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Abstract In this paper, a parallel evolutionary
multi-criteria optimization algorithm: DGA and
DRMOGA are applied to block layout problems.
The results are compared to the results of SGA and
discussed. It is said that block layout problems are
NP hard problems and there are several types of
objectives. Therefore, it can be said that the block
layout problems are suitable to evolutionary multi-
criterion optimization algorithms. DRMOGA is
one of the DGA models. This model can derive
good Pareto solutions in continuous optimization
problems. However it has not applied to discrete
problems. In the numerical example, the Pareto
solutions of the block layout problem who has 13
blocks are derived by DGA, DRMOGA and SGA.
Then it is confirmed that it is difficult to derive the
solutions with any model, even in one objective. It
is also found that good parallel efficiency can be de-
rived from both DGA and DRMOGA. The results
of Pareto solutions of DGA and DRMOGA are al-
most same. However, DRMOGA searched wider
area than that of DGA.
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1 Introduction


In the real world problems, it is often found
the problems that have several types of objec-


tive functions. These kinds of problems are
called multi-criterion or multi-objective prob-
lems. Since there are often trade-off relation-
ship between the objective functions, it can not
derive the simple solution. Therefore, to find
the final solution, the decision making should
be needed. In the multi-criterion problems,
some preferences have to be determined to do
the decision making. It is said that the pref-
erences can be expressed a priori, a posteriori
or in an interactive way [1]. In the posteriori
way, Pareto optimum solutions can derive the
preferences. Since Pareto optimum solutions
are assembles of the solutions, evolutionary al-
gorithms (EAs) are often uses to find Pareto
solutions. EAs are the multi points searching
algorithms, so to have high compatibility to
find Pareto solutions at one trial.


There are several algorithms to find Pareto
optimum solutions in EAs. These algo-
rithms are well summarized in some reviews
[2,3,4]. These algorithms are called Evolution-
ary Multi-criterion Optimizations (EMOs).
Among the algorithms, VEGA[5], MOGA[6],
NPGA[7] and NSGA[8] are the typical ap-
proaches. Like this way, there are several mod-
els of multi criterion EAs and they can derive
the good Pareto optimum solutions. However,
it needs the high calculation cost, since it needs
a lot of iterations to calculate the values of ob-







jective functions and constrains. One of the
solutions to reduce the calculation costs is to
perform the multi criterion EAs in parallel pro-
cessing.
There are not so many studies that con-


cerned with the proposition of the models of
EAs in parallel. There is a model where the
evaluation parts are performed in parallel [9].
In this model, there are only one population
and this model is called one population model
or simple genetic algorithm (SGA). There is
another model where the total population is
divided into sub populations and the multi
objective optimization is performed in each
sub population [10]. This model is called sub
population model or distributed genetic algo-
rithm model (DGA). We also proposed the
new model of EA in parallel; that is called
Divided Range Multi-Objective Genetic Algo-
rithm (DRMOGA) [11]. The DRMOGA is one
of the divided population models and a popu-
lation is divided into sub populations. In the
DRMOGA, the population is sorted with the
values of one objective. Then the population
is divided into sub populations with respect to
the sorted values. The DRMOGA is applied
to some test functions and it is found that
the DRMOGA is effective model for continu-
ous multi-objective problems.
In this paper, the DGA and the DRMOGA


are applied to discrete problems, and their ef-
fectiveness and their availability are discussed.
Especially, block layout problems are selected
as discrete problems. Block layout problems
can be found in setting problem of plant fa-
cilities or LSI layout problems. It is said
that block layout problems are NP hard prob-
lems and there are several types of objectives.
Therefore, it can be said that the block layout
problems are suitable to evolutionary multi-
criterion optimization algorithms. However,
the test functions that are used in the studies
that are concerned with EMO are almost con-
tinuous problems. Especially, parallel models
of EMOs have not applied to block layout prob-
lems, while some researchers focused on the
single object problem of layout problems [12].
Therefore, the parallel model of EMOs are ap-


plied to block layout problems and discussed.
In this paper, the parallel models of EMOs and
the configuration of GAs for block layout prob-
lems are explained briefly. The discussion is
performed through the numerical example that
has 13 blocks.


2 Parallel EMO


In this chapter, the definition of Multi-criterion
optimization problems is defined briefly. There
are several models of Evolutional algorithms
for Multi-criterion Optimization (EMO). The
parallel models of EMO are roughly classified
into two categories; those are one population
model and sub population model.


2.1 Multi-Criterion Optimization
Problems


In the optimization problems, when there are
several objective functions, the problems are
called the Multi-objective or Multi-criterion
Optimization Problems: MOPs.
The multi objective optimization problems


are formulated as follows. In general,


min[f1(x), f2(x), . . . , fn(x)] (1)


subjecttogi(x) ≤ 0 (1, 2, . . . ,m) (2)


where x ∈ F is the design variables and F is
the domain that satisfies the constraints and is
called the feasible domain.
Usually, there are trade off relations between


the objective functions. Therefore the opti-
mum solution is not only one. In this case,
the concept of the Pareto optimum solution is
introduced in the multi objective optimization
problems [13].


1. Pareto dominant:


When x1 ∈ F and x2 ∈ F satisfy fi(x1) ≤
fi(x2) for all of the objective functions and
fi and satisfy fi(x1) ∈ fi(x2) for some of
the objective functions fi, x1 is dominant
to x2.







2. Pareto optimum solutions:


When x1 ∈ F does not exist that domi-
nant to x0, x0 is the Pareto optimum so-
lution.


In the real world problems, the multi ob-
jective optimization problems are often found,
such as the design problems. In these prob-
lems, the objective optimizations have the
trade off relationships. Usually, these relation
is not clear. Thus, when the relation can be
grasped, the problem turns easily for the de-
signers. Then, the deriving the Pareto opti-
mum solutions is one of the goals in the multi
objective optimization problems.


2.2 SGA


In GAs, there are several genetic operations.
Among them, evaluation operation usually
takes a lot of time. Therefore, it can be said
that it is efficient to operate evaluation opera-
tion in parallel. This is one of the one popula-
tion models.


2.3 DGA


Distributed Genetic Algorithm (DGA) is one
of the typical models of parallel genetic al-
gorithms. In the DGA, the population is di-
vided into sub populations. In each sub popu-
lation, simple GA is performed for several iter-
ations. After some iterations, some individuals
are chosen and move to the other island. This
operation is called migration. The interval of
iterations is called migration interval and the
number of migrate individuals is determined
by multiple individuals of sub population and
migration rate. The migration keeps the di-
versity of the solutions even when there are
not so many individuals in a sub population.
Since the network traffic is not so heavy, this
model is very suitable to parallel processing.
On the other hand, when this model is applied
to multi-criterion problems, some calculation
wastes are produced, because some sub popu-
lations might find the same Pareto solutions.


2.4 DRMOGA


Divided Range Multi-Objective Genetic Algo-
rithm: DRMOGA is developed by Hiroyasu et
al [11] and this is another model of parallel
DGAs. This model is also suitable for paral-
lel processing and can reduce the calculation
waste.
The flow of Distributed Range Multi-


Objective Genetic Algorithm is explained as
follows.


• Step 1 Initial population (population size
isN) is produced randomly. All the design
variables that are shown with the individ-
uals satisfy the constraints.


• Step 2 The individuals are sorted by the
values of focused objective function fi .
This focused objective function fi is cho-
sen in turn, and turned with the loop.
Then, the individuals of number N/m are
chosen in accordance with the value of this
focused objective function fi . As the re-
sult, there exist m sub populations.


• Step 3 In each sub population, the multi-
objective GA has been performed for some
iterations. The multi-objective GA that is
used in this paper is explained in the next
section. The end of each generation, the
terminal condition is examined and the
process is terminated when the condition
is satisfied. When the terminal condition
is not satisfied, the process progress into
the next step.


• Step 4 After the multi-objective opti-
mization has been performed for k gener-
ations, all of the individuals are gathered
(virtually). Then the process is going back
to Step 2. This generation k is called the
sort interval.


In this study, the number of distribution m
and the sort interval k is determined in ad-
vance. In Figure 1, the concept of the DR-
MOGA is shown. In Figure 1, there are two
objective functions. Individuals are divided
into three by the value of the focused objec-
tive function f1.
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Figure 1: DRMOGA


The sub population of the DRMOGA is de-
termined by the area with respect to the fo-
cused objective function. This mechanism is
supposed to functions as the sharing. There-
fore, the derived Pareto optimum solutions of
the DRMOGA might have the high diversity.


3 Formulation of Layout


Problems and Configuration
of Genetic Algorithm


3.1 Formulation of Block Layout
Problems


In this paper, parallel GA models are applied
to 2D Block layout problems. It is supposed
that all of the blocks are rectangles and there
are two objectives as follows,


f1 =
n∑


i=1
i�=j


n∑


j=1


cijdij (3)


f2 = Total AreaS (4)


where
n :number of blocks
cij :flow from block i to block j
dij :distance from block i to block j .
These objectives are often find in block lay-


out problems. First objective function is the
weighted distance and second one is the area.
It is said that there is trade off relationship [12].
This paper also assumes that three lines of the
base on which the blocks are layout have been
determined in advance. When the order of the


blocks are determined, the blocks are packed
in accordance with the order. The concept of
this packing method is shown in Figure 2.
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Figure 2: Packing Method


3.2 Expression of Solutions


In this paper, the block packing method is
used. In this method, the chromosome has two
kinds of information; those are block number
and the direction of a block layout. An exam-
ple is shown in Figure 3.
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Figure 3: Coding of block layout problems


When the number of direction is equal to 0,
the block is placed in horizontal way and when
it is 1, the block is placed in vertical way.


3.3 Configuration of Genetic Algo-
rithm


In each sub population of the DRMOGA, ge-
netic algorithm is performed. In GA, there are
several genetic operations; those are selection ,
crossover and mutation.


3.3.1 Selection


In the selection operation, there are some
strategies. First of all, all of the individuals
that are rank 1 are preserved. When the num-
ber of the individuals are excessed the popula-
tion size, the number of individuals are shrunk







by roulette selection. The fitness value for
roulette selection of each individual is deter-
mined by the sharing in this case. When the
number of the individuals is not excessed the
population size, the rest of the individuals are
determined by the roulette selection. The fit-
ness value for roulette selection of each individ-
ual is determined by the ranking in this case.


3.3.2 Crossover


In this paper, PMX method is used in crossover
operation [14]. PMX is originally developed for
TSP problems.


3.3.3 Mutation


In this paper, 2 bit substitution method is used
in mutation operation. In the mutation, ar-
bitrary 2 bits are selected and these bits are
substituted.


4 Numerical Examples


To discuss the effectiveness and availability of
parallel models in block layout problems, SGA,
DGA and DRMOGA models are applied to
layout problems that have 13 blocks [15]. To
find the solutions, the PC cluster whose node
has Pentium II 400MHz and 128M byte mem-
ory is used. DGA and DRMOGA have 4 sub
populations and each population is applied to
one node.
PMX method is used in crossover operator


and 2 bit substitution method are used in mu-
tation operation. Each sub population has 400
individuals. Therefore, there are totally 1600
individuals. When the generation excesses the
300 generations, simulations are terminated.
Migration interval or sort interval is 5, 10, 15
and 20.
In Figure 4, 5 and 6, the derived individu-


als of SGA, DGA and DRMOGA are shown in
objective function field respectively. The mi-
gration or sorting interval of these figures is
10. In this example, the 1600 individuals are
used. In these figures, best 100 solutions are
shown.
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Figure 4: Results of SGA
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Figure 5: Results of DGA
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Figure 6: Results of DRMOGA







Because of the second object function, there
are only weak Pareto solutions. For objective
function f2, the layout which does not have any
dead space is the optimum. Among three mod-
els, it is found that the DRMOGA searched in
wider area compared to the results of the other
models. This result is the same as that of the
continuous problems. Therefore, it can be said
that DRMOGA can search efficiently in dis-
crete problems.
The examples of layouts of point A and B


in Figure 6 are shown in Figure 7 and Fig-
ure 8. Though, the values of f2 are the
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Figure 7: Derived Layout (A)
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Figure 8: Derived Layout (B)


same, it is found that there are several lay-
outs are derived. Therefore, it is very useful to
use multi-criterion optimization for block lay-
out problems.
When migration or sorting interval is equal


to 20, DGA takes 183.7 [s] and DRMOGA
takes 185.6 [s], while SGA takes 726.3 [s].


Therefore, the parallel efficiencies of both DGA
and DRMOGA are almost 100%. Compared to
DGA, the network traffic of DRMOGA is big-
ger. However, there are not so big differences
between the DGA and DRMOGA. In this case,
only small number of Pareto solutions derived.
Therefore, the same individuals do not existed
in the sub populations of DGA and the cal-
culation wastes do not occur. It can be said
that when a large number of Pareto solutions
are derived, DRMOGA is also useful in block
layout problems.


5 Conclusions


Block layout problems can be found in setting
problem of plant facilities or LSI layout prob-
lems. It is said that block layout problems are
NP and there are several types of objectives.
Therefore, it can be said that the block layout
problems are suitable to evolutionary multi-
criterion optimization algorithms.
In this paper, two types of parallel models


are compared, and results are examined. Those
two models are sub population model (DGA)
and divided range multi-objective genetic algo-
rithm model (DRMOGA).
Through the numerical example that has


13 block and whose objectives are layout area
and weighted distance, the following things are
clarified.


• We used PMX method in crossover and
2 bit substitution method in mutation.
These operations can not derive good
Pareto solutions.


• The parallel efficiencies of DGA and DDR-
MOGA are both high.


• The solutions of DGA have higher accu-
racy and diversity.


• DRMOGA searched in wider area.


The following future trials should be needed.


• The problems that have other types of ob-
jectives are discussed.







• The number of individuals or migration in-
terval is the parameters and these parame-
ters might affect to the results. The effect
of these parameters should be examined.
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