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Abstract

A large number of combinatorial prob-
lems are associated with manufacturing
optimization[1]. The use of intelligent tech-
niques in the manufacturing field has there-
fore been growing in the last decade. This
paper presents a Genetic Algorithm solu-
tion for the manufacturing systems in gen-
eral and flexible manufacturing in particu-
lar. In our implementation we have com-
bined a Pareto-based approach with an adap-
tive weighted sum technique for tackling the
multi-objective flexible manufacturing sys-
tems problem. Experimental results demon-
strate that this approach is very effective for
handling such complex systems.

1 INTRODUCTION

In recent years, distributed and open architectures
are considered appropriate design approaches for sys-
tems in many environments, particularly, for flexible
manufacturing systems (FMS). These systems consist
of multiple-heterogeneous machines (machines robots
and/or computers), where each machine is capable
of performing a specific set of operations that may
overlap with those of the other machines. The ul-
timate goal for designing these systems might be to
maximize the FMS throughput[2]. However, several
problems such as part type partitioning, assignment
and sequencing must be solved before this goal can be
achieved. The main focus of this paper is on modeling
and solving the assignment problem of FMS. In FMS
literature, the assignment problem, is sometimes dealt
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with as a flow management problem[3], other attempts
are based on reducing the problem to a mathematical
programming problem. Most combinatorial optimiza-
tion problems in manufacturing optimization systems
are NP-hard, i.e, there is no polynomial time algo-
rithm that can possibly solve them. Heuristic methods
are normally employed for the solution of these prob-
lems. A growing number of researchers have adopted
the use of meta-heuristic techniques such as Simulated
Annealing and Tabu Search for difficult combinato-
rial problems. Evolutionary computation methods are
meta-heuristics that are able to search regions of the
solution’s space without being trapped in local op-
tima. Multi-objective evolutionary algorithms have
been recognized to be particularly suitable for solving
flexible manufacturing systems because of their ability
to exploit and explore multiple solutions in parallel,
and the ability to find an entire set of Pareto-optimal
solutions in a single run. This paper focuses on devel-
oping a model for a class of FMS at the part machine
level and solving the problem using a Genetic Algo-
rithm technique. The rest of the paper is organized
as follows. Section 2 introduces the main concepts of
flexible manufacturing systems. Section 3 presents a
Genetic Algorithm solution for the FMS system. Re-
sults are introduced in Section 4. The paper concludes
with some comments on how the Genetic Algorithm
performed and possible future work.

2 BACKGROUND

Many models for the problem of assigning parts of
different types to machines have been developed in
the literature [4, 5], [6]. These models assume either
parallel machines that are identical in capabilities but
may differ in speed [2] or machines that are special-
ized [7, 6]. The goodness of an assignment is mea-
sured in terms of minimizing part transfer and bal-
ancing the work-load of the machines. These two ob-
jectives are lexicographically ordered, such that the



primary objective is minimizing part transfer and the
secondary objective is balancing the work-load. The
aim is to facilitate the creation of machine cells with
minimum part transfer while maximizing the utiliza-
tion of machines. These objectives are conflicting with
each other. While minimizing part transfer tends to
favor the assignment of the whole of a part to a single
machine, balancing work-load tries to make the work-
load distribution even among the machines. Thus sat-
isfying both objectives seems a hard problem to solve

[8]-
2.1 FMS EXAMPLE

Consider a flexible manufacturing system consisting
of three machines, M;, M, and Mj3, each of which
is characterized by a set of operations, respectively,
denoted by {O1, Oz, O3, O4}, {O3, O4, Os}, and
{04, Os}, where O; denotes operation i. This system
is needed to process two Part types P; and P,. Part
P, requires four operations denoted by {01, O2, Os,
O}, while P, requires three operations denoted by
{03, O3, Os}. There are several processing choices
for this setting, such as:

e First Choice, for part Pi: (01 — Mi,02 +—
M1,03 — M;,05 — M) i.e, assign machine
M to process O1, Os and Oz, and assign M,
to process Os. For part Po: (O3 — M;,03 —
M;i,05 — M>) i.e assign machine M; to process
05,03 and have M, process Os.

e Second Choice, for part Pi: (01 — M;,02 —
M1,03 — M>,05 — M3) i.e, assign machine M;
to process O, O2, assign M, to process O3, assign
M3 to process Os. For part Py: (Og — M, 03 —
M,,05 — Ms), i.e, have machine M; process Oa,
M process Oz and have M3 process Os.

Looking back at the suggested choices we can notice
that the first solution is biased towards part transfer
objective function (i.e minimize transfer of parts be-
tween machines) where the total number of machines
involved for P; were two machines and the same ap-
plies for P2. The number of operations performed
by the machines are five, two and zero respectively
i.e there is no balance in the operations performed
by different machines. On the other hand the second
choice indicates that the balance criteria is met (M;
performs 3 operations, M» performs 2 operations and
M; performs 2 operations), but the total number of
part transfer has increased to four machines. What
needs to be accomplished is minimizing part transfer
as a primary objective and balancing the workload as
a secondary objective instead of optimizing a single
objective at a time.

2.2 MATHEMATICAL FORMULATION

The assignment problem can be formulated in terms
of minimizing the part transfer and balancing the ma-
chine workload. In order to formulate the problem,
the following notations are introduced:

i, : machine index (4,! = 1,2,3,...,n,,)

j: part index (j = 1,2,3,...,n,)

lch : is processing choice for part j (j = 1,2,3,....,np)
k; : is the number of processing choices of P;

i, - is the number of necessary operations required
by Pj on M; in processing choice I::j, 1< I%j <k
b By is the work-load of machine M; to process part
P; in processing choice lch.

R 1 if P; requires M; in processing choice k;
Jik; 0 otherwise

~ _ J 1 if processing choice I;:j is selected for part j
%Gk; T\ 0 otherwise

Using this notation, then the objective functions are:

1. Minimization of part transfer (by minimizing the
number of machines required to process the part):

Nm

Fy = ming, qukJ jiky o Vi (1)

i=1

2. Minimization of the number of necessary opera-
tions required from each machine over the possi-
ble processing choices:

Nom

Fy = ming, qu,;jmﬁ,;jnﬁkj,vj (2)

i=1

3. Load Balancing by minimizing the cardinality
distance between the workload of any pair of ma-
chines:

Fy = min, Z%Z > e

=1 I=(i+1)

ik, Ltk |

3)

ik, Lyik; —

The overall multi-objective mathematical model of
FMS can be formulated as follows:

solvefor Fi,F5, F3

s.t.
Z qﬂk] - 1
k=1

Tjik; € {0,1} 4k, €{0,1} Mjik; >1;t... >0



However utilizing equations 1, 2 and 3 directly as
a mathematical programming formulation is too com-
plex. Therefore, for this class of problems, it is more
practical to seek a heuristic solution rather than in-
sisting on the optimal. The following section inves-
tigates finding such a solution using a Genetic Algo-
rithm heuristic solution.

3 A GA ALGORITHM FOR FMS

Genetic Algorithms (GA’s) are a class of optimiza-
tion algorithms that seek improved performance by
sampling areas of the parameter space that have a
high probability for leading to good solutions [9]. The
inherent, characteristic of Genetic Algorithms demon-
strates why Genetic search may be well suited to
multiple-objective optimization problems. The basic
feature of Genetic Algorithms is multiple directional
and global search through maintaining a population of
potential solutions from generation to generation. The
population-to-population approach is useful when ex-
ploring Pareto solutions. It is important to refine sev-
eral components such as the encoding method recom-
bination method, fitness assignment, and constraint
handling to obtain effective implementations to the
given problem. Therefore, when considering how to
adapt Genetic Algorithms to multiple-objective opti-
mization problems we have to determine the fitness
value of individuals according to multiple objectives.
In our implementation we have combined a Pareto-
based approach with an adaptive weighted sum tech-
nique for tackling the multi-objective flexible manu-
facturing systems problem.

3.1 GENETIC ALGORITHM MODULES

There are essentially four basic components necessary
for the successful implementation of a Genetic Algo-
rithm. At the outset, there must be a code or scheme
that allows for a bit string representation of possible
solutions to the problem. Next, a suitable function
must be devised that allows for a ranking or fitness
assessment of any solution. The third component,
contains transformation functions that create new in-
dividuals from existing solutions in a population. Fi-
nally, techniques for selecting parents for mating, and
deletion methods to create new generations are re-
quired. We will restrict our discussion on the first
three modules for flexible manufacturing systems.

As seen in Figure 1, the chromosome representation is
defined as a series of operations for all parts involved.
Each gene in the chromosome represents the machine
type that can possibly process a specific operation.
The assignment of machine types to operations is

made by randomly generating random numbers within
the range of the total number of machines available.
In Figure 1, we have a system consisting of 3 parts.
Part P; requires 3 operations {O2,04,06} which can
be processed by Ms, M3 and M; respectively. The
second part requires four operations {0;,02,05,0¢}
which are assigned to Machines M; and M, and part
P; requires two operations O4 and Og which are han-
dled by machines M3 and M; respectively. The ad-
vantages of this representation scheme are the simplic-
ity and the capability of applying standard operators.
However an offspring may not be feasible and thus
some special repair heuristics are used to modify the
chromosomes to become feasible. Genetic Algorithms

PART 1 PART 2 PART 3

f 17 17 !
Operations 02 04 06 o1 02 05 06 o4 06

|M’€‘M3‘M1|Ml‘M2‘M2‘M1|M3‘Ml|

Chromosome gene (machine)

Figure 1: Chromosome Representation

work by assigning a value to each string in the popula-
tion according to a problem-specific fitness function.
For the flexible manufacturing problem, the evalua-
tion function measures the goodness of any solution
in terms of minimizing part transfer and balancing
the workload of the machines.

For any part P; , part transfer is (y; — 1) with ~;
being the number of different machines assigned to
part P;. Thus, a normalized part transfer function for
all the parts can be given as:

t
P > VR
rans F

where I' is an upper bound for the total number of
part transfer which is calculated as follows:

r= Zg.’irlts(qﬁj —1) and ¢, is the number of operations
for part P;.

Machine imbalance can be measured in terms of the
deviation, d;, of the number of operations performed
by machine M; from the average. Thus a normalized
measure of machine imbalance can be given by

SSE
Soain = (W) X Ny

Zj:l ¢;

where, n,, is the total number of machines, SSE is
the sum of the squared deviations, given by SSE =
Eg"f’”"es 2. The fitness assignment strategy of our
implementation uses a weighted based fitness function.
For an individual yx,, the score or fitness can be given



by:

Whaln

SCO’I‘G(XU) = (wtran X (10 - ftrans)) + f
baln

where wypqn, and wpq, are the weights assigned to
transfer and balance objective functions respectively.
Operators in the reproduction module, mimic the bi-
ological evolution process, by using unary (mutation
type) and higher order (crossover type) transforma-
tion to create new individuals. Mutation is simply the
introduction of a random element, that creates new
individuals by a small change in a single individual.
When mutation is applied to a bit string, it sweeps
down the list of bits, replacing each by a randomly
selected bit, if a probability test is passed. On the
other hand, crossover recombines the genetic mate-
rial in two parent chromosomes to make two children.
Crossover begins by randomly choosing a cut point K
where 1 < K < L, and L is the string length. The par-
ent strings are both bisected so that the leftmost par-
tition contains K string elements, and the rightmost
partition contains L — K elements. The child string is
formed by copying the rightmost partition from parent
P} and then the leftmost partition from parent PZ.
Figure 2 shows an example of applying three types of
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Figure 2: Crossover Operator

crossover operators implemented in this paper. In the
simple crossover strategy the cut point(s) are set at
the part delimiter such that a complete part is trans-
fered from a parent to a child. In uniform crossover
every other gene is received from a different parent
as seen in Figure 2b. In the third crossover strat-
egy, the operator begins by randomly choosing a cut
point in the string (or multi-points in the chromo-
some) as described above (see Figure 2c¢). If all initial

solutions are feasible then these crossover strategies
lead to complete feasible solutions. Due to the muta-
tion operator, some chromosome may become infeasi-
ble (i.e an operation assigned to a machine that can-
not handle the operation). In this situation a simple
heuristic technique is used to repair the chromosome
by assigning the correct machine to the designated
operation.

3.2 GA IMPLEMENTATION

In our weighted-sum approach we assign weights to
each objective function and combine the weighted ob-
jectives into a single objective function as explained
in Section 3.1. To fully utilize the power of the Ge-
netic Algorithm we use several approaches: (i) fixed-
weight approach, (ii) random-weight approach, and
(iii) adaptive weight approach. In the fixed-weight

GENETIC ALGORITHM
1. Encode Solution Space
2.(a) set pop-size, max_gen, gen=0;
(b) set cross_rate, mutate_rate;
3. Initialize Population.
4. For phase < max_phases
Adapt Weights of Obj Functions
While max gen > gen
Evaluate Fitness
For (i=1 to pop-size)
Select (matel,mate2)
if (rnd(0,1) < cross_rate)
child = Crossover(matel ,mate2);
if (rnd(0,1) < mutate_rate)
child = Mutation();
Repair child if necessary
End For
Add offsprings to New Generation.
Save Best § Solutions
gen = gen + 1
End While
5. Return best chromosomes.

Figure 3: A Genetic Algorithm for FMS

approach, weights are not changed during an entire
evolutionary process. Weights are determined apri-
ori to give selective pressure towards the part transfer
objective function. In the random based implemen-
tation weights are randomly reset at each step in the
selection procedure to give an even chance to all possi-
ble combinations. Finally, in the adaptive weight ap-
proach, weights are adjusted adaptively based on the
current generation to obtain search pressure toward
part transfer while balancing the work-load. Figure 3



shows a Genetic Algorithm implementation for flexible
manufacturing systems. The algorithm begins with an
encoding and initialization phase during which each
string in the population is assigned a uniformly dis-
tributed random point in the solution space. In the
first phase the system assigns a large weight to the
first objective function (i.e wyrqns) and the values of
the objective functions firqns and fren are calculated
and set to fPResel and fPhesel regpectively. In the
next few phases the weights of the objective functions
are adjusted adaptively such that the value of fi,qns 1S
within a 6% tolerance of f2'***! Each iteration of the
genetic algorithm begins by evaluating the fitness of
the current generation of strings. A new generation of
offspring is created by applying crossover and muta-
tion to pairs of parents who have been selected based
on their fitness (the function rnd(0,1) basically returns
a random number between 0 and 1). The algorithm
terminates after some fixed number of iterations.

4 RESULTS

The Genetic Algorithm code was developed on a SUN
Sparc Ultra II workstation running Solaris 8. The
code was written in C and compiled using GNU g++
version 2.95.2. Table 1 shows several benchmarks that
have been used for evaluating the performance of the
Genetic Algorithm. These benchmarks were randomly
generated with different number of machines, parts
and operations. In Table 1 the second column gives
the total number of machines involved and the possi-
ble operations performed by each machine. The third
column specifies the number of parts that need to
be manufactured and the operation required by each
part. The rest of the table gives the maximum opera-
tions to be performed and the average operations per-
formed by each machine. Figure 4 presents the conver-

Convergence Rate
100

1O0OM-15P-90 ————
11IM-20P-90 ——<——

%

10 4

OFLIOR2

o 10 ZO 30 40 S50 60 70 8O0 90 100
Generations

Figure 4: GA Convergence

gence rate of the Genetic Algorithm for the two objec-
tive functions, namely the part transfer and balance

Crossover Operator (LOM-15P-90)

Simple Crossover — ———
Uniform Crossover -————————-

OFL (Part Transfer)

o 10 p=1e} 30 a0 50 [STe]
Generations

Figure 5: Performance of different Crossover methods

objectives. The figure clearly indicate that after 60
generations there is no improvement in solution qual-
ity. Figure 5 presents the performance of two crossover
techniques proposed for this paper. The graph clearly
indicates that uniform crossover performs better than
simple crossover For small benchmarks the quality of
solutions obtained from the three crossover operators
are quite similar. As the benchmarks increase in size
the performance of simple crossover and structured
crossover deteriorates. Figure 6 shows the results ob-
tained as a function of the mutation rate. The graphs
clearly show that as we increase the mutation rate the
two objective functions deteriorate. Mutation rates in
the range of 1-5% give the best results. This is obvious
since increasing the mutation rate beyond 5% leads to
random walks of the solution space and results in un-
productive wandering. Figure 7 plots the problem in
the criterion space. It is evident from the figure that
the search takes place in multiple directions versus a
fixed direction as would be the case in a fixed weight
approach. Table 2 shows the results obtained when
running the Genetic Algorithm by optimizing each ob-
jective function separately. The Table is organized as

Mutation Operator (1OM-15P-90)

596 Mutation ———
802 Mutation -—-—————————-

OFL (Part Transfer)

o 10 ZO 30 40 50 60 70 80 90 100
Mutation Rate

Figure 6: Affect of Mutation Rates



Pareto Solutions

15M-30P-120 ——

OF2 (Balance)

0.40.450.50.550.60.650.70.750.80.850.9
OF1 (Part Transfer)

Figure 7: Objectives in Criterion Space

follows: The first column (Prob) indicates the name of
the benchmark. The second column (ObjT) specifies
the type of objective function being optimized where
PT stands for part transfer function and BAL stands
for machine work-load balance. The third and fourth
columns specify the objective function values for part
transfer and machine work-load balance respectively.
The fifth column indicates the total number of ma-
chines involved in processing the parts (i.e part trans-
fers involved). Finally, the sixth and seventh columns
specify the number of machines involved in process-
ing a specific part and the total number of operations
performed by each machine respectively.

We would notice from the table that whenever we opti-
mize the first objective function (i.e part transfer) the
less the number of machines involved (i.e sixth col-
umn) and the excessive imbalance in the operations
performed by the machines. Table 3 shows the re-
sults obtained when running the Genetic Algorithm
by optimizing both objective functions together. It is
clear from the results that both techniques are very
competitive. As the size of the benchmarks increase
the performance of the adaptive weight technique sur-
passes that for the fixed weight approach. For exam-
ple in the 10 machine example the number of part
transfer is reduced by two and in the last benchmark
(15M30P120) the systems achieves a reduction in part
transfer and a better balance when using the adaptive
approach over that based on fixed weights. We should
notice that the largest benchmark used in this paper
involves fifteen machines, thirty parts and twelve oper-
ations. Currently we are seeking real life benchmarks
that involve a large number of parts and operations to
quantify the computation ability of the Genetic Algo-
rithm on such large benchmarks. We anticipate that
the computational complexity will depend entirely on
the population and generation size used to solve the
problem. Running a Genetic Algorithm entails setting
a number of parameter values. As the benchmarks in-

crease in size we have to make sure that our algorithm
has the capability of adaptively tuning the parameters
to achieve robustness and good performance.

5 CONCLUSIONS

This paper presented a Genetic Algorithm solution
for flexible manufacturing systems. The use of evolu-
tionary computation methods for manufacturing op-
timization is expanding. The amount of work indi-
cates that evolutionary computation methods have
established themselves as a useful optimization tech-
nique in the manufacturing field, despite the fact that
their theoretical foundation are still debated. Results
obtained indicate that our Genetic Algorithm imple-
mentation achieves excellent results with respect to
part transfer and balancing the work among the ma-
chines. Future work should compare this Genetic Al-
gorithm implementation with other heuristic search
approaches (possibly a memtic algorithm that com-
bines a Genetic Algorithm with local search tech-
niques) and the feasibility of integrating Genetic Al-
gorithms with Multi Agent Systems. We also seek to
include sequencing constraints and tools costs in the
objective function in our future implementation.
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Table 1: Benchmarks used as test cases
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Table 2: Comparisons Based on Optimizing a Single Objective Function
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Table 3: Comparisons Based on Optimizing a Combined Objective Function



