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Abstract

The parameters of a digital control design need to be
rounded if the controller is implemented with finite pre-
cision arithmetic. This often results in degradation of
the closed loop performance and reduced stability mar-
gins. This paper presents a multi-objective genetic al-
gorithm based approach to designing the structure of a
finite-precision PID controller implementation to min-
imize both the performance degradation and the mem-
ory requirements of the implementation. The approach
provides a set of solutions that are near Pareto-optimal,
and so allows the designer to trade-off the performance
degradation against the memory requirements. The
method is applied to the PID controller structure for
the IFAC93 benchmark problem.

1 Introduction

It is well known that controller implementations with
fixed-point arithmetic offer advantages of speed, mem-
ory space, cost and simplicity when compared to
floating-point arithmetic [1]. Thus, to date, fixed-point
processors are still the dominant architecture in many
modern digital control engineering applications found
in automotive, consumer, military and medical applica-
tions. However, a closed-loop control system will suffer
a performance degradation and may even become un-
stable when the designed infinite-precision controller is
implemented with a fixed-point digital processor due
to the finite precision of the parameter representation
resulting from the Finite Word-Length (FWL). This so-
called FWL effect is in fact strongly dependent upon
the parameterization of the controller. Thus, over the
years, many results have been reported in the literature
dealing with FWL implementation and their relevant
parameterization issues, for example, {2, 3].

Consider the discrete time system shown in Figure 1
with the plant G(z). Let (Ax, Bx,Ck, Di) be a state-
space description of the state space controller, K(z) =
Ci(zI — Ax) "' By + Dg. In this paper, (A, By, Ck, D)
is also called a realization of K(z). The realizations of
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Figure 1: Discrete time feedback system

K(z) are not unique, if (A2, BY, C2, D?) is a realization
of K(z), then (I'=*AYT, T-1BY,C2T, DY) is an equiv-
alent realization for any non-singular similarity trans-
formation T. A common approach (for example, {3])
to the FWL problem for state space controllers is to
to find equivalent controller realizations (or similarity
transformations T°) such that the closed loop system is
insensitive to perturbations in the controller parame-
ters.

A more direct approach is used in this paper (which
is similar to the method proposed for [4]). Basically,
the approach is to find an FWL controller that is near
to the originally designed controller such that the ro-
bust stability and closed loop performance degradation
and the FWL implementation cost are simultaneously
minimized. The approach is based on the generation
of near-equivalent finite word-length controller repre-
sentations by means of the solution to a linear system
equivalence completion problem followed by a rounding
operation. A Genetic Algorithm (GA) is then used to
find sets of (near) optimal near-equivalent FWL con-
trollers. The designed can then simply choose the most
appropriate design from this set. Two features of GA's
make them very attractive for solving this problem.
Firstly, GA’s require the solution space to be encoded
in binary strings, and since controllers implemented
with FWL are also coded in binary. a one-to-one re-
lationship between the genotype and the phenotype
within the GA can be defined. Secondly. GA’s allow
the optimal structure of the solution to be found (e.g.
[5]), this means that the implementation word-length



does not need to be defined a priori, but the GA will
select the best from a predefined set, and so the imple-
mentation cost in the form of the memory requirement
can also be minimized.

In this paper, a multi-objective genetic algorithm is
used. This allows the designer to trade-off FWL imple-
mentation robust stability and performance measures
against the memory and other requirements of the im-
plementation. For reasons of simplicity, in this paper, a
measure of the robust stability/performance degrada-
tion is simply taken as the Hyo-norm of the difference
between the FWL closed-loop transfer function and the
original closed-loop transfer function. The implemen-
tation cost is taken as the parameter memory storage
requirement. However, the method is entirely generic,
and any other set of stability, performance and imple-
mentation measures could be used, such as in [4]. The
developed approach is applied to the problem of the
implementation of a PID controller designed for the
IFAC93 benchmark problem [6, 7].

The paper is organized as follows. In the next section,
some of the concepts underpinning the method are in-
troduced, namely, multi-objective optimization, multi-
objective genetic algorithms and FWL representation.
The method also requires a linear system equivalence
completion problem to be solved, this also presented in
the next section. In Section 3, details of the developed
method are presented. The IFAC93 benchmark prob-
lem design is presented in Section 4, and in the final
section, some conclusions are drawn.

2 Preliminary concepts and theory

2.1 Multi-objective optimization

The majority of engineering design problems are multi-
objective, in that there are several conflicting design
aims which need to be simultaneously achieved. If these
design aims are expressed quantitatively as a set of n
design objective functions ¢;(p) :7i=1...n, where p
denotes the design parameters chosen by the designer,
the design problem could be formulated as a multi-
objective optimization problem:

géig {¢:i(p), fori=1...n}. (1)

where P denotes the set of possible design parameters
p. In most cases, the objective functions are in con-
flict, so the reduction of one objective function leads
to the increase in another. Subsequently, the result of
the multi-objective optimization is known as a Pareto-
optimal solution. A Pareto-optimal solution has the
property that it is not possible to reduce any of the
objective functions without increasing at least one of
the other objective functions.
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2.2 Genetic algorithms

Genetic algorithms are search procedures based on the
evolutionary process in nature. The idea is that the GA
operates on a population of individuals, each individ-
ual representing a potential solution to the problem,
and applies the principle of survival of the fittest on
the population, so that the individuals evolve towards
better solutions to the problem.

The individuals are given a chromosomal representa-
tion, which corresponds to the genotype of an individ-
ual in nature. Three operations can be performed on
individuals in the population, selection, cross-over and
mutation. These correspond to the selection of individ-
uals in nature for breeding, where the fitter members
of a population breed and so pass-on their genetic ma-
terial. The cross-over corresponds to the combination
of genes by mating, and mutation to genetic mutation
in nature. The selection is weighted so that the ‘fittest’
individuals are more likely to be selected for cross-over,
the fitness being a function of the function which is be-
ing minimized. By means of these operations, the pop-
ulation will evolve towards a near-optimal solution.

GA’s are very well-suited for multi-objective optimiza-
tion problems. The approach used here is the Multi-
Objective Genetic Algorithm (MOGA) [8, 9], which is
an extension on an idea by [10]. The idea behind the
MOGA is to develop a population of Pareto-optimal
or near Pareto-optimal solutions. This is achieved by
finding a set of solutions which are non-dominated. An
individual j with a set of objective functions ¢/ =
(#7,.-..¢%) is said to be non-dominated if for a popu-
lation of IV individuals, there are no other individuals
k=1,...,N.k # jsuch that ¢ < ¢IVi=1,...,n
and qbf < ¢i for at least one i. With the MOGA, non-
dominated individuals are given the greatest fitness,
and individuals that are dominated by many other indi-
viduals are given a small fitness. Using this mechanism,
the population evolves towards a set of non-dominated,
near Pareto-optimal individuals. Details of this mech-
anism are given in [8].

In addition to finding a set of near Pareto-optimal in-
dividuals, it is desirable that the sample of the whole
Pareto-optimal set given by the set of non-dominated
individuals is fairly uniform. A common mechanism to
ensure this is fitness sharing (8], which works by reduc-
ing the fitness of individuals that are genetically close
to each other. However, as will be seen in Section 3.3,
not all the bits of a candidate solution bit string are
necessarily active. Thus, 2 individuals may have the
same genotype, but different gene strings. Thus it dif-
ficult to measure the difference between 2 genotypes in
order to implement fitness sharing, so, for the sake of
simplicity in this paper, multiple copies of genotypes
are simply removed from the population.



2.3 FWL representation
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Figure 2: FWL fixed-point representation

A typical 2’s complement FWL fixed-point represen-
tation of a number ¢(z) is shown in Figure 2. The
number ¢(x) is represented by a m + n + 1 binary
string © where £ = [Z0,Z1...,Zm,Tm+1s-- - Tm+n),
z; € {0,1}, m € {0,1,2,...}, n € {0,1,2,...}. The
value ¢(z) is given by

m ) m+n )
qz) = —zo2™+ Y T2+ Y m2mTh o (2)
=1 i=m+1

The set of possible values which can be taken by an
FWL variable represented by a m+n+1 binary string =
is defined as Qn m given by Qn . = {¢:q = g(z),z; €
{0,1}vi}.

2.4 A linear system equivalence completion
problem
The following theorem is required.

Theorem 1 Given a 2 state SISO LTI system F(z),

where
T

, (4)

then (provided certain rank and singularity conditions
are satisfied) given (811,812 # 0,1, C2) there exists an
equivalent state-space representation F' where

a1 G2

e

G21 Qg ) (6)
& &
such that F(z) = F(z) where
F(z)=ClzI-A™'B+D (7
and
F(z)=CT[zI-TAT'|"'T'B+D, (8)
where
r=[ ] ®

is non-singular.
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Proof: The proof is by construction. From (8),
A=TAT™, (10)

so by a property of similar matrices (11, p.115], trd =
tr A. Hence, given ai1,a12, Gg2 is given by &gy =
ai11 + a2 — @11. Similarly, from the property of simi-
lar matrices that det A = det A (by definition), given
a2 # 0, ag) is given by dg; = (@G11822 — detA)/alg.
From (10), AT — T A = 0, which gives [12, p. 255]

(T®@A-AT®I|t=0 (11)

where t = [ti1,t21,t12,222)7 and I ® 4 — AT @ I)is

rank 2. Now, from (8), CT = C. Hence, given é;, é;,
aa 2 0 0], [&
[0 0 (5} Cz]t—— [51]‘ (12)
AY € R** can be constructed from (11) and (12)
where Yt = z, and where z € R? is a column vector
with 2 elements of C and two zero elements. If Y is

non-singular rank 4, T and hence B can be calculated.
From (8), d = d. ne

3 MOGA for optimal FWL controller
structures

3.1 Procedure outline

The problem can be summarized as follows. Given a
discrete time nominal plant G(z) and designed PID
(or other second order) controller K(z), find an FWL
controller K,(z) and state-space parameterization such
that the difference (in some sense) between the closed
loop system and the original closed loop system and the
implementation costs are simultaneously minimized.

For this paper, two indices are defined for the MOGA.
The first index, ¢1, is the closed loop measure of the
implementation accuracy of the FWL controller com-
pared to the original controller and is taken as a robust
stability /performance degradation measure in terms of
an H-norm. The second index, ¢,, is a measure of
the total number of bits required to store the FWL con-
troller parameters. These indices are defined in Section
3.2

The main elements of the approach are now summa-
rized.

i) Generate partially filled random FWL parame-
terizations of the 2 state controller i.e.

(13)

where ¢; € Qum,j = 1,....4, ie each ¢; is
FWL.



ii) By Theorem 1, solve a linear system equivalence
completion problem such that K(z) = K(z).

Obtain Ky = K by rounding the non-FWL pa-
rameters in K so that they are FWL, i.e.

iii)

lla

(14)

q3

where q; (S Qn,myj = 17 s

Calculate the robust stability /performance
degradation index, ¢1, and the memory require-
ment index, ¢2, for K.

Use the MOGA to evolve a set of near Pareto-
optimal solutions.

3.2 Performance indices

A measure of the difference between the FWL imple-
mented closed loop system and the original closed loop
system is taken as the Hy, norm of the difference be-
tween the closed loop pole transfer functions of the sys-
tems. If both the implemented controller and closed
loop system are stable, ¢ is defined as

61 =[R— Rglly (15)

- _ _GK _ _GK
where R = 76 and Ry = 57

ot This is also a mea-
sure of the robust stability /performance degradation.
An implementation memory function, ¢2, is defined as
the total number of bits used to implement K,. This
function is calculated bearing in mind that parameters
of K, that are 1,0, —1 or that are a power of 2 require
less memory requirement than the m + n + 1 bits from

(2).

3.3 Encoding of solution space

In order to generate the partially filled parame-
terizations of K given by (13), the genotype of
each individual consists of a 71 bit binary string
[z1....,z71),z; € {0,1}. The bit length of the in-
teger part of the parameters’ representation m €

0,...,7 is represented by [z1,z2,z3], and is given by
m = Y3 2;2°"1. The bit length of the fractional
part of the parameters’ representation n € 0,...,15

s represented by [z4,...,27], and is given by n
max(3r_, :2:"4,15 — m). The four m + n + 1 word-
length parameters ¢; € Qnpm,j = 1,...,4, where
(g1,92.93,94) = (@11, @12, €1, C2) respectively, are repre-
sented by (Zg416(j—1)s- - - » T8+mtn+16(j—1))- Lhus not
all the bits in x are necessarily active. The values of ¢;
are calculated by (2).
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4 Application to an IFAC93 benchmark
problem design

The proposed approach is applied to a PID controller
[7] designed for the IFAC93 benchmark problem [6].
The continuous time nominal plant, G(s), is given as

_ 25(1-04s)

G(s) = (s2+35+25)(5s + 1)

The plant, G(s), is discretized with sampling period of
ts = 0.05 seconds. A PID controller is designed as (7]

K(s) = 1.311 + 0.431 /s + 1.048s/(1 + 12.92s),
and discretized using the bilinear transform. The initial
realization K° is set to

1 —0.99614 1
0 1.99614 0
0.049578 0.049469 | 1.41693

3

K,

The MOGA is implemented in MATLAB using the GA
Toolbox [13]. An elitism strategy is used whereby all
non-dominated individuals propagate through to the
next population. Selection is performed using stochas-
tic universal sampling with a fitness determined by the
number of dominating individuals. Single point cross-
over is used with a probability of 0.7. Each bit has a
probability of mutation of 0.00933.

The MOGA is run with a population of 120. After
800 generations (which takes about 3 hours on a 450
MHz Pentium II), a set of non-dominated solutions is
obtained. This set is shown in Figure 3. The figure
also shows the stable dominated solutions along with
FWL implementations of the initial realization, K 3, for
various word-lengths. In addition, the diagonal equiv-
alent balanced realization of K(z) is calculated using
the ssbal function from the MATLAB Control Sys-
tem Toolbox [14, pp 9/200-201], and FWL implemen-
tations of the realization for various word-lengths are
shown. Note that the axis for || R — R, || is shown to
log scale for clarity. The figure clearly shows that im-
proved FWL state-space realizations for the controller
can be obtained using the approach.

The 45 bit solution labelled (1) in Figure 3 is selected
and is the controller

0.99609375 277 | —1.5859375
K, = 0 1 | -0.3515625 |,
-27° 0 | 1.41796875

which requires m = 1 and n = 8 for the FWL represen-
tation given by (2). In addition, one of the parameters
is zero, another is 1, and 2 others are powers of 2, and
can hence be implemented by register shifts. Figure 4
shows the frequency response of the original closed loop
transfer function IR(ej“”‘-‘)| and the difference between
the systems |R(e/**-) — Ry(ev*)|.
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Figure 3: Solution set showing trade-off with MOGA
non-dominated set (¥), MOGA dominated set
(), K? realizations (x) and equivalent bal-
anced realizations (+). The selected controller
is marked 1.
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5 Conclusion

A GA-based method to determine optimal FWL struc-
tures for PID digital controllers has been presented.
The method is illustrated by an example. The method
exploits the fact that the implementation of FWL con-
trollers is by means of binary numbers, as is the repre-
sentation in genetic algorithms.

The method requires the solution of a linear system
equivalence completion problem. A solution to the
linear system equivalence completion problem for 2
state SISO systems has been presented. This solution
needs to be extended to general linear systems for the
methodology to be extended to higher order controllers.

Otherwise, the method is entirely generic, in that any
set of computable stability and performance measures
can be included. In addition, other implementation
measures could be included, such as computation time,
as well as measures of other important quantization
effects, namely quantization noise and scaling require-
ments.
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