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1 Sub-Problemsand Objectives

Divide and conquer techniques in problem solvirgyfamiliar and intuitive; first find
the solution to sub-problems and then re-use tteefiad solutions to the whole prob-
lem. For example, we may decompose the problenesifiding a vehicle into design-
ing the engine and designing the body. It is ackadged that most real-world prob-
lems (vehicles included) do not decompose neatly $eparable sub-problems. For
example, the optimal properties of a drive systavehdependencies with the passen-
ger capacity. Nonetheless, it is very often posstbl simplify a problem greatly by
identifying sub-problems that exhibit some degremdependence.

Multi-Objective Optimization, MOO, is similarly faittar and intuitive; there are
several features of a system that we wish to opérsimultaneously and we wish to
examine the alternatives that optimize each ofehéures independently, and/or offer
a compromise of multiple objectives simultaneousigr example, we wish to mini-
mize both the materials cost and construction fioneur vehicle. It is acknowledged
that sometimes multiple objectives can be satisBadultaneously. For example,
perhaps there is a simple design that is both chadgdast to manufacture. This is the
basis of Pareto dominance; a solution that is predewith respect to all objectives.
Nonetheless, it is often useful to acknowledge tigectives are constrained and to
accept a set of solutions that optimize differdniectives, rather than a single com-
promise.

Both these forms of optimization recognize somenfaf component structure in
the problems they address. In problem decompositienthink of a problem with
multiple sub-problems, in MOO we think of a problevith multiple objectives. We
propose that the difference between the two appesais primarily one of emphasis.
The main difference between a sub-problem and gectve is that the former ex-
pects some degree of independence from other sltbepns, whereas the latter ex-
pects some degree of constraint with other objestiwet, problem decomposition
accepts that compromise may be necessary, and M@€pta the possibility of a
solution that may be good in respect to all obyedi In reality, both approaches ac-
knowledge that components of a problem exhibit lrdependence and constraint.

Ideally, in both these approaches we would likéat@ a solution that is good with
respect to one objective or sub-problem, and pogigther with a solution that is good
with respect to another objective or sub-problend somehow combine them to find
a solution that is good at both objectives or ti®le problem. The similarity of these



approaches suggests that a unification of the iptexand methods may be available,
or at least, we may find some cross-fertilizatimnf one field to the other.

2 A Compositional Problem with Constrained Building-Blocks

We have been studying a class of problems thab#xihierarchical building-block
structure where the solutions to blocks are styonghstrained (1, 2). The problem is
posed as a single objective function, but since thinction is a summation of sub-
functions corresponding to the component sub-bloths problem is amenable to
some degree of problem decomposition. Howeveresthe optimal solution to one
sub-problem is dependent on how other sub-probkmssolved, the problem is not
amenable to naive decomposition. That is, we camptinize each block serially in a
way that is completely independent of other blotke. can make some progress on a
sub-problem by narrowing down the set of configoret that are valuable, but we
must maintain a set of competing solutions to ddobk at least until a combination is
found that resolves their interdependencies.

More specifically, the canonical version of the dtion evaluates binary problem
parameters. To evaluate a solution it is dividéd iwo non-overlapping subsets of the
problem parameters recursively. Each subset, &t remursive level, corresponds to a
building-block, and confers a fithess contributengual to its size if its bits are either
all-ones or all-zeros. This highly structured fuoetleads search to find small build-
ing-blocks quite easily. If correct combinations sshall blocks can be found, then
they may be assembled to find larger blocks, andrsdo solve the whole problem.
But not all blocks can be put together successfullfo gain additional fitness
contribution from higher levels of the structura)yoblocks of the same type (ones or
zeros) can be brought together.

The competing solution types within a given pastitiof the variables represent
constrained objectives; a block cannot be goodtt bnes and zeros simultaneously.
But, each non-overlapping partition of the variagbt®rresponds to an independent
sub-problem. However, we see that as search psEgesub-problems that seemed
independent at the lower level, are in fact, corgdiwithin higher-level blocks, and
are therefore mutually constrained. In this waylejpendent sub-problems and con-
strained objectives are just perspectives on theesructure.

Solving this class of problem requires an algorittmat is capable of discovering
and maintaining competing solutions to many sulBjgms simultaneously. In our
experiments, we use six hierarchical levels ancefbee 64 components at the bottom
level of the hierarchy. Maintaining a diversity @impeting solutions requires a novel
method of segregating competition and cautiouskaesembly.

3 A Multi-Objective Approach to Problem Decomposition

In recent work we have used techniques from MO@etzise an automatic problem
decomposition algorithm that solves our test pnobieery effectively (3). The algo-



rithm incorporates principles from coevolution, &ar optimization, and problem
decomposition. It has three main features.

First, we introduce a technique to transform tingylsi objective problem into a co-
evolutionary game. An individual in this game deBran arbitrary subset of the func-
tion parameters. In essence, the game is to spemifie subset of parameters that can
form good solutions when combined with other subsétparameters — these other
subsets are other players in the coevolutionaryegdrhis permits individuals to col-
lectively represent a decomposition of the probl&acond, the selection of good
individuals involves playing each individual in nyadifferent games, but rather than
selecting individuals based on average performaneegdetermine the superiority of
individuals using Pareto dominance. Specificalfysome individualA is at least as
good as some individu@ against all opponents tested (and superior witheet to at
least one opponent) thénmay replace. In this manner, we are using the coevolving
opponents as objectives for MOO. This Pareto ogtion technique permits a toler-
ance for individuals that represent alternate gwistto a block and thereby permits
alternate ways to satisfy the constraints betwéenbuilding-blocks. Third, a join
operator combines individuals together creatingdarsub-sets of the problem pa-
rameters. The result of a join will be selected IRE result Pareto dominates both
component individuals. This enables sub-sets cdrpaters representing solutions to
sub-problems to be combined together if their mutoastraints are resolved. With
these three features the algorithm is able to aaticaily discover the building-blocks
in the problem, find alternate solutions to eadtk) search for combinations of solu-
tions that resolve the interdependencies betwemsk$| and construct a solution to the
entire problem.

In effect, this algorithm creates co-adapted plsaytbat each represent a potential
solution for a subset of the problem parameterd,then uses these players as dimen-
sions for Pareto dominance. This makes the algorignite different from other ap-
proaches to problem decomposition, cooperative aagon, and MOO. However,
our work is preliminary, and its advantages andtéitions with respect to existing
technigues have not yet been mapped. In the meantian problem domain and algo-
rithmic approach illustrate opportunity for uniftzan and cross-fertilization between
the approaches of problem decomposition and mbj&ative optimization.
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