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Abstract—Neural network tree (NNTree) is a hybrid learning model. Currently We have 
proposed a simplified multiple objective optimization based genetic algorithm for evolving 
such kind of NNTrees and shown through experments that an NNTree can be interpreted 
easily if the number of inputs for each expert neural network (ENN) is limited. One 
problem remained is that for those problems the input features are continuous. This means 
that even if the number of inputs for each ENN is, say 4, the number of corresponding 
binary inputs will be 64 if each continuous input is represented with a 16-bit binary number. 
This also means that the computational complexity is proportional to 2^64. To make the 
NNTrees more interpretable, we propose an interpretable NNTree through self-organized 
learning of features. We will show through experiments that the NNTrees built from the 
training data after self-organized learning are equally good as those obtained from the 
original data. Further, the number of quantization points in each dimension is usually less 
than 10 for the databases we used. This means that 3 or 4 binary inputs are enough to 
represent each continuous input, and thus, the NNTrees so obtained are much more 
interpretable. 

Keywords—Neural network tree, Multiple objective optimization, Genetic algorithm, 
Computational complexity, self-organized learning 

1. Introduction 

Algorithms in machine learning can be roughly divided into the two categories of symbolic approaches and 
non-symbolic ones. Symbolic approaches, such as Decision Tree (DT), are generally considered as 
comprehensible but not suitable for on-line learning.  On the contrary, non-symbolic ones, such as neural 
network, can adapt to learn in changing environment while it is always incomprehensible due to its black-box 
learning process.  

To have the advantages of both symbolic and non-symbolic approaches, it is required in many situations 
that machine learning algorithm should be both comprehensible and learnable on-line. For this purpose, we 
designed Neural Network Tree (NNTree) [1]. An NNTree is actually a modular neural network with the overall 
structure being a decision tree (DT), and each non-terminal node being an expert neural network (ENN). It has 
been proved by experiment of digit recognition that NNTree is more efficient than traditional decision tree in the 
sense that higher recognition rate can be achieved with less nodes. Thus, with the designed NNTree, a 
comprehensible result form and refined knowledge all together with a single model can be obtained.  

Research of simplifying the interpretation of NNTree has been conducted currently [2][3]. The 
computational complexity of extracting comprehensible rules from a neural network (NN) is usually exponential 
[4]. For each trained ENN of an NNTree, the time complexity for interpreting increases exponentially with the 
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number of inputs. NNTrees with nodes of limited number of inputs was studied to achieve interpreting learned 
knowledge in polynomial time [2]. To make the results as simple as possible, we have also proposed a multiple 
objective optimization based genetic algorithm (MOO-GA) for designing NNTrees that are both interpretable 
and comprehensible [5]. Here, "interpretable" means that the NNTrees can be interpreted easily (say, in 
polynomial time), and "comprehensible" means that the rules extracted from the NNTrees are easily 
understandable, even by human users.  

One problem remained is that for many problems the input features are continuous. This means that even if 
the number of inputs for each ENN is, say 4, the number of corresponding binary inputs will be 64 if each 
continuous input is represented with a 16-bit binary number. This also means that the computational complexity 
(computational time and memory space) is proportional to 2^64. To lighten the computational complexity, 
especially the spatial complexity, we propose to quantize the continuous inputs using self-organized learning in 
each dimension. We will show through experiments that the NNTrees built from the quantized training data are 
equally good as those obtained from the original data. Further, the NNTrees so obtained are much more 
interpretable. 

The organization of this paper is as follows. After the introduction, we describe the designing of NNTree in 
detailed in section 2. In section 3, we focus on the problem of computational complexity and propose the process 
of self-organized learning of features. Experimental results are presented to confirm the proposed approach in 
section 4. Eventually, we summarize the paper in section 5. 

2. Designing of NNTree 

3.1 NNTree Structure 

We adopt the structure of NNTrees designed in [1], which is to embed NNs directly into DTs at each non-
terminal node. Figure 1. is one of the structure examples. In this NNTree, each node is an expert neural network, 
which in our study, is a multiplayer perceptron (MLP) with one hidden layer and n (n is always 2 in our study) 
output neurons.  

The basic idea is to design small ENNs first for extracting certain features and making local decision, and 
then put them together to get the whole decision tree. Free parameters contained in the ENNs can be updated to 
adapt to changing environment, while the global decision rules keep unchanged. It is possible to reduce the tree 
size because each node is more powerful. 

ENN

ENN ENN

ENN ENN

 

Figure 1. A structure of an NNTree 

3.2 Design Of NNTRees 

To construct a DT, it is often assumed that a training set consisting of feature vectors and their 
corresponding class labels are available. The DT is then constructed by partitioning the feature space in such a 
way as to recursively generate the tree. This procedure involves three steps: splitting nodes, determining which 
nodes are terminal nodes, and assigning class labels to terminal nodes.  

The basic idea is to partition the training examples assigned to the current node in such a way that the 
average information required to classify a given example could be reduced most. The information gain ratio of 
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each features is test for the selection of the features for different nodes. The best-information-gain-ratio feature is 
selected and tested at the root node of the DT. A descendent of the root node is then split for each valuable of this 
feature, and the training example are then sorted to the appropriated descendent node. The entire process is then 
repeated using the training examples associated with each descendent node to select the best-information-gain-
ratio feature to test at that node in the tree [6]. 

The information gain ratio is defined in terms of entropy. Let S  stands for the set of all training examples 
assigned to the current node (with S  examples), and in the number of examples belonging to the thi −  class 
( Ni ,...,2,1= ), the average information (entropy) needed to identify the class of a given example is 
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The information gain ratio is defined as follows: 
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For detailed discussion, one can refer to [7].  
The overall process for designing an NNTree is the same as that for designing a DT. The only difference is 

to design an ENN for each non-terminal node. Since we do not know in advance which example should be 
assigned to which group, the only efficient way for designing the ENNs seems to be evolutionary algorithms 
(EAs). The information gain ratio is taken as the fitness function for the ENNs’ evolution process. 

To make the NNTrees interpretable, we can limit the number of inputs for each non-terminal node [2]. To 
make the extracted results more comprehensible, we need to reduce the number of hidden neurons [5].  Thus, for 
each non-terminal node, we need to firstly increase its partitioning ability (measured by information gain ratio), 
then decrease the number of inputs, and eventually decrease the number of hidden neurons. 

It means that three objectives need to be optimized, and it is natural to use multiple objective optimization 
based GAs (MOO-GAs). One general approach involves the use of aggregating functions, such as weighted sum 
method, reduction to a single objective method, goal-attainment method and penalty function method. These 
methods will normally produce only the min-max optimum, but not the Pareto front unless a lot of weight 
combinations are tried. Non-Pareto approaches include Vector Evaluated Genetic Algorithm (VEGA) method, 
Lexicographic-ordering method, and Evolutionary strategies method. Pareto-based approaches include Pareto-
based fitness assignment, Multiple Objective Genetic Algorithm (MOGA), Non-dominated Sorting Genetic 
Algorithm (NSGA), and Niched Pareto GA [8]. A sharing mechanism is needed in Pareto-based approaches to 
achieve good performance, and thus the computational cost is usually very large. 

In our study, we introduce a simple MOO-GA [5]. The algorithm is a modified version of Goldberg’s 
method, which is a kind of Pareto-ranking approach [11]. The modification is to sort the individual ENNs again 
according to their information gain ratio, if they have the same rank. The modified algorithm can provide one 
(the best individual) unique solution, rather than a set of non-dominating solutions. This is a simple method for 
automatic selection of the best solutions. It is also reasonable because we usually assign a higher priority to 
individuals with larger information gain ratio, or better partitioning ability. 

Note that it is very important to keep the partitioning ability of the ENNs while trying to reduce the number 
of hidden neurons and the number of inputs. If the partitioning ability is reduced, the tree can be very large, even 
if each ENN is small. Such kinds of NNTrees are no more comprehensible. If we use ENNs with proper number 
of hidden neurons and proper number of inputs, the NNTree can be learnable, reliable, interpretable and 
comprehensible. 
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3. Self-organized Learning of Feature 

For many problems, when the input features are continuous, the time and spatial computational complexity 
can be very high. At the same time the results are more incomprehensible. To reduce the complexity and make 
the result easily understandable, we propose to quantize the continuous inputs using self-organized learning in 
each dimension.  

Since the features in each dimension are not always uniform distributed, non-uniform quantization may 
reduce the number of discrete values greatly.  

We have tried to draw the class labels in one dimension and quantize the feature according to the number 
of change points. However, it is invalid due to the continually change of the class labels. That is to say, there are 
still large numbers of feature points after quantization. Further the NNTrees built from the so quantized dataset 
are not so good as the ones built from the original dataset. 

In this paper, we quantize the feature of the datasets in each dimension in two steps. Firstly, we draw the 
histogram at each regularized feature dimension and decide the minimum quantization number of points 
according to the distribution of the peaks in the histogram. The minimum number of quantization points can 
decided by experience at present work. Once the minimum number m  of quantization points is decided, the 
next step is to obtain the quantized values of the continuous features through self-organized learning of the 
features. The approach of Winner-Take-All (WTA) was adopted in the self-organized learning process for its 
simplicity and availability[9,10]. Numerous neural networks and circuits have been developed to perform the 
WTA competition [11]-[14]. In our research, we are interested in coding the continuous features into several 
representative values through WTA. Given any x  belong to some continuous feature at one dimension; its 
representative feature points ),,( 21 mwwww L=  can be obtained through the following iteration steps:  

step 1. Initialize representative feature points w  randomly at interval (0,1). Set modification coefficient 

0αα =  and maximum iteration time T , respectively.  

step 2. Find the winner iw , which is the nearest to x , that is to say,  

jmji wxwx −=−
≤≤1

min                                                                 (6) 

step 3. Modify iw  as follows: 

)( iii wxww −+= α                                                                  (7) 
where  

T/0ααα −=                                                                      (8) 
Keep other jw  ( ijmj ≠= ,,2,1 L ) unchanged. Go through all the feature values x at one dimension. Record 
iteration times t . 
step 4.  If Tt < , go to step 2. Else terminate the iteration. 
 

When representative feature points at each dimension are determined, NNTree is trained on the quantized 
training sets.  

4. Experiments and Results 

Experiments were performed to determine the efficiency of NNTree after self-organized learning of 
features. Four datasets, Dermatology, E.coli, Ionosphere and BUPA (Liver) are involved in the experiments. The 
parameters of these datasets are enumerated in Table 1. They are all attainable from machine learning repository 
of the University of California at Irvine.  

Main parameters taken in NNTree training and test experiments are listed as follows:  

1). Number of generations: 1,000 
2). Number of runs: 40 
3). Population size: 100 
4). Bit per weight: 16 
5). Bit per feature position: 6 (Dermatology and ionosphere) and 3 (E.coli and BUPA) 
6). Dynamic range of each weight: [-16.384, 16.384] 
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7). Selection rate: 0.2 (truncation selection) 
8). Mutation rate: 0.01 (bit-by-bit) 
9). Crossover rate: 1.0 
10). Maximum iteration times for WTA: 100 

Table 1.The Parameters of the Four Datasets 

Datasets Feature 
Number 

Instance 
Number

Class 
Number Continuous Features 

Dematology 34 358 6 The 34th feature 
E.coli 7 336 8 Except the 3rd and 4th features 

Ionosphere 34 351 2 All the features 
Bupa(Liver) 6 345 2 All the features 

 
 

The process of self-organized learning of features was firstly conducted. Figure 2.(a)-(d) are some 
examples of the quantization results on the four datasets. The minimum number of quantization points is 4=m  
for Dermatology and E.coli, and 3=m  for Ionosphere and Liver. They are all marked by “o” in Figure 2. m2  
quantization points (i.e. double minimum number of quantization points) were also attempted in the experiments, 
and ”◇” are the locations of representative points on normalized axial.  

 

   
 
(a)Histogram of the 34th        (b) Histogram of the 5th      (c) Histogram of the 18th   (d) Histogram of the 2nd   

feature of dermatology            feature of E.coli                 feature of Ionosphere         feature of Liver 
 

Figure 2.  Some quantization results on the four datasets.  
 

When the representative points were determined, NNTrees were trained and tested on the quantized 
datasets. Figure 3. is one simple example of  NNTrees constructed on quantized dataset of Ionosphere, where F, 
H, C, L, IN denote the used feature, number of hidden neurons, class distribution,  class label, number of 
instances. The recognition rate of NNTree is 91.45%. 

Table 2. to Table 5. are the comparison result of MOO-GA based NNTrees constructed on original datasets 
and the proposed NNTrees constructed on quantized datasets of the four datasets, respectively. Five items were 
considered in the experiments, which are size of DT (Size), number of hidden neurons of each ENN (NH), 
recognition rate on training set  (Rtrain), recognition rate on test set (Rtest), and time consuming (Time). 

We can get some heuristic indications from the four tables. Firstly, the most important point is that 
NNTrees constructed on the quantized datasets obtained a recognition rate very close to that constructed on 
original dataset on both training sets and test sets for most of the four datasets. That is also to say that NNTrees 
constructed on quantized datasets (which are far more compact than the original ones) are as good as those 
constructed on original ones as far as recognition rate are concerned.  

Secondly, when the datasets quantized to m number of points, the tree size and hidden neuron number 
could be lager than that constructed on the original datasets. When the datasets were quantized to double- m  
number of points, Size and NH came to very close to that of the original datasets. It means that the number of 
quantization points in each dimension is usually less than 10 for the databases we used. This means that 3 or 4 
binary inputs are enough to represent each continuous input, and thus, the NNTrees so obtained can reduce the 
spatial computational complexity from 2^64 to almost 2^12 or 2^16. 
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F: 0, 4, 7, 3; H: 3; C: 138+96

F: 20, 19, 21, 9;
H: 4; C: 138+18

F: 2, 21, 12, 9;
H: 4; C: 138+12

F: 11, 9, 15, 13;
H: 4; C: 138+7

F: 12, 19, 16, 18;
H: 3; C: 138+4

F: 7, 29, 10, 28;
H: 4; C: 138+3

L: 1;
I N: 78

L: 1;
I N: 6

L: 1; I N: 5

L: 1; I N: 3

L: 1; I N: 1

L: 0; I N:
138+2

L: 1; I N: 1
 

 
Figure 3.  NNTree constructed through self-organized learning of features on Ionosphere data 

 

Table 2. Comparison Data Result Of Dermatology 

Methods 
 Size NH Rtrain Rtest 

Time
(Sec)

MOO-GA 11.85 3.53 99.23% 95.71% 27.78
4 Points 12.05 3.48 99.18% 95.90% 22.30
8 Points 11.65 3.23 99.12% 96.25% 30.45

Table 3. Comparison Data Result Of E.coli 

Methods 
 Size NH Rtrain Rtest 

Time 
(Sec) 

MOO-GA 33.85 3.52 96.81% 80.47% 96.68 
4 Points 42.00 3.84 93.23% 79.46% 124.00
8 Points 36.00 3.60 96.18% 81.63% 116.00

Table 4. Comparison Data Result Of Ionosphere 

Methods 
 Size NH Rtrain Rtest 

Time 
(Sec) 

MOO-GA 10.50 2.88 99.10% 90.75% 127.73
3Points 21.30 3.38 98.31% 87.76% 497.55
6 Points 13.45 3.23 98.84% 91.00% 337.50

Table 5. Comparison Data Result Of Liver 

Methods 
 Size NH Rtrain Rtest 

Time 
(Sec) 

MOO-GA 62.10 3.76 99.00% 60.43% 531.28
3 Points 59.25 3.78 72.49% 54.02% 377.45
6 Points 89.10 3.67 95.04% 60.59% 424.78
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Thirdly, we come to evaluate time-consuming item. As shown in the four tables, time elapsed for each run 
was not increased much (even decreased) on most quantized datasets (Except Ionosphere dataset, most probably 
for its increased tree size). Namely, time computational complexity was almost not increased by construction 
NNTrees on quantized datasets. 

5. Conclusions 
An NNTree is actually a modular neural network with the overall structure being a DT, and each non-

terminal node being an ENN. In this paper, we quantized the continuous inputs using self-orgainzed learning in 
each dimension, and constructed the NNTrees on the quantized datasets. Experiments seem to indicate that the 
NNTrees built from the quantized training data are equally good as those obtained from the original data. Further, 
the number of quantization points in each dimension is usually less than 10 for the databases we used. This 
means that 3 or 4 binary inputs are enough to represent each continuous input, and thus, the NNTrees so obtained 
are much more interpretable. 
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60102011), National High Technology Project (Grant 2002AA143010) of China, and the Project of NSFJS 
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