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Abstract—In recent years, the development of multi-objective  tion between the well-known Nondominated Sorting Genetic
evolutionary algorithms (MOEAs) hybridized with mathemati-  Algorithm Il (NSGA-I1) and the nonlinear simplex search. In
cal programming techniques has significantly increased. Ho-  i1is work. the search was directed by an aggregating fumctio
ever, most of these hybrid approaches are gradient-basednd ' . .
tend to require a high number of extra objective function and the S|_mplex was constructgd using a low-discrepancy
evaluations to estimate the gradient information required The ~ Se€quence into a reduced domain search. Zhong et al. [29]
use of direct search methods—i.e., methods that do not req@  hybridized the nonlinear simplex search and the Diffegdnti
gradient information—has been, however, less popular in ta  Eyolution (DE) algorithm. The simplex was constructed se-
specialized literature (although such approaches have bee |acting random solutions from the current population, ahic

used with single-objective evolutionary algorithms). Th paper . :
precisely focuses on the design of a hybrid between the well- VE€ then sorted according to Pareto dominance. At each

known MOEA/D and Nelder and Mead'’s algorithm. Clearly, the  iteration of the local search, a movement into the simplex
mathematical programming technique adopted here, acts as a was performed for generating new nondominated solutions.
local search mechanism, whose goal is to improve the search  zhang et al. [28] proposed the multi-objective evolutignar
performed by MOEA/D. Because of its nature, the proposed algorithm based on Decomposition (MOEA/D) [28]. This

local search mechanism can be easily coupled to any other hd MOP int | sinale-obiecti
decomposition-based MOEA. Our preliminary results indicae approach decomposes a Into several single-objeclive

that this sort of hybridization is quite promising for dealing ~Optimization problems. In this way, a set of approximate
with multi-objective optimization problems (MOPs) having high  solutions to the Pareto optimal set is generated by minngizi
dimensionality (in decision variable space). each subproblem instead of using a selection mechanism
based on Pareto dominance (as the above mentioned hy-
brid algorithms). More recently, Zapotecas and Coello [26]
In spite of the current widespread use of evolutionary alggroposed the Multi-Objective Nonlinear Simplex Search
rithms for solving MOPSs, their computational cost (meadure(MONSS), which adopts a decomposition-based approach
in terms of fithess function evaluations performed) remainsimilar to the one used by MOEA/D. This approach builds a
as one of their main limitations when applied to real-worldimplex using solutions that minimize a set of neighboring
applications [3]. In order to address this issue, a varietyubproblems, and showed the potential of nonlinear simplex
of hybrid approaches have been proposed in the last fesgarch in low-dimensional MOPs.
years, mainly focusing on the use of local search enginesin this paper, we propose a new memetic algorithm based
coupled to different types of MOEAs. Most of these hybricbn both a decomposition approach (we use MOEA/D as
approaches rely on local search engines based on gradient global search engine) and the nonlinear simplex search
information [8], [2], [19], [12]. However, few researchersmethod (which acts as our local search engine). As we
have attempted to hybridize direct search methods (whichill see later on, the solutions obtained by our proposed
do not require gradient information) with a MOEA (see formemetic algorithm outperform those obtained by the origina
example [1], [25]). Regarding Nelder and Mead's algorithntMOEA/D in most of the test problems adopted in our
(also known asonlinear simplex searghwhich is referred experimental study.
to in this work, the following hybrid algorithms have been The remainder of this paper is organized as follows. In
reported in the specialized literature in recent years. Section I, we provide the basic definitions required for
Koduru et al. [10] use the nonlinear simplex search hydanderstanding the rest of the paper. Section Il describes
bridized with a Multi-objective Particle Swarm Optimizerthe proposed memetic algorithm, including a detailed ex-
(MOPSO). In this work, the authors adopted clusteringlanation of the local search mechanism that we propose.
techniques to build the simplex. The nonlinear simplexdear Section IV presents the experimental study used for asggssi
was used as a local search engine for finding nondominatéee performance of our proposed memetic algorithm. In
solutions in the neighborhood defined by the particle to b8ection VI, we provide a brief discussion of our results.
improved. Zapotecas and Coello [24] presented a hybridiz&inally, in Section VII, we provide our conclusions and some

I. INTRODUCTION



possible paths for future research. approaches. It is worth noting, however, that the appraache
based on boundary intersection have certain advantages ove

Il. BAsic CONCEPTS those based on either Tchebycheff or the Weighted Sum [4],

A. Multi-Objective Optimization [28]. In the following, we briefly describe a method based,
An unconstrained Multi-objective Optimization ProblempPrecisely, on the boundary intersection approach, which is
(MOP), can be stated as follows referred to in this work.
. 1) Penalty Boundary Intersection Approactihe Penalty
g {F(x)} ) Boundary Intersection (PBl)approach proposed by Zhang

and Li [28], uses a weighted vecter and a penalty value
# for minimizing both the distance to the utopian vecigr
and the direction error to the weighted vectr from the

where() defines the decision space aRdis defined as the
vector of objective functions:

F:Q—-RF Fx) =(fix),...,frix)T solution F(x). Therefore, the optimization problem can be
_ ) ~ stated as:
where f; : R® — R is a continuous and unconstrained o
function. minimize: g(x|w,z*) = d; + 0ds (2)

In multi-objective optimization, it is desirable to produc here
a set of trade-off solutions representing the best possible T
compromises among the objectives (i.e., solutions such tha dy = I(F(x) —2")" wl|
no objective can be improved without worsening another). [[wl|
In order to describe the concept of optimality in which we and ds = ‘ (F(x) —z*) — dlﬁ”
are interested, the following definitions are introduce®]1
such thatx € Q andz* = (21,...,2)7, such that:z; =
Definition 1. Let x,y € €, we say thatx dominatesy — min{/fi(x)x € Q}. _
(denoted byx < y) if and only if, fi(x) < fi(y) and In this way, a good representation of the Pareto front can
fi(x) < fi(y) in at least onef; for all i = 1, o k. be generated by solving a set of problems defined by a well-
distributed set of weighted vectors. That has been the main

Definition 2. Let x* € , we say thak* is aPareto optimal incentive for the development of current decomposition-
solution, if there is no other solutign e © such thayy < x*. based MOEAs, see for example [28], [16], [14], [27].

C. The Framework of MOEA/D

The Multi-Objective Evolutionary Algorithm Based on
PS = {x € QJx is a Pareto optimal solutign Decomposition (MOEA/D) proposed by Zhang and Li [28],
decomposes a MOP into several scalarization subproblems.
In the following description, we assume that the PBI ap-

Definition 3. The Pareto Optimal SePS is defined by:

Definition 4. The Pareto Optimal FrontPF is defined by:

PF = {F(x)|x € PS} proach is employed, but the use of other scalarization func-
) ) S tion is also possible.
Thus, when solving MOPs, we are interested in findingthe | et 1 = {wy,...,wy} be a set of evenly spread

best possiblgrade-offsamong the objectives, such that noweighted vectors. The problem of approximation of the
objective can be improved without worsening another. Since = of a MOP can be decomposed infé scalarization
the number of Pareto optimal solutions can be very larggupproblems by using the PBI approach and the objective
we are also interested in obtaining a well-distributed det gunction of thej*” subproblem will be defined by(x|w;, ),
solutions, since the size of our approximation (produced byhere w; € RF andz = (z1,...,2,)7 is the artificial

a MOEA) will be normally small. utopian vector whose componentis the best value found
so far for objectivef;.

o ] In MOEA/D, a neighborhood of weighted vectoss;
In the specialized literature, there are several appr@ache qefined as a set of its closest weighted vectors in

for transforming a MOP into multiple single-objective op—{Wl ...,wx}. The neighborhood of thé" subproblem

timization subproblems [6], [13]. These approaches use @nsists of all the subproblems with the weighted vectors
weighted vector as their search direction. In this way, anﬁiom the neighborhood ofv;.

under certain assumptions (e.g., the minimum is unique, the o¢ a5ch generatiort, MOEA/D with the PBI approach

B. Decomposing Multi-Objective Optimization Problems

weighting coefficients are positive, etc.), a Pareto optima, intains: 1) a population oN pointsx;,...,xy € Q
point is achieved by solving such subproblems. Therefare, § 1o x; is the current solution to theé'” subproblem;
approximation of the Pareto optimal front can be achieveg) 1 FVN where FV' is the F-value ofx. . i.e

g ey y 1y Iy

by decomposing a MOP into several single-objective optizy-i _ F(x;) for eachi = 1,...,N; 3) an external pop-
mization problems. Among these methods, perhaps the Wention £ P, which is used to store nondominated solutions
most widely used are th&chebychefand theWeighted Sum

2pased on the well-known Normal Boundary Intersection (NBI)
Iwithout loss of generality, we assume minimization method [4]



found during the search. The general framework of MOEA/[Each vectorx; € S represents a solution for th&”
is presented below. subproblem defined by thé" weighted vectorw; € W.
Input: In this way, different subproblems are simultaneously edlv
« a stopping criterion; and the set of solution§ will represent an approximation
« N: the number of the subproblems considered in MOEA/Dt, the Pareto optimal set lengthwise of the search process.
« a well-distributed set of weighted vectorfsw, ..., wn}; . o . .
« T the number of the weight vectors in the neighborhood OMONSS Identlflgs d!f'ferent solutions glong the Pareto front
each weighted vector. and the search is directed towards different non-overidppe
Output: regions (or partitionsy’;’s from the set of weighted vectors
« EP: the nondominated solutions found during the search; "W, such that, eacli; defines a neighborhood.
« P: the final population found by MOEA/D. The nonlinear simplex search is focused on minimizing
Step 1) Initialization a subproblem defined by a weighted vector which is
Step 1.1)setEP = () randomly chosen front’;. The n-simplex (A) used in the
Step 1.2)Compute the Euclidean distances between any twsearch, is defined as:
weighted vectors and then work out tfe closest weighted

vectors to each weighted vector. For edck 1,..., N, set A = {Xs,X1,...,Xn} (3
B(i1) = {i1,...,1 herew;,,...,w;. are theT closest . L.

ng)ghteél\llécto}?t}&vw. Wiy Wir such that:x, € S is a minimum of g(x,|w,,z*) for the
Step 1.3)Generate an initial populatio® = {xi,...,xy} Vectorws € W.x; € & (j = 1,...,n) represents the

randomly. SetF'V* = F(x;).
Step 1.4)Initialize z = (21...,2,)" by a problem-specific
method.

Step 2) Update

Fori=1,...,N, do
Step 2.1) Reproduction:Randomly select two indexess, [
from B(7), and then generate a new solutigrfrom x; and
x; by using genetic operators.

n solutions that minimize the subproblems defined by the
n closest weighted vectors ofr;, wheren represents the
number of decision variables of the MOP to be solved. In
order to relax the search and to prevent the collapse of the
simplex, the search direction, i.e., the vectar, is changed

for any other directionv, € C;. Since any vectow, from

C; can be chosen, the possibdetion range(A,) of the

Step 2.2) Improvement: Apply a problem-specific re-
pair/improvement heuristic og to producey’.

Step 2.3) Update ofz: For eachy =1, ...k, if z; < f;(x),
then setz; = f;(y’).

Step 2.4) Update of Neighboring SolutionsFor each index
j € B(i), if g(y'|wj,z) < g(x|wj,z), then setx; =y’ and
FVI =F(y)).

Step 2.5) Update of EP: Remove fromE P all the vectors
dominated byF(y’). Add F(y’) to EP if no vectors inEP
dominateF (y’).

search is defined by the cardinality 6f, i.e., A, = |C;].

In order to complete one iteration of the MONSS, the
simplex search needs to iteratet 1 times in each defined
partitionC;. As MONSS definesn = % partitions, at each
iteration,|W| fitness function evaluations are performed. All
of the new solutions found by MONSS are stored in a pool
called “intensification set”X). At the end of each iteration,
the new approximatiors to the Pareto set is updated by

selecting the solutions that minimize each subproblemntake

Step 3) Stopping Criterion: If the stopping criterion is
satisfied, then stop and outpiitP and P. Otherwise, go
to Step 2

For a detailed description of the above outlined framework, I1l. OUR PROPOSEDAPPROACH
the interested reader is referred to [28]. A. General Framework

Our proposed multi-objective memetic algorithm, adopts
_ ) MOEA/D [28] as its baseline algorithm. The local search

Nelder and Mead's algorithm (also known aenlinear  engine is based on the MONSS framework [26], however,
simplex search[15], has been an efficient alternative forin order to couple it to MOEA/D and to improve the search,
dealing with multidimensional and non-differentiable &in some modifications have been introduced. In this way, the
tions. This method, based on the original idea of Spendigjemetic algorithm (denoted as MOEA/D+LS), explores
et al. [20], guides the search towards a minimum value e global search space using MOEA/D, while the local
deforming a geometric shape callsimplex according 10 search mechanism exploits promising regions given by the
the three basic movements described by Nelder and Meagime MOEA/D. Next, we present the general framework of

reflection expansiorand contraction _ MOEA/D+LS and the following section describes in detail
Recently, an extension of the nonlinear simplex search f@he |ocal search mechanism.

multi-objective optimization has been proposed. The Multi
Objective Nonlinear Simplex Search (MONSS) introducethput:
by Zapotecas and Coello [26], decomposes a MOP into . a stopping criterion;
several single-objective scalarization subproblemshSub- « N:the number of subproblems considered in MOEA/D+LS;
problems are defined by a well-distributed set of weighted * @ Well-distributed set of weighted vectorsw, ..., Wi };
- . . « T: the number of weight vectors in the neighborhood of each
vectorsW = {w,...,wy} which was previously defined. weighted vector.
At the beginning, MONSS defines a set &f random

o R;s: the number of solutions which are replaced in the current
solutionsS = {x1,...,xy} having a uniform distribution. population by the local search.

from the unionZ US. For a detailed description of MONSS,
the interested reader is referred to [26].

D. The Multi-Objective Nonlinear Simplex Search



« A,: the action range for the local search.
Output:

« P: the final population found by MOEA/D+LS.
Step 1) Initialization

The degrees of freedom of the local search depend of the
process used for building the simplex, which (as we will
see later on) adopts solutions from the current population.
Considering that at end of the evolutionary process the popu

Step 1.2)Compute the Euclidean distances between any twition converges to a particular region of the search sythee (

weighted vectors and then work out tfie closest weighted
vectors to each weighted vector. For eack 1,..., N, set
B(i) = {i1,...,ir} wherew;,, ..., w;, are theT closest
weighted vectors tawv;.
Step 1.3)Generate an initial populatiof® = {x1,...,xn}
randomly. SetF'V* = F(x;).
Step 1.4)Initialize z = (21...,2,)T by a problem-specific
method.

Step 2) Memetic Algorithm

Step 2.1) MOEA/D iteration: Perform Step 2 of the
MOEA/D framework for obtainingP (the next population).
Step 2.2) Local Search:

If the percentage of nondominated solutionsAris less than
50% then

Step 2.2.1) Selection MechanismSelect a solution
from P as the initial search solutionp{,;) according

to Section III-B1.

Step 2.2.2) Build the Simplex:Build the simplex ac-
cording to Section 11-B2.

Step 2.2.3) Search Direction:Select the search di-

rection for the nonlinear simplex search according to

Section I1I-B3.
Step 2.2.4) Deform the Simplex:Perform any move-

place where the nondominated solutions are contained), the
performance of the local search engine should be better when
the diversity in the population is higher, i.e., when having
low number of nondominated solutions. Thus, in this work,
the local search procedure is applied when the percentage of
nondominated solutions iR is less than a certain percentage
(we used 50% in this paper). In the following sections,
we will detail the local search steps included in the above
description of our proposed MOEA/D+LS.

1) Selection Mechanism:et P* C P be the set of non-
dominated solutions found by MOEA/D in any generation.
Assuming that all the nondominated solutions it are
equally efficient, the solutiorp;,,; which starts the local
search is randomly taken frofi*. Solutionp;,; represents
not only the initial search point, but also the simplex head
from which the simplex will be built.

2) Building the SimplexLet w;,; be the weighted vector
that defines the subproblem for which the initial search
solutionp;,,; is minimum. LetS(w;,;) be the neighborhood
of the n closest weighted vectors tev;,; (where n is

ment (reflection, contraction or expansion) for obtaininghe number of decision variables of the MOPThen, the
Pnew according to Nelder and Mead's algorithm (seesjmplex defined as:

Section I1I-B4).

Step 2.2.5) Update the population:Update the popu-

lation P using the new solutiomp,.., according to the

rules presented in Section IlI-B5.

Step 2.2.6) Stopping Criterion:If the stopping criterion

is satisfied then stop and go &iep 3 Otherwise go to

Step 2.2.1or Step 2.2.3according to the rules detailed
in Section 111-B6.

Else go toStep 3
Step 3) Stopping Criterion: If the stopping criterion is
satisfied, then stop and outpit Otherwise go tdStep 2

B. Local Search

A= {piniapla"'apn}

is built in two different ways by using a probabilitys,
according to the two following strategies:
i. Neighboring solutionsThe remaining: solutionsp; €
P (i =1,...,n) are chosen, such thgb; minimizes
each subproblem defined by each weighted vector
in S(w;,;). This is the same strategy employed for
constructing the simplex used in MONSS [26].
ii. Sample solutionsThe remainingn solutionsp; €
Q (¢ = 1,...,n) are generated by using a low-
discrepancy sequence. The Hammersley sequence [7]

MOEA/D+LS exploits the promising neighborhoods of the is adopted in this work, to generate a well-distributed

nondominated solutions found by MOEA/D. In the following
description, letP be the set of solutions found by MOEA/D
in any generation. We assume that if a solutjpre P is

nondominated, there exists another nondominated solution

q € Q such that||p — q|| < ¢ for any small§ € Ry.
In other words, the probability that is nondominated with
respect top in the neighborhood defined by is equal to
one, which implies thatj is also nondominated.

sampling of solutions in a determined search space.
As in [24], we use a strategy based on the genetic
analysis of a sample from the current population for
reducing the search space. However, here, we compute
the average(m) and standard deviatiofr) of the
chromosomes (solutions) that minimize each subprob-
lem defined by the weighted vectors B(w;,;). In

this way, the new bounds are defined by:

The local search mechanism presented here takes into

account this property to obtain new nondominated solutions Liouna
departing from nondominated solutions allocated in the cur

rent populationP. Considering that MOEA/D tries to solve
a set of subproblems, if all solutions id are nondominated,

= m-—o0
Ubound = m+o

whereLyound andUyg.una are the vectors which define

the lower and upper bounds of the new search space,

we assume that the minimum value for each subproblem has respectively.

been achieved and then, the application of the local search
procedure could be inefficient. Therefore, a good strategy,

needs to be adopted.

Since the dimensionality of the simplex depends of the nundfe
cision variables of the MOP, the population size of the MOfeeds
to be larger than the number of decision variables.



Once the search space has been reduced, thmain- the simplex search. LeB(w;) and W = {wy,...,wy}
ing solutions are generated by means of the Hammepe the neighborhood of th& closest weighted vectors to
sley sequence using as boudds,,q and Uyouna- wop;, and the well-distributed set of all weighted vectors,

In this work, we useP, = 0.3 as the probability that the respectively. We define
construction of the simplex using sample solutions is chose

Otherwise, the construction using neighboring solutias i Q= { B(wop;) i r <_5
employed. w otherwise

.3) Defining the Search DlreptlonLet B(wini) be the wherer is a random number having uniform distribution. In
neighborhood of th& closest weighted vectors to;,,;, such this work. we uses — 0.9

thatw;,,; defines the subproblem for which the initial search The current populationP is updated by replacing at

solution p;,; IS minimum. Let D(w;,;) be the A, closest .
Dini (Wini) ! most R;s solutions from P such that,g(prew|w:, 2) <

weighted vectors tev;,,;.
The nonlinear simplex search focuses on minimizing g(.XZ|W“Z)’ wherew; € @ andx; € P, such thatx;

subproblem defined by the weighted vectes,;, which is m|n|m|ze; thehsu?problirr;_defmed_beyi. ided b laci
defined according to the following rules: Note that the loss of diversity is avoided by replacing
. . ) . a maximum number of solutions fron®, instead of all
i. The farthest weighted vector iB(w;y,;) t0 w;,;, if it

. o : the solutions that minimize the subproblems defined by the
is the first iteration of the local search,

. herwi d iohted ken f complete neighborhoo@, as in MOEA/D. In our study, we
Il ot erwise, a random weig ted vector taken ron%etRlS = 15 as the maximum number of solution to replace.
D(wy;) is employed.

- i . . 6) Stopping Criterion: A maximum number of fitness
Note that (inii) the search is relaxed defining as our actionnction evaluationd;; is adopted as our stopping criterion.

range thed, Weighteq vectors closest ;. The idea of ¢ the nonlinear simplex search overcomes this maximum
relaxing the sear_ch is taken from the MON,SS framework, mper of evaluations, the simplex search is stopped and
However, the neighborhood(w,;) is used instead of & o eyolutionary process of MOEA/D continues by going

partition as in MONSS. In this work, we uset}. = 5. to Step 3 However, the search could be inefficient if the
4) Deforming the SimplexAt each iteration of the local gjmpiex has been deformed so that it has collapsed into

search, then + 1 vertices of the simplexA are sorted 5 (egion where there are no local minima. According to
a“:CF’“?"”g to their value f_or the .subproblem that 'F tries t(P_agarias et al. [11] the simplex search finds a better salutio
minimize (the best value is the first element). In this way, #h at mostn + 1 iterations (at least in convex functions
movement into the simplex is performed for generating thgiih 10w dimensionality). Thus, we take into account this

new solutionpy,,,. The movements are calculated according,seration and adopt a stopping criterion for reconsitrgct

to the equations provided by Nelder and Mead in [15]. Eacfye simplex using another nondominated solution frBras

movement is controlled by three scalar parameters: reftecti gjmpjex head. Therefore, if the simplex search does not find

(@), expansion §) and contraction). a minimum value i + 1 iterations, we reset the search by
The simplex search was conceived for unbounded profging toStep 2.2.1 Otherwise, we perform other movement

lems. When dealing with bounded variables, the creatgfl, the simplex using a new search direction, i.e., by going
solutions can be located outside the allowable bounds aﬁFJStep 223

some movements of the simplex search. In order to deal with
this, we bias the new solution if any componenpof.,, lies

outside the bounds according to: IV. EXPERIMENTAL RESULTS

L) a0 Pl < L) A. Test Problems
pngw B Ul(’?und o pggw > Uz(,f;Lnd (4) In order to assess the performance of our proposed

pgi]e)w . otherwise. memetic al_gorithm, we compare its results with respect to
those obtained by the original MOEA/D [28]. We adopted
whereL) andU{)  are the lower and upper boundstwelve test problems whose Pareto fronts have different
of the j** parameter ob,...,, respectively. characteristics including convexity, concavity, disceations
5) Updating the PopulationThe information provided by and multi-modality. The two-objective test suite of Zitzle
the local search engine is introduced to MOEA/D using &eb-Thiele (ZDT) [30] (except for ZDT5, which is a binary
Lamarckian evolution scheme [23]. However, since we argroblem) is adopted. Regarding three-objective problevas,
dealing with MOPs, the new solution generated by the loc&dopted the seven unconstrained MOPs from the Deb-Thiele-
search procedure could be better than more than one solutichiumanns-Zitzler (DTLZ) test suite [5].
in the current population. For this, we adopt the following We used 30 decision variables for ZDT1 to ZTD3, while
mechanism in which some solutions from the populatiodDT4 and ZDT6 were tested using 10 decision variables.
could be replaced: DTLZ1 was tested using 7 decision variables. For DTLZ2 to
Let P be the current population reported by the MOEADTLZ6, we employed 12 decision variables, while DTLZ7
Let p.cw b€ the solution generated by any movement ofvas tested using 22 decision variables.



TABLE |
B. Performance Measures RESULTS OFHv FORMOEA/D+LSAND MOEA/D

The following performance measures are used to assess

: ; MOEA/D+LS | MOEA/D
the pgnformance of our proposed memetlc algorithm and MOP average average ] reference vector
the original MOEA/D (i.e., the one without the local search (o) (o)
mechanism) on the test problems adopted: 2DT1 0.819246 0.751315 L1117
(0.038088) | (0.033339) (1.1,1.1)
Hypervolume The Hypervolume ¥{v) measure was pro- ZDT2 (8??‘1‘2?3) (%éggg) (1.1,1.1)T
posed by Zitzler [31]. This performance measure is Pareto — 0.995692 0.990212 LT
compliant [32], and quantifies both approximation and max- (0.158499) | (0.089499) o
imum spread of nondominated solutions along the Pareto | zpT4 (8';‘;222;) (8'%23;;) (1.1, 1.1)7T
front. The hypervolume corresponds to the non-overlapped 0467559 | 0.425904
. ZDT6 ) : (1.1, 10T
volume of all the hypercubes formed by a reference point (0.050484) | (0.010630) ’
r (given by the user) and each solutipnin the Pareto set DTLZ1 (8-8361588‘1‘) (g-géggg% (0.7,0.7,0.7)T
approximation PFy). It is mathematically stated as: 0768601 | 0.768696
DTLZ2 : : (.1,1.1,1.)7T
(0.000466) | (0.000644) rhh
0.221197 0.383622 T
Ho(PFy) =A | ) {xlp<x=<r1} (5) DTLZ3 | (0.282045) | (0.245603)| (1'11-1,11)
0.768966 0.768935
€PF T
pETTE DTLZ4 | ©'000664) | (0.000645)| (1-1:1.1,1.1)
whereA denotes the Lebesgue measure ardR* denotes DTLZS (8-6%8?2;) (8-61(2)82%2) (1.1, 1.1,1.0)T
a reference vector being dominated by all valid candidate 0426345 0000278
; ; DTLZ6 ’ : (1.1,1.1,1.)T
solutions inPFy,. (0.000714) | (0.001226) P
1.922224 1.916040 T
DTLZ7 | 0'012057) | (0.016969)| (1-1:1-1,6:1)

Two Set Coveragdhe two Set Coverage&S() was proposed
by Zitzler et al. [30], and it compares a set of nondominated
solutions A with respect to another seB, using Pareto
dominance. This performance measure is defined as:

TABLE Il
RESULTS OFSC FORMOEA/D+LSAND MOEA/D

|{b c B|E| c A = b}l SC(MOEA/D+LS, SC(MOEA/D,

- a an MOEA/D) MOEA/D+LS)

SC(A,B) = ) (6) MOP —rerage | average
(0) (0)

If all points in A dominate or are equal to all points in J— 0.893657 | 0.004889
B, this implies thatSC(A, B) = 1. Otherwise, if no point (0.122230) | (0.011666)
of A dominates some point iB, thenSC(A, B) = 0. When ZDT2 (8:‘1‘23222) (8:88%%3)
SC(A,B) = 1 and SC(B,A) = 0 then, we say thatd sb73 | 0-667901 | 0.690476
is better thanB. Since the Pareto dominance relation is (0.021117) | (0.093046)

; 0.000000 | 1.000000

not symmetric, we need to calculate bafi€ (A, B) and ZDT4 | 57000000) | (0.000000)
SC(B, A). 2076 0.170720 | 0.867949
(0.028694) | (0.036735)

V. PARAMETERS SETTINGS DTLz1 | 0-155326 | 0.126444

- 0.165805) | (0.093361

_As indicated before, we compared our proposed approach A—— (0_120572) (0.150281)
with respect to MOEA/D (using the PBI approach). For a (0.028892) | (0.031948)
fair comparison, the set of weighted vectors was the same for DTLZ3 8-;‘732;2‘5‘ 8-%%%32
both algorithms, and they were generated in the same way as (0:178360) (0:077111)
in [28]. For each MOP, 30 independent runs were performed DTLZ4 (0.033641) | (0.019450)
with each algorithm. The parameters for both algorithms are DTLzs | 0-033682 | 0.031905
summarized in Table Ill, wheréV represents the number (2'83(2)33(5)) (8'883883)
of initial solutions (100 for bi-objective problems and 300 DTLZ6 | 7:000000) | (0.000000)
for three-objective problems)y;; represents the maximum DTLz7 | 0122837 | 0.108987
number of iterations, which was set to 100 for all test (0.021196) | (0.016292)

problems. Therefore, both algorithms performed 10,000 (fo

the bi-objective problems) and 30,000 (for the three-dbjec

problems) fitness function evaluations for each problem. Fonutation index (for Polynomial-Based Mutation (PBM)),
MOEA/D+LS, «, 3 and ~ represent the control parameterscrossover rate and mutation rate, respectively, R;; and

for the reflection, expansion and contraction movements @f;; represent the action range, the number of solutions to
the nonlinear simplex search, respectively. The parametdre replaced and the maximum number of fitness function
T, me,nm, P. and P, represent the neighborhood sizeevaluations employed by the local search, respectively.
crossover index (for Simulated Binary Crossover (SBX)), Finally, the parametet, represents the penalty value used



in the PBI approach for both MOEA/D+LS and MOEA/D. The poor performance of MOEA/D+LS for these problems
(ZDT4, DTLZ1 and DTLZ3) is attributed to their high
multi-frontality—for a detailed description of these pleins
see [30], [5]. The effectiveness of MONSS when dealing with

TABLE Il
PARAMETERS FORMOEA/D+LSAND MOEA/D

[Parameter] MOEA/D+LS | MOEA/D | unimodal optimization problems having low dimensionality
N 100/300 100/300 has been shown in [26]. Here, we have designed a local
N; 100 100 search mechanism based on the MONSS framework for
Tn 28 28 dealing with MOPs with higher dimensionality (in decision
:m 50 50 variable space). However, when dealing with multi-frontal
P 1 1 MOPs, the convergence of the simplex search considerably
P, L/n 1/n slows down and may even fail.

g % — Regarding theSC performance measure, MOEA/D+LS
~ 12 = obtained better results than those produced by MOEA/D in
A, 5 - the majority of the test problems adopted. This means that
gls 31050 - the solutions obtained by MOEA/D+LS dominated a higher
és 5 ; portion of the solutions produced by MOEA/D. However,

MOEA/D was better for ZDT3, ZDT4, ZDT6 and DTLZ2,

. . although the ratio of solutions dominated by MOEA/D
i For e?ch MOP, the algorithms \_/verel e\éaluat%d using trWas not significantly high for DTLZ2. Although th&C

WO performance measures previously describeiyper- performance measure benefits MOEA/D in ZDT3 and ZDT6,

volume a_md T.WO Set Coverage The results o-btamed are it is worth noting that our proposed multi-objective meroeti
summarized in Tables | and Il. These tables display both tr};l

o efgorithm reached better results regarding fiie perfor-
average and the standard deviation)(of each performance mance measure in those problerhs: not only measures the

. h ¢ h s bl %’nvergence but also the maximum spread of solutions along
_||3_lrj]t|ng t ez-{v per orn:akr)wlgeh rr:jeeatlsuretarte;s_o;\_/n_(;n ':'a ‘e I‘rhe Pareto front, which is the reason why our MOEA/D+LS
ese veclors are established close 10 the individual naniny, ;e petter results regarding this performance measur

for each MOP, i.e., close to the extremes of the Pareto Obtln"l-afgh multi-frontality, however, remains as a limitation adr
front. With that, a good measure of approximation and spre oposed approach. This can be exemplified in ZDT4, in

Shich our proposed approach was clearly outperformed by
the original MOEA/D with respect to the two performance
gheasures adopted in our study.

front. In the case of the statistics for tl& performance
measure comparing pairs of algorithms—S€.(A, B), they

were obtained as average values of the comparison of
the independent runs from the first algorithm with respect VIl. CONCLUSIONS ANDFUTURE WORK

to all the independent runs from the second algorithm. For We have proposed a hybridization of MOEA/D with a
an easier interpretation, the best results are presentedninlinear simplex search scheme, in which the former acts
boldface for each performance measure and test probless the global search engine, and the latter works as a local
adopted. search engine. The local search mechanism is based on the
MONSS framework, which adopts a decomposition approach
similar to the one used in MOEA/D. Therefore, its use could

As indicated before, the results obtained by our probe easily coupled within other decomposition-based MOEAs,
posed memetic algorithm (i.e., MOEA/D+LS) were comsuch as those reported in [16], [14], [27]. Our proposed
pared against those produced by the original MOEA/D.  multi-objective memetic algorithm (called MOEA/D+LS),

According to the results presented in Tables | and Ikwas found to be competitive with respect to the original
MOEA/D+LS had a better performance than MOEA/D inMOEA/D over a set of test functions taken from the special-
most of the MOPs adopted. These tables provide a quantiiaed literature, when performing 10,000 and 30,000 fitness
tive assessment of the performance of MOEA/D+LS in termi&inction evaluations, for problems having two and three
of the Hv and SC indicators. That means that the solutionsobjectives, respectively. We consider that the strategy em
obtained by MOEA/D+LS achieved a better approximatioployed to hybridize the MONSS framework with MOEA/D
of the Pareto optimal front than those solutions obtained hbyas appropriate for dealing with the MOPs adopted here.
MOEA/D when a low number of fithess function evaluationdHowever, we also confirmed that multi-frontality continues
was adopted. to be the Achilles heel of our proposed approach.

However, for ZDT4, DTLZ1, DTLZ2 and DTLZ3, the As part of our future work, we intend to focus on
‘Hv indicator showed that the local search did not improvdesigning other mechanism that helps us decide whether
the performance of MOEA/D. In contrast, for DTLZ2,the local search engine will be triggered or not. Regarding
MOEA/D was not significantly better than the memetidhe performance of the nonlinear simplex search scheme,
algorithm, and for the case of ZDT4, DTLZ1 and DTLZ3,we plan to experiment with other modifications of this
MOEA/D+LS was significantly outperformed by MOEA/D. method—see for example [22], [17], [21]. We also plan to

VI. DISCUSSION OFRESULTS



explore different strategies for constructing the simpléafe
believe that the use of an appropriate simplex and a good
hybridization strategy could be a powerful combination f0f15]
solving complex and computationally expensive MOPs (see
for example [28], [9]). Given the nature of the methods!él
used here (they do not require gradient information), the
use of this hybrid approach could be an efficient alternative
when dealing with some real-world problems for which thél7]

gradient information is not available. Finally, we also ain

extend our hybrid approach to constrained MOPs using for
example, the Complex method [18] or any variants of th88l

nonlinear simplex search algorithm.
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