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Abstract How many wireless sensor nodes should be used and where should they
be placed in order to form an optimal wireless sensor network (WSN) deployment?
This is a difficult question to answer for a decision maker due to the conflicting
objectives of deployment costs and wireless transmission reliability. Here, we ad-
dress this problem using a multiobjective evolutionary algorithm (MOEA) which al-
lows to identify the trade-offs between low-cost and highly reliable deployments—
providing the decision maker with a set of good solutions to choose from. For the
MOEA, we use an off-the-shelf selector and propose a problem-specific representa-
tion, an initialization scheme, and variation operators.

1 Introduction

WSNs are a new form of pervasive and distributed computing infrastructure, deeply
embedded into the environment. Providing remote access to the sensing devices,
WSN technology is a radical innovation for many diverse application areas such
as environmental monitoring (Mainwaring et al., 2002), structural monitoring (Xu
et al., 2004), or event detection (Meier et al., 2007). Monitoring phenomena in a
given environment requires coverage of the area with the sensing devices. For re-
mote access to the sensed data, sensor nodes provide an unreliable wireless commu-
nication infrastructure. Data is transmitted via multiple hops along a defined path
via intermediate nodes. These paths are constructed based on neighborhood infor-
mation of individual nodes, relying on the quality of node-to-node links. Reliable
data transport providing the user with sensed data is of utmost importance. Connec-
tivity requires operable links between nodes and redundant communication paths to

Matthias Woehrle · Dimo Brockhoff · Tim Hohm · Stefan Bleuler
Computer Engineering and Networks Lab, ETH Zurich, 8092 Zurich, Switzerland
e-mail: firstname.lastname@tik.ee.ethz.ch

1



2 Woehrle et al.

compensate for node failures. Coverage needs to be established to provide quality
of data. Cost considerations limit the number of deployed nodes.

The deployment of a WSN, i.e., placing nodes in a given environment, is a com-
plex task. The decision for a node placement needs to consider the aforementioned
conflicting constraints and objectives. In order to explore these non-trivial trade-offs,
we propose to employ MOEAs. In this paper, we make the following contributions:
based on a WSN deployment model by Woehrle et al. (2007), we propose objectives
and constraints to be used for exploring the trade-offs in WSN deployments. In de-
tail, we propose a variable length representation MOEA, including new variation
operators and apply the MOEA to a test deployment.

2 Related Work

Although several approaches for the deployment of WSNs have been proposed in
the literature, there is no work employing a realistic deployment model for nodes
and the environment and at the same time exploring the intricate trade-offs between
coverage, connectivity and cost.

For example, Dhillon et al. (2002) and So and Ye (2005) present algorithms to
improve the deployment coverage. Both papers do not consider deployment con-
nectivity and the according trade-offs. Wang et al. (2003) present the integration of
communication and sensing coverage whereas Jourdan (2006) looks at coverage and
lifetime. Both works use communication models which are limited to a simplistic
homogeneous Euclidean distance model. Bai et al. (2006) prove the asymptotic op-
timality of a stripe-based deployment pattern for different ratios of sensing range to
communication range. The latter approaches of Wang et al. (2003), Jourdan (2006),
and Bai et al. (2006) are based on simplifying assumptions, as discussed by Kotz
et al. (2003). Rajagopalan et al. (2005) use a more realistic communication model
and, in addition, investigate the trade-offs with respect to energy consumption. How-
ever, only points on a spatial grid are considered as possible node positions.

None of this work considers the complex trade-off between reliability of com-
munication and deployment costs. To the best of our knowledge, only Krause et al.
(2006) consider both coverage and communication in a realistic scenario. The au-
thors present a polynomial-time, data-driven algorithm using non-parametric proba-
bilistic models called Gaussian Processes. Since their work requires sensor and link
quality data collected at an initial deployment, the work of Krause et al. (2006) com-
plements the present study, as we can determine an optimized deployment without
any preceding data collection.
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3 Problem Formulation

In this study, we consider the problem of how to distribute wireless sensor nodes
in order to cover a certain area with as few nodes as possible but still providing
reliable communication paths from each node to a data sink. Before we define the
considered optimization criteria, we briefly describe the underlying model.

3.1 Model Description

The considered model is divided into two parts, an environment model and a model
for the sensor nodes. The environment is represented by a data sink to which all
the sensor readings need to be communicated and an area of interest which is to be
monitored. This area of interest is outlined by a polygon and represented by a set of
points of interest. We regard the area of interest as covered by sensors if every point
of interest lies within the sensing range of at least one node. Note, that the proposed
formulation explicitly allows sensor nodes outside the region of interest, although
they only contribute to the enhancement of communication paths. The sensor nodes
in turn are characterized by their position, a sensor range (here assumed to be circu-
lar), and their communication properties, i.e., their transmission probability is given
by a radio function depending on the distance between transmitting and receiving
node. A detailed description of both, the environment model and the sensor node
model, is given by Woehrle et al. (2007)1.

3.2 Optimization Criteria

To determine the quality of a given placement of sensor nodes, we propose the
following objectives that have to be minimized:

3.2.1 Sensor Cost

Each sensor node that has to be placed causes costs, i.e., for production, deploy-
ment, and maintenance. Since one is interested in a cost-effective solution, the first
optimization criterion is to minimize these costs and thereby the number of nodes.
In a first approach, a cost of ’1’ is associated with each node. Therefore, we take the
number of used nodes n as the first optimization criterion:

f1 = n (1)

1 In contrast to Woehrle et al. (2007), we use the parameters d0 = 10m, Pt = 0dBm, σ = 4.0,
η = 4.0, and Pn =−115dBm here.
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3.2.2 Transmission Failure Probability

The sensor readings need to be continuously communicated from the nodes to the
data sink. Thus, each of the nodes needs a reliable communication path to the data
sink; if the sink lies outside of the radio range of a specific node, its communica-
tion path contains intermediate nodes which forward the message to the sink. Since
wireless communication is susceptible to communication failures between nodes,
e.g., due to interferences or node failures, not only the reliabilities of the best com-
munication paths are necessary to be optimized but redundant transmission paths of
high reliability as well. Instead of maximizing the connection reliability, here we
consider the dual criterion of minimizing the transmission failure probability:

f2 =
1

W
·

Nred

∑
j=1

w j · (1− pworst, j) (2)

with W =
Nred

∑
j=1

w j

Equation 2 scores the difference between the worst transmission path pworst, j on re-
dundancy level j to an optimal path with transmission probability 1. Therefore, min-
imizing this criterion ensures that there is a preference for node placements resulting
in high transmission reliabilities; we explicitly allow to assign different weights w j
to connections on different redundancy levels j. In turn, f2 is normalized with the
sum of these weights W .

The path reliabilities of the Nred most reliable paths between all nodes i and the
sink are computed as follows: For each node i, we compute the most reliable path
to the sink and store its corresponding reliability pi,1, using Dijkstra’s algorithm.
Afterwards, we delete all nodes of this path except source and sink, and iteratively
repeat this procedure until Nred paths are found or no longer a path exists (if less
than Nred paths are found, all missing paths are assigned a probability of zero).

4 An Evolutionary Multiobjective Algorithm with Variable
Length Representations

The focus of this paper is to show the benefits of MOEAs for decision making
with respect to WSN deployment. We use an off-the-shelf MOEA, namely IBEA by
Zitzler and Künzli (2004), as it is provided in the PISA framework of Bleuler et al.
(2003) and adapt the initialization and variation operators to the new search space.
The resulting algorithm is sketched in Algorithm 1.
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Algorithm 1 Variable Length Representation MOEA
initialize population P
set generation counter g = 0
while g≤ G do

M←matingSelection(P)
for each pair m1,m2 ∈M do

with probability pc, create two offspring o1,o2 with 2D crossover
else let o1 = m1 and o2 = m2
draw a binary random number r distributed according to the ratio rmut
if r = 0 then

V ←V ∪voronoiMutation(o1)∪voronoiMutation(o2)
else

V ←V ∪gaussianMutation(o1)∪gaussianMutation(o2)
end if

end for
P← environmentalSelection(P,V )
g = g+1

end while

4.1 Representation

An individual represents an entire wireless sensor network as a set of sensor
nodes and their positions. More precisely, an individual stores the node’s plain x-
y-positions as a real-valued vector with x- and y-positions alternating. Since the
number of nodes is one of the optimization criteria, we explicitly allow vectors of
variable length, i.e., sensor networks with a varying number of nodes. Since we as-
sume that all sensor nodes are homogeneous, we do not explicitly have to include
properties of the node model into the representation.

4.2 Initialization

For each of the µ initial individuals, the number of sensor nodes n is randomly
drawn from a Poisson distribution with mean

λ = 3 · area of polygon
π(sensing range)2 .

This ensures that initial points have enough sensor nodes to cover the region of inter-
est. The n nodes are successively placed within the region of interest in the following
way: The polygon defining the area of interest is first Delaunay triangulated. Then
for each node to be placed within the polygon, a triangle is chosen randomly with a
probability proportional to its area. Within this triangle, the node’s position x ∈R2

is chosen uniformly according to the formula x = (1−α)a + α(1−β )b + αβc as
proposed by Grimme (2005) (p. 79ff.) where a,b,c ∈R2 are the triangle’s vertices
and α and β are chosen uniformly in the interval [0,1].
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Fig. 1 Illustration of the crossover: (left) sensor node positions of the two parents (filled/empty);
(right) first child, containing all positions from the first parent lying above the line and all positions
from the second parent lying below the line.

4.3 Crossover

The design of the crossover operator used in this work follows ideas earlier proposed
by Schoenauer (1996) for Voronoi representations and by Zdarsky et al. (2005) for
discrete search spaces. To create two offsprings from two parent individuals, we in-
troduce a line intersecting the area of interest and take all sensor node positions from
the first parent which reside on one side of the line and those positions from the sec-
ond parent that lie on the other side of the line and vice versa to create two children
(see Fig. 1). In effect, the number of nodes in the offsprings is not necessarily the
same as in the parents. The intersecting line is placed randomly.

4.4 Voronoi Mutation

For variable length individuals, we suggest a new mutation operator that only adds
or removes points from an individual: For a network containing n sensor nodes, a
number nVoronoi is drawn from a normal distribution N (0,0.05n). This number is
rounded to the next integer and according to its sign, nodes are removed (negative
sign) or added (positive sign). The |nVoronoi| nodes are removed or added succes-
sively with the help of a Voronoi diagram on the current node set: The probability
to remove a point is anti-proportional to the average Euclidean distance to all finite
vertices of its corresponding Voronoi facet. The position where to add a new point
always corresponds to a vertex of the Voronoi diagram: the probability to choose a
vertex is proportional to its minimal Euclidean distance to all sensor nodes. Figure 2
illustrates this operator.

4.5 Gaussian Position Mutation

In case of a Gaussian position mutation, every node has a probability of 0.1 to be
moved. If it is moved, a bivariate Gaussian distributed random vector with mean
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Fig. 2 Illustration of the Voronoi mutation: crosses denote sensor nodes, circles denote Voronoi
vertices. The relative probabilities to delete (left) and add (right) a sensor node are depicted exem-
plary: on the left, the point to the right is more likely to be removed; on the right, the point to the
left is more likely to be added.

(0,0) and standard deviation σmut = (σmut,x,σmut,y)2 is added to the node’s old posi-
tion.

5 Results

To show the applicability of the proposed MOEA, we ran the algorithm with dif-
ferent parameter sets on a specific area of interest, shown in Fig. 3. Each opti-
mization run took on average about 16h on a two chip dual core AMD Opteron
2.6GHz 64-bit machine with 8GB RAM. In total, we tested 25 different parame-
ter sets, each with 22 independent runs. Using a fixed population size of µ = 50
and evolving G = 300 generations, we tested five different crossover probabili-
ties κ ∈ {0.0,0.2,0.5,0.8,1.0} and five different ratios between Voronoi mutation
and the Gaussian position mutation of ρ ∈ {0:1,1:3,1:1,3:1,1:0}. When comparing
the hypervolume indicator values3 for all runs, it turned out that the ratio between
Voronoi mutation and Gaussian position mutation has a great influence on the re-
sults: using no Voronoi mutations resulted in a bad hypervolume while leaving out
Gaussian position mutation had no clear influence on the results. The negative in-
fluence of skipping Voronoi mutation was enhanced when no crossover was used,
indicating that either crossover or Voronoi mutation are necessary to effectively vari-
ate the number of nodes used for the deployments. While crossover only has an
influence on the number of nodes by either a beneficial cutting line or a differing
number of nodes in the considered individuals, Voronoi mutation has a direct ef-
fect. Therefore, the loss in hypervolume is more drastic when leaving out Voronoi

2 To get a general operator, the σmut-values are adapted to the size of the polygon. To this end, we
choose σmut,x = cmut ·X/2 where X is the width of the enclosing rectangle of the area of interest
and cmut = 0.05 is constant. The value of σmut,y is chosen similarly with respect to Y , the height of
the enclosing rectangle.
3 For the computation of the hypervolume indicator, we normalized the number of nodes with the
maximal number of nodes occurring during the simulations. As reference point, (1.01,1.01) was
chosen; resulting in a maximal indicator value of ≈ 1.02.
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200m 200m

Fig. 3 Two examples for evolved node placements for the same area of interest outlined by a
polygon. Nodes are marked by circles and the sink is indicated by a square. Both solutions are part
of the respective Pareto front approximations found with the parameters κ = 1.0 and ρ = 1:3. The
left solution corresponds to an objective vector of ( f1, f2) = (18,0.5827) while the network on the
right has objective values ( f1, f2) = (61,0.0016).
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Fig. 4 Boxplot showing the results of parameter testing: each of the boxes summarizes the results
of 22 independent optimization runs for the tested 25 parameter combinations. Here, κ refers to the
crossover rate and ρ refers to the ratio between Voronoi mutation and Gaussian position mutation.

mutation than when omitting crossover. Overall, the runs using a decent amount of
Voronoi mutation and crossover identified good solutions (see Fig. 4). As already
indicated by the hypervolume indicator values, the identified Pareto front approxi-
mations showed a good coverage of the objective space (see Fig. 5).
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Fig. 5 Non-dominated solutions in population after 300 generations for all 22 runs with crossover
probability κ = 1.0 and mutation ratio ρ = 3 : 1. To improve readability, the y-axis is plotted in
log-scale. Solutions non-dominated over all runs are depicted as circles.

6 Discussion

During the parameter optimization runs, the proposed MOEA showed its capabili-
ties in identifying a broad range of trade-offs between number of nodes and trans-
mission reliability (see Fig. 3 and Fig. 5). The MOEA provides valuable support for
a human decision maker with respect to different scenarios. For example, when con-
sidering the design of a WSN for fire detection, it is required to guarantee reliable
data transmission on at least two redundant paths to ensure that no fire alarm gets
lost. On the other hand, the number of nodes affects recurring costs: maintenance
is expensive, especially when considering that some of the nodes may be placed in
locations that are difficult to access.

7 Conclusion and Outlook

We applied a MOEA to the deployment of WSNs, considering the two objectives
network cost and transmission reliability. Building on an off-the-shelf selector, we
proposed new variation operators suitable for the considered problem. We gave a
proof of concept that the proposed MOEA identifies a broad range of trade-offs
between the considered criteria. Furthermore, the MOEA can be used, e.g., to in-
vestigate the influence of positioning and the number of available data sinks on the
resulting network topology—an upcoming research topic in WSNs.

In the future, we plan to adapt our approach to a range of other real world setups.
In the presented study, we considered link qualities depending on the sending node’s
distance to a receiving node, an assumption only valid without obstruction. To be
able to model indoor scenarios accurately, we plan to extend the radio model by ex-
plicitly incorporating the effect of barriers. With respect to the environment model,
we plan to introduce heterogeneous sensor coverage: for a monitored area, specific
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regions are often more important than others. This can be integrated into the model
by requiring that the points representing the area of interest need to be covered by a
set of sensors.
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