn silage with a winter wheat cover crop.  

The first optimization run, Run 1, achieved the same level of pollution reduction by placing 
one-third fewer fields in contour, minimum-tillage corn silage with a winter wheat cover 
crop. As compared to the targeting strategy, Run 1 places more BMPs on fields along the 
streams. Fields further from the streams, particularly on the watershed edge, were less likely 
to be affected by this strategy. Several fields with a majority of the slope greater than three 
percent but not along the streams were affected by the targeting strategy. However, in the 
Run 1 solution these fields were left in conventional tillage corn silage.  

Run 2, which considered all combinations of the targeting strategy BMP set, placed twice as 
many fields (19) in conventionally tilled corn silage as did the targeting strategy. Nineteen 
more fields were placed in contour, minimum-tillage corn silage with a winter wheat cover 
crop while the majority (23) of the remaining fields were placed in contoured, minimum-
tillage corn silage. Run 2 mainly placed fields along the watershed edge in conventional 
tillage corn silage. Corn silage fields along the streams were primarily placed in contoured, 
minimum-tillage. However some fields, particularly those with steeper slopes were placed in 
contour, minimum-tillage corn silage with a winter wheat cover crop. 

As expected, the two solutions from the third optimization procedure, Run 3, showed a more 
diverse set of management practices. These solutions used all possible management practices 
except up and down slope conventionally tilled corn silage with a winter wheat cover crop 
and minimum-tillage corn silage with a winter wheat cover crop, with and without contour 
tillage. Differences between the two solutions are shown as fields outlined in red on Figures 
4.27 and 4.28. Under both solutions about 30% of the agricultural land was allocated to 
conventionally tilled corn silage, with or without contouring.  

Variation among optimization solutions shown and additional variation present in other 
optimization solutions with high fitness scores demonstrate the potential for flexibility in 
BMPs within a scenario. Comparison of diversity in the optimization and targeting strategy 
solutions indicates that variation can be introduced into the watershed while still meeting the 
pollutant target load criterion. Examining and possibly combining different solutions  
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Table 4.16: Agricultural land allocation in Lola Run for the baseline scenario, targeting 
strategy, and four optimization solutions  

 

Management 
Practice 

Baseline Targeted Run 1 Run 2 Run 3  
best solution 

Run 3 
alternate 
solution 

 
# of fields 

(ha) 
# of fields 

(ha) 
# of fields 

(ha) 
# of fields 

(ha) 
# of fields 

(ha) 
# of fields 

(ha) 

CC 68(392.0) 10 (34.7) 28 (83.2) 19 (42.5) 24 (78.6) 25 (85.6) 

CC / WW         2 (0.8) 2 (0.4) 

MC       4 (18.6) 5 (15.3) 4 (4.0) 

MC / WW       1 (6.6)     

CC (2 yrs) /  
H (3 yrs)   

      7 (42.2) 6 (32.5) 

CC (1 yr) / MC 
(1 yr) / H (3 yrs)   

      5 (37.2) 3 (5.1) 

H 44(288.2) 44 (288.2) 44 (288.2) 44 (288.2) 3 (51.9) 3 (51.9) 

pasture 13(94.6) 13 (94.6) 13 (94.6) 13 (94.6) 15 (147.4) 18 (184.0) 

CC, contoured       2 (3.3) 28 (145.2) 27 (141.8) 

MC, contoured       23 (140.3) 17 (103.6) 19 (114.5) 

MC / WW, all 
contoured   

58 (357.4) 40 (308.9) 19 (180.8)     

CC (2 yrs) /  
H (3 yrs), all 
contoured       

 

 

10 (112.9) 8 (95.4) 

CC (1 yr) / MC 
(1 yr) / H (3 
yrs), all 
contoured       

 

 

9 (39.6) 10 (59.6) 

 
1CC = conventional corn silage; WW = winter wheat; MC = minimum till corn silage; H = grass hay 
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Figure 4.23: Agricultural land use allocation for the baseline scenario in Lola Run 
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Figure 4.24: Agricultural land use allocation for the targeting strategy in Lola Run 
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Figure 4.25: Agricultural land use allocation for the Optimization Run 1 solution in Lola Run 
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Figure 4.26: Agricultural land use allocation for the Optimization Run 2 solution in Lola Run 
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Figure 4.27: Agricultural land use allocation in Lola Run for highest scoring solution of Optimization 

Run 3 under a maximum acceptable pollutant load equal to the targeting strategy pollutant load; areas in 
different BMPs for this and an alternate solution of Run 3 (Figure 4.28) outlined in red 
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Figure 4.28: Agricultural land use allocation in Lola Run for an alternate solution of Optimization Run 3 

under a maximum acceptable pollutant load equal to the targeting strategy pollutant load; areas in 
different BMPs for this and highest scoring solution of Run 3 (Figure 4.27) outlined in red 
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can enable addressing specific BMP requests by farmers. For example, a farmer might be 
willing only to change to a single BMP for all cropland fields whereas the most optimal 
solution strategies might have assigned different BMPs to those fields. Additionally, 
adjustments might be desired for field-specific considerations (e.g., a farmer not willing to 
change management practices) that were not known when data for the optimization 
procedure were prepared. After a customized scenario has been created, it can be run through 
the NPS and economic components to confirm that it still meets the target load criterion and 
to see how it compares with the other optimization and targeting strategy scenarios in terms 
of cost. 

Some fields in the land use layers used in these evaluations are small or irregular in shape. A 
farmer might not be willing to place such areas in different management practices than the 
surrounding fields. However, this issue can be resolved before running the optimization 
procedure by increasing the amount of field and farm boundary information that is collected 
and incorporated into the land use layer. As a result, the land use layer will more accurately 
represent the field boundaries of the watershed and the optimization procedure solutions will 
be more directly implementable. Alternatively, constraints on the management practices 
allowed in each field could be imposed based on farmer preferences or field characteristics. 

4.7 Overall cost-benefit analysis of optimization procedure 
An overall cost-benefit analysis of the optimization procedure (Run 1) with respect to the 
targeting strategy was performed to address the second research objective and determine the 
feasibility of using the optimization procedure. The hypothesis for this analysis was: 

• The benefit-to-cost ratio of the optimization procedure is greater than that of the 
targeting strategy.  

To address this hypothesis, public costs associated with operation of the targeting and 
optimization methods were considered as well as costs and benefits resulting from solution 
implementation. Public operation costs included information costs, processing costs, and 
evaluation costs. Implementation costs (increase in cost from the baseline) are shown in 
Table 4.15.  

The optimization procedure requires a computer with GIS and analysis software. For this cost 
analysis, the availability of a high-speed (> 1Ghz) computer with spreadsheet and word 
processor software (such as Microsoft Office) for analyzing and presenting the results is 
assumed. The ArcView GIS software, including the Spatial Analyst extension, costs $3700. 
Installing the GIS software takes a half-hour or less. Installing the optimization procedure 
program on a computer is an additional half-hour process involving copying the DLL file and 
loading the ArcView scripts. However, because costs associated with obtaining and installing 
software are one-time costs, they are not included in the overall cost-benefit analysis. 

The results of the overall cost-benefit analysis are summarized in Table 4.17. The benefit-to-
cost ratio for the optimization procedure was found to be greater than that of the targeting 
strategy for all but one optimization run considered in this research. These results were due to 
meeting the same reduction in pollutant loading as the targeting strategy while reducing total 
costs. An additional benefit of the optimization procedure was the potential flexibility in 
solutions to suit stakeholders while still meeting the target load criteria. Both methods are 
applicable to multiple watersheds.  
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Table 4.17: Summary of costs and benefits for the targeting strategy and optimization 
procedure in Lola Run 

 

   Targeting 
strategy 

Optimization 
procedure1 

Costs    

 Operation   

  Information $25 $1750 

  Processing $0 $50 

  Evaluation $50 $200 

  Variable costs for evaluation runs and 
parameter analysis 

 $500 - $1000 

  Total (using maximum of variable costs) $75 $3000 

 Implementation   

  Increase in cost from baseline $134 892 $117 426 

 Total   

   $134 967 $120 426 

     

Benefits    

  Sediment reduction from baseline 2.81 Mg/ha 2.81 Mg/ha 

  Applicability to numerous watersheds yes yes 

  Flexibility in solutions no yes 

     

Cost-to-benefit ratio    

  sediment reduction / total cost 2.08*10-5 
Mg/ha/$ 

2.33*10-5  
Mg/ha/$ 

 
1Optimization procedure implementation costs and benefits are shown for Optimization Run 1 (Table 4.15). 

 

4.7.1 Information costs 

Information costs included data collection and preparation costs. Implementation of the 
targeting strategy required only data regarding whether or not a field meets the targeting 
criterion. For this purpose, a field boundary layer of cropland in the watershed is needed and 
may need to be determined from aerial photographs. In addition, in the example targeting 
strategy used in this research, knowledge about the major slope on each field was needed. 
Aerial photographs and USGS elevation or topographic maps for determining slope can be 
obtained for many areas through the Internet in an hour or less.  
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The optimization procedure requires, in digital format, the same field boundary layer and 
elevation map as for the targeting strategy. Field boundaries may need to be digitized from 
aerial photographs. Also, if necessary, the USGS topographic map can be digitized and 
converted into an elevation map. The time involved for digitization depends on watershed 
size and complexity. Digitization of field boundaries and topography in a watershed such as 
Lola Run is estimated to take about eight hours.  

Information on farm type, size, boundaries, and area requirements as well as a characteristic 
slope length is needed. Assistance from an NRCS conservationist or an extension agent for 
the region may be required as well as discussion with farmers. Time to gather this 
information and digitize the farm boundaries is dependent on watershed size. This process is 
estimated to take about 16 hours for a watershed such as Lola Run. 

Topographic maps, when used, may not contain sufficient detail and may require surveying 
throughout the watershed. However, the resulting additional costs would apply equally to 
both the targeting and optimization strategies and were not considered in this analysis.  

Because the flow network of the watershed is determined from the elevation map, the 
optimization procedure also requires a digital data layer providing the watershed outline. 
This may be determined using the GIS. Using the ArcView hydrology extension, this may 
take an hour or less. In some cases the watershed may be on the edges of two adjacent map 
sheets, for one or more of the map types. Lining up and joining the map sheets for all the 
map types can add another two hours of data preparation work in the GIS.  

Additionally, for the optimization procedure, a soils map or knowledge of soil erodibility (the 
USLE K-factor) across the watershed is required. Digital soil surveys, including both the GIS 
data layer and associated attribute tables, are available for most regions in the United States. 
If the digital soil survey is not available, then the data layer can be digitized from the hard 
copy of the soil survey. Work in this case can be minimized by digitizing areas based on soil 
erodibility, which is given in a table of the hard copy of the soil survey. Digitizing the map 
may add two hours (estimated for Lola Run) or more, depending on watershed size and 
complexity, to the data preparation time.  

Next, the baseline scenario and desired BMPs must be determined. These can be based on 
current practices in the watershed and on practices typical for the region. However, 
depending on the project and the watershed, it may also be necessary limit BMPs to certain 
fields or regions. Appropriate C, P, and α factors for all management practices must be 
determined. These data are estimated to take about 24 hours to obtain, with assistance from 
an NRCS conservationist or an extension agent for the region. 

For the economic portion of the optimization procedure, soil productivity from the soil 
survey tables is required. Also economic budgets for crop production and maintenance, 
selling prices, and land rental rates are needed. In Virginia this information can be obtained 
from Virginia Cooperative Extension (VCE, 1999). Once the economic information is 
obtained for a climatic region, it can be used for watersheds throughout that region, thus 
minimizing information costs for subsequent studies. Initial collection and preparation of the 
economic and soil productivity data into the tables used by the optimization procedure takes 
about 12 hours. 
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The final step in data preparation for the optimization procedure, using the data preparation 
scripts provided by the procedure, takes about an hour or less to complete including basic 
quality control checking of the prepared results. 

Gathering and preparing a complete data set for the targeting strategy was estimated to take 
an NRCS conservationist or agricultural engineer, familiar with a GIS, about an hour. Data 
preparation for the optimization procedure was estimated to take the same person about 70 
hours. A person with a PhD in agricultural engineering or a related field or with a MS and 
specialized experience could be hired for this work by the United States Government at the 
GS-11 pay level, corresponding to an hourly wage of about $25/hour (US-OPM, 2002). 
Thus, estimating labor at $25/hr, information costs for targeting were calculated at $25 while 
information costs for the optimization procedure were calculated at $1750. 

4.7.2 Processing costs 

Processing costs included costs of running the program. The targeting strategy can be applied 
simply by assessing whether or not each field meets the targeting rules. It does not 
necessarily require use of a computer. Total processing costs for the targeting strategy are 
negligible. 

Running the optimization procedure involves 15 minutes to set the GA parameters and start 
the program, after the data preparation scripts have been run. The program then runs 
unassisted. For lengthy runs in which the ArcView program must be restarted (as discussed 
in Section 4.3), 15 minutes is required for each restart. Additionally, examining the data 
before restarting ArcView to determine if an appropriate level of convergence has been 
achieved is estimated to take an hour or less. 

For an NRCS conservationist or agricultural engineer, familiar with a GIS, estimated 
processing costs of the optimization procedure are $50 or less with labor billed at $25/hr. 
This assumes two starts of ArcView are needed to complete the run.  

For the optimization procedure, determination of the most efficient GA parameters to use 
may involve costs and computer time to complete and evaluate multiple runs. If population 
size, replacement level, crossover, and mutation parameters all need to be determined, 
parameter analysis may result in about ten evaluation runs. However, once the data and 
scripts are set for a watershed, altering GA parameters and starting the program takes only 
about five minutes. Additional time is needed to evaluate the results. A variable cost of $500-
1000 (20 to 40 hours) for determining GA parameters or performing additional runs for 
evaluation is included in the costs of the optimization procedure. Additional runs also 
increase the potential inconvenience of having a computer occupied by the optimization 
procedure over a long time period. 

4.7.3 Evaluation costs 

Evaluation costs include labor for analyzing the results and preparing a report. Results for the 
targeting strategy involve a single watershed scenario with explanation of BMPs used in that 
scenario. This was estimated to take two hours or less at $25/hr for a total of $50. The 
optimization procedure involves more analysis, using GIS to compare and present solutions 
from the final population. Additionally, a report might include suggestions of new scenarios 
that combine the scenarios of the final population to provide some flexibility of 
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implementation. Evaluation of the optimization procedure results was estimated to take eight 
hours at $25/hr for a total of $200. When determining GA parameter sets, data evaluation and 
comparison are needed. These costs depend on the number of runs performed and are 
included in the variable processing costs discussed in the previous section. 

4.7.4 Benefits 

To illustrate the benefits of each method, results from Section 4.6 for Lola Run under the 
targeting strategy and Optimization Run 1 were compared. Both solutions met the target load 
of 0.64 Mg/ha, resulting in a sediment reduction of 2.81Mg/ha from the baseline (Table 
4.15). Compared to the baseline, total implementation costs under the targeting strategy 
increased by $134 892. The lowest cost solution under the optimization procedure increased 
total watershed costs by $117 426. Including operation costs, the optimization procedure 
saved $14 500 as compared to the targeting strategy.  

Both strategies are applicable to numerous watersheds and, in both cases, information costs 
are reduced for additional watersheds in the same region. The targeting strategy, however, is 
generally rigid in its targeting criterion with a single solution scenario. The optimization 
procedure allows flexibility in implementation by providing several solution scenarios.  

4.7.5 Conclusions 

The benefit-to-cost ratio of using the optimization procedure was greater than that of the 
targeting strategy. Operation costs for the optimization procedure were $2500 to $3000 more 
than for the targeting strategy. Thus, the optimization procedure is beneficial in any case 
where a solution is found that reduces watershed costs by at least $3000. With the exception 
of cost increase due to extensive digitizing, this $3000 reduction margin is true regardless of 
the watershed or target load criterion. The example of Lola Run easily meets this $3000 
reduction margin, reducing implementation costs by about $17 500 and total (operation plus 
implementation) costs by $14 500. As a result, the overall cost-effectiveness, as measured by 
the benefit-to-cost ratio of sediment reduction to total cost, was greater for the optimization 
solution than the targeting strategy (Table 4.17). Similar results for the other Lola Run 
optimizations and for Mini-Muddy Creek optimization runs 1 and 2 are seen by looking at 
the sediment reduction and watershed cost increase columns of Table 4.15. Run 3 for Mini-
Muddy Creek reduced implementation costs only $1661 as compared to the targeting 
strategy. However, as this watershed is smaller than Lola Run, operational costs dependent 
on watershed size may be lower. 

4.8 Discussion 
Evaluation of the optimization procedure components showed that the program code 
modeled the physical system as intended. Additionally, the modular nature of the procedure 
allows improvements or added detail to any of the components without affecting the overall 
functioning of the optimization procedure.  

Evaluation of the optimization procedure as a whole showed that the procedure met the 
research objectives. The presented optimization procedure was designed to minimize both 
pollution reduction and cost in such a way that the resulting scenarios are useful to watershed 
management planners. Hence, pollution reduction was set as a satisfaction constraint after 
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which cost increase was minimized. In contrast, Srivastava et al. (1999) presented two 
separate optimization functions: optimizing pollution reduction, with a penalty for decreased 
net returns, or optimizing net returns, with a penalty for increased pollution.  

When a termination criterion of small change in watershed cost from the previous generation 
is used, as discussed in Section 4.3.2, the optimization heuristic potentially results in a set of 
near optimal solutions in the final generation. Two such solutions for Optimization Run 3 
were shown in Section 4.6.2. The diversity of and within solutions will decrease as the 
optimization converges. However, when the optimization process converges to an identical 
final population, additional scenarios with similar cost-effectiveness levels can be located by 
looking at previous generations. In comparison the targeting strategy provides a single 
solution.  

Alternative solution scenarios may be beneficial in giving watershed planners and farmers 
the flexibility of having several options from which to choose. Based on conditions in the 
watershed, the scenario most feasible for implementation may not have the highest fitness 
score. It may be that certain farmers are not willing to change practices or are willing to 
adopt only a selection of the BMPs considered. In the latter case, a solution scenario that 
does not have the highest fitness score may best meet the farmers’ requests. Alternatively, a 
combination of cost-effective scenarios may provide a more acceptable (and cost-effective) 
solution to the majority of the watershed members. 

The fitness scores of the optimization procedure were designed, in part, to accommodate a 
requirement by the GALib program that fitness scores remain positive. As a result, any 
baseline scenario may be used, which may aid in modeling current watershed practices. For 
example, the case studies in this research used a baseline scenario based on typical practices 
for the area. 

Even in watersheds that show low pollutant loading levels, it may be desirable to determine if 
allocating management practices differently across the watershed could reduce costs while 
maintaining low pollutant levels. If farmers in the watershed are considering management 
practice changes, the optimization procedure could be used to identify alternative scenarios 
resulting in similar pollutant loading. This information may help ensure continued low levels 
of pollutant loading despite management or land use changes.  

For example, the baseline used for Mini-Muddy Creek yields only 0.65 Mg/ha of sediment at 
the watershed outlet. Despite low levels of erosion, running and implementing results of the 
optimization procedure was predicted to be beneficial in potentially reducing both costs and 
sediment yield from the baseline. However, when baseline scenarios with low pollutant 
loading levels are used and further reduction of sediment yield is not required, the pollutant 
target load, pt in Equation (3.1), may be set equal to the baseline pollutant load. It is then 
necessary to set pb (Equation 3.1) to a pollutant loading value higher than the baseline 
loading so that the denominator of the equation does not go to zero. The optimization 
procedure can then locate scenarios that meet the target load criteria and minimize costs.  

The optimization procedure provides a more comprehensive economic analysis than 
Srivastava et al. (1999). In particular, this procedure considers public cost and variations in 
soil productivity. In addition, this procedure incorporates acreage constraints and promotes 
more evenly spread costs across farms.  
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The presented optimization procedure follows the ideas of Braden et al. (1989) in using the 
USLE and a sediment delivery equation within an optimization model to determine pollution 
loading at the watershed outlet. However, use of a GIS automated determination of flow 
paths and enabled a finer resolution of spatial variability than was practical in the method of 
Braden et al. (1989). By using the USLE with a sediment transport function instead of a more 
detailed NPS model, the procedure runs within a reasonable timeframe and still finds 
improved solutions compared to the targeting strategy. 

Currently, the optimization procedure includes specifications for contour plowing in addition 
to different tillage practices and rotations. Additionally, it allows pasture to be placed into 
alternate forms of forage (i.e., grass hay, alfalfa, or pasture). Additional BMPs or BMP sets 
can be added as long as their pollutant reduction impacts can be represented by the NPS 
component that is used.  
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Chapter 5:  Summary and Conclusions 

5.1 Summary 
This research dealt with determining cost-effective placement of BMPs in an agricultural 
watershed. A BMP was defined as a management practice that contributed to pollution 
reduction at the watershed level. A computerized optimization procedure was developed to 
meet the objectives of this research. This procedure used a multi-objective GA to create and 
select watershed scenarios. The conflicting aspects of the two objectives were addressed with 
a lexicographical technique. Each scenario was first evaluated for whether or not it met a 
predetermined pollutant loading criterion and, secondly, for a decreased level of cost increase 
as compared to a baseline. Evaluation of meeting the pollutant target criterion was done 
through a NPS component created specifically for the optimization procedure. Evaluation of 
the scenario costs was performed by an economic component, also designed for this research.  

5.2 Conclusions 
The overall research goal, supported by two specific research objectives, was to increase 
BMP cost-effectiveness within a watershed, as compared to targeting recommendations. This 
goal was achieved, leading to the conclusion that: 

• A functional optimization procedure was developed that locates scenarios for which 
BMP placement reduces the same amount of pollution and results in a lower cost 
increase from the baseline as compared to a targeting strategy. 

The first specific objective was to optimize BMP placement based on cost and NPS pollution 
reduction for a watershed. Conclusions resulting from evaluation of the BMP placement 
procedure were: 

• The optimization procedure located scenarios that consistently reduced costs while 
meeting the specified pollution reduction criterion; 

• The solutions found by the optimization procedure for all evaluations resulted in 
increased cost-effectiveness with regard to scenario implementation costs; and 

• The program code of the optimization procedure works as intended. 

The second specific research objective was to determine if the benefit-to-cost ratio of the 
optimization procedure outweighed that of the targeting strategy. Conclusions from this 
research were as follows: 

• Monetary benefits of the optimization procedure outweighed costs in all but one case 
considered; 

• Pollution was reduced to the target load criterion set by the targeting strategy in all 
cases considered; and 

• Because use of the GA provides multiple solutions that meet the objectives, there is 
some flexibility in selection of the most suitable solution based on the priorities of 
farmers and other stakeholders. 

Additional general conclusions drawn from this research were as follows: 
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• Among a range of optimization heuristics, the genetic algorithm and simulated 
annealing heuristics have features most suited to this problem type; and 

• Representing cost-effectiveness as a ratio in a single objective function does not 
define a clear response surface for this problem. 

5.3 Future possibilities 
Future possibilities for extending this research include customization of the procedure for 
specific questions or types of watersheds as well as more general extensions of research. A 
user interface to help format the data tables for the data preparation scripts would decrease 
preparation time. However, much of the data, once located and entered into a table, is 
applicable to numerous implementations. For example, crop and management practice 
information for one watershed will likely extend to most watersheds in that region, requiring 
limited modifications for additional watersheds.  

Enhancement of the economic component might include more qualitative information that 
impacts the farmers’ abilities and desires to adopt BMPs, such as openness to change and 
willingness to invest in new machinery. Accounting for farm boundaries that extend beyond 
the watershed boundary would increase realism of the component.  

Further exploration and sensitivity analysis of GA parameters, such as population size, 
replacement type and level, selection scheme, and reproduction probabilities, would help 
provide parameter suggestions for this type of problem. Additionally, such work might 
provide a better understanding of the effects and interactions between parameters for this 
problem. For example, it may be that the relatively high mutation rate used to establish initial 
conditions favors smaller populations. Parameter evaluation studies might also consider 
watersheds dissimilar to those examined in this research. Study of additional watersheds 
would aid in parameter suggestions that might improve the heuristic’s convergence 
efficiency.  

Further work on the optimization component might include evaluation of the optimization 
procedure’s performance on a watershed with a known response surface as well as 
comparison of the heuristic with the performance of another heuristic. This would help to 
validate the optimization procedure. Also, heuristic customization as a result of such 
evaluations could improve optimization efficiency and effectiveness for this type of problem. 

Adding explicitly adaptive knowledge to the scenario representation and/or algorithm might 
improve its efficiency by leading to a reduced search space. For example, consideration of 
the impact of a BMP in connection with its up- and downstream neighbors might allow the 
heuristic to dynamically modify crossover procedures to explicitly preserve beneficial BMP 
groupings. 

A key feature of the optimization procedure is its modular nature. Because of this aspect the 
procedure can be used with alternate NPS and economic components. In particular, a 
component estimating NPS nutrient or bacteria loading could replace or be added to the 
existing sediment loading component with minimum recoding. Additionally, more detailed 
components could be added as advances in computer technology result in reduced runtime. 

In addition to replacing or adding scenario evaluation components, the objectives considered 
by the optimization component could be increased. For example, analysis possibilities in 
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watershed planning could be enhanced by expanding the objectives to allow, after pollution 
criteria are met, for user selection and prioritization of remaining objectives. 

While this research met its goal and objectives, it also widened the path towards future 
exploration into the use of optimization heuristics, particularly GAs, to evaluate and compare 
watershed responses to spatially distributed influences. The computational capabilities of 
computer technology continually increase the number and complexity of questions that can 
be asked and explored with regard to improving the cost-effectiveness of NPS pollution 
reduction at the watershed-level. 
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Appendix A: Alternative net return calculations 
This appendix gives example calculations for two alternative methods for calculating annual 
net return. These calculations are for a multi-year rotation on a 1-ha field of single soil type 
(mapping unit symbol 1B: Allegheny fine sandy loam). 

 

Table A.1: Annual net return calculated by determining the net return for each year, 
discounting all rotation years to a present value, and annualizing 

 
Net return calculation 

year crop selling 
price 

[$/tons] 

yield 
[tons/ha] for 
a 1-ha area 

gross 
return 

production 
cost [$/ha] 

net return bring to end-of-year 1 

    price * 
yield 

 gross return-
production 

cost 

discount factor1 discount * 
net return 

1 conventional-
tillage corn 

silage 

26.1 44.46 1 160.41 744.33 416.076 -- 1 416.08 

2 conventional-
tillage corn 

silage 

26.1 44.46 1 160.41 744.33 416.076 (P/F,9%,1) = 0.9174 381.71 

3 grass hay 46 9.26 425.96 527.86 -101.9 (P/F,9%,2) = 0.8417 -85.77 
4 grass hay 46 9.26 425.96 359.14 66.82 (P/F,9%,3) = 0.7722 51.60 
5 grass hay 46 9.26 425.96 359.14 66.82 (P/F,9%,4) = 0.7084 47.34 

Present value total for all crops in rotation [$]:   810.95 
 
Average annual net return  

=Present value total * 5-year annualization factor2 (A/F,9%,5) = 810.95 * 0.1671 = $135.51/ha 
 

1(P/F,9%,n) is the single payment, present worth factor for discounting a value n years in the future to a present value, using a 9% interest 
rate. (Degarmo et al., 1997; Table C.12) 
2(A/F,9%,n) is the uniform series, sinking fund factor for distributing a future value evenly over n years, using a 9% interest rate. (Degarmo 
et al., 1997; Table C.12) 
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Table A.2: Annual net return calculated as the difference between annualized gross return 
and annualized production cost 

 
Production cost calculation 

year crop production 
cost [$/ha] 

bring to end-of-year 1 5-year annualized 
production cost 

[$/tons] 
   discount factor1 discount * 

production cost 
discounted cost * 

annualization factor2 
((A/F,9%,5) =0.1671) 

1 conventional-
tillage corn 

silage 

744.33 -- 1 744.33 124.38 

2 conventional-
tillage corn 

silage 

744.33 (P/F,9%,1) = 0.9174 682.85 114.10 

3 grass hay 
establishment 
and harvest 

527.86 (P/F,9%,2) = 0.8417 444.30 74.24 

4 grass hay 
maintenance 

359.14 (P/F,9%,3) = 0.7722 277.33 46.34 

5 grass hay 
maintenance 

359.14 (P/F,9%,4) = 0.7084 254.41 42.51 

 
Gross return calculation 

year crop selling price 
[$/tons] 

yield 
[tons/ha] 

gross 
return 

bring to end-of-year 1 5-year annualized 
gross return [$/tons] 

   for a 1-ha 
area 

price * 
yield 

discount factor1 discount * 
gross return 

discounted price * 
annualization factor2 
((A/F,9%,5) =0.1671) 

1 conventional-
tillage corn 

silage 

26.1 44.46 1 160.41 -- 1 1 160.41 193.90 

2 conventional-
tillage corn 

silage 

26.1 44.46 1 160.41 (P/F,9%,1) = 0.9174 1 064.56 177.89 

3 grass hay 46 9.26 425.96 (P/F,9%,2) = 0.8417 358.53 59.91 
4 grass hay 46 9.26 425.96 (P/F,9%,3) = 0.7722 328.93 54.96 
5 grass hay 46 9.26 425.96 (P/F,9%,4) = 0.7084 301.75 50.42 

 
Annual net return calculation 

year annualized gross 
return [$/tons] 

annualized production 
cost [$/tons] 

annualized gross return - 
annualized production cost 

1 193.90 124.38 69.53 

2 177.89 114.10 63.78 
3 59.91 74.24 -14.33 
4 54.96 46.34 8.62 
5 50.42 42.51 7.91 

Average annual net return $135.51/ha 
 

1(P/F,9%,n) is the single payment, present worth factor for discounting a value n years in the future to a present value, using a 9% interest 
rate. (Degarmo et al., 1997; Table C.12) 
2(A/F,9%,n) is the uniform series, sinking fund factor for distributing a future value evenly over n years, using a 9% interest rate. (Degarmo 
et al., 1997; Table C.12) 
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Appendix B: Program code 
Appendix B contains the scripts and DLL used in the optimization procedure. Figure B.1 
shows interactions among the various pieces of code. Three scripts (Prepdat.ave, 
Prepdat1.ave, and Prepdat2.ave) were used to prepare the data for the procedure. The 
Baseline.ave script runs the baseline scenario through the components of the procedure and 
stores the results. Once the data are prepared, CallDLL.ave calls the DLL portion of the 
procedure. For each scenario, the DLL calls the Main.ave script, which calls the Econ.ave 
and NPS-sed.ave scripts to calculate cost and pollutant loading and uses this information to 
determine the economic and pollutant fitness scores. Control is returned to the DLL, which 
determines the total fitness score and sends the next scenario to Main.ave for evaluation. 
Additional scripts (Calcarea.ave, Intersect.ave, and MakeGtheme.ave) are called by the other 
scripts as needed; these scripts perform general functions and were separated from the 
function specific scripts to increase the object-oriented nature of the code. 

 

Figure B.1: Interactions among ArcView scripts and DLL used to code the optimization procedure 

 

Evaluate scenario  
Main.ave 
Econ.ave  
NPS-Sed.ave 

Calculate baseline 
Baseline.ave 

Prepare data 
Prepdat.ave 
Prepdat1.ave 
Prepdat2.ave 

Run GA  
CallDLL.ave 
BMPopt.dll 

Intersect data layers 
Intersect.ave 

Create data layer 
MakeGtheme.ave 

Evaluate scenario 
Econ.ave  
NPS-Sed.ave 

Calculate polygon area 
Calcarea.ave 

Create data layer 
MakeGtheme.ave 

Create data layer 
MakeGtheme.ave 
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B.1 Prepdat.ave 
'Prepares data for the NPS component. 

'calculates length-across-cell and slope grids 

'calculates S and L factors and combines with R and K factors 

'R-factor of 2800; 'characteristic slope length of 45m 

 

theView = av.GetActiveDoc 

'**input data 

  'DEM 

    theDEMGrid = theView.FindTheme("Fill1").GetGrid 

  'watershed grid 

    wshedGrid = theView.FindTheme("Wshed_mini").GetGrid 

  'R factor in SI units 

    constRfactor = 2800 

  'K factor in  converted to SI units (conversion = 0.1317) 

    KgridSI = (theView.FindTheme("Kfactus_mini").GetGrid)*(0.1317) 

    'save data set 

      KgridSI.SaveDataSet("Kfact-si".asFileName) 

    'create theme and add to view 

      theView.AddTheme(av.run("MakeGtheme",{KgridSI,"Kfact-si"})) 

     

'**calc slope grids 

  'Decimal slope grid 

    slopeDecimalGrid = (theDEMGrid.Slope (1, TRUE))/100 

      'slopeDegreeGrid = theView.FindTheme("Slope in m/m").GetGrid 

    'save data set 

      slopeDecimalGrid.SaveDataSet("slopedec".asFileName) 

    'create theme and add to view 

      theView.AddTheme(av.run("MakeGtheme",{slopeDecimalGrid,"Slope in m/m"})) 

 

  'degree slope grid 

    slopeDegreeGrid = theDEMGrid.Slope (1, FALSE) 
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  'convert to radians 

    slopeRadGrid = slopeDegreeGrid*(Number.getPi.asGrid)/(180.asGrid)   

 

'**create flow-length-across-cell grid 

  'calc flow direction 

    flowDirGrid = theDEMGrid.FlowDirection (FALSE) 

    'flowDirGrid = theView.FindTheme("Flow Direction").GetGrid 

     'save data set 

        flowDirGrid.SaveDataSet("Flow Direction".asFileName) 

      'create theme and add to view 

        theView.AddTheme(av.run("MakeGtheme",{flowDirGrid,"Flow Direction"})) 

   'make flow accumulation for later 

    flwaccGrid = flowDirGrid.FlowAccumulation(NIL) 

    'save data set 

      flwaccGrid.SaveDataSet("Flow Accumulation".asFileName) 

    'create theme and add to view 

      theView.AddTheme(av.run("MakeGtheme",{flwaccGrid,"Flow Accumulation"})) 

 

  'locate cells with diagonal flow directions 

    tempGrid1=( flowDirGrid = 2.AsGrid) or (flowDirGrid = 8.AsGrid) or (flowDirGrid = 
32.AsGrid) or (flowDirGrid = 128.AsGrid) 

  'assign diagonal flow cells a length of cell width times SQRT(2) 

    tempGrid2=( tempGrid1  * 30.AsGrid * 2.Sqrt.AsGrid) 

  'locate cells with non-diagonal flow directions 

    tempGrid1=( flowDirGrid= 1.AsGrid) or (flowDirGrid = 4.AsGrid) or (flowDirGrid = 
16.AsGrid) or (flowDirGrid = 64.AsGrid) 

  'assign non-diagonal flow cells a length of cell width 

    lengthGrid=tempGrid2+(tempGrid1  * 30.AsGrid) 

 

  'save data set 

    lengthGrid.SaveDataSet("lngtcell".asFileName) 

  'create theme and add to view 

    theView.AddTheme(av.run("MakeGtheme",{lengthGrid,"Length Across Cell"})) 
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'**calc L factor for USLE 

  'create beta grid 

    betaNumGrid = (slopeRadGrid.Sin)/((0.0896).AsGrid) 

    betaDenomGrid = ((3.AsGrid)*((slopeRadGrid.Sin).Pow(0.8)))+((0.56).AsGrid) 

    betaGrid = betaNumGrid/betaDenomGrid 

   

  'create m grid 

    mGrid =   betaGrid/(1.AsGrid+betaGrid) 

     

  'calculate L factor (slope length of 45m) 

    lGrid = ((45.AsGrid)/(22.AsGrid)).Pow(mGrid)  

   

  'save data set 

    lGrid.SaveDataSet("Lfact".asFileName) 

  'create theme and add to view 

    theView.AddTheme(av.run("MakeGtheme",{lGrid,"Lfact"})) 

  

'**calc S factor for USLE 

  'locate cells with slope < 9%  

    flagShortGrid=(slopeDegreeGrid < ((5.1428).AsGrid)) 

  'assign S-factor for short slopes 

    tempGrid1=( (((10.8).AsGrid)*(slopeRadGrid.Sin)) + ((0.03).AsGrid))*flagShortGrid 

  'locate cells with slope >= 9%  

    flagLongGrid=(slopeDegreeGrid >= ((5.1428).AsGrid)) 

  'assign S-factor for long slopes 

    SGrid=tempGrid1+(((((16.8).AsGrid)*(slopeRadGrid.Sin)) -
((0.50).AsGrid))*flagLongGrid) 

 

  'save data set 

    SGrid.SaveDataSet("Sfact".asFileName) 

  'create theme and add to view 

    theView.AddTheme(av.run("MakeGtheme",{SGrid,"Sfact"})) 
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'**calc RKSL grid in SI units 

  'create grid 

    theRKSLgrid = wshedGrid*(constRfactor.AsGrid)*KgridSI*lGrid*SGrid 

   

  'save data set 

    theRKSLgrid.SaveDataSet("RKSL-si".asFileName) 

  'create theme and add to view 

    theView.AddTheme(av.run("MakeGtheme",{theRKSLgrid,"RKSL-si"})) 
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B.2 Prepdat1.ave 
'Prepares first part of econ data for use in opt program. 

 

'*** hand join SoilYld table to Soils dataset first*** 

theView = av.GetProject.FindDoc("View1") 

'***Identify data sets ***********************   

  theFLDtheme = theView.FindTheme("Fields_mini.shp") 

  theFLDftab = theFLDtheme.GetFTab 

  theSoilstheme = theView.FindTheme("Soil_srgkt_mini.shp") 

  theSoilsftab = theSoilstheme.GetFTab 

  theMPvtab = av.GetProject.FindDoc("MP.txt").GetVTab 

 

'  theSoilYldvtab = av.GetProject.FindDoc("SoilYld.txt").GetVTab   

  theCropsvtab = av.GetProject.FindDoc("Crops.txt").GetVTab  

'  theConstvtab = av.GetProject.FindDoc("Constraints.dbf").GetVTab  

 

'***Locate fields ***********************   

  theMPMPIDfield = theMPvtab.FindField("Mpid") 

  thePCfield = theMPvtab.FindField("Prodcost") 

  cropsFld = theCropsvtab.FindField("Crop") 

  unitPriceFld= theCropsvtab.FindField("Unitprice") 

  theCropMPfield = theCropsvtab.FindField("Mpid") 

 

‘*** Add new fields to FLDftab 

  '**Make theFLDftab editable. 

    'If you can't edit the theme inform the user. 

      if (theFLDftab.CanEdit.Not) then 

        MsgBox.Info("Cannot edit table for theme:"++theFLDftab.AsString,"") 

      end 

    theFLDftab.SetEditable(TRUE) 

  '**make and add fields 

    'Add two fields for sorting areas into categories 
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    'Add one field for storing working MPID 

    'Add one field for storing flag for & calculating public cost calculations 

    'Add one field for calculating private cost in Econ component 

    theFLDftab.AddFields({Field.Make("areaC",#FIELD_DOUBLE,16,3), 

                          Field.Make("areaH",#FIELD_DOUBLE,16,3), 

                          Field.Make("MPID",#FIELD_LONG,8,0), 

                          Field.Make("PubFlag",#FIELD_LONG,16,2), 

                          Field.Make("PrivC",#FIELD_DOUBLE,16,2)}) 

 

    '**Add profit max and opp cost fields 

     'make new field for profit max MPID 

       profMaxMPField = Field.Make("ProfMaxMP",#FIELD_LONG,8,0) 

     'make new field for opp cost of each FLD [$] 

       oppCostField = Field.Make("oppCost",#FIELD_DOUBLE,16,2) 

     'add fields to table 

       theFLDAreaVTab.AddFields({profMaxMPField,oppCostField}) 

 

  '**Make theFLDftab not editable. 

    theFLDftab.SetEditable(FALSE) 

 

'***join MP table (C,P,alpha,type,prod cost) to FLD dataset**** 

  theJoinTofield = theFLDftab.FindField("Mpid") 

  theFLDftab.Join (theJoinTofield,theMPvtab,theMPMPIDfield) 

' 

'***join SoilYld table (prod of each crop by soil [qty/ha]) to Soils dataset**** 

'**something wierd about this join. use with caution. join by hand seems fine. ** 

'  theJoinFromfield = theSoilYldvtab.FindField("Musym") 

'  theJoinTofield = theSoilsftab.FindField("Musym") 

'  theSoilsftab.Join (theJoinTofield,theMPvtab,theJoinFromfield) 

 

'**Refresh joins 

  theFLDftab.Refresh  

  theSoilsftab.Refresh  



Tamie L. Veith Appendix B: Program code 128
 

 

'***Intersect Soils dataset with FLD dataset**** 

  '**caution - intersect may fail if joins are performed multiple times. 

  theSoilbyFLDfname = 
av.run("intersec",{theView,theFLDtheme,theSoilstheme,"SoilbyFld.shp".AsFileName}) 

 

‘***Calculate area of soils within FLDs **** 

   av.run("CalcArea",{theView,theSoilbyFLDfname}) 

  

'***Calc crop selling prices by area of soils in FLDs ****     

  theSoilbyFLDtheme = theView.FindTheme("SoilbyFld.shp") 

  theSbyFftab = theSoilbyFLDtheme.GetFtab 

  '**locate new fields 

    farmtypeFld = theSbyFftab.FindField("F_typeS") 

    areaFld = theSbyFftab.FindField("Area") 

  

  '**Make theSbyFftab editable. 

    'If you can't edit the theme inform the user. 

      if (theSbyFftab.CanEdit.Not) then 

        MsgBox.Info("Cannot edit table for theme:"++theSbyFftab.AsString,"") 

      end 

    theSbyFftab.SetEditable(TRUE) 

  

  '**Initialize lists for storing SellingPrice and Enum fields - for summarizing 

    theMPSellPriceList = List.Make 

    theEnumList = List.Make 

 

  '**Calculate selling price by MP 

   'look through MP table 

    for each i in theMPvtab 

     theMPMPIDvalue = theMPvtab.ReturnValue(theMPMPIDfield,i) 

     'make new field for selling price of the MP by soil in field [$] 

       newSellPriceField = 
Field.Make("SP"+theMPMPIDvalue.AsString,#FIELD_DOUBLE,16,2) 



Tamie L. Veith Appendix B: Program code 129
 

 

     'add field to table 

       theSbyFftab.AddFields({newSellPriceField}) 

     'look through crops table for crops in this MP 

       for each j in theCropsvtab 

        'find crop record in Crops table to match MP 

          if (theMPMPIDvalue=theCropsvtab.ReturnValue(theCropMPfield, j)) then 

           'get UnitPrice [$/qty] from Crops table 

            unitPrice = theCropsvtab.ReturnValue(unitPriceFld, j) 

            'find associated crop in theSbyFftab (from soilyld join) 

            cropName = theSbyFftab.FindField(theCropsvtab.ReturnValue(cropsFld, j)) 

            for each k in theSbyFftab 

             'get Area [ha] from SoilbyFLD table 

               area = theSbyFftab.ReturnValue(areaFLD, k) 

             'get cropYld [qty/ha] for this soil in SoilbyFLD table 

               soilYld = theSbyFftab.ReturnValue(cropName, k) 

             'get current selling price 

               currentSP = theSbyFftab.ReturnValue(newSellPriceField,k) 

             'add for this crop 

               '[qty/ha]*[$/qty]*ha = selling price by soil in field [$] 

               theSbyFftab.SetValue(newSellPriceField,k,currentSP+(soilYld*unitPrice*area)) 

            end 'for k in theSbyFftab 

          end 'if crop match 

       end 'for each j in theCropsvtab 

     'add field to list for summarizing 

       theMPSellPriceList.Add(newSellPriceField) 

       theEnumList.Add(#VTAB_SUMMARY_SUM) 

    end 'for each i in theMPvtab 

'MsgBox.List(theCropSellPriceList,"","") 

'MsgBox.ListAsString(theEnumList,"","") 

  '**Make theSbyFftab not editable. 

    theSbyFftab.SetEditable(FALSE) 
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'***Summarize selling prices and area of soils by FLDs **** 

  'add areaFLD onto lists to Sum 

    theMPSellPriceList.Add(areaFld) 

    theEnumList.Add(#VTAB_SUMMARY_SUM) 

  'calc Sum 

   theFLDAreaVTab = theSbyFftab.Summarize(("FLDArea").AsFileName, dBASE, 
theSbyFftab.FindField("Field_ID") 

                       ,theMPSellPriceList,theEnumList) 

 

'***Calc MP net return **** 

'  theFLDAreaVTab = av.GetProject.FindDoc("fldarea.dbf").GetVTab   

   

  '**locate new fields 

    areaFLDfield = theFLDAreaVTab.FindField("Sum_area") 

 

  '**Make theFLDAreaVTab editable. 

    'If you can't edit the theme inform the user. 

      if (theFLDAreaVTab.CanEdit.Not) then 

        MsgBox.Info("Cannot edit table for theme:"++theFLDAreaVTab.AsString,"") 

      end 

    theFLDAreaVTab.SetEditable(TRUE) 

  

  '**calculate production cost 

    'look through MP table 

     for each j in theMPvtab 

      'make new field for each MPID 

        MPretfield = Field.Make("MPret"+j.AsString,#FIELD_DOUBLE,16,2) 

      'add field to table 

        theFLDAreaVTab.AddFields({MPretfield}) 

      'get Production cost [$/ha] from MP table 

        PCvalue = theMPvtab.ReturnValueNumber(thePCfield, j) 

        for each k in theFLDAreaVTab 

         'calc MP return as -prodcost[$/ha]*area[ha] 
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          MPretvalue = -PCvalue*(theFLDAreaVTab.ReturnValue(areaFLDfield, k)) 

         'get selling price calculated and summed above 

          SPvalue = 
theFLDAreaVTab.ReturnValue(theFLDAreaVTab.FindField("Sum_sp"+j.AsString), k) 

          theFLDAreaVTab.SetValue(MPretfield, k, MPretvalue+SPvalue) 

         end 'each k in theFLDAreaVTab 

     end 'for j record in theMPvtab 

    

  '**Make theFLDAreaVTab not editable. 

    theFLDAreaVTab.SetEditable(FALSE) 

 

 '***join Fldarea table to FLD dataset**** 

    theJoinFromfield = theFLDAreaVTab.FindField("Field_id") 

    theJoinTofield = theFLDftab.FindField("Field_id") 

    theFLDftab.Join (theJoinTofield,theFLDAreaVTab,theJoinFromfield) 

 

 '***Summarize areas by farm, for constraints **** 

    theFarmAreaVTab = theSbyFftab.Summarize(("FarmArea").AsFileName, dBASE, 
theSbyFftab.FindField("Farm_ID") 

                       ,{farmtypeFld, areaFld} 

                       ,{#VTAB_SUMMARY_FIRST, #VTAB_SUMMARY_SUM}) 
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B.3 Prepdat2.ave 
'Second part of prepare script 

'Split script because join is not working for constraint table 

 

'*** hand join Constraint table to FarmAreatables first*** 

theView = av.GetProject.FindDoc("View1") 

theFarmAreaVTab = av.GetProject.FindDoc("FarmArea.dbf").GetVTab   

 

' '***join Constraint table (ha and % constraints) to FarmArea dataset**** 

'  theConstvtab = av.GetProject.FindDoc("Constraints.dbf").GetVTab  

'  theJoinFromfield = theConstvtab.FindField("F_types") 

'  theJoinTofield = theFarmAreaVTab.FindField("First_f_ty") 

'  test  = theFarmAreaVTab.Join (theJoinTofield,theConstvtab,theJoinFromfield) 

 

 '**Make theFarmAreaVTab editable. 

  'If you can't edit the theme inform the user. 

    if (theFarmAreaVTab.CanEdit.Not) then 

      MsgBox.Info("Cannot edit table for theme:"++theFarmAreaVTab.AsString,"") 

    end 

  theFarmAreaVTab.SetEditable(TRUE) 

 

 '***make new fields and add to theFarmAreaVTab table 

   '** one field for total farm cost 

   '**three fields for constraints 

     theFarmAreaVTab.AddFields({ 

            Field.Make("TotCost".AsString,#FIELD_DOUBLE,16,2), 

            Field.Make("cst_c".AsString,#FIELD_DOUBLE,16,2), 

            Field.Make("cst_h".AsString,#FIELD_DOUBLE,16,2), 

            Field.Make("cst_b".AsString,#FIELD_DOUBLE,16,2)    }) 

   '**four fields for weighting area categories 

     theFarmAreaVTab.AddFields({Field.Make("ac",#FIELD_DOUBLE,16,3), 

                               Field.Make("ah",#FIELD_DOUBLE,16,3),  
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                               Field.Make("ab",#FIELD_DOUBLE,16,3),  

                               Field.Make("a",#FIELD_DOUBLE,16,3)}) 

   '**field for holding baseline area weight 

     theFarmAreaVTab.AddFields({Field.Make("aBase",#FIELD_DOUBLE,16,3)}) 

      

  ' '**two fields for Baseline pub and private costs 

  '  theFarmAreaVTab.AddFields({Field.Make("BasePrivC",#FIELD_DOUBLE,16,2), 

  '                             Field.Make("BasePubC",#FIELD_DOUBLE,16,2)}) 

    theFarmAreaVTab.AddFields({Field.Make("BaseOppC",#FIELD_DOUBLE,16,2)}) 

 

 '***calc min allowable crop and hay for each farm based on constraints 

    areaFarm = theFarmAreaVTab.FindField("Sum_area") 

    cstCfield = theFarmAreaVTab.FindField("cst_c") 

    cstHfield = theFarmAreaVTab.FindField("cst_h") 

    cstBfield = theFarmAreaVTab.FindField("cst_b")'   

  'determine min allowable area in const type as max of ha or %*area 

    for each record in theFarmAreaVTab 

      theFarmAreaVTab.SetValue(cstCfield, record,  

        theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("ha_c"), record) MAX 

        (theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("%_c"), record)*  

          (theFarmAreaVTab.ReturnValue(areaFarm, record))/100) 

      )        

      theFarmAreaVTab.SetValue(cstHfield, record,  

        theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("ha_h"), record) MAX 

        (theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("%_h"), record)*  

          (theFarmAreaVTab.ReturnValue(areaFarm, record))/100) 

      ) 

      theFarmAreaVTab.SetValue(cstBfield, record,  

        theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("ha_b"), record) MAX 

        (theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("%_b"), record)*  

          (theFarmAreaVTab.ReturnValue(areaFarm, record))/100) 

      ) 

    end 'for 
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 '**Make theFarmAreaVTab not editable. 

    theFarmAreaVTab.SetEditable(FALSE) 

 

'**run economic script to calc baseline costs 

'Although this is done in the Baseline script, it is done first here  

'to make the TempSum1 table first 

   exitSucess = av.run("Econ",{theView}) 
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B.4 Baseline.ave 
'Calculates public and private costs for the baseline scenario.  

'Should be run after preparing data and before running optimization component.  

'Can be run separately from Prepare Data scripts in the case of Baseline changes only. 

'Uses values in BaseMP column for calculations (overwriting values in MPID column). 

 

'**first add FarmArea.dbf and TempSum1.dbf to Project, if not already**** 

 

 theView = av.GetProject.FindDoc("View1") 

 theFLDftab = theView.FindTheme("Fields_mini.shp").GetFTab 

 theMPvtab= av.GetProject.FindDoc("MP.txt").GetVTab 

 theFarmAreaVTab = av.GetProject.FindDoc("FarmArea.dbf").GetVTab   

 theTempSum1vtab = av.GetProject.FindDoc("TempSum1.dbf").GetVTab   

 theFarmAreaVTab.UnjoinAll  

 

'***set the MPID values = the Baseline MP values  

  '**Make theFLDftab editable. 

    theFLDftab.SetEditable(TRUE) 

  '**set MPID = to BaseMP 

     for each record in theFLDftab 

     theFLDftab.SetValue (theFLDftab.FindField("Mpid"),record, 

                          theFLDftab.ReturnValue(theFLDftab.FindField("BaseMP"),record)) 

    end 'for   

  '**Make theFLDftab not editable. 

    theFLDftab.SetEditable(FALSE) 

  '**Refresh joins 

    theFLDftab.Refresh  

 

'**run each NPS script to calc baseline pollution and add to pollut.dbf table  

  thePollList = {} 

  'run NPS component (SedYld script) and add result to list 

    theSedYld = av.run("NPS-Sed",{theView})  
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    thePollList.Add(theSedYld) 

  '**call scripts for other pollutants here 

  '**add result to list in order listed in pollut.dbf file 

 

  thePollVtab = av.GetProject.FindDoc("pollut.dbf").GetVTab 

  PBfield = thePollVtab.FindField("Base") 

  thePollVtab.SetEditable(TRUE) 

  for each record in thePollVtab 

    PW = thePollList.Get(record) 

    thePollVtab.SetValue(PBfield, record, PW) 

    if (PW <= thePollVtab.ReturnValue(thePollVtab.FindField("target"),record) ) then 

      'warn user 

      MsgBox.Info("Base load <= Target load for pollutant"+ 

          thePollVtab.ReturnValue(thePollVtab.FindField("Pid"),record).AsString, "Warning") 

    end 'if 

  end 'for each record 

  thePollVtab.SetEditable(FALSE) 

  thePollList.Empty  

     

'**run economic script to calc baseline costs 

   exitSuccess = av.run("Econ",{theView}) 

    

'**Calculate Oppcost for each record 

  MPtypeFromFldField = theFLDftab.FindField("MPtype") 

  MPtypeFromMPfield = theMPvtab.FindField("Mptype") 

  MPIDFromFldField = theFLDftab.FindField("Mpid") 

  MPIDFromMPfield = theMPvtab.FindField("Mpid") 

  profMaxMPField = theFLDftab.FindField("ProfMaxMP") 

  oppCostField = theFLDftab.FindField("oppCost") 

  theFLDftab.Calculate ("0", profMaxMPField) 

  theFLDftab.Calculate ("0", oppCostField) 

  theMPtypeList = List.Make   

  '**Make theFLDftab editable. 
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    theFLDftab.SetEditable(TRUE) 

    for each recFLD in theFLDftab 

     'get MP type 

      MPtypeFromFldValue =(theFLDftab.ReturnValueString(MPtypeFromFldField, 
recFLD)).trim 

      'add all MPIDs to list that are in same MPtype 

       if (MPtypeFromFldValue = "f") then 

        theMPtypeList.Add(theFLDftab.ReturnValueNumber(MPIDFromFldField, recFLD)) 

       else 

        for each recMP in theMPvtab 

         MPtypeFromMPValue = theMPvtab.ReturnValue(MPtypeFromMPfield, recMP) 

         if ( ( MPtypeFromFldValue = MPtypeFromMPValue                   )  

           or ( (MPtypeFromFldValue = "c") and (MPtypeFromMPValue = "h") )) then 

             theMPtypeList.Add(theMPvtab.ReturnValueNumber(MPIDFromMPfield, recMP)) 

         end 'if 

        end 'for each recMP 

       end 'if-else 

'MsgBox.ListAsString (theMPtypeList, " ", "list")  

 

     'determine Opp Cost and Profit Max MP for this record based on MPtypeList 

      for each recList in theMPtypeList 

       'calc Opp Cost and identify Profit Max MPID 

         oppCostvalue = theFLDftab.ReturnValue(oppCostField, recFLD) 

         MPretfieldValue = theFLDftab.ReturnValueNumber 

          (theFLDftab.FindField("MPret"+recList.AsString), recFLD) 

         if (oppCostvalue <= MPretfieldValue) then  'MPret is pos for return so want max 

         theFLDftab.SetValue(profMaxMPField,recFLD,recList) 

         theFLDftab.SetValue(oppCostField,recFLD,MPretfieldValue) 

        end 'if 

      end 'for each recList 

      theMPtypeList.Empty 

    end 'for each recFLD 
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  '**Make theFLDftab not editable. 

    theFLDftab.SetEditable(FALSE) 

     

'**Calculate farm-level values 

  '**join tempsum1 table with Farmarea table by FarmID 

    theJoinFromfield = theTempSum1vtab.FindField("Farm_id") 

    theJoinTofield = theFarmAreaVTab.FindField("Farm_id") 

    theFarmAreaVTab.Join (theJoinTofield,theTempSum1vtab,theJoinFromfield) 

   

  '**Make theFarmAreaVTab editable. 

    theFarmAreaVTab.SetEditable(TRUE) 

 

  '**update baseline values 

    for each record in theFarmAreaVTab 

      theFarmAreaVTab.SetValue(theFarmAreaVTab.FindField("aBase"),record,  

         theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("a"),record) ) 

      theFarmAreaVTab.SetValue(theFarmAreaVTab.FindField("BaseOppC"),record,  

         theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("Sum_oppcos"),record) 
) 

'      theFarmAreaVTab.SetValue(theFarmAreaVTab.FindField("BasePrivC"),record,  

'         theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("Sum_Privc"),record) ) 

'      theFarmAreaVTab.SetValue(theFarmAreaVTab.FindField("BasePubC"),record,  

'         theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("Sum_Pubfla"),record) 
) 

    end 'for                            

  '**Make theFarmAreaVTab not editable. 

    theFarmAreaVTab.SetEditable(FALSE) 

 

'**Report Finished 

MsgBox.Info("Baseline script is finished", "Info") 
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B.5 CallDLL.ave 
'** Set wshed size (by grid size) in NPS-sed script!! 

'** Check theme names. 

'** Run "PrepDat" script to prepare the USLE layers for the NPS-Sed component. 

'** Run "PrepDat1" and "PrepDat2" scripts to prepare the (mainly economic) data. Follow 
the instructions at the top of each file. 

'** Run the "Baseline" script to calculate the baseline values and determine extent of NPS 
problem 

 

'** Now run the GA! 

  'aDLL = DLL.Make("C:\My_Research\GAs\galib244-
win\projects\BMPdll\Debug\BMPdll.dll".asFileName) 

  aDLL = DLL.Make("C:\My_GIS_work\GA-Fin-MiniMC\BMPdll.dll".asFileName) 

   

  'Create an instance of DLLProc 

  avFunction = DLLProc.Make(aDLL,"SomeFunction", #DLLPROC_TYPE_STR,{}) 

   

  'Call the function in the DLL, supplying the proper parameters 

  xStr = avFunction.Call({}) 

   

  'Report the results of the function call 

  MsgBox.Info("The result is " + xStr+".", "The GA is finished!!") 

  Return NIL 
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B.6 Bmpopt.dll 
The DLL, coded in C++, runs the optimization component within the optimization procedure. 
To create the DLL, this code must be compiled in conjunction with the GALib program. 

/* ---------------------------------------------------------------------------- 

  BMPopt13DLL.C   by Tamie L Veith 31Oct01 

---------------------------------------------------------------------------- */ 

// Header files 

 //for dll 

 #include <windows.h> 

 #include <process.h> 

 #include <C:\My_Research\GAs\galib244-win\projects\BMPopt\avexec32.h> 

 //for all 

 #include <fstream.h> //read files 

 #include <math.h>  //math functions 

 #include <stdlib.h>  //standard library routines 

 #include <ga/ga.h>  //contains GA function definations 

 

//These functions are not exported. 

 void RNG(int number, char *word[]); 

 GAAlleleSetArray<int> CreateGenomeTemplate(); 

 void BaselineInitializer(GAGenome &g); 

// void ReadExistingPop(GAGenome &g); 

 void ReadExistingPop(GAGenome &g, GAPopulation & p); 

 void PopInitializer(GAPopulation &p); 

 void PopEvaluator(GAPopulation &p); 

 float Objective(GAGenome &); 

 

//These functions are exported and available to calling applications. 

 extern "C" __declspec(dllexport) char* SomeFunction(void); 

 

//Define global variables and constants. 

 //define max size of fields allowed 
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  const int iBaseRowARRAY_MAX = 300; 

  int iBaseArray[iBaseRowARRAY_MAX]; 

  int iExistPopArray[iBaseRowARRAY_MAX];  

  const int iMP_MAX = 20; 

  char chMPTypeArray[iMP_MAX]; 

 //define max size of tables allowed 

  const int iColn_MAX = 8; //# of cols in each table  

    //(PollScore,CostScore,unlimitedSedScore, PollYld,WshedC,FarmC,MedianC,CE) 

  float fAVReturnArray[iColn_MAX]; 

  float fBestArray[iColn_MAX]; 

 //define best genome score thus far 

  float bestGenome; 

 //define output files 

  ofstream ofCommentary; 

  ofstream ofGenomeScore; 

  ofstream ofEvalOutput; 

 

//Main function. 

char* SomeFunction() //int main(int argc, char *argv[]) 

{ 

//Read in DLL settings 

 char readTemp[50]; 

 float readCross; 

 float readMut; 

 int readPopSize; 

 int readNumGen; 

 float readFractRep; 

 char readRepeat; 

 ifstream ifDLLsettings; 

 ifDLLsettings.open("ifDLLsettings.dat"); 

 ifDLLsettings >> readTemp >> readCross  

      >> readTemp>> readMut>> readTemp >> readPopSize  

      >> readTemp >> readNumGen >> readTemp >> readFractRep 
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      >> readTemp >> readRepeat; 

 ifDLLsettings.close(); 

 

//Open output files. 

 if (readRepeat == 'Y') { 

  ofCommentary.open("ofCommentary.dat", (ios::out | ios::app)); 

  ofGenomeScore.open("ofGenomeScore.dat", (ios::out | ios::app)); 

  ofEvalOutput.open("ofEvalOutput.dat", (ios::out | ios::app)); 

 } else { 

  ofCommentary.open("ofCommentary.dat", (ios::out | ios::trunc)); 

  ofGenomeScore.open("ofGenomeScore.dat", (ios::out | ios::trunc)); 

  ofEvalOutput.open("ofEvalOutput.dat", (ios::out | ios::trunc)); 

  //Print program description to console window. 

   ofCommentary << "BMPopt program ver 13 by tlv (01-06-02) \n\n" 

       << "This program optimizes BMP placement based on \n" 

       << "routed sediment and public & private cost by farm \n" 

       << "Each scenario is compared to the baseline. \n \n"; 

   ofCommentary << "The GA is SteadyState, Tournament selection \n" 

       << "with no scaling and, not limited by ArcView software, \n" 

       << "terminates by 99% convergence over the user-specified \n" 

       << "number of generations. \n"<<endl; 

  //Print DLL settings to output file 

    ofCommentary << "crossover fraction: " << readCross <<endl; 

    ofCommentary << "mutation fraction: " << readMut <<endl; 

    ofCommentary << "populationSize: " << readPopSize <<endl; 

    ofCommentary << "numberGenerations: " << readNumGen <<endl; 

    ofCommentary << "fractionReplacement: " << readFractRep <<endl; 

    ofCommentary << "Continue run: " << readRepeat <<endl<<endl; 

  //Print file headers 

   ofEvalOutput <<"gencnt"<< "\t"<<"P"<<"\t"<<"E"<<"\ t" 

   <<"SedScr"<<"\t"<<"SedYld"<<"\t"<<"WshdCst"<<"\t" 

   <<"FarmCst"<<"\t"<<"MedianC"<<"\t"<< endl; 

   ofEvalOutput <<"[-]"<< "\t"<< 
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    "[-]"<<"\t"<<"[-]"<<"\t"<<"[-]"<<"\t"<<"[Mg/ha]"<<"\t"<<"[$]"<<"\t"<< 

    "[$]"<<"\t"<<"[$]"<<"\t"<< endl; 

 } 

 

//Identify and start RNG. 

 int seed = 0;  

 // Identify the RNG. 

 ofCommentary << "Using the " << GAGetRNG()  

  << " random number generator (RNG).\n"; 

 // Initialize RNG by calling the routine with the specified seed. 

 GARandomSeed(seed); 

 ofCommentary << "Library thinks the random seed is: "  

  << GAGetRandomSeed() << "\n \n"; 

  //RNG(argc,argv); 

 

//Create Genetic Algorithm. 

 //Create genome template from the baseline. 

   GA1DArrayAlleleGenome<int> genome(CreateGenomeTemplate(), Objective); 

      ofCommentary << "Template has been created. " << endl; 

 

 //Create the population. 

   GAPopulation gaPop(genome,readPopSize); 

 //Initialize GA using allele set. 

   //If ofFinalPop exists then initialize with it 

   if (readRepeat == 'Y') { 

  //Assign the initialization operator. 

   ReadExistingPop(genome, gaPop); 

   } else { 

   // (else initialize with random individuals). 

   gaPop.initializer(PopInitializer); 

   gaPop.initialize(); 

   } 
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 //Set the popuation evaluator. 

   gaPop.evaluator(PopEvaluator); 

 //Assign the mutation operator. 

   genome.mutator(GA1DArrayAlleleGenome<int>::FlipMutator); 

 //Assign the evaluation operator. 

   genome.evaluator(Objective); 

 

 //Evaluate and keep inital genome, gBase, for future use. 

   GA1DArrayAlleleGenome<int> gBase(genome); 

   gBase.initializer(BaselineInitializer); 

   gBase.initialize(); 

   gBase.evaluator(Objective); 

   ofCommentary <<"\n evaluating baseline \n";  

   gBase.evaluate(); 

   

/* 

//Test Genetic Algorithm operators 

 // test the initializer  

  ofCommentary << "Genome after initialization:\n" << genome << endl;  

 // test the mutator 

  genome.mutate(.5);  

  ofCommentary << "genome after mutation:\n" << genome << endl; 

 // check the base genome 

  ofCommentary << "Baseline Genome:\n" << gBase << endl;  

 // test the crossover function 

   GA1DArrayAlleleGenome<int>* a = new GA1DArrayAlleleGenome<int>(genome);    

   GA1DArrayAlleleGenome<int>* b = new GA1DArrayAlleleGenome<int>(genome); 

   GA1DArrayAlleleGenome<int>* c = new GA1DArrayAlleleGenome<int>(genome); 

   GA1DArrayAlleleGenome<int>* d = new GA1DArrayAlleleGenome<int>(genome); 

   a->initialize(); 

   b->initialize(); 

   b->mutate(1.00); 

   ofCommentary << "parents:\n" << *a << "\n" << *b << "\n"; 
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   SinglePointCrossover(*a, *b, c, d);   // test two child crossover 

   ofCommentary << "children of crossover:\n" << *c << "\n" << *d << "\n"; 

   SinglePointCrossover(*a, *b, c, 0);   // test single child crossover 

   ofCommentary << "child of crossover:\n" << *c << "\n";endl; 

 // delete the extra genomes 

   delete a; 

   delete b; 

   delete c; 

   delete d; 

*/ 

 

//Set GA characteristics 

 // Set the default values of the parameters. 

  GAParameterList params; 

  GASteadyStateGA::registerDefaultParameters(params); 

  params.set(gaNpopulationSize, readPopSize); // population size 

   //popsize is set when gaPop created but is not const so 

   //the default param value must be overridden here as well. 

  params.set(gaNpCrossover, readCross);  // probability of crossover 

  params.set(gaNpMutation, readMut);  // probability of mutation 

  //params.set(gaNnGenerations, readNumGen);  // number of generations 

  params.set(gaNpReplacement, readFractRep); // fraction of pop to replace each gen 

   //OR (gaNnReplacement, 5);  // # of individuals to replace each gen 

  params.set(gaNscoreFrequency, 1); // how often to record scores 

  params.set(gaNpConvergence, 0.99); // ratio of BOG's that signals convergence 

  params.set(gaNnConvergence, readNumGen); // how far back to get BOG for conv  

  params.set(gaNselectScores, GAStatistics::AllScores); 

 

 //set scaling function 

   GANoScaling noScale; 

    //set selection scheme 

      GATournamentSelector tourn; 

 //set GA type 
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   GASteadyStateGA  ga(gaPop); 

 //set GA output 

      GAStatistics stats; 

 

 //assign features 

   ga.parameters(params); 

 //assign the crossover operator 

   ga.crossover(GA1DArrayGenome<int>::OnePointCrossover); 

 //assign scaling 

   ga.scaling(noScale); 

 //Assign selection method 

   ga.selector(tourn); 

 //define termination 

   ga.terminator(GAGeneticAlgorithm::TerminateUponConvergence); 

 

//Run genetic algorithm and print to file while evolving. 

// ofCommentary << "\n\n evolving..." << endl; 

 int gencnt = 0; 

 

while(gencnt < 360) 

 { 

  ofCommentary <<"\n"<<"evaluating generation " << gencnt<< endl;  

  ofEvalOutput <<gencnt<<"\t"; 

  //calculate values for this generation 

   ga.step(); 

  //write results to file 

   genome = ga.statistics().bestIndividual(); 

   stats = ga.statistics(); 

   ofGenomeScore <<genome.score()<< "\t"<<genome<<endl; 

//   ofEvalOutput <<ga.statistics().current(GAStatistics::Deviation)<<endl; 

  gencnt++; 

 } //end while 

 ofCommentary << "\n\n"; 
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//Report results 

 //Print initial individual to file. 

  ofCommentary << "The baseline genome is (score: "<< gBase.score() <<") \n" 

   << gBase  <<"\n"; 

 //Print best individual to file. 

  genome = ga.statistics().bestIndividual(); 

  ofCommentary << "The ga generated following string (objective score is "; 

  ofCommentary << genome.score() << "):\n" << genome << "\n"; 

 //Print final population to file. 

  ofCommentary << "Printing population to file 'ofFinalPop.dat'..." <<endl; 

//  ofCommentary << "Stats: "<<"\n"<<stats; 

  ofCommentary.flush(); 

  ofstream ofFinalPop; 

  ofFinalPop.open("ofFinalPop.dat", (ios::out | ios::trunc)); 

  for(int kk=0; kk<ga.population().size(); kk++) 

  { 

   genome = ga.population().individual(kk); 

   ofFinalPop <<  genome.score() << "\t"<<genome<<"\n"; 

  } //end for 

 

//Close files 

 ofFinalPop.close(); 

 ofCommentary.close(); 

 ofGenomeScore.close(); 

 ofEvalOutput.close(); 

 

//Exit program 

 return "EXIT_SUCCESS"; 

} 

/* end main routine--------------------------------------------------------- */ 
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/* ---------------------------------------------------------------------------- 

RNG function 

  This function checks for a seed entered on the command-line. If none then 

  seed is randomly selected. The function then starts the random number 

  generator set in the program, prints out the seed and generator being used 

  and returns control to the main routine. 

---------------------------------------------------------------------------- */ 

void 

RNG(int iMyNum, char *sMyWord[]) 

{ 

  // See if random seed was specified for testing purposes.  

 int seed = 0; 

 for(int i=1; i<iMyNum; i++) 

 { //loop until k reaches number entered on command line 

 if(strcmp("seed", sMyWord[i]) == 0) 

 { //compare "seed" with word entered on command line 

  if(++i >= iMyNum)  

  {  //if next k is as big as your number, report error and exit 

   cerr << "You must enter a number when specifying a random seed.\n"; 

   exit(1); 

  } //end if, do else 

  else  

  { 

   seed = atoi(sMyWord[i]); 

  } //end else-then 

 } //end if-then 

 } //end for 

 

 // Tell us which RNG we're using... 

 ofCommentary << sMyWord[0] << ": Random Number Test\n"; 

 ofCommentary << "Using the " << GAGetRNG()  

  << " random number generator (RNG).\n"; 
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 // initialize the RNG by calling the seed routine with our seed 

 if(seed) ofCommentary << "Using specified random seed " << seed << "\n"; 

 GARandomSeed(seed); 

 ofCommentary << "Library thinks the random seed is " << 

  GAGetRandomSeed() << "\n"; 

} 

/* end RNG function--------------------------------------------------------- */ 

 

/* ---------------------------------------------------------------------------- 

CreateGenomeTemplate function 

  This function creates baseline array & uses it to choose an allele set  

  for each gene. The baseline array is created using the baseline values 

  (MP.txt) as its elements. This is done, instead of reading the inputs 

  directly into a genome, because of the constructor limitations for the 

  defined genome classes; i.e., an array genome can only be created from 

  another such genome, or from the set of alleles and the objective 

  function, or from the objective function - but not from scratch or array. 

---------------------------------------------------------------------------- */ 

GAAlleleSetArray<int> 

CreateGenomeTemplate() 

{ 

 //Read in baseline scenario 

 ifstream ifMPID; 

 ifMPID.open("ifMPID.dat"); 

 //ifMPID.dat is a space or tab delimited text file of one column.  

 for (int iGenomeLen = 0; !ifMPID.eof(); iGenomeLen++) 

 { 

  //read line from input file into genome array 

  ifMPID >> iBaseArray[iGenomeLen]; 

  //if - break line corrects for looping one more eof since 

  //line is not read until after for statement 

  if (ifMPID.eof()) break; 

 } //end for  
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 ifMPID.close(); 

 

 /* ---------------------------------------------------------------------------- 

 CreateAlleleSets sub function 

   This function reads the list of MPs and MPtypes from Mp.txt and uses it  

   to make allele sets. 

 ---------------------------------------------------------------------------- */ 

 //Define allele sets 

  GAAlleleSet<int> alleleSetH; 

  GAAlleleSet<int> alleleSetC; 

  

 //Read in MP.txt 

  int iReadMPID; 

  char readTemp[50]; 

  char cReadMPtype; 

  ifstream ifMPlist; 

  ifMPlist.open("MP.txt"); 

  //discard first line 

  ifMPlist >> readTemp >> readTemp >> readTemp >> 

    readTemp >> readTemp >> readTemp >> readTemp; 

  //1st column is MPID, 2nd is MPdesc, 3rd is MPtype, next 4 colns extra.  

   //read line from input file into temp vars 

  while (ifMPlist >> iReadMPID >> readTemp >> cReadMPtype >> 

    readTemp >> readTemp >> readTemp >> readTemp) 

  { 

   //store MPtypes in array for creating genome template 

   chMPTypeArray[iReadMPID] = cReadMPtype; 

   //make crop and hay allele sets 

 

   if (cReadMPtype == 'h') 

    //if hay type land use then value may be in hay types 

    //also add hay types to crop set (see else-if) 

    //add MP to hay list and crop list 
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   {    

    alleleSetH.add(iReadMPID); 

    alleleSetC.add(iReadMPID); 

   } //end if 'h' 

   else  

   { 

    if (cReadMPtype == 'c') 

    //if crop type land use then value may be in hay or crop types 

    {    

     alleleSetC.add(iReadMPID); 

       //this line added to allow all hay and crop types for both 

     //to evaluate optimization on both beef and dairy farms 

     alleleSetH.add(iReadMPID); 

    } //end if 'c' 

   } //end else 'h' 

  } //end while  

  ifMPlist.close(); 

 /* end CreateAlleleSets subfunction---------------------------------------- */ 

 

 // This genome is created using an array of allele sets. This means that  

 // each element of the genome will assume a value in its corresponding  

 // allele set. The alleles are defined based on the baseline scenario.  

 // This allows specialization of each allele set based on baseline genome. 

 

 GAAlleleSetArray<int> alleleSetArray; 

 for (int i=0; i<iGenomeLen; i ++) 

 { 

  if (chMPTypeArray[iBaseArray[i]] == 'f')  

   //if a non-changing land use then fix value 

  { 

   GAAlleleSet<int> alleleSetFix1; 

   alleleSetFix1.add(iBaseArray[i]); 

   alleleSetArray.add(alleleSetFix1);  
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  }  

  else 

  { 

   if (chMPTypeArray[iBaseArray[i]] == 'h')  

   { 

    alleleSetArray.add(alleleSetH); 

   } 

   else 

   { 

    if (chMPTypeArray[iBaseArray[i]] == 'c')  

    { 

     alleleSetArray.add(alleleSetC);  

    }//end if 'c' 

   } //end else 'h' 

  } //end else 'f' 

 } //end for 

 return alleleSetArray; 

} 

/* end CreateGenomeTemplate function---------------------------------------- */ 

 

/* ---------------------------------------------------------------------------- 

BaselineInitializer function 

  This initializer fills the values from the baseline into the genome template. 

---------------------------------------------------------------------------- */ 

void 

BaselineInitializer(GAGenome &g) 

{ 

 GA1DArrayAlleleGenome<int> &genome=(GA1DArrayAlleleGenome<int> &)g; 

 for(int i=0; i<genome.size(); i++) 

 { 

  genome.gene(i, iBaseArray[i]); 

 }  

} 
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/* end BaselineInitializer function----------------------------------------- */ 

 

/* ---------------------------------------------------------------------------- 

ReadExistingPop function 

  This initializer reads the values from the finalpop.dat file into an   

  array, one genome at a time, for the initial population. 

---------------------------------------------------------------------------- */ 

void 

ReadExistingPop(GAGenome &g, GAPopulation & p) 

{ 

 float flScore; 

 GA1DArrayAlleleGenome<int> &genome=(GA1DArrayAlleleGenome<int> &)g; 

 //Read in finalpop.dat file 

ofCommentary << "Initial population (previous final population) \n"; 

 ifstream ofFinalPop; 

  ofFinalPop.open("ofFinalPop.dat"); 

 for (int i = 0; i<p.size(); i++) 

 { 

  for(int iGenomeLen=0; iGenomeLen<=genome.size(); iGenomeLen++) 

  { 

   if (iGenomeLen == 0) { 

    //skip genome score 

    ofFinalPop >>flScore; 

   } else { 

   //read line from input file into genome array 

   ofFinalPop >> iExistPopArray[iGenomeLen-1]; 

   genome.gene((iGenomeLen-1),iExistPopArray[iGenomeLen-1]); 

ofCommentary <<iExistPopArray[iGenomeLen-1]<<" "; 

   } 

  }  

  p.individual(i) = genome; 

ofCommentary <<endl; 

 } 
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} 

/* end ReadExistingPop function----------------------------------------- */ 

 

/* ---------------------------------------------------------------------------- 

PopInitializer function 

  This function initializes the population based on the first genome. This 

  is done so that the GA can run on the population and not the indivual. 

---------------------------------------------------------------------------- */ 

void  

PopInitializer(GAPopulation & p) 

{ 

 for (int i = 0; i<p.size() ; i++) 

 {  p.individual(i).initialize(); 

 } 

 ofCommentary <<"Population has been initialized."<<endl; 

} 

/* end PopInitializer function--------------------------------------------------- */ 

 

/* --------------------------------------------------------------------------------- 

PopEvaluator function 

  This function evaluates the population by calling the objective function to  

  evaluate each individual and then ranking all individuals in the population. 

---------------------------------------------------------------------------------- */ 

void 

PopEvaluator(GAPopulation & p) 

{ 

 for (int i = 0; i<p.size(); i++) 

 {  

  p.individual(i).evaluate(); //evaluate() calls Objective function 

 } 

 //print data for best genome 

 for (int j = 0; j<iColn_MAX; j++) { 

  ofEvalOutput <<fBestArray[j]<<"\t"; 
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 } 

 ofEvalOutput <<endl; 

} 

/* end PopEvaluator function--------------------------------------------------- */ 

 

/* ---------------------------------------------------------------------------- 

Objective function 

  // This objective tries to maximize the cost-effectiveness of the genome 

  //as a whole. 

---------------------------------------------------------------------------- */ 

float 

Objective(GAGenome& g) 

{ 

 GA1DArrayAlleleGenome<int>& genome = (GA1DArrayAlleleGenome<int>&)g; 

 char myBigStr[2000]; 

 char buffer[5]; 

 strcpy(myBigStr, ""); 

 

 for(int i=0; i<genome.length(); i++) 

 { 

  //add values for this gene to the string 

    //char *_itoa(int value, char *string, int radix);(radix 10=base 10) 

  strcat(myBigStr,_itoa(genome.gene(i),buffer,10)); 

  strcat(myBigStr," "); 

 } //end for 

 

/* ** BEGIN CALL TO ARCVIEW ** to change gene ID into 7 float outputs */ 

 //define vars and create "call-to-script" command 

  //char *pMyAvenueStr = "av.run(\"Main\","NIL)"; 

 char MyAvenueStr[2000]="av.run(\"Main\",{\""; 

 strcat(MyAvenueStr,myBigStr); 

 strcat(MyAvenueStr,"\"})"); 

 char *pResultStr; 
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 //call ArcView script 

 pResultStr = AVExec(MyAvenueStr); 

ofCommentary <<" ArcView Result: "<< pResultStr << "\t"; 

//  theResultStr = P.AsString++E.AsString++PACTUAL.AsString 

//    ++theSedYld.AsString++WshedCost.AsString++(sumFarmCost.Sqrt).AsString 

//    ++MedianCost.AsString++theCostEff.AsString 

 

 fAVReturnArray[0] = atof(strtok(pResultStr, " ")); 

 fAVReturnArray[1] = atof(strtok(0, " ")); 

 fAVReturnArray[2] = atof(strtok(0, " ")); 

 fAVReturnArray[3] = atof(strtok(0, " ")); 

 fAVReturnArray[4] = atof(strtok(0, " ")); 

 fAVReturnArray[5] = atof(strtok(0, " ")); 

 fAVReturnArray[6] = atof(strtok(0, " ")); 

 fAVReturnArray[7] = atof(strtok(0, " ")); 

 /* ** END CALL TO ARCVIEW ** */ 

 

 if (fAVReturnArray[0] <1) { 

  genome.score(fAVReturnArray[0]); } 

 else { 

  genome.score(fAVReturnArray[1]); } 

 

ofCommentary <<" genome score: "<< genome.score() <<endl;   

 

 if (genome.score() > bestGenome) { 

  for (i = 0; i<iColn_MAX; i++) { 

   fBestArray[i] = fAVReturnArray[i]; 

  } 

  bestGenome = genome.score(); 

 } 

  return genome.score(); 

} 

/* end Objective function--------------------------------------------------- */ 
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B.7 Main.ave 
'This script accepts the MPID's for the working scenario from each GA call and  

'runs the NPS and Econ components. 

'It calculates the fitness scores and returns the results to the GA. 

 

 theView = av.GetProject.FindDoc("View1") 

'***Extract MPIDs From Genome************************************ 

  'read MPIDs in from script parameter call   

    myString = self.Get(0) 

  'locate data 

    theMPIDftab = theView.FindTheme("Fields_mini.shp").GetFTab 

    theMPIDfield = theMPIDftab.FindField("Mpid") 

  'update MPID field 

    theMPIDftab.SetEditable(TRUE) 

     for each record in theMPIDftab 

        theMPIDvalue = myString.Extract(record).AsNumber 

       theMPIDftab.SetValue(theMPIDfield, record, theMPIDvalue) 

      end 'for (record) 

    theMPIDftab.SetEditable(FALSE) 

  'recalculate joins  

   theMPIDftab.Refresh  

 

'***Score for the NPS component********************************** 

  thePollList = {} 

  'run NPS component (SedYld script) and add result to list 

    theSedYld = av.run("NPS-Sed",{theView})  

    thePollList.Add(theSedYld) 

  '**call scripts for other pollutants here 

  '**add result to list in order listed in pollut.dbf file 

 

  thePollVtab = av.GetProject.FindDoc("pollut.dbf").GetVTab 

  PBfield = thePollVtab.FindField("Base") 
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  PTfield = thePollVtab.FindField("Target") 

  Weightfield = thePollVtab.FindField("weight") 

 

  PIweightedSum = 0 

  WeightSum = 0 

  P = 0 

  thePollVtab.SetEditable(TRUE) 

  for each record in thePollVtab 

    PB = thePollVtab.ReturnValue(PBfield, record) 

    PT = thePollVtab.ReturnValue(PTfield, record) 

    Weight = thePollVtab.ReturnValue(Weightfield, record) 

    PW = thePollList.Get(record) 

    ' calc sediment score specifically, for method/data analysis 

    PACTUAL = ((PB-PW)/(PB-PT)) 

    if (PB <= PW) then   

      PI = 0 

    elseif (PW <= PT) then 

      PI = 1 

    else 

      PI = PACTUAL 

    end 

    PIweightedSum = PIweightedSum+(Weight*PI) 

    WeightSum = WeightSum+Weight 

  end 'for 

  P = PIweightedSum/WeightSum 

  thePollVtab.SetEditable(FALSE) 

  thePollList.Empty  

   

'***Econ component********************************** 

  exitSucess = av.run("Econ",{theView}) 

  theFarmAreaVTab = av.GetProject.FindDoc("FarmArea.dbf").GetVTab 

  theFarmAreaVTab.refresh 
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'  BasePrivField = theFarmAreaVTab.FindField("BasePrivC") 

'  BasePubField = theFarmAreaVTab.FindField("BasePubC") 

  OppCostField = theFarmAreaVTab.FindField("Sum_OppCos") 

 

'  WorkPrivField = theFarmAreaVTab.FindField("Sum_privc") 

'  WorkPubField = theFarmAreaVTab.FindField("Sum_pubfla") 

  WorkTotCostField = theFarmAreaVTab.FindField("TotCost") 

 

  aField = theFarmAreaVTab.FindField("a") 

  aBaseField = theFarmAreaVTab.FindField("aBase") 

 

  OppCostSum = 0 

  ai = 0 

  x2i = 0 

  WshedCost = 0 

  sumFarmCost = 0 

  Wsum = 0 

  E = 0 

   

  for each record in theFarmAreaVTab 

    OppCostSum = OppCostSum+ theFarmAreaVTab.ReturnValue(OppCostField, record) 

    ai = ( (theFarmAreaVTab.ReturnValue(aField, record)) 

             /(theFarmAreaVTab.ReturnValue(aBaseField, record)) ) Min 1 

    x2i = (theFarmAreaVTab.ReturnValue(WorkTotCostField, record))^2       

    WshedCost = WshedCost + (theFarmAreaVTab.ReturnValue(WorkTotCostField, record)) 

    sumFarmCost = sumFarmCost+x2i 

    Wsum = Wsum + (x2i/ai) 

  end 'for  

   E = 1+ ( OppCostSum/((Wsum+1).Sqrt) ) 
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'**errorcheck** 

  If ((theSedYld.isNull ) or (exitSucess <> 1)) then  

    MsgBox.Info("NPS or Econ component did not run correctly", "Error") 

  End 'if 

 

'** calculate median farm cost**** 

    'determine middle row or one above midpoint from top (count includes '0') 

       middleRow = ((theFarmAreaVTab.GetNumRecords)/2 ).Truncate 

    'sort farmarea.dbf table descending 

       myTable = av.GetProject.FindDoc( "Farmarea.dbf" ) 

       aField = myTable.GetVTab.FindField( "TotCost" )    

       if ((myTable.GetWin.IsOpen).Not) then   ' Is myTable open 

         myTable.GetWin.Open 

       end 

       myTable.Sort( aField, TRUE ) 

    'find the record associated with the midpoint row 

       MedianRecord = myTable.ConvertRowToRecord (middleRow) 

    'close table 

       myTable.GetWin.Close 

    'find cost 

       MedianCost = theFarmAreaVTab.ReturnValue(WorkTotCostField, MedianRecord) 

'** END calculate median farm cost**** 

 

'***Return results and clean up********************* 

  'set output variables 

    theResultStr = P.AsString++E.AsString++PACTUAL.AsString++ 

              theSedYld.AsString++WshedCost.AsString++(sumFarmCost.Sqrt).AsString++ 

              MedianCost.AsString++0.AsString 

'MsgBox.Info (theResultStr, "from AV: theResultStr") 

 

  av.PurgeObjects 

  Return theResultStr 
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B.8 Econ.ave 
'farm level private costs and public costs with area requirements 

 

'***Set Constant Values******************************************* 

'  '***Economic Data**********   

   cnstPubPrice = 194.42+153.40 'public cost per farm [$] 

     '$/farm annualized over 5 years (Carpentier et al., 1998) 

'***END Set Constant Values******************************************* 

 

'***Locate Input Data********************************************* 

  theView = self.Get(0) 

  theMPIDftab = theView.FindTheme("Fields_mini.shp").GetFTab 

  theMPIDfield = theMPIDftab.FindField("Mpid") 

  theMPIDftab.refresh 

 

  theFarmAreaVTab = av.GetProject.FindDoc("FarmArea.dbf").GetVTab 

  theFarmAreaVTab.refresh 

   

  theBaseMPfield = theMPIDftab.FindField("BaseMP") 

 

  theOppCostField = theMPIDftab.FindField("OppCost") 

  thePrivCostfield = theMPIDftab.FindField("PrivC") 

   

  theFarmfield = theMPIDftab.FindField("Farm_id")   

  theMPtypefield = theMPIDftab.FindField("Mptype") 

  theFLDareafield = theMPIDftab.FindField("Sum_area") 

  theareaCfield = theMPIDftab.FindField("areaC") 

  theareaHfield = theMPIDftab.FindField("areaH") 

 

  theCfactfield = theMPIDftab.FindField("Cfact") 

  thePfactfield = theMPIDftab.FindField("Pfact") 

  theALPHAfield = theMPIDftab.FindField("ALPHA") 
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  thePubFlagfield = theMPIDftab.FindField("PubFlag") 

'***END Locate Input Data********************************************* 

 

theMPIDftab.SetEditable(TRUE) 

'***reset vars (to clear out previous scenario values)***************** 

  'reset private cost values to zero (to clear out previous scenario values) 

   theMPIDftab.Calculate ("0", thePrivCostfield) 

  'reset area constraint values to zero (to clear out previous scenario values) 

   theMPIDftab.Calculate ("0", theareaCfield) 

   theMPIDftab.Calculate ("0", theareaHfield) 

  'reset PubFlag values to zero (to clear out previous scenario values) 

   theMPIDftab.Calculate ("0", thePubFlagfield) 

 

for each record in theMPIDftab 

  '***calc public cost by field******************************************     

    'set flag if MP has changed 

    if( theMPIDftab.ReturnValue(theMPIDfield,record)<> 

        theMPIDftab.ReturnValue(theBaseMPfield,record) ) then 

      theMPIDftab.SetValue(thePubFlagfield,record, "1") 

    end 'if 

  '***END calc public cost by field************************   

 

  '***calc private cost************************   

    'get opportunity cost 

     theOppCostValue = theMPIDftab.ReturnValue(theOppCostField,record) 

    'get this scenario cost (pos is a return, neg is a cost) 

     theMPID = theMPIDftab.ReturnValue(theMPIDfield, record) 

     theCurRetName =  ("MPret"+ theMPID.AsString.Trim).AsString 

     theCurRetField = theMPIDftab.FindField(theCurRetName) 

     theCurRetValue = theMPIDftab.ReturnValue(theCurRetField,record) 

    'update private cost var (now pos is a cost, neg is a return)  

     theMPIDftab.SetValue(thePrivCostfield, record, theOppCostValue-theCurRetValue) 

  '***END calc private cost************************   
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  '***calc area constraint weights by field************************************   

    'sort area of each field into crop or hay for constraint purposes 

     if   ((theMPIDftab.ReturnValue(theMPtypefield, record)).trim="c") then 

       theMPIDftab.SetValue(theareaCfield,record, 
(theMPIDftab.ReturnValue(theFLDareafield, record))) 

     elseif ((theMPIDftab.ReturnValue(theMPtypefield, record)).trim="h") then 

       theMPIDftab.SetValue(theareaHfield,record, 
(theMPIDftab.ReturnValue(theFLDareafield, record))) 

     end 'if 

  '***END area constraint weights by field************************   

end 'for (record) 

theMPIDftab.SetEditable(FALSE) 

 

'***summarize by farm**********************  

   sumFarmTemp1ftab = theMPIDftab.Summarize( "tempsum1".AsFileName, Dbase, 
theFarmfield, 

           {thePrivCostfield, thePubFlagfield, theareaCfield, theareaHfield,theOppCostField}, 

           
{#VTAB_SUMMARY_SUM,#VTAB_SUMMARY_SUM,#VTAB_SUMMARY_SUM,#V
TAB_SUMMARY_SUM,#VTAB_SUMMARY_SUM}) 

 

'***Locate Data********************************************* 

  'public cost 

    sumPubFlagField = sumFarmTemp1ftab.FindField("Sum_PubFla")     

  'private cost 

    sumPrivCostField = sumFarmTemp1ftab.FindField("Sum_privc") 

  'total farm cost 

    totcostfield = theFarmAreaVTab.FindField("TotCost") 

  'area categories 

    sum_areaC = sumFarmTemp1ftab.FindField("Sum_areaC") 

    sum_areaH = sumFarmTemp1ftab.FindField("Sum_areaH") 

  'area weight variables 

    acfield = theFarmAreaVTab.FindField("ac") 

    ahfield = theFarmAreaVTab.FindField("ah") 
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    abfield = theFarmAreaVTab.FindField("ab") 

    afield  = theFarmAreaVTab.FindField("a")     

'***END Locate Data********************************************* 

 

'******calc Public cost by farm*****************************       

sumFarmTemp1ftab.SetEditable(TRUE) 

 for each record in sumFarmTemp1ftab 

    thePubFlagValue = sumFarmTemp1ftab.ReturnValue(sumPubFlagField,record) 

    if (thePubFlagValue > 0) then 

     'update public cost var  

      sumFarmTemp1ftab.SetValue(sumPubFlagField, record, cnstPubPrice) 

    end 'if 

  end 'for (record) 

sumFarmTemp1ftab.SetEditable(FALSE) 

'******END calc Public cost by farm*****************************      

 

'**Refresh joins 

  theFarmAreaVTab.Refresh  

 

'set table editable  

 theFarmAreaVTab.SetEditable(TRUE) 

 

  '***reset vars (to clear out previous scenario values)***************** 

    'area weight variables 

      theFarmAreaVTab.Calculate ("0", totcostfield) 

      theFarmAreaVTab.Calculate ("0", acfield) 

      theFarmAreaVTab.Calculate ("0", ahfield) 

      theFarmAreaVTab.Calculate ("0", abfield) 

      theFarmAreaVTab.Calculate ("0", afield) 

  '***sum up area categories by farm************************   

    'update values in Farmarea table using values from temp farm sum table 

      for each record in theFarmAreaVTab 
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        'locate area constraint values 

          cstCvalue = theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("Cst_c"), 
record) 

          cstHvalue = theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("Cst_h"), 
record) 

          cstBvalue = theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("Cst_b"), 
record) 

        'run through temp table and match Farm_IDs, just in case order is different 

        '(first time through this script, the two tables aren't joined.) 

          for each record2 in sumFarmTemp1ftab 

            if ( theFarmAreaVTab.ReturnValue(theFarmAreaVTab.FindField("Farm_id"), 
record) = 

                 sumFarmTemp1ftab.ReturnValue(sumFarmTemp1ftab.FindField("Farm_id"), 
record2) ) then 

              'add together costs (for output calculations) 

                sumPrivCostvalue = sumFarmTemp1ftab.ReturnValue(sumPrivCostField, record2) 

                sumPubFlagvalue = sumFarmTemp1ftab.ReturnValue(sumPubFlagField, record2) 

                theFarmAreaVTab.SetValue(totcostfield,record, 
sumPrivCostvalue+sumPubFlagvalue )  

               

              'locate current area in each category  

                areaCvalue = sumFarmTemp1ftab.ReturnValue(sum_areaC, record2) 

                areaHvalue = sumFarmTemp1ftab.ReturnValue(sum_areaH, record2) 

                areaBvalue = areaCvalue + areaHvalue 

              'update area constraint penalty 

                'count of constraints used, for determining final weighting factor 

                  acount = 0 

                  avalue = 0 

                if (cstCvalue <> 0) then 

                  theFarmAreaVTab.SetValue(acfield,record, (areaCvalue/cstCvalue) Min (1) )   

                  acount = acount + 1 

                end 

                if (cstHvalue <> 0) then 

                theFarmAreaVTab.SetValue(ahfield,record, (areaHvalue/cstHvalue) Min (1) )     
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                  acount = acount + 1 

                end 

                if (cstBvalue <> 0) then 

                theFarmAreaVTab.SetValue(abfield,record, (areaBvalue/cstBvalue) Min (1) ) 

                  acount = acount + 1 

                end 

                if (acount = 0) then 

                  avalue = 1 

                  theFarmAreaVTab.SetValue(afield,record, avalue ) 

                else 

                  avalue = (theFarmAreaVTab.ReturnValue(acfield,record) + 

                            theFarmAreaVTab.ReturnValue(ahfield,record) + 

                            theFarmAreaVTab.ReturnValue(abfield,record)  )/acount 

                  if (avalue <> 0) then 

                    theFarmAreaVTab.SetValue(afield,record, avalue ) 

                  else 

                    theFarmAreaVTab.SetValue(afield,record,0.001) 

                  end 'if (avalue <> 0) 

                end 'if (acount = 0) 

              'break out of loop and go to next farm in theFarmAreaVTab 

                break 

            end 'if match 

          end 'for each record2 in sumFarmTemp1ftab 

      end 'for each record in theFarmAreaVTab 

       

    'set table not editable  

      theFarmAreaVTab.SetEditable(FALSE) 

  '***END calc area constraint weights by farm************************************   

       Return 1 
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B.9 NPS-sed.ave 
'Calculates the sediment loading for the NPS component. 

 

'***Set Constant Values******************************************* 

   cnstCellArea = 0.09  'cell size [ha] 

   cnstWshedArea = 686.07 'watershed size [ha]  

    

  '**set cell size and extent for shapefile-to-grid conversion 

   theCellSize = 30 'length of one side of square cell [m] 

   theExtent = Rect.MakeXY(669830.142059,4253895,683150.142059,4271685) 

    'MakeXY(x1,y1,x2,y2) 

    

'***Locate Input Data********************************************* 

  theView = self.Get(0) 

  theMPIDftab = theView.FindTheme("Fields_mini.shp").GetFTab 

  theMPIDfield = theMPIDftab.FindField("Mpid") 

  theFlowDirGrid = theView.FindTheme("Flow Direction").GetGrid   

  theFlowAccumGrid = theView.FindTheme("Flow Accumulation").GetGrid   

  theRKSLgrid = theView.FindTheme("RKSL-si").GetGrid 

  theLengthGrid  = theView.FindTheme("Length Across Cell").GetGrid 

  theSlopeDecGrid  = theView.FindTheme("Slope in m/m").GetGrid 

  thePTheme = theView.FindTheme("Outlet_mini.shp")  

   thePointField = thePTheme.GetFTab.FindField("shape") 

   thePointValue = thePTheme.GetFTab.ReturnValue(thePointField,0) 

   

'***NPS Prediction Component***************************************** 

'  '***Check MP Placement *************************************    

'   '**locate within land use shapefile and grid MP description 

'    theMPIDgrid = Grid.MakeFromFTab(theMPIDftab, Prj.MakeNull, theMPIDfield, 
{theCellSize,theExtent}) 

'   '** create theme and add to view 

'     theView.AddTheme(av.run("MakeGtheme",{theMPIDgrid,"MPID"})) 
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  '***Calculate Gross Erosion *************************************   

   '**grid C factor of USLE equation  

    theCfield = theMPIDftab.FindField("Cfact")  

    theCgrid = Grid.MakeFromFTab(theMPIDftab, Prj.MakeNull, theCfield, 
{theCellSize,theExtent}) 

    '** create theme and add to view 

'       theView.AddTheme(av.run("MakeGtheme",{theCgrid,"C factor"})) 

 

   '**grid P factor of USLE equation  

    thePfield = theMPIDftab.FindField("Pfact") 

    thePgrid = Grid.MakeFromFTab(theMPIDftab, Prj.MakeNull, thePfield, 
{theCellSize,theExtent}) 

    '** create theme and add to view 

'      theView.AddTheme(av.run("MakeGtheme",{thePgrid,"input P factor"})) 

    'calc P for contour 

     truePgrid= (((thePgrid = 2.AsGrid) and (theSlopeDecGrid <=(0.02).AsGrid))*0.6) 

      +(((thePgrid = 2.AsGrid) and (theSlopeDecGrid >(0.02).AsGrid) and(theSlopeDecGrid 
<=(0.07).AsGrid))*0.5) 

      +(((thePgrid = 2.AsGrid) and (theSlopeDecGrid >(0.07).AsGrid) and(theSlopeDecGrid 
<=(0.12).AsGrid))*0.6) 

      +(((thePgrid = 2.AsGrid) and (theSlopeDecGrid >(0.12).AsGrid) and(theSlopeDecGrid 
<=(0.18).AsGrid))*0.8) 

      +(((thePgrid = 2.AsGrid) and (theSlopeDecGrid >(0.18).AsGrid) and(theSlopeDecGrid 
<=(0.24).AsGrid))*0.9) 

      +(((thePgrid = 2.AsGrid) and (theSlopeDecGrid >(0.24).AsGrid)                     )*1) 

      +((thePgrid = 1.AsGrid) *1) 

    '** create theme and add to view 

'     theView.AddTheme(av.run("MakeGtheme",{truePgrid,"calc P factor"})) 

     

   '**calculate USLE cell-level gross erosion 

    theErosGrid = theCgrid*truePgrid*theRKSLgrid*cnstCellArea.asGrid ' [Mg] 

    '** create theme and add to view 

'      theView.AddTheme(av.run("MakeGtheme",{theErosGrid,"Gross Erosion by Cell in 
Mg"})) 
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  '***Route Sediment Delivery*************************************   

   '**locate within land use shapefile and grid ALPHA factor of sediment delivery equation 

    theALPHAfield = theMPIDftab.FindField("Alpha")  

    theALPHAgrid = Grid.MakeFromFTab(theMPIDftab, Prj.MakeNull, theALPHAfield, 
{theCellSize,theExtent}) 

    '** create theme and add to view 

 '     theView.AddTheme(av.run("MakeGtheme",{theALPHAgrid,"Alpha grid"})) 

       

   '**calculate delivery from cell with equation: alpha*SQRT(slope/length) 

    theDgrid = theALPHAgrid*((theSlopeDecGrid/theLengthGrid).SQRT) 

    '** create theme and add to view 

'      theView.AddTheme(av.run("MakeGtheme",{theDgrid,"Unbounded Delivery Function 
by Cell"})) 

 

'   '**limit (delivery in streams) or (delivery > 1) to 1 

       theMaxDgrid =  ( (  theDgrid=0                              ) * (0.001) ) 

                     +( ( ((theDgrid>0) and (theDgrid<1))  

                           and (theFlowAccumGrid<60) ) * (theDgrid) ) 

                     +( ( (theDgrid>=1) and (theFlowAccumGrid<60) ) * (1)        ) 

                     +( ( (theFlowAccumGrid>=60)  and (theFlowAccumGrid<200) ) * (0.98) )  

                     +( ( (theFlowAccumGrid>=200)                            ) * (0.9997) )         

 

    '** create theme and add to view 

'      theView.AddTheme(av.run("MakeGtheme",{theMaxDgrid,"Delivery Function by 
Cell"})) 

 

   theLnDgrid = (theMaxDgrid.Log) *(-1)  

       'mult by -1 to make ln numbers pos for flow accum 

    '** create theme and add to view 

'      theView.AddTheme(av.run("MakeGtheme",{theLnDgrid,"-ln(Del)"})) 

       

   theDelAccumGrid = theFlowDirGrid.FlowLength((theLnDgrid/theLengthGrid),FALSE)              

    '** create theme and add to view 
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'      theView.AddTheme(av.run("MakeGtheme",{theDelAccumGrid,"flowlength (-
ln(Del)/length)"})) 

       

   theExpDwnstrmAccum = (theDelAccumGrid*(-1)).Exp 

      'mult by -1 to return ln numbers to proper sign 

    '** create theme and add to view 

'      theView.AddTheme(av.run("MakeGtheme",{theExpDwnstrmAccum,"Downstream 
Delivery Surface"})) 

'      
theView.AddTheme(av.run("MakeGtheme",{((theExpDwnstrmAccum+(0.005))*100).Int,"% 
erosion delivered"})) 

 

  '***Calculate NPS Results *************************************   

'    '***Gross Erosion * Delivery Function at cell *******************  

'     theCellSedYldGrid = theErosGrid*theMaxDgrid/cnstCellArea 

'     '** create theme and add to view 

'       theView.AddTheme(av.run("MakeGtheme",{theCellSedYldGrid,"Sediment from cell in 
Mg/ha"})) 

' 

'   '***Gross Erosion * Delivery Product *************************  

'     theCellSedLossGrid = theErosGrid*theExpDwnstrmAccum 

'     '** create theme and add to view 

'       theView.AddTheme(av.run("MakeGtheme",{theCellSedLossGrid,"Sediment delivered 
to outlet in Mg"})) 

'     

'    '***Total Gross Erosion *************************************   

'     theTotGEGrid = theFlowDirGrid.FlowAccumulation(theErosGrid) 

'     '** create theme and add to view 

'     '  theView.AddTheme(av.run("MakeGtheme",{theTotGEGrid,"Total gross erosion in 
Mg"})) 

'         ' this is an accumulation grid, used to get and check value at outlet. 

'     '**Get value of outlet point in Mg/ha 

'      theTotGE = (theTotGEGrid.CellValue(thePointValue,Prj.MakeNull))/cnstWshedArea 
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''*for placement test* 

'    '***Field Total Gross Erosion *************************************   

'    theFldTotGEGrid = 
theFlowDirGrid.FlowAccumulation(theErosGrid*(theALPHAgrid>9.6)) 

'     '** create theme and add to view 

''      theView.AddTheme(av.run("MakeGtheme",{theFldTotGEGrid,"Field Tot gross erosion 
in Mg"})) 

'         ' this is an accumulation grid, used to get and check value at outlet. 

'     '**Get value of outlet point in Mg/ha 

'      theFldTotGE = (theFldTotGEGrid.CellValue(thePointValue,Prj.MakeNull))/(40*0.09) 

''*for placement test* 

 

   '***Total Sediment Yield *************************************   

    theTotSedLossGrid = 
theFlowDirGrid.FlowAccumulation(theErosGrid*theExpDwnstrmAccum) 

     '** create theme and add to view 

     ' theView.AddTheme(av.run("MakeGtheme",{theTotSedLossGrid,"Total Sed Loss in 
Mg"})) 

         ' this is an accumulation grid, used to get and check value at outlet. 

     '**Get value of outlet point in Mg/ha 

      theSedYld = 
(theTotSedLossGrid.CellValue(thePointValue,Prj.MakeNull))/cnstWshedArea 

 

'***END of NPS Prediction Component***************************************** 

'    '**for field pacement test 

'      MsgBox.Info(theTotGE.asString++theFldTotGE.asString++theSedYld.asString,"") 

 

 

Return theSedYld 
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B.10 Calcarea.ave 
'Calculates area, converting from meters (map unit) to hectares. 

'Script is a customization of ArcView 3.2 Sample Script, "CalcAcre" 

 

'**Edited from ArcView Sample Script: CalcAcre ******************* 

' Calculates area in hectares for polygon themes. 

' *Assumes View map units are set to meters.* 

' The script will add an "Area" field to the theme if it does not exist. 

' If the field exists, the values are recalculated.  

 

'Get proper view and theme from script call 

  theView = self.Get(0)  

'  thetheme = theView.FindTheme((self.Get(1)).AsString) 

  thetheme = theView.FindTheme("SoilbyFld.shp") 

  theFTab = thetheme.GetFTab 

 

'Get the view's projection, if any. 

  thePrj = theView.GetProjection 

  if (thePrj.IsNull) then 

    hasPrj = false 

  else 

    hasPrj = true 

  end 

 

'If you can't edit the theme inform the user. 

  if (theFTab.CanEdit.Not) then 

   MsgBox.Info("Cannot edit table for theme:"++thetheme.AsString,"") 

  end 

 

'Make the FTAB editable. 

  theFTab.SetEditable(TRUE) 
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'Check for existence of "Area" field; If it does not exist, create it. 

  if (theFTab.FindField("Area") = nil) then 

   theAreaField = Field.Make("Area",#FIELD_DOUBLE,16,3) 

   theFTab.AddFields({theAreaField}) 

  else 

   ok = MsgBox.YesNo("Update Area for"++thetheme.getName+"?", "Calculate", true) 

   theAreaField = theFTab.FindField("Area") 

  end 

 

'Loop through the FTAB and find the projected area and perimeter of each  

'shape and set the field values appropriately. 

  theShape = theFTab.ReturnValue(theFTab.FindField("shape"),0) 

  For Each rec in theFTab       

    theFTab.QueryShape(rec,thePrj,theShape) 

    theArea = (theShape.ReturnArea)/10000   '(convert from meters to hectares) 

    theFTab.SetValue(theAreaField,rec,theArea) 

  end 

 

'Make the FTAB not editable. 

  theFTab.SetEditable(FALSE) 

Return Nil 
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B.11 Intersec.ave 
'Intersects Soil and Field shapefiles;   

'edited from ArcView3.2 System Script, "GeoProc.Intersect.Finish" 

 

'***Name modifications to customize script for Optimization program***  

    theView = self.Get(0)   'av.GetActiveDoc 

    Theme1  = self.Get(1) 

    Theme2  = self.Get(2)  

    outFName = self.Get(3) 

     

'**Below is same as system script except a few unneeded parts cut out (no name changes)*** 

countq=0 

geowait=av.finddialog("GeoWait") 

geowait.FindByName("changeme").SetLabel("Intersecting 2 themes") 

geowait.open 

 

Tab1 = Theme1.GetFTab 

Tab2 = Theme2.GetFTab 

Tab1shpField = Tab1.FindField("shape") 

Tab2shpField = Tab2.FindField("shape") 

 

shapeType = Tab1.FindField("Shape").GetType 

if (shapeType = #FIELD_SHAPEPOLY) then 

  outClass = POLYGON 

else 

  MsgBox.Error("Invalid shape field type.", "Theme Intersection Error") 

  return nil 

end 

 

OutputFTab = FTab.MakeNew( outFName, outClass ) 

Theme1Fields = {} 

Theme2Fields = {} 
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theme1Fields2={} 

'--------------------- 

' Get the list of corrected dbase field names for the overlay theme 

Theme2Fielddict=dictionary.make(Tab2.getFields.count) 

for each f in Tab2.getFields 

  if (f.getname = "Shape") then 

    continue 

  end 

  thecopy=f.clone 

  therealname=f.getname   

 

  fldtest=Theme2Fielddict.get(thecopy.getname) 

  if (fldtest <> NIL) then 

    while (fldtest <> NIL) 

      thecopy.setname(thecopy.getname.left(9)+"_") 

      fldtest=Theme2Fielddict.get(thecopy.getname) 

      countq=countq+1 

      if (countq=10) then 

        break 

      end 

    end 

  end 

  thecopy.setalias(thecopy.getname)  

  Theme2Fields.add(thecopy) 

  Theme2fieldDict.add(thecopy.getname,{therealname,"Theme2",thecopy}) 

end 'f 

 

' Get the list of corrected dbase field names for the input theme 

Theme1FieldDict=dictionary.make(Tab1.getFields.count) 

for each f in Tab1.getFields 

  if (f.getname = "Shape") then 

    continue 

  end 
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  thecopy=f.clone 

  therealname=f.getname 

  'getname 

  thecopy.setalias(thecopy.getname)     

  Theme1Fields.add(thecopy) 

  Theme1FieldDict.add(thecopy.getname,{therealname,"Theme1",thecopy}) 

end 'f 

 

Theme1FieldDictCopy=Theme1FieldDict.clone 

for each akey in Theme1FieldDict.returnKeys 

  if (Theme2FieldDict.get(akey)<> NIL) then 

    test=Theme2FieldDict.get(akey) 

    oldvalue=Theme1FieldDict.get(akey) 

    countq=0 

    while (test<>NIL)  

      newname=akey.left(9)+"_" 

      test=Theme2FieldDict.get(newname) 

      countq=countq+1 

      if (countq=10) then 

        break 

      end 

 

    end 

    for each afld in Theme1Fields 

      if (afld.getname = aKey) then 

        found=afld 

        break 

      end 

    end 

    anIndex=Theme1Fields.find(found) 

    avalue=Theme1Fields.get(anIndex) 

    avalue.setname(newname) 

    Theme1Fields.remove(anIndex) 
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    Theme1Fields.add(avalue) 

    Theme1FieldDict.remove(akey) 

    Theme1FieldDict.add(newname,{oldvalue.get(0),oldvalue.get(1),avalue}) 

  end 

end ' akey 

 

''''''''''''''''''''''''''''''''''''' 

if (Theme1Fields.Count > 0) then 

  OutputFTab.AddFields(Theme1Fields) 

end 

if (Theme2Fields.Count > 0) then 

  OutputFTab.AddFields(Theme2Fields) 

end 

outshpfld = OutputFtab.findfield("Shape") 

 

Tab1_oldselection = Tab1.getselection.clone 

Tab2_oldselection = Tab2.GetSelection.Clone 

 

  if (Tab1.getnumselrecords<>0) then 

    Theme1.clearselection 

  end 

  Theme1.getftab.getselection.setall 

  Theme1.getftab.updateselection 

  Tab1Records = Tab1 

  nrecords=Tab1.GetNumRecords 

 

  if (Tab2.getnumselrecords<>0) then 

    Theme2.clearselection 

  end 

  Theme2.getftab.getselection.setall 

  Theme2.getftab.updateselection 

  Tab2Records = Theme2.getftab 

  nrecords2 = Tab2.GetNumRecords 
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  SelType2= #VTAB_SELTYPE_NEW 

  numSelected2 = 0 

 

OutputFtab.seteditable(False) 

OutputFtab.seteditable(True) 

 

'''''''''''''''''' 

'' Create the temp file 

'------------------------------------------------ 

' First pass will get all parts of tab1 

count=0 

av.showmsg("Processing, on First Pass") 

for each aRecord in tab1records 

  count=count+1 

  test=av.SetStatus(count/nrecords  * 100) 

  av.showstopbutton   

  if (test=FALSE) then 

    geowait=av.finddialog("GeoWait") 

    geowait.close 

    return(FALSE) 

  end 

 

   ' get the mainshape 

   themainshape=tab1.returnvalue(tab1shpfield, arecord) 

    

    for each ashape in themainshape.explode 

      theleftover=ashape.clone 

      ashape=ashape.clean 

      if (SelType2 = #VTAB_SELTYPE_AND) then       

        tab2.setselection(Tab2_oldselection) 

        tab2.updateselection       

      end 

      if (theView.getprojection.isNULL) then 
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        theme2.selectbyshapes({ashape},Seltype2)  

      else 

        theme2.selectbyshapes({ashape}.returnProjected(theView.getprojection),Seltype2)  

      end 

      tab2.updateselection       

       

   '  msgbox.report(ashape.asstring,"") 

       

   '  if 
((msgbox.yesno(tab2.getnumselrecords.asstring+nl+SelType2.asstring,theme2.getname,False
))) then 

   '     return(nil) 

   '   end 

       

      if (tab2.getnumselrecords >= numSelected2) then  ' tests if any more records were 
selected 

         ' this piece intersects some 

         for each interRecord in tab2.getselection 

           intersectedPiece=tab2.returnvalue(tab2shpfield,interRecord)  

           theIntersection=ashape.returnintersection(intersectedPiece) 

           if (theIntersection.isNull.NOT) then 

             if (theIntersection = ashape) then 

               ' the 2 pieces are exactly the same 

               ' Write it out  

               outrecord=outputftab.addrecord 

                

               outputftab.setvalue(outshpfld,outrecord,ashape) 

                

               for each akey in Theme1FieldDict.returnkeys 

                 therealname=Theme1FieldDict.get(akey).get(0) 

                 theThemeType=Theme1FieldDict.get(akey).get(1) 

                 theSRCfield=Theme1FieldDict.get(akey).get(2) 

                 if (theThemeType="Theme1") then 
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                   thevalue=tab1.returnvalue(tab1.findfield(therealname),arecord) 

                   outputftab.setvalue(theSRCField,outrecord,thevalue) 

                 end 'if theme1 

               end 

                

               for each akey in Theme2FieldDict.returnkeys 

                 therealname=Theme2FieldDict.get(akey).get(0) 

                 theThemeType=Theme2FieldDict.get(akey).get(1) 

                 theSRCfield=Theme2FieldDict.get(akey).get(2) 

                  

                 if (theThemeType="Theme2") then 

                   thevalue=tab2.returnvalue(tab2.findfield(therealname),interRecord) 

                   outputftab.setvalue(theSRCField,outrecord,thevalue) 

                 end 'if theme1 

 

               end 'for each akey 

                

               continue 

             end ' the shape are equal 

              

             ' WRITE out the INTERSECTION to  Output 

               ' Write it out to TMP and output 

               outrecord=outputftab.addrecord 

               outputftab.setvalue(outshpfld,outrecord,theIntersection) 

               for each akey in Theme1FieldDict.returnkeys 

                 therealname=Theme1FieldDict.get(akey).get(0) 

                 theThemeType=Theme1FieldDict.get(akey).get(1) 

                 theSRCfield=Theme1FieldDict.get(akey).get(2) 

                 if (theThemeType="Theme1") then 

                   thevalue=tab1.returnvalue(tab1.findfield(therealname),arecord) 

                   outputftab.setvalue(theSRCfield,outrecord,thevalue) 

                 end 'if theme1 

               end 
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               for each akey in Theme2FieldDict.returnkeys 

                 therealname=Theme2FieldDict.get(akey).get(0) 

                 theThemeType=Theme2FieldDict.get(akey).get(1) 

                 theSRCfield=Theme2FieldDict.get(akey).get(2) 

                

                 if (theThemeType="Theme2") then 

                   thevalue=tab2.returnvalue(tab2.findfield(therealname),interRecord) 

                   outputftab.setvalue(theSRCfield,outrecord,thevalue) 

                 end 'if theme1 

 

               end 'for each akey 

           end ' is NOT NULL 

         end ' intersectedPiece 

      end ' test for selection 

    end ' ashape 

end 'aRecord in tab1 

 

outputftab.seteditable(false) 

tab2.setselection(Tab2_oldselection) 

tab2.updateselection   

tab1.setselection(Tab1_oldselection) 

tab1.updateselection   

theNewTheme = FTheme.Make( OutputFTab ) 

theView.AddTheme( theNewTheme ) 

for each afld in outputftab.getfields 

  afld.setalias(afld.getname) 

end 

 

geowait.close 

av.clearstatus 

av.purgeobjects 

return outFName 
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B.12 MakeGtheme.ave 
'makes Gtheme from grid 

   

  theGrid = self.Get(0) 

  theGTheme = GTheme.Make(theGrid)   

  ' check if output is ok 

  if (theGrid.HasError) then  

    return NIL  

  else 

    ' set name of theme 

    theGTheme.SetName(self.Get(1)) 

    ' add theme to the view 

    return theGTheme 

  end 



Tamie L. Veith Appendix C: Answers-2000 input files 183
 

 

Appendix C: Answers-2000 input files 
Appendix C contains the main input files used in the Answers-2000 simulation runs. The 
weather file is not included here. Although only one main input file for each watershed is 
given, this file contains the complete set of information used for all evaluation runs. The 
input files are edited as indicated, due to repetition within and length of the cell-level part of 
these files. 

C.1 Mini-Muddy Creek main input file 
   Mini-Muddy sed yld test - ctcrn-wht (5) 
 METRIC  UNITS ARE USED ON INPUT/OUTPUT                  PRINT 
 STORM BY STORM OUTPUT = 1 
 EXTRA OUTPUT ON DAYS  = 
 PRINT HYDROGRAPHS = 00 
 RAINFALL DATA FOR 1 RAINGAGES 
 BEGINNING JULIAN DAY OF SIMULATION 001 1980 
 DURATION OF SIMULATION DAYS 1827 
 GAUGE NUMBER    1 
  SIMULATION CONSTANTS FOLLOW 
 NUMBER OF LINES OF HYDROGRAPH OUTPUT =0101 
 TIME INCREMENT =030.0 SECONDS 
 INFILTRATION CAPACITY CALCULATED EVERY00030 SECONDS 
 EXPECTED RUNOFF PEAK =0050.00 MM/HR 
  SOIL INFILTRATION, DRAINAGE AND GROUNDWATER CONSTANTS FOLLOW 
 NUMBER OF SOILS =0027 
 S01, TP =.51, FP =.55, FC =00.27, A =1.000, DF =228.6, ASM =.55 
 CONDUCTIVITY OPTION = 0 
 15.0 54.0 21.0 2.50 05.0 09.0 
 S02, TP =.50, FP =.24, FC =00.12, A =1.000, DF =152.4, ASM =.24 
 CONDUCTIVITY OPTION = 0 
 11.5 31.1 02.4 1.25 22.5 01.1 
 S03, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S04, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S05, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S06, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S07, TP =.45, FP =.71, FC =00.36, A =1.000, DF =228.6, ASM =.71 
 CONDUCTIVITY OPTION = 0 
 33.5 26.8 27.2 1.25 02.5 11.8 
 S08, TP =.48, FP =.67, FC =00.33, A =1.000, DF =228.6, ASM =.67 
 CONDUCTIVITY OPTION = 0 
 20.0 21.5 21.0 1.50 07.5 09.0 
 S09, TP =.48, FP =.67, FC =00.33, A =1.000, DF =228.6, ASM =.67 
 CONDUCTIVITY OPTION = 0 
 20.0 21.5 21.0 1.50 07.5 09.0 
 S10, TP =.46, FP =.43, FC =00.22, A =1.000, DF =228.6, ASM =.43 
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 CONDUCTIVITY OPTION = 0 
 20.0 20.8 01.7 1.50 07.5 00.8 
 S11, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 25.1 34.9 1.50 10.0 15.1 
 S12, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 25.1 34.9 1.50 10.0 15.1 
 S13, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 25.1 34.9 1.50 10.0 15.1 
 S14, TP =.47, FP =.91, FC =00.46, A =1.000, DF =254.0, ASM =.91 
 CONDUCTIVITY OPTION = 0 
 20.0 28.1 41.9 2.00 05.0 18.1 
 S15, TP =.51, FP =.41, FC =00.21, A =1.000, DF =152.4, ASM =.41 
 CONDUCTIVITY OPTION = 0 
 13.5 40.0 11.5 2.50 12.5 05.0 
 S16, TP =.51, FP =.41, FC =00.21, A =1.000, DF =152.4, ASM =.41 
 CONDUCTIVITY OPTION = 0 
 13.5 40.0 11.5 2.50 12.5 05.0 
 S17, TP =.51, FP =.47, FC =00.24, A =1.000, DF =152.4, ASM =.47 
 CONDUCTIVITY OPTION = 0 
 18.5 25.2 23.8 2.50 10.0 10.2 
 S18, TP =.51, FP =.47, FC =00.24, A =1.000, DF =152.4, ASM =.47 
 CONDUCTIVITY OPTION = 0 
 18.5 25.2 23.8 2.50 10.0 10.2 
 S19, TP =.51, FP =.47, FC =00.24, A =1.000, DF =152.4, ASM =.47 
 CONDUCTIVITY OPTION = 0 
 18.5 25.2 23.8 2.50 10.0 10.2 
 S20, TP =.51, FP =.39, FC =00.20, A =1.000, DF =152.4, ASM =.39 
 CONDUCTIVITY OPTION = 0 
 17.0 23.2 24.8 3.00 12.5 10.7 
 S21, TP =.47, FP =.89, FC =00.45, A =1.000, DF =177.8, ASM =.89 
 CONDUCTIVITY OPTION = 0 
 26.5 20.6 47.9 3.00 02.5 20.6 
 S22, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S23, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S24, TP =.47, FP =.79, FC =00.39, A =1.000, DF =228.6, ASM =.79 
 CONDUCTIVITY OPTION = 0 
 21.0 30.0 46.5 1.25 00.1 20.0 
 S25, TP =.47, FP =.66, FC =00.33, A =1.000, DF =203.2, ASM =.66 
 CONDUCTIVITY OPTION = 0 
 15.5 40.9 31.1 2.00 05.0 13.4 
 S26, TP =.51, FP =.43, FC =00.22, A =1.000, DF =177.8, ASM =.43 
 CONDUCTIVITY OPTION = 0 
 21.0 20.0 11.5 2.50 00.1 05.0 
 S27, TP =.51, FP =.43, FC =00.22, A =1.000, DF =177.8, ASM =.43 
 CONDUCTIVITY OPTION = 0 
 21.0 20.0 11.5 2.00 00.1 05.0 
  PARTICLE SIZE AND TRANSPORT DATA FOLLOWS 
 NUMBER OF PARTICLE SIZE CLASSES  = 05 
 NUMBER OF WASH LOAD CLASSES      = 01 
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   SIZE      SPECIFIC GRAVITY  FALL VELOCITY 
 000000.0020000000000000002.6500000000.0000030 
 000000.0100000000000000002.6500000000.0000800 
 000000.2000000000000000002.6400000000.0240000 
 000000.0300000000000000001.8000000000.0003500 
 000000.5000000000000000001.6000000000.0400000 
 00.15000.21000.54000.09000.050 S01 
 00.11500.02400.31100.01100.225 S02 
 00.20000.43700.23800.18800.025 S03 
 00.20000.43700.23800.18800.025 S04 
 00.20000.43700.23800.18800.025 S05 
 00.20000.43700.23800.18800.025 S06 
 00.33500.27200.26800.11800.025 S07 
 00.20000.21000.21500.09000.075 S08 
 00.20000.21000.21500.09000.075 S09 
 00.20000.01700.20800.00800.075 S10 
 00.20000.34900.25100.15100.100 S11 
 00.20000.34900.25100.15100.100 S12 
 00.20000.34900.25100.15100.100 S13 
 00.20000.41900.28100.18100.050 S14 
 00.13500.11500.40000.05000.125 S15 
 00.13500.11500.40000.05000.125 S16 
 00.18500.23800.25200.10200.100 S17 
 00.18500.23800.25200.10200.100 S18 
 00.18500.23800.25200.10200.100 S19 
 00.17000.24800.23200.10700.125 S20 
 00.26500.47900.20600.20600.025 S21 
 00.20000.43700.23800.18800.025 S22 
 00.20000.43700.23800.18800.025 S23 
 00.21000.46500.30000.20000.001 S24 
 00.15500.31100.40900.13400.050 S25 
 00.21000.11500.20000.05000.001 S26 
 00.21000.11500.20000.05000.001 S27 
 003.8670020.0000004.0000000.0500 
 002.4116020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 007.8014020.0000004.0000000.0500 
 004.8508020.0000004.0000000.0500 
 004.8508020.0000004.0000000.0500 
 004.0784020.0000004.0000000.0500 
 005.4086020.0000004.0000000.0500 
 005.4086020.0000004.0000000.0500 
 005.4086020.0000004.0000000.0500 
 005.6901020.0000004.0000000.0500 
 003.1800020.0000004.0000000.0500 
 003.1800020.0000004.0000000.0500 
 004.6646020.0000004.0000000.0500 
 004.6646020.0000004.0000000.0500 
 004.6646020.0000004.0000000.0500 
 004.4036020.0000004.0000000.0500 
 007.2263020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
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 006.0750020.0000004.0000000.0500 
 004.3645020.0000004.0000000.0500 
 004.6700020.0000004.0000000.0500 
 004.6700020.0000004.0000000.0500 
 DRAINAGE EXPONENT =03 
 DRAINAGE COEFFICIENT FOR TILE DRAINS =09.55 MM/24HR 
 GROUNDWATER RELEASE FRACTION =000000.005 
 FERTILIZER APPLIED =00 
  IMPOUNDMENT SPECIFICATIONS FOLLOW 
 NUMBER OF IMPOUNDMENTS = 00 
  SURFACE ROUGHNESS AND CROP CONSTANTS FOLLOWS 
 NUMBER OF CROPS AND SURFACES =012 
 C01,      Pasture ,     00.40      0.96     0.55    050.00    3.000 
 095.0 005.0 000.8 008.0 002.0 085.0 0.07 0.07 0.04  
 0.00 0.70 1.80 3.00 3.00 3.00 2.90 2.70 1.96 0.90 0.50  
 001 365 0.00 00.000 00.00 00000.0 100 3.00 
 010.0 0.085 0.070 00.50 01.00 0.040 0.050 01 00 
 C02,      Hay     ,     00.80      0.96     0.45    030.00    3.000 
 096.0 004.0 001.0 010.0 002.0 099.9 0.07 0.07 0.04  
 0.00 0.15 0.40 1.90 2.60 3.00 2.96 2.92 2.30 1.15 0.50  
 001 365 2.30 -0.208 02.25 03020.0 120 3.00 
 005.0 0.085 0.450 00.50 01.00 0.050 0.200 01 00 
 C03,      Corn-Sil,     01.10      0.90     0.60    076.20    5.000 
 070.0 030.0 060.0 020.0 000.0 005.0 0.20 0.20 0.10  
 0.00 0.09 0.20 0.32 0.55 1.30 3.00 3.00 2.90 2.00 0.00  
 121 250 0.40 -0.548 01.35 44800.0 1200 3.00 
 043.0 0.336 2.400 00.50 01.00 0.150 0.200 00 00 
 C04,      Forest  ,     02.00      0.95     0.50    090.00    3.500 
 095.0 005.0 000.8 010.0 002.0 095.0 0.25 0.20 0.13  
 2.50 2.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 2.50 2.50  
 001 365 1.30 -0.264 02.50 09400.0 900 4.50 
 005.0 0.000 3.000 00.50 01.00 0.100 0.200 01 00 
 C05,      Imp     ,     00.01      0.01     0.10    000.05    5.000 
 001.0 099.0 001.0 100.0 002.0 099.9 0.00 0.00 0.00  
 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00  
 001 365 0.00 00.000 00.00 00000.0 000 1.00 
 001.0 0.010 0.010 00.01 01.00 0.012 0.013 00 01 
 C06,      fallow  ,     00.01      0.10     0.45    038.60    7.000 
 020.0 080.0 010.0 040.0 040.0 040.0 0.05 0.05 0.02  
 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  
 092 120 0.00 00.000 00.00 00000.0 000 0.01 
 043.0 0.050 0.000 00.01 01.00 0.080 0.100 00 00 
 C07,      W-wht   ,     00.65      0.10     0.55    063.50    7.000 
 080.0 020.0 060.0 018.0 002.0 060.0 0.22 0.16 0.08  
 0.00 0.47 0.90 0.90 0.90 0.90 1.62 3.00 3.00 3.00 0.00  
 251 091 1.00 -0.301 02.50 03360.0 400 3.00 
 043.0 0.500 0.750 00.50 01.00 0.080 0.100 00 00 
 C08,      CTwinfal,     00.01      0.10     0.52    050.80    1.000 
 005.0 095.0 003.0 080.0 005.0 005.0 0.05 0.05 0.02  
 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  
 251 120 0.00 00.000 00.00 00000.0 000 0.01 
 043.0 0.050 0.000 00.01 01.00 0.120 0.180 00 00 
 C09,      MTcrnsil,     01.10      0.90     0.50    050.80    3.000 
 070.0 030.0 045.0 010.0 010.0 050.0 0.20 0.20 0.10  
 0.00 0.09 0.20 0.32 0.55 1.30 3.00 3.00 2.90 2.00 0.00  
 121 250 0.40 -0.548 01.35 44800.0 1200 3.00 
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 030.0 0.336 2.400 00.50 01.00 0.070 0.120 01 00 
 C10,      ctcrn-w ,     01.10      0.90     0.60    076.20    1.000 
 070.0 030.0 060.0 020.0 000.0 005.0 0.20 0.20 0.10  
 0.00 0.09 0.20 0.32 0.55 1.30 3.00 3.00 2.90 2.00 0.00  
 121 250 0.40 -0.548 01.35 44800.0 1200 3.00 
 043.0 0.336 2.400 00.50 01.00 0.150 0.200 00 00 
 C11,      mtcrn-w ,     01.10      0.90     0.50    050.80    3.000 
 070.0 030.0 045.0 010.0 010.0 050.0 0.20 0.20 0.10  
 0.00 0.09 0.20 0.32 0.55 1.30 3.00 3.00 2.90 2.00 0.00  
 121 250 0.40 -0.548 01.35 44800.0 1200 3.00 
 030.0 0.336 2.400 00.50 01.00 0.070 0.120 01 00 
 C12,      MTwinfal,     00.01      0.10     0.35    038.60    3.000 
 005.0 095.0 000.0 040.0 050.0 050.0 0.05 0.05 0.02  
 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  
 251 120 0.00 00.000 00.00 00000.0 000 0.01 
 030.0 0.050 0.000 00.01 01.00 0.050 0.080 00 00 
 NUMBER OF ALL ROTATIONS      =008 
 01 04 1980365 04 1981365 04 1982365 04 1983365 04 1984365 04 1985365 04 1986365  
    04 1987365 04 1988365 04 1989365 04 1990365  
 
{42 blank lines excluded} 
 
 02 05 1980365 05 1981365 05 1982365 05 1983365 05 1984365 05 1985365 05 1986365  
    05 1987365 05 1988365 05 1989365 05 1990365  
 
{42 blank lines excluded} 
 
 03 08 1980120 03 1980250 08 1981120 03 1981250 08 1982120 03 1982250 08 1983120  
    03 1983250 08 1984120 03 1984250 08 1985120 03 1985250 08 1986120 03 1986250  
    08 1987120 03 1987250 08 1988120 03 1988250 08 1989120 03 1989250 08 1990120  
    03 1990250  
 
{38 blank lines excluded} 
 
 04 12 1980120 09 1980250 12 1981120 09 1981250 12 1982120 09 1982250 12 1983120  
    09 1983250 12 1984120 09 1984250 12 1985120 09 1985250 12 1986120 09 1986250  
    12 1987120 09 1987250 12 1988120 09 1988250 12 1989120 09 1989250 12 1990120  
    09 1990250  
 
{38 blank lines excluded} 
 
 05 07 1980091 06 1980120 10 1980250 07 1981091 06 1981120 10 1981250 07 1982091  
    06 1982120 10 1982250 07 1983091 06 1983120 10 1983250 07 1984091 06 1984120  
    10 1984250 07 1985091 06 1985120 10 1985250 07 1986091 06 1986120 10 1986250  
    07 1987091 06 1987120 10 1987250 07 1988091 06 1988120 10 1988250 07 1989091  
    06 1989120 10 1989250 07 1990091 06 1990120 10 1990250  
 
{37 blank lines excluded} 
 
 06 07 1980091 06 1980120 11 1980250 07 1981091 06 1981120 11 1981250 07 1982091  
    06 1982120 11 1982250 07 1983091 06 1983120 11 1983250 07 1984091 06 1984120  
    11 1984250 07 1985091 06 1985120 11 1985250 07 1986091 06 1986120 11 1986250  
    07 1987091 06 1987120 11 1987250 07 1988091 06 1988120 11 1988250 07 1989091  
    06 1989120 11 1989250 07 1990091 06 1990120 11 1990250  
 
{37 blank lines excluded} 
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 07 02 1980365 02 1981365 02 1982365 02 1983365 02 1984365 02 1985365 02 1986365  
    02 1987365 02 1988365 02 1989365 02 1990365  
 
{42 blank lines excluded} 
 
 08 01 1980365 01 1981365 01 1982365 01 1983365 01 1984365 01 1985365 01 1986365  
    01 1987365 01 1988365 01 1989365 01 1990365  
 
{42 blank lines excluded} 
 
  CHANNEL SPECIFICATIONS FOLLOW 
 NUMBER OF CHANNEL NETWORKS  =001 
 NUMBER OF TYPES OF CHANNELS =003 
 CHAN01 WID =01.0(m),  SOIL N =00.045 CHAN N =00.055 0.01 1.00 
 CHAN02 WID =01.5(m),  SOIL N =00.030 CHAN N =00.040 0.01 1.00 
 CHAN03 WID =02.0(m),  SOIL N =00.020 CHAN N =00.030 0.01 1.00 
  ELEMENT SPECIFICATIONS FOR BASELINE SENSITIVITY ANALYSIS 
 EACH ELEMENT IS0030.00m. SQUARE 
 NETWORK 1 OUTFLOW FROM ROW0174 COLUMN 0154     07623 
 44120 0103 312       2   1    1  0     0  0   0   0    4610   46  184    4 
  262    6  808    31 
 45119 0114 307       2   1    1  0     0  0   0   0    4610   46  184    4 
  262    6  808    31 
{remainder of cell-level input excluded} 
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C.2 Lola Run main input file 
   Lola Sed yld test -CTcrnwht(5) 
 METRIC  UNITS ARE USED ON INPUT/OUTPUT                  PRINT 
 STORM BY STORM OUTPUT = 1 
 EXTRA OUTPUT ON DAYS  = 
 PRINT HYDROGRAPHS = 00 
 RAINFALL DATA FOR 1 RAINGAGES 
 BEGINNING JULIAN DAY OF SIMULATION 001 1980 
 DURATION OF SIMULATION DAYS 1827 
 GAUGE NUMBER    1 
  SIMULATION CONSTANTS FOLLOW 
 NUMBER OF LINES OF HYDROGRAPH OUTPUT =0101 
 TIME INCREMENT =030.0 SECONDS 
 INFILTRATION CAPACITY CALCULATED EVERY00030 SECONDS 
 EXPECTED RUNOFF PEAK =0050.00 MM/HR 
  SOIL INFILTRATION, DRAINAGE AND GROUNDWATER CONSTANTS FOLLOW 
 NUMBER OF SOILS =0034 
 S01, TP =.51, FP =.55, FC =00.27, A =1.000, DF =228.6, ASM =.55 
 CONDUCTIVITY OPTION = 0 
 15.0 54.0 21.0 2.50 05.0 09.0 
 S02, TP =.50, FP =.24, FC =00.12, A =1.000, DF =152.4, ASM =.24 
 CONDUCTIVITY OPTION = 0 
 11.5 31.1 02.4 1.25 22.5 01.1 
 S03, TP =.51, FP =.76, FC =00.38, A =1.000, DF =177.8, ASM =.76 
 CONDUCTIVITY OPTION = 0 
 17.5 35.6 41.9 1.25 00.1 18.1 
 S04, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S05, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S06, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S07, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S08, TP =.51, FP =.43, FC =00.22, A =1.000, DF =228.6, ASM =.43 
 CONDUCTIVITY OPTION = 0 
 21.0 41.5 15.0 2.50 10.0 06.5 
 S09, TP =.48, FP =.67, FC =00.33, A =1.000, DF =228.6, ASM =.67 
 CONDUCTIVITY OPTION = 0 
 20.0 21.5 21.0 1.50 07.5 09.0 
 S10, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 25.1 34.9 1.50 10.0 15.1 
 S11, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 25.1 34.9 1.50 10.0 15.1 
 S12, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 25.1 34.9 1.50 10.0 15.1 
 S13, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
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 CONDUCTIVITY OPTION = 0 
 20.0 25.1 34.9 1.50 10.0 15.1 
 S14, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 25.1 34.9 1.50 10.0 15.1 
 S15, TP =.47, FP =.91, FC =00.46, A =1.000, DF =254.0, ASM =.91 
 CONDUCTIVITY OPTION = 0 
 20.0 28.1 41.9 2.00 05.0 18.1 
 S16, TP =.51, FP =.41, FC =00.21, A =1.000, DF =152.4, ASM =.41 
 CONDUCTIVITY OPTION = 0 
 13.5 40.0 11.5 2.50 12.5 05.0 
 S17, TP =.51, FP =.41, FC =00.21, A =1.000, DF =152.4, ASM =.41 
 CONDUCTIVITY OPTION = 0 
 13.5 40.0 11.5 2.50 12.5 05.0 
 S18, TP =.51, FP =.47, FC =00.24, A =1.000, DF =152.4, ASM =.47 
 CONDUCTIVITY OPTION = 0 
 18.5 25.2 23.8 2.50 10.0 10.2 
 S19, TP =.51, FP =.39, FC =00.20, A =1.000, DF =152.4, ASM =.39 
 CONDUCTIVITY OPTION = 0 
 17.0 23.2 24.8 3.00 12.5 10.7 
 S20, TP =.51, FP =.39, FC =00.20, A =1.000, DF =152.4, ASM =.39 
 CONDUCTIVITY OPTION = 0 
 17.0 23.2 24.8 3.00 12.5 10.7 
 S21, TP =.51, FP =.82, FC =00.41, A =1.000, DF =457.2, ASM =.82 
 CONDUCTIVITY OPTION = 0 
 18.5 39.8 34.2 3.00 02.5 14.8 
 S22, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S23, TP =.47, FP =.89, FC =00.45, A =1.000, DF =177.8, ASM =.89 
 CONDUCTIVITY OPTION = 0 
 26.5 20.6 47.9 3.00 02.5 20.6 
 S24, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S25, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S26, TP =.48, FP =.83, FC =00.42, A =1.000, DF =228.6, ASM =.83 
 CONDUCTIVITY OPTION = 0 
 20.0 23.8 43.7 1.50 02.5 18.8 
 S27, TP =.47, FP =.79, FC =00.39, A =1.000, DF =228.6, ASM =.79 
 CONDUCTIVITY OPTION = 0 
 21.0 30.0 46.5 1.25 00.1 20.0 
 S28, TP =.49, FP =.41, FC =00.20, A =1.000, DF =152.4, ASM =.41 
 CONDUCTIVITY OPTION = 0 
 14.0 23.6 19.9 3.00 07.5 08.6 
 S29, TP =.49, FP =.41, FC =00.20, A =1.000, DF =152.4, ASM =.41 
 CONDUCTIVITY OPTION = 0 
 14.0 23.6 19.9 3.00 07.5 08.6 
 S30, TP =.47, FP =.62, FC =00.31, A =1.000, DF =177.8, ASM =.62 
 CONDUCTIVITY OPTION = 0 
 14.0 40.6 30.4 1.25 07.5 13.1 
 S31, TP =.47, FP =.66, FC =00.33, A =1.000, DF =203.2, ASM =.66 
 CONDUCTIVITY OPTION = 0 
 15.5 40.9 31.1 2.00 05.0 13.4 
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 S32, TP =.51, FP =.43, FC =00.22, A =1.000, DF =177.8, ASM =.43 
 CONDUCTIVITY OPTION = 0 
 21.0 20.0 11.5 2.00 00.1 05.0 
 S33, TP =.51, FP =.43, FC =00.22, A =1.000, DF =177.8, ASM =.43 
 CONDUCTIVITY OPTION = 0 
 21.0 20.0 11.5 2.00 00.1 05.0 
 S34, TP =.51, FP =.59, FC =00.29, A =1.000, DF =177.8, ASM =.59 
 CONDUCTIVITY OPTION = 0 
 18.5 21.2 20.3 0.25 15.0 08.7 
  PARTICLE SIZE AND TRANSPORT DATA FOLLOWS 
 NUMBER OF PARTICLE SIZE CLASSES  = 05 
 NUMBER OF WASH LOAD CLASSES      = 01 
   SIZE      SPECIFIC GRAVITY  FALL VELOCITY 
 000000.0020000000000000002.6500000000.0000030 
 000000.0100000000000000002.6500000000.0000800 
 000000.2000000000000000002.6400000000.0240000 
 000000.0300000000000000001.8000000000.0003500 
 000000.5000000000000000001.6000000000.0400000 
 00.15000.21000.54000.09000.050 S01 
 00.11500.02400.31100.01100.225 S02 
 00.17500.41900.35600.18100.001 S03 
 00.20000.43700.23800.18800.025 S04 
 00.20000.43700.23800.18800.025 S05 
 00.20000.43700.23800.18800.025 S06 
 00.20000.43700.23800.18800.025 S07 
 00.21000.15000.41500.06500.100 S08 
 00.20000.21000.21500.09000.075 S09 
 00.20000.34900.25100.15100.100 S10 
 00.20000.34900.25100.15100.100 S11 
 00.20000.34900.25100.15100.100 S12 
 00.20000.34900.25100.15100.100 S13 
 00.20000.34900.25100.15100.100 S14 
 00.20000.41900.28100.18100.050 S15 
 00.13500.11500.40000.05000.125 S16 
 00.13500.11500.40000.05000.125 S17 
 00.18500.23800.25200.10200.100 S18 
 00.17000.24800.23200.10700.125 S19 
 00.17000.24800.23200.10700.125 S20 
 00.18500.34200.39800.14800.025 S21 
 00.20000.43700.23800.18800.025 S22 
 00.26500.47900.20600.20600.025 S23 
 00.20000.43700.23800.18800.025 S24 
 00.20000.43700.23800.18800.025 S25 
 00.20000.43700.23800.18800.025 S26 
 00.21000.46500.30000.20000.001 S27 
 00.14000.19900.23600.08600.075 S28 
 00.14000.19900.23600.08600.075 S29 
 00.14000.30400.40600.13100.075 S30 
 00.15500.31100.40900.13400.050 S31 
 00.21000.11500.20000.05000.001 S32 
 00.21000.11500.20000.05000.001 S33 
 00.18500.20300.21200.08700.150 S34 
 003.8670020.0000004.0000000.0500 
 002.4116020.0000004.0000000.0500 
 005.1938020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
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 005.7599020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 004.8208020.0000004.0000000.0500 
 004.8508020.0000004.0000000.0500 
 005.4086020.0000004.0000000.0500 
 005.4086020.0000004.0000000.0500 
 005.4086020.0000004.0000000.0500 
 005.4086020.0000004.0000000.0500 
 005.4086020.0000004.0000000.0500 
 005.6901020.0000004.0000000.0500 
 003.1800020.0000004.0000000.0500 
 003.1800020.0000004.0000000.0500 
 004.6646020.0000004.0000000.0500 
 004.4036020.0000004.0000000.0500 
 004.4036020.0000004.0000000.0500 
 005.0879020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 007.2263020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 005.7599020.0000004.0000000.0500 
 006.0750020.0000004.0000000.0500 
 003.6078020.0000004.0000000.0500 
 003.6078020.0000004.0000000.0500 
 004.0363020.0000004.0000000.0500 
 004.3645020.0000004.0000000.0500 
 004.6700020.0000004.0000000.0500 
 004.6700020.0000004.0000000.0500 
 004.5226020.0000004.0000000.0500 
 DRAINAGE EXPONENT =03 
 DRAINAGE COEFFICIENT FOR TILE DRAINS =09.55 MM/24HR 
 GROUNDWATER RELEASE FRACTION =000000.005 
 FERTILIZER APPLIED =00 
  IMPOUNDMENT SPECIFICATIONS FOLLOW 
 NUMBER OF IMPOUNDMENTS = 00 
  SURFACE ROUGHNESS AND CROP CONSTANTS FOLLOWS 
 NUMBER OF CROPS AND SURFACES =012 
 C01,      Pasture ,     00.40      0.96     0.55    050.00    3.000 
 095.0 005.0 000.8 008.0 002.0 085.0 0.07 0.07 0.04  
 0.00 0.70 1.80 3.00 3.00 3.00 2.90 2.70 1.96 0.90 0.50  
 001 365 0.00 00.000 00.00 00000.0 100 3.00 
 010.0 0.085 0.070 00.50 01.00 0.040 0.050 01 00 
 C02,      Hay     ,     00.80      0.96     0.45    030.00    3.000 
 096.0 004.0 001.0 010.0 002.0 099.9 0.07 0.07 0.04  
 0.00 0.15 0.40 1.90 2.60 3.00 2.96 2.92 2.30 1.15 0.50  
 001 365 2.30 -0.208 02.25 03020.0 120 3.00 
 005.0 0.085 0.450 00.50 01.00 0.050 0.200 01 00 
 C03,      Corn-Sil,     01.10      0.90     0.60    076.20    5.000 
 070.0 030.0 060.0 020.0 000.0 005.0 0.20 0.20 0.10  
 0.00 0.09 0.20 0.32 0.55 1.30 3.00 3.00 2.90 2.00 0.00  
 121 250 0.40 -0.548 01.35 44800.0 1200 3.00 
 043.0 0.336 2.400 00.50 01.00 0.150 0.200 00 00 
 C04,      Forest  ,     02.00      0.95     0.50    090.00    3.500 
 095.0 005.0 000.8 010.0 002.0 095.0 0.25 0.20 0.13  
 2.50 2.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 2.50 2.50  
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 001 365 1.30 -0.264 02.50 09400.0 900 4.50 
 005.0 0.000 3.000 00.50 01.00 0.100 0.200 01 00 
 C05,      Imp     ,     00.01      0.01     0.10    000.05    5.000 
 001.0 099.0 001.0 100.0 002.0 099.9 0.00 0.00 0.00  
 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00  
 001 365 0.00 00.000 00.00 00000.0 000 1.00 
 001.0 0.010 0.010 00.01 01.00 0.012 0.013 00 01 
 C06,      fallow  ,     00.01      0.10     0.45    038.60    7.000 
 020.0 080.0 010.0 040.0 040.0 040.0 0.05 0.05 0.02  
 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  
 092 120 0.00 00.000 00.00 00000.0 000 0.01 
 043.0 0.050 0.000 00.01 01.00 0.080 0.100 00 00 
 C07,      W-wht   ,     00.65      0.10     0.55    063.50    7.000 
 080.0 020.0 060.0 018.0 002.0 060.0 0.22 0.16 0.08  
 0.00 0.47 0.90 0.90 0.90 0.90 1.62 3.00 3.00 3.00 0.00  
 251 091 1.00 -0.301 02.50 03360.0 400 3.00 
 043.0 0.500 0.750 00.50 01.00 0.080 0.100 00 00 
 C08,      CTwinfal,     00.01      0.10     0.52    050.80    1.000 
 005.0 095.0 003.0 080.0 005.0 005.0 0.05 0.05 0.02  
 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  
 251 120 0.00 00.000 00.00 00000.0 000 0.01 
 043.0 0.050 0.000 00.01 01.00 0.120 0.180 00 00 
 C09,      MTcrnsil,     01.10      0.90     0.50    050.80    3.000 
 070.0 030.0 045.0 010.0 010.0 050.0 0.20 0.20 0.10  
 0.00 0.09 0.20 0.32 0.55 1.30 3.00 3.00 2.90 2.00 0.00  
 121 250 0.40 -0.548 01.35 44800.0 1200 3.00 
 030.0 0.336 2.400 00.50 01.00 0.070 0.120 01 00 
 C10,      ctcrn-w ,     01.10      0.90     0.60    076.20    1.000 
 070.0 030.0 060.0 020.0 000.0 005.0 0.20 0.20 0.10  
 0.00 0.09 0.20 0.32 0.55 1.30 3.00 3.00 2.90 2.00 0.00  
 121 250 0.40 -0.548 01.35 44800.0 1200 3.00 
 043.0 0.336 2.400 00.50 01.00 0.150 0.200 00 00 
 C11,      mtcrn-w ,     01.10      0.90     0.50    050.80    3.000 
 070.0 030.0 045.0 010.0 010.0 050.0 0.20 0.20 0.10  
 0.00 0.09 0.20 0.32 0.55 1.30 3.00 3.00 2.90 2.00 0.00  
 121 250 0.40 -0.548 01.35 44800.0 1200 3.00 
 030.0 0.336 2.400 00.50 01.00 0.070 0.120 01 00 
 C12,      MTwinfal,     00.01      0.10     0.35    038.60    3.000 
 005.0 095.0 000.0 040.0 050.0 050.0 0.05 0.05 0.02  
 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  
 251 120 0.00 00.000 00.00 00000.0 000 0.01 
 030.0 0.050 0.000 00.01 01.00 0.050 0.080 00 00 
 NUMBER OF ALL ROTATIONS      =008 
 01 04 1980365 04 1981365 04 1982365 04 1983365 04 1984365 04 1985365 04 1986365  
    04 1987365 04 1988365 04 1989365 04 1990365  
 
{42 blank lines excluded} 
 
 02 05 1980365 05 1981365 05 1982365 05 1983365 05 1984365 05 1985365 05 1986365  
    05 1987365 05 1988365 05 1989365 05 1990365  
 
{42 blank lines excluded} 
 
 03 08 1980120 03 1980250 08 1981120 03 1981250 08 1982120 03 1982250 08 1983120  
    03 1983250 08 1984120 03 1984250 08 1985120 03 1985250 08 1986120 03 1986250  
    08 1987120 03 1987250 08 1988120 03 1988250 08 1989120 03 1989250 08 1990120  
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    03 1990250  
 
{38 blank lines excluded} 
 
 04 08 1980120 09 1980250 08 1981120 09 1981250 08 1982120 09 1982250 08 1983120  
    09 1983250 08 1984120 09 1984250 08 1985120 09 1985250 08 1986120 09 1986250  
    08 1987120 09 1987250 08 1988120 09 1988250 08 1989120 09 1989250 08 1990120  
    09 1990250  
 
{38 blank lines excluded} 
 
 05 07 1980091 06 1980120 10 1980250 07 1981091 06 1981120 10 1981250 07 1982091  
    06 1982120 10 1982250 07 1983091 06 1983120 10 1983250 07 1984091 06 1984120  
    10 1984250 07 1985091 06 1985120 10 1985250 07 1986091 06 1986120 10 1986250  
    07 1987091 06 1987120 10 1987250 07 1988091 06 1988120 10 1988250 07 1989091  
    06 1989120 10 1989250 07 1990091 06 1990120 10 1990250  
 
{37 blank lines excluded} 
 
 06 07 1980091 06 1980120 09 1980250 07 1981091 06 1981120 09 1981250 07 1982091  
    06 1982120 09 1982250 07 1983091 06 1983120 09 1983250 07 1984091 06 1984120  
    09 1984250 07 1985091 06 1985120 09 1985250 07 1986091 06 1986120 09 1986250  
    07 1987091 06 1987120 09 1987250 07 1988091 06 1988120 09 1988250 07 1989091  
    06 1989120 09 1989250 07 1990091 06 1990120 09 1990250  
 
{37 blank lines excluded} 
 
 07 02 1980365 02 1981365 02 1982365 02 1983365 02 1984365 02 1985365 02 1986365  
    02 1987365 02 1988365 02 1989365 02 1990365  
 
{42 blank lines excluded} 
 
 08 01 1980365 01 1981365 01 1982365 01 1983365 01 1984365 01 1985365 01 1986365  
    01 1987365 01 1988365 01 1989365 01 1990365  
 
{42 blank lines excluded} 
 
  CHANNEL SPECIFICATIONS FOLLOW 
 NUMBER OF CHANNEL NETWORKS  =001 
 NUMBER OF TYPES OF CHANNELS =004 
 CHAN01 WID =01.0(m),  SOIL N =00.045 CHAN N =00.055 0.01 1.00 
 CHAN02 WID =01.5(m),  SOIL N =00.030 CHAN N =00.040 0.01 1.00 
 CHAN03 WID =02.0(m),  SOIL N =00.020 CHAN N =00.030 0.01 1.00 
 CHAN04 WID =02.5(m),  SOIL N =00.015 CHAN N =00.025 0.01 1.00 
  ELEMENT SPECIFICATIONS FOR BASELINE SENSITIVITY ANALYSIS 
 EACH ELEMENT IS0030.00m. SQUARE 
 NETWORK 1 OUTFLOW FROM ROW0298 COLUMN 0120     11220 
113 78 0 93 278      26   1    1  0     0  0   0   0    4610   46  184    4 
  262    6  808    31 
113 79 0158 295       2   1    1  0     0  0   0   0    4610   46  184    4 
  262    6  808    31 
{remainder of cell-level input excluded} 

 



Tamie L. Veith Vita 195
 

 

Vita 
 

Tamie Lynne Veith was born and raised west of the Mississippi and east of the Rockies. In 
1992 she received her B.A. in Mathematics from Reed College in Portland Oregon, with a 
thesis titled Watered Silk: A Mathematical Look At Moiré Patterns. Tamie stayed on the west 
coast and worked for three years as a research assistant at the University of Washington 
before driving across country to start graduate school on the east coast. She studied 
operations research in the Industrial and Systems Engineering Department at Virginia Tech 
and received her M.S. in 1997. Her focus was on simulation and WWW applications. Her 
M.S. thesis was titled Netsim: A JavaTM –Based WWW Simulation Package. 

In the interest of applying her knowledge and skills in a manner beneficial to the world, 
Tamie pursued a Ph.D. in Biological Systems Engineering at Virginia Tech. Her research in 
this field has included the use of modeling to understand and reduce NPS pollution at the 
watershed level. She received a three-year USDA National Needs Fellowship in Water 
Science to support her Ph.D. work. After receiving her Ph. D., Tamie plans to continue 
learning from and contributing to the area of land and water engineering through research 
and academia. The current question is where in the country (or world) will she end up next?  


