

List of Tables

1

Chapter 1

Hybridizing Multi-objective Evolutionary
Algorithms with Mathematical Programming
Techniques

Saúl Zapotecas

CINVESTAV-IPN

Adriana Lara

Escuela Superior de F́ısica y Matemáticas-IPN, Mexico City, Mexico

Carlos A. Coello Coello

CINVESTAV-IPN

1.1 Introduction . 4
1.1.1 Multi-objective Background Concepts 4

1.2 Solving a MOP . 6
1.2.1 Mathematical Programming Techniques 6

1.3 Multi-objective Evolutionary Algorithms . 8
1.3.1 Nondominated Sorting Genetic Algorithm 8
1.3.2 Strength Pareto Evolutionary Algorithm 9
1.3.3 Multi-Objective Evolutionary Algorithm Based on

Decomposition . 11
1.3.4 Memetic Algorithms . 12

1.4 Methods Based on Descent Directions . 14
1.5 Gradient-based Numerical Continuation . 18
1.6 Reference point methods . 22
1.7 Other Gradient-based Approaches . 23
1.8 Approaches based on Nelder and Mead’s Algorithm 24

1.8.1 A Multi-objective GA-Simplex Hybrid Algorithm 26
1.8.2 A Multi-objective Hybrid Particle Swarm Optimization

Algorithm . 28
1.8.3 A Nonlinear Simplex Search Genetic Algorithm 31
1.8.4 A Hybrid Non-dominated Sorting Differential Evolution

Algorithm . 32
1.8.5 A Multi-Objective Memetic Evolutionary Algorithm

based on Decomposition . 34
1.9 Other Direct Search Approaches . 36

1.9.1 A Multi-Objective Meta-model Assisted Memetic
Algorithm . 36

1.9.2 A Hybrid Multi-objective Evolutionary Algorithm
based on the S Metric . 39

1.10 Conclusions . 41
Acknowledgements . 41

3

4 Book title goes here

1.1 Introduction

This chapter presents methods, and the general background, to the coupling of Multi-
Objective Evolutionary Algorithms (MOEAs) with mathematical programming methods.
The goal of this mixture of techniques is to improve the efficiency of MOEAs when solv-
ing continuous multi-objective optimization problems. Introductory descriptions for both
techniques (MOEAs and classical approaches) are also included. The chapter makes a dis-
tinction between gradient-based and non-gradient-based methods. Different hybridization
options are presented, in order to provide the reader with a richer companion of algorithms
as well as discussions about them.

1.1.1 Multi-objective Background Concepts

The traditional optimization literature [52, 53], focuses on solving a Single-objective
Optimization Problem (SOP), in which there is only one objective function to deal with;
i.e., they focus on optimizing

f : Rn → R

subject to certain domain constraints. In this case, the solution is a single point—or set of
points with the same image value—such that its image is a unique maximum or minimum
value in R. In contrast, when dealing with a Multi-objective Optimization Problem (MOP),
we are interested in finding the best values for a function

F : Rn → Rm.

In this case, there is not a single point solution. This can be noticed, for example, in Fig-
ure 1.1, in which the functions are in conflict with each other—that is, while one increases,
the other decreases. In the following, we are going to deepen into this idea, after explaining
some basic concepts.

If an objective function is to be maximized (for example, if it corresponds to a certain
profit) it is possible to restate it in terms of minimization, using the duality principle when
multiplying the function by −1. Therefore, a MOP can be stated in general as:

Minimizing F(x) := [f1(x), f2(x), . . . , fm(x)]
T

(1.1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . , k (1.2)

hj(x) = 0 j = 1, 2, . . . , p (1.3)

where x = [x1, x2, . . . , xn]
T ∈ Rn is the vector of decision variables (also known as decision

parameters vector or solution vector), fi : Rn → R, i = 1, ...,m are the objective functions
(or objectives, in short) and gi, hj : Rn → R, i = 1, ..., k, j = 1, ..., p are the constraint
functions of the problem. If functions gi and hi are not present, we are dealing with an
unconstrained MOP. Solving the above problem is known as solving a MOP. For most of
the following sections we will assume unconstrained MOPs.

Even though MOPs can be defined over other domains—such as discrete sets, for exam-
ple—in the methods presented on this chapter we are only interested in continuous domains,
which are contained in Rn. When all the objective functions and the constraint functions
are linear, the problem (1.1) is called a linear MOP, and there are several techniques to
solve it. If at least one of the functions is nonlinear, the problem is then called a nonlinear

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 5

MOP. If all the objective functions are convex, and also the feasible region is convex, the
problem is known as a convex MOP. In this chapter we are dealing with nonlinear problems,
either convex or not. For the remainder of this chapter, if conditions such as differentiability
or continuous differentiability are assumed for the fi functions, this will be pointed out for
each particular method.

x

f2(x)

f1(x)

f3(x)

FIGURE 1.1: This figure shows function f3(x) in conflict with functions f1(x) and f2(x).

In general, a solution of a MOP consists of an entire set of points which fulfills certain
properties. We state the next definitions in order to establish a way to decide when a point
can be considered part of this particular solution set.

Definition 1 Given two vectors x,y ∈ Rn, we say that x dominates y (denoted by x ≺ y)
if fi(x) ≤ fi(y) for i = 1, ...,m, and F(x) 6= F(y).

Definition 2 We say that a vector of decision variables x ∈ X ⊆ Rn is non-dominated
with respect to X (where X is the feasible region), if there does not exist another x′ ∈ X
such that x′ ≺ x.

Definition 3 We say that a vector of decision variables x∗ ∈ X ⊂ Rn is Pareto optimal
if it is non-dominated with respect to X .

Definition 4 The Pareto Optimal Set or Pareto Set P∗ is defined by:

P∗ = {x ∈ X | x is Pareto optimal}.

Definition 5 The Pareto Front PF∗ is defined by:

PF∗ = {F (x) ∈ Rk | x ∈ P∗}.

We thus wish to determine the Pareto optimal set from the set X of all the decision
variable vectors that satisfy the constraints of the problem. Note however that in practice,
just a finite representation of the Pareto optimal set is normally achievable. Assuming x∗

as a Pareto point of (1.1), there exist [37] a vector ααα ∈ Rk, with 0 ≤ αi, i = 1, . . . , k and∑k
i=1 = 1 such that

k∑
i

αi∇fi(x∗) = 0. (1.4)

A point x∗ that satisfies (1.4) is called a Karush-Kuhn-Tucker (KKT) point.

Example 1 Consider the following unconstrained MOP: Minimize

f1 = x2 + y2

f2 = (x+ 4)2 + y2, (1.5)

6 Book title goes here

with x, y ∈ R. The Pareto set of this problem is the line segment [(0, 0), (−4, 0)] ∈ R2. Figure
1.2 shows the image of uniformly generated points in the domain of the problem. The axes
correspond to the values regarding each function, what is known like the objective space.

FIGURE 1.2: This figure emphasizes the Pareto front corresponding to Example 1. The
points of Y are the images of uniformly generated vectors from the domain.

1.2 Solving a MOP

The most common procedures to solve (1.1) can be classified [45, 46] in four classes:
no-preference methods, a posteriori methods, a priori methods and interactive methods,
according to the stage, and level, at which the decision maker intervenes. In this chapter,
we focus on the a posteriori approach, in which the goal is to obtain the best approximation
of the entire set of optima. This solution will then be presented a posteriori to the decision
maker—who will then select the most suitable solution out of it. We present in the following,
a brief review of some classical techniques in order to mention important aspects that will
then be compared with respect to MOEAs.

1.2.1 Mathematical Programming Techniques

Traditional approaches developed for solving MOPs are part of the mathematical pro-
gramming literature, and are known as classical methods. Up to the early 1980s most of the
computational methods to solve MOPs consisted of minimizing only one function, either
using the other objective functions as constraints of the problem, or simply by taking a
combination of all the objectives [48]. The most common way to tackle a MOP is by scalar-
ization which means reducing the problem to a SOP. One example of this approach is the
following method:

Weighted sum method: This method consists of transforming the vector of function
values into a scalar value using an aggregating function over the vector function, getting
the following problem:

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 7

Minimize g(x|w) =

m∑
i=0

wifi(x) (1.6)

where x ∈ X and w is a weighting vector, i.e. wi ≥ 0 for all i ∈ {1, . . . ,m} and
∑m
i=1 wi = 1.

After this reformulation, the solution set found consists only of one point, corresponding
to each weight combination. The main drawback of this approach is that the weights dis-
tribution does not necessary corresponds to the distribution of the points in the parameter
space. Besides, there are points that cannot be generated as a combination of weights in
non-convex cases—see [8].

Tchebycheff approach: This approach also transforms the vector of function values into
a scalar optimization problem which is of the form:

Minimize g(x|w, z?) = min
1≤i≤k

{wi|fi(x)− zi|} (1.7)

where x ∈ X , z? = [z1, . . . , zk]T , such that: zi = min{fi(x)|x ∈ X} and w is a weighting
vector.

For each Pareto optimal point x? there exists a weighting vector w such that x? is the
optimal solution of (1.7) and each optimal solution of (1.7) is a Pareto optimal solution
of (1.1). Therefore, one is able to obtain different Pareto optimal solutions by altering the
weight vector w. One weakness of this approach is that its aggregation function is not
smooth for a continuous MOP. There exist, in general, many scalarization methods which
transform the MOP into a ‘classical’ SOP. It is worth noticing that certain selection of
suitable SOPs can lead to a reasonable good approximation of the entire Pareto set—see
for example [9].

ε-constraint method: In the ε-constraint method [18], one of the objectives is chosen
for minimization while the rest of the objectives conform a set of constraints limited by
user-specified bounds εi. i.e.:

Minimize fj

subject to fi ≤ εi for all i ∈ {1, . . . ,m}, i 6= j.

The ε-constraint problem should be solved using multiple different values for εi, if several
Pareto optimal solutions are desired. This method can deal with convex and non convex
functions; but, choosing the εi values is still an issue since there is no warranty that a
feasible optimum exists for a specific εi. An in-depth analysis of these method can be found
in [45].

When a method explores iteratively solutions from a neighborhood, it is classified as a
Local Search (LS) procedure. When solving a MOP according to the a posteriori approach,
the use of population-based heuristics, such as the Evolutionary Algorithms (EAs) presented
in the following, is a natural choice. This is due to the fact that no previous knowledge
regarding the MOP is necessary for the algorithm; and also because, at the end of the run,
the population-based algorithm throws an entire set of (ideally) well-distributed solutions.

8 Book title goes here

1.3 Multi-objective Evolutionary Algorithms

The limitations of traditional mathematical programming methods to solve MOPs, have
motivated the development of new strategies to deal with these type of problems. The EAs
are stochastic search and optimization methods that simulate the natural evolution process.
At the end of the 1960s, Rosenberg [55] proposed the use of a Genetic Algorithms (GAs)
to solve MOPs. However, it was until 1984, when David Schaffer [57] introduced the first
implementation of what it is now called a MOEA. Since then, many researchers [33, 77,
11, 74] have developed a wide variety of MOEAs. MOEAs are particularly well-suited to
solve MOPs because they operate over a set of potential solutions (they are based on a
population). This feature allows them to generate several elements of the Pareto optimal set
(or a good approximation of them) in a single run. Furthermore, MOEAs are less susceptible
to the shape or continuity of the Pareto front than traditional mathematical programming
techniques, require little domain information and are relatively easy to implement and use.
As pointed out by different authors [79, 7], finding an approximation to the Pareto front is
by itself a bi-objective problem whose objectives are:

1. minimize the distance of the generated vectors to the true Pareto front, and

2. maximize the diversity of the achieved Pareto front approximation.

Therefore, the fitness assignment scheme must consider these two objectives.

1.3.1 Nondominated Sorting Genetic Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srinivas and
Deb [65] and is a variation of Goldbergs approach [17]. The NSGA is based on several
layers of classifications of the individuals. Before selection is performed, the population
is ranked on the basis of nondomination: all nondominated individuals are classified into
one category (with a dummy fitness value, which is proportional to the population size, to
provide an equal reproductive potential for these individuals). To maintain the diveristy
of the population, these classified individuals are shared with their dummy fitness values.
Then, this group of classified individuals is ignored and another layer of nondominated
individuals is considered. The process continues until all individuals in the population are
classified. Stochastic remainder proportionate selection is adopted for this technique. Since
individuals in the first front have the maximum fitness value, they always get more copies
than the rest of the population. This allows for a better search of the different nondominated
regions and results in convergence of the population toward such regions. Sharing, by its
part, helps to distribute the population over this region. As a result, one might think that
this MOEA converges rather quickly; however, a computational bottleneck occurs with
the fitness sharing mechanism. An improved version of the NSGA algorithm, called Non-
dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb et al. [11]. The
NSGA-II builds a population of competing individuals, ranks and sorts each individual
according to its nondomination level, it applies evolutionary operators to create a new
offspring pool, and then combines the parents and offspring before partitioning the new
combined pool into fronts. For each ranking level, a crowding distance is estimated by
calculating the sum of the Euclidean distances between the two neighboring solutions from
either side of the solution along each of the objectives. Once the nodomination rank and
the crowding distance is calculated, the next population is stated by using the crowded-
comparison operator (≺n). The crowded-comparison operator guides the selection process

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 9

at the various stages of the algorithm toward a uniformly spread-out Pareto optimal front.
Assuming that every individual in the population has two attributes: 1) nondomination
rank (irank) and 2) crowding distance (idistance), the partial order ≺n is defined as:

i ≺n j : if (irank < jrank)or
((irank = jrank) and (idistance > jdistance))

(1.8)

That is, between two solutions with differing nondomination ranks, we prefer the solution
with the lower (better) rank. Otherwise, if both solutions belong to the same front, then
the solution that is located in a lesser crowded region is preferred. Algorithm 1 presents the
outline of the NSGA-II, which (in the last decade) has been the most popular MOEA, and
it is frequently adopted to compare the performance of newly introduced MOEAs.

Input:
N : the population size;
Tmax: the maximum number of generations;
Output:
A: the final approximation to the Pareto optimal front;

1 begin
2 t = 0;
3 Generate a random population Pt of size N ;
4 Evaluate the population Pt;
5 while t < Tmax do
6 Generate the offspring population Qt by using binary tournament and genetic

operators (crossover and mutation);
7 Evaluate the offspring population Qt;
8 Rt = Pt ∪Qt;
9 Rank Rt by using nondomited sorting to define F ; // F = (F1,F2, . . .), all

nondominated fronts of Rt

10 Pt+1 = ∅ and i = 1;
11 while (|Pt+1|+ |Fi| ≤ N) do
12 Assign crowding distance to each front Fi;
13 Pt+1 = Pt+1 ∪ Fi;
14 i = i+ 1;

15 end
16 Sort Fi by using the crowded-comparison operator;
17 Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)];
18 t = t+ 1;

19 end
20 A = Pt;

21 end

Algorithm 1: General Framework of NSGA-II

1.3.2 Strength Pareto Evolutionary Algorithm

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Zitzler and
Thiele [79]. This evolutionary approach integrates some successful mechanisms from other
MOEAs, namely, a secondary population (external archive) and the use of Pareto ranking.
SPEA uses an external archive containing nondominated solutions previously found. At

10 Book title goes here

Input:
N : the population size;
N : the archive size;
Tmax: the maximum number of generations;
Output:
A: the final approximation to the Pareto optimal front.

1 begin
2 t = 0;
3 Generate a random population Pt of size N ;

4 P t = ∅; // the external archive

5 while (t < Tmax) do
6 Calculate the fitness values of individuals in Pt and P t;

7 Copy all nondominated individuals in Pt and P t to Pt+1. If the size of Pt+1

exceeds N then reduce Pt+1 by means of the truncation operator; otherwise if
the size of Pt+1 is less than N then fill Pt+1 with dominated individuals in Pt
and P t;

8 if (t+ 1 < Tmax) then
9 Perform binary tournament selection with replacement on P t+1 in order to

fill the mating pool;
10 Apply recombination and mutation operators to the mating pool and set

Pt+1 to the resulting population.;

11 end
12 t = t+ 1;

13 end
14 Set A as the set of decision vectors represented by the nondominated individuals

in P t;

15 end

Algorithm 2: General Framework of SPEA2

each generation, nondominated individuals are copied to the external nondominated set.
In SPEA, the fitness of each individual in the primary population is computed using the
individuals of the external archive. First, for each individual in this external set, a strength
value is computed. The strength, S(i), of individual i is determined by S(i) = n

N+1
, where n

is the number of solutions dominated by i, and N is the size of the archive. Finally, the fitness
of each individual in the primary population is equal to the sum of the strengths of all the
external members that dominate it. This fitness assignment considers both closeness to the
true Pareto front and even distribution of solutions at the same time. Thus, instead of using
niches based on distance, Pareto dominance is used to ensure that the solutions are properly
distributed along the Pareto front. Since the size of the archive may grow too large, the
authors employed a technique that prunes the contents of the external nondominated set so
that its size remains below a certain threshold. There is also a revised version of SPEA, called
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [77]. SPEA2 has three main differences
with respect to its predecessor: 1) it incorporates a fine-grained fitness assignment strategy
which takes into account, for each individual, the number of individuals that dominate it
and the number of individuals to which it dominates; 2) it uses a nearest neighbor density
estimation technique which guides the search more efficiently, and it has an enhanced archive
truncation method that guarantees the preservation of boundary solutions. The outline of
the SPEA2 is shown in Algorithm 2.

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 11

In detail, let P t and Pt be the external archive and the population at the t generation.
Each individual i in the external archive P t and the population Pt is assigned a strength
value S(i), representing the number of solutions it dominates: S(i) = |j|j ∈ Pt+P t∧ i ≺ j|,
where | · | denotes the cardinality of a set, + stands for multiset union and the symbol ≺
corresponds to the Pareto dominance relation. On the basis of the S values, the raw fitness
R(i) of an individual i is calculated:

R(i) =
∑

j∈P∪P,j≺i

S(j)

Although the raw fitness assignment provides a sort of niching mechanism based on
the concept of Pareto dominance, it may fail when most individuals do not dominate each
other. Therefore, additional density information is incorporated to discriminate between
individuals having identical raw fitness values. The density estimation technique used in
SPEA2 is an adaptation of the k-th nearest neighbor method, and it is calculated by:

D(i) =
1

σki + 2

where, k =
√
|N |+ |N |, and σki denotes the distance of i to its k-th nearest neighbor in

Pt + P t. N and N represent the population size and the archive size, respectively. Finally,
the fitness value F (i) of an individual i is calculated by:

F (i) = R(i) +D(i) (1.9)

During environmental selection, the first step is to copy all nondominated individuals.
If the nondominated front fits exactly into the archive (|P t+1| = N) the environmental
selection step is completed. Otherwise, there can be two situations: Either the archive is
too small (|P t+1| < N) or too large (|P t+1| > N). In the first case, the best N − |P t+1|
dominated individuals in the previous archive and population are copied to the new archive.
This can be implemented by sorting the multiset Pt + P t according to the fitness values
and copy the first N − |P t+1| individuals i with F (i) ≥ 1 from the resulting ordered list to
P t+1. In the second case, when the size of the current nondominated (multi)set exceeds N ,
an archive truncation procedure is invoked which iteratively removes individuals from P t+1

until |P t+1| = N . Here, at each iteration that individual i is chosen for removal for which
i ≤d j for all j ∈ P t+1 with

i ≤d j ⇐⇒ ∀0 < k < |P t+1| : σki = σkj ∨
∃0 < k < |P t+1| : [(∀0 < l < k : σli = σlj) ∧ σki < σkj]

where σki denotes the distance from i to its k-th nearest neighbor in P t+1. In other words,
the individual which has the minimum distance to another individual is chosen at each stage;
if there are several individuals with minimum distance, the tie is broken by considering the
second smallest distances and so forth.

1.3.3 Multi-Objective Evolutionary Algorithm Based on Decomposition

The Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) was
introduced by Zhang and Li [74]. MOEA/D explicitly decomposes the MOP into several
scalar optimization subproblems. It is well-known that a Pareto optimal solution to a MOP,
under certain conditions, could be an optimal solution of a scalar optimization problem in
which the objective is an aggregation of all the functions fi’s. Therefore, an approximation

12 Book title goes here

of the Pareto optimal front can be decomposed into a number of scalar objective optimiza-
tion subproblems. This is a basic idea behind many traditional mathematical programming
methods for approximating the Pareto optimal front. Several methods for constructing ag-
gregation functions can be found in [13, 45]. This basic idea of decomposition is used by
MOEA/D, and it solves these subproblems simultaneously by evolving a population of so-
lutions. At each generation, the population is composed of the best solution found so far
(i.e., since the start of the run of the algorithm) for each subproblem. The neighborhood
relations among these subproblems are defined based on the distances between their ag-
gregation coefficient vectors. The optimal solutions to two neighboring subproblems should
be very similar. Each subproblem (i.e., each scalar aggregation function) is optimized in
MOEA/D by using information only from its neighboring subproblems. To obtain a good
representation of the Pareto optimal front, a set of evenly spread weighting vectors needs
to be previously generated.

Considering N as the number of scalar optimization subproblems and W =
{w1, . . . ,wN} as the set of weighting vectors which defines such subproblems, MOEA/D
finds the best solution to each subproblem along the evolutionary process. Assuming the
Tchebycheff approach (1.7), the fitness function of the ith subproblem is stated by g(x|wi, z).
MOEA/D defines a neighborhood of each weighting vector wi as a set of its closest weighting
vectors in W . Therefore, the neighborhood of the ith subproblem consists of all the subprob-
lems with the weighting vectors from the neighborhood of wi and it is denoted by B(wi).
At each generation, MOEA/D maintains: 1) a population of N points P = {x1, . . . ,xN},
where xi ∈ X . is the current solution to the ith subproblem; 2) FV 1, . . . , FV N , where FV i

is the F -value of xi, i.e., FV i = F(xi) for each i = 1, . . . , N ; 3) an external archive EP ,
which is used to store the nondominated solutions found during the search. In contrast to
NSGA-II and SPEA2 which use density estimators (crowding distance and neighboring so-
lutions, respectively), MOEA/D uses a well distributed set of weighting vectors for guiding
the search, and therefore, multiple solutions along the Pareto optimal set are maintained.
With that, the diversity in the population of MOEA/D is implicitly maintained. For an
easy interpretation of MOEA/D, it is outlined in Algorithm 3.

1.3.4 Memetic Algorithms

The term Memetic Algorithm (MA) was first introduced in 1989 by Pablo Moscato [47].
The term “memetic” has its roots in the word “meme” introduced by Richard Dawkins in
1976 [10] to denote the unit of imitation in cultural transmission. The essential idea behind
MAs is the combination of LS refinement techniques with a strategy based on a population,
such as EAs. The main difference between genetic and memetic algorithms is the approach
and view of the information’s transmission techniques. In the GAs, the genetic information
carried by genes is usually transmitted intact to the offspring, meanwhile in the MA, the
base units are the so-called “memes” and they are typically adapted by the individual
transmitting information. While GAs are good at exploring the solution space from a set of
candidate solutions, MAs explore from a single point, allowing to exploit solutions that are
close to the optimal solutions. The main design goal of such an approach will be the efficiency
of the final algorithm (i.e., the MA approach should perform a reduced number of objective
function evaluations as compared to state-of-the-art EA) on standard test functions. During
the last years, MAs have been successfully applied to find solutions of SOPs. In the multi-
objective case, first efforts have been done over discrete domain problems; followed by an
increasing interest for the continuous case. Some important decisions should be taken when
mixing these techniques, they are:

a) In which moment, of the evolutionary iteration should the LS be performed?

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 13

Input:
a stopping criterion;
N : the number of the subproblems considered in MOEA/D;
W : a well-distributed set of weighting vectors {w1, . . . ,wN};
T : the number of weight vectors in the neighborhood of each weighting vector.
Output:
EP : the nondominated solutions found during the search;
P : the final population found by MOEA/D.

1 begin
2 Step 1. Initialization:
3 EP = ∅;
4 Generate an initial population P = {x1, . . . ,xN} randomly;
5 FV i = F(xi);
6 B(wi) = {wi1 , . . . ,wiT } where wi1 , . . . ,wiT are the T closest weighting vectors

to wi, for each i = 1, . . . , N ;
7 z = (+∞, . . . ,+∞)T ;
8 while stopping criterion is not satisfied do
9 Step 2. Update: (the next population)

10 for xi ∈ P do
11 Reproduction: Randomly select two indexes k, l from B(wi), and then

generate a new solution y from xk and xl by using genetic operators.
12 Mutation: Apply a mutation operator on y to produce y′.
13 Update of z: For each j = 1, . . . , k, if zj < fj(x), then set zj = fj(y

′).
14 Update of Neighboring Solutions: For each index j ∈ B(wi), if

g(y′|wj , z) ≤ g(xi|wj , z), then set xj = y′ and FV j = F(y′).
15 Update of EP : Remove from EP all the vectors dominated by F(y′).

Add F(y′) to EP if no vectors in EP dominate F(y′).
16 end

17 end

18 end

Algorithm 3: General Framework of MOEA/D

b) How often should the LS be applied along the entire evolutionary process?, and

c) From which population solutions should the LS be started?.

While answering the above questions it is necessary to keep in mind the evident trade-off
between the computational cost and the benefits of the LS procedure. This makes important
to focus on the development of suitable methods to perform LS. Because of this, mathe-
matical methods based on particular geometrical properties of the MOP would produce
good results. In particular, methods that use gradient information will produce excellent
approximations; but in practice, this is not always the ideal strategy, since they imply a
high computational cost. From this point of view, other choices have shown advantages in
practice, producing results of comparative quality. There is no specific method to design a
MA. However, Algorithm 4 shows a general framework of what a MA should contain.

Hybridization of MOEAs with LS algorithms has been investigated for more than one
decade [32]. Some of the first memetic MOEA for models on discrete domains were presented,
in [26, 27]. These include Multi-Objective Genetic Local Search (MOGLS), and Pareto
Memetic Algorithm (PMA) [28]; these two approaches use scalarization functions. In [31], a
proposal employing a Pareto ranking selection (called Memetic Pareto Archived Evolution

14 Book title goes here

Input:
N : the population size;
Tmax: the maximum number of generations;
Output: A: the final population

1 begin
2 t = 0;
3 Generate a random population Pt of size N ;
4 Evaluate the population Pt;
5 while t < Tmax do
6 Generate the offspring population Qt by using stochastic operators;
7 Evaluate the offspring population Qt;
8 Select a set of solutions Rt from Qt;
9 forall the rt ∈ Rt do

10 Improve: rt = i(rt) // using an improvement mechanism;
11 end
12 Set Pt+1 as the set of N solutions selected from Pt ∪Qt ∪Rt according to any

rule of selection (commonly using the fitness of each individual);
13 t = t+ 1;

14 end
15 A = Pt;

16 end

Algorithm 4: General scheme of a MA

Strategy (M-PAES)) was introduced. Also, in [49], the authors proposed a LS process with
a generalized replacement rule based on the dominance relation. In [6], the Cross Dominant
Multi-Objective Memetic Algorithm (CDMOMA) was proposed as an adaptation of the
NSGA-II, and two local search engines: a multi-objective implementation of Rosenbrock’s
algorithm [56], which performs very small movements, and the Pareto Domination Multi-
Objective Simulated Annealing (PDMOSA) [67], which performs a more global exploration.
A memetic version of Coevolutionary Multi-Objective Differential Evolution (CMODE) was
proposed in [64] and was called CMODE-MEM. Most of this work has been proposed for
combinatorial problems. For the continuous case—i.e., continuous objectives defined on a
continuous domain— the first attempts started, to the authors’ best knowledge, with [16],
where a neighborhood search was applied to NSGA-II. This is a very simple scheme and the
authors found that the added computational work had a severe impact on the efficiency of
the algorithm. In the following sections, we provide an in-depth analysis of the continuous
domain case.

1.4 Methods Based on Descent Directions

Many mathematical programming techniques are traditionally based on differentiable
properties of the objective functions. These tools are popular since they have strong foun-
dations, and have been intensively taught to engineers through many decades. Exploiting
particular knowledge about the problem is a very common feature of almost all traditional
optimization techniques. For example, some of the methods developed in [29], use linear

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 15

properties of the functions and have a well-founded theoretical basis. Other methods, such
as those explained in [45], succeed on solving nonlinear MOPs, when using just differen-
tiability properties of the functions. One drawback of all of these (traditional) methods is
precisely that they cannot be applied to a wide variety of MOPs, because of their special
assumptions. On the other hand, it is worth noticing that when certain conditions are ful-
filled, they are indeed very efficient. Because of the nature of differentiability theory, these
techniques can be seen as LS procedures; this is, they can only guarantee the approximation
of local optima points. Talking specifically about differentiable problems, in this section we
focus mainly on those methods that use gradient-based descent directions to perform line
search. Remarkable features of these classic methods are the following:

• They generate new candidate solutions in an iterative way. For each iteration, at
least an approximation of the function gradient is required; second order information
(Hessian matrix) is also necessary, in some cases.

• They take advantage of a starting point for triggering the search, and they normally
produce a single solution per run (in fact, in some cases, different starting points may
lead to the same final objective value).

• They can only guarantee that the final point is optimum in a local neighborhood.

For MOPs where the objective functions are continuously differentiable, the use of gra-
dient information seems to be a natural choice. However, due to the local nature of gradient
information, its combination with a global search engine such as a population-based heuris-
tic is an obvious choice. Several proposals, like those developed in [22, 5, 62, 2, 25], are
based on this hypothesis, i.e., they attempt to show that the combination of gradient-based
methods and MOEAs can boost performance.

Directing the search, from a particular solution, towards a special improvement direction
is a widely used idea in optimization. This procedure is known as line search. It starts with
a particular (non-optimal) vector solution x0x0x0, and is composed by two goals:

1. First, it is necessary to find a promising search direction ννν ∈ Rn in which the function
value improves. This is commonly based on information related to the gradient of the
objective function.

2. Once the direction ννν is obtained, it is necessary to state a suitable step size t∗ to move
from x0x0x0 in this direction, such that this movement best improves the objective value
of the new iterate solution x1x1x1.

For example, when minimizing
f : Rn → R

to solve a SOP, the well-known steepest descent method is based on an iteration given by:

x(1)x(1)x(1) = x(0)x(0)x(0) − t∗(0)∇f(x)∇f(x)∇f(x).

When trying to use a similar procedure for the multi-objective optimization case, the
first goal is to find a descent direction to be equivalent to the role played by the gradient of a
function in the SOP case. Let’s remember that, for MOPs, m conflicting objective functions
are involved. So, in order to do this, the gradient of each of the objective functions should
be combined. The idea is then to find a direction

ννν ∈ Rn

such that, moving along ννν decrements the value of each objective function fi(xxx) simultane-
ously. This is stated on the next definition:

16 Book title goes here

Definition 6 Let f1, . . . , fm be the objective functions of a MOP. A Multi-objective Descent
Direction (MDD) is a direction ννν ∈ Rn such that the directional derivatives Dνννfi(xxx) with
respect to ννν, at the point xxx ∈ Rn, are non-positive, i.e, Dνννfi(xxx) = 〈∇fi(xxx), ννν〉 ≤ 0 for all
i ∈ 1, . . . ,m without allowing them to be all equal to zero.

Then, starting from a solution xxx ∈ Rn, when we perform a small movement over a
MDD ννν, we will get a local improvement simultaneously for all the objective functions.
The computation of a MDD is a procedure that regularly implies the solution of another
optimization problem. Different proposals are available to set this problem; we explain some
of these methods in the following.

We will start by first noticing that, given i ∈ {1 . . .m}, any direction ννν such that
〈ννν,∇fi(xxx)〉 < 0 is a descent direction for fi at xxx. Figure 1.3 shows how, for any point xxx, the
search space is split into two semi-spaces, one of them corresponding to descent directions.
From definition 6, it follows that, considering the intersection of these semi-spaces provides
a number of MDDs.

DESCENT

DIRECTIONS

FIGURE 1.3: This figure illustrates the descent directions for a particular function fi.

DESCENT

 CONE

FIGURE 1.4: This figures illustrates the descent cone which encloses multi-objective de-
scent directions.

It is worth noticing that the problem of finding an appropriate descent direction is
again a MOP. To explain this, let’s assume that two different vectors ν1ν1ν1 and ν2ν2ν2 are descent
directions. And also that,

Dν1ν1ν1fi(xxx) ≤ Dν2ν2ν2fi(xxx)

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 17

and
Dν2ν2ν2fi(xxx) ≤ Dν1ν1ν1fi(xxx),

hold. Then, even when both directions get simultaneous improvements, it is not possible to
decide which one is best—at least not without setting a preference between the objective
functions. This is illustrated in Figure 1.5. Since finding a MDD led us to face a MOP again,
it should be clear that the “best” direction is not defined in the MOP context.

FIGURE 1.5: This figure illustrates two multi-objective descent directions ν1ν1ν1 and ν2ν2ν2 for
which the simultaneous objective function improvement is incomparable.

Given a point xxx ∈ Rn which is not a KKT point, solving a quadratic programming
problem leads to a descent direction, as the next theorem says.

Theorem 1 [58] Given an unconstrained MOP, as in (1.1), and q : Rn → Rn be defined
by

q(xxx) =

m∑
i=1

α̂i∇fi∇fi∇fi(xxx), (1.10)

where α̂̂α̂α is a solution of

min
ααα∈Rm

{
||

m∑
i=1

αi∇fi(x)∇fi(x)∇fi(x)||22;αi ≥ 0, i = 1, . . . ,m,

m∑
i=1

αi = 1

}
, (1.11)

then either q(xxx) = 0, or it is the case that −q(xxx) is a descent direction for F at x.

Proof 1 See [58]

An alternative way to get a MDD can be found in [15]; the direction computed in that
way is called by its authors as the Steepest Descent Direction. The method works for convex
Pareto fronts as well as for concave Pareto fronts. In this case, a MDD ννν can be computed
using the information provided by the Jacobian JF (x) of the problem F evaluated on x. It
is, then, necessary to solve the following quadratic programming problem:

Minimize α+
1

2
||ννν||2 (1.12)

subject to (JF (x)ννν)i ≤ α, for all i ∈ {1, . . . ,m}.

18 Book title goes here

The above problem produces a solution

(ν∗ν∗ν∗, α∗),

where the descent direction that we are looking for is ν∗ν∗ν∗. This method triggers automatically,
similar to the Theorem 1, by using a condition that verifies if x fulfills condition (1.4), which
is the case when

α∗ = 0.

In practice, it is necessary to set a tolerance parameter τ, such that τ < 0 to stop the
descent when

τ ≤ α∗

holds; note that, by construction, α∗ ≤ 0.
For two-objective problems, there is a simple way to compute a MDD with no cost,

other than the gradient approximation for each function. In this case, the descent direction
νx can be obtained by

νxxx = −
(
∇f1(xxx)

||∇f1(xxx)||
+
∇f2(xxx)

||∇f2(xxx)||

)
, (1.13)

where || · || = || · ||2 is the Euclidean norm, and ∇f1(xxx),∇f2(xxx) are the gradients of the
objective functions, at solution x. The reader can refer to [38] for details and a proof that
1.13 leads to a MDD. Also for a possible hybridization of this procedure with NSGA-II, it
is important to notice that this simple formula can not be generalized for problems with
more than two objectives.

Once the MDD is set, a regular line search can be performed. Computation of step length
in the multi-objective context is an open problem, since each objective function will have its
own optimal step size (see [41]). In practice, an Armijo like rule, or a sequential quadratic
approximations approach have been commonly used. Then, after computing a reasonable
step length t, and getting x(1) = x + tννν, we are in condition to repeat the movement by
calculating a new descent direction from x(1) or, if this is not possible, we can assume
that a critical point has been achieved. Other ways to calculate MDD have been proposed
[2, 3, 5, 22]. A study of the efficiency of each method is subject of ongoing research. But,
descent directions are not the only interesting directions during the search; sometimes, it is
also necessary to perform movements along the Pareto front, or specifically directed towards
a particular region (see [40]).

To show the coupling of this LS procedure with a MOEA, we chose the widely adopted
NSGA-II as our global search engine. Nevertheless, the coupling with other MOEA is also
possible. We present in Algorithm 5 a simple version of a MOEA hybridized with a gradient-
based LS procedure. The parameters N and G in Algorithm 5, represent the population
size and the maximum number of generations. The procedures “Fast Non-Dominated Sort”,
“Crowding Distance Assignment” and “Generate Offspring Population” correspond to the
well-known components of the NSGA-II. Algorithm 5 places the LS inside the NSGA-II
just after the reproduction and the ranking-crowding process. LS is applied only to non-
dominated individuals, but not to all of them. In Algorithm 6, the LS procedure is described.

1.5 Gradient-based Numerical Continuation

A method to deal with both, unconstrained and constrained MOPs, is shown by Hiller-
meier in [23]. He introduces an homotopy approach using differential geometry and pa-

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 19

Input:
G: maximum number of generations;
Output:
P : final approximation to the Pareto front;

1 begin
2 Generate a Random Population P of size N ;
3 Evaluate Objective Function Values;
4 Fast Non-Dominated Sort;
5 Crowding Distance Assignment;
6 for i← 1, . . . , G do
7 Generate Offspring Population Poffs;
8 Set P ← P ∪ Poffs:;
9 Fast Non-Dominated Sort;

10 Crowding Distance Assignment;
11 Apply Local Search using (i, P);

12 end

13 end

Algorithm 5: Memetic NSGA-II using gradient-based line search.

Input:
i : generation number;
ξ : rule to establish the frequency of application of LS;
η : rule to select the individuals to which the LS is applied;
P : population before applying the LS;
Output:
P : population after applying the LS;

1 begin
2 if i fullfils ξ then
3 Conform the set E ⊂ P according to η, with randomly selected individuals

from the non-dominated set R1 ⊂ P ;
4 for a ∈ E do
5 if local improvement is possible then
6 Apply line search to obtain a′;
7 Replace a← a′;
8 Set a′ ∈ R1 ⊂ P ;
9 Set the crowding distance of a′ as ∞;

10 end

11 end

12 end

13 end

Algorithm 6: Gradient-based line search procedure.

rametric-optimization concepts to extend the MOP with k objective functions on an n-
dimensional space to an auxiliary problem. This is, when having a Pareto point xxx, a neces-
sary condition (see [45]) is the existence of

ααα ∈ Rm with

m∑
i=1

αi = 1

20 Book title goes here

such that
m∑
i=1

αi∇fi(xxx) = 000.

Based on this, it is possible to construct a suitable function

F̃ : Rn+m −→ Rm+1

defined by

F̃ (xxx,ααα) =

(∑m
i=1 αi∇fi(xxx)∑m
i=1 αi − 1

)
. (1.14)

Then, for every Pareto point
xxx

there exists a vector
α∗α∗α∗ ∈ Rm

such that
F̃ (xxx,α∗α∗α∗) = 000.

With this auxiliary function, it is possible to show [23] that the Pareto set of the original
problem forms a k− 1 dimensional manifold. In this method, all the functions are assumed
to be twice continuously differentiable, too. Hillermeier states that this method is scalable
to problems of high dimensionality. Even when this procedure also calculates a set of Pareto
optimal points in a single run, it is of local nature. Nevertheless, it is worth noticing that this
drawback can be avoided if the method is complemented with a stochastic technique—such
as a MOEA.

An interesting way to use local search with stochastic methods is to refine the solutions
obtained by a population-based algorithm. As an example, multi-objective continuation
methods have been used [61] as a recovering technique to complement the application of a
Multi-objective Particle Swarm Algorithm [7]. It is worth noticing that the Particle Swarm
heuristic could be replaced, in this algorithm, by any other MOEA.

When using the continuation part of [61], it is assumed that a Pareto optimal point

x0x0x0

is given. Then, a linearization of the Pareto front, at the solution x0x0x0, is computed using
second order information. In this way, a predictor-corrector method is used to follow the
frontier of the Pareto Front, and a new candidate point

x′0x
′
0x
′
0

is obtained. The possible error in the prediction is corrected by the solution of equa-
tion (1.11).

It is worth noticing that, as with Hillermeier’s method, this predictor-corrector method
can only detect connected components of the Pareto set; then, the entire procedure can
be seen as a local-search technique. This observation means an important motivation to
combine these techniques with an stochastic heuristic, when looking for global solutions
of MOP. A key element of this mix is the archiving method. This is used to manage the
solutions generated by both techniques, in different moments. It is because of this feature
that the convergence of the entire method can be ensured, in a theoretical sense. Also,
the data structure to storage the information is based on data trees—which reduce the

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 21

0 10 20 30 40 50 60

0

20

40

60

80

100

120

f
1

f 2
F(x

0
)

HCS2

FIGURE 1.6: This figure plots the set of points obtained by the local operator HCS2 as
a stand-alone procedure.

computational complexity of the information access. This information is related to specially
designed boxes which contain, and manage, the approximation points.

As another example, in [39] a local search engine called HCS2—Hill climber with side
step 2—is conformed by a hill climber part and a one-step continuation. The hill climber part
is performed by a method based on Fliege’s method [15]. Alternatively, Shaffler’s method
(equation (1.11)) can also be used. In both cases, a stopping criterion is automatically given,
when the MDD cannot be computed since a Pareto optimal point has been reached. This is
done by a certain tolerance value, for computational purposes, to assess when a quantity is
small enough—and can then be considered as zero. When this condition is fulfilled, a side-
step is performed—assuming that the Pareto front has been reached, and a movement over
the frontier is suitable. The side-step part of the operator is performed by a technique based
on the continuation proposed at [23]. It uses again second order information and intends
to generate two more points at the Pareto Front with an affordable computational cost.
Figure 1.6 shows the points obtained by the repeated execution of the HCS2, as a stand-
alone procedure, over a convex problem (in convex problems the local optima are global
also). In [39], a second type of local search engine is proposed—named as HCS1—but since
it does not use gradient information it is not described in this section. Each of these local
search engines were combined with the NSGA-II and SPEA2. The four memetic algorithms
were tested on two and three objective standard test functions; and those experiments
showed that the memetic approach outperformed the plain MOEA, in problems with a
moderate number of local Pareto points.

Finally, it is worth mentioning that, in [61, 59, 21, 60], other hybrids can be found, in
which heuristic methods are coupled with particular multi-objective continuation methods.

22 Book title goes here

1.6 Reference point methods

In [54], the authors proposed a hybrid technique that combines the robustness of MOGA-
II [51] with the accuracy and speed of NBI-NLPQLP. In [69], the proposed LS process
employs quadratic approximations for all the objective functions.

An important work which explicitly emphasizes the benefits of using local search to
obtain accurate solutions was presented in [63]. The authors combined the NSGA-II with a
reference point method. Applying this method, the authors were able to accelerate the con-
vergence of NSGA-II. In this work, the authors proposed a concurrent approach, instead of
a serial approach—in which the local search is applied after the population-based algorithm
finishes. In the concurrent approach, both techniques interact over the same generation of
individuals, at different times of the evolutionary process. This avoids the problem of having
to set, a priori, a specific number of resources to be spent by each technique.

Then, applying local search to a specific individual yyy from the population consists of
solving the next problem for xxx :

Minimize
m

max
i=1

fi(xxx)− zi
fmaxi − fmini

+ ρ

m∑
j=1

fj(xxx)− zj
fmaxj − fminj

(1.15)

where xxx is subject to xxx ∈ S, with S being the feasible region. In this case, to take advantage
of the population information into the procedure, fmaxi and fmini are the maximum and
minimum values taken from the entire population, at a certain generation, respectively.
Also, zzz is the so-called reference point defined by

zzz := F (yyy),

with yyy being the individual from the population which has been chosen to be used as a
departing point for the local search procedure. A suggested value is

ρ = 10−2.

Like other gradient-based local searchers, this method allows to use the KKT conditions to
terminate the LS. Anyway, the authors proposed to check a secondary stopping condition,
when the local search had elapsed more that 25 function calls. This avoids consuming too
many resources for the execution of the LS.

Besides, in order to balance the cost of both techniques, the LS is applied with a certain
probability

pls

at each generation. The function used [63] is defined as follows: starting from zero at the
beginning of the evolutionary process (generation = 0), the probability of applying LS
increases up to 0.01. in

0.5N − 1

generations. Here, N is the population size. Then, the probability drops until reach zero
after spending

0.5N

generations. This way to manage the probability has several motivation. One is to increase
linearly the amount of resources spent by the LS. Another one is to avoid the application
of LS at the beginning of the process, which is particularly convenient for the specific LS

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 23

method chosen in this case. A final reason is to have a restart mechanism in order to prevent
loss of diversity during the evolutionary process.

This method was tested with the Zitzler-Deb-Thiele (ZDT) benchmark problems with
good results. It showed that the application of this kind of LS was benefits in terms of the
speed of convergence and the final accuracy of the solutions obtained. In these experiments,
the chosen MOEA to be hybridized was NSGA-II.

1.7 Other Gradient-based Approaches

In [2], the problem of finding an improvement direction for the multi-objective case is
stated as a multi-objective problem as well. Therefore, the solution (i.e., the “multi-objective
gradient”) must be a set of suitable movement directions. When performing a search over
any of these directions, some of the objective functions from the original MOP decrease
simultaneously, while the others can either decrease or just maintain the same value. In
other words, the aim of this method is to describe a set of descent directions rather than a
single one. An analytical way to calculate this set of directions is also shown. This method
only requires a few matrix operations and the solution of a linear optimization problem.
Once the set of descent directions is settled, one of such directions is randomly selected. The
method mentioned above is called Combined-objectives Repeated Line Search (CORL) in
[2]. A later improvement for CORL (by combining it with other criteria) can be found in [3].
In both cases, the hybridization of CORL is made by a a combination with an Estimation
Distribution Algorithm (EDA) calledMIDEA [4]. The hybridization is made in the following
manner: at the end of the generational cycle, i.e., after the variation operators have been
applied to the population, the algorithms choose a specific set of individuals in order to
perform the local search over them. Thus, an improvement on the fitness for each one of
them is obtained.

A revision of this method was presented by Harada et al. [22]. They used the ideas
introduced in [15] to build what they called the Pareto Descent Method (PDM). These
researchers proposed PDM as an option to deal with particular constrained MOPs, when
the solution lies on the boundary between the feasible and the infeasible regions. In those
cases, it is necessary to find different descent directions. The algorithmic complexity of
PDM is again polynomial—as its authors refer—because the basic operations of this method
consist of solving systems of linear equations. Same as with other gradient-based local search
engines, PDM performs successfully on MOPs with no local Pareto fronts. Harada et al.
[22] compared PDM against CORL and also against a simple weighted linear aggregating
function. They also evaluated a randomized generator of solutions, similar to the mutation
mechanism used in Evolution Strategies—they concluded that this last method was the
worst performer. PDM does not show dramatic improvements over the other methods,
except in the specific case when CORL has trouble (on a three-objective problem). In this
particular situation, PDM does not obtain a set of descent directions—as CORL does—but
it offers a good alternative. There is no memetic algorithm based on PDM; this is left by
the authors as future work. In the same work, the authors stated that their method could
have scalability issues when more than three objectives are used.

In [62], Shukla introduced the use of two stochastic gradient-based techniques to im-
prove the mutation mechanism of NSGA-II. These two techniques are Schäffler’s stochastic
method [58] and Timmel’s [68] method. Both hybrid algorithms were competitive in some
modified versions of the well-known ZDT test problems, outperforming the plain NSGA-II.

24 Book title goes here

The ZDT4 problem, however, could not be properly solved by any of these hybrids. Only
the NSGA-II was able to converge to the true Pareto front of ZDT4, since all the hybrids got
trapped in local Pareto fronts. It is clear that the hybrids proposed by Shukla are relatively
straightforward approaches that could be improved, but they also illustrate the local nature
of the gradient-based information and its possible limitations. As an example, Figure 1.7
shows the set of points generated by the HCS2, a more sophisticated local search engine
which is obviously trapped in false fronts at the same test problem indicated before (ZDT4).

FIGURE 1.7: This figure shows the set of points generated by the repeated application of
the operator HCS2, starting from two different points A and B. In this test problem (ZDT4)
local Pareto fronts are formed from different points, far away from the global one.

Sequential quadratic programming: In [25] a gradient-based local algorithm (Sequen-
tial Quadratic Programming (SQP)), was used in combination with NSGA-II and SPEA [79]
to solve the ZDT benchmark suite [76]. The authors stated that if there are no local Pareto
fronts, the hybrid MOEA has faster convergence toward the true Pareto front than the orig-
inal approach. Furthermore, they found that the hybridization technique does not decrease
the solution diversity.

1.8 Approaches based on Nelder and Mead’s Algorithm

The Multi-Objective Memetic Algorithms (MOMAs) presented in the above sections,
require the gradient information of the functions. Therefore, their use is limited to certain
types of problems. This has motivated the development of new approaches that couple direct
search methods (i.e., methods that do not require gradient information) with a MOEA.
Among the mathematical programming techniques available for this coupling, Nelder and

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 25

Mead’s algorithm [50] is perhaps the most obvious choice, since it is the most popular direct
search method adopted for solving unconstrained optimization problems. Nelder and Mead’s
method, also known as the Nonlinear Simplex Search (NSS), has been used extensively
to solve parameter estimation problems as well as other optimization problems since its
inception, in 1965. The search done by the NSS is based on geometric operations (reflection,
expansion, contraction and shrinkage) on a set of points, which define an n-dimensional
polygon called “simplex”. Mathematically, an n-simplex can be defined as follows.

Definition 7 A simplex or n-simplex ∆ is the convex hull of a set of n + 1 affinely inde-
pendent points ∆i (i = 1, . . . , n+ 1), in some Euclidean space of dimension n.

If the vertices of the simplex are all mutually equidistant, then the simplex is said to be
regular. Thus, in two dimensions, a regular simplex is an equilateral triangle, while in three
dimensions, a regular simplex is a regular tetrahedron.

The NSS expands or focuses the search adaptively on the basis of the topography of the
fitness landscape. The full algorithm is defined stating three scalar parameters to control
the movements performed in the simplex: reflection (ρ), expansion (χ), contraction (γ) and
shrinkage (σ). According to Nelder and Mead [50], these parameters should satisfy:

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, and 0 < σ < 1 (1.16)

The nearly universal choices used in the Nelder and Mead algorithm are:

ρ = 1, χ = 2, γ =
1

2
, and σ =

1

2
(1.17)

At each iteration of the NSS, the n+ 1 vertices ∆i’s of the simplex represent solutions
which are evaluated and sorted according to: f(∆1) ≤ f(∆2) ≤ . . . ≤ f(∆n+1).

Considering ∆ = {∆1,∆2, . . . ,∆n+1} as the simplex with the vertices sorted according
to the function value, the transformations performed by the NSS into the simplex are defined
as:

1. Reflection: xr = (1 + ρ)xc − ρ∆n+1 (see Figure 1.9).

2. Expansion: xe = (1 + ργ)xc − ρχ∆n+1 (see Figure 1.10).

3. Contraction:

(a) Outside: xoc = (1 + ργ)xc − ργ∆n+1.

(b) Inside: xic = (1− γ)xc + γ∆n+1 (see Figure 1.11).

4. Shrinkage: Each vertex of the simplex is transformed by the geometric shrinkage de-
fined by: ∆i = ∆1 +σ(∆i−∆1), i = 2, . . . , n+1, and the new vertices are evaluated—
see Figure 1.12.

where xc = 1
n

∑n
i=1 ∆i is the centroid of the n best points (all vertices except for ∆n+1),

∆1 and ∆n+1 are the best and the worst solutions identified within the simplex, respectively.
At each iteration, the simplex is modified by one of the above movements, according to the
following rules:

1. If f(∆1) ≤ f(xr) ≤ f(∆n), then ∆n+1 = xr.
2. If f(xe) < f(xr) < f(∆1), then ∆n+1 = xe,

otherwise ∆n+1 = xr.
3. If f(∆n) ≤ f(xr) < f(∆n+1) and f(xoc) ≤ f(xr),

then ∆n+1 = xoc, otherwise perform a shrinkage.
4. If f(xr) ≥ f(∆n+1) and f(xic) < f(∆n+1),

then ∆n+1 = xic, otherwise perform a shrinkage.

26 Book title goes here

In the last few years, some MOMAs that combine the NSS with different state-of-the-art
MOEAs have been reported in the specialized literature. In the following, we present several
hybrid approaches that have reported significant improvements with respect to the original
MOEA adopted.

D
1

D
0

D
2

D
3

FIGURE 1.8: An n-simplex with n = 2

D
1

D
0

D
2

x
r

FIGURE 1.9: Reflection

D
1

D
0

D
2

x
e

FIGURE 1.10: Expansion

D
1

D
0

D
2

x
o c

D
1

D
0

D
2

x
i c

FIGURE 1.11: Inside and outside contrac-
tion

D
0

v
1

v
3

v
2

FIGURE 1.12: Shrinkage

1.8.1 A Multi-objective GA-Simplex Hybrid Algorithm

Koduru et al. [35] proposed a hybrid GA using fuzzy dominance and Nelder and Mead’s
algorithm. The simplex search algorithm is adopted to improve solutions in the population
of a GA. This memetic approach is used to estimate the parameters of a gene regulatory
network for flowering time control in rice. The memetic algorithm minimizes the difference
between the model behavior and real-world data. Because of the nature of the data, a
multi-objective approach is stated.

In order to understand the fuzzy dominance relation, the following definitions are intro-

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 27

duced. Assuming a minimization problem with n decision variables and considering X ⊂ Rn
as the solution space, i.e., the set of all possible solution vectors, the fuzzy i-dominance by
a solution is defined as follows.

Definition 8 Given a monotonically nondecreasing function µdomi : X → [0, 1], i =
{1, . . . , n} such that µdomi (0) = 0, solution u ∈ X is said to i-dominate solution v ∈ X , if
and only if fi(u) < fi(v). This relationship will be denoted as u ≺Fi v. If u ≺Fi v, the degree
of fuzzy i-dominance is equal to µdomi (fi(v)− fi(u)) ≡ µdomi (u ≺Fi v). fuzzy dominance can
be regarded as a fuzzy relationship u ≺Fi v between u and v [44].

Definition 9 Solution u ∈ X is said to fuzzy dominate solution v ∈ X if and only if
∀i ∈ {1, . . . , k},u ≺Fi v. This relationship will be denoted as u ≺F v. The degree of fuzzy
dominance can be defined by invoking the concept of fuzzy intersection [44]. If u ≺F v, the
degree of fuzzy dominance µdom(u ≺F v) is obtained by computing the intersection of the
fuzzy relationships u ≺Fi v for each i. The fuzzy intersection operation is carried out using
a family of functions called t-norms, denoted by

⋂
. Hence,

µdom(u ≺F v) =

k⋂
i=1

µdomi (u ≺ v) (1.18)

where k is the number of objective functions.

Definition 10 Given a population of solutions P ⊂ X , a solution v ∈ P is said to be fuzzy
dominated in P iff it is fuzzy dominated by any other solution u ∈ P . In this case, the degree
of fuzzy dominance can be computed by performing a union operation over every possible
µdom(u ≺F v), carried out using t-co norms, that are denoted by

⋃
. Hence, the degree of

fuzzy dominance of a solution v ∈ P in the set P is given by,

µdom(P ≺F v) =
⋃
u∈P

µdom(u ≺F v) (1.19)

In order to calculate the fuzzy dominance relationship between two solution vectors,
trapezoidal membership functions are used. Therefore,

µdomi (u ≺Fi v) =

0 if fi(v)− fi(u) < 0,
fi(v)−fi(u)

pi
if ≤ fi(v)− fi(u) < pi,

1 otherwise.

(1.20)

where pi determines the length of the linear region of the trapezoid for the objective function
fi. The t-norm and t-co norms are defined as x ∩ y = xy and x ∪ y = x+ y − xy. Both are
standard forms of operators [44].

At each generation t, a fraction of the next population Pt+1 is obtained by performing
genetic operators and the rest of the population is stated by using the NSS as it is illustrated
in Figure 1.13. At the beginning of each iteration, the fuzzy dominances of all solutions in
the current population Pt are calculated according to the equation (1.20). Then, the fuzzy
dominance of the population is stored as a two-dimensional array, each entry of which is a
fuzzy dominance relationship between two solution vectors. The first part of the population
is obtained by evolving a set B of N−(n+1) solutions chosen randomly from the population
Pt, where N denotes the population size and n the number of decision variable of the MOP.
The subpopulation B is evolved performing genetic operators (crossover and mutation) and
the fuzzy dominance relation is used as a measure of fitness during the selection into the
GA. The resulting offspring population Q1 is inserted as part of the next population Pt+1.

28 Book title goes here

Population Pt

Population Pt+1

crossover
+

mutation

simplex

n+1 solutionsN-(n+1) solutions

FIGURE 1.13: The offspring population generated by the multi-objective GA-Simplex
Hybrid Algorithm

The second part of the population is generated by the NSS. The simplex is built by
selecting a sample set S of n + 1 solutions from the current population Pt and then, the
centroid c of the sample S is calculated. Any solution u ∈ S at a distance ||c−u|| > ρsimplex
is rejected and replaced with another one taken in a random way from the population
Pt, where ρsimplex represents the radius parameter of the simplex and || · || denotes the
Euclidean norm. This process is repeated until either all the sample solutions fit within the
radius ρsimplex, or the total replacements exceed rmax. After selecting the initial vertices of
the simplex, the NSS is performed for a total of α times. For each solution in the simplex,
fuzzy dominance is calculated among solutions of the simplex and the vertices are sorted
according to the fuzzy dominance relation. From the solutions obtained by the NSS, a set
Q2 of the best n+ 1 solutions (according to the fuzzy dominance relation) are selected and
they are inserted into the next population Pt+1. The evolutionary process of this MOMA
is carried out during Tmax generations. Algorithm 7 shows the general framework of the
multi-objective GA-Simplex Hybrid Algorithm.

The authors suggested the use of α = 10 as the maximum number of iterations for the
NSS. The coefficients for the reflection, expansion and contraction movements of the NSS
were defined as: ρ = 1, χ = 1.5 and γ = 0.5, respectively. The shrinkage step was omitted in
this memetic approach. The hybrid GA was tested using a population size of N = 100 and
it was was compared against a well-known state-of-the art MOEA: SPEA. A more detailed
description of this algorithm can be found in [35].

1.8.2 A Multi-objective Hybrid Particle Swarm Optimization Algo-
rithm

Koduru et al. [36] hybridized a multi-objective Particle Swarm Optimization (PSO)
algorithm with Nelder and Mead’s method. The NSS was used as a local search engine for
finding nondominated solutions in the neighborhood defined by the solution to be improved.
This bio-inspired technique evolves a set of solutions called swarm P for approximating
solutions towards the Pareto optimal front. Each particle xi in the swarm possesses a flight
velocity which is initially set to zero. The swarm is evolved by updating both the velocity
vt+1
i and the position of each particle xt+1

i according to the following equations:

vt+1
i = w(vti + c1r1(xpb,i − xtt) + c2r2(xgb,i − xti)) (1.21)

and the new particle position is updated according to equation ([30]):

xt+1
i = xti + vt+1

i (1.22)

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 29

Input:
N : the population size;
Tmax: the maximum number of generations;
Output:
P : the final approximation to the Pareto optimal front;

1 begin
2 t = 0;
3 Generate a random population Pt of size N ;
4 Evaluate the population Pt;
5 while t < Tmax do
6 // Select the solutions for performing the evolutionary process;
7 B = xi ∈ Pt such that: xi is randomly chosen from Pt and |Pt| = N − (n+ 1);
8 Q1 = Mutation(Crossover(B)); // Apply genetic operators

9 S = xi ∈ Pt such that: |S| = n+ 1; // Defining the simplex

10 for j = 0 to j < α do
11 Execute NSS using the initial simplex S;
12 end
13 Define Q2 as the best n+ 1 solutions (according to fuzzy dominance) found by

the simplex search;
14 Pt+1 = Q1 ∪Q2;
15 t = t+ 1;

16 end
17 return Pt
18 end

Algorithm 7: The Multi-objective GA-Simplex Hybrid Algorithm

where w ≥ 0 represents the constriction coefficient, c1, c2 ≥ 0 are the constraints on
the velocity, r1, r2 are two random variables having uniform distribution in the range (0, 1).
vi,xpb,i and xgb,i represent the velocity, the personal best and the global best position for
the ith particle, respectively. Since at the beginning of the search, a particle does not have
a previous position, the best personal position is initialized with the same position as the
particle, i.e., xpb,i = xi. To avoid getting stuck in a local minimum, a turbulence factor is
implemented into the velocity update (see equation (1.21)), which is similar to a mutation
operator in GAs. The modified update equation is given by:

vt+1
i = w(vti + c1r1(xpb,i − xtt) + c2r2(xgb,i − xti)) + exp(−δt) · u (1.23)

where δ is the turbulence coefficient and u is a uniformly distributed random number
in [−1, 1]. The negative exponential term ensures that the turbulence in the velocities is
higher at the initial generations, which promotes a more explorative behavior. Later on, the
behavior of the algorithm will become more exploitative.

The nondominated solutions found during the evolutionary process are stored in an
external archive denoted as A. This set of nondominated solutions is updated during the
evolutionary process by selecting the best N solutions from the union of the current popula-
tion P and the external archive A, according to the fuzzy dominance relation. In a previous
implementation of fuzzy dominance [35], the membership functions µdomi (·) used to com-
pute the fuzzy i-dominances were defined to be zero for negative arguments. Therefore,
whenever fi(u) > fi(v), the degree of fuzzy dominance u ≺Fi v is necessarily zero. In this
memetic approach, nonzero values are allowed. The membership functions used are trape-

30 Book title goes here

zoidal, yielding nonzero values whenever their arguments are to the right of a threshold ε.
Mathematically, the memberships µdomi (u ≺F v) are defined as:

µdomi (δfi) =

0, δfi ≤ −ε
δfi
δi
, −ε < δfi < δi − ε

1, δfi ≥ δi − ε
(1.24)

where δfi = fi(v)− fi(u). Given a population of solutions P ⊂ X , a solution v ∈ P is
said to be fuzzy dominated in P iff it is fuzzy dominated by any other solution u ∈ S. In
this way, each solution can be assigned a single measure to reflect the magnitude by which
it dominates the others in a population. Better solutions within a set will have a lower fuzzy
dominance value, although, unlike in [35] non-dominated solution may not necessarily be
assigned zero values. In order to compare multiple solutions having similar fuzzy dominance
values, the crowding distance of NSGA-II is used [11].

At each generation of the multi-objective PSO, NSS is executed. Considering a MOP
with n decision variables, the set of solutions P is divided into separate clusters, where
each cluster consists of proximally located solutions and it is generated by using a variant
of the k-means algorithm [42]. The clusters are disjoint, with n + 1 points each one. Each
cluster represents the simplex from which the local simplex search is performed. At each
iteration of the local search procedure, NSS performs l movements (reflection, expansion or
contraction) into the simplex before finishing its execution. The solutions found by the NSS
are used to update both the population P and the archive A by using the fuzzy dominance
relation. Algorithm 8 shows the general framework of the multi-objective PSO.

Input:
Tmax: maximum number of generations;
Output:
A: final approximation to the Pareto optimal front;

1 begin
2 t = 0;
3 Generate a set of particles Pt of size N // using a uniform distribution;
4 Initialize all velocities vti , to zero;
5 while t < tmax do
6 Evaluate the set of particles Pt;
7 Evaluate the fuzzy dominance in the population Pt according to

equation (1.24);
8 Update the archive A;
9 Update each particle xi ∈ Pt including its personal best and global best;

10 Randomly initialize k cluster centers;
11 Assign each particle xi to a cluster using the k-means algorithm;
12 For each cluster, apply the simplex search algorithm.;

13 Update the velocities vt+1
i according to equation (1.23);

14 Update the positions xi ∈ Pt according to equation (1.22);
15 t = t+ 1;

16 end
17 return Pt
18 end

Algorithm 8: The Multi-objective Hybrid PSO

The authors suggested the use of k = 9 as the number of centers for the k-means

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 31

algorithm, and l = 2 for the number of movements (reflection, expansion or contraction)
into the simplex. The simplex search was tested using ρ = 1, χ = 1.5 and γ = 0.5 for
the reflection, expansion and contraction, respectively. In this hybrid multi-objective PSO,
the use of the shrinkage transformation is omitted. The population size was set N = 100
and the external archive was limited to a maximum of 100 particles. The proposed hybrid
was used to solve artificial test functions and a molecular genetic model plant problem
having between 3 and 10 decision variables and two objective functions. For a more detailed
description of this algorithm see [36].

1.8.3 A Nonlinear Simplex Search Genetic Algorithm

Zapotecas and Coello [70] presented a hybridization between the well-known NSGA-II
and Nelder and Mead’s method. The proposed Nonlinear Simplex Search Genetic Algorithm
(NSS-GA) combines the explorative power of NSGA-II with the exploitative power of Nelder
and Mead’s method, which acts as a local search engine. The general framework of the
proposed MOMA is shown in Algorithm 9. This evolutionary approach evolves a population
Pt by using the genetic operators of the NSGA-II (Simulated Binary Crossover (SBX) and
Polynomial-Based Mutation (PBM)) and then, the local search mechanism is applied. The
general idea of the local search procedure is to intensify the search towards better solutions
for each objective function and the maximum bungle (sometimes called knee) of the Pareto
optimal front. The main goal of the NSS is to obtain Λ, which is defined as:

Λ = λ1 ∪ λ2 ∪ · · ·λk ∪Υ

where λi is a set of the best solutions found for the i-th objective function of the MOP. Υ is
a set of the best solutions found by minimizing an aggregating function which approximates
solutions to the knee of the Pareto optimal front.

The local search mechanism is applied at each n
2 generations, where n denotes the num-

ber of decision variables of the MOP. Initially, the local search is focused on minimizing,
separately, the objective functions fi’s of the MOP. Once the separate functions are mini-
mized, an aggregating function is used for approximating solutions to the maximum bungle
of the Pareto front. The initial search point from which the local search starts is defined
according to the following rules:

• Minimizing separate functions. In the population P , an individual x∆ ∈ P ? is chosen
such that:

x∆ = xl|xl = min
∀xl∈P?

{fi(xl)}

where P ? is a set of nondominated solutions within the population P . In other words,
the selected individual is the best nondominated solution.

• Minimizing an aggregating function. An individual x∆ ∈ P ? is chosen such that it
minimizes:

G(x∆) =

k∑
i=1

|zi − fi(x∆)|
|zi|

(1.25)

where z? = (z?i , . . . z
?
k) is the utopian vector defined by the minimum values f∗i of

the k objective functions until the current generation. In this way, the local search
minimizes the aggregating function defined by:

g(x) = ED(F(x), z?) (1.26)

where ED is the Euclidean distance between the vector of objective functions F(x)
and the utopian vector z?.

32 Book title goes here

The selected solution x∆ is called “simplex-head”, which is the first vertex of the n-
simplex. The remaining n vertices are created in two phases:

1. Reducing the Search Domain: A sample of s solutions which minimize the objective
function to be optimized is identified, and then, the average (m) and standard devia-
tion (σ) of these decision variables is computed. Based on that information, the new
search space is defined as:

Lbound = m− σ
Ubound = m + σ

where Lbound and Ubound are the vectors which define the lower and upper bounds
of the new search space, respectively. In this work, the authors proposed to use s =
0.20 ×N , where N is the population size of the evolutionary algorithm—i.e. 20% of
the population size.

2. Building the Vertices: Once the new search domain has been defined, the remaining
vertices are determined by using either the Halton [19] or the Hammersley [20] se-
quence (each has a 50% probability of being selected) in the new bounds Lbound and
Ubound, previously defined.

Once the simplex is defined, the NSS method is executed during a determined number
of iterations defined by the following stopping criteria. The local search is stopped if: 1) it
does not generate a better solution after n+ 1 iterations, or 2) if after performing 2(n+ 1)
iterations, the convergence is less than ε. The knowledge of the local search is introduced
to the population of the NSGA-II using the crowding comparison operator [11] using the
union of the current population P and the set of solutions found by the local search Λ, i.e.
P ∪ Λ.

The authors suggested a population size of N = 100, and the simplex was controlled
using ρ = 1, χ = 2 and γ = 0.5 for the reflection, expansion and contraction coefficients,
respectively. The shrinkage step is not employed in this approach. The threshold for the
convergence in the simplex search was set to: ε = 1 × 10−3. The hybrid algorithm was
tested over artificial test functions having between 10 and 30 decision variables, and two
and three objective functions. A more detailed description of this hybrid algorithm can be
found in [70].

1.8.4 A Hybrid Non-dominated Sorting Differential Evolution Algo-
rithm

Zhong et al. [75] hybridized Nelder and Mead’s method with Differential Evolution
(DE) [66] by using nondominated sorting. The proposal of Zhong et al. adopts nonlinear
simplex search as its local search engine in order to obtain nondominated solutions along
the evolutionary process according to the Pareto dominance relation. The sorting strategy
adopted in this work, involves the evaluation of the fitness function of each solution, and the
dominance relation among the individuals of the population is defined according to their
fitness cost. Throughout the search, the nondominated solutions are stored in a separate set
A which, at the end of the search, will constitute an approximation of the Pareto optimal
set.

At each iteration t, DE generates an offspring population Qt by evolving each solution
xi of the current population Pt. The DE/best/2 strategy is employed in order to generate
the trial vector vi:

vi = xbesti + F · (xr0 − xr1) + F · (xr2 − xr3) (1.27)

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 33

Input:
tmax: maximum number of generations;
Output:
P : final approximation to the Pareto front;

1 begin
2 t = 0;
3 Randomly initialize a population Pt of size N ;
4 Evaluate the fitness of each individual in Pt;
5 while t < tmax do
6 Qt = Mutation(Crossover(B)); // Apply the genetic operators of

NSGA-II

7 Rt = Pt ∪Qt;
8 Assign to P ∗ the N best individuals from Rt // According to the crowding

comparison operator;
9 if (t mod n

2 = 0) then
10 Get Λ set by minimizing each function of the MOP and using the

aggregating function (equation (1.26)).
11 R∗t = P ∗t ∪ Λ;
12 Assign to Pt+1 the N best individuals from R∗t // According to the

crowding comparison operator;

13 else
14 Pt+1 = P ∗;
15 end
16 t = t+ 1;

17 end
18 return Pt
19 end

Algorithm 9: The Nonlinear Simplex Search Genetic Algorithm

where xr0 ,xr1 ,xr2 and xr3 are different solutions taken of Pt and xbesti is a solution randomly
chosen from the set of nondominated solutions A. The trial vector vi is then used for
generating the new solution x′i by using binary crossover:

x′i(j) =

{
vi(j) if r < CR

xi(j) otherwise
(1.28)

where r is a random number having uniform distribution, j = 1, . . . , n is the jth parameter
of each vector and CR represents the crossover ratio. After the whole offspring population
Qt is generated, the nondominated sorting of Pt ∪ Qt is used for obtaining the set of N
solutions (N is the number of solutions in Pt) for the next population Pt+1.

In the local search mechanism, a simplex S is built by randomly selecting a nondomi-
nated solution from A, and the other n points (where n is the number of decision variables)
are randomly chosen from the current population Pt. If the population Pt cannot provide
enough points to create the simplex, other points are selected from A. After the simplex is
built, the vertices of the simplex are stored according to the Non-dominated Sorting Differ-
ential Evolution (NSDE). The sorting strategy involves evaluating the fitness value of each
solution, and the dominance relation among the solutions in the simplex is built according
to their fitness cost. NSS performs any movement in the sorted simplex. The movements in
the simplex are performed according to the Nelder and Mead algorithm. However, for the

34 Book title goes here

comparisons among the solutions, the dominance relation is used instead of a function cost.
The shrinkage step is performed if either inside or outside, a contraction fails. In this case,
all the vertices into the transformed simplex S are sorted to obtain the solutions which are
nondominated. Considering m as the number of the current nondominated solutions in the
simplex, the shrinkage step is performed according to the following description.

If m > 1, then there exist different converging directions, which could help to maintain
the diversity of the solutions. Then, new simplexes S1, S2, . . . , Sm with m nondominated
solutions each as respective guiding points, are generated. The new simplexes are stored
within a bounded array. If the total number exceeds the storing space of the array, no more
new simplexes are accepted. Then, these simplexes iterate to shrink the Pareto fronts in the
array order as it is described in the following; If m ≤ 1 or S ∈ S1, . . . , Sm, set the Pareto
point m correspondingly in the simplex Sm as the guiding point x1. The vertices in the
simplex are relocated according to:

vi = x1 + σ(xi − x1), i = 2, . . . , n+ 1,

where σ is the shrinkage coefficient. The new form of the simplex uses x1,v2, . . . ,vn+1 as
vertices to form the new simplex.

The Euclidean distance among the centroid and the vertices of the simplex is used
for assessing the convergence at each simplex. After the convergence has taken place in
all simplexes of the array, the nondominated solutions found by the simplex searches are
introduced into the population of the evolutionary algorithm according to the nondominated
sorting strategy used in NSDE.

The authors suggested a population size of N = 20× k×n where n and k represent the
number of decision variables and the number of objective functions of the MOP, respectively.
The DE/best/2/bin strategy was used with a crossover ratio CR = 0.8 and a weighting
factor F = 0.5. The nonlinear simplex search was performed using ρ = 1, χ = 2, γ = 0.5 and
σ = 0.5 for the reflection, expansion, contraction and shrinkage movements, respectively.
The Euclidean distance criterion to assess the convergence was set as 1× 10−12. For a more
detailed description of this multi-objective evolutionary technique the interested reader can
be referred to [75].

1.8.5 A Multi-Objective Memetic Evolutionary Algorithm based on De-
composition

Zapotecas and Coello [73] presented a memetic algorithm using Nelder and Mead’s algo-
rithm which was coupled to MOEA/D [74]. The local search engine is based on the Multi-
objective Nonlinear Simplex Search Algorithm (MONSS) framework presented in [72]. The
memetic evolutionary algorithm exploits the promising neighborhoods of the nondominated
solutions found by MOEA/D. Considering P as the set of solutions found by MOEA/D in
any generation, this approach assumes that if a solution p ∈ P is nondominated, then there
exists another nondominated solution q ∈ Ω such that ||p−q|| < δ for any small δ ∈ R+. In
other words, the probability that q is nondominated with respect to p in the neighborhood
defined by δ is equal to one, which implies that q is also nondominated. This property
is considered to obtain new nondominated solutions departing from nondominated solu-
tions located in the current population P . Since MOEA/D decomposes a MOP into several
scalarization subproblems and such subproblems are solved during the evolutionary process,
if all solutions in P are nondominated, then it assumes that the minimum value to each
subproblem has been achieved. Considering that at the end of the evolutionary process,
the population converges to a particular region of the search space (the place where the
nondominated solutions are contained), the performance of the local search engine should

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 35

be better when the diversity in the population is higher, i.e., when having a low number of
nondominated solutions. The local search procedure is applied then, when the percentage
of nondominated solutions in P is less than a certain threshold.

Considering P ? ⊆ P as the set of nondominated solutions found by MOEA/D in any
generation, and assuming that all the nondominated solutions in P ? are equally efficient,
the solution pini which starts the local search is randomly taken from P ?. Solution pini
represents not only the initial search point, but also the simplex head from which the
simplex is built. Let wini be the weighting vector that defines the subproblem for which the
initial search solution pini is minimum. Let S(wini) be the neighborhood of the n closest
weighting vectors to wini (where n is the number of decision variables of the MOP). Since
the dimensionality of the simplex depends of the number of decision variables of the MOP,
the population size of the MOEA needs to be larger than the number of decision variables.
Then, the simplex defined as:

∆ = {pini,p1, . . . ,pn}

is built in two different ways by using a probability Ps = 0.3, according to the two following
strategies:

i. Neighboring solutions: The remaining n solutions pi ∈ P (i = 1, . . . , n) are chosen,
such that, pi minimizes each subproblem defined by each weighting vector in S(wini).
This is the same strategy employed for constructing the simplex used in MONSS [72].

ii. Sample solutions: The remaining n solutions pi ∈ Ω (i = 1, . . . , n) are generated
by using a low-discrepancy sequence. The Hammersley sequence [20] is adopted to
generate a well-distributed sampling of solutions in a determined search space. In an
analogous way as in [70], this approach uses a strategy based on the genetic analysis
of a sample from the current population for reducing the search space. However,
here, the average (m) and standard deviation (σ) of the solutions that minimize each
subproblem defined by the weighting vectors in S(wini) are computed. In this way,
the new bounds are defined by:

Lbound = m− σ
Ubound = m + σ

where Lbound and Ubound are the vectors which define the lower and upper bounds of
the new search space, respectively.

Once the search space has been reduced, the n remaining solutions are generated by
means of the Hammersley sequence using as bounds Lbound and Ubound.

Let B(wini) be the neighborhood of the T closest weighting vectors to wini, such that
wini defines the subproblem for which the initial search solution pini is minimum. Let
D(wini) be the Ar = 5 closest weighting vectors to wini. NSS focuses on minimizing a
subproblem defined by the weighting vector wobj , which is defined according to the following
rules:

i. The farthest weighting vector in B(wini) to wini, if it is the first iteration of the local
search,

ii. otherwise, a random weighting vector taken from D(wini) is employed.

At each iteration of the local search, the vertices of the simplex ∆ are sorted according
to their value for the subproblem that it tries to minimize. In this way, a movement into

36 Book title goes here

the simplex is performed for generating the new solution pnew by using Nelder and Mead’s
method. The new solution generated by the NSS replaces one or more solutions of the
population according to: Let B(wobj) and W = {w1, . . . ,wN} be the neighborhood of the
T closest weighting vectors to wobj , and the well-distributed set of all weighting vectors,
respectively. The set of weighting vectors is defined by:

Q =

{
B(wobj), if r < 0.9
W otherwise

where r is a random number having uniform distribution.
The population P is updated by replacing at most Rls solutions from P such that,

g(pnew|wi, z) < g(xi|wi, z), where wi ∈ Q and xi ∈ P is the solution that xi minimizes the
subproblem defined by wi. The local search is performed by a maximum number of fitness
function evaluations Els. If the nonlinear simplex search overcomes this maximum number
of evaluations, the simplex search is stopped and the evolutionary process of MOEA/D
continues. The search could be inefficient if the simplex has been deformed so that it has
collapsed into a region where there are no local minima. Therefore, if the NSS does not find
a minimum value in n+ 1 iterations, a reinitialization of the simplex is performed.

The authors used ρ = 1, χ = 2 and γ = 0.5 for the reflection, expansion and contraction
movements of the NSS. The population size used was set as N = 100 for two-objective
problems and 300 for three-objective problems. The action range for the NSS was set as
Ar = 5. The number of solutions to be replaced was set as Rls = 15. The total number of
iterations of the NSS was set as Els = 300. The proposed memetic algorithm was tested
using artificial functions between 10 and 30 decision variables, with two and three objectives.

1.9 Other Direct Search Approaches

In the last few years, several algorithms that hybridize Nelder and Mead’s algorithm
with a MOEA have been presented. Such implementations have used solutions from the
population of the MOEA as the vertices to define the simplex. Since the solutions in the
population are evaluated, the vertices of the simplex do not need to be evaluated. This
reduces the number of function evaluations that a MOMA based on the NSS could require.
Nevertheless, in the specialized literature there are other direct search methods that do
not require a simplex in order to obtain an optimal point of a function, but their use had
been somewhat scarce in MOMAs during several years. Most of these methods start the
search from a single point (which implies less information of the fitness landscape), and
generate a solution for each iteration, whereupon, the convergence to an optimal value
could require several function evaluations and the hybridization with a MOEA could be
inefficient. However, in recent years, the coupling of this type of direct search methods with
a MOMA has attracted a lot of interest from some researchers. In the following sections
we present some strategies that have been used for coupling other direct search methods
(different to Nelder and Mead’s method) with a MOEA.

1.9.1 A Multi-Objective Meta-model Assisted Memetic Algorithm

Zapotecas and Coello [71] presented a strategy which combines a MOEA with a direct
search method assisted by a surrogate model. The local search mechanism adopts the Hooke
and Jeeves algorithm [24] as its local search engine which is assisted by a surrogate model
based on Support Vector Regresion (SVR).

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 37

Input:
a stopping criterion;
N : The number of the subproblems considered in the memetic algorithm;
W : A well-distributed set of weighting vectors {w1, . . . ,wN};
T : The number of weight vectors in the neighborhood of each weighting vector;
Rls: The maximum number of evaluations for the local search;
Als: The action range for the local search.
Output:
P : the final approximation to the Pareto optimal front found by the memetic
algorithm.

1 begin
2 Compute the Euclidean distances between any two weighting vectors and then

work out the T closest weighting vectors to each weighting vector. For each
i = 1, . . . , N , set B(i) = {i1, . . . , iT } where wi1 , . . . ,wiT are the T closest
weighting vectors to wi;

3 Generate an initial population P = {x1, . . . ,xN} randomly. Set FV i = F(xi);

z = (+∞, . . . ,+∞)T ;
4 while the stopping criteria is not satisfied do
5 Perform an iteration of MOEA/D (see Algorithm 3);
6 if the percentage of nondominated solutions in P is less than 50% then
7 while there are enough resources and the simplex has not collapsed do
8 Select a solution from P as the initial search solution (pini);
9 Build the simplex;

10 Select the search direction for the NSS;
11 Perform an iteration of NSS for obtaining pnew;
12 Update the population P using the new solution pnew;

13 end

14 end

15 end

16 end

Algorithm 10: The Multi-Objective Memetic Evolutionary Algorithm based on De-
composition

Multi-Objective Meta-model Assisted Memetic Algorithm (MOMAMA) generates a
sample S of size 2N (where N is the population size) which is randomly distributed in
the search space using the Latin hypercube sampling method [43]. The surrogate model
is trained using the set of solutions D = S which is evaluated with the real fitness func-
tion. The initial population P0 is defined by N solutions randomly chosen from S. The
nondominated solutions found throughout the search are stored in an external archive A.
The external archive is always maintained with at most N nondominated solutions, and it
is pruned by performing Pareto ranking [11]. A technique based on clustering is used for
selecting the best nondominated solutions when the external archive contains more than N
solutions.

At each iteration t, recombination takes place between each individual xi ∈ Pt and an
individual which can be chosen from either Rt or A, according to the next rule.

38 Book title goes here

parent1 = xi ∈ Pt ∀i = 1, . . . , N

parent2 =

{
y ∈ Rt, if

(
g < 1− |A|2N

)
y ∈ A, otherwise

(1.29)

where g is a uniformly distributed random number within (0, 1) and y is a solution randomly
chosen from A or Rt. After the parents are recombined, the mutation operator is applied
to each child for obtaining the offspring population Qt. The next population Pt+1 is then
stated by selecting N individuals from Pt ∪Qt according to Pareto ranking [11].

The local search mechanism uses the surrogate model in order to find new solutions
nearby the solutions provided by the MOEA. The local search is guided by a set W of nw
weighting vectors which define a scalar optimization problem using the following augmented
weighting Tchebycheff problem.

min
x∈Rn

max
i=1,...,k

{wi|fi(x)− z?i |}+ α

k∑
i=1

|fi(x)− z?i | (1.30)

where α is a sufficiently small positive scalar and z? represents the utopian vector.
The Hooke and Jeeves algorithm approximates solutions to the Pareto optimal set by

solving the nw Tchebycheff problems. For each weighting vector wj ∈W , a set of solutions
λj which consists of all solutions evaluated into the meta-model is found. The initial search
point x1

s for solving the problem corresponding to the weighting vector w1, is stated as
the x? ∈ Pt ∪ A that minimizes equation (1.30). The remaining initial search points xjs
(j = 2, . . . , nw) are defined by the local optimal solution found by the Hooke and Jeeves
algorithm for the weighting vector wj−1 ∈W .

Let Λ =
⋃nw

j=1 λj be the set of solutions found so far by the local search mechanisms.
Considering that the probability that, given a nondominated solution q∗, there exists an-
other nondominated solution p in its neighborhood is equal to one, i.e.:

P (∃p ∈ Rn : ||q∗ − p|| < δ and q∗ ⊀ p) = 1 (1.31)

for any small δ ∈ R+, the proposed approach generates more approximate solutions by
using DE [66].

The initial population is given by G0 = Λ. Each new individual is stored in an external
archive L according to the dominance rule. The archiving strategy can make that the set
of solutions L increases or decreases its size. The next population for the DE algorithm is
then defined by Gg+1 = L.

Since all the solutions in the archive L are nondominated, we can say that DE has
converged (at least locally) when it has obtained N different nondominated solutions from
the evolutionary process. That is:

if |L| = N then stop the DE algorithm (1.32)

The solutions set Rt obtained by the local search mechanism is given by Rt = L.
However, this stopping criteria is not always satisfied. Thus, Rt set can be defined by
selecting N individuals from Λ ∪ L using Pareto ranking [11] after a certain number of
iterations. The final set Rt is then evaluated using the real fitness function and it is used
for generating the offspring population Qt of the memetic algorithm. After applying the
local search, the surrogate model is retrained by using the data set D with the set of local
optimal solutions Qt, i.e., the training set is defined by D = D∪Qt. Algorithm 11 shows the
general scheme of the proposed MOMAMA. A more detailed description of this evolutionary
approach can be found in [71].

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 39

Input:
Tmax: Maximum number of generations;
Output:
A: Final approximation to the Pareto optimal front;

1 begin
2 A = ∅;
3 Generate S of size 2N // using the Latin Hyper-cubes method;
4 Evaluate(S) // using the real fitness function;
5 P = {xi ∈ S} such that: xi is randomly chosen from S and |Pt| = N ;
6 Rt = S \ Pt;
7 A =UpdateArchive(Rt, A);
8 D = S;
9 while t < Tmax do

10 A =UpdateArchive(Pt, A);
11 Qt =CreateOffspring(Pt, Rt, At); // apply genetic operators

12 Evaluate(Qt); // using the real fitness function

13 D = D ∪Qt;
14 Retrain the meta model using the training set D;
15 Pt+1 =SelectNextPopulation(Pt, Qt); // using Pareto ranking

16 Rt+1 =SurrogateLocalSearch(Pt, A); // using the Hooke and Jeeves

algorithm, and DE into the surrogate model

17 t = t+ 1;

18 end

19 end

Algorithm 11: The Multi-Objective Meta-model Assisted Memetic Algorithm

1.9.2 A Hybrid Multi-objective Evolutionary Algorithm based on the
S Metric

Koch et al. [34] presented a hybrid algorithm which combines the exploratory prop-
erties of the S-Metric Selection Evolutionary Multi-objective Optimization Algorithm
(SMS-EMOA) [1] with the exploitative power of the Hooke and Jeeves algorithm [24] which
is used in the local search engine. SMS-EMOA optimizes a set of solutions according to the
S-metric or Hypervolume indicator [78], which measures the size of the space dominated
by the population. This performance measure is integrated into the selection operator of
SMS-EMOA which aims for maximization of the S-metric and thereby guides the popu-
lation towards the Pareto optimal front. A (µ + 1) (or steady-state) selection scheme is
applied: At each generation, SMS-EMOA discards the individual that contributes least to
the S-metric value of the population. The invoked variation operators are not specific for
the SMS-EMOA but are taken from the literature, namely PBM and SBX, with the same
parametrization as in the NSGA-II [11]. At each iteration, the Hooke and Jeeves algorithm
performs an exploratory move along the coordinate axes. Afterwards, the vectors of the last
exploratory moves are combined to a projected direction that can accelerate the descent of
the search vector. When the exploratory moves lead to no improvement in any coordinate
direction, step sizes are reduced by a factor η. The search terminates after a number of
predefined function evaluations or, alternatively, when the step size falls below a constant
value ε > 0.

The Hooke and Jeeves was conceived for minimizing SOPs, therefore, its use to deal with
MOPs is not possible without modifications. Koch et al. adopted a scalar function by using

40 Book title goes here

the weighting sum approach developed in [12]. Besides, the proposed MOMA introduces
a probability function pls(t) for extending the idea presented in Sindhya et al. [63] who
linearly oscillated the probability for starting the local search procedure. The probability
function adopted in this work is given by:

pls(t) =
pmax · Φ(t mod (αµ))

Φ(αµ− 1)
(1.33)

where the parameter µ refers to the population size of the MOEA and α ∈ (0, 1] is a small
constant value—in the experiments the authors suggested to use α = 0.05. The probability
function oscillates with period α · µ and is linearly decreasing in each period. The auxiliary
function Φ determines the type of reduction, i.e., linear, quadratic or logarithmic, and has
to be defined by the user. Algorithm 12 shows the general framework of the proposed hybrid
SMS-EMOA.

Input:
Tmax: Maximum number of generations;
Output:
A: Final approximation to the Pareto optimal front;

1 begin
2 t = 0;
3 Generate a population Pt of size N ; // using uniform distribution

4 Evaluate the population Pt;
5 while t < Tmax do
6 Select µ parents of Pt;
7 Create population Qt with λ offspring;
8 for i=1 to λ do
9 Choose random variable r ∈ [0, 1];

10 if r ≤ pls(t) then
11 Local search for Qt[i];
12 end

13 end
14 Evaluate λ offspring;
15 Create population Pt+1 out of Pt and Qt;
16 t = t+ 1;

17 end

18 end

Algorithm 12: The hybrid SMS-EMOA

Using the same outlined Algorithm 12, Koch et al. hybridized SMS-EMOA with other
mathematical programming techniques. The multi-objective Newton method [14] and the
step descent method [15] are also hybridized with the SMS-EMOA. Koch et al. emphasize
thed importance of the probability function pls that controls the frequency of the local
search during the optimization process. Three different functions using equation (1.33) and
a constant probability pls were adopted. The hybrid variants using equation (1.33) obtained
a value of α = 0.5 as proposed by Sindhya et al. [63] and the next functions were used.

1. pls(t) with Φ(x) = x (in equation (1.33))

2. pls(t) with Φ(x) = x2 (in equation (1.33))

3. pls(t) with Φ(x) = log(x) (in equation (1.33))

Hybridizing Multi-objective Evolutionary Algorithms with Mathematical Programming Techniques 41

4. pls(t) with Φ(x) = 0.01

Each hybridization with the above probability functions was tested on the ZDT test
suite- The hybrid SMS-EMOA is started with a population size of N = 100, the SBX re-
combination operator proposed by [63] was adopted with a probability 1.0, and the polyno-
mial mutation operator was adopted with probability 1.0. According to the results reported,
the hybrid using the multi-objective Newton method achieved better results than those ob-
tained by both the hybrid SMS-EMOA using Hooke and Jeeves algorithm, and using the
step descent method. More details of this hybridization can be found in [34].

1.10 Conclusions

This chapter has provided a detailed description of the hybridization of MOEAs with
mathematical programming methods. The main motivation for this sort of coupling is,
evidently, to improve the performance that any of these two types of techniques can provide,
when considered separately. Our discussion has included the use of both gradient-based and
non-gradient-based methods for the local search engine. In order to make the chapter self-
contained, the most important required background has also been included.

The development of hybrid MOEAs raises several challenges which include the design
of efficient and effective local search engines (particularly in continuous search spaces), the
proper balance between the global and the local search engines, and the appropriate choice
of the local search engine to be adopted, among others [7].

However, the review of approaches provided in this chapter clearly illustrates the interest
that hybrid MOEAs have attracted in the last few years. Such interest is expected to raise in
the next few years, since this is, indeed, a very promising research line within evolutionary
multi-objective optimization due to the potential benefits that these hybrid MOEAs could
bring (particularly, when dealing with complex real-world problems).

Acknowledgements

The last author gratefully ackowledges support from CONACyT project no. 103570.

Acronyms

SOP Single-objective Optimization Problem

EC Evolutionary Computation

KKT Karush-Kuhn-Tucker

MOEA Multi-Objective Evolutionary Algorithm

MOP Multi-objective Optimization Problem

EA Evolutionary Algorithm

LS Local Search

GA Genetic Algorithm

NSGA Non-dominated Sorting Genetic Algorithm

NSGA-II Non-dominated Sorting Genetic Algorithm II

SPEA Strength Pareto Evolutionary Algorithm

MOGA Multi-Objective Genetic Algorithm

SPEA2 Strength Pareto Evolutionary Algorithm 2

MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition

MOMA Multi-Objective Memetic Algorithm

CDMOMA Cross Dominant Multi-Objective Memetic Algorithm

PMA Pareto Memetic Algorithm

MOGLS Multi-Objective Genetic Local Search

M-PAES Memetic Pareto Archived Evolution Strategy

PDMOSA Pareto Domination Multi-Objective Simulated Annealing

CMODE Coevolutionary Multi-Objective Differential Evolution

MDD Multi-objective Descent Direction

CORL Combined-objectives Repeated Line Search

EDA Estimation Distribution Algorithm (EDA)

PDM Pareto Descent Method

ZDT Zitzler-Deb-Thiele

43

44 Book title goes here

DTLZ Deb-Thiele-Laumanns-Zitzler

SQP Sequential Quadratic Programming

DE Differential Evolution

SVR Support Vector Regresion

MOMAMA Multi-Objective Meta-model Assisted Memetic Algorithm

SBX Simulated Binary Crossover

PBM Polynomial-Based Mutation

PSO Particle Swarm Optimization

MA Memetic Algorithm

NSS Nonlinear Simplex Search

NSS-GA Nonlinear Simplex Search Genetic Algorithm

NSDE Non-dominated Sorting Differential Evolution

MONSS Multi-objective Nonlinear Simplex Search Algorithm

SMS-EMOA S-Metric Selection Evolutionary Multi-objective Optimization Algorithm

EMOA Evolutionary Multi-objective Optimization Algorithm

Bibliography

[1] Nicola Beume, Boris Naujoks, and Michael Emmerich. Sms-emoa: Multiobjective se-
lection based on dominated hypervolume. European Journal of Operational Research,
181(3):1653–1669, 2007.

[2] Peter A.N. Bosman and Edwin D. de Jong. Exploiting Gradient Information in Numer-
ical Multi-Objective Evolutionary Optimization. In Hans-Georg Beyer et al., editor,
2005 Genetic and Evolutionary Computation Conference (GECCO’2005), volume 1,
pages 755–762, New York, USA, June 2005. ACM Press.

[3] Peter A.N. Bosman and Edwin D. de Jong. Combining Gradient Techniques for Numer-
ical Multi-Objective Evolutionary Optimization. In Maarten Keijzer et al., editor, 2006
Genetic and Evolutionary Computation Conference (GECCO’2006), volume 1, pages
627–634, Seattle, Washington, USA, July 2006. ACM Press. ISBN 1-59593-186-4.

[4] Peter A.N. Bosman and Dirk Thierens. The Naive MIDEA: A Baseline Multi-objective
EA. In Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler,
editors, Evolutionary Multi-Criterion Optimization. Third International Conference,
EMO 2005, pages 428–442, Guanajuato, México, March 2005. Springer. Lecture Notes
in Computer Science Vol. 3410.

[5] Martin Brown and R.E. Smith. Effective use of directional information in multi-
objective evolutionary computation. In Genetic and Evolutionary Computation
(GECCO) 2003, volume Volume 2723/2003 of Lecture Notes in Computer Science,
pages 778–789. Springer Berlin / Heidelberg, 2003.

[6] A. Caponio and F. Neri. Integrating cross-dominance adaption in multi-objective
memetic algorithms. In C.-K. Goh, Y.-S. Ong, and K. C. Tan, editors, Multi-Objective
Memetic Algorithms, pages 325–351. Springer, Studies in Computational Intelligence ,
Vol. 171, 2009.

[7] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evolutionary
Algorithms for Solving Multi-Objective Problems. Springer, New York, second edition,
September 2007. ISBN 978-0-387-33254-3.

[8] I. Das and J. E. Dennis. A closer look at drawbacks of minimizing weighted sums of
objectives for pareto set generation in multicriteria optimization problems. Structural
and Multidisciplinary Optimization, 14(1):63–69, August 1997.

[9] I. Das and J. E. Dennis. Normal-boundary intersection: a new method for generat-
ing Pareto optimal points in multicriteria optimization problems. SIAM Journal on
Optimization, 8(3):631–657, 1998.

[10] Richard Dawkins. The Selfish Gene. Oxford University Press, 1990.

45

46 Book title goes here

[11] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions Evolutionary Compu-
tation, 6(2):182–197, 2002.

[12] Kalyanmoy Deb and Tushar Goel. A hybrid multi-objective evolutionary approach
to engineering shape design. In Proceedings of the First International Conference on
Evolutionary Multi-Criterion Optimization, EMO ’01, pages 385–399, London, UK,
UK, 2001. Springer-Verlag.

[13] Matthias Ehrgott. Multicriteria Optimization. Springer, Berlin, 2nd edition edition,
June 2005.

[14] J. Fliege, L. M. Graña Drummond, and B. F. Svaiter. Newton’s method for multiob-
jective optimization. SIAM J. on Optimization, 20(2):602–626, May 2009.

[15] J. Fliege and B. Fux Svaiter. Steepest descent methods for multicriteria optimization.
Mathematical Methods of Operations Research, 51(3):479–494, 2000.

[16] T. Goel and K. Deb. Hybrid Methods for Multi-Objective Evolutionary Algorithms. In
Lipo Wang, Kay Chen Tan, Takeshi Furuhashi, Jong-Hwan Kim, and Xin Yao, editors,
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL’02), volume 1, pages 188–192, Orchid Country Club, Singapore, November
2002. Nanyang Technical University.

[17] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

[18] Y.Y. Haimes, L.S. Lasdon, and D.A. Wismer. On a bicriterion formulation of the prob-
lems of integrated system identification and system optimization. IEEE Transactions
on Systems, Man, and Cybernetics, 1(3):296–297, 1971.

[19] J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik, 2:84–90, December 1960.

[20] J. M. Hammersley. Monte-Carlo methods for solving multivariable problems. Annals
of the New York Academy of Science, 86:844–874, 1960.

[21] K. Harada, J. Sakuma, and S. Kobayashi. Uniform Sampling of Local Pareto-Optimal
Solution Curves by Pareto Path Following and its Applications in Multi-objective
GA. In Dirk Thierens, editor, 2007 Genetic and Evolutionary Computation Conference
(GECCO’2007), volume 1, pages 813–820, London, UK, July 2007. ACM Press.

[22] Ken Harada, Jun Sakuma, and Shigenobu Kobayashi. Local Search for Multiobjective
Function Optimization: Pareto Descent Method. In GECCO ’06: Proceedings of the
8th annual conference on Genetic and evolutionary computation, pages 659–666, New
York, NY, USA, 2006. ACM Press.

[23] Claus Hillermeier. Nonlinear Multiobjective Optimization: A Generalized Homotopy
Approach. Birkhäuser Basel, 2000.

[24] Robert Hooke and T. A. Jeeves. “direct search” solution of numerical and statistical
problems. J. ACM, 8(2):212–229, 1961.

[25] X. Hu, Z. Huang, and Z. Wang. Hybridization of the Multi-Objective Evolutionary
Algorithms and the Gradient-based Algorithms. In Proceedings of the 2003 Congress on
Evolutionary Computation (CEC’2003), volume 2, pages 870–877, Canberra, Australia,
December 2003. IEEE Press.

Bibliography 47

[26] Hisao Ishibuchi and Tadahiko Murata. Multi-Objective Genetic Local Search Algo-
rithm. In Toshio Fukuda and Takeshi Furuhashi, editors, Proceedings of the 1996 In-
ternational Conference on Evolutionary Computation, pages 119–124, Nagoya, Japan,
1996. IEEE.

[27] Hisao Ishibuchi and Tadahiko Murata. Multi-Objective Genetic Local Search Algo-
rithm and Its Application to Flowshop Scheduling. IEEE Transactions on Systems,
Man and Cybernetics—Part C: Applications and Reviews, 28(3):392–403, August 1998.

[28] A. Jaszkiewicz. Do Multiple-Objective Metaheuristics Deliver on Their Promises? a
Computational Experiment on the Set-Covering Problem. IEEE Transactions on Evo-
lutionary Computation, 7(2):133–143, April 2003.

[29] Jahn Johannes. Mathematical vector optimization in partially ordered linear spaces.
Frankfurt am Main ; New York : Lang, 1986.

[30] James Kennedy and Russell C. Eberhart. Particle swarm optimization. In Proceedings
of the IEEE International Conference on Neural Networks, pages 1942–1948, 1995.

[31] J. Knowles and D. Corne. M-PAES: A Memetic Algorithm for Multiobjective Opti-
mization. In 2000 Congress on Evolutionary Computation, volume 1, pages 325–332,
Piscataway, New Jersey, July 2000. IEEE Service Center.

[32] Joshua D. Knowles. Local-Search and Hybrid Evolutionary Algorithms for Pareto Op-
timization. PhD thesis, The University of Reading, Department of Computer Science,
Reading, UK, January 2002.

[33] Joshua D. Knowles and David W. Corne. The Pareto Archived Evolution Strategy:
A New Baseline Algorithm for Multiobjective Optimisation. In 1999 Congress on
Evolutionary Computation, pages 98–105, Washington, D.C., Julio 1999. IEEE Service
Center.

[34] Patrick Koch, Oliver Kramer, Günter Rudolph, and Nicola Beume. On the hybridiza-
tion of sms-emoa and local search for continuous multiobjective optimization. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computation,
GECCO ’09, pages 603–610, New York, NY, USA, 2009. ACM.

[35] Praveen Koduru, Sanjoy Das, Stephen Welch, and Judith L. Roe. Fuzzy Dominance
Based Multi-objective GA-Simplex Hybrid Algorithms Applied to Gene Network Mod-
els. In Kalyanmoy Deb et al., editor, Genetic and Evolutionary Computation–GECCO
2004. Proceedings of the Genetic and Evolutionary Computation Conference. Part I,
pages 356–367, Seattle, Washington, USA, June 2004. Springer-Verlag, Lecture Notes
in Computer Science Vol. 3102.

[36] Praveen Koduru, Sanjoy Das, and Stephen M. Welch. Multi-Objective Hybrid PSO
Using ε-Fuzzy Dominance. In Dirk Thierens, editor, 2007 Genetic and Evolutionary
Computation Conference (GECCO’2007), volume 1, pages 853–860, London, UK, July
2007. ACM Press.

[37] H. W. Kuhn and A. W. Tucker. Nonlinear Programming. In Proceedings of the Second
Berkeley Symposium on Mathematics Statistics and Probability. University of California
Press, 1951.

48 Book title goes here

[38] Adriana Lara, Carlos A. Coello Coello, and Oliver Schütze. A painless gradient-assisted
multi-objective memetic mechanism for solving continuous bi-objective optimization
problems. In IEEE Congress on Evolutionary Computation (CEC 2010), pages 1–8.
IEEE Press, 2010.

[39] Adriana Lara, Gustavo Sanchez, Carlos A. Coello Coello, and Oliver Schütze. HCS:
A New Local Search Strategy for Memetic Multi-Objective Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation, 14(1):112–132, February 2010.

[40] Adriana Lara, Oliver Schütze, and Carlos A. Coello Coello. EVOLVE: A bridge be-
tween Probability, Set Oriented Numerics and Evolutionary Computation, volume 447
of Studies in Computational Intelligence, chapter On Gradient-based Local Search to
Hybridize Multi-objective Evolutionary Algorithms, page 440. Springer.

[41] Adriana Lara, Oliver Schütze, and Carlos A. Coello Coello. New Challenges for
Memetic Algorithms on Continuous Multi-objective Problems. In GECCO 2010 Work-
shop on Theoretical Aspects of Evolutionary Multiobjective Optimization, pages 1967–
1970, Portland, Oregon USA, July 2010. ACM.

[42] J. B. MacQueen. Some Methods for Classification and Analysis of Multivariate Ob-
servations. In Proceedings of the fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. University of California Press, 1967.

[43] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

[44] J.M. Mendel. Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE,
83(3):345 –377, mar 1995.

[45] Kaisa Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,
Boston, Massachuisetts, 1999.

[46] Kaisa M Miettinen. Some methods for nonlinear multi-objective optimization. In
E. et al Zitzler, editor, Evolutionary Multi-Criterion Optimization, volume 1993/2001
of Lecture Notes in Computer Science, pages 1–20. Springer Berlin, Heidelberg, 2001.

[47] Pablo Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent Computa-
tion Program, Report. 826, California Institute of Technology, Pasadena, California,
USA, 1989.

[48] H. Mukai. Algorithms for multicriterion optimization. Automatic Control, IEEE Trans-
actions on, 25(2):177–186, 1980.

[49] T. Murata, S. Kaige, and H. Ishibuchi. Generalization of Dominance Relation-Based
Replacement Rules for Memetic EMO Algorithms. In Erick Cantú-Paz et al., editor,
Genetic and Evolutionary Computation—GECCO 2003. Proceedings, Part I, pages
1234–1245. Springer. Lecture Notes in Computer Science Vol. 2723, July 2003.

[50] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Com-
puter Journal, 7:308–313, 1965.

Bibliography 49

[51] S. Poles, E. Rigoni, and T. Robič. MOGA-II Performance on Noisy Optimization
Problems. In Bogdan Filipič and Jurij Šilc, editors, Bioinspired Optimization Methods
and Their Applications. Proceedings of the International Conference on Bioinspired
Optimization Methods and their Applications, BIOMA 2004, pages 51–62. Jožef Stefan
Institute, Ljubljana, Slovenia, October 2004.

[52] Singiresu S. Rao. Engineering Optimization. John Wiley & Sons Inc., 3rd edition,
1996.

[53] A. Ravindran, K.M. Ragsdell, and G.V. Reklaitis. Engineering Optimization. Methods
and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2006.

[54] E. Rigoni and S. Poles. NBI and MOGA-II, two complementary algorithms for Multi-
Objective optimization. In Dagstuhl Seminar Proceedings 04461. Practical Approaches
to Multi-Objective Optimization, pages 1–22, 2005.

[55] R. S. Rosenberg. Simulation of genetic populations with biochemical properties. PhD
thesis, University of Michigan, Ann Harbor, Michigan, EE. UU., 1967.

[56] H.H. Rosenbrock. An automatic method for finding the greatest or least value of a
function. The Computer Journal, 3(3):175–184, 1960.

[57] J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. PhD thesis, Vanderbilt University, 1984.

[58] S. Schäffler, R. Schultz, and K. Weinzierl. Stochastic method for the solution of un-
constrained vector optimization problems. Journal of Optimization Theory and Appli-
cations, 114(1):209–222, 2002.

[59] O. Schütze. Set Oriented Methods for Global Optimization. PhD thesis, University of
Paderborn, 2004. <http://ubdata.uni-paderborn.de/ediss/17/2004/schuetze/>.

[60] O. Schütze, C. A. Coello Coello, S. Mostaghim, E.-G. Talbi, and M. Dellnitz. Hybridiz-
ing Evolutionary Strategies with Continuation Methods for Solving Multi-Objective
Problems. Engineering Optimization, 40(5):383–402, May 2008.

[61] O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich. Covering Pareto Sets by Multilevel
Evolutionary Subdivision Techniques. In Carlos M. Fonseca, Peter J. Fleming, Eckart
Zitzler, Kalyanmoy Deb, and Lothar Thiele, editors, Evolutionary Multi-Criterion Opti-
mization. Second International Conference, EMO 2003, pages 118–132, Faro, Portugal,
April 2003. Springer. Lecture Notes in Computer Science. Volume 2632.

[62] Pradyumn Kumar Shukla. On Gradient Based Local Search Methods in Unconstrained
Evolutionary Multi-objective Optimization. In Shigeru Obayashi, Kalyanmoy Deb,
Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata, editors, Evolutionary Multi-
Criterion Optimization, 4th International Conference, EMO 2007, pages 96–110, Mat-
shushima, Japan, March 2007. Springer. Lecture Notes in Computer Science Vol. 4403.

[63] Karthik Sindhya, Kalyanmoy Deb, and Kaisa Miettinen. A Local Search Based Evolu-
tionary Multi-objective Optimization Approach for Fast and Accurate Convergence. In
Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni, and Nicola Beume, edi-
tors, Parallel Problem Solving from Nature–PPSN X, pages 815–824. Springer. Lecture
Notes in Computer Science Vol. 5199, Dortmund, Germ., September 2008.

50 Book title goes here

[64] O. Soliman, L. T. Bui, and H. Abbass. A memetic coevolutionary multi-objective
diffierential evolution algorithm. In C.-K. Goh, Y.-S. Ong, and K. C. Tan, editors,
Multi-Objective Memetic Algorithms, pages 325–351. Springer, Studies in Computa-
tional Intelligence , Vol. 171, 2009.

[65] N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, Fall 1994.

[66] Rainer M. Storn and Kenneth V. Price. Differential Evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces. Technical Report
TR-95-012, ICSI, Berkeley, CA, March 1995.

[67] B. Suman. Study of simulated annealing based algorithms for multiobjective optimiza-
tion of a constrained problem. Computers & Chemical Engineering, 28:1849–1871,
2004.

[68] G. Timmel. Ein stochastisches suchverfahren zur bestimmung der optimalen kompro-
misslösung bei statistischen polykriteriellen optimierungsaufgaben. Technical report,
TH Illmenau, 1980.

[69] E. F. Wanner, F. G. Guimaraes, R. H.C. Takahashi, and P. J. Fleming. A Quadratic
Approximation-Based Local Search Procedure for Multiobjective Genetic Algorithms.
In 2006 IEEE Congress on Evolutionary Computation (CEC’2006), pages 3361–3368,
Vancouver, BC, Canada, July 2006. IEEE.

[70] Saúl Zapotecas Mart́ınez and Carlos A. Coello Coello. A Proposal to Hybridize Multi-
Objective Evolutionary Algorithms with Non-Gradient Mathematical Programming
Techniques. In Parallel Problem Solving from Nature–PPSN X, volume 5199, pages
837–846. Springer. Lecture Notes in Computer Science, September 2008.

[71] Saúl Zapotecas Mart́ınez and Carlos A. Coello Coello. A Memetic Algorithm with
Non Gradient-Based Local Search Assisted by a Meta-Model. In Robert Schaefer,
Carlos Cotta, Joanna Ko lodziej, and Günter Rudolph, editors, Parallel Problem Solving
from Nature–PPSN XI, volume 6238, pages 576–585, Kraków, Poland, September 2010.
Springer, Lecture Notes in Computer Science.

[72] Saúl Zapotecas Mart́ınez and Carlos A. Coello Coello. MONSS: A Multi-Objective
Nonlinear Simplex Search Algorithm. Technical Report TR:2011-09-09, Centro de
Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México, D.F.,
MÉXICO, September 2011.

[73] Saúl Zapotecas Mart́ınez and Carlos A. Coello Coello. A Direct Local Search Mecha-
nism for Decomposition-based Multi-Objective Evolutionary Algorithms. In 2012 IEEE
Congress on Evolutionary Computation (CEC’2012), pages 3431–3438, Brisbane, Aus-
tralia, June 2012. IEEE Press.

[74] Qingfu Zhang and Hui Li. MOEA/D: A Multiobjective Evolutionary Algorithm Based
on Decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731,
December 2007.

[75] Xiang Zhong, Wenhui Fan, Jinbiao Lin, and Zuozhi Zhao. Hybrid non-dominated
sorting differential evolutionary algorithm with nelder-mead. In Intelligent Systems
(GCIS), 2010 Second WRI Global Congress on, volume 1, pages 306 –311, December
2010.

Bibliography 51

[76] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195,
Summer 2000.

[77] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Pa-
pailou, and T. Fogarty, editors, EUROGEN 2001. Evolutionary Methods for Design,
Optimization and Control with Applications to Industrial Problems, pages 95–100,
Athens, Greece, 2002.

[78] Eckart Zitzler and Lothar Thiele. Multiobjective Optimization Using Evolutionary
Algorithms—A Comparative Study. In A. E. Eiben, editor, Parallel Problem Solving
from Nature V, pages 292–301, Amsterdam, September 1998. Springer-Verlag.

[79] Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms: A Com-
parative Case Study and the Strength Pareto Approach. IEEE Transactions on Evo-
lutionary Computation, 3(4):257–271, Noviembre 1999.

