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Abstract—In recent years, the development of multi-objective
evolutionary algorithms (MOEAs) hybridized with mathemat i-
cal programming techniques has significantly increased. How-
ever, most of these hybrid approaches are gradient-based, and
tend to require a high number of extra objective function
evaluations to estimate the gradient information required. The
use of direct search methods—i.e., methods that do not require
gradient information—has been, however, less popular in the
specialized literature (although such approaches have been
used with single-objective evolutionary algorithms). This paper
precisely focuses on the design of a hybrid between the well-
known MOEA/D and Nelder and Mead’s algorithm. Clearly, the
mathematical programming technique adopted here, acts as a
local search mechanism, whose goal is to improve the search
performed by MOEA/D. Because of its nature, the proposed
local search mechanism can be easily coupled to any other
decomposition-based MOEA. Our preliminary results indicate
that this sort of hybridization is quite promising for deali ng
with multi-objective optimization problems (MOPs) having high
dimensionality (in decision variable space).

I. I NTRODUCTION

In spite of the current widespread use of evolutionary algo-
rithms for solving MOPs, their computational cost (measured
in terms of fitness function evaluations performed) remains
as one of their main limitations when applied to real-world
applications [3]. In order to address this issue, a variety
of hybrid approaches have been proposed in the last few
years, mainly focusing on the use of local search engines
coupled to different types of MOEAs. Most of these hybrid
approaches rely on local search engines based on gradient
information [8], [2], [19], [12]. However, few researchers
have attempted to hybridize direct search methods (which
do not require gradient information) with a MOEA (see for
example [1], [25]). Regarding Nelder and Mead’s algorithm
(also known asnonlinear simplex search) which is referred
to in this work, the following hybrid algorithms have been
reported in the specialized literature in recent years.

Koduru et al. [10] use the nonlinear simplex search hy-
bridized with a Multi-objective Particle Swarm Optimizer
(MOPSO). In this work, the authors adopted clustering
techniques to build the simplex. The nonlinear simplex search
was used as a local search engine for finding nondominated
solutions in the neighborhood defined by the particle to be
improved. Zapotecas and Coello [24] presented a hybridiza-

tion between the well-known Nondominated Sorting Genetic
Algorithm II (NSGA-II) and the nonlinear simplex search. In
this work, the search was directed by an aggregating function
and the simplex was constructed using a low-discrepancy
sequence into a reduced domain search. Zhong et al. [29]
hybridized the nonlinear simplex search and the Differential
Evolution (DE) algorithm. The simplex was constructed se-
lecting random solutions from the current population, which
were then sorted according to Pareto dominance. At each
iteration of the local search, a movement into the simplex
was performed for generating new nondominated solutions.

Zhang et al. [28] proposed the multi-objective evolutionary
algorithm based on Decomposition (MOEA/D) [28]. This
approach decomposes a MOP into several single-objective
optimization problems. In this way, a set of approximate
solutions to the Pareto optimal set is generated by minimizing
each subproblem instead of using a selection mechanism
based on Pareto dominance (as the above mentioned hy-
brid algorithms). More recently, Zapotecas and Coello [26]
proposed the Multi-Objective Nonlinear Simplex Search
(MONSS), which adopts a decomposition-based approach
similar to the one used by MOEA/D. This approach builds a
simplex using solutions that minimize a set of neighboring
subproblems, and showed the potential of nonlinear simplex
search in low-dimensional MOPs.

In this paper, we propose a new memetic algorithm based
on both a decomposition approach (we use MOEA/D as
our global search engine) and the nonlinear simplex search
method (which acts as our local search engine). As we
will see later on, the solutions obtained by our proposed
memetic algorithm outperform those obtained by the original
MOEA/D in most of the test problems adopted in our
experimental study.

The remainder of this paper is organized as follows. In
Section II, we provide the basic definitions required for
understanding the rest of the paper. Section III describes
the proposed memetic algorithm, including a detailed ex-
planation of the local search mechanism that we propose.
Section IV presents the experimental study used for assessing
the performance of our proposed memetic algorithm. In
Section VI, we provide a brief discussion of our results.
Finally, in Section VII, we provide our conclusions and some



possible paths for future research.

II. BASIC CONCEPTS

A. Multi-Objective Optimization

An unconstrained Multi-objective Optimization Problem
(MOP), can be stated as follows1:

min
x∈Ω

{F(x)} (1)

whereΩ defines the decision space andF is defined as the
vector of objective functions:

F : Ω → R
k, F(x) = (f1(x), . . . , fk(x))T

where fi : R
n → R is a continuous and unconstrained

function.
In multi-objective optimization, it is desirable to produce

a set of trade-off solutions representing the best possible
compromises among the objectives (i.e., solutions such that
no objective can be improved without worsening another).
In order to describe the concept of optimality in which we
are interested, the following definitions are introduced [13]:

Definition 1. Let x,y ∈ Ω, we say thatx dominatesy
(denoted byx ≺ y) if and only if, fi(x) ≤ fi(y) and
fi(x) < fi(y) in at least onefi for all i = 1, . . . , k.

Definition 2. Let x⋆ ∈ Ω, we say thatx⋆ is aPareto optimal
solution, if there is no other solutiony ∈ Ω such thaty ≺ x⋆.

Definition 3. The Pareto Optimal SetPS is defined by:

PS = {x ∈ Ω|x is a Pareto optimal solution}

Definition 4. The Pareto Optimal FrontPF is defined by:

PF = {F(x)|x ∈ PS}

Thus, when solving MOPs, we are interested in finding the
best possibletrade-offsamong the objectives, such that no
objective can be improved without worsening another. Since
the number of Pareto optimal solutions can be very large,
we are also interested in obtaining a well-distributed set of
solutions, since the size of our approximation (produced by
a MOEA) will be normally small.

B. Decomposing Multi-Objective Optimization Problems

In the specialized literature, there are several approaches
for transforming a MOP into multiple single-objective op-
timization subproblems [6], [13]. These approaches use a
weighted vector as their search direction. In this way, and
under certain assumptions (e.g., the minimum is unique, the
weighting coefficients are positive, etc.), a Pareto optimal
point is achieved by solving such subproblems. Therefore, an
approximation of the Pareto optimal front can be achieved
by decomposing a MOP into several single-objective opti-
mization problems. Among these methods, perhaps the two
most widely used are theTchebycheffand theWeighted Sum

1Without loss of generality, we assume minimization

approaches. It is worth noting, however, that the approaches
based on boundary intersection have certain advantages over
those based on either Tchebycheff or the Weighted Sum [4],
[28]. In the following, we briefly describe a method based,
precisely, on the boundary intersection approach, which is
referred to in this work.

1) Penalty Boundary Intersection Approach:The Penalty
Boundary Intersection (PBI)2 approach proposed by Zhang
and Li [28], uses a weighted vectorw and a penalty value
θ for minimizing both the distance to the utopian vectord1

and the direction error to the weighted vectord2 from the
solution F(x). Therefore, the optimization problem can be
stated as:

minimize: g(x|w, z⋆) = d1 + θd2 (2)

where

d1 =
||(F(x) − z⋆)Tw||

||w||

and d2 =
∣

∣

∣

∣
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∣
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∣

∣

∣
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such thatx ∈ Ω and z⋆ = (z1, . . . , zk)T , such that:zi =
min{fi(x)|x ∈ Ω}.

In this way, a good representation of the Pareto front can
be generated by solving a set of problems defined by a well-
distributed set of weighted vectors. That has been the main
incentive for the development of current decomposition-
based MOEAs, see for example [28], [16], [14], [27].

C. The Framework of MOEA/D

The Multi-Objective Evolutionary Algorithm Based on
Decomposition (MOEA/D) proposed by Zhang and Li [28],
decomposes a MOP into several scalarization subproblems.
In the following description, we assume that the PBI ap-
proach is employed, but the use of other scalarization func-
tion is also possible.

Let W = {w1, . . . ,wN} be a set of evenly spread
weighted vectors. The problem of approximation of the
PF of a MOP can be decomposed intoN scalarization
subproblems by using the PBI approach and the objective
function of thejth subproblem will be defined byg(x|wj , z),
where wj ∈ R

k and z = (z1, . . . , zk)T is the artificial
utopian vector whose componentzi is the best value found
so far for objectivefi.

In MOEA/D, a neighborhood of weighted vectorswi

is defined as a set of its closest weighted vectors in
{w1, . . . ,wN}. The neighborhood of theith subproblem
consists of all the subproblems with the weighted vectors
from the neighborhood ofwi.

At each generationt, MOEA/D with the PBI approach
maintains: 1) a population ofN points x1, . . . ,xN ∈ Ω,
where xi is the current solution to theith subproblem;
2) FV 1, . . . , FV N , whereFV i is the F -value of xi, i.e.,
FV i = F(xi) for eachi = 1, . . . , N ; 3) an external pop-
ulation EP , which is used to store nondominated solutions

2based on the well-known Normal Boundary Intersection (NBI)
method [4]



found during the search. The general framework of MOEA/D
is presented below.
Input:

• a stopping criterion;
• N : the number of the subproblems considered in MOEA/D;
• a well-distributed set of weighted vectors:{w1, . . . ,wN};
• T : the number of the weight vectors in the neighborhood of

each weighted vector.
Output:

• EP : the nondominated solutions found during the search;
• P : the final population found by MOEA/D.

Step 1) Initialization
Step 1.1)setEP = ∅
Step 1.2)Compute the Euclidean distances between any two
weighted vectors and then work out theT closest weighted
vectors to each weighted vector. For eachi = 1, . . . , N , set
B(i) = {i1, . . . , iT } wherewi1 , . . . , wiT

are theT closest
weighted vectors towi.
Step 1.3)Generate an initial populationP = {x1, . . . ,xN}
randomly. SetFV i = F(xi).
Step 1.4) Initialize z = (z1 . . . , zk)T by a problem-specific
method.

Step 2) Update
For i = 1, . . . , N , do

Step 2.1) Reproduction:Randomly select two indexesk, l
from B(i), and then generate a new solutiony from xk and
xl by using genetic operators.
Step 2.2) Improvement: Apply a problem-specific re-
pair/improvement heuristic ony to producey′.
Step 2.3) Update ofz: For eachj = 1, . . . , k, if zj < fj(x),
then setzj = fj(y

′).
Step 2.4) Update of Neighboring Solutions:For each index
j ∈ B(i), if g(y′|wj , z) ≤ g(x|wj, z), then setxj = y′ and
FV j = F(y′).
Step 2.5) Update ofEP : Remove fromEP all the vectors
dominated byF(y′). Add F(y′) to EP if no vectors inEP
dominateF(y′).

Step 3) Stopping Criterion: If the stopping criterion is
satisfied, then stop and outputEP and P . Otherwise, go
to Step 2.

For a detailed description of the above outlined framework,
the interested reader is referred to [28].

D. The Multi-Objective Nonlinear Simplex Search

Nelder and Mead’s algorithm (also known asnonlinear
simplex search) [15], has been an efficient alternative for
dealing with multidimensional and non-differentiable func-
tions. This method, based on the original idea of Spendley
et al. [20], guides the search towards a minimum value by
deforming a geometric shape calledsimplex according to
the three basic movements described by Nelder and Mead:
reflection, expansionandcontraction.

Recently, an extension of the nonlinear simplex search for
multi-objective optimization has been proposed. The Multi-
Objective Nonlinear Simplex Search (MONSS) introduced
by Zapotecas and Coello [26], decomposes a MOP into
several single-objective scalarization subproblems. Such sub-
problems are defined by a well-distributed set of weighted
vectorsW = {w1, . . . ,wN} which was previously defined.

At the beginning, MONSS defines a set ofN random
solutionsS = {x1, . . . ,xN} having a uniform distribution.

Each vectorxi ∈ S represents a solution for theith

subproblem defined by theith weighted vectorwi ∈ W .
In this way, different subproblems are simultaneously solved
and the set of solutionsS will represent an approximation
to the Pareto optimal set lengthwise of the search process.
MONSS identifies different solutions along the Pareto front
and the search is directed towards different non-overlapped
regions (or partitions)Ci’s from the set of weighted vectors
W , such that, eachCi defines a neighborhood.

The nonlinear simplex search is focused on minimizing
a subproblem defined by a weighted vectorws which is
randomly chosen fromCi. The n-simplex (∆) used in the
search, is defined as:

∆ = {xs,x1, . . . ,xn} (3)

such that:xs ∈ S is a minimum ofg(xs|ws, z
⋆) for the

vector ws ∈ W . xj ∈ S (j = 1, . . . , n) represents the
n solutions that minimize the subproblems defined by the
n closest weighted vectors ofws, wheren represents the
number of decision variables of the MOP to be solved. In
order to relax the search and to prevent the collapse of the
simplex, the search direction, i.e., the vectorws, is changed
for any other direction̂ws ∈ Ci. Since any vectorws from
Ci can be chosen, the possibleaction range(Ar) of the
search is defined by the cardinality ofCi, i.e., Ar = |Ci|.

In order to complete one iteration of the MONSS, the
simplex search needs to iteraten + 1 times in each defined
partitionCi. As MONSS definesm = |W |

n+1 partitions, at each
iteration,|W | fitness function evaluations are performed. All
of the new solutions found by MONSS are stored in a pool
called “intensification set” (I). At the end of each iteration,
the new approximationS to the Pareto set is updated by
selecting the solutions that minimize each subproblem taken
from the unionI ∪S. For a detailed description of MONSS,
the interested reader is referred to [26].

III. O UR PROPOSEDAPPROACH

A. General Framework

Our proposed multi-objective memetic algorithm, adopts
MOEA/D [28] as its baseline algorithm. The local search
engine is based on the MONSS framework [26], however,
in order to couple it to MOEA/D and to improve the search,
some modifications have been introduced. In this way, the
memetic algorithm (denoted as MOEA/D+LS), explores
the global search space using MOEA/D, while the local
search mechanism exploits promising regions given by the
same MOEA/D. Next, we present the general framework of
MOEA/D+LS and the following section describes in detail
the local search mechanism.

Input:
• a stopping criterion;
• N : the number of subproblems considered in MOEA/D+LS;
• a well-distributed set of weighted vectors:{w1, . . . , wN};
• T : the number of weight vectors in the neighborhood of each

weighted vector.
• Rls: the number of solutions which are replaced in the current

population by the local search.



• Ar: the action range for the local search.
Output:

• P : the final population found by MOEA/D+LS.
Step 1) Initialization

Step 1.2)Compute the Euclidean distances between any two
weighted vectors and then work out theT closest weighted
vectors to each weighted vector. For eachi = 1, . . . , N , set
B(i) = {i1, . . . , iT } wherewi1 , . . . , wiT

are theT closest
weighted vectors towi.
Step 1.3)Generate an initial populationP = {x1, . . . ,xN}
randomly. SetFV i = F(xi).
Step 1.4) Initialize z = (z1 . . . , zk)T by a problem-specific
method.

Step 2) Memetic Algorithm
Step 2.1) MOEA/D iteration: Perform Step 2 of the
MOEA/D framework for obtainingP (the next population).
Step 2.2) Local Search:
If the percentage of nondominated solutions inP is less than
50% then

Step 2.2.1) Selection Mechanism:Select a solution
from P as the initial search solution (pini) according
to Section III-B1.
Step 2.2.2) Build the Simplex:Build the simplex ac-
cording to Section III-B2.
Step 2.2.3) Search Direction:Select the search di-
rection for the nonlinear simplex search according to
Section III-B3.
Step 2.2.4) Deform the Simplex:Perform any move-
ment (reflection, contraction or expansion) for obtaining
pnew according to Nelder and Mead’s algorithm (see
Section III-B4).
Step 2.2.5) Update the population:Update the popu-
lation P using the new solutionpnew according to the
rules presented in Section III-B5.
Step 2.2.6) Stopping Criterion:If the stopping criterion
is satisfied then stop and go toStep 3. Otherwise go to
Step 2.2.1or Step 2.2.3according to the rules detailed
in Section III-B6.

Else go toStep 3.

Step 3) Stopping Criterion: If the stopping criterion is
satisfied, then stop and outputP . Otherwise go toStep 2.

B. Local Search

MOEA/D+LS exploits the promising neighborhoods of the
nondominated solutions found by MOEA/D. In the following
description, letP be the set of solutions found by MOEA/D
in any generation. We assume that if a solutionp ∈ P is
nondominated, there exists another nondominated solution
q ∈ Ω such that||p − q|| < δ for any small δ ∈ R+.
In other words, the probability thatq is nondominated with
respect top in the neighborhood defined byδ is equal to
one, which implies thatq is also nondominated.

The local search mechanism presented here takes into
account this property to obtain new nondominated solutions
departing from nondominated solutions allocated in the cur-
rent populationP . Considering that MOEA/D tries to solve
a set of subproblems, if all solutions inP are nondominated,
we assume that the minimum value for each subproblem has
been achieved and then, the application of the local search
procedure could be inefficient. Therefore, a good strategy
needs to be adopted.

The degrees of freedom of the local search depend of the
process used for building the simplex, which (as we will
see later on) adopts solutions from the current population.
Considering that at end of the evolutionary process the popu-
lation converges to a particular region of the search space (the
place where the nondominated solutions are contained), the
performance of the local search engine should be better when
the diversity in the population is higher, i.e., when havinga
low number of nondominated solutions. Thus, in this work,
the local search procedure is applied when the percentage of
nondominated solutions inP is less than a certain percentage
(we used 50% in this paper). In the following sections,
we will detail the local search steps included in the above
description of our proposed MOEA/D+LS.

1) Selection Mechanism:Let P ⋆ ⊆ P be the set of non-
dominated solutions found by MOEA/D in any generation.
Assuming that all the nondominated solutions inP ⋆ are
equally efficient, the solutionpini which starts the local
search is randomly taken fromP ⋆. Solutionpini represents
not only the initial search point, but also the simplex head
from which the simplex will be built.

2) Building the Simplex:Let wini be the weighted vector
that defines the subproblem for which the initial search
solutionpini is minimum. LetS(wini) be the neighborhood
of the n closest weighted vectors towini (where n is
the number of decision variables of the MOP)3. Then, the
simplex defined as:

∆ = {pini,p1, . . . ,pn}

is built in two different ways by using a probabilityPs,
according to the two following strategies:

i. Neighboring solutions:The remainingn solutionspi ∈
P (i = 1, . . . , n) are chosen, such that,pi minimizes
each subproblem defined by each weighted vector
in S(wini). This is the same strategy employed for
constructing the simplex used in MONSS [26].

ii . Sample solutions:The remainingn solutions pi ∈
Ω (i = 1, . . . , n) are generated by using a low-
discrepancy sequence. The Hammersley sequence [7]
is adopted in this work, to generate a well-distributed
sampling of solutions in a determined search space.
As in [24], we use a strategy based on the genetic
analysis of a sample from the current population for
reducing the search space. However, here, we compute
the average(m) and standard deviation(σ) of the
chromosomes (solutions) that minimize each subprob-
lem defined by the weighted vectors inS(wini). In
this way, the new bounds are defined by:

Lbound = m − σ

Ubound = m + σ

whereLbound andUbound are the vectors which define
the lower and upper bounds of the new search space,
respectively.

3Since the dimensionality of the simplex depends of the number of
decision variables of the MOP, the population size of the MOEA needs
to be larger than the number of decision variables.



Once the search space has been reduced, then remain-
ing solutions are generated by means of the Hammer-
sley sequence using as boundsLbound andUbound.

In this work, we usePs = 0.3 as the probability that the
construction of the simplex using sample solutions is chosen.
Otherwise, the construction using neighboring solutions is
employed.

3) Defining the Search Direction:Let B(wini) be the
neighborhood of theT closest weighted vectors towini, such
thatwini defines the subproblem for which the initial search
solution pini is minimum. LetD(wini) be theAr closest
weighted vectors towini.

The nonlinear simplex search focuses on minimizing a
subproblem defined by the weighted vectorwobj , which is
defined according to the following rules:

i. The farthest weighted vector inB(wini) to wini, if it
is the first iteration of the local search,

ii . otherwise, a random weighted vector taken from
D(wini) is employed.

Note that (inii ) the search is relaxed defining as our action
range theAr weighted vectors closest towini. The idea of
relaxing the search is taken from the MONSS framework.
However, the neighborhoodD(wini) is used instead of a
partition as in MONSS. In this work, we usedAr = 5.

4) Deforming the Simplex:At each iteration of the local
search, then + 1 vertices of the simplex∆ are sorted
according to their value for the subproblem that it tries to
minimize (the best value is the first element). In this way, a
movement into the simplex is performed for generating the
new solutionpnew. The movements are calculated according
to the equations provided by Nelder and Mead in [15]. Each
movement is controlled by three scalar parameters: reflection
(α), expansion (β) and contraction (γ).

The simplex search was conceived for unbounded prob-
lems. When dealing with bounded variables, the created
solutions can be located outside the allowable bounds after
some movements of the simplex search. In order to deal with
this, we bias the new solution if any component ofpnew lies
outside the bounds according to:

p(j)
new =











L
(j)
bound , if p

(j)
new < L

(j)
bound

U
(j)
bound , if p

(j)
new > U

(j)
bound

p
(j)
new , otherwise.

(4)

whereL
(j)
bound andU

(j)
bound are the lower and upper bounds

of the jth parameter ofpnew, respectively.
5) Updating the Population:The information provided by

the local search engine is introduced to MOEA/D using a
Lamarckian evolution scheme [23]. However, since we are
dealing with MOPs, the new solution generated by the local
search procedure could be better than more than one solution
in the current population. For this, we adopt the following
mechanism in which some solutions from the population
could be replaced:

Let P be the current population reported by the MOEA.
Let pnew be the solution generated by any movement of

the simplex search. LetB(wobj) and W = {w1, . . . ,wN}
be the neighborhood of theT closest weighted vectors to
wobj , and the well-distributed set of all weighted vectors,
respectively. We define

Q =

{

B(wobj) , if r < δ

W otherwise

wherer is a random number having uniform distribution. In
this work, we useδ = 0.9.

The current populationP is updated by replacing at
most Rls solutions from P such that,g(pnew|wi, z) <

g(xi|wi, z), where wi ∈ Q and xi ∈ P , such thatxi

minimizes the subproblem defined bywi.
Note that the loss of diversity is avoided by replacing

a maximum number of solutions fromP , instead of all
the solutions that minimize the subproblems defined by the
complete neighborhoodQ, as in MOEA/D. In our study, we
setRls = 15 as the maximum number of solution to replace.

6) Stopping Criterion: A maximum number of fitness
function evaluationsEls is adopted as our stopping criterion.
If the nonlinear simplex search overcomes this maximum
number of evaluations, the simplex search is stopped and
the evolutionary process of MOEA/D continues by going
to Step 3. However, the search could be inefficient if the
simplex has been deformed so that it has collapsed into
a region where there are no local minima. According to
Lagarias et al. [11] the simplex search finds a better solution
in at most n + 1 iterations (at least in convex functions
with low dimensionality). Thus, we take into account this
observation and adopt a stopping criterion for reconstructing
the simplex using another nondominated solution fromP as
simplex head. Therefore, if the simplex search does not find
a minimum value inn + 1 iterations, we reset the search by
going toStep 2.2.1. Otherwise, we perform other movement
into the simplex using a new search direction, i.e., by going
to Step 2.2.3.

IV. EXPERIMENTAL RESULTS

A. Test Problems

In order to assess the performance of our proposed
memetic algorithm, we compare its results with respect to
those obtained by the original MOEA/D [28]. We adopted
twelve test problems whose Pareto fronts have different
characteristics including convexity, concavity, disconnections
and multi-modality. The two-objective test suite of Zitzler-
Deb-Thiele (ZDT) [30] (except for ZDT5, which is a binary
problem) is adopted. Regarding three-objective problems,we
adopted the seven unconstrained MOPs from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [5].

We used 30 decision variables for ZDT1 to ZTD3, while
ZDT4 and ZDT6 were tested using 10 decision variables.
DTLZ1 was tested using 7 decision variables. For DTLZ2 to
DTLZ6, we employed 12 decision variables, while DTLZ7
was tested using 22 decision variables.



B. Performance Measures

The following performance measures are used to assess
the performance of our proposed memetic algorithm and
the original MOEA/D (i.e., the one without the local search
mechanism) on the test problems adopted:

Hypervolume: The Hypervolume (Hv) measure was pro-
posed by Zitzler [31]. This performance measure is Pareto
compliant [32], and quantifies both approximation and max-
imum spread of nondominated solutions along the Pareto
front. The hypervolume corresponds to the non-overlapped
volume of all the hypercubes formed by a reference point
r (given by the user) and each solutionp in the Pareto set
approximation (PFk). It is mathematically stated as:

Hv(PFk) = Λ





⋃

p∈PFk

{x|p ≺ x ≺ r}



 (5)

whereΛ denotes the Lebesgue measure andr ∈ R
k denotes

a reference vector being dominated by all valid candidate
solutions inPFk.

Two Set Coverage: The two Set Coverage (SC) was proposed
by Zitzler et al. [30], and it compares a set of nondominated
solutions A with respect to another setB, using Pareto
dominance. This performance measure is defined as:

SC(A, B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(6)

If all points in A dominate or are equal to all points in
B, this implies thatSC(A, B) = 1. Otherwise, if no point
of A dominates some point inB, thenSC(A, B) = 0. When
SC(A, B) = 1 and SC(B, A) = 0 then, we say thatA
is better thanB. Since the Pareto dominance relation is
not symmetric, we need to calculate bothSC(A, B) and
SC(B, A).

V. PARAMETERS SETTINGS

As indicated before, we compared our proposed approach
with respect to MOEA/D (using the PBI approach). For a
fair comparison, the set of weighted vectors was the same for
both algorithms, and they were generated in the same way as
in [28]. For each MOP, 30 independent runs were performed
with each algorithm. The parameters for both algorithms are
summarized in Table III, whereN represents the number
of initial solutions (100 for bi-objective problems and 300
for three-objective problems).Nit represents the maximum
number of iterations, which was set to 100 for all test
problems. Therefore, both algorithms performed 10,000 (for
the bi-objective problems) and 30,000 (for the three-objective
problems) fitness function evaluations for each problem. For
MOEA/D+LS, α, β and γ represent the control parameters
for the reflection, expansion and contraction movements of
the nonlinear simplex search, respectively. The parameters
Tn, ηc, ηm, Pc and Pm represent the neighborhood size,
crossover index (for Simulated Binary Crossover (SBX)),

TABLE I
RESULTS OFHv FOR MOEA/D+LS AND MOEA/D

MOP
MOEA/D+LS MOEA/D

reference vectorraverage average
(σ) (σ)

ZDT1 0.819246 0.751315
(1.1, 1.1)T

(0.038088) (0.033339)

ZDT2 0.384962 0.210410
(1.1, 1.1)T

(0.151212) (0.080132)

ZDT3
0.995692 0.990212

(1.1, 1.1)T

(0.158499) (0.089499)

ZDT4 0.169257 0.600217
(1.1, 1.1)T

(0.212639) (0.138989)

ZDT6 0.462559 0.425904
(1.1, 1.1)T

(0.050484) (0.010630)

DTLZ1 0.316904 0.317249
(0.7, 0.7, 0.7)T

(0.001091) (0.000957)

DTLZ2
0.768621 0.768696

(1.1, 1.1, 1.1)T

(0.000466) (0.000644)

DTLZ3 0.221197 0.383622
(1.1, 1.1, 1.1)T

(0.282045) (0.245603)

DTLZ4 0.768966 0.768935
(1.1, 1.1, 1.1)T

(0.000664) (0.000645)

DTLZ5 0.426307 0.426115
(1.1, 1.1, 1.1)T

(0.000167) (0.000675)

DTLZ6
0.426345 0.000228

(1.1, 1.1, 1.1)T

(0.000714) (0.001226)

DTLZ7 1.922224 1.916040
(1.1, 1.1, 6.1)T

(0.012057) (0.016969)

TABLE II
RESULTS OFSC FOR MOEA/D+LS AND MOEA/D

MOP

SC(MOEA/D+LS, SC(MOEA/D,

MOEA/D) MOEA/D+LS)

average average
(σ) (σ)

ZDT1
0.893657 0.004889

(0.122230) (0.011666)

ZDT2 0.432435 0.001333
(0.149436) (0.007180)

ZDT3 0.667901 0.690476
(0.021117) (0.093046)

ZDT4 0.000000 1.000000
(0.000000) (0.000000)

ZDT6
0.170720 0.867949

(0.028694) (0.036735)

DTLZ1 0.155326 0.126444
(0.165805) (0.093361)

DTLZ2 0.120572 0.150281
(0.028892) (0.031948)

DTLZ3 0.469164 0.227174
(0.376265) (0.260595)

DTLZ4
0.178360 0.077111

(0.033641) (0.019450)

DTLZ5 0.033682 0.031905
(0.022515) (0.022034)

DTLZ6 1.000000 0.000000
(0.000000) (0.000000)

DTLZ7 0.122837 0.108987
(0.021196) (0.016292)

mutation index (for Polynomial-Based Mutation (PBM)),
crossover rate and mutation rate, respectively.Ar, Rls and
Els represent the action range, the number of solutions to
be replaced and the maximum number of fitness function
evaluations employed by the local search, respectively.

Finally, the parameterθ, represents the penalty value used



in the PBI approach for both MOEA/D+LS and MOEA/D.

TABLE III
PARAMETERS FORMOEA/D+LS AND MOEA/D

Parameter MOEA/D+LS MOEA/D

N 100/300 100/300
Nit 100 100
Tn 20 20
ηc 20 20
ηm 20 20
Pc 1 1
Pm 1/n 1/n
α 1 –
β 2 –
γ 1/2 –

Ar 5 –
Rls 15 –
Els 300 –
θ 5 5

For each MOP, the algorithms were evaluated using the
two performance measures previously described (Hyper-
volume and Two Set Coverage). The results obtained are
summarized in Tables I and II. These tables display both the
average and the standard deviation (σ) of each performance
measure for each MOP. The reference vectors used for com-
puting theHv performance measure are shown in Table I.
These vectors are established close to the individual minima
for each MOP, i.e., close to the extremes of the Pareto optimal
front. With that, a good measure of approximation and spread
is reported when the algorithms converge along the Pareto
front. In the case of the statistics for theSC performance
measure comparing pairs of algorithms—i.e.SC(A, B), they
were obtained as average values of the comparison of all
the independent runs from the first algorithm with respect
to all the independent runs from the second algorithm. For
an easier interpretation, the best results are presented in
boldface for each performance measure and test problem
adopted.

VI. D ISCUSSION OFRESULTS

As indicated before, the results obtained by our pro-
posed memetic algorithm (i.e., MOEA/D+LS) were com-
pared against those produced by the original MOEA/D.

According to the results presented in Tables I and II,
MOEA/D+LS had a better performance than MOEA/D in
most of the MOPs adopted. These tables provide a quantita-
tive assessment of the performance of MOEA/D+LS in terms
of theHv andSC indicators. That means that the solutions
obtained by MOEA/D+LS achieved a better approximation
of the Pareto optimal front than those solutions obtained by
MOEA/D when a low number of fitness function evaluations
was adopted.

However, for ZDT4, DTLZ1, DTLZ2 and DTLZ3, the
Hv indicator showed that the local search did not improve
the performance of MOEA/D. In contrast, for DTLZ2,
MOEA/D was not significantly better than the memetic
algorithm, and for the case of ZDT4, DTLZ1 and DTLZ3,
MOEA/D+LS was significantly outperformed by MOEA/D.

The poor performance of MOEA/D+LS for these problems
(ZDT4, DTLZ1 and DTLZ3) is attributed to their high
multi-frontality—for a detailed description of these problems
see [30], [5]. The effectiveness of MONSS when dealing with
unimodal optimization problems having low dimensionality
has been shown in [26]. Here, we have designed a local
search mechanism based on the MONSS framework for
dealing with MOPs with higher dimensionality (in decision
variable space). However, when dealing with multi-frontal
MOPs, the convergence of the simplex search considerably
slows down and may even fail.

Regarding theSC performance measure, MOEA/D+LS
obtained better results than those produced by MOEA/D in
the majority of the test problems adopted. This means that
the solutions obtained by MOEA/D+LS dominated a higher
portion of the solutions produced by MOEA/D. However,
MOEA/D was better for ZDT3, ZDT4, ZDT6 and DTLZ2,
although the ratio of solutions dominated by MOEA/D
was not significantly high for DTLZ2. Although theSC

performance measure benefits MOEA/D in ZDT3 and ZDT6,
it is worth noting that our proposed multi-objective memetic
algorithm reached better results regarding theHv perfor-
mance measure in those problems.Hv not only measures the
convergence but also the maximum spread of solutions along
the Pareto front, which is the reason why our MOEA/D+LS
obtained better results regarding this performance measure.
High multi-frontality, however, remains as a limitation ofour
proposed approach. This can be exemplified in ZDT4, in
which our proposed approach was clearly outperformed by
the original MOEA/D with respect to the two performance
measures adopted in our study.

VII. C ONCLUSIONS ANDFUTURE WORK

We have proposed a hybridization of MOEA/D with a
nonlinear simplex search scheme, in which the former acts
as the global search engine, and the latter works as a local
search engine. The local search mechanism is based on the
MONSS framework, which adopts a decomposition approach
similar to the one used in MOEA/D. Therefore, its use could
be easily coupled within other decomposition-based MOEAs,
such as those reported in [16], [14], [27]. Our proposed
multi-objective memetic algorithm (called MOEA/D+LS),
was found to be competitive with respect to the original
MOEA/D over a set of test functions taken from the special-
ized literature, when performing 10,000 and 30,000 fitness
function evaluations, for problems having two and three
objectives, respectively. We consider that the strategy em-
ployed to hybridize the MONSS framework with MOEA/D
was appropriate for dealing with the MOPs adopted here.
However, we also confirmed that multi-frontality continues
to be the Achilles heel of our proposed approach.

As part of our future work, we intend to focus on
designing other mechanism that helps us decide whether
the local search engine will be triggered or not. Regarding
the performance of the nonlinear simplex search scheme,
we plan to experiment with other modifications of this
method—see for example [22], [17], [21]. We also plan to



explore different strategies for constructing the simplex. We
believe that the use of an appropriate simplex and a good
hybridization strategy could be a powerful combination for
solving complex and computationally expensive MOPs (see
for example [28], [9]). Given the nature of the methods
used here (they do not require gradient information), the
use of this hybrid approach could be an efficient alternative
when dealing with some real-world problems for which the
gradient information is not available. Finally, we also aimto
extend our hybrid approach to constrained MOPs using for
example, the Complex method [18] or any variants of the
nonlinear simplex search algorithm.
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