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Abstract—In spite of the popularity of the Multi-objective
Evolutionary Algorithm based on Decomposition (MOEA/D),
its use in Constrained Multi-objective Optimization Problems
(CMOPs) has not been fully explored. In the last few years, there
have been a few proposals to extend MOEA/D to the solution
of CMOPs. However, most of these proposals have adopted
selection mechanisms based on penalty functions. In this paper,
we present a novel selection mechanism based on the well-known
ε-constraint method. The proposed approach uses information
related to the neighborhood adopted in MOEA/D in order to
obtain solutions which minimize the objective functions within
the allowed feasible region. Our preliminary results indicate that
our approach is highly competitive with respect to a state-of-the-
art MOEA which solves in an efficient way the constrained test
problems adopted in our comparative study.

I. INTRODUCTION

Multi-objective Evolutionary Algorithms (MOEAs) have
been successfully applied to the solution of a wide variety
of problems in the fields of science and engineering [1],
[2]. Although MOEAs were originally designed for solving
unconstrained and box-constrained multi-objective optimiza-
tion problems, in real-world applications, there are several
problems which require satisfying equality and/or inequal-
ity constraints. Generally, Constrained Multi-objective Opti-
mization Problems (CMOPs) are difficult to solve, because
finding feasible solutions may require substantial additional
computational resources (i.e., an important number of extra
objective function evaluations). One of the major issues for
constrained multi-objective optimization is how to deal with
the infeasible solutions produced during the search process.
A straightforward way to handle infeasible solutions is to
completely disregard them and continue the search process
only with the feasible individuals generated by our search
engine. However, this sort of mechanism is not appropriate
in highly constrained search spaces. Additionally, this sort
of scheme does not exploit any information contained in
the infeasible solutions that are generated during the search,
which significantly increases the computational cost of the
optimization process.

In recent years, the Multi-objective Evolutionary Algorithm
based on Decomposition (MOEA/D) [3] has shown to be
an efficient algorithm to deal with complex Multi-objective
Optimization Problems (MOPs) [3], [4], [5]. However, the use
of MOEA/D for solving CMOPs has been scarcely reported in
the specialized literature. Pal et al. [6] employed a constraint
handling mechanism based on the superiority of the feasible
solutions for the optimal synthesis of linear antennas in a
multi-objective context. This approach was initially introduced
by Powell and Skolnick [7] for single-objective optimization.
Jan and Zhang [8] proposed a version of MOEA/D based on a
penalty function, which uses a threshold to control the amount
of penalization to be applied to the infeasible solutions. The
authors of this approach reported very promising results in
several CMOPs with complicated Pareto sets. Konstantinidis
and Yang [9] proposed a constraint-handling approach that
adopted MOEA/D and an M-tournament selection as its search
engine. This approach was used to solve a multi-objective k-
connected deployment and power assignment problem. Re-
cently, Asafuddoula et al. [10] proposed an adaptive constraint-
handling scheme which was coupled to MOEA/D. In this
approach, a gradient local search engine was adopted in
order to repair the infeasible solutions produced during the
search process. This approach was validated using benchmark
CMOPs and a real-world problem.

In this paper, we present a novel selection mechanism
based on the well-known ε-constraint method [11], which was
initially proposed to deal with constrained single-objective op-
timization problems. The ε-constraint method has shown to be
highly competitive when incorporated to different Evolution-
ary Algorithms (EAs) [11], [12], [13]. Our proposed approach
adopts as its baseline algorithm the well-known MOEA/D with
Differential Evolution (DE) [14] (MOEA/D-DE) [5] which is
a popular variant of the original MOEA/D [3]. In our proposed
approach, the information related to the neighboring solutions
is employed in order to obtain solutions which minimize the
objective functions within the feasible region. Furthermore,
we present a novel ε level comparison procedure in order



to balance between the generation of feasible solutions and
speeding up convergence towards the Pareto optimal front.
Our preliminary results indicate that our proposed approach
is highly competitive when it is compared with respect to a
state-of-the-art MOEA which solves in an efficient way the
test problems adopted in our comparative study.

The remainder of this paper is organized as follows. In
Section II, we provide the basic concepts required for un-
derstanding the rest of the paper. Section III describes our
proposed approach, including a detailed explanation of the
proposed ε level comparison and its use in order to maintain
a suitable balance between feasible solutions and convergence
towards the Pareto optimal front. Section IV presents the
experimental study used for assessing the performance of our
proposed algorithm. In Section V, we provide a discussion of
our results. Finally, in Section VI, we provide our conclusions
and some possible paths for future research.

II. BASIC CONCEPTS

A. Constrained Multi-objective Optimization Problems

A nonlinear Constrained Multi-objective Optimization Prob-
lem (CMOP) can be stated as (assuming minimization of all
the objective functions):

min F(x) = (f1(x), . . . , fk(x))T

s.t. gi(x) ≤ 0, i = 1, . . . , p
hj(x) = 0, j = 1, . . . , q
Ll ≤ xl ≤ Ul, l = 1, . . . , n

(1)

where x = (x1, . . . , xn)T ∈ Rn is an n dimensional vector
of decision variables, gi(x) ≤ 0 and hj(x) = 0 represent
the p inequality constraints and the q equality constraints,
respectively. Ll and Ul are the lower and upper bounds of
each of the decision variables xl. The vector F consists of
k objective functions fj’s (j = 1, . . . , k) to be minimized.
The set of solutions that satisfy the constraints of problem (1)
defines the feasible region Ω ⊆ Rn.

In order to describe the concept of optimality in which we
are interested on, the following definitions are introduced [15]:

Definition 1. Let x,y ∈ Ω, we say that x dominates y
(denoted by x ≺ y) if and only if, fj(x) ≤ fj(y) and
fj(x) < fj(y) in at least one fj for all j = 1, . . . , k.

Definition 2. Let x? ∈ Ω, we say that x? is a Pareto optimal
solution, if there is no other solution y ∈ Ω such that y ≺ x?.

Definition 3. The Pareto optimal set PS is defined by:
PS = {x ∈ Ω|x is Pareto optimal solution}, and the Pareto
optimal front PF is defined as: PF = {F(x)|x ∈ PS}.

We thus wish to find the best possible trade-offs among the
objectives, such that no objective can be improved without
worsening another one. However, in this case, our solutions
must also satisfy the constraints of problem (1). We are
also interested in generating a set of solutions that are well-
distributed along the Pareto front.

B. Decomposition of a Multi-objective Optimization Problem

It is well-known that a Pareto optimal solution to the
problem (1), under certain conditions, could be an optimal
solution of a scalar optimization problem in which the
objective is an aggregation of all the objective functions fi’s.
Many scalar approaches have been proposed to aggregate
the objectives of an MOP. Among them, the Tchebycheff
approach is one of most widely used methods reported in
the specialized literature. In the following, we describe the
Tchebycheff problem which is adopted in this study. Note
however, that other scalarization approaches could also be
easily coupled to this work, see for example those presented
in [16], [15], [17].

Tchebycheff approach: This approach transforms the vector
of function values F into a scalar optimization problem which
is of the form:

min gte(x|w, z) = max1≤j≤k{wj |fj(x)− zj |}
s.t. x ∈ Ω

(2)

where Ω is the feasible region, z = (z1, . . . , zk)T , such that:
zj = min{fj(x)|x ∈ Ω} and w = (w1, . . . , wk)T is a weight
vector, i.e.,

∑k
j=1 wj = 1 and wj ≥ 0 for each j ∈ {1, . . . , k}.

For each Pareto optimal point x? there exists a weight
vector w such that x? is the optimum solution of equation (2)
and each optimal solution of equation (2) is a Pareto optimal
solution of equation (1). An appropriate representation of the
Pareto front could be reached by solving different scalarization
problems. Such problems can be defined by a set of well-
distributed weight vectors, which establish the search direction
in the optimization process.

C. Constraint Violation Degree

The overall constraint violation φ(x) of a solution x can
be given by the maximum of all constraints or the sum of all
constraints:

φ(x) = max{max
i
{0, gi(x)},max

j
{|hj(x)|}} (3)

φ(x) =
∑
i

||max{0, gi(x)}||α +
∑
j

||hj(x)||α (4)

where α is a positive number. Equality constraints can be
transformed into inequality constraints by using [18]:

|hj(x)− ε| ≤ 0, j = 1, . . . , q (5)

where ε is a small real-value threshold.
For methods that do not require gradient information, it does

not matter if equation (5) is non-differentiable. Therefore, a
CMOP with equality constraints can be stated as a CMOP
having only inequality constraints. Assuming that all con-
straints of problem (1) are inequality constraints, the constraint
violation in equations (3) and (4) can be computed as:
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A) φ1, φ2 ≤ ε B) φ1 = φ2 C) φ1 < φ2

Fig. 1. Illustration of the ε level comparison between (f1, φ1) and (f2, φ2). In Figures A, B and C, solutions in red are preferred based on the ε level
comparison (f1, φ1) <ε (f2, φ2). Figure A shows that when φ1, φ2 ≤ ε, solutions such that f1 < f2, are preferred even when φ2 < φ1. Figure B shows
that when φ1 = φ2, solutions such that f1 < f2, are preferred even when φ1, φ2 > ε. Figure C shows that when φ1 < φ2, solutions with a lower φ value
are preferred even when f1 > f2 and the difference between φ1 and φ2 is meaningless, being, in some cases, close to the ε level.

φ(x) = max
1≤i≤p

{0, gi(x)} (6)

φ(x) =

p∑
i=1

||max{0, gi(x)}||α (7)

Thus, we can say that, without loss of generality, in this
paper we consider only constraint functions of the form
g(x) ≤ 0. Any equality constraint h(x) = 0 can be trans-
formed into an inequality constraint using equation (5).

D. The ε-Constraint Method

The ε-constraint method for single-objective optimization
was proposed by Takahama and Sakai [12]. This constraint-
handling technique adopts a lexicographic ordering with re-
laxation of the constraints. The basic idea is to define an ε
level comparison in order to state an order relation on pairs
consisting of the objective function value and the constraint
violation value of a solution (f(x), φ(x)). If the violation of
a constraint is greater than 0, then the solution is not feasible
and its fitness value will be low. Since the feasibility of a
solution x is more important than the minimization of the
objective function f(x), the ε level comparisons are defined
as a lexicographic order in which φ(x) precedes f(x).

Let f1(f2) and φ1(φ2) be the function values and the
constraint violation at a solution x1(x2), respectively. Then,
for any ε satisfying ε ≥ 0, the ε level comparison <ε and ≤ε
between (f1, φ1) and (f2, φ2) is defined as follows:

(f1, φ1) <ε (f2, φ2)⇔


f1 < f2, if φ1, φ2 ≤ ε
f1 < f2, if φ1 = φ2

φ1 < φ2, otherwise
(8)

(f1, φ1) ≤ε (f2, φ2)⇔


f1 ≤ f2, if φ1, φ2 ≤ ε
f1 ≤ f2, if φ1 = φ2

φ1 < φ2, otherwise
(9)

In case of ε = ∞, the ε level comparison <∞ and ≤∞
are equivalent to the ordinal comparison < and ≤ between
function values. Furthermore, the cases ε = 0, <0 and
≤0 are equivalent to the lexicographic order in which the
constraint violation φ(x) precedes the function value f(x).

Fig. 1 illustrates the behavior of the ε level comparison in
different scenarios.

E. The Framework of MOEA/D-DE

The Multi-Objective Evolutionary Algorithm Based on De-
composition with Differential Evolution (DE) [14] operators
(MOEA/D-DE) [5], transforms a MOP into several scalariza-
tion problems. Therefore, an approximation of the Pareto front
is obtained by solving the N scalarization subproblems in
which a MOP is decomposed.

Considering W = {w1, . . . ,wN} as the well-distributed
set of weight vectors, MOEA/D-DE finds the best solution
to each subproblem defined by each weight vector using
the Tchebycheff approach. The objective function of the ith

subproblem is then defined by g(x|wi, z), where wi ∈ W
and z = (z1, . . . , zk)T is the artificial utopian vector whose
component zj is the minimum value found so far for the
objective fj , for each j ∈ {1, . . . , k}. In MOEA/D-DE, a
neighborhood of the weight vector wi is defined as a set of
its closest weight vectors in W (in terms of the Euclidean
distance). The indexes set of its neighboring weight vectors
from wi is denoted by B(wi).

At each generation, MOEA/D-DE finds the best solution
to each subproblem throughout the evolutionary process and
maintains:

1) a population of N points P = {x1, . . . ,xN}, where xi

is the current solution to the ith subproblem;
2) F 1, . . . , FN , where F i is the F -value of xi, i.e., F i =

F(xi) for each i = 1, . . . , N ;
Algorithm 1 presents the general framework of MOEA/D-

DE. However, for a more detailed description the interested
reader is referred to [5].

In line 10 of Algorithm 1, each component yj in y =
(y1, . . . , yn)T is generated by using the DE operator, that is:

yj =

{
xr1j + F × (xr2j − xr3j ), if rand() < CR

xr1j , otherwise
(10)

for each j = 1, . . . , n.
After the DE operator is applied, Polynomial-based Mu-

tation (PBM) [19] is performed on y. rand() in line 8 of



Algorithm 1 and equation (10) denotes a random number
having uniform distribution in the range (0, 1].

Algorithm 1: General Framework of MOEA/D-DE
Input:
a stopping criterion;
N : the number of the subproblems considered in MOEA/D-DE;
W : a set of weight vectors {w1, . . . ,wN};
T : the number of weight vectors in the neighborhood of each
weight vector;
δ: the probability that parent solutions are selected from the
neighborhood B(wi);
nr: a maximum number of replacements in the neighborhood;
Output:
P : the final population found by MOEA/D-DE.

1 Initialize a random population P = {x1, . . . ,xN};
2 F i = F(xi);
3 B(wi) = {i1, . . . , iT } such that: wi1 , . . . ,wiT are the T

closest weight vectors to wi, for each i = 1, . . . , N ;
4 z = (+∞, . . . ,+∞)T ;
5 while stopping criterion is not satisfied do
6 foreach i ∈ {1, . . . , N} do

7 Bi
s =

{
B(wi), if rand() < δ

{1, . . . , N}, otherwise
;

8 Set r1 = i and randomly select two indexes r2, r3
from Bs such that: r1 6= r2 6= r3;

9 Generate a trial solution y from xr1,xr2 and xr3 by
using Differential Evolution (DE) operator, and
perform mutation operator on y;

10 Calculate F(y);

11 zj =

{
fj(y), if fj(y) < zj
zj , otherwise

, j ∈ {1, . . . , k};

12 c = 0;
13 foreach l ∈ Bi

s do
14 if gte(y|wl, z) < gte(xl|wl, z) and c < nr then
15 xl = y;
16 F l = F(y);
17 c = c+ 1;
18 end
19 end
20 end
21 end

III. OUR PROPOSED APPROACH

As indicated before, the proposed ε Multi-objective Evolu-
tionary Algorithm based on Decomposition (eMOEA/D) for
constrained multi-objective optimization is based on the ε-
constraint method [12]. In order to deal with complicated
Pareto sets, we adopt as baseline algorithm, the well-known
MOEA/D-DE proposed by Li and Zhang [5]. However, the
selection mechanism that we propose here, can also be used
in other decomposition-based MOEAs, such as those proposed
in [20], [4], [21]. Our proposed eMOEA/D-DE employs infor-
mation related to the neighborhood of different subproblems
used by MOEA/D-DE.

In the following description we assume that W =
{w1, . . . ,wN} is a set of well-distributed weight vectors.
Along the search, eMOEA/D-DE finds the best solution to

each subproblem defined by the Tchebycheff approach using
each weight vector in W . In this way, the objective function
of the ith subproblem is then defined by g(x|wi, z), where
wi ∈W and z = (z1, . . . , zk)T is the artificial utopian vector
whose component zj is the minimum value found so far for
the objective fj , for each j ∈ {1, . . . , k}. eMOEA/D-DE uses
a neighborhood of the weight vector wi, which is defined
as a set of its closest weight vectors in W (in terms of the
Euclidean distance). The indexes set of its neighboring weight
vectors from wi is denoted by B(wi).

At each generation, eMOEA/D-DE finds the best solution
to each subproblem according to the decomposition approach
and the proposed ε level comparison. Throughout the search,
eMOEA/D-DE maintains:

1) a population of N points P = {x1, . . . ,xN}, where xi

is the current solution to the ith subproblem;
2) F 1, . . . , FN , where F i is the F -value of xi, i.e., F i =

F(xi) for each i = 1, . . . , N ;

In order to understand the way in which our proposed
approach works, Algorithm 2 presents the general framework
of eMOEA/D-DE, and its internal procedures are explained in
more detail in the next subsections.

In Algorithm 2, the trial solution is generated by using the
DE operator as in equation (10); we also adopted Polynomial-
based Mutation (PBM) [19] in our proposed approach.

A. Our proposed constraint-handling scheme

1) Normalized Constraint Violation Degree: In order to
measure an adequate constraint violation between two solu-
tions, we use the normalized constraint violation degree. In the
following description, we assume that the constraint violation
degree of a solution x is computed using equation (7).

Let Bis be the indexes set for the ith subproblem to be
minimized by eMOEA/D-DE (see line 7 of Algorithm 2).
Assuming p inequality constraints of the form gj ≤ 0
(j = 1, . . . , p), the normalized constraint violation of any
solution x can be computed as:

φN (x) =

p∑
j=1

∣∣∣∣∣∣∣∣max

{
0,
gj(x)

gjmax

}∣∣∣∣∣∣∣∣α (11)

where α is a positive number (in this work, α = 1) and gjmax
is the maximum violation value for the jth constraint in the
set of solutions associated with the indexes in Bis. To be more
precise, gjmax can be calculated by:

gjmax = max
l∈Bi

s

{0, gj(xl)}, j = 1, . . . , p (12)

Note however that if gjmax = 0, all the solutions xl’s (for all
l ∈ Bis) are feasible for the jth constraint and equation (11)
cannot be computed. For this case, we set gjmax = 1, thus
penalizing the normalized constraint value φN (x) if solution
x is not feasible for the jth constraint.
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Fig. 2. Illustration of the “ε level comparison drift”. The values φ1 and φ2 do
not satisfy the first two rules of the ε level comparison (see equations (8) and
(9)). Therefore, according to the third rule, a solution having a lower value for
φ is preferred. In this case, solution x1 is preferred sacrificing convergence
to a minimum value of the objective function f , even when solution x2 is
close to obtaining a φ2 value lower than both φ1 and ε.

2) Defining the ε value: The ε value is defined by:

ε = φN,min + τ × (φN,max − φN,min) (13)

where φN,min and φN,max are the minimum and the maximum
value given by the normalized constraint violation of xl, for
each l ∈ Bis. To be more precise:

φN,max = maxl∈Bi
s
{φN (xl)}

φN,min = minl∈Bi
s
{φN (xl)} (14)

τ represents a parameter given by the user, which tries to
balance the generation of feasible solutions with the minimiza-
tion of each subproblem defined by eMOEA/D-DE.

The value of τ should be given in the range [0, 1]. If τ = 0,
the search is driven towards the generation of solutions with
a normalized constraint value lower than φN,min. If τ = 1,
the search is driven towards the generation of solutions with a
lower cost for each subproblem, instead of preferring to satisfy
the constraints of the problem.

3) Our proposed ε-constraint method for MOEA/D: Let
x1 and x2 be two pairs of solutions with their correspond-
ing f1(f2) and φ1(φ2) values. According to the original ε-
constraint method [12] (see Section II-D), if φ1, φ2 ≤ ε the
solution that minimizes function f is preferred regardless of
its corresponding constraint violation value φ. If φ1 = φ2, then
the solution that minimizes function f is also preferred. For
the third rule (see equations (8) and (9)), solutions with lower
constraint violation value φ are preferred regardless of their
corresponding function values f , i.e., if φ1 < φ2, solution x1

is preferred even when f2 < f1, see Fig. 1 C). In this case, it
can be that the two solutions have similar φ1 and φ2 values,
and they could satisfy φ2 ≤ φ1 in a further stage of the search.
However, according to the third rule, solution x2 should be
ignored, sacrificing convergence to the solution corresponding
to the minimum for objective function f . We call this problem
“the ε level comparison drift” and we illustrate it in Fig. 2. In
order to deal with this drawback of the ε-constraint method,
we propose here the introduction of a new rule to be coupled
to the ε-constraint method.

Let y and xl be the new solution generated by MOEA/D-
DE and the candidate solution to be replaced in eMOEA/D-DE
(see Algorithm 2), respectively.

Let gte1 (gte2 ) and φ1N (φ2N ) be the function values given by
the Tchebycheff aggregation function (equation (2)) and the
normalized constraint violation at the solution y(x), respec-
tively. Then, for any ε satisfying ε ≥ 0, the modified ε level
comparison ≤ε between (gte1 , φ

1
N ) and (gte2 , φ

2
N ) is defined as

follows:

(gte1 , φ
1
N ) ≤ε (gte2 , φ

2
N )⇔


gte1 ≤ gte2 , if φ1N , φ

2
N ≤ ε

gte1 ≤ gte2 , if φ1N = φ2N
gte1 ≤ gte2 , if δe < Re

φ1N < φ2N , otherwise

(15)

where Re represents the ratio of solutions xl’s (l ∈ Bis) for
which, its corresponding φN (xl) is less than the ε value.

With this, we provide a mechanism for dealing with the ε
constraint comparison drift. In other words, since the ratio of
solutions xl’s (l ∈ Bis) for which, its corresponding φN (xl)
is less than the ε, and it is greater than δe (i.e. δe < Re), we
prefer to sacrifice feasibility instead of convergence. Therefore,
the δe value needs to be properly adjusted.

This set of rules gives rise to the selection mechanism used
in the proposed eMOEA/D-DE, i.e., a solution xl (l ∈ Bis) is
replaced by the new solution y, if and only if,

(gte(y|wl, z), φN (y)) ≤ε (gte(xl|wl, z), φN (xl)) (16)

which is computed by equation (15).

IV. EXPERIMENTAL RESULTS

A. Test Problems
In order to assess the performance of our proposed

eMOEA/D-DE, we compare its results with respect to those
obtained by the proposal presented by Jan and Zhang in [8],
which we call cMOEA/D-DE. In our comparative study,
we adopt the ten CMOPs with complicated Pareto optimal
sets proposed by Zhang et al. [22], which constitute the
well-known CEC’2009 constrained test suite. In this work,
we will denote these problems as CF1 to CF10, respectively.
Due to space limitations, the description of these problems
is omitted. However, the interested reader is referred to [22]
for details of such problems. We used 10 decision variables
for all test problems as suggested in [22]. In order to
assess the performance of our proposed eMOEA/D-DE on
the test problems adopted, we compared it with respect to
cMOEA/D-DE using the following performance measures.

Hypervolume: The Hypervolume (IH ) performance mea-
sure was proposed in [23]. This performance measure is Pareto
compliant [24], and quantifies both convergence and spread of
nondominated solutions along the Pareto optimal front. The
hypervolume corresponds to the non-overlapped volume of all
the hypercubes formed by a reference point r (given by the
user) and each solution p in the Pareto set approximation (P ).
It is mathematically stated as:

IH(P ) = Λ

⋃
p∈P
{x|p ≺ x ≺ r}

 (17)



Algorithm 2: General Framework of eMOEA/D-DE
Input:
a stopping criterion;
N : the number of the subproblems considered in
eMOEA/D-DE;
W : a set of weight vectors {w1, . . . ,wN};
T : the number of weight vectors in the neighborhood of each
weight vector;
δ: the probability that parent solutions are selected from the
neighborhood B(wi);
δe: the threshold used for the proposed ε level comparison;
nr: a maximum number of replacements in the neighborhood;
Output:
P : the final population found by MOEA/D-DE.

1 Initialize a random population P = {x1, . . . ,xN};
2 F i = F(xi);
3 B(wi) = {i1, . . . , iT } such that: wi1 , . . . ,wiT are the T

closest weight vectors to wi, for each i = 1, . . . , N ;
4 z = (+∞, . . . ,+∞)T ;
5 while stopping criterion is not satisfied do
6 foreach i ∈ {1, . . . , N} do

7 Bi
s =

{
B(wi), if rand() < δ

{1, . . . , N}, otherwise
;

8 Set r1 = i and randomly select two indexes r2, r3
from Bs such that: r1 6= r2 6= r3;

9 Generate a trial solution y from xr1,xr2 and xr3 by
using the DE operator, and perform mutation operator
on y;

10 Calculate F(y);

11 zj =

{
fj(y), if fj(y) < zj
zj , otherwise

, j ∈ {1, . . . , k};

12 c = 0;
13 // for the following description see

section III-A

14 φl
N = φN (xl), for each l ∈ Bi

s;
15 φN,max = maxl∈Bi

s
{φN (xl)};

16 φN,min = minl∈Bi
s
{φN (xl)};

17 ε = φN,min + τ × (φN,max − φN,min);
18 foreach l ∈ Bi

s do
19 if (gte(y|wl, z), φN (y)) ≤ε

(gte(xl|wl), z), φN (xl)) and c < nr then
20 xl = y;
21 F l = F(y);
22 c = c+ 1;
23 end
24 end
25 end
26 end

where Λ denotes the Lebesgue measure and r ∈ Rk denotes a
reference vector being dominated by all valid candidate solu-
tions in P . A high IH value, indicates that the approximation
P is close to PF and has a good spread towards the extreme
portions of the Pareto front.

Feasibility Ratio: The feasibility ratio (IF ) indicator refers
to the ratio of the number of feasible solutions found in the
final approximation P to the Pareto front. It is mathematically
stated as:

IF (P ) =
Pf
|P |

(18)

where Pf denotes the number of feasible solutions in P and
|P | represents the cardinality of the population P .

B. Parameters Settings

As we said before, we compared the results obtained by
our proposed eMOEA/D-DE with respect to those obtained
by cMOEA/D. In order to allow a fair comparison, the set
of weight vectors was the same for both algorithms, and they
were generated in the same way, as described in [3], i.e., the
settings of N and W = {w1, . . . ,wN} were controlled by a
parameter H . More precisely, w1, . . . ,wN are all the weight
vectors in which each individual weight wij (i = 1, . . . , N and
j = 1, . . . , k) takes a value from:{

0

H
,

1

H
, . . . ,

H

H

}
Therefore, the number of such vectors in W is given by N =
Ck−1H+k−1, where k is the number of objective functions. Here,
we use H = 99 (for two-objective problems) and H = 23
(for three-objective problems), i.e., we generated 100 and 300
weight vectors for CMOPs having two and three objectives,
respectively,

For each MOP, 30 independent runs were performed with
each algorithm. The parameters for both algorithms are sum-
marized in Table I, where N represents the number of initial
solutions (100 for bi-objective problems and 300 for three-
objective problems). Nit represents the maximum number of
iterations, which was set to 500 for all test problems. There-
fore, both algorithms performed 50,000 (for the bi-objective
problems) and 150,000 (for the three-objective problems)
fitness function evaluations for each problem. The parameters
Tn, δ, F and CR represent the neighborhood size, the proba-
bility that parent solutions are selected from the neighborhood
B(wi), the differential factor and the crossover ratio for the
DE operator, respectively. ηm, Pm and nr are the mutation
index (for Polynomial-based Mutation (PBM)), mutation rate
and the number of solutions to be replaced in both algorithms,
respectively. These values are set as in [8] to allow a fair
comparison between the two algorithms. For eMOEA/D-DE,
τ and δe represent the control parameters for equations (13)
and (15), respectively. s1 and s2 are the control parameters
used by cMOEA/D-DE, and they were set as proposed by
Jan and Zhang in [8] (i.e., we adopted the best parameters
settings found by Jan and Zhang for cMOEA/D-DE for the
test problems of our comparative study).

For each CMOP, the algorithms were evaluated using the
Hypervolume (IH ) indicator and the Feasible Ratio indicator
(IF ). The results obtained are summarized in Table II. These
tables display both the average and the standard deviation
(σ) for the two performance measures adopted (i.e., IH and
IF ) for each CMOP considered. The reference vectors used for
computing the IH performance measure are shown in Table II.
These vectors are established close to the individual minima
for each MOP, i.e., close to the extremes of the Pareto optimal
front. With that, a good measure of approximation and spread
is reported when the algorithms converge along the Pareto



TABLE I
PARAMETERS FOR EMOEA/D-DE AND CMOEA/D-DE

Parameter eMOEA/D-DE MOEA/D-DE
N 100/300 100/300
Nit 500 500
Tn d0.1×Ne d0.1×Ne
δ 0.9 0.9
F 0.5 0.5
CR 1.0 1.0
ηm 20.0 20.0
Pm 1/n 1/n
nr d0.01×Ne d0.01×Ne
τ 0.3 –
δe 0.7 –
s1 – 0.01
s2 – 20.0

optimal front. For an easier interpretation, the best results are
presented in boldface for each test problem adopted.

V. DISCUSSION OF RESULTS

As indicated before, the results obtained by our proposed
approach (i.e., eMOEA/D-DE) were compared against those
produced by cMOEA/D [8]. According to the results presented
in Table II, eMOEA/D-DE had a better performance than
cMOEA/D-DE in most of the CMOPs adopted. This table
provides a quantitative assessment of the performance of
eMOEA/D-DE in terms of the IH and IF indicators. That
means that the solutions obtained by eMOEA/D-DE achieved
a better approximation of the Pareto optimal front than the
solutions obtained by cMOEA/D-DE while maintaining an
acceptable ratio of feasible solutions.

Note however, that for CF3, CF5 and CF8, the IH in-
dicator showed that our proposed eMOEA/D-DE did not
improve the performance of cMOEA/D-DE. Although for
CF3, cMOEA/D-DE the IH was not significantly better, for
CF5 and CF8 the performance of eMOEA/D-DE was indeed
poor. It is worth noting that the problems adopted in our
comparative study, have peculiar shapes in their PS. In the
particular cases of CF5 and CF8, their Pareto optimal sets are
more scattered and look stranger in comparison with the other
CMOPs adopted (see [22]). This leads us to conjecture, that
for this type of problems, the computation of the ε constraint
value (which is computed by using information from the
neighborhood) is not done in a proper way. In fact, the use
of a misguided ε value could mislead the search of optimal
solutions. However, in order to deal with this drawback, we
could either adjust in a dynamic way the parameters ε and δe
(used in our ε-constraint method) or increase the number of
weight vectors. Nonetheless, this task is, indeed, a promising
path for future research.

In terms of the feasibility of solutions, we can see from
Table II that our proposed eMOEA/D-DE obtained 100% of
feasible solutions in most of the test problems adopted. The
exceptions were CF1, CF8 and CF10. In fact, even when for
CF10, our proposed approach did not obtain 100% of feasible
solutions, the IH and IF measures indicate that our proposed

eMOEA/D-DE had a better performance than cMOEA/D-DE
for this specific problem (CF10). On the other hand, the
convergence for problems CF1 and CF8, as assessed by the
IH indicator, was not that poor. Although for CF1, cMOEA/D-
DE achieved a better ratio of feasible solutions, eMOEA/D-DE
had a better convergence to the Pareto optimal front according
to the IH indicator. However, we argue that our proposed
approach is highly competitive with respect to cMOEA/D-DE
being, in most cases, a better choice.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a new approach based on MOEA/D-
DE for constrained multi-objective optimization. Our proposed
eMOEA/D-DE introduces a new selection mechanism based
on the ε-constraint method in order to deal with CMOPs.
Although the use of the new constraint-handling technique
was adopted here for MOEA/D-DE, this approach can be
easily adopted by any other decomposition-based MOEA, such
as those reported in [20], [4], [21]. As we could see, our
proposed eMOEA/D-DE was found to be highly competitive
and, in some cases better, than cMOEA/D-DE. In this study,
we analyzed the main drawback of the ε-constraint method,
which we called “ε level comparison drift”. In order to deal
with this problem, we proposed a new rule which was initially
designed for MOEA/D, but it can be easily extended to any
other MOEA.

As part of our future work, we intend to focus on the design
of a strategy that allows us to adjust, in a dynamic way, the
parameters ε and δe employed by our proposed eMOEA/D-
DE. We also plan to explore different strategies in order to
deal with the ε level comparison drift. Furthermore, in order
to deal in an efficient way with more complex CMOPs, the
introduction of local search mechanisms to eMOEA/D-DE
seems to be a promising path for future research. We believe
that the use of an appropriate local search mechanism coupled
with a MOEA (such as those presented in [25], [26], [27])
could give rise to a powerful search engine capable of dealing
with more complex CMOPs in a more effective way. Finally,
we also aim to extend our proposed approach to deal with
CMOPs having many objectives (three or more), which is an
area that has remained practically unexplored so far, to the
authors’ best knowledge.
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