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1 Introduction

Many research e�orts use numeric Multiobjective

Optimization Problems (MOPs) as examples to

show or judge Multiobjective Evolutionary Algorithm

(MOEA) performance. However, there is limited com-

prehensive discussion of MOP landscape issues in the

MOEA literature, and there is often no explanation of

why (the selected) numeric MOPs may be appropriate

MOEA test functions. Extensive experimentation and

analyses concerning MOEA parameters, components,

and approaches are also generally lacking.

Most MOEA researchers' modus operandi is an al-

gorithm's comparison (usually the researcher's own

new and improved variant) against some other MOEA

by analyzing results for speci�c MOP(s) (Scha�er's

VEGA and MOP-F2 are typical). Results are of-

ten \clearly" shown in graphical form indicating the

new algorithm is more e�ective. However, these em-

pirical, relativistic experiments are incomplete as re-

garding general MOEA comparisons. The literature's

history of visually comparing MOEA performance on

non-standard and unjusti�ed numeric MOPs does lit-

tle to determine a given MOEA's actual e�ciency and

e�ectiveness. A standard suite of numeric functions

exhibiting relevant MOP domain characteristics can

provide the necessary common comparative basis [2].

The MOEA community's limited de facto test suite

contains various functions, many of whose origins and

rationale for use are unknown. [1, 2]. The lack of com-

plex mathematical MOEA performance assessment

tests implies that identi�cation of appropriate func-

tions to objectively determine MOEA e�ciency and

e�ectiveness is required. Thus, a documented MOP

test suite is an asset to MOEA research. We provide

various MOPs for use in a standardized MOEA test

suite. Supporting these proposals is a discussion of

general test suite issues, the MOP domain, and vari-

ous MOEA evaluations.

The NFL theorems imply that if problem domain

knowledge is not incorporated into the algorithm do-

main, no formal assurances of an algorithm's gen-

eral e�ectiveness exist. Previously proposed Single-

Objective EA (SOEA) test suites examine an EA's

capability to \handle" various problem domain char-

acteristics. These suites incorporate relevant search

space features to be addressed by some particular EA

instantiation. For example, De Jong suggests �ve

single-objective optimization test functions (F1 - F5)

and Michalewicz �ve single-objective constrained op-

timization test functions (G1 - G5). Whitley et al

and Goldberg et al. o�er other formalized SOEA test

suites. Particular SOEA instantiations are subjected

to generic test suites like these and judged on their

computational performance.

2 MOP Domain Features

We assert that like SOEA optimization problems, nu-

meric MOPs may be suitable representatives of real-

world problems. Any modeled real-world problem

is done so mathematically in a functional form, but

MOPs arguably capture more information about the

modeled problem as they allow incorporation of several

functions (objectives). Regardless, modeling a real-

world problem may result in a numeric or combinato-

rial MOP, one that is perhaps simple, perhaps com-

plex. The MOP may contain continuous or discrete

(e.g., integer-constrained) functions or even a mix of

the two.

It is generally accepted that EAs are useful search algo-

rithms when the problem domain is multidimensional

(many decision variables), and/or the search space is

very large. Many numerical examples used by MOEA

researchers do not explicitly meet this criteria. Of the

30 distinct numerical MOPs in the literature (both

constrained and unconstrained [2], all but three use at

most two decision variables and the majority use only



two objective functions. This implies that unless the

search space is very large (at the least), MOEA per-

formance claims/comparisons based on these functions

may not be meaningful. The MOEA may be operating

in a problem domain not particularly well-suited to its

capabilities or perhaps one which is not challenging.

Any proposed MOEA test suite must o�er functions

spanning known MOP characteristics. Particularly, it

must contain \MOEA challenging" functions. In or-

der to then identify appropriate functions for inclusion

relevant MOP domain characteristics must be identi-

�ed and considered. We use the 30 known examples

in the literature as the basis for discussion [2]. These

MOPs incorporate 2-3 functions and 0-12 side con-

straints. Van Veldhuizen [1] presents a complete set of

�gures showing representations of the Pareto optimal

set (genotype) and the Pareto optimal front (pheno-

type) for each of these MOPs.

We have identi�ed salient MOP domain characteris-

tics viewed from an MOEA perspective and classi-

�ed under a genotype and phenotype rubric. These

high-level characteristics were identi�ed from empiri-

cal evaluations, whose representation (and succeeding

interpretation) may slightly change based upon un-

derlying computational resolution and graphical pre-

sentation. Thus, test suite functions should encom-

pass (combinations of) all these possible genotype and

phenotype characteristics; convex vs non-convex (con-

cave), continuous vs discontinuous, discrete, symmet-

ric vs non-symmetric, uniformity vs non-uniformity,

unimodal, multi-modal, and scalable vs non-scalable.

3 Numeric MOEA Test Suite

Functions

The proposed MOPs address the issues discussed.

Note that we initially restrict functions to those with

no side constraints. Their mathematical formulations

(which may be slightly revised from the originals or as

we elsewhere proposed [3]) are reected in [1].

Seven MOPs are initially selected. MOP1 (convex)

and MOP2 (concave) are arguably MOEA \easy"

MOPs. MOP2 and MOP4 (discontinuous) are scalable

as regards decision variable dimensionality. MOP6

(discontinuous) is scalable as regarding the number of

Pareto curves in the Pareto front. MOP5 and MOP7

are tri-objective MOPs. All are nonlinear, and several

show a lack of symmetry in both solution and objec-

tive space. Taken together these MOPs begin to form

a coherent basis for MOEA comparisons. Other rel-

evant MOP characteristics can also be addressed by

selecting additional MOPs for test suite inclusion [1].

Thus, we also propose side-constrained numeric and

combinatorial MOEA test functions.

Real-world applications can be considered for inclu-

sion in any comprehensive MOEA evaluation. These

MOPs may be numeric, non-numeric, or both, and

are probably more constrained (in terms of resources)

than the problems we have presented. We note that

many real-world applications employ �tness function

software (i.e., computational uid dynamics or com-

putational electromagnetic) requiring extensive calcu-

lations, data interchange, and data mapping. Other

possible characteristics include deception and isolated

multimodal functions.

4 MOEA Testing

Using our validated test suite, various MOEAs have

been evaluated. These currently include the MOGA,

NPGA, and the NSGA along with our new explicit

building block GA, the MOMGA. The MOMGA de-

sign approach is based upon Goldberg's\messy" GA.

Comprehensive testing using the MOEA test suite in-

dicates that the MOMGA is statistically as good as or

better than the other approaches. Such a statistical

analysis involved the development and analysis of ap-

propriate metrics (genotype and phenotype) generally

based upon distance metrics [1, 2]. Our analysis also

addresses the impact of the various MOEA crossover

and mutation parameter values, selection operators,

and population sizes that e�ectively direct search to-

wards the extended Pareto front. Using our test suite

based upon an validated set of metrics, MOEA com-

parisons are made more precise and the results more

informative for speci�c MOEA selection.
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