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Abstract- This paper presents two new approaches for
transforming a single-objective problem into a multi-
objective problem. These approaches add new objec-
tives to a problem to make it multi-objective and use a
multi-objective optimization approach to solve the newly
defined problem. The first approach is based on relax-
ation of the constraints of the problem and the other is
based on the addition of noise to the objective value or
decision variable. Intuitively, these approaches provide
more freedom to explore and a reduced likelihood of be-
coming trapped in local optima.

We investigated the characteristics and effectiveness
of the proposed approaches by comparing the perfor-
mance on single-objective problems and multi-objective
versions of those same problems. Through numerical ex-
amples, we showed that the multi-objective versions pro-
duced by relaxing constraints can provide good results
and that using the addition of noise can obtain better so-
lutions when the function is multimodal and separable.

1 Introduction

Recently, there has been a great deal of progress in the ap-
plication of evolutionary computation to multi-objective op-
timization (EMO)[1, 2].

In recent years, several new algorithms have been devel-
oped that can find good Pareto optimal solutions with small
calculation costs[1]. There has also been a great deal of re-
search into the application of these algorithms to real-world
multi-objective optimization problems (MOOP) [2].

On the other hand, there have been a few reports con-
cerning multi-objectivizing (multi-objectivization)“ 1. The
multi-objectivization approach translates single-objective
optimization problems (SOOP) into MOOP and then ap-
plies EMO to the translated problem.

Previous studies of multi-objectivization can be divided
roughly into two categories as follows:

• Addition of new objectives to a problem.

• Decomposing a problem into sub-problems.

These multi-objectivizations have a number of effects,
such as the reduction of the effect of local optima, mak-
ing the problem easier, or increasing search paths to the

1This term was used previously by Knowles et al.[3].

global optimum. In this paper, we propose two new multi-
objectivization approaches based on the addition of new ob-
jectives as follows:

• Relaxing the constraints of the problem.

• Adding noise to the objective value or decision vari-
ables.

The former approach uses the concept of constraint re-
laxation, while the latter is based on escape from a local
optimum. These approaches aim to increase the paths to
the global optimum that are not available under the original
SOOP, and maintain diversity of the population.

Here, we investigated the characteristics and effective-
ness of the proposed approaches by comparing the perfor-
mance on the original SOOP and multi-objectivized ver-
sions. In numerical experiments, we used two types of GA,
a single-objective GA and a multi-objective GA. These GAs
were ”ga2k“ [4]2 as single-objective GA and NSGA-II[5] as
a multi-objective GA. These algorithms have been shown to
be more efficient than other GA methods[5, 4].

2 Single-objective and Multi- objective Opti-
mization

A single-objective optimization problem (SOOP) has the
objective function (f(�x)), which must be minimized or
maximized and a number of constraints (g(�x)). Equation
(1) shows the formula of the SOOP in its general form.

⎧⎨
⎩

minimize f(�x)
s.t. gj(�x) ≥ 0 (j = 1, . . . , m)

�x ∈ X ⊂ Rn
(1)

where �x is a vector of n decision variables, �x =
(x1, x2, . . . , xn)T , and X represents a feasible region.

Similarly, multi-objective optimization prob-
lems (MOOP) with a number of objective functions
(f(�x) = (f1(�x), f2(�x), . . . , fk(�x))T ) can be stated as
follows:

⎧⎨
⎩

minimize f(�x) = (f1(�x), f2(�x), . . . , fk(�x))T

s.t. gj(�x) ≥ 0 (j = 1, . . . , m)
�x ∈ X ⊂ Rn

(2)

2”ga2k“ was written by T. Hiroyasu et al.[4] and is avail-
able at (http://mikilab.doshisha.ac.jp/dia/research/
pdga/archive/index.html).



2.1 multi-objectivization

When we multi-objectivize a problem, the global optimum
of the original SOOP must be one of the Pareto optima
in the multi-objectivization problem. We state this rela-
tion between solutions in the original SOOP and multi-
objectivization MOOP as follows:

∀xopt ∈ X∗ (3)

where xopt is a global optimum of the original SOOP, and
X∗ represents Pareto optima of the multi-objectivization
problem. ∀xopt indicates multiple optima in the SOOP.

3 Description of the new multi-objectivization
approach

The methods of multi-objectivization can be roughly classi-
fied as follows:

• Adding new objectives in addition to the original ob-
jective.

• Replacing the original objective with a set of new ob-
jectives.

As an example of the former approach, Coello et al. [6]
proposed a technique that treats constraints as objectives,
and showed that their proposed technique was more effi-
cient than more traditional penalty techniques. This tech-
nique makes it possible to handle constraints without the
use of a penalty function, since all the individuals are feasi-
ble. On the other hand, Runarsson and X.Yao [7] reported
that the multi-objective approach to constraint handling is
not so effective in some cases, because most of the time is
spent on searching infeasible regions. Their results indicate
that the effectiveness of this technique depend heavily on a
feature of problem.

As an example of the latter approach, Knowles et al.[3]
reported a technique in which the original SOOP is decom-
posed into sub-problems. This technique treats the original
problem as a combination of sub-objective problems. As
each sub-objective problem is easier to solve than the orig-
inal problem, better solutions can be found by using this
decomposing approach. However, there are few problems
that can be completely decomposed into sub-problems and
the optimality of solutions obtained by decomposition must
be verified.

In this paper, we propose two new approaches to add
another objective as follows:

• Relaxation of the constraints of the problem.

• Addition of noise to the original objective value or
decision variables.

Both approaches are based on multi-objectivization,
which adds additional objectives to the original problem.
The aims of these approaches are to increase paths to the
global optimum that are difficult to obtain under the origi-
nal SOOP and to maintain the diversity of the population.

These approaches have a low risk of providing solutions
far from the optimal solutions as these approaches always
deal with the original SOOP objective. In addition, these
approaches can treat many types of problems and hardly
produce new tasks such as decomposition of a problem into
sub-problems.

The former approach is based on the concept of con-
straint relaxation. In this approach, a trade-off between the
original and the relaxed objectives can be brought by differ-
ences in two constrains. Therefore, a search of EMO can be
concentrated around the constrains of a problem. This ap-
proach can be expected to search effectively for the global
optimum along the boundary of the feasible regions settled
by the original constraints.

The latter approach takes advantage of escaping from lo-
cal optima. In this approach, the trade-off relation is intro-
duced by the difference between the original objective and
the new objective with noise. This approach will be useful
for escaping from local optima using trade-off regions.

The details of the proposed approaches are described be-
low using practical problems.

3.1 Relaxation of constraints

In this paper, we treat a 0/1 knapsack problem[8] as a test
problem. Generally, the formula for the knapsack problem
is as follows:

⎧⎨
⎩

maximize f(�x) =
∑m

j=1 pj · xj

s.t.
g(�x) =

∑m
j=1 wj · xj ≤ c

(4)

where pj and wj are the profit and weight of item j, respec-
tively, and c is the knapsack capacity.

In this paper, we propose the following multi-
objectivization that makes use of the relaxation of con-
straints.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maximize f1(�x) =
∑m

j=1 pj · xj − α · penalty
maximize f2(�x) =

∑m
j=1 pj · xj

s.t.
penalty = −min(0, c − ∑m

j=1 wj · xj)
g(�x) =

∑m
j=1 wj · xj ≤ c′ (c′ ≥ c)

(5)

where c′(c′ ≥ c) is the relaxation capacity of knapsack for
an additional objective(f2(�x)), and α is the penalty value
for violation of c.

In Equation (5), the feasible regions are settled by relax-
ing constraint. In addition, f1(�x) indicates optimization of
the original problem and f2(�x) represents optimization of
the problem based on the relaxed constraints.

In Equation (5), the trade-off relationship between f 1(�x)
and f2(�x) is obtained only when a solution(�x) does not sat-
isfy the original constraint. In general, the global optima of
many problems lie on the boundaries of the feasible regions.
As the EMO search tends to concentrate in the trade-off re-
gions, this approach can be expected to perform an effective
search. Figure 1 shows the concept of this approach in a
maximum problem.
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Figure 1: The concept figure of the multi-objectivization of relaxing a constraint(in a maximum problem).

In the case in which the problem has more than one con-
straint, a user should decide which constraint to relax3. It is
most effective to relax only the constraints near the global
optima.

The research of Runarsson and X.Yao [7] shows that the
multi-objective approach using Equation (5) is less likely
to converge feasible solutions. Therefore, our approach is
assumed to be suitable for the problem in which a repair
method have already designed to make infeasible solutions
feasible.

3.2 Addition of noise

In this section, we describe the multi-objectivization ap-
proach in which noise is added to the original objective
value or decision variables. We expect that a population
will be able to escape from local optima by adding noise to
the original problem because the diversity of the population
is increased as compared to the original SOOP.

This approach can be applied to SOOPs with the follow-
ing formula: Equation (1). In the case of addition of noise to
the original problem, the formula can be stated as follows:

⎧⎪⎪⎨
⎪⎪⎩

minimize f1(�x) = F (�x)
minimize f2(�x) = f1(�x) + D · Gauss(0, 1)
s.t. gj(�x) ≥ 0 (j = 1, . . . , m)

�x ∈ X ⊂ Rn

(6)

where F (�x) is the original SOOP function and D is the pa-
rameter for adjusting the magnitude of the noise.

On the other hand, the approach of adding noise to deci-
sion variables can be presented as the following formula:

⎧⎪⎪⎨
⎪⎪⎩

minimize f1(�x) = F (�x)
minimize f2(�x) = f1(�x + D · Gauss(0, 1))
s.t. gj(�x) ≥ 0 (j = 1, . . . , m)

�x ∈ X ⊂ Rn

(7)

3User can select plural constraints to relax, and use different relaxation
values for each constraint

In Equation (7), if the value of �x + D · Gauss(0, 1) ex-
ceeds the upper bound of �x, let this value be the upper
bound. Conversely, if the value is below the lower bound,
let this value be the lower bound.

In the case in which noise is added to the original objec-
tive, the magnitude of the noise set as Equation (8) is used.

D = (fmax(�x) − fmin(�x)) · α (8)

where D is the magnitude of the noise and fmax and fmin

are the maximum and minimum values of f(�x), respec-
tively. Therefore, D is calculated dynamically at each gen-
eration in this case.

In the case in which the noise is added to decision vari-
ables, the magnitude of the noise (D) is calculated by multi-
plying the range of decision variables by α. Since the range
of decision variables are fixed, D is static in this case.

These multi-objectivizations with addition of noise cre-
ate trade-off relations between f1(�x) and f2(�x) in the neigh-
bourhood of the local optima. Therefore, we can expect to
reduce the effect of local optima and to increase the diver-
sity of the population using this multi-objectivization.

4 Numerical Examples

In this paper, we describe application of the proposed ap-
proaches to two types of numerical experiment. To ver-
ify the effectiveness of multi-objectivization of relaxing the
constraints, the 0/1 knapsack problem with 750 items was
used. In addition, to confirm the effectiveness of multi-
objectivization with addition of noise, typical test functions
(Rastrigin, Schwefel, etc.) were used.

In implementing our proposed approach, we used two
types of GA:

• ”ga2k“[4] as a single-objective GA.

• ”NSGA-II“[5] as a multi-objective GA.

ga2k is based on the island GA model. The difference
between ga2k and a traditional GA is nothing except its is-
land model. A prototype implementation has been written
in C++ and can be downloaded from [4].



Table 1: GA Parameters.
population size 200
crossover rate 1.0
mutation rate 1/bit length

terminal criterion 200 generation
number of trial 30

4.1 Implementation of GA

In these experiments, GAs applied to the two types of exper-
iment used bit coding. Similarly, two-point crossover and
bit flip were implemented as for crossover and mutation.
Table 1 shows the GA parameters used (ga2k and NSGA-
II use the same parameters described in Table 1). We per-
formed 30 trials and all results are shown as averages of 30
trials. In addition, the terminal condition of all experiments
was 200 generations.

To apply single-objective GA (ga2k) to MOOPs, we
used the weight-based method that multiplies each objective
function by a weightω(0 ≤ ω ≤ 1) and sums all weighted
objective functions. The fitness for a single-objective GA is
calculated as follows:

F (�x) = (1 − w) · f1(�x) + w · f2(�x) (9)

By applying Equation (9) to Equation (5) or Equation
(6), the two multi-objectivizations becomes to the penalty or
noise of the original single-objective problems. Therefore,
single-objective GA based on the weight-based method
would not gain the effectiveness of multi-objectivation as
described in Section 3.

4.2 Multi-objectivization with relaxation of constraints

We used the 0/1 knapsack problem with 750 items and
multi-objectivized the problem using Equation (5). This
multi-objectivization problem was a maximization problem.
The length of the chromosome was 750 bits, equivalent to
the number of items, and the simulation was terminated
when the generation number reached over 200.

This example had the constraint of knapsack capacity.
As many codings lead to infeasible solutions, we should im-
plement a repair method as a constraint handling technique.
We used the repair method proposed by Zitler et al.[8]. In
this technique, the items are deleted in increasing order of
v(j) = {pj/wj}(j = 1, 2, . . . , n), which is the ratio of
benefit to weight of item j, until satisfying the capacity con-
straint. This technique to make infeasible solutions feasible
appears to be most appropriate for various kinds of knap-
sack capacities.

The computational cost of using this technique is very
low. Because the order of v(j) is static (fixed by the defini-
tion of the problem), and it can easily calculate which items
should be deleted from the violation magnitude of weight
and the order of v(j).

The problem of Equation (5) has two knapsack capaci-
ties. We used the repair method when the codings violated
the relaxed capacity c′. In addition, we used α = 3.0 (Equa-

Table 2: The four types experiments of NSGA-II
Type f1 f2

Multi-objective type f Eq.5
1 fEq.5

2

zero relaxing magnitude type f Eq.4 fEq.4

F1 Single-objective type f Eq.5
1 fEq.5

1

F2 Single-objective type f Eq.5
2 fEq.5

2
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Figure 2: The results of ga2k (knapsack problem)

tion (5)) based on the results of our pilot study.

4.2.1 Results

The results of ga2k are shown in Figure 2 and those of
NSGA-II are shown in Figure 3. The horizontal axis in
Figure 2 indicates the value of the weight parameter ω(in
9) and that in Figure 3 indicates the magnitude of relax-
ation of the constraints settled by the difference between the
original capacity c and relaxed c ′. Figure 2 shows the re-
sults of 7 experiments based on the magnitude of relaxation:
50, 100, 200,400, 1000, 5000, 10000 (the original capacity
was c = 20351.5). Figure 3 shows the results of 4 exper-
iments based on the implementation of objectives (f1 and
f2). Table 2 shows the 4 experiments.

The grey bands in both Figure 2 and 3 indicate the re-
sults of the original SOOP (Equation (4)) obtained by ga2k
and NSGA-II. Therefore, by investigating whether the re-
sults of multi-objectivization were higher or lower than the
grey band, it was possible to determine the useful of multi-
objectivization for this problem.

In this experiment, the final solutions that could not sat-
isfy the capacity c ( Equation (5)) were repaired using the
above repair method. Therefore, all solutions of Figure 2
and 3 satisfied the original capacity c.

The results of ga2k (Figure 2) indicated that the case of
weight ω = 0.6 was better than larger or smaller values in
all magnitude cases of relaxation.

In addition, we found that the solutions of ω = 0.6 were
better than those of the original SOOPs (grey band), and the
results of the weight-based methods where ω was close to
0.0 or 1.0 become worse.

On the other hand, Figure 3 indicates that solutions of
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Figure 3: The results of NSGA-II (knapsack problem)

NSGA-II in all cases of multi-objectivization were better
than those of the original SOOPs. The magnitudes of con-
strain relaxation of 400 and 1000 yielded good solutions,
and the quality of the obtained solutions decreased at mag-
nitudes deviating from these values. Therefore, we guessed
that there was an optimum relaxation magnitude for f 2 in
Equation (5). The single optimization of F1 or F2 only
could not obtain better solutions than the original SOOPs,
and the quality of the obtained solutions decreased with
greater ω, in the same way as described above for multi-
objectivization.

In both resutls (Figure 2 and Figure 3), the constrain
relaxation of nearly 400 seemed to provid the better relsuts
for both algorithms. Therefore, we guessed that the opti-
mum ratio of relaxation magnitude to the original capacity
is near 2 % (400/20351.5 � 0.02) in knapsack problem.

4.3 Multi-objectivization with addition of noise

We examined the effectiveness of multi-objectivization by
adding noise according to the formula Equation (6) using
typical test functions (Rastrigin, Schwefel, etc.). In these
experiments, all problems were minimization problems.

4.3.1 Test functions

In this example, we used functions from the perspective of
the modality (unimodal or multimodal) of function and epis-
tasis among decision variables (separable or non-separable).
We used 5 types of function: Rastrigin, Schwefel, Ridge,
Rotated Rastrigin and Rotated Schwefel functions. Two of
the former functions had epistasis, while the others did not.
In addition, only the Ridge function is a unimodal function,
while the others are multimodal. We treated all functions as
having 10 decision variables in this example. The details of
the functions used are given below:

Rastrigin

FRastrigin(�x) = 10n + (10)
n∑

i=1

(
x2

i − 10 cos(2πxi)
)

(−5.12 ≤ xi < 5.12)

where n is the number of decision variables.
The optimum of the Rastrigin function is

FRastrigin(0, 0, . . . , 0) = 0. This function has high-
quality local optima that tend to centre around the global
optimum. This function is multimodal and does not have
epistasis.

Schwefel

FSchwefel(�x) =
n∑

i=1

−xi sin
(√

|xi|
)

(11)

+418.98288727 · n
(−512 ≤ xi < 512)

The optimum of the Schwefel function is FSchwefel

(420.968746, . . ., 420.968746) = 0. This function is multi-
modal and does not have epistasis. This function is charac-
terized by a second-best minimum, which is far away from
the global optimum. Therefore, it is necessary to perform a
global search at the beginning of the search.

Ridge

FRidge(�x) =
n∑

i=1

( i∑
j=1

xj

)2

(12)

(−64 ≤ xi < 64)

The optimum of the Ridge function is
FRidge(0, 0, . . . , 0) = 0. It is a unimodal function,
but has strong epistasis among decision variables.

Rotated Rastrigin
The Rotated Rastrigin function is formed by randomly

rotating the Rastrigin function (Equation (10)) around the
origin. This is a multimodal function with epistasis among
parameters.

Rotated Schwefel
Similarly, the Rotated Schwefel function is formed by

randomly rotating the Schwefel function around the origin.
This is a multimodal function with epistasis among param-
eters.

In this example, the grey coding is used and the length of
the chromosome is 20 bits per decision variable. The sim-
ulation of all functions is terminated when the generation
reaches over 200.

4.3.2 Results

The performances of the 5 functions are shown in Figure 4,
5, 7 and 8, respectively.
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In these figures, the horizontal axes show the values of α
(in Equation (6)), which is the parameter for adjusting the
magnitude of the noise, and the vertical axes show the val-
ues of the original functions. The left (a) and right (b) fig-
ures show the results of adding noise to the objective value
and to the decision variables, respectively. In addition, the
grey bands in the figures indicate the results of the original
function value (i.e., the magnitude of noise is zero) obtained
by ga2k and NSGA-II, the bands marked with diagonal lines
show the results of ga2k and the other bands show those of
NSGA-II. 4

As shown in Figure 4, all cases with the addition of
noise were worse than those of the original SOOP in the
Rastrigin function. On the other hand, in the Schwefel func-
tion, which is multimodal and does not have epistasis, sim-
ilarly to the Rastrigin function, the addition of noise to the
decision variables yielded better results than with the origi-
nal SOOP. Figure 6 shows the number of runs in which the
algorithm succeeded in finding the global optimum in the
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4In the preliminary experiment, all results of ga2k in multi-
objectivization problems were worse than in the original SOOP (i.e., the
magnitude of noise is zero). Therefore, these results have been omitted in
this paper.
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Schwefel function. The results indicated that the addition
of noise to decision variables yielded a stronger probabil-
ity of finding the global optimum than the original SOOP.
In addition, ga2k obtained get better solutions than NSGA-
II in both Rastrigin and Schwefel functions. We postulated
that this was due to the distribution effect of the island GA.

The Schwefel function is different from the Rastrigin
function in that it has local optima around the global op-
timum. Therefore, it is important that the population does
not converge at the beginning of the search. The results with
the Schwefel function indicated that the addition of noise to
decision variables maintains the diversity of the population.
However, in the Rastrigin function, the addition of noise did
not yield good results because the ability to perform a local
search failed by multi-objectivization.

Consider the results with epistasis among decision vari-
ables shown in Figure 7, 8 and 9. With the Ridge function
(Figure 7), addition of noise did not yield good results in
almost all cases. However, with the Rotated Rastrigin and
Rotated Schwefel functions (Figure 8), addition of noise
yielded better solutions than the original SOOP in almost all
cases. Especially, the addition of noise to decision variables
facilitated an effective search. As shown in Figure 9(b), the
Rotated Schwefel function yielded a V-shaped plot, indicat-
ing that there was an optimal magnitude of noise addition
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Figure 10: The transition of diversitiy (Ridge).
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Figure 11: The transition of diversitiy (Rotated Schwefel).

(in this case, α = 0.05 ).
The results obtained with ga2k and NSGA-II in func-

tions with epistasis were compared, and NSGA-II was
found to yield better solutions than ga2k in all problems.
This was because multi-objective algorithms have a ten-
dency not to concentrate the population in a particular pat-
tern. On the other hand, ga2k obtained better solutions in
functions without epistasis as ga2k has a higher capacity to
perform local searches than NSGA-II.
Analysis of the diversity of the population

Here, we describe the transition of diversity in the
population to investigate the effectiveness of multi-
objectivization by adding noise. As diversity in a popula-
tion, we used deviation from elite individuals. The formula
of this deviation is as follows:

selite
N =

√√√√ 1
N

·
N∑

i=1

(−→xi −
−−→
xelite)2 (13)

where N is the total number of individuals in the population

and
−−→
xelite is the elite individual in the generation.

The results of diversity transition in Ridge and Ro-
tated Schwefel functions are shown in Figure 10 and
fgreffig::diversity-ro-schwefel, respectively. In these fig-
ures, the horizontal axes show generation and the vertical
axes show The value of deviation from the elite (s elite

N ) on
a log scale. From the value of selite

N , we can determine the
diversity of the population5.

The results shown in Figure 10 and 11 indicate that the
diversity of the population in all functions was increased
by adding noise, and was increased with increasing mag-
nitude of noise. The diversity of ga2k based on the island
GA model can maintain a high value, while that of NSGA-
II(noise 0) was decreased by a large generation number 6.

Consider the relation between the results of the original
functions and diversity. In the Ridge function, the results
(Figure 7 and 10) indicated that less diversity can yield bet-
ter results. This was because a population that has a strong
capacity for local searches has less diversity. As the Ridge

5If the deviation from the elite (selite
N ) is high, the population has a high

degree of diversity.
6In Figure 11, the line of NSGA-II(noise 0) is not shown because selite

N
was 0 for more than 150 generations.



function is unimodal, the local search ability is more impor-
tant than the diversity of the population.

On the other hand, the results of the Rotated Schwefel
function (shown in Figure 9 and 11) indicated different
tendencies in the relations between the result function and
diversity with the two types of noise addition, although it
was a common feature of both types that the diversity of the
population was increased by increasing the magnitude of the
noise. With the addition of noise to the original objective,
the magnitude of the noise showed little influence on the re-
sults of the original function. However, with the addition of
noise to decision variables, the results were affected by the
magnitude of the noise.

In the Rotated Schwefel function, the influence of a
wide-ranging search on the results was very strong as this
function is multimodal and has epistasis among parameters.
Therefore, we concluded that the multi-objectivization ap-
proach with the addition of noise to the original objective
showed little effect in extending the range of the search,
but the approach involving addition of noise to decision
variables allowed a wider-ranging search than the original
single-object problem.

From the above results, it is apparent that the multi-
objectivization approach using the addition of noise to de-
cision variables is very effective for multimodal functions
with epistasis, such as the Rotated Rastrigin and Rotated
Schwefel functions. In addition, the relation between the
results of the original functions and diversity indicated that
the approach using addition of noise to decision variables
allowed wide-ranging searches using a diverse population.

5 Conclusions

In this paper, we proposed two new approaches for multi-
objectivization as follows:

• Relaxation of the constraints of the problem.

• Addition of noise to the objective value or decision
variables.

The proposed approaches are based on the addition of
new objectives. The former approach uses the concept
of constraint relaxation, while the latter is based on es-
cape from local optima. We investigated the characteris-
tics and effectiveness of the proposed approaches by com-
paring the performance of the original SOOP and multi-
objectivized versions. Through numerical examples, the
following points were clarified:

1. Multi-objectivization with relaxation of constraints
In this approach, an additional objective is defined by
relaxing the constraints of a problem. This approach
aims to achieve an effective search of the global opti-
mum along the boundary of the feasible regions set-
tled by the original constraints. The experimental
results confirmed that this multi-objectivization ap-
proach using a multi-objective GA is effective for the
0/1 knapsack problem. In addition, we found that
there is an optimum magnitude of relaxation for an
additional objective.

2. Multi-objectivization with addition of noise
In this approach, an additional objective is defined
by adding noise to the original objective value or de-
cision variables. These multi-objectivizations make
trade-off relations in the neighbourhood of local op-
tima. This approach aims at escaping from local op-
tima by using trade-off regions. We examined the ef-
fectiveness of this approach using 5 typical test func-
tions: i.e., Rastrigin, Schwefel, Ridge, Rotated Ras-
trigin and Rotated Schwefel functions. The exper-
imental results confirmed that multi-objectivization
using addition of noise to decision variables is very
effective in problems that have epistasis and multi-
modality, such as the Rotated Rastrigin and Rotated
Schwefel functions.

In addition, the relation between the results of the
original functions and diversity confirmed that the ap-
proach using the addition of noise to decision vari-
ables facilitates a wide-ranging search using a diverse
population. On the other hand, the approach using ad-
dition of noise to the original objective seemed not to
extend the range of the search.
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