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Av. Instituto Politécnico Nacional No. 2508

Col. San Pedro Zacatenco
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Abstract

This paper analyzes the convergence of metaheuristics used for

multiobjective optimization problems in which the transition proba-

bilities use a uniform mutation rule. We prove that these algorithms

converge only if elitism is used.
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1 Introduction

This paper concerns metaheuristic algorithms (MhAs) for multiobjective op-

timization problems (MOPs) (see [2]). For MhAs that use a uniform mutation

rule we show that the associated Markov chain converges geometrically to its

stationary distribution, but not necessarily to the MOP’s optimal solution

set. Convergence to the optimal solution set is ensured only if elitism is used.

MhAs are a standard tool to study both single-objective and MOPs. The

convergence of a MhA in the single-objective case is reasonably well un-

derstood; see [9], for instance. For MOPs, however, the situation is quite

different, and to the best of the authors’ knowledge, the existing results deal

with extremely particular cases; see for example, [10]. This paper is then,

the first attempt to deal with the convergence of a general class of MhAs in

the context of multiobjective optimization.

The remainder of this paper is organized as follows. Section 2 introduces

the MOP we are concerned with. The class of MhAs we are interested on

are described in Section 3, together with our main results. These results are

proved in Section 4. We conclude in Section 5 with some general remarks

and some possible paths of future research.
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2 The Multiobjective Optimization Problem

To compare vectors in IRd we will use the standard Pareto order defined as

follows.

If ~u = (u1, . . . , ud) and ~v = (v1, . . . , vd) are vectors in IRd, then

~u � ~v ⇐⇒ ui ≤ vi ∀ i ∈ {1, . . . , d}.

This relation is a partial order. We also write ~u ≺ ~v ⇐⇒ ~u � ~v and ~u 6= ~v.

Definition 1:

Let X be a set and F : X −→ IRd a given vector function with compo-

nents fi : X −→ IR for each i ∈ {1, . . . , d}. The multiobjective optimization

problem (MOP) we are concerned with is to find x∗ ∈ X such that

F (x∗) = min
x∈X

F (x) = min
x∈X

[f1(x), . . . , fn(x)], (1)

where the minimum is understood in the sense of the Pareto order.

Definition 2:
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A point x∗ ∈ X is called a Pareto optimal solution for the MOP (1) if

there is no x ∈ X such that F (x) ≺ F (x∗). The set

P∗ = {x ∈ X : x is a Pareto optimal solution}

is called the Pareto optimal set, and its image under F , i.e.

F (P∗) := {F (x) : x ∈ P∗} ,

is the Pareto front.

As we are concerned with a MhA in which the elements are represented

by strings of length l with 0 or 1 in each entry, in the remainder of this paper

we will replace X with the finite set IBl, where IB = {0, 1}.

3 Metaheuristic Algorithms

In a general sense, a metaheuristic algorithm (MhA) is a “high-level strategy

for exploring search spaces by using different methods” [1]. Since many

types of metaheuristics exist (and, consequently, many possible definitions

are available [1]), it is important to provide the features that characterize the
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types of MhAs for which the mathematical model developed in this paper

applies. The MhAs considered for the purposes of our work reported in this

paper have the following features:

• Adopt a binary encoding of solutions (i.e., the decision variables of

the problem are always represented by strings of binary numbers).

• Are population-based approaches (i.e., the algorithm always operates

over a set of solutions—the so-called “population”) at a time rather

than over a single solution.

• Are memoryless approaches (i.e., they do not use in any way, the

search history to guide the algorithm). It is important to note that

memoryless algorithms perform a Markov process, since they only use

the current state of the search process to determine the next action to

be performed [1].

• Use a mutation operator. Such a mutation operator is applied with

a parameter or probability pm, which is positive and less than 1/2, i.e.

pm ∈ (0, 1/2) . (2)
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In some cases this mutation can be applied with two or more parame-

ters, namely the population is divided into two or more subpopulations

to each of which a different mutation parameter is applied. It is noted

that the MhAs considered may also incorporate another operator (e.g.,

crossover) besides mutation. However, our model only needs muta-

tion and we will not provide in this paper any sort of analysis on the

theoretical impact of adopting other operators.

• May adopt some form of “elitism” (i.e., this operator retains the best

solution in the current population and copies it intact—without being

affected in any way by the variation operators of the algorithm—to

the next generation). Although the use of this operator is optional for

the class of MhAs considered in this paper, one of our main points is

precisely the need of having such an operator when dealing with mul-

tiobjective optimization problems in order to guarantee convergence.

Some examples of the MhAs that fit the previous description are:

• Genetic algorithms (see [7]).

• Evolution strategies (see [11]).

• Evolutionary programming (see [6, 5]).
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• Artificial immune systems (see [3, 8]).

Formally, the algorithm we are concerned with is modeled as a Markov

chain {Xk : k ≥ 0}, whose state space S is the set of all possible populations

of n individuals, each one represented by a bit string of length l. Hence

S = IBnl, where IB = {0, 1} and S is the set of all possible vectors of n

entries, each of which is a string of length l with 0 or 1 in each entry.

Let i ∈ S be a state, so that i can be represented as

i = (i1, i2, . . . , in),

where each is is a string of length l of 0’s and 1’s.

The chain’s transition probability is given by

Pij = IP (Xk+1 = j | Xk = i).

Thus the transition matrix is of the form

P = (Pij) = LM, (3)
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where M is the transition matrix corresponding to the mutation operation

and L represents the other operations.

Note that these matrices are stochastic, i.e. Lij ≥ 0, Mij ≥ 0 for all i, j,

and for each i ∈ S

∑
s∈S

Lis = 1 and
∑
s∈S

Mis = 1. (4)

The Mutation Probability

To calculate the mutation probability from the state i to state j we use

that the individual is is transformed into the individual js applying uniform

mutation (i.e., each entry of is is transformed into the corresponding one of

js with probability pm), as in the following scheme.

1 2 · · · n

i i1 i2 · · · in

mutation ↓ ↓ · · · ↓

j j1 j2 · · · jn

Thus, for each individual in the population the mutation probability can
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be calculated as

pH(is,js)
m (1− pm)l−H(is,js) ∀s ∈ {1, . . . , n},

where H(is, js) is the Hamming distance between is and js.

Hence the mutation probability from i to j is:

Mij =
n∏

s=1

pH(is,js)
m (1− pm)l−H(is,js) (5)

Using Elitism

We say that we are using elitism in an algorithm (or a MhA in our case) if

we use an extra set, called the elite set, in which we put the “best” elements

(i.e., the nondominated elements of the state in our case). This elite set

usually does not participate in the evolution, since it is used only to store

the nondominated elements.

After each transition, we apply an elitism operation that accepts a new

state if there is an element in the population that improves some element in

the elite set.

If we are using elitism, the representation of the states changes to the
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following form:

î = (ie; i) = (ie1, · · · , ier; i1, · · · , in),

where ie1, · · · , ier are the members of the elite set of the state, r is the number

of elements in the elite set and we assume that the cardinality of P∗ is greater

than or equal to r. In addition we assume that r ≤ n.

Note that in general ie1, · · · , ier are not necessarily the “best” elements of

the state î, but after applying the elitism operation in ie they become the

“best” elements of the state. The reason for this is that the elite set is

assumed to be never empty, and at some point, some of its contents can be

dominated by solutions that were produced after applying mutation and just

before applying the elitism operator.

Let P̂ be the transition matrix associated with the new states. If all the

elements in the elite set of a state are Pareto optimal, then any state that

contains an element in the elite set that is not a Pareto optimal will not be

accepted, i.e.

if {ie1, · · · , ier} ⊂ P∗ and {je
1, · · · , je

r} 6⊂ P∗ then P̂ij = 0. (6)

11



Main Results

Before stating our main results we introduce the definition of convergence of

an algorithm, which uses the following notation: if V = (v1, v2, . . . , vn) is a

vector, then {V } denotes the set of entries of V , i.e.

{V } = {v1, v2, . . . , vn}.

Definition 3:

Let {Xk : k ≥ 0} be the Markov chain associated to an algorithm. We

say that the algorithm converges to P∗ with probability 1 if

IP ({Xk} ⊂ P∗) → 1 as k →∞.

In the case that we are using elitism we replace Xk by Xe
k, the elite set

of the state (i.e. if Xk = i then Xe
k = ie)

In the rest of the paper we will assume, for greater generality, that the

population of the MhA is divided in two subsets on which we apply different
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mutation parameters.1 In the first subset we apply the parameter pm and in

the second ρm. We assume that

pm, ρm ∈ (0, 1/2) . (7)

Let’s assume that the first subset has n1 individuals, so that the second

subset has n−n1 individuals. Thus, for each individual in the first subset of

the population the mutation probability can be calculated as

pH(is,js)
m (1− pm)l−H(is,js) ∀s ∈ {1, . . . , n1},

and for the second subset we have

ρH(is,js)
m (1− ρm)l−H(is,js) ∀s ∈ {n1 + 1, . . . , n}.

1Note that the “generality” in this case refers to the fact that if we adopt only one
mutation parameter for the entire population, we are constraining ourselves to only that
type of mutation (either light or severe) in our model. By dividing the population in two
subsets, we allow two different types of mutation to be applied at the same time (e.g., one
light and another one severe).
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Now, instead of (5) the mutation probability from i to j is:

Mij =
n1∏

s=1

pH(is,js)
m (1− pm)l−H(is,js)

n∏
s=n1+1

ρH(is,js)
m (1− ρm)l−H(is,js) (8)

Theorem 1:

Let P be the transition matrix of a MhA. Then P has a stationary dis-

tribution π such that

|P k
ij − πj| ≤ (1− ξ)k−1 ∀i, j ∈ S ∀k = 1, 2, . . . , (9)

where ξ = 2nlpn1l
m ρ(n−n1)l

m . Moreover, π has all entries positive.

Theorem 1 states that P k converges geometrically to π. Nevertheless in

spite of this result, the convergence of the MhA to the Pareto optimal set

cannot be guaranteed. In fact, from Theorem 1 and using the fact that π

has all entries positive we will immediately deduce the following.

Corollary 1:

The MhA does not converge.
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To ensure convergence of the MhA we need to use elitism.

Theorem 2:

The MhA using elitism converges.

4 Proofs

We first recall some standard definitions and results.

Definition 4:

A stochastic matrix P is said to be primitive if there exists k > 0 such

that the entries of P k are all positive.

The next result gives an upper bound on the rate of convergence of P k as

k → ∞. We will use it to show the existence of the stationary distribution

in Theorem 1.

Lemma 1:

Let N be the cardinality of S, and let P k
ij be the entry ij of P k. Suppose

that there exists an integer ν > 0 and a set J of N1 ≥ 1 values of j such that
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min
1≤i≤N

j∈J

P ν
ij = δ > 0.

Then there are numbers π1, π2, . . . , πN1 such that

lim
k→∞

P k
ij = πj ∀i = 1, . . . , N1, with πj ≥ δ > 0, ∀j ∈ J,

and π1, π2, . . . , πN1 form a set of stationary probabilities. Moreover

|P k
ij − πj| ≤ (1−N1δ)

k
ν
−1 ∀k = 1, 2, . . . .

Proof See, for example, [4, p. 173].

The next lemma will allow us to use Lemma 1.

Lemma 2:

Let P be the transition matrix of the MhA. Then

min
i,j∈S

Pij = pn1l
m ρ(n−n1)l

m > 0 ∀i, j ∈ S, (10)
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and therefore P is primitive.

Proof

By (7) we have

pm <
1

2
< 1− pm, ρm <

1

2
< 1− ρm.

Thus, from (8),

Mij =
n1∏

s=1

pH(is,js)
m (1− pm)l−H(is,js)

n∏
s=n1+1

ρH(is,js)
m (1− ρm)l−H(is,js)

>
n1∏

s=1

pl
m

n∏
s=n1+1

ρl
m

= pn1l
m ρ(n−n1)l

m

On the other hand, by (3) and (4)

Pij =
∑
s∈S

LisMsj

≥ pn1l
m ρ(n−n1)l

m

∑
s∈S

Lis

= pn1l
m ρ(n−n1)l

m > 0,
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To verify (10), observe that Pij attains the minimum in (10) if i has 0 in all

entries and j has 1 in all entries. Thus the desired conclusion follows.

Proof of Theorem 1

From Lemma 2, P is primitive. Moreover, because (10) holds for all j ∈ S we

have that N1 = N = 2nl and ν = 1. Thus, by Lemma 1, P has a stationary

distribution π with all entries positive and we get (9).

Before proving Theorem 2 we give some definitions and preliminary re-

sults.

Definition 5:

Let X be as in Definition 1. We say that X is complete if for each

x ∈ X \ P∗ there exists x∗ ∈ P∗ such that F (x∗) � F (x). For instance, if X

is finite then X is complete.

Let i, j ∈ S be two arbitrary states, we say that i leads to j, and write

i → j, if there exists an integer k ≥ 1 such that P k
ij > 0. If i does not lead

to j we write i 6→ j.

We call a state i inessential if there exists a state j such that i → j but

j 6→ i. Otherwise, the state i is called essential.
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We denote the set of essential states by E and the set of inessential states

by I. Clearly,

S = E ∪ I.

We say that P is in canonical form if it can be written as

P =

 P1 0

R Q

 .

Observe that P can put in this form by reordering the states, that is,

the essential states at the beginning and the inessential states at the end. In

this case, P1 is the matrix associated with the transitions between essential

states, R with transitions from inessential to essential states, and Q with

transitions between inessential states.

Note that P k has a Qk in the position of Q in P , i.e.

P k =

 P k
1 0

Rk Qk

 ,

where Rk is a matrix that depends of P1, Q and R.

Now we present some results that will be essential in the proof of Theorem
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2.

Lemma 3:

Let P be a stochastic matrix, and let Q be the submatrix of P associated

with transitions between inessential states. Then, as k →∞,

Qk → 0 elementwise geometrically fast.

Proof See, for instance, [12, p.120].

As a consequence of Lemma 3 we have the following.

Corollary 2:

For any initial distribution,

IP (Xk ∈ I) → 0 as k →∞.

Proof

For any initial distribution vector p0, let p0(I) be the subvector that

corresponds to the inessential states. Then, by Lemma 3,

IP (Xk ∈ I) = p0(I)′Qk1 → 0 as k →∞.
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Proof of Theorem 2

By Corollary 2, it suffices to show that the states that contain elements

in the elite set that are not Pareto optimal are inessential states. To this

end, first note that X = IBl is complete, because it is finite.

Now suppose that there is a state î = (ie; i) in which the elite set contains

elements ies1
, . . . , iesk

that are not Pareto optimal. Then, as X is complete,

there are elements, say je
s1

, . . . , je
sk
∈ P∗, that dominate ies1

, . . . , iesk
, respec-

tively.

Take ĵ = (je; j) such that all Pareto optimal points of ie are in je and

replace the other elements of ie with the corresponding je
s1

, . . . , je
sk

. Thus all

the elements in je are Pareto optimal.

Now let

j = (je
1, . . . , j

e
r , i

e
s1

, . . . , ies1︸ ︷︷ ︸
n−r copies

).

By Lemma 2 we have i → j. Hence with positive probability we can pass

from (ie, i) to (ie, j), and then we apply the elitism operation to pass from

(ie, j) to (je, j). This implies that î → ĵ. On the other hand, using (6), ĵ 6→ î

and therefore î is an inessential state.
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Finally, from Corollary 2 we have

IP ({Xe
k} ⊂ P∗) = IP (Xk ∈ E) = 1− IP (Xk ∈ I) → 1− 0 = 1

as k →∞. This completes the proof of Theorem 2.

5 Conclusions and Future Work

We have presented a general convergence analysis of a MhA for MOPs in

which uniform mutation is used. It was proven in Theorem 2 that it is

necessary to use elitism to ensure that our algorithm converges. This result

is of course reassuring, but it is not quite complete in the sense that we have

been unable to provide a result such as in (9), on the speed of convergence.

The latter fact as well as a convergence analysis of a MhA with nonuniform

mutation rule, require further research.

Additionally, we believe that it is important to study the true role of

crossover in the context of multiobjective optimization using meta-heuristics.

Although the combination of crossover and mutation would not eliminate

the need of using elitism to guarantee convergence (as in the case of single-

objective optimization [9]), the use of this operator may accelerate conver-
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gence uncer certain circumstances. We are not aware of any theoretical work

that has analyzed the role of crossover in the context of multiobjective opti-

mization, but perhaps some of the work that currently exists for the case of

single-objective optimization might be extended (see for example [13]).
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