Genetic algorithm approach to designing
finite-precision controller structures
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Abstract: The parameters of a digital control design usually need to be rounded when the
controller is implemented with finite precision arithmetic. This often results in degradation of the
closed loop performance and reduced stability margins. This paper presents a multi-objective
genetic algorithm based approach to designing the structure of a finite-precision second-order
state space controller implementation, which can simultaneously minimise some set of perfor-
mance degradation indices and implementation cost indices. The approach provides a set of
solutions that are near Pareto-optimal, and so allows the designer to trade-off performance
degradation against implementation cost. The method is illustrated by the design of the structure
of a PID controller for the IFAC93 benchmark problem.

1 Introduction

It is well known that controller implementations with fixed-
point arithmetic offer a number of advantages over float-
ing-point implementations [1, 2]. Fixed-point processors
contribute to lower overall system costs and require less
on-chip hardware. They have a smaller package size, less
weight, consume less power and are often faster than
floating-point processors. In addition, the simplicity of
the architecture contributes to safer implementations.
Thus for high-volume, price-sensitive applications, safety
critical applications and hand-held and aerospace applica-
tions where power consumption and weight are important
considerations, fixed-point processors are preferred over
floating point. However, a closed-loop control system will
suffer a performance degradation and may even become
unstable when the designed infinite-precision controller is
implemented with a fixed-point digital processor due to the
finite precision of the parameter representation resulting
from the finite word length (FWL). This so-called FWL
effect is strongly dependent upon the parameterisation of
the controller. Thus, over the years, many results have been
reported in the literature dealing with FWL implementation
and their relevant parameterisation issues, for example
[3-8].

Consider the discrete time system shown in Fig. 1 with
the plant G(z). Let (4, By, Ci, Dy) be a state—space
description of the state space controller

K(2) = Cylzl — A4) "By + Dy 6]
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In this paper (4z, B, Ci, Dy) is also called a realisation
of K(z). The realisations of K(z) are not unique, if (43, BY,
Y, DY) is a realisation of K(z), (T 43T, T7'BY, COT, DY) is
an equivalent realisation for any nonsingular similarity
transformation 7. A common approach, for example
[6, 7, 9], to the FWL problem for state-space controllers
is to find equivalent controller realisations (or similarity
transformations 7') such that the closed-loop system is, in
some way, insensitive to perturbations in the controller
parameters.

A more direct genetic algorithm (GA) based approach is
presented in this paper. GAs have been used to design
FWL digital filters, for example [10, 11], but the authors
are not aware of any work on using GAs for closed-loop
FWL controller or controller implenfentation design. Basi-
cally, the approach is to find an FWL controller that is near
to the originally designed controller such that the closed
loop performance and robustness degradation and the FWL
implementation cost are simultaneously minimised. The
approach is based on the generation of near-equivalent
finite word-length controller representations by means of
the solution to a linear system equivalence completion
problem followed by a rounding operation. A multi-objec-
tive genetic algorithm (MOGA) [12-14], is then used to
find sets of pareto-optimal near-equivalent FWL control-
lers. This allows the designer to trade-off FWL implemen-
tation performance and robustness against the cost and
other requirements of the implementation by enabling the
designer to simply choose the most appropriate design
from the set.

G(2)

K(z)

Fig. 1 Discrete time feedback system
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Two features of GAs make them very attractive for
solving this problem. Firstly, GAs require the solution
space to be encoded in binary strings, and since controllers
implemented with FWL are also coded in binary, a one-to-
one relationship between the genotype and the phenotype
within the GA can be defined. Secondly, GAs allow the
optimal structure of the solution to be found [15-17]. This
means that the implementation word length does not need
to be defined a priori, but the GA will select the best from
a predefined set, and so the implementation cost in the
form of the memory requirement can also be minimised.

In this paper, a multi-objective genetic algorithm is used.
This allows the designer to trade-off FWL implementation
robust stability and performance measures against cost
measures and other requirements of the implementation.
The method is entirely generic, and any computable set of
stability, performance, robustness, round-off noise and
implementation cost measures could be used. The devel-
oped approach is illustrated by a simplified application to
the problem of the implementation of a PID controller
designed for the IFAC93 benchmark problem [18, 19].

2 Preliminary concepts and theory

2.1 Multi-objective optimisation

The majority of engineering design problems are muiti-
objective, in that there are several conflicting design aims
which need to be simultaneously achieved. If these design
aims are expressed quantitatively as a set of n design
objective functions ¢,(p):i=1...n, where p denotes the
design parameters chosen by the designer, the design
problem could be formulated as a multi-objective optimi-
sation problem:

min{¢,(p), fori=1...n} )
peP

where P denotes the set of possible design parameters p. In
most cases, the objective functions are in conflict, so the
reduction of one objective function leads to the increase in
another. Subsequently, the result of the multi-objective
optimisation is known as a pareto-optimal solution. A
pareto-optimal solution has the property that it is not
possible to reduce any of the objective functions without
increasing at least one of the other objective functions.

2.2 Genetic algorithms

Genetic algorithms are search procedures based on the
evolutionary process in nature. The idea is that the GA
operates on a population of individuals, each individual
representing a potential solution to the problem, and
applies the principle of survival of the fittest on the
population, so that the individuals evolve towards better
solutions to the problem.

The individuals are given a chromosomal representation,

which corresponds to the genotype of an individual in
nature. Three operations can be performed on individuals
in the population, selection, crossover and mutation. These
correspond to the selection of individuals in nature for
breeding, where the fitter members of a population breed
and so pass on their genetic material. The crossover
corresponds to the combination of genes by mating, and
mutation to genetic mutation in nature. The selection is
weighted so that the “fittest’ individuals are more likely to
be selected for crossover, the fitness being a function of the
function which is being minimised. By means of these
operations, the population will evolve towards a near-
optimal solution.
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GAs are very well suited for multi-objective optimisa-
tion problems. The approach used here is the multi-objec-
tive genetic algorithm (MOGA) [12-14], which is an
extension on an idea by [20]. The idea behind the
MOGA is to develop a population of Pareto-optimal or
near pareto-optimal solutions, and so maintaining the
genuine multi-objective nature of the problem. This is
achieved by finding a set of solutions which are nondomi-
nated. An individual j with a set of objective functions
¢ =(¢4,...,p%) is said to be nondominated if, for a
population of N individuals, there are no other individuals
k=1,...,N, k#j such that ¢f<¢ivi=1,...,n and
¢ < p7 for at least one i. With the MOGA, nondominated
individuals are given the greatest fitness, and individuals
that are dominated by many other individuals are given a
small fitness. Using this mechanism, the population
evolves towards a set of nondominated, near pareto-
optimal individuals. Details of this mechanism are given
in [14].

In addition to finding a set of near pareto-optimal
individuals, it is desirable that the sample of the whole
Pareto-optimal set given by the set of nondominated
individuals is fairly uniform. A common mechanism to
ensure this is fitness sharing [14], which works by reducing
the fitness of individuals that are genetically close to each
other. However, as will be seen in Section 3.2, not all the
bits of a candidate solution bit string are necessarily active.
Thus, two individuals may have the same genotype, but
different gene strings. Thus it is difficult to measure the
difference between two genotypes in order to implement
fitness sharing, so, for the sake of simplicity in this paper,
multiple copies of genotypes are simply removed from the
population.

2.3 FWL representation

A typical 2’s complement FWL fixed-point representation
of a number g(x) is shown in Fig. 2. The number g(x) is
represented by a m+n 4 1 binary string x where

+ Xpgn] (€)

x;€{0, 1}, me{0, 1, 2,...} and ne{0, 1, 2,...}. The
value ¢(x) is given by

x:[x(]’xl"~'!xm’xm+1s-'-

m X m+n 3
g(x) = —xg2" + Y x27 + Y x2m 4)
=1

i=m+1

The set of possible values which can be taken by an FWL
variable represented by a m+n+1 binary string x is
defined as Q,, ,, given by

Qum =199 =qx),x; € {0, 1}Vi}. (%)

2.4 Linear system equivalence completion
problem

In the proposed method, near-equivalent finite word-length
controller representations are generated by means of the
solution to a linear system equivalence completion
problem; some preliminary results are first required. The
definition below is from [21, p 154].

Xo X4 e Xm | Xmaq| ¢ Xn

Fig. 2 FWL fixed-point representation
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Definition 1: A matrix 4 is similar to a matrix 4 if, and
only if, there exists a nonsingular matrix 7 such that
A=17'4T.

Lemma 1: Given a matrix 4 € R**? such that 4 £ a/Va € R,

where
a a
4= |: 1n 12 ©)
a1 ap
and given the real pair (&, @1 #0) then 4 is similar to A
where
- a a
d- I: ~11 ~12:| o
a1 dxp
and Where 5222011 +a22 — &11 and 52] =

(&11522 — det A)/lez

Proof; To prove this Lemma, we use the property that if 4
and 4 have the same minimal polynomial and the same
characteristic polynomial, and their minimal polynomial is
the same as their characteristic polynomial, then 4 and
A are similar [22, p 150]. The characteristic equations
of A4 and A are p(f)=det(t — A)=F — (@11 +az)
t+(anan —anap)  and  pi()=det(tl — A)=F —
(@11 + @)t + (G11d2, — do1dy2), respectively. By equating
coefficients, we obtain the expressions for d,; and @y;. It
remains to be shown that the minimal polynomial of 4 is
the same as the characteristic polynomial. For the case
where the eigenvalues of 4 are unique, it is clear that the
the minimal polynomial is the same as the characteristic
polynomial. For the case where the eigenvalues of 4 are
repeated and 4 is nonderogatory, the Jordan canonical form

of 4 is
L[ ®
““lo a

where A is the repeated eigenvalue and the minimal poly-
nomial is the same as the characteristic polynomial [23, p.
6]. However, if 4 is diagonal with repeated eigenvalues,
that is 4 = AI, A=T "'AT for all nonsingular 7. Thus the
Jordan canonical form equals 4 and 4 is derogatory and
so the minimal polynomial is of lower order than the
characteristic polynomial. This form is explicitly excluded.

U

The derogatory case excluded in the above lemma is
shown to be impractical for controller implementation by
the following lemma.

Lemma 2: For a two-state SISO LTI system F(z), where

FiA B 9
=lc | b )

ayy A

[l

a1 dp (10)

the system is unobservable if 4 =alVa e R.

Proof: If A=ual, the observability matrix:

o= ¢ 11
= o4 (11
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is given by

& &
0= (12)

oc,  ocy
which is rank deficient, hence the system is unobservable.
O

The main theorem in which a linear system equivalence
completion problem is solved can now be stated.

Theorem 1: Given an observable two-state SISO LTI
system F(z), where

Fi—A 5 13
R (13)

(14)

given (@1, d12#0, Ty, &2) there exists an equivalent state-
space representation /' where

.4 | B
FE| = - (15)
LC | D
_all &12 b
=| Gy ap (16)
L& & d
such that F(z) = F(z) where
F(z)=Clzl —A]"'B+D a7
and
F)=CTlzl — T'AT"'T'B+D (18)
where

T:[t“ tIZ} (19)

b I

is nonsingular if (4, C) is observable.

Proof: The proof is by construction. From eqn. 18:
A=T7'4T (20)

From Definition 1, and from Lemma 2, since the system is
observable, the case 4 =al Vo € R can be excluded. Hence
from Lemma 1, &5, is given by dys =ay;+ay — d;, and
{z is given by do =(d11d2; — det 4)/d,,. From eqn. 20,
AT — T A =0, which gives [24, p. 255]

U@d—-A"@Nt=0 1)

where t=[t;1, t21, t12, 122]_T and [I®4 — A7®I] is rank 2.
Now, from eqn. 18, CT=C. Hence, given ¢, &y:

¢, ¢ 0 0 ¢y
t=1 _ (22)
0 0 ¢ ¢ C

A Y e R** can be constructed from eqns. 21 and 22, where
Yt =z, where Y is nonsingular rank 4 and where z € R*isa
column vector with two elements of C and two zero
elements. Hence t can be calculated and 7 obtained.
Since F is observable, the observability matrix

O—C 23
=1 s (23)
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is rank 2. Since the pair (4, C) is required to be observable,
the observability matrix:

. C
O=| _. (24)
CA
is rank 2 and since

.| = (25)
cA CAT

T must be nonsingular. Thus B can be calculated. From
eqn. 18, d=d. O

Note that, by redefining the transformation matrix as
T, the problem given B instead of C can be solved. Note
also that the only restrictions on the problem are that the
original system and the equivalent system are observable,
and that certain canonical realisations (i.e. diagonal and
lower triangular) are excluded by the constraint that a;, is
not zero. These realisations can be separately programmed
into the method if necessary.

3 MOGA for optimal FWL controller structures

3.1 FWL design procedure
The proposed approach is to use the MOGA to evolve a set
of near pareto-optimal solutions to the following problem.
Problem: Given a discrete time nominal plant G(z) and
designed PID (or other second-order) controller K(z), find
an FWL controller K, (z) and state-space parameterisation
such that the difference (in some sense) between the closed
loop system and the original closed loop system and the
implementation costs are simultaneously minimised.
For each individual in the population, the following
procedure is used to generate a possible solution candidate.

(i) Generate a partially filled random FWL parameterisa-
tion of the two-state controller, i.e.

g9 9 | ?
=2 9 ? (26)
95 44 | Dx
where ¢;€ Q,m, j=1,...,4, ie. each g; is FWL.
(ii) By Theorem 1, solve a linear system equivalence
completion problem such that K(z) = K(z).

(iii) Obtain K, ~ K by rounding the non-FWL parameters
in K so that they are FWL, i.e.

91 9> 97
K,=| g5 45 @7
q3 494 99

where ¢;€ Qpm,j=1,...,9.

(iv) Calculate a set of robust stability/performance degra-
dation indices and implementation cost indices
{ppi=1...n} for K,.

3.2 Encoding of solution space

The encoding of the solution space is described in this

Section. Here, it is assumed there is a maximum possible

word length of 16bits, however, it is a trivial matter to

change this to use an 8, 32 or 64 bit maximum word length.
To generate the partially filled parameterisations of K

given by eqn. 26, the genotype of each individual consists
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of a 71 bit binary string [xy,...,x71], x;€ {0,1}. The bit
length of the integer part of the parameters’ representation
me0,...,7 is represented by [x;, X, x3], and is given
by m=Y;—x2"'. The bit length of the fractional part
of the parameters’ representation ne0,...,15 is repre-
sented by [x4,...,x7], and is given by n=
min(z,7=4xi2’ ~4 15 —m). The four m+n+1 word-
length parameters g, € @, m, j=1,...,4, where (1, g2,
q3, q4) =(d11, d12, C1, Cy) respectively, are represented by
[xg+16(j, )s+vs X84m4n+16(j — 1)] Thus not all the bits
in x are necessarily active. The values of ¢; are calculated
by eqn. 4.

4 Application to an IFAC93 benchmark problem
design

The proposed approach is illustrated by application to the
‘stress level 2’ PID controller [19] designed for the IFAC93
benchmark problem [18]. In this problem, the nominal
plant is provided along with perturbation ranges for 5 of
the plant parameters. The PID controller has been opti-
mally tuned for a set of robust performance criteria. For
further details, see [19].

To obtain the optimal digital controller structure for this
example, two indices are defined for the MOGA. The first
index ¢, is the closed loop measure of the implementation
accuracy of the FWL controller compared to the original
controller and is taken as a robust stability/performance
degradation measure in terms of an H,.-norm. The second
index ¢, is a measure of the total number of bits required
to store the FWL controller parameters. These indices are
defined in Appendix 7.1.

The continuous time nominal plant, G(s), is given as:

25(1 — 0.4s)
(s> +3s+25)(05s+ 1)

The plant, G(s), is discretised with sampling period of
t,=0.05 seconds. A PID controller is designed as [19]:

K(s) = 1311 +0.431/s + 1.048s/(s + 12.92)  (29)

G(s) = (28)

and discretised using the bilinear transform. The initial

realisation is set to:
0 —0.51172 1
K= 1 1.5117 } 0 (30)

q

036524 —0.17638 | 2.1139

The MOGA is implemented in MATLAB using the GA
Toolbox [25]. An elitism strategy is used whereby all
nondominated individuals propagate through to the next
population. Selection is performed using stochastic univer-
sal sampling with a fitness determined by the number of
dominating individuals. Single point crossover is used with
a probability of 0.7. Each bit has a probability of mutation
of 0.00933.

The MOGA is run with a population of 120. After 800
generations (which takes about 3 hours on a 450 MHz
Pentium II), a set of nondominated solutions is obtained.
This set is shown in Fig. 3. The figure also shows the
stable dominated solutions along with FWL implementa-
tions of the initial realisation, Kg, for various word
lengths. In addition, the equivalent balanced realisation
[26, pp. 72-78] of K(z) is calculated and FWL implemen-
tations of the realisation for various word lengths are
shown. Note that the axis for ¢, =||R — R, |l is shown
to log scale for clarity (the closed loop transfer functions R
and R, are defined in Appendix 7.1). The figure shows that

IEE Proc.-Control Theory Appl., Vol. 148, No. 5, September 2001
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improved FWL state—space realisations for the controller
can be obtained using the approach.

The 32-bit solution labelled (1) in Fig. 3 is selected and
is the controller:

2-1 __2—1 2—4
KO 0 1 ' 0.34375 (31)
1 09375 | 2.125

which requires m =2 and n =5 for the FWL representation
given by eqn. 4. In addition, one of the parameters is zero,
two are =£1, and three others are powers of 2, and can
hence be implemented by register shifts. Fig. 4 shows the
frequency response of the original closed loop transfer
function |R(e/“*)| and the difference between the systems
|R(e’”") — R\P(e/“")|. Fig. 5 shows the step response of
the system with the original controller design K(s) and the
digital controller K, for the nominal plant and the envelope
provided by the 32 plants with the parameters at their
extreme values. There is very little difference between the
two sets of responses.

IEE Proc.-Control Theory Appl., Vol. 148, No. 5, September 2001

amplitude

5 10 15 20 25
time, s

Fig. 5 Step response for original design, K, with nominal plant (----)
and envelope of extreme plants ( - - - ) and for controller, KLI), with nominal
plant (- - =) and envelope of extreme plants ( )

amplitude

—0.2 I { L I )
0 5 10 15 20 25

time, s

Fig. 6 Step response for original design, K, with nominal plant (----)
and envelope of extreme plants (- - - ) and for controller, Kflz), with nominal
plant (- - -) and envelope of extreme plants ( )

For comparison, the 43-bit balanced FWL controller
parameterisation labelled (2) in Fig. 3 is selected and is
the controller:

1 0 —0.15625
(OXS -1 —
KO 0 2 0.625 32)
—0.15625 0.625 | 2.125

which also requires m=2 and n =5 for the FWL repre-
sentation given by eqn. 4. Fig. 6 shows the step response of
the system with the original controller design K(s) and the
digital controller Kff) for the nominal plant and the envel-
ope provided by the 32 plants with the parameters at their
extreme values. The deterioration in the step response here
is marked.

5 Conclusions

A GA-based method to determine optimal FWL structures
for PID digital controllers has been presented. The method
is illustrated by an example. The method exploits the
fact that the implementation of FWL controllers is by
means of binary numbers, as is the representation in
genetic algorithms.
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The method requires the solution of a linear system
equivalence completion problem. A solution to the linear
system equivalence completion problem for 2 state SISO
systems has been presented. This solution needs to be
extended to general linear systems for the methodology to
be extended to higher order and multivariable controllers.
Otherwise, the method is entirely generic, in that any set of
computable stability and performance measures as well as
implementation cost measures can be used. For the illus-
trative example, the only cost measurement used was the
number of bits required for the implementation. For an
actual implementation, measures of other important quan-
tisation effects, namely quantisation noise and scaling
requirements should also be included. The example also
illustrates that robust control system designs are often far
more sensitive to perturbations in the controller than in the
plant; some extreme examples of this are presented in [27].

6 References

1 CLARKE, P: ‘MATRIXx 6.0: a fixed point development process for
automotive applications’, in ‘IMechE seminar publication — automotive
electronics (Autotech ’97)’, (Mechanical Engineering Publications,
Birmingham, UK, 1997), pp. 59-67

2 MASTEN, M.K., and PANAH]I, L.: ‘Digital signal processors for modern
control systems’, Contr. Eng. Pract., 1997, 5, (4), pp. 449458

3 KNOWLES, J.B., and EDWARDS, R.: ‘Effect of a finite-word-length
computer in a sampled-data feedback system’, Proc. IEE, 1965, 112, (6),
pp. 1197-1207

4 MORONY, P: ‘Issues in the implementation of digital feedback compen-
sators’, in ‘Signal processing, optimization, and control series’, (MIT

- Press, Cambridge, MA, 1983) No. 5

5 WILLIAMSON, D.: ‘Digital control and implementation: finite
wordlength considerations’, in ‘Systems and control engineering’,
(Prentice Hall, Englewood Cliffs, NJ, 1991)

6 GEVERS, M., and LI, G.: ‘Parametrizations in control, estimations and
filtering problems: accuracy aspects’ (Springer-Verlag, Berlin, 1993)

7 ISTEPANIAN,R.H, LL G., WU, J., and CHU, J.: ‘Analysis of sensitivity
measures of finite-precision digital controller structures with closed-loop
stability bounds’, IEE Proc. Contr. Theory Appl., 1998, 145, (5), pp.
472478

8 CHEN, S., WU, J., ISTEPANIAN, R.H., CHU, J., and WHIDBORNE,
JE.: ‘Optimizing stability bounds of finite-precision controller structures
for sampled-data systems in the §-operator domain’, JEE Proc. Control
Theory Appl., 1999, 146, (6), pp. 517-526

9 WHIDBORNE, JE, WU, J., and ISTEPANIAN, R.H.: ‘Finite word
length stability issues in an £; framework’, /nt. J. Contr., 2000, 73, (2),
pp. 166-176

10 XU, D.J,, and DALEY, M.L.: ‘Design of optimal digital filter using a
parallel genetic algorithm’, IEEE Trans. Circuits Syst.: II, 1995, 42, (10),
pp. 673-675

11 UESAKA, K., and KAWAMATA, M.: ‘Synthesis of low coefficient
sensitivity digital filters using genetic programming’, Proc. IEEE Int.
Symp. Circuits Syst., 1999, 3

12 FONSECA, C.M., and FLEMING, P.J.: ‘Genetic algorithms for muiti-
objective optimization: formulation, discussion and generalization’, in
‘Genetic algorithms: proceedings of the fifth international conference’
(San Mateo, CA, 1993), pp. 416-423

13 FONSECA, C.M., and FLEMING, PJ.: ‘Multiobjective genetic algo-
rithms’. IEE colloquium on genetic algorithms for control systems
engineering (London, UK, 1993), No. 1993/130, pp. 6/1-6/5

14 FONSECA, C.M., and FLEMING, PIJ.: ‘Multiobjective optimization
and multiple constraint handling with evolutionary algorithms —partI: a
unified formulation’, JEEE Trans. Syst. Man & Cybernetics, A, 1995, 28,
(1), pp. 26-37

382

15 MAN, K.E, TANG, K.S., KWONG, S., and HALANG, W.A.: ‘Genetic
algorithms for control and signal processing’, in ‘Advances in industrial
control’ (Springer, London, UK, 1997)

16 TANG, K.S., MAN, K.F, and GU, D.-W.: ‘Structured genetic algorithm
for robust A control system design’, IEEE Trans. Ind. Electr., 1996, 43,
(15), pp. 575-582

17 DAKEV, N.V,, WHIDBORNE, J.F,, CHIPPERFIELD, A.J., and FLEM-
ING, PJ.: ‘Hy design of an EMS control system for a magley vehicle
using evolutionary algorithms’, Proc. I MechE, Part I: J. Syst. & Contr.,
1997, 311, (4), pp. 345-355

18 GRAEBE, S.F: ‘Benchmark IFAC 93: Adaptive/robust control of
unknown plant’. Preconference communication, 1992. Centre for Indus-
trial Control Science, University of Newcastle, Australia

19 WHIDBORNE, I.E, MURAD, G., GU, D.-W., and POSTLETHWAITE,
L: ‘Robust control of an unknown plant — the IFAC 93 benchmark’, Int.
J_ Control, 1995, 61, (3), pp. 589-640

20 GOLDBERG, D.E.: ‘Genetic algorithms in search, optimization and

machine learning’ (Addison-Wesley, Reading, MA, 1989)

HERNSTEIN, LN, and WINTER, D.J.: ‘Matrix theory and linear

algebra’ (Macmillan, New York, 1988)

22 HORN, R.A,, and JOHNSON, C.R.: ‘Matrix analysis’ (Cambridge

University Press, Cambridge, UK, 1985)

BARNETT, S.: ‘Matrices in control theory — with applications to linear

programming’ (Van Nostrand Reinhold, London, UK, 1971)

24 HORN, R.A,, and JOHNSON, C.R.: ‘Topics in matrix analysis’

(Cambridge University Press, Cambridge, UK, 1991)

CHIPPERFIELD, A., FLEMING, PJ, POHLHEIM, H., and

FONSECA, C.M.: ‘Genetic algorithm toolbox: user’s guide’

(Department Automatic Control and Systems Enginecring, University

of Sheffield, UK, 1994)

26 ZHOU, K., DOYLE, J.C., and GLOVER, K.: ‘Robust and optimal
control” (Prentice Hall, Upper Saddle River, NJ, 1996)

27 KEEL, LH., and BHATTACHARRYYA, S.P. ‘Robust, fragile, or
optimal?’, IEEE Trans., 1997, Ac—42, (8), pp. 10981105

2

—_

2

w

2

(o3

7 Appendix

7.1 Performance indices

A measure of the difference between the FWL implemen-
ted closed loop system and the original closed loop system
is taken as the H,, norm of the difference between the
closed loop pole transfer functions of the systems. If both
the implemented controller and closed loop system are
stable, ¢, is defined as

¢ =lR-R; (33)
where
GK
R= 156K (34)
and
R, = & (35)
1 + GK,

This is also a measure of the robust stability/performance
degradation.

An implementation memory function, ¢,, is defined as
the total number of bits used to implement K,. This
function is calculated bearing in mind that parameters of
K, that are 1, 0, —1 or that are a power of 2 require less
memory requirement than the m +n+ 1 bits from eqn. 4.
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