
A Proposal to Hybridize Multi-Objective

Evolutionary Algorithms with Non-Gradient

Mathematical Programming Techniques
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Abstract. The hybridization of multi-objective evolutionary algorithms
(MOEAs) with mathematical programming techniques has gained in-
creasing popularity in the specialized literature in the last few years.
However, such hybrids normally rely on the use of gradients and, there-
fore, normally consume a high number of extra objective function evalu-
ations in order to estimate the gradient information required. The use of
direct (nonlinear) optimization techniques has been, however, less com-
mon in the specialized literature, although several hybrids of this sort
have been proposed for single-objective evolutionary algorithms. This pa-
per proposes a hybridization between a well-known MOEA (the NSGA-
II) and two direct search methods (Nelder and Mead’s method and the
golden section algorithm). The aim of the proposed approach is to com-
bine the global search mechanisms of the evolutionary algorithm with the
local search mechanisms provided by the aforementioned mathematical
programming techniques, such that a more efficient (i.e., with a lower
number of objective function evaluations) approach can be produced.

1 Introduction

The use of evolutionary algorithms for solving multi-objective optimization prob-
lems has become very popular in the last 10 years, finding applications in a wide
variety of areas [1]. However, one of the current limitations of MOEAs is their
computational cost, which turns out to be unaffordable in certain real world
applications. The design of hybrid approaches combining MOEAs and math-
ematical programming techniques is not new (see for example [2]). However,
these hybridation schemes normally rely on gradient-based information to guide
the search. This may be inappropriate, since estimating such gradients normally
requires additional objective function evaluations, which is precisely what we
are trying to avoid in computationally expensive problems. Although the use
of surrogate models is a possible alternative to deal with such problems (see
for example [3]), these approximate models tend to produce accumulated er-
rors that sometimes generate a significant deviation with respect to the original
model. In this paper, we propose a new multi-objective hybrid algorithm based



on the NSGA-II [4], coupled with two mathematical programming methods:
Nelder and Mead’s method (which is used for multidimensional optimization)
and the golden section (which is used for unidimensional optimization). The aim
of this proposed approach is to speed up the convergence of the baseline MOEA,
through the introduction of powerful local search engines (based on direct search
methods taken from the mathematical programming literature). This sort of hy-
brid aims at introducing information obtained from mathematical programming
techniques (which are deterministic algorithms) to refine the search performed
by a global search engine (a genetic algorithm in this case) without having to
perform additional objective function evaluations.

2 Basic Concepts

2.1 The Nonlinear Simplex Method

Spendley et al. [5] presented the basic simplex method, which is an efficient
sequential optimization method for minimizing real and multidimensional func-
tions. Later on, Nelder and Mead presented an improvement of this method
which was called the Nonlinear Simplex Search (NSS) method [6] (also known
as the Nelder and Mead method). The convergence towards a minimum value at
each iteration of the NSS is conducted by four movements in a geometric shape
called simplex. A simplex or n-simplex ∆ is a convex hull of a set of n+1 affinely
independent points ∆i (i = {0, 1, . . . , n}), in some Euclidean space of dimension
n. To define the full algorithm, it is necessary to specify four scalar parameters
to control the movements performed in the simplex: reflection (α), expansion
(γ), contraction (β) and shrinkage (δ). At each iteration, the n + 1 vertices of
the simplex ∆i represent the solutions evaluated and are sorted according to:
f(∆0) ≤ f(∆1) ≤ · · · ≤ f(∆n). In this way, the movements performed in the
simplex by the NSS method are defined as:

1. Reflection: xr = (1 + α)xc − α∆n.

2. Expansion: xe = (1 + αγ)xc − αγ∆n.

3. Contraction:

(a) Outside: xco = (1 + αβ)xc − αβ∆n.

(b) Inside: xci = (1 − β)xc + β∆n.

4. Shrinkage: The new vertices of the simplex at the next iteration will be:
{∆0, v1, v2, . . . , vn}, where vj = ∆0 + δ(∆j −∆0), for all j = {1, 2 . . . , n}.

where xc is called centroid of the simplex, and is computed as: xc = 1
n

∑n−1
i=0 ∆i;

∆0 and ∆n are the best and the worst solutions identified within the simplex,
respectively. At each iteration, the initial simplex is modified by one of the above
movements, according to the following rules:



1. If f(∆0) ≤ f(xr) ≤ f(∆n−1), then ∆n = xr.
2. If f(xe) < f(xr) < f(∆0), then ∆n = xe,

otherwise ∆n = xr.
3. If f(∆n−1) ≤ f(xr) < f(∆n) and f(xco) ≤ f(xr),

then ∆n = xco; otherwise, perform a shrinkage.
4. If f(xr) ≥ f(∆n) and f(xci) < f(∆n),

then ∆n = xci; otherwise, perform a shrinkage.

We chose Nelder and Mead’s method for two reasons: it is a widely used
multidimensional optimization technique, and there exists previous evidence of
success in being hybridized with evolutionary algorithms. However, the use of
other (more powerful) mathematical programming techniques (e.g., Powell’s con-
jugate direction method) is left for future work.

2.2 The Golden Section Method

The golden section, represented by ϕ, is a line segment sectioned in two parts
according to the golden ratio, which refers to the ratio between length and height
of a rectangle that is required in order to make it more aesthetically pleasant
to our senses. The golden ratio has a value of ϕ ≈ 0.618033. The golden section
search method finds the minima of a function within a certain (given) search
interval. This approach is very efficient to optimize unimodal, unidimensional
and unconstrained functions, and it is based on the main principle of the region

elimination methods, which establishes that if we assume a function to be min-
imized f to be strictly unimodal on the interval a ≤ x ≤ b with a minimum at
x∗, and having two points x1 and x2 in this interval, such that a < x1 < x2 < b,
then we can conclude [7]:

1. If f(x1) > f(x2), then the minimum of f(x) does not lie in the interval
(a, x1). In other words, x∗ ∈ (x1, b).

2. If f(x1) < f(x2), then the minimum does not lie in the interval (x2, b). In
other words, x∗ ∈ (a, x2).

By using the golden section, the region to be eliminated at each iteration can
be maximized, so that the minimum can be found in a more efficient way (i.e.,
requiring less iterations). We decided to adopt this approach, because it is the
most efficient region elimination method and it is a direct search approach (i.e.,
does not require derivatives). Although other (more powerful) unidimensional
optimization techniques exist, they rely either on polynomial approximations
(e.g., quadratic estimation) or gradient-based information (e.g., secant, Newton-
Raphson and cubic search) and thus limit the type of functions to be optimized.

2.3 Low-discrepancy Sequences

A low-discrepancy sequence is also called a quasi-random or sub-random se-
quence, and it offers a high degree of uniformity in comparison with the more



common uniformly distributed random numbers. Low-discrepancy sequences are
commonly used in Monte Carlo simulations of integrals that do not have a
closed-form expression in order to achieve variance reduction. Here, we adopt
low-discrepancy sequences to construct the simplex in the Nelder and Mead
method. Next, we present the two low-discrepancy sequences that are adopted
in this work.

Halton Sequence The Halton sequence [8] is a variation of the van der Cor-

put sequence [9], differing only in the representation, since the van der Corput
sequence uses binary representation and the Halton sequence adopts a different
base for each vector coordinate. The Halton sequence is constructed according
to a deterministic method based on number theory. For constructing the i-th
vector of the Halton sequence in R

n, the first step is to choose n relatively prime
numbers p1, p2, . . . , pn. We consider the representation in base p of i, which takes
the i = a0 + pa1 + p2a2 + . . . form. Each coordinate of the vector is in [0, 1] and
is obtained by:

r(i, p) =
a0

p
+
a1

p2
+
a2

p3
+
a3

p4
+ · · ·

In this way, the i-th vector in the Halton sequence (starting with i = 0) is defined
as:

〈r(i, p1), r(i, p2), . . . , r(i, pn)〉 (1)

Hammersley sequence The Hammersley sequence [10] is an adaptation of the
Halton sequence, which uses n−1 relatively prime numbers. Starting with i = 0,
the i-th vector in the Hammersley sequence for a set of k vectors is defined as:

〈

i

k
, r(i, p1), r(i, p2), . . . , r(i, pn−1)

〉

(2)

In an analogous way, each component of the vector in the Hammersley se-
quence is in [0, 1].

3 Our proposed approach

Our proposed approach is called Nonlinear Simplex Search Genetic Algorithm

(NSS-GA), and combines the explorative power of a MOEA with the exploitative
power of the Nelder and Mead method, which acts as a local search engine. The
general scheme of the NSS-GA is detailed in Figure 1.

3.1 Local search

The general idea of this phase is to intensify the search towards better solutions
for each objective function, based on an individual of the population. Genetic
traits of the best individuals found for each objective function are reproduced us-
ing the evolutionary operators of a genetic algorithm. The main goal of this phase



n = number of decision variables
λ = set of locally optimal solutions found by the
local search mechanism

1. t = 0.
2. Randomly initialize a population Pt of size N .
3. Evaluate the fitness of each individual in Pt.
4. Generate the offspring Qt, applying the selection,
crossover and mutation operators to Pt.
5. Rt = Pt ∪ Qt (thus, Rt is now of size 2N).
6. Assign to P ∗ the N better individuals from Rt

according to the crowded comparison operator (≺n).
7. If (t mod n

2
= 0) then:

i. Get λ set according to the exploration phase.
ii. R∗

t = P ∗

t ∪ λ.
iii. Assign to Pt+1 the N best
individuals from R∗

t according to the crowded comparison operator (≺n).
Else: Pt+1 = P ∗.
8. t = t + 1.
9. If t > tmax stop, else go to step 4.

Fig. 1. Main algorithm of our proposed Nonlinear Simplex Search Genetic Algorithm
(NSS-GA).

is to obtain the λ set using classical optimization methods. Because the Nelder
and Mead algorithm was designed to optimize multidimensional functions, when
dealing with unidimensional optimizations, the golden section method is used
instead. Thus, the λ set is defined as:

λ = λ1 ∪ λ2 ∪ · · ·λk ∪ Υ

where λi is a set of the best solutions found for the i-th objective function of
the MOP and Υ is a set of the best solutions found for the aggregating function
described later in this section. If the i-th objective function to be optimized is
unidimensional, the size of λi is 1. In this case, the golden section method is
adopted to find the minimum of such objective function. Otherwise, if the i-th
objective function is multidimensional, then the size of the λi set is n + 1 and
corresponds to all the vertices of the final simplex found by the NSS algorithm.
Next, we describe the different components of our local search engine.

Selection Mechanism In the population P , we choose the individual x∆ ∈ P

to optimize its i-th objective:

x∆ = xl|xl = min
∀xl∈P∗

{fi(xl)} (3)

where P∗ is a nondominated solutions set within the population P . In other
words, the selected individual is the best nondominated solution with respect to
the i-th objective function.



Aggregating Function The vector H = [f∗
1 , f

∗
2 , . . . , f

∗
k ], consists of the mini-

mum values f∗
i of the k objective functions in the current generation. We select

the individual xa from the population P , such that we minimize:

G(xa) =

k
∑

i=1

|H [i] − fi(xa)|

|H [i]|
(4)

In this way, the local search minimizes the aggregating function defined by:

ψ(x) = ED(H ,F (x)) (5)

where F is vector of objective functions values of each individual and ED is
the Euclidean distance between the F and H vectors. Summarizing, the search
first focuses on finding the extremes of the Pareto front (using equation 3). In
this phase, we select as many individuals as objectives of the problem. Then, we
select one additional individual using equation 4, aiming to reach the “knee” of
the Pareto front.

Note that there are functions for which the NSS algorithm becomes inoper-
able (for example, McKinnon’s function [11]). In order to deal with these and
other more complex functions, the NSS method has undergone some modifica-
tions in the specialized literature (see for example [12, 13]). We propose here a
new strategy to guide the improvement process towards promising areas during
each generation of the hybrid algorithm. Such strategy is described next.

Building the Simplex The selected solution x∆ (xa for the case of the ag-
gregating function) is called “simplex-head”, which is the first vertex of the
n-simplex. The remaining n vertices are created in two phases:

1. Reducing the Search Domain: We use a strategy based on genetic analysis of a
sample taken from the population. From this sample, we identify the average
and standard deviation of the genes (decision variables) in each individual.
Based on that information, we define the new search space as:

low boundj
new = m(Pm(j)) − σ(Pm(j))

up boundj
new = m(Pm(j)) + σ(Pm(j))

(6)

where Pm represents the individuals in the sample taken from the population
(such individuals are those with the best fitness with respect to the objective
function to optimize), m(Pm(j)) is the average and σ(Pm(j)) is the standard
deviation in the j-th parameter of the sample Pm. The size of the sample
taken in this work is 20% of the total population size.

2. Build Simplex Vertices: Once the new search domain has been defined, the
remaining vertices are determined using either the Halton or the Hammersley
sequence (each has a 50% probability of being selected).
For both sequences, the components are in [0, 1] and are mapped to the new
interval acording to:

c′ = low boundnew + c · (up boundnew − low boundnew)



where c is the component to be mapped to the interval [0, 1] and c′ is the
component already mapped to the desired interval. Although we do not have
a mathematical proof regarding the suitability of this scheme to generate a
non-degenerate simplex (i.e., a simplex whose volume is greater than zero),
we empirically found that this procedure worked well in the numerous ex-
periments that we performed.

Bounded Variables for NSS The NSS method was conceived for unbounded
domain problems. When dealing with bounded variables, the created vertices
can be located outside the allowable bounds after some movements of the NSS
method. Luersen et al. [14] proposed a simple strategy to deal with bounded
variables, which is the one we adopted in this work:

Let ∆new be the new vertex created by some NSS movement. The j-th com-
ponent of the vertex is established as:

∆
(j)
i =











low boundj , if ∆
(j)
i < low boundj

up boundj , if ∆
(j)
i > up boundj

∆
(j)
i , otherwise.

(7)

where low boundj and up boundj are the lower and upper bounds in the j-th
parameter, respectively.

However, this strategy can degenerate the simplex. We propose here to re-
build the simplex if it has been degenerated, i.e., if its volume is different from
zero. Since we need a procedure to compute the volume of the simplex, we adopt
the proposal from [15] for that sake.

Stopping Criteria Two stopping criteria are adopted in this work. The first
criterion imposes convergence towards a vertex better than the worst vertex
within the simplex (xw). This criterion is taken from Lagarias et al. [15]. How-
ever, adopting this stopping criterion does not guarantee that the NSS method
has an efficient performance. Convergence can be slow and may require a large
number of evaluations of the objective function. For this reason, we use a second
stopping criterion which consists of defining a convergence threshold ǫ (for the
experiments reported in this paper, ǫ = 1 × 10−3). Thus, the local search is
stopped if:

1. It does not generate a vertex better than xw after performing (n+ 1) itera-
tions, or

2. if after performing 2(n+1) iterations, the convergence towards a better point
is ≤ ǫ.

where n is the number of decision variables of the function to be optimized.

4 Comparison of Results

In order to evaluate the performance of the proposed hybrid algorithm, we com-
pare its performance with respect to the NSGA-II [4]. The test problems adopted



are five from the ZDT test suite [16] (except from ZDT5, which is a binary test
problem). We also adopted two problems from the DTLZ test suite (DTLZ1 and
DTLZ2) [17]. The description of these test problems is omitted due to space
constraints. We adopted three performance measures to assess our results: In-
verted Generational Distance (IGD) [18, 1], Spacing (S) [19] and the Coverage
Indicator (CI) [16]. Their description is also omitted due to space constraints.

4.1 Experimental Setup

Our proposal (the NSS-GA) is compared with respect to the baseline algorithm
adopted (the NSGA-II). Since our approach does not require any additional
parameters for the main search engine (i.e., the NSGA-II), the comparison was
done with the same parameter values for both approaches in order to allow a fair
comparison. Thus, we adopted the following values: Population size (Sp) = 100,
crossover probability (Pc) = 0.9, mutation probability (Pm) = 1

N
, where N is

the number of decision variables. The nonlinear simplex search was implemented
with: α = 1, β = 2, γ = 1

2 and δ = 1
2 . For each MOP, we performed 30 indepen-

dent runs with each of the two approaches. The results are presented in Tables 1
to 3. Each table displays both the average and the standard deviation (σ) of each
performance measure, for each of the test problems adopted. The best average
results obtained in each test function are displayed in boldface. Each run is
restricted to 4,000 fitness function evaluations, which is a very low value when
compared to those adopted by most MOEAs nowadays. From these results, it
is evident that our proposed approach (NSS-GA) outperforms the NSGA-II in
all the test problems, with respect to both the IGD (which measures closeness
to the true Pareto front) and the CI performance measure (which determines if
the solutions generated by one algorithm dominate the solutions generated by
the other). In fact, the low values obtained by our NSS-GA indicate that our
approach has practically converged to the true Pareto front, except for ZDT4
and DTLZ1 (we could corroborate this by plotting the results, but such graphs
were omitted due to space restrictions). With respect to the S performance mea-
sure, our approach obtained better results in 4 test problems, and the NSGA-II
obtained better results in the other three. However, since convergence is more
important than even distribution of nondominated solutions, we do not consider
this to be a major drawback of our proposed approach.

5 Conclusions and Future Work

In this paper, we have introduced a hybridization scheme in which a MOEA
(the NSGA-II) is coupled to two direct search methods (Nelder and Mead’s
method and the golden section method). Our proposed approach (called NSS-
GA), was found to be competitive with respect to the original NSGA-II over a
set of test functions taken from the specialized literature, when performing only
4,000 fitness function evaluations. As part of our future work, we are interested
in experimenting with other direct search methods, such as the Hooke-Jeeves



Table 1. Results of IGD for the NSS-GA and the NSGA-II

Problem NSS-GA NSGA-II
average σ average σ

ZDT1 0.001149 0.000598 0.005582 0.000905
ZDT2 0.002101 0.001785 0.015385 0.004631
ZDT3 0.001221 0.000832 0.004217 0.000798
ZDT4 0.122063 0.058813 0.156509 0.051699
ZDT6 0.008980 0.004758 0.046699 0.007258
DTLZ1 0.658650 0.107311 0.779135 0.168162
DTLZ2 0.000403 0.000022 0.000428 0.000024

Table 2. Results of S for the NSS-GA and NSGA-II

Problem NSS-GA NSGA-II
average σ average σ

ZDT1 0.014620 0.005329 0.023731 0.004730
ZDT2 0.021928 0.014674 0.029762 0.006576
ZDT3 0.013990 0.005108 0.023994 0.004774
ZDT4 0.455495 0.416654 3.098866 2.822281
ZDT6 0.171233 0.117406 0.106812 0.055624
DTLZ1 17.965977 7.564753 16.132116 6.874782
DTLZ2 0.055607 0.005740 0.055528 0.004754

pattern search method and Powell’s conjugate direction method. We are also
interested in devising mechanisms that help us to decide whether the local search
needs to be triggered or not.
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