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Abstract — Agility is important to modern enterprises.
The effective coordination of large numbers of potential
suppliers and manufacturers, demands a scientific
methodelogy rather than just practical experience to make
decisions on supply manufacturing planning problems.
Particularly in cases where multiple decision objectives
are important to process planning, empirical decisions are
insufficient. This paper intreduces formal methods to
solve such multi-objective decision problems involved in
general supply manufacturing planning, and specifically
describes the extension of differential evolution methods
to discrete problem domains. An enterprise planning
problem with two objectives---cycle time and cost is used
as a principal example. Such multi-objective optimization
problems usually are very large and nonlinear. In this
paper, the concept of differential evolution, which is well-
known in single-objective continuous domain for its fast
convergence and adaptive parameter setting, is extended
to the discrete domain by introducing greedy probability,
mutation  probability, and crossover probability.
Moreover, this concept is extended to discrete multi-
objective optimization problem. The proposed discrete
multi-objective  differential evolution, or D-MODE
algorithm is applied to obtain Pareto solutions of this
general planning problem. A practical example in the
electronics industry is used as an illustrative example to
demonstrate the effectiveness of the proposed D-MODE.

1. Introduction

Advances in information technologies are driving
fundamental changes in the processes and organizations
of global enterprises. Innovations in software, networks,
and database systems enable widely distributed
organizations to integrate activities, share information,
collaborate on decisions, and execute transactions. As a
result, it is becoming increasingly uncommon for the
creation of product and services in isolation, and they are
being realized based on the creation of strategic and
dynamic partnerships between suppliers, contract
manufacturers, and customers. However, as the numbers
of these distinct entities increase and they get more
distributed, the complexity of forming efficient
partnerships grows; it becomes more difficult to make
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ideal assighments with respect to multiple criteria
including cost, time, and quality. Fundamental to this
complexity is that each assignment has the potential to
affect overall product cost, and product realization time,
and therefore assignments cannot be considered
independent of one another. Due to this complexity it is
increasingly difficult to make these dynamic partnerships
purely on the basis of prior experience, and it becomes
necessary to develop efficient decision-making systems
that can automate significant portions of the overall
decision task.

As many other engineering applications, this supply
manufacturing  planning  decision-making  involves
multiple criteria, The ideal solution is that one assignment
can be identified which optimizes all criteria
simultaneously. However, such ideal solutions can never
be obtained in practical applications where outcome
criteria may be fundamentally inconsistent. Optimal
performance according to one objective, if such an
optimum exists, often implies unacceptably low
performance in one or more of the other objective
dimensions, creating the need for compromise to be
reached. In this paper, we consider the identification of
multiple soluticns that may be used to guide the final
decision process.
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Figure 1: Structure of the design, supplier, manufzcturing, planning
decision problem. Lines with arrowheads indicate assignments. Dashed
lines indicate aggregates. Identical parts in various designs have solid
lines between them.

A model of the problem of integrated design, supplier
and manufacturing planning for modular products where
suppliers and manufacturing resources are network
distributed is shown in Figure | and described im



[15][16][17]. This planning problem consists of three
assignment problems (Al, A2, A3). The assignment
praoblem Al is the assignment of parts (from a parts
library) to a design that satisfies a predetermined
functional specification. Multiple designs that satisfy the
functional specification are possible. The assignment
problem A2 is the assignment of suppliers (from a list of
available suppliers) who will supply the parts in a design,
and the assignment problem A3 is the assignment of
designs to available manufacturing resources. Each of
these assignments contributes to overall product cost and
product realization time, and has nonlinear (cannot be
evaluated as weighted sums) effects on these measures.
More detailed aggregation function and the related time
and cost components can be found in [15]. A heuristic
aggregation to combine product cost C(x} and product

realization time 7(x) for a complete design-supplier-

manufacturing assignment x has been used for evaluation
in this prior work

However, selection of an appropriate model of
aggregating these two objectives and cotresponding
parameter to meet practical requirement is not possible in
general. Each model would need to appropriately
incorporate the nature of the problem itself and the
preference structure of decision maker. Therefore, multi-
objective optimization techniques must be developed.

In  mathematical notation, a  multi-objective
optimization problem (MOOP) can be loosely posed as
(without loss of any generality, minimization of all
objectives is assumed):

z,(x)

minZ(x)= ZZ(X) ,

z,(x)
xef)
where Q={x|A(x}=0,g(x)<0}, and x is decision
variable of dimension n. Z:R" >R, 4R >R,
g:R" > R™, k is the number of objectives, ml and m2
are the number of equality and inequality constraints,
respectively.

In practical application, there is no solution that can
minimize all the & objectives simultaneously. As a result,
multi-objective  optimization problems tend to be
characterized by a family of alternatives that must be
considered equivalent in the absence of information
concerning the relevance of each cbjective relative to the
others. These alternatives are referred to as Pareto optimal
solutions, which have the same meaning with efficient,
non-inferior, or non-dominated solutions. A Pareto
optimal solution is defined as follows:
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Definition: The vector Z(%) is said to dominate
another vector Z(x), denoted by Z(x)~ z(X), if and only
if z{x)<z/(x) forall ie{1,2,-- .k} and z,(x}<z(x) for
some je {1,2,---,k} . A solution x" e is said to be Pareto

optimal solution for MOOP if and only if there does not
exist x e Q) that satisfies Z(x)« Z(x‘) .

Evolutionary algorithms have gained a lot of interest on
optimization (single objective) and learning area and have
been applied to various practical problems. In recent 15
years, a new area of evolutionary multi-objective
optimization has grown considerably. Evolutionary
algorithms deal simultaneously with a set of possible
solutions. This characteristic allows to find an entire set of
Pareto optimal solutions in a single run of the algorithm,
instead of have to perform a series of separate runs as in
the case of the traditional mathematical programming
techniques. Additionally, evolutionary algorithms are less
susceptible to the shape or continuity of the Pareto front,
whereas these two issues are concerns for mathematical
programming techniques.

The Vector Evaluated Evolutionary Algorithm (VEEA)
was the first practical approach for multi-criteria
optimization using EAs, in which Schaffer extended
Grefenstette's GENESIS program to include multiple
criteria [11]{12]. In this scheme, N/ sub-populations of
equal size are assigned one to each criterion (where £ is
the number of criteria and N is the total population size).
A modified selection operator performs proportional
selection for each sub-population according to each
objective function, while recombination and mutation
operations are allowed to cross sub-population
boundaries.

There also are other versions of evolutionary
algorithms to attempt to promote the generation of
multiple non-dominated solutions such as Fourman {5],
Kursawe [9], Hajela and Lin {7]. However, none makes
direct use of the actual definition of Pareto optimality.
The concept of Pareto-based fitness assignment was first
proposed by Goldberg [6], as a means of assigning equal
probability of reproduction to all non-dominated
individuals in the population. This method is consisted of
assigning rank 1 to the non-dominated individuals and
removing them from contention, then finding a new set of
non-dominated individuals, ranked 2, and so forth.

Fonseca and Fleming [4] have proposed a slightly
different scheme, whereby an individual’s rank
corresponds to the number of individuals in the current
population by which it is dominated. Non-dominated
individuals are, therefore, all assigned the same rank,
while dominated ones are penalized according to the
population density in the corresponding region of the
trade-off surface. Srinivas and Deb [13] have



implemented a similar sorting and fitness assignment
procedure, called NSGA, but based on Goldberg’s version
of Pareto ranking. Horp et al. [8] proposed the tournament
selection method based on Pareto dominance. The more
recent algorithms include NSGA-II [3], and the SPEA
algorithm [18]. .

2. Discrete Differential Evolution

Differential Evolution {DE) is a branch of evolutionary
algorithm proposed by Storn and Price [14] for
optimization problems over a continuous domain. DE is
similar to (x,4) evolution strategy in which mutation

plays the key role. For any selected individual, p,, that

undergoes mutation, the mutation operator is represented
as follows:

K
Pi=V Py (=11, +F'Z(P.: —P;;)
k=1

where p, . is the best individual in parent population,
7 €[0,1] represents greediness of the operator, and X is

the number of differentials used to generate the
perturbation, F is the factor that scales the perturbation,
p, and p, are randomly selected mutually distinct

individuals in the parent population, and p! is the

offspring. The basic idea of DE is to adapt the search step
along the evolutionary process. At the beginning of
evolution, the perturbation is big since parent individuals
are far away to each other. As the evolutionary process
proceeds to the final stage, the population converges to a
smzll region and the perturbation becomes small. As a
result, the adaptive search step allows the evolution
algorithm to perform global search with a large search
step at the beginning of evolutionary process and refine
the population with a small search step at the end. The
selection operator in DE selects the better of the parent
and the offspring by comparing their fitness values:

P ito(p")>o(p")

P otherwise

(e+1) _
X =

In this paper, the DE concept is scaled to the discrete
domain, and to the multi-objective optimization problem.
In the basic differential evolution and its subsequent
variants, DE allows mutation toward both the best
individual and random perturbations. This is realized by
forcing the individual to move in the direction of
differential vector between the best individual and itself,
and adding perturbation of differential vector among
randomly selected individuals from the parent population.
In a discrete domain, the decision variable is an »

dimensional vector variable x=[x.x,--x], xeQ,
where (. ’s are a set of discrete vectors. In many
situations, such as in various planning problem involved
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in supply manufacturing, the elements of the vector, 3, ,

are integer index, which have no physical meaning. In
such situations, the differential vectors in traditional DE
have no ordered physical interpretation. However, the
main concept of DE, which is directing the individuals to
current best solutions with adaptive perturbations, can be
implemented in another way. In our discrete DE, this
concept is realized by introducing three probabilities:
greedy probability p_, mutation probability p,, and

crossover probability p.. The decision variable, x, is

represented in the evolutionary algorithm using a gene
vector of length » that is the same as the real decision
vector. The value in each allele position is as the
corresponding value of the real decision vector. With this
representation, the allele ; of offspring of any individual
p, can be obtained in the reproduction operator as

follows:
Pres;, ifp, <rand()
Q, , elseifp, +p, <rand()

2= p., elseifp, +p, + p, <rand()

, clse

where rand() is a random number between O and 1, Q,
is a random selected value from Q; containing all
possible values for allele j, p, is a randomly selected
individual from parent population that s distinct with p, .
For a single objective optimization problem, the p, ., can

be easily identified by choosing the individual with
highest fitness value. In this way, the offspring
reproduction operator intreduced above captures the DE
concept. The reproduction of each offspring is guided by
the best individual by reproducing some of its gene
information. The mutation part can be regarded as a
constant small perturbation for the offspring generation.
Reproducing gene information from other parent
individuals is the adaptive perturbation that varies during
the evolutionary process. At the beginning of the
evolutionary process, this perturbation is large due to less
similarity of the population, and smalt at the end due to
more similarity of the population, This reproduction
mechanism is as shown in Figure 2.
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Figure 2: Discrete DE operator to produce offspring. The individual
under operation gets some gene information from the “best” individual,
and some from a selected individual from current parent population, and
some from a random generation.

3. Multi-Objective Evolutionary Algorithm

Since the emergence of multi-objective evolutionary
algorithms, there have been many variants. The
representatives are multi-objective genetic  algorithm
(MOGA) due to Fonseca and Fleming [4], nondominated
sorting genetic algorithm (NSGA) due to Srinivas and
Deb [13], and niched Pareto genetic algorithm (NPGA)
due to Homn et al, [8]. More recently, Zitzler and Thiele
[18] proposed the strength Pareto evolutionary algorithm
(SPEA), which has an external repository of global Pareto
solutions with continuously update of this repository. This
deterministic way itself is a complementary part of
randomness of non-elitist evelutionary algorithms such as
NSGA to keep the convergence to global Pareto solutions
without having an effect on the stochastic properties of
the evolutionary algorithm, though it is not the situatien in
SPEA.

Initialize population, Evaluate population |
1)

’ Crossover and Mutation 1<—

i

I Evaluaticn l

¥

—* . Selection ’
i

\ Check to end evolutionary process {

1
Ji

| End of evolutionary process

Repository of Pareto
solutions for MOQP

Figure 3: Flowchart of revised NSGA with Pareto solutions repository

The structure of a revised NSGA with this external
repository population is shown in Figure 3. In NSGA, the
non-dominated individuals are assigned rank 1 and
removing them from contention, then a new set of non-
dominated individuals are ranked 2, and so forth until all
of the individuals are assigned a rank. A so called dummy
fitness value is assigned each rank, with rank 1 having the
highest fitness value. The same sharing techniques as
used by Srinivas and Deb [13] is used here. After the
selection of each generation, the new population is put
into the repository and update the global Pareto solutions.
The repository also crowds out solutions with close
objective values in all dimensions.
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4. Multi-Objective Differential Evolution

The traditional DE is extended to solve discrete
problems by introducing the operator as described in
section 2. It can also be scaled to discrete multi-objective
optimization problem with careful design of selection of
best individuals for production operator. Abbass el al [1]
and Madavan [10] independentiy studied the extension of
differential evolution to muilti-objective optimization
problem in continuous domain. As mentioned above, the
best individual used in the production operater can easily
be identified by choosing the individual with highest
fitness value. However, in a multi-objective domain, the
purpose of evolutionary algorithm is to identify a set of
solutions, the so called Pareto optimal solutions. In this
proposed discrete multi-objective differential evolution
(D-MODE), a Parcto-based approach is introduced to
implement the selection of the best individual for the
production operator. At a certaln generation of
evolutionary algorithm, the populaticn is sorted into
several ranks. This is illustrated in the objective space for
a bi-objective problem as shown in Figure 4. For any
individual in the population, a set of non-dominated
individuals, D,, that dominates this individual can be

identified. In the reproduction operator for a dominated
solution in the parent populaticn, the p,,, is chosen

randomly from the set D,. If the individua! is already a
non-dominated individual in the parent solution, the p,,

will be itself, For a particular case as shown in Figure 4,
all of the circled individuals would be the set of D,, one

of which would be the p, . for production operator of the
bold solution x.

Z

= :

Figure 4: In order to realize the reproduction cperator of a dominated
individual in current gencration, those individuals in first rank that
dominate this individual are identified

In order to apply to multi-objective optimization, the
Pareto-based fitness assignment and selection of NSGA-IT

introduced by Deb [3] is incorporated. The NSGA-II
algorithm incorporates both an elite-preserving and an



explicit diversity-preserving strategy. The population is
sorted as in the NSGA. Instead of computing the niche
count to add a penalty to the individuals crowded in a
small region, the individuals within each non-dominated
front that reside in the least crowded region in that front
are assigned a higher rank. A crowding distance metric
for a particular individual is obtained by calculating the
summation of normalized distance along each objective
between the individual and the surrounding individuals
within the same non-dominated front. Such a crowding
distance metric is used to estimate the density of solutions
around such particular individual.

The original NSGA-II applies a (uw+4) selection

strategy. The individuals are first compared using Pareto
rank, if the Pareto rank ties, the crowd distance metric is
compared to fill the population of next generation. This
strong elitism strategy, however, does not produce good
results in our experiments. The authors [2] alse point out
the importance to keep diversity among non-dominated
fronts to allow individuals in lower rank to enter the next
generation. In the proposed D-MODE, there is another
parameter o, to specify how close the solution is to its

suwrrounding  solutions in objective space in order fo
reduce its fitness. In fact, this parameter will prevent very
similar individuals from entering next generation, which
might lead to premature convergence.

5. Experimental Results

The proposed algorithm is applied to the design,
supplier, manufacturing planning problem using design
and supplier data from a real commercial electronic
circuit board product, and data from three commercial
manufacturing facilities.

In the experiment with seven modules, nine suppliers
for each module, and four to six contract manufacturers,
the total number of possible solution is O(10"). Bath the
revised NSGA and the proposed D-MODE are applied to
find the Pareto set based on criteria of total product time
and cost. Various experiments were conducted to simulate
the different manufacturability, for instance, the available
manufacturers might not have surface mount lines or
mixture lines or through-hole lines, or they might have
only surface mount lines or all three of them. Due to
space limitation here, we only show the experimental
results obtained from two of them, where there are only
surface mount lines or no surface mount lines, denoted by
Only-SM and No-SM, respectively. For a problem of this
size, it is possible to identify the real Pareto set using
exhaustive search, although it takes a long time to do so.
In order to evaluate the performance, both revised NSGA
and D-MODE were applied to this problem, and the real
Pareto solutions for each possible situation are identified
using exhaustive search for comparison. For such a bi-
criteria problem the easiest way to compare the computed
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results with the real- Pareto solution is to plot the real
Pareto solutions and the Pareto solutions obtained by the
evolutionary algorithm in the two dimensional objective
plane.

For both of revised NSGA and D-MODE, the same
population size of 200 is used and the same maximal
generations of 200 are evolved. The real Pareto front and
the computed Pareto front is plotted in the same plane as
shown in Figure 5, 6, 7, 8, 9, 10. In all of these figures, a
cross indicates a real Pareto solution, while a diamond
indicates a computed solution. In Figure 5, computed
results obtained using revised NSGA after 200
generations are plotted along with the real Pareto solution
for Only-SM experiment; while the computed solutions
for the same experiment using D-MODE after 100 and
200 generations are plotted in Figure 6 and Figure 7
respectively. In Figure 8, computed results obtained using
revised NSGA after 200 generations are plotted along
with the real Parcto solution for No-SM experiment;
while the computed solutions for the same experiment
using D-MODE after 100 and 200 generations are plotted
in Figure 9 and Figure 10 respectively. For the Only-SM
experiment, there are totally 21 Pareto solutions. The D-
MODE finds 20 of them after 200 generations and 16 of
them after 100 generations; while the revised NSGA finds
only 14 of them after 200 generations. For the No-SM
experiment, there are totally 18 Pareto solutions. The D-
MODE finds 17 of them after 200 generations and 9 of
themn after 100 generations; while the revised NSGA only
finds 10 of them after 200 generations. It can be seen that
the results obtained using D-MODE are much better than
those obtained using revised NSGA in terms of the
number of Pareto solutions found and the convergence
speed. The results obtained using D-MODE after 100
generations can even compete with the results obtained
using revised NSGA after 200 generations.

It is interesting to note that the different performance of
revised NSGA from No-SM to Only-SM experiment in
terms of roughly fitting of the real Pareto front. It seems
that this goodness of fitting is affected by the nature of the
optimization problem. When the real Pareio front is
roughly evenly distributed as in the No-SM experiment,
the revised NSGA can identify an approximate Pareto
front, though not real Pareto front, to roughly represent
the trade-off nature among the multiple objectives of the
optimization problem. In contrast, when the real Pareto
front like the one of the Only-SM experiment does not
possess roughly distributed solutions, the revised NSGA
neglects a large part of solutions resulting in a bad
representation of the trade-off nature of the optimization
problem. Since the representation of trade-off nature is so
important in decision making, this speculation poses an
open question on choosing those continuous benchmark
functions that always have smooth shape as test beds,



which might have amenable properties for evolutionary
algorithms to identify the Pareto front.
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Figure 5: Pareto solutions obtained after 200 generations using revised
NSGA and the real Pareto front for Only-SM
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Figure 6: Pareto solutions obtained after 100 generations using D-
MODE and the real Pareto front for Only-SM
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Figure 7: Pareto solutions obtained after 200 generations using D-
MODE and the real Pareto front for Qnly-SM
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6. Conclusions

Single objective evolutionary algorithms have been
extensively applied to various practical problems.
However, in many practical problems, there often are
multiple objectives which cannet be optimized
simultaneously. In this situation, it is essential to identify
the trade-off solutions, i.e., the Pareto front, to facilitate
the final decision. Multi-objective  evolutionary
algorithms have been developed to find such Pareto front.
In this paper, the concept of differential evolution, which
is well-known in single-objective continuous domain for
its fast convergence and adaptive parameter setting, is
extended to the discrete domain by introducing greedy
probability, mutation probability, and crossover
probability. Moreover, this concept is extended to the
discrete muiti-objective optimization problem. The
preliminary testing of the proposed multi-objective
differential evolution on an integrated design, supplier,
manufacturing planning problem shows that this D-
MODE is very effective in terms of convergence and the
capability to identify Pareto solutions. The experimenta)
results show that this D-MODE has much better
performance compared with a revised NSGA, though
further experiments need to be conducted to compare with
more recent multi-objective evolutionary algorithms such
as NSGA-II and SPGA. It is also noted .that the
experimental results in this paper pose an interesting
question on choosing benchmark functions as test beds for
multi-objective evolutionary algorithms.
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