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Thinned antenna arrays and arrays constructed with digital phase
shifters are designed using a Pareto genetic algorithm for low
beamwidth and sidelobe level. To facilitate this process, the
standard simple genetic algorithm is augmented by special genetic
representations and operators. The technique is applied to the
design of both one and two dimensional arrays.

Introduction: Arrays have been extensively studied as a means of
constructing highly directive antennas using simple elements. In
the fabrication of arrays, antenna engineers often have to cope
with restrictions on design freedom imposed by economic consid-
erations. For instance, many arrays are characterised by a con-
stant excitation amplitude for all elements leaving only the
elements’ phase to fashion the characteristics of the antenna array.
Such ‘phase-only’ designs are often further restricted by the use of
mexpensive digital phase shifters [1]. Another constrained design
technique involves the thinning (or selective turning off) of array
elements to build an inexpensive antenna [2]. Within any of these
design constraints, communications antennas must often have a
narrow beam and small sidelobes to aid in the exclusion of noise;
because these two goals conflict, this is an example from a class of
optimisation problems known as Pareto problems, where the solu-
tion is a manifold of designs which all share the quality that there
is no feasible design simultancously better, with respect to all
design goals [3]. Recently, genetic algorithms (GAs) have been
shown to be well suited to Pareto optimisation [4] and specifically
to the design of microwave absorbers [5]. This Letter introduces a
Pareto genetic algorithm (PGA) tailored to the design of either
thinned, or digitally phase shifted, antenna arrays. Specifically, for
a set of equally spaced elements with a given pattern, and for a
given design method (either thinning or phase shifting), the PGA
locates an approximation to the discrete set of array designs which
share the property that no array in the search space has both a
smaller beamwidth and sidelobe level.

Array design using a PGA: Genetic algorithms are optimisation
algorithms based on the Darwinian theory of evolution [3]. Typi-
cally, GAs consider a population of design candidates described
by binary strings called chromosomes and evaluated by an objec-
tive function which captures their relative quality. The best designs
are selected and undergo the genetic operations of crossover and
mutation, resulting in a new generation of designs to be evaluated.
Crossover is usually accomplished by choosing a pair of chromo-
somes and by exchanging, with a given probability all bits to the
right of a randomly chosen bit. Mutation then negates each bit in
the population with a predetermined probability. This process is
continued until the objective function value of the best design in
the population stagnates [3]. In this study, however, because of the
nature of the problem, two important changes are made to the
standard algorithm.

First, because we are seeking a set of Pareto optimal designs
instead of a single optimal design, the GA itself is modified to cre-
ate a Pareto genetic algorithm known as the nondominated sorting
genetic algorithm [4]. Instead of explicitly designing an objective
function to compare designs, a nondomination ranking scheme is
used which compares designs only on the basis of their relative
Pareto optimality as described in [3 — 5]. This ranking is supple-
mented by a GA technique known as ‘sharing’, which lowers the
objective function value of designs that are too similar, keeping
the algorithm from converging to a single optimum [3]. The com-
bination of both techniques results in a GA which returns a set of
optimal trade-offs between goals, instead of a single optimum.

Secondly, an integer coding of the chromosomes is used. This is
entirely for the benefit of coding phase shifts, so coding for such
arrays is described first. Binary coding is impractical for coding
phase because very similar designs might have vastly different
chromosomes. For instance, using a standard linear decoding for a
three bit phase shifter, the coding for a shift of 0 rad (000) differs
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by only one bit from the coding of ® rad (100), but by three bits
from 7n/4 rad (111). Thus, a standard binary coding will invaria-
bly lead to destructive mutations and crossovers. Some authors
have used the Gray code in an attempt to surmount this hurdle,
with mixed results [6]. Contrary to binary codings, the integer cod-
ing used in this study uses a single integer for each phase shifter,
(or pair of phase shifters, for a symmetric design) so that a modu-
lomutation could be implemented. In this scheme, each bit N,
phase shifter value chosen for mutation is less destructively
mutated by adding or subtracting one modulo 2. This forces
each mutation to change the phase in the phase shifter by only
one setting. Similarly, crossover was altered to enhance the advan-
tage of the new coding. For each pair of chromosomes to be
crossed, a crossover integer was chosen in the string, and all
shifter values to the right of the crossover integer were swapped.
The crossover integer itself was crossed using the rules in Table 1
which amounts to a modular definition of averaging.

Table 1: Parent genes a and b to be hybridised are modified
according to the rules in the right column if the condi-
tion in the left column is met
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(k),. means & modulo m, and [ x]is the greatest integer less than x

Finally, this coding is most successful if only N~1 integers are
used to code an N, element array. This avoids including an extra
irrelevant degree of freedom which is detrimental to the GA’s per-
formance. The thinning problem can be coded with the same
scheme using only integers 0 and 1 for off and on, respectively. Of
course, there is no redundancy in this case as in the phase shifter
problem.

Either problem can be extended to two dimensions by using a
rectangular chromosome and performing the crossover described
above linewise. Furthermore, either problem can be made symmet-
ric by describing only half the array in a linear chromosome, or a
triangular eighth of the array in a 2D chromosome.
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Fig. 1 Pareto curve for thinning a 200 element symmetric array of iso-
tropic elements

Inset: lowest sidelobe level and its pattern

Results: The PGA was applied to the design of a 200 isotropic ele-
ment symmetrically thinned antenna array with elements spaced
one half wavelength apart as in [2]. The crossover probability was
taken as 0.9, the mutation probability was 0.005 and triangular
sharing was used with radius 0.1 (see [3]). The population size was
taken as 4000 and run for 100 generations to obtain a dense man-
ifold of designs. The Pareto front is shown in Fig. 1 along with a
graph of the response of the maximum reduced sidelobe level
design. Note that the maximum sidelobe reduction is 22.79dB,
0.7dB better than that in [2]. This is probably due to increased
search power in the Pareto GA induced by sharing,
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Fig. 2 Pareto curve for three bit digital phase shifter design of array of
80 isotropic elements and responses for the two designs highlighted

As a second demonstration, we design a symmetric linear array
of 80 isotropic elements with three bit phase shifters separated by
one half wavelength. The Pareto curve for this problem, along
with patterns of two of the Pareto optima, are shown in Fig. 2.
The GA was run with a population of 1000 chromosomes, and a
mutation rate varying between 2.5 and 10% for 100 generations.

Finally, the technique is demonstrated for the design of a 16 x
16 element array of isotropic radiators with three bit phase shift-
ers. The Pareto curve, as well as the maximum reduced sidelobe
level design are shown in Fig. 3.

10— .
L pattern
. (c% in dB
N %
o L
g Yo,
< @%%Q
D 8 oa,  ~40)
3 0
E r @%@%
E T
& L
0 Viss
RS
< [
UI -
5 6
50 . P S S R SN R S N S N [ ! O%Q
-20 -15 -10 -5 0

sidelobe level,dB

Fig. 3 Pareto curve for 16 X 16 isotropic element array fed with digital
phase shifters along with lowest sidelobe level design’s response

Conclusions.: Pareto genetic algorithms provide the designer with
both thinned and digitally phase shifted antenna arrays, with
many achievable tradeoffs between beamwidth and sidelobe levels.
The algorithm used incorporates two changes to the simple genetic
algorithm described in [3]: one which makes the GA amenable
to Pareto optimisation, and another which incorporates problem
specific knowledge into the coding. The algorithm is seen to be an
improvement over the standard GA, as it always returns more
information, and may even perform better on single objective opti-
misation problems. The algorithm can further be extended to
more difficult array problems, such as those involving elements
radiating in the presence of a complicated body.
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Sensitivity analysis of capacity enhancement
with adaptive multibeam antennas for
DCS1800

G.V. Tsoulos, M.A. Beach and S.C. Swales

Indexing terms: Adaptive antenna arrays, Time division multiple
access, Mobile radio systems

The authors present results for the likely capacity improvement
when an adaptive multibeam antenna is used in conjunction with
air interface parameters, as with the DCS1800 system. An analysis
is made of the possible capacity enhancement while taking into
account parameters such as power control, radio channel
characteristics and different frequency reuse patterns. The results
show that a substantial capacity improvement can be achieved
with adaptive antennas, and also highlight the sensitivity of the
capacity to operational parameters.

Introduction: With the deployment of spatial signal processing at
the cell sites of wireless networks, the available capacity and qual-
ity of service can be greatly enhanced [1-3]. This approach is usu-
ally referred to as space division multiple access (SDMA), and
enables multiple users within the same cell to be accommodated
on the same frequency and time slot. This Letter reports new
results from a capacity sensitivity analysis performed for an adap-
tive muitibeam antenna system.

Simulation method: Based on the techniques originally discussed in
[4] and subsequently used for CDMA and adaptive antennas anal-
ysis in [1], a similar set of tools was employed in this analysis. For
the uplink, the simulation generates a random deployment of uni-
formly distributed users and then steers the main beam towards
the desired user. For each new user, the carrier-to-interference
ratio (CIR) is calculated and compared with a predefined thresh-
old value. If this value is exceeded, then the user is assigned to
another channel, otherwise the user is accepted on the same chan-
nel (SDMA mode). This process stops when the number of availa-
ble channels has been exceeded. Since 8 TDMA-FDMA system is
considered here, this effectively happens when there is no other
frequency carrier or time slot channel available. These calculations
are repeated 10¢ times and then the probability density function
and the outage probability of the number of co-channel users are
calculated. The model includes the effects of: network topology;
path loss models; log-normal shadowing; power control imperfec-
tions; different number of physical channels; radiation patterns;
frequency reuse patterns. Initial parameters used for the simula-
tions include: 9dB CIR threshold; a radiation pattern with ~30°
beamwidth, —14dB first sidelobe level and ~60dB maximum null
depth; frequency reuse pattern 3; single slope pathloss model with
exponent 4; eight handover channels, unless otherwise stated.
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