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In this paper, several new set quality metrics are introduced that can be used to eva
the ‘‘goodness’’ of an observed Pareto solution set. These metrics, which are formu
in closed-form and geometrically illustrated, include hyperarea difference, Pareto spr
accuracy of an observed Pareto frontier, number of distinct choices and cluster.
metrics should enable a designer to either monitor the quality of an observed P
solution set as obtained by a multiobjective optimization method, or compare the qu
of observed Pareto solution sets as reported by different multiobjective optimization m
ods. A vibrating platform example is used to demonstrate the calculation of these m
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1 Introduction
Real-world engineering design problems often involve conc

rent optimization of several incommensurable and competing
sign objectives@1#. The solution to such problems is usually a s
of design alternatives referred to as a Pareto optimal solution
@2#. Many multiobjective optimization methods exist that can
used to generate Pareto solutions. Some of these methods can
generate local Pareto solutions while others such as multiobjec
evolutionary methods obtain a ‘‘good’’ rather than a true glob
Pareto solution set@2,3#. As such, it is important for a designer t
know how good an observed Pareto solution set is that a mult
jective optimization method obtains. Indeed, knowledge of
goodness of an observed Pareto solution set should enabl
designer monitor and potentially improve the performance o
multiobjective optimization method. It should also help the d
signer compare and contrast the quality of observed Pareto s
tion sets as reported by different multiobjective optimizati
methods. The goodness of an observed Pareto solution se
discussed in this paper, can be evaluated by ‘‘set quality’’ metr

Relative to other areas in multiobjective optimization, very fe
papers in the literature have reported on metrics for measuring
set quality of Pareto solutions. Zitzler and Thiele performed
comparative study of four different multiobjective evolutiona
methods using two metrics in order to assess the set qualit
observed Pareto solution sets. The first metric was the ‘‘size
dominated space’’ wherein they defined the size of the objec
space that is dominated by a set of Pareto solutions. Given
sets of Pareto solutions, they defined a second metric wherei
each set a fraction of solutions that is dominated by the solut
in the other set is calculated. Van Veldhuizen@5# ~wherein further
references can be found, e.g., Schott@6# and Srinivas@7#! re-
viewed and defined nine metrics to assess the quality of Pa
solutions. Under the assumption that the true Pareto solution s
known a priori, Sayin@8# defined the metrics of coverage, unifo
mity and cardinality in order to assess the quality of a discre
represented Pareto solution set. An assumption made in seve
the aforementioned papers is that the true Pareto solution s
known a priori, which is unlikely to be valid for engineering d
sign optimization problems.

In the present paper, the set quality metric named as the ‘‘
of dominated space’’ by Zitzler and Thiele@4# is slightly changed
and converted to what we call a ‘‘hyperarea difference’’ metr
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~Van Veldhuizen@5# calls a similar metric as a ‘‘hyperarea’’ met
ric.! For this hyperarea difference metric, a closed-form formula
derived in this paper. In addition, five new set quality metrics
introduced, together with their closed-form formulas. These a
overall Pareto spread,kth objective Pareto spread, accuracy of t
observed Pareto frontier, number of distinct choices and clus
The set quality metrics presented in this paper can be use
assess the goodness of an observed Pareto solution set for a
problem without the knowledge of the true Pareto solution se

The rest of the paper is organized as follows. Definitions
various terms with their graphical interpretation are given in S
tion 2. In Section 3, several new set quality metrics are int
duced. Design of a vibrating platform is used in Section 4
demonstrate applicability of the set quality metrics. Finally, t
paper is concluded with some remarks in Section 5.

2 Definition and Terminology
The formulation of a typical multiobjective design optimizatio

problem withm objective functions is shown below in Eq.~1!.

Minimize f ~x!5$ f 1~x!, . . . ,f i~x!, . . . ,f m~x!%

subject to: xPD (1)

D5$xPRn:gj~x!<0,j 51, . . . ,J; hk~x!50,k51, . . . ,K%

where x is a design vector containingn components of design
variables,f i(x) is the i th objective function,gj (x) is the j th in-
equality constraint andhk(x) is thekth equality constraint. The se
of all design vectors which satisfies all constraints is denoted
D. The n-dimensional space wherein its coordinate axes are
sign variables is referred to as the ‘‘variable space’’. T
m-dimensional space wherein its coordinate axes are design
jective functions is referred to as the ‘‘objective space.’’

Ideal Point and Max Point. Typically, the objective space is
bounded from below for a minimization problem as in Eq.~1!. As
such, if each of the objective functions in Eq.~1! is individually
minimized subject to the constraints defining the feasible des
spaceD, then an ideal point,pI5( f 1

I , f 2
I , . . . ,f m

I ), can be ob-
tained in the objective space such that for any feasible pointxk ,
xkPD, there existsf j

I< f j (xk), for all j 51, . . . ,m. In contrast, in
engineering design problems, there is an upper bound design p
in the objective space beyond which even feasible designs are
tolerable. A maximum or a max point defines such a point in
objective space aspM5( f 1

M , f 2
M , . . . ,f m

M) such that for any fea-
sible and tolerable design pointxk , xkPD, there existsf j

M

> f j (xk), for all j 51, . . . ,m.
.

001 by ASME Transactions of the ASME
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Good Point and Bad Point.An estimate of the ideal and th
max point is referred to as a good and a bad point, respectivel
the context of this paper, it is assumed that in the objective sp
a good point estimates the ideal point from below while a b
point estimates the max point from above. In other words, letpg

5( f 1
g , f 2

g , . . . ,f m
g ) and pb5( f 1

b , f 2
b , . . . ,f m

b ) denote the good
point and the bad point in the objective space, respectively. Th
there should always existf j

g< f j
I , and f j

b> f j
M for all j

51, . . . ,m. Figure 1 illustrates the definition of the ideal poin
the good point, the max point and the bad point in the case of
design objectives.

Scaled Objective Space.All of the objective functions in the
objective space are scaled by Eq.~2! so that the scaled good poin
becomes pg5(0, . . . ,0) and thescaled bad point become
pb5(1, . . . ,1).

f̄ j~xk!5
f j~xk!2 f j

g

f j
b2 f j

g
(2)

The hyper-rectangle that is defined by the scaled good and the
points in the objective space is referred to as a scaled objec
space.

Inferior and Dominant Points. Let the two pointsxj andxk in
the variable space be denoted bypj andpk in the objective space
respectively. If there existsf j (xj ), f j (xk) for all j 51, . . . ,m,
one can then state thatpjspk which means the pointpj is domi-
nant over the pointpk , or the pointpk is inferior to the pointpj .

Pareto Solution Set, True Pareto Solution Set and Observed
Pareto Solution Set.The solution~or a discrete representation! to
a multi-objective problem is a set of Pareto solutions:X
5(x1 , . . . ,xnp) in the variable space wherein for any pointxj
PX, there does not exist another pointxkPD with kÞ j , such that
f i(xk)< f i(xj ) for all i 51, . . . ,m with strict inequality for at least
onei. In a scaled objective space, the Pareto solution set is wr
as P5(p1 , . . . ,pnp), where pj5( f̄ 1(xj ), . . . ,f̄ m(xj )), j
51, . . . ,np, with np being the total number of Pareto solution
In this paper, a Pareto solution set~i.e., generally an infinite set!
that truly meets this definition is called a ‘‘true’’ Pareto solutio
set. In contrast, a Pareto solution set that is obtained by a m
objective optimization method is referred to as an ‘‘observe
Pareto solution set. In reality, an observed Pareto solution set
estimate~or a discrete representation! of a true Pareto solution se

Pareto Frontier. In the objective space, the boundary that
formed by a set of Pareto solutions is referred to as a Pa
frontier. This frontier defines a limit beyond which the Pare
solutions cannot be further improved with respect to all objecti
simultaneously.

Extreme Points and Extreme Values.Extreme points are
Pareto solutions that have maximum and minimum values for

Fig. 1 Good point „p g…, bad point „p b…, ideal point „p I…, and
max point „p M… in the objective space
Journal of Mechanical Design
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or more objectives among all Pareto solutions. Extreme val
refer to f̄ i max and f̄ i min that denote the maximum and minimum
scaled values of thei th objective function, respectively, where
f̄ i max5max

k51
np ( f̄ i(xk)) and f̄ i min5min

k51
np ( f̄ i(xk)) for any xkPX,

X5(x1 , . . . ,xnp).
Inferior Region, Non-Inferior Region and Dominant Region

of a Point. In a scaled objective space, an inferior region of
point pj is defined as a hyper-rectangleSin(pj ) such that for all
pkPSin(pj ), there must be:pkapj and pkspb , or in other
words:

f̄ i~xk!. f̄ i~xj ! and f̄ i~xk!,1 for all i 51, . . . ,m. (3)

where pk5( f̄ 1(xk), . . . ,f̄ m(xk)), pj5( f̄ 1(xj ), . . . ,f̄ m(xj )),
pb5(1, . . . ,1).

The non-inferior regionSnin(pj ) of a pointpj is defined as the
complementary region of thepj ’s inferior region in the scaled
objective space. Let the space~area or volume! of the scaled ob-
jective space be unity~with the good point at the zero coordinat
point and the bad point at the one!, then the non-inferior region of
the pointpj is:

space~Snin~pj !!512space~Sin~pj !! (4)

Similarly, the dominant region of a pointpj is defined as a hyper-
rectangleSdo(pj ) such that for allpkPSdo(pj ), there must be:
pkspj andpkapg , or:

f̄ i~xk!, f̄ i~xj ! and f̄ i~xk!.0 for all i 51, . . . ,m (5)

where pk5( f̄ 1(xk), . . . ,f̄ m(xk)), pj5( f̄ 1(xj ), . . . ,f̄ m(xj )), pg
5(0, . . . ,0).

As shown in Fig. 2, the region that is defined by its corn
points: FpgApjF, is the dominant region of the pointpj . The
region DpjCpbD is the inferior region of the pointpj . Finally,
the regionEpgBCpjDE is the non-inferior region ofpj .

Inferior Region, Non-inferior Region and Dominant Region
of a Pareto Solution Set.For an observed Pareto solution set
the scaled objective space:P5(p1 , . . . ,pnp), the inferior region
of the entire observed Pareto solution setSin(P) is defined as the
union of the individual Pareto points’ inferior regionSin(pj ), j
51, . . . ,np:

Sin~P!5ø
j 51

np

Sin~pj ! (6)

The non-inferior regionSnin(P) of an observed Pareto solution se
is defined as the complement of its inferior region in the sca
objective space:

space~Snin~P!!512space~Sin~P!! (7)

Fig. 2 Dominant, inferior, and non-inferior regions of a point
MARCH 2001, Vol. 123 Õ 19
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Using the concept of a point’s dominant region, a Pareto s
dominant regionSdo(P) is defined as the union of Pareto point
dominant regionsSdo(pj ), j 51, . . . ,np:

Sdo~P!5ø
j 51

np

Sdo~pj ! (8)

As shown in the Fig. 3, the regionFpgApj 11GpjF is the domi-
nant region of the setP, the regionDpjHpj 11CpbD is the infe-
rior region of the setP, and the regionEpgBCpj 11HpjDE is the
non-inferior region of the setP.

3 Quality Metrics
In this section, several set quality metrics are introduced. Th

quality metrics include hyperarea difference, overall Par
spread,kth objective Pareto spread, accuracy of the observ
Pareto frontier, number of distinct choices and cluster. These m
rics could be used, in the objective space, to assess the good
of an entire observed Pareto solution set.

3.1 Hyperarea Difference „HD …. The hyperarea differ-
ence metric can be used to quantitatively evaluate the differe
between the size of the objective space dominated by an obse
Pareto solution set and that of the space dominated by the
Pareto solution set. Note that the true Pareto solution set do
nates the entire solution space while an observed Pareto set
only dominate a portion of the solution space. By comparing
size of the dominated~or inferior! solution space of an observe
Pareto solution set with that of the true Pareto solution se
quantitative measure is obtained as to how much worse an
served Pareto solution set is when compared to the true Pa
solution set. Although in reality, the true Pareto solution set
usually unknown, it should still be possible to identify whether
not an observed Pareto solution set is worse than the true Pa
set when compared to another observed Pareto set.

With the concept of inferior region, hyperarea difference can
quantified as the space difference between the inferior region
the true Pareto solution setPt the inferior region of the observed
Pareto solution setP. Let HD(P) represent the hyperarea differ
ence quantity, then:

HD~P!5space~Sin~Pt!2Sin~P!!

5space~Sin~Pt!!2space~Sin~P!! (9)

wherein the term ‘‘space’’ refers to the ‘‘area’’ in a two-objectiv
space, or ‘‘volume’’ in a three or more objective space.

In reality the true Pareto solution set is hardly known a priori
the designer. In that case, the ideal point or the good point ca

Fig. 3 Dominant, inferior, non-inferior, and observed pareto
frontier regions of a set P
20 Õ Vol. 123, MARCH 2001
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used as an estimate of the true Pareto solution set. SincePt
5$pI%5$pg%, then: space(Sin(Pt))51. Hence, in a scaled objec
tive space, Eq.~9! becomes:

HD~P!512space~Sin~P!!5space~Snin~P!! (10)

In practice, for anm-dimensional objective space, computin
the space of a set’s non-inferior region directly can be cumb
some. According to Eqs.~6! and~10!, computing the space of an
observed Pareto set’s inferior region can be converted to a p
lem of computing the union of the space formed by the infer
regions for annp number of points. For instance, in a simple ca
wherein there are three points in the observed Pareto solution
i.e., P5(p1 ,p2 ,p3). The union of the space of the inferior re
gions for these three points is:

space~Sin~P!!

5space~Sin~p1!øSin~p2!øSin~p3!!

5space~Sin~p1!!1space~Sin~p2!!1space~Sin~p3!!

2space~Sin~p1!ùSin~p2!!2space~Sin~p1!ùSin~p3!!

2space~Sin~p2!ùSin~p3!!

1space~Sin~p1!ùSin~p2!ùSin~p3!! (11)

In general, Eq.~12! can be used to calculate space(Sin(pk)) for an
m-dimensional scaled objective space:

space~Sin~pk!!5)
i 51

m

@12 f̄ i~xk!# (12)

Calculating the intersection of ther number of solution points’
inferior regions (r<np) can be accomplished by:

spaceSù
j 51

r

Sin~pj !D 5)
i 51

m F12max
j 51

r

~ f̄ i~xj !!G (13)

Therefore

space~Sin~P!!

5(
r 51

np

space~Sin~Pr !!2(
r ,t

space~Sin~Pr !ùSin~Pt!!

1 (
r ,t,u

space~Sin~Pr !ùSin~Pt!ùSin~Pu!!

2 (
r ,t,u,s

space~Sin~Pr !ùSin~Pt!ùSin~PuùSin~Ps!!

1 . . . 1~21!np11space~Sin~P1!ùSin~P2!

3ù . . . ùSin~Pnp!! (14)

Mathematically, the hyperarea difference becomes:

HD~P!512space~Sin~P!!

512H (
r 51

np H ~21!r 11

3F (
k151

np2r 11

••• (
kl5kl 2111

np2~r 2 l 11!11

•••

3 (
kr5kr21

np

)
i 51

m F12max
j 51

r

~ f̄ i~xkj
!!G G J J (15)

For instance, to calculate the hyperarea difference of an obse
Pareto solution setP5(p1 ,p2 ,p3), Eq. ~15! becomes:
Transactions of the ASME



o
.

r

t
o

h

e of
pro-
to

to
ge

4

can
di-
t to
he
ore
de-

.

HD~P!512space~Sin~P!!

512H ~21!111 (
k151

3

)
i 51

m F12max
j 51

1

~ f̄ i~xkj
!!G

1~21!211 (
k151

32211

(
k25k111

32~22211!11

)
i 51

m F12max
j 51

2

~ f̄ i~xkj
!!G

1~21!311 (
k151

32311

(
k25k111

32~32211!11

(
k35k211

3

)
i 51

m

3F12max
j 51

3

~ f̄ i~xkj
!!G J

512H (
k151

3

)
i 51

m F12max
j 51

1

~ f̄ i~xkj
!!G

2 (
k151

2

(
k25k111

3

)
i 51

m F12max
j 51

2

~ f̄ i~xkj
!!G

1 (
k151

1

(
k25k111

2

(
k35k211

3

)
i 51

m F12max
j 51

3

~ f̄ i~xkj
!!G J (16)

Using the hyperarea difference quality metric, Eq.~15!, differ-
ent observed Pareto solution sets can be compared with one
other quantitatively. In general, an observed Pareto solution
with a lower hyperarea difference value is considered to be be
than the one with a higher hyperarea difference value.

3.2 Pareto Spread. The quality metrics under Paret
spread are to address the range of objective function values
observed Pareto solution set that spreads over a wider range o
objective function values provides the designer with broader
timized design choices. Pareto spread is quantified by two met
~i! the overall Pareto spread, and~ii ! the kth objective Pareto
spread.

3.2.1 Overall Pareto Spread(OS). The overall Pareto
spread metric quantifies how widely the observed Pareto solu
set spreads over the objective space when the design obje
functions are considered altogether. This metric is defined as
volume ratio of two hyper-rectangles. One of these rectangle
HRgb that is defined by the good and bad points with respec
each design objective. Similarly, the extreme points for an
served Pareto solution set defines the other hyper-rectangle th
denoted byHRex . The overall Pareto spread is defined as the ra
of the area or volume ofHRex to that ofHRgb :

OS~P!5
HRex~P!

HRgb
(17)

whereP refers to an observed Pareto solution set. By using
objective values to interpretHRex(P) andHRgb , Eq. ~17! can be
expressed as:

OS~P!5

)
i 51

m

umaxk51
np ~pk! i2mink51

np ~pk! i u

)
i 51

m

u~pb! i2~pg! i u

5)
i 51

m

umaxk51
np @ f̄ i~xk!#2mink51

np @ f̄ i~xk!#u (18)

For example, in a two-objective space shown in Fig. 4, the ove
Pareto spread is calculated as:
Journal of Mechanical Design
an-
set
tter

An
f the
op-
ics:

tion
ctive
the

s is
to
b-
at is
tio

the

rall

OC~P!5
h1h2

H1H2
(19)

where h15u f̄ 1max2 f̄1minu, h25u f̄ 2 max2 f̄2 minu, H15u(pg)1
2(pb)1u andH25u(pg)22(pb)2u. When comparing two observed
Pareto solution setsP1 andP2 , the designer prefers the one wit
a wider spread. In other words, ifOS(P1).OS(P2), then the
solution setP1 is preferred toP2 .

3.2.2 kth Objective Pareto Spread(OSk). The overall
Pareto spread metric is simple in the sense that by using Eq.~17!,
the designer can have some knowledge about the overall rang
the solution set. However, the overall Pareto spread does not
vide any insight into the range of the solution set with respect
each individual design objective. Thekth objective Pareto spread
OSk is introduced as an additional metric to the overall Pare
spread metric aiming at quantitatively depicting the solution ran
with respect to each individual design objective. Thekth objective
Pareto spread metric,k51, . . . ,m, is defined as:

OSk~P!5
umaxi 51

np ~~pi !k!2mini 51
np ~~pi !k!u

u~pb!k2~pg!ku

5umaxi 51
np ~ f̄ k~xi !!2mini 51

np ~ f̄ k~xi !!u (20)

By using Eq.~20!, the observed Pareto solutions shown in Fig.
has the 1st and 2nd objective Pareto spread value, as follows:

OS1~P!5
h1

H1
5u f̄ 1max2 f̄ 1minu (21)

and

OS2~P!5
h2

H2
5u f̄ 2max2 f̄ 2minu (22)

Using thekth objective Pareto spread (OSk) to compare two ob-
served Pareto solution set, ifOSk(P1).OSk(P2), one can con-
clude that the solution setP1 is preferred toP2 with respect to the
kth objective spread.

3.3 Accuracy of the Observed Pareto Frontier„AC….
Once an observed Pareto solution set~i.e., a discrete set in its
nature! is obtained, its corresponding observed Pareto frontier
be estimated. Knowledge of an observed Pareto frontier in ad
tion to the observed Pareto solution set may become importan
a designer dealing with real-world engineering problems. T
more accurate the observed Pareto frontier is estimated, the m
knowledge the designer gains about the nature of the Pareto
sign solutions and tradeoffs that exist between such solutions

Fig. 4 Overall pareto spread and k th pareto spread
MARCH 2001, Vol. 123 Õ 21
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According to the definitions for the inferior and dominant r
gions of an observed Pareto solution setP5(p1 , . . . ,pnp), if
there exist additional observed Pareto solutions that are und
ted, then such solutions have to be non-inferior with respect to
current observed Pareto solutions and thus could not belon
either the observed Pareto solution set’s inferior region (Sin(P))
or dominant region (Sdo(P)). Indeed, such undetected observ
Pareto solutions have to belong to a region that is left over fr
the scaled objective spacer after the inferior and dominant reg
are subtracted from it. Let the quantityAP(P) denotes the region
wherein an observed Pareto frontier falls into for an obser
Pareto solution setP. The quantityAP(P) is defined as the fron-
tier approximation of the observed Pareto solution setP. The im-
preciseness of the approximation comes from the fact that no
the points in the region can be simultaneously on the Pareto f
tier. When the approximation gets more and more accurate to
level where it eventually becomes the true Pareto frontier,
impreciseness will vanish. The quantityAP(P) is obtained as
follows:

AP~P!512space~Sin~P!!2space~Sdo~P!! (23)

Figure 4 gives a graphical interpretation of the metricAP(P)
which essentially is the space~area or volume! difference of non-
inferior and dominant regions for an observed Pareto solutionP.
Calculating the value of the quantityAP(P), as shown in Eq.
~23!, involving computing the volume of the Pareto solution s
P’s inferior and dominant regions. From the derivation for t
hyperarea difference in Section 3.1, the setP’s inferior region is:

space~Sin~P!!

5(
r 51

np H ~21!r 11F (
k151

np2r 11

••• (
kl5kl 2111

np2~r 2 l 11!11

•••

3 (
kr5kr21

np

)
i 51

m F12max
j 51

r

~ f̄ i~xkj
!!G G J (24)

and the setP’s dominant region is:

space~Sdo~P!!

5(
r 51

np H ~21!r 11F (
k151

np2r 11

••• (
kl5kl 2111

np2~r 2 l 11!11

•••

3 (
kr5kr21

np

)
i 51

m F12min
j 51

r

~ f̄ i~xkj
!!G G J (25)

Let AC(P) denote the value of the quality metric ‘‘accuracy
the observed Pareto frontier’’. Then the quantityAC(P) is de-
fined as:

AC~P!5
1

AP~P!
(26)

When an observed Pareto solution set is empty, the designe
the least~zero! amount of knowledge about the correspondi
Pareto frontier. In this case and according to Eq.~21!: AP(P)
51 , andAC(P)51. In the other extreme case when the observ
Pareto solution set contains all of the Pareto solutions belon
to the observed Pareto frontier, and the Pareto frontier is cont
ous, thenAP(P)50, andAC(P)5`. When comparing two ob-
served Pareto solution sets, the set with a higher value of
quantityAC(P) is preferred to the one with a lower value.

3.4 Number of Distinct Choices„NDCµ…. From a design-
er’s point of view, the more is the number of points contained
an observed Pareto solution set, the more is the number of de
options to choose from. However, if the observed Pareto solut
are too close to one another in the objective space, then the v
tions between the observed Pareto solutions may be indistingu
22 Õ Vol. 123, MARCH 2001
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able to the designer. In other words, the more number of obse
Pareto solutions does not necessarily mean that the more is
number of design choices. In short, for an observed Pareto s
tion set P5(p1 , . . . ,pnp), only those solutions that are suffi
ciently distinct from one another should be accounted for as us
design options.

Let the quantitym (0,m,1) be a number specified by th
designer, which can be used to divide anm-dimensional objective
space into 1/mm number of small grids. For simplicity, 1/m is
taken to be as an integer. Each of the grids refers to a sq
~hyper-cube in m-dimension!, the indifference regionTm(q) ,
wherein any two solution pointspi and pj within the region are
considered similar to one another or that the designer is indiffe
to such solutions. Figure 5 illustrates the quantitym andTm(q) in
a two-dimensional objective space.

Let the quantityNTm(q,P) indicate whether or not there is an
point pkPP that falls into the regionTm(q). The quantity
NTm(q,P) will be equal to unity~or 1! as long as there is at leas
one solution pointpk falling into the indifference regionTm(q).
The quantityNTm(q,P) will be equal to zero~or 0! as long as
there is no solution falling into the regionTm(q). In general,
NTm(q,P) can be stated as:

NTm~q,P!5H 1 'pkPP pkPTm~q!

0 ;pkPP pk¹Tm~q!
(27)

The quality metricNDCm(P), that is the number of distinc
choices for a pre-specified value ofm, can then be defined as:

NDCm~P!5 (
l m50

n21

••• (
l 250

n21

(
l 150

n21

NTm~q,P!

where q5~q1 ,q2 , . . . ,qm! with qi5
l i

n
(28)

whereinn51/m. The pointq, located at any intersection ofm-grid
lines in the objective space, has coordinates (q1 ,q2 , . . . ,qm). As
illustrated at the beginning of this section, for a pre-specifi
value ofm, an observed Pareto solution set with a higher value
the quantityNDCm(P) is preferred to a set with a lower value.

3.5 Cluster „CLµ…. The quality metric of the previous sec
tion, i.e., the number of distinct choices (NDCm), indicates the
number of distinct solutions that exists in an observed Pareto
lution set. By using this quality metric alone, however, the clus
phenomenon can not be properly interpreted. For instance,
pose for a pre-specified value ofm, the observed Pareto solutio
set P1 provides 10 distinct solutions withNDCm510. Suppose
now that there is also another observed Pareto solution setP2 with
100 solutions withNDCm510. It can be observed that the solu

Fig. 5 Indifference region Tm„q …, as shown by a shaded grid
Transactions of the ASME



t

t
t

n

r
r

d
A
a
d
a

t

n

t

e

s-
ally
for

zero
the
r 3,

val-
ese

ted

on-
tion set P2 is not desirable by the designer since many of
solutions in this set are likely to be clustered. Hence, the qua
metric cluster,CLm(P), is introduced:

CLm~P!5
N~P!

NDCm~P!
(29)

whereN(P) is the number of the observed Pareto solutions. In
ideal case where every Pareto solution obtained is distinct,
the value of the quantityCLm(P) is equal to 1. In all other cases
CLm(P) is greater than 1. Also, the higher the value of the clus
quantity CLm(P) is, the more clustered the solution set is, a
hence the less preferred the solution set.

4 Example
The purpose of this section is to numerically illustrate the p

posed set quality metrics using a simple two-objective enginee
design optimization example: design of a vibrating platform.

4.1 Vibrating Platform: Problem Description With an Ob-
served Pareto Solution Set. This example was adopted from
Messac@9# with some modifications. It consists of a pinne
pinned sandwich beam with a vibrating motor on its top.
shown in Fig. 6, the beam has five layers of three different m
rials. There is a middle layer and two sandwich layers. The
tance from the center of the beam to the outer edge of each l
comprises three of the sizing design variables, d1 , d2 , d3 . The
width of the beam b and the length of the beam L are the o
two sizing design variables. There are also three combinato
variables for the material typeMi , wherei 51,2,3, for the differ-
ent materials that can be used for each layer. Hence, there a
design variables, which consist of 3 combinatorial variables
the material type of the 3 layers and 5 sizing variables.

The two design objectives are to maximize the fundame
frequency of the beam, and to minimize the material cost. T
maximization of the fundamental frequency is converted to
minimization form by minimizing the negative of the fundamen
frequency. The problem formulation is shown below:

Fig. 6 Vibrating platform example
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Minimize f 1~d1 ,d2 ,d3 ,b,L,Mi !52~p/2L2!~EI/m!0.5

~EI !5~2b/3!@E1d1
31E2~d2

32d1
3!1E3~d3

32d2
3!#

~m!52b@r1d11r2~d22d1!1r3~d32d2!#

Minimize f 2~d1 ,d2 ,d3 ,b,L,Mi !

52b@c1d11c2~d22d1!1c3~d32d2!#

Subject to: g1 : mL22800<0 ~30!

g2 : d22d120.15<0

g3 : d32d220.01<0

0.05<d1<0.5

0.2<d2<0.5

0.2<d3<0.6

0.35<b<0.5

3<L<6

Here,Ei is the modulus of elasticity of materialMi , while r i is
the density, andci is the cost. According to the material typ
variableMi , the value of the parametersEi , r i , andci are dif-
ferent for different layer material, as given in Table 1. It is a
sumed that the material types for the three layers are mutu
exclusive. In other words, the same material cannot be used
more than one layer. However, the layers are allowed to have
thickness. The first three constraints refer to upper bounds on
mass of the beam, thickness of layer 2, and thickness of laye
respectively, and they are labeledg1 throughg3 . The last 5 con-
straints are the set constraints on the sizing variables@10#.

By using a multiobjective optimization method@10#, three
Pareto solutions are observed. The observed Pareto solution
ues and the good and bad values are given in Table 2. Th
values are scaled so that the good and bad points are at~0,0! and
~1,1!, respectively.

4.2 Quality of the Observed Pareto Solution Set. In order
to assess the quality of the observed Pareto solution setP, the
value of the quality metrics introduced in Section 3 are compu
in the scaled objective space.

The hyperarea difference metric refers to the area of the n
inferior region of the observed Pareto set. By using Eq.~15!,
hyperarea difference can be calculated as follows:

HD~P!512@~~120.26!3~120.68!1~120.28!3~120.65!

1~120.7!3~120.24!!1~~120.28!3~120.68!

1~120.7!3~120.65!1~120.7!3~120.68!!

1~~120.07!3~120.68!!#

50.6186 (31)
Table 1 Layer material properties of the vibrating platform example

Table 2 Good and bad points and the three Pareto solutions in the vibrating
platform example
MARCH 2001, Vol. 123 Õ 23
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Table 3 „a… The observed Pareto solution set P1 by using I-SHOT †10‡; „b… the
observed pareto solution set P2 by using MOGA †10‡
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By applying Eq.~18!, the metric for overall Pareto spread is com
puted:

OS~P!5
HRex~P!

HRgb
5~0.720.26!3~0.6820.24!50.194

(32)

Since there are two design objectives, the metrics for the 1st ob-
jective Pareto spread and the 2nd objective Pareto spread can b
calculated by using Eq.~20!. They are:

OS1~P!50.720.2650.44 (33)

OS2~P!50.6820.2450.44 (34)

To calculate the accuracy of the approximated Pareto fron
both the area of the Pareto set’s inferior region and domin
region should be calculated first. The area of the Pareto solu
set P’s inferior region is space(Sin(P))512CD(P)51
20.618650.3814. Its dominant region can be calculated by us
Eq. ~25! as shown below:

space~Sdo~P!!5~0.2630.6810.2830.6510.730.24!

2~0.2630.6510.2630.2410.2830.24!

1~0.2630.24!

50.2906 (35)

According to Eq.~23! and Eq.~26!, the accuracy of the observe
Pareto frontier is:

AC~P!5
1

AP~P!
5

1

12space~Sin!2space~Sdo!

5
1

120.381420.2906
53.05 (36)

For a pre-specified value ofm50.1, the two-objective space i
divided into 100 indifference regions wherein within each ind
2001
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e

ier,
ant
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ng

if-

ference region, the observed Pareto solutions are regarded
the same. By applying Eqs.~27! and ~28!, the number of distinct
design choices is obtained:

NDC0.152 (37)

By using Eq.~29!, the value of the cluster metric is:

CL0.1~P!5
N~P!

NDC0.1~P!
5

3

2
(38)

Two sets of Pareto solutions, as shown in Table 3, are obse
by using two multiobjective optimization procedures reported
Azarm et al.@10#. The graphical results are shown in Fig. 7. B
applying the suggested quality metrics, the quantitative inform
tion about the goodness of these observed Pareto solutions c
easily calculated. The quality results are shown in Table 4. Fr
Fig. 7, one can see that the observed Pareto solution setP1 is
closer to the ideal points and generally preferred by the design
This conclusion agrees with the values of the quality metrics.

As one can see from this example, the set quality metrics ca
easily computed and applied for assessing the quality of any
served Pareto solution set. By using these quality metrics,

Fig. 7 Two sets of observed Pareto solutions
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Table 4 The quality of the observed Pareto sets P1 and P2
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degree by which an observed Pareto solution set satisfies th
signer’s preferences can be quantitatively interpreted.

5 Conclusion
The set quality metrics presented in this paper provide a me

to measure the goodness of an observed Pareto solution set. T
metrics include 1! hyperarea difference, 2! overall Pareto spread
3! kth objective Pareto spread, 4! accuracy of the observed Pare
frontier, 5! number of distinct choices, and 6! cluster.

The hyperarea difference metric quantifies the non-inferior
gion or how much of the scaled objective space is dominated
an observed Pareto solution set or how much worse an obse
Pareto solution set is when compared to the true Pareto solu
set. The overall Pareto spread metric indicates how wide an
served Pareto solution set spreads over the objective space
respect to all objectives as a whole. Thekth objective Pareto
spread metric indicates how wide an observed Pareto solution
spreads over the objective space with respect to individual ob
tives. The metric for the accuracy of the observed Pareto fron
indicates how good an observed Pareto solution set estima
corresponding Pareto frontier. The metric for the number of d
tinct choices indicates the number of distinguishable design
tions in an observed Pareto solution set. The cluster metric i
cates how dense the solutions are in an observed Pareto so
set. In general, the lower the values of the metrics for hypera
difference and cluster and the higher the values of the metrics
Pareto spread, accuracy of the observed Pareto frontier and
ber of distinct choices are, the more preferred is an obser
Pareto solution set.

The set quality metrics of this paper can also be used to c
pare the goodness of observed Pareto solutions as reporte
different multiobjective optimization methods. This means that
using these metrics, the quality of various multiobjective optim
zation methods can be compared against one another. The m
may also be used as a dynamic monitoring tool~e.g., as stopping
criteria! for a multiobjective optimization method.
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